Sample records for extremely small size

  1. Using the Student's "t"-Test with Extremely Small Sample Sizes

    ERIC Educational Resources Information Center

    de Winter, J. C .F.

    2013-01-01

    Researchers occasionally have to work with an extremely small sample size, defined herein as "N" less than or equal to 5. Some methodologists have cautioned against using the "t"-test when the sample size is extremely small, whereas others have suggested that using the "t"-test is feasible in such a case. The present…

  2. The Small Nuclear Genomes of Selaginella Are Associated with a Low Rate of Genome Size Evolution.

    PubMed

    Baniaga, Anthony E; Arrigo, Nils; Barker, Michael S

    2016-06-03

    The haploid nuclear genome size (1C DNA) of vascular land plants varies over several orders of magnitude. Much of this observed diversity in genome size is due to the proliferation and deletion of transposable elements. To date, all vascular land plant lineages with extremely small nuclear genomes represent recently derived states, having ancestors with much larger genome sizes. The Selaginellaceae represent an ancient lineage with extremely small genomes. It is unclear how small nuclear genomes evolved in Selaginella We compared the rates of nuclear genome size evolution in Selaginella and major vascular plant clades in a comparative phylogenetic framework. For the analyses, we collected 29 new flow cytometry estimates of haploid genome size in Selaginella to augment publicly available data. Selaginella possess some of the smallest known haploid nuclear genome sizes, as well as the lowest rate of genome size evolution observed across all vascular land plants included in our analyses. Additionally, our analyses provide strong support for a history of haploid nuclear genome size stasis in Selaginella Our results indicate that Selaginella, similar to other early diverging lineages of vascular land plants, has relatively low rates of genome size evolution. Further, our analyses highlight that a rapid transition to a small genome size is only one route to an extremely small genome. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Design and Manufacturing of Extremely Low Mass Flight Systems

    NASA Technical Reports Server (NTRS)

    Johnson, Michael R.

    2002-01-01

    Extremely small flight systems pose some unusual design and manufacturing challenges. The small size of the components that make up the system generally must be built with extremely tight tolerances to maintain the functionality of the assembled item. Additionally, the total mass of the system is extremely sensitive to what would be considered small perturbations in a larger flight system. The MUSES C mission, designed, built, and operated by Japan, has a small rover provided by NASA that falls into this small flight system category. This NASA-provided rover is used as a case study of an extremely small flight system design. The issues that were encountered with the rover portion of the MUSES C program are discussed and conclusions about the recommended mass margins at different stages of a small flight system project are presented.

  4. Small Body Size at Birth and Behavioural Symptoms of ADHD in Children Aged Five to Six Years

    ERIC Educational Resources Information Center

    Lahti, J.; Raikkonen, K.; Kajantie, E.; Heinonen, K.; Pesonen, A.-K.; Jarvenpaa, A.-L.; Strandberg, T.

    2006-01-01

    Background: Behavioural disorders with a neurodevelopmental background, such as attention deficit hyperactivity disorder (ADHD), have been associated with a non-optimal foetal environment, reflected in small body size at birth. However, the evidence stems from highly selected groups with birth outcomes biased towards the extreme low end of the…

  5. A practical and theoretical definition of very small field size for radiotherapy output factor measurements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Charles, P. H., E-mail: p.charles@qut.edu.au; Crowe, S. B.; Langton, C. M.

    Purpose: This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. Methods: A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated intomore » additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. Results: According to the practical definition established in this project, field sizes ≤15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤12 mm. Source occlusion also caused a large change in OPF for field sizes ≤8 mm. Based on the results of this study, field sizes ≤12 mm were considered to be theoretically very small for 6 MV beams. Conclusions: Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least ≤12 mm and more conservatively≤15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection.« less

  6. A practical and theoretical definition of very small field size for radiotherapy output factor measurements.

    PubMed

    Charles, P H; Cranmer-Sargison, G; Thwaites, D I; Crowe, S B; Kairn, T; Knight, R T; Kenny, J; Langton, C M; Trapp, J V

    2014-04-01

    This work introduces the concept of very small field size. Output factor (OPF) measurements at these field sizes require extremely careful experimental methodology including the measurement of dosimetric field size at the same time as each OPF measurement. Two quantifiable scientific definitions of the threshold of very small field size are presented. A practical definition was established by quantifying the effect that a 1 mm error in field size or detector position had on OPFs and setting acceptable uncertainties on OPF at 1%. Alternatively, for a theoretical definition of very small field size, the OPFs were separated into additional factors to investigate the specific effects of lateral electronic disequilibrium, photon scatter in the phantom, and source occlusion. The dominant effect was established and formed the basis of a theoretical definition of very small fields. Each factor was obtained using Monte Carlo simulations of a Varian iX linear accelerator for various square field sizes of side length from 4 to 100 mm, using a nominal photon energy of 6 MV. According to the practical definition established in this project, field sizes ≤ 15 mm were considered to be very small for 6 MV beams for maximal field size uncertainties of 1 mm. If the acceptable uncertainty in the OPF was increased from 1.0% to 2.0%, or field size uncertainties are 0.5 mm, field sizes ≤ 12 mm were considered to be very small. Lateral electronic disequilibrium in the phantom was the dominant cause of change in OPF at very small field sizes. Thus the theoretical definition of very small field size coincided to the field size at which lateral electronic disequilibrium clearly caused a greater change in OPF than any other effects. This was found to occur at field sizes ≤ 12 mm. Source occlusion also caused a large change in OPF for field sizes ≤ 8 mm. Based on the results of this study, field sizes ≤ 12 mm were considered to be theoretically very small for 6 MV beams. Extremely careful experimental methodology including the measurement of dosimetric field size at the same time as output factor measurement for each field size setting and also very precise detector alignment is required at field sizes at least ≤ 12 mm and more conservatively ≤ 15 mm for 6 MV beams. These recommendations should be applied in addition to all the usual considerations for small field dosimetry, including careful detector selection. © 2014 American Association of Physicists in Medicine.

  7. Extreme events and event size fluctuations in biased random walks on networks.

    PubMed

    Kishore, Vimal; Santhanam, M S; Amritkar, R E

    2012-05-01

    Random walk on discrete lattice models is important to understand various types of transport processes. The extreme events, defined as exceedences of the flux of walkers above a prescribed threshold, have been studied recently in the context of complex networks. This was motivated by the occurrence of rare events such as traffic jams, floods, and power blackouts which take place on networks. In this work, we study extreme events in a generalized random walk model in which the walk is preferentially biased by the network topology. The walkers preferentially choose to hop toward the hubs or small degree nodes. In this setting, we show that extremely large fluctuations in event sizes are possible on small degree nodes when the walkers are biased toward the hubs. In particular, we obtain the distribution of event sizes on the network. Further, the probability for the occurrence of extreme events on any node in the network depends on its "generalized strength," a measure of the ability of a node to attract walkers. The generalized strength is a function of the degree of the node and that of its nearest neighbors. We obtain analytical and simulation results for the probability of occurrence of extreme events on the nodes of a network using a generalized random walk model. The result reveals that the nodes with a larger value of generalized strength, on average, display lower probability for the occurrence of extreme events compared to the nodes with lower values of generalized strength.

  8. Chironomid midges (Diptera, chironomidae) show extremely small genome sizes.

    PubMed

    Cornette, Richard; Gusev, Oleg; Nakahara, Yuichi; Shimura, Sachiko; Kikawada, Takahiro; Okuda, Takashi

    2015-06-01

    Chironomid midges (Diptera; Chironomidae) are found in various environments from the high Arctic to the Antarctic, including temperate and tropical regions. In many freshwater habitats, members of this family are among the most abundant invertebrates. In the present study, the genome sizes of 25 chironomid species were determined by flow cytometry and the resulting C-values ranged from 0.07 to 0.20 pg DNA (i.e. from about 68 to 195 Mbp). These genome sizes were uniformly very small and included, to our knowledge, the smallest genome sizes recorded to date among insects. Small proportion of transposable elements and short intron sizes were suggested to contribute to the reduction of genome sizes in chironomids. We discuss about the possible developmental and physiological advantages of having a small genome size and about putative implications for the ecological success of the family Chironomidae.

  9. The Lack of Small Craters on Eros is not due to the Yarkovsky Effect

    NASA Astrophysics Data System (ADS)

    O'Brien, David P.; Greenberg, R.

    2007-10-01

    Eros approaches saturation for craters larger than 200 m in diameter, but is significantly depleted in smaller craters [1]. It has been suggested that this could reflect a paucity of small impactors in the main belt, due to their removal by the Yarkovsky effect [1,2]. Here we present the results of a self-consistent collisional and dynamical evolution model for the main belt and NEAs, along with a model for the evolution of asteroid crater populations, that show that Eros' lack of small craters is not likely due to the depletion of small impactors by the Yarkovsky effect, or any other depletion mechanism. To produce a main-belt size distribution that is suitably depleted in small impactors to match Eros' small crater population requires a more extreme size-dependent removal rate than the Yarkovsky effect and Poynting-Robertson drag can provide. Using such an extreme removal rate introduces a wave into the model main-belt size distribution that propagates to large sizes, and is inconsistent with the observed main-belt population. Similarly, it introduces a wave in the model NEA population that is inconsistent with the observed NEAs. Eros is not alone in showing a depletion of small craters. Recent observations of the asteroid Itokawa by the Hyabusa spacecraft show relatively few craters, and Yarkovsky depletion of small impactors has again been suggested as a possible explanation [3]. Our work shows that a substantial depletion of small impactors from the main belt would have consequences at large sizes, inconsistent with observations of the actual main-belt and NEA size distributions. Other explanations for the depletion of small craters on asteroid surfaces must be explored [eg. 4,5]. References: [1] Chapman (2002), Icarus 155, p.104. [2] Bell (2001), LPSC XXXII, no.1964. [3] Saito (2006), Science 312, p.1341. [4] Richardson (2004), Science 306, p.1526. [5] Greenberg (2003), DPS 35, no.24.06.

  10. Introducing the refined gravity hypothesis of extreme sexual size dimorphism

    PubMed Central

    2010-01-01

    Background Explanations for the evolution of female-biased, extreme Sexual Size Dimorphism (SSD), which has puzzled researchers since Darwin, are still controversial. Here we propose an extension of the Gravity Hypothesis (i.e., the GH, which postulates a climbing advantage for small males) that in conjunction with the fecundity hypothesis appears to have the most general power to explain the evolution of SSD in spiders so far. In this "Bridging GH" we propose that bridging locomotion (i.e., walking upside-down under own-made silk bridges) may be behind the evolution of extreme SSD. A biomechanical model shows that there is a physical constraint for large spiders to bridge. This should lead to a trade-off between other traits and dispersal in which bridging would favor smaller sizes and other selective forces (e.g. fecundity selection in females) would favor larger sizes. If bridging allows faster dispersal, small males would have a selective advantage by enjoying more mating opportunities. We predicted that both large males and females would show a lower propensity to bridge, and that SSD would be negatively correlated with sexual dimorphism in bridging propensity. To test these hypotheses we experimentally induced bridging in males and females of 13 species of spiders belonging to the two clades in which bridging locomotion has evolved independently and in which most of the cases of extreme SSD in spiders are found. Results We found that 1) as the degree of SSD increased and females became larger, females tended to bridge less relative to males, and that 2) smaller males and females show a higher propensity to bridge. Conclusions Physical constraints make bridging inefficient for large spiders. Thus, in species where bridging is a very common mode of locomotion, small males, by being more efficient at bridging, will be competitively superior and enjoy more mating opportunities. This "Bridging GH" helps to solve the controversial question of what keeps males small and also contributes to explain the wide range of SSD in spiders, as those spider species in which extreme SSD has not evolved but still live in tall vegetation, do not use bridging locomotion to disperse. PMID:20682029

  11. Mutation Bias Favors Protein Folding Stability in the Evolution of Small Populations

    PubMed Central

    Porto, Markus; Bastolla, Ugo

    2010-01-01

    Mutation bias in prokaryotes varies from extreme adenine and thymine (AT) in obligatory endosymbiotic or parasitic bacteria to extreme guanine and cytosine (GC), for instance in actinobacteria. GC mutation bias deeply influences the folding stability of proteins, making proteins on the average less hydrophobic and therefore less stable with respect to unfolding but also less susceptible to misfolding and aggregation. We study a model where proteins evolve subject to selection for folding stability under given mutation bias, population size, and neutrality. We find a non-neutral regime where, for any given population size, there is an optimal mutation bias that maximizes fitness. Interestingly, this optimal GC usage is small for small populations, large for intermediate populations and around 50% for large populations. This result is robust with respect to the definition of the fitness function and to the protein structures studied. Our model suggests that small populations evolving with small GC usage eventually accumulate a significant selective advantage over populations evolving without this bias. This provides a possible explanation to the observation that most species adopting obligatory intracellular lifestyles with a consequent reduction of effective population size shifted their mutation spectrum towards AT. The model also predicts that large GC usage is optimal for intermediate population size. To test these predictions we estimated the effective population sizes of bacterial species using the optimal codon usage coefficients computed by dos Reis et al. and the synonymous to non-synonymous substitution ratio computed by Daubin and Moran. We found that the population sizes estimated in these ways are significantly smaller for species with small and large GC usage compared to species with no bias, which supports our prediction. PMID:20463869

  12. ELROI Extremely Low Resource Optical Identifier. A license plate for your satellite, and more.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Palmer, David

    ELROI (Extremely Low Resource Optical Identifier) is a license plate for your satellite; a small tag that flashes an optical identification code that can be read by a small telescope on the ground. The final version of the tag will be the size of a thick postage stamp and fully autonomous: you can attach it to everything that goes into space, including small cubesats and inert debris like rocket stages, and it will keep blinking even after the satellite is shut down, reliably identifying the object from launch until re-entry.

  13. Topological Analysis and Gaussian Decision Tree: Effective Representation and Classification of Biosignals of Small Sample Size.

    PubMed

    Zhang, Zhifei; Song, Yang; Cui, Haochen; Wu, Jayne; Schwartz, Fernando; Qi, Hairong

    2017-09-01

    Bucking the trend of big data, in microdevice engineering, small sample size is common, especially when the device is still at the proof-of-concept stage. The small sample size, small interclass variation, and large intraclass variation, have brought biosignal analysis new challenges. Novel representation and classification approaches need to be developed to effectively recognize targets of interests with the absence of a large training set. Moving away from the traditional signal analysis in the spatiotemporal domain, we exploit the biosignal representation in the topological domain that would reveal the intrinsic structure of point clouds generated from the biosignal. Additionally, we propose a Gaussian-based decision tree (GDT), which can efficiently classify the biosignals even when the sample size is extremely small. This study is motivated by the application of mastitis detection using low-voltage alternating current electrokinetics (ACEK) where five categories of bisignals need to be recognized with only two samples in each class. Experimental results demonstrate the robustness of the topological features as well as the advantage of GDT over some conventional classifiers in handling small dataset. Our method reduces the voltage of ACEK to a safe level and still yields high-fidelity results with a short assay time. This paper makes two distinctive contributions to the field of biosignal analysis, including performing signal processing in the topological domain and handling extremely small dataset. Currently, there have been no related works that can efficiently tackle the dilemma between avoiding electrochemical reaction and accelerating assay process using ACEK.

  14. So Small, So Loud: Extremely High Sound Pressure Level from a Pygmy Aquatic Insect (Corixidae, Micronectinae)

    PubMed Central

    Sueur, Jérôme; Mackie, David; Windmill, James F. C.

    2011-01-01

    To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6–82.2) SPL rms re 2.10−5 Pa with a peak at 99.2 (85.7–104.6) SPL re 2.10−5 Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure. PMID:21698252

  15. So small, so loud: extremely high sound pressure level from a pygmy aquatic insect (Corixidae, Micronectinae).

    PubMed

    Sueur, Jérôme; Mackie, David; Windmill, James F C

    2011-01-01

    To communicate at long range, animals have to produce intense but intelligible signals. This task might be difficult to achieve due to mechanical constraints, in particular relating to body size. Whilst the acoustic behaviour of large marine and terrestrial animals has been thoroughly studied, very little is known about the sound produced by small arthropods living in freshwater habitats. Here we analyse for the first time the calling song produced by the male of a small insect, the water boatman Micronecta scholtzi. The song is made of three distinct parts differing in their temporal and amplitude parameters, but not in their frequency content. Sound is produced at 78.9 (63.6-82.2) SPL rms re 2.10(-5) Pa with a peak at 99.2 (85.7-104.6) SPL re 2.10(-5) Pa estimated at a distance of one metre. This energy output is significant considering the small size of the insect. When scaled to body length and compared to 227 other acoustic species, the acoustic energy produced by M. scholtzi appears as an extreme value, outperforming marine and terrestrial mammal vocalisations. Such an extreme display may be interpreted as an exaggerated secondary sexual trait resulting from a runaway sexual selection without predation pressure.

  16. Small size transformer provides high power regulation with low ripple and maximum control

    NASA Technical Reports Server (NTRS)

    Manoli, R.; Ulrich, B. R.

    1971-01-01

    Single, variable, transformer/choke device does work of several. Technique reduces drawer assembly physical size and design and manufacturing cost. Device provides power, voltage current and impedance regulation while maintaining maximum control of linearity and ensuring extremely low ripple. Nulling is controlled to very fine degree.

  17. Characterizing the Spatial Contiguity of Extreme Precipitation over the US in the Recent Past

    NASA Astrophysics Data System (ADS)

    Touma, D. E.; Swain, D. L.; Diffenbaugh, N. S.

    2016-12-01

    The spatial characteristics of extreme precipitation over an area can define the hydrologic response in a basin, subsequently affecting the flood risk in the region. Here, we examine the spatial extent of extreme precipitation in the US by defining its "footprint": a contiguous area of rainfall exceeding a certain threshold (e.g., 90th percentile) on a given day. We first characterize the climatology of extreme rainfall footprint sizes across the US from 1980-2015 using Daymet, a high-resolution observational gridded rainfall dataset. We find that there are distinct regional and seasonal differences in average footprint sizes of extreme daily rainfall. In the winter, the Midwest shows footprints exceeding 500,000 sq. km while the Front Range exhibits footprints of 10,000 sq. km. Alternatively, the summer average footprint size is generally smaller and more uniform across the US, ranging from 10,000 sq. km in the Southwest to 100,000 sq. km in Montana and North Dakota. Moreover, we find that there are some significant increasing trends of average footprint size between 1980-2015, specifically in the Southwest in the winter and the Northeast in the spring. While gridded daily rainfall datasets allow for a practical framework in calculating footprint size, this calculation heavily depends on the interpolation methods that have been used in creating the dataset. Therefore, we assess footprint size using the GHCN-Daily station network and use geostatistical methods to define footprints of extreme rainfall directly from station data. Compared to the findings from Daymet, preliminary results using this method show fewer small daily footprint sizes over the US while large footprints are of similar number and magnitude to Daymet. Overall, defining the spatial characteristics of extreme rainfall as well as observed and expected changes in these characteristics allows us to better understand the hydrologic response to extreme rainfall and how to better characterize flood risks.

  18. AN AUTOMATIC DETECTION METHOD FOR EXTREME-ULTRAVIOLET DIMMINGS ASSOCIATED WITH SMALL-SCALE ERUPTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alipour, N.; Safari, H.; Innes, D. E.

    2012-02-10

    Small-scale extreme-ultraviolet (EUV) dimming often surrounds sites of energy release in the quiet Sun. This paper describes a method for the automatic detection of these small-scale EUV dimmings using a feature-based classifier. The method is demonstrated using sequences of 171 Angstrom-Sign images taken by the STEREO/Extreme UltraViolet Imager (EUVI) on 2007 June 13 and by Solar Dynamics Observatory/Atmospheric Imaging Assembly on 2010 August 27. The feature identification relies on recognizing structure in sequences of space-time 171 Angstrom-Sign images using the Zernike moments of the images. The Zernike moments space-time slices with events and non-events are distinctive enough to be separatedmore » using a support vector machine (SVM) classifier. The SVM is trained using 150 events and 700 non-event space-time slices. We find a total of 1217 events in the EUVI images and 2064 events in the AIA images on the days studied. Most of the events are found between latitudes -35 Degree-Sign and +35 Degree-Sign . The sizes and expansion speeds of central dimming regions are extracted using a region grow algorithm. The histograms of the sizes in both EUVI and AIA follow a steep power law with slope of about -5. The AIA slope extends to smaller sizes before turning over. The mean velocity of 1325 dimming regions seen by AIA is found to be about 14 km s{sup -1}.« less

  19. A basal dromaeosaurid and size evolution preceding avian flight.

    PubMed

    Turner, Alan H; Pol, Diego; Clarke, Julia A; Erickson, Gregory M; Norell, Mark A

    2007-09-07

    Fossil evidence for changes in dinosaurs near the lineage leading to birds and the origin of flight has been sparse. A dinosaur from Mongolia represents the basal divergence within Dromaeosauridae. The taxon's small body size and phylogenetic position imply that extreme miniaturization was ancestral for Paraves (the clade including Avialae, Troodontidae, and Dromaeosauridae), phylogenetically earlier than where flight evolution is strongly inferred. In contrast to the sustained small body sizes among avialans throughout the Cretaceous Period, the two dinosaurian lineages most closely related to birds, dromaeosaurids and troodontids, underwent four independent events of gigantism, and in some lineages size increased by nearly three orders of magnitude. Thus, change in theropod body size leading to flight's origin was not unidirectional.

  20. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria)

    PubMed Central

    Stein, Koen; Csiki, Zoltan; Rogers, Kristina Curry; Weishampel, David B.; Redelstorff, Ragna; Carballido, Jose L.; Sander, P. Martin

    2010-01-01

    Sauropods were the largest terrestrial tetrapods (>105 kg) in Earth's history and grew at rates that rival those of extant mammals. Magyarosaurus dacus, a titanosaurian sauropod from the Upper Cretaceous (Maastrichtian) of Romania, is known exclusively from small individuals (<103 kg) and conflicts with the idea that all sauropods were massive. The diminutive M. dacus was a classical example of island dwarfism (phyletic nanism) in dinosaurs, but a recent study suggested that the small Romanian titanosaurs actually represent juveniles of a larger-bodied taxon. Here we present strong histological evidence that M. dacus was indeed a dwarf (phyletic nanoid). Bone histological analysis of an ontogenetic series of Magyarosaurus limb bones indicates that even the smallest Magyarosaurus specimens exhibit a bone microstructure identical to fully mature or old individuals of other sauropod taxa. Comparison of histologies with large-bodied sauropods suggests that Magyarosaurus had an extremely reduced growth rate, but had retained high basal metabolic rates typical for sauropods. The uniquely decreased growth rate and diminutive body size in Magyarosaurus were adaptations to life on a Cretaceous island and show that sauropod dinosaurs were not exempt from general ecological principles limiting body size. PMID:20435913

  1. Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria).

    PubMed

    Stein, Koen; Csiki, Zoltan; Rogers, Kristina Curry; Weishampel, David B; Redelstorff, Ragna; Carballido, Jose L; Sander, P Martin

    2010-05-18

    Sauropods were the largest terrestrial tetrapods (>10(5) kg) in Earth's history and grew at rates that rival those of extant mammals. Magyarosaurus dacus, a titanosaurian sauropod from the Upper Cretaceous (Maastrichtian) of Romania, is known exclusively from small individuals (<10(3) kg) and conflicts with the idea that all sauropods were massive. The diminutive M. dacus was a classical example of island dwarfism (phyletic nanism) in dinosaurs, but a recent study suggested that the small Romanian titanosaurs actually represent juveniles of a larger-bodied taxon. Here we present strong histological evidence that M. dacus was indeed a dwarf (phyletic nanoid). Bone histological analysis of an ontogenetic series of Magyarosaurus limb bones indicates that even the smallest Magyarosaurus specimens exhibit a bone microstructure identical to fully mature or old individuals of other sauropod taxa. Comparison of histologies with large-bodied sauropods suggests that Magyarosaurus had an extremely reduced growth rate, but had retained high basal metabolic rates typical for sauropods. The uniquely decreased growth rate and diminutive body size in Magyarosaurus were adaptations to life on a Cretaceous island and show that sauropod dinosaurs were not exempt from general ecological principles limiting body size.

  2. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots

    DOE PAGES

    Zhang, Changwang; Xia, Yong; Zhang, Zhiming; ...

    2017-03-22

    A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less

  3. Combination of Cation Exchange and Quantized Ostwald Ripening for Controlling Size Distribution of Lead Chalcogenide Quantum Dots

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Changwang; Xia, Yong; Zhang, Zhiming

    A new strategy for narrowing the size distribution of colloidal quantum dots (QDs) was developed by combining cation exchange and quantized Ostwald ripening. Medium-sized reactant CdS(e) QDs were subjected to cation exchange to form the target PbS(e) QDs, and then small reactant CdS(e) QDs were added which were converted to small PbS(e) dots via cation exchange. The small-sized ensemble of PbS(e) QDs dissolved completely rapidly and released a large amount of monomers, promoting the growth and size-focusing of the medium-sized ensemble of PbS(e) QDs. The addition of small reactant QDs can be repeated to continuously reduce the size distribution. Themore » new method was applied to synthesize PbSe and PbS QDs with extremely narrow size distributions and as a bonus they have hybrid surface passivation. In conclusion, the size distribution of prepared PbSe and PbS QDs are as low as 3.6% and 4.3%, respectively, leading to hexagonal close packing in monolayer and highly ordered three-dimensional superlattice.« less

  4. Using community partners to deliver low-cost and effective emergency management and business continuity services.

    PubMed

    Thomas, Joan; Roggiero, Jean Paul; Silva, Brian

    2010-11-01

    Small to medium-sized organisations enhance their business mission as well as their communities by continuing to offer services in extreme circumstances. Developing emergency preparedness and business continuity plans that are cost-effective, comprehensive and operational for small to medium-sized organisations with limited resources requires a consistent, supportive, hands-on approach over time with professionals to create appropriate and sustainable strategies. Using a unique, multi-layered and applied approach to emergency preparedness training, organisations have successfully created plans that are effective and sustainable.

  5. Selection on male size, leg length and condition during mate search in a sexually highly dimorphic orb-weaving spider.

    PubMed

    Foellmer, Matthias W; Fairbairn, Daphne J

    2005-02-01

    Mate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The "gravity hypothesis" states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures. However, locomotive performance of males may also depend on relative leg length. Here we examine selection on male body size and leg length during mate search in the highly dimorphic orb-weaving spider Argiope aurantia, using a multivariate approach to distinguish selection targeted at different components of size. Further, we investigate the scaling relationships between male size and energy reserves, and the differential loss of reserves. Adult males do not feed while roving, and a size-dependent differential energy storage capacity may thus affect male performance during mate search. Contrary to predictions, large body size was favoured in one of two populations, and this was due to selection for longer legs. Male size was not under selection in the second population, but we detected direct selection for longer third legs. Males lost energy reserves during mate search, but this was independent of male size and storage capacity scaled isometrically with size. Thus, mate search is unlikely to lead to selection for small male size, but the hypothesis that relatively longer legs in male spiders reflect a search-adapted morphology is supported.

  6. Extreme flood sensitivity to snow and forest harvest, western Cascades, Oregon, United States

    Treesearch

    Julia A. Jones; Reed M. Perkins

    2010-01-01

    We examined the effects of snow, event size, basin size, and forest harvest on floods using >1000 peak discharge events from 1953 to 2006 from three small 2), paired-watershed forest-harvest experiments and six large (60-600 km2) basins spanning the transient (400-800 m) and seasonal (>800 m) snow zones in the...

  7. The effect of disorder of small spheres on the photonic properties of the inverse binary NaCl-like structure

    NASA Astrophysics Data System (ADS)

    Pattabhiraman, Harini; Dijkstra, Marjolein

    2017-09-01

    Inverse opal structures are experimentally realisable photonic band gap materials. They suffer from the drawback of possessing band gaps that are extremely susceptible to structural disorders. A binary colloidal NaCl lattice, which is also experimentally realisable, is a promising alternative to these opals. In this work, we systematically analyse the effect of structural disorder of the small spheres on the photonic properties of an inverse binary NaCl lattice with a size ratio of 0.30 between the small and large spheres. The types of structural disorders studied include the position of the small spheres in the octahedral void of the large spheres, polydispersity in size of the small spheres, and the fraction of small spheres in the crystal. We find a low susceptibility of the band gap of the inverse NaCl lattice to the disorder of the small spheres.

  8. Size distribution and growth rate of crystal nuclei near critical undercooling in small volumes

    NASA Astrophysics Data System (ADS)

    Kožíšek, Z.; Demo, P.

    2017-11-01

    Kinetic equations are numerically solved within standard nucleation model to determine the size distribution of nuclei in small volumes near critical undercooling. Critical undercooling, when first nuclei are detected within the system, depends on the droplet volume. The size distribution of nuclei reaches the stationary value after some time delay and decreases with nucleus size. Only a certain maximum size of nuclei is reached in small volumes near critical undercooling. As a model system, we selected recently studied nucleation in Ni droplet [J. Bokeloh et al., Phys. Rev. Let. 107 (2011) 145701] due to available experimental and simulation data. However, using these data for sample masses from 23 μg up to 63 mg (corresponding to experiments) leads to the size distribution of nuclei, when no critical nuclei in Ni droplet are formed (the number of critical nuclei < 1). If one takes into account the size dependence of the interfacial energy, the size distribution of nuclei increases to reasonable values. In lower volumes (V ≤ 10-9 m3) nucleus size reaches some maximum extreme size, which quickly increases with undercooling. Supercritical clusters continue their growth only if the number of critical nuclei is sufficiently high.

  9. Population size is weakly related to quantitative genetic variation and trait differentiation in a stream fish.

    PubMed

    Wood, Jacquelyn L A; Tezel, Defne; Joyal, Destin; Fraser, Dylan J

    2015-09-01

    How population size influences quantitative genetic variation and differentiation among natural, fragmented populations remains unresolved. Small, isolated populations might occupy poor quality habitats and lose genetic variation more rapidly due to genetic drift than large populations. Genetic drift might furthermore overcome selection as population size decreases. Collectively, this might result in directional changes in additive genetic variation (VA ) and trait differentiation (QST ) from small to large population size. Alternatively, small populations might exhibit larger variation in VA and QST if habitat fragmentation increases variability in habitat types. We explored these alternatives by investigating VA and QST using nine fragmented populations of brook trout varying 50-fold in census size N (179-8416) and 10-fold in effective number of breeders, Nb (18-135). Across 15 traits, no evidence was found for consistent differences in VA and QST with population size and almost no evidence for increased variability of VA or QST estimates at small population size. This suggests that (i) small populations of some species may retain adaptive potential according to commonly adopted quantitative genetic measures and (ii) populations of varying sizes experience a variety of environmental conditions in nature, however extremely large studies are likely required before any firm conclusions can be made. © 2015 The Author(s). Evolution © 2015 The Society for the Study of Evolution.

  10. The Differential Oxidative Properties of Diesel Exhaust Particles

    EPA Science Inventory

    Diesel exhaust particles (DEP) accounts for a significant percentage of particulate matter (PM) released into the atmosphere and are associated with adverse pulmonary effects. Due to their extremely small size and high surface area, DEP can adsorb toxic substances, thus potentia...

  11. Selection for predation, not female fecundity, explains sexual size dimorphism in the orchid mantises.

    PubMed

    Svenson, Gavin J; Brannoch, Sydney K; Rodrigues, Henrique M; O'Hanlon, James C; Wieland, Frank

    2016-12-01

    Here we reconstruct the evolutionary shift towards floral simulation in orchid mantises and suggest female predatory selection as the likely driving force behind the development of extreme sexual size dimorphism. Through analysis of body size data and phylogenetic modelling of trait evolution, we recovered an ancestral shift towards sexual dimorphisms in both size and appearance in a lineage of flower-associated praying mantises. Sedentary female flower mantises dramatically increased in size prior to a transition from camouflaged, ambush predation to a floral simulation strategy, gaining access to, and visually attracting, a novel resource: large pollinating insects. Male flower mantises, however, remained small and mobile to facilitate mate-finding and reproductive success, consistent with ancestral male life strategy. Although moderate sexual size dimorphisms are common in many arthropod lineages, the predominant explanation is female size increase for increased fecundity. However, sex-dependent selective pressures acting outside of female fecundity have been suggested as mechanisms behind niche dimorphisms. Our hypothesised role of predatory selection acting on females to generate both extreme sexual size dimorphism coupled with niche dimorphism is novel among arthropods.

  12. Selection for predation, not female fecundity, explains sexual size dimorphism in the orchid mantises

    PubMed Central

    Svenson, Gavin J.; Brannoch, Sydney K.; Rodrigues, Henrique M.; O’Hanlon, James C.; Wieland, Frank

    2016-01-01

    Here we reconstruct the evolutionary shift towards floral simulation in orchid mantises and suggest female predatory selection as the likely driving force behind the development of extreme sexual size dimorphism. Through analysis of body size data and phylogenetic modelling of trait evolution, we recovered an ancestral shift towards sexual dimorphisms in both size and appearance in a lineage of flower-associated praying mantises. Sedentary female flower mantises dramatically increased in size prior to a transition from camouflaged, ambush predation to a floral simulation strategy, gaining access to, and visually attracting, a novel resource: large pollinating insects. Male flower mantises, however, remained small and mobile to facilitate mate-finding and reproductive success, consistent with ancestral male life strategy. Although moderate sexual size dimorphisms are common in many arthropod lineages, the predominant explanation is female size increase for increased fecundity. However, sex-dependent selective pressures acting outside of female fecundity have been suggested as mechanisms behind niche dimorphisms. Our hypothesised role of predatory selection acting on females to generate both extreme sexual size dimorphism coupled with niche dimorphism is novel among arthropods. PMID:27905469

  13. CdS thin films prepared by continuous wave Nd:YAG laser

    NASA Astrophysics Data System (ADS)

    Wang, H.; Tenpas, Eric W.; Vuong, Khanh D.; Williams, James A.; Schuesselbauer, E.; Bernstein, R.; Fagan, J. G.; Wang, Xing W.

    1995-08-01

    We report new results on continuous wave Nd:YAG laser deposition of cadmium sulfide thin films. Substrates were soda-lime silicate glass, silica glass, silicon, and copper coated formvar sheets. As deposited films were mixtures of cubic and hexagonal phases, with two different grain sizes. As revealed by SEM micrographs, films had smooth surface morphology. As revealed by TEM analysis, grain sizes were extremely small.

  14. Chip Scale Ultra-Stable Clocks: Miniaturized Phonon Trap Timing Units for PNT of CubeSats

    NASA Technical Reports Server (NTRS)

    Rais-Zadeh, Mina; Altunc, Serhat; Hunter, Roger C.; Petro, Andrew

    2016-01-01

    The Chip Scale Ultra-Stable Clocks (CSUSC) project aims to provide a superior alternative to current solutions for low size, weight, and power timing devices. Currently available quartz-based clocks have problems adjusting to the high temperature and extreme acceleration found in space applications, especially when scaled down to match small spacecraft size, weight, and power requirements. The CSUSC project aims to utilize dual-mode resonators on an ovenized platform to achieve the exceptional temperature stability required for these systems. The dual-mode architecture utilizes a temperature sensitive and temperature stable mode simultaneously driven on the same device volume to eliminate ovenization error while maintaining extremely high performance. Using this technology it is possible to achieve parts-per-billion (ppb) levels of temperature stability with multiple orders of magnitude smaller size, weight, and power.

  15. Cultural definitions of elder maltreatment in Portugal.

    PubMed

    Mercurio, Andrea E; Nyborn, Justin

    2006-01-01

    A small convenience sample of 34 participants (17 males, 17 females) from the Portuguese islands of the Azores and Madeira were asked to provide examples of how extreme, moderate, and mild maltreatment towards an elder would be defined in their culture and society. Neglect, especially psychological neglect, physical maltreatment, and psychological maltreatment were the most frequently reported types of maltreatment. References to neglect and physical maltreatment appeared most often as examples of extreme maltreatment. In general, men were somewhat more likely than women to provide examples of physical aggression in their examples of maltreatment. As examples of extreme maltreatment, females provided significantly more examples of abandonment than males. Although interpretations of the findings must be cautious because of the small sample size and limited statistical power, the study illustrates a procedure for assessing constructs of elder mistreatment in a way that attends to respondents' own constructions of the phenomenon.

  16. The large sample size fallacy.

    PubMed

    Lantz, Björn

    2013-06-01

    Significance in the statistical sense has little to do with significance in the common practical sense. Statistical significance is a necessary but not a sufficient condition for practical significance. Hence, results that are extremely statistically significant may be highly nonsignificant in practice. The degree of practical significance is generally determined by the size of the observed effect, not the p-value. The results of studies based on large samples are often characterized by extreme statistical significance despite small or even trivial effect sizes. Interpreting such results as significant in practice without further analysis is referred to as the large sample size fallacy in this article. The aim of this article is to explore the relevance of the large sample size fallacy in contemporary nursing research. Relatively few nursing articles display explicit measures of observed effect sizes or include a qualitative discussion of observed effect sizes. Statistical significance is often treated as an end in itself. Effect sizes should generally be calculated and presented along with p-values for statistically significant results, and observed effect sizes should be discussed qualitatively through direct and explicit comparisons with the effects in related literature. © 2012 Nordic College of Caring Science.

  17. Asteroid Origins Satellite (AOSAT) I: An On-orbit Centrifuge Science Laboratory

    NASA Astrophysics Data System (ADS)

    Lightholder, Jack; Thoesen, Andrew; Adamson, Eric; Jakubowski, Jeremy; Nallapu, Ravi; Smallwood, Sarah; Raura, Laksh; Klesh, Andrew; Asphaug, Erik; Thangavelautham, Jekan

    2017-04-01

    Exploration of asteroids, comets and small moons (small bodies) can answer fundamental questions relating to the formation of the solar system, the availability of resources, and the nature of impact hazards. Near-earth asteroids and the small moons of Mars are potential targets of human exploration. But as illustrated by recent missions, small body surface exploration remains challenging, expensive, and fraught with risk. Despite their small size, they are among the most extreme planetary environments, with low and irregular gravity, loosely bound regolith, extreme temperature variation, and the presence of electrically charged dust. Here we describe the Asteroid Origins Satellite (AOSAT-I), an on-orbit, 3U CubeSat centrifuge using a sandwich-sized bed of crushed meteorite fragments to replicate asteroid surface conditions. Demonstration of this CubeSat will provide a low-cost pathway to physical asteroid model validation, shed light on the origin and geophysics of asteroids, and constrain the design of future landers, rovers, resource extractors, and human missions. AOSAT-I will conduct scientific experiments within its payload chamber while operating in two distinct modes: (1) as a nonrotating microgravity laboratory to investigate primary accretion, and (2) as a rotating centrifuge producing artificial milligravity to simulate surface conditions on asteroids, comets and small moons. AOSAT-I takes advantage of low-cost, off-the-shelf components, modular design, and the rapid assembly and instrumentation of the CubeSat standard, to answer fundamental questions in planetary science and reduce cost and risk of future exploration.

  18. Imaging optical sensor arrays.

    PubMed

    Walt, David R

    2002-10-01

    Imaging optical fibres have been etched to prepare microwell arrays. These microwells have been loaded with sensing materials such as bead-based sensors and living cells to create high-density sensor arrays. The extremely small sizes and volumes of the wells enable high sensitivity and high information content sensing capabilities.

  19. Interconversion of large packets and small groups of cells of Micrococcus rubens: dependence upon magnesium and phosphate.

    PubMed Central

    Yamada, M; Koyama, T; Matsuhashi, M

    1977-01-01

    Micrococcus rubens, a gram-positive occus, usually forms large, cubic packets of more than 500 cells that are regularly arranged in three-dimensional cell groups. In medium with extremely low concentration of Mg2+ and phosphate, in which the cells can only grow on a agar surface, it formed small groups of 2 to 20 cells. Irregularly arraged cell groups of intermediated size were obtained in culture media containing intermediated concentrations of Mg2+ and phosphate. Mutants that formed irregular cell groups of intermediate size under normal culture conditions were also obtained. Images PMID:845123

  20. Electrical properties of titanium dioxide nanoparticle on microelectrode: Gap size effect

    NASA Astrophysics Data System (ADS)

    Nadzirah, Sh.; Hashim, U.; Zakaria, M. R.; Rusop, M.

    2018-05-01

    TiO2 nanoparticle based interdigitated microelectrode was fabricated by spin-coating and conventional photolithography approaches. Aluminum metal was deposited by thermal evaporator on silicon dioxide substrate. The effect of aluminum microelectrode gap sizes (4, 5 and 6 µm) on the electrical performance was investigated using picoammeter. Extremely small output current values of three different gap sizes were acquired. A characteristic electrical behavior was observed for the studied geometry. The configuration demonstrated a reduction in the output current from 2.28E-10, 1.32E-9 and 2.38E-9 A with increasing gap size.

  1. Edges in CNC polishing: from mirror-segments towards semiconductors, paper 1: edges on processing the global surface.

    PubMed

    Walker, David; Yu, Guoyu; Li, Hongyu; Messelink, Wilhelmus; Evans, Rob; Beaucamp, Anthony

    2012-08-27

    Segment-edges for extremely large telescopes are critical for observations requiring high contrast and SNR, e.g. detecting exo-planets. In parallel, industrial requirements for edge-control are emerging in several applications. This paper reports on a new approach, where edges are controlled throughout polishing of the entire surface of a part, which has been pre-machined to its final external dimensions. The method deploys compliant bonnets delivering influence functions of variable diameter, complemented by small pitch tools sized to accommodate aspheric mis-fit. We describe results on witness hexagons in preparation for full size prototype segments for the European Extremely Large Telescope, and comment on wider applications of the technology.

  2. Quantifying extreme precipitation events and their hydrologic response in Southeastern Arizona

    USDA-ARS?s Scientific Manuscript database

    Design criteria such as rainfall intensities and runoff rates for small watersheds (<200km2) are needed for modeling, sizing and design of drainage and flood control structures. In the Southwest US the need for accurate information about these rates is increasingly important as development of range...

  3. MicroWorld

    ERIC Educational Resources Information Center

    Clary, Renee; Wandersee, James

    2014-01-01

    Some of the most important scientific studies are associated with either incredibly large dimensions (e.g., the universe) or extremely small proportions (e.g., the cell). While a teacher's curriculum may often switch from mega-expanses to minutia, they should question how easily students comprehend the change in sizes. This article addresses…

  4. The Robust Relationship Between Extreme Precipitation and Convective Organization in Idealized Numerical Modeling Simulations

    NASA Astrophysics Data System (ADS)

    Bao, Jiawei; Sherwood, Steven C.; Colin, Maxime; Dixit, Vishal

    2017-10-01

    The behavior of tropical extreme precipitation under changes in sea surface temperatures (SSTs) is investigated with the Weather Research and Forecasting Model (WRF) in three sets of idealized simulations: small-domain tropical radiative-convective equilibrium (RCE), quasi-global "aquapatch", and RCE with prescribed mean ascent from the tropical band in the aquapatch. We find that, across the variations introduced including SST, large-scale circulation, domain size, horizontal resolution, and convective parameterization, the change in the degree of convective organization emerges as a robust mechanism affecting extreme precipitation. Higher ratios of change in extreme precipitation to change in mean surface water vapor are associated with increases in the degree of organization, while lower ratios correspond to decreases in the degree of organization. The spread of such changes is much larger in RCE than aquapatch tropics, suggesting that small RCE domains may be unreliable for assessing the temperature-dependence of extreme precipitation or convective organization. When the degree of organization does not change, simulated extreme precipitation scales with surface water vapor. This slightly exceeds Clausius-Clapeyron (CC) scaling, because the near-surface air warms 10-25% faster than the SST in all experiments. Also for simulations analyzed here with convective parameterizations, there is an increasing trend of organization with SST.

  5. Characterization and prediction of extreme events in turbulence

    NASA Astrophysics Data System (ADS)

    Fonda, Enrico; Iyer, Kartik P.; Sreenivasan, Katepalli R.

    2017-11-01

    Extreme events in Nature such as tornadoes, large floods and strong earthquakes are rare but can have devastating consequences. The predictability of these events is very limited at present. Extreme events in turbulence are the very large events in small scales that are intermittent in character. We examine events in energy dissipation rate and enstrophy which are several tens to hundreds to thousands of times the mean value. To this end we use our DNS database of homogeneous and isotropic turbulence with Taylor Reynolds numbers spanning a decade, computed with different small scale resolutions and different box sizes, and study the predictability of these events using machine learning. We start with an aggressive data augmentation to virtually increase the number of these rare events by two orders of magnitude and train a deep convolutional neural network to predict their occurrence in an independent data set. The goal of the work is to explore whether extreme events can be predicted with greater assurance than can be done by conventional methods (e.g., D.A. Donzis & K.R. Sreenivasan, J. Fluid Mech. 647, 13-26, 2010).

  6. Evolution of extreme body size disparity in monitor lizards (Varanus).

    PubMed

    Collar, David C; Schulte, James A; Losos, Jonathan B

    2011-09-01

    Many features of species' biology, including life history, physiology, morphology, and ecology are tightly linked to body size. Investigation into the causes of size divergence is therefore critical to understanding the factors shaping phenotypic diversity within clades. In this study, we examined size evolution in monitor lizards (Varanus), a clade that includes the largest extant lizard species, the Komodo dragon (V. komodoensis), as well as diminutive species that are nearly four orders of magnitude smaller in adult body mass. We demonstrate that the remarkable body size disparity of this clade is a consequence of different selective demands imposed by three major habitat use patterns-arboreality, terrestriality, and rock-dwelling. We reconstructed phylogenetic relationships and ancestral habitat use and applied model selection to determine that the best-fitting evolutionary models for species' adult size are those that infer oppositely directed adaptive evolution associated with terrestriality and rock-dwelling, with terrestrial lineages evolving extremely large size and rock-dwellers becoming very small. We also show that habitat use affects the evolution of several ecologically important morphological traits independently of body size divergence. These results suggest that habitat use exerts a strong, multidimensional influence on the evolution of morphological size and shape disparity in monitor lizards. © 2011 The Author(s).

  7. Everyday Scale Errors

    ERIC Educational Resources Information Center

    Ware, Elizabeth A.; Uttal, David H.; DeLoache, Judy S.

    2010-01-01

    Young children occasionally make "scale errors"--they attempt to fit their bodies into extremely small objects or attempt to fit a larger object into another, tiny, object. For example, a child might try to sit in a dollhouse-sized chair or try to stuff a large doll into it. Scale error research was originally motivated by parents' and…

  8. Gender Differences in Mathematical Achievement at the Norwegian Elementary-School Level.

    ERIC Educational Resources Information Center

    Manger, Terje

    1995-01-01

    The relationship between gender and mathematical achievement was investigated in 440 female and 480 male Norwegian third graders. Boys had higher test scores, but the effect size was small. Boys performed better in numeracy, mental arithmetic, and measurement problems. Marked gender differences were found at extreme tails of the distribution.…

  9. Design of a New Ultracompact Resonant Plasmonic Multi-Analyte Label-Free Biosensing Platform

    PubMed Central

    De Palo, Maripina; Ciminelli, Caterina

    2017-01-01

    In this paper, we report on the design of a bio-multisensing platform for the selective label-free detection of protein biomarkers, carried out through a 3D numerical algorithm. The platform includes a number of biosensors, each of them is based on a plasmonic nanocavity, consisting of a periodic metal structure to be deposited on a silicon oxide substrate. Light is strongly confined in a region with extremely small size (=1.57 μm2), to enhance the light-matter interaction. A surface sensitivity Ss = 1.8 nm/nm has been calculated together with a detection limit of 128 pg/mm2. Such performance, together with the extremely small footprint, allow the integration of several devices on a single chip to realize extremely compact lab-on-chip microsystems. In addition, each sensing element of the platform has a good chemical stability that is guaranteed by the selection of gold for its fabrication. PMID:28783075

  10. Morphological rates of angiosperm seed size evolution.

    PubMed

    Sims, Hallie J

    2013-05-01

    The evolution of seed size among angiosperms reflects their ecological diversification in a complex fitness landscape of life-history strategies. The lineages that have evolved seeds beyond the upper and lower boundaries that defined nonflowering seed plants since the Paleozoic are more dispersed across the angiosperm phylogeny than would be expected under a neutral model of phenotypic evolution. Morphological rates of seed size evolution estimated for 40 clades based on 17,375 species ranged from 0.001 (Garryales) to 0.207 (Malvales). Comparative phylogenetic analysis indicated that morphological rates are not associated with the clade's seed size but are negatively correlated with the clade's position in the overall distribution of angiosperm seed sizes; clades with seed sizes closer to the angiosperm mean had significantly higher morphological rates than clades with extremely small or extremely large seeds. Likewise, per-clade taxonomic diversification rates are not associated with the seed size of the clade but with where the clade falls within the angiosperm seed size distribution. These results suggest that evolutionary rates (morphological and taxonomic) are elevated in densely occupied regions of the seed morphospace relative to lineages whose ecophenotypic innovations have moved them toward the edges. © 2013 The Author(s). Evolution © 2013 The Society for the Study of Evolution.

  11. Incorporating Biological Knowledge into Evaluation of Casual Regulatory Hypothesis

    NASA Technical Reports Server (NTRS)

    Chrisman, Lonnie; Langley, Pat; Bay, Stephen; Pohorille, Andrew; DeVincenzi, D. (Technical Monitor)

    2002-01-01

    Biological data can be scarce and costly to obtain. The small number of samples available typically limits statistical power and makes reliable inference of causal relations extremely difficult. However, we argue that statistical power can be increased substantially by incorporating prior knowledge and data from diverse sources. We present a Bayesian framework that combines information from different sources and we show empirically that this lets one make correct causal inferences with small sample sizes that otherwise would be impossible.

  12. Deep learning in the small sample size setting: cascaded feed forward neural networks for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Gaonkar, Bilwaj; Hovda, David; Martin, Neil; Macyszyn, Luke

    2016-03-01

    Deep Learning, refers to large set of neural network based algorithms, have emerged as promising machine- learning tools in the general imaging and computer vision domains. Convolutional neural networks (CNNs), a specific class of deep learning algorithms, have been extremely effective in object recognition and localization in natural images. A characteristic feature of CNNs, is the use of a locally connected multi layer topology that is inspired by the animal visual cortex (the most powerful vision system in existence). While CNNs, perform admirably in object identification and localization tasks, typically require training on extremely large datasets. Unfortunately, in medical image analysis, large datasets are either unavailable or are extremely expensive to obtain. Further, the primary tasks in medical imaging are organ identification and segmentation from 3D scans, which are different from the standard computer vision tasks of object recognition. Thus, in order to translate the advantages of deep learning to medical image analysis, there is a need to develop deep network topologies and training methodologies, that are geared towards medical imaging related tasks and can work in a setting where dataset sizes are relatively small. In this paper, we present a technique for stacked supervised training of deep feed forward neural networks for segmenting organs from medical scans. Each `neural network layer' in the stack is trained to identify a sub region of the original image, that contains the organ of interest. By layering several such stacks together a very deep neural network is constructed. Such a network can be used to identify extremely small regions of interest in extremely large images, inspite of a lack of clear contrast in the signal or easily identifiable shape characteristics. What is even more intriguing is that the network stack achieves accurate segmentation even when it is trained on a single image with manually labelled ground truth. We validate this approach,using a publicly available head and neck CT dataset. We also show that a deep neural network of similar depth, if trained directly using backpropagation, cannot acheive the tasks achieved using our layer wise training paradigm.

  13. Spatial Ecology of the Critically Endangered Fijian Crested Iguana, Brachylophus vitiensis, in an Extremely Dense Population: Implications for Conservation

    PubMed Central

    Morrison, Suzanne F.; Biciloa, Pita; Harlow, Peter S.; Keogh, J. Scott

    2013-01-01

    The Critically Endangered Fijian crested iguana, Brachylophus vitiensis, occurs at extreme density at only one location, with estimates of >10,000 iguanas living on the 70 hectare island of Yadua Taba in Fiji. We conducted a mark and recapture study over two wet seasons, investigating the spatial ecology and intraspecific interactions of the strictly arboreal Fijian crested iguana. This species exhibits moderate male-biased sexual size dimorphism, which has been linked in other lizard species to territoriality, aggression and larger male home ranges. We found that male Fijian crested iguanas exhibit high injury levels, indicative of frequent aggressive interactions. We did not find support for larger home range size in adult males relative to adult females, however male and female residents were larger than roaming individuals. Males with established home ranges also had larger femoral pores relative to body size than roaming males. Home range areas were small in comparison to those of other iguana species, and we speculate that the extreme population density impacts considerably on the spatial ecology of this population. There was extensive home range overlap within and between sexes. Intersexual overlap was greater than intrasexual overlap for both sexes, and continuing male-female pairings were observed among residents. Our results suggest that the extreme population density necessitates extensive home range overlap even though the underlying predictors of territoriality, such as male biased sexual size dimorphism and high aggression levels, remain. Our findings should be factored in to conservation management efforts for this species, particularly in captive breeding and translocation programs. PMID:24019902

  14. Spatial ecology of the critically endangered Fijian crested iguana, Brachylophus vitiensis, in an extremely dense population: implications for conservation.

    PubMed

    Morrison, Suzanne F; Biciloa, Pita; Harlow, Peter S; Keogh, J Scott

    2013-01-01

    The Critically Endangered Fijian crested iguana, Brachylophus vitiensis, occurs at extreme density at only one location, with estimates of >10,000 iguanas living on the 70 hectare island of Yadua Taba in Fiji. We conducted a mark and recapture study over two wet seasons, investigating the spatial ecology and intraspecific interactions of the strictly arboreal Fijian crested iguana. This species exhibits moderate male-biased sexual size dimorphism, which has been linked in other lizard species to territoriality, aggression and larger male home ranges. We found that male Fijian crested iguanas exhibit high injury levels, indicative of frequent aggressive interactions. We did not find support for larger home range size in adult males relative to adult females, however male and female residents were larger than roaming individuals. Males with established home ranges also had larger femoral pores relative to body size than roaming males. Home range areas were small in comparison to those of other iguana species, and we speculate that the extreme population density impacts considerably on the spatial ecology of this population. There was extensive home range overlap within and between sexes. Intersexual overlap was greater than intrasexual overlap for both sexes, and continuing male-female pairings were observed among residents. Our results suggest that the extreme population density necessitates extensive home range overlap even though the underlying predictors of territoriality, such as male biased sexual size dimorphism and high aggression levels, remain. Our findings should be factored in to conservation management efforts for this species, particularly in captive breeding and translocation programs.

  15. Mobile input device type, texting style and screen size influence upper extremity and trapezius muscle activity, and cervical posture while texting.

    PubMed

    Kietrys, David M; Gerg, Michael J; Dropkin, Jonathan; Gold, Judith E

    2015-09-01

    This study aimed to determine the effects of input device type, texting style, and screen size on upper extremity and trapezius muscle activity and cervical posture during a short texting task in college students. Users of a physical keypad produced greater thumb, finger flexor, and wrist extensor muscle activity than when texting with a touch screen device of similar dimensions. Texting on either device produced greater wrist extensor muscle activity when texting with 1 hand/thumb compared with both hands/thumbs. As touch screen size increased, more participants held the device on their lap, and chose to use both thumbs less. There was also a trend for greater finger flexor, wrist extensor, and trapezius muscle activity as touch screen size increased, and for greater cervical flexion, although mean differences for cervical flexion were small. Future research can help inform whether the ergonomic stressors observed during texting are associated with musculoskeletal disorder risk. Copyright © 2015 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  16. Climate and topography explain range sizes of terrestrial vertebrates

    NASA Astrophysics Data System (ADS)

    Li, Yiming; Li, Xianping; Sandel, Brody; Blank, David; Liu, Zetian; Liu, Xuan; Yan, Shaofei

    2016-05-01

    Identifying the factors that influence range sizes of species provides important insight into the distribution of biodiversity, and is crucial for predicting shifts in species ranges in response to climate change. Current climate (for example, climate variability and climate extremes), long-term climate change, evolutionary age, topographic heterogeneity, land area and species traits such as physiological thermal limits, dispersal ability, annual fecundity and body size have been shown to influence range size. Yet, few studies have examined the generality of each of these factors among different taxa, or have simultaneously evaluated the strength of relationships between range size and these factors at a global scale. We quantify contributions of these factors to range sizes of terrestrial vertebrates (mammals, birds and reptiles) at a global scale. We found that large-ranged species experience greater monthly extremes of maximum or minimum temperature within their ranges, or occur in areas with higher long-term climate velocity and lower topographic heterogeneity or lower precipitation seasonality. Flight ability, body mass and continent width are important only for particular taxa. Our results highlight the importance of climate and topographic context in driving range size variation. The results suggest that small-range species may be vulnerable to climate change and should be the focus of conservation efforts.

  17. Vegetation in group selection openings: ecology and manipulation

    Treesearch

    Philip M. McDonald; Gary O. Fiddler

    1991-01-01

    Group selection openings ranging from 0.1 to 2.0 acres in mixed conifer stands in northern and central California were evaluated for effect of site preparation, opening size, kind and amount of vegetation, and release treatment. Small openings, in general, are characterized by less sunlight and lower temperature extremes than clearcuttings. Roots from border trees...

  18. From Chebyshev to Bernstein: A Tour of Polynomials Small and Large

    ERIC Educational Resources Information Center

    Boelkins, Matthew; Miller, Jennifer; Vugteveen, Benjamin

    2006-01-01

    Consider the family of monic polynomials of degree n having zeros at -1 and +1 and all their other real zeros in between these two values. This article explores the size of these polynomials using the supremum of the absolute value on [-1, 1], showing that scaled Chebyshev and Bernstein polynomials give the extremes.

  19. All plastic ultra-small size imaging lens unit fabrication and evaluation for endoscope

    NASA Astrophysics Data System (ADS)

    Ishii, Kenta; Okamoto, Dai; Ushio, Makoto; Tai, Hidetoshi; Nishihara, Atsuhiko; Tokuda, Kimio; Kawai, Shinsuke; Kitagawa, Seiichiro

    2017-02-01

    There is demand for small-size lens units for endoscope and industrial applications. Polished glass lenses with a diameter of 1 - 2mm exist, however plastic lenses similar in size are not commonplace. For low-cost, light-weight, and mass production, plastic lens fabrication is extremely beneficial. Especially, in the medical field, there is strong demand for disposable lens unit for endoscopes which prevent contamination due to reuse of the lens. Therefore, high mass producible and low cost becomes increasingly important. This paper reports our findings on injection-molded ultra-small size plastic lens units with a diameter of 1.3mm and total thickness of 1.4mm. We performed optical design, injection molding, and lens unit assembly for injection moldable, high imaging performance ultra-small sized lens units. We prioritize a robust product design, considering injection molding properties and lens unit assembly, with feedback from molding simulations reflected into the optical design. A mold capable of high precision lens positioning is used to fabricate the lenses and decrease the variability of the assembly. The geometric dimensions of the resulting lenses, are measured and used in the optical simulation to validate the optical performance, and a high agreement is reported. The injection molding of the lens and the assembly of the lens unit is performed with high precision, and results in high optical performance.

  20. Ecological specialization and morphological diversification in Greater Antillean boas.

    PubMed

    Reynolds, R Graham; Collar, David C; Pasachnik, Stesha A; Niemiller, Matthew L; Puente-Rolón, Alberto R; Revell, Liam J

    2016-08-01

    Colonization of islands can dramatically influence the evolutionary trajectories of organisms, with both deterministic and stochastic processes driving adaptation and diversification. Some island colonists evolve extremely large or small body sizes, presumably in response to unique ecological circumstances present on islands. One example of this phenomenon, the Greater Antillean boas, includes both small (<90 cm) and large (4 m) species occurring on the Greater Antilles and Bahamas, with some islands supporting pairs or trios of body-size divergent species. These boas have been shown to comprise a monophyletic radiation arising from a Miocene dispersal event to the Greater Antilles, though it is not known whether co-occurrence of small and large species is a result of dispersal or in situ evolution. Here, we provide the first comprehensive species phylogeny for this clade combined with morphometric and ecological data to show that small body size evolved repeatedly on separate islands in association with specialization in substrate use. Our results further suggest that microhabitat specialization is linked to increased rates of head shape diversification among specialists. Our findings show that ecological specialization following island colonization promotes morphological diversity through deterministic body size evolution and cranial morphological diversification that is contingent on island- and species-specific factors. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.

  1. Determination of boundaries between ranges of high and low gradient of beam profile.

    PubMed

    Wendykier, Jacek; Bieniasiewicz, Marcin; Grządziel, Aleksandra; Jedynak, Tadeusz; Kośniewski, Wiktor; Reudelsdorf, Marta; Wendykier, Piotr

    2016-01-01

    This work addresses the problem of treatment planning system commissioning by introducing a new method of determination of boundaries between high and low gradient in beam profile. The commissioning of a treatment planning system is a very important task in the radiation therapy. One of the main goals of this task is to compare two field profiles: measured and calculated. Applying points of 80% and 120% of nominal field size can lead to the incorrect determination of boundaries, especially for small field sizes. The method that is based on the beam profile gradient allows for proper assignment of boundaries between high and low gradient regions even for small fields. TRS 430 recommendations for commissioning were used. The described method allows a separation between high and low gradient, because it directly uses the value of the gradient of a profile. For small fields, the boundaries determined by the new method allow a commissioning of a treatment planning system according to the TRS 430, while the point of 80% of nominal field size is already in the high gradient region. The method of determining the boundaries by using the beam profile gradient can be extremely helpful during the commissioning of the treatment planning system for Intensity Modulated Radiation Therapy or for other techniques which require very small field sizes.

  2. A Review: Fundamental Aspects of Silicate Mesoporous Materials

    PubMed Central

    ALOthman, Zeid A.

    2012-01-01

    Silicate mesoporous materials have received widespread interest because of their potential applications as supports for catalysis, separation, selective adsorption, novel functional materials, and use as hosts to confine guest molecules, due to their extremely high surface areas combined with large and uniform pore sizes. Over time a constant demand has developed for larger pores with well-defined pore structures. Silicate materials, with well-defined pore sizes of about 2.0–10.0 nm, surpass the pore-size constraint (<2.0 nm) of microporous zeolites. They also possess extremely high surface areas (>700 m2 g−1) and narrow pore size distributions. Instead of using small organic molecules as templating compounds, as in the case of zeolites, long chain surfactant molecules were employed as the structure-directing agent during the synthesis of these highly ordered materials. The structure, composition, and pore size of these materials can be tailored during synthesis by variation of the reactant stoichiometry, the nature of the surfactant molecule, the auxiliary chemicals, the reaction conditions, or by post-synthesis functionalization techniques. This review focuses mainly on a concise overview of silicate mesoporous materials together with their applications. Perusal of the review will enable researchers to obtain succinct information about microporous and mesoporous materials.

  3. Development of a miniature Stirling cryocooler for LWIR small satellite applications

    NASA Astrophysics Data System (ADS)

    Kirkconnell, C. S.; Hon, R. C.; Perella, M. D.; Crittenden, T. M.; Ghiaasiaan, S. M.

    2017-05-01

    The optimum small satellite (SmallSat) cryocooler system must be extremely compact and lightweight, achieved in this paper by operating a linear cryocooler at a frequency of approximately 300 Hz. Operation at this frequency, which is well in excess of the 100-150 Hz reported in recent papers on related efforts, requires an evolution beyond the traditional Oxford-class, flexure-based methods of setting the mechanical resonance. A novel approach that optimizes the electromagnetic design and the mechanical design together to simultaneously achieve the required dynamic and thermodynamic performances is described. Since highly miniaturized pulse tube coolers are fundamentally ill-suited for the sub-80K temperature range of interest because the boundary layer losses inside the pulse tube become dominant at the associated very small pulse tube size, a moving displacer Stirling cryocooler architecture is used. Compact compressor mechanisms developed on a previous program are reused for this design, and they have been adapted to yield an extremely compact Stirling warm end motor mechanism. Supporting thermodynamic and electromagnetic analysis results are reported.

  4. One-step synthesis of highly efficient nanocatalysts on the supports with hierarchical pores using porous ionic liquid-water gel.

    PubMed

    Kang, Xinchen; Zhang, Jianling; Shang, Wenting; Wu, Tianbin; Zhang, Peng; Han, Buxing; Wu, Zhonghua; Mo, Guang; Xing, Xueqing

    2014-03-12

    Stable porous ionic liquid-water gel induced by inorganic salts was created for the first time. The porous gel was used to develop a one-step method to synthesize supported metal nanocatalysts. Au/SiO2, Ru/SiO2, Pd/Cu(2-pymo)2 metal-organic framework (Cu-MOF), and Au/polyacrylamide (PAM) were synthesized, in which the supports had hierarchical meso- and macropores, the size of the metal nanocatalysts could be very small (<1 nm), and the size distribution was very narrow even when the metal loading amount was as high as 8 wt %. The catalysts were extremely active, selective, and stable for oxidative esterification of benzyl alcohol to methyl benzoate, benzene hydrogenation to cyclohexane, and oxidation of benzyl alcohol to benzaldehyde because they combined the advantages of the nanocatalysts of small size and hierarchical porosity of the supports. In addition, this method is very simple.

  5. Optimizing the triple-axis spectrometer PANDA at the MLZ for small samples and complex sample environment conditions

    NASA Astrophysics Data System (ADS)

    Utschick, C.; Skoulatos, M.; Schneidewind, A.; Böni, P.

    2016-11-01

    The cold-neutron triple-axis spectrometer PANDA at the neutron source FRM II has been serving an international user community studying condensed matter physics problems. We report on a new setup, improving the signal-to-noise ratio for small samples and pressure cell setups. Analytical and numerical Monte Carlo methods are used for the optimization of elliptic and parabolic focusing guides. They are placed between the monochromator and sample positions, and the flux at the sample is compared to the one achieved by standard monochromator focusing techniques. A 25 times smaller spot size is achieved, associated with a factor of 2 increased intensity, within the same divergence limits, ± 2 ° . This optional neutron focusing guide shall establish a top-class spectrometer for studying novel exotic properties of matter in combination with more stringent sample environment conditions such as extreme pressures associated with small sample sizes.

  6. Associations Between Measures of Balance and Lower-Extremity Muscle Strength/Power in Healthy Individuals Across the Lifespan: A Systematic Review and Meta-Analysis.

    PubMed

    Muehlbauer, Thomas; Gollhofer, Albert; Granacher, Urs

    2015-12-01

    It has frequently been reported that balance and lower-extremity muscle strength/power are associated with sports-related and everyday activities. Knowledge about the relationship between balance, strength, and power are important for the identification of at-risk individuals because deficits in these neuromuscular components are associated with an increased risk of sustaining injuries and falls. In addition, this knowledge is of high relevance for the development of specifically tailored health and skill-related exercise programs. The objectives of this systematic literature review and meta-analysis were to characterize and, if possible, quantify associations between variables of balance and lower-extremity muscle strength/power in healthy individuals across the lifespan. A computerized systematic literature search was performed in the electronic databases PubMed, Web of Science, and SPORTDiscus up to March 2015 to capture all relevant articles. A systematic approach was used to evaluate the 996 articles identified for initial review. Studies were included only if they investigated healthy individuals aged ≥6 years and tested at least one measure of static steady-state balance (e.g., center of pressure [CoP] displacement during one-legged stance), dynamic steady-state balance (e.g., gait speed), proactive balance (e.g., distance in the functional-reach-test), or reactive balance (e.g., CoP displacement during perturbed one-legged stance), and one measure of maximal strength (e.g., maximum voluntary contraction), explosive force (e.g., rate of force development), or muscle power (e.g., jump height). In total, 37 studies met the inclusionary criteria for review. The included studies were coded for the following criteria: age (i.e., children: 6-12 years, adolescents: 13-18 years, young adults: 19-44 years, middle-aged adults: 45-64 years, old adults: ≥65 years), sex (i.e., female, male), and test modality/outcome (i.e., test for the assessment of balance, strength, and power). Studies with athletes, patients, and/or people with diseases were excluded. Pearson's correlation coefficients were extracted, transformed (i.e., Fisher's z-transformed r z value), aggregated (i.e., weighted mean r z value), back-transformed to r values, classified according to their magnitude (i.e., small: r ≤ 0.69, medium: r ≤ 0.89, large: r ≥ 0.90), and, if possible, statistically compared. Heterogeneity between studies was assessed using I2 and Chi-squared (χ2) statistics. Three studies examined associations between balance and lower-extremity muscle strength/power in children, one study in adolescents, nine studies in young adults, three studies in middle-aged adults, and 23 studies in old adults. Overall, small-sized associations were found between variables of balance and lower-extremity muscle strength/power, irrespective of the age group considered. In addition, small-sized but significantly larger correlation coefficients were found between measures of dynamic steady-state balance and maximal strength in children (r = 0.57) compared with young (r = 0.09, z = 3.30, p = 0.001) and old adults (r = 0.35, z = 2.94, p = 0.002) as well as in old compared with young adults (z = 1.95, p = 0.03). Even though the reported results provided further insight into the associations between measures of balance and lower-extremity muscle strength/power, they did not allow us to deduce cause and effect relations. Further, the investigated associations could be biased by other variables such as joint flexibility, muscle mass, and/or auditory/visual acuity. Our systematic review and meta-analysis showed predominately small-sized correlations between measures of balance and lower-extremity muscle strength/power in children, adolescents, and young, middle-aged, and old adults. This indicates that these neuromuscular components are independent of each other and should therefore be tested and trained complementarily across the lifespan. Significantly larger but still small-sized associations were found between measures of dynamic steady-state balance and maximal strength in children compared with young and old adults as well as in old compared with young adults. These findings imply that age/maturation may have an impact on the association of selected components of balance and lower-extremity muscle strength.

  7. Contrasting above- and belowground sensitivity of three Great Plains grasslands to altered rainfall regimes.

    PubMed

    Wilcox, Kevin R; von Fischer, Joseph C; Muscha, Jennifer M; Petersen, Mark K; Knapp, Alan K

    2015-01-01

    Intensification of the global hydrological cycle with atmospheric warming is expected to increase interannual variation in precipitation amount and the frequency of extreme precipitation events. Although studies in grasslands have shown sensitivity of aboveground net primary productivity (ANPP) to both precipitation amount and event size, we lack equivalent knowledge for responses of belowground net primary productivity (BNPP) and NPP. We conducted a 2-year experiment in three US Great Plains grasslands--the C4-dominated shortgrass prairie (SGP; low ANPP) and tallgrass prairie (TGP; high ANPP), and the C3-dominated northern mixed grass prairie (NMP; intermediate ANPP)--to test three predictions: (i) both ANPP and BNPP responses to increased precipitation amount would vary inversely with mean annual precipitation (MAP) and site productivity; (ii) increased numbers of extreme rainfall events during high-rainfall years would affect high and low MAP sites differently; and (iii) responses belowground would mirror those aboveground. We increased growing season precipitation by as much as 50% by augmenting natural rainfall via (i) many (11-13) small or (ii) fewer (3-5) large watering events, with the latter coinciding with naturally occurring large storms. Both ANPP and BNPP increased with water addition in the two C4 grasslands, with greater ANPP sensitivity in TGP, but greater BNPP and NPP sensitivity in SGP. ANPP and BNPP did not respond to any rainfall manipulations in the C3 -dominated NMP. Consistent with previous studies, fewer larger (extreme) rainfall events increased ANPP relative to many small events in SGP, but event size had no effect in TGP. Neither system responded consistently above- and belowground to event size; consequently, total NPP was insensitive to event size. The diversity of responses observed in these three grassland types underscores the challenge of predicting responses relevant to C cycling to forecast changes in precipitation regimes even within relatively homogeneous biomes such as grasslands. © 2014 John Wiley & Sons Ltd.

  8. Glimpsing Matter at the Brink

    NASA Astrophysics Data System (ADS)

    Morris, Mark R.

