Rankin, Jeffery W; Kwarciak, Andrew M; Richter, W Mark; Neptune, Richard R
2012-11-01
The majority of manual wheelchair users will experience upper extremity injuries or pain, in part due to the high force requirements, repetitive motion and extreme joint postures associated with wheelchair propulsion. Recent studies have identified cadence, contact angle and peak force as important factors for reducing upper extremity demand during propulsion. However, studies often make comparisons between populations (e.g., able-bodied vs. paraplegic) or do not investigate specific measures of upper extremity demand. The purpose of this study was to use a musculoskeletal model and forward dynamics simulations of wheelchair propulsion to investigate how altering cadence, peak force and contact angle influence individual muscle demand. Forward dynamics simulations of wheelchair propulsion were generated to emulate group-averaged experimental data during four conditions: 1) self-selected propulsion technique, and while 2) minimizing cadence, 3) maximizing contact angle, and 4) minimizing peak force using biofeedback. Simulations were used to determine individual muscle mechanical power and stress as measures of muscle demand. Minimizing peak force and cadence had the lowest muscle power requirements. However, minimizing peak force increased cadence and recovery power, while minimizing cadence increased average muscle stress. Maximizing contact angle increased muscle stress and had the highest muscle power requirements. Minimizing cadence appears to have the most potential for reducing muscle demand and fatigue, which could decrease upper extremity injuries and pain. However, altering any of these variables to extreme values appears to be less effective; instead small to moderate changes may better reduce overall muscle demand. Copyright © 2012 Elsevier Ltd. All rights reserved.
Self-force as a cosmic censor in the Kerr overspinning problem
NASA Astrophysics Data System (ADS)
Colleoni, Marta; Barack, Leor; Shah, Abhay G.; van de Meent, Maarten
2015-10-01
It is known that a near-extremal Kerr black hole can be spun up beyond its extremal limit by capturing a test particle. Here we show that overspinning is always averted once backreaction from the particle's own gravity is properly taken into account. We focus on nonspinning, uncharged, massive particles thrown in along the equatorial plane and work in the first-order self-force approximation (i.e., we include all relevant corrections to the particle's acceleration through linear order in the ratio, assumed small, between the particle's energy and the black hole's mass). Our calculation is a numerical implementation of a recent analysis by two of us [Phys. Rev. D 91, 104024 (2015)], in which a necessary and sufficient "censorship" condition was formulated for the capture scenario, involving certain self-force quantities calculated on the one-parameter family of unstable circular geodesics in the extremal limit. The self-force information accounts both for radiative losses and for the finite-mass correction to the critical value of the impact parameter. Here we obtain the required self-force data and present strong evidence to suggest that captured particles never drive the black hole beyond its extremal limit. We show, however, that, within our first-order self-force approximation, it is possible to reach the extremal limit with a suitable choice of initial orbital parameters. To rule out such a possibility would require (currently unavailable) information about higher-order self-force corrections.
An Exploration of Equipping a Future Force Warrior Small Combat Unit with Non-Lethal Weapons
2006-06-01
when Russian forces used the chemical fentanyl against Chechen hostage-takers in a Moscow theater. Unfortunately, nearly 130 of the 800-900 hostages...died of overdoses and an undisclosed number were left with permanent disabilities.25 Obviously, extreme care must be exercised in the employment of
An evaluation of some unbraked tire cornering force characteristics
NASA Technical Reports Server (NTRS)
Leland, T. J. W.
1972-01-01
An investigation to determine the effects of pavement surface condition on the cornering forces developed by a group of 6.50x13 automobile tires of different tread design was conducted at the Langley aircraft landing loads and traction facility. The tests were made at fixed yaw angles of 3,4.5, and 6 deg at forward speeds up to 80 knots on two concrete surfaces of different texture under dry, damp, and flooded conditions. The results showed that the cornering forces were extremely sensitive to tread pattern and runway surface texture under all conditions and that under flooded conditions tire hydroplaning and complete loss of cornering force occurred at a forward velocity predicted from an existing formula based on tire inflation pressure. Futher, tests on the damp concrete with a smooth tire and a four-groove tire showed higher cornering forces at a yaw angle of 3 deg than at 4.5 deg; this indicated that maximum cornering forces are developed at extremely small steering angles under these conditions.
Visser, Bart; De Looze, Michiel; De Graaff, Matthijs; Van Dieën, Jaap
2004-02-05
The objective of the present study was to gain insight into the effects of precision demands and mental pressure on the load of the upper extremity. Two computer mouse tasks were used: an aiming and a tracking task. Upper extremity loading was operationalized as the myo-electric activity of the wrist flexor and extensor and of the trapezius descendens muscles and the applied grip- and click-forces on the computer mouse. Performance measures, reflecting the accuracy in both tasks and the clicking rate in the aiming task, indicated that the levels of the independent variables resulted in distinguishable levels of accuracy and work pace. Precision demands had a small effect on upper extremity loading with a significant increase in the EMG-amplitudes (21%) of the wrist flexors during the aiming tasks. Precision had large effects on performance. Mental pressure had substantial effects on EMG-amplitudes with an increase of 22% in the trapezius when tracking and increases of 41% in the trapezius and 45% and 140% in the wrist extensors and flexors, respectively, when aiming. During aiming, grip- and click-forces increased by 51% and 40% respectively. Mental pressure had small effects on accuracy but large effects on tempo during aiming. Precision demands and mental pressure in aiming and tracking tasks with a computer mouse were found to coincide with increased muscle activity in some upper extremity muscles and increased force exertion on the computer mouse. Mental pressure caused significant effects on these parameters more often than precision demands. Precision and mental pressure were found to have effects on performance, with precision effects being significant for all performance measures studied and mental pressure effects for some of them. The results of this study suggest that precision demands and mental pressure increase upper extremity load, with mental pressure effects being larger than precision effects. The possible role of precision demands as an indirect mental stressor in working conditions is discussed.
Segmental Dynamics of Forward Fall Arrests: System Identification Approach
Kim, Kyu-Jung; Ashton-Miller, James A.
2009-01-01
Background Fall-related injuries are multifaceted problems, necessitating thorough biodynamic simulation to identify critical biomechanical factors. Methods A 2-degree-of-freedom discrete impact model was constructed through system identification and validation processes using the experimental data to understand dynamic interactions of various biomechanical parameters in bimanual forward fall arrests. Findings The bimodal reaction force response from the identified models had small identification errors for the first and second force peaks less than 3.5% and high coherence between the measured and identified model responses (R2=0.95). Model validation with separate experimental data also demonstrated excellent validation accuracy and coherence, less than 7% errors and R2=0.87, respectively. The first force peak was usually greater than the second force peak and strongly correlated with the impact velocity of the upper extremity, while the second force peak was associated with the impact velocity of the body. The impact velocity of the upper extremity relative to the body could be a major risk factor to fall-related injuries as observed from model simulations that a 75% faster arm movement relative to the falling speed of the body alone could double the first force peak from soft landing, thereby readily exceeding the fracture strength of the distal radius. Interpretation Considering that the time-critical nature of falling often calls for a fast arm movement, the use of the upper extremity in forward fall arrests is not biomechanically justified unless sufficient reaction time and coordinated protective motion of the upper extremity are available. PMID:19250726
Lower extremity kinetics in tap dance.
Mayers, Lester; Bronner, Shaw; Agraharasamakulam, Sujani; Ojofeitimi, Sheyi
2010-01-01
Tap dance is a unique performing art utilizing the lower extremities as percussion instruments. In a previous study these authors reported decreased injury prevalence among tap dancers compared to other dance and sports participants. No biomechanical analyses of tap dance exist to explain this finding. The purpose of the current pilot study was to provide a preliminary overview of normative peak kinetic and kinematic data, based on the hypothesis that tap dance generates relatively low ground reaction forces and joint forces and moments. Six professional tap dancers performed four common tap dance sequences that produced data captured by the use of a force platform and a five-camera motion analysis system. The mean vertical ground reaction force for all sequences was found to be 2.06+/-0.55 BW. Mean peak sagittal, frontal, and transverse plane joint moments (hip, knee, and ankle) ranged from 0.07 to 2.62 N.m/kg. These small ground reaction forces and joint forces and moments support our hypothesis, and may explain the relatively low injury incidence in tap dancers. Nevertheless, the analysis is highly complex, and other factors remain to be studied and clarified.
Control of Precision Grip Force in Lifting and Holding of Low-Mass Objects
Kimura, Daisuke; Kadota, Koji; Ito, Taro
2015-01-01
Few studies have investigated the control of grip force when manipulating an object with an extremely small mass using a precision grip, although some related information has been provided by studies conducted in an unusual microgravity environment. Grip-load force coordination was examined while healthy adults (N = 17) held a moveable instrumented apparatus with its mass changed between 6 g and 200 g in 14 steps, with its grip surface set as either sandpaper or rayon. Additional measurements of grip-force-dependent finger-surface contact area and finger skin indentation, as well as a test of weight discrimination, were also performed. For each surface condition, the static grip force was modulated in parallel with load force while holding the object of a mass above 30 g. For objects with mass smaller than 30 g, on the other hand, the parallel relationship was changed, resulting in a progressive increase in grip-to-load force (GF/LF) ratio. The rayon had a higher GF/LF force ratio across all mass levels. The proportion of safety margin in the static grip force and normalized moment-to-moment variability of the static grip force were also elevated towards the lower end of the object mass for both surfaces. These findings indicate that the strategy of grip force control for holding objects with an extremely small mass differs from that with a mass above 30 g. The data for the contact area, skin indentation, and weight discrimination suggest that a decreased level of cutaneous feedback signals from the finger pads could have played some role in a cost function in efficient grip force control with low-mass objects. The elevated grip force variability associated with signal-dependent and internal noises, and anticipated inertial force on the held object due to acceleration of the arm and hand, could also have contributed to the cost function. PMID:26376484
Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R
2016-02-01
Mediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds. In this study, climate and hydrologic simulations produced within the Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB) EU FP7 research project were used to analyze how precipitation extremes propagate into discharge extremes in the Rio Mannu basin (472.5km(2)), located in Sardinia, Italy. The basin hydrologic response to climate forcings in a reference (1971-2000) and a future (2041-2070) period was simulated through the combined use of a set of global and regional climate models, statistical downscaling techniques, and a process based distributed hydrologic model. We analyzed and compared the distribution of annual maxima extracted from hourly and daily precipitation and peak discharge time series, simulated by the hydrologic model under climate forcing. For this aim, yearly maxima were fit by the Generalized Extreme Value (GEV) distribution using a regional approach. Next, we discussed commonality and contrasting behaviors of precipitation and discharge maxima distributions to better understand how hydrological transformations impact propagation of extremes. Finally, we show how rainfall statistical downscaling algorithms produce more reliable forcings for hydrological models than coarse climate model outputs. Copyright © 2015 Elsevier B.V. All rights reserved.
A small, linear, piezoelectric ultrasonic cryomotor
NASA Astrophysics Data System (ADS)
Dong, Shuxiang; Yan, Li; Wang, Naigang; Viehland, Dwight; Jiang, Xiaoning; Rehrig, Paul; Hackenberger, Wes
2005-01-01
A small, linear-type, piezoelectric ultrasonic cryomotor has been developed for precision positioning at extremely low temperatures (⩾-200°C). This cryomotor consists of a pair of Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal stacks, which are piezoelectrically excited into the rotating third-bending mode of the cryomotor stator's center, which in turn drives a contacted slider into linear motion via frictional forces. The performance characteristics achieved by the cryomotor are: (i) a maximum linear speed of >50mm /s; (ii) a stroke of >10mm; (iii) a driving force of >0.2N; (iv) a response time of ˜29ms; and (v) a step resolution of ˜20nm.
NASA Astrophysics Data System (ADS)
Ries, H.; Moseley, C.; Haensler, A.
2012-04-01
Reanalyses depict the state of the atmosphere as a best fit in space and time of many atmospheric observations in a physically consistent way. By essentially solving the data assimilation problem in a very accurate manner, reanalysis results can be used as reference for model evaluation procedures and as forcing data sets for different model applications. However, the spatial resolution of the most common and accepted reanalysis data sets (e.g. JRA25, ERA-Interim) ranges from approximately 124 km to 80 km. This resolution is too coarse to simulate certain small scale processes often associated with extreme events. In addition, many models need higher resolved forcing data ( e.g. land-surface models, tools for identifying and assessing hydrological extremes). Therefore we downscaled the ERA-Interim reanalysis over the EURO-CORDEX-Domain for the time period 1989 to 2008 to a horizontal resolution of approximately 12 km. The downscaling is performed by nudging REMO-simulations to lower and lateral boundary conditions of the reanalysis, and by re-initializing the model every 24 hours ("REMO in forecast mode"). In this study the three following questions will be addressed: 1.) Does the REMO poor man's reanalysis meet the needs (accuracy, extreme value distribution) in validation and forcing? 2.) What lessons can be learned about the model used for downscaling? As REMO is used as a pure downscaling procedure, any systematic deviations from ERA-Interim result from poor process modelling but not from predictability limitations. 3.) How much small scale information generated by the downscaling model is lost with frequent initializations? A comparison to a simulation that is performed in climate mode will be presented.
Force-Free Magnetic Fields on AN Extreme Reissner-Nordström Spacetime and the Meissner Effect
NASA Astrophysics Data System (ADS)
Takamori, Yousuke; Ken-Ichi, Nakao; Hideki, Ishihara; Masashi, Kimura; Chul-Moon, Yoo
It is known that the Meissner effect of black holes is seen in the vacuum solutions of blackhole magnetosphere: no non-monopole component of magnetic flux penetrates the event horizon if the black hole is extreme. In this article, in order to see the effects of charge currents, we study the force-free magnetic field on the extreme Reissner-Nordström background. In this case, we should solve one elliptic differential equation called the Grad-Shafranov equation which has singular points called light surfaces. In order to see the Meissner effect, we consider the region near the event horizon and try to solve the equation by Taylor expansion about the event horizon. Moreover, we assume that the small rotational velocity of the magnetic field, and then, we construct a perturbative method to solve the Grad-Shafranov equation considering the efftect of the inner light surface and study the behavior of the magnetic field near the event horizon.
Small but Dynamic Active Region
2018-04-20
The sun featured just one, rather small active region over the past few days, but it developed rapidly and sported a lot of magnetic activity in just one day (Apr. 11-12, 2018). The activity was observed in a wavelength of extreme ultraviolet light. The loops and twisting arches above it are evidence of magnetic forces tangling with each other. The video clip was produced using Helioviewer software. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA06676
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barkhordarian, Armineh
We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scalemore » component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.« less
Barkhordarian, Armineh
2012-01-01
We investigate whether the observed mean sea level pressure (SLP) trends over the Mediterranean region in the period from 1975 to 2004 are significantly consistent with what 17 models projected as response of SLP to anthropogenic forcing (greenhouse gases and sulphate aerosols, GS). Obtained results indicate that the observed trends in mean SLP cannot be explained by natural (internal) variability. Externally forced changes are detectable in all seasons, except spring. The large-scale component (spatial mean) of the GS signal is detectable in all the 17 models in winter and in 12 of the 17 models in summer. However, the small-scalemore » component (spatial anomalies about the spatial mean) of GS signal is only detectable in winter within 11 of the 17 models. We also show that GS signal has a detectable influence on observed decreasing (increasing) tendency in the frequencies of extremely low (high) SLP days in winter and that these changes cannot be explained by internal climate variability. While the detection of GS forcing is robust in winter and summer, there are striking inconsistencies in autumn, where analysis points to the presence of an external forcing, which is not GS forcing.« less
2010-04-01
cylinders is suspected to account for the lateral offset. A simple model of the Magnus effect (ref. 23) indicates that it generates force per...The spin also produced a small but measurable Magnus effect . An extreme cg offset produced stability around small end into the wind. The engine...expected. If we assume the flight data for cable angles are accurate to a fraction of a degree, then a Magnus effect similar to that found for spinning
Tapping mode imaging with an interfacial force microscope
NASA Astrophysics Data System (ADS)
Warren, O. L.; Graham, J. F.; Norton, P. R.
1997-11-01
In their present embodiment, sensors used in interfacial force microscopy do not have the necessary mechanical bandwidth to be employed as free-running tapping mode devices. We describe an extremely stable method of obtaining tapping mode images using feedback on the sensor. Our method is immune to small dc drifts in the force signal, and the prospect of diminishing the risk of damaging fragile samples is realized. The feasibility of the technique is demonstrated by our imaging work on a Kevlar fiber-epoxy composite. We also present a model which accounts for the frequency dependence of the sensor in air when operating under closed loop control. A simplified force modulation model is investigated to explore the effect of contact on the closed loop response of the sensor.
Open-type miniature heat pipes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vasiliev, L.L.
1994-01-01
The hypothesis that systems of thermoregulation, similar to open-type micro heat pipes, exist in nature (soils, living organisms, plants) and in a number of technological processes (drying, thermodynamic cycles on solid adsorbents) is considered. The hydrodynamics and heat transfer in such thermoregulation systems differ from the hydrodynamics and heat transfer in classical heat pipes, since their geometrical dimensions are extremely small (dozens of microns), adhesion forces are powerful, the effect of the field of capillary and gravitational forces is significant, and strong interaction between counter-current flows of vapor and liquid takes place.
NASA Astrophysics Data System (ADS)
Chen, Liang; Dirmeyer, Paul A.
2018-05-01
Land use/land cover change (LULCC) exerts significant influence on regional climate extremes, but its relative importance compared with other anthropogenic climate forcings has not been thoroughly investigated. This study compares land use forcing with other forcing agents in explaining the simulated historical temperature extreme changes since preindustrial times in the CESM-Last Millennium Ensemble (LME) project. CESM-LME suggests that the land use forcing has caused an overall cooling in both warm and cold extremes, and has significantly decreased diurnal temperature range (DTR). Due to the competing effects of the GHG and aerosol forcings, the spatial pattern of changes in 1850-2005 climatology of temperature extremes in CESM-LME can be largely explained by the land use forcing, especially for hot extremes and DTR. The dominance of land use forcing is particularly evident over Europe, eastern China, and the central and eastern US. Temporally, the land-use cooling is relatively stable throughout the historical period, while the warming of temperature extremes is mainly influenced by the enhanced GHG forcing, which has gradually dampened the local dominance of the land use effects. Results from the suite of CMIP5 experiments partially agree with the local dominance of the land use forcing in CESM-LME, but inter-model discrepancies exist in the distribution and sign of the LULCC-induced temperature changes. Our results underline the overall importance of LULCC in historical temperature extreme changes, implying land use forcing should be highlighted in future climate projections.
Lean Mass Asymmetry Influences Force and Power Asymmetry During Jumping in Collegiate Athletes
Bell, David R.; Sanfilippo, Jennifer L.; Binkley, Neil; Heiderscheit, Bryan C.
2015-01-01
The purpose of this investigation was to: (1) examine how asymmetry in lower extremity lean mass influenced force and power asymmetry during jumping, (2) determine how power and force asymmetry affected jump height, and (3) report normative values in collegiate athletes. Force and power were assessed from each limb using bilateral force plates during a countermovement jump in 167 Division 1 athletes (mass=85.7±20.3kg, age=20.0±1.2years, 103M/64F). Lean mass of the pelvis, thigh, and shank was assessed via dual-energy X-ray absorptiometry. Percent asymmetry was calculated for lean mass at each region (pelvis, thigh, and shank) as well as force and power. Forward stepwise regressions were performed to determine the influence of lean mass asymmetry on force and power asymmetry. Thigh and shank lean mass asymmetry explained 20% of the variance in force asymmetry (R2=0.20, P<0.001), while lean mass asymmetry of the pelvis, thigh and shank explained 25% of the variance in power asymmetry (R2=0.25, P<0.001). Jump height was compared across level of force and power asymmetry (P>0.05) and greater than 10% asymmetry in power tended to decrease performance (effect size>1.0). Ninety-five percent of this population (2.5th to 97.5th percentile) displayed force asymmetry between −11.8 to 16.8% and a power asymmetry between −9.9 to 11.5%. A small percentage (<4%) of these athletes displayed more than 15% asymmetry between limbs. These results demonstrate that lean mass asymmetry in the lower extremity is at least partially responsible for asymmetries in force and power. However, a large percentage remains unexplained by lean mass asymmetry. PMID:24402449
Lean mass asymmetry influences force and power asymmetry during jumping in collegiate athletes.
Bell, David R; Sanfilippo, Jennifer L; Binkley, Neil; Heiderscheit, Bryan C
2014-04-01
The purpose of this investigation was to (a) examine how asymmetry in lower extremity lean mass influenced force and power asymmetry during jumping, (b) determine how power and force asymmetry affected jump height, and (c) report normative values in collegiate athletes. Force and power were assessed from each limb using bilateral force plates during a countermovement jump in 167 division 1 athletes (mass = 85.7 ± 20.3 kg, age = 20.0 ± 1.2 years; 103 men and 64 women). Lean mass of the pelvis, thigh, and shank was assessed using dual-energy x-ray absorptiometry. Percent asymmetry was calculated for lean mass at each region (pelvis, thigh, and shank) as well as force and power. Forward stepwise regressions were performed to determine the influence of lean mass asymmetry on force and power asymmetry. Thigh and shank lean mass asymmetry explained 20% of the variance in force asymmetry (R = 0.20, p < 0.001), whereas lean mass asymmetry of the pelvis, thigh, and shank explained 25% of the variance in power asymmetry (R = 0.25, p < 0.001). Jump height was compared across level of force and power asymmetry (p > 0.05) and greater than 10% asymmetry in power tended to decrease the performance (effect size >1.0). Ninety-five percent of this population (2.5th to 97.5th percentile) displayed force asymmetry between -11.8 and 16.8% and a power asymmetry between -9.9 and 11.5%. A small percentage (<4%) of these athletes displayed more than 15% asymmetry between limbs. These results demonstrate that lean mass asymmetry in the lower extremity is at least partially responsible for asymmetries in force and power. However, a large percentage remains unexplained by lean mass asymmetry.
Effects of anthropogenic activity emerging as intensified extreme precipitation over China
NASA Astrophysics Data System (ADS)
Li, Huixin; Chen, Huopo; Wang, Huijun
2017-07-01
This study aims to provide an assessment of the effects of anthropogenic (ANT) forcings and other external factors on observed increases in extreme precipitation over China from 1961 to 2005. Extreme precipitation is represented by the annual maximum 1 day precipitation (RX1D) and the annual maximum 5 day consecutive precipitation (RX5D), and these variables are investigated using observations and simulations from the Coupled Model Intercomparison Project phase 5. The analyses mainly focus on the probability-based index (PI), which is derived from RX1D and RX5D by fitting generalized extreme value distributions. The results indicate that the simulations that include the ANT forcings provide the best representation of the spatial and temporal characteristics of extreme precipitation over China. We use the optimal fingerprint method to obtain the univariate and multivariate fingerprints of the responses to external forcings. The results show that only the ANT forcings are detectable at a 90% confidence level, both individually and when natural forcings are considered simultaneously. The impact of the forcing associated with greenhouse gases (GHGs) is also detectable in RX1D, but its effects cannot be separated from those of combinations of forcings that exclude the GHG forcings in the two-signal analyses. Besides, the estimated changes of PI, extreme precipitation, and events with a 20 year return period under nonstationary climate states are potentially attributable to ANT or GHG forcings, and the relationships between extreme precipitation and temperature from ANT forcings show agreement with observations.
The Impact of Air-Sea Interactions on the Representation of Tropical Precipitation Extremes
NASA Astrophysics Data System (ADS)
Hirons, L. C.; Klingaman, N. P.; Woolnough, S. J.
2018-02-01
The impacts of air-sea interactions on the representation of tropical precipitation extremes are investigated using an atmosphere-ocean-mixed-layer coupled model. The coupled model is compared to two atmosphere-only simulations driven by the coupled-model sea-surface temperatures (SSTs): one with 31 day running means (31 d), the other with a repeating mean annual cycle. This allows separation of the effects of interannual SST variability from those of coupled feedbacks on shorter timescales. Crucially, all simulations have a consistent mean state with very small SST biases against present-day climatology. 31d overestimates the frequency, intensity, and persistence of extreme tropical precipitation relative to the coupled model, likely due to excessive SST-forced precipitation variability. This implies that atmosphere-only attribution and time-slice experiments may overestimate the strength and duration of precipitation extremes. In the coupled model, air-sea feedbacks damp extreme precipitation, through negative local thermodynamic feedbacks between convection, surface fluxes, and SST.
Random three-dimensional jammed packings of elastic shells acting as force sensors
NASA Astrophysics Data System (ADS)
Jose, Jissy; van Blaaderen, Alfons; Imhof, Arnout
2016-06-01
In a jammed solid of granular particles, the applied stress is in-homogeneously distributed within the packing. A full experimental characterization requires measurement of all the interparticle forces, but so far such measurements are limited to a few systems in two and even fewer in three dimensions. Particles with the topology of (elastic) shells are good local force sensors as relatively large deformations of the shells result from relatively small forces. We recently introduced such fluorescent shells as a model granular system in which force distributions can be determined in three dimensions using confocal microscopy and quantitative image analysis. An interesting aspect about these shells that differentiates them from other soft deformable particles is their buckling behavior at higher compression. This leads to deformations that do not conserve the inner volume of the particle. Here we use this system to accurately measure the contact forces in a three-dimensional packing of shells subjected to a static anisotropic compression and to shear. At small deformations forces are linear, however, for a buckled contact, the restoring force is related to the amount of deformation by a square root law, as follows from the theory of elasticity of shells. Near the unjamming-jamming transition (point J ), we found the probability distribution of the interparticle forces P (f ) to decay nearly exponentially at large forces, with little evidence of long-range force chains in the packings. As the packing density is increased, the tail of the distribution was found to crossover to a Gaussian, in line with other experimental and simulation studies. Under a small shear strain, up to 0.216, applied at an extremely low shear rate, we observed a shear-induced anisotropy in both the pair correlation function and contact force network; however, no appreciable change was seen in the number of contacts per particle.
Radiation-driven rotational motion of nanoparticles
Liang, Mengning; Harder, Ross; Robinson, Ian
2018-04-25
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
Radiation-driven rotational motion of nanoparticles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Mengning; Harder, Ross; Robinson, Ian
Focused synchrotron beams can influence a studied sample via heating, or radiation pressure effects due to intensity gradients. The high angular sensitivity of rotational X-ray tracking (RXT) of crystalline particles via their Bragg reflections can detect extremely small forces such as those caused by field gradients. By tracking the rotational motion of single crystal nanoparticles embedded in a viscous or viscoelastic medium, we observed the effects of heating in a uniform gradient beam and radiation pressure in a Gaussian profile beam. Heating of a few degrees Celsius was measured for 42μm crystals in glycerol and angular velocities of 10 -6rad/smore » due to torques of 10 - 24N∙m were measured for 340nm crystals in a colloidal gel matrix. These results show the ability to quantify small forces using rotation motion of tracer particles.« less
Invited Article: A review of haptic optical tweezers for an interactive microworld exploration
NASA Astrophysics Data System (ADS)
Pacoret, Cécile; Régnier, Stéphane
2013-08-01
This paper is the first review of haptic optical tweezers, a new technique which associates force feedback teleoperation with optical tweezers. This technique allows users to explore the microworld by sensing and exerting picoNewton-scale forces with trapped microspheres. Haptic optical tweezers also allow improved dexterity of micromanipulation and micro-assembly. One of the challenges of this technique is to sense and magnify picoNewton-scale forces by a factor of 1012 to enable human operators to perceive interactions that they have never experienced before, such as adhesion phenomena, extremely low inertia, and high frequency dynamics of extremely small objects. The design of optical tweezers for high quality haptic feedback is challenging, given the requirements for very high sensitivity and dynamic stability. The concept, design process, and specification of optical tweezers reviewed here are focused on those intended for haptic teleoperation. In this paper, two new specific designs as well as the current state-of-the-art are presented. Moreover, the remaining important issues are identified for further developments. The initial results obtained are promising and demonstrate that optical tweezers have a significant potential for haptic exploration of the microworld. Haptic optical tweezers will become an invaluable tool for force feedback micromanipulation of biological samples and nano- and micro-assembly parts.
Rankin, Jeffery W.; Kwarciak, Andrew M.; Richter, W. Mark; Neptune, Richard R.
2010-01-01
Manual wheelchair propulsion has been linked to a high incidence of overuse injury and pain in the upper extremity, which may be caused by the high load requirements and low mechanical efficiency of the task. Previous studies have suggested that poor mechanical efficiency may be due to a low effective handrim force (i.e. applied force that is not directed tangential to the handrim). As a result, studies attempting to reduce upper extremity demand have used various measures of force effectiveness (e.g. fraction effective force, FEF) as a guide for modifying propulsion technique, developing rehabilitation programs and configuring wheelchairs. However, the relationship between FEF and upper extremity demand is not well understood. The purpose of this study was to use forward dynamics simulations of wheelchair propulsion to determine the influence of FEF on upper extremity demand by quantifying individual muscle stress, work and handrim force contributions at different values of FEF. Simulations maximizing and minimizing FEF resulted in higher average muscle stresses (23% and 112%) and total muscle work (28% and 71%) compared to a nominal FEF simulation. The maximal FEF simulation also shifted muscle use from muscles crossing the elbow to those at the shoulder (e.g. rotator cuff muscles), placing greater demand on shoulder muscles during propulsion. The optimal FEF value appears to represent a balance between increasing push force effectiveness to increase mechanical efficiency and minimizing upper extremity demand. Thus, care should be taken in using force effectiveness as a metric to reduce upper extremity demand. PMID:20674921
2017-12-18
A small prominence observed in profile arched up and sent streams of plasma curling back into the sun over a 30-hour period (Dec. 13-14, 2017). We are observing charged particles streaming along magnetic field lines made visible in extreme ultraviolet light. Prominences are cooler strands of plasma tethered above the sun's surface by magnetic forces. They are quite unstable and frequently fall apart within hours or days. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22196
2017-01-26
On Jan. 20, 2017, NASA Solar Dynamics Observatory captured a small area of the sun highlighted three active region. Over half a day this active region sent dark swirls of plasma and bright magnetic arches twisting and turning above it. All the activity in the three areas was driven by competing magnetic forces. The dynamic action was observed in a wavelength of extreme ultraviolet light. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA11703
Bilateral asymmetries in max effort single-leg vertical jumps.
Stephens, Thomas M; Lawson, Brooke R; Reiser, Raoul F
2005-01-01
While asymmetries in the lower extremity during jumping may have implications during rehabilitation, it is not clear if healthy subjects should be expected to jump equivalently on each leg. Therefore, the goal of this study was to determine if asymmetries exist in maximal effort single-leg vertical jumps. After obtaining university-approved informed consent, 13 men and 12 women with competitive volleyball playing experience and no injuries of the lower-extremity that would predispose them to asymmetries participated. After thorough warm-up, five maximal effort vertical jumps with countermovement were performed on each leg (random order) with ground reaction forces and lower extremity kinematics recorded. The best three jumps from each leg were analyzed, assigning the leg with the highest jump height average as the dominant side. Asymmetry was assessed by determining statistical significance in the dominant versus non-dominant sides (p < 0.05). A significant interaction existed between side and gender for thigh length and peak vertical ground reaction force. Women had a significantly shorter thigh and men a greater peak vertical ground reaction force on their dominant side. All other parameters were assessed as whole group. Jumps were significantly greater off the dominant leg (2.8 cm on average). No other differences between sides were observed. Significant differences in magnitude (p < 0.05) existed between the men and women in jump height, several anthropometric parameters, minimum ankle and hip angles, and vertical ground reaction forces (peak and average). In conclusion, though a person may jump slightly higher on one leg relative to the other, and women may jump slightly differently than men, the magnitude of the difference should be relatively small and due to the multi-factorial nature of jump performance, individual parameters related to performance may not be consistently different.
Impact of tropical cyclones on modeled extreme wind-wave climate
Timmermans, Ben; Stone, Daithi; Wehner, Michael; ...
2017-02-16
Here, the effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ~1.0° and ~0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21stmore » century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.« less
Impact of tropical cyclones on modeled extreme wind-wave climate
NASA Astrophysics Data System (ADS)
Timmermans, Ben; Stone, Dáithí; Wehner, Michael; Krishnan, Harinarayan
2017-02-01
The effect of forcing wind resolution on the extremes of global wind-wave climate are investigated in numerical simulations. Forcing winds from the Community Atmosphere Model at horizontal resolutions of ˜1.0° and ˜0.25° are used to drive Wavewatch III. Differences in extreme wave height are found to manifest most strongly in tropical cyclone (TC) regions, emphasizing the need for high-resolution forcing in those areas. Comparison with observations typically show improvement in performance with increased forcing resolution, with a strong influence in the tail of the distribution, although simulated extremes can exceed observations. A simulation for the end of the 21st century under a RCP 8.5 type emission scenario suggests further increases in extreme wave height in TC regions.
Astronomical variation experiments with a Mars general circulation model
NASA Technical Reports Server (NTRS)
Pollack, J. B.; Haberle, R. M.; Murphy, J. R.; Schaeffer, J.; Lee, H.
1992-01-01
In time scales of a hundred thousand to a million years, the eccentricity of Mars orbit varies in a quasi-periodic manner between extremes as large as 0.14 and as small as 0 and the tilt of its axis of rotation with respect to the orbit normal also varies quasi-periodically between extremes as large as 35 deg and as small as 15 deg. In addition, the orientation of the axis precesses on comparable time scales. These astronomical variations are much more extreme than those experienced by the Earth. These variations are thought to have strongly modulated the seasonal cycles of dust, carbon dioxide, and water. One manifestation of the induced quasiperiodic climate changes may be the layered terrain of the polar regions, with individual layers perhaps recording variations in the absolute and/or relative deposition rates of dust and water in the polar regions, most likely in association with the winter time deposition of carbon dioxide ice. In an attempt to understand the manner in which atmospheric temperatures and winds respond to the astronomical forcings, we have initiated a series of numerical experiments with the NASA/Ames general circulation model of the Martian Atmosphere.
Pulling adsorbed polymers at an angle: A low temperature theory
NASA Astrophysics Data System (ADS)
Iliev, Gerasim; Whittington, Stuart
2012-02-01
We consider several partially-directed walk models in two- and three-dimensions to study the problem of a homopolymer interacting with a surface while subject to a force at the terminal monomer. The force is applied with a component parallel to the surface as well as a component perpendicular to the surface. Depending on the relative values of the force in each direction, the force can either enhance the adsorption transition or lead to desorption in an adsorbed polymer. For each model, we determine the associated generating function and extract the phase diagram, identifying states where the polymer is thermally desorbed, adsorbed, and under the influence of the force. We note the different regimes that appear in the problem and provide a low temperature approximation to describe them. The approximation is exact at T=0 and models the exact results extremely well for small values of T. This work is an extension of a model considered by S. Whittington and E. Orlandini.
2015-09-02
A small, but complex mass of plasma gyrated and spun about over the course of 40 hours above the surface of the Sun (Sept. 1-3, 2015). It was stretched and pulled back and forth by powerful magnetic forces but not ripped apart in this sequence. The temperature of the ionized iron particles observed in this extreme ultraviolet wavelength of light was about 2.8 million degrees C. (or 5 million degrees F.) http://photojournal.jpl.nasa.gov/catalog/PIA19878
Research of the BWS system for lower extremity rehabilitation robot.
Zhang, Xiao; Li, Weida; Li, Juan; Cai, Xiaowei
2017-07-01
Body weight support (BWS) system is increasingly used in conjunction with treadmills to assist the patients with neurological impairments. Owing to lower limbs of the patients unable to bear the whole weight during the rehabilitation training, some weight can be removed to help the patients recover the basic walking ability gradually. Therefore, considering the man-machine relationship and the effects of the rehabilitation, a wire-driven BWS system is designed. The main unit of the system is an active closed-loop controlled drive to generate the exact desired force. The force acted on the body is through the adjustment of the length of the rope which is connected to the harness worn by the patient. The structure designed in the research is easy to operate to realize the goal of the rehabilitation. To verify the effectiveness and practicability of the BWS system, some experiments have been curried out. From the results, not only the constant unloading force can be realized, but also the response time is limited in a small range which can bring a positive effect on correcting gait, improving balance and reducing muscle spasms. Also, compared to the traditional body weight support system, such as static system or passive elastic system, it has the advantages of the fast response, small errors and constant unloading force.
Ho, Dominik; Dose, Christian; Albrecht, Christian H.; Severin, Philip; Falter, Katja; Dervan, Peter B.; Gaub, Hermann E.
2009-01-01
Force-based ligand detection is a promising method to characterize molecular complexes label-free at physiological conditions. Because conventional implementations of this technique, e.g., based on atomic force microscopy or optical traps, are low-throughput and require extremely sensitive and sophisticated equipment, this approach has to date found only limited application. We present a low-cost, chip-based assay, which combines high-throughput force-based detection of dsDNA·ligand interactions with the ease of fluorescence detection. Within the comparative unbinding force assay, many duplicates of a target DNA duplex are probed against a defined reference DNA duplex each. The fractions of broken target and reference DNA duplexes are determined via fluorescence. With this assay, we investigated the DNA binding behavior of artificial pyrrole-imidazole polyamides. These small compounds can be programmed to target specific dsDNA sequences and distinguish between D- and L-DNA. We found that titration with polyamides specific for a binding motif, which is present in the target DNA duplex and not in the reference DNA duplex, reliably resulted in a shift toward larger fractions of broken reference bonds. From the concentration dependence nanomolar to picomolar dissociation constants of dsDNA·ligand complexes were determined, agreeing well with prior quantitative DNAase footprinting experiments. This finding corroborates that the forced unbinding of dsDNA in presence of a ligand is a nonequilibrium process that produces a snapshot of the equilibrium distribution between dsDNA and dsDNA·ligand complexes. PMID:19486688
NASA Astrophysics Data System (ADS)
Mascioli, Nora R.
Extreme temperatures, heat waves, heavy rainfall events, drought, and extreme air pollution events have adverse effects on human health, infrastructure, agriculture and economies. The frequency, magnitude and duration of these events are expected to change in the future in response to increasing greenhouse gases and decreasing aerosols, but future climate projections are uncertain. A significant portion of this uncertainty arises from uncertainty in the effects of aerosol forcing: to what extent were the effects from greenhouse gases masked by aerosol forcing over the historical observational period, and how much will decreases in aerosol forcing influence regional and global climate over the remainder of the 21st century? The observed frequency and intensity of extreme heat and precipitation events have increased in the U.S. over the latter half of the 20th century. Using aerosol only (AER) and greenhouse gas only (GHG) simulations from 1860 to 2005 in the GFDL CM3 chemistry-climate model, I parse apart the competing influences of aerosols and greenhouse gases on these extreme events. I find that small changes in extremes in the "all forcing" simulations reflect cancellations between the effects of increasing anthropogenic aerosols and greenhouse gases. In AER, extreme high temperatures and the number of days with temperatures above the 90th percentile decline over most of the U.S., while in GHG high temperature extremes increase over most of the U.S. The spatial response patterns in AER and GHG are significantly anti-correlated, suggesting a preferred regional mode of response that is largely independent of the type of forcing. Extreme precipitation over the eastern U.S. decreases in AER, particularly in winter, and increases over the eastern and central U.S. in GHG, particularly in spring. Over the 21 st century under the RCP8.5 emissions scenario, the patterns of extreme temperature and precipitation change associated with greenhouse gas forcing dominate. The temperature response pattern in AER and GHG is characterized by strong responses over the western U.S. and weak or opposite signed responses over the southeast U.S., raising the question of whether the observed U.S. "warming hole" could have a forced component. To address this question, I systematically examine observed seasonal temperature trends over all time periods of at least 10 years during 1901-2015. In the northeast and southern U.S., significant summertime cooling occurs from the early 1950s to the mid 1970s, which I partially attribute to increasing anthropogenic aerosol emissions (median fraction of the observed temperature trends explained is 0.69 and 0.17, respectively). In winter, the northeast and southern U.S. cool significantly from the early 1950s to the early 1990s, which I attribute to long-term phase changes in the North Atlantic Oscillation and the Pacific Decadal Oscillation. Rather than being a single phenomenon stemming from a single cause, both the warming hole and its dominant drivers vary by season, region, and time period. Finally, I examine historical and projected future changes in atmospheric stagnation. Stagnation, which is characterized by weak winds and an absence of precipitation, is a meteorological contributor to heat waves, extreme pollution, and drought. Using CM3, I show that regional stagnation trends over the historical period (1860-2005) are driven by changes in anthropogenic aerosol emissions, rather than rising greenhouse gases. In the northeastern and central United States, aerosol-induced changes in surface and upper level winds produce significant decreases in the number of stagnant summer days, while decreasing precipitation in the southeast US increases the number of stagnant summer days. Outside of the U.S., significant drying over eastern China in response to rising aerosol emissions contributed to increased stagnation during 1860-2005. Additionally, this region was found to be particularly sensitive to changes in local aerosol emissions, indicating that decreasing Chinese emissions in efforts to improve air quality will also decrease stagnation. In Europe, I find a dipole response pattern during the historical period wherein stagnation decreases over southern Europe and increases over northern Europe in response to global increases in aerosol emissions. In the future, declining aerosol emissions will likely lead to a reversal of the historical stagnation trends, with increasing greenhouse gases again playing a secondary role. Aerosols have a significant effect on a number of societally important extreme events, including heat waves, intense rainfall events, drought, and stagnation. Further, uncertainty in the strength of aerosol masking of historical greenhouse gas forcing is a significant source of spread in future climate projections. Quantifying these aerosol effects is therefore critical for our ability to accurately project and prepare for future changes in extreme events.
Nikogeorgos, Nikolaos; Madsen, Jan Busk; Lee, Seunghwan
2014-10-01
Lubricating properties of bovine submaxillary mucin (BSM) on a compliant, hydrophobic surface were studied as influenced by impurities, in particular bovine serum albumin (BSA), at macro and nanoscale contacts by means of pin-on-disk tribometry and friction force microscopy (FFM), respectively. At both contact scales, the purity of BSM and the presence of BSA were quantitatively discriminated. The presence of BSA was responsible for higher frictional forces observed from BSM samples containing relatively larger amount of BSA. But, the mechanisms contributing to higher friction forces by BSA were different at different contact scales. At the macroscale contact, higher friction forces were caused by faster and dominant adsorption of BSA into the contacting area under a continuous cycle of desorption and re-adsorption of the macromolecules from tribostress. Nevertheless, all BSMs lowered the interfacial friction forces due to large contact area and a large number of BSM molecules in the contact area. At the nanoscale contact, however, no significant desorption of the macromolecules is expected in tribological contacts because of too small contact area and extremely small number of BSM molecules involved in the contact area. Instead, increasingly higher friction forces with increasing amount of BSA in BSM layer are attributed to higher viscosity caused by BSA in the layer. Comparable size of AFM probes with BSM molecules allowed them to penetrate through the BSM layers and to scratch on the underlying substrates, and thus induced higher friction forces compared to the sliding contact on bare substrates. Copyright © 2014 Elsevier B.V. All rights reserved.
Novel Materials Containing Single-Wall Carbon Nanotubes Wrapped in Polymer Molecules
NASA Technical Reports Server (NTRS)
Smalley, Richard E.; O'Connell, Michael J.; Smith, Kenneth; Colbert, Daniel T.
2009-01-01
In this design, single-wall carbon nanotubes (SWNTs) have been coated in polymer molecules to create a new type of material that has low electrical conductivity, but still contains individual nanotubes, and small ropes of individual nanotubes, which are themselves good electrical conductors and serve as small conducting rods immersed in an electrically insulating matrix. The polymer is attached through weak chemical forces that are primarily non-covalent in nature, caused primarily through polarization rather than the sharing of valence electrons. Therefore, the electronic structure of the SWNT involved is substantially the same as that of free, individual (and small ropes of) SWNT. Their high conductivity makes the individual nanotubes extremely electrically polarizable, and materials containing these individual, highly polarizable molecules exhibit novel electrical properties including a high dielectric constant.
2017-01-03
A close-up view of one day in the life of a rather small active region shows the agitation and dynamism of its magnetic field (Dec. 21, 2016). This wavelength of extreme ultraviolet light reveals particles as they spin along the cascading arches of magnetic field lines above the active region. Some darker plasma rises up and spins around at the edge of the sun near the end of the video clip also being pulled by unseen magnetic forces. Movies are available at http://photojournal.jpl.nasa.gov/catalog/PIA15032
Phase Change Fabrics Control Temperature
NASA Technical Reports Server (NTRS)
2009-01-01
Originally featured in Spinoff in 1997, Outlast Technologies Inc. (formerly Gateway Technologies Inc.) has built its entire product line on microencapsulated phase change materials, developed in Small Business Innovation Research (SBIR) contracts with Johnson Space Center after initial development for the U.S. Air Force. The Boulder, Colorado-based company acquired the exclusive patent rights and now integrates these materials into textiles or onto finished apparel, providing temperature regulation in bedding materials and a full line of apparel for both ordinary and extreme conditions.
Dynamic response analysis of a 24-story damped steel structure
NASA Astrophysics Data System (ADS)
Feng, Demin; Miyama, Takafumi
2017-10-01
In Japanese and Chinese building codes, a two-stage design philosophy, damage limitation (small earthquake, Level 1) and life safety (extreme large earthquake, Level 2), is adopted. It is very interesting to compare the design method of a damped structure based on the two building codes. In the Chinese code, in order to be consistent with the conventional seismic design method, the damped structure is also designed at the small earthquake level. The effect of damper systems is considered by the additional damping ratio concept. The design force will be obtained from the damped design spectrum considering the reduction due to the additional damping ratio. The additional damping ratio by the damper system is usually calculated by a time history analysis method at the small earthquake level. The velocity dependent type dampers such as viscous dampers can function well even in the small earthquake level. But, if steel damper is used, which usually remains elastic in the small earthquake, there will be no additional damping ratio achieved. On the other hand, a time history analysis is used in Japan both for small earthquake and extreme large earthquake level. The characteristics of damper system and ductility of the structure can be modelled well. An existing 24-story steel frame is modified to demonstrate the design process of the damped structure based on the two building codes. Viscous wall type damper and low yield steel panel dampers are studied as the damper system.
Optimization of cascade blade mistuning under flutter and forced response constraints
NASA Technical Reports Server (NTRS)
Murthy, D. V.; Haftka, R. T.
1984-01-01
In the development of modern turbomachinery, problems of flutter instabilities and excessive forced response of a cascade of blades that were encountered have often turned out to be extremely difficult to eliminate. The study of these instabilities and the forced response is complicated by the presence of mistuning; that is, small differences among the individual blades. The theory of mistuned cascade behavior shows that mistuning can have a beneficial effect on the stability of the rotor. This beneficial effect is produced by the coupling between the more stable and less stable flutter modes introduced by mistuning. The effect of mistuning on the forced response can be either beneficial or adverse. Kaza and Kielb have studied the effects of two types of mistuning on the flutter and forced response: alternate mistuning where alternte blades are identical and random mistuning. The objective is to investigate other patterns of mistuning which maximize the beneficial effects on the flutter and forced response of the cascade. Numerical optimization techniques are employed to obtain optimal mistuning patterns. The optimization program seeks to minimize the amount of mistuning required to satisfy constraints on flutter speed and forced response.
NASA Astrophysics Data System (ADS)
Sawyer, Brian; Britton, Joseph; Keith, Adam; Wang, C.-C. Joseph; Freericks, James; Bollinger, John
2013-10-01
Confined non-neutral plasmas of ions in the regime of strong coupling serve as a platform for studying a diverse range of phenomena including: dense astrophysical matter, quantum computation/simulation, dynamical decoupling, and precision measurements. We describe a method of simultaneously detecting and measuring the temperature of transverse plasma modes in two-dimensional crystals of cold 9Be+ confined within a Penning trap. We employ a spin-dependent optical dipole force (ODF) generated from off-resonant laser beams to directly excite plasma modes transverse to the crystal plane of ~ 100 ions. Extremely small mode excitations (~ 1 nm) may be detected through spin-motion entanglement induced by an ODF as small as 10 yN , and even the shortest-wavelength (~ 20 μm) modes are excited and detected through the spin dependence of the force. This mode-specific thermometry has facilitated characterization and mitigation of ion heating sources in this system. Future work may include sub-yN force detection, spectroscopy/thermometry of the more complex in-plane oscillations, and implementation/confirmation of sub-Doppler cooling. The authors acknowledge support from the DARPA-OLE program.
Batra, Romesh C.; Porfiri, Maurizio; Spinello, Davide
2008-01-01
We study the influence of von Kármán nonlinearity, van der Waals force, and thermal stresses on pull-in instability and small vibrations of electrostatically actuated microplates. We use the Galerkin method to develop a tractable reduced-order model for electrostatically actuated clamped rectangular microplates in the presence of van der Waals forces and thermal stresses. More specifically, we reduce the governing two-dimensional nonlinear transient boundary-value problem to a single nonlinear ordinary differential equation. For the static problem, the pull-in voltage and the pull-in displacement are determined by solving a pair of nonlinear algebraic equations. The fundamental vibration frequency corresponding to a deflected configuration of the microplate is determined by solving a linear algebraic equation. The proposed reduced-order model allows for accurately estimating the combined effects of van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflection profile with an extremely limited computational effort. PMID:27879752
The impact of anthropogenic land use and land cover change on regional climate extremes.
Findell, Kirsten L; Berg, Alexis; Gentine, Pierre; Krasting, John P; Lintner, Benjamin R; Malyshev, Sergey; Santanello, Joseph A; Shevliakova, Elena
2017-10-20
Land surface processes modulate the severity of heat waves, droughts, and other extreme events. However, models show contrasting effects of land surface changes on extreme temperatures. Here, we use an earth system model from the Geophysical Fluid Dynamics Laboratory to investigate regional impacts of land use and land cover change on combined extremes of temperature and humidity, namely aridity and moist enthalpy, quantities central to human physiological experience of near-surface climate. The model's near-surface temperature response to deforestation is consistent with recent observations, and conversion of mid-latitude natural forests to cropland and pastures is accompanied by an increase in the occurrence of hot-dry summers from once-in-a-decade to every 2-3 years. In the tropics, long time-scale oceanic variability precludes determination of how much of a small, but significant, increase in moist enthalpy throughout the year stems from the model's novel representation of historical patterns of wood harvesting, shifting cultivation, and regrowth of secondary vegetation and how much is forced by internal variability within the tropical oceans.
Introducing the refined gravity hypothesis of extreme sexual size dimorphism
2010-01-01
Background Explanations for the evolution of female-biased, extreme Sexual Size Dimorphism (SSD), which has puzzled researchers since Darwin, are still controversial. Here we propose an extension of the Gravity Hypothesis (i.e., the GH, which postulates a climbing advantage for small males) that in conjunction with the fecundity hypothesis appears to have the most general power to explain the evolution of SSD in spiders so far. In this "Bridging GH" we propose that bridging locomotion (i.e., walking upside-down under own-made silk bridges) may be behind the evolution of extreme SSD. A biomechanical model shows that there is a physical constraint for large spiders to bridge. This should lead to a trade-off between other traits and dispersal in which bridging would favor smaller sizes and other selective forces (e.g. fecundity selection in females) would favor larger sizes. If bridging allows faster dispersal, small males would have a selective advantage by enjoying more mating opportunities. We predicted that both large males and females would show a lower propensity to bridge, and that SSD would be negatively correlated with sexual dimorphism in bridging propensity. To test these hypotheses we experimentally induced bridging in males and females of 13 species of spiders belonging to the two clades in which bridging locomotion has evolved independently and in which most of the cases of extreme SSD in spiders are found. Results We found that 1) as the degree of SSD increased and females became larger, females tended to bridge less relative to males, and that 2) smaller males and females show a higher propensity to bridge. Conclusions Physical constraints make bridging inefficient for large spiders. Thus, in species where bridging is a very common mode of locomotion, small males, by being more efficient at bridging, will be competitively superior and enjoy more mating opportunities. This "Bridging GH" helps to solve the controversial question of what keeps males small and also contributes to explain the wide range of SSD in spiders, as those spider species in which extreme SSD has not evolved but still live in tall vegetation, do not use bridging locomotion to disperse. PMID:20682029
Chang, Chia-Yuan; Rupp, Jonathan D; Reed, Matthew P; Hughes, Richard E; Schneider, Lawrence W
2009-11-01
In a previous study, the authors reported on the development of a finite-element model of the midsize male pelvis and lower extremities with lower-extremity musculature that was validated using PMHS knee-impact response data. Knee-impact simulations with this model were performed using forces from four muscles in the lower extremities associated with two-foot bracing reported in the literature to provide preliminary estimates of the effects of lower-extremity muscle activation on knee-thigh-hip injury potential in frontal impacts. The current study addresses a major limitation of these preliminary simulations by using the AnyBody three-dimensional musculoskeletal model to estimate muscle forces produced in 35 muscles in each lower extremity during emergency one-foot braking. To check the predictions of the AnyBody Model, activation levels of twelve major muscles in the hip and lower extremities were measured using surface EMG electrodes on 12 midsize-male subjects performing simulated maximum and 50% of maximum braking in a laboratory seating buck. Comparisons between test results and the predictions of the AnyBody Model when it was used to simulate these same braking tests suggest that the AnyBody model appropriately predicts agonistic muscle activations but under predicts antagonistic muscle activations. Simulations of knee-to-knee-bolster impacts were performed by impacting the knees of the lower-extremity finite element model with and without the muscle forces predicted by the validated AnyBody Model. Results of these simulations confirm previous findings that muscle tension increases knee-impact force by increasing the effective mass of the KTH complex due to tighter coupling of muscle mass to bone. They also indicate that muscle activation preferentially couples mass distal to the hip, thereby accentuating the decrease in femur force from the knee to the hip. However, the reduction in force transmitted from the knee to the hip is offset by the increased force at the knee and by increased compressive forces at the hip due to activation of lower-extremity muscles. As a result, approximately 45% to 60% and 50% to 65% of the force applied to the knee is applied to the hip in the simulations without and with muscle tension, respectively. The simulation results suggest that lower-extremity muscle tension has little effect on the risk of hip injuries, but it increases the bending moments in the femoral shaft, thereby increasing the risk of femoral shaft fractures by 20%-40%. However, these findings may be affected by the inability of the AnyBody Model to appropriately predict antagonistic muscle forces.
ROLE OF SMALL OIL AND GAS FIELDS IN THE UNITED STATES.
Meyer, Richard F.; Fleming, Mary L.
1985-01-01
The actual economic size cutoff is a function of such factors as depth, water depth offshore, and accessibility to transportation infrastructure. Because of the constraint of resource availability, price is now the principal force driving drilling activity. The proportion of new-field wildcats to other exploratory wells has fallen in recent years, but success in new-field wildcats has risen to about 20%. However, only very small fields, less than 1 million BOE, are being found in large numbers. Through 1979, almost 93% of known gas fields and 94. 5% of known oil fields were small, yet they contain only 14. 5% of the ultimately recoverable gas and 12. 5% of the oil. However, small fields are less capital intensive than equivalent-capacity synthetic-fuel plants, they are extremely numerous, and they are relatively easy and inexpensive to find and put on production. Refs.
Dirty Snow, Atmospheric Warming, and Climate Feedbacks from Boreal Black Carbon Emissions
NASA Astrophysics Data System (ADS)
Flanner, M. G.; Zender, C. S.; Randerson, J. T.; Jin, Y.
2005-12-01
Black carbon (BC) emitted from boreal fires darkens snow and sea-ice surfaces, increases solar absorption in the atmosphere, and decreases the incident flux at the surface. Although global surface forcing of darkened snow/ice is small relative to atmospheric forcing, the former directly triggers ice-albedo feedback, whereas the latter directly alters the atmospheric lapse rate. This highlights the importance of examining climate feedback strength as well as instantaneous forcings. We used a coupled land-atmosphere GCM (NCAR CAM3) to compare the relative forcings and climate feedbacks of BC emitted from a suite of boreal forest fires over the last decade, accounting for both enhanced snow/ice and atmospheric absorption by BC. The net change in absorbed energy at the surface was about three times greater than the instantaneous surface forcing when BC interactively heated the snow. Timing and location of fires determined the magnitude of darkened snow/ice feedback potential. We also assessed climate feedback strength from BC emitted globally during extreme high and low fire years, including the 1998 fire season.
Cross-bridge elasticity in single smooth muscle cells
1983-01-01
In smooth muscle, a cross-bridge mechanism is believed to be responsible for active force generation and fiber shortening. In the present studies, the viscoelastic and kinetic properties of the cross- bridge were probed by eliciting tension transients in response to small, rapid, step length changes (delta L = 0.3-1.0% Lcell in 2 ms). Tension transients were obtained in a single smooth muscle cell isolated from the toad (Bufo marinus) stomach muscularis, which was tied between a force transducer and a displacement device. To record the transients, which were of extremely small magnitude (0.1 microN), a high-frequency (400 Hz), ultrasensitive force transducer (18 mV/microN) was designed and built. The transients obtained during maximal force generation (Fmax = 2.26 microN) were characterized by a linear elastic response (Emax = 1.26 X 10(4) mN/mm2) coincident with the length step, which was followed by a biphasic tension recovery made up of two exponentials (tau fast = 5-20 ms, tau slow = 50-300 ms). During the development of force upon activation, transients were elicited. The relationship between stiffness and force was linear, which suggests that the transients originate within the cross-bridge and reflect the cross-bridge's viscoelastic and kinetic properties. The observed fiber elasticity suggests that the smooth muscle cross-bridge is considerably more compliant than in fast striated muscle. A thermodynamic model is presented that allows for an analysis of the factors contributing to the increased compliance of the smooth muscle cross-bridge. PMID:6413640
MEMS Micro-Valve for Space Applications
NASA Technical Reports Server (NTRS)
Chakraborty, I.; Tang, W. C.; Bame, D. P.; Tang, T. K.
1998-01-01
We report on the development of a Micro-ElectroMechanical Systems (MEMS) valve that is designed to meet the rigorous performance requirements for a variety of space applications, such as micropropulsion, in-situ chemical analysis of other planets, or micro-fluidics experiments in micro-gravity. These systems often require very small yet reliable silicon valves with extremely low leak rates and long shelf lives. Also, they must survive the perils of space travel, which include unstoppable radiation, monumental shock and vibration forces, as well as extreme variations in temperature. Currently, no commercial MEMS valve meets these requirements. We at JPL are developing a piezoelectric MEMS valve that attempts to address the unique problem of space. We begin with proven configurations that may seem familiar. However, we have implemented some major design innovations that should produce a superior valve. The JPL micro-valve is expected to have an extremely low leak rate, limited susceptibility to particulates, vibration or radiation, as well as a wide operational temperature range.
Optimal sensitivity for molecular recognition MAC-mode AFM
Schindler; Badt; Hinterdorfer; Kienberger; Raab; Wielert-Badt; Pastushenko
2000-02-01
Molecular recognition force microscopy (MRFM) using the magnetic AC mode (MAC mode) atomic force microscope (AFM) was recently investigated to locate and probe recognition sites. A flexible crosslinker carrying a ligand is bound to the tip for the molecular recognition of receptors on the surface of a sample. In this report, the driving frequency is calculated which optimizes the sensitivity (S). The sensitivity of MRFM is defined as the relative change of the magnetically excited cantilever deflection amplitude arising from a crosslinker/antibody/antigen connection that is characterized by a very small force constant. The sensitivity is calculated in a damped oscillator model with a certain value of quality factor Q, which, together with load, defines the frequency response (unloaded oscillator shows resonance at Q > 0.707). If Q < 1, the greatest value of S corresponds to zero driving frequency omega (measured in units of eigenfrequency). Therefore, for Q < 1, MAC-mode has no advantage in comparison with DC-mode. Two additional extremes are found at omegaL = (1 - 1/Q)(1/2) and omegaR = (1 + 1/Q)(1/2), with corresponding sensitivities S(L) = Q2/(2Q - 1), S(R) = Q2/(2Q + 1). The L-extreme exists only for Q > 1, and then S(L) > S(R), i.e. the L-extreme is the main one. For Q > 1, S(L) > 1, and for Q > 2.41, S(R) > 1. These are the critical Q-values, above which selecting driving frequency equal to sigmaL or sigmaR brings advantage to MAC mode vs. DC mode. Satisfactory quality of the oscillator model is demonstrated by comparison of some results with those calculated within the classical description of cantilevers.
NASA Astrophysics Data System (ADS)
Aspelmeyer, Markus; Zeilinger, Anton
2008-07-01
Pure curiosity has been the driving force behind many groundbreaking experiments in physics. This is no better illustrated than in quantum mechanics, initially the physics of the extremely small. Since its beginnings in the 1920s and 1930s, researchers have wanted to observe the counterintuitive properties of quantum mechanics directly in the laboratory. However, because experimental technology was not sufficiently developed at the time, people like Niels Bohr, Albert Einstein, Werner Heisenberg and Erwin Schrödinger relied instead on "gedankenexperiments" (thought experiments) to investigate the quantum physics of individual particles, mainly electrons and photons.
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Colby, Frank; Binder, Hanin; Catto, Jennifer L.; Hoell, Andrew; Cohen, Judah
2018-05-01
Previous work has identified six large-scale meteorological patterns (LSMPs) of dynamic tropopause height associated with extreme precipitation over the Northeast US, with extreme precipitation defined as the top 1% of daily station precipitation. Here, we examine the three-dimensional structure of the tropopause LSMPs in terms of circulation and factors relevant to precipitation, including moisture, stability, and synoptic mechanisms associated with lifting. Within each pattern, the link between the different factors and extreme precipitation is further investigated by comparing the relative strength of the factors between days with and without the occurrence of extreme precipitation. The six tropopause LSMPs include two ridge patterns, two eastern US troughs, and two troughs centered over the Ohio Valley, with a strong seasonality associated with each pattern. Extreme precipitation in the ridge patterns is associated with both convective mechanisms (instability combined with moisture transport from the Great Lakes and Western Atlantic) and synoptic forcing related to Great Lakes storm tracks and embedded shortwaves. Extreme precipitation associated with eastern US troughs involves intense southerly moisture transport and strong quasi-geostrophic forcing of vertical velocity. Ohio Valley troughs are associated with warm fronts and intense warm conveyor belts that deliver large amounts of moisture ahead of storms, but little direct quasi-geostrophic forcing. Factors that show the largest difference between days with and without extreme precipitation include integrated moisture transport, low-level moisture convergence, warm conveyor belts, and quasi-geostrophic forcing, with the relative importance varying between patterns.
Designing instrumented walker to measure upper-extremity's efforts: A case study.
Khodadadi, Mohammad; Baniasad, Mina Arab; Arazpour, Mokhtar; Farahmand, Farzam; Zohoor, Hassan
2018-02-26
The high prevalence of shoulder pain in using walkers in patients who have spinal cord injury (SCI). Also, the limited options available to economically measure grip forces in walkers, which drove the need to create one. This article describes a method to obtain upper-extremities' forces and moments in a person with SCI by designing an appropriate instrumented walker. First, since the commercial multidirectional loadcells are too expensive, custom loadcells are fabricated. Ultimately, a complete gait analysis by means of VICON motion analysis and using inverse dynamic method has been held to measure upper-extremities' efforts. The results for a person with SCI using a two-wheel walker in low and high heights and a basic walker show that there are higher shoulder and elbow flexion-extension moments and also higher shoulder forces in superior-inferior direction and higher elbow and wrist forces in anterior-posterior directions. The results are not much different in using two different types of walker. By using the proposed method, upper-extremities' forces and moments were obtained and the results were compared to each other in using two different walkers.