    2004-04-01

    Most astronomers are comfortable with the notion of a black hole at the center of our Galaxy, but defining and measuring its size is an extremely difficult matter, mostly because it is so small from our distant vantage point. In his Perspective, Morris discusses results reported in the same issue by Bower et al. on new measurements of the size of the radio-emitting region immediately surrounding the Galactic black hole. By observing at the shortest possible wavelengths with very long baseline interferometry, the authors have been able to resolve the intrinsic size of the black hole region in spite of the interstellar interference that has plagued previous attempts.

  9. Evolution of brain region volumes during artificial selection for relative brain size.

    PubMed

    Kotrschal, Alexander; Zeng, Hong-Li; van der Bijl, Wouter; Öhman-Mägi, Caroline; Kotrschal, Kurt; Pelckmans, Kristiaan; Kolm, Niclas

    2017-12-01

    The vertebrate brain shows an extremely conserved layout across taxa. Still, the relative sizes of separate brain regions vary markedly between species. One interesting pattern is that larger brains seem associated with increased relative sizes only of certain brain regions, for instance telencephalon and cerebellum. Till now, the evolutionary association between separate brain regions and overall brain size is based on comparative evidence and remains experimentally untested. Here, we test the evolutionary response of brain regions to directional selection on brain size in guppies (Poecilia reticulata) selected for large and small relative brain size. In these animals, artificial selection led to a fast response in relative brain size, while body size remained unchanged. We use microcomputer tomography to investigate how the volumes of 11 main brain regions respond to selection for larger versus smaller brains. We found no differences in relative brain region volumes between large- and small-brained animals and only minor sex-specific variation. Also, selection did not change allometric scaling between brain and brain region sizes. Our results suggest that brain regions respond similarly to strong directional selection on relative brain size, which indicates that brain anatomy variation in contemporary species most likely stem from direct selection on key regions. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  10. Quantitative experimental monitoring of molecular diffusion in clay with positron emission tomography

    NASA Astrophysics Data System (ADS)

    Kulenkampff, Johannes; Zakhnini, Abdelhamid; Gründig, Marion; Lippmann-Pipke, Johanna

    2016-08-01

    Clay plays a prominent role as barrier material in the geosphere. The small particle sizes cause extremely small pore sizes and induce low permeability and high sorption capacity. Transport of dissolved species by molecular diffusion, driven only by a concentration gradient, is less sensitive to the pore size. Heterogeneous structures on the centimetre scale could cause heterogeneous effects, like preferential transport zones, which are difficult to assess. Laboratory measurements with diffusion cells yield limited information on heterogeneity, and pore space imaging methods have to consider scale effects. We established positron emission tomography (PET), applying a high-resolution PET scanner as a spatially resolved quantitative method for direct laboratory observation of the molecular diffusion process of a PET tracer on the prominent scale of 1-100 mm. Although PET is rather insensitive to bulk effects, quantification required significant improvements of the image reconstruction procedure with respect to Compton scatter and attenuation. The experiments were conducted with 22Na and 124I over periods of 100 and 25 days, respectively. From the images we derived trustable anisotropic diffusion coefficients and, in addition, we identified indications of preferential transport zones. We thus demonstrated the unique potential of the PET imaging modality for geoscientific process monitoring under conditions where other methods fail, taking advantage of the extremely high detection sensitivity that is typical of radiotracer applications.

  11. Extreme value statistics and finite-size scaling at the ecological extinction/laminar-turbulence transition

    NASA Astrophysics Data System (ADS)

    Shih, Hong-Yan; Goldenfeld, Nigel

    Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.

  12. Ultra-modular 500m2 heliostat field for high flux/high temperature solar-driven processes

    NASA Astrophysics Data System (ADS)

    Romero, Manuel; González-Aguilar, José; Luque, Salvador

    2017-06-01

    The main objective of the European Project SUN-to-LIQUID is the scale-up and experimental demonstration of the complete process chain to solar liquid fuels from H2O and CO2. This implies moving from a 4 kW laboratory setup to a pre-commercial plant including a heliostat field. The small power and high irradiance onto the focal spot is forcing the optical design to behave half way between a large solar furnace and an extremely small central receiver system. The customized heliostat field makes use of the most recent developments on small size heliostats and a tower with reduced optical height (15 m) to minimize visual impact. A heliostat field of 250kWth (500 m2 reflective surface) has been built adjacent to IMDEA Energy premises at the Technology Park of Móstoles, Spain, and consists of 169 small size heliostats (1.9 m × 1.6 m). In spite of the small size and compactness of the field, when all heliostats are aligned, it is possible to fulfil the specified flux above 2500 kW/m2 for at least 50 kW and an aperture of 16 cm, with a peak flux of 3000 kW/m2.

  13. Small Twisting Prominence

    NASA Image and Video Library

    2018-01-12

    A small prominence rose up above the sun, appeared to twist around for several hours, and then began to send some streams of plasma back into the sun (Jan. 3-4, 2018). The action, observed in a wavelength of extreme ultraviolet light, lasted just about one day. Prominences like this one are quite common. In fact, there were several over the past few days. For a sense of scale, the prominence reached up more than several times the size of Earth. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22198

  14. Energetics, scaling and sexual size dimorphism of spiders.

    PubMed

    Grossi, B; Canals, M

    2015-03-01

    The extreme sexual size dimorphism in spiders has motivated studies for many years. In many species the male can be very small relative to the female. There are several hypotheses trying to explain this fact, most of them emphasizing the role of energy in determining spider size. The aim of this paper is to review the role of energy in sexual size dimorphism of spiders, even for those spiders that do not necessarily live in high foliage, using physical and allometric principles. Here we propose that the cost of transport or equivalently energy expenditure and the speed are traits under selection pressure in male spiders, favoring those of smaller size to reduce travel costs. The morphology of the spiders responds to these selective forces depending upon the lifestyle of the spiders. Climbing and bridging spiders must overcome the force of gravity. If bridging allows faster dispersal, small males would have a selective advantage by enjoying more mating opportunities. In wandering spiders with low population density and as a consequence few male-male interactions, high speed and low energy expenditure or cost of transport should be favored by natural selection. Pendulum mechanics show the advantages of long legs in spiders and their relationship with high speed, even in climbing and bridging spiders. Thus small size, compensated by long legs should be the expected morphology for a fast and mobile male spider.

  15. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  16. High-Resolution and Frequency, Printed Miniature Magnetic Probes

    NASA Astrophysics Data System (ADS)

    Prager, James; Ziemba, Timothy; Miller, Kenneth; Picard, Julian

    2013-10-01

    Eagle Harbor Technologies, Inc. (EHT) is developing a technique to significantly reduce the cost and development time of producing magnetic field diagnostics. EHT is designing probes that can be printed on flexible PCBs thereby allowing for extremely small coils to be produced while essentially eliminating the time to wind the coils. The coil size can be extremely small when coupled with the EHT Hybrid Integrator, which is capable of high bandwidth measurements over short and long pulse durations. This integrator is currently being commercialized with the support of a DOE SBIR. Additionally, the flexible PCBs allow probes to be attached to complex surface and/or probes that have a complex 3D structure to be designed and fabricated. During the Phase I, EHT will design and construct magnetic field probes on flexible PCBs, which will be tested at the University of Washington's HIT-SI experiment and in EHT's material science plasma reactor. Funding provided by DOE SBIR/STTR Program.

  17. Preoperative short hookwire placement for small pulmonary lesions: evaluation of technical success and risk factors for initial placement failure.

    PubMed

    Iguchi, Toshihiro; Hiraki, Takao; Matsui, Yusuke; Fujiwara, Hiroyasu; Masaoka, Yoshihisa; Tanaka, Takashi; Sato, Takuya; Gobara, Hideo; Toyooka, Shinichi; Kanazawa, Susumu

    2018-05-01

    To retrospectively evaluate the technical success of computed tomography fluoroscopy-guided short hookwire placement before video-assisted thoracoscopic surgery and to identify the risk factors for initial placement failure. In total, 401 short hookwire placements for 401 lesions (mean diameter 9.3 mm) were reviewed. Technical success was defined as correct positioning of the hookwire. Possible risk factors for initial placement failure (i.e., requirement for placement of an additional hookwire or to abort the attempt) were evaluated using logistic regression analysis for all procedures, and for procedures performed via the conventional route separately. Of the 401 initial placements, 383 were successful and 18 failed. Short hookwires were finally placed for 399 of 401 lesions (99.5%). Univariate logistic regression analyses revealed that in all 401 procedures only the transfissural approach was a significant independent predictor of initial placement failure (odds ratio, OR, 15.326; 95% confidence interval, CI, 5.429-43.267; p < 0.001) and for the 374 procedures performed via the conventional route only lesion size was a significant independent predictor of failure (OR 0.793, 95% CI 0.631-0.996; p = 0.046). The technical success of preoperative short hookwire placement was extremely high. The transfissural approach was a predictor initial placement failure for all procedures and small lesion size was a predictor of initial placement failure for procedures performed via the conventional route. • Technical success of preoperative short hookwire placement was extremely high. • The transfissural approach was a significant independent predictor of initial placement failure for all procedures. • Small lesion size was a significant independent predictor of initial placement failure for procedures performed via the conventional route.

  18. Metabolic Differences between Dogs of Different Body Sizes

    PubMed Central

    Lacroix, Sebastien; Kennedy, Adam D.; Beloshapka, Alison; Kaput, Jim

    2017-01-01

    Introduction The domesticated dog, Canis lupus familiaris, has been selectively bred to produce extreme diversity in phenotype and genotype. Dogs have an immense diversity in weight and height. Specific differences in metabolism have not been characterized in small dogs as compared to larger dogs. Objectives This study aims to identify metabolic, clinical, and microbiota differences between small and larger dogs. Methods Gas chromatography/mass spectrometry, liquid chromatography/tandem mass spectrometry, clinical chemistry analysis, dual-energy X-ray absorptiometry, and 16S pyrosequencing were used to characterize blood metabolic, clinical, and fecal microbiome systems, respectively. Eighty-three canines from seven different breeds, fed the same kibble diet for 5 weeks, were used in the study. Results 449 metabolites, 16 clinical parameters, and 6 bacteria (at the genus level) were significantly different between small and larger dogs. Hierarchical clustering of the metabolites yielded 8 modules associated with small dog size. Conclusion Small dogs had a lower antioxidant status and differences in circulating amino acids. Some of the amino acid differences could be attributed to differences in microflora. Additionally, analysis of small dog metabolites and clinical parameters reflected a network which strongly associates with kidney function. PMID:29225968

  19. JPRS Report, Science & Technology. Europe: Economic Competitiveness

    DTIC Science & Technology

    1991-08-09

    cost . Under the current funding scheme, support is only available through a system of reimbursable interest-free loans. With the currently proposed... system , basic indus- trial research will henceforth be financed by subsidies (of up to 50 percent of gross costs ). Small- and medium- sized...extremely cost -effective installations. • To market the MD110 as a foundation for office automation facilities. • To target very large system

  20. Analysis of the giant genomes of Fritillaria (Liliaceae) indicates that a lack of DNA removal characterizes extreme expansions in genome size.

    PubMed

    Kelly, Laura J; Renny-Byfield, Simon; Pellicer, Jaume; Macas, Jiří; Novák, Petr; Neumann, Pavel; Lysak, Martin A; Day, Peter D; Berger, Madeleine; Fay, Michael F; Nichols, Richard A; Leitch, Andrew R; Leitch, Ilia J

    2015-10-01

    Plants exhibit an extraordinary range of genome sizes, varying by > 2000-fold between the smallest and largest recorded values. In the absence of polyploidy, changes in the amount of repetitive DNA (transposable elements and tandem repeats) are primarily responsible for genome size differences between species. However, there is ongoing debate regarding the relative importance of amplification of repetitive DNA versus its deletion in governing genome size. Using data from 454 sequencing, we analysed the most repetitive fraction of some of the largest known genomes for diploid plant species, from members of Fritillaria. We revealed that genomic expansion has not resulted from the recent massive amplification of just a handful of repeat families, as shown in species with smaller genomes. Instead, the bulk of these immense genomes is composed of highly heterogeneous, relatively low-abundance repeat-derived DNA, supporting a scenario where amplified repeats continually accumulate due to infrequent DNA removal. Our results indicate that a lack of deletion and low turnover of repetitive DNA are major contributors to the evolution of extremely large genomes and show that their size cannot simply be accounted for by the activity of a small number of high-abundance repeat families. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  1. Lipase-catalyzed ring-opening polymerization of lactones to polyesters and its mechanistic aspects.

    PubMed

    Namekawa, S; Suda, S; Uyama, H; Kobayashi, S

    1999-01-01

    Lipase catalysis induced a ring-opening polymerization of lactones with different ring-sizes. Small-size (four-membered) and medium-size lactones (six- and seven-membered) as well as macrolides (12-, 13-, 16-, and 17-membered) were subjected to lipase-catalyzed polymerization. The polymerization behaviors depended primarily on the lipase origin and the monomer structure. The macrolides showing much lower anionic polymerizability were enzymatically polymerized faster than epsilon-caprolactone. The granular immobilized lipase derived from Candida antartica showed extremely efficient catalysis in the polymerization of epsilon-caprolactone. Single-step terminal functionalization of the polyester was achieved by initiator and terminator methods. The enzymatic polymerizability of lactones was quantitatively evaluated by Michaelis-Menten kinetics.

  2. Digital image processing of nanometer-size metal particles on amorphous substrates

    NASA Technical Reports Server (NTRS)

    Soria, F.; Artal, P.; Bescos, J.; Heinemann, K.

    1989-01-01

    The task of differentiating very small metal aggregates supported on amorphous films from the phase contrast image features inherently stemming from the support is extremely difficult in the nanometer particle size range. Digital image processing was employed to overcome some of the ambiguities in evaluating such micrographs. It was demonstrated that such processing allowed positive particle detection and a limited degree of statistical size analysis even for micrographs where by bare eye examination the distribution between particles and erroneous substrate features would seem highly ambiguous. The smallest size class detected for Pd/C samples peaks at 0.8 nm. This size class was found in various samples prepared under different evaporation conditions and it is concluded that these particles consist of 'a magic number' of 13 atoms and have cubooctahedral or icosahedral crystal structure.

  3. The Ardipithecus ramidus skull and its implications for hominid origins.

    PubMed

    Suwa, Gen; Asfaw, Berhane; Kono, Reiko T; Kubo, Daisuke; Lovejoy, C Owen; White, Tim D

    2009-10-02

    The highly fragmented and distorted skull of the adult skeleton ARA-VP-6/500 includes most of the dentition and preserves substantial parts of the face, vault, and base. Anatomical comparisons and micro-computed tomography-based analysis of this and other remains reveal pre-Australopithecus hominid craniofacial morphology and structure. The Ardipithecus ramidus skull exhibits a small endocranial capacity (300 to 350 cubic centimeters), small cranial size relative to body size, considerable midfacial projection, and a lack of modern African ape-like extreme lower facial prognathism. Its short posterior cranial base differs from that of both Pan troglodytes and P. paniscus. Ar. ramidus lacks the broad, anteriorly situated zygomaxillary facial skeleton developed in later Australopithecus. This combination of features is apparently shared by Sahelanthropus, showing that the Mio-Pliocene hominid cranium differed substantially from those of both extant apes and Australopithecus.

  4. A rare case of giant occipital meningocele with Dandy Walker Syndrome: Can it grow bigger than this?

    PubMed

    Mankotia, Dipanker Singh; Satyarthee, Guru Dutta; Singh, Bhoopendra; Sharma, Bhawani Shankar

    2016-01-01

    Association of Dandy-Walker syndrome with occipital meningocele (OMC) is extremely rare and about thirty cases are reported till date in the Western literature. However, OMC is classified by Talamonti et al . into small, large, and giant categories with respective diameters were upto 5 cm in small, large with 5-9 cm, and giant with >9 cm. Usually the size of OMC progressively increases as raised intracranial pressure leads to compensatory cerebrospinal fluid escape into sac with the growth of children. Authors report an interesting case of an 18-month-old female child with extra-gigantic OMC, whose size was almost same since birth, representing the first case of its kind, who underwent successful surgical repair. Clinical presentation, radiological features, and surgical management options in literature are reviewed briefly for this rare disease association.

  5. A sub-Mercury-sized exoplanet.

    PubMed

    Barclay, Thomas; Rowe, Jason F; Lissauer, Jack J; Huber, Daniel; Fressin, François; Howell, Steve B; Bryson, Stephen T; Chaplin, William J; Désert, Jean-Michel; Lopez, Eric D; Marcy, Geoffrey W; Mullally, Fergal; Ragozzine, Darin; Torres, Guillermo; Adams, Elisabeth R; Agol, Eric; Barrado, David; Basu, Sarbani; Bedding, Timothy R; Buchhave, Lars A; Charbonneau, David; Christiansen, Jessie L; Christensen-Dalsgaard, Jørgen; Ciardi, David; Cochran, William D; Dupree, Andrea K; Elsworth, Yvonne; Everett, Mark; Fischer, Debra A; Ford, Eric B; Fortney, Jonathan J; Geary, John C; Haas, Michael R; Handberg, Rasmus; Hekker, Saskia; Henze, Christopher E; Horch, Elliott; Howard, Andrew W; Hunter, Roger C; Isaacson, Howard; Jenkins, Jon M; Karoff, Christoffer; Kawaler, Steven D; Kjeldsen, Hans; Klaus, Todd C; Latham, David W; Li, Jie; Lillo-Box, Jorge; Lund, Mikkel N; Lundkvist, Mia; Metcalfe, Travis S; Miglio, Andrea; Morris, Robert L; Quintana, Elisa V; Stello, Dennis; Smith, Jeffrey C; Still, Martin; Thompson, Susan E

    2013-02-28

    Since the discovery of the first exoplanets, it has been known that other planetary systems can look quite unlike our own. Until fairly recently, we have been able to probe only the upper range of the planet size distribution, and, since last year, to detect planets that are the size of Earth or somewhat smaller. Hitherto, no planets have been found that are smaller than those we see in the Solar System. Here we report a planet significantly smaller than Mercury. This tiny planet is the innermost of three that orbit the Sun-like host star, which we have designated Kepler-37. Owing to its extremely small size, similar to that of the Moon, and highly irradiated surface, the planet, Kepler-37b, is probably rocky with no atmosphere or water, similar to Mercury.

  6. Enhanced strength and temperature dependence of mechanical properties of Li at small scales and its implications for Li metal anodes

    NASA Astrophysics Data System (ADS)

    Xu, Chen; Ahmad, Zeeshan; Aryanfar, Asghar; Viswanathan, Venkatasubramanian; Greer, Julia R.

    2017-01-01

    Most next-generation Li ion battery chemistries require a functioning lithium metal (Li) anode. However, its application in secondary batteries has been inhibited because of uncontrollable dendrite growth during cycling. Mechanical suppression of dendrite growth through solid polymer electrolytes (SPEs) or through robust separators has shown the most potential for alleviating this problem. Studies of the mechanical behavior of Li at any length scale and temperature are limited because of its extreme reactivity, which renders sample preparation, transfer, microstructure characterization, and mechanical testing extremely challenging. We conduct nanomechanical experiments in an in situ scanning electron microscope and show that micrometer-sized Li attains extremely high strengths of 105 MPa at room temperature and of 35 MPa at 90 °C. We demonstrate that single-crystalline Li exhibits a power-law size effect at the micrometer and submicrometer length scales, with the strengthening exponent of -0.68 at room temperature and of -1.00 at 90 °C. We also report the elastic and shear moduli as a function of crystallographic orientation gleaned from experiments and first-principles calculations, which show a high level of anisotropy up to the melting point, where the elastic and shear moduli vary by a factor of ˜4 between the stiffest and most compliant orientations. The emergence of such high strengths in small-scale Li and sensitivity of this metal’s stiffness to crystallographic orientation help explain why the existing methods of dendrite suppression have been mainly unsuccessful and have significant implications for practical design of future-generation batteries.

  7. Do one percent of the forest fires cause ninety-nine percent of the damage? Forest Science

    Treesearch

    David Strauss; Larry Bednar; Romain Mees

    1989-01-01

    A relatively small number of forest fires are responsible for a very high proportion of the total damage. The proportion due to the fraction p of largest fires, when plotted against p, is a measure of variability of fire sizes that is especially sensitive to the important extreme events. We find the theoretical form of the plot for several commonly used distributions...

  8. Radiative heat transfer in the extreme near field.

    PubMed

    Kim, Kyeongtae; Song, Bai; Fernández-Hurtado, Víctor; Lee, Woochul; Jeong, Wonho; Cui, Longji; Thompson, Dakotah; Feist, Johannes; Reid, M T Homer; García-Vidal, Francisco J; Cuevas, Juan Carlos; Meyhofer, Edgar; Reddy, Pramod

    2015-12-17

    Radiative transfer of energy at the nanometre length scale is of great importance to a variety of technologies including heat-assisted magnetic recording, near-field thermophotovoltaics and lithography. Although experimental advances have enabled elucidation of near-field radiative heat transfer in gaps as small as 20-30 nanometres (refs 4-6), quantitative analysis in the extreme near field (less than 10 nanometres) has been greatly limited by experimental challenges. Moreover, the results of pioneering measurements differed from theoretical predictions by orders of magnitude. Here we use custom-fabricated scanning probes with embedded thermocouples, in conjunction with new microdevices capable of periodic temperature modulation, to measure radiative heat transfer down to gaps as small as two nanometres. For our experiments we deposited suitably chosen metal or dielectric layers on the scanning probes and microdevices, enabling direct study of extreme near-field radiation between silica-silica, silicon nitride-silicon nitride and gold-gold surfaces to reveal marked, gap-size-dependent enhancements of radiative heat transfer. Furthermore, our state-of-the-art calculations of radiative heat transfer, performed within the theoretical framework of fluctuational electrodynamics, are in excellent agreement with our experimental results, providing unambiguous evidence that confirms the validity of this theory for modelling radiative heat transfer in gaps as small as a few nanometres. This work lays the foundations required for the rational design of novel technologies that leverage nanoscale radiative heat transfer.

  9. Blueberry Galaxies: The Lowest Mass Young Starbursts

    NASA Astrophysics Data System (ADS)

    Yang, Huan; Malhotra, Sangeeta; Rhoads, James E.; Wang, Junxian

    2017-09-01

    Searching for extreme emission line galaxies allows us to find low-mass metal-poor galaxies that are good analogs of high redshift Lyα emitting galaxies. These low-mass extreme emission line galaxies are also potential Lyman-continuum leakers. Finding them at very low redshifts (z≲ 0.05) allows us to be sensitive to even lower stellar masses and metallicities. We report on a sample of extreme emission line galaxies at z≲ 0.05 (blueberry galaxies). We selected them from SDSS broadband images on the basis of their broadband colors and studied their properties with MMT spectroscopy. From the entire SDSS DR12 photometric catalog, we found 51 photometric candidates. We spectroscopically confirm 40 as blueberry galaxies. (An additional seven candidates are contaminants, and four remain without spectra.) These blueberries are dwarf starburst galaxies with very small sizes (<1 kpc) and very high ionization ([O III]/[O II] ˜ 10-60). They also have some of the lowest stellar masses ({log}(M/{M}⊙ )˜ 6.5{--}7.5) and lowest metallicities (7.1< 12+{log}({{O}}/{{H}})< 7.8) of starburst galaxies. Thus, they are small counterparts to green pea galaxies and high redshift Lyα emitting galaxies.

  10. Why size matters: differences in brain volume account for apparent sex differences in callosal anatomy: the sexual dimorphism of the corpus callosum.

    PubMed

    Luders, Eileen; Toga, Arthur W; Thompson, Paul M

    2014-01-01

    Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum. © 2013.

  11. Why Size Matters: Differences in Brain Volume Account for Apparent Sex Differences in Callosal Anatomy

    PubMed Central

    Luders, Eileen; Toga, Arthur W.; Thompson, Paul M.

    2013-01-01

    Numerous studies have demonstrated a sexual dimorphism of the human corpus callosum. However, the question remains if sex differences in brain size, which typically is larger in men than in women, or biological sex per se account for the apparent sex differences in callosal morphology. Comparing callosal dimensions between men and women matched for overall brain size may clarify the true contribution of biological sex, as any observed group difference should indicate pure sex effects. We thus examined callosal morphology in 24 male and 24 female brains carefully matched for overall size. In addition, we selected 24 extremely large male brains and 24 extremely small female brains to explore if observed sex effects might vary depending on the degree to which male and female groups differed in brain size. Using the individual T1-weighted brain images (n=96), we delineated the corpus callosum at midline and applied a well-validated surface-based mesh-modeling approach to compare callosal thickness at 100 equidistant points between groups determined by brain size and sex. The corpus callosum was always thicker in men than in women. However, this callosal sex difference was strongly determined by the cerebral sex difference overall. That is, the larger the discrepancy in brain size between men and women, the more pronounced the sex difference in callosal thickness, with hardly any callosal differences remaining between brain-size matched men and women. Altogether, these findings suggest that individual differences in brain size account for apparent sex differences in the anatomy of the corpus callosum. PMID:24064068

  12. A new species of arboreal toad (Anura : Bufonidae : Chaunus) from Madidi National Park, Bolivia

    USGS Publications Warehouse

    Padial, J.M.; Reichle, S.; McDiarmid, R.; De la Riva, I.

    2006-01-01

    A new arboreal species of the Chaunus veraguensis group is described for the humid montane forest of Madidi National Park, in northern Bolivia. The new species differs from other species in the group by the combination small size, long and slender extremities, webbed hands, conspicuous tympanic membrane, well developed parotoid glands, absence of large glands on dorsum and extremities, nuptial excrescences of males composed of pungent spines on dorsal surface of thumb, greenish-brown coloration on dorsum with red warts in life, and green iris. It is only known from two nearby localities in the Serran Eslabon, Department La Paz. An operational key for species in the C. veraguensis group is provided.

  13. Local instability driving extreme events in a pair of coupled chaotic electronic circuits

    NASA Astrophysics Data System (ADS)

    de Oliveira, Gilson F.; Di Lorenzo, Orlando; de Silans, Thierry Passerat; Chevrollier, Martine; Oriá, Marcos; Cavalcante, Hugo L. D. de Souza

    2016-06-01

    For a long time, extreme events happening in complex systems, such as financial markets, earthquakes, and neurological networks, were thought to follow power-law size distributions. More recently, evidence suggests that in many systems the largest and rarest events differ from the other ones. They are dragon kings, outliers that make the distribution deviate from a power law in the tail. Understanding the processes of formation of extreme events and what circumstances lead to dragon kings or to a power-law distribution is an open question and it is a very important one to assess whether extreme events will occur too often in a specific system. In the particular system studied in this paper, we show that the rate of occurrence of dragon kings is controlled by the value of a parameter. The system under study here is composed of two nearly identical chaotic oscillators which fail to remain in a permanently synchronized state when coupled. We analyze the statistics of the desynchronization events in this specific example of two coupled chaotic electronic circuits and find that modifying a parameter associated to the local instability responsible for the loss of synchronization reduces the occurrence of dragon kings, while preserving the power-law distribution of small- to intermediate-size events with the same scaling exponent. Our results support the hypothesis that the dragon kings are caused by local instabilities in the phase space.

  14. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    NASA Astrophysics Data System (ADS)

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J.; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-01

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as ‘ultracool dwarfs’. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them—ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  15. A universe of dwarfs and giants: genome size and chromosome evolution in the monocot family Melanthiaceae.

    PubMed

    Pellicer, Jaume; Kelly, Laura J; Leitch, Ilia J; Zomlefer, Wendy B; Fay, Michael F

    2014-03-01

    • Since the occurrence of giant genomes in angiosperms is restricted to just a few lineages, identifying where shifts towards genome obesity have occurred is essential for understanding the evolutionary mechanisms triggering this process. • Genome sizes were assessed using flow cytometry in 79 species and new chromosome numbers were obtained. Phylogenetically based statistical methods were applied to infer ancestral character reconstructions of chromosome numbers and nuclear DNA contents. • Melanthiaceae are the most diverse family in terms of genome size, with C-values ranging more than 230-fold. Our data confirmed that giant genomes are restricted to tribe Parideae, with most extant species in the family characterized by small genomes. Ancestral genome size reconstruction revealed that the most recent common ancestor (MRCA) for the family had a relatively small genome (1C = 5.37 pg). Chromosome losses and polyploidy are recovered as the main evolutionary mechanisms generating chromosome number change. • Genome evolution in Melanthiaceae has been characterized by a trend towards genome size reduction, with just one episode of dramatic DNA accumulation in Parideae. Such extreme contrasting profiles of genome size evolution illustrate the key role of transposable elements and chromosome rearrangements in driving the evolution of plant genomes. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  16. Temperate Earth-sized planets transiting a nearby ultracool dwarf star.

    PubMed

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam J; Triaud, Amaury H M J; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2016-05-12

    Star-like objects with effective temperatures of less than 2,700 kelvin are referred to as 'ultracool dwarfs'. This heterogeneous group includes stars of extremely low mass as well as brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15 per cent of the population of astronomical objects near the Sun. Core-accretion theory predicts that, given the small masses of these ultracool dwarfs, and the small sizes of their protoplanetary disks, there should be a large but hitherto undetected population of terrestrial planets orbiting them--ranging from metal-rich Mercury-sized planets to more hospitable volatile-rich Earth-sized planets. Here we report observations of three short-period Earth-sized planets transiting an ultracool dwarf star only 12 parsecs away. The inner two planets receive four times and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star. Our data suggest that 11 orbits remain possible for the third planet, the most likely resulting in irradiation significantly less than that received by Earth. The infrared brightness of the host star, combined with its Jupiter-like size, offers the possibility of thoroughly characterizing the components of this nearby planetary system.

  17. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape

    PubMed Central

    2016-01-01

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing. PMID:27223478

  18. SERS of Individual Nanoparticles on a Mirror: Size Does Matter, but so Does Shape.

    PubMed

    Benz, Felix; Chikkaraddy, Rohit; Salmon, Andrew; Ohadi, Hamid; de Nijs, Bart; Mertens, Jan; Carnegie, Cloudy; Bowman, Richard W; Baumberg, Jeremy J

    2016-06-16

    Coupling noble metal nanoparticles by a 1 nm gap to an underlying gold mirror confines light to extremely small volumes, useful for sensing on the nanoscale. Individually measuring 10 000 of such gold nanoparticles of increasing size dramatically shows the different scaling of their optical scattering (far-field) and surface-enhanced Raman emission (SERS, near-field). Linear red-shifts of the coupled plasmon modes are seen with increasing size, matching theory. The total SERS from the few hundred molecules under each nanoparticle dramatically increases with increasing size. This scaling shows that maximum SERS emission is always produced from the largest nanoparticles, irrespective of tuning to any plasmonic resonances. Changes of particle facet with nanoparticle size result in vastly weaker scaling of the near-field SERS, without much modifying the far-field, and allows simple approaches for optimizing practical sensing.

  19. De novo comparative transcriptome analysis of genes involved in fruit morphology of pumpkin cultivars with extreme size difference and development of EST-SSR markers.

    PubMed

    Xanthopoulou, Aliki; Ganopoulos, Ioannis; Psomopoulos, Fotis; Manioudaki, Maria; Moysiadis, Theodoros; Kapazoglou, Aliki; Osathanunkul, Maslin; Michailidou, Sofia; Kalivas, Apostolos; Tsaftaris, Athanasios; Nianiou-Obeidat, Irini; Madesis, Panagiotis

    2017-07-30

    The genetic basis of fruit size and shape was investigated for the first time in Cucurbita species and genetic loci associated with fruit morphology have been identified. Although extensive genomic resources are available at present for tomato (Solanum lycopersicum), cucumber (Cucumis sativus), melon (Cucumis melo) and watermelon (Citrullus lanatus), genomic databases for Cucurbita species are limited. Recently, our group reported the generation of pumpkin (Cucurbita pepo) transcriptome databases from two contrasting cultivars with extreme fruit sizes. In the current study we used these databases to perform comparative transcriptome analysis in order to identify genes with potential roles in fruit morphology and fruit size. Differential Gene Expression (DGE) analysis between cv. 'Munchkin' (small-fruit) and cv. 'Big Moose' (large-fruit) revealed a variety of candidate genes associated with fruit morphology with significant differences in gene expression between the two cultivars. In addition, we have set the framework for generating EST-SSR markers, which discriminate different C. pepo cultivars and show transferability to related Cucurbitaceae species. The results of the present study will contribute to both further understanding the molecular mechanisms regulating fruit morphology and furthermore identifying the factors that determine fruit size. Moreover, they may lead to the development of molecular marker tools for selecting genotypes with desired morphological traits. Copyright © 2017. Published by Elsevier B.V.

  20. A pseudoleukemic blood differentiation in a 13-year-old child: an extraordinary presentation of Churg-Strauss syndrome.

    PubMed

    Mutsaers, E R; Witteveen, R; van den Bosch-Ruis, W; Kuijpers, T W; van Houten, M A; van den Berg, J M

    2013-03-01

    Churg-Strauss syndrome (CSS) is a rare systemic vasculitis of the small- and medium-size vessels. It is mostly seen in elderly patients presenting as de novo asthma, eosinophilia, and vasculitic organ involvement. In childhood, CSS is extremely rare. The course of pediatric CSS is usually severe and often lethal. We present a case of a 13-year-old girl with a short history of asthma, marked eosinophilia, and multiorgan involvement. The extremely high level of blood eosinophilic granulocytes (51.6 × 10(9)/L) prompted a workup for eosinophilic leukemia before the diagnosis CSS could be made. Subsequently, the disease was successfully treated. This case report shows a classical case of childhood CSS, remarkable because of the presence of extreme hypereosinophilia. It underlines the importance of CSS as a life-threatening cause of hypereosinophilia in children.

  1. The Microphysical Structure of Extreme Precipitation as Inferred from Ground-Based Raindrop Spectra.

    NASA Astrophysics Data System (ADS)

    Uijlenhoet, Remko; Smith, James A.; Steiner, Matthias

    2003-05-01

    The controls on the variability of raindrop size distributions in extreme rainfall and the associated radar reflectivity-rain rate relationships are studied using a scaling-law formalism for the description of raindrop size distributions and their properties. This scaling-law formalism enables a separation of the effects of changes in the scale of the raindrop size distribution from those in its shape. Parameters controlling the scale and shape of the scaled raindrop size distribution may be related to the microphysical processes generating extreme rainfall. A global scaling analysis of raindrop size distributions corresponding to rain rates exceeding 100 mm h1, collected during the 1950s with the Illinois State Water Survey raindrop camera in Miami, Florida, reveals that extreme rain rates tend to be associated with conditions in which the variability of the raindrop size distribution is strongly number controlled (i.e., characteristic drop sizes are roughly constant). This means that changes in properties of raindrop size distributions in extreme rainfall are largely produced by varying raindrop concentrations. As a result, rainfall integral variables (such as radar reflectivity and rain rate) are roughly proportional to each other, which is consistent with the concept of the so-called equilibrium raindrop size distribution and has profound implications for radar measurement of extreme rainfall. A time series analysis for two contrasting extreme rainfall events supports the hypothesis that the variability of raindrop size distributions for extreme rain rates is strongly number controlled. However, this analysis also reveals that the actual shapes of the (measured and scaled) spectra may differ significantly from storm to storm. This implies that the exponents of power-law radar reflectivity-rain rate relationships may be similar, and close to unity, for different extreme rainfall events, but their prefactors may differ substantially. Consequently, there is no unique radar reflectivity-rain rate relationship for extreme rain rates, but the variability is essentially reduced to one free parameter (i.e., the prefactor). It is suggested that this free parameter may be estimated on the basis of differential reflectivity measurements in extreme rainfall.

  2. Mars Rotorcraft: Possibilities, Limitations, and Implications For Human/Robotic Exploration

    NASA Technical Reports Server (NTRS)

    Young, Larry A.; Aiken, Edwin; Lee, Pascal; Briggs, Geoffrey

    2005-01-01

    Several research investigations have examined the challenges and opportunities in the use of small robotic rotorcraft for the exploration of Mars. To date, only vehicles smaller than 150 kg have been studied. This paper proposes to examine the question of maximum Mars rotorcraft size, range, and payload/cargo capacity. Implications for the issue of whether or not (from an extreme design standpoint) a manned Mars rotorcraft is viable are also discussed.

  3. Trait-based prediction of extinction risk of small-bodied freshwater fishes.

    PubMed

    Kopf, R Keller; Shaw, Casey; Humphries, Paul

    2017-06-01

    Small body size is generally correlated with r-selected life-history traits, including early maturation, short-generation times, and rapid growth rates, that result in high population turnover and a reduced risk of extinction. Unlike other classes of vertebrates, however, small freshwater fishes appear to have an equal or greater risk of extinction than large fishes. We explored whether particular traits explain the International Union for Conservation of Nature (IUCN) Red List conservation status of small-bodied freshwater fishes from 4 temperate river basins: Murray-Darling, Australia; Danube, Europe; Mississippi-Missouri, North America; and the Rio Grande, North America. Twenty-three ecological and life-history traits were collated for all 171 freshwater fishes of ≤120 mm total length. We used generalized linear mixed-effects models to assess which combination of the 23 traits best explained whether a species was threatened or not threatened. We used the best models to predict the probability of 29 unclassified species being listed as threatened. With and without controlling for phylogeny at the family level, small body size-among small-bodied species-was the most influential trait correlated with threatened species listings. The k-folds cross-validation demonstrated that body size and a random effect structure that included family predicted the threat status with an accuracy of 78% (SE 0.5). We identified 10 species likely to be threatened that are not listed as such on the IUCN Red List. Small body size is not a trait that provides universal resistance to extinction, particularly for vertebrates inhabiting environments affected by extreme habitat loss and fragmentation. We hypothesize that this is because small-bodied species have smaller home ranges, lower dispersal capabilities, and heightened ecological specialization relative to larger vertebrates. Trait data and further model development are needed to predict the IUCN conservation status of the over 11,000 unclassified freshwater fishes, especially those under threat from proposed dam construction in the world's most biodiverse river basins. © 2016 Society for Conservation Biology.

  4. Evaluation of the DSM-5 severity indicator for binge eating disorder in a clinical sample

    PubMed Central

    Grilo, Carlos M.; Ivezaj, Valentina; White, Marney A.

    2015-01-01

    Objective This study tested the new DSM-5 severity criterion for binge eating disorder (BED) based on frequency of binge-eating in a clinical sample. This study also tested overvaluation of shape/weight as an alternative severity specifier. Method Participants were 834 treatment-seeking adults diagnosed with DSM-5 BED using semistructured diagnostic and eating-disorder interviews. Participants sub-grouped based on DSM-5 severity levels and on overvaluation of shape/weight were compared on demographic and clinical variables. Results Based on DSM-5 severity definitions, 331 (39.7%) participants were categorized as mild, 395 (47.5%) as moderate, 83 (10.0%) as severe, and 25 (3.0%) as extreme. Analyses comparing three (mild, moderate, and severe/extreme) severity groups revealed no significant differences in demographic variables or body mass index (BMI). Analyses revealed significantly higher eating-disorder psychopathology in the severe/extreme than moderate and mild groups and higher depression in moderate and severe/extreme groups than the mild group; effect sizes were small. Participants characterized with overvaluation (N = 449; 54%) versus without overvaluation (N = 384; 46%) did not differ significantly in age, sex, BMI, or binge-eating frequency, but had significantly greater eating-disorder psychopathology and depression. The robustly greater eating-disorder psychopathology and depression levels (medium-to-large effect sizes) in the overvaluation group was observed without attenuation of effect sizes after adjusting for ethnicity/race and binge-eating severity/frequency. Conclusions Our findings provide support for overvaluation of shape/weight as a severity specifier for BED as it provides stronger information about the severity of homogeneous groupings of patients than the DSM-5 rating based on binge-eating. PMID:26114779

  5. A rare case of giant occipital meningocele with Dandy Walker Syndrome: Can it grow bigger than this?

    PubMed Central

    Mankotia, Dipanker Singh; Satyarthee, Guru Dutta; Singh, Bhoopendra; Sharma, Bhawani Shankar

    2016-01-01

    Association of Dandy–Walker syndrome with occipital meningocele (OMC) is extremely rare and about thirty cases are reported till date in the Western literature. However, OMC is classified by Talamonti et al. into small, large, and giant categories with respective diameters were upto 5 cm in small, large with 5–9 cm, and giant with >9 cm. Usually the size of OMC progressively increases as raised intracranial pressure leads to compensatory cerebrospinal fluid escape into sac with the growth of children. Authors report an interesting case of an 18-month-old female child with extra-gigantic OMC, whose size was almost same since birth, representing the first case of its kind, who underwent successful surgical repair. Clinical presentation, radiological features, and surgical management options in literature are reviewed briefly for this rare disease association. PMID:28217162

  6. Designing a Small-Sized Engineering Model of Solar EUV Telescopr for a Korean Satellite

    NASA Astrophysics Data System (ADS)

    Han, Jung-Hoon; Jang, Min-Hwan; Kim, Sang-Joon

    2001-11-01

    For the research of solar EUV (extreme ultraviolet) radiation, we have designed a small-sized engineering model of solar EUV telescope, which is suitable for a Korean satellite. The EUV solar telescope was designed to observe the sun at 584.3Å (He¥°) and 629.7Å (O¥´). The optical system is an f/8 Ritchey-Chrètien, and the effective diameter and focal length are 80§® and 640§®, respectively. The He¥°and O¥´ filters are loaded in a filter wheel. In the detection part, the MCP (MicroChannel Plate) type is Z-stack, and the channel-to-diameter ratio is 40:1. MCP and CCD are connected by fiber optic taper. A commercial optical design software is used for the analysis of the optical system design.

  7. Miniature Extreme Ultraviolet Solar Radiometers

    NASA Astrophysics Data System (ADS)

    McMullin, D. R.; Seely, J. F.; Bremer, J.; Jones, A. R.; Vest, R.; Sakdinawat, A.

    2015-12-01

    Free-standing zone plates for use in EUV solar radiometers have been fabricated using electron beam lithography and calibrated at the NIST SURF synchrotron facility. The radiometers that we are developing use zone plates (ZPs) to focus the total solar irradiance in narrow EUV spectral bands and measure it with negligible sensitivity to field angle and polarization, and with greater accuracy and greater long-term stability than radiometers that have alternative architectures. These radiometers are easy to accommodate on spacecraft due to their small size, low mass, low power requirements, low data rates, and modest pointing requirements. A proto-type instrument will be presented with performance characteristics and spacecraft resource requirements for hosting these new instruments. The compact size of the optical train make these zone plates attractive for small CubeSats. The robustness of the compact design makes these radiometers available for a large variety of applications.

  8. OPTEC: A Cubesat for Solar Cell Calibration

    NASA Technical Reports Server (NTRS)

    Landis, Geoffrey; Hepp, Aloysius; Arutyunov, Dennis; White, Kelsey; Witsberger, Paul

    2014-01-01

    A new type of small spacecraft, the cubesat, has introduced a new concept for extremely small, low-cost missions into space. Cubesats are designed to be launched as secondary payloads on other missions, and are made up of unit elements (U) of size 10 cm by 10 cm by 10 cm, with a nominal mass of no more than 1.33 kg per U. We have designed a cubesat, OPTEC (Orbital Photovoltaic Testbed Cubesat) as a low-cost testbed to demonstrate, calibrate, and test solar cell technologies in space. Size of the cubesat is 2U (10x10x20cm, and the mass 2.66 kg. The cubesat deploys from the International Space Station into Low Earth Orbit at an altitude of about 420 km. Up to two 4x8cm test solar panels can be flown, with full I-V curves and temperature measurements taken.

  9. Analysis of small sample size studies using nonparametric bootstrap test with pooled resampling method.

    PubMed

    Dwivedi, Alok Kumar; Mallawaarachchi, Indika; Alvarado, Luis A

    2017-06-30

    Experimental studies in biomedical research frequently pose analytical problems related to small sample size. In such studies, there are conflicting findings regarding the choice of parametric and nonparametric analysis, especially with non-normal data. In such instances, some methodologists questioned the validity of parametric tests and suggested nonparametric tests. In contrast, other methodologists found nonparametric tests to be too conservative and less powerful and thus preferred using parametric tests. Some researchers have recommended using a bootstrap test; however, this method also has small sample size limitation. We used a pooled method in nonparametric bootstrap test that may overcome the problem related with small samples in hypothesis testing. The present study compared nonparametric bootstrap test with pooled resampling method corresponding to parametric, nonparametric, and permutation tests through extensive simulations under various conditions and using real data examples. The nonparametric pooled bootstrap t-test provided equal or greater power for comparing two means as compared with unpaired t-test, Welch t-test, Wilcoxon rank sum test, and permutation test while maintaining type I error probability for any conditions except for Cauchy and extreme variable lognormal distributions. In such cases, we suggest using an exact Wilcoxon rank sum test. Nonparametric bootstrap paired t-test also provided better performance than other alternatives. Nonparametric bootstrap test provided benefit over exact Kruskal-Wallis test. We suggest using nonparametric bootstrap test with pooled resampling method for comparing paired or unpaired means and for validating the one way analysis of variance test results for non-normal data in small sample size studies. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Feasibility of ultra-wideband SAW RFID tags meeting FCC rules.

    PubMed

    Härmä, Sanna; Plessky, Victor P; Li, Xianyi; Hartogh, Paul

    2009-04-01

    We discuss the feasibility of surface acoustic wave (SAW) radio-frequency identification (RFID) tags that rely on ultra-wideband (UWB) technology. We propose a design of a UWB SAW tag, carry out numerical experiments on the device performance, and study signal processing in the system. We also present experimental results for the proposed device and estimate the potentially achievable reading distance. UWB SAW tags will have an extremely small chip size (<0.5 x 1 mm(2)) and a low cost. They also can provide a large number of different codes. The estimated read range for UWB SAW tags is about 2 m with a reader radiating as low as <0.1 mW power levels with an extremely low duty factor.

  11. Pulsed Laser Ablation-Induced Green Synthesis of TiO2 Nanoparticles and Application of Novel Small Angle X-Ray Scattering Technique for Nanoparticle Size and Size Distribution Analysis.

    PubMed

    Singh, Amandeep; Vihinen, Jorma; Frankberg, Erkka; Hyvärinen, Leo; Honkanen, Mari; Levänen, Erkki

    2016-12-01

    This paper aims to introduce small angle X-ray scattering (SAXS) as a promising technique for measuring size and size distribution of TiO 2 nanoparticles. In this manuscript, pulsed laser ablation in liquids (PLAL) has been demonstrated as a quick and simple technique for synthesizing TiO 2 nanoparticles directly into deionized water as a suspension from titanium targets. Spherical TiO 2 nanoparticles with diameters in the range 4-35 nm were observed with transmission electron microscopy (TEM). X-ray diffraction (XRD) showed highly crystalline nanoparticles that comprised of two main photoactive phases of TiO 2 : anatase and rutile. However, presence of minor amounts of brookite was also reported. The traditional methods for nanoparticle size and size distribution analysis such as electron microscopy-based methods are time-consuming. In this study, we have proposed and validated SAXS as a promising method for characterization of laser-ablated TiO 2 nanoparticles for their size and size distribution by comparing SAXS- and TEM-measured nanoparticle size and size distribution. SAXS- and TEM-measured size distributions closely followed each other for each sample, and size distributions in both showed maxima at the same nanoparticle size. The SAXS-measured nanoparticle diameters were slightly larger than the respective diameters measured by TEM. This was because SAXS measures an agglomerate consisting of several particles as one big particle which slightly increased the mean diameter. TEM- and SAXS-measured mean diameters when plotted together showed similar trend in the variation in the size as the laser power was changed which along with extremely similar size distributions for TEM and SAXS validated the application of SAXS for size distribution measurement of the synthesized TiO 2 nanoparticles.

  12. Low Thermal Conductivity of Bulk Amorphous Si1- x Ge x Containing Nano-Sized Crystalline Particles Synthesized by Ball-Milling Process

    NASA Astrophysics Data System (ADS)

    Muthusamy, Omprakash; Nishino, Shunsuke; Ghodke, Swapnil; Inukai, Manabu; Sobota, Robert; Adachi, Masahiro; Kiyama, Makato; Yamamoto, Yoshiyuki; Takeuchi, Tsunehiro; Santhanakrishnan, Harish; Ikeda, Hiroya; Hayakawa, Yasuhiro

    2018-06-01

    Amorphous Si0.65Ge0.35 powder containing a small amount of nano-sized crystalline particles was synthesized by means of the mechanical alloying process. Hot pressing for 24 h under the pressure of 400 MPa at 823 K, which is below the crystallization temperature, allowed us to obtain bulk amorphous Si-Ge alloy containing a small amount of nanocrystals. The thermal conductivity of the prepared bulk amorphous Si-Ge alloy was extremely low, showing a magnitude of less than 1.35 Wm-1 K-1 over the entire temperature range from 300 K to 700 K. The sound velocity of longitudinal and transverse waves for the bulk amorphous Si0.65Ge0.35 were measured, and the resulting values were 5841 m/s and 2840 m/s, respectively. The estimated mean free path of phonons was kept at the very small value of ˜ 4.2 nm, which was mainly due to the strong scattering limit of phonons in association with the amorphous structure.

  13. Fast approach for toner saving

    NASA Astrophysics Data System (ADS)

    Safonov, Ilia V.; Kurilin, Ilya V.; Rychagov, Michael N.; Lee, Hokeun; Kim, Sangho; Choi, Donchul

    2011-01-01

    Reducing toner consumption is an important task in modern printing devices and has a significant positive ecological impact. Existing toner saving approaches have two main drawbacks: appearance of hardcopy in toner saving mode is worse in comparison with normal mode; processing of whole rendered page bitmap requires significant computational costs. We propose to add small holes of various shapes and sizes to random places inside a character bitmap stored in font cache. Such random perforation scheme is based on processing pipeline in RIP of standard printer languages Postscript and PCL. Processing of text characters only, and moreover, processing of each character for given font and size alone, is an extremely fast procedure. The approach does not deteriorate halftoned bitmap and business graphics and provide toner saving for typical office documents up to 15-20%. Rate of toner saving is adjustable. Alteration of resulted characters' appearance is almost indistinguishable in comparison with solid black text due to random placement of small holes inside the character regions. The suggested method automatically skips small fonts to preserve its quality. Readability of text processed by proposed method is fine. OCR programs process that scanned hardcopy successfully too.

  14. Polymorphic mountain whitefish (Prosopium williamsoni) in a coastal riverscape: size class assemblages, distribution, and habitat associations

    USGS Publications Warehouse

    Starr, James C.; Torgersen, Christian E.

    2015-01-01

    We compared the assemblage structure, spatial distributions, and habitat associations of mountain whitefish (Prosopium williamsoni) morphotypes and size classes. We hypothesised that morphotypes would have different spatial distributions and would be associated with different habitat features based on feeding behaviour and diet. Spatially continuous sampling was conducted over a broad extent (29 km) in the Calawah River, WA (USA). Whitefish were enumerated via snorkelling in three size classes: small (10–29 cm), medium (30–49 cm), and large (≥50 cm). We identified morphotypes based on head and snout morphology: a pinocchio form that had an elongated snout and a normal form with a blunted snout. Large size classes of both morphotypes were distributed downstream of small and medium size classes, and normal whitefish were distributed downstream of pinocchio whitefish. Ordination of whitefish assemblages with nonmetric multidimensional scaling revealed that normal whitefish size classes were associated with higher gradient and depth, whereas pinocchio whitefish size classes were positively associated with pool area, distance upstream, and depth. Reach-scale generalised additive models indicated that normal whitefish relative density was associated with larger substrate size in downstream reaches (R2 = 0.64), and pinocchio whitefish were associated with greater stream depth in the reaches farther upstream (R2 = 0.87). These results suggest broad-scale spatial segregation (1–10 km), particularly between larger and more phenotypically extreme individuals. These results provide the first perspective on spatial distributions and habitat relationships of polymorphic mountain whitefish.

  15. The scaling of population persistence with carrying capacity does not asymptote in populations of a fish experiencing extreme climate variability.

    PubMed

    White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R

    2017-06-14

    Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).

  16. Modeling and evaluation of a high-resolution CMOS detector for cone-beam CT of the extremities.

    PubMed

    Cao, Qian; Sisniega, Alejandro; Brehler, Michael; Stayman, J Webster; Yorkston, John; Siewerdsen, Jeffrey H; Zbijewski, Wojciech

    2018-01-01

    Quantitative assessment of trabecular bone microarchitecture in extremity cone-beam CT (CBCT) would benefit from the high spatial resolution, low electronic noise, and fast scan time provided by complementary metal-oxide semiconductor (CMOS) x-ray detectors. We investigate the performance of CMOS sensors in extremity CBCT, in particular with respect to potential advantages of thin (<0.7 mm) scintillators offering higher spatial resolution. A cascaded systems model of a CMOS x-ray detector incorporating the effects of CsI:Tl scintillator thickness was developed. Simulation studies were performed using nominal extremity CBCT acquisition protocols (90 kVp, 0.126 mAs/projection). A range of scintillator thickness (0.35-0.75 mm), pixel size (0.05-0.4 mm), focal spot size (0.05-0.7 mm), magnification (1.1-2.1), and dose (15-40 mGy) was considered. The detectability index was evaluated for both CMOS and a-Si:H flat-panel detector (FPD) configurations for a range of imaging tasks emphasizing spatial frequencies associated with feature size aobj. Experimental validation was performed on a CBCT test bench in the geometry of a compact orthopedic CBCT system (SAD = 43.1 cm, SDD = 56.0 cm, matching that of the Carestream OnSight 3D system). The test-bench studies involved a 0.3 mm focal spot x-ray source and two CMOS detectors (Dalsa Xineos-3030HR, 0.099 mm pixel pitch) - one with the standard CsI:Tl thickness of 0.7 mm (C700) and one with a custom 0.4 mm thick scintillator (C400). Measurements of modulation transfer function (MTF), detective quantum efficiency (DQE), and CBCT scans of a cadaveric knee (15 mGy) were obtained for each detector. Optimal detectability for high-frequency tasks (feature size of ~0.06 mm, consistent with the size of trabeculae) was ~4× for the C700 CMOS detector compared to the a-Si:H FPD at nominal system geometry of extremity CBCT. This is due to ~5× lower electronic noise of a CMOS sensor, which enables input quantum-limited imaging at smaller pixel size. Optimal pixel size for high-frequency tasks was <0.1 mm for a CMOS, compared to ~0.14 mm for an a-Si:H FPD. For this fine pixel pitch, detectability of fine features could be improved by using a thinner scintillator to reduce light spread blur. A 22% increase in detectability of 0.06 mm features was found for the C400 configuration compared to C700. An improvement in the frequency at 50% modulation (f 50 ) of MTF was measured, increasing from 1.8 lp/mm for C700 to 2.5 lp/mm for C400. The C400 configuration also achieved equivalent or better DQE as C700 for frequencies above ~2 mm -1 . Images of cadaver specimens confirmed improved visualization of trabeculae with the C400 sensor. The small pixel size of CMOS detectors yields improved performance in high-resolution extremity CBCT compared to a-Si:H FPDs, particularly when coupled with a custom 0.4 mm thick scintillator. The results indicate that adoption of a CMOS detector in extremity CBCT can benefit applications in quantitative imaging of trabecular microstructure in humans. © 2017 American Association of Physicists in Medicine.

  17. Size-dependent survival of brook trout Salvelinus fontinalis in summer: effects of water temperature and stream flow.

    PubMed

    Xu, C L; Letcher, B H; Nislow, K H

    2010-06-01

    A 5 year individual-based data set was used to estimate size-specific survival rates in a wild brook trout Salvelinus fontinalis population in a stream network encompassing a mainstem and three tributaries (1.5-6 m wetted width), western Massachusetts, U.S.A. The relationships between survival in summer and temperature and flow metrics derived from continuous monitoring data were then tested. Increased summer temperatures significantly reduced summer survival rates for S. fontinalis in almost all size classes in all four sites throughout the network. In contrast, extreme low summer flows reduced survival of large fish, but only in small tributaries, and had no significant effects on fish in smaller size classes in any location. These results provide direct evidence of a link between season-specific survival and environmental factors likely to be affected by climate change and have important consequences for the management of both habitats and populations.

  18. Size dependence of chondrule textural types

    NASA Technical Reports Server (NTRS)

    Goswami, J. N.

    1984-01-01

    Chrondrule textural types were studied for size sorted chondrules from the ordinary chondrites Dhajala, Eston and Chainpur and the CM chondrite Murchison. Aliquot samples from size sorted Dhajala chondrules were studied for their oxygen isotopic composition and chondrules from Weston were studied for their precompaction irradiation records by nuclear track technique. Correlations between chondrule textural types and oxygen isotope or track data were identified. A distinct dependence of chondrule textural type on chondrule size was evident in the data for both Dhajala and Weston chondrules. No significant deviation was noticed in the abundance pattern of nonporphyritic chondrules within individual size fractions in the 200 to 800 micron size interval. Overabundance is found of nonporphyritic chondrules in the 100 to 200 micron size fraction of Murchison chondrules, the trend is not as distinct for Chainpur chondrules. Two hundred microns is suggested as the cutoff size below which radiative cooling is extremely efficient during the chondrule forming process. It is suggested that this offers a possibility for use of physical and chemical characteristics of small chondrules to constrain the temperature history during the chondrule formation process.

  19. Statistical mechanics of two-dimensional shuffled foams: Geometry-topology correlation in small or large disorder limits

    NASA Astrophysics Data System (ADS)

    Durand, Marc; Kraynik, Andrew M.; van Swol, Frank; Käfer, Jos; Quilliet, Catherine; Cox, Simon; Ataei Talebi, Shirin; Graner, François

    2014-06-01

    Bubble monolayers are model systems for experiments and simulations of two-dimensional packing problems of deformable objects. We explore the relation between the distributions of the number of bubble sides (topology) and the bubble areas (geometry) in the low liquid fraction limit. We use a statistical model [M. Durand, Europhys. Lett. 90, 60002 (2010), 10.1209/0295-5075/90/60002] which takes into account Plateau laws. We predict the correlation between geometrical disorder (bubble size dispersity) and topological disorder (width of bubble side number distribution) over an extended range of bubble size dispersities. Extensive data sets arising from shuffled foam experiments, surface evolver simulations, and cellular Potts model simulations all collapse surprisingly well and coincide with the model predictions, even at extremely high size dispersity. At moderate size dispersity, we recover our earlier approximate predictions [M. Durand, J. Kafer, C. Quilliet, S. Cox, S. A. Talebi, and F. Graner, Phys. Rev. Lett. 107, 168304 (2011), 10.1103/PhysRevLett.107.168304]. At extremely low dispersity, when approaching the perfectly regular honeycomb pattern, we study how both geometrical and topological disorders vanish. We identify a crystallization mechanism and explore it quantitatively in the case of bidisperse foams. Due to the deformability of the bubbles, foams can crystallize over a larger range of size dispersities than hard disks. The model predicts that the crystallization transition occurs when the ratio of largest to smallest bubble radii is 1.4.

  20. Damage spreading in spatial and small-world random Boolean networks

    NASA Astrophysics Data System (ADS)

    Lu, Qiming; Teuscher, Christof

    2014-02-01

    The study of the response of complex dynamical social, biological, or technological networks to external perturbations has numerous applications. Random Boolean networks (RBNs) are commonly used as a simple generic model for certain dynamics of complex systems. Traditionally, RBNs are interconnected randomly and without considering any spatial extension and arrangement of the links and nodes. However, most real-world networks are spatially extended and arranged with regular, power-law, small-world, or other nonrandom connections. Here we explore the RBN network topology between extreme local connections, random small-world, and pure random networks, and study the damage spreading with small perturbations. We find that spatially local connections change the scaling of the Hamming distance at very low connectivities (K¯≪1) and that the critical connectivity of stability Ks changes compared to random networks. At higher K¯, this scaling remains unchanged. We also show that the Hamming distance of spatially local networks scales with a power law as the system size N increases, but with a different exponent for local and small-world networks. The scaling arguments for small-world networks are obtained with respect to the system sizes and strength of spatially local connections. We further investigate the wiring cost of the networks. From an engineering perspective, our new findings provide the key design trade-offs between damage spreading (robustness), the network's wiring cost, and the network's communication characteristics.

  1. The rapidly expanding universe of giant viruses: Mimivirus, Pandoravirus, Pithovirus and Mollivirus.

    PubMed

    Abergel, Chantal; Legendre, Matthieu; Claverie, Jean-Michel

    2015-11-01

    More than a century ago, the term 'virus' was introduced to describe infectious agents that are invisible by light microscopy and capable of passing through sterilizing filters. In addition to their extremely small size, most viruses have minimal genomes and gene contents, and rely almost entirely on host cell-encoded functions to multiply. Unexpectedly, four different families of eukaryotic 'giant viruses' have been discovered over the past 10 years with genome sizes, gene contents and particle dimensions overlapping with that of cellular microbes. Their ongoing analyses are challenging accepted ideas about the diversity, evolution and origin of DNA viruses. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Heidelberg Retina Tomography Analysis in Optic Disks with Anatomic Particularities

    PubMed Central

    Alexandrescu, C; Pascu, R; Ilinca, R; Popescu, V; Ciuluvica, R; Voinea, L; Celea, C

    2010-01-01

    Due to its objectivity, reproducibility and predictive value confirmed by many large scale statistical clinical studies, Heidelberg Retina Tomography has become one of the most used computerized image analysis of the optic disc in glaucoma. It has been signaled, though, that the diagnostic value of Moorfieds Regression Analyses and Glaucoma Probability Score decreases when analyzing optic discs with extreme sizes. The number of false positive results increases in cases of megalopapilllae and the number of false negative results increases in cases of small size optic discs. The present paper is a review of the aspects one should take into account when analyzing a HRT result of an optic disc with anatomic particularities. PMID:21254731

  3. ROLE OF SMALL OIL AND GAS FIELDS IN THE UNITED STATES.

    USGS Publications Warehouse

    Meyer, Richard F.; Fleming, Mary L.

    1985-01-01

    The actual economic size cutoff is a function of such factors as depth, water depth offshore, and accessibility to transportation infrastructure. Because of the constraint of resource availability, price is now the principal force driving drilling activity. The proportion of new-field wildcats to other exploratory wells has fallen in recent years, but success in new-field wildcats has risen to about 20%. However, only very small fields, less than 1 million BOE, are being found in large numbers. Through 1979, almost 93% of known gas fields and 94. 5% of known oil fields were small, yet they contain only 14. 5% of the ultimately recoverable gas and 12. 5% of the oil. However, small fields are less capital intensive than equivalent-capacity synthetic-fuel plants, they are extremely numerous, and they are relatively easy and inexpensive to find and put on production. Refs.

  4. Risks of nuclear waste disposal in space. III - Long-term orbital evolution of small particle distribution

    NASA Technical Reports Server (NTRS)

    Friedlander, A. L.; Wells, W. C.

    1980-01-01

    A study of long term risks is presented that treats an additional pathway that could result in earth reentry, namely, small radioactive particles released in solar orbit due to payload fragmentation by accidental explosion or meteoroid impact. A characterization of such an event and of the initial mass size distribution of particles is given for two extremes of waste form strength. Attention is given to numerical results showing the mass-time distribution of material and the fraction of initial mass intercepted by earth. It is concluded that it appears that program planners need not be to concerned about the risks of this particular failure mechanism and return pathway.

  5. MAS Bulletin. GY-90 Fiber Optic Gyro

    DTIC Science & Technology

    1989-07-20

    487 GY.9O Fiber Optic Gyro Background. Elettronica San Giorgio ELSAG S.p.A., Genoa, Italy, has developed a fiber optic gyro (FOG) for use on short...to the length of ELSAG S.p.A., Naval Systems Division, Via G. Puccini, 2-16154 the optical path and an extremely long optical path can be Genoa, Italy...Telephone 39 10/60011, Fax 39 10/607329, Telex achieved in a small size by using a many-turn coil of optical fiber. 270660/213847 ELSAG 1. There are

  6. Technical standards for micro sensors in surgery and minimally invasive therapy.

    PubMed

    Neuder; Dehm

    2004-04-01

    The development of medical applications is fuelled in the context of steadily growing needs and the requirement of lowering overall costs. Micro systems will have an extremely important impact on medical technology in the future. The great challenges for the wider use of micro structures in health applications are biocompatibility and mass production. Especially small and medium-sized enterprises (SMEs) need help to overcome these problems by free access to knowledge, the availability of standards and contacts to partners.

  7. Capillary pressure-saturation relationships for porous granular materials: Pore morphology method vs. pore unit assembly method

    NASA Astrophysics Data System (ADS)

    Sweijen, Thomas; Aslannejad, Hamed; Hassanizadeh, S. Majid

    2017-09-01

    In studies of two-phase flow in complex porous media it is often desirable to have an estimation of the capillary pressure-saturation curve prior to measurements. Therefore, we compare in this research the capability of three pore-scale approaches in reproducing experimentally measured capillary pressure-saturation curves. To do so, we have generated 12 packings of spheres that are representative of four different glass-bead packings and eight different sand packings, for which we have found experimental data on the capillary pressure-saturation curve in the literature. In generating the packings, we matched the particle size distributions and porosity values of the granular materials. We have used three different pore-scale approaches for generating the capillary pressure-saturation curves of each packing: i) the Pore Unit Assembly (PUA) method in combination with the Mayer and Stowe-Princen (MS-P) approximation for estimating the entry pressures of pore throats, ii) the PUA method in combination with the hemisphere approximation, and iii) the Pore Morphology Method (PMM) in combination with the hemisphere approximation. The three approaches were also used to produce capillary pressure-saturation curves for the coating layer of paper, used in inkjet printing. Curves for such layers are extremely difficult to determine experimentally, due to their very small thickness and the presence of extremely small pores (less than one micrometer in size). Results indicate that the PMM and PUA-hemisphere method give similar capillary pressure-saturation curves, because both methods rely on a hemisphere to represent the air-water interface. The ability of the hemisphere approximation and the MS-P approximation to reproduce correct capillary pressure seems to depend on the type of particle size distribution, with the hemisphere approximation working well for narrowly distributed granular materials.

  8. Particle growth kinetics over the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Pinterich, T.; Andreae, M. O.; Artaxo, P.; Kuang, C.; Longo, K.; Machado, L.; Manzi, A. O.; Martin, S. T.; Mei, F.; Pöhlker, C.; Pöhlker, M. L.; Poeschl, U.; Shilling, J. E.; Shiraiwa, M.; Tomlinson, J. M.; Zaveri, R. A.; Wang, J.

    2016-12-01

    Aerosol particles larger than 100 nm play a key role in global climate by acting as cloud condensation nuclei (CCN). Most of these particles, originated from new particle formation or directly emitted into the atmospheric, are initially too small to serve as CCN. These small particles grow to CCN size mainly through condensation of secondary species. In one extreme, the growth is dictated by kinetic condensation of very low-volatility compounds, favoring the growth of the smallest particles; in the other extreme, the process is driven by Raoult's law-based equilibrium partitioning of semi-volatile organic compound, favoring the growth of larger particles. These two mechanisms can lead to very different production rates of CCN. The growth of particles depends on a number of parameters, including the volatility of condensing species, particle phase, and diffusivity inside the particles, and this process is not well understood in part due to lack of ambient data. Here we examine atmospheric particle growth using high-resolution size distributions measured onboard the DOE G-1 aircraft during GoAmazon campaign, which took place from January 2014 to December 2015 near Manaus, Brazil, a city surrounded by natural forest for over 1000 km in every direction. City plumes are clearly identified by the strong enhancement of nucleation and Aitken mode particle concentrations over the clean background. As the plume traveled downwind, particle growth was observed, and is attributed to condensation of secondary species and coagulation (Fig.1). Observed aerosol growth is modeled using MOSAIC (Model for Simulating Aerosol Interactions and Chemistry), which dynamically partitions multiple compounds to all particle size bins by taking into account compound volatility, gas-phase diffusion, interfacial mass accommodation, particle-phase diffusion, and particle-phase reaction. The results from both wet and dry seasons will be discussed.

  9. Body Size as a Driver of Scavenging in Theropod Dinosaurs.

    PubMed

    Kane, Adam; Healy, Kevin; Ruxton, Graeme D; Jackson, Andrew L

    2016-06-01

    Theropod dinosaurs dominated Earth's terrestrial ecosystem as a diverse group of predators for more than 160 million years, yet little is known about their foraging ecology. Maintaining a balanced energy budget presented a major challenge for therapods, which ranged from the chicken-sized Microraptor up to the whale-sized Giganotosaurus, in the face of intense competition and the demands of ontogenetic growth. Facultative scavenging, a behavior present in almost all modern predators, may have been important in supplementing energetically expensive lifestyles. By using agent-based models based on the allometric relationship between size and foraging behaviors, we show that theropods between 27 and 1,044 kg would have gained a significant energetic advantage over individuals at both the small and large extremes of theropod body mass through their scavenging efficiency. These results were robust to rate of competition, primary productivity, and detection distance. Our models demonstrate the potential importance of facultative scavenging in theropods and the role of body size in defining its prevalence in Mesozoic terrestrial systems.

  10. Adjective semantics, world knowledge and visual context: comprehension of size terms by 2- to 7-year-old Dutch-speaking children.

    PubMed

    Tribushinina, Elena

    2013-06-01

    The interpretation of size terms involves constructing contextually-relevant reference points by combining visual cues with knowledge of typical object sizes. This study aims to establish at what age children learn to integrate these two sources of information in the interpretation process and tests comprehension of the Dutch adjectives groot 'big' and klein 'small' by 2- to 7-year-old children. The results demonstrate that there is a gradual increase in the ability to inhibit visual cues and to use world knowledge for interpreting size terms. 2- and 3-year-old children only used the extremes of the perceptual range as reference points. From age four onwards children, like adults, used a cut-off point in the mid-zone of a series. From age five on, children were able to integrate world knowledge and perceptual context. Although 7-year-olds could make subtle distinctions between sizes of various object classes, their performance on incongruent items was not yet adult-like.

  11. Extremal edges: a powerful cue to depth perception and figure-ground organization.

    PubMed

    Palmer, Stephen E; Ghose, Tandra

    2008-01-01

    Extremal edges (EEs) are projections of viewpoint-specific horizons of self-occlusion on smooth convex surfaces. An ecological analysis of viewpoint constraints suggests that an EE surface is likely to be closer to the observer than the non-EE surface on the other side of the edge. In two experiments, one using shading gradients and the other using texture gradients, we demonstrated that EEs operate as strong cues to relative depth perception and figure-ground organization. Image regions with an EE along the shared border were overwhelmingly perceived as closer than either flat or equally convex surfaces without an EE along that border. A further demonstration suggests that EEs are more powerful than classical figure-ground cues, including even the joint effects of small size, convexity, and surroundedness.

  12. The Small Mars System

    NASA Astrophysics Data System (ADS)

    Fantino, E.; Grassi, M.; Pasolini, P.; Causa, F.; Molfese, C.; Aurigemma, R.; Cimminiello, N.; de la Torre, D.; Dell'Aversana, P.; Esposito, F.; Gramiccia, L.; Paudice, F.; Punzo, F.; Roma, I.; Savino, R.; Zuppardi, G.

    2017-08-01

    The Small Mars System is a proposed mission to Mars. Funded by the European Space Agency, the project has successfully completed Phase 0. The contractor is ALI S.c.a.r.l., and the study team includes the University of Naples ;Federico II;, the Astronomical Observatory of Capodimonte and the Space Studies Institute of Catalonia. The objectives of the mission are both technological and scientific, and will be achieved by delivering a small Mars lander carrying a dust particle analyser and an aerial drone. The former shall perform in situ measurements of the size distribution and abundance of dust particles suspended in the Martian atmosphere, whereas the latter shall demonstrate low-altitude flight in the rarefied planetary environment. The mission-enabling technology is an innovative umbrella-like heat shield, known as IRENE, developed and patented by ALI. The mission is also a technological demonstration of the shield in the upper atmosphere of Mars. The core characteristics of SMS are the low cost (120 M€) and the small size (320 kg of wet mass at launch, 110 kg at landing), features which stand out with respect to previous Mars landers. To comply with them is extremely challenging at all levels, and sets strict requirements on the choice of the materials, the sizing of payloads and subsystems, their arrangement inside the spacecraft and the launcher's selection. In this contribution, the mission and system concept and design are illustrated and discussed. Special emphasis is given to the innovative features and to the challenges faced in the development of the work.

  13. A Fast Reduced Kernel Extreme Learning Machine.

    PubMed

    Deng, Wan-Yu; Ong, Yew-Soon; Zheng, Qing-Hua

    2016-04-01

    In this paper, we present a fast and accurate kernel-based supervised algorithm referred to as the Reduced Kernel Extreme Learning Machine (RKELM). In contrast to the work on Support Vector Machine (SVM) or Least Square SVM (LS-SVM), which identifies the support vectors or weight vectors iteratively, the proposed RKELM randomly selects a subset of the available data samples as support vectors (or mapping samples). By avoiding the iterative steps of SVM, significant cost savings in the training process can be readily attained, especially on Big datasets. RKELM is established based on the rigorous proof of universal learning involving reduced kernel-based SLFN. In particular, we prove that RKELM can approximate any nonlinear functions accurately under the condition of support vectors sufficiency. Experimental results on a wide variety of real world small instance size and large instance size applications in the context of binary classification, multi-class problem and regression are then reported to show that RKELM can perform at competitive level of generalized performance as the SVM/LS-SVM at only a fraction of the computational effort incurred. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. New perspective on single-radiator multiple-port antennas for adaptive beamforming applications.

    PubMed

    Byun, Gangil; Choo, Hosung

    2017-01-01

    One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays.

  15. Examining the Feasibility, Tolerability, and Preliminary Efficacy of Repetitive Task-Specific Practice for People With Unilateral Spatial Neglect

    PubMed Central

    Lang, Catherine E.; Birkenmeier, Rebecca; Holm, Margo; Rubinstein, Elaine; Van Swearingen, Jessie; Skidmore, Elizabeth R.

    2016-01-01

    OBJECTIVE. We examined the feasibility, tolerability, and preliminary efficacy of repetitive task-specific practice for people with unilateral spatial neglect (USN). METHOD. People with USN ≥6 mo poststroke participated in a single-group, repeated-measures study. Attendance, total repetitions, and satisfaction indicated feasibility and pain indicated tolerability. Paired t tests and effect sizes were used to estimate changes in upper-extremity use (Motor Activity Log), function (Action Research Arm Test), and attention (Catherine Bergego Scale). RESULTS. Twenty participants attended 99.4% of sessions and completed a high number of repetitions. Participants reported high satisfaction and low pain, and they demonstrated small, significant improvements in upper-extremity use (before Bonferroni corrections; t = –2.1, p = .04, d = .30), function (t = –3.0, p < .01, d = .20), and attention (t = –3.4, p < .01, d = –.44). CONCLUSION. Repetitive task-specific practice is feasible and tolerable for people with USN. Improvements in upper-extremity use, function, and attention may be attainable. PMID:27294994

  16. Comparison of cavitation bubbles evolution in viscous media

    NASA Astrophysics Data System (ADS)

    Jasikova, Darina; Schovanec, Petr; Kotek, Michal; Kopecky, Vaclav

    2018-06-01

    There have been tried many types of liquids with different ranges of viscosity values that have been tested to form a single cavitation bubble. The purpose of these experiments was to observe the behaviour of cavitation bubbles in media with different ranges of absorbance. The most of the method was based on spark to induced superheat limit of liquid. Here we used arrangement of the laser-induced breakdown (LIB) method. There were described the set cavitation setting that affects the size bubble in media with different absorbance. We visualized the cavitation bubble with a 60 kHz high speed camera. We used here shadowgraphy setup for the bubble visualization. There were observed time development and bubble extinction in various media, where the size of the bubble in the silicone oil was extremely small, due to the absorbance size of silicon oil.

  17. Evolution of extreme ontogenetic allometric diversity and heterochrony in pythons, a clade of giant and dwarf snakes.

    PubMed

    Esquerré, Damien; Sherratt, Emma; Keogh, J Scott

    2017-12-01

    Ontogenetic allometry, how species change with size through their lives, and heterochony, a decoupling between shape, size, and age, are major contributors to biological diversity. However, macroevolutionary allometric and heterochronic trends remain poorly understood because previous studies have focused on small groups of closely related species. Here, we focus on testing hypotheses about the evolution of allometry and how allometry and heterochrony drive morphological diversification at the level of an entire species-rich and diverse clade. Pythons are a useful system due to their remarkably diverse and well-adapted phenotypes and extreme size disparity. We collected detailed phenotype data on 40 of the 44 species of python from 1191 specimens. We used a suite of analyses to test for shifts in allometric trajectories that modify morphological diversity. Heterochrony is the main driver of initial divergence within python clades, and shifts in the slopes of allometric trajectories make exploration of novel phenotypes possible later in divergence history. We found that allometric coefficients are highly evolvable and there is an association between ontogenetic allometry and ecology, suggesting that allometry is both labile and adaptive rather than a constraint on possible phenotypes. © 2017 The Author(s). Evolution © 2017 The Society for the Study of Evolution.

  18. WE-AB-207A-01: BEST IN PHYSICS (IMAGING): High-Resolution Cone-Beam CT of the Extremities and Cancellous Bone Architecture with a CMOS Detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cao, Q; Brehler, M; Sisniega, A

    Purpose: Extremity cone-beam CT (CBCT) with an amorphous silicon (aSi) flat-panel detector (FPD) provides low-dose volumetric imaging with high spatial resolution. We investigate the performance of the newer complementary metal-oxide semiconductor (CMOS) detectors to enhance resolution of extremities CBCT to ∼0.1 mm, enabling morphological analysis of trabecular bone. Quantitative in-vivo imaging of bone microarchitecture could present an important advance for osteoporosis and osteoarthritis diagnosis and therapy assessment. Methods: Cascaded systems models of CMOS- and FPD-based extremities CBCT were implemented. Performance was compared for a range of pixel sizes (0.05–0.4 mm), focal spot sizes (0.3–0.6 FS), and x-ray techniques (0.05–0.8 mAs/projection)more » using detectability of high-, low-, and all-frequency tasks for a nonprewhitening observer. Test-bench implementation of CMOS-based extremity CBCT involved a Teledyne DALSA Xineos3030HR detector with 0.099 mm pixels and a compact rotating anode x-ray source with 0.3 FS (IMD RTM37). Metrics of bone morphology obtained using CMOS-based CBCT were compared in cadaveric specimens to FPD-based system using a Varian PaxScan4030 (0.194 mm pixels). Results: Finer pixel size and reduced electronic noise for CMOS (136 e compared to 2000 e for FPD) resulted in ∼1.9× increase in detectability for high-frequency tasks and ∼1.1× increase for all-frequency tasks. Incorporation of the new x-ray source with reduced focal spot size (0.3 FS vs. 0.5 FS used on current extremities CBCT) improved detectability for CMOS-based CBCT by ∼1.7× for high-frequency tasks. Compared to FPD CBCT, the CMOS detector yielded improved agreement with micro-CT in measurements of trabecular thickness (∼1.7× reduction in relative error), bone volume (∼1.5× reduction), and trabecular spacing (∼3.5× reduction). Conclusion: Imaging performance modelling and experimentation indicate substantial improvements for high-frequency imaging tasks through adoption of the CMOS detector and small FS x-ray source, motivating the use of these components in a new system for quantitative in-vivo imaging of trabecular bone. Financial Support: US NIH grant R01EB018896. Qian Cao is a Howard Hughes Medical Institute International Student Research Fellow. Disclosures: W Zbijewski, J Siewerdsen and A Sisniega receive research funding from Carestream Health.« less

  19. Extreme value statistics analysis of fracture strengths of a sintered silicon nitride failing from pores

    NASA Technical Reports Server (NTRS)

    Chao, Luen-Yuan; Shetty, Dinesh K.

    1992-01-01

    Statistical analysis and correlation between pore-size distribution and fracture strength distribution using the theory of extreme-value statistics is presented for a sintered silicon nitride. The pore-size distribution on a polished surface of this material was characterized, using an automatic optical image analyzer. The distribution measured on the two-dimensional plane surface was transformed to a population (volume) distribution, using the Schwartz-Saltykov diameter method. The population pore-size distribution and the distribution of the pore size at the fracture origin were correllated by extreme-value statistics. Fracture strength distribution was then predicted from the extreme-value pore-size distribution, usin a linear elastic fracture mechanics model of annular crack around pore and the fracture toughness of the ceramic. The predicted strength distribution was in good agreement with strength measurements in bending. In particular, the extreme-value statistics analysis explained the nonlinear trend in the linearized Weibull plot of measured strengths without postulating a lower-bound strength.

  20. Reducing financial avalanches by random investments

    NASA Astrophysics Data System (ADS)

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  1. Directed transport by surface chemical potential gradients for enhancing analyte collection in nanoscale sensors.

    PubMed

    Sitt, Amit; Hess, Henry

    2015-05-13

    Nanoscale detectors hold great promise for single molecule detection and the analysis of small volumes of dilute samples. However, the probability of an analyte reaching the nanosensor in a dilute solution is extremely low due to the sensor's small size. Here, we examine the use of a chemical potential gradient along a surface to accelerate analyte capture by nanoscale sensors. Utilizing a simple model for transport induced by surface binding energy gradients, we study the effect of the gradient on the efficiency of collecting nanoparticles and single and double stranded DNA. The results indicate that chemical potential gradients along a surface can lead to an acceleration of analyte capture by several orders of magnitude compared to direct collection from the solution. The improvement in collection is limited to a relatively narrow window of gradient slopes, and its extent strongly depends on the size of the gradient patch. Our model allows the optimization of gradient layouts and sheds light on the fundamental characteristics of chemical potential gradient induced transport.

  2. Reducing financial avalanches by random investments.

    PubMed

    Biondo, Alessio Emanuele; Pluchino, Alessandro; Rapisarda, Andrea; Helbing, Dirk

    2013-12-01

    Building on similarities between earthquakes and extreme financial events, we use a self-organized criticality-generating model to study herding and avalanche dynamics in financial markets. We consider a community of interacting investors, distributed in a small-world network, who bet on the bullish (increasing) or bearish (decreasing) behavior of the market which has been specified according to the S&P 500 historical time series. Remarkably, we find that the size of herding-related avalanches in the community can be strongly reduced by the presence of a relatively small percentage of traders, randomly distributed inside the network, who adopt a random investment strategy. Our findings suggest a promising strategy to limit the size of financial bubbles and crashes. We also obtain that the resulting wealth distribution of all traders corresponds to the well-known Pareto power law, while that of random traders is exponential. In other words, for technical traders, the risk of losses is much greater than the probability of gains compared to those of random traders.

  3. [The hormonal and genetic effects induced by an irradiation in small dozes at Tradescantia (a clone 02)].

    PubMed

    Khomichenko, A A; Skorobogatova, I V; Karsunkina, N P; Zaĭnullin, V G

    2007-01-01

    The purpose of the present work was studying the possible interrelation of the hormonal status of plants and size of the genetic effects induced by an irradiation in small dozes. The frequency of somatic mutations in strings Tradescantia (a clone 02) at an irradiation in dozes up to 28 cGy was estimated. Influence radiations in a range from background up to 28 cGy on the maintenance in inflorescences Tradescantia (a clone 02) the basic groups of plant hormones is investigated: abscisic acid, cytokinin, auxin and gibberellin A3. It is shown, that small dozes of an irradiation cause extremely radical changes of hormonal balance in fabrics of inflorescences Tradescantia. Received results are discussed with attraction of the data on influence phytohormones on kinetics a cellular cycle.

  4. Uncertainty in determining extreme precipitation thresholds

    NASA Astrophysics Data System (ADS)

    Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili

    2013-10-01

    Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method are more reasonable and applicable for the Pearl River Basin.

  5. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots.

    PubMed

    Jayaram, Kaushik; Mongeau, Jean-Michel; Mohapatra, Anand; Birkmeyer, Paul; Fearing, Ronald S; Full, Robert J

    2018-02-01

    Exceptional performance is often considered to be elegant and free of 'errors' or missteps. During the most extreme escape behaviours, neural control can approach or exceed its operating limits in response time and bandwidth. Here we show that small, rapid running cockroaches with robust exoskeletons select head-on collisions with obstacles to maintain the fastest escape speeds possible to transition up a vertical wall. Instead of avoidance, animals use their passive body shape and compliance to negotiate challenging environments. Cockroaches running at over 1 m or 50 body lengths per second transition from the floor to a vertical wall within 75 ms by using their head like an automobile bumper, mechanically mediating the manoeuvre. Inspired by the animal's behaviour, we demonstrate a passive, high-speed, mechanically mediated vertical transitions with a small, palm-sized legged robot. By creating a collision model for animal and human materials, we suggest a size dependence favouring mechanical mediation below 1 kg that we term the 'Haldane limit'. Relying on the mechanical control offered by soft exoskeletons represents a paradigm shift for understanding the control of small animals and the next generation of running, climbing and flying robots where the use of the body can off-load the demand for rapid sensing and actuation. © 2018 The Authors.

  6. Transition by head-on collision: mechanically mediated manoeuvres in cockroaches and small robots

    PubMed Central

    Mongeau, Jean-Michel; Mohapatra, Anand; Birkmeyer, Paul; Fearing, Ronald S.; Full, Robert J.

    2018-01-01

    Exceptional performance is often considered to be elegant and free of ‘errors’ or missteps. During the most extreme escape behaviours, neural control can approach or exceed its operating limits in response time and bandwidth. Here we show that small, rapid running cockroaches with robust exoskeletons select head-on collisions with obstacles to maintain the fastest escape speeds possible to transition up a vertical wall. Instead of avoidance, animals use their passive body shape and compliance to negotiate challenging environments. Cockroaches running at over 1 m or 50 body lengths per second transition from the floor to a vertical wall within 75 ms by using their head like an automobile bumper, mechanically mediating the manoeuvre. Inspired by the animal's behaviour, we demonstrate a passive, high-speed, mechanically mediated vertical transitions with a small, palm-sized legged robot. By creating a collision model for animal and human materials, we suggest a size dependence favouring mechanical mediation below 1 kg that we term the ‘Haldane limit’. Relying on the mechanical control offered by soft exoskeletons represents a paradigm shift for understanding the control of small animals and the next generation of running, climbing and flying robots where the use of the body can off-load the demand for rapid sensing and actuation. PMID:29445036

  7. Regional extreme rainfalls observed globally with 17 years of the Tropical Precipitation Measurement Mission

    NASA Astrophysics Data System (ADS)

    Takayabu, Yukari; Hamada, Atsushi; Mori, Yuki; Murayama, Yuki; Liu, Chuntao; Zipser, Edward

    2015-04-01

    While extreme rainfall has a huge impact upon human society, the characteristics of the extreme precipitation vary from region to region. Seventeen years of three dimensional precipitation measurements from the space-borne precipitation radar equipped with the Tropical Precipitation Measurement Mission satellite enabled us to describe the characteristics of regional extreme precipitation globally. Extreme rainfall statistics are based on rainfall events defined as a set of contiguous PR rainy pixels. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile in each 2.5degree x2.5degree horizontal resolution grid. First, regional extreme rainfall is characterized in terms of its intensity and event size. Regions of ''intense and extensive'' extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of ''intense but less extensive'' extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of ''extensive but less intense'' extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones. Secondly, regional extremes in terms of surface rainfall intensity and those in terms of convection height are compared. Conventionally, extremely tall convection is considered to contribute the largest to the intense rainfall. Comparing probability density functions (PDFs) of 99th percentiles in terms of the near surface rainfall intensity in each regional grid and those in terms of the 40dBZ echo top heights, it is found that heaviest precipitation in the region is not associated with tallest systems, but rather with systems with moderate heights. Interestingly, this separation of extremely heavy precipitation from extremely tall convection is found to be quite universal, irrespective of regions. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Thus it is demonstrated that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection. Third, the size effect of rainfall events on the precipitation intensity is investigated. Comparisons of normalized PDFs of foot-print size rainfall intensity for different sizes of rainfall events show that footprint-scale extreme rainfall becomes stronger as the rainfall events get larger. At the same time, stratiform ratio in area as well as in rainfall amount increases with the size, confirming larger sized features are more organized systems. After all, it is statistically shown that organization of precipitation not only brings about an increase in extreme volumetric rainfall but also an increase in probability of the satellite footprint scale extreme rainfall.

  8. Complex life cycles and offspring provisioning in marine invertebrates.

    PubMed

    Marshall, Dustin J; Keough, Michael J

    2006-10-01

    Offspring size can have pervasive effects throughout an organism's life history. Mothers can make either a few large or many small offspring, and the balance between these extremes is determined by the relationship between offspring size and performance. This relationship in turn is thought to be determined by the offspring's environment. Recently, it has become clear that events in one life-history stage can strongly affect performance in another. Given these strong carryover effects, we asked whether events in the larval phase can change the relationship between offspring size and performance in the adult phase. We manipulated the length of the larval period in the bryozoan Bugula neritina and then examined the relationship between offspring size and various parameters of adult performance under field conditions. We found that despite the adult stage being outplanted into identical conditions, different offspring sizes were predicted to be optimal, depending on the experience of those adults as larvae. This work highlights the fact that the strong phenotypic links between life-history stages may result in optimal offspring size being highly unpredictable for organisms with complex life cycles.

  9. Production of EUV mask blanks with low killer defects

    NASA Astrophysics Data System (ADS)

    Antohe, Alin O.; Kearney, Patrick; Godwin, Milton; He, Long; John Kadaksham, Arun; Goodwin, Frank; Weaver, Al; Hayes, Alan; Trigg, Steve

    2014-04-01

    For full commercialization, extreme ultraviolet lithography (EUVL) technology requires the availability of EUV mask blanks that are free of defects. This remains one of the main impediments to the implementation of EUV at the 22 nm node and beyond. Consensus is building that a few small defects can be mitigated during mask patterning, but defects over 100 nm (SiO2 equivalent) in size are considered potential "killer" defects or defects large enough that the mask blank would not be usable. The current defect performance of the ion beam sputter deposition (IBD) tool will be discussed and the progress achieved to date in the reduction of large size defects will be summarized, including a description of the main sources of defects and their composition.

  10. Structural characterization and gas reactions of small metal particles by high-resolution TEM and TED

    NASA Technical Reports Server (NTRS)

    Heinemann, K.

    1985-01-01

    The interaction of 100 and 200 keV electron beams with amorphous alumina, titania, and aluminum nitride substrates and nanometer-size palladium particulate deposits was investigated for the two extreme cases of (1) large-area electron-beam flash-heating and (2) small-area high-intensity electron-beam irradiation. The former simulates a short-term heating effect with minimum electron irradiation exposure, the latter simulates high-dosage irradiation with minimum heating effect. All alumina and titania samples responded to the flash-heating treatment with significant recrystallization. However, the size, crystal structure, shape, and orientation of the grains depended on the type and thickness of the films and the thickness of the Pd deposit. High-dosage electron irradiation also readily crystallized the alumina substrate films but did not affect the titania films. The alumina recrystallization products were usually either all in the alpha phase, or they were a mixture of small grains in a number of low-temperature phases including gamma, delta, kappa, beta, theta-alumina. Palladium deposits reacted heavily with the alumina substrates during either treatment, but they were very little effected when supported on titania. Both treatments had the same, less prominent localized crystallization effect on aluminum nitride films.

  11. Comparison of Bootstrapping and Markov Chain Monte Carlo for Copula Analysis of Hydrological Droughts

    NASA Astrophysics Data System (ADS)

    Yang, P.; Ng, T. L.; Yang, W.

    2015-12-01

    Effective water resources management depends on the reliable estimation of the uncertainty of drought events. Confidence intervals (CIs) are commonly applied to quantify this uncertainty. A CI seeks to be at the minimal length necessary to cover the true value of the estimated variable with the desired probability. In drought analysis where two or more variables (e.g., duration and severity) are often used to describe a drought, copulas have been found suitable for representing the joint probability behavior of these variables. However, the comprehensive assessment of the parameter uncertainties of copulas of droughts has been largely ignored, and the few studies that have recognized this issue have not explicitly compared the various methods to produce the best CIs. Thus, the objective of this study to compare the CIs generated using two widely applied uncertainty estimation methods, bootstrapping and Markov Chain Monte Carlo (MCMC). To achieve this objective, (1) the marginal distributions lognormal, Gamma, and Generalized Extreme Value, and the copula functions Clayton, Frank, and Plackett are selected to construct joint probability functions of two drought related variables. (2) The resulting joint functions are then fitted to 200 sets of simulated realizations of drought events with known distribution and extreme parameters and (3) from there, using bootstrapping and MCMC, CIs of the parameters are generated and compared. The effect of an informative prior on the CIs generated by MCMC is also evaluated. CIs are produced for different sample sizes (50, 100, and 200) of the simulated drought events for fitting the joint probability functions. Preliminary results assuming lognormal marginal distributions and the Clayton copula function suggest that for cases with small or medium sample sizes (~50-100), MCMC to be superior method if an informative prior exists. Where an informative prior is unavailable, for small sample sizes (~50), both bootstrapping and MCMC yield the same level of performance, and for medium sample sizes (~100), bootstrapping is better. For cases with a large sample size (~200), there is little difference between the CIs generated using bootstrapping and MCMC regardless of whether or not an informative prior exists.

  12. Microcanonical entropy for classical systems

    NASA Astrophysics Data System (ADS)

    Franzosi, Roberto

    2018-03-01

    The entropy definition in the microcanonical ensemble is revisited. We propose a novel definition for the microcanonical entropy that resolve the debate on the correct definition of the microcanonical entropy. In particular we show that this entropy definition fixes the problem inherent the exact extensivity of the caloric equation. Furthermore, this entropy reproduces results which are in agreement with the ones predicted with standard Boltzmann entropy when applied to macroscopic systems. On the contrary, the predictions obtained with the standard Boltzmann entropy and with the entropy we propose, are different for small system sizes. Thus, we conclude that the Boltzmann entropy provides a correct description for macroscopic systems whereas extremely small systems should be better described with the entropy that we propose here.

  13. Multiple origins of gigantism in stem baleen whales

    NASA Astrophysics Data System (ADS)

    Tsai, Cheng-Hsiu; Kohno, Naoki

    2016-12-01

    Living baleen whales (Mysticeti) include the world's largest animals to have ever lived—blue whales ( Balaenoptera musculus) can reach more than 30 m. However, the gigantism in baleen whales remains little explored. Here, we compiled all published stem mysticetes from the Eocene and Oligocene and then mapped the estimated body size onto different phylogenies that suggest distinct evolutionary histories of baleen whales. By assembling all known stem baleen whales, we present three novel findings in early mysticete evolution. Results show that, regardless of different phylogenetic scenarios, large body size (more than 5-m long) evolved multiple times independently in their early evolutionary history. For example, the earliest known aetiocetid ( Fucaia buelli, 33-31 Ma) was small in size, about 2 m, and a later aetiocetid ( Morawanocetus-like animal, 26-23 Ma) can reach 8-m long—almost four times the size of Fucaia buelli—suggesting an independent gigantism in the aetiocetid lineage. In addition, our reconstruction of ancestral state demonstrates that the baleen whales originated from small body size (less than 5 m) rather than large body size as previously acknowledged. Moreover, reconstructing the evolution of body size in stem baleen whales suggests that the initial pulse of mysticete gigantism started at least back to the Paleogene and in turn should help to understand the origin, pattern, and process of the extreme gigantism in the crown baleen whales. This study illustrates that Cope's rule is insufficient to explain the evolution of body size in a group that comprises the largest animals in the history of life, although currently the lack of exact ancestor-descendant relationships remains to fully reveal the evolutionary history of body size.

  14. Multiple origins of gigantism in stem baleen whales.

    PubMed

    Tsai, Cheng-Hsiu; Kohno, Naoki

    2016-12-01

    Living baleen whales (Mysticeti) include the world's largest animals to have ever lived-blue whales (Balaenoptera musculus) can reach more than 30 m. However, the gigantism in baleen whales remains little explored. Here, we compiled all published stem mysticetes from the Eocene and Oligocene and then mapped the estimated body size onto different phylogenies that suggest distinct evolutionary histories of baleen whales. By assembling all known stem baleen whales, we present three novel findings in early mysticete evolution. Results show that, regardless of different phylogenetic scenarios, large body size (more than 5-m long) evolved multiple times independently in their early evolutionary history. For example, the earliest known aetiocetid (Fucaia buelli, 33-31 Ma) was small in size, about 2 m, and a later aetiocetid (Morawanocetus-like animal, 26-23 Ma) can reach 8-m long-almost four times the size of Fucaia buelli-suggesting an independent gigantism in the aetiocetid lineage. In addition, our reconstruction of ancestral state demonstrates that the baleen whales originated from small body size (less than 5 m) rather than large body size as previously acknowledged. Moreover, reconstructing the evolution of body size in stem baleen whales suggests that the initial pulse of mysticete gigantism started at least back to the Paleogene and in turn should help to understand the origin, pattern, and process of the extreme gigantism in the crown baleen whales. This study illustrates that Cope's rule is insufficient to explain the evolution of body size in a group that comprises the largest animals in the history of life, although currently the lack of exact ancestor-descendant relationships remains to fully reveal the evolutionary history of body size.

  15. Particle size and surface area effects on the thin-pulse shock initiation of Diaminoazoxyfurazan (DAAF)

    NASA Astrophysics Data System (ADS)

    Burritt, Rosemary; Francois, Elizabeth; Windler, Gary; Chavez, David

    2017-06-01

    Diaminoazoxyfurazan (DAAF) has many of the safety characteristics of an insensitive high explosive (IHE): it is extremely insensitive to impact and friction and is comparable to triaminotrinitrobezene (TATB) in this way. Conversely, it demonstrates many performance characteristics of a Conventional High Explosive (CHE). DAAF has a small failure diameter of about 1.25 mm and can be sensitive to shock under the right conditions. Large particle sized DAAF will not initiate in a typical exploding foil initiator (EFI) configuration but smaller particle sizes will. Large particle sized DAAF, of 40 μm, was crash precipitated and ball milled into six distinct samples and pressed into pellets with a density of 1.60 g/cc (91% TMD). To investigate the effect of particle size and surface area on the direct initiation on DAAF multiple threshold tests were preformed on each sample of DAAF in different EFI configurations, which varied in flyer thickness and/or bridge size. Comparative tests were performed examining threshold voltage and correlated to Photon Doppler Velocimetry (PDV) results. The samples with larger particle sizes and surface area required more energy to initiate while the smaller particle sizes required less energy and could be initiated with smaller diameter flyers.

  16. Neutrons measure phase behavior in pores at Angstrom size

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardoel, Agatha A; Melnichenko, Yuri B

    Researchers have measured the phase behavior of green house gases in pores at the Angstrom-level, using small angle neutron scattering (SANS) at the Oak Ridge National Laboratory's High Flux Isotope Reactor. Yuri Melnichenko, an instrument scientist on the General Purpose Small Angle Neutron Scattering (GP SANS) Diffractometer at ORNL's High Flux Isotope Reactor, his postdoctoral associate Lilin He and collaborators Nidia Gallego and Cristian Contescu from the Material Sciences Division (ORNL) were engaged in the work. They were studying nanoporous carbons to assess their attractiveness as storage media for hydrogen, with a view to potential use for on-board hydrogen storagemore » for transportation applications. Nanoporous carbons can also serve as electrode material for supercapacitors and batteries. The researchers successfully determined that the most efficiently condensing pore size in a carbon nanoporous material for hydrogen storage is less than one nanometer. In a paper recently published by the Journal of the American Chemical Society, the collaborators used small angle neutron scattering to study how hydrogen condenses in small pores at ambient temperature. They discovered that the surface-molecule interactions create internal pressures in pores that may exceed the external gas pressure by a factor of up to 50. 'This is an exciting result,' Melnichenko said, 'as you achieve extreme densification in pores 'for free', i.e. without spending any energy. These results can be used to guide the development of new carbon adsorbents tailored to maximize hydrogen storage capacities.' Another important factor that defines the adsorption capacity of sub-nanometer pores is their shape. In order to get accurate structural information and maximize sorption capacity, it is important that pores are small and of approximately uniform size. In collaboration with Drexel University's Yury Gogotsi who supplied the samples, Melnichenko and his collaborators used the GP SANS instrument to study how the size and shape of pores in sub-nanometer porous carbons varies, depending on the manufacturing conditions. While small angle X-ray scattering (SAXS) can do the job too, Melnichenko says, the SANS method broke new ground in analyzing the shape and behavior of pores at subnanometer size, when subjected to varying synthesis temperature. 'We found that these very small pores are in fact spherical, and that when we change the synthesis conditions, they become elongated, even 'slit-like', and all of this on a subnanometer scale,' Melnichenko said.« less

  17. An Atomic Lens Using a Focusing Hollow Beam

    NASA Astrophysics Data System (ADS)

    Xia, Yong; Yin, Jian-Ping; Wang, Yu-Zhu

    2003-05-01

    We propose a new method to generate a focused hollow laser beam by using an azimuthally distributed 2pi-phase plate and a convergent thin lens, and calculate the intensity distribution of the focused hollow beam in free propagation space. The relationship between the waist wo of the incident collimated Gaussian beam and the dark spot size of the focused hollow beam at the focal point, and the relationship between the focal length f of the thin lens and the dark spot size are studied respectively. The optical potential of the blue-detuned focused hollow beam for 85Rb atoms is calculated. Our study shows that when the larger waist w of the incident Gaussian beam and the shorter focal length f of the lens are chosen, we can obtain an extremely small dark spot size of the focused hollow beam, which can be used to form an atomic lens with a resolution of several angstroms.

  18. A LDR-PCR approach for multiplex polymorphisms genotyping of severely degraded DNA with fragment sizes <100 bp.

    PubMed

    Zhang, Zhen; Wang, Bao-Jie; Guan, Hong-Yu; Pang, Hao; Xuan, Jin-Feng

    2009-11-01

    Reducing amplicon sizes has become a major strategy for analyzing degraded DNA typical of forensic samples. However, amplicon sizes in current mini-short tandem repeat-polymerase chain reaction (PCR) and mini-sequencing assays are still not suitable for analysis of severely degraded DNA. In this study, we present a multiplex typing method that couples ligase detection reaction with PCR that can be used to identify single nucleotide polymorphisms and small-scale insertion/deletions in a sample of severely fragmented DNA. This method adopts thermostable ligation for allele discrimination and subsequent PCR for signal enhancement. In this study, four polymorphic loci were used to assess the ability of this technique to discriminate alleles in an artificially degraded sample of DNA with fragment sizes <100 bp. Our results showed clear allelic discrimination of single or multiple loci, suggesting that this method might aid in the analysis of extremely degraded samples in which allelic drop out of larger fragments is observed.

  19. Notes on Costia necatrix

    USGS Publications Warehouse

    Fish, F.F.

    1940-01-01

    Costiasis, or the disease produced by the flagellated protozoan ectoparasite, Costia necatrix, is of considerable importance in the artificial propagation of both warm- and cold-water fishes. In spite of its importance, costiasis seldom is accurately diagnosed probably because of the extremely small size and sedentary nature of the causative organism. A general resume of the specific diagnostic characteristics, pathology, and recommended measures for the prevention and control of Costia necatrix are presented. The application of available information concerning the parasite may eliminate effectively the losses of fish in hatcheries occasioned by it.

  20. Cost-effective optical switch matrix for microwave phased-array

    NASA Technical Reports Server (NTRS)

    Pan, J. J.; Chia, S. L.; Li, W. Z.; Grove, C. H.

    1991-01-01

    An all-fiber (6x6) optical shutter switch matrix with the control system for microwave phased array has been demonstrated. The device offers the advantages of integrated configuration, low cost, low power consumption, small size, and light weight. The maximum extinction ratio (among 36 individual pixel) of this switch matrix at 840 nm is 24.2 dB, and the switching time is less than 120 microsec. In addition to phased array application, this low cost switch matrix is extremely attractive for fiber optic switching networks.

  1. Effects of forebody geometry on subsonic boundary-layer stability

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1990-01-01

    As part of an effort to develop computational techniques for design of natural laminar flow fuselages, a computational study was made of the effect of forebody geometry on laminar boundary layer stability on axisymmetric body shapes. The effects of nose radius on the stability of the incompressible laminar boundary layer was computationally investigated using linear stability theory for body length Reynolds numbers representative of small and medium-sized airplanes. The steepness of the pressure gradient and the value of the minimum pressure (both functions of fineness ratio) govern the stability of laminar flow possible on an axisymmetric body at a given Reynolds number. It was found that to keep the laminar boundary layer stable for extended lengths, it is important to have a small nose radius. However, nose shapes with extremely small nose radii produce large pressure peaks at off-design angles of attack and can produce vortices which would adversely affect transition.

  2. Simulating galaxies in the reionization era with FIRE-2: morphologies and sizes

    NASA Astrophysics Data System (ADS)

    Ma, Xiangcheng; Hopkins, Philip F.; Boylan-Kolchin, Michael; Faucher-Giguère, Claude-André; Quataert, Eliot; Feldmann, Robert; Garrison-Kimmel, Shea; Hayward, Christopher C.; Kereš, Dušan; Wetzel, Andrew

    2018-06-01

    We study the morphologies and sizes of galaxies at z ≥ 5 using high-resolution cosmological zoom-in simulations from the Feedback In Realistic Environments project. The galaxies show a variety of morphologies, from compact to clumpy to irregular. The simulated galaxies have more extended morphologies and larger sizes when measured using rest-frame optical B-band light than rest-frame UV light; sizes measured from stellar mass surface density are even larger. The UV morphologies are usually dominated by several small, bright young stellar clumps that are not always associated with significant stellar mass. The B-band light traces stellar mass better than the UV, but it can also be biased by the bright clumps. At all redshifts, galaxy size correlates with stellar mass/luminosity with large scatter. The half-light radii range from 0.01 to 0.2 arcsec (0.05-1 kpc physical) at fixed magnitude. At z ≥ 5, the size of galaxies at fixed stellar mass/luminosity evolves as (1 + z)-m, with m ˜ 1-2. For galaxies less massive than M* ˜ 108 M⊙, the ratio of the half-mass radius to the halo virial radius is ˜ 10 per cent and does not evolve significantly at z = 5-10; this ratio is typically 1-5 per cent for more massive galaxies. A galaxy's `observed' size decreases dramatically at shallower surface brightness limits. This effect may account for the extremely small sizes of z ≥ 5 galaxies measured in the Hubble Frontier Fields. We provide predictions for the cumulative light distribution as a function of surface brightness for typical galaxies at z = 6.

  3. Body size and mortality rates in coral reef fishes: a three-phase relationship

    PubMed Central

    Bellwood, David Roy

    2016-01-01

    Body size is closely linked to mortality rates in many animals, although the overarching patterns in this relationship have rarely been considered for multiple species. A meta-analysis of published size-specific mortality rates for coral reef fishes revealed an exponential decline in mortality rate with increasing body size, however, within this broad relationship there are three distinct phases. Phase one is characterized by naive fishes recruiting to reefs, which suffer extremely high mortality rates. In this well-studied phase, fishes must learn quickly to survive the many predation risks. After just a few days, the surviving fishes enter phase two, in which small increases in body size result in pronounced increases in lifespan (estimated 11 d mm–1). Remarkably, approximately 50% of reef fish individuals remain in phase two throughout their lives. Once fishes reach a size threshold of about 43 mm total length (TL) they enter phase three, where mortality rates are relatively low and the pressure to grow is presumably, significantly reduced. These phases provide a clearer understanding of the impact of body size on mortality rates in coral reef fishes and begin to reveal critical insights into the energetic and trophic dynamics of coral reefs. PMID:27798308

  4. Asymmetric forceps increase fighting success among males of similar size in the maritime earwig

    PubMed Central

    Munoz, Nicole E.; Zink, Andrew G.

    2012-01-01

    Extreme asymmetric morphologies are hypothesized to serve an adaptive function that counteracts sexual selection for symmetry. However direct tests of function for asymmetries are lacking, particularly in the context of animal weapons. The weapon of the maritime earwig, Anisolabis maritima, exhibits sizeable variation in the extent of directional asymmetry within and across body sizes, making it an ideal candidate for investigating the function of asymmetry. In this study, we characterized the extent of weapon asymmetry, characterized the manner in which asymmetric weapons are used in contests, staged dyadic contests between males of different size classes and analyzed the correlates of fighting success. In contests between large males, larger individuals won more fights and emerged as the dominant male. In contests between small males, however, weapon asymmetry was more influential in predicting overall fighting success than body size. This result reveals an advantage of asymmetric weaponry among males that are below the mean size in the population. A forceps manipulation experiment suggests that asymmetry may be an indirect, correlate of a morphologically independent factor that affects fighting ability. PMID:22984320

  5. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain.

    PubMed

    Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu

    2016-01-01

    Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800-850 seeds m(-2). Average yields of 7.42 t ha(-1) and WUE of 1.84 kg m(-3) were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%-8.9% higher yield and 4.2%-9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP.

  6. Plasmon Ruler with Ångstrom Length Resolution

    PubMed Central

    Hill, Ryan T.; Mock, Jack J.; Hucknall, Angus; Wolter, Scott D.; Jokerst, Nan M.; Smith, David R.; Chilkoti, Ashutosh

    2012-01-01

    We demonstrate a plasmon nanoruler using a coupled film-nanoparticle (film-NP) format that is well suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk, surface plasmon supporting films such as gold, we are able to precisely control plasmonic gap dimensions by creating ultra-thin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red-shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances – ranging from 5 – 20 Å – and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semi-classical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes. PMID:22966857

  7. Plasmon ruler with angstrom length resolution.

    PubMed

    Hill, Ryan T; Mock, Jack J; Hucknall, Angus; Wolter, Scott D; Jokerst, Nan M; Smith, David R; Chilkoti, Ashutosh

    2012-10-23

    We demonstrate a plasmon nanoruler using a coupled film nanoparticle (film-NP) format that is well-suited for investigating the sensitivity extremes of plasmonic coupling. Because it is relatively straightforward to functionalize bulk surface plasmon supporting films, such as gold, we are able to precisely control plasmonic gap dimensions by creating ultrathin molecular spacer layers on the gold films, on top of which we immobilize plasmon resonant nanoparticles (NPs). Each immobilized NP becomes coupled to the underlying film and functions as a plasmon nanoruler, exhibiting a distance-dependent resonance red shift in its peak plasmon wavelength as it approaches the film. Due to the uniformity of response from the film-NPs to separation distance, we are able to use extinction and scattering measurements from ensembles of film-NPs to characterize the coupling effect over a series of very short separation distances-ranging from 5 to 20 Å-and combine these measurements with similar data from larger separation distances extending out to 27 nm. We find that the film-NP plasmon nanoruler is extremely sensitive at very short film-NP separation distances, yielding spectral shifts as large as 5 nm for every 1 Å change in separation distance. The film-NP coupling at extremely small spacings is so uniform and reliable that we are able to usefully probe gap dimensions where the classical Drude model of the conducting electrons in the metals is no longer descriptive; for gap sizes smaller than a few nanometers, either quantum or semiclassical models of the carrier response must be employed to predict the observed wavelength shifts. We find that, despite the limitations, large field enhancements and extreme sensitivity persist down to even the smallest gap sizes.

  8. New perspective on single-radiator multiple-port antennas for adaptive beamforming applications

    PubMed Central

    Choo, Hosung

    2017-01-01

    One of the most challenging problems in recent antenna engineering fields is to achieve highly reliable beamforming capabilities in an extremely restricted space of small handheld devices. In this paper, we introduce a new perspective on single-radiator multiple-port (SRMP) antenna to alter the traditional approach of multiple-antenna arrays for improving beamforming performances with reduced aperture sizes. The major contribution of this paper is to demonstrate the beamforming capability of the SRMP antenna for use as an extremely miniaturized front-end component in more sophisticated beamforming applications. To examine the beamforming capability, the radiation properties and the array factor of the SRMP antenna are theoretically formulated for electromagnetic characterization and are used as complex weights to form adaptive array patterns. Then, its fundamental performance limits are rigorously explored through enumerative studies by varying the dielectric constant of the substrate, and field tests are conducted using a beamforming hardware to confirm the feasibility. The results demonstrate that the new perspective of the SRMP antenna allows for improved beamforming performances with the ability of maintaining consistently smaller aperture sizes compared to the traditional multiple-antenna arrays. PMID:29023493

  9. How To Identify Plasmons from the Optical Response of Nanostructures

    PubMed Central

    2017-01-01

    A promising trend in plasmonics involves shrinking the size of plasmon-supporting structures down to a few nanometers, thus enabling control over light–matter interaction at extreme-subwavelength scales. In this limit, quantum mechanical effects, such as nonlocal screening and size quantization, strongly affect the plasmonic response, rendering it substantially different from classical predictions. For very small clusters and molecules, collective plasmonic modes are hard to distinguish from other excitations such as single-electron transitions. Using rigorous quantum mechanical computational techniques for a wide variety of physical systems, we describe how an optical resonance of a nanostructure can be classified as either plasmonic or nonplasmonic. More precisely, we define a universal metric for such classification, the generalized plasmonicity index (GPI), which can be straightforwardly implemented in any computational electronic-structure method or classical electromagnetic approach to discriminate plasmons from single-particle excitations and photonic modes. Using the GPI, we investigate the plasmonicity of optical resonances in a wide range of systems including: the emergence of plasmonic behavior in small jellium spheres as the size and the number of electrons increase; atomic-scale metallic clusters as a function of the number of atoms; and nanostructured graphene as a function of size and doping down to the molecular plasmons in polycyclic aromatic hydrocarbons. Our study provides a rigorous foundation for the further development of ultrasmall nanostructures based on molecular plasmonics. PMID:28651057

  10. Tracheole investment does not vary with body size among bumblebee (Bombus impatiens) sisters.

    PubMed

    Vogt, Jessica R; Dillon, Megan K; Dillon, Michael E

    2014-08-01

    Body size is a key organism trait with critical implications for the physiology, life history, and ecology of organisms. Modern insects vary in body mass by over 6 orders of magnitude, but are small by comparison to many other metazoan taxa. The small size of modern insects may reflect limitations imposed by their open respiratory systems which rely, in part, on diffusion. Diffusion rates decline with distance such that, absent compensation, the capacity for larger insects to deliver oxygen to their tissues may be compromised. To compensate, larger grasshoppers, beetles, and bumblebees devote proportionally more of their body volume to the respiratory system, as demonstrated by hypermetric scaling of tracheal volume with body mass(>1). Among bumblebee sisters, total respiratory volume scaled with mass(2.6), but it is unclear at what level or levels of the tracheal system (main tracheal trunks, air sacs, tracheoles) bumblebees express this extreme hypermetry. Here we use transmission electron microscopy to examine the morphology of tracheoles in bumblebee flight muscle among sister bumblebees varying nearly four-fold in body mass. Neither tracheole density nor tracheole diameter changed with body mass. The total cross-sectional area of tracheoles was also invariant with body mass. Together, these results reveal that bumblebees do not compensate for size-related limitations on oxygen delivery by increasing investment at the level of the tracheoles. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. The evolution of extreme precipitations in high resolution scenarios over France

    NASA Astrophysics Data System (ADS)

    Colin, J.; Déqué, M.; Somot, S.

    2009-09-01

    Over the past years, improving the modelling of extreme events and their variability at climatic time scales has become one of the challenging issue raised in the regional climate research field. This study shows the results of a high resolution (12 km) scenario run over France with the limited area model (LAM) ALADIN-Climat, regarding the representation of extreme precipitations. The runs were conducted in the framework of the ANR-SCAMPEI national project on high resolution scenarios over French mountains. As a first step, we attempt to quantify one of the uncertainties implied by the use of LAM : the size of the area on which the model is run. In particular, we address the issue of whether a relatively small domain allows the model to create its small scale process. Indeed, high resolution scenarios cannot be run on large domains because of the computation time. Therefore one needs to answer this preliminary question before producing and analyzing such scenarios. To do so, we worked in the framework of a « big brother » experiment. We performed a 23-year long global simulation in present-day climate (1979-2001) with the ARPEGE-Climat GCM, at a resolution of approximately 50 km over Europe (stretched grid). This first simulation, named ARP50, constitutes the « big brother » reference of our experiment. It has been validated in comparison with the CRU climatology. Then we filtered the short waves (up to 200 km) from ARP50 in order to obtain the equivalent of coarse resolution lateral boundary conditions (LBC). We have carried out three ALADIN-Climat simulations at a 50 km resolution with these LBC, using different configurations of the model : * FRA50, run over a small domain (2000 x 2000 km, centered over France), * EUR50, run over a larger domain (5000 x 5000 km, centered over France as well), * EUR50-SN, run over the large domain (using spectral nudging). Considering the facts that ARPEGE-Climat and ALADIN-Climat models share the same physics and dynamics and that both regional and global simulations were run at the same resolution, ARP50 can be regarded as a reference with which FRA50, EUR50 and EUR50-SN should each be compared. After an analysis of the differences between the regional simulations and ARP50 in annual and seasonal mean, we focus on the representation of rainfall extremes comparing two dimensional fields of various index inspired from STARDEX and quantile-quantile plots. The results show a good agreement with the ARP50 reference for all three regional simulations and little differences are found between them. This result indicates that the use of small domains is not significantly detrimental to the modelling of extreme precipitation events. It also shows that the spectral nudging technique has no detrimental effect on the extreme precipitation. Therefore, high resolution scenarios performed on a relatively small domain such as the ones run for SCAMPEI, can be regarded as good tools to explore their possible evolution in the future climate. Preliminary results on the response of precipitation extremes over South-East France are given.

  12. Toward one-loop tunneling rates of near-extremal magnetic black hole pair production

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yi, P.

    Pair production of magnetic Reissner-Nordstroem black holes (of charges [plus minus][ital q]) was recently studied in the leading WKB approximation. Here we consider generic quantum fluctuations in the corresponding instanton geometry given by the Euclidean Ernst metric, in order to simulate the behavior of the one-loop tunneling rate. A detailed study of the Ernst metric suggests that for a sufficiently weak field [ital B], the problem can be reduced to that of quantum fluctuations around a single near-extremal Euclidean black hole in thermal equilibrium with a heat bath of finite size. After appropriate renormalization procedures, typical one-loop contributions to themore » WKB exponent are shown to be inversely proportional to [ital B], as [ital B][r arrow]0, indicating that the leading Schwinger term is corrected by a small fraction [similar to][h bar]/[ital q][sup 2]. We demonstrate that this correction to the Schwinger term is actually due to a semiclassical shift of the black hole mass-to-charge ratio that persists even in the extremal limit. Finally we discuss a few loose ends.« less

  13. Body size, growth and life span: implications for the polewards range shift of Octopus tetricus in south-eastern Australia.

    PubMed

    Ramos, Jorge E; Pecl, Gretta T; Moltschaniwskyj, Natalie A; Strugnell, Jan M; León, Rafael I; Semmens, Jayson M

    2014-01-01

    Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters.

  14. Body Size, Growth and Life Span: Implications for the Polewards Range Shift of Octopus tetricus in South-Eastern Australia

    PubMed Central

    Ramos, Jorge E.; Pecl, Gretta T.; Moltschaniwskyj, Natalie A.; Strugnell, Jan M.; León, Rafael I.; Semmens, Jayson M.

    2014-01-01

    Understanding the response of any species to climate change can be challenging. However, in short-lived species the faster turnover of generations may facilitate the examination of responses associated with longer-term environmental change. Octopus tetricus, a commercially important species, has undergone a recent polewards range shift in the coastal waters of south-eastern Australia, thought to be associated with the southerly extension of the warm East Australian Current. At the cooler temperatures of a polewards distribution limit, growth of a species could be slower, potentially leading to a bigger body size and resulting in a slower population turnover, affecting population viability at the extreme of the distribution. Growth rates, body size, and life span of O. tetricus were examined at the leading edge of a polewards range shift in Tasmanian waters (40°S and 147°E) throughout 2011. Octopus tetricus had a relatively small body size and short lifespan of approximately 11 months that, despite cooler temperatures, would allow a high rate of population turnover and may facilitate the population increase necessary for successful establishment in the new extended area of the range. Temperature, food availability and gender appear to influence growth rate. Individuals that hatched during cooler and more productive conditions, but grew during warming conditions, exhibited faster growth rates and reached smaller body sizes than individuals that hatched into warmer waters but grew during cooling conditions. This study suggests that fast growth, small body size and associated rapid population turnover may facilitate the range shift of O. tetricus into Tasmanian waters. PMID:25090250

  15. Pencil-like mm-size electron beams produced with linear inductive voltage adders

    NASA Astrophysics Data System (ADS)

    Mazarakis, M. G.; Poukey, J. W.; Rovang, D. C.; Maenchen, J. E.; Cordova, S. R.; Menge, P. R.; Pepping, R.; Bennett, L.; Mikkelson, K.; Smith, D. L.; Halbleib, J.; Stygar, W. A.; Welch, D. R.

    1997-02-01

    We present the design, analysis, and results of the high brightness electron beam experiments currently under investigation at Sandia National Laboratories. The anticipated beam parameters are the following: energy 12 MeV, current 35-40 kA, rms radius 0.5 mm, and pulse duration 40 ns full width at half-maximum. The accelerator is SABRE, a pulsed linear inductive voltage adder modified to higher impedance, and the electron source is a magnetically immersed foilless electron diode. 20-30 T solenoidal magnets are required to insulate the diode and contain the beam to its extremely small-sized (1 mm) envelope. These experiments are designed to push the technology to produce the highest possible electron current in a submillimeter radius beam. Design, numerical simulations, and experimental results are presented.

  16. Large-volume protein crystal growth for neutron macromolecular crystallography.

    PubMed

    Ng, Joseph D; Baird, James K; Coates, Leighton; Garcia-Ruiz, Juan M; Hodge, Teresa A; Huang, Sijay

    2015-04-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.

  17. Estimating cirrus cloud properties from MIPAS data

    NASA Astrophysics Data System (ADS)

    Mendrok, J.; Schreier, F.; Höpfner, M.

    2007-04-01

    High resolution mid-infrared limb emission spectra observed by the spaceborne Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) showing evidence of cloud interference are analyzed. Using the new line-by-line multiple scattering [Approximate] Spherical Atmospheric Radiative Transfer code (SARTre), a sensitivity study with respect to cirrus cloud parameters, e.g., optical thickness and particle size distribution, is performed. Cirrus properties are estimated by fitting spectra in three distinct microwindows between 8 and 12 μm. For a cirrus with extremely low ice water path (IWP = 0.1 g/m2) and small effective particle size (D e = 10 μm) simulated spectra are in close agreement with observations in broadband signal and fine structures. We show that a multi-microwindow technique enhances reliability of MIPAS cirrus retrievals compared to single microwindow methods.

  18. Design of compact surface optical coupler based on vertically curved silicon waveguide for high-numerical-aperture single-mode optical fiber

    NASA Astrophysics Data System (ADS)

    Atsumi, Yuki; Yoshida, Tomoya; Omoda, Emiko; Sakakibara, Youichi

    2017-09-01

    A surface optical coupler based on a vertically curved Si waveguide was designed for coupling with high-numerical aperture single-mode optical fibers with a mode-field diameter of 5 µm. This coupler has a quite small device size, with a height of approximately 12 µm, achieved by introducing an effective spot-size converter configured with the combination of an extremely short Si exponential-inverse taper and a dome-structured SiO2 lens formed on the coupler top. The designed coupler shows high-efficiency optical coupling, with a loss of 0.8 dB for TE polarized light, as well as broad-band coupling with a 0.5-dB-loss band of 420 nm.

  19. Are extreme events (statistically) special? (Invited)

    NASA Astrophysics Data System (ADS)

    Main, I. G.; Naylor, M.; Greenhough, J.; Touati, S.; Bell, A. F.; McCloskey, J.

    2009-12-01

    We address the generic problem of testing for scale-invariance in extreme events, i.e. are the biggest events in a population simply a scaled model of those of smaller size, or are they in some way different? Are large earthquakes for example ‘characteristic’, do they ‘know’ how big they will be before the event nucleates, or is the size of the event determined only in the avalanche-like process of rupture? In either case what are the implications for estimates of time-dependent seismic hazard? One way of testing for departures from scale invariance is to examine the frequency-size statistics, commonly used as a bench mark in a number of applications in Earth and Environmental sciences. Using frequency data however introduces a number of problems in data analysis. The inevitably small number of data points for extreme events and more generally the non-Gaussian statistical properties strongly affect the validity of prior assumptions about the nature of uncertainties in the data. The simple use of traditional least squares (still common in the literature) introduces an inherent bias to the best fit result. We show first that the sampled frequency in finite real and synthetic data sets (the latter based on the Epidemic-Type Aftershock Sequence model) converge to a central limit only very slowly due to temporal correlations in the data. A specific correction for temporal correlations enables an estimate of convergence properties to be mapped non-linearly on to a Gaussian one. Uncertainties closely follow a Poisson distribution of errors across the whole range of seismic moment for typical catalogue sizes. In this sense the confidence limits are scale-invariant. A systematic sample bias effect due to counting whole numbers in a finite catalogue makes a ‘characteristic’-looking type extreme event distribution a likely outcome of an underlying scale-invariant probability distribution. This highlights the tendency of ‘eyeball’ fits to unconsciously (but wrongly in this case) assume Gaussian errors. We develop methods to correct for these effects, and show that the current best fit maximum likelihood regression model for the global frequency-moment distribution in the digital era is a power law, i.e. mega-earthquakes continue to follow the Gutenberg-Richter trend of smaller earthquakes with no (as yet) observable cut-off or characteristic extreme event. The results may also have implications for the interpretation of other time-limited geophysical time series that exhibit power-law scaling.

  20. Testing for scale-invariance in extreme events, with application to earthquake occurrence

    NASA Astrophysics Data System (ADS)

    Main, I.; Naylor, M.; Greenhough, J.; Touati, S.; Bell, A.; McCloskey, J.

    2009-04-01

    We address the generic problem of testing for scale-invariance in extreme events, i.e. are the biggest events in a population simply a scaled model of those of smaller size, or are they in some way different? Are large earthquakes for example ‘characteristic', do they ‘know' how big they will be before the event nucleates, or is the size of the event determined only in the avalanche-like process of rupture? In either case what are the implications for estimates of time-dependent seismic hazard? One way of testing for departures from scale invariance is to examine the frequency-size statistics, commonly used as a bench mark in a number of applications in Earth and Environmental sciences. Using frequency data however introduces a number of problems in data analysis. The inevitably small number of data points for extreme events and more generally the non-Gaussian statistical properties strongly affect the validity of prior assumptions about the nature of uncertainties in the data. The simple use of traditional least squares (still common in the literature) introduces an inherent bias to the best fit result. We show first that the sampled frequency in finite real and synthetic data sets (the latter based on the Epidemic-Type Aftershock Sequence model) converge to a central limit only very slowly due to temporal correlations in the data. A specific correction for temporal correlations enables an estimate of convergence properties to be mapped non-linearly on to a Gaussian one. Uncertainties closely follow a Poisson distribution of errors across the whole range of seismic moment for typical catalogue sizes. In this sense the confidence limits are scale-invariant. A systematic sample bias effect due to counting whole numbers in a finite catalogue makes a ‘characteristic'-looking type extreme event distribution a likely outcome of an underlying scale-invariant probability distribution. This highlights the tendency of ‘eyeball' fits unconsciously (but wrongly in this case) to assume Gaussian errors. We develop methods to correct for these effects, and show that the current best fit maximum likelihood regression model for the global frequency-moment distribution in the digital era is a power law, i.e. mega-earthquakes continue to follow the Gutenberg-Richter trend of smaller earthquakes with no (as yet) observable cut-off or characteristic extreme event. The results may also have implications for the interpretation of other time-limited geophysical time series that exhibit power-law scaling.

  1. Multiscale modeling of thermal conductivity of high burnup structures in UO 2 fuels

    DOE PAGES

    Bai, Xian -Ming; Tonks, Michael R.; Zhang, Yongfeng; ...

    2015-12-22

    The high burnup structure forming at the rim region in UO 2 based nuclear fuel pellets has interesting physical properties such as improved thermal conductivity, even though it contains a high density of grain boundaries and micron-size gas bubbles. To understand this counterintuitive phenomenon, mesoscale heat conduction simulations with inputs from atomistic simulations and experiments were conducted to study the thermal conductivities of a small-grain high burnup microstructure and two large-grain unrestructured microstructures. We concluded that the phonon scattering effects caused by small point defects such as dispersed Xe atoms in the grain interior must be included in order tomore » correctly predict the thermal transport properties of these microstructures. In extreme cases, even a small concentration of dispersed Xe atoms such as 10 -5 can result in a lower thermal conductivity in the large-grain unrestructured microstructures than in the small-grain high burnup structure. The high-density grain boundaries in a high burnup structure act as defect sinks and can reduce the concentration of point defects in its grain interior and improve its thermal conductivity in comparison with its large-grain counterparts. Furthermore, an analytical model was developed to describe the thermal conductivity at different concentrations of dispersed Xe, bubble porosities, and grain sizes. Upon calibration, the model is robust and agrees well with independent heat conduction modeling over a wide range of microstructural parameters.« less

  2. Role of size on the relative importance of fluid dynamic losses in linear cryocoolers

    NASA Astrophysics Data System (ADS)

    Kirkconnell, Carl; Ghavami, Ali; Ghiaasiaan, S. Mostafa; Perrella, Matthew

    2017-12-01

    Thermodynamic modeling results for a novel small satellite (SmallSat) Stirling Cryocooler, capable of delivering over 200 mW net cooling power at 80 K for less than 6 W DC input power, are used in this paper as the basis for related pulse tube computational fluid dynamics (CFD) analysis. Industry and government requirements for SmallSat infrared sensors are driving the development of ever-more miniaturized cryocooler systems. Such cryocoolers must be extremely compact and lightweight, a challenge met by this research team through operating a Stirling cryocooler at a frequency of approximately 300 Hz. The primary advantage of operating at such a high frequency is that the required compression and expansion swept volumes are reduced relative to linear coolers operating at lower frequencies, which evidently reduces the size of the motor mechanisms and the thermodynamic components. In the case of a pulse tube cryocooler, this includes a reduction in diameter of the pulse tube itself. This unfortunately leads to high boundary layer losses, as the presented results demonstrate. Using a Stirling approach with a mechanical moving expander piston eliminates this small pulse tube loss mechanism, but other challenges are introduced, such as maintaining very tight clearance gaps between moving and stationary elements. This paper focuses on CFD modelling results for a highly miniaturized pulse tube cooler.

  3. [New population curves in spanish extremely preterm neonates].

    PubMed

    García-Muñoz Rodrigo, F; García-Alix Pérez, A; Figueras Aloy, J; Saavedra Santana, P

    2014-08-01

    Most anthropometric reference data for extremely preterm infants used in Spain are outdated and based on non-Spanish populations, or are derived from small hospital-based samples that failed to include neonates of borderline viability. To develop gender-specific, population-based curves for birth weight, length, and head circumference in extremely preterm Caucasian infants, using a large contemporary sample size of Spanish singletons. Anthropometric data from neonates ≤ 28 weeks of gestational age were collected between January 2002 and December 2010 using the Spanish database SEN1500. Gestational age was estimated according to obstetric data (early pregnancy ultrasound). The data were analyzed with the SPSS.20 package, and centile tables were created for males and females using the Cole and Green LMS method. This study presents the first population-based growth curves for extremely preterm infants, including those of borderline viability, in Spain. A sexual dimorphism is evident for all of the studied parameters, starting at early gestation. These new gender-specific and population-based data could be useful for the improvement of growth assessments of extremely preterm infants in our country, for the development of epidemiological studies, for the evaluation of temporal trends, and for clinical or public health interventions seeking to optimize fetal growth. Copyright © 2013 Asociación Española de Pediatría. Published by Elsevier Espana. All rights reserved.

  4. Robot-assisted upper extremity rehabilitation for cervical spinal cord injuries: a systematic scoping review.

    PubMed

    Singh, Hardeep; Unger, Janelle; Zariffa, José; Pakosh, Maureen; Jaglal, Susan; Craven, B Catharine; Musselman, Kristin E

    2018-01-15

    Abstact Purpose: To provide an overview of the feasibility and outcomes of robotic-assisted upper extremity training for individuals with cervical spinal cord injury (SCI), and to identify gaps in current research and articulate future research directions. A systematic search was conducted using Medline, Embase, PsycINFO, CCTR, CDSR, CINAHL and PubMed on June 7, 2017. Search terms included 3 themes: (1) robotics; (2) SCI; (3) upper extremity. Studies using robots for upper extremity rehabilitation among individuals with cervical SCI were included. Identified articles were independently reviewed by two researchers and compared to pre-specified criteria. Disagreements regarding article inclusion were resolved through discussion. The modified Downs and Black checklist was used to assess article quality. Participant characteristics, study and intervention details, training outcomes, robot features, study limitations and recommendations for future studies were abstracted from included articles. Twelve articles (one randomized clinical trial, six case series, five case studies) met the inclusion criteria. Five robots were exoskeletons and three were end-effectors. Sample sizes ranged from 1 to 17 subjects. Articles had variable quality, with quality scores ranging from 8 to 20. Studies had a low internal validity primarily from lack of blinding or a control group. Individuals with mild-moderate impairments showed the greatest improvements on body structure/function and performance-level measures. This review is limited by the small number of articles, low-sample sizes and the diversity of devices and their associated training protocols, and outcome measures. Preliminary evidence suggests robot-assisted interventions are safe, feasible and can reduce active assistance provided by therapists. Implications for rehabilitation Robot-assisted upper extremity training for individuals with cervical spinal cord injury is safe, feasible and can reduce hands-on assistance provided by therapists. Future research in robotics rehabilitation with individuals with spinal cord injury is needed to determine the optimal device and training protocol as well as effectiveness.

  5. Evaluation of extreme ionospheric total electron content gradient associated with plasma bubbles for GNSS Ground-Based Augmentation System

    NASA Astrophysics Data System (ADS)

    Saito, S.; Yoshihara, T.

    2017-08-01

    Associated with plasma bubbles, extreme spatial gradients in ionospheric total electron content (TEC) were observed on 8 April 2008 at Ishigaki (24.3°N, 124.2°E, +19.6° magnetic latitude), Japan. The largest gradient was 3.38 TECU km-1 (total electron content unit, 1 TECU = 1016 el m-2), which is equivalent to an ionospheric delay gradient of 540 mm km-1 at the GPS L1 frequency (1.57542 GHz). This value is confirmed by using multiple estimating methods. The observed value exceeds the maximum ionospheric gradient that has ever been observed (412 mm km-1 or 2.59 TECU km-1) to be associated with a severe magnetic storm. It also exceeds the assumed maximum value (500 mm km-1 or 3.08 TECU km-1) which was used to validate the draft international standard for Global Navigation Satellite System (GNSS) Ground-Based Augmentation Systems (GBAS) to support Category II/III approaches and landings. The steepest part of this extreme gradient had a scale size of 5.3 km, and the front-normal velocities were estimated to be 71 m s-1 with a wavefront-normal direction of east-northeastward. The total width of the transition region from outside to inside the plasma bubble was estimated to be 35.3 km. The gradient of relatively small spatial scale size may fall between an aircraft and a GBAS ground subsystem and may be undetectable by both aircraft and ground.

  6. Trillium Horizon, A Small Portable Observatory Grade Seismometer For Direct Bury And Vault Use

    NASA Astrophysics Data System (ADS)

    Moores, A.; Parker, T.; Bainbridge, G.

    2017-12-01

    As of August 2017 almost 5 years of data have been collected from broadband seismic sensors designed for direct burial applications. These first posthole instruments have been deployed in a wide range of extremely challenging environments such as dynamic ice and snow environments, extreme wet and dry conditions in soils of high clay content, and steep creeping terrain. In all use cases the direct burial approach has consistently provided high quality data when compared to shallow vault installations. In this presentation we extract and analyze operational performance data, including tilt information from mass position time series recorded at direct burial installations and at temporary shallow vault deployments. This data shows that while higher tilt tolerance is required for data quality outcome certainty in some installations, the majority of installations can be addressed by a smaller instrument with a narrower tilt range hence reducing size and cost. The lessons learned from this real world field data have guided the development of a new smaller, less expensive instrument, Trillium Horizon.Based on this analysis and and user feedback from many direct burial deployments, the Trillium Horizon seismometer has been developed as a simple versatile instrument to span the majority of deployment scenarios and specific use cases including shallow direct bury deployments, traditional piers, and problematic wet vault installs. With its small size, robust waterproof case and connector, +/-1.5° tilt range, dual-purpose cable, and accessories for both posthole and vault installation, Trillium Horizon is optimized for usability as well as performance.

  7. Head growth and neurocognitive outcomes.

    PubMed

    Wright, Charlotte M; Emond, Alan

    2015-06-01

    There is a lack of evidence on the value of head circumference (HC) as a screening measure. We aimed to describe the incidence of head centile shifting and the relationship between extremes of head size and later neurodevelopmental problems in the Avon Longitudinal Study of Parents and Children. HC was measured routinely at 2, 9, and 18 or 24 months and by researchers at ages 4, 8, 12, and 18 months. IQ according to the Wechsler Intelligence Scale for Children was measured in research clinics at age 8 for all. Neurocognitive disorders (NCDs) were identified from chart review. There were 10 851 children with ≥2 head measurements. At each age, 2% to 3% of children had scores that were < -2 or >2 SDs below or above the mean, but for most children this was only found at 1 age. More than 15% of children showed centile shifts, but less than one-third of these were sustained at subsequent measurements. Only 0.5% showed a sustained shift beyond the normal range. Children with consistently small heads were up to 7 times more likely to have an NCD, but 85% of children with small heads had no NCDs, and 93% of children with NCDs had head SD scores within the normal range. Centile shifts within the normal range occur commonly and seem mainly to reflect measurement error. This finding makes robust assessment of the head trajectory difficult and may result in many children being investigated unnecessarily. Extreme head size is neither specific nor sensitive for detecting NCDs, suggesting that routine measurement of HC is unhelpful. Copyright © 2015 by the American Academy of Pediatrics.

  8. Hidden morphological diversity among early tetrapods.

    PubMed

    Pardo, Jason D; Szostakiwskyj, Matt; Ahlberg, Per E; Anderson, Jason S

    2017-06-29

    Phylogenetic analysis of early tetrapod evolution has resulted in a consensus across diverse data sets in which the tetrapod stem group is a relatively homogenous collection of medium- to large-sized animals showing a progressive loss of 'fish' characters as they become increasingly terrestrial, whereas the crown group demonstrates marked morphological diversity and disparity. The oldest fossil attributed to the tetrapod crown group is the highly specialized aïstopod Lethiscus stocki, which shows a small size, extreme axial elongation, loss of limbs, spool-shaped vertebral centra, and a skull with reduced centres of ossification, in common with an otherwise disparate group of small animals known as lepospondyls. Here we use micro-computed tomography of the only known specimen of Lethiscus to provide new information that strongly challenges this consensus. Digital dissection reveals extremely primitive cranial morphology, including a spiracular notch, a large remnant of the notochord within the braincase, an open ventral cranial fissure, an anteriorly restricted parasphenoid element, and Meckelian ossifications. The braincase is elongate and lies atop a dorsally projecting septum of the parasphenoid bone, similar to stem tetrapods such as embolomeres. This morphology is consistent in a second aïstopod, Coloraderpeton, although the details differ. Phylogenetic analysis, including critical new braincase data, places aïstopods deep on the tetrapod stem, whereas another major lepospondyl lineage is displaced into the amniotes. These results show that stem group tetrapods were much more diverse in their body plans than previously thought. Our study requires a change in commonly used calibration dates for molecular analyses, and emphasizes the importance of character sampling for early tetrapod evolutionary relationships.

  9. Placental size and the prediction of severe early-onset intrauterine growth restriction in women with low pregnancy-associated plasma protein-A.

    PubMed

    Proctor, L K; Toal, M; Keating, S; Chitayat, D; Okun, N; Windrim, R C; Smith, G C S; Kingdom, J C P

    2009-09-01

    Screening studies for trisomy 21 demonstrate that low maternal serum pregnancy-associated plasma protein-A (PAPP-A) at 11-13 weeks' gestation is associated with stillbirth, intrauterine growth restriction (IUGR) and pre-eclampsia in chromosomally normal fetuses. However, the strength of these associations is too weak to justify screening for these placental insufficiency syndromes. Our objective was to evaluate placental size and uterine artery (UtA) Doppler imaging as second-stage screening tests for women with low PAPP-A. We prospectively studied 90 normal singleton pregnancies with first-trimester PAPP-A

  10. A risk assessment method for multi-site damage

    NASA Astrophysics Data System (ADS)

    Millwater, Harry Russell, Jr.

    This research focused on developing probabilistic methods suitable for computing small probabilities of failure, e.g., 10sp{-6}, of structures subject to multi-site damage (MSD). MSD is defined as the simultaneous development of fatigue cracks at multiple sites in the same structural element such that the fatigue cracks may coalesce to form one large crack. MSD is modeled as an array of collinear cracks with random initial crack lengths with the centers of the initial cracks spaced uniformly apart. The data used was chosen to be representative of aluminum structures. The structure is considered failed whenever any two adjacent cracks link up. A fatigue computer model is developed that can accurately and efficiently grow a collinear array of arbitrary length cracks from initial size until failure. An algorithm is developed to compute the stress intensity factors of all cracks considering all interaction effects. The probability of failure of two to 100 cracks is studied. Lower bounds on the probability of failure are developed based upon the probability of the largest crack exceeding a critical crack size. The critical crack size is based on the initial crack size that will grow across the ligament when the neighboring crack has zero length. The probability is evaluated using extreme value theory. An upper bound is based on the probability of the maximum sum of initial cracks being greater than a critical crack size. A weakest link sampling approach is developed that can accurately and efficiently compute small probabilities of failure. This methodology is based on predicting the weakest link, i.e., the two cracks to link up first, for a realization of initial crack sizes, and computing the cycles-to-failure using these two cracks. Criteria to determine the weakest link are discussed. Probability results using the weakest link sampling method are compared to Monte Carlo-based benchmark results. The results indicate that very small probabilities can be computed accurately in a few minutes using a Hewlett-Packard workstation.

  11. A high-throughput assay format for determination of nitrate reductase and nitrite reductase enzyme activities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNally, N.; Liu, Xiang Yang; Choudary, P.V.

    1997-01-01

    The authors describe a microplate-based high-throughput procedure for rapid assay of the enzyme activities of nitrate reductase and nitrite reductase, using extremely small volumes of reagents. The new procedure offers the advantages of rapidity, small sample size-nanoliter volumes, low cost, and a dramatic increase in the throughput sample number that can be analyzed simultaneously. Additional advantages can be accessed by using microplate reader application software packages that permit assigning a group type to the wells, recording of the data on exportable data files and exercising the option of using the kinetic or endpoint reading modes. The assay can also bemore » used independently for detecting nitrite residues/contamination in environmental/food samples. 10 refs., 2 figs.« less

  12. Patient data system for monitoring shunts.

    PubMed

    Frank, E; Su, E; Smith, K

    1988-01-01

    Rapidly locating accurate data on a patient's shunt system is often extremely difficult. We have developed a simple system to fill a perceived need for recording current data on a patients shunt. This system employs an easily updated record in the patient's hospital or clinic chart as well as a wallet-sized data card for the patient or his family to carry. The data in the chart include the configuration of the patient's current shunt system and a graphic record of previous shunt problems. The small patient data card describes the age of the shunt system and its current configuration. We have found that this system provides assistance in the routine follow-up of patients with shunts and plays an extremely necessary role in the emergency evaluation of these patients, particularly when an emergency evaluation is undertaken in facilities distant from the location of regular treatment.

  13. How Baleen Whales Feed: The Biomechanics of Engulfment and Filtration

    NASA Astrophysics Data System (ADS)

    Goldbogen, J. A.; Cade, D. E.; Calambokidis, J.; Friedlaender, A. S.; Potvin, J.; Segre, P. S.; Werth, A. J.