Aerosol forcing of extreme summer drought over North China
NASA Astrophysics Data System (ADS)
Zhang, L.
2017-12-01
The frequency of extreme summer drought has been increasing in North China during the past sixty years, which has caused serious water shortages. It remains unclear whether anthropogenic forcing has contributed to the increasing extreme droughts. Using the National Centers for Environmental Prediction and the National Center for Atmospheric Research (NCEP/NCAR) re-analysis data and Coupled Model Intercomparison Project Phase 5 (CMIP5) model simulations with various combinations of historical forcings, the authors investigated the driving mechanism behind the observed changes. Metrological drought is usually measured by precipitation anomalies, which show lower fidelity in current climate models compared to largescale circulation patterns. Based on NCEP/NCAR re-analysis, a linear relationship is firstly established between the weakest regional average 850 hPa southerly winds and extreme summer drought. This meridional winds index (MWI) is then used as a proxy for attribution of extreme North China drought using CMIP5 outputs. Examination of the CMIP5 simulations reveals that the probability of the extreme summer droughts with the first percentile of MWI for 1850-2004 under anthropogenic forcing has increased by 100%, on average, relative to a pre-industrial control run. The more frequent occurrence of extremely weak MWIs or drought over North China is ascribed from weakened climate and East Asian summer monsoon (EASM) circulation due to the direct cooling effect from increased aerosol.
Extreme weather: Subtropical floods and tropical cyclones
NASA Astrophysics Data System (ADS)
Shaevitz, Daniel A.
Extreme weather events have a large effect on society. As such, it is important to understand these events and to project how they may change in a future, warmer climate. The aim of this thesis is to develop a deeper understanding of two types of extreme weather events: subtropical floods and tropical cyclones (TCs). In the subtropics, the latitude is high enough that quasi-geostrophic dynamics are at least qualitatively relevant, while low enough that moisture may be abundant and convection strong. Extratropical extreme precipitation events are usually associated with large-scale flow disturbances, strong ascent, and large latent heat release. In the first part of this thesis, I examine the possible triggering of convection by the large-scale dynamics and investigate the coupling between the two. Specifically two examples of extreme precipitation events in the subtropics are analyzed, the 2010 and 2014 floods of India and Pakistan and the 2015 flood of Texas and Oklahoma. I invert the quasi-geostrophic omega equation to decompose the large-scale vertical motion profile to components due to synoptic forcing and diabatic heating. Additionally, I present model results from within the Column Quasi-Geostrophic framework. A single column model and cloud-revolving model are forced with the large-scale forcings (other than large-scale vertical motion) computed from the quasi-geostrophic omega equation with input data from a reanalysis data set, and the large-scale vertical motion is diagnosed interactively with the simulated convection. It is found that convection was triggered primarily by mechanically forced orographic ascent over the Himalayas during the India/Pakistan flood and by upper-level Potential Vorticity disturbances during the Texas/Oklahoma flood. Furthermore, a climate attribution analysis was conducted for the Texas/Oklahoma flood and it is found that anthropogenic climate change was responsible for a small amount of rainfall during the event but the intensity of this event may be greatly increased if it occurs in a future climate. In the second part of this thesis, I examine the ability of high-resolution global atmospheric models to simulate TCs. Specifically, I present an intercomparison of several models' ability to simulate the global characteristics of TCs in the current climate. This is a necessary first step before using these models to project future changes in TCs. Overall, the models were able to reproduce the geographic distribution of TCs reasonably well, with some of the models performing remarkably well. The intensity of TCs varied widely between the models, with some of this difference being due to model resolution.
Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fingersh, Lee J; Loth, Eric; Kaminski, Meghan
2017-06-09
A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3more » wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.« less
Design and Manufacturing of Extremely Low Mass Flight Systems
NASA Technical Reports Server (NTRS)
Johnson, Michael R.
2002-01-01
Extremely small flight systems pose some unusual design and manufacturing challenges. The small size of the components that make up the system generally must be built with extremely tight tolerances to maintain the functionality of the assembled item. Additionally, the total mass of the system is extremely sensitive to what would be considered small perturbations in a larger flight system. The MUSES C mission, designed, built, and operated by Japan, has a small rover provided by NASA that falls into this small flight system category. This NASA-provided rover is used as a case study of an extremely small flight system design. The issues that were encountered with the rover portion of the MUSES C program are discussed and conclusions about the recommended mass margins at different stages of a small flight system project are presented.
The effect of workstation and task variables on forces applied during simulated meat cutting.
McGorry, Raymond W; Dempsey, Patrick G; O'Brien, Niall V
2004-12-01
The purpose of the study was to investigate factors related to force and postural exposure during a simulated meat cutting task. The hypothesis was that workstation, tool and task variables would affect the dependent kinetic variables of gripping force, cutting moment and the dependent kinematic variables of elbow elevation and wrist angular displacement in the flexion/extension and radial/ulnar deviation planes. To evaluate this hypothesis a 3 x 3 x 2 x 2 x 2 (surface orientation by surface height by blade angle by cut complexity by work pace) within-subject factorial design was conducted with 12 participants. The results indicated that the variables can act and interact to modify the kinematics and kinetics of a cutting task. Participants used greater grip force and cutting moment when working at a pace based on productivity. The interactions of the work surface height and orientation indicated that the use of an adjustable workstation could minimize wrist deviation from neutral and improve shoulder posture during cutting operations. Angling the knife blade also interacted with workstation variables to improve wrist and upper extremity posture, but this benefit must be weighed against the potential for small increases in force exposure.
NASA Astrophysics Data System (ADS)
Zhu, Jinguo; Wang, Yapeng; Tian, Ting; Zhang, Qianfan
2018-03-01
Polymeric adsorbents have been attracting increasing attention because of their favorable structrual properties and effectiveness of solving small molecules contaminants. However, due to the absence of deep insight into the adsorption mechanism of polymeric adsorbents, researches on new polymeric adsorbents can only be carried out by repeated experiments and tests, which is extremely inefficient. Therefore, investigating the adsorption process of polymeric adsorbents, especially the mechanism of adsorbing various air pollutant molecules by materials modelling and simulation, is of great significance. Here in this work, we systematically studied the adsorption mechanism by first-principles computation with van der Waals interaction. It demonstrates that the adsorption between them was pure physisorption originating from the hydrogen bond and intermolecular forces consisting of Keesom force, Debye force and London dispersion force. The proportions of these forces varied according to different adsorption systems. The adsorption effects were determined by the polymers’ dipole moment and polarizability. The adsorption performance of some polymers with special structures was also investigated to explore their possibility as potential adsorbents. The results of our simulation can provide some guidance for developing new polymeric adsorbents with better performance.
2015-05-22
Conductors Through Extreme Frequency, Fields, and Light Krzysztof Koziol THE CHANCELLOR, MASTER AND SCHOLARS OF THE UNIVERISTY OF CAMBRIDGE...2011 to 31 August 2014 Air Force Research Laboratory Air Force Office of Scientific Research European Office of Aerospace Research and...Carbon Conductors Through Extreme Frequency, Fields, and Light Krzysztof Koziol THE CHANCELLOR, MASTER AND SCHOLARS OF THE UNIVERISTY OF CAMBRIDGE THE
Path-programmable water droplet manipulations on an adhesion controlled superhydrophobic surface
Seo, Jungmok; Lee, Seoung-Ki; Lee, Jaehong; Seung Lee, Jung; Kwon, Hyukho; Cho, Seung-Woo; Ahn, Jong-Hyun; Lee, Taeyoon
2015-01-01
Here, we developed a novel and facile method to control the local water adhesion force of a thin and stretchable superhydrophobic polydimethylsiloxane (PDMS) substrate with micro-pillar arrays that allows the individual manipulation of droplet motions including moving, merging and mixing. When a vacuum pressure was applied below the PDMS substrate, a local dimple structure was formed and the water adhesion force of structure was significantly changed owing to the dynamically varied pillar density. With the help of the lowered water adhesion force and the slope angle of the formed dimple structure, the motion of individual water droplets could be precisely controlled, which facilitated the creation of a droplet-based microfluidic platform capable of a programmable manipulation of droplets. We showed that the platform could be used in newer and emerging microfluidic operations such as surface-enhanced Raman spectroscopy with extremely high sensing capability (10−15 M) and in vitro small interfering RNA transfection with enhanced transfection efficiency of ~80%. PMID:26202206
Batra, Romesh C; Porfiri, Maurizio; Spinello, Davide
2008-02-15
We study the influence of von Karman nonlinearity, van der Waals force, and a athermal stresses on pull-in instability and small vibrations of electrostatically actuated mi-croplates. We use the Galerkin method to develop a tractable reduced-order model for elec-trostatically actuated clamped rectangular microplates in the presence of van der Waals forcesand thermal stresses. More specifically, we reduce the governing two-dimensional nonlineartransient boundary-value problem to a single nonlinear ordinary differential equation. For thestatic problem, the pull-in voltage and the pull-in displacement are determined by solving apair of nonlinear algebraic equations. The fundamental vibration frequency corresponding toa deflected configuration of the microplate is determined by solving a linear algebraic equa-tion. The proposed reduced-order model allows for accurately estimating the combined effectsof van der Waals force and thermal stresses on the pull-in voltage and the pull-in deflectionprofile with an extremely limited computational effort.
Packaging of single DNA molecules by the yeast mitochondrial protein Abf2p.
Brewer, Laurence R; Friddle, Raymond; Noy, Aleksandr; Baldwin, Enoch; Martin, Shelley S; Corzett, Michele; Balhorn, Rod; Baskin, Ronald J
2003-10-01
Mitochondrial and nuclear DNA are packaged by proteins in a very different manner. Although protein-DNA complexes called "nucleoids" have been identified as the genetic units of mitochondrial inheritance in yeast and man, little is known about their physical structure. The yeast mitochondrial protein Abf2p was shown to be sufficient to compact linear dsDNA, without the benefit of supercoiling, using optical and atomic force microscopy single molecule techniques. The packaging of DNA by Abf2p was observed to be very weak as evidenced by a fast Abf2p off-rate (k(off) = 0.014 +/- 0.001 s(-1)) and the extremely small forces (<0.6 pN) stabilizing the condensed protein-DNA complex. Atomic force microscopy images of individual complexes showed the 190-nm structures are loosely packaged relative to nuclear chromatin. This organization may leave mtDNA accessible for transcription and replication, while making it more vulnerable to damage.
Dynamical criterion for a marginally unstable, quasi-linear behavior in a two-layer model
NASA Technical Reports Server (NTRS)
Ebisuzaki, W.
1988-01-01
A two-layer quasi-geostrophic flow forced by meridional variations in heating can be in regimes ranging from radiative equilibrium to forced geostrophic turbulence. Between these extremes is a regime where the time-mean (zonal) flow is marginally unstable. Using scaling arguments, it is concluded that such a marginally unstable state should occur when a certain parameter, measuring the strength of wave-wave interactions relative to the beta effect and advection by the thermal wind, is small. Numerical simulations support this proposal. A transition from the marginally unstable regime to a more nonlinear regime is then examined through numerical simulations with different radiative forcings. It is found that transition is not caused by secondary instability of waves in the marginally unstable regime. Instead, the time-mean flow can support a number of marginally unstable normal modes. These normal modes interact with each other, and if they are of sufficient amplitude, the flow enters a more nonlinear regime.
ERIC Educational Resources Information Center
Cawley, Robert
1978-01-01
Considers the problem of determining the force on an element of a finite length line of charge moving horizontally with extreme relativistic speed through an evacuated space above an infinite plane ideal conducting surface. (SL)
NASA Astrophysics Data System (ADS)
Talmage, Gita; Walker, John S.; Brown, Samuel H.; Sondergaard, Neal A.
1993-09-01
In homopolar motors and generators, large dc electric currents pass through the sliding electrical contacts between rotating copper disks (rotors) and static copper surfaces shrouding the rotor tips (stators). A liquid metal in the small radial gap between the rotor tip and concentric stator surface can provide a low-resistance, low-drag electrical contact. Since there is a strong magnetic field in the region of the electrical contacts, there are large electromagnetic body forces on the liquid metal. The primary, azimuthal motion consists of simple Couette flow, plus an electromagnetically driven flow with large extremes of the azimuthal velocity near the rotor corners. The secondary flow involves the radial and axial velocity components, is driven by the centrifugal force associated with the primary flow, and is opposed by the electromagnetic body force, so that the circulation varies inversely as the square of the magnetic-field strength. Three flow regimes are identified as the angular velocity Ω of the rotor is increased. For small Ω, the primary flow is decoupled from the secondary flow. As Ω increases, the secondary flow begins to convect the azimuthal-velocity peaks radially outward, which in turn changes the centrifugal force driving the secondary flow. At some critical value of Ω, the flow becomes periodic through the coupling of the primary and secondary flows. The azimuthal-velocity peaks begin to move radially in and out with an accompanying oscillation in the secondary-flow strength.
Does trampoline or hard surface jumping influence lower extremity alignment?
Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby
2017-12-01
[Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations.
Does trampoline or hard surface jumping influence lower extremity alignment?
Akasaka, Kiyokazu; Tamura, Akihiro; Katsuta, Aoi; Sagawa, Ayako; Otsudo, Takahiro; Okubo, Yu; Sawada, Yutaka; Hall, Toby
2017-01-01
[Purpose] To determine whether repetitive trampoline or hard surface jumping affects lower extremity alignment on jump landing. [Subjects and Methods] Twenty healthy females participated in this study. All subjects performed a drop vertical jump before and after repeated maximum effort trampoline or hard surface jumping. A three-dimensional motion analysis system and two force plates were used to record lower extremity angles, moments, and vertical ground reaction force during drop vertical jumps. [Results] Knee extensor moment after trampoline jumping was greater than that after hard surface jumping. There were no significant differences between trials in vertical ground reaction force and lower extremity joint angles following each form of exercise. Repeated jumping on a trampoline increased peak vertical ground reaction force, hip extensor, knee extensor moments, and hip adduction angle, while decreasing hip flexion angle during drop vertical jumps. In contrast, repeated jumping on a hard surface increased peak vertical ground reaction force, ankle dorsiflexion angle, and hip extensor moment during drop vertical jumps. [Conclusion] Repeated jumping on the trampoline compared to jumping on a hard surface has different effects on lower limb kinetics and kinematics. Knowledge of these effects may be useful in designing exercise programs for different clinical presentations. PMID:29643592
Regionally dependent summer heat wave response to increased surface temperature in the US
NASA Astrophysics Data System (ADS)
Lopez, H.; Dong, S.; Kirtman, B. P.; Goni, G. J.; Lee, S. K.; Atlas, R. M.; West, R.
2017-12-01
Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. However, the time it takes for the externally forced signal of climate change to emerge against the background of natural variability (i.e., Time of Emergence, ToE) particularly on the regional scale makes reliable future projection of heat waves challenging. Here, we combine observations and model simulations under present and future climate forcing to assess internal variability versus external forcing in modulating US heat waves. We characterized the most common heat wave patterns over the US by the use of clustering of extreme events by their spatial distribution. For each heat wave cluster, we assess changes in the probability density function (PDF) of summer temperature extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution. The probability of necessary causation for each heat wave cluster was also quantified, allowing to make assessments of heat extreme attribution to anthropogenic climate change. The results suggest that internal variability will dominate heat wave occurrence over the Great Plains with ToE occurring in the 2050s (2070s) and of occurrence of ratio of warm-to-cold extremes of 1.7 (1.7) for the Northern (Southern) Plains. In contrast, external forcing will dominate over the Western (Great Lakes) region with ToE occurring as early as in the 2020s (2030s) and warm-to-cold extremes ratio of 6.4 (10.2), suggesting caution in attributing heat extremes to external forcing due to their regional dependence.
NASA Astrophysics Data System (ADS)
Iizumi, Toshichika; Takikawa, Hiroki; Hirabayashi, Yukiko; Hanasaki, Naota; Nishimori, Motoki
2017-08-01
The use of different bias-correction methods and global retrospective meteorological forcing data sets as the reference climatology in the bias correction of general circulation model (GCM) daily data is a known source of uncertainty in projected climate extremes and their impacts. Despite their importance, limited attention has been given to these uncertainty sources. We compare 27 projected temperature and precipitation indices over 22 regions of the world (including the global land area) in the near (2021-2060) and distant future (2061-2100), calculated using four Representative Concentration Pathways (RCPs), five GCMs, two bias-correction methods, and three reference forcing data sets. To widen the variety of forcing data sets, we developed a new forcing data set, S14FD, and incorporated it into this study. The results show that S14FD is more accurate than other forcing data sets in representing the observed temperature and precipitation extremes in recent decades (1961-2000 and 1979-2008). The use of different bias-correction methods and forcing data sets contributes more to the total uncertainty in the projected precipitation index values in both the near and distant future than the use of different GCMs and RCPs. However, GCM appears to be the most dominant uncertainty source for projected temperature index values in the near future, and RCP is the most dominant source in the distant future. Our findings encourage climate risk assessments, especially those related to precipitation extremes, to employ multiple bias-correction methods and forcing data sets in addition to using different GCMs and RCPs.
Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs
2015-12-01
It has frequently been reported that balance and lower-extremity muscle strength/power are associated with sports-related and everyday activities. Knowledge about the relationship between balance, strength, and power are important for the identification of at-risk individuals because deficits in these neuromuscular components are associated with an increased risk of sustaining injuries and falls. In addition, this knowledge is of high relevance for the development of specifically tailored health and skill-related exercise programs. The objectives of this systematic literature review and meta-analysis were to characterize and, if possible, quantify associations between variables of balance and lower-extremity muscle strength/power in healthy individuals across the lifespan. A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SPORTDiscus up to March 2015 to capture all relevant articles. A systematic approach was used to evaluate the 996 articles identified for initial review. Studies were included only if they investigated healthy individuals aged ≥6 years and tested at least one measure of static steady-state balance (e.g., center of pressure [CoP] displacement during one-legged stance), dynamic steady-state balance (e.g., gait speed), proactive balance (e.g., distance in the functional-reach-test), or reactive balance (e.g., CoP displacement during perturbed one-legged stance), and one measure of maximal strength (e.g., maximum voluntary contraction), explosive force (e.g., rate of force development), or muscle power (e.g., jump height). In total, 37 studies met the inclusionary criteria for review. The included studies were coded for the following criteria: age (i.e., children: 6-12 years, adolescents: 13-18 years, young adults: 19-44 years, middle-aged adults: 45-64 years, old adults: ≥65 years), sex (i.e., female, male), and test modality/outcome (i.e., test for the assessment of balance, strength, and power). Studies with athletes, patients, and/or people with diseases were excluded. Pearson's correlation coefficients were extracted, transformed (i.e., Fisher's z-transformed r z value), aggregated (i.e., weighted mean r z value), back-transformed to r values, classified according to their magnitude (i.e., small: r ≤ 0.69, medium: r ≤ 0.89, large: r ≥ 0.90), and, if possible, statistically compared. Heterogeneity between studies was assessed using I2 and Chi-squared (χ2) statistics. Three studies examined associations between balance and lower-extremity muscle strength/power in children, one study in adolescents, nine studies in young adults, three studies in middle-aged adults, and 23 studies in old adults. Overall, small-sized associations were found between variables of balance and lower-extremity muscle strength/power, irrespective of the age group considered. In addition, small-sized but significantly larger correlation coefficients were found between measures of dynamic steady-state balance and maximal strength in children (r = 0.57) compared with young (r = 0.09, z = 3.30, p = 0.001) and old adults (r = 0.35, z = 2.94, p = 0.002) as well as in old compared with young adults (z = 1.95, p = 0.03). Even though the reported results provided further insight into the associations between measures of balance and lower-extremity muscle strength/power, they did not allow us to deduce cause and effect relations. Further, the investigated associations could be biased by other variables such as joint flexibility, muscle mass, and/or auditory/visual acuity. Our systematic review and meta-analysis showed predominately small-sized correlations between measures of balance and lower-extremity muscle strength/power in children, adolescents, and young, middle-aged, and old adults. This indicates that these neuromuscular components are independent of each other and should therefore be tested and trained complementarily across the lifespan. Significantly larger but still small-sized associations were found between measures of dynamic steady-state balance and maximal strength in children compared with young and old adults as well as in old compared with young adults. These findings imply that age/maturation may have an impact on the association of selected components of balance and lower-extremity muscle strength.
Meeting information needs of families of critical care patients.
Barbret, L C; Westphal, C G; Daly, G A
1997-01-01
Families of patients in critical care experience extreme anxiety and frustration while awaiting their loved ones' recovery or stabilization. To study the hypothesis that meeting families' informational needs can reduce their anxiety and help them cope with the initial crisis, a small task force at a Midwest acute care facility, using a CQI approach, studied possible solutions. Initial findings showed low satisfaction for families of critically ill patients with the present system of imparting information to them. After initiation of a storyboard to present information by the critical care team, families reported increased satisfaction and greater knowledge recall.
Mechanistic Origin of the Ultrastrong Adhesion between Graphene and a-SiO2: Beyond van der Waals.
Kumar, Sandeep; Parks, David; Kamrin, Ken
2016-07-26
The origin of the ultrastrong adhesion between graphene and a-SiO2 has remained a mystery. This adhesion is believed to be predominantly van der Waals (vdW) in nature. By rigorously analyzing recently reported blistering and nanoindentation experiments, we show that the ultrastrong adhesion between graphene and a-SiO2 cannot be attributed to vdW forces alone. Our analyses show that the fracture toughness of the graphene/a-SiO2 interface, when the interfacial adhesion is modeled with vdW forces alone, is anomalously weak compared to the measured values. The anomaly is related to an ultrasmall fracture process zone (FPZ): owing to the lack of a third dimension in graphene, the FPZ for the graphene/a-SiO2 interface is extremely small, and the combination of predominantly tensile vdW forces, distributed over such a small area, is bound to result in a correspondingly small interfacial fracture toughness. Through multiscale modeling, combining the results of finite element analysis and molecular dynamics simulations, we show that the adhesion between graphene and a-SiO2 involves two different kinds of interactions: one, a weak, long-range interaction arising from vdW adhesion and, second, discrete, short-range interactions originating from graphene clinging to the undercoordinated Si (≡Si·) and the nonbridging O (≡Si-O·) defects on a-SiO2. A strong resistance to relative opening and sliding provided by the latter mechanism is identified as the operative mechanism responsible for the ultrastrong adhesion between graphene and a-SiO2.
1980-07-01
number) Quality of life Job satisfaction ABSTRACT (Continue on reverse tide If nece.’snry and Identify by block number) eport summarizes results of...following description! WORKS Doing work that is personally meaningful and important; pride in ay work) job satisfaction ) recognition for my efforts and...family (if married ) or from home end friends (if unmarried ). EXTREMELY UNDESIRABLE INDIFFERENT EXTREMELY DESIRABLE 68. A favorable attitude on the
Differences in tendon properties in elite badminton players with or without patellar tendinopathy.
Couppé, C; Kongsgaard, M; Aagaard, P; Vinther, A; Boesen, M; Kjaer, M; Magnusson, S P
2013-03-01
The aim of this study was to examine the structural and mechanical properties of the patellar tendon in elite male badminton players with and without patellar tendinopathy. Seven players with unilateral patellar tendinopathy (PT group) on the lead extremity (used for forward lunge) and nine players with no current or previous patellar tendinopathy (CT group) were included. Magnetic resonance imaging was used to assess distal patellar tendon dimensions. Patellar tendon mechanical properties were assessed using simultaneous tendon force and deformation measurements. Distal tendon cross-sectional area (CSA) normalized for body weight (mm(2) /kg(2/3) ) was lower in the PT group compared with the CT group on both the non-lead extremity (6.1 ± 0.3 vs 7.4 ± 0.2, P < 0.05) and the lead extremity (6.5 ± 0.6 vs 8.4 ± 0.3, P < 0.05). Distal tendon stress was higher in the PT group compared with the CT group for both the non-lead extremity (31 ± 1 vs 27 ± 1 MPa, P < 0.05) and the lead extremity (32 ± 3 vs 21 ± 3 MPa, P < 0.01). Conclusively, the PT group had smaller distal patellar tendon CSA on both the injured (lead extremity) and the uninjured side (non-lead extremity) compared with the CT group. Subsequently, the smaller CSA yielded a greater distal patellar tendon stress in the PT group. Therefore, a small tendon CSA may predispose to the development of tendinopathy. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Long Term Decline in Eastern US Winter Temperature Extremes.
NASA Astrophysics Data System (ADS)
Trenary, L. L.; DelSole, T. M.; Tippett, M. K.; Doty, B.
2016-12-01
States along the US eastern seaboard have experienced successively harsh winter conditions in recent years. This has prompted speculation that climate change is leading to more extreme winter conditions. In this study we quantify changes in the observed winter extremes over the period 1950-2015, by examining year-to-year differences in intensity, frequency and likelihood of daily cold temperature extremes in the north, mid, and south Atlantic states along the US east coast. Analyzing station data for these three regions, we find that while the north and mid-Atlantic regions experienced record-breaking cold temperatures in 2015, there is no long-term increase in the intensity of cold extremes anywhere along the eastern seaboard. Likewise, despite the record number of cold days in these two regions during 2014 and 2015, there is no systematic increase in the frequency of cold extremes. To determine whether the observed changes are natural or human-forced, we repeat our analysis using a suite of climate simulations, with and without external forcing. Generally, model simulations suggest that human-induced forcing does not significantly influence the range of daily winter temperature. Combining this result with the fact that the observed winter temperatures are becoming warmer and less variable, we conclude that the recent intensification of eastern US cold extremes is only temporary.
NASA Astrophysics Data System (ADS)
Oguz, Temel; Gilbert, Denis
2007-02-01
Functioning of the Black Sea ecosystem has profoundly changed since the early 1970s under cumulative effects of excessive nutrient enrichment, strong cooling/warming, over-exploitation of pelagic fish stocks, and population outbreak of gelatinous carnivores. Applying a set of criteria to the long-term (1960-2000) ecological time-series data, the present study demonstrates that the Black Sea ecosystem was reorganised during this transition phase in different forms of top-down controlled food web structure through successive regime-shifts of distinct ecological properties. The Secchi disc depth, oxic-anoxic interface zone, dissolved oxygen and hydrogen sulphide concentrations also exhibit abrupt transition between their alternate regimes, and indicate tight coupling between the lower trophic food web structure and the biogeochemical pump in terms of regime-shift events. The first shift, in 1973-1974, marks a switch from large predatory fish to small planktivore fish-controlled system, which persisted until 1989 in the form of increasing small pelagic and phytoplankton biomass and decreasing zooplankton biomass. The increase in phytoplankton biomass is further supported by a bottom-up contribution due to the cumulative response to high anthropogenic nutrient load and the concurrent shift of the physical system to the "cold climate regime" following its ˜20-year persistence in the "warm climate regime". The end of the 1980s signifies the depletion of small planktivores and the transition to a gelatinous carnivore-controlled system. By the end of the 1990s, small planktivore populations take over control of the system again. Concomitantly, their top-down pressure when combined with diminishing anthropogenic nutrient load and more limited nutrient supply into the surface waters due to stabilizing effects of relatively warm winter conditions switched the "high production" regime of phytoplankton to its background "low production" regime. The Black Sea regime-shifts appear to be sporadic events forced by strong transient decadal perturbations, and therefore differ from the multi-decadal scale cyclical events observed in pelagic ocean ecosystems under low-frequency climatic forcing. The Black Sea observations illustrate that eutrophication and extreme fishery exploitation can indeed induce hysteresis in large marine ecosystems, when they can exert sufficiently strong forcing onto the system. They further illustrate the link between the disruption of the top predators, proliferation of new predator stocks, and regime-shift events. Examples of these features have been reported for some aquatic ecosystems, but are extremely limited for large marine ecosystems.
The collision forces and lower-extremity inter-joint coordination during running.
Wang, Li-I; Gu, Chin-Yi; Wang, I-Lin; Siao, Sheng-Wun; Chen, Szu-Ting
2018-06-01
The purpose of this study was to compare the lower extremity inter-joint coordination of different collision forces runners during running braking phase. A dynamical system approach was used to analyse the inter-joint coordination parameters. Data were collected with six infra-red cameras and two force plates. According to the impact peak of the vertical ground reaction force, twenty habitually rearfoot-strike runners were categorised into three groups: high collision forces runners (HF group, n = 8), medium collision forces runners (MF group, n = 5), and low collision forces runners (LF group, n = 7). There were no significant differences among the three groups in the ankle and knee joint angle upon landing and in the running velocity (p > 0.05). The HF group produced significantly smaller deviation phase (DP) of the hip flexion/extension-knee flexion/extension during the braking phase compared with the MF and LF groups (p < 0.05). The DP of the hip flexion/extension-knee flexion/extension during the braking phase correlated negatively with the collision force (p < 0.05). The disparities regarding the flexibility of lower extremity inter-joint coordination were found in high collision forces runners. The efforts of the inter-joint coordination and the risk of running injuries need to be clarified further.
Altered neuromuscular control of leg stiffness following soccer-specific exercise.
Oliver, Jon L; De Ste Croix, Mark B A; Lloyd, Rhodri S; Williams, Craig A
2014-11-01
To examine changes to neuromuscular control of leg stiffness following 42 min of soccer-specific exercise. Ten youth soccer players, aged 15.8 ± 0.4 years, stature 1.73 ± 0.06 m and mass 59.8 ± 9.7 kg, hopped on a force plate at a self-selected frequency before and after simulated soccer exercise performed on a non-motorised treadmill. During hopping, muscle activity was measured using surface electromyography from four lower limb muscles and analysed to determine feedforward- and feedback-mediated activity, as well as co-contraction. There was a small, non-significant change in stiffness following exercise (26.6 ± 10.6 vs. 24.0 ± 7.0 kN m(-1), p > 0.05, ES = 0.25), with half the group increasing and half decreasing their stiffness. Changes in stiffness were significantly related to changes in centre of mass (CoM) displacement (r = 0.90, p < 0.01, extremely large correlation) but not changes in peak ground reaction force (r = 0.58, p > 0.05, large correlation). A number of significant relationships were observed between changes in stiffness and CoM displacement with changes in feedforward, feedback and eccentric muscle activity of the soleus and vastus lateralis muscles following exercise (r = 0.64-0.98, p < 0.05, large-extremely large correlations), but not with changes in co-contraction (r = 0.11-0.55, p > 0.05, small-large correlations). Following soccer-specific exercise individual changes in feedforward- and reflex-mediated activity of the soleus and vastus lateralis, and not co-contraction around the knee and ankle, modulate changes in CoM displacement and leg stiffness.
NASA Technical Reports Server (NTRS)
Parker, David Huw
1989-01-01
Although small scale magnetic suspension and balance systems (MSBSs) for wind tunnel use have been in existence for many years, they have not found general application in the production testing of flight vehicles. One reason for this is thought to lie in the relatively limited range of attitudes over which a wind tunnel model may be suspended. Modifications to a small MSBS to permit the suspension and control of axisymmetric models over angles of attack from less than zero to over ninety degrees are reported. Previous work has shown that existing arrangement of ten electromagnets was unable to generate one of the force components needed for control at extreme attitudes. Examination of possible solutions resulted in a simple alteration to rectify this deficiency. To generate the feedback signals to control the suspended model, an optical position sensing system using collimated laser beams and photodiode arrays was installed and tested. An analytical basis was developed for distributing the demands for force and moment needed for model stabilization amonge the electromagnets over the full attitude range. This was implemented by an MSBS control program able to continually adjust the distribution for the instantaneous incidence in accordance with prescheduled data. Results presented demonstrate rotations of models from zero to ninety degrees at rates up to ninety degrees per second, with pitching rates rising to several hundred degrees per second in response to step-change demands. A study of a design for a large MSBS suggests that such a system could be given the capability to control a model in six degrees of freedom over an unlimited angle of attack range.
Using the Student's "t"-Test with Extremely Small Sample Sizes
ERIC Educational Resources Information Center
de Winter, J. C .F.
2013-01-01
Researchers occasionally have to work with an extremely small sample size, defined herein as "N" less than or equal to 5. Some methodologists have cautioned against using the "t"-test when the sample size is extremely small, whereas others have suggested that using the "t"-test is feasible in such a case. The present…
Clustering of vertically constrained passive particles in homogeneous isotropic turbulence.
De Pietro, Massimo; van Hinsberg, Michel A T; Biferale, Luca; Clercx, Herman J H; Perlekar, Prasad; Toschi, Federico
2015-05-01
We analyze the dynamics of small particles vertically confined, by means of a linear restoring force, to move within a horizontal fluid slab in a three-dimensional (3D) homogeneous isotropic turbulent velocity field. The model that we introduce and study is possibly the simplest description for the dynamics of small aquatic organisms that, due to swimming, active regulation of their buoyancy, or any other mechanism, maintain themselves in a shallow horizontal layer below the free surface of oceans or lakes. By varying the strength of the restoring force, we are able to control the thickness of the fluid slab in which the particles can move. This allows us to analyze the statistical features of the system over a wide range of conditions going from a fully 3D incompressible flow (corresponding to the case of no confinement) to the extremely confined case corresponding to a two-dimensional slice. The background 3D turbulent velocity field is evolved by means of fully resolved direct numerical simulations. Whenever some level of vertical confinement is present, the particle trajectories deviate from that of fluid tracers and the particles experience an effectively compressible velocity field. Here, we have quantified the compressibility, the preferential concentration of the particles, and the correlation dimension by changing the strength of the restoring force. The main result is that there exists a particular value of the force constant, corresponding to a mean slab depth approximately equal to a few times the Kolmogorov length scale η, that maximizes the clustering of the particles.
NASA Astrophysics Data System (ADS)
Friz, Paul Daniel
This thesis details the work done on two unrelated projects, plasma actuators, an aerodynamic flow control device, and Plasmonic Force Propulsion (PFP) thrusters, a space propulsion system for small satellites. The first half of the thesis is a paper published in the International Journal of Flow Control on plasma actuators. In this paper the thrust and power consumption of plasma actuators with varying geometries was studied at varying pressure. It was found that actuators with longer buried electrodes produce the most thrust over all and that they substantially improved thrust at low pressure. In particular actuators with 75 mm buried electrodes produced 26% more thrust overall and 34% more thrust at low pressure than the standard 15 mm design. The second half details work done modeling small satellite attitude and reaction control systems in order to compare the use of Plasmonic Force Propulsion thrusters with other state of the art reaction control systems. The model uses bang bang control algorithms and assumes the worst case scenario solar radiation pressure is the only disturbing force. It was found that the estimated 50-500 nN of thrust produced by PFP thrusters would allow the spacecraft which use them extremely high pointing and positioning accuracies (<10-9 degrees and 3 pm). PFP thrusters still face many developmental challenges such as increasing specific impulse which require more research, however, they have great potential to be an enabling technology for future NASA missions such as the Laser Interferometer Space Antenna, and The Stellar Imager.
Calcium-Mediated Adhesion of Nanomaterials in Reservoir Fluids.
Eichmann, Shannon L; Burnham, Nancy A
2017-09-14
Globally, a small percentage of oil is recovered from reservoirs using primary and secondary recovery mechanisms, and thus a major focus of the oil industry is toward developing new technologies to increase recovery. Many new technologies utilize surfactants, macromolecules, and even nanoparticles, which are difficult to deploy in harsh reservoir conditions and where failures cause material aggregation and sticking to rock surfaces. To combat these issues, typically material properties are adjusted, but recent studies show that adjusting the dispersing fluid chemistry could have significant impact on material survivability. Herein, the effect of injection fluid salinity and composition on nanomaterial fate is explored using atomic force microscopy (AFM). The results show that the calcium content in reservoir fluids affects the interactions of an AFM tip with a calcite surface, as surrogates for nanomaterials interacting with carbonate reservoir rock. The extreme force sensitivity of AFM provides the ability to elucidate small differences in adhesion at the pico-Newton (pN) level and provides direct information about material survivability. Increasing the calcium content mitigates adhesion at the pN-scale, a possible means to increase nanomaterial survivability in oil reservoirs or to control nanomaterial fate in other aqueous environments.
Energetics, scaling and sexual size dimorphism of spiders.
Grossi, B; Canals, M
2015-03-01
The extreme sexual size dimorphism in spiders has motivated studies for many years. In many species the male can be very small relative to the female. There are several hypotheses trying to explain this fact, most of them emphasizing the role of energy in determining spider size. The aim of this paper is to review the role of energy in sexual size dimorphism of spiders, even for those spiders that do not necessarily live in high foliage, using physical and allometric principles. Here we propose that the cost of transport or equivalently energy expenditure and the speed are traits under selection pressure in male spiders, favoring those of smaller size to reduce travel costs. The morphology of the spiders responds to these selective forces depending upon the lifestyle of the spiders. Climbing and bridging spiders must overcome the force of gravity. If bridging allows faster dispersal, small males would have a selective advantage by enjoying more mating opportunities. In wandering spiders with low population density and as a consequence few male-male interactions, high speed and low energy expenditure or cost of transport should be favored by natural selection. Pendulum mechanics show the advantages of long legs in spiders and their relationship with high speed, even in climbing and bridging spiders. Thus small size, compensated by long legs should be the expected morphology for a fast and mobile male spider.
NASA Astrophysics Data System (ADS)
Kao, S. C.; Naz, B. S.; Gangrade, S.; Ashfaq, M.; Rastogi, D.
2016-12-01
The magnitude and frequency of hydroclimate extremes are projected to increase in the conterminous United States (CONUS) with significant implications for future water resource planning and flood risk management. Nevertheless, apart from the change of natural environment, the choice of model spatial resolution could also artificially influence the features of simulated extremes. To better understand how the spatial resolution of meteorological forcings may affect hydroclimate projections, we test the runoff sensitivity using the Variable Infiltration Capacity (VIC) model that was calibrated for each CONUS 8-digit hydrologic unit (HUC8) at 1/24° ( 4km) grid resolution. The 1980-2012 gridded Daymet and PRISM meteorological observations are used to conduct the 1/24° resolution control simulation. Comparative simulations are achieved by smoothing the 1/24° forcing into 1/12° and 1/8° resolutions which are then used to drive the VIC model for the CONUS. In addition, we also test how the simulated high and low runoff conditions would react to change in precipitation (±10%) and temperature (+1°C). The results are further analyzed for various types of hydroclimate extremes across different watersheds in the CONUS. This work helps us understand the sensitivity of simulated runoff to different spatial resolutions of climate forcings and also its sensitivity to different watershed sizes and characteristics of extreme events in the future climate conditions.
78 FR 23970 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-23
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force Meeting. SUMMARY: This document corrects the SBA's Interagency Task Force on Veterans Small Business Developments...
75 FR 62611 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-12
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... public meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be...
77 FR 41472 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2012-07-13
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... public meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be...
76 FR 8393 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-14
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... public meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be...
75 FR 62438 - Interagency Task Force on Veterans Small Business Development Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2010-10-08
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development Meeting AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force... first public meeting of the Interagency Task Force on Veterans Small Business Development. The meeting...
Microscopic Mapping of Subnanometric Motion with Multiple-Beam Differential Holographic Technique
NASA Astrophysics Data System (ADS)
Lin, Hungyi
The measurement of ultrasmall displacement is usually performed by laser interferometry. In most cases, this method is specified for the surface measurement and requires a relatively smooth surface capable of reflecting light. In this research, a newly developed method, mutiple -beam microdifferential holography, is introduced to measure a small configuration change. This configuration change can happen on the surface of an object or inside a semitransparent object. In the experiment, two reference beams are used to record a pair of phase biased holographic images simultaneously. During the image reconstruction, the CCD image acquisition system is employed to record the pair of images one at a time and then process them digitally. The subtraction image intuitively shows that the deformation of tested object occurs between the double exposures applied during the holographic recording. A second object beam, usually a plane wave, is added to the imaging system for the purpose of image registration, which is required for the image processing. Several developments upgraded the system performance. The calibration was done with an extremely consistent moving object, a small air bubble drifting in a glycerine-filled capillary. Displacements as small as 0.4 nanometer are reported. In application, a living cell, a single frog muscle fiber, was under examination. This part of the research focused mainly on the crossbridge mechanism of striated muscle contraction. The images made at the plateau of tetanus suggest either that the cycling time constant is much longer than 10 msec, that the displacement for a power stroke is substantially less than 12 nanometer, or that the crossbridge is not cycling during the isometric force generation. The images made at the initial state of force development suggest that a large number of crossbridges shift toward the actin filament at the onset of the force development and stay there (at least without large scale rotation) even when the force has started to develop.
2017-12-15
A small prominence slowly rose further up above the sun, then fell apart and back into the sun over about seven hours (Dec. 6, 2017). Prominences, notoriously unstable, are cooler clouds of particles tethered not far above the sun by magnetic forces. When it stretched out, its distance above the sun was several times the size of Earth. Images were taken in a wavelength of extreme ultraviolet light. These images are colorized since we cannot "see" ultraviolet light. In this case, a yellow tone was used instead of the normal red tint we use for this 304 Angstrom wavelength. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22195
78 FR 7849 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-02-04
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force Meeting... meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be open to...
78 FR 70087 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-22
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be open to...
78 FR 45996 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-07-30
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force meeting... meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be open to...
78 FR 21492 - Interagency Task Force on Veterans Small Business Development
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-10
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency Task Force Meeting... meeting of the Interagency Task Force on Veterans Small Business Development. The meeting will be open to...
MICROSCOPE limits for new long-range forces and implications for unified theories
NASA Astrophysics Data System (ADS)
Fayet, Pierre
2018-03-01
Many theories beyond the standard model involve an extra U (1 ) gauge group. The resulting gauge boson U , in general mixed with the Z and the photon, may be massless or very light and very weakly coupled. It may be viewed as a generalized dark photon interacting with matter through a linear combination [ɛQQ +ɛBB +ɛLL ]e , involving B -L in a grand-unified theory, presumably through B -L -.61 Q , inducing effectively a very small repulsive force between neutrons. This new force, if long-ranged, may manifest through apparent violations of the equivalence principle. They are approximately proportional to ɛB+ɛL/2 , times a combination involving mostly ɛL. New forces coupled to B -L or L should lead to nearly opposite values of the Eötvös parameter δ , and to almost the same limits for ɛB -L or ɛL, as long as no indication for δ ≠0 is found. We derive new limits from the first results of the MICROSCOPE experiment testing the equivalence principle in space. A long-range force coupled to [ɛQQ +ɛB -L(B -L )]e or [ɛQQ +ɛLL ]e should verify |ɛB -L| or |ɛL|<.8 10-24 , and a force coupled to [ɛQQ +ɛBB ]e , |ɛB|<5 10-24. We also discuss, within supersymmetric theories, how such extremely small gauge couplings g " , typically ≲10-24, may be related to a correspondingly large ξ " D " term associated with a huge initial vacuum energy density, ∝1 /g "2 . The corresponding hierarchy between energy scales, by a factor ∝1 /√{g " }≳1012 , involves a very large scale ˜ 1016 GeV , that may be associated with inflation, or supersymmetry breaking with a very heavy gravitino, leading to possible values of δ within the experimentally accessible range.
NASA Astrophysics Data System (ADS)
Khan, Mehbub; Hao, Yun; Hsu, Jong-Ping
2018-01-01
Based on baryon charge conservation and a generalized Yang-Mills symmetry for Abelian (and non-Abelian) groups, we discuss a new baryonic gauge field and its linear potential for two point-like baryon charges. The force between two point-like baryons is repulsive, extremely weak and independent of distance. However, for two extended baryonic systems, we have a dominant linear force α r. Thus, only in the later stage of the cosmic evolution, when two baryonic galaxies are separated by an extremely large distance, the new repulsive baryonic force can overcome the gravitational attractive force. Such a model provides a gauge-field-theoretic understanding of the late-time accelerated cosmic expansion. The baryonic force can be tested by measuring the accelerated Wu-Doppler frequency shifts of supernovae at different distances.
NASA Astrophysics Data System (ADS)
Ridder, Nina; de Vries, Hylke; Drijfhout, Sybren; van den Brink, Henk; van Meijgaard, Erik; de Vries, Hans
2018-02-01
This study shows that storm surge model performance in the North Sea is mostly unaffected by the application of temporal variations of surface drag due to changes in sea state provided the choice of a suitable constant Charnock parameter in the sea-state-independent case. Including essential meteorological features on smaller scales and minimising interpolation errors by increasing forcing data resolution are shown to be more important for the improvement of model performance particularly at the high tail of the probability distribution. This is found in a modelling study using WAQUA/DCSMv5 by evaluating the influence of a realistic air-sea momentum transfer parameterization and comparing it to the influence of changes in the spatial and temporal resolution of the applied forcing fields in an effort to support the improvement of impact and climate analysis studies. Particular attention is given to the representation of extreme water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5 is forced with ERA-Interim reanalysis data. Model results are obtained from a set of different forcing fields, which either (i) include a wave-state-dependent Charnock parameter or (ii) apply a constant Charnock parameter ( α C h = 0.032) tuned for young sea states in the North Sea, but differ in their spatial and/or temporal resolution. Increasing forcing field resolution from roughly 79 to 12 km through dynamically downscaling can reduce the modelled low bias, depending on coastal station, by up to 0.25 m for the modelled extreme water levels with a 1-year return period and between 0.1 m and 0.5 m for extreme surge heights.
Are temporal characteristics of fast repetitive oscillating movement invariant?
Gutnik, B J; Nicholson, J; Go, W; Gale, D; Nash, D
2003-06-01
Validation of the proportional duration model was attempted using very fast single-joint repetitive horizontal abductive-adductive movements of the stretched upper extremity with minimal cognitive input. Participants drew oscillating horizontal lines during 20 sec. over relatively short distances as quickly as possible without visual feedback. Spatial, temporal, and kinetic parameters were analysed. The amplitude and the time spent accelerating, decelerating, and reversing in both directions of each experimental line were recorded and related to the centre of gravity of the upper extremity. The accelerations of the centre of mass of the upper extremity were calculated and used to calculate the forces involved. The ratios of durations were compared and intercorrelated for the two fastest, two average, and two slowest cycles from each participant. Results exhibited significant standard deviations and variability of temporal and kinetic parameters within individual trials. The number of significant coefficients of correlation within individual trials was small despite the controlling influence of the same generalised motor program. The proportional duration model did not hold for our data. Peripheral factors (probably the length-tension relationship rule for skeletal muscles and viscosity of muscle) may be important in this type of action.
75 FR 70764 - Small Business Information Security Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2010-11-18
... SMALL BUSINESS ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small... publish meeting minutes for the Small Business Information Security Task Force Meeting. DATES: 1 p.m... Task Force. Chairman, Rusty Pickens, called the meeting to order on October 13, 2010 at 1 p.m. Roll...
76 FR 5232 - Small Business Information Security Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2011-01-28
... SMALL BUSINESS ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small... publish meeting minutes for the Small Business Information Security Task Force Meeting. DATES: 1 p.m... Task Force. Chairman, Rusty Pickens, called the meeting to order on December 8, 2010 at 1 p.m. Roll...
76 FR 11307 - Small Business Information Security Task Force
Federal Register 2010, 2011, 2012, 2013, 2014
2011-03-01
... SMALL BUSINESS ADMINISTRATION Small Business Information Security Task Force AGENCY: U.S. Small... publish meeting minutes for the Small Business Information Security Task Force Meeting. DATES: 1 p.m... Task Force. Chairman, Mr. Rusty Pickens, called the meeting to order on January 12, 2011 at 1 p.m. Roll...
Shifting patterns of mild weather in response to projected radiative forcing
NASA Astrophysics Data System (ADS)
van der Wiel, Karin; Kapnick, Sarah; Vecchi, Gabriel
2017-04-01
Traditionally, climate change research has focused on changes in mean climate (e.g. global mean temperature, sea level rise, glacier melt) or change in extreme events (e.g. hurricanes, extreme precipitation, droughts, heat waves, wild fires). Though extreme events have the potential to disrupt society, extreme conditions are rare by definition. In contrast, mild weather occurs frequently and many human activities are built around it. Examples of such activities include football games, dog walks, bike rides, and outdoor weddings, but also activities of direct economic impact, e.g. construction work, infrastructure projects, road or rail transportation, air travel, and landscaping projects. Absence of mild weather impacts society in various way, understanding current and future mild weather is therefore of high scientific interest. We present a global analysis of mild weather based on simple and relatable criteria and we explore changes in mild weather occurrence in response to radiative forcing. A high-resolution global climate model, GFDL HiFLOR, is used to allow for investigation of local features and changes. In response to RCP4.5, we find a slight global mean decrease in the annual number of mild days projected both in the near future (-4 d/yr, 2016-2035) and at the end of this century (-10 d/yr, 2081-2100). Projected regional and seasonal redistributions of mild days are substantially greater. Tropical regions are projected to see large decreases, in the mid-latitudes small increases in the number of mild days are projected. Mediterranean climates are projected to see a shift of mild weather away from the local summer to the shoulder seasons. These changes are larger than the interannual variability of mild weather caused by El Niño-Southern Oscillation. Finally, we use reanalysis data to show an observed global decrease in the recent past, and we verify that these observed regional changes in mild weather resemble the projections.
Characterisation and Outcomes of Upper Extremity Amputations
2014-06-01
military service members from 1 October 2001 to 30 July 2011 was conducted. Data from the Department of Defense Trauma Registry, the Armed Forces... Trauma Registry, the Armed Forces Health Longitudinal Technology Application, and the Physical Evaluation Board Liaison Offices were queried in order to...without associated lower extremity amputation. This cohort was cross-referenced with the Department of Defense Trauma Registry (DoDTR, Joint Base
Zahradnik, David; Jandacka, Daniel; Uchytil, Jaroslav; Farana, Roman; Hamill, Joseph
2015-02-01
To compare lower extremity mechanics and energy absorption during two types of landing after a successful or unsuccessful block in volleyball and assess the risks of anterior cruciate ligament (ACL) injury. Cohort study. Fourteen elite male volleyball players (aged 24.5 ± 4.6 years; height 1.94 ± 0.06 m; mass 86.6 ± 7.6 kg). Subjects were required to land on force platforms using stick landing or step-back landing (with the right lower extremity stepping back away from the net) techniques after performing a standing block jump movement. Vertical ground reaction force (body weight); knee flexion (degrees); knee moments (Nm/kg); and hip, knee and ankle energy absorption (J/kg). The right lower extremity showed a greater first peak of vertical ground reaction force, a greater valgus moment, lower energy absorption by the knee, and higher energy absorption by the hip and ankle joints during step-back landing. The lower extremity may be exposed to a greater risk of ACL injury when stepping back from the net during the initial impact phase after a step-back landing. Copyright © 2014 Elsevier Ltd. All rights reserved.
Debottis, Daniel P; Werner, Frederick W; Sutton, Levi G; Harley, Brian J
2013-05-01
Controversy exists as to whether a proximal row carpectomy (PRC) is a better procedure than scaphoid excision with 4-corner arthrodesis for preserving motion in the painful posttraumatic arthritic wrist. The purpose of this study was to determine how the kinematics and tendon forces of the wrist are altered after PRC and 4-corner arthrodesis. We tested 6 fresh cadaver forearms for the extremes of wrist motion and then used a wrist simulator to move them through 4 cyclic dynamic wrist motions, during which time we continuously recorded the tendon forces. We repeated the extremes of wrist motion measurements and the dynamic motions after scaphoid excision with 4-corner arthrodesis, and then again after PRC. We analyzed extremes of wrist motion and the peak tendon forces required for each dynamic motion using a repeated measures analysis of variance. Wrist extremes of motion significantly decreased after both the PRC and 4-corner arthrodesis compared with the intact wrist. Wrist flexion decreased on average 13° after 4-corner arthrodesis and 12° after PRC. Extension decreased 20° after 4-corner arthrodesis and 12° after PRC. Four-corner arthrodesis significantly decreased wrist ulnar deviation from the intact wrist. Four-corner arthrodesis allowed more radial deviation but less ulnar deviation than the PRC. The average peak tendon force was significantly greater after 4-corner arthrodesis than after PRC for the extensor carpi ulnaris during wrist flexion-extension, circumduction, and dart throw motions. The peak forces were significantly greater after 4-corner arthrodesis than in the intact wrist for the extensor carpi ulnaris during the dart throw motion and for the flexor carpi ulnaris during the circumduction motion. The peak extensor carpi radialis brevis force after PRC was significantly less than in the intact wrist. The measured wrist extremes of motion decreased after both 4-corner arthrodesis and PRC. Larger peak tendon forces were required to achieve identical wrist motions with the 4-corner arthrodesis compared with the intact wrist. We observed smaller forces for the PRC. These results may help explain why PRC shows early clinical improvement, yet may lead to degenerative arthritis. Copyright © 2013 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Detweiler, Steven
2010-02-01
Post-Newtonian analysis, numerical relativity and, now, perturbation-based gravitational self-force analysis are all being used to describe various aspects of black hole binary systems. Recent comparisons between self-force analysis, with m1m2, and post-Newtonian analysis, with v/c 1 show excellent agreement in their common domain of validity. This lends credence to the two very different regularization procedures which are invoked in these approximations. When self-force analysis is able to create gravitational waveforms from extreme mass-ratio inspiral, then unprecedented cross cultural comparisons of these three distinct approaches to understanding gravitational waves will reveal the strengths and weaknesses of each. )
Burkhart, Timothy A; Brydges, Evan; Stefanczyk, Jennifer; Andrews, David M
2017-04-01
The occurrence of distal upper extremity injuries resulting from forward falls (approximately 165,000 per year) has remained relatively constant for over 20years. Previous work has provided valuable insight into fall arrest strategies, but only symmetric falls in body postures that do not represent actual fall scenarios closely have been evaluated. This study quantified the effect of asymmetric loading and body postures on distal upper extremity response to simulated forward falls. Twenty participants were suspended from the Propelled Upper Limb fall ARest Impact System (PULARIS) in different torso and leg postures relative to the ground and to the sagittal plane (0°, 30° and 45°). When released from PULARIS (hands 10cm above surface, velocity 1m/s), participants landed on two force platforms, one for each hand. Right forearm impact response was measured with distal (radial styloid) and proximal (olecranon) tri-axial accelerometers and bipolar EMG from seven muscles. Overall, the relative height of the torso and legs had little effect on the forces, or forearm response variables. Muscle activation patterns consistently increased from the start to the peak activation levels after impact for all muscles, followed by a rapid decline after peak. The impact forces and accelerations suggest that the distal upper extremity is loaded more medial-laterally during asymmetric falls than symmetric falls. Altering the direction of the impact force in this way (volar-dorsal to medial-lateral) may help reduce distal extremity injuries caused when landing occurs symmetrically in the sagittal plane as it has been shown that volar-dorsal forces increase the risk of injury. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hainsworth, S.
2008-11-01
Friction, lubrication and wear interactions between materials make considerable differences to how efficient our engines are, whether or not we ski downhill faster than others, or whether the shoes that we are wearing give us sufficient grip to successfully navigate the marble floors of buildings. Traditionally, tribologists have focussed on the macroscopic issues of tribological problems, looking at the design of components, the viscosity of oils and the mechanical properties of surfaces to understand how components interact to give the desired friction and wear properties. However, in the last twenty years there has been an increasing realization that the processes that are controlling these macroscopic interactions are determined by what happens on the atomic and microscopic scale. Further, with the advent of nano- and micro-electro mechanical systems (NEMs and MEMs), macroscopic scale tribological interactions do not influence the tribology of these devices in the same way, and capillary forces and van der Waal's forces play an increased role in determining whether these devices function successfully. This book aims to fill a gap in the area of tribology textbooks by addressing the important advances that have been made in our understanding of the science of nano- and micro-scale tribological interactions. The book is aimed at advanced undergraduate and graduate level students on engineering programmes, academics and scientists interested in atomic and microscopic scale tribological interactions, and engineers and scientists who are not tribologists per se but work in technologies (such as NEMs/MEMs) where tribology is of importance. Whilst the target audience appears to be largely engineers, the book should have wider appeal to physicists, chemists and modellers with interests in tribological interactions. The book consists of twelve chapters with an introduction to the general significance of tribology and a brief history of modern tribology, followed by more detailed coverage of characterization and quantification of surface roughness. There is then a discussion of the mechanical properties of surfaces, and an introduction to contact mechanics. This follows a similar structure to traditional tribology textbooks but there are some nice examples and illustrations of how this relates to small scale tribology, with reference to recording heads on laser textured disk surfaces for example. The origins of friction are then discussed, with a detailed section on stick-slip interactions which are particularly significant in tribological interactions at the small scale. Chapters 5-8 then deviate from the more traditional tribology textbooks and cover surface energies and capillary forces, surface forces and their physical origins, and the measurement of these forces by the surface force apparatus and atomic force microscope. Surface forces at the small scale and capillary forces are extremely important in the successful functioning of small scale nano- or micro-electro mechanical systems, and there is a good discussion of the origin of these forces and how they can be understood, measured and controlled. The final chapters are devoted to lubrication, and atomistic origins of friction and wear. Traditional lubrication theories are initially outlined followed by detailed examples of boundary lubrication and capillary forces in tribology at the micro-scale. There are some nice examples of the importance of lubricant chemistry on sliding forces. Overall I found this book to be well-written and very readable with some very nice examples of why all this fundamental background is of importance in practical applications. The book is well-presented and it should be accessible to its target audience, particularly since the cost is reasonable. Each chapter ends with a set of selected references to allow more detailed study of particular topics if desired. There is a comprehensive index at the end of the book. I will recommend it to my students on courses on tribology and surface engineering.
Shope, James B.; Storlazzi, Curt; Erikson, Li; Hegermiller, Christie
2016-01-01
Waves are the dominant influence on coastal morphology and ecosystem structure of tropical Pacific islands. Wave heights, periods, and directions for the 21st century were projected using near-surface wind fields from four atmosphere-ocean coupled global climate models (GCM) under representative concentration pathways (RCP) 4.5 and 8.5. GCM-derived wind fields forced the global WAVEWATCH-III wave model to generate hourly time-series of bulk wave parameters around 25 islands in the mid to western tropical Pacific Ocean for historical (1976–2005), mid-, and end-of-century time periods. Extreme significant wave heights decreased (~10.0%) throughout the 21st century under both climate scenarios compared to historical wave conditions and the higher radiative forcing 8.5 scenario displayed a greater and more widespread decrease in extreme significant wave heights compared to the lower forcing 4.5 scenario. An exception was for the end-of-century June–August season. Offshore of islands in the central equatorial Pacific, extreme significant wave heights displayed the largest changes from historical values. The frequency of extreme events during December–February decreased under RCP 8.5, whereas the frequency increased under RCP 4.5. Mean wave directions often rotated more than 30° clockwise at several locations during June–August, which could indicate a weakening of the trade winds’ influence on extreme wave directions and increasing dominance of Southern Ocean swell or eastern shift of storm tracks. The projected changes in extreme wave heights, directions of extreme events, and frequencies at which extreme events occur will likely result in changes to the morphology and sustainability of island nations.
Self-folding mechanics of graphene tearing and peeling from a substrate
NASA Astrophysics Data System (ADS)
He, Ze-Zhou; Zhu, Yin-Bo; Wu, Heng-An
2018-06-01
Understanding the underlying mechanism in the tearing and peeling processes of graphene is crucial for the further hierarchical design of origami-like folding and kirigami-like cutting of graphene. However, the complex effects among bending moduli, adhesion, interlayer interaction, and local crystal structure during origami-like folding and kirigami-like cutting remain unclear, resulting in challenges to the practical applications of existing theoretical and experimental findings as well as to potential manipulations of graphene in metamaterials and nanodevices. Toward this end, classical molecular dynamics (MD) simulations are performed with synergetic theoretical analysis to explore the tearing and peeling of self-folded graphene from a substrate driven by external force and by thermal activation. It is found that the elastic energy localized at the small folding ridge plays a significant role in the crack trajectory. Due to the extremely small bending modulus of monolayer graphene, its taper angle when pulled by an external force follows a scaling law distinct from that in case of bilayer graphene. With the increase in the initial width of the folding ridge, the self-folded graphene, motivated by thermal fluctuations, can be self-assembled by spontaneous self-tearing and peeling from a substrate. Simultaneously, the scaling law between the taper angle and adhesive energy is independent of the motivations for thermal activation-induced self-assembly and external force tearing, providing effective insights into the underlying physics for graphene-based origami-like folding and kirigami-like cutting.
New continuous recording procedure of holographic information on transient phenomena
NASA Astrophysics Data System (ADS)
Nagayama, Kunihito; Nishihara, H. Keith; Murakami, Terutoshi
1992-09-01
A new method for continuous recording of holographic information, 'streak holography,' is proposed. This kind of record can be useful for velocity and acceleration measurement as well as for observing a moving object whose trajectory cannot be predicted in advance. A very high speed camera system has been designed and constructed for streak holography. A ring-shaped 100-mm-diam film has been cut out from the high-resolution sheet film and mounted on a thin duralmin disk, which has been driven to rotate directly by an air-turbine spindle. Attainable streak velocity is 0.3 mm/microsecond(s) . A direct film drive mechanism makes it possible to use a relay lens system of extremely small f number. The feasibility of the camera system has been demonstrated by observing several transient events, such as the forced oscillation of a wire and the free fall of small glass particles, using an argon-ion laser as a light source.
Fanning, C.M.; Flint, R.B.; Parker, A.J.; Ludwig, K. R.; Blissett, A.H.
1988-01-01
Through the application of both conventional U-Pb zircon analyses and small-sample U-Pb isotopic analyses, the nature and timing of tectonic events leading to the formation of the Gawler Craton have been defined more precisely. Constraints on deposition of Early Proterozoic iron formation-bearing sediments have been narrowed down to the period 1960-1847 Ma. Deformed acid volcanics, including the economically important Moonta Porphyry, have zircon ages of ??? 1790 and 1740 Ma. The voluminous acid Gawler Range Volcanics and correlatives to the east were erupted over a short interval at 1592 ?? 2 Ma, and were intruded by anorogenic granites at ??? 1575 Ma. Small-sample zircon analyses proved to be an extremely valuable adjunct to conventional analyses, generally yielding more-concordant data which forced a curved discordia through an upper intercept slightly younger than from a conventional straight-line discordia. ?? 1988.
NASA Astrophysics Data System (ADS)
Black, R. X.
2017-12-01
We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.
NASA Astrophysics Data System (ADS)
Martucci, G.; Carniel, S.; Chiggiato, J.; Sclavo, M.; Lionello, P.; Galati, M. B.
2010-06-01
The study is a statistical analysis of sea states timeseries derived using the wave model WAM forced by the ERA-40 dataset in selected areas near the Italian coasts. For the period 1 January 1958 to 31 December 1999 the analysis yields: (i) the existence of a negative trend in the annual- and winter-averaged sea state heights; (ii) the existence of a turning-point in late 80's in the annual-averaged trend of sea state heights at a site in the Northern Adriatic Sea; (iii) the overall absence of a significant trend in the annual-averaged mean durations of sea states over thresholds; (iv) the assessment of the extreme values on a time-scale of thousand years. The analysis uses two methods to obtain samples of extremes from the independent sea states: the r-largest annual maxima and the peak-over-threshold. The two methods show statistical differences in retrieving the return values and more generally in describing the significant wave field. The r-largest annual maxima method provides more reliable predictions of the extreme values especially for small return periods (<100 years). Finally, the study statistically proves the existence of decadal negative trends in the significant wave heights and by this it conveys useful information on the wave climatology of the Italian seas during the second half of the 20th century.
Series Elastic Actuators for legged robots
NASA Astrophysics Data System (ADS)
Pratt, Jerry E.; Krupp, Benjamin T.
2004-09-01
Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.