    2017-01-01

    Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.

  14. How Baleen Whales Feed: The Biomechanics of Engulfment and Filtration.

    PubMed

    Goldbogen, J A; Cade, D E; Calambokidis, J; Friedlaender, A S; Potvin, J; Segre, P S; Werth, A J

    2017-01-03

    Baleen whales are gigantic obligate filter feeders that exploit aggregations of small-bodied prey in littoral, epipelagic, and mesopelagic ecosystems. At the extreme of maximum body size observed among mammals, baleen whales exhibit a unique combination of high overall energetic demands and low mass-specific metabolic rates. As a result, most baleen whale species have evolved filter-feeding mechanisms and foraging strategies that take advantage of seasonally abundant yet patchily and ephemerally distributed prey resources. New methodologies consisting of multi-sensor tags, active acoustic prey mapping, and hydrodynamic modeling have revolutionized our ability to study the physiology and ecology of baleen whale feeding mechanisms. Here, we review the current state of the field by exploring several hypotheses that aim to explain how baleen whales feed. Despite significant advances, major questions remain about the processes that underlie these extreme feeding mechanisms, which enabled the evolution of the largest animals of all time.

  15. On the monitoring and prediction of flash floods in small and medium-sized catchments - the EXTRUSO project

    NASA Astrophysics Data System (ADS)

    Wiemann, Stefan; Eltner, Anette; Sardemann, Hannes; Spieler, Diana; Singer, Thomas; Thanh Luong, Thi; Janabi, Firas Al; Schütze, Niels; Bernard, Lars; Bernhofer, Christian; Maas, Hans-Gerd

    2017-04-01

    Flash floods regularly cause severe socio-economic damage worldwide. In parallel, climate change is very likely to increase the number of such events, due to an increasing frequency of extreme precipitation events (EASAC 2013). Whereas recent work primarily addresses the resilience of large catchment areas, the major impact of hydro-meteorological extremes caused by heavy precipitation is on small areas. Those are very difficult to observe and predict, due to sparse monitoring networks and only few means for hydro-meteorological modelling, especially in small catchment areas. The objective of the EXTRUSO project is to identify and implement appropriate means to close this gap by an interdisciplinary approach, combining comprehensive research expertise from meteorology, hydrology, photogrammetry and geoinformatics. The project targets innovative techniques for achieving spatio-temporal densified monitoring and simulations for the analysis, prediction and warning of local hydro-meteorological extreme events. The following four aspects are of particular interest: 1. The monitoring, analysis and combination of relevant hydro-meteorological parameters from various sources, including existing monitoring networks, ground radar, specific low-cost sensors and crowdsourcing. 2. The determination of relevant hydro-morphological parameters from different photogrammetric sensors (e.g. camera, laser scanner) and sensor platforms (e.g. UAV (unmanned aerial vehicle) and UWV (unmanned water vehicle)). 3. The continuous hydro-meteorological modelling of precipitation, soil moisture and water flows by means of conceptual and data-driven modelling. 4. The development of a collaborative, web-based service infrastructure as an information and communication point, especially in the case of an extreme event. There are three major applications for the planned information system: First, the warning of local extreme events for the population in potentially affected areas, second, the support for decision makers and emergency responders in the case of an event and, third, the development of open, interoperable tools for other researchers to be applied and further developed. The test area of the project is the Free State of Saxony (Germany) with a number of small and medium catchment areas. However, the whole system, comprising models, tools and sensor setups, is planned to be transferred and tested in other areas, within and outside Europe, as well. The team working on the project consists of eight researchers, including five PhD students and three postdocs. The EXTRUSO project is funded by the European Social Fund (ESF grant nr. 100270097) with a project duration of three years until June 2019. EASAC (2013): Trends in extreme weather events in Europe: implications for national and European Union adaption strategies. European Academies Science Advisory Council. Policy report 22, November 2013 The EXTRUSO project is funded by the European Social Fund (ESF), grant nr. 100270097

  16. Effects of Non-equilibrium Solidification on the Material Properties of Brick Silicon for Photovoltaics

    NASA Technical Reports Server (NTRS)

    Regnault, W. F.; Yoo, K. C.; Soltani, P. K.; Johnson, S. M.

    1984-01-01

    Silicon ingot growth technologies like the Ubiquitous Crystallization Process (UCP) are solidified within a shaping crucible. The rate at which heat can be lost from this crucible minus the rate at which heat is input from an external source determines the rate at which crystallization will occur. Occasionally, when the process parameters for solidification are exceeded, the normally large multi-centimeter grain size material assocated with the UCP will break down into regions containing extremely small, millimeter or less, grain size material. Accompanying this breakdown in grain growth is the development of so called sinuous grain boundaries. The breakdown in grain growth which results in this type of small grain structure with sinuous boundaries is usually associated with the rapid crystallization that would accompany a system failure. This suggests that there are limits to the growth velocity that one can obtain and still expect to produce material that would possess good photovoltaic properties. It is the purpose to determine the causes behind the breakdown of this material and what parameters will determine the best rates of solidification.

  17. Mutilation of the uvula among Bedouins of the South Sinai.

    PubMed

    Nathan, H; Hershkovitz, I; Arensburg, B; Kobyliansky, Y; Goldschmidt-Nathan, M

    1982-07-01

    Mutilation of the uvula, as practiced by various tribes of Bedouins in the South Sinai, was discovered while carrying out anthropological studies in the area. Partial or total amputation of the uvula is performed on both boys and girls during the first or second year of life, as a ritual custom. Anatomical changes in the soft palate due to the uvulectomy in 115 subjects are described. The remnant of the uvula (scar) was classified according to size as: very large, large, medium, small, trace or none. A notch or kind of cleft of the palate, as a result of the uvulectomy, was considered the most extreme degree of extirpation. The majority (47%) were of small size and a notch was found in 9.6%. Changes in shape and symmetry of the arches of the palate as a result of the uvulectomy are also described. These changes are explained on the basis of the anatomical structure of the palate and uvula. The possible effects of the uvulectomy on health in general and on speech in particular are discussed.

  18. Pushing precipitation to the extremes in distributed experiments: Recommendations for simulating wet and dry years

    USGS Publications Warehouse

    Knapp, Alan K.; Avolio, Meghan L.; Beier, Claus; Carroll, Charles J.W.; Collins, Scott L.; Dukes, Jeffrey S.; Fraser, Lauchlan H.; Griffin-Nolan, Robert J.; Hoover, David L.; Jentsch, Anke; Loik, Michael E.; Phillips, Richard P.; Post, Alison K.; Sala, Osvaldo E.; Slette, Ingrid J.; Yahdjian, Laura; Smith, Melinda D.

    2017-01-01

    Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of ‘Drought-Net’, a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites – a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on each site's past climatic characteristics. This approach, though not often used by ecologists, allows ecological responses to be directly compared across disparate ecosystems and climates, facilitating process-level understanding of ecosystem sensitivity to precipitation extremes.

  19. Pushing precipitation to the extremes in distributed experiments: recommendations for simulating wet and dry years.

    PubMed

    Knapp, Alan K; Avolio, Meghan L; Beier, Claus; Carroll, Charles J W; Collins, Scott L; Dukes, Jeffrey S; Fraser, Lauchlan H; Griffin-Nolan, Robert J; Hoover, David L; Jentsch, Anke; Loik, Michael E; Phillips, Richard P; Post, Alison K; Sala, Osvaldo E; Slette, Ingrid J; Yahdjian, Laura; Smith, Melinda D

    2017-05-01

    Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of 'Drought-Net', a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites - a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on each site's past climatic characteristics. This approach, though not often used by ecologists, allows ecological responses to be directly compared across disparate ecosystems and climates, facilitating process-level understanding of ecosystem sensitivity to precipitation extremes. © 2016 John Wiley & Sons Ltd.

  20. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.

    PubMed

    Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W

    2009-03-01

    This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.

  1. A small, portable, battery-powered brain-computer interface system for motor rehabilitation.

    PubMed

    McCrimmon, Colin M; Ming Wang; Silva Lopes, Lucas; Wang, Po T; Karimi-Bidhendi, Alireza; Liu, Charles Y; Heydari, Payam; Nenadic, Zoran; Do, An H

    2016-08-01

    Motor rehabilitation using brain-computer interface (BCI) systems may facilitate functional recovery in individuals after stroke or spinal cord injury. Nevertheless, these systems are typically ill-suited for widespread adoption due to their size, cost, and complexity. In this paper, a small, portable, and extremely cost-efficient (<;$200) BCI system has been developed using a custom electroencephalographic (EEG) amplifier array, and a commercial microcontroller and touchscreen. The system's performance was tested using a movement-related BCI task in 3 able-bodied subjects with minimal previous BCI experience. Specifically, subjects were instructed to alternate between relaxing and dorsiflexing their right foot, while their EEG was acquired and analyzed in real-time by the BCI system to decode their underlying movement state. The EEG signals acquired by the custom amplifier array were similar to those acquired by a commercial amplifier (maximum correlation coefficient ρ=0.85). During real-time BCI operation, the average correlation between instructional cues and decoded BCI states across all subjects (ρ=0.70) was comparable to that of full-size BCI systems. Small, portable, and inexpensive BCI systems such as the one reported here may promote a widespread adoption of BCI-based movement rehabilitation devices in stroke and spinal cord injury populations.

  2. Genome size variation affects song attractiveness in grasshoppers: evidence for sexual selection against large genomes.

    PubMed

    Schielzeth, Holger; Streitner, Corinna; Lampe, Ulrike; Franzke, Alexandra; Reinhold, Klaus

    2014-12-01

    Genome size is largely uncorrelated to organismal complexity and adaptive scenarios. Genetic drift as well as intragenomic conflict have been put forward to explain this observation. We here study the impact of genome size on sexual attractiveness in the bow-winged grasshopper Chorthippus biguttulus. Grasshoppers show particularly large variation in genome size due to the high prevalence of supernumerary chromosomes that are considered (mildly) selfish, as evidenced by non-Mendelian inheritance and fitness costs if present in high numbers. We ranked male grasshoppers by song characteristics that are known to affect female preferences in this species and scored genome sizes of attractive and unattractive individuals from the extremes of this distribution. We find that attractive singers have significantly smaller genomes, demonstrating that genome size is reflected in male courtship songs and that females prefer songs of males with small genomes. Such a genome size dependent mate preference effectively selects against selfish genetic elements that tend to increase genome size. The data therefore provide a novel example of how sexual selection can reinforce natural selection and can act as an agent in an intragenomic arms race. Furthermore, our findings indicate an underappreciated route of how choosy females could gain indirect benefits. © 2014 The Author(s). Evolution © 2014 The Society for the Study of Evolution.

  3. Exciton size and quantum transport in nanoplatelets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pelzer, Kenley M., E-mail: kpelzer@anl.gov; Gray, Stephen K.; Darling, Seth B.

    2015-12-14

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we exploremore » this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.« less

  4. Exciton size and quantum transport in nanoplatelets.

    PubMed

    Pelzer, Kenley M; Darling, Seth B; Gray, Stephen K; Schaller, Richard D

    2015-12-14

    Two-dimensional nanoplatelets (NPLs) are an exciting class of materials with promising optical and energy transport properties. The possibility of efficient energy transport between nanoplatelets raises questions regarding the nature of energy transfer in these thin, laterally extended systems. A challenge in understanding exciton transport is the uncertainty regarding the size of the exciton. Depending on the material and defects in the nanoplatelet, an exciton could plausibly extend over an entire plate or localize to a small region. The variation in possible exciton sizes raises the question how exciton size impacts the efficiency of transport between nanoplatelet structures. Here, we explore this issue using a quantum master equation approach. This method goes beyond the assumptions of Förster theory to allow for quantum mechanical effects that could increase energy transfer efficiency. The model is extremely flexible in describing different systems, allowing us to test the effect of varying the spatial extent of the exciton. We first discuss qualitative aspects of the relationship between exciton size and transport and then conduct simulations of exciton transport between NPLs for a range of exciton sizes and environmental conditions. Our results reveal that exciton size has a strong effect on energy transfer efficiency and suggest that manipulation of exciton size may be useful in designing NPLs for energy transport.

  5. The ontogeny of morphological defenses in Kemp's ridley (Lepidochelys kempii) and loggerhead (Caretta caretta) sea turtles.

    PubMed

    Salmon, Michael; Higgins, Benjamin; Stewart, Joshua; Wyneken, Jeanette

    2015-08-01

    Marine turtles are large reptiles that compensate for high juvenile mortality by producing hundreds of hatchlings during a long reproductive lifespan. Most hatchlings are taken by predators during their migration to, and while resident in, the open ocean. Their survival depends upon crypticity, minimizing movement to avoid detection, and foraging efficiently to grow to a size too difficult for predators to either handle or swallow. While these behavioral antipredator tactics are known, changes in morphology accompanying growth may also improve survival prospects. These have been only superficially described in the literature. Here, we compare the similarities and differences in presumed morphological defenses of growing loggerhead (Caretta caretta) and Kemp's ridley (Lepidochelys kempii) posthatchlings, related species that differ in growth rate, timing of habitat shift (the return from oceanic to neritic locations), and size at maturity. In both species, vertebral spination and carapace widening increase disproportionally as small turtles grow, but later in ontogeny, the spines regress, sooner in ridley than in loggerhead turtles. Carapace widening occurs in both species but loggerheads are always longer than they are wide whereas in Kemp's ridley turtles, the carapace becomes as wide as long. Our analysis indicates that these changes are unrelated to when each species shifts habitat but are related to turtle size. We hypothesize that the spines function in small turtles as an early defense against gape-limited predators, but changes in body shape function throughout ontogeny-initially to make small turtles too wide to swallow and later by presenting an almost flat and hardened surface that large predators (such as a sharks) are unable to grasp. The extremely wide carapace of the Kemp's ridley may compensate for its smaller adult size (and presumed greater vulnerability) than the loggerhead. © 2015 Wiley Periodicals, Inc.

  6. Dinosaur Census Reveals Abundant Tyrannosaurus and Rare Ontogenetic Stages in the Upper Cretaceous Hell Creek Formation (Maastrichtian), Montana, USA

    PubMed Central

    Horner, John R.; Goodwin, Mark B.; Myhrvold, Nathan

    2011-01-01

    Background A dinosaur census recorded during the Hell Creek Project (1999–2009) incorporates multiple lines of evidence from geography, taphohistory, stratigraphy, phylogeny and ontogeny to investigate the relative abundance of large dinosaurs preserved in the Upper Cretaceous Hell Creek Formation of northeastern Montana, USA. Overall, the dinosaur skeletal assemblages in the Hell Creek Formation (excluding lag-influenced records) consist primarily of subadult or small adult size individuals. Small juveniles and large adults are both extremely rare, whereas subadult individuals are relatively common. We propose that mature individuals of at least some dinosaur taxa either lived in a separate geographic locale analogous to younger individuals inhabiting an upland environment where sedimentation rates were relatively less, or these taxa experienced high mortality before reaching terminal size where late stage and often extreme cranial morphology is expressed. Methodology/Principal Findings Tyrannosaurus skeletons are as abundant as Edmontosaurus, an herbivore, in the upper Hell Creek Formation and nearly twice as common in the lower third of the formation. Smaller, predatory dinosaurs (e.g., Troodon and dromaeosaurids) are primarily represented by teeth found in microvertebrate localities and their skeletons or identifiable lag specimens were conspicuously absent. This relative abundance suggests Tyrannosaurus was not a typical predator and likely benefited from much wider food choice opportunities than exclusively live prey and/or specific taxa. Tyrannosaurus adults may not have competed with Tyrannosaurus juveniles if the potential for selecting carrion increased with size during ontogeny. Conclusions/Significance Triceratops is the most common dinosaur and isolated skulls contribute to a significant portion of this census. Associated specimens of Triceratops consisting of both cranial and postcranial elements remain relatively rare. This rarity may be explained by a historical collecting bias influenced by facies and taphonomic factors. The limited discovery of postcranial elements may also depend on how extensive a fossil quarry is expanded after a skull is collected. PMID:21347420

  7. A rational decision rule with extreme events.

    PubMed

    Basili, Marcello

    2006-12-01

    Risks induced by extreme events are characterized by small or ambiguous probabilities, catastrophic losses, or windfall gains. Through a new functional, that mimics the restricted Bayes-Hurwicz criterion within the Choquet expected utility approach, it is possible to represent the decisionmaker behavior facing both risky (large and reliable probability) and extreme (small or ambiguous probability) events. A new formalization of the precautionary principle (PP) is shown and a new functional, which encompasses both extreme outcomes and expectation of all the possible results for every act, is claimed.

  8. Phenotypic plasticity in clutch size regulation among populations of a potential invasive fruit fly from environments that vary in host heterogeneity and isolation.

    PubMed

    Aluja, M; Birke, A; Díaz-Fleischer, F; Rull, J

    2018-05-21

    Phenotypic plasticity is thought to evolve in response to environmental unpredictability and can shield genotypes from selection. However, selection can also act on plastic traits. Egg-laying behaviour, including clutch size regulation, is a plastic behavioural trait among tephritid fruit flies. We compared plasticity in clutch size regulation among females of Anastrepha ludens populations stemming from environments that differed in the degree of predictability in egg-laying opportunities. Clutch size regulation in response to hosts of different sizes was compared among flies from (a) a wild, highly isolated population, (b) a wild population that switches seasonally from a small wild host fruit that varies greatly in abundance to an abundant large-sized commercial host, and (c) a laboratory population. Flies from all three populations adjusted clutch number and size according to host size. However, flies from the heterogeneous wild environment were more plastic in adjusting clutch size than flies from agricultural settings that also laid fewer eggs; yet both populations were more plastic in adjusting clutch size in line with host size when compared with laboratory females. When wild and orchard females encountered the largest host, clutch size was extremely variable and egg regulation did not follow the same trend. Heterogeneity in host availability in space and time appears to be as important as seasonal variation in host size in maintaining plastic clutch size regulation behaviour. In stable environments, there was a clear reduction in the plasticity of these traits.

  9. Effects of alewife predation on zooplankton populations in Lake Michigan

    USGS Publications Warehouse

    Wells, LaRue

    1970-01-01

    The zooplankton populations in southeastern Lake Michigan underwent striking, size-related changes between 1954 and 1966. Forms that decline sharply were the largest cladocerans (Leptodora kindtii, Daphnia galeata, and D. retrocurva), the largest calanoid copepods (Limnocalanus macrurus, Epischura lacustris, and Diaptomus sicilis), and the largest cyclopoid copepod (Mesocyclops edax). Two of these, D. galeata and M. edax (both abundant in 1954), became extremely rare. Certain medium-sized or small species increased in numbers: Daphnia longiremis, Holopedium gibberum, Polyphemus pediculus, Bosmina longirostris, Bosmina coregoni, Ceriodaphnia sp., Cyclops bicuspidatus, Cyclops vernalis, and Diaptomus ashlandi. Evidence is strong that the changes were due to selective predation by alewives. The alewife was uncommon in southeastern Lake Michigan in 1954 but had increased to enormous proportions by 1966; there was a massive dieoff in spring 1967, and abundance remained relatively low in 1968. The composition of zooplankton populations in 1968 generally had shifted back toward that of 1954, although D. galeata and M. edax remained rare. The average size, and size at onset of maturity, of D. retrocurva decreased noticeably between 1954 and 1966 but increased between 1966 and 1968.

  10. Study of radiative heat transfer in Ångström- and nanometre-sized gaps

    DOE PAGES

    Cui, Longji; Jeong, Wonho; Fernández-Hurtado, Víctor; ...

    2017-02-15

    Radiative heat transfer in Ångström- and nanometre-sized gaps is of great interest because of both its technological importance and open questions regarding the physics of energy transfer in this regime. Here in this paper we report studies of radiative heat transfer in few Å to 5nm gap sizes, performed under ultrahigh vacuum conditions between a Au-coated probe featuring embedded nanoscale thermocouples and a heated planar Au substrate that were both subjected to various surface-cleaning procedures. By drawing on the apparent tunnelling barrier height as a signature of cleanliness, we found that upon systematically cleaning via a plasma or locally pushingmore » the tip into the substrate by a few nanometres, the observed radiative conductances decreased from unexpectedly large values to extremely small ones—below the detection limit of our probe—as expected from our computational results. Our results show that it is possible to avoid the confounding effects of surface contamination and systematically study thermal radiation in Ångström- and nanometre-sized gaps.« less

  11. Large-volume protein crystal growth for neutron macromolecular crystallography

    DOE PAGES

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; ...

    2015-03-30

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less

  12. Large-volume protein crystal growth for neutron macromolecular crystallography

    PubMed Central

    Ng, Joseph D.; Baird, James K.; Coates, Leighton; Garcia-Ruiz, Juan M.; Hodge, Teresa A.; Huang, Sijay

    2015-01-01

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for the growth of crystals to significant dimensions that are now relevant to NMC are revisited. These include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations. PMID:25849493

  13. Large-volume protein crystal growth for neutron macromolecular crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Joseph D.; Baird, James K.; Coates, Leighton

    Neutron macromolecular crystallography (NMC) is the prevailing method for the accurate determination of the positions of H atoms in macromolecules. As neutron sources are becoming more available to general users, finding means to optimize the growth of protein crystals to sizes suitable for NMC is extremely important. Historically, much has been learned about growing crystals for X-ray diffraction. However, owing to new-generation synchrotron X-ray facilities and sensitive detectors, protein crystal sizes as small as in the nano-range have become adequate for structure determination, lessening the necessity to grow large crystals. Here, some of the approaches, techniques and considerations for themore » growth of crystals to significant dimensions that are now relevant to NMC are revisited. We report that these include experimental strategies utilizing solubility diagrams, ripening effects, classical crystallization techniques, microgravity and theoretical considerations.« less

  14. Body size and mortality rates in coral reef fishes: a three-phase relationship.

    PubMed

    Goatley, Christopher Harry Robert; Bellwood, David Roy

    2016-10-26

    Body size is closely linked to mortality rates in many animals, although the overarching patterns in this relationship have rarely been considered for multiple species. A meta-analysis of published size-specific mortality rates for coral reef fishes revealed an exponential decline in mortality rate with increasing body size, however, within this broad relationship there are three distinct phases. Phase one is characterized by naive fishes recruiting to reefs, which suffer extremely high mortality rates. In this well-studied phase, fishes must learn quickly to survive the many predation risks. After just a few days, the surviving fishes enter phase two, in which small increases in body size result in pronounced increases in lifespan (estimated 11 d mm -1 ). Remarkably, approximately 50% of reef fish individuals remain in phase two throughout their lives. Once fishes reach a size threshold of about 43 mm total length (TL) they enter phase three, where mortality rates are relatively low and the pressure to grow is presumably, significantly reduced. These phases provide a clearer understanding of the impact of body size on mortality rates in coral reef fishes and begin to reveal critical insights into the energetic and trophic dynamics of coral reefs. © 2016 The Author(s).

  15. An influence of extremal edges on boundary extension.

    PubMed

    Hale, Ralph G; Brown, James M; McDunn, Benjamin A; Siddiqui, Aisha P

    2015-08-01

    Studies have shown that people consistently remember seeing more of a studied scene than was physically present (e.g., Intraub & Richardson Journal of Experimental Psychology: Learning, Memory, and Cognition, 15, 179-187, 1989). This scene memory error, known as boundary extension, has been suggested to occur due to an observer's failure to differentiate between the contributing sources of information, including the sensory input, amodal continuation beyond the view boundaries, and contextual associations with the main objects and depicted scene locations (Intraub, 2010). Here, "scenes" made of abstract shapes on random-dot backgrounds, previously shown to elicit boundary extension (McDunn, Siddiqui, & Brown Psychonomic Bulletin & Review, 21, 370-375, 2014), were compared with versions made with extremal edges (Palmer & Ghose Psychological Science, 19, 77-84, 2008) added to their borders, in order to examine how boundary extension is influenced when amodal continuation at the borders' view boundaries is manipulated in this way. Extremal edges were expected to reduce boundary extension as compared to the same scenes without them, because extremal edge boundaries explicitly indicate an image's end (i.e., they do not continue past the view boundary). A large and a small difference (16 % and 40 %) between the close and wide-angle views shown during the experiment were tested to examine the effects of both boundary extension and normalization with and without extremal edges. Images without extremal edges elicited typical boundary extension for the 16 % size change condition, whereas the 40 % condition showed signs of normalization. With extremal edges, a reduced amount of boundary extension occurred for the 16 % condition, and only normalization was found for the 40 % condition. Our findings support and highlight the importance of amodal continuation at the view boundaries as a component of boundary extension.

  16. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin.

    PubMed

    Piras, Monica; Mascaro, Giuseppe; Deidda, Roberto; Vivoni, Enrique R

    2016-02-01

    Mediterranean region is characterized by high precipitation variability often enhanced by orography, with strong seasonality and large inter-annual fluctuations, and by high heterogeneity of terrain and land surface properties. As a consequence, catchments in this area are often prone to the occurrence of hydrometeorological extremes, including storms, floods and flash-floods. A number of climate studies focused in the Mediterranean region predict that extreme events will occur with higher intensity and frequency, thus requiring further analyses to assess their effect at the land surface, particularly in small- and medium-sized watersheds. In this study, climate and hydrologic simulations produced within the Climate Induced Changes on the Hydrology of Mediterranean Basins (CLIMB) EU FP7 research project were used to analyze how precipitation extremes propagate into discharge extremes in the Rio Mannu basin (472.5km(2)), located in Sardinia, Italy. The basin hydrologic response to climate forcings in a reference (1971-2000) and a future (2041-2070) period was simulated through the combined use of a set of global and regional climate models, statistical downscaling techniques, and a process based distributed hydrologic model. We analyzed and compared the distribution of annual maxima extracted from hourly and daily precipitation and peak discharge time series, simulated by the hydrologic model under climate forcing. For this aim, yearly maxima were fit by the Generalized Extreme Value (GEV) distribution using a regional approach. Next, we discussed commonality and contrasting behaviors of precipitation and discharge maxima distributions to better understand how hydrological transformations impact propagation of extremes. Finally, we show how rainfall statistical downscaling algorithms produce more reliable forcings for hydrological models than coarse climate model outputs. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Free style perforator based propeller flaps: Simple solutions for upper extremity reconstruction!

    PubMed

    Panse, Nikhil; Sahasrabudhe, Parag

    2014-01-01

    The introduction of perforator flaps by Koshima et al. was met with much animosity in the plastic surgery fraternity. The safety concerns of these flaps following the intentional twist of the perforators have prevented widespread adoption of this technique. Use of perforator based propeller flaps in the lower extremity is gradually on the rise, but their use in upper extremity reconstruction is infrequently reported, especially in the Indian subcontinent. We present a retrospective series of 63 free style perforator flaps used for soft tissue reconstruction of the upper extremity from November 2008 to June 2013. Flaps were performed by a single surgeon for various locations and indications over the upper extremity. Patient demographics, surgical indication, defect features, complications and clinical outcome are evaluated and presented as an uncontrolled case series. 63 free style perforator based propeller flaps were used for soft tissue reconstruction of 62 patients for the upper extremity from November 2008 to June 2013. Of the 63 flaps, 31 flaps were performed for trauma, 30 for post burn sequel, and two for post snake bite defects. We encountered flap necrosis in 8 flaps, of which there was complete necrosis in 4 flaps, and partial necrosis in four flaps. Of these 8 flaps, 7 needed a secondary procedure, and one healed secondarily. Although we had a failure rate of 12-13%, most of our failures were in the early part of the series indicative of a learning curve associated with the flap. Free style perforator based propeller flaps are a reliable option for coverage of small to moderate sized defects. Therapeutic IV.

  18. Extremely low birth weight and body size in early adulthood

    PubMed Central

    Doyle, L; Faber, B; Callanan, C; Ford, G; Davis, N

    2004-01-01

    Aims: To determine the body size of extremely low birth weight (ELBW, birth weight 500–999 g) subjects in early adulthood. Methods: Cohort study examining the height and weight of 42 ELBW survivors free of cerebral palsy between birth and 20 years of age. Weight and height measurements were converted to Z (SD) scores. Results: At birth the subjects had weight Z scores substantially below zero (mean birth weight Z score -0.90, 95% CI -1.25 to -0.54), and had been lighter than average at ages 2, 5, and 8 years. However, by 14, and again at 20 years of age their weight Z scores were not significantly different from zero. At ages 2, 5, 8, 14, and 20 years of age their height Z scores were significantly below zero. Their height at 20 years of age was, however, consistent with their parents' height. As a group they were relatively heavy for their height and their mean body mass index (BMI) Z score was almost significantly different from zero (mean difference 0.42, 95% CI -0.02 to 0.84). Their mean BMI (kg/m2) was 24.0 (SD 5.2); 14 had a BMI >25, and four had a BMI >30. Conclusions: Despite their early small size, by early adulthood the ELBW subjects had attained an average weight, and their height was consistent with their parents' height. They were, however, relatively heavy for their height. PMID:15033844

  19. Implications of extreme sexual size dimorphism for thermoregulation in a freshwater turtle.

    PubMed

    Bulté, Grégory; Blouin-Demers, Gabriel

    2010-02-01

    Sexual size dimorphism (SSD) is a common phenomenon in animals. In many species females are substantially larger than males. Because body size plays a central role in modulating the body temperature (T (b)) of ectotherms, intersexual differences in body size may lead to important intersexual differences in thermoregulation. In addition, because SSD is realized by differences in growth rate and because growth rate is strongly temperature dependent in ectotherms, a conflict between male reproductive behaviour and thermoregulation may affect the expression of SSD. In this study, we investigated the thermal implications of SSD in a reptile exhibiting spectacular female-biased SSD: the northern map turtle (Graptemys geographica). Over three seasons, we collected >150,000 measurements of T (b) in free-ranging adult and juvenile northern map turtles using surgically implanted miniature temperature loggers. Northern map turtles exhibited seasonal patterns of thermoregulation typical of reptiles in northern latitudes, but we found that large adult females experienced a lower daily maximum T (b) and a narrower daily range of T (b) than adult males and small juvenile females. In addition, despite more time spent basking, large adult females were not able to thermoregulate as accurately as small turtles. Our findings strongly suggest that body size limits the ability to thermoregulate accurately in large females. By comparing thermoregulatory patterns between adult males and juvenile females of similar body size, we found no evidence that male reproductive behaviours are an impediment to thermoregulation. We also quantified the thermal significance of basking behaviour. We found, contrary to previous findings, that aerial basking allows northern map turtles to raise their T (b) substantially above water temperature, indicating that basking behaviour likely plays an important role in thermoregulation.

  20. Determinants of immediate price impacts at the trade level in an emerging order-driven market

    NASA Astrophysics Data System (ADS)

    Zhou, Wei-Xing

    2012-02-01

    Common wisdom argues that, in general, large trades cause large price changes, whereas small trades cause small price changes. However, for extremely large price changes, the trade size and news play a minor role, while liquidity (especially price gaps on the limit order book) is a more influential factor. Hence, there might be other factors influencing the immediate price impacts of trades. In this paper, through mechanical analysis of price variations before and after a trade of arbitrary size, we identify that the trade size, the bid-ask spread, the price gaps and the outstanding volumes at the bid and ask sides of the limit order book have an impact on the changes in prices. We propose two regression models to investigate the influence of these microscopic factors on the price impact of buyer-initiated partially filled trades, seller-initiated partially filled trades, buyer-initiated filled trades and seller-initiated filled trades. We find that they have quantitatively similar explanatory powers and these factors can account for up to 44% of the price impacts. Large trade sizes, wide bid-ask spreads, high liquidity at the same side and low liquidity at the opposite side will cause a large price impact. We also find that the liquidity at the opposite side has a more influential impact than the liquidity at the same side. Our results shed new light on the determinants of immediate price impacts.

  1. Conformation-controlled binding kinetics of antibodies

    NASA Astrophysics Data System (ADS)

    Galanti, Marta; Fanelli, Duccio; Piazza, Francesco

    2016-01-01

    Antibodies are large, extremely flexible molecules, whose internal dynamics is certainly key to their astounding ability to bind antigens of all sizes, from small hormones to giant viruses. In this paper, we build a shape-based coarse-grained model of IgG molecules and show that it can be used to generate 3D conformations in agreement with single-molecule Cryo-Electron Tomography data. Furthermore, we elaborate a theoretical model that can be solved exactly to compute the binding rate constant of a small antigen to an IgG in a prescribed 3D conformation. Our model shows that the antigen binding process is tightly related to the internal dynamics of the IgG. Our findings pave the way for further investigation of the subtle connection between the dynamics and the function of large, flexible multi-valent molecular machines.

  2. Evaluation of the DSM-5 Severity Indicator for Bulimia Nervosa

    PubMed Central

    Grilo, Carlos M.; Ivezaj, Valentina; White, Marney A.

    2015-01-01

    This study examined the DSM-5 severity criterion for bulimia nervosa (BN) based on the frequency of inappropriate weight compensatory behaviors. 199 community volunteers classified with BN were categorized using DSM-5 severity levels and compared on demographic and clinical variables. 77 (39%) participants were categorized as mild, 68 (34%) as moderate, 32 (16%) as severe, and 22 (11%) as extreme. The severity groups did not differ significantly in demographic variables or body mass index. Shape and Weight concerns did not differ significantly across severity groups. Binge eating differed with the extreme group having higher frequency than the severe, moderate, and mild groups, which did not differ from each other. Restraint differed with the extreme group having significantly higher levels than the mild group. Eating concerns differed with the extreme group having higher levels than moderate and mild groups. Depression differed with the extreme group having higher levels than severe, moderate, and mild groups, which did not differ from each other. Findings from this non-clinical group provide new, albeit modest, support for DSM-5 severity rating for BN based on frequency of inappropriate weight compensatory behaviors. Statistical findings indicate that differences in collateral clinical variables associated with the DSM-5 severity ratings reflect small effect sizes. Further research is needed with treatment-seeking patient groups with BN to establish the validity of the DSM-5 severity specifier and should include broader clinical and functional validators. PMID:25744910

  3. Evaluation of the DSM-5 severity indicator for bulimia nervosa.

    PubMed

    Grilo, Carlos M; Ivezaj, Valentina; White, Marney A

    2015-04-01

    This study examined the DSM-5 severity criterion for bulimia nervosa (BN) based on the frequency of inappropriate weight compensatory behaviors. 199 community volunteers classified with BN were categorized using DSM-5 severity levels and compared on demographic and clinical variables. 77 (39%) participants were categorized as mild, 68 (34%) as moderate, 32 (16%) as severe, and 22 (11%) as extreme. The severity groups did not differ significantly in demographic variables or body mass index. Shape and Weight concerns did not differ significantly across severity groups. Binge eating differed with the extreme group having significantly higher frequency than the severe, moderate, and mild groups, which did not differ from each other. Restraint differed with the extreme group having significantly higher levels than the mild group. Eating concerns differed with the extreme group having significantly higher levels than moderate and mild groups. Depression differed with the extreme group having significantly higher levels than severe, moderate, and mild groups, which did not differ from each other. Findings from this non-clinical group provide new, albeit modest, support for DSM-5 severity rating for BN based on frequency of inappropriate weight compensatory behaviors. Statistical findings indicate that differences in collateral clinical variables associated with the DSM-5 severity ratings reflect small effect sizes. Further research is needed with treatment-seeking patient groups with BN to establish the validity of the DSM-5 severity specifier and should include broader clinical and functional validators. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Interpreting survival data from clinical trials of surgery versus stereotactic body radiation therapy in operable Stage I non-small cell lung cancer patients.

    PubMed

    Samson, Pamela; Keogan, Kathleen; Crabtree, Traves; Colditz, Graham; Broderick, Stephen; Puri, Varun; Meyers, Bryan

    2017-01-01

    To identify the variability of short- and long-term survival outcomes among closed Phase III randomized controlled trials with small sample sizes comparing SBRT (stereotactic body radiation therapy) and surgical resection in operable clinical Stage I non-small cell lung cancer (NSCLC) patients. Clinical Stage I NSCLC patients who underwent surgery at our institution meeting the inclusion/exclusion criteria for STARS (Randomized Study to Compare CyberKnife to Surgical Resection in Stage I Non-small Cell Lung Cancer), ROSEL (Trial of Either Surgery or Stereotactic Radiotherapy for Early Stage (IA) Lung Cancer), or both were identified. Bootstrapping analysis provided 10,000 iterations to depict 30-day mortality and three-year overall survival (OS) in cohorts of 16 patients (to simulate the STARS surgical arm), 27 patients (to simulate the pooled surgical arms of STARS and ROSEL), and 515 (to simulate the goal accrual for the surgical arm of STARS). From 2000 to 2012, 749/873 (86%) of clinical Stage I NSCLC patients who underwent resection were eligible for STARS only, ROSEL only, or both studies. When patients eligible for STARS only were repeatedly sampled with a cohort size of 16, the 3-year OS rates ranged from 27 to 100%, and 30-day mortality varied from 0 to 25%. When patients eligible for ROSEL or for both STARS and ROSEL underwent bootstrapping with n=27, the 3-year OS ranged from 46 to 100%, while 30-day mortality varied from 0 to 15%. Finally, when patients eligible for STARS were repeatedly sampled in groups of 515, 3-year OS narrowed to 70-85%, with 30-day mortality varying from 0 to 4%. Short- and long-term survival outcomes from trials with small sample sizes are extremely variable and unreliable for extrapolation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Application of X-ray and neutron small angle scattering techniques to study the hierarchical structure of plant cell walls: a review.

    PubMed

    Martínez-Sanz, Marta; Gidley, Michael J; Gilbert, Elliot P

    2015-07-10

    Plant cell walls present an extremely complex structure of hierarchically assembled cellulose microfibrils embedded in a multi-component matrix. The biosynthesis process determines the mechanism of cellulose crystallisation and assembly, as well as the interaction of cellulose with other cell wall components. Thus, a knowledge of cellulose microfibril and bundle architecture, and the structural role of matrix components, is crucial for understanding cell wall functional and technological roles. Small angle scattering techniques, combined with complementary methods, provide an efficient approach to characterise plant cell walls, covering a broad and relevant size range while minimising experimental artefacts derived from sample treatment. Given the system complexity, approaches such as component extraction and the use of plant cell wall analogues are typically employed to enable the interpretation of experimental results. This review summarises the current research status on the characterisation of the hierarchical structure of plant cell walls using small angle scattering techniques. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  6. Free fall and the equivalence principle revisited

    NASA Astrophysics Data System (ADS)

    Pendrill, Ann-Marie

    2017-11-01

    Free fall is commonly discussed as an example of the equivalence principle, in the context of a homogeneous gravitational field, which is a reasonable approximation for small test masses falling moderate distances. Newton’s law of gravity provides a generalisation to larger distances, and also brings in an inhomogeneity in the gravitational field. In addition, Newton’s third law of action and reaction causes the Earth to accelerate towards the falling object, bringing in a mass dependence in the time required for an object to reach ground—in spite of the equivalence between inertial and gravitational mass. These aspects are rarely discussed in textbooks when the motion of everyday objects are discussed. Although these effects are extremely small, it may still be important for teachers to make assumptions and approximations explicit, to be aware of small corrections, and also to be prepared to estimate their size. Even if the corrections are not part of regular teaching, some students may reflect on them, and their questions deserve to be taken seriously.

  7. Giant spermatozoa and a huge spermatheca: a case of coevolution of male and female reproductive organs in the ground louse Zorotypus impolitus (Insecta, Zoraptera).

    PubMed

    Dallai, Romano; Gottardo, Marco; Mercati, David; Machida, Ryuichiro; Mashimo, Yuta; Matsumura, Yoko; Beutel, Rolf G

    2014-03-01

    The male and female genital apparatus of the recently discovered ground louse Zorotypus impolitus were examined using light and electron microscopy. The rounded testes and a large seminal vesicle are connected with a complex of four accessory glands by a long tapering ejaculatory duct. Two accessory glands have the same whitish coloration, whereas the third one is pale blue, and the elongated and cylindrical fourth one translucent. The sperm are the largest known in Hexapoda, 3mm long and 3μm wide, with a volume of ca. 21,000μm(3); the ratio between the diameter of the axoneme and the width of the main body of the sperm ranges between 1:10 and 1:13. The exceptional width of the spermatozoa is due to an extreme enlargement of the mitochondrial derivatives and accessory bodies. A single sperm is contained in a small globular spermatophore (100μm). The highly unusual external transfer correlates with an atypical mating behavior. The male produces several to many spermatophores during the mating process. As in other zorapterans the ovaries are panoistic and the eggs bear two micropyles. An exceptionally large apical spermathecal receptacle is present; it is connected with the vagina by a long spermathecal duct, which varies structurally along its course. A correlation between the sperm size and the size of the spermatheca is likely. Ultrastructural features of different species support two strikingly different models of male and female reproductive apparatus in the small order Zoraptera. This is in stark contrast to the extreme uniformity of their external morphology. It is likely that sexual selection played a decisive role in the evolution of the reproductive system. Copyright © 2013. Published by Elsevier Ltd.

  8. Ultrananocrystalline Diamond Membranes for Detection of High-Mass Proteins

    NASA Astrophysics Data System (ADS)

    Kim, H.; Park, J.; Aksamija, Z.; Arbulu, M.; Blick, R. H.

    2016-12-01

    Mechanical resonators realized on the nanoscale by now offer applications in mass sensing of biomolecules with extraordinary sensitivity. The general idea is that perfect mechanical mass sensors should be of extremely small size to achieve zepto- or yoctogram sensitivity in weighing single molecules similar to a classical scale. However, the small effective size and long response time for weighing biomolecules with a cantilever restricts their usefulness as a high-throughput method. Commercial mass spectrometry (MS), on the other hand, such as electrospray ionization and matrix-assisted laser desorption and ionization (MALDI) time of flight (TOF) and their charge-amplifying detectors are the gold standards to which nanomechanical resonators have to live up to. These two methods rely on the ionization and acceleration of biomolecules and the following ion detection after a mass selection step, such as TOF. The principle we describe here for ion detection is based on the conversion of kinetic energy of the biomolecules into thermal excitation of chemical vapor deposition diamond nanomembranes via phonons followed by phonon-mediated detection via field emission of thermally emitted electrons. We fabricate ultrathin diamond membranes with large lateral dimensions for MALDI TOF MS of high-mass proteins. These diamond membranes are realized by straightforward etching methods based on semiconductor processing. With a minimal thickness of 100 nm and cross sections of up to 400 ×400 μ m2 , the membranes offer extreme aspect ratios. Ion detection is demonstrated in MALDI TOF analysis over a broad range from insulin to albumin. The resulting data in detection show much enhanced resolution as compared to existing detectors, which can offer better sensitivity and overall performance in resolving protein masses.

  9. Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers

    PubMed Central

    Benazzo, Andrea; Trucchi, Emiliano; Cahill, James A.; Maisano Delser, Pierpaolo; Mona, Stefano; Fumagalli, Matteo; Cornetti, Luca; Ghirotto, Silvia; Girardi, Matteo; Ometto, Lino; Panziera, Alex; Rota-Stabelli, Omar; Zanetti, Enrico; Karamanlidis, Alexandros; Groff, Claudio; Paule, Ladislav; Gentile, Leonardo; Vicario, Saverio; Boitani, Luigi; Fuselli, Silvia; Vernesi, Cristiano; Bertorelle, Giorgio

    2017-01-01

    About 100 km east of Rome, in the central Apennine Mountains, a critically endangered population of ∼50 brown bears live in complete isolation. Mating outside this population is prevented by several 100 km of bear-free territories. We exploited this natural experiment to better understand the gene and genomic consequences of surviving at extremely small population size. We found that brown bear populations in Europe lost connectivity since Neolithic times, when farming communities expanded and forest burning was used for land clearance. In central Italy, this resulted in a 40-fold population decline. The overall genomic impact of this decline included the complete loss of variation in the mitochondrial genome and along long stretches of the nuclear genome. Several private and deleterious amino acid changes were fixed by random drift; predicted effects include energy deficit, muscle weakness, anomalies in cranial and skeletal development, and reduced aggressiveness. Despite this extreme loss of diversity, Apennine bear genomes show nonrandom peaks of high variation, possibly maintained by balancing selection, at genomic regions significantly enriched for genes associated with immune and olfactory systems. Challenging the paradigm of increased extinction risk in small populations, we suggest that random fixation of deleterious alleles (i) can be an important driver of divergence in isolation, (ii) can be tolerated when balancing selection prevents random loss of variation at important genes, and (iii) is followed by or results directly in favorable behavioral changes. PMID:29078308

  10. Survival and divergence in a small group: The extraordinary genomic history of the endangered Apennine brown bear stragglers.

    PubMed

    Benazzo, Andrea; Trucchi, Emiliano; Cahill, James A; Maisano Delser, Pierpaolo; Mona, Stefano; Fumagalli, Matteo; Bunnefeld, Lynsey; Cornetti, Luca; Ghirotto, Silvia; Girardi, Matteo; Ometto, Lino; Panziera, Alex; Rota-Stabelli, Omar; Zanetti, Enrico; Karamanlidis, Alexandros; Groff, Claudio; Paule, Ladislav; Gentile, Leonardo; Vilà, Carles; Vicario, Saverio; Boitani, Luigi; Orlando, Ludovic; Fuselli, Silvia; Vernesi, Cristiano; Shapiro, Beth; Ciucci, Paolo; Bertorelle, Giorgio

    2017-11-07

    About 100 km east of Rome, in the central Apennine Mountains, a critically endangered population of ∼50 brown bears live in complete isolation. Mating outside this population is prevented by several 100 km of bear-free territories. We exploited this natural experiment to better understand the gene and genomic consequences of surviving at extremely small population size. We found that brown bear populations in Europe lost connectivity since Neolithic times, when farming communities expanded and forest burning was used for land clearance. In central Italy, this resulted in a 40-fold population decline. The overall genomic impact of this decline included the complete loss of variation in the mitochondrial genome and along long stretches of the nuclear genome. Several private and deleterious amino acid changes were fixed by random drift; predicted effects include energy deficit, muscle weakness, anomalies in cranial and skeletal development, and reduced aggressiveness. Despite this extreme loss of diversity, Apennine bear genomes show nonrandom peaks of high variation, possibly maintained by balancing selection, at genomic regions significantly enriched for genes associated with immune and olfactory systems. Challenging the paradigm of increased extinction risk in small populations, we suggest that random fixation of deleterious alleles ( i ) can be an important driver of divergence in isolation, ( ii ) can be tolerated when balancing selection prevents random loss of variation at important genes, and ( iii ) is followed by or results directly in favorable behavioral changes. Published under the PNAS license.

  11. Extended hepatectomy using the bipolar tissue sealer: an experimental model of small-for-size syndrome in pigs.

    PubMed

    Athanasiou, Antonios; Kontos, Michael; Pikoulis, Emmanouil; Griniatsos, John; Papalois, Apostolos; Spartalis, Eleftherios; Moris, Demetrios; Felekouras, Evangelos; Liakakos, Theodoros

    2016-01-01

    After liver transplantation with a small-for-size liver graft or after extensive hepatectomy for liver malignancies or other non malignant conditions with an insufficient liver volume, the survival of patients depends on liver regeneration. This study was carried out in order to create a new porcine model for the study of small-for-size syndrome (SFSS) after extensive hepatectomy. In the present study we used 23 domestic Landrace pigs weighing 28.3±3 kg and aged 19-21 weeks. We describe our detailed surgical procedure for 75% partial hepatectomy a in porcine model, using the saline-coupled bipolar sealing device (Aquamantys®) for hepatectomy. The Aquamantis 2.3 bipolar sealer was connected to the Aquamantis generator and was adjusted to produce 150 watts at a medium flow rate of 20 ml/min. The device temperature was programmed to remain at approximately 100° C and, as a consequence, it produced a tissue ablation without charring. The mean operating time was 153.8 min and the mean blood loss 81.9 ml. The estimated residual liver weight (ERL) was 177 g, whereas the mean proportion of ERL was 24.5%. There was no perioperative mortality. A large animal model, such as pig, is extremely useful in order to reproduce and understand the SFSS. Our simple technique for successful resection of 75% of the liver in pigs, using the Aquamantys system, achieves effective and safe liver parenchymal transection with significant decrease of intraoperative blood loss and can provide useful information for researchers.

  12. A comparative analysis of support vector machines and extreme learning machines.

    PubMed

    Liu, Xueyi; Gao, Chuanhou; Li, Ping

    2012-09-01

    The theory of extreme learning machines (ELMs) has recently become increasingly popular. As a new learning algorithm for single-hidden-layer feed-forward neural networks, an ELM offers the advantages of low computational cost, good generalization ability, and ease of implementation. Hence the comparison and model selection between ELMs and other kinds of state-of-the-art machine learning approaches has become significant and has attracted many research efforts. This paper performs a comparative analysis of the basic ELMs and support vector machines (SVMs) from two viewpoints that are different from previous works: one is the Vapnik-Chervonenkis (VC) dimension, and the other is their performance under different training sample sizes. It is shown that the VC dimension of an ELM is equal to the number of hidden nodes of the ELM with probability one. Additionally, their generalization ability and computational complexity are exhibited with changing training sample size. ELMs have weaker generalization ability than SVMs for small sample but can generalize as well as SVMs for large sample. Remarkably, great superiority in computational speed especially for large-scale sample problems is found in ELMs. The results obtained can provide insight into the essential relationship between them, and can also serve as complementary knowledge for their past experimental and theoretical comparisons. Copyright © 2012 Elsevier Ltd. All rights reserved.

  13. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  14. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  15. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  16. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  17. 40 CFR 355.16 - How do I determine the quantity of extremely hazardous substances present for certain forms of...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... quantity of extremely hazardous substance present: (a) Solid in powdered form with a particle size less than 100 microns. Multiply the weight percent of solid with a particle size less than 100 microns in a...

  18. Influence of turbulence, orientation, and site configuration on the response of buildings to extreme wind.

    PubMed

    Aly, Aly Mousaad

    2014-01-01

    Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings.

  19. Influence of Turbulence, Orientation, and Site Configuration on the Response of Buildings to Extreme Wind

    PubMed Central

    2014-01-01

    Atmospheric turbulence results from the vertical movement of air, together with flow disturbances around surface obstacles which make low- and moderate-level winds extremely irregular. Recent advancements in wind engineering have led to the construction of new facilities for testing residential homes at relatively high Reynolds numbers. However, the generation of a fully developed turbulence in these facilities is challenging. The author proposed techniques for the testing of residential buildings and architectural features in flows that lack fully developed turbulence. While these methods are effective for small structures, the extension of the approach for large and flexible structures is not possible yet. The purpose of this study is to investigate the role of turbulence in the response of tall buildings to extreme winds. In addition, the paper presents a detailed analysis to investigate the influence of upstream terrain conditions, wind direction angle (orientation), and the interference effect from the surrounding on the response of high-rise buildings. The methodology presented can be followed to help decision makers to choose among innovative solutions like aerodynamic mitigation, structural member size adjustment, and/or damping enhancement, with an objective to improve the resiliency and the serviceability of buildings. PMID:24701140

  20. Relationship between extreme ultraviolet microflares and small-scale magnetic fields in the quiet Sun

    NASA Astrophysics Data System (ADS)

    Jiang, Fayu; Zhang, Jun; Yang, Shuhong

    2016-04-01

    Microflares are small dynamic signatures observed in X-ray and extreme-ultraviolet channels. Because of their impulsive emission enhancements and wide distribution, they are thought to be closely related to coronal heating. By using the high resolution 171 Å images from the Atmospheric Imaging Assembly and the lines-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we trace 10794 microflares in a quiet region near the disk center with a field of view of 960''× 1068'' during 24 hr. The microflares have an occurrence rate of 4.4 × 103 hr-1 extrapolated over the whole Sun. Their average brightness, size, and lifetime are 1.7 I0 (of the quiet Sun), 9.6 Mm2, and 3.6 min, respectively. There exists a mutual positive correlation between the microflares' brightness, area and lifetime. In general, the microflares distribute uniformly across the solar disk, but form network patterns locally, which are similar to and matched with the magnetic network structures. Typical cases show that the microflares prefer to occur in magnetic cancellation regions of network boundaries. We roughly calculate the upper limit of energy flux supplied by the microflares and find that the result is still a factor of ˜15 below the coronal heating requirement.

  1. Relationship between extreme ultraviolet microflares and small-scale magnetic fields in the quiet Sun

    NASA Astrophysics Data System (ADS)

    Jiang, Fayu; Zhang, Jun; Yang, Shuhong

    2015-06-01

    Microflares are small dynamic signatures observed in X-ray and extreme-ultraviolet channels. Because of their impulsive emission enhancements and wide distribution, they are thought to be closely related to coronal heating. By using the high-resolution 171 Å images from the Atmospheric Imaging Assembly and the lines-of-sight magnetograms obtained by the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory, we trace 10794 microflares in a quiet region near the disk center with a field of view of 960″ × 1068″ during 24 hr. The microflares have an occurrence rate of 4.4 × 103 hr-1 extrapolated over the whole Sun. Their average brightness, size, and lifetime are 1.7I0 (of the quiet Sun), 9.6 Mm2, and 3.6 min, respectively. There exists a mutual positive correlation between the microflares' brightness, area, and lifetime. In general, the microflares distribute uniformly across the solar disk, but form network patterns locally, which are similar to and matched with the magnetic network structures. Typical cases show that the microflares prefer to occur in magnetic cancellation regions of network boundaries. We roughly calculate the upper limit of energy flux supplied by the microflares and find that the result is still a factor of ˜ 15 below the coronal heating requirement.

  2. Temporal pattern and memory in sediment transport in an experimental step-pool channel

    NASA Astrophysics Data System (ADS)

    Saletti, Matteo; Molnar, Peter; Zimmermann, André; Hassan, Marwan A.; Church, Michael; Burlando, Paolo

    2015-04-01

    In this work we study the complex dynamics of sediment transport and bed morphology in steep streams, using a dataset of experiments performed in a steep flume with natural sediment. High-resolution (1 sec) time series of sediment transport were measured for individual size classes at the outlet of the flume for different combinations of sediment input rates, discharges, and flume slopes. The data show that the relation between instantaneous discharge and sediment transport exhibits large variability on different levels. After dividing the time series into segments of constant water discharge, we quantify the statistical properties of transport rates by fitting the data with a Generalized Extreme Value distribution, whose 3 parameters are related to the average sediment flux. We analyze separately extreme events of transport rate in terms of their fractional composition; if only events of high magnitude are considered, coarse grains become the predominant component of the total sediment yield. We quantify the memory in grain size dependent sediment transport with variance scaling and autocorrelation analyses; more specifically, we study how the variance changes with different aggregation scales and how the autocorrelation coefficient changes with different time lags. Our results show that there is a tendency to an infinite memory regime in transport rate signals, which is limited by the intermittency of the largest fractions. Moreover, the structure of memory is both grain size-dependent and magnitude-dependent: temporal autocorrelation is stronger for small grain size fractions and when the average sediment transport rate is large. The short-term memory in coarse grain transport increases with temporal aggregation and this reveals the importance of the sampling frequency of bedload transport rates in natural streams, especially for large fractions.

  3. Hubble Sees a “Behemoth” Bleeding Atmosphere Around a Warm Exoplanet

    NASA Image and Video Library

    2015-06-24

    Astronomers using NASA’s Hubble Space Telescope have discovered an immense cloud of hydrogen dubbed “The Behemoth” bleeding from a planet orbiting a nearby star. The enormous, comet-like feature is about 50 times the size of the parent star. The hydrogen is evaporating from a warm, Neptune-sized planet, due to extreme radiation from the star. This phenomenon has never been seen around an exoplanet so small. It may offer clues to how other planets with hydrogen-enveloped atmospheres could have their outer layers evaporated by their parent star, leaving behind solid, rocky cores. Hot, rocky planets such as these that roughly the size of Earth are known as Hot-Super Earths. “This cloud is very spectacular, though the evaporation rate does not threaten the planet right now,” explains the study’s leader, David Ehrenreich of the Observatory of the University of Geneva in Switzerland. “But we know that in the past, the star, which is a faint red dwarf, was more active. This means that the planet evaporated faster during its first billion years of existence because of the strong radiation from the young star. Overall, we estimate that it may have lost up to 10 percent of its atmosphere over the past several billion years.” Caption: This artist's concept shows "The Behemoth," an enormous comet-like cloud of hydrogen bleeding off of a warm, Neptune-sized planet just 30 light-years from Earth. Also depicted is the parent star, which is a faint red dwarf named GJ 436. The hydrogen is evaporating from the planet due to extreme radiation from the star. A phenomenon this large has never before been seen around any exoplanet. Credits: NASA, ESA, and G. Bacon (STScI)

  4. Statistical Methods for Quantifying the Variability of Solar Wind Transients of All Sizes

    NASA Astrophysics Data System (ADS)

    Tindale, E.; Chapman, S. C.

    2016-12-01

    The solar wind is inherently variable across a wide range of timescales, from small-scale turbulent fluctuations to the 11-year periodicity induced by the solar cycle. Each solar cycle is unique, and this change in overall cycle activity is coupled from the Sun to Earth via the solar wind, leading to long-term trends in space weather. Our work [Tindale & Chapman, 2016] applies novel statistical methods to solar wind transients of all sizes, to quantify the variability of the solar wind associated with the solar cycle. We use the same methods to link solar wind observations with those on the Sun and Earth. We use Wind data to construct quantile-quantile (QQ) plots comparing the statistical distributions of multiple commonly used solar wind-magnetosphere coupling parameters between the minima and maxima of solar cycles 23 and 24. We find that in each case the distribution is multicomponent, ranging from small fluctuations to extreme values, with the same functional form at all phases of the solar cycle. The change in PDF is captured by a simple change of variables, which is independent of the PDF model. Using this method we can quantify the quietness of the cycle 24 maximum, identify which variable drives the changing distribution of composite parameters such as ɛ, and we show that the distribution of ɛ is less sensitive to changes in its extreme values than that of its constituents. After demonstrating the QQ method on solar wind data, we extend the analysis to include solar and magnetospheric data spanning the same time period. We focus on GOES X-ray flux and WDC AE index data. Finally, having studied the statistics of transients across the full distribution, we apply the same method to time series of extreme bursts in each variable. Using these statistical tools, we aim to track the solar cycle-driven variability from the Sun through the solar wind and into the Earth's magnetosphere. Tindale, E. and S.C. Chapman (2016), Geophys. Res. Lett., 43(11), doi: 10.1002/2016GL068920.

  5. Sensory Neuropathy Due to Loss of Bcl-w

    PubMed Central

    Courchesne, Stephanie L.; Karch, Christoph; Pazyra-Murphy, Maria F.; Segal, Rosalind A.

    2010-01-01

    Small fiber sensory neuropathy is a common disorder in which progressive degeneration of small diameter nociceptors causes decreased sensitivity to thermal stimuli and painful sensations in the extremities. In the majority of patients, the cause of small fiber sensory neuropathy is unknown, and treatment options are limited. Here, we show that Bcl-w (Bcl-2l2) is required for the viability of small fiber nociceptive sensory neurons. Bcl-w −/− mice demonstrate an adult-onset progressive decline in thermosensation and a decrease in nociceptor innervation of the epidermis. This denervation occurs without cell body loss, indicating that lack of Bcl-w results in a primary axonopathy. Consistent with this phenotype, we show that Bcl-w, in contrast to the closely related Bcl-2 and Bcl-xL, is enriched in axons of sensory neurons and that Bcl-w prevents the dying back of axons. Bcl-w −/− sensory neurons exhibit mitochondrial abnormalities, including alterations in axonal mitochondrial size, axonal mitochondrial membrane potential, and cellular ATP levels. Collectively, these data establish bcl-w −/− mice as an animal model of small fiber sensory neuropathy, and provide new insight regarding the role of bcl-w and of mitochondria in preventing axonal degeneration. PMID:21289171

  6. Martian cratering 11. Utilizing decameter scale crater populations to study Martian history

    NASA Astrophysics Data System (ADS)

    Hartmann, W. K.; Daubar, I. J.

    2017-03-01

    New information has been obtained in recent years regarding formation rates and the production size-frequency distribution (PSFD) of decameter-scale primary Martian craters formed during recent orbiter missions. Here we compare the PSFD of the currently forming small primaries (P) with new data on the PSFD of the total small crater population that includes primaries and field secondaries (P + fS), which represents an average over longer time periods. The two data sets, if used in a combined manner, have extraordinary potential for clarifying not only the evolutionary history and resurfacing episodes of small Martian geological formations (as small as one or few km2) but also possible episodes of recent climatic change. In response to recent discussions of statistical methodologies, we point out that crater counts do not produce idealized statistics, and that inherent uncertainties limit improvements that can be made by more sophisticated statistical analyses. We propose three mutually supportive procedures for interpreting crater counts of small craters in this context. Applications of these procedures support suggestions that topographic features in upper meters of mid-latitude ice-rich areas date only from the last few periods of extreme Martian obliquity, and associated predicted climate excursions.

  7. The relationship between lower extremity alignment and Medial Tibial Stress Syndrome among non-professional athletes

    PubMed Central

    Raissi, Golam Reza D; Cherati, Afsaneh D Safar; Mansoori, Kourosh D; Razi, Mohammad D

    2009-01-01

    Objective To determine the relationship between lower extremity alignment and MTSS amongst non-professional athletes Design In a prospective Study, sixty six subjects were evaluated. Bilateral navicular drop test, Q angle, Achilles angle, tibial angle, intermalleolar and intercondylar distance were measured. In addition, runner's height, body mass, history of previous running injury, running experience was recorded. Runners were followed for 17 weeks to determine occurrence of MTSS. Results The overall injury rate for MTSS was 19.7%. The MTSS injury rate in girls (22%) was not significantly different from the rate in boys (14.3%). Most MTSS injuries were induced after 60 hours of exercise, which did not differ between boys and girls. There was a significant difference in right and left navicular drop (ND) in athletes with MTSS. MTSS had no significant correlation with other variables including Quadriceps, Tibia and Achilles angles, intercondylar and intermaleolar lengths and lower extremity lengths. Limitation All measurements performed in this study were uniplanar and static. The small sample size deemed our main limitation. The accurate assessment of participants with previous history of anterior leg pain for MTSS was another limitation. Conclusion Although a significant relationship between navicular drop and MTSS was found in this study; there was not any significant relationship between lower extremity alignment and MTSS in our sample study. PMID:19519909

  8. The diagnostic management of upper extremity deep vein thrombosis: A review of the literature.

    PubMed

    Kraaijpoel, Noémie; van Es, Nick; Porreca, Ettore; Büller, Harry R; Di Nisio, Marcello

    2017-08-01

    Upper extremity deep vein thrombosis (UEDVT) accounts for 4% to 10% of all cases of deep vein thrombosis. UEDVT may present with localized pain, erythema, and swelling of the arm, but may also be detected incidentally by diagnostic imaging tests performed for other reasons. Prompt and accurate diagnosis is crucial to prevent pulmonary embolism and long-term complications as the post-thrombotic syndrome of the arm. Unlike the diagnostic management of deep vein thrombosis (DVT) of the lower extremities, which is well established, the work-up of patients with clinically suspected UEDVT remains uncertain with limited evidence from studies of small size and poor methodological quality. Currently, only one prospective study evaluated the use of an algorithm, similar to the one used for DVT of the lower extremities, for the diagnostic workup of clinically suspected UEDVT. The algorithm combined clinical probability assessment, D-dimer testing and ultrasonography and appeared to safely and effectively exclude UEDVT. However, before recommending its use in routine clinical practice, external validation of this strategy and improvements of the efficiency are needed, especially in high-risk subgroups in whom the performance of the algorithm appeared to be suboptimal, such as hospitalized or cancer patients. In this review, we critically assess the accuracy and efficacy of current diagnostic tools and provide clinical guidance for the diagnostic management of clinically suspected UEDVT. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Human disease mortality kinetics are explored through a chain model embodying principles of extreme value theory and competing risks.

    PubMed

    Juckett, D A; Rosenberg, B

    1992-04-21

    The distributions for human disease-specific mortality exhibit two striking characteristics: survivorship curves that intersect near the longevity limit; and, the clustering of best-fitting Weibull shape parameter values into groups centered on integers. Correspondingly, we have hypothesized that the distribution intersections result from either competitive processes or population partitioning and the integral clustering in the shape parameter results from the occurrence of a small number of rare, rate-limiting events in disease progression. In this report we initiate a theoretical examination of these questions by exploring serial chain model dynamics and parameteric competing risks theory. The links in our chain models are composed of more than one bond, where the number of bonds in a link are denoted the link size and are the number of events necessary to break the link and, hence, the chain. We explored chains with all links of the same size or with segments of the chain composed of different size links (competition). Simulations showed that chain breakage dynamics depended on the weakest-link principle and followed kinetics of extreme-values which were very similar to human mortality kinetics. In particular, failure distributions for simple chains were Weibull-type extreme-value distributions with shape parameter values that were identifiable with the integral link size in the limit of infinite chain length. Furthermore, for chains composed of several segments of differing link size, the survival distributions for the various segments converged at a point in the S(t) tails indistinguishable from human data. This was also predicted by parameteric competing risks theory using Weibull underlying distributions. In both the competitive chain simulations and the parametric competing risks theory, however, the shape values for the intersecting distributions deviated from the integer values typical of human data. We conclude that rare events can be the source of integral shapes in human mortality, that convergence is a salient feature of multiple endpoints, but that pure competition may not be the best explanation for the exact type of convergence observable in human mortality. Finally, while the chain models were not motivated by any specific biological structures, interesting biological correlates to them may be useful in gerontological research.

  10. Upper extremity access for fenestrated endovascular aortic aneurysm repair is not associated with increased morbidity.

    PubMed

    Knowles, Martyn; Nation, David A; Timaran, David E; Gomez, Luis F; Baig, M Shadman; Valentine, R James; Timaran, Carlos H

    2015-01-01

    Fenestrated endovascular aortic aneurysm repair (FEVAR) is an alternative to open repair in patients with complex abdominal aortic aneurysms who are neither fit nor suitable for standard open or endovascular repair. Chimney and snorkel grafts are other endovascular alternatives but frequently require bilateral upper extremity access that has been associated with a 3% to 10% risk of stroke. However, upper extremity access is also frequently required for FEVAR because of the caudal orientation of the visceral vessels. The purpose of this study was to assess the use of upper extremity access for FEVAR and the associated morbidity. During a 5-year period, 148 patients underwent FEVAR, and upper extremity access for FEVAR was used in 98 (66%). Outcomes were compared between those who underwent upper extremity access and those who underwent femoral access alone. The primary end point was a cerebrovascular accident or transient ischemic attack, and the secondary end point was local access site complications. The mean number of fenestrated vessels was 3.07 ± 0.81 (median, 3) for a total of 457 vessels stented. Percutaneous upper extremity access was used in 12 patients (12%) and open access in 86 (88%). All patients who required a sheath size >7F underwent high brachial open access, with the exception of one patient who underwent percutaneous axillary access with a 12F sheath. The mean sheath size was 10.59F ± 2.51F (median, 12F), which was advanced into the descending thoracic aorta, allowing multiple wire and catheter exchanges. One hemorrhagic stroke (one of 98 [1%]) occurred in the upper extremity access group, and one ischemic stroke (one of 54 [2%]) occurred in the femoral-only access group (P = .67). The stroke in the upper extremity access group occurred 5 days after FEVAR and was related to uncontrolled hypertension, whereas the stroke in the femoral group occurred on postoperative day 3. Neither patient had signs or symptoms of a stroke immediately after FEVAR. The right upper extremity was accessed six times without a stroke (0%) compared with the left being accessed 92 times with one stroke (1%; P = .8). Four patients (4%) had local complications related to upper extremity access. One (1%) required exploration for an expanding hematoma after manual compression for a 7F sheath, one (1%) required exploration for hematoma and neurologic symptoms after open access for a 12F sheath, and two patients (2%) with small hematomas did not require intervention. Two (two of 12 [17%]) of these complications were in the percutaneous access group, which were significantly more frequent than in the open group (two of 86 [2%]; P = .02). Upper extremity access appears to be a safe and feasible approach for patients undergoing FEVAR. Open exposure in the upper extremity may be safer than percutaneous access during FEVAR. Unlike chimney and snorkel grafts, upper extremity access during FEVAR is not associated with an increased risk of stroke, despite the need for multiple visceral vessel stenting. Copyright © 2015 Society for Vascular Surgery. All rights reserved.

  11. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    NASA Astrophysics Data System (ADS)

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-08-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a ``hairline'' solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  12. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms.

    PubMed

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A W; Kwek, Leong Chuan

    2014-08-08

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a "hairline" solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions.

  13. Characterization of Microwave-Induced Electric Discharge Phenomena in Metal–Solvent Mixtures

    PubMed Central

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-01-01

    Electric discharge phenomena in metal–solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (<40 μm) are heated very rapidly in benzene suspensions and start to glow in the microwave field, whereas larger particles exhibit extremely strong discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere. PMID:24551491

  14. Characterization of microwave-induced electric discharge phenomena in metal-solvent mixtures.

    PubMed

    Chen, Wen; Gutmann, Bernhard; Kappe, C Oliver

    2012-02-01

    Electric discharge phenomena in metal-solvent mixtures are investigated utilizing a high field density, sealed-vessel, single-mode 2.45 GHz microwave reactor with a built-in camera. Particular emphasis is placed on studying the discharges exhibited by different metals (Mg, Zn, Cu, Fe, Ni) of varying particle sizes and morphologies in organic solvents (e.g., benzene) at different electric field strengths. Discharge phenomena for diamagnetic and paramagnetic metals (Mg, Zn, Cu) depend strongly on the size of the used particles. With small particles, short-lived corona discharges are observed that do not lead to a complete breakdown. Under high microwave power conditions or with large particles, however, bright sparks and arcs are experienced, often accompanied by solvent decomposition and formation of considerable amounts of graphitized material. Small ferromagnetic Fe and Ni powders (<40 μm) are heated very rapidly in benzene suspensions and start to glow in the microwave field, whereas larger particles exhibit extremely strong discharges. Electric discharges were also observed when Cu metal or other conductive materials such as silicon carbide were exposed to the microwave field in the absence of a solvent in an argon or nitrogen atmosphere.

  15. Design flow factors for sewerage systems in small arid communities.

    PubMed

    Imam, Emad H; Elnakar, Haitham Y

    2014-09-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows.

  16. Design flow factors for sewerage systems in small arid communities

    PubMed Central

    Imam, Emad H.; Elnakar, Haitham Y.

    2013-01-01

    Reliable estimation of sewage flow rates is essential for the proper design of sewers, pumping stations, and treatment plants. The design of the various components of the sewerage system should be based on the most critical flow rates with a focus on extremely low and peak flow rates that would be sustained for a duration related to the acceptable limits of behavior of the components under consideration. The extreme flow conditions and to what extent they differ from the average values are closely related to the size of the community or network, and the socioeconomic conditions. A single pumping station is usually sufficient to pump flow from small community in either flat or non-undulating topography. Therefore, the hydraulic loading on the wastewater treatment plant (WWTP) results from the pumped flow from the pumping station rather than the trunk sewer flow. The intermittent operation of the pumping units further accentuates the sewage hydrograph in the final trunk sewer. Accordingly, the design flow for the various components of the WWTP should be determined based on their relevant flow factors. In this study, analysis of one representative small community out of five monitored small communities in Egypt and the Kingdom of Saudi Arabia is presented. Pumped sewage flow rates were measured and the sewer incoming flows were hydraulically derived. The hourly and daily sewer and pumped flow records were analyzed to derive the relationship between the flow factors that would be sustained for various durations (instantaneously, 1 h, 2 h, etc.) and their probability of non-exceedance. The resulting peaking factors with a consideration for their sustained flow duration and specified probability would permit the design of the various components of the treatment plant using more accurate critical flows. PMID:25685521

  17. Rarity and extinction risk in coral reef angelfishes on isolated islands: interrelationships among abundance, geographic range size and specialisation

    NASA Astrophysics Data System (ADS)

    Hobbs, Jean-Paul A.; Jones, G. P.; Munday, P. L.