NASA Astrophysics Data System (ADS)
Lewis, Sophie; Karoly, David
2013-04-01
Changes in extreme climate events pose significant challenges for both human and natural systems. Some climate extremes are likely to become "more frequent, more widespread and/or more intense during the 21st century" (Intergovernmental Panel on Climate Change, 2007) due to anthropogenic climate change. Particularly in Australia, El Niño-Southern Oscillation (ENSO) has a relationship to the relative frequency of temperature and precipitation extremes. In this study, we investigate the record high two-summer rainfall observed in Australia (2010-2011 and 2011-2012). This record rainfall occurred in association with a two year extended La Niña event and resulted in severe and extensive flooding. We examine simulated changes in seasonal-scale rainfall extremes in the Australian region in a suite of models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5). In particular, we utilise the novel CMIP5 detection and attribution historical experiments with various forcings (natural forcings only and greenhouse gas forcings only) to examine the impact of various anthropogenic forcings on seasonal-scale extreme rainfall across Australia. Using these standard detection and attribution experiments over the period of 1850 to 2005, we examine La Niña contributions to the 2-season record rainfall, as well as the longer-term climate change contribution to rainfall extremes. Was there an anthropogenic influence in the record high Australian summer rainfall over 2010 to 2012, and if so, how much influence? Intergovernmental Panel on Climate Change (2007), Climate Change 2007: The Physical Science Basis, Contribution of Working Group I to the Fourth Assessment Report on the Intergovernmental Panel on Climate Change, edited by S. Solomon et al., 996 pp., Cambridge Univ. Press, Cambridge, U. K.
Understanding work related musculoskeletal pain: does repetitive work cause stress symptoms?
Bonde, J P; Mikkelsen, S; Andersen, J H; Fallentin, N; Baelum, J; Svendsen, S W; Thomsen, J F; Frost, P; Kaergaard, A
2005-01-01
Pain in the neck and upper extremity is reported with high frequency in repetitive work. Mechanical overload of soft tissues seems a plausible mechanism, but psychological factors have received considerable attention during the past decade. If psychological factors are important for development of regional pain in repetitive work, stress symptoms would likely be on the causal path. To examine whether objective measures of repetitive monotonous work are related to occurrence and development of stress symptoms. In 1994-95, 2033 unskilled workers with continuous repetitive work and 813 workers with varied work were enrolled. Measures of repetitiveness and force requirements were quantified using video observations to obtain individual exposure estimates. Stress symptoms were recorded at baseline and after approximately one, two, and three years by the Setterlind Stress Profile Inventory. Repetitive work, task cycle time, and quantified measures of repetitive upper extremity movements including force requirements were not related to occurrence of stress symptoms at baseline or development of stress symptoms during three years of follow up. The findings do not indicate that repetitive work is associated with stress symptoms, but small effects cannot be ruled out. Thus the results question the importance of mental stress mechanisms in the causation of regional pain related to repetitive work. However, the findings should be interpreted with caution because the stress inventory has not been validated against a gold standard.
Implications of Adhesion Studies for Dust Mitigation on Thermal Control Surfaces
NASA Technical Reports Server (NTRS)
Gaier, James R.; Berkebile, Stephen P.
2012-01-01
Experiments measuring the adhesion forces under ultrahigh vacuum conditions (10 (exp -10) torr) between a synthetic volcanic glass and commonly used space exploration materials have recently been described. The glass has a chemistry and surface structure typical of the lunar regolith. It was found that Van der Waals forces between the glass and common spacecraft materials was negligible. Charge transfer between the materials was induced by mechanically striking the spacecraft material pin against the glass plate. No measurable adhesion occurred when striking the highly conducting materials, however, on striking insulating dielectric materials the adhesion increased dramatically. This indicates that electrostatic forces dominate over Van der Waals forces under these conditions. The presence of small amounts of surface contaminants was found to lower adhesive forces by at least two orders of magnitude, and perhaps more. Both particle and space exploration material surfaces will be cleaned by the interaction with the solar wind and other energetic processes and stay clean because of the extremely high vacuum (10 (exp -12) torr) so the atomically clean adhesion values are probably the relevant ones for the lunar surface environment. These results are used to interpret the results of dust mitigation technology experiments utilizing textured surfaces, work function matching surfaces and brushing. They have also been used to reinterpret the results of the Apollo 14 Thermal Degradation Samples experiment.
Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system
NASA Astrophysics Data System (ADS)
Yang, Yong; Li, Chengshan
2017-12-01
Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.
Labonte, David; Federle, Walter
2013-01-01
Stick insects (Carausius morosus) have two distinct types of attachment pad per leg, tarsal “heel” pads (euplantulae) and a pre-tarsal “toe” pad (arolium). Here we show that these two pad types are specialised for fundamentally different functions. When standing upright, stick insects rested on their proximal euplantulae, while arolia were the only pads in surface contact when hanging upside down. Single-pad force measurements showed that the adhesion of euplantulae was extremely small, but friction forces strongly increased with normal load and coefficients of friction were 1. The pre-tarsal arolium, in contrast, generated adhesion that strongly increased with pulling forces, allowing adhesion to be activated and deactivated by shear forces, which can be produced actively, or passively as a result of the insects' sprawled posture. The shear-sensitivity of the arolium was present even when corrected for contact area, and was independent of normal preloads covering nearly an order of magnitude. Attachment of both heel and toe pads is thus activated partly by the forces that arise passively in the situations in which they are used by the insects, ensuring safe attachment. Our results suggest that stick insect euplantulae are specialised “friction pads” that produce traction when pressed against the substrate, while arolia are “true” adhesive pads that stick to the substrate when activated by pulling forces. PMID:24349156
On the Causes of and Long Term Changes in Eurasian Heat Waves
NASA Technical Reports Server (NTRS)
Schubert, Siegfried; Wang, Hailan; Koster, Randal; Suarez, Max
2012-01-01
The MERRA reanalysis, other observations, and the GEOS-S model have been used to diagnose the causes of Eurasian heat waves including the recent extreme events that occurred in Europe during 2003 and in Russia during 2010. The results show that such extreme events are an amplification of natural patterns of atmospheric variability (in this case a particular large-scale atmospheric planetary wave) that develop over the Eurasian continent as a result of internal atmospheric forcing. The amplification occurs when the wave occasionally becomes locked in place for several weeks to months resulting in extreme heat and drying with the location depending on the phase of the upper atmospheric wave. Model experiments suggest that forcing from both the ocean (SST) and land playa role phase-locking the waves. An ensemble of very long GEOS-S model simulations (spanning the 20th century) forced with observed SST and greenhouse gases show that the model is capable of generating very similar heat waves, and that they have become more extreme in the last thirty years as a result of the overall warming of the Asian continent.
Control of extreme events in the bubbling onset of wave turbulence.
Galuzio, P P; Viana, R L; Lopes, S R
2014-04-01
We show the existence of an intermittent transition from temporal chaos to turbulence in a spatially extended dynamical system, namely, the forced and damped one-dimensional nonlinear Schrödinger equation. For some values of the forcing parameter, the system dynamics intermittently switches between ordered states and turbulent states, which may be seen as extreme events in some contexts. In a Fourier phase space, the intermittency takes place due to the loss of transversal stability of unstable periodic orbits embedded in a low-dimensional subspace. We mapped these transversely unstable regions and perturbed the system in order to significantly reduce the occurrence of extreme events of turbulence.
Influence of conservative corrections on parameter estimation for extreme-mass-ratio inspirals
NASA Astrophysics Data System (ADS)
Huerta, E. A.; Gair, Jonathan R.
2009-04-01
We present an improved numerical kludge waveform model for circular, equatorial extreme-mass-ratio inspirals (EMRIs). The model is based on true Kerr geodesics, augmented by radiative self-force corrections derived from perturbative calculations, and in this paper for the first time we include conservative self-force corrections that we derive by comparison to post-Newtonian results. We present results of a Monte Carlo simulation of parameter estimation errors computed using the Fisher matrix and also assess the theoretical errors that would arise from omitting the conservative correction terms we include here. We present results for three different types of system, namely, the inspirals of black holes, neutron stars, or white dwarfs into a supermassive black hole (SMBH). The analysis shows that for a typical source (a 10M⊙ compact object captured by a 106M⊙ SMBH at a signal to noise ratio of 30) we expect to determine the two masses to within a fractional error of ˜10-4, measure the spin parameter q to ˜10-4.5, and determine the location of the source on the sky and the spin orientation to within 10-3 steradians. We show that, for this kludge model, omitting the conservative corrections leads to a small error over much of the parameter space, i.e., the ratio R of the theoretical model error to the Fisher matrix error is R<1 for all ten parameters in the model. For the few systems with larger errors typically R<3 and hence the conservative corrections can be marginally ignored. In addition, we use our model and first-order self-force results for Schwarzschild black holes to estimate the error that arises from omitting the second-order radiative piece of the self-force. This indicates that it may not be necessary to go beyond first order to recover accurate parameter estimates.
2017-03-01
Communications SMC Space and Missile Systems Center SEV Space Enterprise Vision SHF Super High Frequency SINCGARS Single Channel Ground-Air Radio...Appendix D:Acronyms A2/AD Anti-Access/Area Denial ADNS Automated Digital Network System AEHF Advanced Extremely High Frequency AFSPC Air Force Space ...medium-rate modes of defense extremely high frequency (EHF) SATCOM. This reality should be considered a crisis to be dealt with immediately. In
Response spectrum method for extreme wave loading with higher order components of drag force
NASA Astrophysics Data System (ADS)
Reza, Tabeshpour Mohammad; Mani, Fatemi Dezfouli; Ali, Dastan Diznab Mohammad; Saied, Mohajernasab; Saied, Seif Mohammad
2017-03-01
Response spectra of fixed offshore structures impacted by extreme waves are investigated based on the higher order components of the nonlinear drag force. In this way, steel jacket platforms are simplified as a mass attached to a light cantilever cylinder and their corresponding deformation response spectra are estimated by utilizing a generalized single degree of freedom system. Based on the wave data recorded in the Persian Gulf region, extreme wave loading conditions corresponding to different return periods are exerted on the offshore structures. Accordingly, the effect of the higher order components of the drag force is considered and compared to the linearized state for different sea surface levels. When the fundamental period of the offshore structure is about one third of the main period of wave loading, the results indicate the linearized drag term is not capable of achieving a reliable deformation response spectrum.
A force balance system for the measurement of skin friction drag force
NASA Technical Reports Server (NTRS)
Moore, J. W.; Mcvey, E. S.
1971-01-01
Research on force balance instrumentation to measure the skin friction of hypersonic vehicles at extreme temperatures, high altitudes and in a vibration field is discussed. A rough overall summary and operating instructions for the equipment are presented.
Dimensions and Global Twist of Single-Layer DNA Origami Measured by Small-Angle X-ray Scattering.
Baker, Matthew A B; Tuckwell, Andrew J; Berengut, Jonathan F; Bath, Jonathan; Benn, Florence; Duff, Anthony P; Whitten, Andrew E; Dunn, Katherine E; Hynson, Robert M; Turberfield, Andrew J; Lee, Lawrence K
2018-06-04
The rational design of complementary DNA sequences can be used to create nanostructures that self-assemble with nanometer precision. DNA nanostructures have been imaged by atomic force microscopy and electron microscopy. Small-angle X-ray scattering (SAXS) provides complementary structural information on the ensemble-averaged state of DNA nanostructures in solution. Here we demonstrate that SAXS can distinguish between different single-layer DNA origami tiles that look identical when immobilized on a mica surface and imaged with atomic force microscopy. We use SAXS to quantify the magnitude of global twist of DNA origami tiles with different crossover periodicities: these measurements highlight the extreme structural sensitivity of single-layer origami to the location of strand crossovers. We also use SAXS to quantify the distance between pairs of gold nanoparticles tethered to specific locations on a DNA origami tile and use this method to measure the overall dimensions and geometry of the DNA nanostructure in solution. Finally, we use indirect Fourier methods, which have long been used for the interpretation of SAXS data from biomolecules, to measure the distance between DNA helix pairs in a DNA origami nanotube. Together, these results provide important methodological advances in the use of SAXS to analyze DNA nanostructures in solution and insights into the structures of single-layer DNA origami.
2. Credit BG. The northwest and southwest sides of the ...
2. Credit BG. The northwest and southwest sides of the building appear as seen when looking northeast (38°). (Photo taken from location near Building 4275/E-76, Standby Generator.) Note the extent of the barricades. On the corner of the roof at the extreme right of this view appears a small funnel; according to JPL personnel, this device collected rainwater and conducted it through a pipe which appears at the corner of the building below. The water was used to flush any wastes from the nearby drainage trenches in the exterior concrete pads. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Kinematic Analysis of Four Plyometric Push-Up Variations
MOORE, LAURA H.; TANKOVICH, MICHAEL J.; RIEMANN, BRYAN L.; DAVIES, GEORGE J.
2012-01-01
Plyometric research in the upper extremity is limited, with the effects of open-chain plyometric exercises being studied most. Kinematic and ground reaction force data concerning closed-chain upper extremity plyometrics has yet to be examined. Twenty-one recreationally active male subjects performed four variations of plyometric push-ups in a counterbalanced order. These included box drop push-ups from 3.8 cm, 7.6 cm, 11.4 cm heights, and clap push-ups. Kinematics of the trunk, dominant extremity and both hands were collected to examine peak flight, elbow flexion at ground contact, elbow displacement, and hand separation. Additionally peak vertical ground reaction force was measured under the dominant extremity. The 11.4 cm and clap push-ups had significantly higher peak flight than the other variations (P<.001). At ground contact, the elbow was in significantly greater flexion for the 3.8 cm and clap push-up compared to the other variations (P<.001). The clap push-up had significantly more elbow displacement than the other variations (P<.001) while hand separation was not significantly different between variations (P=.129). Peak vertical ground reaction force was significantly greater for the clap push-ups than for all other variations (P< .001). Despite similar flight heights between the 11.4 cm and clap push-ups, the greater peak vertical ground reaction force and elbow displacement of the clap push-ups indicates the clap push-up is the most intense of the variations examined. Understanding the kinematic variables involved will aid in the creation of a closed chain upper-extremity plyometric progression. PMID:27182390
Hardin, E C; Su, A; van den Bogert, A J
2004-12-01
The purpose of this study was to determine how a driver's foot and ankle forces during a frontal vehicle collision depend on initial lower extremity posture and brake pedal force. A 2D musculoskeletal model with seven segments and six right-side muscle groups was used. A simulation of a three-second braking task found 3647 sets of muscle activation levels that resulted in stable braking postures with realistic pedal force. These activation patterns were then used in impact simulations where vehicle deceleration was applied and driver movements and foot and ankle forces were simulated. Peak rearfoot ground reaction force (F(RF)), peak Achilles tendon force (FAT), peak calcaneal force (F(CF)) and peak ankle joint force (F(AJ)) were calculated. Peak forces during the impact simulation were 476 +/- 687 N (F(RF)), 2934 +/- 944 N (F(CF)) and 2449 +/- 918 N (F(AJ)). Many simulations resulted in force levels that could cause fractures. Multivariate quadratic regression determined that the pre-impact brake pedal force (PF), knee angle (KA) and heel distance (HD) explained 72% of the variance in peak FRF, 62% in peak F(CF) and 73% in peak F(AJ). Foot and ankle forces during a collision depend on initial posture and pedal force. Braking postures with increased knee flexion, while keeping the seat position fixed, are associated with higher foot and ankle forces during a collision.
NASA Astrophysics Data System (ADS)
Bresson, Émilie; Arbogast, Philippe; Aouf, Lotfi; Paradis, Denis; Kortcheva, Anna; Bogatchev, Andrey; Galabov, Vasko; Dimitrova, Marieta; Morvan, Guillaume; Ohl, Patrick; Tsenova, Boryana; Rabier, Florence
2018-04-01
Winds, waves and storm surges can inflict severe damage in coastal areas. In order to improve preparedness for such events, a better understanding of storm-induced coastal flooding episodes is necessary. To this end, this paper highlights the use of atmospheric downscaling techniques in order to improve wave and storm surge hindcasts. The downscaling techniques used here are based on existing European Centre for Medium-Range Weather Forecasts reanalyses (ERA-20C, ERA-40 and ERA-Interim). The results show that the 10 km resolution data forcing provided by a downscaled atmospheric model gives a better wave and surge hindcast compared to using data directly from the reanalysis. Furthermore, the analysis of the most extreme mid-latitude cyclones indicates that a four-dimensional blending approach improves the whole process, as it assimilates more small-scale processes in the initial conditions. Our approach has been successfully applied to ERA-20C (the 20th century reanalysis).
Transport driven by biharmonic forces: impact of correlated thermal noise.
Machura, L; Łuczka, J
2010-09-01
We study an inertial brownian particle moving in a symmetric periodic substrate, driven by a zero-mean biharmonic force and correlated thermal noise. The brownian motion is described in terms of a generalized Langevin equation with an exponentially correlated gaussian noise term, obeying the fluctuation-dissipation theorem. We analyze impact of nonzero correlation time of thermal noise on transport properties of the brownian particle. We identify regimes where the increase of the correlation time intensifies long-time transport of the brownian particle. The opposite effect is also found: longer correlation time reduces the stationary velocity of the particle. The correlation time induced multiple current reversal is detected. We reveal that thermal noise of nonzero correlation time can radically enhance long-time velocity of the brownian particle in regimes where in the white noise limit the velocity is extremely small. All transport properties can be tested in the setup consisting of a resistively and capacitively shunted Josephson junction device.
Jamming criticality revealed by removing localized buckling excitations.
Charbonneau, Patrick; Corwin, Eric I; Parisi, Giorgio; Zamponi, Francesco
2015-03-27
Recent theoretical advances offer an exact, first-principles theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small interparticle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the interparticle gaps is known to be constant in all spatial dimensions d-including the physically relevant d=2 and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 3 2011-07-01 2011-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2014 CFR
2014-07-01
... 33 Navigation and Navigable Waters 3 2014-07-01 2014-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 3 2012-07-01 2012-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 3 2013-07-01 2013-07-01 false Tampa Bay south of MacDill Air Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...
Code of Federal Regulations, 2010 CFR
2010-07-01
... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base... Force Base, Fla.; small-arms firing range and aircraft jettison, U.S. Air Force, MacDill Air Force Base...″, longitude 82°33′02.44″; and thence to a point on the shore line of MacDill Air Force Base at latitude 27°50...
77 FR 71471 - Interagency Task Force on Veterans Small Business Development; Notice of Meeting
Federal Register 2010, 2011, 2012, 2013, 2014
2012-11-30
... SMALL BUSINESS ADMINISTRATION Interagency Task Force on Veterans Small Business Development; Notice of Meeting AGENCY: U.S. Small Business Administration. ACTION: Notice of open Federal Interagency... agenda for its public meeting of the Interagency Task Force on Veterans Small Business Development. The...
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes.
Smirnov, A; Yasinskii, V M; Filimonenko, D S; Rostova, E; Dietler, G; Sekatskii, S K
2018-01-01
In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO 2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000-6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation.
[Optimal solution and analysis of muscular force during standing balance].
Wang, Hongrui; Zheng, Hui; Liu, Kun
2015-02-01
The present study was aimed at the optimal solution of the main muscular force distribution in the lower extremity during standing balance of human. The movement musculoskeletal system of lower extremity was simplified to a physical model with 3 joints and 9 muscles. Then on the basis of this model, an optimum mathematical model was built up to solve the problem of redundant muscle forces. Particle swarm optimization (PSO) algorithm is used to calculate the single objective and multi-objective problem respectively. The numerical results indicated that the multi-objective optimization could be more reasonable to obtain the distribution and variation of the 9 muscular forces. Finally, the coordination of each muscle group during maintaining standing balance under the passive movement was qualitatively analyzed using the simulation results obtained.
Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke.
Linder, Susan M; Rosenfeldt, Anson B; Dey, Tanujit; Alberts, Jay L
To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice-only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. Copyright © 2017 by the American Occupational Therapy Association, Inc.
NASA Astrophysics Data System (ADS)
Otto, F. E. L.; Mitchell, D.; Sippel, S.; Black, M. T.; Dittus, A. J.; Harrington, L. J.; Mohd Saleh, N. H.
2014-12-01
A shift in the distribution of socially-relevant climate variables such as daily minimum winter temperatures and daily precipitation extremes, has been attributed to anthropogenic climate change for various mid-latitude regions. However, while there are many process-based arguments suggesting also a change in the shape of these distributions, attribution studies demonstrating this have not currently been undertaken. Here we use a very large initial condition ensemble of ~40,000 members simulating the European winter 2013/2014 using the distributed computing infrastructure under the weather@home project. Two separate scenarios are used:1. current climate conditions, and 2. a counterfactual scenario of "world that might have been" without anthropogenic forcing. Specifically focusing on extreme events, we assess how the estimated parameters of the Generalized Extreme Value (GEV) distribution vary depending on variable-type, sampling frequency (daily, monthly, …) and geographical region. We find that the location parameter changes for most variables but, depending on the region and variables, we also find significant changes in scale and shape parameters. The very large ensemble allows, furthermore, to assess whether such findings in the fitted GEV distributions are consistent with an empirical analysis of the model data, and whether the most extreme data still follow a known underlying distribution that in a small sample size might otherwise be thought of as an out-lier. The ~40,000 member ensemble is simulated using 12 different SST patterns (1 'observed', and 11 best guesses of SSTs with no anthropogenic warming). The range in SSTs, along with the corresponding changings in the NAO and high-latitude blocking inform on the dynamics governing some of these extreme events. While strong tele-connection patterns are not found in this particular experiment, the high number of simulated extreme events allows for a more thorough analysis of the dynamics than has been performed before. Therefore, combining extreme value theory with very large ensemble simulations allows us to understand the dynamics of changes in extreme events which is not possible just using the former but also shows in which cases statistics combined with smaller ensembles give as valid results as very large initial conditions.
Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes
NASA Astrophysics Data System (ADS)
Romero, Manuel; González-Aguilar, José; Luque, Salvador
2017-06-01
The main objective of the European Project SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2. This implies moving from a 4 kW laboratory setup to a pre-commercial plant including a heliostat field. The small power and high irradiance onto the focal spot is forcing the optical design to behave half way between a large solar furnace and an extremely small central receiver system. The customized heliostat field makes use of the most recent developments on small size heliostats and a tower with reduced optical height (15 m) to minimize visual impact. A heliostat field of 250kWth (500 m2 reflective surface) has been built adjacent to IMDEA Energy premises at the Technology Park of Móstoles, Spain, and consists of 169 small size heliostats (1.9 m × 1.6 m). In spite of the small size and compactness of the field, when all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2.
A rational decision rule with extreme events.
Basili, Marcello
2006-12-01
Risks induced by extreme events are characterized by small or ambiguous probabilities, catastrophic losses, or windfall gains. Through a new functional, that mimics the restricted Bayes-Hurwicz criterion within the Choquet expected utility approach, it is possible to represent the decisionmaker behavior facing both risky (large and reliable probability) and extreme (small or ambiguous probability) events. A new formalization of the precautionary principle (PP) is shown and a new functional, which encompasses both extreme outcomes and expectation of all the possible results for every act, is claimed.
Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Barbre, Robert E., Jr.
2015-01-01
Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.
Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation
NASA Technical Reports Server (NTRS)
Decker, Ryan K.; Barbre, Robert E., Jr.
2014-01-01
Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.
Future changes in hydro-climatic extremes in the Upper Indus, Ganges, and Brahmaputra River basins
Lutz, Arthur F.; Nepal, Santosh; Khanal, Sonu; Pradhananga, Saurav; Shrestha, Arun B.; Immerzeel, Walter W.
2017-01-01
Future hydrological extremes, such as floods and droughts, may pose serious threats for the livelihoods in the upstream domains of the Indus, Ganges, Brahmaputra. For this reason, the impacts of climate change on future hydrological extremes is investigated in these river basins. We use a fully-distributed cryospheric-hydrological model to simulate current and future hydrological fluxes and force the model with an ensemble of 8 downscaled General Circulation Models (GCMs) that are selected from the RCP4.5 and RCP8.5 scenarios. The model is calibrated on observed daily discharge and geodetic mass balances. The climate forcing and the outputs of the hydrological model are used to evaluate future changes in climatic extremes, and hydrological extremes by focusing on high and low flows. The outcomes show an increase in the magnitude of climatic means and extremes towards the end of the 21st century where climatic extremes tend to increase stronger than climatic means. Future mean discharge and high flow conditions will very likely increase. These increases might mainly be the result of increasing precipitation extremes. To some extent temperature extremes might also contribute to increasing discharge extremes, although this is highly dependent on magnitude of change in temperature extremes. Low flow conditions may occur less frequently, although the uncertainties in low flow projections can be high. The results of this study may contribute to improved understanding on the implications of climate change for the occurrence of future hydrological extremes in the Hindu Kush–Himalayan region. PMID:29287098
Origins of extreme boundary lubrication by phosphatidylcholine liposomes.
Sorkin, Raya; Kampf, Nir; Dror, Yael; Shimoni, Eyal; Klein, Jacob
2013-07-01
Phosphatidylcholine (PC) vesicles have been shown to have remarkable boundary lubricating properties under physiologically-high pressures. Here we carry out a systematic study, using a surface force balance, of the normal and shear (frictional) forces between two opposing surfaces bearing different PC vesicles across water, to elucidate the origin of these properties. Small unilamellar vesicles (SUVs, diameters < 100 nm) of the symmetric saturated diacyl PCs DMPC (C(14)), DPPC (C(16)) and DSPC (C(18)) attached to mica surfaces were studied in their solid-ordered (SO) phase on the surface. Overall liposome lubrication ability improves markedly with increasing acyl chain length, and correlates strongly with the liposomes' structural integrity on the substrate surface: DSPC-SUVs were stable on the surface, and provided extremely efficient lubrication (friction coefficient μ ≈ 10(-4)) at room temperature at pressures up to at least 18 MPa. DMPC-SUVs ruptured following adsorption, providing poor high-pressure lubrication, while DPPC-SUVs behavior was intermediate between the two. These results can be well understood in terms of the hydration-lubrication paradigm, but suggest that an earlier conjecture, that highly-efficient lubrication by PC-SUVs depended simply on their being in the SO rather than in the liquid-disordered phase, should be more nuanced. Our results indicate that the resistance of the SUVs to mechanical deformation and rupture is the dominant factor in determining their overall boundary lubrication efficiency in our system. Copyright © 2013 Elsevier Ltd. All rights reserved.
Ultraflexible nanostructures and implications for future nanorobots
NASA Astrophysics Data System (ADS)
Cohn, Robert W.; Panchapakesan, Balaji
2016-05-01
Several high aspect ratio nanostructures have been made by capillary force directed self-assembly including polymeric nanofiber air-bridges, trampoline-like membranes, microsphere-beaded nanofibers, and intermetallic nanoneedles. Arrays of polymer air-bridges form in seconds by simply hand brushing a bead of polymeric liquid over an array of micropillars. The domination of capillary force that is thinning unstable capillary bridges leads to uniform arrays of nanofiber air-bridges. Similarly, arrays of vertically oriented Ag2Ga nanoneedles have been formed by dipping silvercoated arrays of pyramidal silicon into melted gallium. Force-displacement measurements of these structures are presented. These nanostructures, especially when compressively or torsionally buckled, have extremely low stiffnesses, motion due to thermal fluctuations that is relatively easily detected, and the ability to move great distances for very small changes in applied force. Nanofibers with bead-on-a-string structure, where the beads are micron diameter and loaded with magnetic iron oxide (maghemite), are shown to be simply viewable under optical microscopes, have micronewton/ m stiffness, and have ultralow torsional stiffnesses enabling the bead to be rotated numerous revolutions without breaking. Combination of these high aspect ratio structures with stretched elastomers offer interesting possibilities for robotic actuation and locomotion. Polydimethylsiloxane loaded with nanomaterials, e.g. nanotubes, graphene or MoS2, can be efficiently heated with directed light. Heating produces considerable force through the thermoelastic effect, and this force can be used for continuous translation or to trigger reversible elastic buckling of the nanostructures. The remote stimulation of motion with light provides a possible mechanism for producing cooperative behavior between swarms of semiautonomous nanorobots.
Constrained handgrip force decreases upper extremity muscle activation and arm strength.
Smets, Martin P H; Potvin, James R; Keir, Peter J
2009-09-01
Many industrial tasks require repetitive shoulder exertions to be performed with concurrent physical and mental demands. The highly mobile nature of the shoulder predisposes it to injury. The purpose of this study was to determine the effects of simultaneous gripping, at a specified magnitude, on muscle activity and maximal arm force in various directions. Ten female subjects performed maximal arm exertions at two different heights and five directions using both specified (30% maximum voluntary grip) and preferred (self-selected) grip forces. Electromyography was recorded from eight muscles of the right upper extremity. The preferred grip condition produced grip forces that were dependent on the combination of arm height and force direction and were significantly greater (arm force down), lower (to left, up and push forward), or similar to the specified grip condition. Regardless of the magnitude of the preferred grip force, specifying the grip resulted in decreased maximal arm strength (by 18-25%) and muscle activity (by 15-30%) in all conditions, indicating an interfering effect when the grip force was specified by visual target force-matching. Task constraints, such as specific gripping demands, may decrease peak force levels attainable and alter muscle activity. Depending on the nature of task, the amount of relative demand may differ, which should be considered when determining safety thresholds.
Biomechanical Analysis of the Closed Kinetic Chain Upper-Extremity Stability Test.
Tucci, Helga T; Felicio, Lilian R; McQuade, Kevin J; Bevilaqua-Grossi, Debora; Camarini, Paula Maria Ferreira; Oliveira, Anamaria S
2017-01-01
The closed kinetic chain upper-extremity stability (CKCUES) test is a functional test for the upper extremity performed in the push-up position, where individuals support their body weight on 1 hand placed on the ground and swing the opposite hand until touching the hand on the ground, then switch hands and repeat the process as fast as possible for 15 s. To study scapular kinematic and kinetic measures during the CKCUES test for 3 different distances between hands. Experimental. Laboratory. 30 healthy individuals (15 male, 15 female). Participants performed 3 repetitions of the test at 3 distance conditions: original (36 in), interacromial, and 150% interacromial distance between hands. Participants completed a questionnaire on pain intensity and perceived exertion before and after the procedures. Scapular internal/external rotation, upward/downward rotation, and posterior/anterior tilting kinematics and kinetic data on maximum force and time to maximum force were measured bilaterally in all participants. Percentage of body weight on upper extremities was calculated. Data analyses were based on the total numbers of hand touches performed for each distance condition, and scapular kinematics and kinetic values were averaged over the 3 trials. Scapular kinematics, maximum force, and time to maximum force were compared for the 3 distance conditions within each gender. Significance level was set at α = .05. Scapular internal rotation, posterior tilting, and upward rotation were significantly greater in the dominant side for both genders. Scapular upward rotation was significantly greater in original distance than interacromial distance in swing phase. Time to maximum force in women was significantly greater in the dominant side. CKCUES test kinematic and kinetic measures were not different among 3 conditions based on distance between hands. However, the test might not be suitable for initial or mild-level rehabilitation due to its challenging requirements.
Attribution of the 1995 and 2006 storm surge events in the southern Baltic Sea
NASA Astrophysics Data System (ADS)
Klehmet, K.; Rockel, B.; von Storch, H.
2016-12-01
In November 1995 and 2006, the German Baltic Sea coast experienced severe storm surge conditions. Exceptional water level heights of about 1.8m above mean sea level were measured at German tide gauges. Extreme event attribution poses unique challenges trying to distinguish the role of anthropogenic influence, as e.g. greenhouse gas emissions or land-use changes, from natural variability. This study, which is part of the EUCLEIA project (EUropean CLimate and weather Events: Interpretation and Attribution, www. eucleia.eu), aims to estimate how the contribution of anthropogenic drivers has altered the probability of single extreme events such as the 1995 and 2006 storm surge events. We explore these aspects using two 7-member ensembles of Hadley Centre Global Environmental Model version 3-A (HadGEM3-A), the atmosphere only component of the HadGEM3, provided by the Met Office Hadley Centre. The ensemble of HadGEM3-A consists of two multi-decadal experiments from 1960-2013 - one with anthropogenic forcing factors and natural forcings representing the actual climate. The second experiment represents the natural climate including only natural forcing factors. These two 7-member ensembles of about 60km spatial resolution are used as atmospheric forcing data to drive the regional ocean model TRIM-NP in order to calculate water level in the Baltic Sea in 12.8km spatial resolution. Findings indicate some limitations of the regional model ensemble to reproduce the magnitude of extreme water levels well. It is tested whether increased spatial resolution of atmospheric forcing fields can improve the representation of Baltic Sea extreme water levels along the coast and thus add value in the attribution analysis.
Effect of walking speed on lower extremity joint loading in graded ramp walking.
Schwameder, Hermann; Lindenhofer, Elke; Müller, Erich
2005-07-01
Lower extremity joint loading during walking is strongly affected by the steepness of the slope and might cause pain and injuries in lower extremity joint structures. One feasible measure to reduce joint loading is the reduction of walking speed. Positive effects have been shown for level walking, but not for graded walking or hiking conditions. The aim of the study was to quantify the effect of walking speed (separated into the two components, step length and cadence) on the joint power of the hip, knee and ankle and to determine the knee joint forces in uphill and downhill walking. Ten participants walked up and down a ramp with step lengths of 0.46, 0.575 and 0.69 m and cadences of 80, 100 and 120 steps per minute. The ramp was equipped with a force platform and the locomotion was filmed with a 60 Hz video camera. Loading of the lower extremity joints was determined using inverse dynamics. A two-dimensional knee model was used to calculate forces in the knee structures during the stance phase. Walking speed affected lower extremity joint loading substantially and significantly. Change of step length caused much greater loading changes for all joints compared with change of cadence; the effects were more distinct in downhill than in uphill walking. The results indicate that lower extremity joint loading can be effectively controlled by varying step length and cadence during graded uphill and downhill walking. Hikers can avoid or reduce pain and injuries by reducing walking speed, particularly in downhill walking.
The anthropogenic influence on heat and humidity in the US Midwest
NASA Astrophysics Data System (ADS)
Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.
2016-12-01
Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.
Projections of extreme storm surge levels along Europe
NASA Astrophysics Data System (ADS)
Vousdoukas, Michalis I.; Voukouvalas, Evangelos; Annunziato, Alessandro; Giardino, Alessio; Feyen, Luc
2016-11-01
Storm surges are an important coastal hazard component and it is unknown how they will evolve along Europe's coastline in view of climate change. In the present contribution, the hydrodynamic model Delft3D-Flow was forced by surface wind and atmospheric pressure fields from a 8-member climate model ensemble in order to evaluate dynamics in storm surge levels (SSL) along the European coastline (1) for the baseline period 1970-2000; and (2) during this century under the Representative Concentration Pathways RCP4.5 and RCP8.5. Validation simulations, spanning from 2008 to 2014 and driven by ERA-Interim atmospheric forcing, indicated good predictive skill (0.06 m < RMSE < 0.29 m and 10 % < RMSE < 29 % for 110 tidal gauge stations across Europe). Peak-over-threshold extreme value analysis was applied to estimate SSL values for different return periods, and changes of future SSL were obtained from all models to obtain the final ensemble. Values for most scenarios and return periods indicate a projected increase in SSL at several locations along the North European coastline, which is more prominent for RCP8.5 and shows an increasing tendency towards the end of the century for both RCP4.5 and RCP8.5. Projected SSL changes along the European coastal areas south of 50°N show minimal change or even a small decrease, with the exception of RCP8.5 under which a moderate increase is projected towards the end of the century. The present findings indicate that the anticipated increase in extreme total water levels due to relative sea level rise (RSLR), can be further enforced by an increase of the extreme SSL, which can exceed 30 % of the RSLR, especially for the high return periods and pathway RCP8.5. This implies that the combined effect could increase even further anticipated impacts of climate change for certain European areas and highlights the necessity for timely coastal adaptation and protection measures. The dataset is publicly available under this link: http://data.jrc.ec.europa.eu/collection/LISCOAST.
Svenson, Gavin J; Brannoch, Sydney K; Rodrigues, Henrique M; O'Hanlon, James C; Wieland, Frank
2016-12-01
Here we reconstruct the evolutionary shift towards floral simulation in orchid mantises and suggest female predatory selection as the likely driving force behind the development of extreme sexual size dimorphism. Through analysis of body size data and phylogenetic modelling of trait evolution, we recovered an ancestral shift towards sexual dimorphisms in both size and appearance in a lineage of flower-associated praying mantises. Sedentary female flower mantises dramatically increased in size prior to a transition from camouflaged, ambush predation to a floral simulation strategy, gaining access to, and visually attracting, a novel resource: large pollinating insects. Male flower mantises, however, remained small and mobile to facilitate mate-finding and reproductive success, consistent with ancestral male life strategy. Although moderate sexual size dimorphisms are common in many arthropod lineages, the predominant explanation is female size increase for increased fecundity. However, sex-dependent selective pressures acting outside of female fecundity have been suggested as mechanisms behind niche dimorphisms. Our hypothesised role of predatory selection acting on females to generate both extreme sexual size dimorphism coupled with niche dimorphism is novel among arthropods.
Recent advances in superhydrophobic surfaces and their relevance to biology and medicine.
Ciasca, G; Papi, M; Businaro, L; Campi, G; Ortolani, M; Palmieri, V; Cedola, A; De Ninno, A; Gerardino, A; Maulucci, G; De Spirito, M
2016-02-04
By mimicking naturally occurring superhydrophobic surfaces, scientists can now realize artificial surfaces on which droplets of a few microliters of water are forced to assume an almost spherical shape and an extremely high contact angle. In recent decades, these surfaces have attracted much attention due to their technological applications for anti-wetting and self-cleaning materials. Very recently, researchers have shifted their interest to investigate whether superhydrophobic surfaces can be exploited to study biological systems. This research effort has stimulated the design and realization of new devices that allow us to actively organize, visualize and manipulate matter at both the microscale and nanoscale levels. Such precise control opens up wide applications in biomedicine, as it allows us to directly manipulate objects at the typical length scale of cells and macromolecules. This progress report focuses on recent biological and medical applications of superhydrophobicity. Particular regard is paid to those applications that involve the detection, manipulation and study of extremely small quantities of molecules, and to those that allow high throughput cell and biomaterial screening.
(GaIn)(NAs) growth using di-tertiary-butyl-arsano-amine (DTBAA)
NASA Astrophysics Data System (ADS)
Sterzer, E.; Ringler, B.; Nattermann, L.; Beyer, A.; von Hänisch, C.; Stolz, W.; Volz, K.
2017-06-01
III/V semiconductors containing small amounts of Nitrogen (N) are very interesting for a variety of optoelectronic applications. Unfortunately, the conventionally used N precursor 1,1-dimethylhydrazine (UDMHy) has an extremely low N incorporation efficiency in GaAs when grown using metal organic vapor phase epitaxy. Alloying Ga(NAs) with Indium (In) even leads to an exponential reduction of N incorporation. The huge amount of UDMHy in turn changes drastically the growth conditions. Furthermore, the application of this material is still hampered by the large carbon incorporation, most probably originating from the metal organic precursors. Hence, novel precursors for dilute nitride growth are needed. This paper will show (GaIn)(NAs) growth studies with the novel precursor di-tertiary-butyl-arsano-amine in combination with tri-ethyl-gallium and tri-methyl-indium. We show an extremely high N incorporation efficiency in the In containing (GaIn)(NAs). The (GaIn)(NAs) samples investigated in this study have been examined using high resolution X-Ray diffraction, room temperature photoluminescence and atomic force microscope measurements as well as secondary ion mass spectrometry.
Svenson, Gavin J.; Brannoch, Sydney K.; Rodrigues, Henrique M.; O’Hanlon, James C.; Wieland, Frank
2016-01-01
Here we reconstruct the evolutionary shift towards floral simulation in orchid mantises and suggest female predatory selection as the likely driving force behind the development of extreme sexual size dimorphism. Through analysis of body size data and phylogenetic modelling of trait evolution, we recovered an ancestral shift towards sexual dimorphisms in both size and appearance in a lineage of flower-associated praying mantises. Sedentary female flower mantises dramatically increased in size prior to a transition from camouflaged, ambush predation to a floral simulation strategy, gaining access to, and visually attracting, a novel resource: large pollinating insects. Male flower mantises, however, remained small and mobile to facilitate mate-finding and reproductive success, consistent with ancestral male life strategy. Although moderate sexual size dimorphisms are common in many arthropod lineages, the predominant explanation is female size increase for increased fecundity. However, sex-dependent selective pressures acting outside of female fecundity have been suggested as mechanisms behind niche dimorphisms. Our hypothesised role of predatory selection acting on females to generate both extreme sexual size dimorphism coupled with niche dimorphism is novel among arthropods. PMID:27905469
Foreman, K Bo; Singer, Madeline L; Addison, Odessa; Marcus, Robin L; LaStayo, Paul C; Dibble, Leland E
2014-01-01
Postural instability appears to be a dopamine resistance motor deficit in persons with Parkinson disease (PD); however, little is known about the effects of dopamine replacement on the relative biomechanical contributions of individual lower extremity joints during postural control tasks. To gain insight, we examined persons with PD using both clinical and laboratory measures. For a clinical measure of motor severity we utilized the Unified Parkinson Disease Rating Scale motor subsection during both OFF and ON medication conditions. For the laboratory measure we utilized data gathered during a rapid lower extremity force production task. Kinematic and kinetic variables at the hip, knee, and ankle were gathered during a counter movement jump during both OFF and ON medication conditions. Sixteen persons with PD with a median Hoehn and Yahr severity of 2.5 completed the study. Medication resulted in significant improvements of angular displacement for the hip, knee, and ankle. Furthermore, significant improvements were revealed only at the hip for peak net moments and average angular velocity compared to the OFF medication condition. These results suggest that dopamine replacement medication result in decreased clinical motor disease severity and have a greater influence on kinetics and kinematics proximally. This proximally focused improvement may be due to active recruitment of muscle force and reductions in passive restraint during lower extremity rapid force production. Copyright © 2013 Elsevier B.V. All rights reserved.
Rainey, R C T
2012-01-28
For a weak point source or dipole, or a small body operating as either, we show that the power from a wave energy converter (WEC) is the product of the particle velocity in the waves, and the wave force (suitably defined). There is a thus a strong analogy with a wind or tidal turbine, where the power is the product of the fluid velocity through the turbine, and the force on it. As a first approximation, the cost of a structure is controlled by the force it has to carry, which governs its strength, and the distance it has to be carried, which governs its size. Thus, WECs are at a disadvantage compared with wind and tidal turbines because the fluid velocities are lower, and hence the forces are higher. On the other hand, the distances involved are lower. As with turbines, the implication is also that a WEC must make the most of its force-carrying ability-ideally, to carry its maximum force all the time, the '100% sweating WEC'. It must be able to limit the wave force on it in larger waves, ultimately becoming near-transparent to them in the survival condition-just like a turbine in extreme conditions, which can stop and feather its blades. A turbine of any force rating can achieve its maximum force in low wind speeds, if its diameter is sufficiently large. This is not possible with a simple monopole or dipole WEC, however, because of the 'nλ/2π' capture width limits. To achieve reasonable 'sweating' in typical wave climates, the force is limited to about 1 MN for a monopole device, or 2 MN for a dipole. The conclusion is that the future of wave energy is in devices that are not simple monopoles or dipoles, but multi-body devices or other shapes equivalent to arrays.
Debriefing to Learn from Extreme Events: The Case of Utøya
ERIC Educational Resources Information Center
Firing, Kristian; Moen, Alexander; Skarsvåg, Kåre Inge
2015-01-01
The objective of this study was to discover potential ways to enhance debriefing so that more can be learned from the experience of extreme events. In order to reach this aim, we explored how personnel in the Explosive Ordnance Disposal team from the Norwegian Armed Forces experienced debriefing after an extreme event. That event was a terror…
NASA Astrophysics Data System (ADS)
Straus, D. M.
2007-12-01
The probability distribution (pdf) of errors is followed in identical twin studies using the COLA T63 AGCM, integrated with observed SST for 15 recent winters. 30 integrations per winter (for 15 winters) are available with initial errors that are extremely small. The evolution of the pdf is tested for multi-modality, and the results interpreted in terms of clusters / regimes found in: (a) the set of 15x30 integrations mentioned, and (b) a larger ensemble of 55x15 integrations made with the same GCM using the same SSTs. The mapping of pdf evolution and clusters is also carried out for each winter separately, using the clusters found in the 55-member ensemble for the same winter alone. This technique yields information on the change in regimes caused by different boundary forcing (Straus and Molteni, 2004; Straus, Corti and Molteni, 2006). Analysis of the growing errors in terms of baroclinic and barotropic components allows for interpretation of the corresponding instabilities.
Reynolds number of transition and self-organized criticality of strong turbulence.
Yakhot, Victor
2014-10-01
A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k>Λf, where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf
Reynolds number of transition and self-organized criticality of strong turbulence
NASA Astrophysics Data System (ADS)
Yakhot, Victor
2014-10-01
A turbulent flow is characterized by velocity fluctuations excited in an extremely broad interval of wave numbers k >Λf , where Λf is a relatively small set of the wave vectors where energy is pumped into fluid by external forces. Iterative averaging over small-scale velocity fluctuations from the interval Λf
Strifling, Kelly M B; Konop, Katherine A; Wang, Mei; Harris, Gerald F
2009-01-01
Walkers are prescribed with the notion that one type of walker will be better for a child than another. One underlying justification for this practice is the theory that one walker may produce less stress on the upper extremities as the patient uses the walker. Nevertheless, upper extremity joint loading is not typically analyzed during walker assisted gait in children with spastic diplegic cerebral palsy. It has been difficult to evaluate the theory of walker prescription based on upper extremity stresses because loading on the upper extremities however has not been quantified until recently. In this study, weight bearing on the glenohumeral joints was analyzed in five children with spastic diplegic cerebral palsy using both anterior and posterior walkers fitted with 6-axis handle transducers. Though walkers' effects on the upper extremities proved to be similar between walker types, the differences between the walkers may have some clinical significance in the long run. In general, posterior walker use created larger glenohumeral joint forces. Though these differences are not statistically significant, over time and with repetitive loading they may be clinically significant.
Ensemble reconstruction of spatio-temporal extreme low-flow events in France since 1871
NASA Astrophysics Data System (ADS)
Caillouet, Laurie; Vidal, Jean-Philippe; Sauquet, Eric; Devers, Alexandre; Graff, Benjamin
2017-06-01
The length of streamflow observations is generally limited to the last 50 years even in data-rich countries like France. It therefore offers too small a sample of extreme low-flow events to properly explore the long-term evolution of their characteristics and associated impacts. To overcome this limit, this work first presents a daily 140-year ensemble reconstructed streamflow dataset for a reference network of near-natural catchments in France. This dataset, called SCOPE Hydro (Spatially COherent Probabilistic Extended Hydrological dataset), is based on (1) a probabilistic precipitation, temperature, and reference evapotranspiration downscaling of the Twentieth Century Reanalysis over France, called SCOPE Climate, and (2) continuous hydrological modelling using SCOPE Climate as forcings over the whole period. This work then introduces tools for defining spatio-temporal extreme low-flow events. Extreme low-flow events are first locally defined through the sequent peak algorithm using a novel combination of a fixed threshold and a daily variable threshold. A dedicated spatial matching procedure is then established to identify spatio-temporal events across France. This procedure is furthermore adapted to the SCOPE Hydro 25-member ensemble to characterize in a probabilistic way unrecorded historical events at the national scale. Extreme low-flow events are described and compared in a spatially and temporally homogeneous way over 140 years on a large set of catchments. Results highlight well-known recent events like 1976 or 1989-1990, but also older and relatively forgotten ones like the 1878 and 1893 events. These results contribute to improving our knowledge of historical events and provide a selection of benchmark events for climate change adaptation purposes. Moreover, this study allows for further detailed analyses of the effect of climate variability and anthropogenic climate change on low-flow hydrology at the scale of France.
NASA Astrophysics Data System (ADS)
Suraj, Md Sanam; Aggarwal, Rajiv; Arora, Monika
2017-09-01
We have studied the restricted four-body problem (R4BP) with the effect of the small perturbation in the Coriolis and centrifugal forces on the libration points and zero velocity curves (ZVCs). Further, we have supposed that all the primaries are set in an equilateral triangle configuration, moving in the circular orbits around their common centre of mass. We have observed that the effect of the small perturbation in centrifugal force has a substantial effect on the location of libration points but a small perturbation in the Coriolis force has no impact on the location of libration points. But the stability of the libration points is highly influenced by the effect of the small perturbation in the Coriolis force. It is observed that as the Coriolis parameter increases, the libration points become stable. Further, it is found that the effect of the small perturbation in the centrifugal force has a substantial influence on the regions of possible motion. Also, when the effect of small perturbation in the centrifugal force increases the forbidden region decreases; here the motion is not possible for the infinitesimal mass. It is observed when the value of the Jacobian constant decreases, the regions of possible motion increase. In addition, we have also discussed how small perturbations in the Coriolis and centrifugal forces influence the Newton-Raphson basins of convergence.
Effect of loudness on reaction time and response force in different motor tasks.
Jaśkowski, Piotr; Włodarczyk, Dariusz
2005-12-01
Van der Molen and Keuss, in 1979 and 1981, showed that paradoxically long reaction times occur with extremely strong auditory stimuli when the task is difficult, e.g., choice-by-location or Simon paradigm. It was argued that this paradoxical behavior of RT is due to active inhibition of an arousal-dependent bypassing mechanism to prevent false responses. As the peak force, i.e., maximal force exerted by participants on a response key, is considered to be related to immediate arousal, we predicted that for extremely loud stimuli and for difficult tasks, lengthening of RT should be associated with reduction of peak force. Moreover, these effects should be enhanced when emphasis is on accuracy rather than speed. Although the relation between RT and intensity depended on task difficulty, no increase in RT was found for the loudest tones. Moreover, peak force increased monotonically with loudness, showing no tendency to be suppressed for loudest tones and difficult tasks.
Lower-extremity ground reaction forces in collegiate baseball pitchers.
Guido, John A; Werner, Sherry L
2012-07-01
The purpose of this study was to investigate ground reaction forces (GRF) in collegiate baseball pitchers and their relationship to pitching mechanics. Fourteen healthy collegiate baseball pitchers participated in this study. High-speed video and force plate data were collected for fastballs from each pitcher. The average ball speed was 35 ± 3 m/sec (78 ± 7 mph). Peak GRFs of 245 ± 20% body weight (BW) were generated in an anterior or braking direction to control descent. Horizontal GRFs tended to occur in a laterally directed fashion, reaching a peak of 45 ± 63% BW. The maximum vertical GRF averaged 202 ± 43% BW approximately 45 milliseconds after stride foot contact. A correlation between braking force and ball velocity was evident. Because of the downward inclination and rotation of the pitching motion, in addition to volume, shear forces may occur in the musculoskeletal tissues of the stride limb leading to many of the lower-extremity injuries seen in this athletic population.
Attribution of extreme precipitation in the lower reaches of the Yangtze River during May 2016
NASA Astrophysics Data System (ADS)
Li, Chunxiang; Tian, Qinhua; Yu, Rong; Zhou, Baiquan; Xia, Jiangjiang; Burke, Claire; Dong, Buwen; Tett, Simon F. B.; Freychet, Nicolas; Lott, Fraser; Ciavarella, Andrew
2018-01-01
May 2016 was the third wettest May on record since 1961 over central eastern China based on station observations, with total monthly rainfall 40% more than the climatological mean for 1961-2013. Accompanying disasters such as waterlogging, landslides and debris flow struck part of the lower reaches of the Yangtze River. Causal influence of anthropogenic forcings on this event is investigated using the newly updated Met Office Hadley Centre system for attribution of extreme weather and climate events. Results indicate that there is a significant increase in May 2016 rainfall in model simulations relative to the climatological period, but this increase is largely attributable to natural variability. El Niño years have been found to be correlated with extreme rainfall in the Yangtze River region in previous studies—the strong El Niño of 2015-2016 may account for the extreme precipitation event in 2016. However, on smaller spatial scales we find that anthropogenic forcing has likely played a role in increasing the risk of extreme rainfall to the north of the Yangtze and decreasing it to the south.
Extremity War Injuries XII: Homeland Defense as a Translation of War Lessons Learned.
Stinner, Maj Daniel J; Schmidt, Andrew H
2018-06-12
The 12th Extremity War Injuries Symposium focused on issues related to the transitions in medical care that are occurring as the focus of the war on terror changes. The symposium highlighted the results of Department of Defense-funded research in musculoskeletal injury, the evolution of combat casualty care, and the readiness of the fighting force. Presentations and discussions focused on force readiness of both troops and their medical support as well as the maintenance of the combat care expertise that has been developed during the previous decade of conflict.
Current state of the art in small mass and force metrology within the International System of Units
NASA Astrophysics Data System (ADS)
Shaw, Gordon A.
2018-07-01
This review article summarizes new scientific trends in research for metrology of small mass (1 mg and lower) and small force (10 micronewtons and lower). After a brief introduction to the field, this paper provides an overview of recent developments in methods that demonstrate traceability to the International System of Units (SI) with emphasis on the implications of redefining the kilogram in terms of Planck’s constant. Specific research applications include new metrology facilities, calibration of small mass and force references such as milligram to submilligram masses or atomic force microscope (AFM) cantilevers, and laser power measurement using radiation pressure forces. Also discussed are recent scientific developments that may impact the field moving forward in the study of ultrasmall forces present in trapped and cooled quantum mechanical systems, resonant micro- and nanomechanical mass sensors, and other areas that are potentially well suited for SI metrology. The work reviewed is not intended as a comprehensive review of all research in which small forces are measured, but rather as an overview of a field in which the accurate measurement of small mass and force with quantified uncertainty is the primary goal.
McKay, Brian J; Bir, Cynthia A
2009-11-01
Anti-vehicular (AV) landmines and improvised explosive devices (IED) have accounted for more than half of the United States military hostile casualties and wounded in Operation Iraqi Freedom (OIF) (Department of Defense Personnel & Procurement Statistics, 2009). The lower extremity is the predominantly injured body region following an AV mine or IED blast accounting for 26 percent of all combat injuries in OIF (Owens et al., 2007). Detonations occurring under the vehicle transmit high amplitude and short duration axial loads onto the foot-ankle-tibia region of the occupant causing injuries to the lower leg. The current effort was initiated to develop lower extremity injury criteria for occupants involved in underbelly blast impacts. Eighteen lower extremity post mortem human specimens (PMHS) were instrumented with an implantable load cell and strain gages and impacted at one of three incrementally severe AV axial loading conditions. Twelve of the 18 PMHS specimens sustained fractures of the calcaneus, talus, fibula and/or tibia. The initiation of skeletal injury was precisely detected by strain gages and corresponded with local peak axial tibia force. Survival analysis identified peak axial tibia force and impactor velocity as the two best predictors of incapacitating injury. A tibia axial force of 5,931 N and impactor velocity of 10.8 m/s corresponds with a 50 percent risk of an incapacitating injury. The criteria may be utilized to predict the probability of lower extremity incapacitating injury in underbelly blast impacts.
Numerical Analysis of Flood modeling of upper Citarum River under Extreme Flood Condition
NASA Astrophysics Data System (ADS)
Siregar, R. I.
2018-02-01
This paper focuses on how to approach the numerical method and computation to analyse flood parameters. Water level and flood discharge are the flood parameters solved by numerical methods approach. Numerical method performed on this paper for unsteady flow conditions have strengths and weaknesses, among others easily applied to the following cases in which the boundary irregular flow. The study area is in upper Citarum Watershed, Bandung, West Java. This paper uses computation approach with Force2 programming and HEC-RAS to solve the flow problem in upper Citarum River, to investigate and forecast extreme flood condition. Numerical analysis based on extreme flood events that have occurred in the upper Citarum watershed. The result of water level parameter modeling and extreme flood discharge compared with measurement data to analyse validation. The inundation area about flood that happened in 2010 is about 75.26 square kilometres. Comparing two-method show that the FEM analysis with Force2 programs has the best approach to validation data with Nash Index is 0.84 and HEC-RAS that is 0.76 for water level. For discharge data Nash Index obtained the result analysis use Force2 is 0.80 and with use HEC-RAS is 0.79.
Have human activities changed the frequencies of absolute extreme temperatures in eastern China?
NASA Astrophysics Data System (ADS)
Wang, Jun; Tett, Simon F. B.; Yan, Zhongwei; Feng, Jinming
2018-01-01
Extreme temperatures affect populous regions, like eastern China, causing substantial socio-economic losses. It is beneficial to explore whether the frequencies of absolute or threshold-based extreme temperatures have been changed by human activities, such as anthropogenic emissions of greenhouse gases (GHGs). In this study, we compared observed and multi-model-simulated changes in the frequencies of summer days, tropical nights, icy days and frosty nights in eastern China for the years 1960-2012 by using an optimal fingerprinting method. The observed long-term trends in the regional mean frequencies of these four indices were +2.36, +1.62, -0.94, -3.02 days decade-1. The models performed better in simulating the observed frequency change in daytime extreme temperatures than nighttime ones. Anthropogenic influences are detectable in the observed frequency changes of these four temperature extreme indices. The influence of natural forcings could not be detected robustly in any indices. Further analysis found that the effects of GHGs changed the frequencies of summer days (tropical nights, icy days, frosty nights) by +3.48 ± 1.45 (+2.99 ± 1.35, -2.52 ± 1.28, -4.11 ± 1.48) days decade-1. Other anthropogenic forcing agents (dominated by anthropogenic aerosols) offset the GHG effect and changed the frequencies of these four indices by -1.53 ± 0.78, -1.49 ± 0.94, +1.84 ± 1.07, +1.45 ± 1.26 days decade-1, respectively. Little influence of natural forcings was found in the observed frequency changes of these four temperature extreme indices.
Extreme precipitation events and related weather patterns over Iraq
NASA Astrophysics Data System (ADS)
raheem Al-nassar, Ali; Sangrà, Pablo; Alarcón, Marta
2016-04-01
This study aims to investigate the extreme precipitation events and the associated weather phenomena in the Middle East and particularly in Iraq. For this purpose we used Baghdad daily precipitation records from the Iraqi Meteorological and Seismology Organization combined with ECMWF (ERA-Interim) reanalysis data for the period from January 2002 to December 2013. Extreme events were found statistically at the 90% percentile of the recorded precipitation, and were highly correlated with hydrological flooding in some cities of Iraq. We identified fifteen extreme precipitation events. The analysis of the corresponding weather patterns (500 hPa and 250 hPa geopotential and velocity field distribution) indicated that 5 events were related with cut off low causing the highest precipitation (180 mm), 3 events related with rex block (158 mm), 3 events related with jet streak occurrence (130 mm) and 4 events related with troughs (107 mm). . Five of these events caused flash floods and in particular one of them related with a rex block was the most dramatic heavy rain event in Iraq in 30 years. We investigated for each case the convective instability and dynamical forcing together with humidity sources. For convective instability we explored the distribution of the K index and SWEAT index. For dynamical forcing we analyzed at several levels Q vector, divergence, potential and relative vorticity advection and omega vertical velocity. Source of humidity was investigated through humidity and convergence of specific humidity distribution. One triggering factor of all the events is the advection and convergence of humidity from the Red Sea and the Persian Gulf. Therefore a necessary condition for extreme precipitation in Iraq is the advection and convergence of humidity from the Red Sea and Persian Gulf. Our preliminary analysis also indicates that extreme precipitation events are primary dynamical forced playing convective instability a secondary role.
Small deformations of extreme five dimensional Myers-Perry black hole initial data
NASA Astrophysics Data System (ADS)
Alaee, Aghil; Kunduri, Hari K.
2015-02-01
We demonstrate the existence of a one-parameter family of initial data for the vacuum Einstein equations in five dimensions representing small deformations of the extreme Myers-Perry black hole. This initial data set has `' symmetry and preserves the angular momenta and horizon geometry of the extreme solution. Our proof is based upon an earlier result of Dain and Gabach-Clement concerning the existence of -invariant initial data sets which preserve the geometry of extreme Kerr (at least for short times). In addition, we construct a general class of transverse, traceless symmetric rank 2 tensors in these geometries.
Friction and wear of TPS fibers: A study of the adhesion and friction of high modulus fibers
NASA Technical Reports Server (NTRS)
Bascom, Willard D.; Lee, Ilzoo
1990-01-01
The adhesional and frictional forces between filaments in a woven fabric or felt, strongly influenced the processability of the fiber and the mechanical durability of the final product. Even though the contact loads between fibers are low, the area of contact is extremely small giving rise to very high stresses; principally shear stresses. One consequence of these strong adhesional and frictional forces is the resistance of fibers to slide past each other during weaving or when processed into nonwoven mats or felts. Furthermore, the interfiber frictional forces may cause surface damage and thereby reduce the fiber strength. Once formed into fabrics, flexural handling and manipulation of the material again causes individual filaments to rub against each other resulting in modulus, brittle fibers such as those used in thermal protection systems (TPS). The adhesion and friction of organic fibers, notably polyethylene terephthalate (PET) fibers, have been extensively studied, but there has been very little work reported on high modulus inorganic fibers. An extensive study was made of the adhesion and friction of flame drawn silica fibers in order to develop experimental techniques and a scientific basis for data interpretation. Subsequently, these methods were applied to fibers of interest in TPS materials.
Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate.
Mordant, Nicolas; Miquel, Benjamin
2017-10-01
We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.
Intermittency and emergence of coherent structures in wave turbulence of a vibrating plate
NASA Astrophysics Data System (ADS)
Mordant, Nicolas; Miquel, Benjamin
2017-10-01
We report numerical investigations of wave turbulence in a vibrating plate. The possibility to implement advanced measurement techniques and long-time numerical simulations makes this system extremely valuable for wave turbulence studies. The purely 2D character of dynamics of the elastic plate makes it much simpler to handle compared to much more complex 3D physical systems that are typical of geo- and astrophysical issues (ocean surface or internal waves, magnetized plasmas or strongly rotating and/or stratified flows). When the forcing is small the observed wave turbulence is consistent with the predictions of the weak turbulent theory. Here we focus on the case of stronger forcing for which coherent structures can be observed. These structures look similar to the folds and D-cones that are commonly observed for strongly deformed static thin elastic sheets (crumpled paper) except that they evolve dynamically in our forced system. We describe their evolution and show that their emergence is associated with statistical intermittency (lack of self similarity) of strongly nonlinear wave turbulence. This behavior is reminiscent of intermittency in Navier-Stokes turbulence. Experimental data show hints of the weak to strong turbulence transition. However, due to technical limitations and dissipation, the strong nonlinear regime remains out of reach of experiments and therefore has been explored numerically.
True Tapping Mode Scanning Near-Field Optical Microscopy with Bent Glass Fiber Probes
Yasinskii, V. M.; Filimonenko, D. S.; Rostova, E.; Dietler, G.; Sekatskii, S. K.
2018-01-01
In scanning near-field optical microscopy, the most popular probes are made of sharpened glass fiber attached to a quartz tuning fork (TF) and exploiting the shear force-based feedback. The use of tapping mode feedback could be preferable. Such an approach can be realized, for example, using bent fiber probes. Detailed analysis of fiber vibration modes shows that realization of truly tapping mode of the probe dithering requires an extreme caution. In case of using the second resonance mode, probes vibrate mostly in shear force mode unless the bending radius is rather small (ca. 0.3 mm) and the probe's tip is short. Otherwise, the shear force character of the dithering persists. Probes having these characteristics were prepared by irradiation of a tapered etched glass fiber with a CW CO2 laser. These probes were attached to the TF in double resonance conditions which enables achieving significant quality factor (4000–6000) of the TF + probe system (Cherkun et al., 2006). We also show that, to achieve a truly tapping character, dithering, short, and not exceeding 3 mm lengths of a freestanding part of bent fiber probe beam should also be used in the case of nonresonant excitation. PMID:29849857
28 CFR 552.22 - Principles governing the use of force and application of restraints.
Code of Federal Regulations, 2013 CFR
2013-07-01
... JUSTICE INSTITUTIONAL MANAGEMENT CUSTODY Use of Force and Application of Restraints on Inmates § 552.22...'s airways. (3) In a manner that causes unnecessary physical pain or extreme discomfort. (4) To...
Building 932, oblique view to northwest, 90 mm lens. Building ...
Building 932, oblique view to northwest, 90 mm lens. Building 933-935 at extreme left. - Travis Air Force Base, Nuclear Weapons Assembly Plant 5, W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
Unsteady swimming of small organisms
NASA Astrophysics Data System (ADS)
Wang, Shiyan; Ardekani, Arezoo
2012-11-01
Small planktonic organisms ubiquitously display unsteady or impulsive motion to attack a prey or escape a predator in natural environments. Despite this, the role of unsteady hydrodynamic forces such as history and added mass forces on the low Reynolds number propulsion of small organisms is poorly understood. In this paper, we derive the fundamental equation of motion for an organism swimming by the means of surface distortion in a nonuniform flow at a low Reynolds number regime. We show that the history and added mass forces, that where traditionally neglected in the literature for small swimming organisms, cannot be neglected as the Stokes number increases above unity. For example, these unsteady inertial forces are of the same order as quasi-steady Stokes forces for Paramecium. Finally, we quantify the effects of convective inertial forces in the limit of small, but nonzero, Reynolds number regime. This work is supported by NSF grant CBET-1066545.
NASA Technical Reports Server (NTRS)
Jackman, Charles H.; Fleming, Eric L.; Vitt, Francis M.
1999-01-01
Two periods of extremely large solar proton events (SPEs) occurred in the past thirty years, which forced significant long-term polar stratospheric changes. The August 2-10, 1972 and October 19-27, 1989 SPEs happened in stratospheres that were quite different chemically. The stratospheric chlorine levels were relatively small in 1972 (approximately 1.2 ppbv) and were fairly substantial in 1989 at about (approximately 3 ppbv). Although these SPEs produced both HO(x) and NO(y) constituents in the mesosphere and stratosphere, only the NO(y) constituents had lifetimes long enough to affect ozone for several months to years past the events. Our recently improved two-dimensional chemistry and transport atmospheric model was used to compute the effects of these gigantic SPEs in a changing stratosphere. Significant upper stratospheric ozone depletions > 10% are computed to last for a few months past these SPEs. The long-lived SPE-produced NO(y) constituents were transported to lower levels during winter after these huge SPEs and caused impacts in the middle and lower stratosphere. During periods of high halogen loading these impacts resulted in interference with the chlorine and bromine loss cycles for ozone destruction. The chemical state of the atmosphere, including the stratospheric sulfate aerosol density, substantially affected the predicted stratospheric influence of these extremely large SPEs.
A coupled stochastic rainfall-evapotranspiration model for hydrological impact analysis
NASA Astrophysics Data System (ADS)
Pham, Minh Tu; Vernieuwe, Hilde; De Baets, Bernard; Verhoest, Niko E. C.
2018-02-01
A hydrological impact analysis concerns the study of the consequences of certain scenarios on one or more variables or fluxes in the hydrological cycle. In such an exercise, discharge is often considered, as floods originating from extremely high discharges often cause damage. Investigating the impact of extreme discharges generally requires long time series of precipitation and evapotranspiration to be used to force a rainfall-runoff model. However, such kinds of data may not be available and one should resort to stochastically generated time series, even though the impact of using such data on the overall discharge, and especially on the extreme discharge events, is not well studied. In this paper, stochastically generated rainfall and corresponding evapotranspiration time series, generated by means of vine copulas, are used to force a simple conceptual hydrological model. The results obtained are comparable to the modelled discharge using observed forcing data. Yet, uncertainties in the modelled discharge increase with an increasing number of stochastically generated time series used. Notwithstanding this finding, it can be concluded that using a coupled stochastic rainfall-evapotranspiration model has great potential for hydrological impact analysis.
Building 909, oblique view to southeast, 135 mm lens. Building ...
Building 909, oblique view to southeast, 135 mm lens. Building 908 at extreme right for context. - Travis Air Force Base, Handling Crew Building, North of W Street, Armed Forces Special Weapons Project Q Area, Fairfield, Solano County, CA
NASA Astrophysics Data System (ADS)
Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan
2018-03-01
The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.
Varying the forcing scale in low Prandtl number dynamos
NASA Astrophysics Data System (ADS)
Brandenburg, A.; Haugen, N. E. L.; Li, Xiang-Yu; Subramanian, K.
2018-06-01
Small-scale dynamos are expected to operate in all astrophysical fluids that are turbulent and electrically conducting, for example the interstellar medium, stellar interiors, and accretion disks, where they may also be affected by or competing with large-scale dynamos. However, the possibility of small-scale dynamos being excited at small and intermediate ratios of viscosity to magnetic diffusivity (the magnetic Prandtl number) has been debated, and the possibility of them depending on the large-scale forcing wavenumber has been raised. Here we show, using four values of the forcing wavenumber, that the small-scale dynamo does not depend on the scale-separation between the size of the simulation domain and the integral scale of the turbulence, i.e., the forcing scale. Moreover, the spectral bottleneck in turbulence, which has been implied as being responsible for raising the excitation conditions of small-scale dynamos, is found to be invariant under changing the forcing wavenumber. However, when forcing at the lowest few wavenumbers, the effective forcing wavenumber that enters in the definition of the magnetic Reynolds number is found to be about twice the minimum wavenumber of the domain. Our work is relevant to future studies of small-scale dynamos, of which several applications are being discussed.
NASA Astrophysics Data System (ADS)
Palmer, M. D.; Cannaby, H.; Howard, T.; Bricheno, L.
2016-02-01
Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980-2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m(0.74 m) under the RCP 4.5(8.5) scenarios respectively. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.
NASA Astrophysics Data System (ADS)
Cannaby, H.; Palmer, M. D.; Howard, T.; Bricheno, L.; Calvert, D.; Krijnen, J.; Wood, R.; Tinker, J.; Bunney, C.; Harle, J.; Saulter, A.; O'Neill, C.; Bellingham, C.; Lowe, J.
2015-12-01
Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea-level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time mean sea level were evaluated using the process-based climate model data and methods presented in the IPCC AR5. Regional surge and wave solutions extending from 1980 to 2100 were generated using ~ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled (~ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980-2010, enabling a quantitative assessment of model skill. Simulated historical sea surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the RCP 4.5 (8.5) scenarios respectively. Trends in surge and significant wave height 2 year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of ~ 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.
Air Circulation and Heat Exchange Under Reduced Pressures
NASA Technical Reports Server (NTRS)
Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.
2010-01-01
Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.
Sharifi, M; Shirazi-Adl, A; Marouane, H
2017-10-03
As one of the most complex and vulnerable structures of body, the human knee joint should maintain dynamic equilibrium and stability in occupational and recreational activities. The evaluation of its stability and factors affecting it is vital in performance evaluation/enhancement, injury prevention and treatment managements. Knee stability often manifests itself by pain, hypermobility and giving-way sensations and is usually assessed by the passive joint laxity tests. Mechanical stability of both the human knee joint and the lower extremity at early stance periods of gait (0% and 5%) were quantified here for the first time using a hybrid musculoskeletal model of the lower extremity. The roles of muscle coactivity, simulated by setting minimum muscle activation at 0-10% levels and ACL deficiency, simulated by reducing ACL resistance by up to 85%, on the stability margin as well as joint biomechanics (contact/muscle/ligament forces) were investigated. Dynamic stability was analyzed using both linear buckling and perturbation approaches at the final deformed configurations in gait. The knee joint was much more stable at 0% stance than at 5% due to smaller ground reaction and contact forces. Muscle coactivity, when at lower intensities (<3% of its maximum active force), increased dynamic stability margin. Greater minimum activation levels, however, acted asan ineffective strategy to enhance stability. Coactivation also substantially increased muscle forces, joint loads and ACL force and hence the risk of further injury and degeneration. A deficiency in ACL decreases total ACL force (by 31% at 85% reduced stiffness) and the stability margin of the knee joint at the heel strike. It also markedly diminishes forces in lateral hamstrings (by up to 39%) and contact forces on the lateral plateau (by up to 17%). Current work emphasizes the need for quantification of the lower extremity stability margin in gait. Copyright © 2017 Elsevier Ltd. All rights reserved.
Ankle-foot orthosis bending axis influences running mechanics.
Russell Esposito, Elizabeth; Ranz, Ellyn C; Schmidtbauer, Kelly A; Neptune, Richard R; Wilken, Jason M
2017-07-01
Passive-dynamic ankle-foot orthoses (AFOs) are commonly prescribed to improve locomotion for people with lower limb musculoskeletal weakness. The clinical prescription and design process are typically qualitative and based on observational assessment and experience. Prior work examining the effect of AFO design characteristics generally excludes higher impact activities such as running, providing clinicians and researchers limited information to guide the development of objective prescription guidelines. The proximal location of the bending axis may directly influence energy storage and return and resulting running mechanics. The purpose of this study was to determine if the location of an AFO's bending axis influences running mechanics. Marker and force data were recorded as 12 participants with lower extremity weakness ran overground while wearing a passive-dynamic AFO with posterior struts manufactured with central (middle) and off-centered (high and low) bending axes. Lower extremity joint angles, moments, powers, and ground reaction forces were calculated and compared between limbs and across bending axis conditions. Bending axis produced relatively small but significant changes. Ankle range of motion increased as the bending axis shifted distally (p<0.003). Peak ankle power absorption was greater in the low axis than high (p=0.013), and peak power generation was greater in the low condition than middle or high conditions (p<0.009). Half of the participants preferred the middle bending axis, four preferred low and two preferred high. Overall, if greater ankle range of motion is tolerated, a low bending axis provides power and propulsive benefits during running, although individual preference and physical ability should also be considered. Published by Elsevier B.V.
A mathematical model of extremely low frequency ocean induced electromagnetic noise
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dautta, Manik, E-mail: manik.dautta@anyeshan.com; Faruque, Rumana Binte, E-mail: rumana.faruque@anyeshan.com; Islam, Rakibul, E-mail: rakibul.islam@anyeshan.com
2016-07-12
Magnetic Anomaly Detection (MAD) system uses the principle that ferromagnetic objects disturb the magnetic lines of force of the earth. These lines of force are able to pass through both water and air in similar manners. A MAD system, usually mounted on an aerial vehicle, is thus often employed to confirm the detection and accomplish localization of large ferromagnetic objects submerged in a sea-water environment. However, the total magnetic signal encountered by a MAD system includes contributions from a myriad of low to Extremely Low Frequency (ELF) sources. The goal of the MAD system is to detect small anomaly signalsmore » in the midst of these low-frequency interfering signals. Both the Range of Detection (R{sub d}) and the Probability of Detection (P{sub d}) are limited by the ratio of anomaly signal strength to the interfering magnetic noise. In this paper, we report a generic mathematical model to estimate the signal-to-noise ratio or SNR. Since time-variant electro-magnetic signals are affected by conduction losses due to sea-water conductivity and the presence of air-water interface, we employ the general formulation of dipole induced electromagnetic field propagation in stratified media [1]. As a first step we employ a volumetric distribution of isolated elementary magnetic dipoles, each having its own dipole strength and orientation, to estimate the magnetic noise observed by a MAD system. Numerical results are presented for a few realizations out of an ensemble of possible realizations of elementary dipole source distributions.« less
Core stability training: applications to sports conditioning programs.
Willardson, Jeffrey M
2007-08-01
In recent years, fitness practitioners have increasingly recommended core stability exercises in sports conditioning programs. Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Traditional resistance exercises have been modified to emphasize core stability. Such modifications have included performing exercises on unstable rather than stable surfaces, performing exercises while standing rather than seated, performing exercises with free weights rather than machines, and performing exercises unilaterally rather than bilaterally. Despite the popularity of core stability training, relatively little scientific research has been conducted to demonstrate the benefits for healthy athletes. Therefore, the purpose of this review was to critically examine core stability training and other issues related to this topic to determine useful applications for sports conditioning programs. Based on the current literature, prescription of core stability exercises should vary based on the phase of training and the health status of the athlete. During preseason and in-season mesocycles, free weight exercises performed while standing on a stable surface are recommended for increases in core strength and power. Free weight exercises performed in this manner are specific to the core stability requirements of sports-related skills due to moderate levels of instability and high levels of force production. Conversely, during postseason and off-season mesocycles, Swiss ball exercises involving isometric muscle actions, small loads, and long tension times are recommended for increases in core endurance. Furthermore, balance board and stability disc exercises, performed in conjunction with plyometric exercises, are recommended to improve proprioceptive and reactive capabilities, which may reduce the likelihood of lower extremity injuries.
Triolo, Ronald J.; Bailey, Stephanie Nogan; Lombardo, Lisa M.; Miller, Michael E.; Foglyano, Kevin; Audu, Musa L.
2014-01-01
Objective To quantify the effects of stabilizing the paralyzed trunk and pelvis with electrical stimulation on manual wheelchair propulsion. Design Single-subject design case series with subjects acting as their own concurrent controls. Setting Hospital-based clinical biomechanics laboratory. Participants Six (4M, 2F age 46±10.8yrs) long-time users (6.1±3.9yrs) of implanted neuroprostheses for lower extremity function with chronic (8.6±2.8yrs) mid-cervical or thoracic level injuries (C6-T10). Interventions Continuous low level stimulation to the hip (gluteus maximus, posterior adductor or hamstrings) and trunk extensor (lumbar erector spinae and/or quadratus lumborum) muscles with implanted intramuscular electrodes. Main Outcome Measure(s) Pushrim kinetics (peak resultant force, fraction effective force), kinematics (cadence, stroke length and maximum forward lean), and peak shoulder moment at preferred speed over 10m level surface; speed, pushrim kinetics and subjective ratings of effort for level 100m sprints and up a 30.5m ramp of approximately 5% grade. Results Three out of five subjects demonstrated reduced peak resultant pushrim forces (p≤0.014) and improved efficiency, (p≤0.048) with stimulation during self-paced level propulsion. Peak sagittal shoulder moment remained unchanged in three subjects and increased in two others (p<0.001). Maximal forward trunk lean also increased by 19-26% (p<0.001) with stimulation in these three subjects. Stroke lengths were unchanged by stimulation in all subjects, and two showed extremely small (5%) but statistically significant increases in cadence (p≤0.021). Performance measures for sprints and inclines were generally unchanged with stimulation, however subjects consistently rated propulsion with stimulation to be easier for both surfaces. Conclusions Stabilizing the pelvis and trunk with low levels of continuous electrical stimulation to the lumbar trunk and hip extensors can positively impact the mechanics of manual wheelchair propulsion and reduce both perceived and physical measures of effort. PMID:23628377
Dynamic Loading Assembly for Testing Actuators of Segmented Mirror Telescope
NASA Astrophysics Data System (ADS)
Deshmukh, Prasanna Gajanan; Parihar, Padmakar; Balasubramaniam, Karthik A.; Mishra, Deepta Sundar; Mahesh, P. K.
Upcoming large telescopes are based on Segmented Mirror Telescope (SMT) technology which uses small hexagonal mirror segments placed side by side to form the large monolithic surface. The segments alignment needs to be maintained against external disturbances like wind, gravity, temperature and structural vibration. This is achieved by using three position actuators per segment working at few-nanometer scale range along with a local closed loop controller. The actuator along with a controller is required to meet very stringent performance requirements, such as track rates up to 300nm/s (90mN/s) with tracking errors less than 5nm, dynamical forces of up to ±40N, ability to reject disturbances introduced by the wind as well as by mechanical vibration generated in the mirror cell, etc. To conduct these performance tests in more realistic manner, we have designed and developed a Dynamic Loading Assembly (DLA) at Indian Institute of Astrophysics (IIA), Bangalore. DLA is a computer controlled force-inducing device, designed in a modular fashion to generate different types of user-defined disturbances in extremely precise and controlled manner. Before realizing the device, using a simple spring-mass-damper-based mathematical model, we ensured that the concept would indeed work. Subsequently, simple concept was converted into a detailed mechanical design and parts were manufactured and assembled. DLA has static and dynamic loading capabilities up to 250N and 18N respectively, with a bandwidth sufficient to generate wind disturbances. In this paper, we present various performance requirements of SMT actuators as well as our effort to develop a dynamic loading device which can be used to test these actuators. Well before using DLA for meaningful testing of the actuator, the DLA itself have gone through various tests and improvements phases. We have successfully demonstrated that DLA can be used to check the extreme performance of two different SMT actuators, which are expected to track the position/force with a few nanometer accuracy.
2004-06-01
directed the SBA to provide several types of assistance to small businesses , including technical and management assistance, loans, and assistance in...Directed the SBA to provide small businesses with technical and management assistance - Authorized the SBA to enter into contracts with Federal...command and center directors of small business , small business specialists, data managers , and Air Force Institute of Technology student researchers
Causing Factors for Extreme Precipitation in the Western Saudi-Arabian Peninsula
NASA Astrophysics Data System (ADS)
Alharbi, M. M.; Leckebusch, G. C.
2015-12-01
In the western coast of Saudi Arabia the climate is in general semi-arid but extreme precipitation events occur on a regular basis: e.g., on 26th November 2009, when 122 people were killed and 350 reported missing in Jeddah following more than 90mm in just four hours. Our investigation will a) analyse major drivers of the generation of extremes and b) investigate major responsible modes of variability for the occurrence of extremes. Firstly, we present a systematic analysis of station based observations of the most relevant extreme events (1985-2013) for 5 stations (Gizan, Makkah, Jeddah, Yenbo and Wejh). Secondly, we investigate the responsible mechanism on the synoptic to large-scale leading to the generation of extremes and will analyse factors for the time variability of extreme event occurrence. Extreme events for each station are identified in the wet season (Nov-Jan): 122 events show intensity above the respective 90th percentile. The most extreme events are systematically investigated with respect to the responsible forcing conditions which we can identify as: The influence of the Soudan Low, active Red-Sea-Trough situations established via interactions with mid-latitude tropospheric wave activity, low pressure systems over the Mediterranean, the influence of the North Africa High, the Arabian Anticyclone and the influence of the Indian monsoon trough. We investigate the role of dynamical forcing factors like the STJ and the upper-troposphere geopotential conditions and the relation to smaller local low-pressure systems. By means of an empirical orthogonal function (EOF) analysis based on MSLP we investigate the possibility to objectively quantify the influence of existing major variability modes and their role for the generation of extreme precipitation events.
Liu, Yang; Zhang, Mingqing; Fang, Xiuqi
2018-03-20
By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.
NASA Astrophysics Data System (ADS)
Liu, Yang; Zhang, Mingqing; Fang, Xiuqi
2018-03-01
By merging reconstructed phenological series from published articles and observations of China Phenology Observation Network (CPON), the first blooming date of Amygdalus davidiana (FBA) in Beijing between 1741 and 2000 is reconstructed. The Butterworth method is used to remove the multi-year variations for generating the phenological series of annual variations in the first blooming date of A. davidiana. The extreme delay years in the phenological series are identified using the percentage threshold method. The characteristics of the extreme delays and the correspondence of these events with natural forcings are analysed. The main results are as follows. In annual phenological series, the extreme delays appeared in single year as main feature, only A.D.1800-1801, 1816-1817 and 1983-1984 were the events of two consecutively extreme years. Approximately 85% of the extreme delays occurred during 1-2 years after the large volcanic eruptions (VEI ≥ 4) in the eastern rim or the western rim of the Pacific Ocean, as the same proportion of the extreme delays followed El Niño events. About 73% years of the extreme delays fall in the valleys of sunspot cycles or the Dalton minimum period in the year or the previous year. According to the certainty factor (CF), the large eruptions have the greatest influence to the extreme delays; sunspot activity is the second, and ENSO is the last one. The extreme phenological delayed year is most likely to occur after a large eruption, which particularly occurs during El Niño year and its previous several years were in the descending portion or valley of sunspot phase.
Markolf, Keith L; Jackson, Steven; McAllister, David R
2012-09-01
Syndesmosis (high ankle) sprains produce disruption of the distal tibiofibular ligaments. Forces on the distal fibula that produce these injuries are unknown. Twenty-seven fresh-frozen lower extremities were used for this study. A load cell recorded forces acting on the distal fibula from forced ankle dorsiflexion and applied external foot torque; medial-lateral and anterior-posterior displacements of the distal fibula were recorded. Fibular forces and axial displacements were also recorded with applied axial force. During forced ankle dorsiflexion and external foot torque tests, the distal fibula always displaced posteriorly with respect to the tibia with no measurable medial-lateral displacement. With 10 Nm dorsiflexion moment, cutting the tibiofibular ligaments approximately doubled fibular force and displacement values. Cutting the tibiofibular ligaments significantly increased fibular displacement from applied external foot torque. Fibular forces and axial displacements from applied axial weight-bearing force were highest with the foot dorsiflexed. The highest mean fibular force in the study (271.9 N) occurred with 10 Nm external foot torque applied to a dorsiflexed foot under 1000 N axial force. Two important modes of loading that could produce high ankle sprains were identified: forced ankle dorsiflexion and external foot torque applied to a dorsiflexed ankle loaded with axial force. The distal tibiofibular ligaments restrained fibular displacement during these tests. Residual mortise widening observed at surgery may be the result of tibiofibular ligament injuries caused by posterior displacement of the fibula. Therefore, a syndesmosis screw used to fix the fibula would be subjected to posterior bending forces from these loading modes. Ankle bracing to prevent extreme ankle dorsiflexion during rehabilitation may be advisable to prevent excessive fibular motions that could affect syndesmosis healing.
The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed
Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling
2013-01-01
A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898
Lower Extremity Stiffness Changes after Concussion in Collegiate Football Players.
Dubose, Dominique F; Herman, Daniel C; Jones, Deborah L; Tillman, Susan M; Clugston, James R; Pass, Anthony; Hernandez, Jorge A; Vasilopoulos, Terrie; Horodyski, Marybeth; Chmielewski, Terese L
2017-01-01
Recent research indicates that a concussion increases the risk of musculoskeletal injury. Neuromuscular changes after concussion might contribute to the increased risk of injury. Many studies have examined gait postconcussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Division I football players (13 CONC and 26 UNINJ) were tested pre- and postseason. A motion capture system recorded subjects jumping on one limb from a 25.4-cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus the joint angle plots. Leg stiffness was (peak vertical ground reaction force [PVGRF]/lower extremity vertical displacement) from initial contact to peak vertical ground reaction force. All stiffness values were normalized to body weight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and postseason stiffness values. Average time from concussion to postseason testing was 49.9 d. The CONC group showed an increase in hip stiffness (P = 0.03), a decrease in knee (P = 0.03) and leg stiffness (P = 0.03), but no change in ankle stiffness (P = 0.65) from pre- to postseason. Lower extremity stiffness is altered after concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion.
NASA Astrophysics Data System (ADS)
Ahn, Joong-Bae; Im, Eun-Soon; Jo, Sera
2017-04-01
This study assesses the regional climate projection newly projected within the framework of the national downscaling project in South Korea. The fine-scale climate information (12.5 km) is produced by dynamical downscaling of the HadGEM2-AO global projections forced by the representative concentration pathway (RCP4.5 and 8.5) scenarios using the Weather Research and Forecasting (WRF) modeling system. Changes in temperature and precipitation in terms of long-term trends, daily characteristics and extremes are presented by comparing two 30 yr periods (2041-2070 vs. 2071-2100). The temperature increase presents a relevant trend, but the degree of warming varies in different periods and emission scenarios. While the temperature distribution from the RCP8.5 projection is continuously shifted toward warmer conditions by the end of the 21st century, the RCP4.5 projection appears to stabilize warming in accordance with emission forcing. This shift in distribution directly affects the magnitude of extremes, which enhances extreme hot days but reduces extreme cold days. Precipitation changes, however, do not respond monotonically to emission forcing, as they exhibit less sensitivity to different emission scenarios. An enhancement of high intensity precipitation and a reduction of weak intensity precipitation are discernible, implying an intensified hydrologic cycle. Changes in return levels of annual maximum precipitation suggest an increased probability of extreme precipitation with 20 yr and 50 yr return periods. Acknowledgement : This work was funded by the Korea Meteorological Administration Research and Development Program under grant KMIPA 2015-2081
Phase Transformations and Microstructural Evolution: Part I
Clarke, Amy Jean
2015-08-29
The activities of the Phase Transformations Committee of the Materials Processing & Manufacturing Division (MPMD) of The Minerals, Metals & Materials Society (TMS) are oriented toward understanding the fundamental aspects of phase transformations. Emphasis is placed on the thermodynamic driving forces for phase transformations, the kinetics of nucleation and growth, interfacial structures and energies, transformation crystallography, surface reliefs, and, above all, the atomic mechanisms of phase transformations. Phase transformations and microstructural evolution are directly linked to materials processing, properties, and performance, including in extreme environments, of structural metal alloys. In this paper, aspects of phase transformations and microstructural evolution aremore » highlighted from the atomic to the microscopic scale for ferrous and non-ferrous alloys. Many papers from this issue are highlighted with small summaries of their scientific achievements given.« less
5. Credit BG. This interior view shows the weigh room, ...
5. Credit BG. This interior view shows the weigh room, looking west (240°): Electric lighting and scale read-outs (boxes with circular windows on the wall) are fitted with explosion-proof enclosures; these enclosures prevent malfunctioning electrical parts from sparking and starting fires or explosions. One marble table and scale have been removed at the extreme left of the view. Two remaining scales handle small and large quantities of propellants and additives. Marble tables do not absorb chemicals or conduct electricity; their mass also prevents vibration from upsetting the scales. The floor has an electrically conductive coating to dissipate static electric charges, thus preventing sparks which might ignite propellants. - Jet Propulsion Laboratory Edwards Facility, Weigh & Control Building, Edwards Air Force Base, Boron, Kern County, CA
Dr. Peter Cavanaugh Explains the Need and Operation of the FOOT Experiment
NASA Technical Reports Server (NTRS)
2003-01-01
This video clip is an interview with Dr. Peter Cavanaugh, principal investigator for the FOOT experiment. He explains the reasoning behind the experiment and shows some video clips of the FOOT experiment being calibrated and conducted in orbit. The heart of the FOOT experiment is an instrumented suit called the Lower Extremity Monitoring Suit (LEMS). This customized garment is a pair of Lycra cycling tights incorporating 20 carefully placed sensors and the associated wiring control units, and amplifiers. LEMS enables the electrical activity of the muscles, the angular motions of the hip, knee, and ankle joints, and the force under both feet to be measured continuously. Measurements are also made on the arm muscles. Information from the sensors can be recorded up to 14 hours on a small, wearable computer.
WRF-Cordex simulations for Europe: mean and extreme precipitation for present and future climates
NASA Astrophysics Data System (ADS)
Cardoso, Rita M.; Soares, Pedro M. M.; Miranda, Pedro M. A.
2013-04-01
The Weather Research and Forecast (WRF-ARW) model, version 3.3.1, was used to perform the European domain Cordex simulations, at 50km resolution. A first simulation, forced by ERA-Interim (1989-2009), was carried out to evaluate the models performance to represent the mean and extreme precipitation in present European climate. This evaluation is based in the comparison of WRF results against the ECAD regular gridded dataset of daily precipitation. Results are comparable to recent studies with other models for the European region, at this resolution. For the same domain a control and a future scenario (RCP8.5) simulation was performed to assess the climate change impact on the mean and extreme precipitation. These regional simulations were forced by EC-EARTH model results, and, encompass the periods from 1960-2006 and 2006-2100, respectively.
DNA under Force: Mechanics, Electrostatics, and Hydration.
Li, Jingqiang; Wijeratne, Sithara S; Qiu, Xiangyun; Kiang, Ching-Hwa
2015-02-25
Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.
Extreme Temperature Performance of Automotive-Grade Small Signal Bipolar Junction Transistors
NASA Technical Reports Server (NTRS)
Boomer, Kristen; Damron, Benny; Gray, Josh; Hammoud, Ahmad
2018-01-01
Electronics designed for space exploration missions must display efficient and reliable operation under extreme temperature conditions. For example, lunar outposts, Mars rovers and landers, James Webb Space Telescope, Europa orbiter, and deep space probes represent examples of missions where extreme temperatures and thermal cycling are encountered. Switching transistors, small signal as well as power level devices, are widely used in electronic controllers, data instrumentation, and power management and distribution systems. Little is known, however, about their performance in extreme temperature environments beyond their specified operating range; in particular under cryogenic conditions. This report summarizes preliminary results obtained on the evaluation of commercial-off-the-shelf (COTS) automotive-grade NPN small signal transistors over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these transistors and to determine suitability for use outside their recommended temperature limits.
Anti-Israel Sentiment Predicts Anti-Semitism in Europe
ERIC Educational Resources Information Center
Kaplan, Edward H.; Small, Charles A.
2006-01-01
In the discourse surrounding the Israeli-Palestinian conflict, extreme criticisms of Israel (e.g., Israel is an apartheid state, the Israel Defense Forces deliberately target Palestinian civilians), coupled with extreme policy proposals (e.g., boycott of Israeli academics and institutions, divest from companies doing business with Israel), have…
Forced oscillometry track sites of airway obstruction in bronchial asthma.
Hafez, Manal Refaat; Abu-Bakr, Samiha Mohamed; Mohamed, Alyaa Abdelnaser
2015-07-01
Spirometry is the most commonly used method for assessment of airway function in bronchial asthma but has several limitations. Forced oscillometry was developed as a patient-friendly test that requires passive cooperation of the patient breathing normally through the mouth. To compare spirometry with forced oscillometry to assess the role of forced oscillometry in the detection of the site of airway obstruction. This case-and-control study included 50 patients with known stable asthma and 50 age- and sex-matched healthy subjects. All participants underwent spirometry (ratio of force expiration volume in 1 second to forced vital capacity, percentage predicted for forced expiration volume in 1 second, percentage predicted for forced vital capacity, percentage predicted for vital capacity, and forced expiratory flow at 25-75%) and forced oscillometry (resistance at 5, 20, and 5-20 Hz). By spirometry, all patients with asthma had airway obstruction, 8% had isolated small airway obstruction, 10% had isolated large airway obstruction, and 82% had large and small airway obstruction. By forced oscillometry, 12% had normal airway resistance, 50% had isolated small airway obstruction with frequency-dependent resistance, and 38% had large and small airway obstruction with frequency-independent resistance. There was significant difference between techniques for the detection of the site of airway obstruction (P = .012). Forced oscillometry indices were negatively correlated with spirometric indices (P < .01). Forced oscillometry as an effortless test, conducted during quiet tidal breathing, and does not alter airway caliber; thus, it can detect normal airway function better than spirometry in patients with asthma. Forced oscillometry detects isolated small airway obstruction better than spirometry in bronchial asthma. Copyright © 2015 American College of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Chen, C. T.; Lo, S. H.; Wang, C. C.
2014-12-01
More than 2000 mm rainfall occurred over southern Taiwan when a category 1 Typhoon Morakot pass through Taiwan in early August 2009. Entire village and hundred of people were buried by massive mudslides induced by record-breaking precipitation. Whether the past anthropogenic warming played a significant role in such extreme event remained very controversial. On one hand, people argue it's nearly impossible to attribute an individual extreme event to global warming. On the other hand, the increase of heavy rainfall is consistent with the expected effects of climate change on tropical cyclone. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall associated with Typhoon Morakot, we adapt an existing event attribution framework of modeling a 'world that was' and comparing it to a modeled 'world that might have been' for that same time but for the absence of historical anthropogenic drivers of climate. One limitation for applying such approach to high-impact weather system is that it will require models capable of capturing the essential processes lead to the studied extremes. Using a cloud system resolving model that can properly simulate the complicated interactions between tropical cyclone, large-scale background, topography, we first perform the ensemble 'world that was' simulations using high resolution ECMWF YOTC analysis. We then re-simulate, having adjusted the analysis to 'world that might have been conditions' by removing the regional atmospheric and oceanic forcing due to human influences estimated from the CMIP5 model ensemble mean conditions between all forcing and natural forcing only historical runs. Thus our findings are highly conditional on the driving analysis and adjustments therein, but the setup allows us to elucidate possible contribution of anthropogenic forcing to changes in the likelihood of heavy rainfall associated Typhoon Morakot in early August 2009.
NASA Astrophysics Data System (ADS)
Chen, C. T.; Lo, S. H.; Wang, C. C.; Tsuboki, K.
2017-12-01
More than 2000 mm rainfall occurred over southern Taiwan when a category 1 Typhoon Morakot pass through Taiwan in early August 2009. Entire village and hundred of people were buried by massive mudslides induced by record-breaking precipitation. Whether the past anthropogenic warming played a significant role in such extreme event remained very controversial. On one hand, people argue it's nearly impossible to attribute an individual extreme event to global warming. On the other hand, the increase of heavy rainfall is consistent with the expected effects of climate change on tropical cyclone. To diagnose possible anthropogenic contributions to the odds of such heavy rainfall associated with Typhoon Morakot, we adapt an existing probabilistic event attribution framework to simulate a `world that was' and compare it with an alternative condition, 'world that might have been' that removed the historical anthropogenic drivers of climate. One limitation for applying such approach to high-impact weather system is that it will require models capable of capturing the essential processes lead to the studied extremes. Using a cloud system resolving model that can properly simulate the complicated interactions between tropical cyclone, large-scale background, topography, we first perform the ensemble `world that was' simulations using high resolution ECMWF YOTC analysis. We then re-simulate, having adjusted the analysis to `world that might have been conditions' by removing the regional atmospheric and oceanic forcing due to human influences estimated from the CMIP5 model ensemble mean conditions between all forcing and natural forcing only historical runs. Thus our findings are highly conditional on the driving analysis and adjustments therein, but the setup allows us to elucidate possible contribution of anthropogenic forcing to changes in the likelihood of heavy rainfall associated Typhoon Morakot in early August 2009.
Study of correlations from Ab-Initio Simulations of Liquid Water
NASA Astrophysics Data System (ADS)
Soto, Adrian; Fernandez-Serra, Marivi; Lu, Deyu; Yoo, Shinjae
An accurate understanding of the dynamics and the structure of H2O molecules in the liquid phase is of extreme importance both from a fundamental and from a practical standpoint. Despite the successes of Molecular Dynamics (MD) with Density Functional Theory (DFT), liquid water remains an extremely difficult material to simulate accurately and efficiently because of fine balance between the covalent O-H bond, the hydrogen bond and the attractive the van der Waals forces. Small errors in those produce dramatic changes in the macroscopic properties of the liquid or in its structural properties. Different density functionals produce answers that differ by as much as 35% in ambient conditions, with none producing quantitative results in agreement with experiment at different mass densities. In order to understand these differences we perform an exhaustive scanning of the geometrical coordinates of MD simulations and study their statistical correlations with the simulation output quantities using advanced correlation analyses and machine learning techniques. This work was partially supported by DOE Award No. DE-FG02-09ER16052, by DOE Early Career Award No. DE-SC0003871, by BNL LDRD 16-039 project and BNL Contract No. DE-SC0012704.
Study of correlations from Ab-Initio Simulations of Liquid Water
NASA Astrophysics Data System (ADS)
Soto, Adrian; Fernandez-Serra, Marivi; Lu, Deyu; Yoo, Shinjae
An accurate understanding of the dynamics and the structure of H2O molecules in the liquid phase is of extreme importance both from a fundamental and from a practical standpoint. Despite the successes of Molecular Dynamics (MD) with Density Functional Theory (DFT), liquid water remains an extremely difficult material to simulate accurately and efficiently because of fine balance between the covalent O-H bond, the hydrogen bond and the attractive the van der Waals forces. Small errors in those produce dramatic changes in the macroscopic properties of the liquid or in its structural properties. Different density functionals produce answers that differ by as much as 35% in ambient conditions, with none producing quantitative results in agreement with experiment at different mass densities [J. Chem Phys. 139, 194502(2013)]. In order to understand these differences we perform an exhaustive scanning of the geometrical coordinates of MD simulations and study their statistical correlations with the simulation output quantities using advanced correlation analyses and machine learning techniques. This work was partially supported by DOE Award No. DE-FG02-09ER16052, by DOE Early Career Award No. DE-SC0003871, by BNL LDRD 16-039 project and BNL Contract No. DE-SC0012704.
Injury patterns in clashes between citizens and security forces during forced evacuation.
Schwartz, D; Bar-Dayan, Y
2008-10-01
Clashes between state security forces and civilian populations can lead to mass casualty incidents (MCI), challenging emergency medical service (EMS) systems, hospitals and medical management systems. In January 2006, clashes erupted between Israeli security forces and settlers, around the forced evacuation of the Amona outpost. Data collected during the events and in subsequent formal debriefings were processed to identify the specifics of an MCI caused by forced evacuation. Pre-event preparedness, time and types of injuries encountered were evaluated among evacuated civilians and security forces members, their transport to hospitals, care received and follow-up. The event is described according to DISAST-CIR methodology. Data were entered on MS Excel (2003) and analysis was carried out using SPSS version 12. 4000 police personnel (backed by army forces) clashed for 12 h with approximately 5000 settlers. 229 injured (174 settlers and 55 security personnel) were cared for at six receiving hospitals. A total of 16 were evacuated by aeromedical evacuation, including one severely head-injured policeman. Settlers used sticks, stones and cement blocks, whereas police used mounted riders, batons and shields. Head injuries were the most common injuries among settlers (50%), whereas extremity injuries dominated among security forces members (72.7%). Large-scale clashes between state security forces and citizens may cause numerous injuries, even if firearms and explosives are not used. Despite the fact that almost all injuries were mild, the incident burdened local medical teams, EMS and Jerusalem hospitals. A predominance of head injuries was found among injured settlers and extremity injuries among injured security forces.
Possible forcing of global temperature by the oceanic tides
Keeling, Charles D.; Whorf, Timothy P.
1997-01-01
An approximately decadal periodicity in surface air temperature is discernable in global observations from A.D. 1855 to 1900 and since A.D. 1945, but with a periodicity of only about 6 years during the intervening period. Changes in solar irradiance related to the sunspot cycle have been proposed to account for the former, but cannot account for the latter. To explain both by a single mechanism, we propose that extreme oceanic tides may produce changes in sea surface temperature at repeat periods, which alternate between approximately one-third and one-half of the lunar nodal cycle of 18.6 years. These alternations, recurring at nearly 90-year intervals, reflect varying slight degrees of misalignment and departures from the closest approach of the Earth with the Moon and Sun at times of extreme tide raising forces. Strong forcing, consistent with observed temperature periodicities, occurred at 9-year intervals close to perihelion (solar perigee) for several decades centered on A.D. 1881 and 1974, but at 6-year intervals for several decades centered on A.D. 1923. As a physical explanation for tidal forcing of temperature we propose that the dissipation of extreme tides increases vertical mixing of sea water, thereby causing episodic cooling near the sea surface. If this mechanism correctly explains near-decadal temperature periodicities, it may also apply to variability in temperature and climate on other times-scales, even millennial and longer. PMID:11607740
Closing the Gap: An Analysis of Options for Improving the USAF Fighter Fleet from 2105 to 2035
2015-10-01
capacity. The CBO predicts an increase in capacity for both large, or 2000 lbs class weapons, and small , either 500 lbs class or Small Diameter Bomb ...Laser Guided Bomb (LGB) designed to penetrate extremely hardened bunkers with extreme accuracy.54 Larger weapons can provide better standoff range...operate with impunity in low intensity CAS scenarios. While survivability, with the exception of against small arms ground fire, is far less a
Motility of catalytic nanoparticles through self-generated forces.
Paxton, Walter F; Sen, Ayusman; Mallouk, Thomas E
2005-11-04
Small-scale synthetic motors capable of generating their own motive forces by exploiting the chemical free energy of their environment represent an important step in developing practical nanomachines. Catalytic particles are capable of generating concentration and other gradients that can be used to self-propel small objects. However, the autonomous movement of catalytic nanoparticles by self-generated forces is a relatively unexplored area in colloid and interfacial chemistry. This paper explores the potential of catalytically self-generated forces for propulsion of small objects through fluids.
Structural Characteristics of the Alpha-Synuclein Oligomers Stabilized By the Flavonoid Baicalein
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, D.-P.; Fink, A.L.; Uversky, V.N.
The flavonoid baicalein inhibits fibrillation of alpha-synuclein, which is a major component of Lewy bodies in Parkinson's disease. It has been known that baicalein induces the formation of alpha-synuclein oligomers and consequently prevents their fibrillation. In order to evaluate the structural properties of baicalein-stabilized oligomers, we purified oligomer species by HPLC and examined their stability and structure by CD, Fourier transform infrared spectroscopy, size exclusion chromatography HPLC, small-angle X-ray scattering, and atomic force microscopy. Baicalein-stabilized oligomers are beta-sheet-enriched according to CD and Fourier transform infrared spectroscopy analyses. They did not form fibrils even after very prolonged incubation. From small-angle X-raymore » scattering data and atomic force microscopy images, the oligomers were characterized as quite compact globular species. Oligomers were extremely stable, with a GdmCl C(m)=3.3 M. This high stability explains the previously observed inhibition properties of baicalein against alpha-synuclein fibrillation. These baicalein-stabilized oligomers, added to the solution of aggregating alpha-synuclein, were able to noticeably inhibit its fibrillation. After prolonged coincubation, short fibrils were formed, suggesting an effective interaction of oligomers with monomeric alpha-synuclein. Membrane permeability tests suggested that the baicalein-stabilized oligomers had a mild effect on the integrity of the membrane surface. This effect was rather similar to that of the monomeric protein, suggesting that targeted stabilization of certain alpha-synuclein oligomers might offer a potential strategy for the development of novel Parkinson's disease therapies.« less
A Force-Velocity Relationship and Coordination Patterns in Overarm Throwing
van den Tillaar, Roland; Ettema, Gertjan
2004-01-01
A force-velocity relationship in overarm throwing was determined using ball weights varying from 0.2 to 0.8 kg. Seven experienced handball players were filmed at 240 frames per second. Velocity of joints of the upper extremity and ball together with the force on the ball were derived from the data. A statistically significant negative relationship between force and maximal ball velocity, as well as between ball weight and maximal ball velocity was observed. Also, with increase of ball weight the total throwing movement time increased. No significant change in relative timing of the different joints was demonstrated, suggesting that the subjects did not change their “global ”coordination pattern (kinematics) within the tested range of ball weights. A simple model revealed that 67% of ball velocity at ball release was explained by the summation of effects from the velocity of elbow extension and internal rotation of the shoulder. With regard to the upper extremity the internal rotation of the shoulder and elbow extension are two important contributors to the total ball velocity at release. Key Points An inverse relationship between load and velocity and a linear force-velocity exists in overarm throwing with ball weights varying from 0.2 to 0.8 kg. Qualitatively, no changes in coordination pattern (relative timing) occur with increasing ball weight within the tested range of ball weights. The absolute throwing movement time increased with ball weight. Quantitatively, with regard to the upper extremity, the internal rotation of the shoulder and elbow extension are two important contributors to the total ball velocity at release. PMID:24624005
NASA Astrophysics Data System (ADS)
Hasbullah Mohd Isa, Wan; Taha, Zahari; Mohd Khairuddin, Ismail; Majeed, Anwar P. P. Abdul; Fikri Muhammad, Khairul; Abdo Hashem, Mohammed; Mahmud, Jamaluddin; Mohamed, Zulkifli
2016-02-01
This paper presents the modelling and control of a two degree of freedom upper extremity exoskeleton by means of an intelligent active force control (AFC) mechanism. The Newton-Euler formulation was used in deriving the dynamic modelling of both the anthropometry based human upper extremity as well as the exoskeleton that consists of the upper arm and the forearm. A proportional-derivative (PD) architecture is employed in this study to investigate its efficacy performing joint-space control objectives. An intelligent AFC algorithm is also incorporated into the PD to investigate the effectiveness of this hybrid system in compensating disturbances. The Mamdani Fuzzy based rule is employed to approximate the estimated inertial properties of the system to ensure the AFC loop responds efficiently. It is found that the IAFC-PD performed well against the disturbances introduced into the system as compared to the conventional PD control architecture in performing the desired trajectory tracking.
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.
This article investigates projected changes in temperature and water cycle extremes at 1.5°C global warming, and highlights the role of land processes and land-use changes (LUC) for these projections. We provide new comparisons of changes in climate at 1.5°C vs 2°C based on empirical sampling analyses of transient simulations vs simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield overall similar results regarding changes in climate extremes on land, and reveal a substantial difference in regional extremes occurrence at 1.5°C vs 2°C. Land processes mediated through soil moisture feedbacks andmore » land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from Integrated Assessment Models (IAMs), which include major LUC in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUC are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; ...
2018-04-02
Here, this article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated throughmore » soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.
Here, this article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated throughmore » soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.« less
USDA-ARS?s Scientific Manuscript database
The variability of temperature extremes has been the focus of attention during the past few decades, and may exert a great influence on the global hydrologic cycle and energy balance through thermal forcing. Based on daily minimum and maximum temperature observed by the China Meteorological Administ...
Large Angle Unsteady Aerodynamic Theory of a Flat Plate
NASA Astrophysics Data System (ADS)
Manar, Field; Jones, Anya
2016-11-01
A purely analytical approach is taken for the evaluation of the unsteady loads on a flat plate. This allows for an extremely low cost theoretical prediction of the plate loads in the style of Wagner and Theodorsen, without making the assumption of small angle of attack or small disturbance flow. The forces and moments are evaluated using the time rate of change of fluid momentum, expressed as an integral of the vorticity field. The flow is taken as inviscid and incompressible with isolated vorticity bound to the plate and in the shed wake. The bound vorticity distribution on the plate is solved exactly using conformal mapping of the plate to a cylinder. In keeping with the original assumption of Wagner, the wake vorticity is assumed to remain stationary in an inertial reference frame and convection is disregarded. Formulation in this manner allows for a closed form solution of Wagner's problem valid at all angles of attack. Separation from the leading edge of the plate can also be included to further increase the fidelity of the model at high angles.
Holographic Solar Photon Thrusters
NASA Technical Reports Server (NTRS)
Johnson, Les; Matloff, Greg
2006-01-01
A document discusses a proposal to incorporate holographic optical elements into solar photon thrusters (SPTs). First suggested in 1990, SPTs would be systems of multiple reflective, emissive, and absorptive surfaces (solar sails) that would be attached to spacecraft orbiting the Earth to derive small propulsive forces from radiation pressures. An SPT according to the proposal would include, among other things, a main sail. One side of the sail would be highly emissive and would normally face away from the Earth. The other side would be reflective and would be covered by white-light holographic images that would alternately become reflective, transmissive, and absorptive with small changes in the viewing angle. When the spacecraft was at a favorable orbital position, the main sail would be oriented to reflect sunlight in a direction to maximize the solar thrust; when not in a favorable position, the main sail would be oriented to present a substantially absorptive/emissive aspect to minimize the solar drag. By turning the main sail slightly to alternate between the reflective and absorptive/ emissive extremes, one could achieve nearly a doubling or halving of the radiational momentum transfer and, hence, of the solar thrust.
1996-10-01
systems currently headed for deployment ( BIDS is highlighted in the chart) to widely dispersed microsensors on micro, autonomous platforms. Small room... Small , Rapidly Deployable Forces" Joe Polito, Dan Rondeau, Sandia National Laboratory V.2. "Robotic Concepts for Small Rapidly Deployable Forces" V-7...Robert Palmquist, Jill Fahrenholtz, Richard Wheeler, Sandia National Laboratory V.3. "Potential for Distributed Ground Sensors in Support of Small Unit V
Investigation of the relationship between hurricane waves and extreme runup
NASA Astrophysics Data System (ADS)
Thompson, D. M.; Stockdon, H. F.
2006-12-01
In addition to storm surge, the elevation of wave-induced runup plays a significant role in forcing geomorphic change during extreme storms. Empirical formulations for extreme runup, defined as the 2% exceedence level, are dependent on some measure of significant offshore wave height. Accurate prediction of extreme runup, particularly during hurricanes when wave heights are large, depends on selecting the most appropriate measure of wave height that provides energy to the nearshore system. Using measurements from deep-water wave buoys results in an overprediction of runup elevation. Under storm forcing these large waves dissipate across the shelf through friction, whitecapping and depth-limited breaking before reaching the beach and forcing swash processes. The use of a local, shallow water wave height has been shown to provide a more accurate estimate of extreme runup elevation (Stockdon, et. al. 2006); however, a specific definition of this local wave height has yet to be defined. Using observations of nearshore waves from the U.S. Army Corps of Engineers' Field Research Facility (FRF) in Duck, NC during Hurricane Isabel, the most relevant measure of wave height for use in empirical runup parameterizations was examined. Spatial and temporal variability of the hurricane wave field, which made landfall on September 18, 2003, were modeled using SWAN. Comparisons with wave data from FRF gages and deep-water buoys operated by NOAA's National Data Buoy Center were used for model calibration. Various measures of local wave height (breaking, dissipation-based, etc.) were extracted from the model domain and used as input to the runup parameterizations. Video based observations of runup collected at the FRF during the storm were used to ground truth modeled values. Assessment of the most appropriate measure of wave height can be extended over a large area through comparisons to observations of storm- induced geomorphic change.
Extreme temperature events on Greenland in observations and the MAR regional climate model
NASA Astrophysics Data System (ADS)
Leeson, Amber A.; Eastoe, Emma; Fettweis, Xavier
2018-03-01
Meltwater from the Greenland Ice Sheet contributed 1.7-6.12 mm to global sea level between 1993 and 2010 and is expected to contribute 20-110 mm to future sea level rise by 2100. These estimates were produced by regional climate models (RCMs) which are known to be robust at the ice sheet scale but occasionally miss regional- and local-scale climate variability (e.g. Leeson et al., 2017; Medley et al., 2013). To date, the fidelity of these models in the context of short-period variability in time (i.e. intra-seasonal) has not been fully assessed, for example their ability to simulate extreme temperature events. We use an event identification algorithm commonly used in extreme value analysis, together with observations from the Greenland Climate Network (GC-Net), to assess the ability of the MAR (Modèle Atmosphérique Régional) RCM to reproduce observed extreme positive-temperature events at 14 sites around Greenland. We find that MAR is able to accurately simulate the frequency and duration of these events but underestimates their magnitude by more than half a degree Celsius/kelvin, although this bias is much smaller than that exhibited by coarse-scale Era-Interim reanalysis data. As a result, melt energy in MAR output is underestimated by between 16 and 41 % depending on global forcing applied. Further work is needed to precisely determine the drivers of extreme temperature events, and why the model underperforms in this area, but our findings suggest that biases are passed into MAR from boundary forcing data. This is important because these forcings are common between RCMs and their range of predictions of past and future ice sheet melting. We propose that examining extreme events should become a routine part of global and regional climate model evaluation and that addressing shortcomings in this area should be a priority for model development.
Standing Joint Forces: Spearhead for Global Operational Maneuver
2005-05-26
Threat,” In The War Next Time: Countering Rogue States and Terrorists 1 20 NOVEMBER 2014 Operation Roundhouse was a resounding success. While...America’s " kick -down the door" force, capable of extremely rapid deployment from CONUS to anywhere in the world to ensure aerospace access for joint
NASA Astrophysics Data System (ADS)
Seager, R.; Naik, N.; Ting, M.; Kushnir, Y.; Kelley, C. P.
2011-12-01
Climate models robustly predict that the deep tropics and mid-latitude-to-subpolar regions will moisten, and the subtropical dry zones both dry and expand, as a consequence of global warming driven by rising greenhouse gases. The models also predict that this transition to a more extreme climatological mean global hydroclimate should already be underway. Given the importance of these predictions it is an imperative that the climate science community assess whether there is evidence within the observational record that they are correct. This task is made difficult by the tremendous natural variability of the hydrological cycle on seasonal to multidecadal timescales. Here we will use instrumental observations, reanalyses, sea surface temperature forced atmosphere models and coupled model simulations, and a variety of methodologies, to attempt to separate global radiatively-forced hydroclimate change from ongoing natural variability. The results will be applied to explain trends and recent events in key regions such as Mexico, the United States and the Mediterranean. It is concluded that the signal of anthropogenic change is small compared to the amplitude of natural variability but that it is a discernible contributor. Globally the evidence reveals that radiatively-forced hydroclimate change is occurring with an amplitude and spatial pattern largely consistent with the predictions by IPCC AR4 models of hydroclimate change to date. However it will also be shown that the radiatively-forced component does not in and of itself provide a useful prediction of near term hydroclimate change because for many regions the amplitude of natural decadal variability is as large or larger. Useful predictions need to account for how natural variability may evolve as well as forced change.
The Characteristics of Small-Business Employees.
ERIC Educational Resources Information Center
Headd, Brian
2000-01-01
Small businesses employ slightly more than half of the private sector work force. In many ways, such as education, race, origin, age, and part-time status, the small business work force differs from that of larger enterprises (Author)
On-Command Force and Torque Impeding Devices (OC-FTID) Using ERF
NASA Technical Reports Server (NTRS)
Bar-Cohen, Yoseph; Badescu, Mircea; Sherrit, Stewart
2014-01-01
Various machines have been developed to address the need for countermeasures of bone and muscle deterioration when humans operate over extended time in space. Even though these machines are in use, each of them has many limitations that need to be addressed in an effort to prepare for human missions to distant bodies in the solar system. An exercise exoskeleton was conceived that performs on-demand resistivity by inducing force and torque impedance via ElectroRheological Fluid (ERF). The resistive elements consist of pistons that are moving inside ERF-filled cylinders or a donut-shaped cavity, and the fluid flows through the piston when the piston is moved. Tests of the operation of ERF against load showed the feasibility of this approach. ERF properties of high yield stress, low current density, and fast response (less than one millisecond) offer essential characteristics for the construction of the exoskeleton. ERFs can apply very high electrically controlled resistive forces or torque while their size (weight and geometric parameters) can be very small. Their long life and ability to function in a wide temperature range (from -40 to 200 C) allows for their use in extreme environments. ERFs are also nonabrasive, non-toxic, and nonpolluting (meet health and safety regulations). The technology is applicable as a compact exercise machine for astronauts' countermeasure of microgravity, an exercise machine for sport, or as a device for rehabilitation of patients with limb issues.
NASA Astrophysics Data System (ADS)
Blanchet, Luc; Detweiler, Steven; Le Tiec, Alexandre; Whiting, Bernard F.
2010-03-01
The problem of a compact binary system whose components move on circular orbits is addressed using two different approximation techniques in general relativity. The post-Newtonian (PN) approximation involves an expansion in powers of v/c≪1, and is most appropriate for small orbital velocities v. The perturbative self-force analysis requires an extreme mass ratio m1/m2≪1 for the components of the binary. A particular coordinate-invariant observable is determined as a function of the orbital frequency of the system using these two different approximations. The post-Newtonian calculation is pushed up to the third post-Newtonian (3PN) order. It involves the metric generated by two point particles and evaluated at the location of one of the particles. We regularize the divergent self-field of the particle by means of dimensional regularization. We show that the poles ∝(d-3)-1 appearing in dimensional regularization at the 3PN order cancel out from the final gauge invariant observable. The 3PN analytical result, through first order in the mass ratio, and the numerical self-force calculation are found to agree well. The consistency of this cross cultural comparison confirms the soundness of both approximations in describing compact binary systems. In particular, it provides an independent test of the very different regularization procedures invoked in the two approximation schemes.
Maki, Syou
2016-01-01
Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc.
Three-Dimensional Lower Extremity Joint Loading in a Carved Ski and Snowboard Turn: A Pilot Study
Müller, Erich
2014-01-01
A large number of injuries to the lower extremity occur in skiing and snowboarding. Due to the difficulty of collecting 3D kinematic and kinetic data with high accuracy, a possible relationship between injury statistic and joint loading has not been studied. Therefore, the purpose of the current study was to compare ankle and knee joint loading at the steering leg between carved ski and snowboard turns. Kinetic data were collected using mobile force plates mounted under the toe and heel part of the binding on skies or snowboard (KISTLER). Kinematic data were collected with five synchronized, panning, tilting, and zooming cameras. An extended version of the Yeadon model was applied to calculate inertial properties of the segments. Ankle and knee joint forces and moments were calculated using inverse dynamic analysis. Results showed higher forces along the longitudinal axis in skiing and similar forces for skiing and snowboarding in anterior-posterior and mediolateral direction. Joint moments were consistently greater during a snowboard turn, but more fluctuations were observed in skiing. Hence, when comparing joint loading between carved ski and snowboard turns, one should differentiate between forces and moments, including the direction of forces and moments and the turn phase. PMID:25317202
Hackney, James M; Clay, Rachel L; James, Meredith
2016-10-01
We measured ground reaction force and lower extremity shortening in ten healthy, young adults in order to compare five trials of drop jumps to drop landings. Our dependent variable was the percentage of displacement (shortening) between the markers on the ASIS and second metatarsal heads on each LE, relative to the maximum shortening (100% displacement) for that trial at the point of greatest ground reaction force. We defined this as "percent displacement at maximum force" (%dFmax). The sample mean %dFmax was 0.73%±0.14% for the drop jumps, and 0.47%±0.09% for the drop landings. The mean within-subject difference score was 0.26%±0.20%. Two-tailed paired t test comparing %dFmax between the drop jump and drop landing yielded P=0.002. For all participants in this study, the %dFmax was greater in drop jumps than in drop landings. This indicates that in drop jumps, the point of maximum force and of maximum shortening was nearly simultaneous, compared to drop landings, where the point of maximum shortening followed that of maximum force by a greater proportion. This difference in force to displacement behavior is explained by linear spring behavior in drop jumps, and linear damping behavior in drop landings. Copyright © 2016 Elsevier B.V. All rights reserved.
A variational approach to probing extreme events in turbulent dynamical systems
Farazmand, Mohammad; Sapsis, Themistoklis P.
2017-01-01
Extreme events are ubiquitous in a wide range of dynamical systems, including turbulent fluid flows, nonlinear waves, large-scale networks, and biological systems. We propose a variational framework for probing conditions that trigger intermittent extreme events in high-dimensional nonlinear dynamical systems. We seek the triggers as the probabilistically feasible solutions of an appropriately constrained optimization problem, where the function to be maximized is a system observable exhibiting intermittent extreme bursts. The constraints are imposed to ensure the physical admissibility of the optimal solutions, that is, significant probability for their occurrence under the natural flow of the dynamical system. We apply the method to a body-forced incompressible Navier-Stokes equation, known as the Kolmogorov flow. We find that the intermittent bursts of the energy dissipation are independent of the external forcing and are instead caused by the spontaneous transfer of energy from large scales to the mean flow via nonlinear triad interactions. The global maximizer of the corresponding variational problem identifies the responsible triad, hence providing a precursor for the occurrence of extreme dissipation events. Specifically, monitoring the energy transfers within this triad allows us to develop a data-driven short-term predictor for the intermittent bursts of energy dissipation. We assess the performance of this predictor through direct numerical simulations. PMID:28948226
High Energy Astrophysics Mission
NASA Technical Reports Server (NTRS)
White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)
2000-01-01
The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.
NASA Astrophysics Data System (ADS)
Felder, Guido; Zischg, Andreas; Weingartner, Rolf
2015-04-01
Estimating peak discharges with very low probabilities is still accompanied by large uncertainties. Common estimation methods are usually based on extreme value statistics applied to observed time series or to hydrological model outputs. However, such methods assume the system to be stationary and do not specifically consider non-stationary effects. Observed time series may exclude events where peak discharge is damped by retention effects, as this process does not occur until specific thresholds, possibly beyond those of the highest measured event, are exceeded. Hydrological models can be complemented and parameterized with non-linear functions. However, in such cases calibration depends on observed data and non-stationary behaviour is not deterministically calculated. Our study discusses the option of considering retention effects on extreme peak discharges by coupling hydrological and hydraulic models. This possibility is tested by forcing the semi-distributed deterministic hydrological model PREVAH with randomly generated, physically plausible extreme precipitation patterns. The resulting hydrographs are then used to force the hydraulic model BASEMENT-ETH (riverbed in 1D, potential inundation areas in 2D). The procedure ensures that the estimated extreme peak discharge does not exceed the physical limit given by the riverbed capacity and that the dampening effect of inundation processes on peak discharge is considered.
Towards a full representation of tropical cyclones in a global reanalysis of extreme sea levels
NASA Astrophysics Data System (ADS)
Muis, S.; Verlaan, M.; Lin, N.; Winsemius, H.; Vatvani, D.; Ward, P.; Aerts, J.
2016-12-01
Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure, and cause dangerous storm surges in coastal areas. Recent disasters like the flooding of New Orleans in 2005 due to Hurricane Katrina and of New York in 2012 due to Hurricane Sandy exemplify the significant TC risk in the United States. In this contribution, we present a new framework to model TC storm surges and probabilities at the Atlantic basin- and, ultimately, global scales. This works builds on the work of Muis et al. (2016), which presented the first dynamically-derived reanalysis dataset of storm surges that covers the entire world's coastline (GTSR dataset). Surge levels for the period 1979-2014 were simulated by forcing the Global Surge and Tide Model (GTSM) with wind speed and atmospheric pressure from the ERA-Interim reanalysis. There is generally a good agreement between simulated and observed sea level extremes in extra-tropical regions; however for areas prone to TCs there is a severe underestimation of extremes. For example, the maximum surge levels during Hurricane Katrina in New Orleans exceeded 8 m, whilst the GTSM surge levels in that area do not exceed 2-3 m. Hence, due to the coarse grid resolution, the strong intensities of TCs are not fully captured in ERA-Interim. Furthermore, the length of ERA-Interim data set, like other reanalysis datasets, is too short to estimate the probabilities of extreme TC events in a reliable way. For accurate risk assessments it is essential to improve the representation of TCs in these global reanalysis of extreme sea levels. First, we need a higher resolution of meteorological forcing, which can be modelled with input from the observed best track data. Second, we need to statistically extend the observed record to many thousands of years. We will present the first results of these steps for the east coast of the United States. We will validate the GTSM model forced with best track data using recent extreme events like Katrina and Sandy. We will investigate how the statistics of the extreme sea level will change due to improved representation of TCs.
Influence of sleep deprivation and auditory intensity on reaction time and response force.
Włodarczyk, Dariusz; Jaśkowski, Piotr; Nowik, Agnieszka
2002-06-01
Arousal and activation are two variables supposed to underlie change in response force. This study was undertaken to explain these roles, specifically, for strong auditory stimuli and sleep deficit. Loud auditory stimuli can evoke phasic overarousal whereas sleep deficit leads to general underarousal. Moreover, Van der Molen and Keuss (1979, 1981) showed that paradoxically long reaction times occurred with extremely strong auditory stimuli when the task was difficult, e.g., choice reaction or Simon paradigm. It was argued that this paradoxical behavior related to reaction time is due to active disconnecting of the coupling between arousal and activation to prevent false responses. If so, we predicted that for extremely loud stimuli and for difficult tasks, the lengthening of reaction time should be associated with reduction of response force. The effects of loudness and sleep deficit on response time and force were investigated in three different tasks: simple response, choice response, and Simon paradigm. According to our expectation, we found a detrimental effect of sleep deficit on reaction time and on response force. In contrast to Van der Molen and Keuss, we found no increase in reaction time for loud stimuli (up to 110 dB) even on the Simon task.