    2010-03-01

    Determining the species most vulnerable to increasing degradation of coral reef habitats requires identification of the ecological traits that increase extinction risk. In the terrestrial environment, endemic species often face a high risk of extinction because of an association among three traits that threaten species persistence: small geographic range size, low abundance and ecological specialisation. To test whether these traits are associated in coral reef fishes, this study compared abundance and specialisation in endemic and widespread angelfishes at the remote Christmas and Cocos Islands in the Indian Ocean. The interrelationships among traits conferring high extinction risk in terrestrial communities did not apply to these fishes. Endemic angelfishes were 50-80 times more abundant than widespread species at these islands. Furthermore, there was no relationship between abundance and ecological specialisation. Endemic species were not more specialised than widespread congeners and endemics used similar resources to many widespread species. Three widespread species exhibited low abundance and some degree of specialisation, which may expose them to a greater risk of local extinction. For endemic species, high abundance and lack of specialisation on susceptible habitats may compensate for the global extinction risk posed by having extremely small geographic ranges. However, recent extinctions of small range reef fishes confirm that endemics are not immune to the increasing severity of large-scale disturbances that can affect species throughout their geographic range.

  18. Small deformations of extreme five dimensional Myers-Perry black hole initial data

    NASA Astrophysics Data System (ADS)

    Alaee, Aghil; Kunduri, Hari K.

    2015-02-01

    We demonstrate the existence of a one-parameter family of initial data for the vacuum Einstein equations in five dimensions representing small deformations of the extreme Myers-Perry black hole. This initial data set has `' symmetry and preserves the angular momenta and horizon geometry of the extreme solution. Our proof is based upon an earlier result of Dain and Gabach-Clement concerning the existence of -invariant initial data sets which preserve the geometry of extreme Kerr (at least for short times). In addition, we construct a general class of transverse, traceless symmetric rank 2 tensors in these geometries.

  19. Fiber Bragg Grating Sensors for Harsh Environments

    PubMed Central

    Mihailov, Stephen J.

    2012-01-01

    Because of their small size, passive nature, immunity to electromagnetic interference, and capability to directly measure physical parameters such as temperature and strain, fiber Bragg grating sensors have developed beyond a laboratory curiosity and are becoming a mainstream sensing technology. Recently, high temperature stable gratings based on regeneration techniques and femtosecond infrared laser processing have shown promise for use in extreme environments such as high temperature, pressure or ionizing radiation. Such gratings are ideally suited for energy production applications where there is a requirement for advanced energy system instrumentation and controls that are operable in harsh environments. This paper will present a review of some of the more recent developments. PMID:22438744

  20. Genome sequencing of a single tardigrade Hypsibius dujardini individual

    PubMed Central

    Arakawa, Kazuharu; Yoshida, Yuki; Tomita, Masaru

    2016-01-01

    Tardigrades are ubiquitous microscopic animals that play an important role in the study of metazoan phylogeny. Most terrestrial tardigrades can withstand extreme environments by entering an ametabolic desiccated state termed anhydrobiosis. Due to their small size and the non-axenic nature of laboratory cultures, molecular studies of tardigrades are prone to contamination. To minimize the possibility of microbial contaminations and to obtain high-quality genomic information, we have developed an ultra-low input library sequencing protocol to enable the genome sequencing of a single tardigrade Hypsibius dujardini individual. Here, we describe the details of our sequencing data and the ultra-low input library preparation methodologies. PMID:27529330

  1. Genome sequencing of a single tardigrade Hypsibius dujardini individual.

    PubMed

    Arakawa, Kazuharu; Yoshida, Yuki; Tomita, Masaru

    2016-08-16

    Tardigrades are ubiquitous microscopic animals that play an important role in the study of metazoan phylogeny. Most terrestrial tardigrades can withstand extreme environments by entering an ametabolic desiccated state termed anhydrobiosis. Due to their small size and the non-axenic nature of laboratory cultures, molecular studies of tardigrades are prone to contamination. To minimize the possibility of microbial contaminations and to obtain high-quality genomic information, we have developed an ultra-low input library sequencing protocol to enable the genome sequencing of a single tardigrade Hypsibius dujardini individual. Here, we describe the details of our sequencing data and the ultra-low input library preparation methodologies.

  2. Equilibrium structure and atomic vibrations of Nin clusters

    NASA Astrophysics Data System (ADS)

    Borisova, Svetlana D.; Rusina, Galina G.

    2017-12-01

    The equilibrium bond lengths and binding energy, second differences in energy and vibrational frequencies of free clusters Nin (2 ≤ n ≤ 20) were calculated with the use of the interaction potential obtained in the tight-binding approximation (TBA). The results show that the minimum vibration frequency plays a significant role in the evaluation of the dynamic stability of the clusters. A nonmonotonic dependence of the minimum vibration frequency of clusters on their size and the extreme values for the number of atoms in a cluster n = 4, 6, 13, and 19 are demonstrated. This result agrees with the theoretical and experimental data on stable structures of small metallic clusters.

  3. Prominence Falls Apart

    NASA Image and Video Library

    2017-12-15

    A small prominence slowly rose further up above the sun, then fell apart and back into the sun over about seven hours (Dec. 6, 2017). Prominences, notoriously unstable, are cooler clouds of particles tethered not far above the sun by magnetic forces. When it stretched out, its distance above the sun was several times the size of Earth. Images were taken in a wavelength of extreme ultraviolet light. These images are colorized since we cannot "see" ultraviolet light. In this case, a yellow tone was used instead of the normal red tint we use for this 304 Angstrom wavelength. Movies are available at https://photojournal.jpl.nasa.gov/catalog/PIA22195

  4. Plant genotyping using fluorescently tagged inter-simple sequence repeats (ISSRs): basic principles and methodology.

    PubMed

    Prince, Linda M

    2015-01-01

    Inter-simple sequence repeat PCR (ISSR-PCR) is a fast, inexpensive genotyping technique based on length variation in the regions between microsatellites. The method requires no species-specific prior knowledge of microsatellite location or composition. Very small amounts of DNA are required, making this method ideal for organisms of conservation concern, or where the quantity of DNA is extremely limited due to organism size. ISSR-PCR can be highly reproducible but requires careful attention to detail. Optimization of DNA extraction, fragment amplification, and normalization of fragment peak heights during fluorescent detection are critical steps to minimizing the downstream time spent verifying and scoring the data.

  5. Virtual reality gaming in the rehabilitation of the upper extremities post-stroke.

    PubMed

    Yates, Michael; Kelemen, Arpad; Sik Lanyi, Cecilia

    2016-01-01

    Occurrences of strokes often result in unilateral upper limb dysfunction. Dysfunctions of this nature frequently persist and can present chronic limitations to activities of daily living. Research into applying virtual reality gaming systems to provide rehabilitation therapy have seen resurgence. Themes explored in stroke rehab for paretic limbs are action observation and imitation, versatility, intensity and repetition and preservation of gains. Fifteen articles were ultimately selected for review. The purpose of this literature review is to compare the various virtual reality gaming modalities in the current literature and ascertain their efficacy. The literature supports the use of virtual reality gaming rehab therapy as equivalent to traditional therapies or as successful augmentation to those therapies. While some degree of rigor was displayed in the literature, small sample sizes, variation in study lengths and therapy durations and unequal controls reduce generalizability and comparability. Future studies should incorporate larger sample sizes and post-intervention follow-up measures.

  6. Discordant twins with the smaller baby appropriate for gestational age--unusual manifestation of superfoetation: a case report.

    PubMed

    Baijal, Noopur; Sahni, Mohit; Verma, Neeraj; Kumar, Amit; Parkhe, Nittin; Puliyel, Jacob M

    2007-01-19

    Documentation of superfoetation is extremely rare in humans., The younger foetus has invariably been small for gestational age (estimated from the date of the last menstrual bleed) in all the cases reported in the literature. We report a case where the younger twin was of appropriate size for gestation. The first of twins was of 32 weeks gestation and the baby was of appropriate size and development for the gestational age. The second twin was of 36 weeks gestation. Gestational age was estimated with the New Ballard score, x-ray of the lower limbs, dental age on x-ray, and ophthalmic examination. Bleeding on implantation of the first foetus probably helped demarcate the two pregnancies. Dental age and the New Ballard score can be used to diagnose superfoetation in discordant twins, when detailed first trimester ultra-sound data is not available.

  7. Discordant twins with the smaller baby appropriate for gestational age – unusual manifestation of superfoetation: A case report

    PubMed Central

    Baijal, Noopur; Sahni, Mohit; Verma, Neeraj; Kumar, Amit; Parkhe, Nittin; Puliyel, Jacob M

    2007-01-01

    Background Documentation of superfoetation is extremely rare in humans., The younger foetus has invariably been small for gestational age (estimated from the date of the last menstrual bleed) in all the cases reported in the literature. We report a case where the younger twin was of appropriate size for gestation. Case Presentation The first of twins was of 32 weeks gestation and the baby was of appropriate size and development for the gestational age. The second twin was of 36 weeks gestation. Gestational age was estimated with the New Ballard score, x-ray of the lower limbs, dental age on x-ray, and ophthalmic examination. Conclusion Bleeding on implantation of the first foetus probably helped demarcate the two pregnancies. Dental age and the New Ballard score can be used to diagnose superfoetation in discordant twins, when detailed first trimester ultra-sound data is not available. PMID:17239246

  8. Effect of size on bulk and surface cohesion energy of metallic nano-particles

    NASA Astrophysics Data System (ADS)

    Yaghmaee, M. S.; Shokri, B.

    2007-04-01

    The knowledge of nano-material properties not only helps us to understand the extreme behaviour of small-scale materials better (expected to be different from what we observe from their bulk value) but also helps us to analyse and design new advanced functionalized materials through different nano technologies. Among these fundamental properties, the cohesion (binding) energy mainly describes most behaviours of materials in different environments. In this work, we discuss this fundamental property through a nano-thermodynamical approach using two algorithms, where in the first approach the size dependence of the inner (bulk) cohesion energy is studied, and in the second approach the surface cohesion energy is considered too. The results, which are presented through a computational demonstration (for four different metals: Al, Ga, W and Ag), can be compared with some experimental values for W metallic nano-particles.

  9. Pressure-Induced Amorphization and a New High Density Amorphous Metallic Phase in Matrix-Free Ge Nanoparticles.

    PubMed

    Corsini, Niccolo R C; Zhang, Yuanpeng; Little, William R; Karatutlu, Ali; Ersoy, Osman; Haynes, Peter D; Molteni, Carla; Hine, Nicholas D M; Hernandez, Ignacio; Gonzalez, Jesus; Rodriguez, Fernando; Brazhkin, Vadim V; Sapelkin, Andrei

    2015-11-11

    Over the last two decades, it has been demonstrated that size effects have significant consequences for the atomic arrangements and phase behavior of matter under extreme pressure. Furthermore, it has been shown that an understanding of how size affects critical pressure-temperature conditions provides vital guidance in the search for materials with novel properties. Here, we report on the remarkable behavior of small (under ~5 nm) matrix-free Ge nanoparticles under hydrostatic compression that is drastically different from both larger nanoparticles and bulk Ge. We discover that the application of pressure drives surface-induced amorphization leading to Ge-Ge bond overcompression and eventually to a polyamorphic semiconductor-to-metal transformation. A combination of spectroscopic techniques together with ab initio simulations were employed to reveal the details of the transformation mechanism into a new high density phase-amorphous metallic Ge.

  10. Using pattern analysis methods to do fast detection of manufacturing pattern failures

    NASA Astrophysics Data System (ADS)

    Zhao, Evan; Wang, Jessie; Sun, Mason; Wang, Jeff; Zhang, Yifan; Sweis, Jason; Lai, Ya-Chieh; Ding, Hua

    2016-03-01

    At the advanced technology node, logic design has become extremely complex and is getting more challenging as the pattern geometry size decreases. The small sizes of layout patterns are becoming very sensitive to process variations. Meanwhile, the high pressure of yield ramp is always there due to time-to-market competition. The company that achieves patterning maturity earlier than others will have a great advantage and a better chance to realize maximum profit margins. For debugging silicon failures, DFT diagnostics can identify which nets or cells caused the yield loss. But normally, a long time period is needed with many resources to identify which failures are due to one common layout pattern or structure. This paper will present a new yield diagnostic flow, based on preliminary EFA results, to show how pattern analysis can more efficiently detect pattern related systematic defects. Increased visibility on design pattern related failures also allows more precise yield loss estimation.

  11. A fast time-difference inverse solver for 3D EIT with application to lung imaging.

    PubMed

    Javaherian, Ashkan; Soleimani, Manuchehr; Moeller, Knut

    2016-08-01

    A class of sparse optimization techniques that require solely matrix-vector products, rather than an explicit access to the forward matrix and its transpose, has been paid much attention in the recent decade for dealing with large-scale inverse problems. This study tailors application of the so-called Gradient Projection for Sparse Reconstruction (GPSR) to large-scale time-difference three-dimensional electrical impedance tomography (3D EIT). 3D EIT typically suffers from the need for a large number of voxels to cover the whole domain, so its application to real-time imaging, for example monitoring of lung function, remains scarce since the large number of degrees of freedom of the problem extremely increases storage space and reconstruction time. This study shows the great potential of the GPSR for large-size time-difference 3D EIT. Further studies are needed to improve its accuracy for imaging small-size anomalies.

  12. Evaluating small-body landing hazards due to blocks

    NASA Astrophysics Data System (ADS)

    Ernst, C.; Rodgers, D.; Barnouin, O.; Murchie, S.; Chabot, N.

    2014-07-01

    Introduction: Landed missions represent a vital stage of spacecraft exploration of planetary bodies. Landed science allows for a wide variety of measurements essential to unraveling the origin and evolution of a body that are not possible remotely, including but not limited to compositional measurements, microscopic grain characterization, and the physical properties of the regolith. To date, two spacecraft have performed soft landings on the surface of a small body. In 2001, the Near Earth Asteroid Rendezvous (NEAR) mission performed a controlled descent and landing on (433) Eros following the completion of its mission [1]; in 2005, the Hayabusa spacecraft performed two touch-and-go maneuvers at (25143) Itokawa [2]. Both landings were preceded by rendezvous spacecraft reconnaissance, which enabled selection of a safe landing site. Three current missions have plans to land on small bodies (Rosetta, Hayabusa 2, and OSIRIS-REx); several other mission concepts also include small-body landings. Small-body landers need to land at sites having slopes and block abundances within spacecraft design limits. Due to the small scale of the potential hazards, it can be difficult or impossible to fully characterize a landing surface before the arrival of the spacecraft at the body. Although a rendezvous mission phase can provide global reconnaissance from which a landing site can be chosen, reasonable a priori assurance that a safe landing site exists is needed to validate the design approach for the spacecraft. Method: Many robotic spacecraft have landed safely on the Moon and Mars. Images of these landing sites, as well as more recent, extremely high-resolution orbital datasets, have enabled the comparison of orbital block observations to the smaller blocks that pose hazards to landers. Analyses of the Surveyor [3], Viking 1 and 2, Mars Pathfinder, Phoenix, Spirit, Opportunity, and Curiosity landing sites [4--8] have indicated that for a reasonable difference in size (a factor of several to ten), the size-frequency distribution of blocks can be modeled, allowing extrapolation from large block distributions to estimate small block densities. From that estimate, the probability of a lander encountering hazardous blocks can be calculated for a given lander design. Such calculations are used routinely to vet candidate sites for Mars landers [5--8]. Application to Small Bodies: To determine whether a similar approach will work for small bodies, we must determine if the large and small block populations can be linked. To do so, we analyze the comprehensive block datasets for the intermediate-sized Eros [9,10] and the small Itokawa [11,12]. Global and local block size-frequency distributions for Eros and Itokawa have power-law slopes on the order of -3 and match reasonably well between larger block sizes (from lower-resolution images) and smaller block sizes (from higher-resolution images). Although absolute block densities differ regionally on each asteroid, the slopes match reasonably well between Itokawa and Eros, with the geologic implications of this result discussed in [10]. For Eros and Itokawa, the approach of extending the size-frequency distribution from large, tens-of-meter-sized blocks down to small, tens-of-centimeter-sized blocks using a power-law fit to the large population yields reasonable estimates of small block populations. It is important to note that geologic context matters for the absolute block density --- if the global counts include multiple geologic settings, they will not directly extend to local areas containing only one setting [10]. A small number of high-resolution images of Phobos are sufficient for measuring blocks. These images are concentrated in the area outside of Stickney crater, which is thought to be the source of most of the observed blocks [13]. Block counts by Thomas et al. [13] suggest a power-law slope similar to those of Eros [9] and Itokawa global counts, with the absolute density of blocks similar to that of global Eros. Because blocks tend to be more numerous proximal to large, young craters (e.g., Stickney on Phobos, Shoemaker on Eros), the block density across most of Phobos is likely to be lower than that observed in the available high-resolution images. We suggest that a power-law extrapolation of Eros or Phobos large-block distributions provides upper limits for assessing the block landing hazards faced by a Phobos lander.

  13. Grain Yield and Water Use Efficiency in Extremely-Late Sown Winter Wheat Cultivars under Two Irrigation Regimes in the North China Plain

    PubMed Central

    Wang, Bin; Zhang, Yinghua; Hao, Baozhen; Xu, Xuexin; Zhao, Zhigan; Wang, Zhimin; Xue, Qingwu

    2016-01-01

    Wheat production is threatened by water shortages and groundwater over-draft in the North China Plain (NCP). In recent years, winter wheat has been increasingly sown extremely late in early to mid-November after harvesting cotton or pepper. To improve water use efficiency (WUE) and guide the extremely late sowing practices, a 3-year field experiment was conducted under two irrigation regimes (W1, one-irrigation, 75 mm at jointing; W2, two-irrigation, 75 mm at jointing and 75 mm at anthesis) in 3 cultivars differing in spike size (HS4399, small spike; JM22, medium spike; WM8, large spike). Wheat was sown in early to mid-November at a high seeding rate of 800–850 seeds m−2. Average yields of 7.42 t ha−1 and WUE of 1.84 kg m−3 were achieved with an average seasonal evapotranspiration (ET) of 404 mm. Compared with W2, wheat under W1 did not have yield penalty in 2 of 3 years, and had 7.9% lower seasonal ET and 7.5% higher WUE. The higher WUE and stable yield under W1 was associated with higher 1000-grain weight (TGW) and harvest index (HI). Among the 3 cultivars, JM22 had 5.9%–8.9% higher yield and 4.2%–9.3% higher WUE than WM8 and HS4399. The higher yield in JM22 was attributed mainly to higher HI and TGW due to increased post-anthesis biomass and deeper seasonal soil water extraction. In conclusion, one-irrigation with a medium-sized spike cultivar JM22 could be a useful strategy to maintain yield and high WUE in extremely late-sown winter wheat at a high seeding rate in the NCP. PMID:27100187

  14. A Preliminary Study of the Preparation of Slurry Fuels from Vaporized Magnesium

    NASA Technical Reports Server (NTRS)

    Witzke, Walter R; Prok, George M; Walsh, Thomas J

    1954-01-01

    Slurry fuels containing extremely small particles of magnesium were prepared by concentrating the dilute slurry product resulting from the shock-cooling of magnesium metal vapors with a liquid hydrocarbon spray. A complete description of the equipment and procedure used in preparing the fuel is given. Ninety-five percent by weight of the solid particles formed by this process passed through a 100-mesh screen. The particle-size distribution of the screened fraction of one run, as determined by sedimentation analysis, indicated that 73 percent by weight of the metal particles were finer than 2 microns in equivalent spherical diameter. The purity of the solid particles ranged as high as 98.9 percent by weight of free magnesium. The screened product was concentrated by means of a bowl-type centrifuge from 0.5 to more than 50 percent by weight solids content to form an extremely viscous, clay-like mass. By addition of a surface active agent, this viscous material was converted into a pumpable slurry fuel.

  15. Regolith on Super Fast Rotators

    NASA Astrophysics Data System (ADS)

    Sanchez Lana, Diego Paul; Scheeres, Daniel J.

    2017-10-01

    The current understanding of small asteroids in the Solar System is that they are gravitational aggregates held together by gravitational, cohesive and adhesive forces. Results from the Hayabusa mission to Itokawa along with in situ, thermal and radar observations of asteroids have shown that they can be covered in a size distribution of grains that spans from microns to tens of meters. Before the Hayabusa mission, it was generally thought that smaller asteroids would likely be “regolith-free,” due to impact seismic shaking removing the loose covering. Given the regolith-rich surface of that body, it is now an open question whether even smaller bodies, down to a few meters in size, could also retain regolith covering. The question is especially compelling for the small-fast rotators, whose surface centripetal accelerations exceed their gravitational attraction. When the physical theory of cohesion is considered, it becomes possible for small-fast rotators to retain regolith.We use a Soft-Sphere discrete element method (SSDEM) code to simulate a longitudinal slice of a spherical monolith covered by cohesive regolith. The simulations are carried out in the body frame. Tensile strength is varied to span the observed strength of asteroids and spin rate is elevated in small steps until the majority of regolith is removed from the surface. The simulations show that under an increasing spin rate (such as due to the YORP effect), the regolith covering on an otherwise monolithic asteroid is preferentially lost across certain regions of the body. In general, regolith from the mid latitudes is the first to fail at high spin rates. This failure happens either by regolith flowing towards the equator or by detachment of large coherent chunks of material depending on the tensile strength of the regolith. Regolith from the equator region fails next, usually by the detachment of large pieces. Regolith from the poles stays in place unless the spin rates are extremely high. With these results we derive a scaling law that can be used to determine whether observed small asteroids could retain surface regolith of a given size. The implications of this for the interpretation of spectral observations of small asteroids are discussed.

  16. Near-Earth-object survey progress and population of small near-Earth asteroids

    NASA Astrophysics Data System (ADS)

    Harris, A.

    2014-07-01

    Estimating the total population vs. size of NEAs and the completion of surveys is the same thing since the total population is just the number discovered divided by the estimated completion. I review the method of completion estimation based on ratio of re-detected objects to total detections (known plus new discoveries). The method is quite general and can be used for population estimations of all sorts, from wildlife to various classes of solar system bodies. Since 2001, I have been making estimates of population and survey progress approximately every two years. Plotted below, left, is my latest estimate, including NEA discoveries up to August, 2012. I plan to present an update at the meeting. All asteroids of a given size are not equally easy to detect because of specific orbital geometries. Thus a model of the orbital distribution is necessary, and computer simulations using those orbits need to establish the relation between the raw re-detection ratio and the actual completion fraction. This can be done for any sub-group population, allowing to estimate the population of a subgroup and the expected current completion. Once a reliable survey computer model has been developed and ''calibrated'' with respect to actual survey re-detections versus size, it can be extrapolated to smaller sizes to estimate completion even at very small size where re-detections are rare or even zero. I have recently investigated the subgroup of extremely low encounter velocity NEAs, the class of interest for the Asteroid Redirect Mission (ARM), recently proposed by NASA. I found that asteroids of diameter ˜ 10 m with encounter velocity with the Earth lower than 2.5 km/sec are detected by current surveys nearly 1,000 times more efficiently than the general background of NEAs of that size. Thus the current completion of these slow relative velocity objects may be around 1%, compared to 10^{-6} for that size objects of the general velocity distribution. Current surveys are nowhere near complete, but there may be fewer such objects than have been suggested. This conclusion is reinforced by the fact that at least a couple such discovered objects are known to be not real asteroids but spent rocket bodies in heliocentric orbit, of which there are only of the order of a hundred. Brown et al. (Nature 503, 238-241, 2013, below right, green squares are a re-plot of my blue circles on left plot) recently suggested that the population of small NEAs in the size range from roughly 5 to 50 meters in diameter may have been substantially under-estimated. To be sure, the greatest uncertainty in population estimates is in that range, since there are very few bolide events to use for estimation, and the surveys are extremely incomplete in that size range, so a factor of 3 or so discrepancy is not significant. However, the population estimated from surveys carried still smaller, where the bolide frequency becomes more secure, disagrees from the bolide estimate by even less than a factor of 3 and in fact intersects at about 3 m diameter. On the other hand, the shallow-sloping size-frequency distribution derived from the sparse large bolide data diverges badly from the survey estimates, in sizes where the survey estimates become ever-increasingly reliable, even by 100-200 m diameter. It appears that the bolide data provides a good "anchor" of the population in the size range up to about 5 m diameter, but above that one might do better just connecting that population with a straight line (on a log-log plot) with the survey-determined population at larger size, 50-100 m diameter or so.

  17. Extreme fluctuations in stochastic network coordination with time delays

    NASA Astrophysics Data System (ADS)

    Hunt, D.; Molnár, F.; Szymanski, B. K.; Korniss, G.

    2015-12-01

    We study the effects of uniform time delays on the extreme fluctuations in stochastic synchronization and coordination problems with linear couplings in complex networks. We obtain the average size of the fluctuations at the nodes from the behavior of the underlying modes of the network. We then obtain the scaling behavior of the extreme fluctuations with system size, as well as the distribution of the extremes on complex networks, and compare them to those on regular one-dimensional lattices. For large complex networks, when the delay is not too close to the critical one, fluctuations at the nodes effectively decouple, and the limit distributions converge to the Fisher-Tippett-Gumbel density. In contrast, fluctuations in low-dimensional spatial graphs are strongly correlated, and the limit distribution of the extremes is the Airy density. Finally, we also explore the effects of nonlinear couplings on the stability and on the extremes of the synchronization landscapes.

  18. Dislocation creep accommodated Grain Boundary Sliding: A high strain rate/low temperature deformation mechanism in calcite ultramylonites

    NASA Astrophysics Data System (ADS)

    Rogowitz, Anna; Grasemann, Bernhard

    2014-05-01

    Grain boundary sliding (GBS) is an important grain size sensitive deformation mechanism that is often associated with extreme strain localization and superplasticity. Another mechanism has to operate simultaneously to GBS in order to prevent overlaps and voids between sliding grains. One of the most common accommodating mechanisms is diffusional creep but, recently, dislocation creep has been reported to operate simultaneous to GBS. Due to the formation of a flanking structure in nearly pure calcite marble on Syros (Cyclades, Greece) at lower greenschist facies conditions, an extremely fine grained ultramylonite developed. The microstructure of the layer is characterized by (1) calcite grains with an average grain size of 3.6 µm (developed by low temperature/high strain rate grain boundary migration recrystallization, BLG), (2) grain boundary triple junctions with nearly 120° angles and (3) small cavities preferentially located at triple junctions and at grain boundaries in extension. These features suggest that the dominant deformation mechanism was GBS. In order to get more information on the accommodation mechanism detailed microstructural and textural analyses have been performed on a FEI Quanta 3D FEG instrument equipped with an EDAX Digiview IV EBSD camera. The misorientation distribution curves for correlated and uncorrelated grains follow almost perfect the calculated theoretical curve for a random distribution, which is typical for polycrystalline material deformed by GBS. However, the crystallographic preferred orientation indicates that dislocation creep might have operated simultaneously. We also report Zener-Stroh cracks resulting from dislocation pile up, indicating that dislocation movement was active. We, therefore, conclude that the dominant deformation mechanism was dislocation creep accommodated grain boundary sliding. This is consistent with the observed grain size range that plots at the field boundary between grain size insensitive and grain size sensitive creep, in a deformation mechanism map for calcite.

  19. Small Spacecraft System-Level Design and Optimization for Interplanetary Trajectories

    NASA Technical Reports Server (NTRS)

    Spangelo, Sara; Dalle, Derek; Longmier, Ben

    2014-01-01

    The feasibility of an interplanetary mission for a CubeSat, a type of miniaturized spacecraft, that uses an emerging technology, the CubeSat Ambipolar Thruster (CAT) is investigated. CAT is a large delta-V propulsion system that uses a high-density plasma source that has been miniaturized for small spacecraft applications. An initial feasibility assessment that demonstrated escaping Low Earth Orbit (LEO) and achieving Earth-escape trajectories with a 3U CubeSat and this thruster technology was demonstrated in previous work. We examine a mission architecture with a trajectory that begins in Earth orbits such as LEO and Geostationary Earth Orbit (GEO) which escapes Earth orbit and travels to Mars, Jupiter, or Saturn. The goal was to minimize travel time to reach the destinations and considering trade-offs between spacecraft dry mass, fuel mass, and solar power array size. Sensitivities to spacecraft dry mass and available power are considered. CubeSats are extremely size, mass, and power constrained, and their subsystems are tightly coupled, limiting their performance potential. System-level modeling, simulation, and optimization approaches are necessary to find feasible and optimal operational solutions to ensure system-level interactions are modeled. Thus, propulsion, power/energy, attitude, and orbit transfer models are integrated to enable systems-level analysis and trades. The CAT technology broadens the possible missions achievable with small satellites. In particular, this technology enables more sophisticated maneuvers by small spacecraft such as polar orbit insertion from an equatorial orbit, LEO to GEO transfers, Earth-escape trajectories, and transfers to other interplanetary bodies. This work lays the groundwork for upcoming CubeSat launch opportunities and supports future development of interplanetary and constellation CubeSat and small satellite mission concepts.

  20. Endocrine Control of Exaggerated Trait Growth in Rhinoceros Beetles.

    PubMed

    Zinna, R; Gotoh, H; Brent, C S; Dolezal, A; Kraus, A; Niimi, T; Emlen, D; Lavine, L C

    2016-08-01

    Juvenile hormone (JH) is a key insect growth regulator frequently involved in modulating phenotypically plastic traits such as caste determination in eusocial species, wing polymorphisms in aphids, and mandible size in stag beetles. The jaw morphology of stag beetles is sexually-dimorphic and condition-dependent; males have larger jaws than females and those developing under optimum conditions are larger in overall body size and have disproportionately larger jaws than males raised under poor conditions. We have previously shown that large males have higher JH titers than small males during development, and ectopic application of fenoxycarb (JH analog) to small males can induce mandibular growth similar to that of larger males. What remains unknown is whether JH regulates condition-dependent trait growth in other insects with extreme sexually selected structures. In this study, we tested the hypothesis that JH mediates the condition-dependent expression of the elaborate horns of the Asian rhinoceros beetle, Trypoxylus dichotomus. The sexually dimorphic head horn of this beetle is sensitive to nutritional state during larval development. Like stag beetles, male rhinoceros beetles receiving copious food produce disproportionately large horns for their body size compared with males under restricted diets. We show that JH titers are correlated with body size during the late feeding and early prepupal periods, but this correlation disappears by the late prepupal period, the period of maximum horn growth. While ectopic application of fenoxycarb during the third larval instar significantly delayed pupation, it had no effect on adult horn size relative to body size. Fenoxycarb application to late prepupae also had at most a marginal effect on relative horn size. We discuss our results in context of other endocrine signals of condition-dependent trait exaggeration and suggest that different beetle lineages may have co-opted different physiological signaling mechanisms to achieve heightened nutrient-sensitive weapon growth. © The Author 2016. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  1. Miniaturized mitogenome of the parasitic plant Viscum scurruloideum is extremely divergent and dynamic and has lost all nad genes

    PubMed Central

    Skippington, Elizabeth; Barkman, Todd J.; Rice, Danny W.; Palmer, Jeffrey D.

    2015-01-01

    Despite the enormous diversity among parasitic angiosperms in form and structure, life-history strategies, and plastid genomes, little is known about the diversity of their mitogenomes. We report the sequence of the wonderfully bizarre mitogenome of the hemiparasitic aerial mistletoe Viscum scurruloideum. This genome is only 66 kb in size, making it the smallest known angiosperm mitogenome by a factor of more than three and the smallest land plant mitogenome. Accompanying this size reduction is exceptional reduction of gene content. Much of this reduction arises from the unexpected loss of respiratory complex I (NADH dehydrogenase), universally present in all 300+ other angiosperms examined, where it is encoded by nine mitochondrial and many nuclear nad genes. Loss of complex I in a multicellular organism is unprecedented. We explore the potential relationship between this loss in Viscum and its parasitic lifestyle. Despite its small size, the Viscum mitogenome is unusually rich in recombinationally active repeats, possessing unparalleled levels of predicted sublimons resulting from recombination across short repeats. Many mitochondrial gene products exhibit extraordinary levels of divergence in Viscum, indicative of highly relaxed if not positive selection. In addition, all Viscum mitochondrial protein genes have experienced a dramatic acceleration in synonymous substitution rates, consistent with the hypothesis of genomic streamlining in response to a high mutation rate but completely opposite to the pattern seen for the high-rate but enormous mitogenomes of Silene. In sum, the Viscum mitogenome possesses a unique constellation of extremely unusual features, a subset of which may be related to its parasitic lifestyle. PMID:26100885

  2. Lower Extremity Reconstruction with Free Gracilis Flaps

    PubMed Central

    Nicoson, Michael C; Parikh, Rajiv P; Tung, Thomas H

    2017-01-01

    Background There have been significant advancements in lower extremity reconstruction over the last several decades, and the plastic surgeon’s armamentarium has grown to include free muscle and fasciocutaneous flaps along with local perforator and propeller flaps. While we have found a use for a variety of techniques for lower extremity reconstruction, the free gracilis has been our workhorse flap due to the ease of harvest, reliability, and low donor site morbidity. Methods This is a retrospective review of a single surgeon’s series of free gracilis flaps utilized for lower extremity reconstruction. Demographic information, comorbidities, outcomes and secondary procedures were analyzed. Results We identified 24 free gracilis flaps. The duration from injury to free flap coverage was 7 days or less in 6 patients, 8–30 days in 11 patients, 31–90 days in 4 patients, and > 90 days in 3 patients. There were 22 (92%) successful flaps and an overall limb salvage rate of 92%. There was one partial flap loss. Two flaps underwent incision and drainage in the operating room for infection. Two patients developed donor site hematomas. Four patients underwent secondary procedures for contouring. Our subset of pediatric patients had 100% flap survival and no secondary procedures at a mean 30 month follow up. Conclusions This study demonstrates the utility of the free gracilis flap in reconstruction of small to medium sized defects of the lower extremity. This flap has a high success rate and low donor site morbidity. Atrophy of the denervated muscle over time allows for good shoe fit, often obviating the need for secondary contouring procedures. PMID:28024305

  3. Structural Extremes in a Cretaceous Dinosaur

    PubMed Central

    Sereno, Paul C.; Wilson, Jeffrey A.; Witmer, Lawrence M.; Whitlock, John A.; Maga, Abdoulaye; Ide, Oumarou; Rowe, Timothy A.

    2007-01-01

    Fossils of the Early Cretaceous dinosaur, Nigersaurus taqueti, document for the first time the cranial anatomy of a rebbachisaurid sauropod. Its extreme adaptations for herbivory at ground-level challenge current hypotheses regarding feeding function and feeding strategy among diplodocoids, the larger clade of sauropods that includes Nigersaurus. We used high resolution computed tomography, stereolithography, and standard molding and casting techniques to reassemble the extremely fragile skull. Computed tomography also allowed us to render the first endocast for a sauropod preserving portions of the olfactory bulbs, cerebrum and inner ear, the latter permitting us to establish habitual head posture. To elucidate evidence of tooth wear and tooth replacement rate, we used photographic-casting techniques and crown thin sections, respectively. To reconstruct its 9-meter postcranial skeleton, we combined and size-adjusted multiple partial skeletons. Finally, we used maximum parsimony algorithms on character data to obtain the best estimate of phylogenetic relationships among diplodocoid sauropods. Nigersaurus taqueti shows extreme adaptations for a dinosaurian herbivore including a skull of extremely light construction, tooth batteries located at the distal end of the jaws, tooth replacement as fast as one per month, an expanded muzzle that faces directly toward the ground, and hollow presacral vertebral centra with more air sac space than bone by volume. A cranial endocast provides the first reasonably complete view of a sauropod brain including its small olfactory bulbs and cerebrum. Skeletal and dental evidence suggests that Nigersaurus was a ground-level herbivore that gathered and sliced relatively soft vegetation, the culmination of a low-browsing feeding strategy first established among diplodocoids during the Jurassic. PMID:18030355

  4. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs

    PubMed Central

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10−13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs. PMID:27355212

  5. Rain Characteristics and Large-Scale Environments of Precipitation Objects with Extreme Rain Volumes from TRMM Observations

    NASA Technical Reports Server (NTRS)

    Zhou, Yaping; Lau, William K M.; Liu, Chuntao

    2013-01-01

    This study adopts a "precipitation object" approach by using 14 years of Tropical Rainfall Measuring Mission (TRMM) Precipitation Feature (PF) and National Centers for Environmental Prediction (NCEP) reanalysis data to study rainfall structure and environmental factors associated with extreme heavy rain events. Characteristics of instantaneous extreme volumetric PFs are examined and compared to those of intermediate and small systems. It is found that instantaneous PFs exhibit a much wider scale range compared to the daily gridded precipitation accumulation range. The top 1% of the rainiest PFs contribute over 55% of total rainfall and have 2 orders of rain volume magnitude greater than those of the median PFs. We find a threshold near the top 10% beyond which the PFs grow exponentially into larger, deeper, and colder rain systems. NCEP reanalyses show that midlevel relative humidity and total precipitable water increase steadily with increasingly larger PFs, along with a rapid increase of 500 hPa upward vertical velocity beyond the top 10%. This provides the necessary moisture convergence to amplify and sustain the extreme events. The rapid increase in vertical motion is associated with the release of convective available potential energy (CAPE) in mature systems, as is evident in the increase in CAPE of PFs up to 10% and the subsequent dropoff. The study illustrates distinct stages in the development of an extreme rainfall event including: (1) a systematic buildup in large-scale temperature and moisture, (2) a rapid change in rain structure, (3) explosive growth of the PF size, and (4) a release of CAPE before the demise of the event.

  6. Multiplex APLP System for High-Resolution Haplogrouping of Extremely Degraded East-Asian Mitochondrial DNAs.

    PubMed

    Kakuda, Tsuneo; Shojo, Hideki; Tanaka, Mayumi; Nambiar, Phrabhakaran; Minaguchi, Kiyoshi; Umetsu, Kazuo; Adachi, Noboru

    2016-01-01

    Mitochondrial DNA (mtDNA) serves as a powerful tool for exploring matrilineal phylogeographic ancestry, as well as for analyzing highly degraded samples, because of its polymorphic nature and high copy numbers per cell. The recent advent of complete mitochondrial genome sequencing has led to improved techniques for phylogenetic analyses based on mtDNA, and many multiplex genotyping methods have been developed for the hierarchical analysis of phylogenetically important mutations. However, few high-resolution multiplex genotyping systems for analyzing East-Asian mtDNA can be applied to extremely degraded samples. Here, we present a multiplex system for analyzing mitochondrial single nucleotide polymorphisms (mtSNPs), which relies on a novel amplified product-length polymorphisms (APLP) method that uses inosine-flapped primers and is specifically designed for the detailed haplogrouping of extremely degraded East-Asian mtDNAs. We used fourteen 6-plex polymerase chain reactions (PCRs) and subsequent electrophoresis to examine 81 haplogroup-defining SNPs and 3 insertion/deletion sites, and we were able to securely assign the studied mtDNAs to relevant haplogroups. Our system requires only 1×10-13 g (100 fg) of crude DNA to obtain a full profile. Owing to its small amplicon size (<110 bp), this new APLP system was successfully applied to extremely degraded samples for which direct sequencing of hypervariable segments using mini-primer sets was unsuccessful, and proved to be more robust than conventional APLP analysis. Thus, our new APLP system is effective for retrieving reliable data from extremely degraded East-Asian mtDNAs.

  7. Global Weirding? - Using Very Large Ensembles and Extreme Value Theory to assess Changes in Extreme Weather Events Today

    NASA Astrophysics Data System (ADS)

    Otto, F. E. L.; Mitchell, D.; Sippel, S.; Black, M. T.; Dittus, A. J.; Harrington, L. J.; Mohd Saleh, N. H.

    2014-12-01

    A shift in the distribution of socially-relevant climate variables such as daily minimum winter temperatures and daily precipitation extremes, has been attributed to anthropogenic climate change for various mid-latitude regions. However, while there are many process-based arguments suggesting also a change in the shape of these distributions, attribution studies demonstrating this have not currently been undertaken. Here we use a very large initial condition ensemble of ~40,000 members simulating the European winter 2013/2014 using the distributed computing infrastructure under the weather@home project. Two separate scenarios are used:1. current climate conditions, and 2. a counterfactual scenario of "world that might have been" without anthropogenic forcing. Specifically focusing on extreme events, we assess how the estimated parameters of the Generalized Extreme Value (GEV) distribution vary depending on variable-type, sampling frequency (daily, monthly, …) and geographical region. We find that the location parameter changes for most variables but, depending on the region and variables, we also find significant changes in scale and shape parameters. The very large ensemble allows, furthermore, to assess whether such findings in the fitted GEV distributions are consistent with an empirical analysis of the model data, and whether the most extreme data still follow a known underlying distribution that in a small sample size might otherwise be thought of as an out-lier. The ~40,000 member ensemble is simulated using 12 different SST patterns (1 'observed', and 11 best guesses of SSTs with no anthropogenic warming). The range in SSTs, along with the corresponding changings in the NAO and high-latitude blocking inform on the dynamics governing some of these extreme events. While strong tele-connection patterns are not found in this particular experiment, the high number of simulated extreme events allows for a more thorough analysis of the dynamics than has been performed before. Therefore, combining extreme value theory with very large ensemble simulations allows us to understand the dynamics of changes in extreme events which is not possible just using the former but also shows in which cases statistics combined with smaller ensembles give as valid results as very large initial conditions.

  8. The cost of large numbers of hypothesis tests on power, effect size and sample size.

    PubMed

    Lazzeroni, L C; Ray, A

    2012-01-01

    Advances in high-throughput biology and computer science are driving an exponential increase in the number of hypothesis tests in genomics and other scientific disciplines. Studies using current genotyping platforms frequently include a million or more tests. In addition to the monetary cost, this increase imposes a statistical cost owing to the multiple testing corrections needed to avoid large numbers of false-positive results. To safeguard against the resulting loss of power, some have suggested sample sizes on the order of tens of thousands that can be impractical for many diseases or may lower the quality of phenotypic measurements. This study examines the relationship between the number of tests on the one hand and power, detectable effect size or required sample size on the other. We show that once the number of tests is large, power can be maintained at a constant level, with comparatively small increases in the effect size or sample size. For example at the 0.05 significance level, a 13% increase in sample size is needed to maintain 80% power for ten million tests compared with one million tests, whereas a 70% increase in sample size is needed for 10 tests compared with a single test. Relative costs are less when measured by increases in the detectable effect size. We provide an interactive Excel calculator to compute power, effect size or sample size when comparing study designs or genome platforms involving different numbers of hypothesis tests. The results are reassuring in an era of extreme multiple testing.

  9. An oculomotor continuum from exploration to fixation

    PubMed Central

    Otero-Millan, Jorge; Macknik, Stephen L.; Langston, Rachel E.; Martinez-Conde, Susana

    2013-01-01

    During visual exploration, saccadic eye movements scan the scene for objects of interest. During attempted fixation, the eyes are relatively still but often produce microsaccades. Saccadic rates during exploration are higher than those of microsaccades during fixation, reinforcing the classic view that exploration and fixation are two distinct oculomotor behaviors. An alternative model is that fixation and exploration are not dichotomous, but are instead two extremes of a functional continuum. Here, we measured the eye movements of human observers as they either fixed their gaze on a small spot or scanned natural scenes of varying sizes. As scene size diminished, so did saccade rates, until they were continuous with microsaccadic rates during fixation. Other saccadic properties varied as function of image size as well, forming a continuum with microsaccadic parameters during fixation. This saccadic continuum extended to nonrestrictive, ecological viewing conditions that allowed all types of saccades and fixation positions. Eye movement simulations moreover showed that a single model of oculomotor behavior can explain the saccadic continuum from exploration to fixation, for images of all sizes. These findings challenge the view that exploration and fixation are dichotomous, suggesting instead that visual fixation is functionally equivalent to visual exploration on a spatially focused scale. PMID:23533278

  10. The Characteristics of Extreme Erosion Events in a Small Mountainous Watershed

    PubMed Central

    Fang, Nu-Fang; Shi, Zhi-Hua; Yue, Ben-Jiang; Wang, Ling

    2013-01-01

    A large amount of soil loss is caused by a small number of extreme events that are mainly responsible for the time compression of geomorphic processes. The aim of this study was to analyze suspended sediment transport during extreme erosion events in a mountainous watershed. Field measurements were conducted in Wangjiaqiao, a small agricultural watershed (16.7 km2) in the Three Gorges Area (TGA) of China. Continuous records were used to analyze suspended sediment transport regimes and assess the sediment loads of 205 rainfall–runoff events during a period of 16 hydrological years (1989–2004). Extreme events were defined as the largest events, ranked in order of their absolute magnitude (representing the 95th percentile). Ten extreme erosion events from 205 erosion events, representing 83.8% of the total suspended sediment load, were selected for study. The results of canonical discriminant analysis indicated that extreme erosion events are characterized by high maximum flood-suspended sediment concentrations, high runoff coefficients, and high flood peak discharge, which could possibly be explained by the transport of deposited sediment within the stream bed during previous events or bank collapses. PMID:24146898

  11. Homo floresiensis-like fossils from the early Middle Pleistocene of Flores.

    PubMed

    van den Bergh, Gerrit D; Kaifu, Yousuke; Kurniawan, Iwan; Kono, Reiko T; Brumm, Adam; Setiyabudi, Erick; Aziz, Fachroel; Morwood, Michael J

    2016-06-09

    The evolutionary origin of Homo floresiensis, a diminutive hominin species previously known only by skeletal remains from Liang Bua in western Flores, Indonesia, has been intensively debated. It is a matter of controversy whether this primitive form, dated to the Late Pleistocene, evolved from early Asian Homo erectus and represents a unique and striking case of evolutionary reversal in hominin body and brain size within an insular environment. The alternative hypothesis is that H. floresiensis derived from an older, smaller-brained member of our genus, such as Homo habilis, or perhaps even late Australopithecus, signalling a hitherto undocumented dispersal of hominins from Africa into eastern Asia by two million years ago (2 Ma). Here we describe hominin fossils excavated in 2014 from an early Middle Pleistocene site (Mata Menge) in the So'a Basin of central Flores. These specimens comprise a mandible fragment and six isolated teeth belonging to at least three small-jawed and small-toothed individuals. Dating to ~0.7 Ma, these fossils now constitute the oldest hominin remains from Flores. The Mata Menge mandible and teeth are similar in dimensions and morphological characteristics to those of H. floresiensis from Liang Bua. The exception is the mandibular first molar, which retains a more primitive condition. Notably, the Mata Menge mandible and molar are even smaller in size than those of the two existing H. floresiensis individuals from Liang Bua. The Mata Menge fossils are derived compared with Australopithecus and H. habilis, and so tend to support the view that H. floresiensis is a dwarfed descendent of early Asian H. erectus. Our findings suggest that hominins on Flores had acquired extremely small body size and other morphological traits specific to H. floresiensis at an unexpectedly early time.

  12. Extreme Temperature Performance of Automotive-Grade Small Signal Bipolar Junction Transistors

    NASA Technical Reports Server (NTRS)

    Boomer, Kristen; Damron, Benny; Gray, Josh; Hammoud, Ahmad

    2018-01-01

    Electronics designed for space exploration missions must display efficient and reliable operation under extreme temperature conditions. For example, lunar outposts, Mars rovers and landers, James Webb Space Telescope, Europa orbiter, and deep space probes represent examples of missions where extreme temperatures and thermal cycling are encountered. Switching transistors, small signal as well as power level devices, are widely used in electronic controllers, data instrumentation, and power management and distribution systems. Little is known, however, about their performance in extreme temperature environments beyond their specified operating range; in particular under cryogenic conditions. This report summarizes preliminary results obtained on the evaluation of commercial-off-the-shelf (COTS) automotive-grade NPN small signal transistors over a wide temperature range and thermal cycling. The investigations were carried out to establish a baseline on functionality of these transistors and to determine suitability for use outside their recommended temperature limits.

  13. The spatial distribution of threats to plant species with extremely small populations

    NASA Astrophysics Data System (ADS)

    Wang, Chunjing; Zhang, Jing; Wan, Jizhong; Qu, Hong; Mu, Xianyun; Zhang, Zhixiang

    2017-03-01

    Many biological conservationists take actions to conserve plant species with extremely small populations (PSESP) in China; however, there have been few studies on the spatial distribution of threats to PSESP. Hence, we selected distribution data of PSESP and made a map of the spatial distribution of threats to PSESP in China. First, we used the weight assignment method to evaluate the threat risk to PSESP at both country and county scales. Second, we used a geographic information system to map the spatial distribution of threats to PSESP, and explored the threat factors based on linear regression analysis. Finally, we suggested some effective conservation options. We found that the PSESP with high values of protection, such as the plants with high scientific research values and ornamental plants, were threatened by over-exploitation and utilization, habitat fragmentation, and a small sized wild population in broad-leaved forests and bush fallows. We also identified some risk hotspots for PSESP in China. Regions with low elevation should be given priority for ex- and in-situ conservation. Moreover, climate change should be considered for conservation of PSESP. To avoid intensive over-exploitation or utilization and habitat fragmentation, in-situ conservation should be practiced in regions with high temperatures and low temperature seasonality, particularly in the high risk hotspots for PSESP that we proposed. Ex-situ conservation should be applied in these same regions, and over-exploitation and utilization of natural resources should be prevented. It is our goal to apply the concept of PSESP to the global scale in the future.

  14. Intermediate Pond Sizes Contain the Highest Density, Richness, and Diversity of Pond-Breeding Amphibians

    PubMed Central

    Semlitsch, Raymond D.; Peterman, William E.; Anderson, Thomas L.; Drake, Dana L.; Ousterhout, Brittany H.

    2015-01-01

    We present data on amphibian density, species richness, and diversity from a 7140-ha area consisting of 200 ponds in the Midwestern U.S. that represents most of the possible lentic aquatic breeding habitats common in this region. Our study includes all possible breeding sites with natural and anthropogenic disturbance processes that can be missing from studies where sampling intensity is low, sample area is small, or partial disturbance gradients are sampled. We tested whether pond area was a significant predictor of density, species richness, and diversity of amphibians and if values peaked at intermediate pond areas. We found that in all cases a quadratic model fit our data significantly better than a linear model. Because small ponds have a high probability of pond drying and large ponds have a high probability of fish colonization and accumulation of invertebrate predators, drying and predation may be two mechanisms driving the peak of density and diversity towards intermediate values of pond size. We also found that not all intermediate sized ponds produced many larvae; in fact, some had low amphibian density, richness, and diversity. Further analyses of the subset of ponds represented in the peak of the area distribution showed that fish, hydroperiod, invertebrate density, and canopy are additional factors that drive density, richness and diversity of ponds up or down, when extremely small or large ponds are eliminated. Our results indicate that fishless ponds at intermediate sizes are more diverse, produce more larvae, and have greater potential to recruit juveniles into adult populations of most species sampled. Further, hylid and chorus frogs are found predictably more often in ephemeral ponds whereas bullfrogs, green frogs, and cricket frogs are found most often in permanent ponds with fish. Our data increase understanding of what factors structure and maintain amphibian diversity across large landscapes. PMID:25906355

  15. Lattice Boltzmann simulation of immiscible displacement in the cavity with different channel configurations

    NASA Astrophysics Data System (ADS)

    Lou, Qin; Zang, Chenqiang; Yang, Mo; Xu, Hongtao

    In this work, the immiscible displacement in a cavity with different channel configurations is studied using an improved pseudo-potential lattice Boltzmann equation (LBE) model. This model overcomes the drawback of the dependence of the fluid properties on the grid size, which exists in the original pseudo-potential LBE model. The approach is first validated by the Laplace law. Then, it is employed to study the immiscible displacement process. The influences of different factors, such as the surface wettability, the distance between the gas cavity and liquid cavity and the surface roughness of the channel are investigated. Numerical results show that the displacement efficiency increases and the displacement time decreases with the increase of the surface contact angle. On the other hand, the displacement efficiency increases with increasing distance between the gas cavity and the liquid cavity at first and finally reaches a constant value. As for the surface roughness, two structures (a semicircular cavity and a semicircular bulge) are studied. The comprehensive results show that although the displacement processes for both the structures depend on the surface wettability, they present quite different behaviors. Specially, for the roughness structure constituted by the semicircular cavity, the displacement efficiency decreases and displacement time increases evidently with the size of the semicircular cavity for the small contact angle. The trend slows down as the increase of the contact angle. Once the contact angle exceeds a certain value, the size of the semicircular cavity almost has no influence on the displacement process. While for the roughness structure of a semicircular bulge, the displacement efficiency increases with the size of bulge first and then it decreases for the small contact angle. The displacement efficiency increases first and finally reaches a constant for the large contact angle. The results also show that the displacement time has an extreme value in these cases for the small contact angles.

  16. Very Low Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Takuma, Suda; Honda, Satoshi; Lee, Young Sun

    2015-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) have yet to be well explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013, AJ, 145, 13). The effective temperatures of these stars are 4500--5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres have obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010, ApJL 723, L201), and the other exhibits low abundances of the alpha-elements and odd-Z elements, suggested to be the signatures of the yields of very massive stars ( >100 solar masses; Aoki et al. 2014, Science 345, 912). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  17. Very Low-Mass Stars with Extremely Low Metallicity in the Milky Way's Halo

    NASA Astrophysics Data System (ADS)

    Aoki, Wako; Beers, Timothy C.; Suda, Takuma; Honda, Satoshi; Lee, Young Sun

    2016-08-01

    Large surveys and follow-up spectroscopic studies in the past few decades have been providing chemical abundance data for a growing number of very metal-poor ([Fe/H] <-2) stars. Most of them are red giants or main-sequence turn-off stars having masses near 0.8 solar masses. Lower mass stars with extremely low metallicity ([Fe/H] <-3) are yet to be explored. Our high-resolution spectroscopic study for very metal-poor stars found with SDSS has identified four cool main-sequence stars with [Fe/H] <-2.5 among 137 objects (Aoki et al. 2013). The effective temperatures of these stars are 4500-5000 K, corresponding to a mass of around 0.5 solar masses. Our standard analysis of the high-resolution spectra based on 1D-LTE model atmospheres has obtained self-consistent chemical abundances for these objects, assuming small values of micro-turbulent velocities compared with giants and turn-off stars. The low temperature of the atmospheres of these objects enables us to measure their detailed chemical abundances. Interestingly, two of the four stars have extreme chemical-abundance patterns: one has the largest excesses of heavy neutron-capture elements associated with the r-process abundance pattern known to date (Aoki et al. 2010), and the other exhibits low abundances of the α-elements and odd-Z elements, suggested to be signatures of the yields of very massive stars (> 100 solar masses; Aoki et al. 2014). Although the sample size is still small, these results indicate the potential of very low-mass stars as probes to study the early stages of the Milky Way's halo formation.

  18. Research groups: How big should they be?

    PubMed

    Cook, Isabelle; Grange, Sam; Eyre-Walker, Adam

    2015-01-01

    Understanding the relationship between scientific productivity and research group size is important for deciding how science should be funded. We have investigated the relationship between these variables in the life sciences in the United Kingdom using data from 398 principle investigators (PIs). We show that three measures of productivity, the number of publications, the impact factor of the journals in which papers are published and the number of citations, are all positively correlated to group size, although they all show a pattern of diminishing returns-doubling group size leads to less than a doubling in productivity. The relationships for the impact factor and the number of citations are extremely weak. Our analyses suggest that an increase in productivity will be achieved by funding more PIs with small research groups, unless the cost of employing post-docs and PhD students is less than 20% the cost of a PI. We also provide evidence that post-docs are more productive than PhD students both in terms of the number of papers they produce and where those papers are published.

  19. Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition

    DOE PAGES

    Miura, Masashi; Maiorov, Boris Alfredo; Sato, Michio; ...

    2017-11-17

    Because of pressing global environmental challenges, focus has been placed on materials for efficient energy use, and this has triggered the search for nanostructural modification methods to improve performance. Achieving a high density of tunable-sized second-phase nanoparticles while ensuring the matrix remains intact is a long-sought goal. In this paper, we present an effective, scalable method to achieve this goal using metal organic deposition in a perovskite system REBa 2Cu 3O 7 (rare earth (RE)) that enhances the superconducting properties to surpass that of previous achievements. We present two industrially compatible routes to tune the nanoparticle size by controlling diffusionmore » during the nanoparticle formation stage by selecting the second-phase material and modulating the precursor composition spatially. Combining these routes leads to an extremely high density (8 × 10 22 m -3) of small nanoparticles (7 nm) that increase critical currents and reduce detrimental effects of thermal fluctuations at all magnetic field strengths and temperatures. This method can be directly applied to other perovskite materials where nanoparticle addition is beneficial.« less

  20. Magnetic nanorings and manipulation of nanowires

    NASA Astrophysics Data System (ADS)

    Chien, C. L.

    2006-03-01

    The properties of nanoscale entities, such as nanorings and nanowires, and the response of such entities to external fields are dictated by their geometrical shapes and sizes, which can be manipulated by fabrication. We have developed a method for fabricating a large number of nanorings (10^10) of different sizes in the range of 100 nm and ring cross sections. During magnetic reversal, both the vortex state and the rotating onion state appear with different proportions, which depend on the ring diameter, ring cross section, and the profile of the ring cross section. In the case of nanowires in suspension, the large aspect ratio of the nanowires can be exploited for manipulation despite extremely small Reynolds numbers of 10-5. Using AC electric field applied to microelectrodes, both magnetic and non-magnetic nanowires can be efficiently assembled into desired patterns. We also demonstrate rotation of nanowires with precisely controlled rotation speed and chirality, as well as an electrically driven nanowire micromotor a few in size. In collaboration with F. Q. Zhu, D. L. Fan, O. Tchernyshyov, R. C. Cammarata (Johns Hopkins University) and X. C. Zhu and J. G. Zhu (Carnegie-Mellon University).

  1. Tuning nanoparticle size for enhanced functionality in perovskite thin films deposited by metal organic deposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, Masashi; Maiorov, Boris Alfredo; Sato, Michio

    Because of pressing global environmental challenges, focus has been placed on materials for efficient energy use, and this has triggered the search for nanostructural modification methods to improve performance. Achieving a high density of tunable-sized second-phase nanoparticles while ensuring the matrix remains intact is a long-sought goal. In this paper, we present an effective, scalable method to achieve this goal using metal organic deposition in a perovskite system REBa 2Cu 3O 7 (rare earth (RE)) that enhances the superconducting properties to surpass that of previous achievements. We present two industrially compatible routes to tune the nanoparticle size by controlling diffusionmore » during the nanoparticle formation stage by selecting the second-phase material and modulating the precursor composition spatially. Combining these routes leads to an extremely high density (8 × 10 22 m -3) of small nanoparticles (7 nm) that increase critical currents and reduce detrimental effects of thermal fluctuations at all magnetic field strengths and temperatures. This method can be directly applied to other perovskite materials where nanoparticle addition is beneficial.« less

  2. Insect Detection of Small Targets Moving in Visual Clutter

    PubMed Central

    Barnett, Paul D; O'Carroll, David C

    2006-01-01

    Detection of targets that move within visual clutter is a common task for animals searching for prey or conspecifics, a task made even more difficult when a moving pursuer needs to analyze targets against the motion of background texture (clutter). Despite the limited optical acuity of the compound eye of insects, this challenging task seems to have been solved by their tiny visual system. Here we describe neurons found in the male hoverfly,Eristalis tenax, that respond selectively to small moving targets. Although many of these target neurons are inhibited by the motion of a background pattern, others respond to target motion within the receptive field under a surprisingly large range of background motion stimuli. Some neurons respond whether or not there is a speed differential between target and background. Analysis of responses to very small targets (smaller than the size of the visual field of single photoreceptors) or those targets with reduced contrast shows that these neurons have extraordinarily high contrast sensitivity. Our data suggest that rejection of background motion may result from extreme selectivity for small targets contrasting against local patches of the background, combined with this high sensitivity, such that background patterns rarely contain features that satisfactorily drive the neuron. PMID:16448249

  3. Simple and fast orotracheal intubation procedure in rats.

    PubMed

    Tomasello, Giovanni; Damiani, Francesco; Cassata, Giovanni; Palumbo, Vincenzo Davide; Sinagra, Emanuele; Damiani, Provvidenza; Bruno, Antonino; Cicero, Luca; Cupido, Francesco; Carini, Francesco; Lo Monte, Attilio Ignazio

    2016-05-06

    Endotracheal intubation in the rat is difficult because of the extremely small size of anatomical structures (oral cavity, epiglottis and vocal cords), small inlet for an endotracheal tube and the lack of proper technical instruments. In this study we used seventy rats weighting 400-500 g. The equipment needed for the intubation was an operating table, a longish of cotton, a cotton tip, orotracheal tube, neonatal laryngoscope blades, KTR4 small animal ventilator and isoflurane for inhalation anaesthesia. Premedication was carried out by medetomidine hydrochloride 1 mg/mL; then, thanks to a closed glass chamber, a mixture of oxygen and isoflurane was administered. By means of a neonatal laryngoscope the orotracheal tube was advanced into the oral cavity until the wire guide was visualized trough the vocal cords; then it was passed through them. The tube was introduced directly into the larynx over the wire guide; successively, the guide was removed and the tube placed into the trachea. Breathing was confirmed using a glove, cut at the end of a finger, simulating a small balloon. We achieved a fast and simple orotracheal intubation in all animals employed. We believe that our procedure is easier and faster than those previously reported in scientific literature.

  4. Equilibrium shape of 4He crystal under zero gravity below 200 mK

    PubMed Central

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-01-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. 4He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of 4He. We report the relaxation processes of macroscopic 4He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened 4He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff’s origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained. PMID:26601315

  5. Fat-tailed fluctuations in the size of organizations: the role of social influence.

    PubMed

    Mondani, Hernan; Holme, Petter; Liljeros, Fredrik

    2014-01-01

    Organizational growth processes have consistently been shown to exhibit a fatter-than-Gaussian growth-rate distribution in a variety of settings. Long periods of relatively small changes are interrupted by sudden changes in all size scales. This kind of extreme events can have important consequences for the development of biological and socio-economic systems. Existing models do not derive this aggregated pattern from agent actions at the micro level. We develop an agent-based simulation model on a social network. We take our departure in a model by a Schwarzkopf et al. on a scale-free network. We reproduce the fat-tailed pattern out of internal dynamics alone, and also find that it is robust with respect to network topology. Thus, the social network and the local interactions are a prerequisite for generating the pattern, but not the network topology itself. We further extend the model with a parameter δ that weights the relative fraction of an individual's neighbours belonging to a given organization, representing a contextual aspect of social influence. In the lower limit of this parameter, the fraction is irrelevant and choice of organization is random. In the upper limit of the parameter, the largest fraction quickly dominates, leading to a winner-takes-all situation. We recover the real pattern as an intermediate case between these two extremes.

  6. Equilibrium shape of (4)He crystal under zero gravity below 200 mK.

    PubMed

    Takahashi, Takuya; Ohuchi, Haruka; Nomura, Ryuji; Okuda, Yuichi

    2015-10-01

    Equilibrium crystal shape is the lowest energy crystal shape that is hardly realized in ordinary crystals because of their slow relaxation. (4)He quantum crystals in a superfluid have been expected as unique exceptions that grow extremely fast at very low temperatures. However, on the ground, gravity considerably deforms the crystals and conceals the equilibrium crystal shape, and thus, gravity-free environment is needed to observe the equilibrium shape of (4)He. We report the relaxation processes of macroscopic (4)He crystals in a superfluid below 200 mK under zero gravity using a parabolic flight of a jet plane. When gravity was removed from a gravity-flattened (4)He crystal, the crystal rapidly transformed into a shape with flat surfaces. Although the relaxation processes were highly dependent on the initial condition, the crystals relaxed to a nearly homothetic shape in the end, indicating that they were truly in an equilibrium shape minimizing the interfacial free energy. Thanks to the equilibrium shape, we were able to determine the Wulff's origin and the size of the c-facet together with the vicinal surface profile next to the c-facet. The c-facet size was extremely small in the quantum crystals, and the facet-like flat surfaces were found to be the vicinal surfaces. At the same time, the interfacial free energy of the a-facet and s-facet was also obtained.

  7. Theoretical and experimental insights into the origin of the catalytic activity of subnanometric gold clusters: attempts to predict reactivity with clusters and nanoparticles of gold.

    PubMed

    Boronat, Mercedes; Leyva-Pérez, Antonio; Corma, Avelino

    2014-03-18

    Particle size is one of the key parameters determining the unexpected catalytic activity of gold, with reactivity improving as the particle gets smaller. While this is valid in the 1-5 nm range, chemists are now investigating the influence of particle size in the subnanometer regime. This is due to recent advances in both characterization techniques and synthetic routes capable of stabilizing these size-controlled gold clusters. Researchers reported in early studies that small clusters or aggregates of a few atoms can be extremely active in some reactions, while 1-2 nm nanoparticles are catalytically more efficient for other reactions. Furthermore, the possibility that small gold clusters generated in situ from gold salts or complexes could be the real active species in homogeneous gold-catalyzed organic reactions should be considered. In this Account, we address two questions. First, what is the origin of the enhanced reactivity of gold clusters on the subnanometer scale? And second, how can we predict the reactions where small clusters should work better than larger nanoparticles? Both geometric factors and electronic or quantum size effects become important in the subnanometer regime. Geometric reasons play a key role in hydrogenation reactions, where only accessible low coordinated neutral Au atoms are needed to dissociate H2. The quantum size effects of gold clusters are important as well, as clusters formed by only a few atoms have discrete molecule-like electronic states and their chemical reactivity is related to interactions between the cluster's frontier molecular orbitals and those of the reactant molecules. From first principles calculations, we predict an enhanced reactivity of small planar clusters for reactions involving activation of CC multiple bonds in alkenes and alkynes through Lewis acid-base interactions, and a better catalytic performance of 3D gold nanoparticles in redox reactions involving bond dissociation by oxidative addition and new bond formation by reductive elimination. In oxidation reactions with molecular O2, initial dissociation of O2 into basic oxygen atoms would be more effectively catalyzed by gold nanoparticles of ∼1 nm diameter. In contrast, small planar clusters should be more active for reactions following a radical pathway involving peroxo or hydroperoxo intermediates. We have experimentally confirmed these predictions for a series of Lewis acid and oxidation reactions catalyzed by gold clusters and nanoparticles either in solution or supported on solid carriers.

  8. Regression and Data Mining Methods for Analyses of Multiple Rare Variants in the Genetic Analysis Workshop 17 Mini-Exome Data

    PubMed Central

    Bailey-Wilson, Joan E.; Brennan, Jennifer S.; Bull, Shelley B; Culverhouse, Robert; Kim, Yoonhee; Jiang, Yuan; Jung, Jeesun; Li, Qing; Lamina, Claudia; Liu, Ying; Mägi, Reedik; Niu, Yue S.; Simpson, Claire L.; Wang, Libo; Yilmaz, Yildiz E.; Zhang, Heping; Zhang, Zhaogong

    2012-01-01

    Group 14 of Genetic Analysis Workshop 17 examined several issues related to analysis of complex traits using DNA sequence data. These issues included novel methods for analyzing rare genetic variants in an aggregated manner (often termed collapsing rare variants), evaluation of various study designs to increase power to detect effects of rare variants, and the use of machine learning approaches to model highly complex heterogeneous traits. Various published and novel methods for analyzing traits with extreme locus and allelic heterogeneity were applied to the simulated quantitative and disease phenotypes. Overall, we conclude that power is (as expected) dependent on locus-specific heritability or contribution to disease risk, large samples will be required to detect rare causal variants with small effect sizes, extreme phenotype sampling designs may increase power for smaller laboratory costs, methods that allow joint analysis of multiple variants per gene or pathway are more powerful in general than analyses of individual rare variants, population-specific analyses can be optimal when different subpopulations harbor private causal mutations, and machine learning methods may be useful for selecting subsets of predictors for follow-up in the presence of extreme locus heterogeneity and large numbers of potential predictors. PMID:22128066

  9. A unique fossil record from neptunian sills: the world's most extreme example of stratigraphic condensation (Jurassic, western Sicily)

    NASA Astrophysics Data System (ADS)

    Wendt, Jobst

    2017-06-01

    Neptunian sills at Rocca Busambra, a fragment of the Trapanese/Saccense Domain in western Sicily, host the most abundant ammonite and gastropod fauna which has ever been recorded from the Jurassic of the western Tethys. The fauna is dominated by parautochthonous organisms which were swept into the sills by gentle transport. Ammonites are characterized by perfect preservation and small size, a feature which is due to the predominance of microconchs but also of stunting. The most complete sill is 0.7 m thick and could be separated into 17 levels which range in age from the early Toarcian into the late Kimmeridgian, thus representing the most extreme case of palaeontologically and depositionally documented stratigraphic condensation in Earth history. The unique feature of the Rocca Busambra sills is due to the interaction of three processes: extreme stratigraphic condensation on the sea floor, weak tectonic fracturing of the host rock and repeated reopening on top of already existing sills. Contrasting percentages of gastropods in individual levels reflect sea-level oscillations which correspond to long known low- and highstands during the Jurassic of the western Tethys. Comparisons with other ammonite-bearing sill faunas reveal several similarities, but represent only short-timed phases of tectonic pulses and deposition.

  10. Closing the Gap: An Analysis of Options for Improving the USAF Fighter Fleet from 2105 to 2035

    DTIC Science & Technology

    2015-10-01

    capacity. The CBO predicts an increase in capacity for both large, or 2000 lbs class weapons, and small , either 500 lbs class or Small Diameter Bomb ...Laser Guided Bomb (LGB) designed to penetrate extremely hardened bunkers with extreme accuracy.54 Larger weapons can provide better standoff range...operate with impunity in low intensity CAS scenarios. While survivability, with the exception of against small arms ground fire, is far less a

  11. Small amount of water induced preparation of several morphologies for InBO3:Eu3+ phosphor via a facile boric acid flux method and their luminescent properties

    NASA Astrophysics Data System (ADS)

    Ding, Wen; Liang, Pan; Liu, Zhi-Hong

    2017-05-01

    Four kinds of morphologies for InBO3:Eu3+ phosphor have been prepared via a facile boric acid flux method only by adjusting the small amount of added water. The prepared samples have been characterized by XRD, FT-IR, and SEM. It was found that the size and morphology of the samples could be effectively controlled by adjusting reaction temperature, reaction time, especially the small amount of added water, which plays an extremely critical role in the controlling morphology. The possible growth mechanisms for microsphere and flower-like morphologies were further discussed on the basis of time-dependent experiments. Furthermore, the luminescence properties of prepared InBO3:Eu3+ samples have been investigated by photoluminescence (PL) spectra. The results show that the InBO3:Eu3+ phosphors show strong orange emissions under ultraviolet excitation at 237 nm. The monodisperse microsphere sample possesses the highest PL intensity among above four morphologies, which can be used as a potential orange luminescent material.

  12. Temperate Earth-sized planets transiting a nearby ultracool dwarf star

    PubMed Central

    Gillon, Michaël; Jehin, Emmanuël; Lederer, Susan M.; Delrez, Laetitia; de Wit, Julien; Burdanov, Artem; Van Grootel, Valérie; Burgasser, Adam; Triaud, Amaury H. M. J.; Opitom, Cyrielle; Demory, Brice-Olivier; Sahu, Devendra K.; Bardalez Gagliuffi, Daniella; Magain, Pierre; Queloz, Didier

    2017-01-01

    Stellar-like objects with effective temperatures of 2700K and below are referred to as “ultracool dwarfs”1. This heterogeneous group includes both extremely low-mass stars and brown dwarfs (substellar objects not massive enough to sustain hydrogen fusion), and represents about 15% of the stellar-like objects in the vicinity of the Sun2. Based on the small masses and sizes of their protoplanetary disks3,4, core-accretion theory for ultracool dwarfs predicts a large, but heretofore undetected population of close-in terrestrial planets5, ranging from metal-rich Mercury-sized planets6 to more hospitable volatile-rich Earth-sized planets7. Here we report the discovery of three short-period Earth-sized planets transiting an ultracool dwarf star 12 parsecs away using data collected by the TRAPPIST8 telescope as part of an ongoing prototype transit survey9. The inner two planets receive four and two times the irradiation of Earth, respectively, placing them close to the inner edge of the habitable zone of the star10. Eleven orbits remain possible for the third planet based on our data, the most likely resulting in an irradiation significantly smaller than Earth's. The infrared brightness of the host star combined with its Jupiter-like size offer the possibility of thoroughly characterizing the components of this nearby planetary system. PMID:27135924

  13. Adsorption of binary gas mixtures in heterogeneous carbon predicted by density functional theory: on the formation of adsorption azeotropes.