A kinematic method for footstrike pattern detection in barefoot and shod runners.
Altman, Allison R; Davis, Irene S
2012-02-01
Footstrike patterns during running can be classified discretely into a rearfoot strike, midfoot strike and forefoot strike by visual observation. However, the footstrike pattern can also be classified on a continuum, ranging from 0% to 100% (extreme rearfoot to extreme forefoot) using the strike index, a measure requiring force plate data. When force data are not available, an alternative method to quantify the strike pattern must be used. The purpose of this paper was to quantify the continuum of foot strike patterns using an easily attainable kinematic measure, and compare it to the strike index measure. Force and kinematic data from twenty subjects were collected as they ran across an embedded force plate. Strike index and the footstrike angle were identified for the four running conditions of rearfoot strike, midfoot strike and forefoot strike, as well as barefoot. The footstrike angle was calculated as the angle of the foot with respect to the ground in the sagittal plane. Results indicated that the footstrike angle was significantly correlated with strike index. The linear regression model suggested that strike index can be accurately estimated, in both barefoot and shod conditions, in the absence of force data. Copyright © 2011 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Wu, Yanling
2018-05-01
In this paper, the extreme waves were generated using the open source computational fluid dynamic (CFD) tools — OpenFOAM and Waves2FOAM — using linear and nonlinear NewWave input. They were used to conduct the numerical simulation of the wave impact process. Numerical tools based on first-order (with and without stretching) and second-order NewWave are investigated. The simulation to predict force loading for the offshore platform under the extreme weather condition is implemented and compared.
Bronstert, Axel; Agarwal, Ankit; Boessenkool, Berry; Crisologo, Irene; Fischer, Madlen; Heistermann, Maik; Köhn-Reich, Lisei; López-Tarazón, José Andrés; Moran, Thomas; Ozturk, Ugur; Reinhardt-Imjela, Christian; Wendi, Dadiyorto
2018-07-15
The flash-flood in Braunsbach in the north-eastern part of Baden-Wuerttemberg/Germany was a particularly strong and concise event which took place during the floods in southern Germany at the end of May/early June 2016. This article presents a detailed analysis of the hydro-meteorological forcing and the hydrological consequences of this event. A specific approach, the "forensic hydrological analysis" was followed in order to include and combine retrospectively a variety of data from different disciplines. Such an approach investigates the origins, mechanisms and course of such natural events if possible in a "near real time" mode, in order to follow the most recent traces of the event. The results show that it was a very rare rainfall event with extreme intensities which, in combination with catchment properties, led to extreme runoff plus severe geomorphological hazards, i.e. great debris flows, which together resulted in immense damage in this small rural town Braunsbach. It was definitely a record-breaking event and greatly exceeded existing design guidelines for extreme flood discharge for this region, i.e. by a factor of about 10. Being such a rare or even unique event, it is not reliably feasible to put it into a crisp probabilistic context. However, one can conclude that a return period clearly above 100years can be assigned for all event components: rainfall, peak discharge and sediment transport. Due to the complex and interacting processes, no single flood cause or reason for the very high damage can be identified, since only the interplay and the cascading characteristics of those led to such an event. The roles of different human activities on the origin and/or intensification of such an extreme event are finally discussed. Copyright © 2018. Published by Elsevier B.V.
Extreme wind-wave modeling and analysis in the south Atlantic ocean
NASA Astrophysics Data System (ADS)
Campos, R. M.; Alves, J. H. G. M.; Guedes Soares, C.; Guimaraes, L. G.; Parente, C. E.
2018-04-01
A set of wave hindcasts is constructed using two different types of wind calibration, followed by an additional test retuning the input source term Sin in the wave model. The goal is to improve the simulation in extreme wave events in the South Atlantic Ocean without compromising average conditions. Wind fields are based on Climate Forecast System Reanalysis (CFSR/NCEP). The first wind calibration applies a simple linear regression model, with coefficients obtained from the comparison of CFSR against buoy data. The second is a method where deficiencies of the CFSR associated with severe sea state events are remedied, whereby "defective" winds are replaced with satellite data within cyclones. A total of six wind datasets forced WAVEWATCH-III and additional three tests with modified Sin in WAVEWATCH III lead to a total of nine wave hindcasts that are evaluated against satellite and buoy data for ambient and extreme conditions. The target variable considered is the significant wave height (Hs). The increase of sea-state severity shows a progressive increase of the hindcast underestimation which could be calculated as a function of percentiles. The wind calibration using a linear regression function shows similar results to the adjustments to Sin term (increase of βmax parameter) in WAVEWATCH-III - it effectively reduces the average bias of Hs but cannot avoid the increase of errors with percentiles. The use of blended scatterometer winds within cyclones could reduce the increasing wave hindcast errors mainly above the 93rd percentile and leads to a better representation of Hs at the peak of the storms. The combination of linear regression calibration of non-cyclonic winds with scatterometer winds within the cyclones generated a wave hindcast with small errors from calm to extreme conditions. This approach led to a reduction of the percentage error of Hs from 14% to less than 8% for extreme waves, while also improving the RMSE.
Lateral position detection and control for friction stir systems
Fleming, Paul; Lammlein, David H.; Cook, George E.; Wilkes, Don Mitchell; Strauss, Alvin M.; Delapp, David R.; Hartman, Daniel A.
2012-06-05
An apparatus and computer program are disclosed for processing at least one workpiece using a rotary tool with rotating member for contacting and processing the workpiece. The methods include oscillating the rotary tool laterally with respect to a selected propagation path for the rotating member with respect to the workpiece to define an oscillation path for the rotating member. The methods further include obtaining force signals or parameters related to the force experienced by the rotary tool at least while the rotating member is disposed at the extremes of the oscillation. The force signals or parameters associated with the extremes can then be analyzed to determine a lateral position of the selected path with respect to a target path and a lateral offset value can be determined based on the lateral position. The lateral distance between the selected path and the target path can be decreased based on the lateral offset value.
Lateral position detection and control for friction stir systems
Fleming, Paul [Boulder, CO; Lammlein, David H [Houston, TX; Cook, George E [Brentwood, TN; Wilkes, Don Mitchell [Nashville, TN; Strauss, Alvin M [Nashville, TN; Delapp, David R [Ashland City, TN; Hartman, Daniel A [Fairhope, AL
2011-11-08
Friction stir methods are disclosed for processing at least one workpiece using a rotary tool with rotating member for contacting and processing the workpiece. The methods include oscillating the rotary tool laterally with respect to a selected propagation path for the rotating member with respect to the workpiece to define an oscillation path for the rotating member. The methods further include obtaining force signals or parameters related to the force experienced by the rotary tool at least while the rotating member is disposed at the extremes of the oscillation. The force signals or parameters associated with the extremes can then be analyzed to determine a lateral position of the selected path with respect to a target path and a lateral offset value can be determined based on the lateral position. The lateral distance between the selected path and the target path can be decreased based on the lateral offset value.
Motor Unit Changes Seen With Skeletal Muscle Sarcopenia in Oldest Old Rats
Kung, Theodore A.; van der Meulen, Jack H.; Urbanchek, Melanie G.; Kuzon, William M.; Faulkner, John A.
2014-01-01
Sarcopenia leads to many changes in skeletal muscle that contribute to atrophy, force deficits, and subsequent frailty. The purpose of this study was to characterize motor unit remodeling related to sarcopenia seen in extreme old age. Whole extensor digitorum longus muscle and motor unit contractile properties were measured in 19 adult (11–13 months) and 12 oldest old (36–37 months) Brown-Norway rats. Compared with adults, oldest old rats had significantly fewer motor units per muscle, smaller muscle cross-sectional area, and lower muscle specific force. However, mean motor unit force generation was similar between the two groups due to an increase in innervation ratio by the oldest old rats. These findings suggest that even in extreme old age both fast- and slow-twitch motor units maintain the ability to undergo motor unit remodeling that offsets some effects of sarcopenia. PMID:24077596
Embryonic stem cells improve skeletal muscle recovery after extreme atrophy in mice.
Artioli, Guilherme Giannini; De Oliveira Silvestre, João Guilherme; Guilherme, João Paulo Limongi França; Baptista, Igor Luchini; Ramos, Gracielle Vieira; Da Silva, Willian José; Miyabara, Elen Haruka; Moriscot, Anselmo Sigari
2015-03-01
We injected embryonic stem cells into mouse tibialis anterior muscles subjected to botulinum toxin injections as a model for reversible neurogenic atrophy. Muscles were exposed to botulinum toxin for 4 weeks and allowed to recover for up to 6 weeks. At the onset of recovery, a single muscle injection of embryonic stem cells was administered. The myofiber cross-sectional area, single twitch force, peak tetanic force, time-to-peak force, and half-relaxation time were determined. Although the stem cell injection did not affect the myofiber cross-sectional area gain in recovering muscles, most functional parameters improved significantly compared with those of recovering muscles that did not receive the stem cell injection. Muscle function recovery was accelerated by embryonic stem cell delivery in this durable neurogenic atrophy model. We conclude that stem cells should be considered a potential therapeutic tool for recovery after extreme skeletal muscle atrophy. © 2014 Wiley Periodicals, Inc.
Recent results of studies of acceleration of compact toroids
NASA Astrophysics Data System (ADS)
Hammer, J. H.; Hartmen, C. W.; Eddleman, J.
1984-03-01
The observed gross stability and self-contained structure of compact toroids (CT's) give rise to the possibility, unique among magnetically confined plasmas, of translating CT's from their point of origin over distances many times their own length. This feature has led us to consider magnetic acceleration of CT's to directed kinetic energies much greater than their stored magnetic and thermal energies. A CT accelerator falls in the very broad gap between traditional particle accelerators at one extreme, which are limited in the number of particles per bunch by electrostatic repulsive forces, and mass accelerators such as rail guns at the other extreme, which accelerate many particles but are forced by the stress limitations of solids to far smaller accelerations. A typical CT has about a Coulomb of particles, weighs 10 micrograms and can be accelerated by magnetic forces of several tons, leading to an acceleration on the order of 10(11) gravities.
Boyer, Elizabeth R; Derrick, Timothy R
2018-03-01
Our purpose was to compare joint loads between habitual rearfoot (hRF) and habitual mid/forefoot strikers (hFF), rearfoot (RFS) and mid/forefoot strike (FFS) patterns, and shorter stride lengths (SLs). Thirty-eight hRF and hFF ran at their normal SL, 5% and 10% shorter, as well as with the opposite foot strike. Three-dimensional ankle, knee, patellofemoral (PF) and hip contact forces were calculated. Nearly all contact forces decreased with a shorter SL (1.2-14.9% relative to preferred SL). In general, hRF had higher PF (hRF-RFS: 10.8 ± 1.4, hFF-FFS: 9.9 ± 2.0 BWs) and hip loads (axial hRF-RFS: -9.9 ± 0.9, hFF-FFS: -9.6 ± 1.0 BWs) than hFF. Many loads were similar between foot strike styles for the two groups, including axial and lateral hip, PF, posterior knee and shear ankle contact forces. Lateral knee and posterior hip contact forces were greater for RFS, and axial ankle and knee contact forces were greater for FFS. The tibia may be under greater loading with a FFS because of these greater axial forces. Summarising, a particular foot strike style does not universally decrease joint contact forces. However, shortening one's SL 10% decreased nearly all lower extremity contact forces, so it may hold potential to decrease overuse injuries associated with excessive joint loads.
Is extreme bite performance associated with extreme morphologies in sharks?
Huber, Daniel R; Claes, Julien M; Mallefet, Jérôme; Herrel, Anthony
2009-01-01
As top predators in many oceanic communities, sharks are known to eat large prey and are supposedly able to generate high bite forces. This notion has, however, largely gone untested due to the experimental intractability of these animals. For those species that have been investigated, it remains unclear whether their high bite forces are simply a consequence of their large body size or the result of diet-related adaptation. As aquatic poikilotherms, sharks can grow very large, making them ideal subjects with which to investigate the effects of body size on bite force. Relative bite-force capacity is often associated with changes in head shape because taller or wider heads can, for example, accommodate larger jaw muscles. Constraints on bite force in general may also be released by changes in tooth shape. For example, more pointed teeth may allow a predator to penetrate prey more effectively than blunt, pavementlike teeth. Our analyses show that large sharks do not bite hard for their body size, but they generally have larger heads. Head width is the best predictor of bite force across the species included in our study as indicated by a multiple regression model. Contrary to our predictions, sharks with relatively high bite forces for their body size also have relatively more pointed teeth at the front of the tooth row. Moreover, species including hard prey in their diet are characterized by high bite forces and narrow and pointed teeth at the jaw symphysis.
The Electrocardiogram and Ischemic Heart Disease in Aircraft Pilots
Manning, G. W.
1965-01-01
A review of the Royal Canadian Air Force electrocardiographic (ECG) program for selection of aircrew and detection of coronary disease in trained aircrew is presented. Twenty reported cases of death due to coronary disease in pilots while at the controls of an aircraft are reviewed. The use of routine electrocardiography in the selection of aircrew has proved to be of considerable value, particularly in view of the high cost of training. The ECG continues to be our most sensitive means of detecting asymptomatic coronary disease in aircrew personnel. It is apparent that from both the military and commercial standpoint the incidence of aircraft accidents due to coronary disease is extremely small. This is due in large part to the careful medical supervision of flying personnel including the routine use of electrocardiography in the assessment of flying fitness of aircrew. PMID:14323657
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeon, Sangmin; Desikan, Ramya; Thundat, Thomas George
Young's equation, which is commonly used for determining the contact angle of liquid drops on a solid surface, ignores the vertical component of the surface energy. Although this force is extremely small and its effect on the solid can be ignored, it plays a significant role for flexible surfaces such as microcantilevers. A gold-coated silicon microcantilever and a dodecanethiol coated silicon microcantilever were used to detect real-time formation of nanobubbles on their surfaces when exposed to air-rich water. As air nanobubbles form on the surfaces of the cantilever, the cantilever undergoes bending, and we relate this to the vertical componentmore » of surface energy in Young's equation. This implies that the vertical component of the surface tension should be considered for flexible solid surfaces, and the formation of nanobubbles should be avoided when cantilevers are used as sensors to avoid artifacts.« less
Oleoplaning droplets on lubricated surfaces
NASA Astrophysics Data System (ADS)
Daniel, Dan; Timonen, Jaakko V. I.; Li, Ruoping; Velling, Seneca J.; Aizenberg, Joanna
2017-10-01
Recently, there has been much interest in using lubricated surfaces to achieve extreme liquid repellency: a foreign droplet immiscible with the underlying lubricant layer was shown to slide off at a small tilt angle <5°. This behaviour was hypothesized to arise from a thin lubricant overlayer film sandwiched between the droplet and solid substrate, but this has not been observed experimentally. Here, using thin-film interference, we are able to visualize the intercalated film under both static and dynamic conditions. We further demonstrate that for a moving droplet, the film thickness follows the Landau-Levich-Derjaguin law. The droplet is therefore oleoplaning--akin to tyres hydroplaning on a wet road--with minimal dissipative force and no contact line pinning. The techniques and insights presented in this study will inform future work on the fundamentals of wetting for lubricated surfaces and enable their rational design.
A Microscale View of Mixing and Overturning Across the Antarctic Circumpolar Current
NASA Astrophysics Data System (ADS)
Naveira Garabato, A.; Polzin, K. L.; Ferrari, R. M.; Zika, J. D.; Forryan, A.
2014-12-01
The meridional overturning circulation and stratication of the global ocean are shaped critically by processes in the Southern Ocean. The zonally unblocked nature of the Antarctic Circumpolar Current (ACC) confers the region with a set of special dynamics that ultimately results in the focussing therein of large vertical exchanges between layers spanning the global ocean pycnocline. These vertical exchanges are thought to be mediated by oceanic turbulent motions (associated with mesoscale eddies and small-scale turbulence), yet the vastness of the Southern Ocean and the sparse and intermittent nature of turbulent processes make their relative roles and large-scale impacts extremely difficult to assess.Here, we address the problem from a new angle, and use measurements of the centimetre-scale signatures of mesoscale eddies and small-scale turbulence obtained during the DIMES experiment to determine the contributions of those processes to sustaining large-scale meridional overturning across the ACC. We find that mesoscale eddies and small-scale turbulence play complementary roles in forcing a meridional circulation of O(1 mm / s) across the Southern Ocean, and that their roles are underpinned by distinct and abrupt variations in the rates at which they mix water parcels. The implications for our understanding of the Southern Ocean circulation's sensitivity to climatic change will be discussed.
Extreme event statistics in a drifting Markov chain
NASA Astrophysics Data System (ADS)
Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur
2017-07-01
We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.
Wang, Han; Liu, Zhongzheng; Kim, Sungman; Koo, Chiwan; Cho, Younghak; Jang, Dong-Young; Kim, Yong-Joe; Han, Arum
2014-03-07
Detecting and quantifying extremely low concentrations of oil from the environment have broad applications in oil spill monitoring in ocean and coastal areas as well as in oil leakage monitoring on land. Currently available methods for low-concentration oil detection are bulky or costly with limited sensitivities. Thus they are difficult to be used as portable and field-deployable detectors in the case of oil spills or for monitoring the long-term effects of dispersed oil on marine and coastal ecosystems. Here, we present a low-concentration oil droplet trapping and detection microfluidic system based on the acoustophoresis phenomenon where oil droplets in water having a negative acoustic contrast factor move towards acoustic pressure anti-nodes. By trapping oil droplets from water samples flowing through a microfluidic channel, even very low concentrations of oil droplets can be concentrated to a detectable level for further analyses, which is a significant improvement over currently available oil detection systems. Oil droplets in water were successfully trapped and accumulated in a circular acoustophoretic trapping chamber of the microfluidic device and detected using a custom-built compact fluorescent detector based on the natural fluorescence of the trapped crude oil droplets. After the on-line detection, crude oil droplets released from the trapping chamber were successfully separated into a collection outlet by acoustophoretic force for further off-chip analyses. The developed microfluidic system provides a new way of trapping, detecting, and separating low-concentration crude oil from environmental water samples and holds promise as a low-cost field-deployable oil detector with extremely high sensitivity. The microfluidic system and operation principle are expected to be utilized in a wide range of applications where separating, concentrating, and detecting small particles having a negative acoustic contrast factor are required.
Teng, P S P; Kong, P W; Leong, K F
2017-06-01
Non-contact anterior cruciate ligament (ACL) injuries commonly occur when athletes land in high risk positions such as knee valgus. The position of the foot at landing may influence the transmission of forces from the ankle to the knee. Using an experimental approach to manipulate foot rotation positions, this study aimed to provide new insights on how knee valgus during single-leg landing may be influenced by foot positions. Eleven male recreational basketball players performed single-leg drop landings from a 30-cm high platform in three foot rotation positions (toe-in, toe-forward and toe-out) at initial contact. A motion capture system and a force plate were used to measure lower extremity kinematics and kinetics. Knee valgus angles at initial contact (KVA) and maximum knee valgus moments (KVM), which were known risk factors associated with ACL injury, were measured. A one-way repeated measures Analysis of Variance was conducted (α=0.05) to compare among the three foot positions. Foot rotation positions were found to have a significant effect on KVA (p<0.001, η 2 =0.66) but the difference between conditions (about 1°) was small and not clinically meaningful. There was a significant effect of foot position on KVM (p<0.001, η 2 =0.55), with increased moment observed in the toe-out position as compared to toe-forward (p=0.012) or toe-in positions (p=0.002). When landing with one leg, athletes should avoid extreme toe-out foot rotation positions to minimise undesirable knee valgus loading associated with non-contact ACL injury risks. Copyright © 2017 Elsevier B.V. All rights reserved.
Extreme-volatility dynamics in crude oil markets
NASA Astrophysics Data System (ADS)
Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei
2017-02-01
Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.
Changes in extremes due to half a degree warming in observations and models
NASA Astrophysics Data System (ADS)
Fischer, E. M.; Schleussner, C. F.; Pfleiderer, P.
2017-12-01
Assessing the climate impacts of half-a-degree warming increments is high on the post-Paris science agenda. Discriminating those effects is particularly challenging for climate extremes such as heavy precipitation and heat extremes for which model uncertainties are generally large, and for which internal variability is so important that it can easily offset or strongly amplify the forced local changes induced by half a degree warming. Despite these challenges we provide evidence for large-scale changes in the intensity and frequency of climate extremes due to half a degree warming. We first assess the difference in extreme climate indicators in observational data for the 1960s and 1970s versus the recent past, two periods differ by half a degree. We identify distinct differences for the global and continental-scale occurrence of heat and heavy precipitation extremes. We show that those observed changes in heavy precipitation and heat extremes broadly agree with simulated historical differences and are informative for the projected differences between 1.5 and 2°C warming despite different radiative forcings. We therefore argue that evidence from the observational record can inform the debate about discernible climate impacts in the light of model uncertainty by providing a conservative estimate of the implications of 0.5°C warming. A limitation of using the observational record arises from potential non-linearities in the response of climate extremes to a certain level of warming. We test for potential non-linearities in the response of heat and heavy precipitation extremes in a large ensemble of transient climate simulations. We further quantify differences between a time-window approach in a coupled model large ensemble vs. time-slice experiments using prescribed SST experiments performed in the context of the HAPPI-MIP project. Thereby we provide different lines of evidence that half a degree warming leads to substantial changes in the expected occurrence of heat and heavy precipitation extremes.
The effects of load carriage and muscle fatigue on lower-extremity joint mechanics.
Wang, He; Frame, Jeff; Ozimek, Elicia; Leib, Daniel; Dugan, Eric L
2013-09-01
Military personnel are commonly afflicted by lower-extremity overuse injuries. Load carriage and muscular fatigue are major stressors during military basic training. To examine effects of load carriage and muscular fatigue on lower-extremity joint mechanics during walking. Eighteen men performed the following tasks: unloaded walking, walking with a 32-kg load, fatigued walking with a 32-kg load, and fatigued walking. After the second walking task, muscle fatigue was elicited through a fatiguing protocol consisting of metered step-ups and heel raises with a 16-kg load. Each walking task was performed at 1.67 m x s(-1) for 5 min. Walking movement was tracked by a VICON motion capture system at 120 Hz. Ground reaction forces were collected by a tandem force instrumented treadmill (AMTI) at 2,400 Hz. Lower-extremity joint mechanics were calculated in Visual 3D. There was no interaction between load carriage and fatigue on lower-extremity joint mechanics (p > .05). Both load carriage and fatigue led to pronounced alterations of lower-extremity joint mechanics (p < .05). Load carriage resulted in increases of pelvis anterior tilt, hip and knee flexion at heel contact, and increases of hip, knee, and ankle joint moments and powers during weight acceptance. Muscle fatigue led to decreases of ankle dorsiflexion at heel contact, dorsiflexor moment, and joint power at weight acceptance. In addition, muscle fatigue increased demand for hip extensor moment and power at weight acceptance. Statistically significant changes in lower-extremity joint mechanics during loaded and fatigued walking may expose military personnel to increased risk for overuse injuries.
NASA Astrophysics Data System (ADS)
Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.
2018-06-01
High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.
Recovery of a top predator mediates negative eutrophic effects on seagrass
Hughes, Brent B.; Eby, Ron; Van Dyke, Eric; Tinker, M. Tim; Marks, Corina I.; Johnson, Kenneth S.; Wasson, Kerstin
2013-01-01
A fundamental goal of the study of ecology is to determine the drivers of habitat-forming vegetation, with much emphasis given to the relative importance to vegetation of “bottom-up” forces such as the role of nutrients and “top-down” forces such as the influence of herbivores and their predators. For coastal vegetation (e.g., kelp, seagrass, marsh, and mangroves) it has been well demonstrated that alterations to bottom-up forcing can cause major disturbances leading to loss of dominant vegetation. One such process is anthropogenic nutrient loading, which can lead to major changes in the abundance and species composition of primary producers, ultimately affecting important ecosystem services. In contrast, much less is known about the relative importance of apex predators on coastal vegetated ecosystems because most top predator populations have been depleted or lost completely. Here we provide evidence that an unusual four-level trophic cascade applies in one such system, whereby a top predator mitigates the bottom-up influences of nutrient loading. In a study of seagrass beds in an estuarine ecosystem exposed to extreme nutrient loading, we use a combination of a 50-y time series analysis, spatial comparisons, and mesocosm and field experiments to demonstrate that sea otters (Enhydra lutris) promote the growth and expansion of eelgrass (Zostera marina) through a trophic cascade, counteracting the negative effects of agriculturally induced nutrient loading. Our results add to a small but growing body of literature illustrating that significant interactions between bottom-up and top-down forces occur, in this case with consequences for the conservation of valued ecosystem services provided by seagrass.
Recovery of a top predator mediates negative eutrophic effects on seagrass
Hughes, Brent B.; Eby, Ron; Van Dyke, Eric; Tinker, M. Tim; Marks, Corina I.; Johnson, Kenneth S.; Wasson, Kerstin
2013-01-01
A fundamental goal of the study of ecology is to determine the drivers of habitat-forming vegetation, with much emphasis given to the relative importance to vegetation of “bottom-up” forces such as the role of nutrients and “top-down” forces such as the influence of herbivores and their predators. For coastal vegetation (e.g., kelp, seagrass, marsh, and mangroves) it has been well demonstrated that alterations to bottom-up forcing can cause major disturbances leading to loss of dominant vegetation. One such process is anthropogenic nutrient loading, which can lead to major changes in the abundance and species composition of primary producers, ultimately affecting important ecosystem services. In contrast, much less is known about the relative importance of apex predators on coastal vegetated ecosystems because most top predator populations have been depleted or lost completely. Here we provide evidence that an unusual four-level trophic cascade applies in one such system, whereby a top predator mitigates the bottom-up influences of nutrient loading. In a study of seagrass beds in an estuarine ecosystem exposed to extreme nutrient loading, we use a combination of a 50-y time series analysis, spatial comparisons, and mesocosm and field experiments to demonstrate that sea otters (Enhydra lutris) promote the growth and expansion of eelgrass (Zostera marina) through a trophic cascade, counteracting the negative effects of agriculturally induced nutrient loading. Our results add to a small but growing body of literature illustrating that significant interactions between bottom-up and top-down forces occur, in this case with consequences for the conservation of valued ecosystem services provided by seagrass. PMID:23983266
Forced wave induced by an atmospheric pressure disturbance moving towards shore
NASA Astrophysics Data System (ADS)
Chen, Yixiang; Niu, Xiaojing
2018-05-01
Atmospheric pressure disturbances moving over a vast expanse of water can induce different wave patterns, which can be determined by the Froude number Fr. Generally, Fr = 1 is a critical value for the transformation of the wave pattern and the well-known Proudman resonance happens when Fr = 1. In this study, the forced wave induced by an atmospheric pressure disturbance moving over a constant slope from deep sea to shore is numerically investigated. The wave pattern evolves from a concentric-circle type into a triangular type with the increase of the Froude number, as the local water depth decreases, which is in accord with the analysis in the unbounded flat-bottom cases. However, a hysteresis effect has been observed, which implies the obvious amplification of the forced wave induced by a pressure disturbance can not be simply predicted by Fr = 1. The effects of the characteristic parameters of pressure disturbances and slope gradient have been discussed. The results show that it is not always possible to observe significant peak of the maximum water elevation before the landing of pressure disturbances, and a significant peak can be generated by a pressure disturbance with small spatial scale and fast moving velocity over a milder slope. Besides, an extremely high run-up occurs when the forced wave hits the shore, which is an essential threat to coastal security. The results also show that the maximum run-up is not monotonously varying with the increase of disturbance moving speed and spatial scale. There exists a most dangerous speed and scale which may cause disastrous nearshore surge.
NASA Astrophysics Data System (ADS)
Aalbers, Emma E.; Lenderink, Geert; van Meijgaard, Erik; van den Hurk, Bart J. J. M.
2017-09-01
High-resolution climate information provided by e.g. regional climate models (RCMs) is valuable for exploring the changing weather under global warming, and assessing the local impact of climate change. While there is generally more confidence in the representativeness of simulated processes at higher resolutions, internal variability of the climate system—`noise', intrinsic to the chaotic nature of atmospheric and oceanic processes—is larger at smaller spatial scales as well, limiting the predictability of the climate signal. To quantify the internal variability and robustly estimate the climate signal, large initial-condition ensembles of climate simulations conducted with a single model provide essential information. We analyze a regional downscaling of a 16-member initial-condition ensemble over western Europe and the Alps at 0.11° resolution, similar to the highest resolution EURO-CORDEX simulations. We examine the strength of the forced climate response (signal) in mean and extreme daily precipitation with respect to noise due to internal variability, and find robust small-scale geographical features in the forced response, indicating regional differences in changes in the probability of events. However, individual ensemble members provide only limited information on the forced climate response, even for high levels of global warming. Although the results are based on a single RCM-GCM chain, we believe that they have general value in providing insight in the fraction of the uncertainty in high-resolution climate information that is irreducible, and can assist in the correct interpretation of fine-scale information in multi-model ensembles in terms of a forced response and noise due to internal variability.
Muscle anatomy and dynamic muscle function in osteogenesis imperfecta type I.
Veilleux, Louis-Nicolas; Lemay, Martin; Pouliot-Laforte, Annie; Cheung, Moira S; Glorieux, Francis H; Rauch, Frank
2014-02-01
Results of previous studies suggested that children and adolescents with osteogenesis imperfecta (OI) type I have a muscle force deficit. However, muscle function has only been assessed by static isometric force tests and not in more natural conditions such as dynamic force and power tests. The purpose of this study was to assess lower extremity dynamic muscle function and muscle anatomy in OI type I. The study was performed in the outpatient department of a pediatric orthopedic hospital. A total of 54 individuals with OI type I (6-21 years; 20 male) and 54 age- and sex-matched controls took part in this study. Calf muscle cross-sectional area and density were measured by peripheral quantitative computed tomography. Lower extremity muscle function (peak force per body weight and peak power per body mass) was measured by jumping mechanography through 5 tests: multiple two-legged hopping, multiple one-legged hopping, single two-legged jump, chair-rise test, and heel-rise test. Compared with age- and sex-matched controls, patients with OI type I had smaller muscle size (P = .04) but normal muscle density (P = .21). They also had lower average peak force and lower specific force (peak force/muscle cross-sectional area; all P < .008). Average peak power was lower in patients with OI type I but not significantly so (all P > .054). Children and adolescents with OI type I have, on average, a significant force deficit in the lower limb as measured by dynamic force tests. Nonetheless, these data also show that OI type I is compatible with normal muscle performance in some individuals.
Energy cost and pole forces during Nordic walking under different surface conditions.
Schiffer, Thorsten; Knicker, Axel; Dannöhl, Regine; Strüder, Heiko K
2009-03-01
The purpose of the study was to identify the effect of three different surfaces on energy consumption and the forces acting on the walking poles during ground contact in Nordic walking (NW). Thirteen female NW instructors (age = 26 +/- 4 yr, weight = 58.5 +/- 4.2 kg, height = 168.1 +/- 4.6 cm) volunteered in the study. The subjects walked a distance of 1200 m at a controlled, constant speed of 2.2 m x s(-1) on each of a concrete surface (C), an artificial athletics track (A), and a naturally grown soccer lawn (G). They used NW poles with inbuilt strain gauge force transducers to measure ground reaction forces acting along the long axes of the poles. Oxygen uptake, capillary blood lactate (La), HR, and RPE were measured before and after the tests. Impact forces, maximum forces, force rates during ground contact identified from the registered force time histories, displayed significant differences related to the surface conditions. However, force time integrals did not show surface-related differences. Relative oxygen consumption showed significant differences between NW on C and on G whereas no surface-related differences could be identified between the surface conditions for the parameters La, HR, and RPE. Our data indicate that the impulse that is generated by the poles on the subjects is identical between the varying surfaces. Because there are differences for the oxygen uptake between C and G, the main regulator for the propulsion must be the musculature of the lower extremities. The work of the upper extremities seems to be a luxury effort for Nordic walkers with a proper technique.
Amako, Masatoshi; Yato, Yoshiyuki; Yoshihara, Yasuo; Arino, Hiroshi; Sasao, Hiroshi; Nemoto, Osamu; Imai, Tomohito; Sugihara, Atsushi; Tsukazaki, Satoshi; Sakurai, Yutaka; Nemoto, Koichi
2018-05-01
The epidemiological patterns of musculoskeletal injuries or disorders in military personnel have not been well documented and a better understanding is required for proper preventative measures and treatment. Here, we investigated musculoskeletal injuries or disorders among members of the Japan Self-Defense Forces. All orthopedic patients (n = 22,340) who consulted to Japan Self-Defense Forces Hospitals were investigated for their type of injury or disorder, the injured body part, the mechanism, and the cause of injuries. Thirty-nine percent of the cases were classified as traumatic injuries, and 61% were classified as non-traumatic disorders. Of the traumatic injury patients, the injured body part was the upper extremity in 32%, the trunk in 23%, and the lower extremities in 45% of the cases. The most common injured body location was the knee followed by the hand/finger and ankle. Exercise was the most common cause of injury, followed by traffic accident and military training. Contusions were the most common traumatic injuries, followed by sprains and fractures. Of non-traumatic disorders, the lower extremities were reported as the injured part in 43% of the disorders. Lumbar spine disorders were the most common non-traumatic disorders, followed by tendon and joint disorders. Over one-third of orthopedic cases among members of the Japan Self-Defense Forces are traumatic injuries, with the knee being the body part most commonly injured and exercise being the leading cause of injury.
Shen, Shaoshuai; Abe, Takumi; Tsuji, Taishi; Fujii, Keisuke; Ma, Jingyu; Okura, Tomohiro
2017-01-01
[Purpose] The purpose of this study was to investigate which of the four chair-rising methods has low-load and the highest success rate, and whether the GRF parameters in that method are useful for measuring lower extremity function among physically frail Japanese older adults. [Subjects and Methods] Fifty-two individuals participated in this study. The participants voluntarily attempted four types of Sit-to-stand test (one variation without and three variations with the use of their arms). The following parameters were measured: peak reaction force (F/w), two force development rate parameters (RFD1.25/w, RFD8.75/w) and two time-related parameters (T1, T2). Three additional commonly employed clinical tests (One-leg balance with eyes open, Timed up and go and 5-meter walk test) were also conducted. [Results] “Hands on a chair” chair-rising method produced the highest success rate among the four methods. All parameters were highly reliable between testing occasions. T2 showed strongly significant associations with Timed up and go and 5-meter walk test in males. RFD8.75/w showed significant associations with Timed up and go and 5-meter walk test in females. [Conclusion] Ground reaction force parameters in the Sit-to-stand test are a reliable and useful method for assessment of lower extremity function in physically frail Japanese older adults. PMID:28931988
Task modulation of the effects of brightness on reaction time and response force.
Jaśkowski, Piotr; Włodarczyk, Dariusz
2006-08-01
Van der Molen and Keuss [van der Molen, M.W., Keuss, P.J.G., 1979. The relationship between reaction time and intensity in discrete auditory tasks. Quarterly Journal of Experimental Psychology 31, 95-102; van der Molen, M.W., Keuss, P.J.G., 1981. Response selection and the processing of auditory intensity. Quarterly Journal of Experimental Psychology 33, 177-184] showed that paradoxically long reaction times (RT) occur with extremely loud auditory stimuli when the task is difficult (e.g. needs a response choice). It was argued that this paradoxical behavior of RT is due to active suppression of response prompting to prevent false responses. In the present experiments, we demonstrated that such an effect can also occur for visual stimuli provided that they are large enough. Additionally, we showed that response force exerted by participants on response keys monotonically grew with intensity for large stimuli but was independent of intensity for small visual stimuli. Bearing in mind that only large stimuli are believed to be arousing this pattern of results supports the arousal interpretation of the negative effect of loud stimuli on RT given by van der Molen and Keuss.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castelluccio, Gustavo M.; McDowell, David L.
The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less
Castelluccio, Gustavo M.; McDowell, David L.
2015-05-22
The number of cycles required to form and grow microstructurally small fatigue cracks in metals exhibits substantial variability, particularly for low applied strain amplitudes. This variability is commonly attributed to the heterogeneity of cyclic plastic deformation within the microstructure, and presents a challenge to minimum life design of fatigue resistant components. Our paper analyzes sources of variability that contribute to the driving force of transgranular fatigue cracks within nucleant grains. We also employ crystal plasticity finite element simulations that explicitly render the polycrystalline microstructure and Fatigue Indicator Parameters (FIPs) averaged over different volume sizes and shapes relative to the anticipatedmore » fatigue damage process zone. Volume averaging is necessary to both achieve description of a finite fatigue damage process zone and to regularize mesh dependence in simulations. Furthermore, results from constant amplitude remote applied straining are characterized in terms of the extreme value distributions of volume averaged FIPs. Grain averaged FIP values effectively mitigate mesh sensitivity, but they smear out variability within grains. Furthermore, volume averaging over bands that encompass critical transgranular slip planes appear to present the most attractive approach to mitigate mesh sensitivity while preserving variability within grains.« less
Highly Anisotropic Adhesive Film Made from Upside-Down, Flat, and Uniform Vertically Aligned CNTs.
Hong, Sanghyun; Lundstrom, Troy; Ghosh, Ranajay; Abdi, Hamed; Hao, Ji; Jeoung, Sun Kyoung; Su, Paul; Suhr, Jonghwan; Vaziri, Ashkan; Jalili, Nader; Jung, Yung Joon
2016-12-14
We have created a multifunctional dry adhesive film with transferred vertically aligned carbon nanotubes (VA-CNTs). This unique VA-CNT film was fabricated by a multistep transfer process, converting the flat and uniform bottom of VA-CNTs grown on atomically flat silicon wafer substrates into the top surface of an adhesive layer. Unlike as-grown VA-CNTs, which have a nonuniform surface, randomly entangled CNT arrays, and a weak interface between the CNTs and substrates, this transferred VA-CNT film shows an extremely high coefficient of static friction (COF) of up to 60 and a shear adhesion force 30 times higher (12 N/cm 2 ) than that of the as-grown VA-CNTs under a very small preloading of 0.2 N/cm 2 . Moreover, a near-zero normal adhesion force was observed with 20 mN/cm 2 preloading and a maximum 100-μm displacement in a piezo scanner, demonstrating ideal properties for an artificial gecko foot. Using this unique structural feature and anisotropic adhesion properties, we also demonstrate effective removal and assembly of nanoparticles into organized micrometer-scale circular and line patterns by a single brushing of this flat and uniform VA-CNT film.
Lin, Chueh-Ho; Chou, Li-Wei; Luo, Hong-Ji; Tsai, Po-Yi; Lieu, Fu-Kong; Chiang, Shang-Lin; Sung, Wen-Hsu
2015-01-01
Objective We investigated the training effects of interlimb force coupling training on paretic upper extremity outcomes in patients with chronic stroke and analyzed the relationship between motor recovery of the paretic hand, arm and functional performances on paretic upper limb. Design A randomized controlled trial with outcome assessment at baseline and after 4 weeks of intervention. Setting Taipei Veterans General Hospital, National Yang-Ming University. Participants Thirty-three subjects with chronic stroke were recruited and randomly assigned to training (n = 16) and control groups (n = 17). Interventions The computer-aided interlimb force coupling training task with visual feedback included different grip force generation methods on both hands. Main Outcome Measures The Barthel Index (BI), the upper extremity motor control Fugl-Meyer Assessment (FMA-UE), the Motor Assessment Score (MAS), and the Wolf Motor Function Test (WMFT). All assessments were executed by a blinded evaluator, and data management and statistical analysis were also conducted by a blinded researcher. Results The training group demonstrated greater improvement on the FMA-UE (p<.001), WMFT (p<.001), MAS (p = .004) and BI (p = .037) than the control group after 4 weeks of intervention. In addition, a moderate correlation was found between the improvement of scores for hand scales of the FMA and other portions of the FMA UE (r = .528, p = .018) or MAS (r = .596, p = .015) in the training group. Conclusion Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand, and facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. Trial Registration ClinicalTrials.gov NCT02247674. PMID:26193492
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-20
...: Topical Oxygen Chamber for Extremities; Availability; Correction AGENCY: Food and Drug Administration, HHS... Special Controls Guidance Documents: Topical Oxygen Chamber for Extremities.'' The document published... Oxygen Chamber for Extremities'' to the Division of Small Manufacturers, International, and Consumer...
The Lower Extremity Biomechanics of Single- and Double-Leg Stop-Jump Tasks
2011-01-01
The anterior cruciate ligament (ACL) injury is a common occurrence in sports requiring stop-jump tasks. Single- and double-leg stop-jump techniques are frequently executed in sports. The higher risk of ACL injury in single-leg drop landing task compared to a double-leg drop landing task has been identified. However the injury bias between single- and double-leg landing techniques has not been investigated for stop-jump tasks. The purpose of this study was to determine the differences between single- and double-leg stop-jump tasks in knee kinetics that were influenced by the lower extremity kinematics during the landing phase. Ground reaction force, lower extremity kinematics, and knee kinetics data during the landing phase were obtained from 10 subjects performing single- and double-leg stop-jump tasks, using motion-capture system and force palates. Greater peak posterior and vertical ground reaction forces, and peak proximal tibia anterior and lateral shear forces (p < 0.05) during landing phase were observed of single-leg stop-jump. Single-leg stop-jump exhibited smaller hip and knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground (p < 0.05). We found smaller peak hip and knee flexion angles (p < 0.05) during the landing phase of single-leg stop-jump. These results indicate that single-leg landing may have higher ACL injury risk than double-leg landing in stop-jump tasks that may be influenced by the lower extremity kinematics during the landing phase. Key points Non-contact ACL injuries are more likely to occur during the single-leg stop-jump task than during the double-leg stop-jump task. Single-leg stop-jump exhibited greater peak proximal tibia anterior and lateral shear forces, and peak posterior and vertical ground reaction forces during the landing phase than the double-leg stop-jump task. Single-leg stop-jump exhibited smaller hip flexion angle, knee flexion angle, and knee flexion angular velocity at initial foot contact with the ground. Single-leg stop-jump exhibited greater peak knee extension and valgus moment during the landing phase than the double-leg stop-jump task. Single-leg stop-jump extended the hip joint at initial foot contact with the ground. PMID:24149308
Study on Extremizing Adaptive Systems and Applications to Synthetic Aperture Radars.
1983-05-01
Air Force Office of Scientific Research/NL Bolling Air Force Base. DC 20332 ’,, , ..... -.. .. -.. -.. .. . . - . - - -. .. jjTVI E ()y T1-.’! Nt1 AL...This project was motivated by A. H. Klopf’s insightful observation and proposition on the functioning of the neuron cell and the nervous system in
NASA Astrophysics Data System (ADS)
Munaka, Tatsuya; Abe, Hirohisa; Kanai, Masaki; Sakamoto, Takashi; Nakanishi, Hiroaki; Yamaoka, Tetsuji; Shoji, Shuichi; Murakami, Akira
2006-07-01
We successfully developed a measurement system for real-time analysis of cellular function using a newly designed microchip. This microchip was equipped with a micro cell incubation chamber (240 nl) and was stimulated by a very small amount of stimuli (as small as 24 nl). Using the microchip system, cultivation of mast cells was successfully carried out. Monitoring of the cellular events after stimulation with an extremely small amount of fluid on a microchip was performed. This system could be applicable for various types of cellular analysis including real-time monitoring of cellular response by stimulation.
NASA Astrophysics Data System (ADS)
van Eck, C. M.; Morfopoulos, C.; Betts, R. A.; Chang, J.; Ciais, P.; Friedlingstein, P.; Regnier, P. A. G.
2016-12-01
The frequency and severity of extreme climate events such as droughts, extreme precipitation and heatwaves are expected to increase in our changing climate. These extreme climate events will have an effect on vegetation either by enhanced or reduced productivity. Subsequently, this can have a substantial impact on the terrestrial carbon sink and thus the global carbon cycle, especially as extreme climate events are expected to increase in frequency and severity. Connecting observational datasets with modelling studies provides new insights into these climate-vegetation interactions. This study aims to compare extremes in vegetation productivity as derived from observations with that of Dynamic Global Vegetation Models (DGVMs). In this case GIMMS-NDVI 3g is selected as the observational dataset and both JULES (Joint UK Land Environment Simulator) and ORCHIDEE (Organising Carbon and Hydrology In Dynamic Ecosystems) as the DGVMs. Both models are forced with PGFv2 Global Meteorological Forcing Dataset according to the ISI-MIP2 protocol for historical runs. Extremes in vegetation productivity are the focal point, which are identified as NDVI anomalies below the 10th percentile or above the 90th percentile during the growing season, referred to as browning or greening events respectively. The monthly NDVI dataset GIMMS-NDVI 3g is used to obtain the location in time and space of the vegetation extremes. The global GIMMS-NDVI 3g dataset has been subdivided into IPCC's SREX-regions for which the NDVI anomalies are calculated and the extreme thresholds are determined. With this information we can identify the location in time and space of the browning and greening events in remotely-sensed vegetation productivity. The same procedure is applied to the modelled Gross Primary Productivity (GPP) allowing a comparison between the spatial and temporal occurrence of the browning and greening events in the observational dataset and the models' output. The capacity of the models to catch observed extremes in vegetation productivity is assessed and compared. Factors contributing to observed and modelled vegetation browning/greening extremes are analysed. The results of this study provide a stepping stone to modelling future extremes in vegetation productivity.
Influence of North Atlantic modes on European climate extremes
NASA Astrophysics Data System (ADS)
Proemmel, K.; Cubasch, U.
2017-12-01
It is well known that the North Atlantic strongly influences European climate. Only few studies exist that focus on its impact on climate extremes. We are interested in these extremes and the processes and mechanisms behind it. For the analysis of the North Atlantic Oscillation (NAO) we use simulations performed with the Max Planck Institute for Meteorology Earth System Model (MPI-ESM). The NAO has a strong impact especially on European winter and the changes in minimum temperature are even larger than in maximum temperature. The impact of the Atlantic Multi-decadal Variability (AMV) on climate extremes is analyzed in ECHAM6 simulations forced with AMV warm and AMV cold sea surface temperature patterns. We analyze different extreme indices and try to understand the processes.
NASA Astrophysics Data System (ADS)
Liu, Wei; Li, Ying-jun; Jia, Zhen-yuan; Zhang, Jun; Qian, Min
2011-01-01
In working process of huge heavy-load manipulators, such as the free forging machine, hydraulic die-forging press, forging manipulator, heavy grasping manipulator, large displacement manipulator, measurement of six-dimensional heavy force/torque and real-time force feedback of the operation interface are basis to realize coordinate operation control and force compliance control. It is also an effective way to raise the control accuracy and achieve highly efficient manufacturing. Facing to solve dynamic measurement problem on six-dimensional time-varying heavy load in extremely manufacturing process, the novel principle of parallel load sharing on six-dimensional heavy force/torque is put forward. The measuring principle of six-dimensional force sensor is analyzed, and the spatial model is built and decoupled. The load sharing ratios are analyzed and calculated in vertical and horizontal directions. The mapping relationship between six-dimensional heavy force/torque value to be measured and output force value is built. The finite element model of parallel piezoelectric six-dimensional heavy force/torque sensor is set up, and its static characteristics are analyzed by ANSYS software. The main parameters, which affect load sharing ratio, are analyzed. The experiments for load sharing with different diameters of parallel axis are designed. The results show that the six-dimensional heavy force/torque sensor has good linearity. Non-linearity errors are less than 1%. The parallel axis makes good effect of load sharing. The larger the diameter is, the better the load sharing effect is. The results of experiments are in accordance with the FEM analysis. The sensor has advantages of large measuring range, good linearity, high inherent frequency, and high rigidity. It can be widely used in extreme environments for real-time accurate measurement of six-dimensional time-varying huge loads on manipulators.
NASA Astrophysics Data System (ADS)
Cannaby, Heather; Palmer, Matthew D.; Howard, Tom; Bricheno, Lucy; Calvert, Daley; Krijnen, Justin; Wood, Richard; Tinker, Jonathan; Bunney, Chris; Harle, James; Saulter, Andrew; O'Neill, Clare; Bellingham, Clare; Lowe, Jason
2016-05-01
Singapore is an island state with considerable population, industries, commerce and transport located in coastal areas at elevations less than 2 m making it vulnerable to sea level rise. Mitigation against future inundation events requires a quantitative assessment of risk. To address this need, regional projections of changes in (i) long-term mean sea level and (ii) the frequency of extreme storm surge and wave events have been combined to explore potential changes to coastal flood risk over the 21st century. Local changes in time-mean sea level were evaluated using the process-based climate model data and methods presented in the United Nations Intergovernmental Panel on Climate Change Fifth Assessment Report (IPCC AR5). Regional surge and wave solutions extending from 1980 to 2100 were generated using ˜ 12 km resolution surge (Nucleus for European Modelling of the Ocean - NEMO) and wave (WaveWatchIII) models. Ocean simulations were forced by output from a selection of four downscaled ( ˜ 12 km resolution) atmospheric models, forced at the lateral boundaries by global climate model simulations generated for the IPCC AR5. Long-term trends in skew surge and significant wave height were then assessed using a generalised extreme value model, fit to the largest modelled events each year. An additional atmospheric solution downscaled from the ERA-Interim global reanalysis was used to force historical ocean model simulations extending from 1980 to 2010, enabling a quantitative assessment of model skill. Simulated historical sea-surface height and significant wave height time series were compared to tide gauge data and satellite altimetry data, respectively. Central estimates of the long-term mean sea level rise at Singapore by 2100 were projected to be 0.52 m (0.74 m) under the Representative Concentration Pathway (RCP)4.5 (8.5) scenarios. Trends in surge and significant wave height 2-year return levels were found to be statistically insignificant and/or physically very small under the more severe RCP8.5 scenario. We conclude that changes to long-term mean sea level constitute the dominant signal of change to the projected inundation risk for Singapore during the 21st century. We note that the largest recorded surge residual in the Singapore Strait of ˜ 84 cm lies between the central and upper estimates of sea level rise by 2100, highlighting the vulnerability of the region.
Extremism without extremists: Deffuant model with emotions
NASA Astrophysics Data System (ADS)
Sobkowicz, Pawel
2015-03-01
The frequent occurrence of extremist views in many social contexts, often growing from small minorities to almost total majority, poses a significant challenge for democratic societies. The phenomenon can be described within the sociophysical paradigm. We present a modified version of the continuous bounded confidence opinion model, including a simple description of the influence of emotions on tolerances, and eventually on the evolution of opinions. Allowing for psychologically based correlation between the extreme opinions, high emotions and low tolerance for other people's views leads to quick dominance of the extreme views within the studied model, without introducing a special class of agents, as has been done in previous works. This dominance occurs even if the initial numbers of people with extreme opinions is very small. Possible suggestions related to mitigation of the process are briefly discussed.
Sex Differences During an Overhead Squat Assessment.
Mauntel, Timothy C; Post, Eric G; Padua, Darin A; Bell, David R
2015-08-01
A disparity exists between the rates of male and female lower extremity injuries. One factor that may contribute to this disparity is high-risk biomechanical patterns that are commonly displayed by females. It is unknown what biomechanical differences exist between males and females during an overhead squat. This study compared lower extremity biomechanics during an overhead squat and ranges of motion between males and females. An electromagnetic motion tracking system interfaced with a force platform was used to quantify peak lower extremity kinematics and kinetics during the descent phase of each squat. Range of motion measurements were assessed with a standard goniometer. Differences between male and female kinematics, kinetics, and ranges of motion were identified with t tests. Males displayed greater peak knee valgus angle, peak hip flexion angle, peak vertical ground reaction forces, and peak hip extension moments. Males also displayed less active ankle dorsiflexion with the knee extended and hip internal and external rotation than females. No other differences were observed. The biomechanical differences between males and females during the overhead squat may result from differences in lower extremity ranges of motion. Therefore, sex-specific injury prevention programs should be developed to improve biomechanics and ranges of motion.
Sawers, Andrew; Bhattacharjee, Tapomayukh; McKay, J Lucas; Hackney, Madeleine E; Kemp, Charles C; Ting, Lena H
2017-01-31
Physical interactions between two people are ubiquitous in our daily lives, and an integral part of many forms of rehabilitation. However, few studies have investigated forces arising from physical interactions between humans during a cooperative motor task, particularly during overground movements. As such, the direction and magnitude of interaction forces between two human partners, how those forces are used to communicate movement goals, and whether they change with motor experience remains unknown. A better understanding of how cooperative physical interactions are achieved in healthy individuals of different skill levels is a first step toward understanding principles of physical interactions that could be applied to robotic devices for motor assistance and rehabilitation. Interaction forces between expert and novice partner dancers were recorded while performing a forward-backward partnered stepping task with assigned "leader" and "follower" roles. Their position was recorded using motion capture. The magnitude and direction of the interaction forces were analyzed and compared across groups (i.e. expert-expert, expert-novice, and novice-novice) and across movement phases (i.e. forward, backward, change of direction). All dyads were able to perform the partnered stepping task with some level of proficiency. Relatively small interaction forces (10-30N) were observed across all dyads, but were significantly larger among expert-expert dyads. Interaction forces were also found to be significantly different across movement phases. However, interaction force magnitude did not change as whole-body synchronization between partners improved across trials. Relatively small interaction forces may communicate movement goals (i.e. "what to do and when to do it") between human partners during cooperative physical interactions. Moreover, these small interactions forces vary with prior motor experience, and may act primarily as guiding cues that convey information about movement goals rather than providing physical assistance. This suggests that robots may be able to provide meaningful physical interactions for rehabilitation using relatively small force levels.
Strength Performance Assessment in a Simulated Men’s Gymnastics Still Rings Cross
Dunlavy, Jennifer K.; Sands, William A.; McNeal, Jeni R.; Stone, Michael H.; Smith, Sarah L.; Jemni, Monem; Haff, G. Gregory
2007-01-01
Athletes in sports such as the gymnastics who perform the still rings cross position are disadvantaged due to a lack of objective and convenient measurement methods. The gymnastics “cross ”is a held isometric strength position considered fundamental to all still rings athletes. The purpose of this investigation was to determine if two small force platforms (FPs) placed on supports to simulate a cross position could demonstrate the fidelity necessary to differentiate between athletes who could perform a cross from those who could not. Ten gymnasts (5 USA Gymnastics, Senior National Team, and 5 Age Group Level Gymnasts) agreed to participate. The five Senior National Team athletes were grouped as cross Performers; the Age Group Gymnasts could not successfully perform the cross position and were grouped as cross Non- Performers. The two small FPs were first tested for reliability and validity and were then used to obtain a force-time record of a simulated cross position. The simulated cross test consisted of standing between two small force platforms placed on top of large solid gymnastics spotting blocks. The gymnasts attempted to perform a cross position by placing their hands at the center of the FPs and pressing downward with sufficient force that they could remove the support of their feet from the floor. Force-time curves (100 Hz) were obtained and analyzed for the sum of peak and mean arm ground reaction forces. The summed arm forces, mean and peak, were compared to body weight to determine how close the gymnasts came to achieving forces equal to body weight and thus the ability to perform the cross. The mean and peak summed arm forces were able to statistically differentiate between athletes who could perform the cross from those who could not (p < 0.05). The force-time curves and small FPs showed sufficient fidelity to differentiate between Performer and Non- Performer groups. This experiment showed that small and inexpensive force platforms may serve as useful adjuncts to athlete performance measurement such as the gymnastics still rings cross. Key pointsStrength-related skills are difficult to assess in some sports and thus require special means.Small force platforms have sufficient fidelity to assess the differences between gymnasts who can perform a still rings cross from those who cannot.Strength assessment via small force platforms may serve as a means of assessing skill readiness, strength symmetry, and progress in learning a still rings cross. PMID:24149230
Changes in gluteal muscle forces with alteration of footstrike pattern during running.
Vannatta, Charles Nathan; Kernozek, Thomas W; Gheidi, Naghmeh
2017-10-01
Gait retraining is a common form of treatment for running related injuries. Proximal factors at the hip have been postulated as having a role in the development of running related injuries. How altering footstrike affects hip muscles forces and kinematics has not been described. Thus, we aimed to quantify differences in hip muscle forces and hip kinematics that may occur when healthy runners are instructed to alter their foot strike pattern from their habitual rear-foot strike to a forefoot strike. This may gain insight on the potential etiology and treatment methods of running related lower extremity injury. Twenty-five healthy female runners completed a minimum of 10 running trials in a controlled laboratory setting under rear-foot strike and instructed forefoot strike conditions. Kinetic and kinematic data were used in an inverse dynamic based static optimization to estimate individual muscle forces during running. Within subject differences were investigated using a repeated measures multi-variate analysis of variance. Peak gluteus medius and minimus and hamstring forces were reduced while peak gluteus maximus force was increased when running with an instructed forefoot strike pattern. Peak hip adduction, hip internal rotation, and heel-COM distance were also reduced. Therefore, instructing habitual rearfoot strike runners to run with a forefoot strike pattern resulted in changes in peak gluteal and hamstring muscle forces and hip kinematics. These changes may be beneficial to the development and treatment of running related lower extremity injury. Copyright © 2017 Elsevier B.V. All rights reserved.
Total and Lower Extremity Lean Mass Percentage Positively Correlates With Jump Performance.
Stephenson, Mitchell L; Smith, Derek T; Heinbaugh, Erika M; Moynes, Rebecca C; Rockey, Shawn S; Thomas, Joi J; Dai, Boyi
2015-08-01
Strength and power have been identified as valuable components in both athletic performance and daily function. A major component of strength and power is the muscle mass, which can be assessed with dual-energy x-ray absorptiometry (DXA). The primary purpose of this study was to quantify the relationship between total body lean mass percentage (TBLM%) and lower extremity lean mass percentage (LELM%) and lower extremity force/power production during a countermovement jump (CMJ) in a general population. Researchers performed a DXA analysis on 40 younger participants aged 18-35 years, 28 middle-aged participants aged 36-55 years, and 34 older participants aged 56-75 years. Participants performed 3 CMJ on force platforms. Correlations revealed significant and strong relationships between TBLM% and LELM% compared with CMJ normalized peak vertical ground reaction force (p < 0.001, r = 0.59), normalized peak vertical power (p < 0.001, r = 0.73), and jump height (p < 0.001, r = 0.74) for the combined age groups. Most relationships were also strong within each age group, with some relationships being relatively weaker in the middle-aged and older groups. Minimal difference was found between correlation coefficients of TBLM% and LELM%. Coefficients of determination were all below 0.6 for the combined group, indicating that between-participant variability in CMJ measures cannot be completely explained by lean mass percentages. The findings have implications in including DXA-assessed lean mass percentage as a component for evaluating lower extremity strength and power. A paired DXA analysis and CMJ jump test may be useful for identifying neuromuscular deficits that limit performance.
Qin, Jin; Trudeau, Matthieu; Katz, Jeffrey N; Buchholz, Bryan; Dennerlein, Jack T
2011-08-01
Musculoskeletal disorders associated with computer use span the joints of the upper extremity. Computing typically involves tapping in multiple directions. Thus, we sought to describe the loading on the finger, wrist, elbow and shoulder joints in terms of kinematic and kinetic difference across single key switch tapping to directional tapping on multiple keys. An experiment with repeated measures design was conducted. Six subjects tapped with their right index finger on a stand-alone number keypad placed horizontally in three conditions: (1) on single key switch (the number key 5); (2) left and right on number key 4 and 6; (3) top and bottom on number key 8 and 2. A force-torque transducer underneath the keypad measured the fingertip force. An active-marker infrared motion analysis system measured the kinematics of the fingertip, hand, forearm, upper arm and torso. Joint moments for the metacarpophalangeal, wrist, elbow, and shoulder joints were estimated using inverse dynamics. Tapping in the top-bottom orientation introduced the largest biomechanical loading on the upper extremity especially for the proximal joint, followed by tapping in the left-right orientation, and the lowest loading was observed during single key switch tapping. Directional tapping on average increased the fingertip force, joint excursion, and peak-to-peak joint torque by 45%, 190% and 55%, respectively. Identifying the biomechanical loading patterns associated with these fundamental movements of keying improves the understanding of the risks of upper extremity musculoskeletal disorders for computer keyboard users. Copyright © 2010 Elsevier Ltd. All rights reserved.
Amplification of heat extremes by plant CO2 physiological forcing.
Skinner, Christopher B; Poulsen, Christopher J; Mankin, Justin S
2018-03-15
Plants influence extreme heat events by regulating land-atmosphere water and energy exchanges. The contribution of plants to changes in future heat extremes will depend on the responses of vegetation growth and physiology to the direct and indirect effects of elevated CO 2 . Here we use a suite of earth system models to disentangle the radiative versus vegetation effects of elevated CO 2 on heat wave characteristics. Vegetation responses to a quadrupling of CO 2 increase summer heat wave occurrence by 20 days or more-30-50% of the radiative response alone-across tropical and mid-to-high latitude forests. These increases are caused by CO 2 physiological forcing, which diminishes transpiration and its associated cooling effect, and reduces clouds and precipitation. In contrast to recent suggestions, our results indicate CO 2 -driven vegetation changes enhance future heat wave frequency and intensity in most vegetated regions despite transpiration-driven soil moisture savings and increases in aboveground biomass from CO 2 fertilization.
Late outcomes of a randomized trial of high-frequency oscillation in neonates.
Zivanovic, Sanja; Peacock, Janet; Alcazar-Paris, Mireia; Lo, Jessica W; Lunt, Alan; Marlow, Neil; Calvert, Sandy; Greenough, Anne
2014-03-20
Results from an observational study involving neonates suggested that high-frequency oscillatory ventilation (HFOV), as compared with conventional ventilation, was associated with superior small-airway function at follow-up. Data from randomized trials are needed to confirm this finding. We studied 319 adolescents who had been born before 29 weeks of gestation and had been enrolled in a multicenter, randomized trial that compared HFOV with conventional ventilation immediately after birth. The trial involved 797 neonates, of whom 592 survived to hospital discharge. We compared follow-up data from adolescents who had been randomly assigned to HFOV with follow-up data from those who had been randomly assigned to conventional ventilation, with respect to lung function and respiratory health, health-related quality of life, and functional status, as assessed with the use of questionnaires completed when the participants were 11 to 14 years of age. The primary outcome was forced expiratory flow at 75% of the expired vital capacity (FEF75). The HFOV group had superior results on a test of small-airway function (z score for FEF75, -0.97 with HFOV vs. -1.19 with conventional therapy; adjusted difference, 0.23 [95% confidence interval, 0.02 to 0.45]). There were significant differences in favor of HFOV in several other measures of respiratory function, including forced expiratory volume in 1 second, forced vital capacity, peak expiratory flow, diffusing capacity, and impulse-oscillometric findings. As compared with the conventional-therapy group, the HFOV group had significantly higher ratings from teachers in three of eight school subjects assessed, but there were no other significant differences in functional outcomes. In a randomized trial involving children who had been born extremely prematurely, those who had undergone HFOV, as compared with those who had received conventional ventilation, had superior lung function at 11 to 14 years of age, with no evidence of poorer functional outcomes. (Funded by the National Institute for Health Research Health Technology Assessment Programme and others.).
Dynamics of Nuclear Regions of Galaxies
NASA Technical Reports Server (NTRS)
Miller, Richard H.
1996-01-01
Current research carried out with the help of the ASEE-NASA Summer Faculty Program, at NASA-Ames, is concentrated on the dynamics of nuclear regions of galaxies. From a dynamical point of view a galaxy is a collection of around 10(sup 11) stars like our Sun, each of which moves in the summed gravitational field of all the remaining stars. Thus galaxy dynamics becomes a self-consistent n-body problem with forces given by Newtonian gravitation. Strong nonlinearity in the gravitational force and the inherent nonlinearity of self-consistent problems both argue for a numerical approach. The technique of numerical experiments consis of constructing an environment in the computer that is as close as possible to the physical conditions in a real galaxy and then carrying out experiments much like laboratory experiments in physics or engineering, in this environment. Computationally, an experiment is an initial value problem, and a good deal of thought and effort goes into the design of the starting conditions that serve as initial values. Experiments are run at Ames because all the 'equipment' is in place-the programs, the necessary computational power, and good facilities for post-run analysis. Our goal for this research program is to study the nuclear regions in detail and this means replacing most of the galaxy by a suitable boundary condition to allow the full capability of numerical experiments to be brought to bear on a small region perhaps 1/1000 of the linear dimensions of an entire galaxy. This is an extremely delicate numerical problem, one in which some small feature overlook, can easily lead to a collapse or blow-up of the entire system. All particles attract each other in gravitational problems, and the 1/r(sup 2) force is: (1) nonlinear; (2) strong at short range; (3) long-range, and (4) unscreened at any distance.
Generalized extreme gust wind speeds distributions
Cheng, E.; Yeung, C.
2002-01-01
Since summer 1996, the US wind engineers are using the extreme gust (or 3-s gust) as the basic wind speed to quantify the destruction of extreme winds. In order to better understand these destructive wind forces, it is important to know the appropriate representations of these extreme gust wind speeds. Therefore, the purpose of this study is to determine the most suitable extreme value distributions for the annual extreme gust wind speeds recorded in large selected areas. To achieve this objective, we are using the generalized Pareto distribution as the diagnostic tool for determining the types of extreme gust wind speed distributions. The three-parameter generalized extreme value distribution function is, thus, reduced to either Type I Gumbel, Type II Frechet or Type III reverse Weibull distribution function for the annual extreme gust wind speeds recorded at a specific site.With the considerations of the quality and homogeneity of gust wind data collected at more than 750 weather stations throughout the United States, annual extreme gust wind speeds at selected 143 stations in the contiguous United States were used in the study. ?? 2002 Elsevier Science Ltd. All rights reserved.
Curvature versus v-bends in a group B titanium T-loop spring.
Martins, Renato Parsekian; Buschang, Peter H; Viecilli, Rodrigo; dos Santos-Pinto, Ary
2008-05-01
To compare the system of forces acting on curvature and preactivated V-bends in titanium T-loop springs (TTLSs) made of 0.017- x 0.025-inch TMA (titanium molibdenium alloy) wire. Pictures of TTLSs preactivated by curvature and V-bends were inserted in the LOOP software program to design both TTLSs. Symmetry was assured using the program. Both TTLSs used the same amount (length) of wire and had the same angulation between their anterior and posterior extremities when passive. The loops were activated 7 mm, and forces and moments were registered after each 0.5 mm of deactivation. The brackets were at the same height, separated by 23 mm and angulated 0 degrees . The preactivated curvature TTLS delivered horizontal forces ranging from 34 gF to 456 gF, while the TTLS preactivated by V-bends delivered forces ranging from 54 gF to 517 gF. The forces decreased more (30 gF vs 33 gF) with every 0.5 mm of activation on the preactivated V-bend TTLS than on the preactivated curvature TTLS. Vertical forces were low and clinically insignificant for both TTLSs. The moment to force (MF) ratios were systematically higher on the preactivated curvature than on the preactivated V-bend TTLS (from 5.8 mm to 38.8 mm vs 4.7 mm to 28.3 mm). Although both loops show symmetrical moments in their anterior and posterior extremities and can be used for group B anchorage, the curvature preactivated TTLS delivers lower horizontal forces and higher MF ratios than the acute preactivated V-bend TTLS.
Influence of spatial and temporal scales in identifying temperature extremes
NASA Astrophysics Data System (ADS)
van Eck, Christel M.; Friedlingstein, Pierre; Mulder, Vera L.; Regnier, Pierre A. G.
2016-04-01
Extreme heat events are becoming more frequent. Notable are severe heatwaves such as the European heatwave of 2003, the Russian heat wave of 2010 and the Australian heatwave of 2013. Surface temperature is attaining new maxima not only during the summer but also during the winter. The year of 2015 is reported to be a temperature record breaking year for both summer and winter. These extreme temperatures are taking their human and environmental toll, emphasizing the need for an accurate method to define a heat extreme in order to fully understand the spatial and temporal spread of an extreme and its impact. This research aims to explore how the use of different spatial and temporal scales influences the identification of a heat extreme. For this purpose, two near-surface temperature datasets of different temporal scale and spatial scale are being used. First, the daily ERA-Interim dataset of 0.25 degree and a time span of 32 years (1979-2010). Second, the daily Princeton Meteorological Forcing Dataset of 0.5 degree and a time span of 63 years (1948-2010). A temperature is considered extreme anomalous when it is surpassing the 90th, 95th, or the 99th percentile threshold based on the aforementioned pre-processed datasets. The analysis is conducted on a global scale, dividing the world in IPCC's so-called SREX regions developed for the analysis of extreme climate events. Pre-processing is done by detrending and/or subtracting the monthly climatology based on 32 years of data for both datasets and on 63 years of data for only the Princeton Meteorological Forcing Dataset. This results in 6 datasets of temperature anomalies from which the location in time and space of the anomalous warm days are identified. Comparison of the differences between these 6 datasets in terms of absolute threshold temperatures for extremes and the temporal and spatial spread of the extreme anomalous warm days show a dependence of the results on the datasets and methodology used. This stresses the need for a careful selection of data and methodology when identifying heat extremes.
1996-06-20
Engineers at one of MSFC's vacuum chambers begin testing a microthruster model. The purpose of these tests are to collect sufficient data that will enabe NASA to develop microthrusters that will move the Space Shuttle, a future space station, or any other space related vehicle with the least amount of expended energy. When something is sent into outer space, the forces that try to pull it back to Earth (gravity) are very small so that it only requires a very small force to move very large objects. In space, a force equal to a paperclip can move an object as large as a car. Microthrusters are used to produce these small forces.
A Test-Length Correction to the Estimation of Extreme Proficiency Levels
ERIC Educational Resources Information Center
Magis, David; Beland, Sebastien; Raiche, Gilles
2011-01-01
In this study, the estimation of extremely large or extremely small proficiency levels, given the item parameters of a logistic item response model, is investigated. On one hand, the estimation of proficiency levels by maximum likelihood (ML), despite being asymptotically unbiased, may yield infinite estimates. On the other hand, with an…
Yu, Wen-Hsiu; Liu, Wen-Yu; Wong, Alice May-Kuen; Wang, Tzu-Chi; Li, Yen-Chen; Lien, Hen-Yu
2015-01-01
[Purpose] The purpose of this study was to investigate the effects of a forced-use training program on gait, mobility and quality of life of post-acute stroke patients. [Subjects] Twenty-one individuals with unilateral stroke participated in this study. All participants had suffered from first-ever stroke with time since onset of at least 3 months. [Methods] A single-blinded, non-equivalent, pre-post controlled design with 1-month follow-up was adopted. Participants received either a forced-use or a conventional physical therapy program for 2 weeks. The main outcomes assessed were preferred and fastest walking velocities, spatial and temporal symmetry indexes of gait, the timed up and go test, the Rivermead Mobility Index, and the Stroke-Specific Quality of Life Scale (Taiwan version). [Results] Forced-use training induced greater improvements in gait and mobility than conventional physical therapy. In addition, compared to pre-training, patients in the conventional physical therapy group walked faster but more asymmetrically after training. However, neither program effectively improved in-hospital quality of life. [Conclusion] The forced-use approach can be successfully applied to the lower extremities of stroke patients to improve mobility, walking speeds and symmetry of gait. PMID:25729182
Outcome of Lateral Transfer of the FHL or FDL for Concomitant Peroneal Tendon Tears.
Seybold, Jeffrey D; Campbell, John T; Jeng, Clifford L; Short, Kelly W; Myerson, Mark S
2016-06-01
Concomitant tears of the peroneus longus and brevis tendons are rare injuries, with literature limited to case reports and small patient series. Only 1 recent study directly compared the results of single-stage lateral deep flexor transfer, and no previous series objectively evaluated power and balance following transfer. The purpose of this study was to evaluate clinical outcomes, patient satisfaction, and objective power and balance data following single-stage flexor hallucis longus (FHL) and flexor digitorum longus (FDL) tendon transfers for treatment of concomitant peroneus longus and brevis tears. Over an 8-year period (2005-2012), 9 patients underwent lateral transfer of the FHL or FDL tendon for treatment of concomitant peroneus longus and brevis tears. All but 1 patient underwent additional procedures to address hindfoot malalignment or other contributing deformity at the time of surgery. Mean age was 56.9 years, and average body mass index was 27.9. Lateral transfer of the FHL was performed in 5 patients, and FDL transfer performed in 4 with mean follow-up 35.7 months (range: 11-94). Eight of 9 patients completed SF-12 and Foot Function Index (FFI) scores, and 7 returned for range of motion (ROM) and manual strength testing of the involved and normal extremities. These 7 patients also completed force plate balance tests, in addition to peak force and power testing on a PrimusRS machine with a certified physical therapist. All patients were satisfied with the results of the procedure. Mean SF-12 physical and mental scores were 32 and 55, respectively; mean FFI total score was 56.7. No postoperative infections were noted. Two patients continued to utilize orthotics or braces, and 2 patients reported occasional pain with weightbearing activity. Three patients noted mild paresthesias in the distribution of the sural nerve and 2 demonstrated tibial neuritis. All patients demonstrated 4/5 eversion strength in the involved extremity. Average loss of inversion and eversion ROM were 24.7% and 27.2% of normal, respectively. Mean postoperative eversion peak force and power were decreased greater than 55% relative to the normal extremity. Patients demonstrated nearly 50% increases in both center-of-pressure tracing length and velocity during balance testing. There were no statistically significant differences between the FHL and FDL transfer groups with regards to clinical examination or objective power and balance tests. The FHL and FDL tendons were both successful options for lateral transfer in cases of concomitant peroneus longus and brevis tears. Objective measurements of strength and balance demonstrated significant deficits in the operative extremity, even years following the procedure. These differences, however, did not appear to alter or inhibit patient activity levels or high satisfaction rates with the procedure. Although anatomic studies have demonstrated benefits of FHL transfer over the FDL tendon, further studies with increased patient numbers are needed to determine if these differences are clinically significant. Level IV, retrospective case series. © The Author(s) 2016.
Electrically Controlled Valve With Small Motor
NASA Technical Reports Server (NTRS)
Reinicke, Robert H.; Mohtar, Rafic; Nelson, Richard O.
1992-01-01
Design of electrically controlled valve exploits force-multiplying principle to overcome large back-pressure force resisting initial opening. Design makes possible to open valve by use of relatively small motor adequate for rest of valve motion, but otherwise not large enough to open valve. In simple linear lifting, small horizontal forces applied to pair of taut cables to lift large weight through short distance. In rotary lifting, similar effect achieved by rotating, about an axis, disk to which initially axial cables attached.
Downwind pre-aligned rotors for extreme-scale wind turbines
Loth, Eric; Steele, Adam; Qin, Chao; ...
2017-03-08
Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less
Downwind pre-aligned rotors for extreme-scale wind turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Loth, Eric; Steele, Adam; Qin, Chao
Downwind force angles are small for current turbines systems (1-5 MW) such that they may be readily accommodated by conventional upwind configurations. However, analysis indicates that extreme-scale systems (10-20 MW) will have larger angles that may benefit from downwind-aligned configurations. To examine potential rotor mass reduction, the pre-alignment concept was investigated a two-bladed configuration by keeping the structural and aerodynamic characteristics of each blade fixed (to avoids a complete blade re-design). Simulations for a 13.2 MW rated rotor at steady-state conditions show that this concept-level two-bladed design may yield 25% rotor mass savings while also reducing average blade stress overmore » all wind speeds. These results employed a pre-alignment on the basis of a wind speed of 1.25 times the rated wind speed. The downwind pre-aligned concept may also reduce damage equivalent loads on the blades by 60% for steady rated wind conditions. Even higher mass and damage equivalent load savings (relative to conventional upwind designs) may be possible for larger systems (15-20 MW) for which load-alignment angles become even larger. Furthermore, much more work is needed to determine whether this concept can be translated into a practical design that must meet a wide myriad of other criteria.« less
NASA Astrophysics Data System (ADS)
Schumacher, R. S.; Peters, J. M.
2015-12-01
Mesoscale convective systems (MCSs) are responsible for a large fraction of warm-season extreme rainfall events over the continental United States, as well as other midlatitude regions globally. The rainfall production in these MCSs is determined by numerous factors, including the large-scale forcing for ascent, the organization of the convection, cloud microphysical processes, and the surrounding thermodynamic and kinematic environment. Furthermore, heavy-rain-producing MCSs are most common at night, which means that well-studied mechanisms for MCS maintenance and organization such as cold pools (gravity currents) are not always at work. In this study, we use numerical model simulations and recent field observations to investigate the sensitivity of low-level MCS structures, and their influences on rainfall, to the details of the thermodynamic environment. In particular, small alterations to the initial conditions in idealized and semi-idealized simulations result in comparatively large precipitation changes, both in terms of the intensity and the spatial distribution. The uncertainties in the thermodynamic enviroments in the model simulations will be compared with high-resolution observations from the Plains Elevated Convection At Night (PECAN) field experiment in 2015. The results have implications for the paradigms of "surface-based" versus "elevated" convection, as well as for the predictability of warm-season convective rainfall.
A divergence-cleaning scheme for cosmological SPMHD simulations
NASA Astrophysics Data System (ADS)
Stasyszyn, F. A.; Dolag, K.; Beck, A. M.
2013-01-01
In magnetohydrodynamics (MHD), the magnetic field is evolved by the induction equation and coupled to the gas dynamics by the Lorentz force. We perform numerical smoothed particle magnetohydrodynamics (SPMHD) simulations and study the influence of a numerical magnetic divergence. For instabilities arising from {nabla }\\cdot {boldsymbol B} related errors, we find the hyperbolic/parabolic cleaning scheme suggested by Dedner et al. to give good results and prevent numerical artefacts from growing. Additionally, we demonstrate that certain current SPMHD implementations of magnetic field regularizations give rise to unphysical instabilities in long-time simulations. We also find this effect when employing Euler potentials (divergenceless by definition), which are not able to follow the winding-up process of magnetic field lines properly. Furthermore, we present cosmological simulations of galaxy cluster formation at extremely high resolution including the evolution of magnetic fields. We show synthetic Faraday rotation maps and derive structure functions to compare them with observations. Comparing all the simulations with and without divergence cleaning, we are able to confirm the results of previous simulations performed with the standard implementation of MHD in SPMHD at normal resolution. However, at extremely high resolution, a cleaning scheme is needed to prevent the growth of numerical {nabla }\\cdot {boldsymbol B} errors at small scales.
Energy-Absorbing, Lightweight Wheels
NASA Technical Reports Server (NTRS)
Waydo, Peter
2003-01-01
Improved energy-absorbing wheels are under development for use on special-purpose vehicles that must traverse rough terrain under conditions (e.g., extreme cold) in which rubber pneumatic tires would fail. The designs of these wheels differ from those of prior non-pneumatic energy-absorbing wheels in ways that result in lighter weights and more effective reduction of stresses generated by ground/wheel contact forces. These wheels could be made of metals and/or composite materials to withstand the expected extreme operating conditions. As shown in the figure, a wheel according to this concept would include an isogrid tire connected to a hub via spring rods. The isogrid tire would be a stiff, lightweight structure typically made of aluminum. The isogrid aspect of the structure would both impart stiffness and act as a traction surface. The hub would be a thin-walled body of revolution having a simple or compound conical or other shape chosen for structural efficiency. The spring rods would absorb energy and partially isolate the hub and the supported vehicle from impact loads. The general spring-rod configuration shown in the figure was chosen because it would distribute contact and impact loads nearly evenly around the periphery of the hub, thereby helping to protect the hub against damage that would otherwise be caused by large loads concentrated onto small portions of the hub.
Mahaki, M; Mi'mar, R; Mahaki, B
2015-10-01
Anterior cruciate ligament (ACL) injury continues to be an important medical issue for athletes participating in sports. Vertical and posterior ground reaction forces have received considerable attention for their potential influence on ACL injuries. The purpose of this study was to examine the relationship between electromyographic activity of lower extremity muscles and the peak vertical and posterior ground reaction forces during single leg drop landing. Thirteen physical education male students participated in this correlation study. Electromyographic activities of gluteus medius, biceps femoris, medial gastrocnemius, soleus as well as anterior tibialis muscles along with ground reaction forces were measured. Participants performed single-leg landing from a 0.3 m height on to a force platform. Landing was divided into two phases: 100 ms preceding ground contact and 100 ms proceeding ground contact. Pearson correlation test was used to determine the relationships between these muscles activity and peak vertical and posterior ground reaction forces. The results of the study indicated that the activity of soleus and tibialis anterior in pre-landing phase were positively correlated with peak vertical ground reaction force ([P≤0.04], [P≤0.008], respectively). However, no significant correlation was found between the activities of other muscles in pre-landing phase and peak vertical as well as peak posterior ground reaction forces. Also, no significant correlation was found between the activities of muscles in post-landing phase and peak vertical as well as peak posterior ground reaction forces. Soleus loading shifts the proximal tibia posterior at the knee joint and tibialis anterior prevent hyperporonation of the ankle, a mechanisms of ACL injury. Hence, neuromuscular training promoting preparatory muscle activity in these muscles may reduce the incidence of ACL injuries.
ELROI Extremely Low Resource Optical Identifier. A license plate for your satellite, and more.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, David
ELROI (Extremely Low Resource Optical Identifier) is a license plate for your satellite; a small tag that flashes an optical identification code that can be read by a small telescope on the ground. The final version of the tag will be the size of a thick postage stamp and fully autonomous: you can attach it to everything that goes into space, including small cubesats and inert debris like rocket stages, and it will keep blinking even after the satellite is shut down, reliably identifying the object from launch until re-entry.
Destroying charged black holes in higher dimensions with test particles
NASA Astrophysics Data System (ADS)
Wu, Bin; Liu, Weiyang; Tang, Hao; Yue, Rui-Hong
2017-07-01
A possible way to destroy the Tangherlini Reissner-Nordström black hole is discussed in the spirit of Wald’s gedanken experiment. By neglecting radiation and self force effects, the absorbing condition and destruction condition of the test point particle which is capable of destroying the black hole are obtained. We find that it is impossible to challenge the weak cosmic censorship for an initially extremal black hole in all dimensions. Instead, it is shown that the near extremal black hole will turn into a naked singularity in this particular process, in which case the allowed range of the particle’s energy is very narrow. The result indicates that the self-force effects may well change the outcome of the calculation.
Soufli, Regina; Baker, Sherry L; Windt, David L; Gullikson, Eric M; Robinson, Jeff C; Podgorski, William A; Golub, Leon
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV) wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement with EUV reflectance measurements of the mirrors after multilayer coating.
Theoretical model for Sub-Doppler Cooling with EIT System
NASA Astrophysics Data System (ADS)
He, Peiru; Tengdin, Phoebe; Anderson, Dana; Rey, Ana Maria; Holland, Murray
2016-05-01
We propose a of sub-Doppler cooling mechanism that takes advantage of the unique spectral features and extreme dispersion generated by the so-called Electromagnetically Induced Transparency (EIT) effect, a destructive quantum interference phenomenon experienced by atoms with Lambda-shaped energy levels when illuminated by two light fields with appropriate frequencies. By detuning the probe lasers slightly from the ``dark resonance'', we observe that atoms can be significantly cooled down by the strong viscous force within the transparency window, while being just slightly heated by the diffusion caused by the small absorption near resonance. In contrast to polarization gradient cooling or EIT sideband cooling, no external magnetic field or external confining potential are required. Using a semi-classical method, analytical expressions, and numerical simulations, we demonstrate that the proposed EIT cooling method can lead to temperatures well below the Doppler limit. This work is supported by NSF and NIST.
Artificial intelligent e-learning architecture
NASA Astrophysics Data System (ADS)
Alharbi, Mafawez; Jemmali, Mahdi
2017-03-01
Many institutions and university has forced to use e learning, due to its ability to provide additional and flexible solutions for students and researchers. E-learning In the last decade have transported about the extreme changes in the distribution of education allowing learners to access multimedia course material at any time, from anywhere to suit their specific needs. In the form of e learning, instructors and learners live in different places and they do not engage in a classroom environment, but within virtual universe. Many researches have defined e learning based on their objectives. Therefore, there are small number of e-learning architecture have proposed in the literature. However, the proposed architecture has lack of embedding intelligent system in the architecture of e learning. This research argues that unexplored potential remains, as there is scope for e learning to be intelligent system. This research proposes e-learning architecture that incorporates intelligent system. There are intelligence components, which built into the architecture.
Gravitational vacuum energy in our recently accelerating universe
NASA Astrophysics Data System (ADS)
Bludman, Sidney
2009-04-01
We review current observations of the homogeneous cosmological expansion which, because they measure only kinematic variables, cannot determine the dynamics driving the recent accelerated expansion. The minimal fit to the data, the flat ACDM model, consisting of cold dark matter and a cosmological constant, interprets 4? geometrically as a classical spacetime curvature constant of nature, avoiding any reference to quantum vacuum energy. (The observed Uehling and Casimir effects measure forces due to QED vacuum polarization, but not any quantum material vacuum energies.) An Extended Anthropic Principle, that Dark Energy and Dark Gravity be indistinguishable, selects out flat ACDM. Prospective cosmic shear and galaxy clustering observations of the growth of fluctuations are intended to test whether the 'dark energy' driving the recent cosmological acceleration is static or moderately dynamic. Even if dynamic, observational differences between an additional negative-pressure material component within general relativity (Dark Energy) and low-curvature modifications of general relativity (Dark Gravity) will be extremely small.
Vieira, Cristine; Costa, Nilson do Rosário
2008-01-01
This article analyzes the organizational model of the dental health industry. The main organizational leaders in this industry are the professional cooperatives and group dental insurance companies. The theoretical basis of the article is the organizational theory developed by Di Maggio and Powell. The dental health industry consists of a great number of small and very dynamic companies, however an expressive part of clients and profit are concentrated in a few large companies. The results show that the industry has expanded the number of clients after the creation of the National Health Insurance Agency. The regulation regime has forced institutional changes in the firms with regard to the market entry, permanence or exit patterns. There was no evidence that the regulatory rules have interfered with the development and financial conditions of the industry. The average profitability of the sector, especially among the group dental insurance companies, is extremely high.
Global Structure of HIV-1 Neutralizing Antibody IgG1 b12 is Asymmetric
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ashish, F.; Solanki, A; Boone, C
2010-01-01
Human antibody IgG1 b12 is one of the four antibodies known to neutralize a broad range of human immunodeficiency virus-1. The crystal structure of this antibody displayed an asymmetric disposition of the Fab arms relative to its Fc portion. Comparison of structures solved for other IgG1 antibodies led to a notion that crystal packing forces entrapped a 'snap-shot' of different conformations accessible to this antibody. To elucidate global structure of this unique antibody, we acquired small-angle X-ray scattering data from its dilute solution. Data analysis indicated that b12 adopts a bilobal globular structure in solution with a radius of gyrationmore » and a maximum linear dimension of {approx}54 and {approx}180 {angstrom}, respectively. Extreme similarity between its solution and crystal structure concludes that non-flexible, asymmetric shape is an inherent property of this rare antibody.« less
Muscle-Bone Interactions in Pediatric Bone Diseases.
Veilleux, Louis-Nicolas; Rauch, Frank
2017-10-01
Here, we review the skeletal effects of pediatric muscle disorders as well as muscle impairment in pediatric bone disorders. When starting in utero, muscle disorders can lead to congenital multiple contractures. Pediatric-onset muscle weakness such as cerebral palsy, Duchenne muscular dystrophy, spinal muscular atrophy, or spina bifida typically are associated with small diameter of long-bone shafts, low density of metaphyseal bone, and increased fracture incidence in the lower extremities, in particular, the distal femur. Primary bone diseases can affect muscles through generic mechanisms, such as decreased physical activity or in disease-specific ways. For example, the collagen defect underlying the bone fragility of osteogenesis imperfecta may also affect muscle force generation or transmission. Transforming growth factor beta released from bone in Camurati Engelman disease may decrease muscle function. Considering muscle-bone interactions does not only contribute to the understanding of musculoskeletal disorders but also can identify new targets for therapeutic interventions.
Oceanic forcing of coral reefs.
Lowe, Ryan J; Falter, James L
2015-01-01
Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.
2015-07-08
Dark strands of plasma hovering above the sun's surface began to interact with each other in a form of tug of war over two and a half days on June 28-30, 2015. At times, strands of plasma extended a tenuous connection between one area and the other. Twice the small tower of plasma to the lower left shot a burst of energy over to the quivering filament higher up. We are seeing the push and pull of magnetic forces revealed in a 193 wavelength of extreme ultraviolet light, typically colorized in brown. Credit: NASA/SDO NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram
NASA Technical Reports Server (NTRS)
1997-01-01
Small Business Innovation Research contracts from Goddard Space Flight Center to Thermacore Inc. have fostered the company work on devices tagged "heat pipes" for space application. To control the extreme temperature ranges in space, heat pipes are important to spacecraft. The problem was to maintain an 8-watt central processing unit (CPU) at less than 90 C in a notebook computer using no power, with very little space available and without using forced convection. Thermacore's answer was in the design of a powder metal wick that transfers CPU heat from a tightly confined spot to an area near available air flow. The heat pipe technology permits a notebook computer to be operated in any position without loss of performance. Miniature heat pipe technology has successfully been applied, such as in Pentium Processor notebook computers. The company expects its heat pipes to accommodate desktop computers as well. Cellular phones, camcorders, and other hand-held electronics are forsible applications for heat pipes.
NASA Technical Reports Server (NTRS)
Bell, L. D.; Boer, E.; Ostraat, M.; Brongersma, M. L.; Flagan, R. C.; Atwater, H. A.
2000-01-01
NASA requirements for computing and memory for microspacecraft emphasize high density, low power, small size, and radiation hardness. The distributed nature of storage elements in nanocrystal floating-gate memories leads to intrinsic fault tolerance and radiation hardness. Conventional floating-gate non-volatile memories are more susceptible to radiation damage. Nanocrystal-based memories also offer the possibility of faster, lower power operation. In the pursuit of filling these requirements, the following tasks have been accomplished: (1) Si nanocrystal charging has been accomplished with conducting-tip AFM; (2) Both individual nanocrystals on an oxide surface and nanocrystals formed by implantation have been charged; (3) Discharging is consistent with tunneling through a field-lowered oxide barrier; (4) Modeling of the response of the AFM to trapped charge has allowed estimation of the quantity of trapped charge; and (5) Initial attempts to fabricate competitive nanocrystal non-volatile memories have been extremely successful.
Finite-size radiation force correction for inviscid spheres in standing waves.
Marston, Philip L
2017-09-01
Yosioka and Kawasima gave a widely used approximation for the acoustic radiation force on small liquid spheres surrounded by an immiscible liquid in 1955. Considering the liquids to be inviscid with negligible thermal dissipation, in their approximation the force on the sphere is proportional to the sphere's volume and the levitation position in a vertical standing wave becomes independent of the size. The analysis given here introduces a small correction term proportional to the square of the sphere's radius relative to the aforementioned small-sphere force. The significance of this term also depends on the relative density and sound velocity of the sphere. The improved approximation is supported by comparison with the exact partial-wave-series based radiation force for ideal fluid spheres in ideal fluids.
Population Isolation in the Philippine War: A Case Study
2015-05-21
concentration camps appear as unnecessary and extremely harsh punishment. In one example of many, extreme charges of hostage taking, rape, and... torture from the Filipinos in Candelaria warranted an Army investigation.13 Secondary sources address environmental effects of population isolation...themselves targeted and potentially killed by the native forces.32 Public displays of these murders and assassinations meant to convince the population to
Chenjie Huang; Y.L. Lin; M.L. Kaplan; Joseph J.J. Charney
2009-01-01
This study has employed both observational data and numerical simulation results to diagnose the synoptic-scale and mesoscale environments conducive to forest fires during the October 2003 extreme fire event in southern California. A three-stage process is proposed to illustrate the coupling of the synoptic-scale forcing that is evident from the observations,...
Monitoring and evaluating civil structures using measured vibration
NASA Astrophysics Data System (ADS)
Straser, Erik G.; Kiremidjian, Anne S.
1996-04-01
The need for a rapid assessment of the state of critical and conventional civil structures, such as bridges, control centers, airports, and hospitals, among many, has been amply demonstrated during recent natural disasters. Research is underway at Stanford University to develop a state-of-the-art automated damage monitoring system for long term and extreme event monitoring based on both ambient and forced response measurements. Such research requires a multi-disciplinary approach harnessing the talents and expertise of civil, electrical, and mechanical engineering to arrive at a novel hardware and software solution. Recent advances in silicon micro-machining and microprocessor design allow for the economical integration of sensing, processing, and communication components. Coupling these technological advances with parameter identification algorithms allows for the realization of extreme event damage monitoring systems for civil structures. This paper addresses the first steps toward the development of a near real-time damage diagnostic and monitoring system based on structural response to extreme events. Specifically, micro-electro-mechanical- structures (MEMS) and microcontroller embedded systems (MES) are demonstrated to be an effective platform for the measurement and analysis of civil structures. Experimental laboratory tests with small scale model specimens and a preliminary sensor module are used to evaluate hardware and obtain structural response data from input accelerograms. A multi-step analysis procedure employing ordinary least squares (OLS), extended Kalman filtering (EKF), and a substructuring approach is conducted to extract system characteristics of the model. Results from experimental tests and system identification (SI) procedures as well as fundamental system design issues are presented.
Lu, Huijuan; Wei, Shasha; Zhou, Zili; Miao, Yanzi; Lu, Yi
2015-01-01
The main purpose of traditional classification algorithms on bioinformatics application is to acquire better classification accuracy. However, these algorithms cannot meet the requirement that minimises the average misclassification cost. In this paper, a new algorithm of cost-sensitive regularised extreme learning machine (CS-RELM) was proposed by using probability estimation and misclassification cost to reconstruct the classification results. By improving the classification accuracy of a group of small sample which higher misclassification cost, the new CS-RELM can minimise the classification cost. The 'rejection cost' was integrated into CS-RELM algorithm to further reduce the average misclassification cost. By using Colon Tumour dataset and SRBCT (Small Round Blue Cells Tumour) dataset, CS-RELM was compared with other cost-sensitive algorithms such as extreme learning machine (ELM), cost-sensitive extreme learning machine, regularised extreme learning machine, cost-sensitive support vector machine (SVM). The results of experiments show that CS-RELM with embedded rejection cost could reduce the average cost of misclassification and made more credible classification decision than others.
Year-round record of Dry Valley soil CO2 flux provides insights into Antarctic soil dynamics
NASA Astrophysics Data System (ADS)
Risk, D. A.; Lee, C.; Macintyre, C. M.; Cary, C.
2012-12-01
The McMurdo Dry Valleys of Antarctica host extreme soil microbial communities that have been extensively studied within the past decade. Activity of microbial communities is routinely measured via soil CO2 flux, and some useful Antarctic measurements have been made during short Austral summers. These studies are mostly spatial in nature, but temporal patterns are also valuable and may provide insights into critical thresholds and the interplay between various mechanisms that drive CO2 flux and its variation. New membrane-based Forced Diffusion (FD) soil efflux techniques offer promise for this application. The purpose of this study was to use a specially designed FD instrument in Hidden Valley of the Antarctic Dry Valleys to evaluate hardware performance in year-round deployments, and to identify features of interest with respect to soil CO2 flux variation. Overall, the deployment was successful. Small but sustained positive fluxes were present only twice during the year. The first such event was small but consistent and of long duration, occurring in the Austral winter. The second was more volatile and likely of microbial origin, and appeared for roughly a month at the end of the calendar year within the Austral summer. The observed patterns suggest that Hidden Valley soil CO2 fluxes are not solely biological in nature, but likely modulated by a combination of biological, geological, and physical processes, which will be discussed in this presentation. In future studies, additional measurement locations, and simultaneous subsurface and lower atmospheric gradient concentration measurements (power-permitting) would be extremely valuable for interpreting measured fluxes, to help identify advective depletion events, the depth source of fluxes, and changes in soil and atmospheric diffusivities.
Biswas, Somnath; Husek, Jakub; Baker, L Robert
2018-04-24
Here we review the recent development of extreme ultraviolet reflection-absorption (XUV-RA) spectroscopy. This method combines the benefits of X-ray absorption spectroscopy, such as element, oxidation, and spin state specificity, with surface sensitivity and ultrafast time resolution, having a probe depth of only a few nm and an instrument response less than 100 fs. Using this technique we investigated the ultrafast electron dynamics at a hematite (α-Fe2O3) surface. Surface electron trapping and small polaron formation both occur in 660 fs following photoexcitation. These kinetics are independent of surface morphology indicating that electron trapping is not mediated by defects. Instead, small polaron formation is proposed as the likely driving force for surface electron trapping. We also show that in Fe2O3, Co3O4, and NiO, band gap excitation promotes electron transfer from O 2p valence band states to metal 3d conduction band states. In addition to detecting the photoexcited electron at the metal M2,3-edge, the valence band hole is directly observed as transient signal at the O L1-edge. The size of the resulting charge transfer exciton is on the order of a single metal-oxygen bond length. Spectral shifts at the O L1-edge correlate with metal-oxygen bond covalency, confirming the relationship between valence band hybridization and the overpotential for water oxidation. These examples demonstrate the unique ability to measure ultrafast electron dynamics with element and chemical state resolution using XUV-RA spectroscopy. Accordingly, this method is poised to play an important role to reveal chemical details of previously unseen surface electron dynamics.
Climate extremes, land–climate feedbacks and land-use forcing at 1.5°C
Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
2018-01-01
This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. PMID:29610382
Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C.
Seneviratne, Sonia I; Wartenburger, Richard; Guillod, Benoit P; Hirsch, Annette L; Vogel, Martha M; Brovkin, Victor; van Vuuren, Detlef P; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
2018-05-13
This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the 'Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.
Historical influence of irrigation on climate extremes
NASA Astrophysics Data System (ADS)
Thiery, Wim; Davin, Edouard L.; Lawrence, Dave; Hauser, Mathias; Seneviratne, Sonia I.
2016-04-01
Land irrigation is an essential practice sustaining global food production and many regional economies. During the last decades, irrigation amounts have been growing rapidly. Emerging scientific evidence indicates that land irrigation substantially affects mean climate conditions in different regions of the world. However, a thorough understanding of the impact of irrigation on extreme climatic conditions, such as heat waves, droughts or intense precipitation, is currently still lacking. In this context, we aim to assess the historical influence of irrigation on the occurrence of climate extremes. To this end, two simulations are conducted over the period 1910-2010 with a state-of-the-art global climate model (the Community Earth System Model, CESM): a control simulation including all major anthropogenic and natural external forcings except for irrigation and a second experiment with transient irrigation enabled. The two simulations are evaluated for their ability to represent (i) hot, dry and wet extremes using the HadEX2 and ERA-Interim datasets as a reference, and (ii) latent heat fluxes using LandFlux-EVAL. Assuming a linear combination of climatic responses to different forcings, the difference between both experiments approximates the influence of irrigation. We will analyse the impact of irrigation on a number of climate indices reflecting the intensity and duration of heat waves. Thereby, particular attention is given to the role of soil moisture changes in modulating climate extremes. Furthermore, the contribution of individual biogeophysical processes to the total impact of irrigation on hot extremes is quantified by application of a surface energy balance decomposition technique to the 90th and 99th percentile surface temperature changes.
Climate extremes, land-climate feedbacks and land-use forcing at 1.5°C
NASA Astrophysics Data System (ADS)
Seneviratne, Sonia I.; Wartenburger, Richard; Guillod, Benoit P.; Hirsch, Annette L.; Vogel, Martha M.; Brovkin, Victor; van Vuuren, Detlef P.; Schaller, Nathalie; Boysen, Lena; Calvin, Katherine V.; Doelman, Jonathan; Greve, Peter; Havlik, Petr; Humpenöder, Florian; Krisztin, Tamas; Mitchell, Daniel; Popp, Alexander; Riahi, Keywan; Rogelj, Joeri; Schleussner, Carl-Friedrich; Sillmann, Jana; Stehfest, Elke
2018-05-01
This article investigates projected changes in temperature and water cycle extremes at 1.5°C of global warming, and highlights the role of land processes and land-use changes (LUCs) for these projections. We provide new comparisons of changes in climate at 1.5°C versus 2°C based on empirical sampling analyses of transient simulations versus simulations from the `Half a degree Additional warming, Prognosis and Projected Impacts' (HAPPI) multi-model experiment. The two approaches yield similar overall results regarding changes in climate extremes on land, and reveal a substantial difference in the occurrence of regional extremes at 1.5°C versus 2°C. Land processes mediated through soil moisture feedbacks and land-use forcing play a major role for projected changes in extremes at 1.5°C in most mid-latitude regions, including densely populated areas in North America, Europe and Asia. This has important implications for low-emissions scenarios derived from integrated assessment models (IAMs), which include major LUCs in ambitious mitigation pathways (e.g. associated with increased bioenergy use), but are also shown to differ in the simulated LUC patterns. Biogeophysical effects from LUCs are not considered in the development of IAM scenarios, but play an important role for projected regional changes in climate extremes, and are thus of high relevance for sustainable development pathways. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
Co, F H; Skinner, H B; Cannon, W D
1993-09-01
Abnormal proprioception of the knee joint has been documented after rupture of the anterior cruciate ligament (ACL) and may result in the loss of muscular reflexes. Excessive loading from the lack of muscular control may predispose the joint to osteoarthrosis. To investigate this problem, 10 patients were studied at an average of 31.6 months after ACL reconstruction. Three tests of joint proprioception and measurements of the vertical component of heel strike force during normal gait were used. A normal control group also was studied. For two of the proprioception tests (reproduction of passive motion and relative reproduction), there were no statistical differences among the uninjured (control) limbs, the normal contralateral limb of patients with a reconstructed ACL, and the extremity with a reconstructed ACL. In the third test (threshold of detection of motion), which previously has been shown to be adversely affected by ACL injury, the measurements for both extremities of patients with a reconstructed ACL were more accurate than those for the control group. The reconstructed extremity performed less accurately than the contralateral extremity (p < 0.05). The heel strike transient (vertical component of ground reaction force at heel strike) for uninjured and ACL-reconstructed limbs was not significantly different. In fact, the extremity with the reconstructed ACL had a lower transient than the uninjured extremity. Heel strike transients in patients with a reconstructed ACL were higher than those in the controls, but the differences were significant only when corrected for velocity of gait.(ABSTRACT TRUNCATED AT 250 WORDS)
DOE Office of Scientific and Technical Information (OSTI.GOV)
England, Tony; van Nieuwstadt, Lin; De Roo, Roger
This project, funded by the Department of Energy as DE-EE0005376, successfully measured wind-driven lake ice forces on an offshore structure in Lake Superior through one of the coldest winters in recent history. While offshore regions of the Great Lakes offer promising opportunities for harvesting wind energy, these massive bodies of freshwater also offer extreme and unique challenges. Among these challenges is the need to anticipate forces exerted on offshore structures by lake ice. The parameters of interest include the frequency, extent, and movement of lake ice, parameters that are routinely monitored via satellite, and ice thickness, a parameter that hasmore » been monitored at discrete locations over many years and is routinely modeled. Essential relationships for these data to be of use in the design of offshore structures and the primary objective of this project are measurements of maximum forces that lake ice of known thicknesses might exert on an offshore structure.« less
Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño
Barnard, Patrick L.; Hoover, Daniel; Hubbard, David M.; Snyder, Alex; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero, Peter; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.
2017-01-01
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast. PMID:28195580
Extreme oceanographic forcing and coastal response due to the 2015–2016 El Niño
Barnard, Patrick; Hoover, Daniel J.; Hubbard, David M.; Snyder, Alexander; Ludka, Bonnie C.; Allan, Jonathan; Kaminsky, George M.; Ruggiero,; Gallien, Timu W.; Gabel, Laura; McCandless, Diana; Weiner, Heather M.; Cohn, Nicholas; Anderson, Dylan L.; Serafin, Katherine A.
2017-01-01
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015–2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.
Extreme oceanographic forcing and coastal response due to the 2015-2016 El Niño.
Barnard, Patrick L; Hoover, Daniel; Hubbard, David M; Snyder, Alex; Ludka, Bonnie C; Allan, Jonathan; Kaminsky, George M; Ruggiero, Peter; Gallien, Timu W; Gabel, Laura; McCandless, Diana; Weiner, Heather M; Cohn, Nicholas; Anderson, Dylan L; Serafin, Katherine A
2017-02-14
The El Niño-Southern Oscillation is the dominant mode of interannual climate variability across the Pacific Ocean basin, with influence on the global climate. The two end members of the cycle, El Niño and La Niña, force anomalous oceanographic conditions and coastal response along the Pacific margin, exposing many heavily populated regions to increased coastal flooding and erosion hazards. However, a quantitative record of coastal impacts is spatially limited and temporally restricted to only the most recent events. Here we report on the oceanographic forcing and coastal response of the 2015-2016 El Niño, one of the strongest of the last 145 years. We show that winter wave energy equalled or exceeded measured historical maxima across the US West Coast, corresponding to anomalously large beach erosion across the region. Shorelines in many areas retreated beyond previously measured landward extremes, particularly along the sediment-starved California coast.
Maki, Syou
2016-01-01
Heat transfer of magnetothermal convection with the presence or absence of the magnetic force acting on the susceptibility gradient (fsc) was examined by three-dimensional numerical computations. Thermal convection of water enclosed in a shallow cylindrical vessel (diameter over vessel height = 6.0) with the Rayleigh-Benard model was adopted as the model, under the conditions of Prandtl number 6.0 and Ra number 7000, respectively. The momentum equations of convection were nondimensionalized, which involved the term of fsc and the term of magnetic force acting on the magnetic field gradient (fb). All the computations resulted in axisymmetric steady rolls. The values of the averaged Nu, the averaged velocity components U, V, and W, and the isothermal distributions and flow patterns were almost completely the same, regardless of the presence or absence of the term of fsc. As a result, we found that the effect of fsc was extremely small, although much previous research emphasized the effect with paramagnetic solutions under an unsteady state. The magnitude of fsc depends not only on magnetic conditions (magnitudes of magnetic susceptibility and magnetic flux density), but also on the thermal properties of the solution (thermal conductivity, thermal diffusivity, and viscosity). Therefore the effect of fb becomes dominant on the magnetothermal convection. Active control over the density gradient with temperature will be required to advance heat transfer with the effect of fsc. PMID:27606823
NASA Technical Reports Server (NTRS)
Nuth, J. A.; Rietmeijer, F. J. M.; Hallenbeck, S. L.; Withey, P. A.
1999-01-01
Starting with cooling, refractory vapors diluted in significant quantities of H and He there are four processes that most natural systems will undergo: nucleation, growth, annealing, and coagulation. Nucleation is the processes by which the first stable refractory nuclei form in the vapor. These are the seeds onto which the remaining vapors will condense during the growth stage. Solids of any composition will try to arrange themselves into the least energetic configuration, provided that there is sufficient energy available to support such processes as diffusion and the breaking of chemical bonds. There is a significant activation energy associated with the annealing process in refractory solids due to the relatively high energy of the chemical bonds in solids. The grains formed in most cosmochemical systems are extremely small and often tightly coupled to the gas. Because of their small physical cross sections coagulation may be a very slow process unless there is another driving force involved in addition to normal Brownian motion. In what follows we will briefly cover each of these four stages for refractory oxide and metal grains, although in inverse order.
Self-Centering Reciprocating-Permanent-Magnet Machine
NASA Technical Reports Server (NTRS)
Bhate, Suresh; Vitale, Nick
1988-01-01
New design for monocoil reciprocating-permanent-magnet electric machine provides self-centering force. Linear permanent-magnet electrical motor includes outer stator, inner stator, and permanent-magnet plunger oscillateing axially between extreme left and right positions. Magnets arranged to produce centering force and allows use of only one coil of arbitrary axial length. Axial length of coil chosen to provide required efficiency and power output.
1990-03-13
and other damage to property "violence-free" called for "interference" actions against NATO’s headquarters exercise, Wintex- Cimex , in February 1987...military units; o disruptions of the Wintex/ Cimex exercises; o actions directed against exhibitions of the German Federal Armed Forces; o blockades and
U.S. Naval Forces, Vietnam Monthly Historical Summary for October 1969
1969-12-12
killed in the action, and there were no friendly casualties with the exception of a helo that was hit by « neny fire forcing it to return to Ben Luc. j...information and captured documents were particularly grat- ifying in that they pointed to the extreme difficulty that the « neny «as having in moving food
An Annotated Bibliography: Violence at Home.
ERIC Educational Resources Information Center
Lystad, Mary, Ed.
Violence in the family is defined as a mode of behavior involving the use of physical force among family members. Such force varies in severity from homicide at one extreme to mild spankings at the other. It also varies by intent. In some cases the intent is to control people's behavior; in other cases it is to vent personal hostility; in still…
Quantifying the consequences of changing hydroclimatic extremes on protection levels for the Rhine
NASA Astrophysics Data System (ADS)
Sperna Weiland, Frederiek; Hegnauer, Mark; Buiteveld, Hendrik; Lammersen, Rita; van den Boogaard, Henk; Beersma, Jules
2017-04-01
The Dutch method for quantifying the magnitude and frequency of occurrence of discharge extremes in the Rhine basin and the potential influence of climate change hereon are presented. In the Netherlands flood protection design requires estimates of discharge extremes for return periods of 1000 up to 100,000 years. Observed discharge records are too short to derive such extreme return discharges, therefore extreme value assessment is based on very long synthetic discharge time-series generated with the Generator of Rainfall And Discharge Extremes (GRADE). The GRADE instrument consists of (1) a stochastic weather generator based on time series resampling of historical f rainfall and temperature and (2) a hydrological model optimized following the GLUE methodology and (3) a hydrodynamic model to simulate the propagation of flood waves based on the generated hydrological time-series. To assess the potential influence of climate change, the four KNMI'14 climate scenarios are applied. These four scenarios represent a large part of the uncertainty provided by the GCMs used for the IPCC 5th assessment report (the CMIP5 GCM simulations under different climate forcings) and are for this purpose tailored to the Rhine and Meuse river basins. To derive the probability distributions of extreme discharges under climate change the historical synthetic rainfall and temperature series simulated with the weather generator are transformed to the future following the KNMI'14 scenarios. For this transformation the Advanced Delta Change method, which allows that the changes in the extremes differ from those in the means, is used. Subsequently the hydrological model is forced with the historical and future (i.e. transformed) synthetic time-series after which the propagation of the flood waves is simulated with the hydrodynamic model to obtain the extreme discharge statistics both for current and future climate conditions. The study shows that both for 2050 and 2085 increases in discharge extremes for the river Rhine at Lobith are projected by all four KNMI'14 climate scenarios. This poses increased requirements for flood protection design in order to prepare for changing climate conditions.
US Drought-Heat Wave Relationships in Past Versus Current Climates
NASA Astrophysics Data System (ADS)
Cheng, L.; Hoerling, M. P.; Eischeid, J.; Liu, Z.
2017-12-01
This study explores the relationship between droughts and heat waves over various regions of the contiguous United States that are distinguished by so-called energy-limited versus water-limited climatologies. We first examine the regional sensitivity of heat waves to soil moisture variability under 19th century climate conditions, and then compare to sensitivities under current climate that has been subjected to human-induced change. Our approach involves application of the conditional statistical framework of vine copula. Vine copula is known for its flexibility in reproducing various dependence structures exhibited by climate variables. Here we highlight its feature for evaluating the importance of conditional relationships between variables and processes that capture underlying physical factors involved in their interdependence during drought/heat waves. Of particular interest is identifying changes in coupling strength between heat waves and land surface conditions that may yield more extreme events as a result of land surface feedbacks. We diagnose two equilibrium experiments a coupled climate model (CESM1), one subjected to Year-1850 external forcing and the other to Year-2000 radiative forcing. We calculate joint heat wave/drought relationships for each climate state, and also calculate their change as a result of external radiative forcing changes across this 150-yr period. Our results reveal no material change in the dependency between heat waves and droughts, aside from small increases in coupling strength over the Great Plains. Overall, hot U.S. summer droughts of 1850-vintage do not become hotter in the current climate -- aside from the warming contribution of long-term climate change, in CESM1. The detectability of changes in hotter droughts as a consequence of anthropogenic forced changes in this single effect, i.e. coupling strength between soil moisture and hot summer temperature, is judged to be low at this time.
Gravitational Waves From the Kerr/CFT Correspondence
NASA Astrophysics Data System (ADS)
Porfyriadis, Achilleas
Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.
Ockham's Razorblade Shaving Wind-Induced Circulation
NASA Astrophysics Data System (ADS)
Bergmann, Juan Carlos
2010-05-01
Terrestrial physical oceanography is fortunate because of the existence of the continents that divide the low-latitude oceans into basins. At first glance, the previous statement appears to be not obvious because an ocean-planet should be much simpler to describe. Simple-case explanation is the central aspect of Ockham's Razorblade: If a theory fails to describe the most-simple case properly, the theory is, at least, ‘not good'. Also Descartes' methodical rules take the most-simple case as starting point. The analysis of wind-induced circulation on an ocean-planet will support the initial statement. Earth's south hemisphere is dominated by the oceans. The continents' influence on the zonal-average zonal-wind climate is relatively small. Therefore, South Hemisphere's zonal wind pattern is a relatively good proxy for that of an ocean planet. Application of this wind-stress pattern to an ocean planet yields reasonable meridional mass-flow results from the polar-regions down to the high-pressure belts: Down-welling and up-welling of water-mass are approximately balanced. However, the entire tropical circulation can in principle not be closed because there is only down-welling - even if the extreme down-welling in the equatorial belt (± 8°, with a singularity at the equator) is disregarded. The only input to the calculations is the observed terrestrial south-hemisphere zonal wind-stress pattern. Meridional stress is irrelevant because it produces a closed zonal Ekman-transport around the ocean planet (sic!). Vertical mass-transport is calculated from the divergence of the wind-induced meridional Ekman-mass-transport, which in its turn is a necessary consequence of angular-momentum conservation. No assumptions are made on how the return-flows at depth are forced because the wind-force equations cannot contribute hereto. This circumstance expresses a fundamental difference to atmospheric circulation, where mechanical forcing is caused by the pressure-fields that result from differential heating/cooling and therefore ‘automatically' comprise the entire circulation system. Wind-caused oceanic flow is exclusively generated by frictional wind-forces at the surface, and other processes in the ocean are not causally connected hereto. In absence of continents it is quite difficult to ‘find' the corresponding forcing for the meridional return-flows - and it can definitely not be wind-force-caused - very strange! The fact that the wind-induced circulation can only be closed by the action of other processes, which are not causally connected to wind-forces, demonstrates that something must be fundamentally wrong. The singularity at the equator and the extreme down-welling in the equatorial belt indicate an additional severe problem that can only be avoided if zonal wind-stress is completely excluded. Escape to additional assumptions is similar to the introduction of the epicycles in order to explain the planets' retrograde motion in maintaining geocentric cosmology. Should the previous analysis be ignored in favour of maintaining the ‘established' ideas of wind-induced circulation or should there be an effort to formulate new ideas that provide closed and balanced circulation without employing other processes than wind-forces?
Hydrological extremes and their agricultural impacts under a changing climate in Texas
NASA Astrophysics Data System (ADS)
Lee, K.; Gao, H.; Huang, M.; Sheffield, J.
2015-12-01
With the changing climate, hydrologic extremes (such as floods, droughts, and heat waves) are becoming more frequent and intensified. Such changes in extreme events are expected to affect agricultural production and food supplies. This study focuses on the State of Texas, which has the largest farm area and the highest value of livestock production in the U.S. The objectives are two-fold: First, to investigate the climatic impact on the occurrence of future hydrologic extreme events; and second, to evaluate the effects of the future extremes on agricultural production. The Variable Infiltration Capacity (VIC) model, which is calibrated and validated over Texas river basins during the historical period, is employed for this study. The VIC model is forced by the statistically downscaled climate projections from the Coupled Model Intercomparison Project Phase 5 (CMIP5) model ensembles at a spatial resolution of 1/8°. The CMIP5 projections contain four different scenarios in terms of Representative Concentration Pathway (RCP) (i.e. 2.6, 4.5, 6.0 and 8.5 w/m2). To carry out the analysis, VIC outputs forced by the CMIP5 model scenarios over three 30-year periods (1970-1999, 2020-2049 and 2070-2099) are first evaluated to identify how the frequency and the extent of the extreme events will be altered in the ten Texas major river basins. The results suggest that a significant increase in the number of extreme events will occur starting in the first half of the 21st century in Texas. Then, the effects of the predicted hydrologic extreme events on the irrigation water demand are investigated. It is found that future changes in water demand vary by crop type and location, with an east-to-west gradient. The results are expected to contribute to future water management and planning in Texas.
NASA Astrophysics Data System (ADS)
Vautard, Robert; Christidis, Nikolaos; Ciavarella, Andrew; Alvarez-Castro, Carmen; Bellprat, Omar; Christiansen, Bo; Colfescu, Ioana; Cowan, Tim; Doblas-Reyes, Francisco; Eden, Jonathan; Hauser, Mathias; Hegerl, Gabriele; Hempelmann, Nils; Klehmet, Katharina; Lott, Fraser; Nangini, Cathy; Orth, René; Radanovics, Sabine; Seneviratne, Sonia I.; van Oldenborgh, Geert Jan; Stott, Peter; Tett, Simon; Wilcox, Laura; Yiou, Pascal
2018-04-01
A detailed analysis is carried out to assess the HadGEM3-A global atmospheric model skill in simulating extreme temperatures, precipitation and storm surges in Europe in the view of their attribution to human influence. The analysis is performed based on an ensemble of 15 atmospheric simulations forced with observed sea surface temperature of the 54 year period 1960-2013. These simulations, together with dual simulations without human influence in the forcing, are intended to be used in weather and climate event attribution. The analysis investigates the main processes leading to extreme events, including atmospheric circulation patterns, their links with temperature extremes, land-atmosphere and troposphere-stratosphere interactions. It also compares observed and simulated variability, trends and generalized extreme value theory parameters for temperature and precipitation. One of the most striking findings is the ability of the model to capture North-Atlantic atmospheric weather regimes as obtained from a cluster analysis of sea level pressure fields. The model also reproduces the main observed weather patterns responsible for temperature and precipitation extreme events. However, biases are found in many physical processes. Slightly excessive drying may be the cause of an overestimated summer interannual variability and too intense heat waves, especially in central/northern Europe. However, this does not seem to hinder proper simulation of summer temperature trends. Cold extremes appear well simulated, as well as the underlying blocking frequency and stratosphere-troposphere interactions. Extreme precipitation amounts are overestimated and too variable. The atmospheric conditions leading to storm surges were also examined in the Baltics region. There, simulated weather conditions appear not to be leading to strong enough storm surges, but winds were found in very good agreement with reanalyses. The performance in reproducing atmospheric weather patterns indicates that biases mainly originate from local and regional physical processes. This makes local bias adjustment meaningful for climate change attribution.
Effects of wave-induced forcing on a circulation model of the North Sea
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-04-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution NEMO model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force and the sea-state dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water level and current predictions.
Effects of wave-induced forcing on a circulation model of the North Sea
NASA Astrophysics Data System (ADS)
Staneva, Joanna; Alari, Victor; Breivik, Øyvind; Bidlot, Jean-Raymond; Mogensen, Kristian
2017-01-01
The effect of wind waves on water level and currents during two storms in the North Sea is investigated using a high-resolution Nucleus for European Modelling of the Ocean (NEMO) model forced with fluxes and fields from a high-resolution wave model. The additional terms accounting for wave-current interaction that are considered in this study are the Stokes-Coriolis force, the sea-state-dependent energy and momentum fluxes. The individual and collective role of these processes is quantified and the results are compared with a control run without wave effects as well as against current and water-level measurements from coastal stations. We find a better agreement with observations when the circulation model is forced by sea-state-dependent fluxes, especially in extreme events. The two extreme events, the storm Christian (25-27 October 2013), and about a month later, the storm Xaver (5-7 December 2013), induce different wave and surge conditions over the North Sea. Including the wave effects in the circulation model for the storm Xaver raises the modelled surge by more than 40 cm compared with the control run in the German Bight area. For the storm Christian, a difference of 20-30 cm in the surge level between the wave-forced and the stand-alone ocean model is found over the whole southern part of the North Sea. Moreover, the modelled vertical velocity profile fits the observations very well when the wave forcing is accounted for. The contribution of wave-induced forcing has been quantified indicating that this represents an important mechanism for improving water-level and current predictions.
Regulation of cAMP and GSK3 signaling pathways contributes to the neuronal conversion of glioma
Kim, Yongbo; Che, Lihua; Kim, Jeong Beom; Chang, Gyeong Eon; Cheong, Eunji; Kang, Seok-Gu; Ha, Yoon
2017-01-01
Glioma is the most malignant type of primary central nervous system tumors, and has an extremely poor prognosis. One potential therapeutic approach is to induce the terminal differentiation of glioma through the forced expression of pro-neural factors. Our goal is to show the proof of concept of the neuronal conversion of C6 glioma through the combined action of small molecules. We investigated the various changes in gene expression, cell-specific marker expression, signaling pathways, physiological characteristics, and morphology in glioma after combination treatment with two small molecules (CHIR99021, a glycogen synthase kinase 3 [GSK3] inhibitor and forskolin, a cyclic adenosine monophosphate [cAMP] activator). Here, we show that the combined action of CHIR99021 and forskolin converted malignant glioma into fully differentiated neurons with no malignant characteristics; inhibited the proliferation of malignant glioma; and significantly down-regulated gene ontology and gene expression profiles related to cell division, gliogenesis, and angiogenesis in small molecule–induced neurons. In vivo, the combined action of CHIR99021 and forskolin markedly delayed neurological deficits and significantly reduced the tumor volume. We suggest that reprogramming technology may be a potential treatment strategy replacing the therapeutic paradigm of traditional treatment of malignant glioma, and a combination molecule comprising a GSK3 inhibitor and a cAMP inducer could be the next generation of anticancer drugs. PMID:29161257
NASA Astrophysics Data System (ADS)
1987-07-01
The U.S. Navy is conducting a long-term program to monitor for possible effects from the operation of its Extremely Low Frequency (ELF) Communications System to resident biota and their ecological relationships. This report documents progress of the following studies: soil amoeba; soil and litter arthropoda and earthworm studies; biological studies on pollinating insects: megachilid bees; and small vertebrates: small mammals and nesting birds.
Ravindra, Vijay M; Wallace, Scott A; Vaidya, Rahul; Fox, W Christopher; Klugh, Arnett R; Puskas, David; Park, Min S
2016-02-01
The Role III, Multinational Medical Unit at Kandahar Air Field, Afghanistan, was established to provide combat casualty care in theater for International Security Assistance Forces, Afghanistan National Security Forces, and local nationals during Operation Enduring Freedom-Afghanistan. The authors describe their experience of treating unstable lumbar spine fractures with orthopedic extremity instrumentation sets from January 2007 to January 2008 and November 2010 to May 2011. During the study periods, 15 patients comprising Afghanistan National Security Forces and local nationals presented to the medical facility for treatment of unstable lumbar spine fractures. The patients underwent surgery for either anterior corpectomy and instrumented fusion (n = 5) or posterior instrumented fusion (n = 10). Because of periodic scarcity of spinal instrumentation sets, orthopedic extremity instrumentation sets were used (Synthes Large Fragment LCP Instrument and Implant Set) for spinal stabilization. Immediate postoperative standing and sitting plain radiographs demonstrated no evidence of fracture progression or immediate hardware failure. One patient was seen in follow-up at 4 weeks and demonstrated construct stability on follow-up radiographs. In the combat environment with sparse resources, unstable spine fractures may potentially be treated using instrumentation not specifically designed for spinal implantation. This is an off-label use, and the authors do not recommend the use of these techniques as standard treatment in most medical environments. Copyright © 2016 Elsevier Inc. All rights reserved.
A physical model for extreme drought over southwest Asia: Chapter 17
Hoell, Andrew; Funk, Chris; Barlow, Mathew; Cannon, Forrest
2017-01-01
The socioeconomic difficulties of southwest Asia, defined as the area bound by the domain 25°N–40°N and 40°E–70°E, are exacerbated by extreme precipitation deficits during the November–April rainy season. The precipitation deficits during many southwest Asia droughts have been examined in terms of the forcing by climate variability originating over the Pacific Ocean as a result of the El Niño–Southern Oscillation (ENSO), Pacific decadal variability (PDV), and the long-term warming of Pacific (LT) sea surface temperatures (SST). Here we examine how the most extreme November–April southwest Asia droughts relate to global SSTs and the associated large-scale atmospheric circulation anomalies and analyze the specific atmospheric forcing mechanisms responsible for changes in regional southwest Asian precipitation. The driest November–April seasons during 1948–2012 over southwest Asia are forced by subsidence and reductions of moisture fluxes as a result of the interaction of the mean flow with anomalous zonally symmetric high pressure throughout the Northern Hemisphere. The anomalous zonally symmetric high pressure throughout the Northern Hemisphere occurs simultaneously with cool central and eastern Pacific SST anomalies associated with La Niña and the negative phase of PDV and a warm west Pacific Ocean caused in part by the long-term warming of the west Pacific Ocean.
Improving the Predictability of Severe Water Levels along the Coasts of Marginal Seas
NASA Astrophysics Data System (ADS)
Ridder, N. N.; de Vries, H.; van den Brink, H.; De Vries, H.
2016-12-01
Extreme water levels can lead to catastrophic consequences with severe societal and economic repercussions. Particularly vulnerable are countries that are largely situated below sea level. To support and optimize forecast models, as well as future adaptation efforts, this study assesses the modeled contribution of storm surges and astronomical tides to total water levels under different air-sea momentum transfer parameterizations in a numerical surge model (WAQUA/DCSMv5) of the North Sea. It particularly focuses on the implications for the representation of extreme and rapidly recurring severe water levels over the past decades based on the example of the Netherlands. For this, WAQUA/DCSMv5, which is currently used to forecast coastal water levels in the Netherlands, is forced with ERA Interim reanalysis data. Model results are obtained from two different methodologies to parameterize air-sea momentum transfer. The first calculates the governing wind stress forcing using a drag coefficient derived from the conventional approach of wind speed dependent Charnock constants. The other uses instantaneous wind stress from the parameterization of the quasi-linear theory applied within the ECMWF wave model which is expected to deliver a more realistic forcing. The performance of both methods is tested by validating the model output with observations, paying particular attention to their ability to reproduce rapidly succeeding high water levels and extreme events. In a second step, the common features of and connections between these events are analyzed. The results of this study will allow recommendations for the improvement of water level forecasts within marginal seas and support decisions by policy makers. Furthermore, they will strengthen the general understanding of severe and extreme water levels as a whole and help to extend the currently limited knowledge about clustering events.
Obesity-related differences in neural correlates of force control.