    PubMed

    Ritter, James A; Pan, Huanhua; Balbuena, Perla B

    2010-09-07

    Classical density functional theory (DFT) was used to predict the adsorption of nine different binary gas mixtures in a heterogeneous BPL activated carbon with a known pore size distribution (PSD) and in single, homogeneous, slit-shaped carbon pores of different sizes. By comparing the heterogeneous results with those obtained from the ideal adsorbed solution theory and with those obtained in the homogeneous carbon, it was determined that adsorption nonideality and adsorption azeotropes are caused by the coupled effects of differences in the molecular size of the components in a gas mixture and only slight differences in the pore sizes of a heterogeneous adsorbent. For many binary gas mixtures, selectivity was found to be a strong function of pore size. As the width of a homogeneous pore increases slightly, the selectivity for two different sized adsorbates may change from being greater than unity to less than unity. This change in selectivity can be accompanied by the formation of an adsorption azeotrope when this same binary mixture is adsorbed in a heterogeneous adsorbent with a PSD, like in BPL activated carbon. These results also showed that the selectivity exhibited by a heterogeneous adsorbent can be dominated by a small number of pores that are very selective toward one of the components in the gas mixture, leading to adsorption azeotrope formation in extreme cases.

  14. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2015-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  15. Temporal Wind Pairs for Space Launch Vehicle Capability Assessment and Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Decker, Ryan K.; Barbre, Robert E., Jr.

    2014-01-01

    Space launch vehicles incorporate upper-level wind assessments to determine wind effects on the vehicle and for a commit to launch decision. These assessments make use of wind profiles measured hours prior to launch and may not represent the actual wind the vehicle will fly through. Uncertainty in the winds over the time period between the assessment and launch introduces uncertainty in assessment of vehicle controllability and structural integrity that must be accounted for to ensure launch safety. Temporal wind pairs are used in engineering development of allowances to mitigate uncertainty. Five sets of temporal wind pairs at various times (0.75, 1.5, 2, 3 and 4-hrs) at the United States Air Force Eastern Range and Western Range, as well as the National Aeronautics and Space Administration's Wallops Flight Facility are developed for use in upper-level wind assessments on vehicle performance. Historical databases are compiled from balloon-based and vertically pointing Doppler radar wind profiler systems. Various automated and manual quality control procedures are used to remove unacceptable profiles. Statistical analyses on the resultant wind pairs from each site are performed to determine if the observed extreme wind changes in the sample pairs are representative of extreme temporal wind change. Wind change samples in the Eastern Range and Western Range databases characterize extreme wind change. However, the small sample sizes in the Wallops Flight Facility databases yield low confidence that the sample population characterizes extreme wind change that could occur.

  16. Modelling hydrological extremes under non-stationary conditions using climate covariates

    NASA Astrophysics Data System (ADS)

    Vasiliades, Lampros; Galiatsatou, Panagiota; Loukas, Athanasios

    2013-04-01

    Extreme value theory is a probabilistic theory that can interpret the future probabilities of occurrence of extreme events (e.g. extreme precipitation and streamflow) using past observed records. Traditionally, extreme value theory requires the assumption of temporal stationarity. This assumption implies that the historical patterns of recurrence of extreme events are static over time. However, the hydroclimatic system is nonstationary on time scales that are relevant to extreme value analysis, due to human-mediated and natural environmental change. In this study the generalized extreme value (GEV) distribution is used to assess nonstationarity in annual maximum daily rainfall and streamflow timeseries at selected meteorological and hydrometric stations in Greece and Cyprus. The GEV distribution parameters (location, scale, and shape) are specified as functions of time-varying covariates and estimated using the conditional density network (CDN) as proposed by Cannon (2010). The CDN is a probabilistic extension of the multilayer perceptron neural network. Model parameters are estimated via the generalized maximum likelihood (GML) approach using the quasi-Newton BFGS optimization algorithm, and the appropriate GEV-CDN model architecture for the selected meteorological and hydrometric stations is selected by fitting increasingly complicated models and choosing the one that minimizes the Akaike information criterion with small sample size correction. For all case studies in Greece and Cyprus different formulations are tested with combinational cases of stationary and nonstationary parameters of the GEV distribution, linear and non-linear architecture of the CDN and combinations of the input climatic covariates. Climatic indices such as the Southern Oscillation Index (SOI), which describes atmospheric circulation in the eastern tropical pacific related to El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) index that varies on an interdecadal rather than interannual time scale and the atmospheric circulation patterns as expressed by the North Atlantic Oscillation (NAO) index are used to express the GEV parameters as functions of the covariates. Results show that the nonstationary GEV model can be an efficient tool to take into account the dependencies between extreme value random variables and the temporal evolution of the climate.

  17. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics.

    PubMed

    Itter, Malcolm S; Finley, Andrew O; D'Amato, Anthony W; Foster, Jane R; Bradford, John B

    2017-06-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics-changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands. © 2017 by the Ecological Society of America.

  18. Variable effects of climate on forest growth in relation to climate extremes, disturbance, and forest dynamics

    USGS Publications Warehouse

    Itter, Malcolm S.; Finley, Andrew O.; D'Amato, Anthony W.; Foster, Jane R.; Bradford, John B.

    2017-01-01

    Changes in the frequency, duration, and severity of climate extremes are forecast to occur under global climate change. The impacts of climate extremes on forest productivity and health remain difficult to predict due to potential interactions with disturbance events and forest dynamics—changes in forest stand composition, density, size and age structure over time. Such interactions may lead to non-linear forest growth responses to climate involving thresholds and lag effects. Understanding how forest dynamics influence growth responses to climate is particularly important given stand structure and composition can be modified through management to increase forest resistance and resilience to climate change. To inform such adaptive management, we develop a hierarchical Bayesian state space model in which climate effects on tree growth are allowed to vary over time and in relation to past climate extremes, disturbance events, and forest dynamics. The model is an important step toward integrating disturbance and forest dynamics into predictions of forest growth responses to climate extremes. We apply the model to a dendrochronology data set from forest stands of varying composition, structure, and development stage in northeastern Minnesota that have experienced extreme climate years and forest tent caterpillar defoliation events. Mean forest growth was most sensitive to water balance variables representing climatic water deficit. Forest growth responses to water deficit were partitioned into responses driven by climatic threshold exceedances and interactions with insect defoliation. Forest growth was both resistant and resilient to climate extremes with the majority of forest growth responses occurring after multiple climatic threshold exceedances across seasons and years. Interactions between climate and disturbance were observed in a subset of years with insect defoliation increasing forest growth sensitivity to water availability. Forest growth was particularly sensitive to climate extremes during periods of high stem density following major regeneration events when average inter-tree competition was high. Results suggest the resistance and resilience of forest growth to climate extremes can be increased through management steps such as thinning to reduce competition during early stages of stand development and small-group selection harvests to maintain forest structures characteristic of older, mature stands.

  19. Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism.

    PubMed

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W H; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM.

  20. Herbivory and Body Size: Allometries of Diet Quality and Gastrointestinal Physiology, and Implications for Herbivore Ecology and Dinosaur Gigantism

    PubMed Central

    Clauss, Marcus; Steuer, Patrick; Müller, Dennis W. H.; Codron, Daryl; Hummel, Jürgen

    2013-01-01

    Digestive physiology has played a prominent role in explanations for terrestrial herbivore body size evolution and size-driven diversification and niche differentiation. This is based on the association of increasing body mass (BM) with diets of lower quality, and with putative mechanisms by which a higher BM could translate into a higher digestive efficiency. Such concepts, however, often do not match empirical data. Here, we review concepts and data on terrestrial herbivore BM, diet quality, digestive physiology and metabolism, and in doing so give examples for problems in using allometric analyses and extrapolations. A digestive advantage of larger BM is not corroborated by conceptual or empirical approaches. We suggest that explanatory models should shift from physiological to ecological scenarios based on the association of forage quality and biomass availability, and the association between BM and feeding selectivity. These associations mostly (but not exclusively) allow large herbivores to use low quality forage only, whereas they allow small herbivores the use of any forage they can physically manage. Examples of small herbivores able to subsist on lower quality diets are rare but exist. We speculate that this could be explained by evolutionary adaptations to the ecological opportunity of selective feeding in smaller animals, rather than by a physiologic or metabolic necessity linked to BM. For gigantic herbivores such as sauropod dinosaurs, other factors than digestive physiology appear more promising candidates to explain evolutionary drives towards extreme BM. PMID:24204552

  1. Ice Fog and Light Snow Measurements Using a High-Resolution Camera System

    NASA Astrophysics Data System (ADS)

    Kuhn, Thomas; Gultepe, Ismail

    2016-09-01

    Ice fog, diamond dust, and light snow usually form over extremely cold weather conditions, and they affect both visibility and Earth's radiative energy budget. Prediction of these hydrometeors using models is difficult because of limited knowledge of the microphysical properties at the small size ranges due to measurement issues. These phenomena need to be better represented in forecast and climate models; therefore, in addition to remote sensing accurate measurements using ground-based instrumentation are required. An imaging instrument, aimed at measuring ice fog and light snow particles, has been built and is presented here. The ice crystal imaging (ICI) probe samples ice particles into a vertical, tapered inlet with an inlet flow rate of 11 L min-1. A laser beam across the vertical air flow containing the ice crystals allows for their detection by a photodetector collecting the scattered light. Detected particles are then imaged with high optical resolution. An illuminating LED flash and image capturing are triggered by the photodetector. In this work, ICI measurements collected during the fog remote sensing and modeling (FRAM) project, which took place during Winter of 2010-2011 in Yellowknife, NWT, Canada, are summarized and challenges related to measuring small ice particles are described. The majority of ice particles during the 2-month-long campaign had sizes between 300 and 800 μm. During ice fog events the size distribution measured had a lower mode diameter of 300 μm compared to the overall campaign average with mode at 500 μm.

  2. Accurate and fast multiple-testing correction in eQTL studies.

    PubMed

    Sul, Jae Hoon; Raj, Towfique; de Jong, Simone; de Bakker, Paul I W; Raychaudhuri, Soumya; Ophoff, Roel A; Stranger, Barbara E; Eskin, Eleazar; Han, Buhm

    2015-06-04

    In studies of expression quantitative trait loci (eQTLs), it is of increasing interest to identify eGenes, the genes whose expression levels are associated with variation at a particular genetic variant. Detecting eGenes is important for follow-up analyses and prioritization because genes are the main entities in biological processes. To detect eGenes, one typically focuses on the genetic variant with the minimum p value among all variants in cis with a gene and corrects for multiple testing to obtain a gene-level p value. For performing multiple-testing correction, a permutation test is widely used. Because of growing sample sizes of eQTL studies, however, the permutation test has become a computational bottleneck in eQTL studies. In this paper, we propose an efficient approach for correcting for multiple testing and assess eGene p values by utilizing a multivariate normal distribution. Our approach properly takes into account the linkage-disequilibrium structure among variants, and its time complexity is independent of sample size. By applying our small-sample correction techniques, our method achieves high accuracy in both small and large studies. We have shown that our method consistently produces extremely accurate p values (accuracy > 98%) for three human eQTL datasets with different sample sizes and SNP densities: the Genotype-Tissue Expression pilot dataset, the multi-region brain dataset, and the HapMap 3 dataset. Copyright © 2015 The American Society of Human Genetics. Published by Elsevier Inc. All rights reserved.

  3. Remote sensor digital image data analysis using the General Electric Image 100 analysis system (a study of analysis speed, cost, and performance)

    NASA Technical Reports Server (NTRS)

    Mcmurtry, G. J.; Petersen, G. W. (Principal Investigator)

    1975-01-01

    The author has identified the following significant results. It was found that the high speed man machine interaction capability is a distinct advantage of the image 100; however, the small size of the digital computer in the system is a definite limitation. The system can be highly useful in an analysis mode in which it complements a large general purpose computer. The image 100 was found to be extremely valuable in the analysis of aircraft MSS data where the spatial resolution begins to approach photographic quality and the analyst can exercise interpretation judgements and readily interact with the machine.

  4. Coupled resonator optical waveguides based on silicon-on-insulator photonic wires

    NASA Astrophysics Data System (ADS)

    Xia, Fengnian; Sekaric, Lidija; O'Boyle, Martin; Vlasov, Yurii

    2006-07-01

    Coupled resonator optical waveguides (CROWs) comprised of up to 16 racetrack resonators based on silicon-on-insulator (SOI) photonic wires were fabricated and characterized. The optical properties of the CROWs were simulated using measured single resonator parameters based on a matrix approach. The group delay property of CROWs was also analyzed. The SOI based CROWs consisting of multiple resonators have extremely small footprints and can find applications in optical filtering, dispersion compensation, and optical buffering. Moreover, such CROW structure is a promising candidate for exploration of low light level nonlinear optics due to its resonant nature and compact mode size (˜0.1μm2) in photonic wire.

  5. Target contrast considerations in millimeter wave radiometry for airborne navigation

    NASA Technical Reports Server (NTRS)

    Mayer, A.

    1971-01-01

    Target signal requirements for aircraft navigation systems that use radiometric receivers which map thermally emitted power radiated by terrain or power radiated by ground-based beacons are discussed. For selected millimeter wavelength bands, microwaves suffer relatively little degradation by absorption or scattering on passage through the atmosphere, despite extreme weather variations. Interest centers on 8-millimeter waves because of component availability, portability (small size), high image resolution, and all-weather capability at this wavelength. The idea of radiometric airborne navigation is introduced. Elements of radiometry, terrain radiation, and atmospheric transmission characteristics are reviewed. Data pertaining to these elements at 8 mm wavelength are collected. Calculation of radiometric contrasts is discussed for some simple models of terrain targets.

  6. The uses of ERTS-I imagery in the analysis of landscape change

    NASA Technical Reports Server (NTRS)

    Rehder, J. B.

    1974-01-01

    Analysis of ERTS-I imagery to delimit, map, and monitor photomorphic regions of landscape dynamics is illustrated. Satellite observations were made over strip mining areas on the Cumberland Plateau of Tennessee; agricultural regions in Tennessee, Kentucky, and portions of northern Alabama and Mississippi; urban-suburban growth areas in Knoxville; and flooded areas within the Mississippi River floodplain. Production and analysis of maps of these areas made from ERTS imagery and RB-57 high altitude aircraft imagery are described and compared. The difficulties encountered in analyzing landscape change in or near urban areas are enumerated (small area size, extreme density of settlement, high reflectance characteristics), and the significance of the results of this investigation is noted.

  7. Local reconstruction in computed tomography of diffraction enhanced imaging

    NASA Astrophysics Data System (ADS)

    Huang, Zhi-Feng; Zhang, Li; Kang, Ke-Jun; Chen, Zhi-Qiang; Zhu, Pei-Ping; Yuan, Qing-Xi; Huang, Wan-Xia

    2007-07-01

    Computed tomography of diffraction enhanced imaging (DEI-CT) based on synchrotron radiation source has extremely high sensitivity of weakly absorbing low-Z samples in medical and biological fields. The authors propose a modified backprojection filtration(BPF)-type algorithm based on PI-line segments to reconstruct region of interest from truncated refraction-angle projection data in DEI-CT. The distribution of refractive index decrement in the sample can be directly estimated from its reconstruction images, which has been proved by experiments at the Beijing Synchrotron Radiation Facility. The algorithm paves the way for local reconstruction of large-size samples by the use of DEI-CT with small field of view based on synchrotron radiation source.

  8. The hidden half: ecology and evolution of cryptobenthic fishes on coral reefs.

    PubMed

    Brandl, Simon J; Goatley, Christopher H R; Bellwood, David R; Tornabene, Luke

    2018-05-07

    Teleost fishes are the most diverse group of vertebrates on Earth. On tropical coral reefs, their species richness exceeds 6000 species; one tenth of total vertebrate biodiversity. A large proportion of this diversity is composed of cryptobenthic reef fishes (CRFs): bottom-dwelling, morphologically or behaviourally cryptic species typically less than 50 mm in length. Yet, despite their diversity and abundance, these fishes are both poorly defined and understood. Herein we provide a new quantitative definition and synthesise current knowledge on the diversity, distribution and life history of CRFs. First, we use size distributions within families to define 17 core CRF families as characterised by the high prevalence (>10%) of small-bodied species (<50 mm). This stands in strong contrast to 42 families of large reef fishes, in which virtually no small-bodied species have evolved. We posit that small body size has allowed CRFs to diversify at extremely high rates, primarily by allowing for fine partitioning of microhabitats and facilitation of allopatric reproductive isolation; yet, we are far from understanding and documenting the biodiversity of CRFs. Using rates of description since 1758, we predict that approximately 30 new species of cryptobenthic species will be described per year until 2050 (approximately twice the annual rate compared to large fishes). Furthermore, we predict that by the year 2031, more than half of the described coral reef fish biodiversity will consist of CRFs. These fishes are the 'hidden half' of vertebrate biodiversity on coral reefs. Notably, global geographic coverage and spatial resolution of quantitative data on CRF communities is uniformly poor, which further emphasises the remarkable reservoir of biodiversity that is yet to be discovered. Although small body size may have enabled extensive diversification within CRF families, small size also comes with a suite of ecological challenges that affect fishes' capacities to feed, survive and reproduce; we identify a range of life-history adaptations that have enabled CRFs to overcome these limitations. In turn, these adaptations bestow a unique socio-ecological role on CRFs, which includes a key role in coral reef trophodynamics by cycling trophic energy provided by microscopic prey to larger consumers. Although small in body size, the ecology and evolutionary history of CRFs may make them a critical component of coral-reef food webs; yet our review also shows that these fishes are highly susceptible to a variety of anthropogenic disturbances. Understanding the consequences of these changes for CRFs and coral reef ecosystems will require us to shed more light on this frequently overlooked but highly diverse and abundant guild of coral reef fishes. © 2018 Cambridge Philosophical Society.

  9. Extreme plasticity in life-history strategy allows a migratory predator (jumbo squid) to cope with a changing climate.

    PubMed

    Hoving, Henk-Jan T; Gilly, William F; Markaida, Unai; Benoit-Bird, Kelly J; -Brown, Zachary W; Daniel, Patrick; Field, John C; Parassenti, Liz; Liu, Bilin; Campos, Bernardita

    2013-07-01

    Dosidicus gigas (jumbo or Humboldt squid) is a semelparous, major predator of the eastern Pacific that is ecologically and commercially important. In the Gulf of California, these animals mature at large size (>55 cm mantle length) in 1-1.5 years and have supported a major commercial fishery in the Guaymas Basin during the last 20 years. An El Niño event in 2009-2010, was accompanied by a collapse of this fishery, and squid in the region showed major changes in the distribution and life-history strategy. Large squid abandoned seasonal coastal-shelf habitats in 2010 and instead were found in the Salsipuedes Basin to the north, an area buffered from the effects of El Niño by tidal upwelling and a well-mixed water column. The commercial fishery also relocated to this region. Although large squid were not found in the Guaymas Basin from 2010 to 2012, small squid were abundant and matured at an unusually small mantle-length (<30 cm) and young age (approximately 6 months). Juvenile squid thus appeared to respond to El Niño with an alternative life-history trajectory in which gigantism and high fecundity in normally productive coastal-shelf habitats were traded for accelerated reproduction at small size in an offshore environment. Both small and large mature squid, were present in the Salsipuedes Basin during 2011, indicating that both life- history strategies can coexist. Hydro-acoustic data, reveal that squid biomass in this study area nearly doubled between 2010 and 2011, primarily due to a large increase in small squid that were not susceptible to the fishery. Such a climate-driven switch in size-at-maturity may allow D. gigas to rapidly adapt to and cope with El Niño. This ability is likely to be an important factor in conjunction with longerterm climate-change and the potential ecological impacts of this invasive predator on marine ecosystems. © 2013 Blackwell Publishing Ltd.

  10. Windowpane flounder (Scophthalmus aquosus) and winter flounder (Pseudopleuronectes americanus) responses to cold temperature extremes in a Northwest Atlantic estuary

    NASA Astrophysics Data System (ADS)

    Wilber, Dara H.; Clarke, Douglas G.; Alcoba, Catherine M.; Gallo, Jenine

    2016-01-01

    The effect of climate variability on flatfish includes not only the effects of warming on sensitive life history stages, but also impacts from more frequent or unseasonal extreme cold temperatures. Cold weather events can affect the overwintering capabilities of flatfish near their low temperature range limits. We examined the responses of two flatfish species, the thin-bodied windowpane (Scophthalmus aquosus) and cold-tolerant winter flounder (Pseudopleuronectes americanus), to variable winter temperatures in a Northwest Atlantic estuary using abundance and size data collected during a monitoring study, the Aquatic Biological Survey, conducted from 2002 to 2010. Winter and spring abundances of small (50 to 120 mm total length) juvenile windowpane were positively correlated with adult densities (spawning stock) and fall temperatures (thermal conditions experienced during post-settlement development for the fall-spawned cohort) of the previous year. Windowpane abundances in the estuary were significantly reduced and the smallest size class was nearly absent after several consecutive years with cold (minimum temperatures < 1 °C) winters. Interannual variation in winter flounder abundances was unrelated to the severity of winter temperatures. A Paulik diagram illustrates strong positive correlations between annual abundances of sequential winter flounder life history stages (egg, larval, Age-1 juvenile, and adult male) within the estuary, reflecting residency within the estuary through their first year of life. Temperature variables representing conditions during winter flounder larval and post-settlement development were not significant factors in multiple regression models exploring factors that affect juvenile abundances. Likewise, densities of predators known to consume winter flounder eggs and/or post-settlement juveniles were not significantly related to interannual variation in winter flounder juvenile abundances. Colder estuarine temperatures through the first year of life were associated with smaller Age-1 winter flounder body size. For example, Age-1 winter flounder developing under conditions that differed by 1.9 °C in mean daily water temperature, averaged 98.7 mm total length (TL) and 123.1 mm TL, for the relatively cold vs. moderate years, respectively. More frequent cold temperature extremes associated with climate variability may negatively impact the overwintering capabilities of some flatfish near their cold temperature range limits, whereas cold-tolerant species may experience reduced growth, which imparts the ecological challenges associated with smaller body size.

  11. The mitochondrial genome of the ethanol-metabolizing, wine cellar mold Zasmidium cellare is the smallest for a filamentous ascomycete.

    PubMed

    Goodwin, Stephen B; McCorison, Cassandra B; Cavaletto, Jessica R; Culley, David E; LaButti, Kurt; Baker, Scott E; Grigoriev, Igor V

    2016-08-01

    Fungi in the class Dothideomycetes often live in extreme environments or have unusual physiology. One of these, the wine cellar mold Zasmidium cellare, produces thick curtains of mycelia in cellars with high humidity, and its ability to metabolize volatile organic compounds is thought to improve air quality. Whether these abilities have affected its mitochondrial genome is not known. To fill this gap, the circular-mapping mitochondrial genome of Z. cellare was sequenced and, at only 23 743 bp, is the smallest reported for a filamentous fungus. Genes were encoded on both strands with a single change of direction, different from most other fungi but consistent with the Dothideomycetes. Other than its small size, the only unusual feature of the Z. cellare mitochondrial genome was two copies of a 110-bp sequence that were duplicated, inverted and separated by approximately 1 kb. This inverted-repeat sequence confused the assembly program but appears to have no functional significance. The small size of the Z. cellare mitochondrial genome was due to slightly smaller genes, lack of introns and non-essential genes, reduced intergenic spacers and very few ORFs relative to other fungi rather than a loss of essential genes. Whether this reduction facilitates its unusual biology remains unknown. Published by Elsevier Ltd.

  12. A solenoidal synthetic field and the non-Abelian Aharonov-Bohm effects in neutral atoms

    PubMed Central

    Huo, Ming-Xia; Nie, Wei; Hutchinson, David A. W.; Kwek, Leong Chuan

    2014-01-01

    Cold neutral atoms provide a versatile and controllable platform for emulating various quantum systems. Despite efforts to develop artificial gauge fields in these systems, realizing a unique ideal-solenoid-shaped magnetic field within the quantum domain in any real-world physical system remains elusive. Here we propose a scheme to generate a “hairline” solenoid with an extremely small size around 1 micrometer which is smaller than the typical coherence length in cold atoms. Correspondingly, interference effects will play a role in transport. Despite the small size, the magnetic flux imposed on the atoms is very large thanks to the very strong field generated inside the solenoid. By arranging different sets of Laguerre-Gauss (LG) lasers, the generation of Abelian and non-Abelian SU(2) lattice gauge fields is proposed for neutral atoms in ring- and square-shaped optical lattices. As an application, interference patterns of the magnetic type-I Aharonov-Bohm (AB) effect are obtained by evolving atoms along a circle over several tens of lattice cells. During the evolution, the quantum coherence is maintained and the atoms are exposed to a large magnetic flux. The scheme requires only standard optical access, and is robust to weak particle interactions. PMID:25103877

  13. Genetic rescue in an inbred Arctic fox (Vulpes lagopus) population.

    PubMed

    Hasselgren, Malin; Angerbjörn, Anders; Eide, Nina E; Erlandsson, Rasmus; Flagstad, Øystein; Landa, Arild; Wallén, Johan; Norén, Karin

    2018-03-28

    Isolation of small populations can reduce fitness through inbreeding depression and impede population growth. Outcrossing with only a few unrelated individuals can increase demographic and genetic viability substantially, but few studies have documented such genetic rescue in natural mammal populations. We investigate the effects of immigration in a subpopulation of the endangered Scandinavian arctic fox ( Vulpes lagopus ), founded by six individuals and isolated for 9 years at an extremely small population size. Based on a long-term pedigree (105 litters, 543 individuals) combined with individual fitness traits, we found evidence for genetic rescue. Natural immigration and gene flow of three outbred males in 2010 resulted in a reduction in population average inbreeding coefficient ( f ), from 0.14 to 0.08 within 5 years. Genetic rescue was further supported by 1.9 times higher juvenile survival and 1.3 times higher breeding success in immigrant first-generation offspring compared with inbred offspring. Five years after immigration, the population had more than doubled in size and allelic richness increased by 41%. This is one of few studies that has documented genetic rescue in a natural mammal population suffering from inbreeding depression and contributes to a growing body of data demonstrating the vital connection between genetics and individual fitness. © 2018 The Author(s).

  14. Vertical Growth of Superconducting Crystalline Hollow Nanowires by He+ Focused Ion Beam Induced Deposition.

    PubMed

    Córdoba, Rosa; Ibarra, Alfonso; Mailly, Dominique; De Teresa, José Ma

    2018-02-14

    Novel physical properties appear when the size of a superconductor is reduced to the nanoscale, in the range of its superconducting coherence length (ξ 0 ). Such nanosuperconductors are being investigated for potential applications in nanoelectronics and quantum computing. The design of three-dimensional nanosuperconductors allows one to conceive novel schemes for such applications. Here, we report for the first time the use of a He + focused-ion-beam-microscope in combination with the W(CO) 6 precursor to grow three-dimensional superconducting hollow nanowires as small as 32 nm in diameter and with an aspect ratio (length/diameter) of as much as 200. Such extreme resolution is achieved by using a small He + beam spot of 1 nm for the growth of the nanowires. As shown by transmission electron microscopy, they display grains of large size fitting with face-centered cubic WC 1-x phase. The nanowires, which are grown vertically to the substrate, are felled on the substrate by means of a nanomanipulator for their electrical characterization. They become superconducting at 6.4 K and show large critical magnetic field and critical current density resulting from their quasi-one-dimensional superconducting character. These results pave the way for future nanoelectronic devices based on three-dimensional nanosuperconductors.

  15. Persisting in papyrus: size, oxidative stress, and fitness in freshwater organisms adapted to sustained hypoxia.

    PubMed

    Joyner-Matos, Joanna; Chapman, Lauren J

    2013-08-01

    Aquatic hypoxia is generally viewed as stressful for aerobic organisms. However, hypoxia may also benefit organisms by decreasing cellular stress, particularly that related to free radicals. Thus, an ideal habitat may have the minimum O2 necessary to both sustain aerobic metabolism and reduce the need to scavenge free radicals and repair free radical damage. The ability of aquatic organisms to sustain aerobic metabolism relates in part to the ability to maximize gas diffusion, which can be facilitated by small body size when O2 uptake occurs across the body surface, by a large gill surface area, or by the ability to use atmospheric air. We use water-breathing organisms in chronically hypoxic papyrus (Cyperus papyrus) swamps of East Africa to test the hypothesis that cellular-level benefits of hypoxia may translate into increased fitness, especially for small organisms. A review of recent studies of fingernail clams (Sphaerium sp.) shows that clams living in sustained hypoxia have minimized oxidative stress and that these cellular-level benefits may lead to increased fitness. We suggest that organisms in the extreme conditions in the papyrus swamps provide a unique opportunity to challenge the conventional classification of hypoxic habitats as 'stressful' and normoxic habitats as 'optimal.' Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Fabrication and luminescent properties of (Y0.99Eu0.01)2O3 transparent nanostructured ceramics

    NASA Astrophysics Data System (ADS)

    Yavetskiy, R. P.; Dobrotvorskaya, M. V.; Doroshenko, A. G.; Tolmachev, A. V.; Petrusha, I. A.; Turkevich, V. Z.; Tomala, R.; Hreniak, D.; Strek, W.; Baumer, V. N.

    2018-04-01

    (Y0.99Eu0.01)2O3 nanoceramics have been produced by sintering of stable cubic nanopowders under 8 GPa at temperature in the range of 25-500 °C with the use of Low Temperature High Pressure (LTHP) technique. During consolidation step irreversible phase transition from cubic to monoclinic yttria occurs resulting in two-phase nanoceramics with a grain size in the 10-40 nm range. It has been demonstrated that composite nanoceramics possess a high transmittance in the visible and mid IR ranges due to small light scattering on the nanoscale pores and low birefringence due to extremely small grain size. It has been shown that Eu3+ ions act as a luminescent probe in composite (Y0.99Eu0.01)2O3 nanoceramics since their 4f-4f luminescence strongly depends on the crystallographic environment. The luminescence spectra excited in the charge transfer band (CTB) are presented by superposition of emission from europium ions in cubic and monoclinic yttria. A new wide emission band of (Y0.99Eu0.01)2O3 ceramics in the λ = 500-650 nm wavelengths range (λex. = 307 nm) were attributed to luminescence of Eu3+ ions located in perturbed sites at grain boundaries or interfaces.

  17. Beliefs about penis size: validation of a scale for men ashamed about their penis size.

    PubMed

    Veale, David; Eshkevari, Ertimiss; Read, Julie; Miles, Sarah; Troglia, Andrea; Phillips, Rachael; Echeverria, Lina Maria Carmona; Fiorito, Chiara; Wylie, Kevan; Muir, Gordon

    2014-01-01

    No measures are available for understanding beliefs in men who experience shame about the perceived size of their penis. Such a measure might be helpful for treatment planning, and measuring outcome after any psychological or physical intervention. Our aim was to validate a newly developed measure called the Beliefs about Penis Size Scale (BAPS). One hundred seventy-three male participants completed a new questionnaire consisting of 18 items to be validated and developed into the BAPS, as well as various other standardized measures. A urologist also measured actual penis size. The BAPS was validated against six psychosexual self-report questionnaires as well as penile size measurements. Exploratory factor analysis reduced the number of items in the BAPS from 18 to 10, which was best explained by one factor. The 10-item BAPS had good internal consistency and correlated significantly with measures of depression, anxiety, body image quality of life, social anxiety, erectile function, overall satisfaction, and the importance attached to penis size. The BAPS was not found to correlate with actual penis size. It was able to discriminate between those who had concerns or were dissatisfied about their penis size and those who were not. This is the first study to develop a scale for measurement of beliefs about penis size. It may be used as part of an assessment for men who experience shame about the perceived size of their penis and as an outcome measure after treatment. The BAPS measures various manifestations of masculinity and shame about their perceived penis size including internal self-evaluative beliefs; negative evaluation by others; anticipated consequences of a perceived small penis, and extreme self-consciousness. © 2013 International Society for Sexual Medicine.

  18. Min and Max Exponential Extreme Interval Values and Statistics

    ERIC Educational Resources Information Center

    Jance, Marsha; Thomopoulos, Nick

    2009-01-01

    The extreme interval values and statistics (expected value, median, mode, standard deviation, and coefficient of variation) for the smallest (min) and largest (max) values of exponentially distributed variables with parameter ? = 1 are examined for different observation (sample) sizes. An extreme interval value g[subscript a] is defined as a…

  19. Operation of a New COTS Crystal Oscillator - CXOMHT over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    Crystal oscillators are extensively used in electronic circuits to provide timing or clocking signals in data acquisition, communications links, and control systems, to name a few. They are affordable, small in size, and reliable. Because of the inherent characteristics of the crystal, the oscillator usually exhibits extreme accuracy in its output frequency within the intrinsic crystal stability. Stability of the frequency could be affected under varying load levels or other operational conditions. Temperature is one of those important factors that influence the frequency stability of an oscillator; as it does to the functionality of other electronic components. Electronics designed for use in NASA deep space and planetary exploration missions are expected to be exposed to extreme temperatures and thermal cycling over a wide range. Thus, it is important to design and develop circuits that are able to operate efficiently and reliably under in these harsh temperature environments. Most of the commercial-off-the-shelf (COTS) devices are very limited in terms of their specified operational temperature while very few custom-made commercial and military-grade parts have the ability to operate in a slightly wider range of temperature than those of the COTS parts. These parts are usually designed for operation under one temperature extreme, i.e. hot or cold, and do not address the wide swing in the operational temperature, which is typical of the space environment. For safe and successful space missions, electronic systems must therefore be designed not only to withstand the extreme temperature exposure but also to operate efficiently and reliably. This report presents the results obtained on the evaluation of a new COTS crystal oscillator under extreme temperatures.

  20. The development of an autonomous gust insensitive unmanned aerial vehicle

    NASA Astrophysics Data System (ADS)

    Pisano, William James

    The study of a small Unmanned Aerial Vehicle (UAV) that is designed towards eventual operation in harsh storm-like conditions is presented. Investigation of the aircraft equations of motion shows that the selection of certain aerodynamic derivatives has a significant effect on the gust response of a small unmanned aircraft. Analytical comparison of this newly formulated Autonomous Gust Insensitive Aircraft (AGIA) to a conventionally designed aircraft shows a significant reduction in undesirable roll motion caused by gusts. A simulation is presented showing that the AGIA is capable of operating in more extreme environments than a conventional aircraft, and puts less strain on the control system components in both extreme and calm environments. The role that aircraft size plays in gust response is also studied. Pilot instinct dictates that smaller aircraft are more difficult to fly in windy environments than larger ones. This phenomenon is investigated using an analytic approach, providing insight into why smaller aircraft are indeed more difficult to fly in more challenging environments. As an aircraft gets smaller, its natural aerodynamic modes and response get faster. In an ideal system, this does not limit small aircraft to poor performance (in fact it will be shown that idealized small aircraft theoretically perform better than their larger counterparts). A more realistic system is presented that includes not only aerodynamics, but also realistic sensor and actuator dynamics. It is shown that these additional dynamics become a limiting factor in control system performance, and thus limit the closed-loop flight performance of small aircraft in turbulent environments. It is shown that the AGIA design approach plays a more significant role the as an aircraft gets smaller. To provide experimental validation of the gust insensitive theory presented herein, a representative small conventional aircraft was built alongside a similar aircraft that incorporated the AGIA design characteristics. These two aircraft were flown simultaneously and autonomously using the autopilot developed by the Author. Data from this experiment strongly supports the hypothesis that the AGIA is less sensitive to gusts than its conventional counterpart, and that flight of the AGIA puts less strain on the control system components in flight.

  1. Primary prevention of cannabis use: a systematic review of randomized controlled trials.

    PubMed

    Norberg, Melissa M; Kezelman, Sarah; Lim-Howe, Nicholas

    2013-01-01

    A systematic review of primary prevention was conducted for cannabis use outcomes in youth and young adults. The aim of the review was to develop a comprehensive understanding of prevention programming by assessing universal, targeted, uni-modal, and multi-modal approaches as well as individual program characteristics. Twenty-eight articles, representing 25 unique studies, identified from eight electronic databases (EMBASE, MEDLINE, CINAHL, ERIC, PsycINFO, DRUG, EBM Reviews, and Project CORK), were eligible for inclusion. Results indicated that primary prevention programs can be effective in reducing cannabis use in youth populations, with statistically significant effect sizes ranging from trivial (0.07) to extremely large (5.26), with the majority of significant effect sizes being trivial to small. Given that the preponderance of significant effect sizes were trivial to small and that percentages of statistically significant and non-statistically significant findings were often equivalent across program type and individual components, the effectiveness of primary prevention for cannabis use should be interpreted with caution. Universal multi-modal programs appeared to outperform other program types (i.e, universal uni-modal, targeted multi-modal, targeted unimodal). Specifically, universal multi-modal programs that targeted early adolescents (10-13 year olds), utilised non-teacher or multiple facilitators, were short in duration (10 sessions or less), and implemented boosters sessions were associated with large median effect sizes. While there were studies in these areas that contradicted these results, the results highlight the importance of assessing the interdependent relationship of program components and program types. Finally, results indicated that the overall quality of included studies was poor, with an average quality rating of 4.64 out of 9. Thus, further quality research and reporting and the development of new innovative programs are required.

  2. Primary Prevention of Cannabis Use: A Systematic Review of Randomized Controlled Trials

    PubMed Central

    Norberg, Melissa M.; Kezelman, Sarah; Lim-Howe, Nicholas

    2013-01-01

    A systematic review of primary prevention was conducted for cannabis use outcomes in youth and young adults. The aim of the review was to develop a comprehensive understanding of prevention programming by assessing universal, targeted, uni-modal, and multi-modal approaches as well as individual program characteristics. Twenty-eight articles, representing 25 unique studies, identified from eight electronic databases (EMBASE, MEDLINE, CINAHL, ERIC, PsycINFO, DRUG, EBM Reviews, and Project CORK), were eligible for inclusion. Results indicated that primary prevention programs can be effective in reducing cannabis use in youth populations, with statistically significant effect sizes ranging from trivial (0.07) to extremely large (5.26), with the majority of significant effect sizes being trivial to small. Given that the preponderance of significant effect sizes were trivial to small and that percentages of statistically significant and non-statistically significant findings were often equivalent across program type and individual components, the effectiveness of primary prevention for cannabis use should be interpreted with caution. Universal multi-modal programs appeared to outperform other program types (i.e, universal uni-modal, targeted multi-modal, targeted unimodal). Specifically, universal multi-modal programs that targeted early adolescents (10–13 year olds), utilised non-teacher or multiple facilitators, were short in duration (10 sessions or less), and implemented boosters sessions were associated with large median effect sizes. While there were studies in these areas that contradicted these results, the results highlight the importance of assessing the interdependent relationship of program components and program types. Finally, results indicated that the overall quality of included studies was poor, with an average quality rating of 4.64 out of 9. Thus, further quality research and reporting and the development of new innovative programs are required. PMID:23326396

  3. Determining relative contributions of vegetation and topography to burn severity from LANDSAT imagery.

    PubMed

    Wu, Zhiwei; He, Hong S; Liang, Yu; Cai, Longyan; Lewis, Bernard J

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  4. Evolution of Gigantism in Amphiumid Salamanders

    PubMed Central

    Bonett, Ronald M.; Chippindale, Paul T.; Moler, Paul E.; Van Devender, R. Wayne; Wake, David B.

    2009-01-01

    The Amphiumidae contains three species of elongate, permanently aquatic salamanders with four diminutive limbs that append one, two, or three toes. Two of the species, Amphiuma means and A. tridactylum, are among the largest salamanders in the world, reaching lengths of more than one meter, whereas the third species (A. pholeter), extinct amphiumids, and closely related salamander families are relatively small. Amphiuma means and A. tridactylum are widespread species and live in a wide range of lowland aquatic habitats on the Coastal Plain of the southeastern United States, whereas A. pholeter is restricted to very specialized organic muck habitats and is syntopic with A. means. Here we present analyses of sequences of mitochondrial and nuclear loci from across the distribution of the three taxa to assess lineage diversity, relationships, and relative timing of divergence in amphiumid salamanders. In addition we analyze the evolution of gigantism in the clade. Our analyses indicate three lineages that have diverged since the late Miocene, that correspond to the three currently recognized species, but the two gigantic species are not each other's closest relatives. Given that the most closely related salamander families and fossil amphiumids from the Upper Cretaceous and Paleocene are relatively small, our results suggest at least two extreme changes in body size within the Amphuimidae. Gigantic body size either evolved once as the ancestral condition of modern amphiumas, with a subsequent strong size reduction in A. pholeter, or gigantism independently evolved twice in the modern species, A. means and A. tridactylum. These patterns are concordant with differences in habitat breadth and range size among lineages, and have implications for reproductive isolation and diversification of amphiumid salamanders. PMID:19461997

  5. Determining Relative Contributions of Vegetation and Topography to Burn Severity from LANDSAT Imagery

    NASA Astrophysics Data System (ADS)

    Wu, Zhiwei; He, Hong S.; Liang, Yu; Cai, Longyan; Lewis, Bernard J.

    2013-10-01

    Fire is a dominant process in boreal forest landscapes and creates a spatial patch mosaic with different burn severities and age classes. Quantifying effects of vegetation and topography on burn severity provides a scientific basis on which forest fire management plans are developed to reduce catastrophic fires. However, the relative contribution of vegetation and topography to burn severity is highly debated especially under extreme weather conditions. In this study, we hypothesized that relationships of vegetation and topography to burn severity vary with fire size. We examined this hypothesis in a boreal forest landscape of northeastern China by computing the burn severity of 24 fire patches as the difference between the pre- and post-fire Normalized Difference Vegetation Index obtained from two Landsat TM images. The vegetation and topography to burn severity relationships were evaluated at three fire-size levels of small (<100 ha, n = 12), moderate (100-1,000 ha, n = 9), and large (>1,000 ha, n = 3). Our results showed that vegetation and topography to burn severity relationships were fire-size-dependent. The burn severity of small fires was primary controlled by vegetation conditions (e.g., understory cover), and the burn severity of large fires was strongly influenced by topographic conditions (e.g., elevation). For moderate fires, the relationships were complex and indistinguishable. Our results also indicated that the pattern trends of relative importance for both vegetation and topography factors were not dependent on fire size. Our study can help managers to design fire management plans according to vegetation characteristics that are found important in controlling burn severity and prioritize management locations based on the relative importance of vegetation and topography.

  6. Ginkgo and Welwitschia Mitogenomes Reveal Extreme Contrasts in Gymnosperm Mitochondrial Evolution.

    PubMed

    Guo, Wenhu; Grewe, Felix; Fan, Weishu; Young, Gregory J; Knoop, Volker; Palmer, Jeffrey D; Mower, Jeffrey P

    2016-06-01

    Mitochondrial genomes (mitogenomes) of flowering plants are well known for their extreme diversity in size, structure, gene content, and rates of sequence evolution and recombination. In contrast, little is known about mitogenomic diversity and evolution within gymnosperms. Only a single complete genome sequence is available, from the cycad Cycas taitungensis, while limited information is available for the one draft sequence, from Norway spruce (Picea abies). To examine mitogenomic evolution in gymnosperms, we generated complete genome sequences for the ginkgo tree (Ginkgo biloba) and a gnetophyte (Welwitschia mirabilis). There is great disparity in size, sequence conservation, levels of shared DNA, and functional content among gymnosperm mitogenomes. The Cycas and Ginkgo mitogenomes are relatively small, have low substitution rates, and possess numerous genes, introns, and edit sites; we infer that these properties were present in the ancestral seed plant. By contrast, the Welwitschia mitogenome has an expanded size coupled with accelerated substitution rates and extensive loss of these functional features. The Picea genome has expanded further, to more than 4 Mb. With regard to structural evolution, the Cycas and Ginkgo mitogenomes share a remarkable amount of intergenic DNA, which may be related to the limited recombinational activity detected at repeats in Ginkgo Conversely, the Welwitschia mitogenome shares almost no intergenic DNA with any other seed plant. By conducting the first measurements of rates of DNA turnover in seed plant mitogenomes, we discovered that turnover rates vary by orders of magnitude among species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Extreme event statistics in a drifting Markov chain

    NASA Astrophysics Data System (ADS)

    Kindermann, Farina; Hohmann, Michael; Lausch, Tobias; Mayer, Daniel; Schmidt, Felix; Widera, Artur

    2017-07-01

    We analyze extreme event statistics of experimentally realized Markov chains with various drifts. Our Markov chains are individual trajectories of a single atom diffusing in a one-dimensional periodic potential. Based on more than 500 individual atomic traces we verify the applicability of the Sparre Andersen theorem to our system despite the presence of a drift. We present detailed analysis of four different rare-event statistics for our system: the distributions of extreme values, of record values, of extreme value occurrence in the chain, and of the number of records in the chain. We observe that, for our data, the shape of the extreme event distributions is dominated by the underlying exponential distance distribution extracted from the atomic traces. Furthermore, we find that even small drifts influence the statistics of extreme events and record values, which is supported by numerical simulations, and we identify cases in which the drift can be determined without information about the underlying random variable distributions. Our results facilitate the use of extreme event statistics as a signal for small drifts in correlated trajectories.

  8. Settlement-Size Scaling among Prehistoric Hunter-Gatherer Settlement Systems in the New World

    PubMed Central

    Haas, W. Randall; Klink, Cynthia J.; Maggard, Greg J.; Aldenderfer, Mark S.

    2015-01-01

    Settlement size predicts extreme variation in the rates and magnitudes of many social and ecological processes in human societies. Yet, the factors that drive human settlement-size variation remain poorly understood. Size variation among economically integrated settlements tends to be heavy tailed such that the smallest settlements are extremely common and the largest settlements extremely large and rare. The upper tail of this size distribution is often formalized mathematically as a power-law function. Explanations for this scaling structure in human settlement systems tend to emphasize complex socioeconomic processes including agriculture, manufacturing, and warfare—behaviors that tend to differentially nucleate and disperse populations hierarchically among settlements. But, the degree to which heavy-tailed settlement-size variation requires such complex behaviors remains unclear. By examining the settlement patterns of eight prehistoric New World hunter-gatherer settlement systems spanning three distinct environmental contexts, this analysis explores the degree to which heavy-tailed settlement-size scaling depends on the aforementioned socioeconomic complexities. Surprisingly, the analysis finds that power-law models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gatherer settlement-size variation. This finding reveals that incipient forms of hierarchical settlement structure may have preceded socioeconomic complexity in human societies and points to a need for additional research to explicate how mobile foragers came to exhibit settlement patterns that are more commonly associated with hierarchical organization. We propose that hunter-gatherer mobility with preferential attachment to previously occupied locations may account for the observed structure in site-size variation. PMID:26536241

  9. Rivaling the World's Smallest Reptiles: Discovery of Miniaturized and Microendemic New Species of Leaf Chameleons (Brookesia) from Northern Madagascar

    PubMed Central

    Glaw, Frank; Köhler, Jörn; Townsend, Ted M.; Vences, Miguel

    2012-01-01

    Background One clade of Malagasy leaf chameleons, the Brookesia minima group, is known to contain species that rank among the smallest amniotes in the world. We report on a previously unrecognized radiation of these miniaturized lizards comprising four new species described herein. Methodology/Principal Findings The newly discovered species appear to be restricted to single, mostly karstic, localities in extreme northern Madagascar: Brookesia confidens sp. n. from Ankarana, B. desperata sp. n. from Forêt d'Ambre, B. micra sp. n. from the islet Nosy Hara, and B. tristis sp. n. from Montagne des Français. Molecular phylogenetic analyses based on one mitochondrial and two nuclear genes of all nominal species in the B. minima group congruently support that the four new species, together with B. tuberculata from Montagne d'Ambre in northern Madagascar, form a strongly supported clade. This suggests that these species have diversified in geographical proximity in this small area. All species of the B. minima group, including the four newly described ones, are characterized by very deep genetic divergences of 18–32% in the ND2 gene and >6% in the 16S rRNA gene. Despite superficial similarities among all species of this group, their status as separate evolutionary lineages is also supported by moderate to strong differences in external morphology, and by clear differences in hemipenis structure. Conclusion/Significance The newly discovered dwarf chameleon species represent striking cases of miniaturization and microendemism and suggest the possibility of a range size-body size relationship in Malagasy reptiles. The newly described Brookesia micra reaches a maximum snout-vent length in males of 16 mm, and its total length in both sexes is less than 30 mm, ranking it among the smallest amniote vertebrates in the world. With a distribution limited to a very small islet, this species may represent an extreme case of island dwarfism. PMID:22348069

  10. High-energy supercapacitors based on hierarchical porous carbon with an ultrahigh ion-accessible surface area in ionic liquid electrolytes

    NASA Astrophysics Data System (ADS)

    Zhong, Hui; Xu, Fei; Li, Zenghui; Fu, Ruowen; Wu, Dingcai

    2013-05-01

    A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer.A very important yet really challenging issue to address is how to greatly increase the energy density of supercapacitors to approach or even exceed those of batteries without sacrificing the power density. Herein we report the fabrication of a new class of ultrahigh surface area hierarchical porous carbon (UHSA-HPC) based on the pore formation and widening of polystyrene-derived HPC by KOH activation, and highlight its superior ability for energy storage in supercapacitors with ionic liquid (IL) as electrolyte. The UHSA-HPC with a surface area of more than 3000 m2 g-1 shows an extremely high energy density, i.e., 118 W h kg-1 at a power density of 100 W kg-1. This is ascribed to its unique hierarchical nanonetwork structure with a large number of small-sized nanopores for IL storage and an ideal meso-/macroporous network for IL transfer. Electronic supplementary information (ESI) available: Sample preparation, material characterization, electrochemical characterization and specific mass capacitance and energy density. See DOI: 10.1039/c3nr00738c

  11. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: a multi-faceted approach.

    PubMed

    Budy, Phaedra; Luecke, Chris

    2014-09-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40-96%; SGR range 0.03-1.5%) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28-34%) under climate change scenarios led to much greater growth rates (23-34%). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a "resource pulse," allowing a sub-set of small char to "break through," thus setting the cycle in population structure.

  12. Understanding how lake populations of arctic char are structured and function with special consideration of the potential effects of climate change: A multi-faceted approach.

    USGS Publications Warehouse

    Budy, Phaedra; Luecke, Chris

    2014-01-01

    Size dimorphism in fish populations, both its causes and consequences, has been an area of considerable focus; however, uncertainty remains whether size dimorphism is dynamic or stabilizing and about the role of exogenous factors. Here, we explored patterns among empirical vital rates, population structure, abundance and trend, and predicted the effects of climate change on populations of arctic char (Salvelinus alpinus) in two lakes. Both populations cycle dramatically between dominance by small (≤300 mm) and large (>300 mm) char. Apparent survival (Φ) and specific growth rates (SGR) were relatively high (40–96 %; SGR range 0.03–1.5 %) and comparable to those of conspecifics at lower latitudes. Climate change scenarios mimicked observed patterns of warming and resulted in temperatures closer to optimal for char growth (15.15 °C) and a longer growing season. An increase in consumption rates (28–34 %) under climate change scenarios led to much greater growth rates (23–34 %). Higher growth rates predicted under climate change resulted in an even greater predicted amplitude of cycles in population structure as well as an increase in reproductive output (Ro) and decrease in generation time (Go). Collectively, these results indicate arctic char populations (not just individuals) are extremely sensitive to small changes in the number of ice-free days. We hypothesize years with a longer growing season, predicted to occur more often under climate change, produce elevated growth rates of small char and act in a manner similar to a “resource pulse,” allowing a sub-set of small char to “break through,” thus setting the cycle in population structure.

  13. Role of small-sized copepods in the lipid-driven Arctic marine food web

    NASA Astrophysics Data System (ADS)

    Daase, M.; Boissonnot, L.; Graeve, M.; Søreide, J.; Niehoff, B.

    2016-02-01

    Despite of the low individual biomass of small-sized copepods such as the calanoid Pseudocalanus minutus and the cyclopoid Oithona similis, they are extremely numerous which make them an important trophic component in Arctic marine ecosystems. Due to the strong seasonality in light and thus primary production and food availability, the accumulation of lipid reserves is a key feature in Arctic marine ecosystems. However, very few studies exist on the lipid biochemistry of small copepods such as P. minutus and O. similis. In order to investigate the importance of these species in terms of transfer of lipids from primary production to higher trophic levels, feeding experiments were conducted, based on animals from Billefjorden, a high-Arctic fjord in Svalbard, Norway. A mixture of 13C labeled flagellates and diatoms was fed to the animals and the transfer and assimilation of lipid carbon, fatty acids and fatty alcohols was analyzed with gas chromatography-IRMS technique (CSIA). The results revealed that both species were incorporating dietary lipids in high quantities. The highest accumulation occurred in P. minutus in which 54.4% of the lipids were exchanged after 21 days, whereas 9.4% were assimilated in O. similis. Hence, at least this amount of carbon was used for metabolism and replaced by feeding. The lipid composition of the copepods did not reflect exactly the algal lipids, and differed between P. minutus and O. similis. Our results suggested intrinsic preferences in the accumulation of particular fatty acids, probably related to species-specific body requirements. This emphasizes the importance of also food quality in Arctic marine systems. Due to the relatively high lipid turnover rates in particularly in P. minutus, also small copepods are important drivers of the lipid-driven Arctic marine food web.

  14. First light on a new fully digital camera based on SiPM for CTA SST-1M telescope

    NASA Astrophysics Data System (ADS)

    della Volpe, Domenico; Al Samarai, Imen; Alispach, Cyril; Bulik, Tomasz; Borkowski, Jerzy; Cadoux, Franck; Coco, Victor; Favre, Yannick; Grudzińska, Mira; Heller, Matthieu; Jamrozy, Marek; Kasperek, Jerzy; Lyard, Etienne; Mach, Emil; Mandat, Dusan; Michałowski, Jerzy; Moderski, Rafal; Montaruli, Teresa; Neronov, Andrii; Niemiec, Jacek; Njoh Ekoume, T. R. S.; Ostrowski, Michal; Paśko, Paweł; Pech, Miroslav; Rajda, Pawel; Rafalski, Jakub; Schovanek, Petr; Seweryn, Karol; Skowron, Krzysztof; Sliusar, Vitalii; Stawarz, Łukasz; Stodulska, Magdalena; Stodulski, Marek; Travnicek, Petr; Troyano Pujadas, Isaac; Walter, Roland; Zagdański, Adam; Zietara, Krzysztof

    2017-08-01

    The Cherenkov Telescope Array (CTA) will explore with unprecedented precision the Universe in the gammaray domain covering an energy range from 50 GeV to more the 300 TeV. To cover such a broad range with a sensitivity which will be ten time better than actual instruments, different types of telescopes are needed: the Large Size Telescopes (LSTs), with a ˜24 m diameter mirror, a Medium Size Telescopes (MSTs), with a ˜12 m mirror and the small size telescopes (SSTs), with a ˜4 m diameter mirror. The single mirror small size telescope (SST-1M), one of the proposed solutions to become part of the small-size telescopes of CTA, will be equipped with an innovative camera. The SST-1M has a Davies-Cotton optical design with a mirror dish of 4 m diameter and focal ratio 1.4 focussing the Cherenkov light produced in atmospheric showers onto a 90 cm wide hexagonal camera providing a FoV of 9 degrees. The camera is an innovative design based on silicon photomultipliers (SiPM ) and adopting a fully digital trigger and readout architecture. The camera features 1296 custom designed large area hexagonal SiPM coupled to hollow optical concentrators to achieve a pixel size of almost 2.4 cm. The SiPM is a custom design developed with Hamamatsu and with its active area of almost 1 cm2 is one of the largest monolithic SiPM existing. Also the optical concentrators are innovative being light funnels made of a polycarbonate substrate coated with a custom designed UV-enhancing coating. The analog signals coming from the SiPM are fed into the fully digital readout electronics, where digital data are processed by high-speed FPGAs both for trigger and readout. The trigger logic, implemented into an Virtex 7 FPGA, uses the digital data to elaborate a trigger decision by matching data against predefined patterns. This approach is extremely flexible and allows improvements and continued evolutions of the system. The prototype camera is being tested in laboratory prior to its installation expected in fall 2017 on the telescope prototype in Krakow (Poland). In this contribution, we will describe the design of the camera and show the performance measured in laboratory.

  15. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1997-01-01

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor (50). An optical fiber micro-light source (50) is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors (22) in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material (60). This process allows significant control of the size of the micro light source (50). Furthermore, photo-chemically attaching an optically active material (60) enables the implementation of the micro-light source in a variety of sensor applications.

  16. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, Raoul; Tan, Weihong; Shi, Zhong-You

    1994-01-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications.

  17. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1997-05-06

    This invention relates generally to the development of and a method of fabricating a fiber optic micro-light source and sensor. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 10 figs.

  18. Micro optical fiber light source and sensor and method of fabrication thereof

    DOEpatents

    Kopelman, R.; Tan, W.; Shi, Z.Y.

    1994-11-01

    This invention relates generally to the development of and a method of fabricating a micro optical fiber light source. An optical fiber micro-light source is presented whose aperture is extremely small yet able to act as an intense light source. Light sources of this type have wide ranging applications, including use as micro-sensors in NSOM. Micro-sensor light sources have excellent detection limits as well as photo stability, reversibility, and millisecond response times. Furthermore, a method for manufacturing a micro optical fiber light source is provided. It involves the photo-chemical attachment of an optically active material onto the end surface of an optical fiber cable which has been pulled to form an end with an extremely narrow aperture. More specifically, photopolymerization has been applied as a means to photo-chemically attach an optically active material. This process allows significant control of the size of the micro light source. Furthermore, photo-chemically attaching an optically active material enables the implementation of the micro-light source in a variety of sensor applications. 4 figs.

  19. Zipf law: an extreme perspective

    NASA Astrophysics Data System (ADS)

    Eliazar, Iddo

    2016-04-01

    Extreme value theory (EVT) asserts that the Fréchet law emerges universally from linearly scaled maxima of collections of independent and identically distributed random variables that are positive-valued. Observations of many real-world sizes, e.g. city-sizes, give rise to the Zipf law: if we rank the sizes decreasingly, and plot the log-sizes versus the log-ranks, then an affine line emerges. In this paper we present an EVT approach to the Zipf law. Specifically, we establish that whenever the Fréchet law emerges from the EVT setting, then the Zipf law follows. The EVT generation of the Zipf law, its universality, and its associated phase transition, are analyzed and described in detail.

  20. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martínez, Enrique; Uberuaga, Blas P.

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  1. Mobility and coalescence of stacking fault tetrahedra in Cu

    DOE PAGES

    Martínez, Enrique; Uberuaga, Blas P.

    2015-03-13

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs canmore » diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects.« less

  2. Mobility and coalescence of stacking fault tetrahedra in Cu

    PubMed Central

    Martínez, Enrique; Uberuaga, Blas P.

    2015-01-01

    Stacking fault tetrahedra (SFTs) are ubiquitous defects in face-centered cubic metals. They are produced during cold work plastic deformation, quenching experiments or under irradiation. From a dislocation point of view, the SFTs are comprised of a set of stair-rod dislocations at the (110) edges of a tetrahedron bounding triangular stacking faults. These defects are extremely stable, increasing their energetic stability as they grow in size. At the sizes visible within transmission electron microscope they appear nearly immobile. Contrary to common belief, we show in this report, using a combination of molecular dynamics and temperature accelerated dynamics, how small SFTs can diffuse by temporarily disrupting their structure through activated thermal events. More over, we demonstrate that the diffusivity of defective SFTs is several orders of magnitude higher than perfect SFTs, and can be even higher than isolated vacancies. Finally, we show how SFTs can coalesce, forming a larger defect in what is a new mechanism for the growth of these omnipresent defects. PMID:25765711

  3. Divided and Sliding Superficial Temporal Artery Flap for Primary Donor-site Closure

    PubMed Central

    Sugio, Yuta; Seike, Shien; Hosokawa, Ko

    2016-01-01

    Summary: Superficial temporal artery (STA) flaps are often used for reconstruction of hair-bearing areas. However, primary closure of the donor site is not easy when the size of the necessary skin island is relatively large. In such cases, skin grafts are needed at the donor site, resulting in baldness. We have solved this issue by applying the divided and sliding flap technique, which was first reported for primary donor-site closure of a latissimus dorsi musculocutaneous flap. We applied this technique to the hair-bearing STA flap, where primary donor-site closure is extremely beneficial for preventing baldness consequent to skin grafting. The STA flap was divided into 3, and creation of large flap was possible. Therefore, we concluded that the divided and sliding STA flap could at least partially solve the donor-site problem. Although further investigation is necessary to validate the maximum possible flap size, this technique may be applicable to at least small defects that are common after skin cancer ablation or trauma. PMID:27975020

  4. Special features of large-size resistors for high-voltage pulsed installations

    NASA Astrophysics Data System (ADS)

    Minakova, N. N.; Ushakov, V. Ya.

    2017-12-01

    Many structural materials in pulsed power engineering operate under extreme conditions. For example, in high-voltage electrophysical installations among which there are multistage high-voltage pulse generators (HVPG), rigid requirements are imposed on characteristics of solid-state resistors that are more promising in comparison with widely used liquid resistors. Materials of such resistors shall be able to withstand strong electric fields, operate at elevated temperatures, in transformer oil, etc. Effective charge of high-voltage capacitors distributed over the HVPG steps (levels) requires uniform voltage distribution along the steps of the installation that can be obtained using large-size resistors. For such applications, polymer composite materials are considered rather promising. They can work in transformer oil and have small mass in comparison with bulky resistors on inorganic basis. This allows technical solutions already developed and implemented in HVPG with liquid resistors to be employed. This paper is devoted to the solution of some tasks related to the application of filled polymers in high-voltage engineering.

  5. Evolving MEMS Resonator Designs for Fabrication

    NASA Technical Reports Server (NTRS)

    Hornby, Gregory S.; Kraus, William F.; Lohn, Jason D.

    2008-01-01

    Because of their small size and high reliability, microelectromechanical (MEMS) devices have the potential to revolution many areas of engineering. As with conventionally-sized engineering design, there is likely to be a demand for the automated design of MEMS devices. This paper describes our current status as we progress toward our ultimate goal of using an evolutionary algorithm and a generative representation to produce designs of a MEMS device and successfully demonstrate its transfer to an actual chip. To produce designs that are likely to transfer to reality, we present two ways to modify evaluation of designs. The first is to add location noise, differences between the actual dimensions of the design and the design blueprint, which is a technique we have used for our work in evolving antennas and robots. The second method is to add prestress to model the warping that occurs during the extreme heat of fabrication. In future we expect to fabricate and test some MEMS resonators that are evolved in this way.

  6. New insights on equid locomotor evolution from the lumbar region of fossil horses

    PubMed Central

    Jones, Katrina Elizabeth

    2016-01-01

    The specialization of equid limbs for cursoriality is a classic case of adaptive evolution, but the role of the axial skeleton in this famous transition is not well understood. Extant horses are extremely fast and efficient runners, which use a stiff-backed gallop with reduced bending of the lumbar region relative to other mammals. This study tests the hypothesis that stiff-backed running in horses evolved in response to evolutionary increases in body size by examining lumbar joint shape from a broad sample of fossil equids in a phylogenetic context. Lumbar joint shape scaling suggests that stability of the lumbar region does correlate with size through equid evolution. However, scaling effects were dampened in the posterior lumbar region, near the sacrum, which suggests strong selection for sagittal mobility in association with locomotor–respiratory coupling near the lumbosacral joint. I hypothesize that small-bodied fossil horses may have used a speed-dependent running gait, switching between stiff-backed and flex-backed galloping as speed increased. PMID:27122554

  7. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory

    NASA Astrophysics Data System (ADS)

    Zhang, Xichao; Zhao, G. P.; Fangohr, Hans; Liu, J. Ping; Xia, W. X.; Xia, J.; Morvan, F. J.

    2015-01-01

    Magnetic skyrmions are promising for building next-generation magnetic memories and spintronic devices due to their stability, small size and the extremely low currents needed to move them. In particular, skyrmion-based racetrack memory is attractive for information technology, where skyrmions are used to store information as data bits instead of traditional domain walls. Here we numerically demonstrate the impacts of skyrmion-skyrmion and skyrmion-edge repulsions on the feasibility of skyrmion-based racetrack memory. The reliable and practicable spacing between consecutive skyrmionic bits on the racetrack as well as the ability to adjust it are investigated. Clogging of skyrmionic bits is found at the end of the racetrack, leading to the reduction of skyrmion size. Further, we demonstrate an effective and simple method to avoid the clogging of skyrmionic bits, which ensures the elimination of skyrmionic bits beyond the reading element. Our results give guidance for the design and development of future skyrmion-based racetrack memory.

  8. Celestial Exoplanet Survey Occulter: A Concept for Direct Imaging of Extrasolar Earth-like Planets from the Ground

    NASA Astrophysics Data System (ADS)

    Janson, M.

    2007-02-01

    We present a new concept for detecting and characterizing extrasolar planets down to Earth size or smaller through direct imaging. The New Worlds Observer (NWO) occulter developed by Cash and coworkers is placed in a particular geometrical setup in which fuel requirements are small and the occulter is used in combination with ground-based telescopes, presumably leading to an extreme cost efficiency compared to other concepts with similar science goals. We investigate the various aspects of the given geometry, such as the dynamics and radiation environment of the occulter, and construct a detailed example target list to ensure that an excellent science case can be maintained despite the limited sky coverage. It is found that more than 200 systems can be observed with two to three visits per system, using only a few tons of fuel. For each system, an Earth-sized planet with an Earth-like albedo can be found in the habitable zone in less than 2 hr.

  9. Challenges in Resolution for IC Failure Analysis

    NASA Astrophysics Data System (ADS)

    Martinez, Nick

    1999-10-01

    Resolution is becoming more and more of a challenge in the world of Failure Analysis in integrated circuits. This is a result of the ongoing size reduction in microelectronics. Determining the cause of a failure depends upon being able to find the responsible defect. The time it takes to locate a given defect is extremely important so that proper corrective actions can be taken. The limits of current microscopy tools are being pushed. With sub-micron feature sizes and even smaller killing defects, optical microscopes are becoming obsolete. With scanning electron microscopy (SEM), the resolution is high but the voltage involved can make these small defects transparent due to the large mean-free path of incident electrons. In this presentation, I will give an overview of the use of inspection methods in Failure Analysis and show example studies of my work as an Intern student at Texas Instruments. 1. Work at Texas Instruments, Stafford, TX, was supported by TI. 2. Work at Texas Tech University, was supported by NSF Grant DMR9705498.

  10. [The development of a portable life support device for transporting pre-hospital critically ill patients].

    PubMed

    Song, Zhen-xing; Wu, Tai-hu; Meng, Xing-ju; Lu, Heng-zhi; Zheng, Jie-wen; Wang, Hai-tao

    2012-06-01

    To describe a portable life support device for transportation of pre-hospital patients with critical illness. The characteristics and requirements for urgent management during transportation of critically ill patients to a hospital were analyzed. With adoption of the original equipment, with the aid of staple of the art soft ware, the overall structure, its installation, fixation, freedom from interference, operational function were studied, and the whole system of life support and resuscitation was designed. The system was composed by different modules, including mechanical ventilation, transfusion, aspiration, critical care, oxygen supply and power supply parts. The system could be fastened quickly to a stretcher to form portable intensive care unit (ICU), and it could be carried by different size vehicles to provide nonstop treatment by using power supply of the vehicle, thus raising the efficiency of urgent care. With characteristics of its small size, lightweight and portable, the device is particularly suitable for narrow space and extreme environment.

  11. 76 FR 29251 - Guidance for Industry and Food and Drug Administration Staff; Class II Special Controls; Guidance...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-20

    ...: Topical Oxygen Chamber for Extremities; Availability; Correction AGENCY: Food and Drug Administration, HHS... Special Controls Guidance Documents: Topical Oxygen Chamber for Extremities.'' The document published... Oxygen Chamber for Extremities'' to the Division of Small Manufacturers, International, and Consumer...

  12. Monitoring Cellular Events in Living Mast Cells Stimulated with an Extremely Small Amount of Fluid on a Microchip

    NASA Astrophysics Data System (ADS)

    Munaka, Tatsuya; Abe, Hirohisa; Kanai, Masaki; Sakamoto, Takashi; Nakanishi, Hiroaki; Yamaoka, Tetsuji; Shoji, Shuichi; Murakami, Akira

    2006-07-01

    We successfully developed a measurement system for real-time analysis of cellular function using a newly designed microchip. This microchip was equipped with a micro cell incubation chamber (240 nl) and was stimulated by a very small amount of stimuli (as small as 24 nl). Using the microchip system, cultivation of mast cells was successfully carried out. Monitoring of the cellular events after stimulation with an extremely small amount of fluid on a microchip was performed. This system could be applicable for various types of cellular analysis including real-time monitoring of cellular response by stimulation.

  13. The distance between Mars and Venus: measuring global sex differences in personality.

    PubMed

    Del Giudice, Marco; Booth, Tom; Irwing, Paul

    2012-01-01

    Sex differences in personality are believed to be comparatively small. However, research in this area has suffered from significant methodological limitations. We advance a set of guidelines for overcoming those limitations: (a) measure personality with a higher resolution than that afforded by the Big Five; (b) estimate sex differences on latent factors; and (c) assess global sex differences with multivariate effect sizes. We then apply these guidelines to a large, representative adult sample, and obtain what is presently the best estimate of global sex differences in personality. Personality measures were obtained from a large US sample (N = 10,261) with the 16PF Questionnaire. Multigroup latent variable modeling was used to estimate sex differences on individual personality dimensions, which were then aggregated to yield a multivariate effect size (Mahalanobis D). We found a global effect size D = 2.71, corresponding to an overlap of only 10% between the male and female distributions. Even excluding the factor showing the largest univariate ES, the global effect size was D = 1.71 (24% overlap). These are extremely large differences by psychological standards. The idea that there are only minor differences between the personality profiles of males and females should be rejected as based on inadequate methodology.