Mehta, Ranjana K; Shortz, Ashley E
2014-01-01
Greater body segment mass due to obesity has shown to impair gross and fine motor functions and reduce balance control. While recent studies suggest that obesity may be linked with altered brain functions involved in fine motor tasks, this association is not well investigated. The purpose of this study was to examine the neural correlates of motor performance in non-obese and obese adults during force control of two upper extremity muscles. Nine non-obese and eight obese young adults performed intermittent handgrip and elbow flexion exertions at 30% of their respective muscle strengths for 4 min. Functional near infrared spectroscopy was employed to measure neural activity in the prefrontal cortex bilaterally, joint steadiness was computed using force fluctuations, and ratings of perceived exertions (RPEs) were obtained to assess perceived effort. Obesity was associated with higher force fluctuations and lower prefrontal cortex activation during handgrip exertions, while RPE scores remained similar across both groups. No obesity-related differences in neural activity, force fluctuation, or RPE scores were observed during elbow flexion exertions. The study is one of the first to examine obesity-related differences on prefrontal cortex activation during force control of the upper extremity musculature. The study findings indicate that the neural correlates of motor activity in the obese may be muscle-specific. Future work is warranted to extend the investigation to monitoring multiple motor-function related cortical regions and examining obesity differences with different task parameters (e.g., longer duration, increased precision demands, larger muscles, etc.).
Extreme environments select for reproductive assurance: evidence from evening primroses (Oenothera).
Evans, Margaret E K; Hearn, David J; Theiss, Kathryn E; Cranston, Karen; Holsinger, Kent E; Donoghue, Michael J
2011-07-01
Competing evolutionary forces shape plant breeding systems (e.g. inbreeding depression, reproductive assurance). Which of these forces prevails in a given population or species is predicted to depend upon such factors as life history, ecological conditions, and geographical context. Here, we examined two such predictions: that self-compatibility should be associated with the annual life history or extreme climatic conditions. We analyzed data from a clade of plants remarkable for variation in breeding system, life history and climatic conditions (Oenothera, sections Anogra and Kleinia, Onagraceae). We used a phylogenetic comparative approach and Bayesian or hybrid Bayesian tests to account for phylogenetic uncertainty. Geographic information system (GIS)-based climate data and ecological niche modeling allowed us to quantify climatic conditions. Breeding system and reproductive life span are not correlated in Anogra and Kleinia. Instead, self-compatibility is associated with the extremes of temperature in the coldest part of the year and precipitation in the driest part of the year. In the 60 yr since this pattern was anticipated, this is the first demonstration of a relationship between the evolution of self-compatibility and climatic extremes. We discuss possible explanations for this pattern and possible implications with respect to anthropogenic climate change. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
NASA Astrophysics Data System (ADS)
Canevet, David; Pérez Del Pino, Angel; Amabilino, David B.; Sallé, Marc
2011-07-01
An organogelator with two distinct π-functional units is able to incorporate carbon nanotubes into its mesh of fibres in the gel state. The morphology of the material derived from this nanocomposite after evaporation of the solvent is a complex mesh of fibres which is clearly different from the pure gelator. This feature indicates a role of the nanotubes in assisting the formation of a fibre structure in the gel thanks to their interaction with the pyrene units in the organogelator. The nanocomposite conducts electricity once the p-type gelator is doped with iodine vapour. The change in morphology caused by the carbon material increases the conductivity of the material compared with the purely organic conducting system. It is remarkable that this improvement in the physical property is caused by an extremely small proportion of the carbon material (only present at a ratio of 0.1% w/w). The practically unique properties of TTF unit allow measurements with both doped and undoped materials with conducting atomic force microscopy which have demonstrated that the carbon nanotubes are not directly responsible for the increased conductivity.An organogelator with two distinct π-functional units is able to incorporate carbon nanotubes into its mesh of fibres in the gel state. The morphology of the material derived from this nanocomposite after evaporation of the solvent is a complex mesh of fibres which is clearly different from the pure gelator. This feature indicates a role of the nanotubes in assisting the formation of a fibre structure in the gel thanks to their interaction with the pyrene units in the organogelator. The nanocomposite conducts electricity once the p-type gelator is doped with iodine vapour. The change in morphology caused by the carbon material increases the conductivity of the material compared with the purely organic conducting system. It is remarkable that this improvement in the physical property is caused by an extremely small proportion of the carbon material (only present at a ratio of 0.1% w/w). The practically unique properties of TTF unit allow measurements with both doped and undoped materials with conducting atomic force microscopy which have demonstrated that the carbon nanotubes are not directly responsible for the increased conductivity. Electronic supplementary information (ESI) available: Details concerning the preparation of 1-SWCNTs composite. See DOI: 10.1039/c1nr10235d
Polygenic determinants in extremes of high-density lipoprotein cholesterol[S
Dron, Jacqueline S.; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A.; Robinson, John F.; McIntyre, Adam D.; Ban, Matthew R.; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J.; Lettre, Guillaume; Tardif, Jean-Claude
2017-01-01
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. PMID:28870971
Polygenic determinants in extremes of high-density lipoprotein cholesterol.
Dron, Jacqueline S; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A; Robinson, John F; McIntyre, Adam D; Ban, Matthew R; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A
2017-11-01
HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.
Intercomparison of Models Representing Direct Shortwave Radiative Forcing by Sulfate Aerosols
NASA Technical Reports Server (NTRS)
Boucher, O.; Schwartz, S. E.; Ackerman, T. P.; Anderson, T. L.; Bergstrom, B.; Bonnel, B.; Dahlback, A.; Fouquart, Y.; Chylek, P.; Fu, Q.;
2000-01-01
The importance of aerosols as agents of climate change has recently been highlighted. However, the magnitude of aerosol forcing by scattering of shortwave radiation (direct forcing) is still very uncertain even for the relatively well characterized sulfate aerosol. A potential source of uncertainty is in the model representation of aerosol optical properties and aerosol influences on radiative transfer in the atmosphere. Although radiative transfer methods and codes have been compared in the past, these comparisons have not focused on aerosol forcing (change in net radiative flux at the top of the atmosphere). Here we report results of a project involving 12 groups using 15 models to examine radiative forcing by sulfate aerosol for a wide range of values of particle radius, aerosol optical depth, surface albedo, and solar zenith angle. Among the models that were employed were high and low spectral resolution models incorporating a variety of radiative transfer approximations as well as a line-by-line model. The normalized forcings (forcing per sulfate column burden) obtained with the several radiative transfer models were examined, and the discrepancies were characterized. All models simulate forcings of comparable amplitude and exhibit a similar dependence on input parameters. As expected for a non-light-absorbing aerosol, forcings were negative (cooling influence) except at high surface albedo combined with small solar zenith angle. The relative standard deviation of the zenith-angle-averaged normalized broadband forcing for 15 models-was 8% for particle radius near the maximum in this forcing (approx. 0.2 microns) and at low surface albedo. Somewhat greater model-to-model discrepancies were exhibited at specific solar zenith angles. Still greater discrepancies were exhibited at small particle radii and much greater discrepancies were exhibited at high surface albedos, at which the forcing changes sign; in these situations, however, the normalized forcing is quite small quite small. Discrepancies among the models arise from inaccuracies in Mie calculations, differing treatment of the angular scattering phase function, differing wavelength and angular resolution, and differing treatment of multiple scattering. These results imply the need for standardized radiative transfer methods tailored to the direct aerosol forcing problem. However, the relatively small spread in these results suggests that the uncertainty in forcing arising from the treatment of radiative forcing of a well-characterized aerosol at well-specified surface albedo is smaller than some of the other sources of uncertainty in estimates of direct forcing by anthropogenic sulfate aerosols and anthropogenic aerosols generally.
NASA Astrophysics Data System (ADS)
Santos, Sergio; Barcons, Victor; Christenson, Hugo K.; Billingsley, Daniel J.; Bonass, William A.; Font, Josep; Thomson, Neil H.
2013-08-01
A way to operate fundamental mode amplitude modulation atomic force microscopy is introduced which optimizes stability and resolution for a given tip size and shows negligible tip wear over extended time periods (˜24 h). In small amplitude small set-point (SASS) imaging, the cantilever oscillates with sub-nanometer amplitudes in the proximity of the sample, without the requirement of using large drive forces, as the dynamics smoothly lead the tip to the surface through the water layer. SASS is demonstrated on single molecules of double-stranded DNA in ambient conditions where sharp silicon tips (R ˜ 2-5 nm) can resolve the right-handed double helix.
Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming
NASA Astrophysics Data System (ADS)
Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang
2017-04-01
The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.
Numerical modeling of space-time wave extremes using WAVEWATCH III
NASA Astrophysics Data System (ADS)
Barbariol, Francesco; Alves, Jose-Henrique G. M.; Benetazzo, Alvise; Bergamasco, Filippo; Bertotti, Luciana; Carniel, Sandro; Cavaleri, Luigi; Y. Chao, Yung; Chawla, Arun; Ricchi, Antonio; Sclavo, Mauro; Tolman, Hendrik
2017-04-01
A novel implementation of parameters estimating the space-time wave extremes within the spectral wave model WAVEWATCH III (WW3) is presented. The new output parameters, available in WW3 version 5.16, rely on the theoretical model of Fedele (J Phys Oceanogr 42(9):1601-1615, 2012) extended by Benetazzo et al. (J Phys Oceanogr 45(9):2261-2275, 2015) to estimate the maximum second-order nonlinear crest height over a given space-time region. In order to assess the wave height associated to the maximum crest height and the maximum wave height (generally different in a broad-band stormy sea state), the linear quasi-determinism theory of Boccotti (2000) is considered. The new WW3 implementation is tested by simulating sea states and space-time extremes over the Mediterranean Sea (forced by the wind fields produced by the COSMO-ME atmospheric model). Model simulations are compared to space-time wave maxima observed on March 10th, 2014, in the northern Adriatic Sea (Italy), by a stereo camera system installed on-board the "Acqua Alta" oceanographic tower. Results show that modeled space-time extremes are in general agreement with observations. Differences are mostly ascribed to the accuracy of the wind forcing and, to a lesser extent, to the approximations introduced in the space-time extremes parameterizations. Model estimates are expected to be even more accurate over areas larger than the mean wavelength (for instance, the model grid size).
Potential role of vegetation dynamics on recent extreme droughts over tropical South America
NASA Astrophysics Data System (ADS)
Wang, G.; Erfanian, A.; Fomenko, L.
2017-12-01
Tropical South America is a drought hot spot. In slightly over a decade (2005-2016), the region encountered three extreme droughts (2005, 2010, and 2016). Recurrent extreme droughts not only impact the region's eco-hydrology and socio-economy, but are also globally important as they can transform the planet's largest rainforest, the Amazon, from a carbon sink to a carbon source. Understanding drought drivers and mechanisms underlying extreme droughts in tropical South America can help better project the fate of the Amazon rainforest in a changing climate. In this study we use a regional climate model (RegCM4.3.4) coupled with a comprehensive land-surface model (CLM4.5) to study the present-day hydroclimate of the region, focusing specifically on what might have caused the frequent recurrence of extreme droughts. In the context of observation natural variability of the global oceanic forcing, we tackle the role of land-atmosphere interactions and ran the model with and without dynamic vegetation to study how vegetation dynamics and carbon-nitrogen cycles may have influenced the drought characteristics. Our results demonstrate skillful simulation of the South American climate in the model, and indicate substantial sensitivity of the region's hydroclimatology to vegetation dynamics. This presentation will compare the role of global oceanic forcing versus regional land surface feedback in the recent recurrent droughts, and will characterize the effects of vegetation dynamics in enhancing the drought severity. Preliminary results on future projections of the regional ecosystem and droughts perspective will be also presented.
Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming.
Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang
2017-04-20
The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.
Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming
Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang
2017-01-01
The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming. PMID:28425445
Burrowing by small polychaetes - mechanics, behavior and muscle structure of Capitella sp.
Grill, Susann; Dorgan, Kelly M
2015-05-15
Worms of different sizes extend burrows through muddy sediments by fracture, applying dorso-ventral forces that are amplified at the crack tip. Smaller worms displace sediments less than larger worms and therefore are limited in how much force they can apply to burrow walls. We hypothesized that small worms would exhibit a transition in burrowing mechanics, specifically a lower limit in body size for the ability to burrow by fracture, corresponding with an ontogenetic transition in muscle morphology. Kinematics of burrowing in a mud analog, external morphology and muscle arrangement were examined in juveniles and adults of the small polychaete Capitella sp. We found that it moves by peristalsis, and no obvious differences were observed among worms of different sizes; even very small juveniles were able to burrow through a clear mud analog by fracture. Interestingly, we found that in addition to longitudinal and circular muscles needed for peristaltic movements, left- and right-handed helical muscles wrap around the thorax of worms of all sizes. We suggest that in small worms helical muscles may function to supplement forces generated by longitudinal muscles and to maintain hydrostatic pressure, enabling higher forces to be exerted on the crack wall. Further research is needed, however, to determine whether surficial sediments inhabited by small worms fail by fracture or plastically deform under forces of the magnitudes applied by Capitella sp. © 2015. Published by The Company of Biologists Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soufli, Regina; Baker, Sherry L.; Windt, David L.
2007-06-01
The high-spatial frequency roughness of a mirror operating at extreme ultraviolet (EUV)wavelengths is crucial for the reflective performance and is subject to very stringent specifications. To understand and predict mirror performance, precision metrology is required for measuring the surface roughness. Zerodur mirror substrates made by two different polishing vendors for a suite of EUV telescopes for solar physics were characterized by atomic force microscopy (AFM). The AFM measurements revealed features in the topography of each substrate that are associated with specific polishing techniques. Theoretical predictions of the mirror performance based on the AFM-measured high-spatial-frequency roughness are in good agreement withmore » EUV reflectance measurements of the mirrors after multilayer coating.« less
Detection and attribution of climate extremes in the observed record
Easterling, David R.; Kunkel, Kenneth E.; Wehner, Michael F.; ...
2016-01-18
We present an overview of practices and challenges related to the detection and attribution of observed changes in climate extremes. Detection is the identification of a statistically significant change in the extreme values of a climate variable over some period of time. Issues in detection discussed include data quality, coverage, and completeness. Attribution takes that detection of a change and uses climate model simulations to evaluate whether a cause can be assigned to that change. Additionally, we discuss a newer field of attribution, event attribution, where individual extreme events are analyzed for the express purpose of assigning some measure ofmore » whether that event was directly influenced by anthropogenic forcing of the climate system.« less
Practical Considerations for Using Constant Force Springs in Space-Based Mechanisms
NASA Technical Reports Server (NTRS)
Williams, R. Brett; Fisher, Charles D.; Gallon, John C.
2013-01-01
Mechanical springs are a common element in mechanism from all walks of life; cars, watches, appliances, and many others. These springs generally exhibit a linear relationship between force and deflection. In small mechanisms, deflections are small so the variation in spring force between one position and another are generally small and do not influence the design or functionality of the device. However, as the spacecraft industry drives towards larger, deployable satellites, the distances a spring or springs must function over can become considerable so much so that the structural integrity of the device may be impacted. As such, an increasingly common mechanism element is the constant force spring- one that provides a constant force regardless of deflection. These elements are commonly in the conceptual design phase to deal with system-level large deflections, but in the detailed design or integration test phase they can pose significant implementation issues. This article addresses some of the detailed issues in order for these constant force springs to be properly designed into space systems.
Kloosterman, Marieke G M; Buurke, Jaap H; de Vries, Wiebe; Van der Woude, Lucas H V; Rietman, Johan S
2015-10-01
This study aims to compare hand-rim and power-assisted hand-rim propulsion on potential risk factors for shoulder overuse injuries: intensity and repetition of shoulder loading and force generation in the extremes of shoulder motion. Eleven experienced hand-rim wheelchair users propelled an instrumented wheelchair on a treadmill while upper-extremity kinematic, kinetic and surface electromyographical data was collected during propulsion with and without power-assist. As a result during power-assisted propulsion the peak resultant force exerted at the hand-rim decreased and was performed with significantly less abduction and internal rotation at the shoulder. At shoulder level the anterior directed force and internal rotation and flexion moments decreased significantly. In addition, posterior and the minimal inferior directed forces and the external rotation moment significantly increased. The stroke angle decreased significantly, as did maximum shoulder flexion, extension, abduction and internal rotation. Stroke-frequency significantly increased. Muscle activation in the anterior deltoid and pectoralis major also decreased significantly. In conclusion, compared to hand-rim propulsion power-assisted propulsion seems effective in reducing potential risk factors of overuse injuries with the highest gain on decreased range of motion of the shoulder joint, lower peak propulsion force on the rim and reduced muscle activity. Copyright © 2015 IPEM. Published by Elsevier Ltd. All rights reserved.
Little Boy to Star Wars the evolution of American deterrence. Research report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Havey, M.E.
1986-05-01
The historical and sociological development of the American deterrent posture in the nuclear age is traced since the its dawn at Alamagordo, New Mexico, 16 July 1945, and the use of the Little Boy over Hiroshima three weeks later. A description of Western man's involvement in and reaction to pre-1945 catastrophic circumstances is followed by a comparative examination of the post-1945 changes in national policy in regard to the use and dangers of total war. Using Bernard Brodie as a theoretical deterrent baseline, the author analyzes the ethical and military shifts in U.S. declaratory (versus actual) nuclear policy, through Paulmore » Nitze's statements of future policy in light of strategic defense. The author concludes that extremely effective--not necessarily perfect--defenses can be based dramatically on the beneficial effects of arms control. But at the same time, such a condition must inevitably result in a de facto reversion of U.S. nuclear policy to that of a small, non-counterforce force de frappe deterrent - similar in effect to that of the present French posture. The implications of this upon U.S.-Soviet force balance, the historical trends of the American Way of War, and the present deterrent mindset of the officer corps is left as a grave concern.« less
Flying in the rain: hovering performance of Anna's hummingbirds under varied precipitation.
Ortega-Jimenez, Victor Manuel; Dudley, Robert
2012-10-07
Flight in rain represents a greater challenge for smaller animals because the relative effects of water loading and drop impact are greater at reduced scales given the increased ratios of surface area to mass. Nevertheless, it is well known that small volant taxa such as hummingbirds can continue foraging even in extreme precipitation. Here, we evaluated the effect of four rain intensities (i.e. zero, light, moderate and heavy) on the hovering performance of Anna's hummingbirds (Calypte anna) under laboratory conditions. Light-to-moderate rain had only a marginal effect on flight kinematics; wingbeat frequency of individuals in moderate rain was reduced by 7 per cent relative to control conditions. By contrast, birds hovering in heavy rain adopted more horizontal body and tail positions, and also increased wingbeat frequency substantially, while reducing stroke amplitude when compared with control conditions. The ratio between peak forces produced by single drops on a wing and on a solid surface suggests that feathers can absorb associated impact forces by up to approximately 50 per cent. Remarkably, hummingbirds hovered well even under heavy precipitation (i.e. 270 mm h(-1)) with no apparent loss of control, although mechanical power output assuming perfect and zero storage of elastic energy was estimated to be about 9 and 57 per cent higher, respectively, compared with normal hovering.
FOOT experiment (Foot/Ground Reaction Forces during Space Flight)
2005-06-29
ISS011-E-09831 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, works at the Canadarm2 controls while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.
1990-09-01
increasing 2 complexity of Air Force weapon systems makes the estimation of LCC an extremely difficult task. To accomplish this, mathematical models are...maintenance is nearly horizontal. A reduction in this rate from 2.8 to 2.6 (approx. 7%j resulted in cost savings of around 0.1% for the three lvel concept. The
FOOT experiment (Foot/Ground Reaction Forces during Space Flight)
2005-06-29
ISS011-E-09825 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, enters data into a computer while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.
Credit BG. View looks south southeast (162°) across foundation of ...
Credit BG. View looks south southeast (162°) across foundation of Building 4332 Warehouse "B" (formerly T-81). Top of foundation for Building 4332 Warehouse "A" is visible at extreme left of view. In remote distance are buildings at Main Base, Edwards Air Force Base - Edwards Air Force Base, North Base, Warehouse B, Second Street at E Street, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Paulsen, G. E.; Nielsen, S. B.; Hansen, D. L.
The vertical movements during a regional stress reversal in a rifted basin or on a passive continental margin are examined using a numerical 2D thermo-mechanical finite element model with a visco-elastic-plastic rheology. Three different physical mechanisms are recognized in small-scale vertical movements at small inplane force variations: elastic dilatation, elastic flexure, and permanent deformation. Their rela- tive importance depend on the applied force, the duration of the force, and the thermal structure of the lithosphere. Elastic material dilatation occurs whenever the stress state changes. A reversal from extension to compression therefore immediately leads to elastic dilatation, and re- sults in an overall subsidence of the entire profile. Simultaneously with dilatation the lithosphere reacts with flexure. The significance of the flexural component strongly depends on the thermal structure of the lithosphere. The polarity and amplitude of the flexure depends on the initial (before compression) loading of the lithosphere. Gener- ally, the flexural effects lead to subsidence of the overdeep in the landward part of the basin and a small amount of uplift at the basin flanks. The amplitudes of the flexural response are small and comparable with the amplitudes of the elastic dilatation. With continuing compression permanent deformation and lithospheric thickening becomes increasingly important. Ultimately, the thickened part of the lithosphere stands out as an inverted zone. The amount of permanent deformation is directly connected with the size and duration of the applied force, but even a relatively small force leads to inversion tectonics in the landward part of the basin. The conclusions are: 1) small stress induced vertical movements in rift basins and at passive continental margins are the result of a complex interaction of at least three different processes, 2) the total sediment loaded amplitudes resulting from these pro- cesses are small (2-300 m) for inplane forces up to 1.5·1012 N/m.
Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard
2016-01-01
Purpose Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Methods Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. Results The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. Conclusion This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. PMID:27636200
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitfield, R. G.; Buehring, W. A.; Bassett, G. W.
2011-04-08
Get a GRiP (Gravitational Risk Procedure) on risk by using an approach inspired by the physics of gravitational forces between body masses! In April 2010, U.S. Department of Homeland Security Special Events staff (Protective Security Advisors [PSAs]) expressed concern about how to calculate risk given measures of consequence, vulnerability, and threat. The PSAs believed that it is not 'right' to assign zero risk, as a multiplicative formula would imply, to cases in which the threat is reported to be extremely small, and perhaps could even be assigned a value of zero, but for which consequences and vulnerability are potentially high.more » They needed a different way to aggregate the components into an overall measure of risk. To address these concerns, GRiP was proposed and developed. The inspiration for GRiP is Sir Isaac Newton's Universal Law of Gravitation: the attractive force between two bodies is directly proportional to the product of their masses and inversely proportional to the squares of the distance between them. The total force on one body is the sum of the forces from 'other bodies' that influence that body. In the case of risk, the 'other bodies' are the components of risk (R): consequence, vulnerability, and threat (which we denote as C, V, and T, respectively). GRiP treats risk as if it were a body within a cube. Each vertex (corner) of the cube represents one of the eight combinations of minimum and maximum 'values' for consequence, vulnerability, and threat. The risk at each of the vertices is a variable that can be set. Naturally, maximum risk occurs when consequence, vulnerability, and threat are at their maximum values; minimum risk occurs when they are at their minimum values. Analogous to gravitational forces among body masses, the GRiP formula for risk states that the risk at any interior point of the box depends on the squares of the distances from that point to each of the eight vertices. The risk value at an interior (movable) point will be dominated by the value of one vertex as that point moves closer and closer to that one vertex. GRiP is a visualization tool that helps analysts better understand risk and its relationship to consequence, vulnerability, and threat. Estimates of consequence, vulnerability, and threat are external to GRiP; however, the GRiP approach can be linked to models or data that provide estimates of consequence, vulnerability, and threat. For example, the Enhanced Critical Infrastructure Program/Infrastructure Survey Tool produces a vulnerability index (scaled from 0 to 100) that can be used for the vulnerability component of GRiP. We recognize that the values used for risk components can be point estimates and that, in fact, there is uncertainty regarding the exact values of C, V, and T. When we use T = t{sub o} (where t{sub o} is a value of threat in its range), we mean that threat is believed to be in an interval around t{sub o}. Hence, a value of t{sub o} = 0 indicates a 'best estimate' that the threat level is equal to zero, but still allows that it is not impossible for the threat to occur. When t{sub o} = 0 but is potentially small and not exactly zero, there will be little impact on the overall risk value as long as the C and V components are not large. However, when C and/or V have large values, there can be large differences in risk given t{sub o} = 0, and t{sub o} = epsilon (where epsilon is small but greater than a value of zero). We believe this scenario explains the PSA's intuition that risk is not equal to zero when t{sub o} = 0 and C and/or V have large values. (They may also be thinking that if C has an extremely large value, it is unlikely that T is equal to 0; in the terrorist context, T would likely be dependent on C when C is extremely large.) The PSAs are implicitly recognizing the potential that t{sub o} = epsilon. One way to take this possible scenario into account is to replace point estimates for risk with interval values that reflect the uncertainty in the risk components. In fact, one could argue that T never equals zero for a man-made hazard. This paper describes the thought process that led to the GRiP approach and the mathematical formula for GRiP and presents a few examples that will provide insights about how to use GRiP and interpret its results.« less
An interhemispheric tropical sea level seesaw due to El Niño Taimasa
NASA Astrophysics Data System (ADS)
Widlansky, M. J.; Timmermann, A.; McGregor, S.; Stuecker, M. F.; Cai, W.
2013-12-01
During strong El Niño events, sea level drops around some tropical western Pacific islands by up to 20-30 cm. Such extreme events (referred to as ';taimasa' in Samoa) expose shallow reefs, thereby damaging associated coastal ecosystems and contributing to the formation of ';flat topped coral heads' often referred to as microatolls. We show that during the termination of strong El Niño events, a southward movement of weak trade winds and development of an anomalous anticyclone in the Philippine Sea force an interhemispheric sea level seesaw in the tropical Pacific which enhances and prolongs extreme low sea levels in the southwestern Pacific. Spectral features, in addition to wind forced linear shallow water ocean model experiments, identify an interaction between El Niño and the annual cycle as the main cause of these sea level anomalies. Given the well established seasonal prediction skill for El Niño events and their seasonally paced termination, our analysis suggests that long-duration extreme sea level drops may also be highly predictable.
NASA Astrophysics Data System (ADS)
Sadegh, M.; Moftakhari, H.; AghaKouchak, A.
2017-12-01
Many natural hazards are driven by multiple forcing variables, and concurrence/consecutive extreme events significantly increases risk of infrastructure/system failure. It is a common practice to use univariate analysis based upon a perceived ruling driver to estimate design quantiles and/or return periods of extreme events. A multivariate analysis, however, permits modeling simultaneous occurrence of multiple forcing variables. In this presentation, we introduce the Multi-hazard Assessment and Scenario Toolbox (MhAST) that comprehensively analyzes marginal and joint probability distributions of natural hazards. MhAST also offers a wide range of scenarios of return period and design levels and their likelihoods. Contribution of this study is four-fold: 1. comprehensive analysis of marginal and joint probability of multiple drivers through 17 continuous distributions and 26 copulas, 2. multiple scenario analysis of concurrent extremes based upon the most likely joint occurrence, one ruling variable, and weighted random sampling of joint occurrences with similar exceedance probabilities, 3. weighted average scenario analysis based on a expected event, and 4. uncertainty analysis of the most likely joint occurrence scenario using a Bayesian framework.
NASA Astrophysics Data System (ADS)
Lindsey, Rebecca; Goldman, Nir; Fried, Laurence
2017-06-01
Atomistic modeling of chemistry at extreme conditions remains a challenge, despite continuing advances in computing resources and simulation tools. While first principles methods provide a powerful predictive tool, the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Lindsey, Rebecca; Goldman, Nir; Fried, Laurence
Understanding chemistry at extreme conditions is crucial in fields including geochemistry, astrobiology, and alternative energy. First principles methods can provide valuable microscopic insights into such systems while circumventing the risks of physical experiments, however the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
On the competition of forces in the Kerr field
NASA Astrophysics Data System (ADS)
Semerak, O.
1994-11-01
'Rotosphere', where the component of 4-acceleration, radial relative to the symmetry axis, of the stationary observer depends on his angular velocity in a way going against our intuition, is demarcated in the Kerr spacetime. Stationary observers with extremal value of this acceleration ('extremelly accelerated observers') are introduced and their privileged relation to circular geodesics in the equatorial plane is found. Possible translation of the results into 'force' language is based on the definition of the 'centrifugal force' with respect to the zero-angular-momentum observers. It yields, in particular, a simple interpretation of the behavior of acceleration of the stationary observer in terms of gravitational, Coriolis and centrifugal forces.
NASA Astrophysics Data System (ADS)
Chen, Xiaowei; Wang, Wenping; Wan, Min
2013-12-01
It is essential to calculate magnetic force in the process of studying electromagnetic flat sheet forming. Calculating magnetic force is the basis of analyzing the sheet deformation and optimizing technical parameters. Magnetic force distribution on the sheet can be obtained by numerical simulation of electromagnetic field. In contrast to other computing methods, the method of numerical simulation has some significant advantages, such as higher calculation accuracy, easier using and other advantages. In this paper, in order to study of magnetic force distribution on the small size flat sheet in electromagnetic forming when flat round spiral coil, flat rectangular spiral coil and uniform pressure coil are adopted, the 3D finite element models are established by software ANSYS/EMAG. The magnetic force distribution on the sheet are analyzed when the plane geometries of sheet are equal or less than the coil geometries under fixed discharge impulse. The results showed that when the physical dimensions of sheet are less than the corresponding dimensions of the coil, the variation of induced current channel width on the sheet will cause induced current crowding effect that seriously influence the magnetic force distribution, and the degree of inhomogeneity of magnetic force distribution is increase nearly linearly with the variation of induced current channel width; the small size uniform pressure coil will produce approximately uniform magnetic force distribution on the sheet, but the coil is easy to early failure; the desirable magnetic force distribution can be achieved when the unilateral placed flat rectangular spiral coil is adopted, and this program can be take as preferred one, because the longevity of flat rectangular spiral coil is longer than the working life of small size uniform pressure coil.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1987-07-01
The U.S. Navy is conducting a long-term program to monitor for possible effects from the operation of its Extremely Low Frequency (ELF) Communications System to resident biota and their ecological relationships. This report documents progress of the following studies: Soil Amoeba; Soil and Litter Arthropoda and Earthworm Studies; Biological Studies on Pollinating insects: Megachilid Bees; and Small Vertebrates: Small Mammals and Nesting Birds.
Wang, X; Meng, M Q-H
2010-01-01
Use of the capsule endoscope (CE) in clinical examinations is limited by its passive movement resulting from the natural peristalsis of the gastrointestinal (GI) tract. Therefore, a locomotion mechanism is desirable for the next generation of capsule endoscope. Understanding the resistant properties of the small intestine is essential for designing a wireless magnetic actuation mechanism. In this paper, in vitro experiments were carried out to investigate the resistant force of the small intestine using 15 specially designed capsule prototypes and analysed the effect of the capsule dimension and moving speed. Segments of porcine small intestine were employed as a conservative model for the human intestine. When the capsules under experiment were moving at a speed of 0.5 mm/s, a resistant force of 20 to 100 mN were measured for the capsule diameter in the range of 8 to 13 mm. The force increased with moving speed. The intrinsic cause of the resistant force of the small intestine is discussed based on an analysis of the experimental data. It is believed that the viscoelastic properties of the tissue play an important role in the resistant characteristics of the small intestine.
Welke, Bastian; Hurschler, Christof; Föller, Marie; Schwarze, Michael; Calliess, Tilman
2013-07-11
Techniques for the skeletal attachment of amputation-prostheses have been developed over recent decades. This type of attachment has only been performed on a small number of patients. It poses various potential advantages compared to conventional treatment with a socket, but is also associated with an increased risk of bone or implant-bone interface fracture in the case of a fall. We therefore investigated the bending stiffness and ultimate bending moment of such devices implanted in human and synthetic bones. Eight human specimens and 16 synthetic models of the proximal femora were implanted with lower extremity prostheses and eight human specimens and six synthetic humeri were implanted with upper extremity prostheses. They were dissected according to typical amputation levels and underwent loading in a material testing machine in a four-point bending setup. Bending stiffness, ultimate bending moment and fracture modes were determined in a load to failure experiment. Additionally, axial pull-out was performed on eight synthetic specimens of the lower extremity. Maximum bending moment of the synthetic femora was 160.6±27.5 Nm, the flexural rigidity of the synthetic femora was 189.0±22.6 Nm2. Maximum bending moment of the human femora was 100.4±38.5 Nm, and the flexural rigidity was 137.8±29.4 Nm2. The maximum bending moment of the six synthetic humeri was 104.9±19.0 Nm, and the flexural rigidity was 63.7±3.6 Nm2. For the human humeri the maximum bending moment was 36.7±11.0 Nm, and the flexural rigidity at was 43.7±10.5 Nm2. The maximum pull-out force for the eight synthetic femora was 3571±919 N. Significant differences were found between human and synthetic specimens of the lower and upper extremity regarding maximum bending moment, bending displacement and flexural rigidity. The results of this study are relevant with respect to previous finding regarding the load at the interfaces of osseointegrated prosthesis fixation devices and are crucial for the development of safety devices intended to protect the bone-implant interface from damaging loadings.
Stiffness and ultimate load of osseointegrated prosthesis fixations in the upper and lower extremity
2013-01-01
Background Techniques for the skeletal attachment of amputation-prostheses have been developed over recent decades. This type of attachment has only been performed on a small number of patients. It poses various potential advantages compared to conventional treatment with a socket, but is also associated with an increased risk of bone or implant-bone interface fracture in the case of a fall. We therefore investigated the bending stiffness and ultimate bending moment of such devices implanted in human and synthetic bones. Methods Eight human specimens and 16 synthetic models of the proximal femora were implanted with lower extremity prostheses and eight human specimens and six synthetic humeri were implanted with upper extremity prostheses. They were dissected according to typical amputation levels and underwent loading in a material testing machine in a four-point bending setup. Bending stiffness, ultimate bending moment and fracture modes were determined in a load to failure experiment. Additionally, axial pull-out was performed on eight synthetic specimens of the lower extremity. Results Maximum bending moment of the synthetic femora was 160.6±27.5 Nm, the flexural rigidity of the synthetic femora was 189.0±22.6 Nm2. Maximum bending moment of the human femora was 100.4±38.5 Nm, and the flexural rigidity was 137.8±29.4 Nm2. The maximum bending moment of the six synthetic humeri was 104.9±19.0 Nm, and the flexural rigidity was 63.7±3.6 Nm2. For the human humeri the maximum bending moment was 36.7±11.0 Nm, and the flexural rigidity at was 43.7±10.5 Nm2. The maximum pull-out force for the eight synthetic femora was 3571±919 N. Conclusion Significant differences were found between human and synthetic specimens of the lower and upper extremity regarding maximum bending moment, bending displacement and flexural rigidity. The results of this study are relevant with respect to previous finding regarding the load at the interfaces of osseointegrated prosthesis fixation devices and are crucial for the development of safety devices intended to protect the bone-implant interface from damaging loadings. PMID:23844992
Leitner, Michael; Fantner, Georg E.; Fantner, Ernest J.; Ivanova, Katerina; Ivanov, Tzvetan; Rangelow, Ivo; Ebner, Andreas; Rangl, Martina; Tang, Jilin; Hinterdorfer, Peter
2012-01-01
In this study, we demonstrate the increased performance in speed and sensitivity achieved by the use of small AFM cantilevers on a standard AFM system. For this, small rectangular silicon oxynitride cantilevers were utilized to arrive at faster atomic force microscopy (AFM) imaging times and more sensitive molecular recognition force spectroscopy (MRFS) experiments. The cantilevers we used had lengths between 13 and 46 μm, a width of about 11 μm, and a thickness between 150 and 600 nm. They were coated with chromium and gold on the backside for a better laser reflection. We characterized these small cantilevers through their frequency spectrum and with electron microscopy. Due to their small size and high resonance frequency we were able to increase the imaging speed by a factor of 10 without any loss in resolution for images from several μm scansize down to the nanometer scale. This was shown on bacterial surface layers (s-layer) with tapping mode under aqueous, near physiological conditions and on nuclear membranes in contact mode in ambient environment. In addition, we showed that single molecular forces can be measured with an up to 5 times higher force sensitivity in comparison to conventional cantilevers with similar spring constants. PMID:22721963
Assessing Domestic Right-Wing Extremism Using the Theory of Collective Behavior
2009-12-01
DOMESTIC RIGHT-WING EXTREMISM USING THE THEORY OF COLLECTIVE BEHAVIOR Major Arnold C. Baldoza, United States Air Force B.S., Ateneo de Manila...emerged, but these [were] expensive avocations. … Public transportation became more expensive…. Income increased for those who continued to work...September 14, 2001, http://www.washingtonpost.com/ac2/wp-dyn/A28620-2001Sep14 (accessed October 17, 2009). 56 roots are attributed to Alexis de
A new approach for the description of discharge extremes in small catchments
NASA Astrophysics Data System (ADS)
Pavia Santolamazza, Daniela; Lebrenz, Henning; Bárdossy, András
2017-04-01
Small catchment basins in Northwestern Switzerland, characterized by small concentration times, are frequently targeted by floods. The peak and the volume of these floods are commonly estimated by a frequency analysis of occurrence and described by a random variable, assuming a uniform distributed probability and stationary input drivers (e.g. precipitation, temperature). For these small catchments, we attempt to describe and identify the underlying mechanisms and dynamics at the occurrence of extremes by means of available high temporal resolution (10 min) observations and to explore the possibilities to regionalize hydrological parameters for short intervals. Therefore, we investigate new concepts for the flood description such as entropy as a measure of disorder and dispersion of precipitation. First findings and conclusions of this ongoing research are presented.
Patel, Jigna; Qiu, Qinyin; Yarossi, Mathew; Merians, Alma; Massood, Supriya; Tunik, Eugene; Adamovich, Sergei; Fluet, Gerard
2017-07-01
Explore the potential benefits of using priming methods prior to an active hand task in the acute phase post-stroke in persons with severe upper extremity hemiparesis. Five individuals were trained using priming techniques including virtual reality (VR) based visual mirror feedback and contralaterally controlled passive movement strategies prior to training with an active pinch force modulation task. Clinical, kinetic, and neurophysiological measurements were taken pre and post the training period. Clinical measures were taken at six months post training. The two priming simulations and active training were well tolerated early after stroke. Priming effects were suggested by increased maximal pinch force immediately after visual and movement based priming. Despite having no clinically observable movement distally, the subjects were able to volitionally coordinate isometric force and muscle activity (EMG) in a pinch tracing task. The Root Mean Square Error (RMSE) of force during the pinch trace task gradually decreased over the training period suggesting learning may have occurred. Changes in motor cortical neurophysiology were seen in the unaffected hemisphere using Transcranial Magnetic Stimulation (TMS) mapping. Significant improvements in motor recovery as measured by the Action Research Arm Test (ARAT) and the Upper Extremity Fugl Meyer Assessment (UEFMA) were demonstrated at six months post training by three of the five subjects. This study suggests that an early hand-based intervention using visual and movement based priming activities and a scaled motor task allows participation by persons without the motor control required for traditionally presented rehabilitation and testing. Implications for Rehabilitation Rehabilitation of individuals with severely paretic upper extremities after stroke is challenging due to limited movement capacity and few options for therapeutic training. Long-term functional recovery of the arm after stroke depends on early return of active hand control, establishing a need for acute training methods focused distally. This study demonstrates the feasibility of an early hand-based intervention using virtual reality based priming and scaled motor activities which can allow for participation by persons without the motor control required for traditionally presented rehabilitation and testing.
Proliferation of Small Nuclear Forces.
1983-04-30
character of conflict, arm control issues, conventional arms competition and U.S. forces; 3) Assess how new nuclear powers will behave and how their...neighbors 0and other nuclear powers will react; "--- 5) Identify the likely patterns and outcars of nuclear and other military interaction, including...Regional Nuclear Powers , 1990-2010 A small nuclear force (SNF) would comprise at a minimum from 5 to 10 deliverable and militarily serviceable fission
33 CFR 80.105 - Calais, ME to Cape Small, ME.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 33 Navigation and Navigable Waters 1 2010-07-01 2010-07-01 false Calais, ME to Cape Small, ME. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.105 Calais, ME to Cape Small, ME... International Bridge at Calais, ME to the southwesternmost extremity of Bald Head at Cape Small. ...
33 CFR 80.105 - Calais, ME to Cape Small, ME.
Code of Federal Regulations, 2012 CFR
2012-07-01
... 33 Navigation and Navigable Waters 1 2012-07-01 2012-07-01 false Calais, ME to Cape Small, ME. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.105 Calais, ME to Cape Small, ME... International Bridge at Calais, ME to the southwesternmost extremity of Bald Head at Cape Small. ...
33 CFR 80.105 - Calais, ME to Cape Small, ME.
Code of Federal Regulations, 2013 CFR
2013-07-01
... 33 Navigation and Navigable Waters 1 2013-07-01 2013-07-01 false Calais, ME to Cape Small, ME. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.105 Calais, ME to Cape Small, ME... International Bridge at Calais, ME to the southwesternmost extremity of Bald Head at Cape Small. ...
33 CFR 80.105 - Calais, ME to Cape Small, ME.
Code of Federal Regulations, 2011 CFR
2011-07-01
... 33 Navigation and Navigable Waters 1 2011-07-01 2011-07-01 false Calais, ME to Cape Small, ME. 80... INTERNATIONAL NAVIGATION RULES COLREGS DEMARCATION LINES Atlantic Coast § 80.105 Calais, ME to Cape Small, ME... International Bridge at Calais, ME to the southwesternmost extremity of Bald Head at Cape Small. ...
Quick Tips Guide for Small Manufacturing Businesses
Small manufacturing businesses can use this Quick Tips Guide to be better prepared for future extreme weather events. This guide discusses keeping good records, improving housekeeping procedures, and training employees.
Rising sea levels will reduce extreme temperature variations in tide-dominated reef habitats.
Lowe, Ryan Joseph; Pivan, Xavier; Falter, James; Symonds, Graham; Gruber, Renee
2016-08-01
Temperatures within shallow reefs often differ substantially from those in the surrounding ocean; therefore, predicting future patterns of thermal stresses and bleaching at the scale of reefs depends on accurately predicting reef heat budgets. We present a new framework for quantifying how tidal and solar heating cycles interact with reef morphology to control diurnal temperature extremes within shallow, tidally forced reefs. Using data from northwestern Australia, we construct a heat budget model to investigate how frequency differences between the dominant lunar semidiurnal tide and diurnal solar cycle drive ~15-day modulations in diurnal temperature extremes. The model is extended to show how reefs with tidal amplitudes comparable to their depth, relative to mean sea level, tend to experience the largest temperature extremes globally. As a consequence, we reveal how even a modest sea level rise can substantially reduce temperature extremes within tide-dominated reefs, thereby partially offsetting the local effects of future ocean warming.
Arctic sea ice, Eurasia snow, and extreme winter haze in China.
Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho
2017-03-01
The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction.
Arctic sea ice, Eurasia snow, and extreme winter haze in China
Zou, Yufei; Wang, Yuhang; Zhang, Yuzhong; Koo, Ja-Ho
2017-01-01
The East China Plains (ECP) region experienced the worst haze pollution on record for January in 2013. We show that the unprecedented haze event is due to the extremely poor ventilation conditions, which had not been seen in the preceding three decades. Statistical analysis suggests that the extremely poor ventilation conditions are linked to Arctic sea ice loss in the preceding autumn and extensive boreal snowfall in the earlier winter. We identify the regional circulation mode that leads to extremely poor ventilation over the ECP region. Climate model simulations indicate that boreal cryospheric forcing enhances the regional circulation mode of poor ventilation in the ECP region and provides conducive conditions for extreme haze such as that of 2013. Consequently, extreme haze events in winter will likely occur at a higher frequency in China as a result of the changing boreal cryosphere, posing difficult challenges for winter haze mitigation but providing a strong incentive for greenhouse gas emission reduction. PMID:28345056
Influence of permittivity on gradient force exerted on Mie spheres.
Chen, Jun; Li, Kaikai; Li, Xiao
2018-04-01
In optical trapping, whether a particle could be stably trapped into the focus region greatly depends on the strength of the gradient force. Individual theoretical study on gradient force exerted on a Mie particle is rare because the mathematical separation of the gradient force and the scattering force in the Mie regime is difficult. Based on the recent forces separation work by Du et al. [Sci. Rep.7, 18042 (2017)SRCEC32045-232210.1038/s41598-017-17874-1], we investigate the influence of permittivity (an important macroscopic physical quantity) on the gradient force exerted on a Mie particle by cooperating numerical calculation using fast Fourier transform and analytical analysis using multipole expansion. It is revealed that gradient forces exerted on small spheres are mainly determined by the electric dipole moment except for certain permittivity with which the real part of polarizability of the electric dipole approaches zero, and gradient forces exerted on larger spheres are complex because of the superposition of the multipole moments. The classification of permittivity corresponding to different varying tendencies of gradient forces exerted on small spheres or larger Mie particles are illustrated. Absorption of particles favors the trapping of small spheres by gradient force, while it is bad for the trapping of larger particles. Moreover, the absolute values of the maximal gradient forces exerted on larger Mie particles decline greatly versus the varied imaginary part of permittivity. This work provides elaborate investigation on the different varying tendencies of gradient forces versus permittivity, which favors more accurate and free optical trapping.
Overspinning a Kerr black hole: The effect of the self-force
NASA Astrophysics Data System (ADS)
Colleoni, Marta; Barack, Leor
2015-05-01
We study the scenario in which a massive particle is thrown into a rapidly rotating Kerr black hole in an attempt to spin it up beyond its extremal limit, challenging weak cosmic censorship. We work in black-hole perturbation theory, and focus on nonspinning, uncharged particles sent in on equatorial orbits. We first identify the complete parameter-space region in which overspinning occurs when backreaction effects from the particle's self-gravity are ignored. We find, in particular, that overspinning can be achieved only with particles sent in from infinity. Gravitational self-force effects may prevent overspinning by radiating away a sufficient amount of the particle's angular momentum ("dissipative effect"), and/or by increasing the effective centrifugal repulsion, so that particles with suitable parameters never get captured ("conservative effect"). We analyze the full effect of the self-force, thereby completing previous studies by Jacobson and Sotiriou (who neglected the self-force) and by Barausse, Cardoso and Khanna (who considered the dissipative effect on a subset of orbits). Our main result is an inequality, involving certain self-force quantities, which describes a necessary and sufficient condition for the overspinning scenario to be overruled. This "censorship" condition is formulated on a certain one-parameter family of geodesics in the limit of an extremal Kerr geometry. We find that the censorship condition is insensitive to the dissipative effect (within the first-order self-force approximation used here), except for a subset of perfectly fine-tuned orbits, for which a separate censorship condition is derived. We do not obtain here the self-force input needed to evaluate either of our two conditions, but discuss the prospects for producing the necessary data using state-of-the-art numerical codes.
Ground reaction forces and kinematics in distance running in older-aged men.
Bus, Sicco A
2003-07-01
The biomechanics of distance running has not been studied before in older-aged runners but may be different than in younger-aged runners because of musculoskeletal degeneration at older age. This study aimed at determining whether the stance phase kinematics and ground reaction forces in running are different between younger- and older-aged men. Lower-extremity kinematics using three-dimensional motion analysis and ground reaction forces (GRF) using a force plate were assessed in 16 older-aged (55-65 yr) and 13 younger-aged (20-35 yr) well-trained male distance runners running at a self-selected (SRS) and a controlled (CRS) speed of 3.3 m.s-1. The older subjects ran at significantly lower self-selected speeds than the younger subjects (mean 3.34 vs 3.77 m.s-1). In both speed conditions, the older runners exhibited significantly more knee flexion at heel strike and significantly less knee flexion and extension range of motion. No age group differences were present in subtalar joint motion. Impact peak force (1.91 vs 1.70 BW) and maximal initial loading rate (107.5 vs 85.5 BW.s-1) were significantly higher in the older runners at the CRS. Maximal peak vertical and anteroposterior forces and impulses were significantly lower in the older runners at the SRS. The biomechanics of running is different between older- and younger-aged runners on several relevant parameters. The larger impact peak force and initial loading rate indicate a loss of shock-absorbing capacity in the older runners. This may increase their susceptibility to lower-extremity overuse injuries. Moreover, it emphasizes the focus on optimizing cushioning properties in the design and prescription of running shoes and suggests that older-aged runners should be cautious with running under conditions of high impact.
Cross-timescale Interference and Rainfall Extreme Events in South Eastern South America
NASA Astrophysics Data System (ADS)
Munoz, Angel G.
The physical mechanisms and predictability associated with extreme daily rainfall in South East South America (SESA) are investigated for the December-February season. Through a k-mean analysis, a robust set of daily circulation regimes is identified and then it is used to link the frequency of rainfall extreme events with large-scale potential predictors at subseasonal-to-seasonal scales. This basic set of daily circulation regimes is related to the continental and oceanic phases of the South Atlantic Convergence Zone (SACZ) and wave train patterns superimposed on the Southern Hemisphere Polar Jet. Some of these recurrent synoptic circulation types are conducive to extreme rainfall events in the region through synoptic control of different meso-scale physical features and, at the same time, are influenced by climate phenomena that could be used as sources of potential predictability. Extremely high rainfall (as measured by the 95th- and 99th-percentiles) is preferentially associated with two of these weather types, which are characterized by moisture advection intrusions from lower latitudes and the Pacific; another three weather types, characterized by above-normal moisture advection toward lower latitudes or the Andes, are preferentially associated with dry days (days with no rain). The analysis permits the identification of several subseasonal-to-seasonal scale potential predictors that modulate the occurrence of circulation regimes conducive to extreme rainfall events in SESA. It is conjectured that a cross-timescale interference between the different climate drivers improves the predictive skill of extreme precipitation in the region. The potential and real predictive skill of the frequency of extreme rainfall is then evaluated, finding evidence indicating that mechanisms of climate variability at one timescale contribute to the predictability at another scale, i.e., taking into account the interference of different potential sources of predictability at different timescales increases the predictive skill. This fact is in agreement with the Cross-timescale Interference Conjecture proposed in the first part of the thesis. At seasonal scale, a combination of those weather types tends to outperform all the other potential predictors explored, i.e., sea surface temperature patterns, phases of the Madden-Julian Oscillation, and combinations of both. Spatially averaged Kendall’s τ improvements of 43% for the potential predictability and 23% for realtime predictions are attained with respect to standard models considering sea-surface temperature fields alone. A new subseasonal-to-seasonal predictive methodology for extreme rainfall events is proposed, based on probability forecasts of seasonal sequences of these weather types. The cross-validated realtime skill of the new probabilistic approach, as measured by the Hit Score and the Heidke Skill Score, is on the order of twice that associated with climatological values. The approach is designed to offer useful subseasonal-to-seasonal climate information to decision-makers interested not only in how many extreme events will happen in the season, but also in how, when and where those events will probably occur. In order to gain further understanding about how the cross-timescale interference occurs, an externally-forced Lorenz model is used to explore the impact of different kind of forcings, at inter-annual and decadal scales, in the establishment of constructive interactions associated with the simulated “extreme events”. Using a wavelet analysis, it is shown that this simple model is capable of reproducing the same kind of cross-timescale structures observed in the wavelet power spectrum of the Nino3.4 index only when it is externally forced by both inter-annual and decadal signals: the annual cycle and a decadal forcing associated with the natural solar variability. The nature of this interaction is non-linear, and it impacts both mean and extreme values in the time series. No predictive power was found when using metrics like standard deviation and auto-correlation. Nonetheless, it was proposed that an early warning signal for occurrence of extreme rainfall in SESA may be possible via a continuous monitoring of relative phases between the cross-timescale leading components.
Measures of functional performance and their association with hip and thigh strength.
Kollock, Roger; Van Lunen, Bonnie L; Ringleb, Stacie I; Oñate, James A
2015-01-01
Insufficient hip and thigh strength may increase an athlete's susceptibility to injury. However, screening for strength deficits using isometric and isokinetic instrumentation may not be practical in all clinical scenarios. To determine if functional performance tests are valid indicators of hip and thigh strength. Descriptive laboratory study. Research laboratory. Sixty-two recreationally athletic men (n = 30, age = 21.07 years, height = 173.84 cm, mass = 81.47 kg) and women (n = 32, age = 21.03 years, height = 168.77 cm, mass = 68.22 kg) participants were recruited. During session 1, we measured isometric peak force and rate of force development for 8 lower extremity muscle groups, followed by an isometric endurance test. During session 2, participants performed functional performance tests. Peak force, rate of force development, fatigue index, hop distance (or height), work (joules), and number of hops performed during the 30-second lateral-hop test were assessed. The r values were squared to calculate r (2). We used Pearson correlations to evaluate the associations between functional performance and strength. In men, the strongest relationship was observed between triple-hop work and hip-adductor peak force (r(2) = 50, P ≤ .001). Triple-hop work also was related to hip-adductor (r(2) = 38, P ≤ .01) and hip-flexor (r(2) = 37, P ≤ .01) rate of force development. For women, the strongest relationships were between single-legged vertical-jump work and knee-flexor peak force (r(2) = 0.44, P ≤ .01) and single-legged vertical-jump height and knee-flexor peak force (r(2) = 0.42, P ≤ .01). Single-legged vertical-jump height also was related to knee-flexor rate of force development (r(2) = 0.49, P ≤ .001). The 30-second lateral-hop test did not account for a significant portion of the variance in strength endurance. Hop tests alone did not provide clinicians with enough information to make evidence-based decisions about lower extremity strength in isolated muscle groups.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. In this research, high resolution satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA) are used as a basis for undertaking model experiments using a state-of-the-art regional climate model. The MIRA dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of sea surface temperature (SST) anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the regional climate model's domain size are briefly presented, before a comparison of simulated daily rainfall from the model with the satellite-derived dataset. Secondly, simulations of current climate and rainfall extremes from the model are compared to the MIRA dataset at daily timescales. Finally, the results from the idealised SST experiments are presented, suggesting highly nonlinear associations between rainfall extremes remote SST anomalies.
Tedesco Triccas, L; Burridge, J H; Hughes, A M; Pickering, R M; Desikan, M; Rothwell, J C; Verheyden, G
2016-01-01
To systematically review the methodology in particular treatment options and outcomes and the effect of multiple sessions of transcranial direct current stimulation (tDCS) with rehabilitation programmes for upper extremity recovery post stroke. A search was conducted for randomised controlled trials involving tDCS and rehabilitation for the upper extremity in stroke. Quality of included studies was analysed using the Modified Downs and Black form. The extent of, and effect of variation in treatment parameters such as anodal, cathodal and bi-hemispheric tDCS on upper extremity outcome measures of impairment and activity were analysed using meta-analysis. Nine studies (371 participants with acute, sub-acute and chronic stroke) were included. Different methodologies of tDCS and upper extremity intervention, outcome measures and timing of assessments were identified. Real tDCS combined with rehabilitation had a small non-significant effect of +0.11 (p=0.44) and +0.24 (p=0.11) on upper extremity impairments and activities at post-intervention respectively. Various tDCS methods have been used in stroke rehabilitation. The evidence so far is not statistically significant, but is suggestive of, at best, a small beneficial effect on upper extremity impairment. Future research should focus on which patients and rehabilitation programmes are likely to respond to different tDCS regimes. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Flexible Models for Solar Sail Control
NASA Technical Reports Server (NTRS)
Weaver Smith, Suzanne; Song, Haiping; Baker, John R.; Black, Jonathan; Muheim, Danniella M.
2005-01-01
Solar sails employ a unique form of propulsion, gaining momentum from incident and reflected photons. However, the momentum transferred by an individual photon is extremely small. Consequently, a solar sail must have an extremely large surface area and also be extremely light. The flexibility of the sail then must be considered when designing or evaluating control laws. In this paper, solar sail flexibility and its influence on control effectiveness is considered using idealized two-dimensional models to represent physical phenomena rather than a specific design. Differential equations of motion are derived for a distributed parameter model of a flexible solar sail idealized as a rotating central hub with two opposing flexible booms. This idealization is appropriate for solar sail designs in which the vibrational modes of the sail and supporting booms move together allowing the sail mass to be distributed along the booms in the idealized model. A reduced analytical model of the flexible response is considered. Linear feedback torque control is applied at the central hub. Two translational disturbances and a torque disturbance also act at the central hub representing the equivalent effect of deflecting sail shape about a reference line. Transient simulations explore different control designs and their effectiveness for controlling orientation, for reducing flexible motion and for disturbance rejection. A second model also is developed as a two-dimensional "pathfinder" model to calculate the effect of solar sail shape on the resultant thrust, in-plane force and torque at the hub. The analysis is then extended to larger models using the finite element method. The finite element modeling approach is verified by comparing results from a two-dimensional finite element model with those from the analytical model. The utility of the finite element modeling approach for this application is then illustrated through examples based on a full finite element model.
Influence of Forest Disturbance on Hydrologic Extremes in the Colorado River Basin
NASA Astrophysics Data System (ADS)
Bennett, K. E.; Middleton, R. S.; McDowell, N. G.; Xu, C.; Wilson, C. J.
2015-12-01
The Colorado River is one of the most important freshwater rivers in the United States: it provides water supply to more than 30 million people, irrigation to 5.7 million acres of cropland, and produces over 8 billion kilowatt hours of hydroelectric power each year. Our study focuses on changes to hydrological extremes and threshold responses across the Colorado River basin due to forest fires, infestations, and stress-induced tree mortality using a scenario-based approach to estimate forest cover disturbance. Scenarios include static vegetation reductions and dynamic reductions in forest compositions based on three CMIP5 global climate models and one emission scenario (1950-2099). For headwater systems, large intra-year variability exists, indicating the influence of climate on these snowmelt driven basins. Strong seasonality in flow responses are also noted; in the Piedra River higher runoff occurs during freshet under a no-forest condition, with the greatest changes observed for maximum streamflow. Conversely, during the recessional period, flows are lower in scenarios with reduced forest compositions. Low-flows appear to be affected in some basins but not others; for example small headwater systems demonstrate higher low-flows with increased disturbance. Global Climate Model scenarios indicate a range of responses in these basins, characterized by lower peak streamflow but with higher winter flows. This response is influenced by shifts in water, and energy balances associated with a combined response of changing climate and forest cover compositions. Results also clearly show how changes in extreme events are forced by shifts in major water balance parameters (runoff, evapotranspiration, snow water equivalent, and soil moisture) from headwater basins spanning a range of hydrological regimes and ecological environments across the Colorado.
Forecasting seasonal hydrologic response in major river basins
NASA Astrophysics Data System (ADS)
Bhuiyan, A. M.
2014-05-01
Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is suited to represent scenarios leading to extreme flow conditions. For selected flow scenarios, the persistence model performance may be comparable to more complex multivariate approaches, and complex methods did not always improve flow estimation. Overall model performance indicates inclusion of river flows and forcing variables on average improve model extreme event forecasting skills. As a means to further refine the flow estimation, an ensemble forecast method is implemented to provide a likelihood-based indication of expected river flow magnitude and variability. Results indicate seasonal flow variations are well-captured in the ensemble range, therefore the ensemble approach can often prove efficient in estimating extreme river flow conditions. The discriminant prediction approach, a probabilistic measure to forecast streamflow, is also adopted to derive model performance. Results show the efficiency of the method in terms of representing uncertainties in the forecasts.
FOOT experiment (Foot/Ground Reaction Forces during Space Flight)
2005-06-29
ISS011-E-09822 (29 June 2005) --- Astronaut John L. Phillips, Expedition 11 NASA Space Station science officer and flight engineer, uses the Cycle Ergometer with Vibration Isolation System (CEVIS) while participating in the Foot/Ground Reaction Forces During Spaceflight (FOOT) experiment in the Destiny laboratory of the International Space Station. Phillips wore the specially instrumented Lower Extremity Monitoring Suit (LEMS), cycling tights outfitted with sensors, during the experiment.
Causal and Teleological Reasoning in Circuit Recognition.
1979-09-01
MCS77-04828 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROOGRAM ELEMENT. PROJECT. TASK Artificial Intelligence Laboratory I-AREA WORK vN iU RS...by humans with the same knowledge. An extreme example of this is Macsyma [771. This system can perform manipulations, usually using standard...behavior must be like. These latter structural types of forcing functions are the more interesting. One forcing function is performance . Does it work
The U.S. Air Force Transformation Flight Plan
2003-11-01
at Buckley Air Force Base, Colorado. Reserve Associate and Active Associate units have proven that this concept works and benef its the Active and...munitions manufactured from nano-particles, whose virtually all-surface structure yields unprecedented “burn-rates” (extreme explosiveness), promise far...systems for a common operating system, and a suite of remotely operated sensors, weapons, and robotics . Also included are a group of non-lethal weapon
Electromagnetic fields can interact with biological tissue both electrically and mechanically. This study investigated the mechanical interaction between brain tissue and an extremely-low-frequency (ELF) electric field by measuring the resultant vibrational amplitude. The exposur...
Probabilistic sampling of protein conformations: new hope for brute force?
Feldman, Howard J; Hogue, Christopher W V
2002-01-01
Protein structure prediction from sequence alone by "brute force" random methods is a computationally expensive problem. Estimates have suggested that it could take all the computers in the world longer than the age of the universe to compute the structure of a single 200-residue protein. Here we investigate the use of a faster version of our FOLDTRAJ probabilistic all-atom protein-structure-sampling algorithm. We have improved the method so that it is now over twenty times faster than originally reported, and capable of rapidly sampling conformational space without lattices. It uses geometrical constraints and a Leonard-Jones type potential for self-avoidance. We have also implemented a novel method to add secondary structure-prediction information to make protein-like amounts of secondary structure in sampled structures. In a set of 100,000 probabilistic conformers of 1VII, 1ENH, and 1PMC generated, the structures with smallest Calpha RMSD from native are 3.95, 5.12, and 5.95A, respectively. Expanding this test to a set of 17 distinct protein folds, we find that all-helical structures are "hit" by brute force more frequently than beta or mixed structures. For small helical proteins or very small non-helical ones, this approach should have a "hit" close enough to detect with a good scoring function in a pool of several million conformers. By fitting the distribution of RMSDs from the native state of each of the 17 sets of conformers to the extreme value distribution, we are able to estimate the size of conformational space for each. With a 0.5A RMSD cutoff, the number of conformers is roughly 2N where N is the number of residues in the protein. This is smaller than previous estimates, indicating an average of only two possible conformations per residue when sterics are accounted for. Our method reduces the effective number of conformations available at each residue by probabilistic bias, without requiring any particular discretization of residue conformational space, and is the fastest method of its kind. With computer speeds doubling every 18 months and parallel and distributed computing becoming more practical, the brute force approach to protein structure prediction may yet have some hope in the near future. Copyright 2001 Wiley-Liss, Inc.
Small nanoparticles, surface geometry and contact forces.
Takato, Yoichi; Benson, Michael E; Sen, Surajit
2018-03-01
In this molecular dynamics study, we examine the local surface geometric effects of the normal impact force between two approximately spherical nanoparticles that collide in a vacuum. Three types of surface geometries-(i) crystal facets, (ii) sharp edges, and (iii) amorphous surfaces of small nanoparticles with radii R <10 nm-are considered. The impact forces are compared with their macroscopic counterparts described by nonlinear contact forces based on Hertz contact mechanics. In our simulations, edge and amorphous surface contacts with weak surface energy reveal that the average impact forces are in excellent agreement with the Hertz contact force. On the other hand, facet collisions show a linearly increasing force with increasing compression. Our results suggest that the nearly spherical nanoparticles are likely to enable some nonlinear dynamic phenomena, such as breathers and solitary waves observed in granular materials, both originating from the nonlinear contact force.