  14. The Distance Between Mars and Venus: Measuring Global Sex Differences in Personality

    PubMed Central

    Del Giudice, Marco; Booth, Tom; Irwing, Paul

    2012-01-01

    Background Sex differences in personality are believed to be comparatively small. However, research in this area has suffered from significant methodological limitations. We advance a set of guidelines for overcoming those limitations: (a) measure personality with a higher resolution than that afforded by the Big Five; (b) estimate sex differences on latent factors; and (c) assess global sex differences with multivariate effect sizes. We then apply these guidelines to a large, representative adult sample, and obtain what is presently the best estimate of global sex differences in personality. Methodology/Principal Findings Personality measures were obtained from a large US sample (N = 10,261) with the 16PF Questionnaire. Multigroup latent variable modeling was used to estimate sex differences on individual personality dimensions, which were then aggregated to yield a multivariate effect size (Mahalanobis D). We found a global effect size D = 2.71, corresponding to an overlap of only 10% between the male and female distributions. Even excluding the factor showing the largest univariate ES, the global effect size was D = 1.71 (24% overlap). These are extremely large differences by psychological standards. Significance The idea that there are only minor differences between the personality profiles of males and females should be rejected as based on inadequate methodology. PMID:22238596

  15. Molecular simulation and experimental validation of resorcinol adsorption on Ordered Mesoporous Carbon (OMC).

    PubMed

    Ahmad, Zaki Uddin; Chao, Bing; Konggidinata, Mas Iwan; Lian, Qiyu; Zappi, Mark E; Gang, Daniel Dianchen

    2018-04-27

    Numerous research works have been devoted in the adsorption area using experimental approaches. All these approaches are based on trial and error process and extremely time consuming. Molecular simulation technique is a new tool that can be used to design and predict the performance of an adsorbent. This research proposed a simulation technique that can greatly reduce the time in designing the adsorbent. In this study, a new Rhombic ordered mesoporous carbon (OMC) model is proposed and constructed with various pore sizes and oxygen contents using Materials Visualizer Module to optimize the structure of OMC for resorcinol adsorption. The specific surface area, pore volume, small angle X-ray diffraction pattern, and resorcinol adsorption capacity were calculated by Forcite and Sorption module in Materials Studio Package. The simulation results were validated experimentally through synthesizing OMC with different pore sizes and oxygen contents prepared via hard template method employing SBA-15 silica scaffold. Boric acid was used as the pore expanding reagent to synthesize OMC with different pore sizes (from 4.6 to 11.3 nm) and varying oxygen contents (from 11.9% to 17.8%). Based on the simulation and experimental validation, the optimal pore size was found to be 6 nm for maximum adsorption of resorcinol. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. Wound size measurement of lower extremity ulcers using segmentation algorithms

    NASA Astrophysics Data System (ADS)

    Dadkhah, Arash; Pang, Xing; Solis, Elizabeth; Fang, Ruogu; Godavarty, Anuradha

    2016-03-01

    Lower extremity ulcers are one of the most common complications that not only affect many people around the world but also have huge impact on economy since a large amount of resources are spent for treatment and prevention of the diseases. Clinical studies have shown that reduction in the wound size of 40% within 4 weeks is an acceptable progress in the healing process. Quantification of the wound size plays a crucial role in assessing the extent of healing and determining the treatment process. To date, wound healing is visually inspected and the wound size is measured from surface images. The extent of wound healing internally may vary from the surface. A near-infrared (NIR) optical imaging approach has been developed for non-contact imaging of wounds internally and differentiating healing from non-healing wounds. Herein, quantitative wound size measurements from NIR and white light images are estimated using a graph cuts and region growing image segmentation algorithms. The extent of the wound healing from NIR imaging of lower extremity ulcers in diabetic subjects are quantified and compared across NIR and white light images. NIR imaging and wound size measurements can play a significant role in potentially predicting the extent of internal healing, thus allowing better treatment plans when implemented for periodic imaging in future.

  17. The Au(n) cluster probe in secondary ion mass spectrometry: influence of the projectile size and energy on the desorption/ionization rate from biomolecular solids.

    PubMed

    Novikov, Alexey; Caroff, Martine; Della-Negra, Serge; Depauw, Joël; Fallavier, Mireille; Le Beyec, Yvon; Pautrat, Michèle; Schultz, J Albert; Tempez, Agnès; Woods, Amina S

    2005-01-01

    A Au-Si liquid metal ion source which produces Au(n) clusters over a large range of sizes was used to study the dependence of both the molecular ion desorption yield and the damage cross-section on the size (n = 1 to 400) and on the kinetic energy (E = 10 to 500 keV) of the clusters used to bombard bioorganic surfaces. Three pure peptides with molecular masses between 750 and 1200 Da were used without matrix. [M+H](+) and [M+cation](+) ion emission yields were enhanced by as much as three orders of magnitude when bombarding with Au(400) (4+) instead of monatomic Au(+), yet very little damage was induced in the samples. A 100-fold increase in the molecular ion yield was observed when the incident energy of Au(9) (+) was varied from 10 to 180 keV. Values of emission yields and damage cross-sections are presented as a function of cluster size and energy. The possibility to adjust both cluster size and energy, depending on the application, makes the analysis of biomolecules by secondary ion mass spectrometry an extremely powerful and flexible technique, particularly when combined with orthogonal time-of-flight mass spectrometry that then allows fast measurements using small primary ion beam currents. Copyright (c) 2005 John Wiley & Sons, Ltd.

  18. Dry etching of chrome for photomasks for 100-nm technology using chemically amplified resist

    NASA Astrophysics Data System (ADS)

    Mueller, Mark; Komarov, Serguie; Baik, Ki-Ho

    2002-07-01

    Photo mask etching for the 100nm technology node places new requirements on dry etching processes. As the minimum-size features on the mask, such as assist bars and optical proximity correction (OPC) patterns, shrink down to 100nm, it is necessary to produce etch CD biases of below 20nm in order to reproduce minimum resist features into chrome with good pattern fidelity. In addition, vertical profiles are necessary. In previous generations of photomask technology, footing and sidewall profile slope were tolerated, since this dry etch profile was an improvement from wet etching. However, as feature sizes shrink, it is extremely important to select etch processes which do not generate a foot, because this will affect etch linearity and also limit the smallest etched feature size. Chemically amplified resist (CAR) from TOK is patterned with a 50keV MEBES eXara e-beam writer, allowing for patterning of small features with vertical resist profiles. This resist is developed for raster scan 50 kV e-beam systems. It has high contrast, good coating characteristics, good dry etch selectivity, and high environmental stability. Chrome etch process development has been performed using Design of Experiments to optimize parameters such as sidewall profile, etch CD bias, etch CD linearity for varying sizes of line/space patterns, etch CD linearity for varying sizes of isolated lines and spaces, loading effects, and application to contact etching.

  19. Investigation of nucleation kinetics in H2SO4 vapor through modeling of gas phase kinetics coupled with particle dynamics

    NASA Astrophysics Data System (ADS)

    Carlsson, Philip T. M.; Zeuch, Thomas

    2018-03-01

    We have developed a new model utilizing our existing kinetic gas phase models to simulate experimental particle size distributions emerging in dry supersaturated H2SO4 vapor homogeneously produced by rapid oxidation of SO2 through stabilized Criegee-Intermediates from 2-butene ozonolysis. We use a sectional method for simulating the particle dynamics. The particle treatment in the model is based on first principles and takes into account the transition from the kinetic to the diffusion-limited regime. It captures the temporal evolution of size distributions at the end of the ozonolysis experiment well, noting a slight underrepresentation of coagulation effects for larger particle sizes. The model correctly predicts the shape and the modes of the experimentally observed particle size distributions. The predicted modes show an extremely high sensitivity to the H2SO4 evaporation rates of the initially formed H2SO4 clusters (dimer to pentamer), which were arbitrarily restricted to decrease exponentially with increasing cluster size. In future, the analysis presented in this work can be extended to allow a direct validation of quantum chemically predicted stabilities of small H2SO4 clusters, which are believed to initiate a significant fraction of atmospheric new particle formation events. We discuss the prospects and possible limitations of the here presented approach.

  20. Last Passage Percolation and Traveling Fronts

    NASA Astrophysics Data System (ADS)

    Comets, Francis; Quastel, Jeremy; Ramírez, Alejandro F.

    2013-08-01

    We consider a system of N particles with a stochastic dynamics introduced by Brunet and Derrida (Phys. Rev. E 70:016106, 2004). The particles can be interpreted as last passage times in directed percolation on {1,…, N} of mean-field type. The particles remain grouped and move like a traveling front, subject to discretization and driven by a random noise. As N increases, we obtain estimates for the speed of the front and its profile, for different laws of the driving noise. As shown in Brunet and Derrida (Phys. Rev. E 70:016106, 2004), the model with Gumbel distributed jumps has a simple structure. We establish that the scaling limit is a Lévy process in this case. We study other jump distributions. We prove a result showing that the limit for large N is stable under small perturbations of the Gumbel. In the opposite case of bounded jumps, a completely different behavior is found, where finite-size corrections are extremely small.

  1. The linkage between ribosomal crystallography, metal ions, heteropolytungstates and functional flexibility

    PubMed Central

    Bashan, Anat; Yonath, Ada

    2009-01-01

    Crystallography of ribosomes, the universal cell nucleoprotein assemblies facilitating the translation of the genetic-code into proteins, met with severe problems owing to their large size, complex structure, inherent flexibility and high conformational variability. For the case of the small ribosomal subunit, which caused extreme difficulties, post crystallization treatment by minute amounts of a heteropolytungstate cluster allowed structure determination at atomic resolution. This cluster played a dual role in ribosomal crystallography: providing anomalous phasing power and dramatically increased the resolution, by stabilization of a selected functional conformation. Thus, four out of the fourteen clusters that bind to each of the crystallized small subunits are attached to a specific ribosomal protein in a fashion that may control a significant component of the subunit internal flexibility, by “gluing” symmetrical related subunits. Here we highlight basic issues in the relationship between metal ions and macromolecules and present common traits controlling in the interactions between polymetalates and various macromolecules, which may be extended towards the exploitation of polymetalates for therapeutical treatment. PMID:19915655

  2. Pt-free carbon-based fuel cell catalyst prepared from spherical polyimide for enhanced oxygen diffusion

    PubMed Central

    Nabae, Yuta; Nagata, Shinsuke; Hayakawa, Teruaki; Niwa, Hideharu; Harada, Yoshihisa; Oshima, Masaharu; Isoda, Ayano; Matsunaga, Atsushi; Tanaka, Kazuhisa; Aoki, Tsutomu

    2016-01-01

    The development of a non-precious metal (NPM) fuel cell catalyst is extremely important to achieve globalization of polymer electrolyte fuel cells due to the cost and scarcity of platinum. Here, we report on a NPM cathode catalyst prepared by the pyrolysis of spherical polyimide nanoparticles that contain small amounts of Fe additive. 60 nm diameter Fe-containing polyimide nanoparticles were successfully synthesized by the precipitation polymerization of pyromellitic acid dianhydride and 1,3,5-tris(4-aminophenyl)benzene with Fe(acac)3 (acac = acetylacetonate) as an additive. The particles were subsequently carbonized by multistep pyrolysis to obtain the NPM catalyst while retaining the small particle size. The catalyst has good performance and promising durability for fuel cell applications. The fuel cell performance under a 0.2 MPa air atmosphere at 80 °C of 1.0 A cm−2 at 0.46 V is especially remarkable and better than that previously reported. PMID:26987682

  3. Single-electron random-number generator (RNG) for highly secure ubiquitous computing applications

    NASA Astrophysics Data System (ADS)

    Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2007-11-01

    Since the security of all modern cryptographic techniques relies on unpredictable and irreproducible digital keys generated by random-number generators (RNGs), the realization of high-quality RNG is essential for secure communications. In this report, a new RNG, which utilizes single-electron phenomena, is proposed. A room-temperature operating silicon single-electron transistor (SET) having nearby an electron pocket is used as a high-quality, ultra-small RNG. In the proposed RNG, stochastic single-electron capture/emission processes to/from the electron pocket are detected with high sensitivity by the SET, and result in giant random telegraphic signals (GRTS) on the SET current. It is experimentally demonstrated that the single-electron RNG generates extremely high-quality random digital sequences at room temperature, in spite of its simple configuration. Because of its small-size and low-power properties, the single-electron RNG is promising as a key nanoelectronic device for future ubiquitous computing systems with highly secure mobile communication capabilities.

  4. Rapid measurement of field-saturated hydraulic conductivity for areal characterization

    USGS Publications Warehouse

    Nimmo, J.R.; Schmidt, K.M.; Perkins, K.S.; Stock, J.D.

    2009-01-01

    To provide an improved methodology for characterizing the field-saturated hydraulic conductivity (Kfs) over broad areas with extreme spatial variability and ordinary limitations of time and resources, we developed and tested a simplified apparatus and procedure, correcting mathematically for the major deficiencies of the simplified implementation. The methodology includes use of a portable, falling-head, small-diameter (???20 cm) single-ring infiltrometer and an analytical formula for Kfs that compensates both for nonconstant falling head and for the subsurface radial spreading that unavoidably occurs with small ring size. We applied this method to alluvial fan deposits varying in degree of pedogenic maturity in the arid Mojave National Preserve, California. The measurements are consistent with a more rigorous and time-consuming Kfs measurement method, produce the expected systematic trends in Kfs when compared among soils of contrasting degrees of pedogenic development, and relate in expected ways to results of widely accepted methods. ?? Soil Science Society of America. All rights reserved.

  5. Simulations of radiation-damaged 3D detectors for the Super-LHC

    NASA Astrophysics Data System (ADS)

    Pennicard, D.; Pellegrini, G.; Fleta, C.; Bates, R.; O'Shea, V.; Parkes, C.; Tartoni, N.

    2008-07-01

    Future high-luminosity colliders, such as the Super-LHC at CERN, will require pixel detectors capable of withstanding extremely high radiation damage. In this article, the performances of various 3D detector structures are simulated with up to 1×1016 1 MeV- neq/cm2 radiation damage. The simulations show that 3D detectors have higher collection efficiency and lower depletion voltages than planar detectors due to their small electrode spacing. When designing a 3D detector with a large pixel size, such as an ATLAS sensor, different electrode column layouts are possible. Using a small number of n+ readout electrodes per pixel leads to higher depletion voltages and lower collection efficiency, due to the larger electrode spacing. Conversely, using more electrodes increases both the insensitive volume occupied by the electrode columns and the capacitive noise. Overall, the best performance after 1×1016 1 MeV- neq/cm2 damage is achieved by using 4-6 n+ electrodes per pixel.

  6. Report on monitoring and support instruments for solar physics research from Spacelab

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The Quick Reaction and Special Purpose Facility Definition Team for Solar Physics Spacelab Payloads examined a variety of instruments to fulfill the following functions: (1) solar physics research appropriate to Spacelab, (2) correlative data for research in such fields as aeronomy, magnetospheric physics, ionospheric physics, meteorology and climatology, (3) target selection for activity alert monitoring and (4) pointing accuracy monitoring of Spacelab platforms. In this examination the team accepted a number of restrictions and qualifications: (1) the cost of such instruments must be low, so as not to adversely impact the development of new, research class instrumentation in the early Spacelab era; (2) the instruments should be of such a size that they each would occupy a small fraction of a pointing system, and (3) the weight and power consumption of the instruments should also be small. With these restrictions, the instruments chosen are: the visible light telescope and magnetograph, the extreme-ultraviolet telescope, and the solar irradiance monitor.

  7. Intra- and Trans-Generational Costs of Reduced Female Body Size Caused by Food Limitation Early in Life in Mites

    PubMed Central

    Walzer, Andreas; Schausberger, Peter

    2013-01-01

    Background Food limitation early in life may be compensated for by developmental plasticity resulting in accelerated development enhancing survival at the expense of small adult body size. However and especially for females in non-matching maternal and offspring environments, being smaller than the standard may incur considerable intra- and trans-generational costs. Methodology/Principal Findings Here, we evaluated the costs of small female body size induced by food limitation early in life in the sexually size-dimorphic predatory mite Phytoseiulus persimilis. Females are larger than males. These predators are adapted to exploit ephemeral spider mite prey patches. The intra- and trans-generational effects of small maternal body size manifested in lower maternal survival probabilities, decreased attractiveness for males, and a reduced number and size of eggs compared to standard-sized females. The trans-generational effects of small maternal body size were sex-specific with small mothers producing small daughters but standard-sized sons. Conclusions/Significance Small female body size apparently intensified the well-known costs of sexual activity because mortality of small but not standard-sized females mainly occurred shortly after mating. The disadvantages of small females in mating and egg production may be generally explained by size-associated morphological and physiological constraints. Additionally, size-assortative mate preferences of standard-sized mates may have rendered small females disproportionally unattractive mating partners. We argue that the sex-specific trans-generational effects were due to sexual size dimorphism – females are the larger sex and thus more strongly affected by maternal stress than the smaller males – and to sexually selected lower plasticity of male body size. PMID:24265745

  8. 13 CFR 121.405 - May a business concern self-certify its small business size status?

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false May a business concern self-certify its small business size status? 121.405 Section 121.405 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS SIZE REGULATIONS Size Eligibility Provisions and Standards Size...

  9. Estimation of extremely small field radiation dose for brain stereotactic radiotherapy using the Vero4DRT system.

    PubMed

    Nakayama, Shinichi; Monzen, Hajime; Onishi, Yuichi; Kaneshige, Soichiro; Kanno, Ikuo

    2018-06-01

    The purpose of this study was a dosimetric validation of the Vero4DRT for brain stereotactic radiotherapy (SRT) with extremely small fields calculated by the treatment planning system (TPS) iPlan (Ver.4.5.1; algorithm XVMC). Measured and calculated data (e.g. percentage depth dose [PDD], dose profile, and point dose) were compared for small square fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm 2 using ionization chambers of 0.01 or 0.04 cm 3 and a diamond detector. Dose verifications were performed using an ionization chamber and radiochromic film (EBT3; the equivalent field sizes used were 8.2, 8.7, 8.9, 9.5, and 12.9 mm 2 ) for five brain SRT cases irradiated with dynamic conformal arcs. The PDDs and dose profiles for the measured and calculated data were in good agreement for fields larger than or equal to 10 × 10 mm 2 when an appropriate detector was chosen. The dose differences for point doses in fields of 30 × 30, 20 × 20, 10 × 10 and 5 × 5 mm 2 were +0.48%, +0.56%, -0.52%, and +11.2% respectively. In the dose verifications for the brain SRT plans, the mean dose difference between the calculated and measured doses were -0.35% (range, -0.94% to +0.47%), with the average pass rates for the gamma index under the 3%/2 mm criterion being 96.71%, 93.37%, and 97.58% for coronal, sagittal, and axial planes respectively. The Vero4DRT system provides accurate delivery of radiation dose for small fields larger than or equal to 10 × 10 mm 2 . Copyright © 2018 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  10. 13 CFR 121.1009 - What are the procedures for making the size determination?

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... the size determination? 121.1009 Section 121.1009 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS SIZE REGULATIONS Size Eligibility Provisions and Standards Procedures for Size.... The concern whose size is under consideration has the burden of establishing its small business size...

  11. 13 CFR 121.1009 - What are the procedures for making the size determination?

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... the size determination? 121.1009 Section 121.1009 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS SIZE REGULATIONS Size Eligibility Provisions and Standards Procedures for Size.... The concern whose size is under consideration has the burden of establishing its small business size...

  12. 13 CFR 121.1009 - What are the procedures for making the size determination?

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... the size determination? 121.1009 Section 121.1009 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION SMALL BUSINESS SIZE REGULATIONS Size Eligibility Provisions and Standards Procedures for Size.... The concern whose size is under consideration has the burden of establishing its small business size...

  13. A new hydrological model for estimating extreme floods in the Alps

    NASA Astrophysics Data System (ADS)

    Receanu, R. G.; Hertig, J.-A.; Fallot, J.-M.

    2012-04-01

    Protection against flooding is very important for a country like Switzerland with a varied topography and many rivers and lakes. Because of the potential danger caused by extreme precipitation, structural and functional safety of large dams must be guaranteed to withstand the passage of an extreme flood. We introduce a new distributed hydrological model to calculate the PMF from a PMP which is spatially and temporally distributed using clouds. This model has permitted the estimation of extreme floods based on the distributed PMP and the taking into account of the specifics of alpine catchments, in particular the small size of the basins, the complex topography, the large lakes, snowmelt and glaciers. This is an important evolution compared to other models described in the literature, as they mainly use a uniform distribution of extreme precipitation all over the watershed. This paper presents the results of calculation with the developed rainfall-runoff model, taking into account measured rainfall and comparing results to observed flood events. This model includes three parts: surface runoff, underground flow and melting snow. Two Swiss watersheds are studied, for which rainfall data and flow rates are available for a considerably long period, including several episodes of heavy rainfall with high flow events. From these events, several simulations are performed to estimate the input model parameters such as soil roughness and average width of rivers in case of surface runoff. Following the same procedure, the parameters used in the underground flow simulation are also estimated indirectly, since direct underground flow and exfiltration measurements are difficult to obtain. A sensitivity analysis of the parameters is performed at the first step to define more precisely the boundary and initial conditions. The results for the two alpine basins, validated with the Nash equation, show a good correlation between the simulated and observed flows. This good correlation shows that the model is valid and gives us the confidence that the results can be extrapolated to phenomena of extreme rainfall of PMP type.

  14. Fiber-Optic Imaging Probe Developed for Space Used to Detect Diabetes Through the Eye

    NASA Technical Reports Server (NTRS)

    Ansari, Rafat R.; Chenault, Michelle V.; Datiles, Manuel B., III; Sebag, J.; Suh, Kwang I.

    2000-01-01

    Approximately 16 million Americans have diabetes mellitus, which can severely impair eyesight by causing cataracts, diabetic retinopathy, and glaucoma. Cataracts are 1.6 times more common in people with diabetes than in those without diabetes, and cataract extraction is the only surgical treatment. In many cases, diabetes-related ocular pathologies go undiagnosed until visual function is compromised. This ongoing pilot project seeks to study the progression of diabetes in a unique animal model by monitoring changes in the lens with a safe, sensitive, dynamic light-scattering probe. Dynamic light scattering (DLS), has the potential to diagnose cataracts at the molecular level. Recently, a new DLS fiber-optic probe was developed at the NASA Glenn Research Center at Lewis Field for noncontact, accurate, and extremely sensitive particle-sizing measurements in fluid dispersions and suspensions (ref. 1). This compact, portable, and rugged probe is free of optical alignment, offers point-and-shoot operation for various online field applications and challenging environments, and yet is extremely flexible in regards to sample container sizes, materials, and shapes. No external vibration isolation and no index matching are required. It can measure particles as small as 1 nm and as large as few micrometers in a wide concentration range from very dilute (waterlike) dispersions to very turbid (milklike) suspensions. It is safe and fast to use, since it only requires very low laser power (10 nW to 3 mW) with very short data acquisition times (2 to 10 sec).

  15. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode.

    PubMed

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-04-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations.

  16. Altered dynamics of broad-leaved tree species in a Chinese subtropical montane mixed forest: the role of an anomalous extreme 2008 ice storm episode

    PubMed Central

    Ge, Jielin; Xiong, Gaoming; Wang, Zhixian; Zhang, Mi; Zhao, Changming; Shen, Guozhen; Xu, Wenting; Xie, Zongqiang

    2015-01-01

    Extreme climatic events can trigger gradual or abrupt shifts in forest ecosystems via the reduction or elimination of foundation species. However, the impacts of these events on foundation species' demography and forest dynamics remain poorly understood. Here we quantified dynamics for both evergreen and deciduous broad-leaved species groups, utilizing a monitoring permanent plot in a subtropical montane mixed forest in central China from 2001 to 2010 with particular relevance to the anomalous 2008 ice storm episode. We found that both species groups showed limited floristic alterations over the study period. For each species group, size distribution of dead individuals approximated a roughly irregular and flat shape prior to the ice storm and resembled an inverse J-shaped distribution after the ice storm. Furthermore, patterns of mortality and recruitment displayed disequilibrium behaviors with mortality exceeding recruitment for both species groups following the ice storm. Deciduous broad-leaved species group accelerated overall diameter growth, but the ice storm reduced evergreen small-sized diameter growth. We concluded that evergreen broad-leaved species were more susceptible to ice storms than deciduous broad-leaved species, and ice storm events, which may become more frequent with climate change, might potentially threaten the perpetuity of evergreen-dominated broad-leaved forests in this subtropical region in the long term. These results underscore the importance of long-term monitoring that is indispensible to elucidate causal links between forest dynamics and climatic perturbations. PMID:25897387

  17. Extremism without extremists: Deffuant model with emotions

    NASA Astrophysics Data System (ADS)

    Sobkowicz, Pawel

    2015-03-01

    The frequent occurrence of extremist views in many social contexts, often growing from small minorities to almost total majority, poses a significant challenge for democratic societies. The phenomenon can be described within the sociophysical paradigm. We present a modified version of the continuous bounded confidence opinion model, including a simple description of the influence of emotions on tolerances, and eventually on the evolution of opinions. Allowing for psychologically based correlation between the extreme opinions, high emotions and low tolerance for other people's views leads to quick dominance of the extreme views within the studied model, without introducing a special class of agents, as has been done in previous works. This dominance occurs even if the initial numbers of people with extreme opinions is very small. Possible suggestions related to mitigation of the process are briefly discussed.

  18. The effect of defect cluster size and interpolation on radiographic image quality

    NASA Astrophysics Data System (ADS)

    Töpfer, Karin; Yip, Kwok L.

    2011-03-01

    For digital X-ray detectors, the need to control factory yield and cost invariably leads to the presence of some defective pixels. Recently, a standard procedure was developed to identify such pixels for industrial applications. However, no quality standards exist in medical or industrial imaging regarding the maximum allowable number and size of detector defects. While the answer may be application specific, the minimum requirement for any defect specification is that the diagnostic quality of the images be maintained. A more stringent criterion is to keep any changes in the images due to defects below the visual threshold. Two highly sensitive image simulation and evaluation methods were employed to specify the fraction of allowable defects as a function of defect cluster size in general radiography. First, the most critical situation of the defect being located in the center of the disease feature was explored using image simulation tools and a previously verified human observer model, incorporating a channelized Hotelling observer. Detectability index d' was obtained as a function of defect cluster size for three different disease features on clinical lung and extremity backgrounds. Second, four concentrations of defects of four different sizes were added to clinical images with subtle disease features and then interpolated. Twenty observers evaluated the images against the original on a single display using a 2-AFC method, which was highly sensitive to small changes in image detail. Based on a 50% just-noticeable difference, the fraction of allowed defects was specified vs. cluster size.

  19. Undersampling power-law size distributions: effect on the assessment of extreme natural hazards

    USGS Publications Warehouse

    Geist, Eric L.; Parsons, Thomas E.

    2014-01-01

    The effect of undersampling on estimating the size of extreme natural hazards from historical data is examined. Tests using synthetic catalogs indicate that the tail of an empirical size distribution sampled from a pure Pareto probability distribution can range from having one-to-several unusually large events to appearing depleted, relative to the parent distribution. Both of these effects are artifacts caused by limited catalog length. It is more difficult to diagnose the artificially depleted empirical distributions, since one expects that a pure Pareto distribution is physically limited in some way. Using maximum likelihood methods and the method of moments, we estimate the power-law exponent and the corner size parameter of tapered Pareto distributions for several natural hazard examples: tsunamis, floods, and earthquakes. Each of these examples has varying catalog lengths and measurement thresholds, relative to the largest event sizes. In many cases where there are only several orders of magnitude between the measurement threshold and the largest events, joint two-parameter estimation techniques are necessary to account for estimation dependence between the power-law scaling exponent and the corner size parameter. Results indicate that whereas the corner size parameter of a tapered Pareto distribution can be estimated, its upper confidence bound cannot be determined and the estimate itself is often unstable with time. Correspondingly, one cannot statistically reject a pure Pareto null hypothesis using natural hazard catalog data. Although physical limits to the hazard source size and by attenuation mechanisms from source to site constrain the maximum hazard size, historical data alone often cannot reliably determine the corner size parameter. Probabilistic assessments incorporating theoretical constraints on source size and propagation effects are preferred over deterministic assessments of extreme natural hazards based on historic data.

  20. Apparatus for measuring a sorbate dispersed in a fluid stream

    NASA Technical Reports Server (NTRS)

    Updike, O. L. (Inventor)

    1977-01-01

    A sensitive, miniature apparatus was designed for measuring low concentrations of a sorbate dispersed in a fluid stream. The device consists of an elongated body having a surface capable of sorbing an amount of the sorbate proportional to the concentration in the fluid stream and propagating acoustic energy along its length. The acoustic energy is converted to an electrical output signal corresponding to the concentration of sorbate in the fluid stream. The device can be designed to exhibit high sensitivity to extremely small amounts of sorbate dispersed in a fluid stream and to exhibit low sensitivity to large amounts of sorbate. Another advantage is that the apparatus may be formed in a microminiature size and at a low cost using bath microfabrication technology.

  1. Use of a bubble tiltmeter as a horizontal seismometer

    NASA Technical Reports Server (NTRS)

    Miller, W. F.; Geller, R. J.; Stein, S.

    1978-01-01

    A bubble tiltmeter has been used as a horizontal seismometer. With the appropriate filters, the bubble system has good response for displacement over the passband of conventional seismometers (from about 10 Hz to 200 s), and for tilt from about 1 Hz to DC. The accuracy of the response is confirmed by comparing the filtered bubble output to conventional seismic instruments. The agreement between the filtered bubble records and broad band and short period conventional records is extremely good in every case. The small size, broad-band response, and lack of moving parts make the bubble ideal as an instrument for remote environments. In particular, the instrument seems ideal for the ocean bottom, land and marine boreholes and planetary missions.

  2. Miniature traveling wave tube and method of making

    NASA Technical Reports Server (NTRS)

    Kosmahl, Henry G. (Inventor)

    1989-01-01

    It is an object of the invention to provide a miniature traveling wave tube which will have most of the advantages of solid state circuitry but with higher efficiency and without being highly sensitive to temperature and various types of electromagnetic radiation and subatomic particles as are solid state devices. The traveling wave tube which is about 2.5 cm in length includes a slow wave circuit (SWS) comprising apertured fins with a top cover which is insulated from the fins by strips or rungs of electrically insulating, dielectric material. Another object of the invention is to construct a SWS of extremely small size by employing various grooving or etching methods and by providing insulating strips or rungs by various deposition and masking techniques.

  3. Thermal detectors as single photon X-ray spectrometers

    NASA Technical Reports Server (NTRS)

    Moseley, S. H.; Kelley, R. L.; Mather, J. C.; Mushotzky, R. F.; Szymkowiak, A. E.; Mccammon, D.

    1985-01-01

    In a thermal detector employed for X-ray spectroscopy applications, the energy of an X-ray is converted to heat in a small mass, and the energy of that X-ray inferred from the size of the temperature rise. The present investigation is concerned with the possibility to make an extremely low heat capacity calorimeter which can be employed as a thermal detector. Several types of calorimeters were fabricated and tested at temperatures as low as approximately 0.05 K. The obtained devices make use of thermistors constructed of melt-doped silicon, nuclear transmutation doped (NTD) germanium, and ion-implanted silicon with a variety of materials for the support and electrical leads. The utility of these microcalorimeters as X-ray spectrometers could be verified.

  4. A new species of stygobitic freshwater crab of the genus Rodriguezia Bott, 1969 (Crustacea: Decapoda: Trichodactylidae) from Tabasco, Mexico.

    PubMed

    Alvarez, Fernando; Villalobos, JosÉ Luis

    2018-02-07

    A new species of freshwater crab of the family Trichodactylidae, genus Rodriguezia Bott, 1969 is described from Grutas de Agua Blanca in southern Tabasco, Mexico. Rodriguezia is a genus endemic to northern Chiapas and southern Tabasco, distributed over a small area of 70 km. Rodriguezia adani n. sp., the third species of the genus, occurs north of its two congeners, being stygobitic with obvious adaptations to cave life. It can be distinguished from R. villalobosi, an epigean species, by the absence of eyes, lack of pigmentation and elongation of the pereiopods; and from R. mensabak by having less elongated pereiopods relative to carapace breadth, an extremely reduced ocular peduncle, and a smaller adult size.

  5. The potent antimicrobial properties of cell penetrating peptide-conjugated silver nanoparticles with excellent selectivity for gram-positive bacteria over erythrocytes.

    PubMed

    Liu, Lihong; Yang, Jun; Xie, Jianping; Luo, Zhentao; Jiang, Jiang; Yang, Yi Yan; Liu, Shaomin

    2013-05-07

    Silver nanoparticles are of great interest for use as antimicrobial agents. Studies aimed at producing potent nano-silver biocides have focused on manipulation of particle size, shape, composition and surface charge. Here, we report the cell penetrating peptide catalyzed formation of antimicrobial silver nanoparticles in N,N-dimethylformamide. The novel nano-composite demonstrated a distinctly enhanced biocidal effect toward bacteria (gram-positive Bacillus subtilis, gram-negative Escherichia coli) and pathogenic yeast (Candida albicans), as compared to triangular and extremely small silver nanoparticles. In addition, a satisfactory biocompatibility was verified by a haemolysis test. Our results provide a paradigm in developing strategies that can maximize the silver nanoparticle application potentials while minimizing the toxic effects.

  6. Determination of molecular spectroscopic parameters and energy-transfer rates by double-resonance spectroscopy

    NASA Technical Reports Server (NTRS)

    Steinfeld, J. I.; Foy, B.; Hetzler, J.; Flannery, C.; Klaassen, J.; Mizugai, Y.; Coy, S.

    1990-01-01

    The spectroscopy of small to medium-size polyatomic molecules can be extremely complex, especially in higher-lying overtone and combination vibrational levels. The high density of levels also complicates the understanding of inelastic collision processes, which is required to model energy transfer and collision broadening of spectral lines. Both of these problems can be addressed by double-resonance spectroscopy, i.e., time-resolved pump-probe measurements using microwave, infrared, near-infrared, and visible-wavelength sources. Information on excited-state spectroscopy, transition moments, inelastic energy transfer rates and propensity rules, and pressure-broadening parameters may be obtained from such experiments. Examples are given for several species of importance in planetary atmospheres, including ozone, silane, ethane, and ammonia.

  7. Male and female gluteal muscle activity and lower extremity kinematics during running.

    PubMed

    Willson, John D; Petrowitz, Isaac; Butler, Robert J; Kernozek, Thomas W

    2012-12-01

    Patellofemoral pain is one of the most common lower extremity overuse injuries in runners and is significantly more common in females. This study evaluated differences in the timing and magnitude of gluteal muscle activity as well as hip and knee joint frontal and transverse plane kinematics between male and female runners in the context of this gender bias. Twenty healthy male and 20 healthy female runners were participants. Three-dimensional lower extremity kinematics, and gluteus medius and gluteus maximus muscle activation were recorded using motion analysis and electromyography as subjects ran at 3.7 m/s (+/-5%). Comparisons of hip and knee joint kinematic and gluteus muscle activation data were made using independent t-tests (α=0.05). Females ran with 40% greater peak gluteus maximus activation level (P=0.028, effect size=0.79) and 53% greater average activation level (P=0.013, effect size=0.93) than males. Female runners also displayed greater hip adduction (P=.001, effect size=1.20) and knee abduction (P=0.011, effect size=0.87) angles at initial contact, greater hip adduction at peak vertical ground reaction force (P<0.001, effect size=1.31), and less knee internal rotation excursion than males (P=0.035, effect size=0.71). Greater gluteus maximus activation levels during running may predispose females to earlier gluteus maximus fatigue, promoting altered lower extremity running kinematics thought to be associated with the etiology of patellofemoral pain. Gender differences in transverse and frontal plane hip and knee kinematics observed in this study may also contribute to the gender bias for patellofemoral pain among females. Copyright © 2012 Elsevier Ltd. All rights reserved.

  8. 77 FR 72702 - Small Business Size Standards: Information

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG26 Small Business Size Standards: Information AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The United States Small Business Administration (SBA) is increasing the receipts based small business size standards for 15...

  9. Development and growth of fruit bodies and crops of the button mushroom, Agaricus bisporus.

    PubMed

    Straatsma, Gerben; Sonnenberg, Anton S M; van Griensven, Leo J L D

    2013-10-01

    We studied the appearance of fruit body primordia, the growth of individual fruit bodies and the development of the consecutive flushes of the crop. Relative growth, measured as cap expansion, was not constant. It started extremely rapidly, and slowed down to an exponential rate with diameter doubling of 1.7 d until fruit bodies showed maturation by veil breaking. Initially many outgrowing primordia were arrested, indicating nutritional competition. After reaching 10 mm diameter, no growth arrest occurred; all growing individuals, whether relatively large or small, showed an exponential increase of both cap diameter and biomass, until veil breaking. Biomass doubled in 0.8 d. Exponential growth indicates the absence of competition. Apparently there exist differential nutritional requirements for early growth and for later, continuing growth. Flushing was studied applying different picking sizes. An ordinary flushing pattern occurred at an immature picking size of 8 mm diameter (picking mushrooms once a day with a diameter above 8 mm). The smallest picking size yielded the highest number of mushrooms picked, confirming the competition and arrested growth of outgrowing primordia: competition seems less if outgrowing primordia are removed early. The flush duration (i.e. between the first and last picking moments) was not affected by picking size. At small picking size, the subsequent flushes were not fully separated in time but overlapped. Within 2 d after picking the first individuals of the first flush, primordia for the second flush started outgrowth. Our work supports the view that the acquisition of nutrients by the mycelium is demand rather than supply driven. For formation and early outgrowth of primordia, indications were found for an alternation of local and global control, at least in the casing layer. All these data combined, we postulate that flushing is the consequence of the depletion of some unknown specific nutrition required by outgrowing primordia. Copyright © 2013 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.

  10. Xiphinema americanum as Affected by Soil Organic Matter and Porosity.

    PubMed

    Ponchillia, P E

    1972-07-01

    The effects of four soil types, soil porosity, particle size, and organic matter were tested on survival and migration of Xiphinema americanum. Survival and migration were significantly greater in silt loam than in clay loam and silty clay soils. Nematode numbers were significantly greater in softs planted with soybeans than in fallow softs. Nematode survival was greatest at the higher of two pore space levels in four softs. Migration of X. americanum through soft particle size fractions of 75-150, 150-250, 250-500, 500-700, and 700-1,000 mu was significantly greater in the middle three fractions, with the least occurring in the smallest fraction. Additions of muck to silt loam and loamy sand soils resulted in reductions in survival and migration of the nematode. The fulvic acid fraction of muck, extracted with sodium hydroxide, had a deleterious effect on nematode activity. I conclude that soils with small amounts of air-filled pore space, extremes in pore size, or high organic matter content are deleterious to the migration and survival of X. americanum, and that a naturally occurring toxin affecting this species may be present in native soft organic matter.

  11. Empirical Bayes Estimation of Semi-parametric Hierarchical Mixture Models for Unbiased Characterization of Polygenic Disease Architectures

    PubMed Central

    Nishino, Jo; Kochi, Yuta; Shigemizu, Daichi; Kato, Mamoru; Ikari, Katsunori; Ochi, Hidenori; Noma, Hisashi; Matsui, Kota; Morizono, Takashi; Boroevich, Keith A.; Tsunoda, Tatsuhiko; Matsui, Shigeyuki

    2018-01-01

    Genome-wide association studies (GWAS) suggest that the genetic architecture of complex diseases consists of unexpectedly numerous variants with small effect sizes. However, the polygenic architectures of many diseases have not been well characterized due to lack of simple and fast methods for unbiased estimation of the underlying proportion of disease-associated variants and their effect-size distribution. Applying empirical Bayes estimation of semi-parametric hierarchical mixture models to GWAS summary statistics, we confirmed that schizophrenia was extremely polygenic [~40% of independent genome-wide SNPs are risk variants, most within odds ratio (OR = 1.03)], whereas rheumatoid arthritis was less polygenic (~4 to 8% risk variants, significant portion reaching OR = 1.05 to 1.1). For rheumatoid arthritis, stratified estimations revealed that expression quantitative loci in blood explained large genetic variance, and low- and high-frequency derived alleles were prone to be risk and protective, respectively, suggesting a predominance of deleterious-risk and advantageous-protective mutations. Despite genetic correlation, effect-size distributions for schizophrenia and bipolar disorder differed across allele frequency. These analyses distinguished disease polygenic architectures and provided clues for etiological differences in complex diseases. PMID:29740473

  12. Nanodiamonds for In Vivo Applications.

    PubMed

    van der Laan, KiranJ; Hasani, Masoumeh; Zheng, Tingting; Schirhagl, Romana

    2018-05-01

    Due to their unique optical properties, diamonds are the most valued gemstones. However, beyond the sparkle, diamonds have a number of unique properties. Their extreme hardness gives them outstanding performance as abrasives and cutting tools. Similar to many materials, their nanometer-sized form has yet other unique properties. Nanodiamonds are very inert but still can be functionalized on the surface. Additionally, they can be made in very small sizes and a narrow size distribution. Nanodiamonds can also host very stable fluorescent defects. Since they are protected in the crystal lattice, they never bleach. These defects can also be utilized for nanoscale sensing since they change their optical properties, for example, based on temperature or magnetic fields in their surroundings. In this Review, in vivo applications are focused upon. To this end, how different diamond materials are made and how this affects their properties are discussed first. Next, in vivo biocompatibility studies are reviewed. Finally, the reader is introduced to in vivo applications of diamonds. These include drug delivery, aiding radiology, labeling, and use in cosmetics. The field is critically reviewed and a perspective on future developments is provided. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Development of synchrotron X-ray micro-tomography under extreme conditions of pressure and temperature.

    PubMed

    Álvarez-Murga, M; Perrillat, J P; Le Godec, Y; Bergame, F; Philippe, J; King, A; Guignot, N; Mezouar, M; Hodeau, J L

    2017-01-01

    X-ray tomography is a non-destructive three-dimensional imaging/microanalysis technique selective to a wide range of properties such as density, chemical composition, chemical states and crystallographic structure with extremely high sensitivity and spatial resolution. Here the development of in situ high-pressure high-temperature micro-tomography using a rotating module for the Paris-Edinburgh cell combined with synchrotron radiation is described. By rotating the sample chamber by 360°, the limited angular aperture of ordinary high-pressure cells is surmounted. Such a non-destructive high-resolution probe provides three-dimensional insight on the morphological and structural evolution of crystalline as well as amorphous phases during high pressure and temperature treatment. To demonstrate the potentials of this new experimental technique the compression behavior of a basalt glass is investigated by X-ray absorption tomography, and diffraction/scattering tomography imaging of the structural changes during the polymerization of C 60 molecules under pressure is performed. Small size and weight of the loading frame and rotating module means that this apparatus is portable, and can be readily installed on most synchrotron facilities to take advantage of the diversity of three-dimensional imaging techniques available at beamlines. This experimental breakthrough should open new ways for in situ imaging of materials under extreme pressure-temperature-stress conditions, impacting diverse areas in physics, chemistry, geology or materials sciences.

  14. Towing Tank and Flume Testing of Passively Adaptive Composite Tidal Turbine Blades: Preprint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, Robynne; Ordonez-Sanchez, Stephanie; Porter, Kate E.

    Composite tidal turbine blades with bend-twist (BT) coupled layups allow the blade to self-adapt to local site conditions by passively twisting. Passive feathering has the potential to increase annual energy production and shed thrust loads and power under extreme tidal flows. Decreased hydrodynamic thrust and power during extreme conditions meann that the turbine support structure, generator, and other components can be sized more appropriately, resulting in a higher utilization factor and increased cost effectiveness. This paper presents new experimental data for a small-scale turbine with BT composite blades. The research team tested the turbine in the Kelvin Hydrodynamics Laboratory towingmore » tank at the University of Strathclyde in Glasgow, United Kingdom, and in the recirculating current flume at the l Institut Francais de Recherche pour l Exploitation de la Mer Centre in Boulogne-sur-Mer, France. Tests were also performed on rigid aluminum blades with identical geometry, which yielded baseline test sets for comparison. The results from both facilities agreed closely, supporting the hypothesis that increased blade flexibility can induce load reductions. Under the most extreme conditions tested the turbine with BT blades had up to 11 percent lower peak thrust loads and a 15 percent reduction in peak power compared to the turbine with rigid blades. The load reductions varied as a function of turbine rotational velocity and ambient flow velocity.« less

  15. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion.

    PubMed

    Soltau, Shelby L; Slowik, Jonathan S; Requejo, Philip S; Mulroy, Sara J; Neptune, Richard R

    2015-01-01

    Studies of manual wheelchair propulsion often assume bilateral symmetry to simplify data collection, processing, and analysis. However, the validity of this assumption is unclear. Most investigations of wheelchair propulsion symmetry have been limited by a relatively small sample size and a focus on a single propulsion condition (e.g., level propulsion at self-selected speed). The purpose of this study was to evaluate bilateral symmetry during manual wheelchair propulsion in a large group of subjects across different propulsion conditions. Three-dimensional kinematics and handrim kinetics along with spatiotemporal variables were collected and processed from 80 subjects with paraplegia while propelling their wheelchairs on a stationary ergometer during three different conditions: level propulsion at their self-selected speed (free), level propulsion at their fastest comfortable speed (fast), and propulsion on an 8% grade at their level, self-selected speed (graded). All kinematic variables had significant side-to-side differences, primarily in the graded condition. Push angle was the only spatiotemporal variable with a significant side-to-side difference, and only during the graded condition. No kinetic variables had significant side-to-side differences. The magnitudes of the kinematic differences were low, with only one difference exceeding 5°. With differences of such small magnitude, the bilateral symmetry assumption appears to be reasonable during manual wheelchair propulsion in subjects without significant upper-extremity pain or impairment. However, larger asymmetries may exist in individuals with secondary injuries and pain in their upper extremity and different etiologies of their neurological impairment.

  16. An Investigation of Bilateral Symmetry During Manual Wheelchair Propulsion

    PubMed Central

    Soltau, Shelby L.; Slowik, Jonathan S.; Requejo, Philip S.; Mulroy, Sara J.; Neptune, Richard R.

    2015-01-01

    Studies of manual wheelchair propulsion often assume bilateral symmetry to simplify data collection, processing, and analysis. However, the validity of this assumption is unclear. Most investigations of wheelchair propulsion symmetry have been limited by a relatively small sample size and a focus on a single propulsion condition (e.g., level propulsion at self-selected speed). The purpose of this study was to evaluate bilateral symmetry during manual wheelchair propulsion in a large group of subjects across different propulsion conditions. Three-dimensional kinematics and handrim kinetics along with spatiotemporal variables were collected and processed from 80 subjects with paraplegia while propelling their wheelchairs on a stationary ergometer during three different conditions: level propulsion at their self-selected speed (free), level propulsion at their fastest comfortable speed (fast), and propulsion on an 8% grade at their level, self-selected speed (graded). All kinematic variables had significant side-to-side differences, primarily in the graded condition. Push angle was the only spatiotemporal variable with a significant side-to-side difference, and only during the graded condition. No kinetic variables had significant side-to-side differences. The magnitudes of the kinematic differences were low, with only one difference exceeding 5°. With differences of such small magnitude, the bilateral symmetry assumption appears to be reasonable during manual wheelchair propulsion in subjects without significant upper-extremity pain or impairment. However, larger asymmetries may exist in individuals with secondary injuries and pain in their upper extremity and different etiologies of their neurological impairment. PMID:26125019

  17. Fine structure of the pecten oculi of the barred owl (Strix varia).

    PubMed

    Smith, B J; Smith, S A; Braekevelt, C R

    1996-01-01

    The pecten oculi of the barred owl (Strix varia) has been examined by light and transmission electron microscopy. The pecten in this species is of the pleated type and is small in comparison to the size of the ocular globe. The pecten consists of 8-10 accordion-like folds that are linked apically by a pigmented tissue bridge. Each fold contains numerous capillaries, larger supply and drainage vessels, and abundant pleomorphic melanocytes. Most of these capillaries are extremely specialized vessels that possess plentiful microfolds on both the luminal and abluminal surfaces. Some capillaries however display only a few microfolds. The endothelial cell bodies are extremely attenuated, with most organelles located near the nucleus. All capillaries are surrounded by a very thick fibrillar basal lamina, which is thought to provide structural support to these small vessels. Pericytes are commonly found within these thickened basal laminae. Numerous melanocytes are also present, with processes that form an incomplete sheath around the capillaries. These processes are also presumed to provide structural support for the capillaries. As in other avian species, the morphology of the barred owl pecten is indicative of extensive involvement in substance transport. When compared to the pecten of more visually-oriented species, this pecten is smaller, has fewer folds, and displays a reduced number of microfolds within the capillaries. In these and other features, the barred owl pecten is similar to the pecten of the great horned owl (Bubo virginianus).

  18. 77 FR 8020 - Semiannual Regulatory Agenda

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-13

    ... Size 3245-AG25 Standards for Utilities Industries. 463 Small Business Size 3245-AG26 Standards... Remediation Services Industries. 465 Small Business Size 3245-AG28 Standards: Real Estate, Rental and Leasing Industries. 466 Small Business Size 3245-AG29 Standards: Educational Services Industries. 467 Small Business...

  19. Targeted thrombolysis by using of magnetic mesoporous silica nanoparticles.

    PubMed

    Wang, Mingqi; Zhang, Jixi; Yuan, Ziming; Yang, Wenzhi; Wu, Qiang; Gu, Hongchen

    2012-08-01

    Thrombolytics inevitably led to the risk of hemorrhagic complications due to their non-specific plasminogen activation in treatment of thrombosis. The aim of this study was to determine whether a kind of superparamagnetic mesoporous silica nanoparticle with expanded pore size could achieve effectively targeted thrombolysis. The magnetic mesoporous silica nanoparticles (M-MSNs) with the pore size of 6 nm were prepared by method of the surfactant templating on nano magnetic particles. We investigated the feasibility and efficacy of target thrombolysis with the resultant spheres through fibrin agarose plate assay (FAPA) and a dynamic flow system in vitro. It displayed a 30-fold enhancement of urokinase (UK) loading capacity over the particles without mesoporous layer or the magnetic spheres with mesopores of 3.7 nm. A sustained release behavior was observed due to its larger pore size, higher surface area and narrow mesopore channals contrast to non-mesoporous and small mesopore of 3.7 nm controls. Meanwhile, fibrin agarose plate assay revealed that UK/M-MSNs exhibited a more rapid growth rate of thrombolysis even lasting for 3 days. Additionally, flow model test in vitro suggested this kind of nanoparticle complex enhanced the thrombolysis efficacy by 3.5 fold over the same amount of native UK in 30 min. When compared to non-mesoporous and small mesopore controls, it also represented an extremely higher lysis efficiency (ANOVA, P < 0.01) and a shorter reperfusion time (ANOVA, P < 0.001). Such a magnetic mesoporous silica nanoparticle carrier was expected to be further studied for targeted thrombolytic therapy.

  20. Eye Size and Set in Small-Bodied Fossil Primates: A Three-Dimensional Method.

    PubMed

    Rosenberger, Alfred L; Smith, Tim D; DeLeon, Valerie B; Burrows, Anne M; Schenck, Robert; Halenar, Lauren B

    2016-12-01

    We introduce a new method to geometrically reconstruct eye volume and placement in small-bodied primates based on the three-dimensional contour of the intraorbital surface. We validate it using seven species of living primates, with dry skulls and wet dissections, and test its application on seven species of Paleogene fossils of interest. The method performs well even when the orbit is damaged and incomplete, lacking the postorbital bar and represented only by the orbital floor. Eye volume is an important quantity for anatomic and metabolic reasons, which due to differences in eye set, or position within (or outside) the bony orbit, can be underestimated in living and fossil forms when calculated from aperture diameter. Our Ectopic Index quantifies how much the globe's volume protrudes anteriorly from the aperture. Lemur, Notharctus and Rooneyia resemble anthropoids, with deeply recessed eyes protruding 11%-13%. Galago and Tarsius are the other extreme, at 47%-56%. We argue that a laterally oriented aperture has little to do with line-of-sight in euprimates, as large ectopic eyes can position the cornea to enable a directly forward viewing axis, and soft tissue positions the eyes facing forward in megachiropteran bats, which have unenclosed, open eye sockets. The size and set of virtual eyes reconstructed from 3D cranial models confirm that eyes were large to hypertrophic in Hemiacodon, Necrolemur, Microchoerus, Pseudoloris and Shoshonius, but eye size in Rooneyia may have been underestimated by measuring the aperture, as in Aotus. Anat Rec, 299:1671-1689, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  1. 75 FR 61597 - Small Business Size Standards: Retail Trade

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AF69 Small Business Size Standards: Retail Trade AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The United States Small Business Administration (SBA) is modifying 47 small business size standards for industries in North...

  2. 75 FR 61591 - Small Business Size Standards; Other Services.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-06

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AF70 Small Business Size Standards; Other Services. AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The United States Small Business Administration (SBA) is increasing the small business size standards for 18 industries in North...

  3. Nanophase Carbonates on Mars: Implications for Carbonate Formation and Habitability

    NASA Technical Reports Server (NTRS)

    Archer, P. Douglas, Jr.; Lauer, H. Vern; Ming, Douglas W.; Niles, Paul B.; Morris, Richard V.; Rampe, Elizabeth B.; Sutter, Brad

    2014-01-01

    Despite having an atmosphere composed primarily of CO2 and evidence for abundant water in the past, carbonate minerals have only been discovered in small amounts in martian dust [1], in outcrops of very limited extent [2, 3], in soils in the Northern Plains (the landing site of the 2007 Phoenix Mars Scout Mission) [4] and may have recently been detected in aeolian material and drilled and powdered sedimentary rock in Gale Crater (the Mars Science Laboratory [MSL] landing site) [5]. Thermal analysis of martian soils by instruments on Phoenix and MSL has demonstrated a release of CO2 at temperatures as low as 250-300 degC, much lower than the traditional decomposition temperatures of calcium or magnesium carbonates. Thermal decomposition temperature can depend on a number of factors such as instrument pressure and ramp rate, and sample particle size [6]. However, if the CO2 released at low temperatures is from carbonates, small particle size is the only effect that could have such a large impact on decomposition temperature, implying the presence of extremely fine-grained (i.e., "nanophase" or clay-sized) carbonates. We hypothesize that this lower temperature release is the signature of small particle-sized (clay-sized) carbonates formed by the weathering of primary minerals in dust or soils through interactions with atmospheric water and carbon dioxide and that this process may persist under current martian conditions. Preliminary work has shown that clay-sized carbonate grains can decompose at much lower temperatures than previously thought. The first work took carbonate, decomposed it to CaO, then flowed CO2 over these samples held at temperatures >100 degC to reform carbonates. Thermal analysis confirmed that carbonates were indeed formed and transmission electron microsopy was used to determine crystal sized were on the order of 10 nm. The next step used minerals such as diopside and wollastonite that were sealed in a glass tube with a CO2 and H2O source. After reacting these materials for a number of hours, thermal analysis demonstrated the formations of carbonates that decomposed at temperatures as low as 500 degC [7]. Further work is underway to carry out the weathering process under more Mars-like conditions (low pressure and low temperature) to determine if the carbonate decomposition temperature can be shifted to even lower temperatures, consistent with what has been detected by thermal analysis instruments on Mars.

  4. The changing food outlet distributions and local contextual factors in the United States.

    PubMed

    Chen, Hsin-Jen; Wang, Youfa

    2014-01-16

    Little is known about the dynamics of the food outlet distributions associated with local contextual factors in the U.S. This study examines the changes in food stores/services at the 5-digit Zip Code Tabulated Area (ZCTA5) level in the U.S., and assesses contextual factors associated with the changes. Data from 27,878 ZCTA5s in the contiguous United States without an extreme change in the number of 6 types of food stores/services (supermarkets, small-size grocery stores, convenience stores, fresh/specialty food markets, carry-out restaurants, and full-service restaurants) were used. ZCTA5s' contextual factors were from the 2000 Census. Numbers of food stores/services were derived from the Census Business Pattern databases. Linear regression models assessed contextual factors' influences (racial/ethnic compositions, poverty rate, urbanization level, and foreign-born population%) on 1-year changes in food stores/services during 2000-2001, adjusted for population size, total business change, and census regions. Small-size grocery stores and fresh/specialty food markets increased more and convenience stores decreased more in Hispanic-predominant than other areas. Among supermarket-free places, new supermarkets were less likely to be introduced into black-predominant than white-predominant areas (odds ratio (OR) = 0.52, 95% CI = 0.30-0.92). However, among areas without the following type of store at baseline, supermarket (OR = 0.48 (0.33-0.70)), small-size grocery stores (OR = 1.32 (1.08-1.62)), and fresh/specialty food markets (OR = 0.70 (0.53-0.92)) were less likely to be introduced into areas of low foreign-born population than into areas of high foreign-born population. Higher poverty rate was associated with a greater decrease in supermarket, a less decrease in small-size grocery stores, and a less increase in carry-out restaurants (all p for trends <0.001). Urban areas experienced more increases in full-service and carry-out restaurants than suburban areas. Local area characteristics affect 1-year changes in food environment in the U.S. Hispanic population was associated with more food stores/services capable of supplying fresh food items. Black-predominant and poverty-afflicted areas had a greater decrease in supermarkets. Full-service and carry-out restaurants increased more in urban than suburban areas. Foreign-born population density was associated with introduction of grocery stores and fresh/specialty food markets into the areas.

  5. The changing food outlet distributions and local contextual factors in the United States

    PubMed Central

    2014-01-01

    Background Little is known about the dynamics of the food outlet distributions associated with local contextual factors in the U.S. This study examines the changes in food stores/services at the 5-digit Zip Code Tabulated Area (ZCTA5) level in the U.S., and assesses contextual factors associated with the changes. Methods Data from 27,878 ZCTA5s in the contiguous United States without an extreme change in the number of 6 types of food stores/services (supermarkets, small-size grocery stores, convenience stores, fresh/specialty food markets, carry-out restaurants, and full-service restaurants) were used. ZCTA5s’ contextual factors were from the 2000 Census. Numbers of food stores/services were derived from the Census Business Pattern databases. Linear regression models assessed contextual factors’ influences (racial/ethnic compositions, poverty rate, urbanization level, and foreign-born population%) on 1-year changes in food stores/services during 2000–2001, adjusted for population size, total business change, and census regions. Results Small-size grocery stores and fresh/specialty food markets increased more and convenience stores decreased more in Hispanic-predominant than other areas. Among supermarket-free places, new supermarkets were less likely to be introduced into black-predominant than white-predominant areas (odds ratio (OR) = 0.52, 95% CI = 0.30-0.92). However, among areas without the following type of store at baseline, supermarket (OR = 0.48 (0.33-0.70)), small-size grocery stores (OR = 1.32 (1.08-1.62)), and fresh/specialty food markets (OR = 0.70 (0.53-0.92)) were less likely to be introduced into areas of low foreign-born population than into areas of high foreign-born population. Higher poverty rate was associated with a greater decrease in supermarket, a less decrease in small-size grocery stores, and a less increase in carry-out restaurants (all p for trends <0.001). Urban areas experienced more increases in full-service and carry-out restaurants than suburban areas. Conclusions Local area characteristics affect 1-year changes in food environment in the U.S. Hispanic population was associated with more food stores/services capable of supplying fresh food items. Black-predominant and poverty-afflicted areas had a greater decrease in supermarkets. Full-service and carry-out restaurants increased more in urban than suburban areas. Foreign-born population density was associated with introduction of grocery stores and fresh/specialty food markets into the areas. PMID:24433323

  6. Characterization of Extremely Lightweight Intrusion Detection (ELIDe) Power Utilization with Varying Throughput and Payload Sizes

    DTIC Science & Technology

    2015-09-01

    Extremely Lightweight Intrusion Detection (ELIDe) algorithm on an Android -based mobile device. Our results show that the hashing and inner product...approximately 2.5 megabits per second (assuming a normal distribution of packet sizes) with no significant packet loss. 15. SUBJECT TERMS ELIDe, Android , pcap...system (OS). To run ELIDe, the current version was ported for use on Android .4 2.1 Mobile Device After ELIDe was ported to the Android mobile

  7. The effects of neuron morphology on graph theoretic measures of network connectivity: the analysis of a two-level statistical model.

    PubMed

    Aćimović, Jugoslava; Mäki-Marttunen, Tuomo; Linne, Marja-Leena

    2015-01-01

    We developed a two-level statistical model that addresses the question of how properties of neurite morphology shape the large-scale network connectivity. We adopted a low-dimensional statistical description of neurites. From the neurite model description we derived the expected number of synapses, node degree, and the effective radius, the maximal distance between two neurons expected to form at least one synapse. We related these quantities to the network connectivity described using standard measures from graph theory, such as motif counts, clustering coefficient, minimal path length, and small-world coefficient. These measures are used in a neuroscience context to study phenomena from synaptic connectivity in the small neuronal networks to large scale functional connectivity in the cortex. For these measures we provide analytical solutions that clearly relate different model properties. Neurites that sparsely cover space lead to a small effective radius. If the effective radius is small compared to the overall neuron size the obtained networks share similarities with the uniform random networks as each neuron connects to a small number of distant neurons. Large neurites with densely packed branches lead to a large effective radius. If this effective radius is large compared to the neuron size, the obtained networks have many local connections. In between these extremes, the networks maximize the variability of connection repertoires. The presented approach connects the properties of neuron morphology with large scale network properties without requiring heavy simulations with many model parameters. The two-steps procedure provides an easier interpretation of the role of each modeled parameter. The model is flexible and each of its components can be further expanded. We identified a range of model parameters that maximizes variability in network connectivity, the property that might affect network capacity to exhibit different dynamical regimes.

  8. Continuing Studies of Planetary Atmospheres Associated with Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.

  9. Continuing Studies of Planetary Atmospheres Associated With Experiments on the Galileo Jupiter Probe and Infrared Observations of Venus

    NASA Technical Reports Server (NTRS)

    Goodman,Jindra; Ragent, Boris

    1998-01-01

    The results of the nephelometer experiment conducted aboard the Probe of the Galileo mission to Jupiter are presented. The tenuous clouds and sparse particulate matter in the relatively particle-free 5-micron "hot spot" region of the Probe's descent were documented from about 0.46 bars to about 12 bars. Three regions of apparent coherent structure were noted, in addition to many indications of extremely small particle concentrations along the descent path. From the first valid measurement at about 0.46 bars down to about 0.55 bars a feeble decaying lower portion of a cloud, corresponding with the predicted ammonia particle cloud, was encountered. A denser, but still very modest, particle structure was present in the pressure regime extending from about 0.76 to a distinctive base at 1.34 bars, and is compatible with the expected ammonium hydrosulfide cloud. No massive water cloud was encountered, although below the second structure, a small, vertically thin layer at about 1.65 bars may be detached from the cloud above, but may also be water condensation, compatible with reported measurements of water abundance from other Galileo Mission experiments. A third small signal region, extending from about 1.9 to 4.5 bars, exhibited quite weak but still distinctive structure, and, although the identification of the light scatterers in this region is uncertain, may also be a water cloud perhaps associated with lateral atmospheric motion and/or reduced to a small mass density by atmospheric subsidence or other explanations. Rough descriptions of the particle size distributions and cloud properties in these regions have been derived, although they may be imprecise because of the small signals and experimental difficulties. These descriptions document the small number densities of particles, the moderate particle sizes, generally in the slightly submicron to few micron range, and the resulting small optical depths, mass densities due to particles, column particle number loading and column mass loading in the atmosphere encountered by the Galileo Probe during its descent.

  10. A Test-Length Correction to the Estimation of Extreme Proficiency Levels

    ERIC Educational Resources Information Center

    Magis, David; Beland, Sebastien; Raiche, Gilles

    2011-01-01

    In this study, the estimation of extremely large or extremely small proficiency levels, given the item parameters of a logistic item response model, is investigated. On one hand, the estimation of proficiency levels by maximum likelihood (ML), despite being asymptotically unbiased, may yield infinite estimates. On the other hand, with an…

  11. 78 FR 37404 - Small Business Size Standards: Support Activities for Mining

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-20

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG44 Small Business Size Standards: Support Activities for Mining AGENCY: U.S. Small Business Administration. ACTION: Final rule. SUMMARY: The United States Small Business Administration (SBA) is increasing the small business size standards for three of...

  12. 76 FR 69154 - Small Business Size and Status Integrity

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-08

    ... SMALL BUSINESS ADMINISTRATION 13 CFR Parts 121, 124, 125, 126, and 127 RIN 3245-AG23 Small Business Size and Status Integrity AGENCY: U.S. Small Business Administration (SBA). ACTION: Proposed rule... implement provisions of the Small Business Jobs Act of 2010 (Jobs Act) pertaining to small business size and...

  13. 48 CFR 52.219-21 - Small Business Size Representation for Targeted Industry Categories Under the Small Business...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Small Business Size Representation for Targeted Industry Categories Under the Small Business Competitiveness Demonstration Program....219-21 Small Business Size Representation for Targeted Industry Categories Under the Small Business...

  14. An L-stable method for solving stiff hydrodynamics

    NASA Astrophysics Data System (ADS)

    Li, Shengtai

    2017-07-01

    We develop a new method for simulating the coupled dynamics of gas and multi-species dust grains. The dust grains are treated as pressure-less fluids and their coupling with gas is through stiff drag terms. If an explicit method is used, the numerical time step is subject to the stopping time of the dust particles, which can become extremely small for small grains. The previous semi-implicit method [1] uses second-order trapezoidal rule (TR) on the stiff drag terms and it works only for moderately small size of the dust particles. This is because TR method is only A-stable not L-stable. In this work, we use TR-BDF2 method [2] for the stiff terms in the coupled hydrodynamic equations. The L-stability of TR-BDF2 proves essential in treating a number of dust species. The combination of TR-BDF2 method with the explicit discretization of other hydro terms can solve a wide variety of stiff hydrodynamics equations accurately and efficiently. We have implemented our method in our LA-COMPASS (Los Alamos Computational Astrophysics Suite) package. We have applied the code to simulate some dusty proto-planetary disks and obtained very good match with astronomical observations.

  15. SU-E-T-299: Small Fields Profiles Correction Through Detectors Spatial Response Functions and Field Size Dependence Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Filipuzzi, M; Garrigo, E; Venencia, C

    2014-06-01

    Purpose: To calculate the spatial response function of various radiation detectors, to evaluate the dependence on the field size and to analyze the small fields profiles corrections by deconvolution techniques. Methods: Crossline profiles were measured on a Novalis Tx 6MV beam with a HDMLC. The configuration setup was SSD=100cm and depth=5cm. Five fields were studied (200×200mm2,100×100mm2, 20×20mm2, 10×10mm2and 5×5mm2) and measured were made with passive detectors (EBT3 radiochromic films and TLD700 thermoluminescent detectors), ionization chambers (PTW30013, PTW31003, CC04 and PTW31016) and diodes (PTW60012 and IBA SFD). The results of passive detectors were adopted as the actual beam profile. To calculatemore » the detectors kernels, modeled by Gaussian functions, an iterative process based on a least squares criterion was used. The deconvolutions of the measured profiles were calculated with the Richardson-Lucy method. Results: The profiles of the passive detectors corresponded with a difference in the penumbra less than 0.1mm. Both diodes resolve the profiles with an overestimation of the penumbra smaller than 0.2mm. For the other detectors, response functions were calculated and resulted in Gaussian functions with a standard deviation approximate to the radius of the detector in study (with a variation less than 3%). The corrected profiles resolve the penumbra with less than 1% error. Major discrepancies were observed for cases in extreme conditions (PTW31003 and 5×5mm2 field size). Conclusion: This work concludes that the response function of a radiation detector is independent on the field size, even for small radiation beams. The profiles correction, using deconvolution techniques and response functions of standard deviation equal to the radius of the detector, gives penumbra values with less than 1% difference to the real profile. The implementation of this technique allows estimating the real profile, freeing from the effects of the detector used for the acquisition.« less

  16. Characterizing differences in precipitation regimes of extreme wet and dry years: implications for climate change experiments.

    PubMed

    Knapp, Alan K; Hoover, David L; Wilcox, Kevin R; Avolio, Meghan L; Koerner, Sally E; La Pierre, Kimberly J; Loik, Michael E; Luo, Yiqi; Sala, Osvaldo E; Smith, Melinda D

    2015-02-03

    Climate change is intensifying the hydrologic cycle and is expected to increase the frequency of extreme wet and dry years. Beyond precipitation amount, extreme wet and dry years may differ in other ways, such as the number of precipitation events, event size, and the time between events. We assessed 1614 long-term (100 year) precipitation records from around the world to identify key attributes of precipitation regimes, besides amount, that distinguish statistically extreme wet from extreme dry years. In general, in regions where mean annual precipitation (MAP) exceeded 1000 mm, precipitation amounts in extreme wet and dry years differed from average years by ~40% and 30%, respectively. The magnitude of these deviations increased to >60% for dry years and to >150% for wet years in arid regions (MAP<500 mm). Extreme wet years were primarily distinguished from average and extreme dry years by the presence of multiple extreme (large) daily precipitation events (events >99th percentile of all events); these occurred twice as often in extreme wet years compared to average years. In contrast, these large precipitation events were rare in extreme dry years. Less important for distinguishing extreme wet from dry years were mean event size and frequency, or the number of dry days between events. However, extreme dry years were distinguished from average years by an increase in the number of dry days between events. These precipitation regime attributes consistently differed between extreme wet and dry years across 12 major terrestrial ecoregions from around the world, from deserts to the tropics. Thus, we recommend that climate change experiments and model simulations incorporate these differences in key precipitation regime attributes, as well as amount into treatments. This will allow experiments to more realistically simulate extreme precipitation years and more accurately assess the ecological consequences. © 2015 John Wiley & Sons Ltd.

  17. Regularised extreme learning machine with misclassification cost and rejection cost for gene expression data classification.

    PubMed

    Lu, Huijuan; Wei, Shasha; Zhou, Zili; Miao, Yanzi; Lu, Yi

    2015-01-01

    The main purpose of traditional classification algorithms on bioinformatics application is to acquire better classification accuracy. However, these algorithms cannot meet the requirement that minimises the average misclassification cost. In this paper, a new algorithm of cost-sensitive regularised extreme learning machine (CS-RELM) was proposed by using probability estimation and misclassification cost to reconstruct the classification results. By improving the classification accuracy of a group of small sample which higher misclassification cost, the new CS-RELM can minimise the classification cost. The 'rejection cost' was integrated into CS-RELM algorithm to further reduce the average misclassification cost. By using Colon Tumour dataset and SRBCT (Small Round Blue Cells Tumour) dataset, CS-RELM was compared with other cost-sensitive algorithms such as extreme learning machine (ELM), cost-sensitive extreme learning machine, regularised extreme learning machine, cost-sensitive support vector machine (SVM). The results of experiments show that CS-RELM with embedded rejection cost could reduce the average cost of misclassification and made more credible classification decision than others.

  18. A new machairodont from the Palmetto Fauna (early Pliocene) of Florida, with comments on the origin of the Smilodontini (Mammalia, Carnivora, Felidae).

    PubMed

    Wallace, Steven C; Hulbert, Richard C

    2013-01-01

    South-central Florida's latest Hemphillian Palmetto Fauna includes two machairodontine felids, the lion-sized Machairodus coloradensis and a smaller, jaguar-sized species, initially referred to Megantereon hesperus based on a single, relatively incomplete mandible. This made the latter the oldest record of Megantereon, suggesting a New World origin of the genus. Subsequent workers variously accepted or rejected this identification and biogeographic scenario. Fortunately, new material, which preserves previously unknown characters, is now known for the smaller taxon. The most parsimonious results of a phylogenetic analysis using 37 cranio-mandibular characters from 13 taxa place it in the Smilodontini, like the original study; however, as the sister-taxon to Megantereon and Smilodon. Accordingly, we formally describe Rhizosmilodon fiteae gen. et sp. nov. Rhizosmilodon, Megantereon, and Smilodon ( = Smilodontini) share synapomorphies relative to their sister-taxon Machairodontini: serrations smaller and restricted to canines; offset of P3 with P4 and p4 with m1; complete verticalization of mandibular symphysis; m1 shortened and robust with widest point anterior to notch; and extreme posterior "lean" to p3/p4. Rhizosmilodon has small anterior and posterior accessory cusps on p4, a relatively large lower canine, and small, non-procumbent lower incisors; all more primitive states than in Megantereon and Smilodon. The former also differs from Megantereon and Smilodon gracilis by having a very small mandibular flange. Rhizosmilodon is the oldest known member of the Smilodontini, suggesting that the tribe originated in North America. Two more derived, similar-sized species evolved in parallel during the Blancan, Megantereon hesperus and Smilodon gracilis. The former is rarer, known only from the north-central and northwestern US, and presumably dispersed into the Old World. The latter is known from the eastern and southern US, and dispersed into South America.

  19. A New Machairodont from the Palmetto Fauna (Early Pliocene) of Florida, with Comments on the Origin of the Smilodontini (Mammalia, Carnivora, Felidae)

    PubMed Central

    Wallace, Steven C.; Hulbert, Richard C.