An assessment of precipitation and surface air temperature over China by regional climate models
NASA Astrophysics Data System (ADS)
Wang, Xueyuan; Tang, Jianping; Niu, Xiaorui; Wang, Shuyu
2016-12-01
An analysis of a 20-year summer time simulation of present-day climate (1989-2008) over China using four regional climate models coupled with different land surface models is carried out. The climatic means, interannual variability, linear trends, and extremes are examined, with focus on precipitation and near surface air temperature. The models are able to reproduce the basic features of the observed summer mean precipitation and temperature over China and the regional detail due to topographic forcing. Overall, the model performance is better for temperature than that of precipitation. The models reasonably grasp the major anomalies and standard deviations over China and the five subregions studied. The models generally reproduce the spatial pattern of high interannual variability over wet regions, and low variability over the dry regions. The models also capture well the variable temperature gradient increase to the north by latitude. Both the observed and simulated linear trend of precipitation shows a drying tendency over the Yangtze River Basin and wetting over South China. The models capture well the relatively small temperature trends in large areas of China. The models reasonably simulate the characteristics of extreme precipitation indices of heavy rain days and heavy precipitation fraction. Most of the models also performed well in capturing both the sign and magnitude of the daily maximum and minimum temperatures over China.
NASA Astrophysics Data System (ADS)
Hedman, Matthew M.; Burns, Joseph A.; Nicholson, Philip D.; Tiscareno, Matthew S.; Evans, Michael W.; Baker, Emily
2017-10-01
Around the start of Cassini's Grand Finale, the spacecraft passed a dozen times through Saturn's shadow, enabling its cameras and spectrometers to observe the ring system at extremely high phase angles. These opportunities yielded the best combination of signal-to-noise and resolution for many parts of Saturn's fainter dusty rings, and allowed the main rings to be viewed from previously inaccessible lighting geometries. We will highlight some of the surprising features found in the data obtained by Cassini's Imaging Science Subsystem (ISS) and Visual and Infrared Mapping Spectrometer (VIMS) during these time periods, and discuss what they might be able to tell us about the structure and dynamics of Saturn's various ring systems. For example, ISS captured global views of the entire ring system that reveal previously unseen structures in dust-filled regions like the D ring and the zone between Saturn's F and G rings, as well as novel fine-scale structures in the core of the E ring near Enceladus' orbit. These structures provide new insights into the forces that sculpt these tenuous rings. ISS and VIMS also detected an unexpected brightening and highly unusual spectra of the main rings at extremely high phase angles. These data may provide novel information about the distribution of small grains and particles in these denser rings.
NASA Astrophysics Data System (ADS)
Lyddon, Charlotte; Plater, Andy, ,, Prof.; Brown, Jenny, ,, Dr.; Leonardi, Nicoletta, ,, Dr.
2017-04-01
Coastal zones worldwide are subject to short term, local variations in sea-level, particularly communities and industries developed on estuaries. Astronomical high tides, meteorological storm surges and increased river flow present a combined flood hazard. This can elevate water level at the coast above predicted levels, generating extreme water levels. These contributions can also interact to alter the phase and amplitude of tides and surges, and thus cause significant mismatches between the predicted and observed water level. The combined effect of tide, surge, river flow and their interactions are the key to understanding and assessing flood risk in estuarine environments for design purposes. Delft3D-FLOW, a hydrodynamic model which solves the unsteady shallow-water equation, is used to access spatial variability in extreme water levels for a range of historical events of different severity within the Severn Estuary, southwest England. Long-term tide gauge records from Ilfracombe and Mumbles and river level data from Sandhurst are analysed to generate a series of extreme water level events, representing the 90th, 95th and 99th percentile conditions, to force the model boundaries. To separate out the time-varying contributions of tidal, fluvial, meteorological processes and their interactions the model is run with different physical forcing. A low pass filter is applied to "de-tide" the residual water elevation, to separate out the time-varying meteorological residual and the tide-surge interactions within the surge. The filtered surge is recombined with the predicted tide so the peak occurs at different times relative to high water. The resulting time series are used to force the model boundary to identify how the interactive processes influence the timing of extreme water level across the estuarine domain. This methodology is first validated using the most extreme event on record to ensure that modelled extreme water levels can be predicted with confidence. Changes in maximum water level are observed in areas where nuclear assets are located (Hinkley, Oldbury & Berkeley) and further upstream, e.g., close to the tidal limit of the Severn Estuary at Epney. Change in crest shape (area and duration above the MSHW) are analysed to understand changes to flood hazard around the peak of the tide. The work concludes that changes in maximum water level can be attributed to the change in time of the peak of the surge relative to high water, the surge shape (classified by skew and kurtosis) and severity of the event. The results can be used to understand the spatial variability in extreme water levels relative to a tide gauge location, which can then be applied to other management needs in hypertidal estuaries worldwide.
Abbott, J Haxby; Schmitt, John
2014-08-01
Multicenter, prospective, longitudinal cohort study. To investigate the minimum important difference (MID) of the Patient-Specific Functional Scale (PSFS), 4 region-specific outcome measures, and the numeric pain rating scale (NPRS) across 3 levels of patient-perceived global rating of change in a clinical setting. The MID varies depending on the external anchor defining patient-perceived "importance." The MID for the PSFS has not been established across all body regions. One thousand seven hundred eight consecutive patients with musculoskeletal disorders were recruited from 5 physical therapy clinics. The PSFS, NPRS, and 4 region-specific outcome measures-the Oswestry Disability Index, Neck Disability Index, Upper Extremity Functional Index, and Lower Extremity Functional Scale-were assessed at the initial and final physical therapy visits. Global rating of change was assessed at the final visit. MID was calculated for the PSFS and NPRS (overall and for each body region), and for each region-specific outcome measure, across 3 levels of change defined by the global rating of change (small, medium, large change) using receiver operating characteristic curve methodology. The MID for the PSFS (on a scale from 0 to 10) ranged from 1.3 (small change) to 2.3 (medium change) to 2.7 (large change), and was relatively stable across body regions. MIDs for the NPRS (-1.5 to -3.5), Oswestry Disability Index (-12), Neck Disability Index (-14), Upper Extremity Functional Index (6 to 11), and Lower Extremity Functional Scale (9 to 16) are also reported. We reported the MID for small, medium, and large patient-perceived change on the PSFS, NPRS, Oswestry Disability Index, Neck Disability Index, Upper Extremity Functional Index, and Lower Extremity Functional Scale for use in clinical practice and research.
The Digital Twin Paradigm for Future NASA and U.S. Air Force Vehicles
NASA Technical Reports Server (NTRS)
Glaessgen, Edward H.; Stargel, D. S.
2012-01-01
Future generations of NASA and U.S. Air Force vehicles will require lighter mass while being subjected to higher loads and more extreme service conditions over longer time periods than the present generation. Current approaches for certification, fleet management and sustainment are largely based on statistical distributions of material properties, heuristic design philosophies, physical testing and assumed similitude between testing and operational conditions and will likely be unable to address these extreme requirements. To address the shortcomings of conventional approaches, a fundamental paradigm shift is needed. This paradigm shift, the Digital Twin, integrates ultra-high fidelity simulation with the vehicle s on-board integrated vehicle health management system, maintenance history and all available historical and fleet data to mirror the life of its flying twin and enable unprecedented levels of safety and reliability.
Pulmonary function and dysfunction in multiple sclerosis.
Smeltzer, S C; Utell, M J; Rudick, R A; Herndon, R M
1988-11-01
Pulmonary function was studied in 25 patients with clinically definite multiple sclerosis with a range of motor impairment. Forced vital capacity (FVC), maximal voluntary ventilation (MVV), and maximal expiratory pressure (MEP) were normal in the ambulatory patients (mean greater than or equal to 80% predicted) but reduced in bedridden patients (mean, 38.5%, 31.6%, and 36.3% predicted; FCV, MVV, and MEP, respectively) and wheelchair-bound patients with upper extremity involvement (mean, 69.4%, 50.4%, and 62.6% predicted; FVC, MVV, and MEP, respectively). Forced vital capacity, MVV, and MEP correlated with Kurtzke Expanded Disability Status scores (tau = -0.72, -0.70, and -0.65) and expiratory muscle weakness occurred most frequently. These findings demonstrate that marked expiratory weakness develops in severely paraparetic patients with multiple sclerosis and the weakness increases as the upper extremities become increasingly involved.
Quantifying the influence of global warming on unprecedented extreme climate events
Singh, Deepti; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala
2017-01-01
Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent. PMID:28439005
Identifying and Modeling Dynamic Preference Evolution in Multipurpose Water Resources Systems
NASA Astrophysics Data System (ADS)
Mason, E.; Giuliani, M.; Castelletti, A.; Amigoni, F.
2018-04-01
Multipurpose water systems are usually operated on a tradeoff of conflicting operating objectives. Under steady state climatic and socioeconomic conditions, such tradeoff is supposed to represent a fair and/or efficient preference. Extreme variability in external forcing might affect water operators' risk aversion and force a change in her/his preference. Properly accounting for these shifts is key to any rigorous retrospective assessment of the operator's behaviors, and to build descriptive models for projecting the future system evolution. In this study, we explore how the selection of different preferences is linked to variations in the external forcing. We argue that preference selection evolves according to recent, extreme variations in system performance: underperforming in one of the objectives pushes the preference toward the harmed objective. To test this assumption, we developed a rational procedure to simulate the operator's preference selection. We map this selection onto a multilateral negotiation, where multiple virtual agents independently optimize different objectives. The agents periodically negotiate a compromise policy for the operation of the system. Agents' attitudes in each negotiation step are determined by the recent system performance measured by the specific objective they maximize. We then propose a numerical model of preference dynamics that implements a concept from cognitive psychology, the availability bias. We test our modeling framework on a synthetic lake operated for flood control and water supply. Results show that our model successfully captures the operator's preference selection and dynamic evolution driven by extreme wet and dry situations.
Quantifying the influence of global warming on unprecedented extreme climate events.
Diffenbaugh, Noah S; Singh, Deepti; Mankin, Justin S; Horton, Daniel E; Swain, Daniel L; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael; Rajaratnam, Bala
2017-05-09
Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.
Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events
NASA Technical Reports Server (NTRS)
Diffenbaugh, Noah S.; Singh, Deepti; Mankin, Justin S.; Horton, Daniel E.; Swain, Daniel L.; Touma, Danielle; Charland, Allison; Liu, Yunjie; Haugen, Matz; Tsiang, Michael;
2017-01-01
Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.
Evaluation of knee joint forces during kneeling work with different kneepads.
Xu, Hang; Jampala, Sree; Bloswick, Donald; Zhao, Jie; Merryweather, Andrew
2017-01-01
The main purpose of this study is to determine knee joint forces resulting from kneeling work with and without kneepads to quantify how different kneepads redistribute force. Eleven healthy males simulated a tile setting task to different locations during six kneepad states (five different kneepad types and without kneepad). Peak and average forces on the anatomical landmarks of both knees were obtained by custom force sensors. The results revealed that kneepad design can significantly modify the forces on the knee joint through redistribution. The Professional Gel design was preferred among the five tested kneepads which was confirmed with both force measurements and participants' responses. The extreme reaching locations induced significantly higher joint forces on left knee or right knee depending on task. The conclusion of this study is that a properly selected kneepad for specific tasks and a more neutral working posture can modify the force distribution on the knees and likely decrease the risk of knee disorders from kneeling work. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cohesive forces prevent the rotational breakup of rubble-pile asteroid (29075) 1950 DA.
Rozitis, Ben; MacLennan, Eric; Emery, Joshua P
2014-08-14
Space missions and ground-based observations have shown that some asteroids are loose collections of rubble rather than solid bodies. The physical behaviour of such 'rubble-pile' asteroids has been traditionally described using only gravitational and frictional forces within a granular material. Cohesive forces in the form of small van der Waals forces between constituent grains have recently been predicted to be important for small rubble piles (ten kilometres across or less), and could potentially explain fast rotation rates in the small-asteroid population. The strongest evidence so far has come from an analysis of the rotational breakup of the main-belt comet P/2013 R3 (ref. 7), although that was indirect and poorly constrained by observations. Here we report that the kilometre-sized asteroid (29075) 1950 DA (ref. 8) is a rubble pile that is rotating faster than is allowed by gravity and friction. We find that cohesive forces are required to prevent surface mass shedding and structural failure, and that the strengths of the forces are comparable to, though somewhat less than, the forces found between the grains of lunar regolith.
Matter-Radiation Interactions in Extremes
to resolve this capability gap. An experimental explosive is shown igniting during small-scale impact testing. An experimental explosive is shown igniting during small-scale impact testing. Accelerating in to
Ground reaction force and 3D biomechanical characteristics of walking in short-leg walkers.
Zhang, Songning; Clowers, Kurt G; Powell, Douglas
2006-12-01
Short-leg walking boots offer several advantages over traditional casts. However, their effects on ground reaction forces (GRF) and three-dimensional (3D) biomechanics are not fully understood. The purpose of the study was to examine 3D lower extremity kinematics and joint dynamics during walking in two different short-leg walking boots. Eleven (five females and six males) healthy subjects performed five level walking trials in each of three conditions: two testing boot conditions, Gait Walker (DeRoyal Industries, Inc.) and Equalizer (Royce Medical Co.), and one pair of laboratory shoes (Noveto, Adidas). A force platform and a 6-camera Vicon motion analysis system were used to collect GRFs and 3D kinematic data during the testing session. A one-way repeated measures analysis of variance (ANOVA) was used to evaluate selected kinematic, GRF, and joint kinetic variables (p<0.05). The results revealed that both short-leg walking boots were effective in minimizing ankle eversion and hip adduction. Neither walker increased the bimodal vertical GRF peaks typically observed in normal walking. However, they did impose a small initial peak (<1BW) earlier in the stance phase. The Gait Walker also exhibited a slightly increased vertical GRF during midstance. These characteristics may be related to the sole materials/design, the restriction of ankle movements, and/or the elevated heel heights of the tested walkers. Both walkers appeared to increase the demand on the knee extensors while they decreased the demand of the knee and hip abductors based on the joint kinetic results.
Sinsurin, Komsak; Srisangboriboon, Sarun; Vachalathiti, Roongtiwa
2017-07-01
Side-to-side differences of lower extremities may influence the likelihood of injury. Moreover, adding the complexity of jump-landing direction would help to explain lower extremity control during sport activities. The aim was to determine the effects of limb dominance and jump-landing direction on lower extremity biomechanics. Nineteen female volleyball athletes participated. Both dominant limbs (DLs) and non-dominant limbs (NLs) were examined in single-leg jump-landing tests in four directions, including forward (0°), diagonal (30° and 60°), and lateral (90°) directions. Kinematic marker trajectories and ground reaction forces were collected using a 10 camera Vicon system and an AMTI force plate. Repeated measures ANOVA (2 × 4, limb × direction) was used to analyse. The finding showed that, at peak vertical GRF, a significant interaction of limb dominance and direction effects was found in the hip flexion angle and lower extremity joint kinetics (p < .05). NLs and DLs exhibited significantly different strategies while landing in various directions. Significantly higher increase of ankle dorsiflexion angle was observed in lateral direction compared to other directions for both DLs and NLs (p < .05). Increasingly using ankle dorsiflexion was observed from the forward to the lateral direction for both DLs and NLs. However, NLs and DLs preferentially used different strategies of joint moment organization to respond to similar VGRFs in various directions. The response pattern of DLs might not be effective and may expose DLs to a higher injury risk, especially with regard to landing with awkward posture compared with NLs.
Munaretto, Joseph M; McNitt-Gray, Jill L; Flashner, Henryk; Requejo, Philip S
2013-08-01
Repetitive loading during manual wheelchair propulsion (WCP) is associated with overuse injury to the upper extremity (UE). The aim of this study was to determine how RF redirection and load distribution are affected by changes upper extremity kinematic modifications associated with modifications in seat positions during a WCP task. The aim of this study was to determine how RF redirection and load distribution are affected by upper extremity kinematic changes associated with seat position adjustment during a WCP task. Dynamic simulations using an experiment-based multi-link inverse dynamics model were used to generate solutions for redistributing UE mechanical load in different seating positions without decrements in WCP task performance. Experimental RF and kinematic data were collected for one subject propelling at a self-selected speed and used as input into the model. Shoulder/axle distance, wrist angular position, and RF direction were systematically modified to simulate how the mechanical demand imposed on the upper extremity (elbow and shoulder net joint moments (NJMs) and net joint forces) may vary. Load distribution depended on UE orientation relative to the wheel. At peak force, lower shoulder/axle distances and more anterior wrist positions on the pushrim allowed for more extended elbow positions and reduced total NJM load. Simulation results incorporating subject-specific data may provide mechanically based information to guide clinical interventions that aim to maintain WCP performance and redistribute load by modifying RF direction, seat configuration and hand/rim interaction. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Lower Extremity Stiffness Changes following Concussion in Collegiate Football Players
DuBose, Dominique F.; Herman, Daniel C.; Jones, Debi L.; Tillman, Susan M.; Clugston, James R.; Pass, Anthony; Hernandez, Jorge A.; Vasilopoulos, Terrie; Horodyski, MaryBeth; Chmielewski, Terese L.
2016-01-01
Purpose Recent research indicates that a concussion increases risk of musculoskeletal injury. Neuromuscular changes following concussion might contribute to the increased risk of injury. Many studies have examined gait post-concussion, but few studies have examined more demanding tasks. This study compared changes in stiffness across the lower extremity, a measure of neuromuscular function, during a jump-landing task in athletes with a concussion (CONC) to uninjured athletes (UNINJ). Methods Division I football players (13 CONC, 26 UNINJ) were tested pre- and post-season. A motion-capture system recorded subjects jumping on one limb from a 25.4 cm step onto a force plate. Hip, knee, and ankle joint stiffness were calculated from initial contact to peak joint flexion using the regression line slopes of the joint moment versus joint angle plots. Leg stiffness was (peak vertical ground reaction force (PVGRF)/lower extremity vertical displacement) from initial contact to PVGRF. All stiffness values were normalized to bodyweight. Values from both limbs were averaged. General linear models compared group (CONC, UNINJ) differences in the changes of pre- and post-season stiffness values. Results Average time from concussion to post-season testing was 49.9 days. The CONC group showed an increase in hip stiffness (p=0.03), a decrease in knee (p=0.03) and leg stiffness (p=0.03), but no change in ankle stiffness (p=0.65) from pre- to post-season. Conclusion Lower extremity stiffness is altered following concussion, which could contribute to an increased risk of lower extremity injury. These data provide further evidence of altered neuromuscular function after concussion. PMID:27501359
Damage of multilayer optics with varying capping layers induced by focused extreme ultraviolet beam
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jody Corso, Alain; Nicolosi, Piergiorgio; Nardello, Marco
2013-05-28
Extreme ultraviolet Mo/Si multilayers protected by capping layers of different materials were exposed to 13.5 nm plasma source radiation generated with a table-top laser to study the irradiation damage mechanism. Morphology of single-shot damaged areas has been analyzed by means of atomic force microscopy. Threshold fluences were evaluated for each type of sample in order to determine the capability of the capping layer to protect the structure underneath.
NASA Astrophysics Data System (ADS)
Bao, Jiawei; Sherwood, Steven C.; Colin, Maxime; Dixit, Vishal
2017-10-01
The behavior of tropical extreme precipitation under changes in sea surface temperatures (SSTs) is investigated with the Weather Research and Forecasting Model (WRF) in three sets of idealized simulations: small-domain tropical radiative-convective equilibrium (RCE), quasi-global "aquapatch", and RCE with prescribed mean ascent from the tropical band in the aquapatch. We find that, across the variations introduced including SST, large-scale circulation, domain size, horizontal resolution, and convective parameterization, the change in the degree of convective organization emerges as a robust mechanism affecting extreme precipitation. Higher ratios of change in extreme precipitation to change in mean surface water vapor are associated with increases in the degree of organization, while lower ratios correspond to decreases in the degree of organization. The spread of such changes is much larger in RCE than aquapatch tropics, suggesting that small RCE domains may be unreliable for assessing the temperature-dependence of extreme precipitation or convective organization. When the degree of organization does not change, simulated extreme precipitation scales with surface water vapor. This slightly exceeds Clausius-Clapeyron (CC) scaling, because the near-surface air warms 10-25% faster than the SST in all experiments. Also for simulations analyzed here with convective parameterizations, there is an increasing trend of organization with SST.
NASA Astrophysics Data System (ADS)
Qian, C.; Wang, J.; Dong, S.; Yin, H.; Burke, C.; Ciavarella, A.; Dong, B.; Freychet, N.; Lott, F. C.; Tett, S. F.
2017-12-01
It is controversial whether Asian mid-latitude cold surges are becoming more likely as a consequence of Arctic warming. Here, we present an event attribution study in mid-latitude Eastern China. A strong cold surge occurred during 21st-25th January 2016 affecting most areas of China, especially Eastern China. Daily minimum temperature (Tmin) records were broken at many stations. The area averaged anomaly of Tmin over the region (20-44N, 100-124E) for this pentad was the lowest temperature recorded since modern meteorological observations started in 1960. This cold event occurred in a background of the warmest winter Tmin since 1960. Given the vast damages caused by this extreme cold event in Eastern China and the previous mentioned controversy, it is compelling to investigate how much anthropogenic forcing agents have affected the probability of cold events with an intensity equal to or larger than the January 2016 extreme event. We use the Met Office Hadley Centre system for Attribution of extreme weather and Climate Events and station observations to investigate the effect of anthropogenic forcings on the likelihood of such a cold event. Anthropogenic influences are estimated to have reduced the likelihood of an extreme cold event in mid-winter with the intensity equal to or stronger than the record of 2016 in Eastern China by about 2/3.
ForceGen 3D structure and conformer generation: from small lead-like molecules to macrocyclic drugs
NASA Astrophysics Data System (ADS)
Cleves, Ann E.; Jain, Ajay N.
2017-05-01
We introduce the ForceGen method for 3D structure generation and conformer elaboration of drug-like small molecules. ForceGen is novel, avoiding use of distance geometry, molecular templates, or simulation-oriented stochastic sampling. The method is primarily driven by the molecular force field, implemented using an extension of MMFF94s and a partial charge estimator based on electronegativity-equalization. The force field is coupled to algorithms for direct sampling of realistic physical movements made by small molecules. Results are presented on a standard benchmark from the Cambridge Crystallographic Database of 480 drug-like small molecules, including full structure generation from SMILES strings. Reproduction of protein-bound crystallographic ligand poses is demonstrated on four carefully curated data sets: the ConfGen Set (667 ligands), the PINC cross-docking benchmark (1062 ligands), a large set of macrocyclic ligands (182 total with typical ring sizes of 12-23 atoms), and a commonly used benchmark for evaluating macrocycle conformer generation (30 ligands total). Results compare favorably to alternative methods, and performance on macrocyclic compounds approaches that observed on non-macrocycles while yielding a roughly 100-fold speed improvement over alternative MD-based methods with comparable performance.
2016-09-01
asymmetric threat’s attack? C. SURVEY OF RECENT STUDIES A survey of extensive studies on countering small boat attacks from different perspectives... studies capability factors that were important in enhancing coastal defense for the Campeche Sound and Israeli coast, respectively. On better...countering small boat swarm attacks utilizing ASCMs. Previous studies focus solely on force protection effectiveness. This thesis addresses this gap. D
Naval Supply Systems Command Fleet Logistics Center
2012-08-08
Partial small business set - aside is a potential consideration 12-month Base plus two options Synopsis N00604-11-R-3006 on NECO and FedBizOpps...2012 Navy Gold Coast Small Business Procurement Event 8 August 2012 #1 PRIORITY = Operating Forces Support …while ensuring Joint...while ensuring Joint Base Success FedBid.com Reverse Auction Website 8 Small Business Assistance #1 PRIORITY = Operating Forces
Climate engineering of vegetated land for hot extremes mitigation: an ESM sensitivity study
NASA Astrophysics Data System (ADS)
Wilhelm, Micah; Davin, Edouard; Seneviratne, Sonia
2014-05-01
Mitigation efforts to reduce anthropogenic climate forcing have thus far proven inadequate, as evident from accelerating greenhouse gas emissions. Many subtropical and mid-latitude regions are expected to experience longer and more frequent heat waves and droughts within the next century. This increased occurrence of weather extremes has important implications for human health, mortality and for socio-economic factors including forest fires, water availability and agricultural production. Various solar radiation management (SRM) schemes that attempt to homogeneously counter the anthropogenic forcing have been examined with different Earth System Models (ESM). Land climate engineering schemes have also been investigated which reduces the amount of solar radiation that is absorbed at the surface. However, few studies have investigated their effects on extremes but rather on mean climate response. Here we present the results of a series of climate engineering sensitivity experiments performed with the Community Earth System Model (CESM) version 1.0.2 at 2°-resolution. This configuration entails 5 fully coupled model components responsible for simulating the Earth's atmosphere, land, land-ice, ocean and sea-ice that interact through a central coupler. Historical and RCP8.5 scenarios were performed with transient land-cover changes and prognostic terrestrial Carbon/Nitrogen cycles. Four sets of experiments are performed in which surface albedo over snow-free vegetated grid points is increased by 0.5, 0.10, 0.15 and 0.20. The simulations show a strong preferential cooling of hot extremes throughout the Northern mid-latitudes during boreal summer. A strong linear scaling between the cooling of extremes and additional surface albedo applied to the land model is observed. The strongest preferential cooling is found in southeastern Europe and the central United States, where increases of soil moisture and evaporative fraction are the largest relative to the control simulation. This preferential cooling is found to intensify in the future scenario. Cloud cover strongly limits the efficacy of a given surface albedo increase to reflect incoming solar radiation back into space. As anthropogenic forcing increases, cloud cover decreases over much of the northern mid-latitudes in CESM.
AFRL Materials and Manufacturing Directorate
Laboratory Air Force Installation Contracting Agency Air Force Institute of Technology National Air & Vehicles (RV) Technology Transfer (T2) 711th Human Performance Wing (711 HPW) Airman Systems (RH) Human Interest AF Small Business Innovation Research/Small Business Technology Transfer (SBIR / STTR) AFRL
Development of a 5-Component Balance for Water Tunnel Applications
NASA Technical Reports Server (NTRS)
Suarez, Carlos J.; Kramer, Brian R.; Smith, Brooke C.
1999-01-01
The principal objective of this research/development effort was to develop a multi-component strain gage balance to measure both static and dynamic forces and moments on models tested in flow visualization water tunnels. A balance was designed that allows measuring normal and side forces, and pitching, yawing and rolling moments (no axial force). The balance mounts internally in the model and is used in a manner typical of wind tunnel balances. The key differences between a water tunnel balance and a wind tunnel balance are the requirement for very high sensitivity since the loads are very low (typical normal force is 90 grams or 0.2 lbs), the need for water proofing the gage elements, and the small size required to fit into typical water tunnel models. The five-component balance was calibrated and demonstrated linearity in the responses of the primary components to applied loads, very low interactions between the sections and no hysteresis. Static experiments were conducted in the Eidetics water tunnel with delta wings and F/A-18 models. The data were compared to forces and moments from wind tunnel tests of the same or similar configurations. The comparison showed very good agreement, providing confidence that loads can be measured accurately in the water tunnel with a relatively simple multi-component internal balance. The success of the static experiments encouraged the use of the balance for dynamic experiments. Among the advantages of conducting dynamic tests in a water tunnel are less demanding motion and data acquisition rates than in a wind tunnel test (because of the low-speed flow) and the capability of performing flow visualization and force/moment (F/M) measurements simultaneously with relative simplicity. This capability of simultaneous flow visualization and for F/M measurements proved extremely useful to explain the results obtained during these dynamic tests. In general, the development of this balance should encourage the use of water tunnels for a wider range of quantitative and qualitative experiments, especially during the preliminary phase of aircraft design.
Continental-Scale Temperature Reconstructions from the PAGES 2k Network
NASA Astrophysics Data System (ADS)
Kaufman, D. S.
2012-12-01
We present a major new synthesis of seven regional temperature reconstructions to elucidate the global pattern of variations and their association with climate-forcing mechanisms over the past two millennia. To coordinate the integration of new and existing data of all proxy types, the Past Global Changes (PAGES) project developed the 2k Network. It comprises nine working groups representing eight continental-scale regions and the oceans. The PAGES 2k Consortium, authoring this paper, presently includes 79 representatives from 25 countries. For this synthesis, each of the PAGES 2k working groups identified the proxy climate records for reconstructing past temperature and associated uncertainty using the data and methodologies that they deemed most appropriate for their region. The datasets are from 973 sites where tree rings, pollen, corals, lake and marine sediment, glacier ice, speleothems, and historical documents record changes in biologically and physically mediated processes that are sensitive to temperature change, among other climatic factors. The proxy records used for this synthesis are available through the NOAA World Data Center for Paleoclimatology. On long time scales, the temperature reconstructions display similarities among regions, and a large part of this common behavior can be explained by known climate forcings. Reconstructed temperatures in all regions show an overall long-term cooling trend until around 1900 C.E., followed by strong warming during the 20th century. On the multi-decadal time scale, we assessed the variability among the temperature reconstructions using principal component (PC) analysis of the standardized decadal mean temperatures over the period of overlap among the reconstructions (1200 to 1980 C.E.). PC1 explains 35% of the total variability and is strongly correlated with temperature reconstructions from the four Northern Hemisphere regions, and with the sum of external forcings including solar, volcanic, and greenhouse gases. PC2 captures 18% of the variability and is correlated most strongly with the Southern Hemisphere regions of Australasia and South America. PC3 captures 15% of the variability in the temperature reconstructions with a predominant loading from Antarctica. The timing of extremely warm and cold decades (10th percentiles) in each region were analyzed and compared with climate forcings. Only 22% of the regionally coldest decades can be ascribed to extreme minima in solar forcing, and 17% to volcanic forcing. The association between extremely warm regional temperatures and solar maxima is weaker than for cold temperatures and their corresponding solar minima. Spatially, volcanic forcing moderately increased the frequency of extremely cold decades in the Northern Hemisphere reconstructions, but had no significant effect in the Southern Hemisphere. Solar and volcanic impacts do not induce globally consistent decadal temperature shifts, but they increase the probability of cooling or warming at the continental scale. The majority of cold and warm decades identified here cannot be explained by changes in the records of volcanic activity or solar forcing. This indicates that at this timescale, prior to the anthropogenic buildup of greenhouse gases, unforced internal variability in the coupled ocean/atmosphere system was the dominant control on temperature variation.
The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.
Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S
2016-06-03
The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Shoulder model validation and joint contact forces during wheelchair activities.
Morrow, Melissa M B; Kaufman, Kenton R; An, Kai-Nan
2010-09-17
Chronic shoulder impingement is a common problem for manual wheelchair users. The loading associated with performing manual wheelchair activities of daily living is substantial and often at a high frequency. Musculoskeletal modeling and optimization techniques can be used to estimate the joint contact forces occurring at the shoulder to assess the soft tissue loading during an activity and to possibly identify activities and strategies that place manual wheelchair users at risk for shoulder injuries. The purpose of this study was to validate an upper extremity musculoskeletal model and apply the model to wheelchair activities for analysis of the estimated joint contact forces. Upper extremity kinematics and handrim wheelchair kinetics were measured over three conditions: level propulsion, ramp propulsion, and a weight relief lift. The experimental data were used as input to a subject-specific musculoskeletal model utilizing optimization to predict joint contact forces of the shoulder during all conditions. The model was validated using a mean absolute error calculation. Model results confirmed that ramp propulsion and weight relief lifts place the shoulder under significantly higher joint contact loading than level propulsion. In addition, they exhibit large superior contact forces that could contribute to impingement. This study highlights the potential impingement risk associated with both the ramp and weight relief lift activities. Level propulsion was shown to have a low relative risk of causing injury, but with consideration of the frequency with which propulsion is performed, this observation is not conclusive.
Techniques of Force and Pressure Measurement in the Small Joints of the Wrist.
Schreck, Michael J; Kelly, Meghan; Canham, Colin D; Elfar, John C
2018-01-01
The alteration of forces across joints can result in instability and subsequent disability. Previous methods of force measurements such as pressure-sensitive films, load cells, and pressure-sensing transducers have been utilized to estimate biomechanical forces across joints and more recent studies have utilized a nondestructive method that allows for assessment of joint forces under ligamentous restraints. A comprehensive review of the literature was performed to explore the numerous biomechanical methods utilized to estimate intra-articular forces. Methods of biomechanical force measurements in joints are reviewed. Methods such as pressure-sensitive films, load cells, and pressure-sensing transducers require significant intra-articular disruption and thus may result in inaccurate measurements, especially in small joints such as those within the wrist and hand. Non-destructive methods of joint force measurements either utilizing distraction-based joint reaction force methods or finite element analysis may offer a more accurate assessment; however, given their recent inception, further studies are needed to improve and validate their use.
Countering Extremism; Beyond Interagency Cooperation
2011-04-18
such as health care, education and welfare for its constituents. Hizballah also garnered credit in Lebanon for forcing Israel to withdraw in... Minster , will likely make the official relationship with the GOL significantly more difficult. 24 “A
Warfighter Information Network-Tactical Increment 3 (WIN-T Inc 3)
2013-12-01
T vehicles employed at BCT, Fires, (Ch-1) WIN-T Inc 3 December 2013 SAR April 16, 2014 16:49:41 UNCLASSIFIED 13 AVN , BfSB, and select force...passengers and crew from small arms fire, mines, IED and other anti-vehicle/ personnel threats. AVN , BfSB, and select force pooled assets...small arms fire, mines, IED and other anti-vehicle/ personnel threats. AVN , BfSB, and select force pooled assets operating within the
Precision wire feeder for small diameter wire
Brandon, Eldon D.; Hooper, Frederick M.; Reichenbach, Marvin L.
1992-01-01
A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut.
Precision wire feeder for small diameter wire
Brandon, E.D.; Hooper, F.M.; Reichenbach, M.L.
1992-08-11
A device for feeding small diameter wire having a diameter less than 0.04 mm (16 mil) to a welding station includes a driving wheel for controllably applying a non-deforming driving force to the wire to move the free end of the wire towards the welding station; and a tension device such as a torque motor for constantly applying a reverse force to the wire in opposition to the driving force to keep the wire taut. 1 figure.
Small Schools Task Force. Final Report.
ERIC Educational Resources Information Center
Eugene School District 4J, OR.
In the spring of 1975 the Eugene (Oregon) school board appointed a task force to make a comprehensive study related to all aspects of possible closure of small schools. Consideration was given to population and enrollment trends; economics; building condition; school size; school design; neighborhood and community implications; program capacity;…
ERIC Educational Resources Information Center
McCoy, William H.
Five position papers from the American Association of Community and Junior College's (AACJC) task force on small and rural community colleges are presented. On the issue of equal opportunity for the small/rural college, the task force asserts that public policy-making bodies must provide for comprehensiveness in curriculum and in services in all…
4. TEST AREA 1120 OVERVIEW, TEST AREA 1115 IN MIDDLE ...
4. TEST AREA 1-120 OVERVIEW, TEST AREA 1-115 IN MIDDLE DISTANCE, AND TEST AREA 1-110 IN FAR DISTANCE AT EXTREME LEFT. ROGERS DRY LAKE AND THE HANGARS AT MAIN BASE ARE VISIBLE IN THE FAR RIGHT DISTANCE. TEST STANDS 2-A AND 1-A ARE NEAREST THE CAMERA. Looking west southwest. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Leuhman Ridge near Highways 58 & 395, Boron, Kern County, CA
Extremely small bandgaps, engineered by controlled multi-scale ordering in InAsSb
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sarney, W. L.; Svensson, S. P.; Lin, Y.
2016-06-07
The relationship between the effective bandgap and the crystalline structure in ordered InAsSb material has been studied. Modulation of the As/Sb ratio was induced along the growth direction during molecular beam epitaxy, producing a strained layer superlattice. To enable the use of concentration ratios near unity in both layers in the period, the structures were grown with negligible net strain on a virtual substrate with a lattice constant considerably larger than that of GaSb. The bandgap line-up of InAsSb layers with different compositions is such that a type II superlattice is formed, which exhibits smaller bandgaps than either of themore » two constituents. It can also be smaller than the possible minimum direct-bandgap of the alloy. From observations of CuPt ordering in bulk layers with small amounts of strain of both signs, we postulate that strain is the main driving force for atomic ordering in InAsSb. Because the modulated structures exhibit small but opposing amounts of strain, both layers in the period exhibit ordering at the atomic scale throughout the structure. Since the strain can be controlled, the ordering can be controlled and sustained for arbitrary thick layers, unlike the situation in uniform bulk layers where the residual strain eventually leads to dislocation formation. This offers a unique way of using ordering at two different scales to engineer the band-structure.« less
deVries, Maya S
2017-04-01
Competition for food drives divergence and specialization in feeding morphology. Stomatopod crustaceans have two kinds of highly specialized feeding appendages: either elongate spear-like appendages ( spearers ) used to ambush soft-bodied evasive prey or hammer-like appendages ( smashers ) that produce extremely high forces used both to break hard-shelled prey and to capture evasive prey. To evaluate associations between appendage type and feeding ecology, the diet of two small smasher and spearer species (size range: 21-27 mm) that co-occur were compared. Stable isotope analysis and the Bayesian mixing model MixSIAR were used to estimate the proportional contributions of prey types to the diet. Both species had relatively wide diets that included hard-shelled and soft-bodied prey, albeit in different proportions; the smasher consumed a greater proportion of hard-shelled prey, and the spearer consumed mostly soft-bodied prey. Appendage kinematics in stomatopods is known to scale linearly across species. These two small species may produce similar kinematics allowing them both to capture evasive prey and hammer hard-shelled prey, thereby widening their diets. Yet, the spearer species is more highly adept at capturing evasive prey, indicating that small spearers are stronger competitors for soft-bodied prey. These findings suggest that a smasher's ability to access hard prey reduced competition for soft prey, and therefore conferred an important benefit favouring the evolution of the impressive smashing strike. © 2017 The Author(s).
Maslin, Mark A; Christensen, Beth
2007-11-01
The late Cenozoic climate of Africa is a critical component for understanding human evolution. African climate is controlled by major tectonic changes, global climate transitions, and local variations in orbital forcing. We introduce the special African Paleoclimate Issue of the Journal of Human Evolution by providing a background for and synthesis of the latest work relating to the environmental context for human evolution. Records presented in this special issue suggest that the regional tectonics, appearance of C(4) plants in East Africa, and late Cenozoic global cooling combined to produce a long-term drying trend in East Africa. Of particular importance is the uplift associated with the East African Rift Valley formation, which altered wind flow patterns from a more zonal to more meridinal direction. Results in this volume suggest a marked difference in the climate history of southern and eastern Africa, though both are clearly influenced by the major global climate thresholds crossed in the last 3 million years. Papers in this volume present lake, speleothem, and marine paleoclimate records showing that the East African long-term drying trend is punctuated by episodes of short, alternating periods of extreme wetness and aridity. These periods of extreme climate variability are characterized by the precession-forced appearance and disappearance of large, deep lakes in the East African Rift Valley and paralleled by low and high wind-driven dust loads reaching the adjacent ocean basins. Dating of these records show that over the last 3 million years such periods only occur at the times of major global climatic transitions, such as the intensification of Northern Hemisphere Glaciation (2.7-2.5 Ma), intensification of the Walker Circulation (1.9-1.7 Ma), and the Mid-Pleistocene Revolution (1-0.7 Ma). Authors in this volume suggest this onset occurs as high latitude forcing in both Hemispheres compresses the Intertropical Convergence Zone so that East Africa becomes locally sensitive to precessional forcing, resulting in rapid shifts from wet to dry conditions. These periods of extreme climate variability may have provided a catalyst for evolutionary change and driven key speciation and dispersal events amongst mammals and hominins in Africa. In particular, hominin species seem to differentially originate and go extinct during periods of extreme climate variability. Results presented in this volume may represent the basis of a new theory of early human evolution in Africa.
The balance and harmony of control power for a combat aircraft in tactical maneuvering
NASA Technical Reports Server (NTRS)
Bocvarov, Spiro; Cliff, Eugene M.; Lutze, Frederick H.
1992-01-01
An analysis is presented for a family of regular extremal attitude-maneuvers for the High Angle-of-Attack Research Vehicle that has thrust-vectoring capability. Different levels of dynamic coupling are identified in the combat aircraft attitude model, and the characteristic extremal-family motion is explained. It is shown why the extremal-family trajectories develop small sideslip-angles, a highly desirable feature from a practical viewpoint.
Reactive Force Fields via Explicit Valency
NASA Astrophysics Data System (ADS)
Kale, Seyit
Computational simulations are invaluable in elucidating the dynamics of biological macromolecules. Unfortunately, reactions present a fundamental challenge. Calculations based on quantum mechanics can predict bond formation and rupture; however they suffer from severe length- and time-limitations. At the other extreme, classical approaches provide orders of magnitude faster simulations; however they regard chemical bonds as immutable entities. A few exceptions exist, but these are not always trivial to adopt for routine use. We bridge this gap by providing a novel, pseudo-classical approach, based on explicit valency. We unpack molecules into valence electron pairs and atomic cores. Particles bear ionic charges and interact via pairwise-only potentials. The potentials are informed of quantum effects in the short-range and obey dissociation limits in the long-range. They are trained against a small set of isolated species, including geometries and thermodynamics of small hydrides and of dimers formed by them. The resulting force field captures the essentials of reactivity, polarizability and flexibility in a simple, seamless setting. We call this model LEWIS, after the chemical theory that inspired the use of valence pairs. Following the introduction in Chapter 1, we initially focus on the properties of water. Chapter 2 considers gas phase clusters. To transition to the liquid phase, Chapter 3 describes a novel pairwise long-range compensation that performs comparably to infinite lattice summations. The approach is suited to ionic solutions in general. In Chapters 4 and 5, LEWIS is shown to correctly predict the dipolar and quadrupolar response in bulk liquid, and can accommodate proton transfers in both acid and base. Efficiency permits the study of proton defects at dilutions not accessible to experiment or quantum mechanics. Chapter 6 discusses explicit valency approaches in other hydrides, forming the basis of a reactive organic force field. Examples of simple proton transfer and more complex reactions are discussed. Chapter 7 provides a framework for variable electron spread. This addition resolves some of the inherent limitations of the former model which implicitly assumed that electron spread was not affected by the environment. A brief summary is provided in Chapter 8.
Tidal Distortion and Disruption of Earth-Crossing Asteroids
NASA Astrophysics Data System (ADS)
Richardson, D. C.; Bottke, W. F.
1996-09-01
There is mounting evidence that most km-sized objects in the solar system are ``rubble-piles'', fragile objects composed of loose collections of smaller components all held together by self-gravity rather than tensile strength. The evidence includes: (a) the paucity of fast rotating km-sized asteroids (Harris, 1996, LPSC 27, 977); (b) the tidal disruption of Comet Shoemaker-Levy 9 (SL9) and observations of crater chains on the Moon and Galilean satellites (Schenk et al., 1996, Icarus 121, 149); (c) observations of extremely large craters on Phobos, Gaspra, and Ida; and (d) hydrocode models that realistically treat asteroid impacts (Love and Ahrens, 1996, Icarus, in press). Accordingly, we predict that Earth's tidal forces play a major role in the evolution of rubble-pile Earth-crossing objects (ECOs). By modeling close encounters between the Earth and our rubble-piles (for details, see Bottke et al., this issue), we found that Earth's tidal forces can make the progenitors undergo: (a) ``SL9-type'' disruption (formation of clumps of roughly equal size along the fragment train; this outcome may explain specific crater chains seen on the Moon); (b) mass shedding (over half of the primary remains intact; in many cases, the shed fragments go into orbit around the progenitor, producing binary asteroids, which could explain the population of doublet craters seen on the terrestrial planets (Bottke and Melosh, 1996, Nature 381, 51)); (c) reshaping accompanied by spin-up or spin-down (this mechanism could explain the large aspect ratio (2.76), unusual shape, and short rotation period (5.2 hours) of 1620 Geographos as well as the short rotation periods of many other ECOs). Mass shedding events for ECOs occur more frequently at low velocities relative to Earth than at high velocities, corresponding to low (e, i) values. Thus, Earth's tidal forces should be most effective at disrupting large ECOs (and producing small bodies) in this region. This localized disruption mechanism may explain observations by Rabinowitz et al. (1993, Nature 363, 704), who claim to see an ``excess'' number of small ECOs (D < 50 m) at low (e, i) relative to their expectation based on the number of large ECOs seen elsewhere.
Zanobetti, Antonella; O’Neill, Marie S.; Gronlund, Carina J.; Schwartz, Joel D
2015-01-01
Background Extremes of temperature have been associated with short-term increases in daily mortality. We identified subpopulations with increased susceptibility to dying during temperature extremes, based on personal demographics, small-area characteristics and preexisting medical conditions. Methods We examined Medicare participants in 135 U.S. cities and identified preexisting conditions based on hospitalization records prior to their deaths, from 1985–2006. Personal characteristics were obtained from the Medicare records, and area characteristics were assigned based on zip-code of residence. We conducted a case-only analysis of over 11 million deaths, and evaluated modification of the risk of dying associated with extremely hot days and extremely cold days, continuous temperatures, and water-vapor pressure. Modifiers included preexisting conditions, personal characteristics, zip-code-level population characteristics, and land-cover characteristics. For each effect modifier, a city-specific logistic regression model was fitted and then an overall national estimate was calculated using meta-analysis. Results People with certain preexisting conditions were more susceptible to extreme heat, with an additional 6% (95% confidence interval= 4% – 8%) increase in the risk of dying on an extremely hot day in subjects with previous admission for atrial fibrillation, an additional 8% (4%–12%) in subjects with Alzheimer disease, and an additional 6% (3%–9%) in subjects with dementia. Zip-code level and personal characteristics were also associated with increased susceptibility to temperature. Conclusions We identified several subgroups of the population who are particularly susceptible to temperature extremes, including persons with atrial fibrillation. PMID:24045717
NASA Astrophysics Data System (ADS)
Barki, Anum; Kendricks, Kimberly; Tuttle, Ronald F.; Bunker, David J.; Borel, Christoph C.
2013-05-01
This research highlights the results obtained from applying the method of inverse kinematics, using Groebner basis theory, to the human gait cycle to extract and identify lower extremity gait signatures. The increased threat from suicide bombers and the force protection issues of today have motivated a team at Air Force Institute of Technology (AFIT) to research pattern recognition in the human gait cycle. The purpose of this research is to identify gait signatures of human subjects and distinguish between subjects carrying a load to those subjects without a load. These signatures were investigated via a model of the lower extremities based on motion capture observations, in particular, foot placement and the joint angles for subjects affected by carrying extra load on the body. The human gait cycle was captured and analyzed using a developed toolkit consisting of an inverse kinematic motion model of the lower extremity and a graphical user interface. Hip, knee, and ankle angles were analyzed to identify gait angle variance and range of motion. Female subjects exhibited the most knee angle variance and produced a proportional correlation between knee flexion and load carriage.
Eurasian Heat Waves: Mechanisms and Predictability
NASA Technical Reports Server (NTRS)
Wang, Hailan; Schubert, Siegfried; Koster, Randal; Suarez, Max
2012-01-01
This study uses the NASA MERRA reanalysis and GEOS 5 model simulations to examine the causes of Eurasian heat waves including the recent extreme events that occurred in Europe during 2003 and in Russia during 2010. The focus is on the warm season and the part of the Eurasian continent that extends north of about 40oN, or roughly to the north of the mean upper tropospheric jet stream. The results show that such extreme events are an amplification of natural patterns of atmospheric variability that develop over the Eurasian continent as a result of internal atmospheric forcing. The amplification occurs when the wave occasionally becomes locked in place for several weeks to months resulting in extreme heat and drying with the location depending on the phase of the upper atmospheric wave. An ensemble of very long GEOS-S model simulations (spanning the 20th century) forced with observed SST and greenhouse gases show that the model is capable of generating very similar heat waves, and that they have become more intense in the last thirty years as a result of the overall warming of the Asian continent. Sensitivity experiments with perturbed initial conditions indicate that these events have limited predictability.
NASA Astrophysics Data System (ADS)
Dvornikov, Anton Y.; Martyanov, Stanislav D.; Ryabchenko, Vladimir A.; Eremina, Tatjana R.; Isaev, Alexey V.; Sein, Dmitry V.
2017-04-01
The results of the study aimed to assess the influence of future nuclear power plant Hanhikivi-1
upon the local thermal conditions in the Bothnian Bay in the Baltic Sea are presented. A number of experiments with different numerical models were also carried out in order to estimate the extreme hydro-meteorological conditions in the area of the construction. The numerical experiments were fulfilled both with analytically specified external forcing and with real external forcing for 2 years: a cold year (2010) and a warm year (2014). The study has shown that the extreme values of sea level and water temperature and the characteristics of wind waves and sea ice in the vicinity of the future nuclear power plant can be significant and sometimes catastrophic. Permanent release of heat into the marine environment from an operating nuclear power plant will lead to a strong increase in temperature and the disappearance of ice cover within a 2 km vicinity of the station. These effects should be taken into account when assessing local climate changes in the future.
Weak linkage between the heaviest rainfall and tallest storms.
Hamada, Atsushi; Takayabu, Yukari N; Liu, Chuntao; Zipser, Edward J
2015-02-24
Conventionally, the heaviest rainfall has been linked to the tallest, most intense convective storms. However, the global picture of the linkage between extreme rainfall and convection remains unclear. Here we analyse an 11-year record of spaceborne precipitation radar observations and establish that a relatively small fraction of extreme convective events produces extreme rainfall rates in any region of the tropics and subtropics. Robust differences between extreme rainfall and convective events are found in the rainfall characteristics and environmental conditions, irrespective of region; most extreme rainfall events are characterized by less intense convection with intense radar echoes not extending to extremely high altitudes. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Our results demonstrate that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection.
Mechanical behavior of a novel non-fusion scoliosis correction device.
Wessels, M; Hekman, E E G; Verkerke, G J
2013-11-01
We developed an innovative non-fusion correction system (XS LATOR) consisting of two individual implants that are extendable and extremely flexible. One implant, the XS LAT, generates a lateral, bending moment and one implant, the XS TOR, generates a torsion moment. Two 'inverse' implants were developed for generating torsion and lateral bending in a porcine model was tested for force delivery. An in vitro experiment was set up to describe the mechanical behavior of both implants. Narrow and wide ('inverse') versions of the XS TOR and XS LAT were mounted on an apparatus that was able to simulate different spinal geometries. The implants were anchored to three artificial vertebrae with integrated 6D force sensors, after which the vertebrae were rotated and translated towards the demanded position. The reaction forces and moments were recorded in all configurations. The maximal (lateral) bending moment, which occurred at the middle vertebra, was determined and, similarly, torque applied at the center of rotation of the middle vertebra was calculated. As expected, the wide and the small versions of the XS TOR generate a torque that increases during the growth of the system. Similarly, the XS LAT generates a bending moment that slightly increases during the growth of the system. The produced moments approximate the theoretically predicted ones. The contribution to the spinal stiffness ranges between 0.01Nm/° and 0.04Nm/° in bending and between 0.03Nm/° and 0.08Nm/° in torsion. The XS TOR and the XS LAT are able to generate a torque and a bending moment that remain (fairly) constant during spinal growth when a shape change due to the generated moment/torque is achieved. The stiffness of the implants is extremely low, being only a fraction of the stiffness of conventional, spinal fusion constructs. Current fusion systems, such as non-segmental spinal constructs generally, have 11 times higher stiffness in torsion and 6 times higher stiffness in lateral bending. Implantation of the XS LATOR adds 9% stiffness in axial rotation and 17% stiffness in lateral bending (to the original spinal stiffness). By preserving the flexibility of the spine after implantation, fusion of the vertebrae in the instrumented region is likely to be prevented. © 2013 Elsevier Ltd. All rights reserved.
Signal and power roll ring testing update
NASA Technical Reports Server (NTRS)
Smith, Dennis W.
1989-01-01
The development of the roll ring as a long-life, low-torque alternative to the slip ring is discussed. A roll ring consists of one or more circular flexures captured by their own spring force in the annular space between two concentric conductors or contact rings. The advantages of roll rings over other types of electrical transfer devices are: extremely low drag torque, high transfer efficiencies in high-power configurations, extremely low wear debris generation, long life, and low weight for high-power applications.
Does extreme precipitation intensity depend on the emissions scenario?
NASA Astrophysics Data System (ADS)
Pendergrass, Angeline; Lehner, Flavio; Sanderson, Benjamin; Xu, Yangyang
2016-04-01
The rate of increase of global-mean precipitation per degree surface temperature increase differs for greenhouse gas and aerosol forcings, and therefore depends on the change in composition of the emissions scenario used to drive climate model simulations for the remainder of the century. We investigate whether or not this is also the case for extreme precipitation simulated by a multi-model ensemble driven by four realistic emissions scenarios. In most models, the rate of increase of maximum annual daily rainfall per degree global warming in the multi-model ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extra-tropical land. These results indicate that, in most models, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario, in contrast to mean precipitation.
NASA Astrophysics Data System (ADS)
Rees, D.; Fuller-Rowell, T. J.; Lyons, A.; Killeen, T. L.; Hays, P. B.
1982-11-01
The cemented etalons are shown to be rugged and highly stable for high-resolution spectroscopy and to be well suited to space applications. The etalons will be of considerable value as the tuning elements of dye laser systems and as the stable spectral disperser for pulse and CW laser spectroscopy. Even for etalons 15 cm in diameter, the strength of the cemented bond is greatly in excess of the maximum steady and impulsive forces experienced from the much larger etalon plate mass (2-4 kg rather than 200 g). It is thought that the small but systematic and significant positive increment in the thermal expansion coefficient which occurs when an etalon and its spacers are cemented may be linked to the cessation of the microscopic migration that occurs with an optically contacted bond under thermal or mechanical stress. The etalon comprises two flat plates of fused silica, with spacers constructed of Zerodur (a polycrystalline glass ceramic of extremely low expansion coefficient) which are cemented together using cyanoacrylic adhesives.
Molecular Mechanisms in the shock induced decomposition of FOX-7
NASA Astrophysics Data System (ADS)
Mishra, Ankit; Tiwari, Subodh C.; Nakano, Aiichiro; Vashishta, Priya; Kalia, Rajiv; CACS Team
Experimental and first principle computational studies on FOX 7 have either involved a very small system consisting of a few atoms or they did not take into account the decomposition mechanisms under extreme conditions of temperature and pressure. We have performed a large-scale reactive MD simulation using ReaxFF-lg force field to study the shock decomposition of FOX 7. The chemical composition of the principal decomposition products correlates well with experimental observations. Furthermore, we observed that the production of N2 and H2O was inter molecular in nature and was through different chemical pathways. Moreover, the production of CO and CO2 was delayed due to production of large stable C,O atoms cluster. These critical insights into the initial processes involved in the shock induced decomposition of FOX-7 will greatly help in understanding the factors playing an important role in the insensitiveness of this high energy material. This research is supported by AFOSR Award No. FA9550-16-1-0042.
Explicit Simulation of Networks of Outlet Glaciers to Constrain Greenland's Sea Level Contribution
NASA Astrophysics Data System (ADS)
Ultee, E.; Bassis, J. N.
2017-12-01
Ice from the Greenland Ice Sheet drains to the ocean through hundreds of outlet glaciers, many of which are too small to be accurately resolved in continental-scale ice sheet models. Moreover, despite the fact that dynamic changes in Greenland outlet glaciers are currently responsible for about half of the ice sheet's contribution to global sea level, all but the largest are often excluded from major sea level assessments. We have previously developed and validated a simple model that simulates advance and retreat of networks of marine-terminating glaciers based on the perfect plastic approximation. Here we apply this model to a selection of forcing scenarios, representing both climate persistence and extreme scenarios, to constrain changes in calving flux from the most significant Greenland outlet glaciers. Our model can be implemented in standalone mode or as the calving module in a more sophisticated large-scale model, providing constraints on Greenland's future contribution to global sea level rise under a range of scenarios.
A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter
Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica; ...
2013-04-12
A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less
A soft X-ray beam-splitting multilayer optic for the NASA GEMS Bragg Reflection Polarimeter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Allured, Ryan; Kaaret, Philip; Fernandez-Perea, Monica
A soft X-ray, beam-splitting, multilayer optic has been developed for the Bragg Reflection Polarimeter (BRP) on the NASA Gravity and Extreme Magnetism Small Explorer Mission (GEMS). The optic is designed to reflect 0.5 keV X-rays through a 90° angle to the BRP detector, and transmit 2–10 keV X-rays to the primary polarimeter. The transmission requirement prevents the use of a thick substrate, so a 2 μm thick polyimide membrane was used. Atomic force microscopy has shown the membrane to possess high spatial frequency roughness less than 0.2 nm rms, permitting adequate X-ray reflectance. A multilayer thin film was especially developedmore » and deposited via magnetron sputtering with reflectance and transmission properties that satisfy the BRP requirements and with near-zero stress. Furthermore, reflectance and transmission measurements of BRP prototype elements closely match theoretical predictions, both before and after rigorous environmental testing.« less
Cognitive Performance in Operational Environments
NASA Technical Reports Server (NTRS)
Russo, Michael; McGhee, James; Friedler, Edna; Thomas, Maria
2005-01-01
Optimal cognition during complex and sustained operations is a critical component for success in current and future military operations. "Cognitive Performance, Judgment, and Decision-making" (CPJD) is a newly organized U.S. Army Medical Research and Materiel Command research program focused on sustaining operational effectiveness of Future Force Warriors by developing paradigms through which militarily-relevant, higher-order cognitive performance, judgment, and decision-making can be assessed and sustained in individuals, small teams, and leaders of network-centric fighting units. CPJD evaluates the impact of stressors intrinsic to military operational environments (e.g., sleep deprivation, workload, fatigue, temperature extremes, altitude, environmental/physiological disruption) on military performance, evaluates noninvasive automated methods for monitoring and predicting cognitive performance, and investigates pharmaceutical strategies (e.g., stimulant countermeasures, hypnotics) to mitigate performance decrements. This manuscript describes the CPJD program, discusses the metrics utilized to relate militarily applied research findings to academic research, and discusses how the simulated combat capabilities of a synthetic battle laboratory may facilitate future cognitive performance research.
Make dark matter charged again
NASA Astrophysics Data System (ADS)
Agrawal, Prateek; Cyr-Racine, Francis-Yan; Randall, Lisa; Scholtz, Jakub
2017-05-01
We revisit constraints on dark matter that is charged under a U(1) gauge group in the dark sector, decoupled from Standard Model forces. We find that the strongest constraints in the literature are subject to a number of mitigating factors. For instance, the naive dark matter thermalization timescale in halos is corrected by saturation effects that slow down isotropization for modest ellipticities. The weakened bounds uncover interesting parameter space, making models with weak-scale charged dark matter viable, even with electromagnetic strength interaction. This also leads to the intriguing possibility that dark matter self-interactions within small dwarf galaxies are extremely large, a relatively unexplored regime in current simulations. Such strong interactions suppress heat transfer over scales larger than the dark matter mean free path, inducing a dynamical cutoff length scale above which the system appears to have only feeble interactions. These effects must be taken into account to assess the viability of darkly-charged dark matter. Future analyses and measurements should probe a promising region of parameter space for this model.
Gallego, Alejandro; O'Hara Murray, Rory; Berx, Barbara; Turrell, William R; Beegle-Krause, C J; Inall, Mark; Sherwin, Toby; Siddorn, John; Wakelin, Sarah; Vlasenko, Vasyl; Hole, Lars R; Dagestad, Knut Frode; Rees, John; Short, Lucy; Rønningen, Petter; Main, Charlotte E; Legrand, Sebastien; Gutierrez, Tony; Witte, Ursula; Mulanaphy, Nicole
2018-02-01
As oil reserves in established basins become depleted, exploration and production moves towards relatively unexploited areas, such as deep waters off the continental shelf. The Faroe-Shetland Channel (FSC, NE Atlantic) and adjacent areas have been subject to increased focus by the oil industry. In addition to extreme depths, metocean conditions in this region characterise an environment with high waves and strong winds, strong currents, complex circulation patterns, sharp density gradients, and large small- and mesoscale variability. These conditions pose operational challenges to oil spill response and question the suitability of current oil spill modelling frameworks (oil spill models and their forcing data) to adequately simulate the behaviour of a potential oil spill in the area. This article reviews the state of knowledge relevant to deepwater oil spill modelling for the FSC area and identifies knowledge gaps and research priorities. Our analysis should be relevant to other areas of complex oceanography. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Extreme events and event size fluctuations in biased random walks on networks.
Kishore, Vimal; Santhanam, M S; Amritkar, R E
2012-05-01
Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic jams, floods, and power blackouts which take place on networks. In this work, we study extreme events in a generalized random walk model in which the walk is preferentially biased by the network topology. The walkers preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large fluctuations in event sizes are possible on small degree nodes when the walkers are biased toward the hubs. In particular, we obtain the distribution of event sizes on the network. Further, the probability for the occurrence of extreme events on any node in the network depends on its "generalized strength," a measure of the ability of a node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value of generalized strength, on average, display lower probability for the occurrence of extreme events compared to the nodes with lower values of generalized strength.
[Qualified and emergency specialized surgical care for those with wounds to the extremities].
Iurkevich, V V; Fidarov, E Z; Bauér, V A
1997-06-01
Experience of organization of the surgical care in the military hospital to 438 wounded in extremities during armed conflict in Republic of Chechnya is generalized. Maximum reduction of stages of medical evacuation of the wounded in extremities, approaching of the qualified and urgent specialized surgical care directly to the region of battle actions, use of opportunities for it one-moment rendering corresponded to principles of the modern military-medical doctrine. Due to realization of the requirements of the doctrine life of many wounded ++ was saved, terms of treatment, medical and social rehabilitation are reduced. Besides lethality, treatment cost and numbers of transferring to the reserve from the Armed Forces were reduced.
NOAA Environmental Satellite Measurements of Extreme Space Weather Events
NASA Astrophysics Data System (ADS)
Denig, W. F.; Wilkinson, D. C.; Redmon, R. J.
2015-12-01
For over 40 years the National Oceanic and Atmospheric Administration (NOAA) has continuously monitored the near-earth space environment in support of space weather operations. Data from this period have covered a wide range of geophysical conditions including periods of extreme space weather such as the great geomagnetic March 1989, the 2003 Halloween storm and the more recent St Patrick's Day storm of 2015. While not specifically addressed here, these storms have stressed our technology infrastructure in unexpected and surprising ways. Space weather data from NOAA geostationary (GOES) and polar (POES) satellites along with supporting data from the Air Force are presented to compare and contrast the space environmental conditions measured during extreme events.
A literature review of dental casualty rates.
Mahoney, G D; Coombs, M
2000-10-01
The ability to determine dental casualty rates for the Australian Defence Force in a given situation is vital for military planners. This article reviews the literature and the available Australian Defence Force data on the subject to give some guide to planners. The review found the studies to be fairly consistent in that a well-prepared dentally fit force can expect 150 to 200 dental casualties per 1,000 soldiers per year. If the force were less prepared, as in the case of a reserve call out, this figure would be likely to increase; in the extreme case of an ill-prepared force or a force assisting in humanitarian aid, the emergency rate could be five times that figure. The literature also indicates a change in the nature of dental casualties. Although maxillofacial cases have remained steady at 25%, dental disease has decreased and endodontic cases have had a corresponding increase.