    2013-01-01

    South-central Florida’s latest Hemphillian Palmetto Fauna includes two machairodontine felids, the lion-sized Machairodus coloradensis and a smaller, jaguar-sized species, initially referred to Megantereon hesperus based on a single, relatively incomplete mandible. This made the latter the oldest record of Megantereon, suggesting a New World origin of the genus. Subsequent workers variously accepted or rejected this identification and biogeographic scenario. Fortunately, new material, which preserves previously unknown characters, is now known for the smaller taxon. The most parsimonious results of a phylogenetic analysis using 37 cranio-mandibular characters from 13 taxa place it in the Smilodontini, like the original study; however, as the sister-taxon to Megantereon and Smilodon. Accordingly, we formally describe Rhizosmilodon fiteae gen. et sp. nov. Rhizosmilodon, Megantereon, and Smilodon ( =  Smilodontini) share synapomorphies relative to their sister-taxon Machairodontini: serrations smaller and restricted to canines; offset of P3 with P4 and p4 with m1; complete verticalization of mandibular symphysis; m1 shortened and robust with widest point anterior to notch; and extreme posterior “lean” to p3/p4. Rhizosmilodon has small anterior and posterior accessory cusps on p4, a relatively large lower canine, and small, non-procumbent lower incisors; all more primitive states than in Megantereon and Smilodon. The former also differs from Megantereon and Smilodon gracilis by having a very small mandibular flange. Rhizosmilodon is the oldest known member of the Smilodontini, suggesting that the tribe originated in North America. Two more derived, similar-sized species evolved in parallel during the Blancan, Megantereon hesperus and Smilodon gracilis. The former is rarer, known only from the north-central and northwestern US, and presumably dispersed into the Old World. The latter is known from the eastern and southern US, and dispersed into South America. PMID:23516394

  20. Reducing Size, Weight, and Power (SWaP) of Perception Systems in Small Autonomous Aerial Systems

    NASA Technical Reports Server (NTRS)

    Jones, Kennie H.; Gross, Jason

    2014-01-01

    The objectives are to examine recent trends in the reduction of size, weight, and power (SWaP) requirements of sensor systems for environmental perception and to explore new technology that may overcome limitations in current systems. Improving perception systems to facilitate situation awareness is critical in the move to introduce increasing autonomy in aerial systems. Whether the autonomy is in the current state-of-the-art of increasing automation or is enabling cognitive decisions that facilitate adaptive behavior, collection of environmental information and fusion of that information into knowledge that can direct actuation is imperative to decisions resulting in appropriate behavior. Artificial sensory systems such as cameras, radar, LIDAR, and acoustic sensors have been in use on aircraft for many years but, due to the large size and weight of the airplane and electrical power made available through powerful engines, the SWaP requirements of these sensors was inconsequential. With the proliferation of Remote Piloted Vehicles (RPV), the trend is in significant reduction in SWaP of the vehicles. This requires at least an equivalent reduction in SWaP for the sensory systems. A survey of some currently available sensor systems and changing technology will reveal the trend toward reduction of SWaP of these systems and will predict future reductions. A new technology will be introduced that provides an example of a desirable new trend. A new device replaces multiple conventional sensory devices facilitating synchronization, localization, altimetry, collision avoidance, terrain mapping, and data communication in a single integrated, small form-factor, extremely lightweight, and low power device that it is practical for integration into small autonomous vehicles and can facilitate cooperative behavior. The technology is based on Ultra WideBand (UWB) radio using short pulses of energy rather than continuous sine waves. The characteristics of UWB yield several desirable characteristics to facilitate integration of perception for autonomous activities. The capabilities of this device and its limitations will be assessed.

  1. The Cora Lake Shear Zone: Strain Localization in an Ultramylonitic, Deep Crustal Shear Zone, Athabasca Granulite Terrain, Western Churchill Province, Canada

    NASA Astrophysics Data System (ADS)

    Regan, S.; Williams, M. L.; Mahan, K. H.; Orlandini, O. F.; Jercinovic, M. J.; Leslie, S. R.; Holland, M.

    2012-12-01

    Ultramylonitic shear zones typically involve intense strain localization, and when developed over large regions can introduce considerable heterogeneity into the crust. The Cora Lake shear zone (CLsz) displays several 10's to 100's of meters-wide zones of ultramylonite distributed throughout its full 3-5 km mylonitized width. Detailed mapping, petrography, thermobarometry, and in-situ monazite geochronology suggest that it formed during the waning phases of granulite grade metamorphism and deformation, within one of North America's largest exposures of polydeformed lower continental crust. Anastomosing zones of ultramylonite contain recrystallized grain-sizes approaching the micron scale and might appear to suggest lower temperature mylonitization. However, feldspar and even clinopyroxene are dynamically recrystallized, and quantitative thermobarometry of syn-deformational assemblages indicate high P and T conditions ranging from 0.9 -10.6 GPa and 775-850 °C. Even at these high T's, dynamic recovery and recrystallization were extremely limited. Rocks with low modal quartz have extremely small equilibrium volumes. This is likely the result of inefficient diffusion, which is further supported by the unannealed nature of the crystals. Local carbonate veins suggests that H2O poor, CO2 rich conditions may have aided in the preservation of fine grain sizes, and may have inhibited dynamic recovery and recrystallization. The Cora Lake shear zone is interpreted to have been relatively strong and to have hardened during progressive deformation. Garnet is commonly fractured perpendicular to host rock fabric, and statically replaced by both biotite and muscovite. Pseudotachylite, with the same sense of shear, occurs in several ultramylonitized mafic granulites. Thus, cataclasis and frictional melt are interpreted to have been produced in the lower continental crust, not during later reactivation. We suggest that strengthening of rheologically stiffer lithologies led to extreme localization, and potentially earthquakes in quartz-absent hardened lithologies. Cora Lake shearing represents the culmination of a deformation trend of increasing strength, strain partitioning, and localization within a polydeformed, strengthened lower continental crust.

  2. Androgen receptor CAG repeats length polymorphism and the risk of polycystic ovarian syndrome (PCOS).

    PubMed

    Rajender, Singh; Carlus, Silas Justin; Bansal, Sandeep Kumar; Negi, Mahendra Pal Singh; Negi, Mahendra Pratap Singh; Sadasivam, Nirmala; Sadasivam, Muthusamy Narayanan; Thangaraj, Kumarasamy

    2013-01-01

    Polycystic ovarian syndrome (PCOS) refers to an inheritable androgen excess disorder characterized by multiple small follicles located at the ovarian periphery. Hyperandrogenism in PCOS, and inverse correlation between androgen receptor (AR) CAG numbers and AR function, led us to hypothesize that CAG length variations may affect PCOS risk. CAG repeat region of 169 patients recruited following strictly defined Rotterdam (2003) inclusion criteria and that of 175 ethnically similar control samples, were analyzed. We also conducted a meta-analysis on the data taken from published studies, to generate a pooled estimate on 2194 cases and 2242 controls. CAG bi-allelic mean length was between 8.5 and 24.5 (mean = 17.43, SD = 2.43) repeats in the controls and between 11 and 24 (mean = 17.39, SD = 2.29) repeats in the cases, without any significant difference between the two groups. Further, comparison of bi-allelic mean and its frequency distribution in three categories (short, moderate and long alleles) did not show any significant difference between controls and various case subgroups. Frequency distribution of bi-allelic mean in two categories (extreme and moderate alleles) showed over-representation of extreme sized alleles in the cases with marginally significant value (50.3% vs. 61.5%, χ(2) = 4.41; P = 0.036), which turned insignificant upon applying Bonferroni correction for multiple comparisons. X-chromosome inactivation analysis showed no significant difference in the inactivation pattern of CAG alleles or in the comparison of weighed bi-allelic mean between cases and controls. Meta-analysis also showed no significant correlation between CAG length and PCOS risk, except a minor over-representation of short CAG alleles in the cases. CAG bi-allelic mean length did not differ between controls and cases/case sub-groups nor did the allele distribution. Over-representation of short/extreme-sized alleles in the cases may be a chance finding without any true association with PCOS risk.

  3. 77 FR 39442 - Receipts-Based, Small Business Size Standard

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-03

    ... RIN 3150-AJ14 [NRC-2012-0062] Receipts-Based, Small Business Size Standard AGENCY: Nuclear Regulatory... business size standard from $6.5 million to $7 million to conform to the standard set by the Small Business... updating the receipts-based, small business size standard from $6.5 million to $7.0 million. Adequate...

  4. Dwarfs in the Deepest Fields at Noon: Studying Size and Shape of Low-mass Galaxies out to z 3 in Five HST Legacy Fields

    NASA Astrophysics Data System (ADS)

    Guo, Yicheng

    2017-08-01

    Galaxies with stellar mass 100x-1000x times smaller than our Milky Way (hereafter dwarf galaxies or DGs) are important for understanding galaxy formation and evolution by being the most sensitive probes of both the macro-physics of dark matter halos and the micro-physics of the different physical mechanisms that regulate star formation and shape galaxies. Currently, however, observations of distant DGs have been hampered by small samples and poor quality due to their faintness. We propose an archival study of the size, morphology, and structures of DGs out to z 3.0 by combining the archived data from five of the deepest regions that HST has ever observed: eXtreme Deep Field (XDF, updated from HUDF) and the Hubble Legacy Fields (HLFs). Our program would be the first to advance the morphology studies of DGs to the Cosmic Noon (z 2), and hence place unprecedented constraints on models of galaxy structure formation. Equally important is the data product of our program: multi-wavelength photometry and morphology catalogs for all detected galaxies in these fields. These catalogs would be a timely treasure for the public to prepare for the coming JWST era by providing detailed information of small, faint, but important objects in some deepest HST fields for JWST observations.

  5. The dregs of crystallization in Zagami

    NASA Technical Reports Server (NTRS)

    Mccoy, T. J.; Keil, K.; Taylor, G. J.

    1993-01-01

    The Zagami shergottite is a basaltic meteorite which formed when a phenocryst-bearing lava flow was emplaced at or near the surface of Mars. Recently, a cm-sized olivine-rich lithology has been identified in Zagami by Mossbauer spectroscopy. Olivine is extremely rare in shergottites, particularly in Zagami and Shergotty, where it occurs only as minute grains. We report petrologic and microprobe studies of this olivine-rich lithology. This material represents the last few percent of melt and is highly enriched in phosphates, opaques and mesostases, all of which are late-stage crystallization products. Phosphates replaced augite as a phenocryst phase when the magma became saturated in P. This late stage melt also includes a fayalite-bearing, multi-phase intergrowth which crystallized after the melt became too rich in iron to crystallize pigeonite. We can now reconstruct the entire crystallization history of the Zagami shergottite from a deep-seated magma chamber to crystallization of the final few percent of melt in a near-surface dike or thick flow. Small pockets (tens of microns) of late-stage melt pockets are ubiquitous but volumetrically minor in Zagami. We do not know the physical relationship between these areas and the cm-sized olivine-rich material described here. It is possible that these small pockets were mobile, forming larger areas. Perhaps inspection of the entire hand specimen of Zagami would clarify this relationship.

  6. Early studies reported extreme findings with large variability: a meta-epidemiologic study in the field of endocrinology.

    PubMed

    Wang, Zhen; Alahdab, Fares; Almasri, Jehad; Haydour, Qusay; Mohammed, Khaled; Abu Dabrh, Abd Moain; Prokop, Larry J; Alfarkh, Wedad; Lakis, Sumaya; Montori, Victor M; Murad, Mohammad Hassan

    2016-04-01

    To evaluate the presence of extreme findings and fluctuation in effect size in endocrinology. We systematically identified all meta-analyses published in 2014 in the field of endocrinology. Within each meta-analysis, the effect size of the primary binary outcome was compared across studies according to their order of publication. We pooled studies using the DerSimonian and Laird random-effects method. Heterogeneity was evaluated using the I(2) and tau(2). Twelve percent of the included 100 meta-analyses reported the largest effect size in the very first published study. The largest effect size occurred in the first 2 earliest studies in 31% of meta-analyses. When the effect size was the largest in the first published study, it was three times larger than the final pooled effect (ratio of rates, 3.26; 95% confidence interval: 1.80, 5.90). The largest heterogeneity measured by I(2) was observed in 18% of the included meta-analyses when combining the first 2 studies or 17% when combing the first 3 studies. In endocrinology, early studies reported extreme findings with large variability. This behavior of the evidence needs to be taken into account when used to formulate clinical policies. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Grain boundary stability governs hardening and softening in extremely fine nanograined metals

    NASA Astrophysics Data System (ADS)

    Hu, J.; Shi, Y. N.; Sauvage, X.; Sha, G.; Lu, K.

    2017-03-01

    Conventional metals become harder with decreasing grain sizes, following the classical Hall-Petch relationship. However, this relationship fails and softening occurs at some grain sizes in the nanometer regime for some alloys. In this study, we discovered that plastic deformation mechanism of extremely fine nanograined metals and their hardness are adjustable through tailoring grain boundary (GB) stability. The electrodeposited nanograined nickel-molybdenum (Ni-Mo) samples become softened for grain sizes below 10 nanometers because of GB-mediated processes. With GB stabilization through relaxation and Mo segregation, ultrahigh hardness is achieved in the nanograined samples with a plastic deformation mechanism dominated by generation of extended partial dislocations. Grain boundary stability provides an alternative dimension, in addition to grain size, for producing novel nanograined metals with extraordinary properties.

  8. Nonlinear electroelastic deformations of dielectric elastomer composites: II - Non-Gaussian elastic dielectrics

    NASA Astrophysics Data System (ADS)

    Lefèvre, Victor; Lopez-Pamies, Oscar

    2017-02-01

    This paper presents an analytical framework to construct approximate homogenization solutions for the macroscopic elastic dielectric response - under finite deformations and finite electric fields - of dielectric elastomer composites with two-phase isotropic particulate microstructures. The central idea consists in employing the homogenization solution derived in Part I of this work for ideal elastic dielectric composites within the context of a nonlinear comparison medium method - this is derived as an extension of the comparison medium method of Lopez-Pamies et al. (2013) in nonlinear elastostatics to the coupled realm of nonlinear electroelastostatics - to generate in turn a corresponding solution for composite materials with non-ideal elastic dielectric constituents. Complementary to this analytical framework, a hybrid finite-element formulation to construct homogenization solutions numerically (in three dimensions) is also presented. The proposed analytical framework is utilized to work out a general approximate homogenization solution for non-Gaussian dielectric elastomers filled with nonlinear elastic dielectric particles that may exhibit polarization saturation. The solution applies to arbitrary (non-percolative) isotropic distributions of filler particles. By construction, it is exact in the limit of small deformations and moderate electric fields. For finite deformations and finite electric fields, its accuracy is demonstrated by means of direct comparisons with finite-element solutions. Aimed at gaining physical insight into the extreme enhancement in electrostriction properties displayed by emerging dielectric elastomer composites, various cases wherein the filler particles are of poly- and mono-disperse sizes and exhibit different types of elastic dielectric behavior are discussed in detail. Contrary to an initial conjecture in the literature, it is found (inter alia) that the isotropic addition of a small volume fraction of stiff (semi-)conducting/high-permittivity particles to dielectric elastomers does not lead to the extreme electrostriction enhancements observed in experiments. It is posited that such extreme enhancements are the manifestation of interphasial phenomena.

  9. 76 FR 27952 - Small Business Size Standards: Professional, Scientific and Technical Services.

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-13

    ... Administration (SBA or Agency) proposed to increase small business size standards for 35 industries and one sub... SMALL BUSINESS ADMINISTRATION 13 CFR Part 121 RIN 3245-AG07 Small Business Size Standards: Professional, Scientific and Technical Services. AGENCY: U.S. Small Business Administration. ACTION: Proposed...

  10. Body shape convergence driven by small size optimum in marine angelfishes.

    PubMed

    Frédérich, Bruno; Santini, Francesco; Konow, Nicolai; Schnitzler, Joseph; Lecchini, David; Alfaro, Michael E

    2017-06-01

    Convergent evolution of small body size occurs across many vertebrate clades and may reflect an evolutionary response to shared selective pressures. However it remains unclear if other aspects of phenotype undergo convergent evolution in miniaturized lineages. Here we present a comparative analysis of body size and shape evolution in marine angelfishes (Pomacanthidae), a reef fish family characterized by repeated transitions to small body size. We ask if lineages that evolve small sizes show convergent evolution in body shape. Our results reveal that angelfish lineages evolved three different stable size optima with one corresponding to the group of pygmy angelfishes ( Centropyge ). Then, we test if the observed shifts in body size are associated with changes to new adaptive peaks in shape. Our data suggest that independent evolution to small size optima have induced repeated convergence upon deeper body and steeper head profile in Centropyge These traits may favour manoeuvrability and visual awareness in these cryptic species living among corals, illustrating that functional demands on small size may be related to habitat specialization and predator avoidance. The absence of shape convergence in large marine angelfishes also suggests that more severe requirements exist for small than for large size optima. © 2017 The Author(s).

  11. Gravitational Waves From the Kerr/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Porfyriadis, Achilleas

    Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.

  12. Genetics of Rapid and Extreme Size Evolution in Island Mice

    PubMed Central

    Gray, Melissa M.; Parmenter, Michelle D.; Hogan, Caley A.; Ford, Irene; Cuthbert, Richard J.; Ryan, Peter G.; Broman, Karl W.; Payseur, Bret A.

    2015-01-01

    Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F2 intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. PMID:26199233

  13. Genetics of Rapid and Extreme Size Evolution in Island Mice.

    PubMed

    Gray, Melissa M; Parmenter, Michelle D; Hogan, Caley A; Ford, Irene; Cuthbert, Richard J; Ryan, Peter G; Broman, Karl W; Payseur, Bret A

    2015-09-01

    Organisms on islands provide a revealing window into the process of adaptation. Populations that colonize islands often evolve substantial differences in body size from their mainland relatives. Although the ecological drivers of this phenomenon have received considerable attention, its genetic basis remains poorly understood. We use house mice (subspecies: Mus musculus domesticus) from remote Gough Island to provide a genetic portrait of rapid and extreme size evolution. In just a few hundred generations, Gough Island mice evolved the largest body size among wild house mice from around the world. Through comparisons with a smaller-bodied wild-derived strain from the same subspecies (WSB/EiJ), we demonstrate that Gough Island mice achieve their exceptional body weight primarily by growing faster during the 6 weeks after birth. We use genetic mapping in large F(2) intercrosses between Gough Island mice and WSB/EiJ to identify 19 quantitative trait loci (QTL) responsible for the evolution of 16-week weight trajectories: 8 QTL for body weight and 11 QTL for growth rate. QTL exhibit modest effects that are mostly additive. We conclude that body size evolution on islands can be genetically complex, even when substantial size changes occur rapidly. In comparisons to published studies of laboratory strains of mice that were artificially selected for divergent body sizes, we discover that the overall genetic profile of size evolution in nature and in the laboratory is similar, but many contributing loci are distinct. Our results underscore the power of genetically characterizing the entire growth trajectory in wild populations and lay the foundation necessary for identifying the mutations responsible for extreme body size evolution in nature. Copyright © 2015 by the Genetics Society of America.

  14. Does life history shape sexual size dimorphism in anurans? A comparative analysis

    PubMed Central

    2013-01-01

    Background The evolution of sexual size dimorphism (SSD) is likely constrained by life history. Using phylogenetic comparative methods, we examined correlations between SSD among anurans and their life history traits, including egg size, clutch size, mating combat, and parental care behaviour. We used sexual dimorphism index (SDI = Body-sizefemale /Body-sizemale –1) as the measurement for SSD. Body size, life history and phylogenetic data were collected from published literature. Data were analysed at two levels: all anuran species and within individual families. Results Female-biased SSD is the predominant form in anurans. SSD decreases along with the body size increase, following the prediction of Rensch’s rule, but the magnitude of decrease is very small. More importantly, female body size is positively correlated with both fecundity related traits, egg size and clutch size, and SDI is also positively correlated with clutch size, suggesting fecundity advantage may have driven the evolution of female body size and consequently leads to the evolution of female-biased SSD. Furthermore, the presence of parental care, male parental care in particular, is negatively correlated with SDI, indicating that species with parental care tend to have a smaller SDI. A negative correlation between clutch size and parental care further suggests that parental care likely reduces the fecundity selection pressure on female body size. On the other hand, there is a general lack of significant correlation between SDI and the presence of male combat behaviour, which is surprising and contradictory to previous studies. Conclusions We find clear evidence to support the ‘fecundity advantage hypothesis’ and the ‘parental care hypothesis’ in shaping SSD in anurans. Nevertheless, the relationships of both parental care and combat behaviour to the evolution of SSD are complex in anurans and the extreme diversity of life history traits may have masked some potential interesting relationships. Our study represents the most comprehensive study of SSD in anurans to date. PMID:23368708

  15. Reduction of Growth Rate as the Major Process in the Miniaturization of the Sand Dollar Sinaechinocyamus mai.

    PubMed

    Chen, C P; Chao, C M

    1997-08-01

    Sinaechinocyamus mai is an extremely small sand dollar, the maximum size being 10.9 mm. It has been suggested that Sinaechinocyamus is a miniaturized progenetic sand dollar that closely resembles the juveniles of Scaphechinus. In this study, we investigated the mechanisms responsible for the miniaturization. Our analysis of population dynamics, maturity, and annual reproductive cycles suggests that the growth rates of S. mai are about 19% the growth rates of Scaphechinus mirabilis, which reaches a maximum size of 88 mm. The developmental stages of oral and aboral surfaces were defined on the basis of the number of discontinuous interambulacral plates and the number of tube-foot porepairs, pairs, respectively. The patterns of the oral and aboral surfaces of the two species were compared, both at original size and after the Scaphechinus mirabilis pattern had been reduced to a size proportional to that of S. mai (i.e., to 19% original). On the oral surface, the patterns were different at the original sizes, but similar when the proportional sizes were compared; this indicates that the development of the oral plates is age-dependent in S. mai. On the aboral surface, the patterns were similar at the original sizes, but different in the proportional comparison, indicating that the development of the aboral plates is size-dependent in S. mai. S. mai becomes sexually mature at the age of 2 years, and Scaphechinus mirabilis matures probably at about the same age. Our data suggest that the reduction of growth rate (neoteny) is a more important mechanism of miniaturization in S. mai than is precocious cessation (progenesis).

  16. 77 FR 30265 - Submission for OMB Review; Small Business Size Representation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-22

    ... Information Collection 9000- 0163, Small Business Size Representation, by any of the following methods... Business Size Representation AGENCY: Department of Defense (DOD), General Services Administration (GSA... of a previously approved information collection requirement regarding small business size...

  17. Compilation of 1986 annual reports of the Navy ELF (Extremely Low Frequency) communications system ecological monitoring program, volume 2

    NASA Astrophysics Data System (ADS)

    1987-07-01

    The U.S. Navy is conducting a long-term program to monitor for possible effects from the operation of its Extremely Low Frequency (ELF) Communications System to resident biota and their ecological relationships. This report documents progress of the following studies: soil amoeba; soil and litter arthropoda and earthworm studies; biological studies on pollinating insects: megachilid bees; and small vertebrates: small mammals and nesting birds.

  18. Minor loop dependence of the magnetic forces and stiffness in a PM-HTS levitation system

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Li, Chengshan

    2017-12-01

    Based upon the method of current vector potential and the critical state model of Bean, the vertical and lateral forces with different sizes of minor loop are simulated in two typical cooling conditions when a rectangular permanent magnet (PM) above a cylindrical high temperature superconductor (HTS) moves vertically and horizontally. The different values of average magnetic stiffness are calculated by various sizes of minor loop changing from 0.1 to 2 mm. The magnetic stiffness with zero traverse is obtained by using the method of linear extrapolation. The simulation results show that the extreme values of forces decrease with increasing size of minor loop. The magnetic hysteresis of the force curves also becomes small as the size of minor loop increases. This means that the vertical and lateral forces are significantly influenced by the size of minor loop because the forces intensely depend on the moving history of the PM. The vertical stiffness at every vertical position when the PM vertically descends to 1 mm is larger than that as the PM vertically ascents to 30 mm. When the PM moves laterally, the lateral stiffness during the PM passing through any horizontal position in the first time almost equal to the value during the PM passing through the same position in the second time in zero-field cooling (ZFC), however, the lateral stiffness in field cooling (FC) and the cross stiffness in ZFC and FC are significantly affected by the moving history of the PM.

  19. Polygenic determinants in extremes of high-density lipoprotein cholesterol[S

    PubMed Central

    Dron, Jacqueline S.; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A.; Robinson, John F.; McIntyre, Adam D.; Ban, Matthew R.; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J.; Lettre, Guillaume; Tardif, Jean-Claude

    2017-01-01

    HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. PMID:28870971

  20. Polygenic determinants in extremes of high-density lipoprotein cholesterol.

    PubMed

    Dron, Jacqueline S; Wang, Jian; Low-Kam, Cécile; Khetarpal, Sumeet A; Robinson, John F; McIntyre, Adam D; Ban, Matthew R; Cao, Henian; Rhainds, David; Dubé, Marie-Pierre; Rader, Daniel J; Lettre, Guillaume; Tardif, Jean-Claude; Hegele, Robert A

    2017-11-01

    HDL cholesterol (HDL-C) remains a superior biochemical predictor of CVD risk, but its genetic basis is incompletely defined. In patients with extreme HDL-C concentrations, we concurrently evaluated the contributions of multiple large- and small-effect genetic variants. In a discovery cohort of 255 unrelated lipid clinic patients with extreme HDL-C levels, we used a targeted next-generation sequencing panel to evaluate rare variants in known HDL metabolism genes, simultaneously with common variants bundled into a polygenic trait score. Two additional cohorts were used for validation and included 1,746 individuals from the Montréal Heart Institute Biobank and 1,048 individuals from the University of Pennsylvania. Findings were consistent between cohorts: we found rare heterozygous large-effect variants in 18.7% and 10.9% of low- and high-HDL-C patients, respectively. We also found common variant accumulation, indicated by extreme polygenic trait scores, in an additional 12.8% and 19.3% of overall cases of low- and high-HDL-C extremes, respectively. Thus, the genetic basis of extreme HDL-C concentrations encountered clinically is frequently polygenic, with contributions from both rare large-effect and common small-effect variants. Multiple types of genetic variants should be considered as contributing factors in patients with extreme dyslipidemia. Copyright © 2017 by the American Society for Biochemistry and Molecular Biology, Inc.

  1. Cratering on Small Bodies: Lessons from Eros

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-01-01

    Cratering and regolith processes on small bodies happen continuously as interplanetary debris rains down on asteroids, comets, and planetary satellites. Butthey are very poorly observed and not well understood. On the one hand, we have laboratory experimentation at small scales and we have examination of large impact craters (e.g. Meteor Crater on Earth and imaging of abundant craters on terrestrial planets and outer planet moons). Understanding cratering on bodies of intermediate scales, tens of meters to hundreds of km in size, involves either extrapolation from our understanding of cratering phenomena at very different scales or reliance on very preliminary, incomplete examination of the observational data we now have for a few small bodies. I review the latter information here. It has been generally understood that the role of gravity is greatly diminished for smaller bodies, so a lot of cratering phenomena studied for larger bodies is less applicable. But it would be a mistake to imagine that laboratory experiments on gravitationless rocks (usually at 1 g) are directly applicable, except perhaps to those monolithic Near Earth Asteroids (NEAs) some tens of meters in size that spin very rapidly and can be assumed to be "large bare rocks" with "negative gravity". Whereas it had once been assumed that asteroids smaller than some tens of km diameter would retain little regolith, it is increasingly apparent that regolith and megoregolith processes extend down to bodies only hundreds of meters in size, perhaps smaller. Yet these processes are very different from those that pertain to the Moon, which is our chief prototype of regolith processes. The NEAR Shoemaker spacecraft's studies of Eros provide the best evidence to date about small-body cratering processes, as well as a warning that our theoretical understanding requires anchoring by direct observations. Eros: "Ponds", Paucity of Small Craters, and Other Mysteries. Although Eros is currently largely detached from interactions with main-belt asteroids in its Earth-approaching orbit, almost all of its cratering history must have occurred in the main belt, where it almost certainly lived for a long time and where the impact rate is orders-of-magnitude greater than in its present environment. Thus NEAR Shoemaker's year-long orbital studies of Eros should be representative of asteroidal cratering processes for medium-small (tens of km) asteroids generally - with the caveat that small bodies are made of many different materials, ranging from metal to whatever comets are made of, and we already have indications from NEAR Shoemaker's flyby of Mathilde that responses to impacts on such bodies may be very different from what is observed on rocky Eros. As viewed from a distance, the saturated crater fields on Eros look similar to those on Ida and, indeed, on the Moon itself. It is at smaller scales, never before studied for asteroids, where Eros# appearance diverted dramatically from expectations based on modest extrapolations from our lunar experience. Flat, level "ponds" are common on Eros and were certainly not expected. Most striking, however, is the virtual absence of small-scale (cm to meters) craters and the dominance of rocks and boulders on the surface. Apparently many of the larger boulders were distributed about Eros by the comparatively recent impact that produced the Shoemaker crater, providing insight to ejecta processes on small bodies. But, assuming that Shoemaker didn't form practically "yesterday", the dearth of small craters is extremely puzzling. Some researchers have attempted to explain the shortage by traditional geological processes; I will explain why these fail and we are being forced to turn to explanations involving shortages of small projectiles in the asteroid belt (e.g. due to the Yarkovsky Effect). Even if projectile shortages help to explain the data, other non-lunar processes must be at work, as well. Mass-wasting processes are evident on large crater walls and the ponds reflect a still-not-understood deposition or sedimentation process. The boulder-strewn surface itself also serves to "armour" the surface against impacts. The role of seismic shaking on small bodies also must play a major role, relatively unfamiliar for larger bodies. I will summarize the observations of Eros that shed light on these various processes. Even Smaller Bodies. An interest in sub-km scale bodies has developed in the context of imagining how a potentially dangerous NEA might be diverted. Meanwhile, observational evidence concerning their general geophysical configurations has grown rapidly. A significant proportion of these bodies (approx. 20%) appear to have satellites or be binary in nature, and most of the remainder exhibit properties consistent with being "rubble piles" of one form or another. Eros, with less than a millionth the mass of the Moon, turned out to be extremely non-lunar-like in its small-scale responses to impact cratering. NEAs of the size being analyzed as prototypes for deflection are a millionth the mass of Eros. We should not expect our insights from Eros, therefore, to be directly applicable to them. And as we learn more about small asteroids and comets, we must expect to be surprised.

  2. Extinction risk and eco-evolutionary dynamics in a variable environment with increasing frequency of extreme events

    PubMed Central

    Vincenzi, Simone

    2014-01-01

    One of the most dramatic consequences of climate change will be the intensification and increased frequency of extreme events. I used numerical simulations to understand and predict the consequences of directional trend (i.e. mean state) and increased variability of a climate variable (e.g. temperature), increased probability of occurrence of point extreme events (e.g. floods), selection pressure and effect size of mutations on a quantitative trait determining individual fitness, as well as the their effects on the population and genetic dynamics of a population of moderate size. The interaction among climate trend, variability and probability of point extremes had a minor effect on risk of extinction, time to extinction and distribution of the trait after accounting for their independent effects. The survival chances of a population strongly and linearly decreased with increasing strength of selection, as well as with increasing climate trend and variability. Mutation amplitude had no effects on extinction risk, time to extinction or genetic adaptation to the new climate. Climate trend and strength of selection largely determined the shift of the mean phenotype in the population. The extinction or persistence of the populations in an ‘extinction window’ of 10 years was well predicted by a simple model including mean population size and mean genetic variance over a 10-year time frame preceding the ‘extinction window’, although genetic variance had a smaller role than population size in predicting contemporary risk of extinction. PMID:24920116

  3. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  4. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  5. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  6. 40 CFR 141.81 - Applicability of corrosion control treatment steps to small, medium-size and large water systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... treatment steps to small, medium-size and large water systems. 141.81 Section 141.81 Protection of... to small, medium-size and large water systems. (a) Systems shall complete the applicable corrosion...) or (b)(3) of this section. (2) A small system (serving ≤3300 persons) and a medium-size system...

  7. Variation in egg size of the northern pintail

    USGS Publications Warehouse

    Flint, Paul L.; Grand, James B.

    1996-01-01

    Egg size is an important determinant of reproductive investment by birds. For many species, total investment in a clutch is limited by the size of stored reserves (Ankney and MacInnes 1978, Esler and Grand 1994a). Egg size determines the unit by which these stored reserves are partitioned. Individual females in most species of waterfowl show a high repeatability for egg size, implying that individual either cannot, or do not, alter their egg size in response to varying environmental conditions (batt and Prince 1979, Duncan 1987, Laurila and Hario 1988, Lessells et al 1989, Flint and Sedinger 1992). Thus differences in egg size appear to represent different reproductive strategies among individuals.Fitness can be measured by the number of offspring an individual contributes to a population. Egg size may be related to fitness in some species fo waterfowl as young from larger eggs are better able to survive extreme conditions (Ankney 1980, Thomas and Brown 1988). Birds laying larger clutches are almost always more fit as they fledge more young (Lessells 1986, Rockwell et al 1987, Flint 1993). These fitness patterns create the potential for a trade-off between clutch size and egg size where females laying large clutches of small eggs have the same fitness as females laying smaller clutches of large eggs. The fact that Northern Pintails (Anas acuta) utilize stored reserves (Mann and Sedinger 1993, esler and Grand 1994a) and have a high repeatability for egg size (i.e. egg size is fixed) (Duncan 1987), makes them candidates to engage in clutch size=egg size trade-offs (Rowher 1988, Rowher and Eisenhauer 1989). An inverse relationship between egg size and clutch size would be indicative of a phenotypic trade-off among these fitness components. Our goal in this study was to describe egg size variation in Northern Pintails (hereafter pintails) with regard to female age, body size, clutch size, year, initiation date, and nesting attempt. We compare our results to those from other populations of nesting pintails and discuss whether phenotypic clutch size-egg size tradeoffs exist for pintails.

  8. Dolphin social intelligence: complex alliance relationships in bottlenose dolphins and a consideration of selective environments for extreme brain size evolution in mammals.

    PubMed

    Connor, Richard C

    2007-04-29

    Bottlenose dolphins in Shark Bay, Australia, live in a large, unbounded society with a fission-fusion grouping pattern. Potential cognitive demands include the need to develop social strategies involving the recognition of a large number of individuals and their relationships with others. Patterns of alliance affiliation among males may be more complex than are currently known for any non-human, with individuals participating in 2-3 levels of shifting alliances. Males mediate alliance relationships with gentle contact behaviours such as petting, but synchrony also plays an important role in affiliative interactions. In general, selection for social intelligence in the context of shifting alliances will depend on the extent to which there are strategic options and risk. Extreme brain size evolution may have occurred more than once in the toothed whales, reaching peaks in the dolphin family and the sperm whale. All three 'peaks' of large brain size evolution in mammals (odontocetes, humans and elephants) shared a common selective environment: extreme mutual dependence based on external threats from predators or conspecific groups. In this context, social competition, and consequently selection for greater cognitive abilities and large brain size, was intense.

  9. Switch between life history strategies due to changes in glycolytic enzyme gene dosage in Saccharomyces cerevisiae.

    PubMed

    Wang, Shaoxiao; Spor, Aymé; Nidelet, Thibault; Montalent, Pierre; Dillmann, Christine; de Vienne, Dominique; Sicard, Delphine

    2011-01-01

    Adaptation is the process whereby a population or species becomes better fitted to its habitat through modifications of various life history traits which can be positively or negatively correlated. The molecular factors underlying these covariations remain to be elucidated. Using Saccharomyces cerevisiae as a model system, we have investigated the effects on life history traits of varying the dosage of genes involved in the transformation of resources into energy. Changing gene dosage for each of three glycolytic enzyme genes (hexokinase 2, phosphoglucose isomerase, and fructose-1,6-bisphosphate aldolase) resulted in variation in enzyme activities, glucose consumption rate, and life history traits (growth rate, carrying capacity, and cell size). However, the range of effects depended on which enzyme was expressed differently. Most interestingly, these changes revealed a genetic trade-off between carrying capacity and cell size, supporting the discovery of two extreme life history strategies already described in yeast populations: the "ants," which have lower glycolytic gene dosage, take up glucose slowly, and have a small cell size but reach a high carrying capacity, and the "grasshoppers," which have higher glycolytic gene dosage, consume glucose more rapidly, and allocate it to a larger cell size but reach a lower carrying capacity. These results demonstrate antagonist pleiotropy for glycolytic genes and show that altered dosage of a single gene drives a switch between two life history strategies in yeast.

  10. Planetesimal formation in self-gravitating discs - dust trapping by vortices

    NASA Astrophysics Data System (ADS)

    Gibbons, P. G.; Mamatsashvili, G. R.; Rice, W. K. M.

    2015-11-01

    The mechanism through which metre-sized boulders grow to km-sized planetesimals in protoplanetary discs is a subject of active research, since it is critical for planet formation. To avoid spiralling into the protostar due to aerodynamic drag, objects must rapidly grow from cm-sized pebbles, which are tightly coupled to the gas, to large boulders of 1-100 m in diameter. It is already well known that overdensities in the gaseous component of the disc provide potential sites for the collection of solids, and that significant density structures in the gaseous component of the disc (e.g. spiral density waves) can trap solids efficiently enough for the solid component of the disc to undergo further gravitational collapse due to their own self-gravity. In this work, we employ the PENCIL CODE to conduct local shearing sheet simulations of massive self-gravitating protoplanetary discs, to study the effect of anticyclonic transient vortices, or eddies, on the evolution of solids in these discs. We find that these types of structures are extremely efficient at concentrating small and intermediate-sized dust particles with friction times comparable to, or less than, the local orbital period of the disc. This can lead to significant over-densities in the solid component of the disc, with density enhancements comparable to, and even higher, than those within spiral density waves; increasing the rate of gravitational collapse of solids into bound structures.

  11. Emulsified systems based on glyceryl monostearate and potassium cetyl phosphate: scale-up and characterization of physical properties.

    PubMed

    Baby, André Rolim; Santoro, Diego Monegatto; Velasco, Maria Valéria Robles; Dos Reis Serra, Cristina Helena

    2008-09-01

    Introducing a pharmaceutical product on the market involves several stages of research. The scale-up stage comprises the integration of previous phases of development and their integration. This phase is extremely important since many process limitations which do not appear on the small scale become significant on the transposition to a large one. Since scientific literature presents only a few reports about the characterization of emulsified systems involving their scaling-up, this research work aimed at evaluating physical properties of non-ionic and anionic emulsions during their manufacturing phases: laboratory stage and scale-up. Prototype non-ionic (glyceryl monostearate) and anionic (potassium cetyl phosphate) emulsified systems had the physical properties by the determination of the droplet size (D[4,3], mum) and rheology profile. Transposition occurred from a batch of 500-50,000g. Semi-industrial manufacturing involved distinct conditions: intensity of agitation and homogenization. Comparing the non-ionic and anionic systems, it was observed that anionic emulsifiers generated systems with smaller droplet size and higher viscosity in laboratory scale. Besides that, for the concentrations tested, augmentation of the glyceryl monostearate emulsifier content provided formulations with better physical characteristics. For systems with potassium cetyl phosphate, droplet size increased with the elevation of the emulsifier concentration, suggesting inadequate stability. The scale-up provoked more significant alterations on the rheological profile and droplet size on the anionic systems than the non-ionic.

  12. 77 FR 13329 - Information Collection; Small Business Size Representation

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-06

    ... Collection 9000- 0163, Small Business Size Representation, by any of the following methods: Regulations.gov... ADMINISTRATION [OMB Control No. 9000-0163; Docket 2011-0076; Sequence 6] Information Collection; Small Business... previously approved information collection requirement regarding small business size representation. DATES...

  13. Effects of an Off-Axis Pivoting Elliptical Training Program on Gait Function in Persons With Spastic Cerebral Palsy: A Preliminary Study.

    PubMed

    Tsai, Liang-Ching; Ren, Yupeng; Gaebler-Spira, Deborah J; Revivo, Gadi A; Zhang, Li-Qun

    2017-07-01

    This preliminary study examined the effects of off-axis elliptical training on reducing transverse-plane gait deviations and improving gait function in 8 individuals with cerebral palsy (CP) (15.5 ± 4.1 years) who completed an training program using a custom-made elliptical trainer that allows transverse-plane pivoting of the footplates during exercise. Lower-extremity off-axis control during elliptical exercise was evaluated by quantifying the root-mean-square and maximal angular displacement of the footplate pivoting angle. Lower-extremity pivoting strength was assessed. Gait function and balance were evaluated using 10-m walk test, 6-minute-walk test, and Pediatric Balance Scale. Toe-in angles during gait were quantified. Participants with CP demonstrated a significant decrease in the pivoting angle (root mean square and maximal angular displacement; effect size, 1.00-2.00) and increase in the lower-extremity pivoting strength (effect size = 0.91-1.09) after training. Reduced 10-m walk test time (11.9 ± 3.7 seconds vs. 10.8 ± 3.0 seconds; P = 0.004; effect size = 1.46), increased Pediatric Balance Scale score (43.6 ± 12.9 vs. 45.6 ± 10.8; P = 0.042; effect size = 0.79), and decreased toe-in angle (3.7 ± 10.5 degrees vs. 0.7 ± 11.7 degrees; P = 0.011; effect size = 1.22) were observed after training. We present an intervention to challenge lower-extremity off-axis control during a weight-bearing and functional activity for individuals with CP. Our preliminary findings suggest that this intervention was effective in enhancing off-axis control, gait function, and balance and reducing in-toeing gait in persons with CP.

  14. Une nouvelle espèce d'hyracoïde du genre Bunohyrax (Mammalia) de l'Éocène de Bir El Ater (Algérie).

    NASA Astrophysics Data System (ADS)

    Tabuce, Rodolphe; Coiffait, Brigitte; Coiffait, Philippe-Emmanuel; Mahboubi, Mohamed; Jaeger, Jean-Jacques

    2000-07-01

    A new species of Bunohyrax, B. matsumotoi n. sp. (Hyracoidea, Mammalia) from the Bir El Ater locality (Algeria) is described and compared with the two known species from the Oligocene of the Fayum (Egypt). This new hyracoid is documented by fragmentary remains, but the characters are significant enough to establish a new species, particularly because of its extremely small size. B. matsumotoi appears to be more primitive than the Egyptian Bunohyrax. The Algerian species, together with geological and palaeontological data, argues for a late Middle to Late Eocene age for the Bir El Ater site, rather than an Oligocene age, equivalent to the upper sequence of the Fayum, as suggested by Rasmussen et al. [17].

  15. The promise of discovering population-specific disease-associated genes in South Asia.

    PubMed

    Nakatsuka, Nathan; Moorjani, Priya; Rai, Niraj; Sarkar, Biswanath; Tandon, Arti; Patterson, Nick; Bhavani, Gandham SriLakshmi; Girisha, Katta Mohan; Mustak, Mohammed S; Srinivasan, Sudha; Kaushik, Amit; Vahab, Saadi Abdul; Jagadeesh, Sujatha M; Satyamoorthy, Kapaettu; Singh, Lalji; Reich, David; Thangaraj, Kumarasamy

    2017-09-01

    The more than 1.5 billion people who live in South Asia are correctly viewed not as a single large population but as many small endogamous groups. We assembled genome-wide data from over 2,800 individuals from over 260 distinct South Asian groups. We identified 81 unique groups, 14 of which had estimated census sizes of more than 1 million, that descend from founder events more extreme than those in Ashkenazi Jews and Finns, both of which have high rates of recessive disease due to founder events. We identified multiple examples of recessive diseases in South Asia that are the result of such founder events. This study highlights an underappreciated opportunity for decreasing disease burden among South Asians through discovery of and testing for recessive disease-associated genes.

  16. Magnetic separation - Advanced nanotechnology for future nuclear fuel recycle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kaur, M.; Zhang, H.; Qiang, Y.

    2013-07-01

    The unique properties of magnetic nanoparticles (MNPs), such as their extremely small size and high surface area to volume ratio, provide better kinetics for the adsorption of metal ions from aqueous solutions. In this work, we demonstrated the separation of minor actinides using complex conjugates of MNPs with diethylenetriamine-pentaacetic acid (DTPA) chelator. The sorption results show the strong affinity of DTPA towards Am (III) and Pu (IV) by extracting 97% and 80% of actinides, respectively. It is shown that the extraction process is highly dependent on the pH of the solution. If these long-term heat generating actinides can be efficientlymore » removed from the used fuel raffinates, the volume of material that can be placed in a given amount of repository space can be significantly increased. (authors)« less

  17. Design of optimal and ideal 2-D concentrators with the collector immersed in a dielectric tube

    NASA Astrophysics Data System (ADS)

    Minano, J. C.; Ruiz, J. M.; Luque, A.

    1983-12-01

    A method is presented for designing ideal and optimal 2-D concentrators when the collector is placed inside a dielectric tube, for the particular case of a bifacial solar collector. The prototype 2-D (cylindrical geometry) concentrator is the compound parabolic concentrator or CPC, and from the beginning of development, it was found by Winston (1978) that filling up the concentrator with a transparent dielectric medium results in a big improvement of the optical properties. The method reported here is based on the extreme ray principle of design and avoids the use of differential equations by means of a proper appliction of Fermat's principle. One advantage of these concentrators is that they allow the size to be small compared with classical CPCs.

  18. Fabrication of self-aligned, nanoscale, complex oxide varactors

    NASA Astrophysics Data System (ADS)

    Fu, Richard X.; Toonen, Ryan C.; Hirsch, Samuel G.; Ivill, Mathew P.; Cole, Melanie W.; Strawhecker, Kenneth E.

    2015-01-01

    Applications in ferroelectric random access memory and superparaelectric devices require the fabrication of ferroelectric capacitors at the nanoscale that exhibit extremely small leakage currents. To systematically study the material-size dependence of ferroelectric varactor performance, arrays of parallel-plate structures have been fabricated with nanoscale dielectric diameters. Electron beam lithography and inductively coupled plasma dry etching have been used to fabricate arrays of ferroelectric varactors using top electrodes as a self-aligned etch mask. Parallel-plate test structures using RF-sputtered Ba0.6Sr0.4TiO3 thin-films were used to optimize the fabrication process. Varactors with diameters down to 20 nm were successfully fabricated. Current-voltage (I-V) characteristics were measured to evaluate the significance of etch-damage and fabrication quality by ensuring low leakage currents through the structures.

  19. Nonlinearity in the effect of an inhomogeneous Hall angle

    NASA Astrophysics Data System (ADS)

    Koon, Daniel W.

    2007-03-01

    The differential equation for the electric potential in a conducting material with an inhomogeneous Hall angle is extended to the large-field limit. This equation is solved for a square specimen, using a successive over-relaxation [SOR] technique for matrices of up to 101x101 size, and the Hall weighting function -- the effect of local pointlike perturbations on the measured Hall angle -- is calculated as both the unperturbed Hall angle, θH, and the perturbation, δθH, exceed the linear, small angle limit. Preliminary results show that the Hall angle varies by no more than 5% if both | θH |<1 and | δθH |<1. Thus, previously calculated results for the Hall weighting function can be used for most materials in all but the most extreme magnetic fields.

  20. Cutaneous Polyarteritis Nodosa Presented with Digital Gangrene: A Case Report

    PubMed Central

    Lew, Sogu; Cho, Sung Do; Cha, Hee Jeong; Eum, Eun-A; Jung, Hyun Chul; Park, Jae Hoo

    2006-01-01

    Cutaneous polyarteritis nodosa (CPAN) is an uncommon form of vasculitis involving small and medium sized arteries of unknown etiology. The disease can be differentiated from polyarteritis nodosa by its limitation to the skin and lack of progression to visceral involvement. The characteristic manifestations are subcutaneous nodule, livedo reticularis, and ulceration, mostly localized on the lower extremity. Arthralgia, myalgia, peripheral neuropathy, and constitutional symptoms such as fever and malaise may also be present. We describe a 34-yr-old woman presented with severe ischemic change of the fingertip and subcutaneous nodules without systemic manifestations as an unusual initial manifestation of CPAN. Therapy with corticosteroid and alprostadil induce a moderate improvement of skin lesions. However, necrosis of the finger got worse and the finger was amputated. PMID:16614534

  1. Forensic analysis of dyed textile fibers.

    PubMed

    Goodpaster, John V; Liszewski, Elisa A

    2009-08-01

    Textile fibers are a key form of trace evidence, and the ability to reliably associate or discriminate them is crucial for forensic scientists worldwide. While microscopic and instrumental analysis can be used to determine the composition of the fiber itself, additional specificity is gained by examining fiber color. This is particularly important when the bulk composition of the fiber is relatively uninformative, as it is with cotton, wool, or other natural fibers. Such analyses pose several problems, including extremely small sample sizes, the desire for nondestructive techniques, and the vast complexity of modern dye compositions. This review will focus on more recent methods for comparing fiber color by using chromatography, spectroscopy, and mass spectrometry. The increasing use of multivariate statistics and other data analysis techniques for the differentiation of spectra from dyed fibers will also be discussed.

  2. Red-billed Leiothrix (Leiothrix lutea)

    USGS Publications Warehouse

    Male, Timothy D.; Fancy, Steven G.; Ralph, C. John

    1998-01-01

    Known in the cage bird trade as the Japanese Hill-Robin, Peking Robin, or Peking Nightingale, the Red-billed Leiothrix was first imported into the Hawaiian Islands in 1911 ( Fisher and Baldwin 1947 ), with intentional releases to the wild occurring after 1918 ( Caum 1933 ). A native of Southeast Asia, southern China, and the Himalayan regions of India, this species is a medium-sized, green and yellow babbler with a conspicuous red bill and strongly notched tail. The species is extremely active, but individuals are somewhat secretive and difficult to see as they flit around in the understory, often in small groups. The Red-billed Leiothrix is found in a wide variety of habitats in the Hawaiian Islands, including both native and exotic forests from sea level to near mountain summits exceeding 4,000 m elevation.

  3. Nailfold capillaroscopy in Buerger's disease: A useful tool?

    PubMed

    Guidelli, Giacomo Maria; Bardelli, Marco; Fioravanti, Antonella; Selvi, Enrico

    2014-06-01

    Thromboangiitis obliterans (TAO, or Buerger's disease) is a rare inflammatory vasculitis that commonly involves small and medium-sized arteries of the extremities of tobacco smokers between the ages of 25 and 50 years. Although the diagnosis is based on the clinical picture and angiographic findings, we studied the microvascular involvement by nailfold capillaroscopy. We evaluated by nailfold capillaroscopy 2 patients with Buerger's disease, at baseline and after 6 months of tobacco discontinuation and therapy with prostanoids. Both patients presented similar capillaroscopic abnormalities, resembling a scleroderma-like pattern. The microvascular rearrangement was significantly reduced after 6 months of evaluation. The capillaroscopic abnormalities shown in the two patients could be related to thromboangiitis obliterans, and nailfold capillaroscopy could be a useful tool to evaluate disease progression and the response to treatment.

  4. Nailfold capillaroscopy in Buerger’s disease: A useful tool?

    PubMed Central

    Guidelli, Giacomo Maria; Bardelli, Marco; Fioravanti, Antonella; Selvi, Enrico

    2014-01-01

    Thromboangiitis obliterans (TAO, or Buerger’s disease) is a rare inflammatory vasculitis that commonly involves small and medium-sized arteries of the extremities of tobacco smokers between the ages of 25 and 50 years. Although the diagnosis is based on the clinical picture and angiographic findings, we studied the microvascular involvement by nailfold capillaroscopy. We evaluated by nailfold capillaroscopy 2 patients with Buerger’s disease, at baseline and after 6 months of tobacco discontinuation and therapy with prostanoids. Both patients presented similar capillaroscopic abnormalities, resembling a scleroderma-like pattern. The microvascular rearrangement was significantly reduced after 6 months of evaluation. The capillaroscopic abnormalities shown in the two patients could be related to thromboangiitis obliterans, and nailfold capillaroscopy could be a useful tool to evaluate disease progression and the response to treatment. PMID:27708881

  5. Fabrication of sub-12 nm thick silicon nanowires by processing scanning probe lithography masks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kyoung Ryu, Yu; Garcia, Ricardo, E-mail: r.garcia@csic.es; Aitor Postigo, Pablo

    2014-06-02

    Silicon nanowires are key elements to fabricate very sensitive mechanical and electronic devices. We provide a method to fabricate sub-12 nm silicon nanowires in thickness by combining oxidation scanning probe lithography and anisotropic dry etching. Extremely thin oxide masks (0.3–1.1 nm) are transferred into nanowires of 2–12 nm in thickness. The width ratio between the mask and the silicon nanowire is close to one which implies that the nanowire width is controlled by the feature size of the nanolithography. This method enables the fabrication of very small single silicon nanowires with cross-sections below 100 nm{sup 2}. Those values are the smallest obtained withmore » a top-down lithography method.« less

  6. The promise of disease gene discovery in South Asia

    PubMed Central

    Nakatsuka, Nathan; Moorjani, Priya; Rai, Niraj; Sarkar, Biswanath; Tandon, Arti; Patterson, Nick; Bhavani, Gandham SriLakshmi; Girisha, Katta Mohan; Mustak, Mohammed S; Srinivasan, Sudha; Kaushik, Amit; Vahab, Saadi Abdul; Jagadeesh, Sujatha M.; Satyamoorthy, Kapaettu; Singh, Lalji; Reich, David; Thangaraj, Kumarasamy

    2017-01-01

    The more than 1.5 billion people who live in South Asia are correctly viewed not as a single large population, but as many small endogamous groups. We assembled genome-wide data from over 2,800 individuals from over 260 distinct South Asian groups. We identify 81 unique groups, of which 14 have estimated census sizes of more than a million, that descend from founder events more extreme than those in Ashkenazi Jews and Finns, both of which have high rates of recessive disease due to founder events. We identify multiple examples of recessive diseases in South Asia that are the result of such founder events. This study highlights an under-appreciated opportunity for reducing disease burden among South Asians through the discovery of and testing for recessive disease genes. PMID:28714977

  7. Micromechanical ``Trampoline'' Magnetometers for Use in Pulsed Magnetic Fields Exceeding 60 Tesla

    NASA Astrophysics Data System (ADS)

    Balakirev, F. F.; Boebinger, G. S.; Aksyuk, V.; Gammel, P. L.; Haddon, R. C.; Bishop, D. J.

    1998-03-01

    We present the design, construction, and operation of a novel magnetometer for use in intense pulsed magnetic fields. The magnetometer consists of a silicon micromachined "trampoline" to which the sample is attached. The small size of the device (typically 400 microns on a side) gives a fast mechanical response (10,000 to 50,000 Hz) and extremely high sensitivity (10-11 Am^2, corresponding to 10-13 Am^2/Hz^(1/2)). The device is robust against electrical and mechanical noise and requires no special vibration isolation from the pulsed magnet. As a demonstration, we present data taken in a 60 tesla pulsed magnetic field which show clear de Haas-van Alphen oscillations in a one microgram sample of the organic superconductor K-(BEDT-TTF)_2Cu(NCS)_2.

  8. Rainy Day: A Remote Sensing-Driven Extreme Rainfall Simulation Approach for Hazard Assessment

    NASA Astrophysics Data System (ADS)

    Wright, Daniel; Yatheendradas, Soni; Peters-Lidard, Christa; Kirschbaum, Dalia; Ayalew, Tibebu; Mantilla, Ricardo; Krajewski, Witold

    2015-04-01

    Progress on the assessment of rainfall-driven hazards such as floods and landslides has been hampered by the challenge of characterizing the frequency, intensity, and structure of extreme rainfall at the watershed or hillslope scale. Conventional approaches rely on simplifying assumptions and are strongly dependent on the location, the availability of long-term rain gage measurements, and the subjectivity of the analyst. Regional and global-scale rainfall remote sensing products provide an alternative, but are limited by relatively short (~15-year) observational records. To overcome this, we have coupled these remote sensing products with a space-time resampling framework known as stochastic storm transposition (SST). SST "lengthens" the rainfall record by resampling from a catalog of observed storms from a user-defined region, effectively recreating the regional extreme rainfall hydroclimate. This coupling has been codified in Rainy Day, a Python-based platform for quickly generating large numbers of probabilistic extreme rainfall "scenarios" at any point on the globe. Rainy Day is readily compatible with any gridded rainfall dataset. The user can optionally incorporate regional rain gage or weather radar measurements for bias correction using the Precipitation Uncertainties for Satellite Hydrology (PUSH) framework. Results from Rainy Day using the CMORPH satellite precipitation product are compared with local observations in two examples. The first example is peak discharge estimation in a medium-sized (~4000 square km) watershed in the central United States performed using CUENCAS, a parsimonious physically-based distributed hydrologic model. The second example is rainfall frequency analysis for Saint Lucia, a small volcanic island in the eastern Caribbean that is prone to landslides and flash floods. The distinct rainfall hydroclimates of the two example sites illustrate the flexibility of the approach and its usefulness for hazard analysis in data-poor regions.

  9. Extreme sensory processing patterns show a complex association with depression, and impulsivity, alexithymia, and hopelessness.

    PubMed

    Serafini, Gianluca; Gonda, Xenia; Canepa, Giovanna; Pompili, Maurizio; Rihmer, Zoltan; Amore, Mario; Engel-Yeger, Batya

    2017-03-01

    The involvement of extreme sensory processing patterns, impulsivity, alexithymia, and hopelessness was hypothesized to contribute to the complex pathophysiology of major depression and bipolar disorder. However, the nature of the relation between these variables has not been thoroughly investigated. This study aimed to explore the association between extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness. We recruited 281 euthymic participants (mean age=47.4±12.1) of which 62.3% with unipolar major depression and 37.7% with bipolar disorder. All participants completed the Adolescent/Adult Sensory Profile (AASP), Toronto Alexithymia Scale (TAS-20), second version of the Beck Depression Inventory (BDI-II), Barratt Impulsivity Scale (BIS), and Beck Hopelessness Scale (BHS). Lower registration of sensory input showed a significant correlation with depression, impulsivity, attentional/motor impulsivity, and alexithymia. It was significantly more frequent among participants with elevated hopelessness, and accounted for 22% of the variance in depression severity, 15% in greater impulsivity, 36% in alexithymia, and 3% in hopelessness. Elevated sensory seeking correlated with enhanced motor impulsivity and decreased non-planning impulsivity. Higher sensory sensitivity and sensory avoiding correlated with depression, impulsivity, and alexithymia. The study was limited by the relatively small sample size and cross-sectional nature of the study. Furthermore, only self-report measures that may be potentially biased by social desirability were used. Extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness may show a characteristic pattern in patients with major affective disorders. The careful assessment of sensory profiles may help in developing targeted interventions and improve functional/adaptive strategies. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. A C-Te-based binary OTS device exhibiting excellent performance and high thermal stability for selector application.

    PubMed

    Chekol, Solomon Amsalu; Yoo, Jongmyung; Park, Jaehyuk; Song, Jeonghwan; Sung, Changhyuck; Hwang, Hyunsang

    2018-08-24

    In this letter, we demonstrate a new binary ovonic threshold switching (OTS) selector device scalable down to ø30 nm based on C-Te. Our proposed selector device exhibits outstanding performance such as a high switching ratio (I on /I off  > 10 5 ), an extremely low off-current (∼1 nA), an extremely fast operating speed of <10 ns (transition time of <2 ns and delay time of <8 ns), high endurance (10 9 ), and high thermal stability (>450 °C). The observed high thermal stability is caused by the relatively small atomic size of C, compared to Te, which can effectively suppress the segregation and crystallization of Te in the OTS film. Furthermore, to confirm the functionality of the selector in a crossbar array, we evaluated a 1S-1R device by integrating our OTS device with a ReRAM (resistive random access memory) device. The 1S-1R integrated device exhibits a successful suppression of leakage current at the half-selected cell and shows an excellent read-out margin (>2 12 word lines) in a fast read operation.

  11. Embryonic health: new insights, mHealth and personalised patient care.

    PubMed

    Steegers-Theunissen, Régine P M; Steegers, Eric A P

    2015-05-01

    The worldwide epidemic of non-communicable diseases (NCD), including obesity, is a burden to which poor lifestyles contribute significantly. Events in early life may enhance susceptibility to NCD, with transmission into succeeding generations. This may also explain, in part, why interventions in adulthood are less effective to reduce NCD risk. New insights reveal that the early embryo, in particular, is extremely sensitive to signals from gametes, trophoblastic tissue and periconception maternal lifestyles. Embryonic size and growth as determinants of embryonic health seem to impact future health. A relatively small embryo for gestational age is associated with pregnancy complications, as well as with the risk of early features of NCD in childhood. Although personal lifestyles are modifiable, they are extremely difficult to change. Therefore, adopting a life course approach from the periconception period onwards and integrated into patient care with short-term reproductive health benefits may have important implications for future prevention of NCD. The current reproductive population is used to Internet and social media. Therefore, they can be reached via mobile phone (mHealth) platforms that provide personalised lifestyle (pre)pregnancy programs. This will offer opportunities and possibly great benefits for the health of current and succeeding generations.

  12. Performance of MEMS Silicon Oscillator, ASFLM1, under Wide Operating Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Hammoud, Ahmad

    2008-01-01

    Over the last few years, MEMS (Micro-Electro-Mechanical Systems) resonator-based oscillators began to be offered as commercial-off-the-shelf (COTS) parts by a few companies [1-2]. These quartz-free, miniature silicon devices could compete with the traditional crystal oscillators in providing the timing (clock function) for many digital and analog electronic circuits. They provide stable output frequency, offer great tolerance to shock and vibration, and are immune to electro-static discharge [1-2]. In addition, they are encapsulated in compact lead-free packages, cover a wide frequency range (1 MHz to 125 MHz), and are specified, depending on the grade, for extended temperature operation from -40 C to +85 C. The small size of the MEMS oscillators along with their reliability and thermal stability make them candidates for use in space exploration missions. Limited data, however, exist on the performance and reliability of these devices under operation in applications where extreme temperatures or thermal cycling swings, which are typical of space missions, are encountered. This report presents the results of the work obtained on the evaluation of an ABRACON Corporation MEMS silicon oscillator chip, type ASFLM1, under extreme temperatures.

  13. Generalised Extreme Value Distributions Provide a Natural Hypothesis for the Shape of Seed Mass Distributions

    PubMed Central

    2015-01-01

    Among co-occurring species, values for functionally important plant traits span orders of magnitude, are uni-modal, and generally positively skewed. Such data are usually log-transformed “for normality” but no convincing mechanistic explanation for a log-normal expectation exists. Here we propose a hypothesis for the distribution of seed masses based on generalised extreme value distributions (GEVs), a class of probability distributions used in climatology to characterise the impact of event magnitudes and frequencies; events that impose strong directional selection on biological traits. In tests involving datasets from 34 locations across the globe, GEVs described log10 seed mass distributions as well or better than conventional normalising statistics in 79% of cases, and revealed a systematic tendency for an overabundance of small seed sizes associated with low latitudes. GEVs characterise disturbance events experienced in a location to which individual species’ life histories could respond, providing a natural, biological explanation for trait expression that is lacking from all previous hypotheses attempting to describe trait distributions in multispecies assemblages. We suggest that GEVs could provide a mechanistic explanation for plant trait distributions and potentially link biology and climatology under a single paradigm. PMID:25830773

  14. Room temperature synthesis of ultra-small, near-unity single-sized lead halide perovskite quantum dots with wide color emission tunability, high color purity and high brightness.

    PubMed

    Peng, Lucheng; Geng, Jing; Ai, Lisha; Zhang, Ying; Xie, Renguo; Yang, Wensheng

    2016-08-19

    Phosphor with extremely narrow emission line widths, high brightness, and wide color emission tunability in visible regions is required for display and lighting applications, yet none has been reported in the literature so far. In the present study, single-sized lead halide perovskite (APbX 3; A = CH3NH3 and Cs; X = Cl, Br, and I) nanocrystalline (NC) phosphors were achieved for the first time in a one-pot reaction at room temperature (25 °C). The size-dependent samples, which included four families of CsPbBr3 NCs and exhibited sharp excitonic absorption peaks and pure band gap emission, were directly obtained by simply varying the concentration of ligands. The continuity of the optical spectrum can be successively tuned over the entire UV-visible spectral region (360-610 nm) by preparing CsPbCl3, CsPbI3, and CsPb(Y/Br)3 (Y = Cl and I) NCs with the use of CsPbBr3 NCs as templates by anion exchange while maintaining the size of NCs and high quantum yields of up to 80%. Notably, an emission line width of 10-24 nm, which is completely consistent with that of their single particles, indicates the formation of single-sized NCs. The versatility of the synthetic strategy was validated by extending it to the synthesis of single-sized CH3NH3PbX 3 NCs by simply replacing the cesium precursor by the CH3NH3 X precursor.

  15. Extreme Mean and Its Applications

    NASA Technical Reports Server (NTRS)

    Swaroop, R.; Brownlow, J. D.

    1979-01-01

    Extreme value statistics obtained from normally distributed data are considered. An extreme mean is defined as the mean of p-th probability truncated normal distribution. An unbiased estimate of this extreme mean and its large sample distribution are derived. The distribution of this estimate even for very large samples is found to be nonnormal. Further, as the sample size increases, the variance of the unbiased estimate converges to the Cramer-Rao lower bound. The computer program used to obtain the density and distribution functions of the standardized unbiased estimate, and the confidence intervals of the extreme mean for any data are included for ready application. An example is included to demonstrate the usefulness of extreme mean application.

  16. Habitable planets with high obliquities

    NASA Technical Reports Server (NTRS)

    Williams, D. M.; Kasting, J. F.

    1997-01-01

    Earth's obliquity would vary chaotically from 0 degrees to 85 degrees were it not for the presence of the Moon (J. Laskar, F. Joutel, and P. Robutel, 1993, Nature 361, 615-617). The Moon itself is thought to be an accident of accretion, formed by a glancing blow from a Mars-sized planetesimal. Hence, planets with similar moons and stable obliquities may be extremely rare. This has lead Laskar and colleagues to suggest that the number of Earth-like planets with high obliquities and temperate, life-supporting climates may be small. To test this proposition, we have used an energy-balance climate model to simulate Earth's climate at obliquities up to 90 degrees. We show that Earth's climate would become regionally severe in such circumstances, with large seasonal cycles and accompanying temperature extremes on middle- and high-latitude continents which might be damaging to many forms of life. The response of other, hypothetical, Earth-like planets to large obliquity fluctuations depends on their land-sea distribution and on their position within the habitable zone (HZ) around their star. Planets with several modest-sized continents or equatorial supercontinents are more climatically stable than those with polar supercontinents. Planets farther out in the HZ are less affected by high obliquities because their atmospheres should accumulate CO2 in response to the carbonate-silicate cycle. Dense, CO2-rich atmospheres transport heat very effectively and therefore limit the magnitude of both seasonal cycles and latitudinal temperature gradients. We conclude that a significant fraction of extrasolar Earth-like planets may still be habitable, even if they are subject to large obliquity fluctuations.

  17. Perfusion decellularization of a human limb: A novel platform for composite tissue engineering and reconstructive surgery.

    PubMed

    Gerli, Mattia Francesco Maria; Guyette, Jacques Paul; Evangelista-Leite, Daniele; Ghoshhajra, Brian Burns; Ott, Harald Christian

    2018-01-01

    Muscle and fasciocutaneous flaps taken from autologous donor sites are currently the most utilized approach for trauma repair, accounting annually for 4.5 million procedures in the US alone. However, the donor tissue size is limited and the complications related to these surgical techniques lead to morbidities, often involving the donor sites. Alternatively, recent reports indicated that extracellular matrix (ECM) scaffolds boost the regenerative potential of the injured site, as shown in a small cohort of volumetric muscle loss patients. Perfusion decellularization is a bioengineering technology that allows the generation of clinical-scale ECM scaffolds with preserved complex architecture and with an intact vascular template, from a variety of donor organs and tissues. We recently reported that this technology is amenable to generate full composite tissue scaffolds from rat and non-human primate limbs. Translating this platform to human extremities could substantially benefit soft tissue and volumetric muscle loss patients providing tissue- and species-specific grafts. In this proof-of-concept study, we show the successful generation a large-scale, acellular composite tissue scaffold from a full cadaveric human upper extremity. This construct retained its morphological architecture and perfusable vascular conduits. Histological and biochemical validation confirmed the successful removal of nuclear and cellular components, and highlighted the preservation of the native extracellular matrix components. Our results indicate that perfusion decellularization can be applied to produce human composite tissue acellular scaffolds. With its preserved structure and vascular template, these biocompatible constructs, could have significant advantages over the currently implanted matrices by means of nutrient distribution, size-scalability and immunological response.

  18. Are pushing and pulling work-related risk factors for upper extremity symptoms? A systematic review of observational studies.

    PubMed

    Hoozemans, M J M; Knelange, E B; Frings-Dresen, M H W; Veeger, H E J; Kuijer, P P F M

    2014-11-01

    Systematically review observational studies concerning the question whether workers that perform pushing/pulling activities have an increased risk for upper extremity symptoms as compared to workers that perform no pushing/pulling activities. A search in MEDLINE via PubMed and EMBASE was performed with work-related search terms combined with push/pushing/pull/pulling. Studies had to examine exposure to pushing/pulling in relation to upper extremity symptoms. Two authors performed the literature selection and assessment of the risk of bias in the studies independently. A best evidence synthesis was used to draw conclusions in terms of strong, moderate or conflicting/insufficient evidence. The search resulted in 4764 studies. Seven studies were included, with three of them of low risk of bias, in total including 8279 participants. A positive significant relationship with upper extremity symptoms was observed in all four prospective cohort studies with effect sizes varying between 1.5 and 4.9. Two out of the three remaining studies also reported a positive association with upper extremity symptoms. In addition, significant positive associations with neck/shoulder symptoms were found in two prospective cohort studies with effect sizes of 1.5 and 1.6, and with shoulder symptoms in one of two cross-sectional studies with an effect size of 2.1. There is strong evidence that pushing/pulling is related to upper extremity symptoms, specifically for shoulder symptoms. There is insufficient or conflicting evidence that pushing/pulling is related to (combinations of) upper arm, elbow, forearm, wrist or hand symptoms. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Neoadjuvant radiation in primary extremity liposarcoma: correlation of MRI features with histopathology.

    PubMed

    Wortman, Jeremy R; Tirumani, Sree Harsha; Tirumani, Harika; Shinagare, Atul B; Jagannathan, Jyothi P; Hornick, Jason L; Ramaiya, Nikhil H

    2016-05-01

    To evaluate MRI features of response of primary extremity liposarcoma (LPS) to neoadjuvant radiation therapy (RT) with histopathologic correlation. In this IRB-approved study including 125 patients with extremity LPS treated with neoadjuvant RT from 2000 to 2013, MRI of the primary tumour in 18 patients (5 pleomorphic LPS, 13 myxoid LPS) before and after RT were reviewed by two radiologists by consensus. Histopathology of the surgical specimens was reviewed by a pathologist with expertise in sarcomas. In the pleomorphic LPS cohort, 3/5 tumours increased in size; 3/5 decreased in enhancing component; and 3/5 increased in peritumoral oedema, intratumoral haemorrhage, and necrosis. In the myxoid LPS cohort, 12/13 tumours decreased in size, 8/13 decreased in enhancing component, and 5/13 increased in internal fat following RT. Histopathology showed ≥50% residual tumour in 1/5 pleomorphic LPS and 2/13 myxoid LPS. Hyalinization/necrosis of ≥75% was noted in 4/5 pleomorphic LPS and 11/13 myxoid LPS. Cytodifferentiation was noted in 1/5 pleomorphic and 9/13 myxoid LPS. While pleomorphic LPS showed an increase in size, peritumoral oedema, intratumoral haemorrhage, and necrosis on MRI following neoadjuvant RT, myxoid LPS showed a decrease in size and enhancement with an increase in internal fat. • Pleomorphic LPS commonly increase in size and necrosis on MRI following RT. • Myxoid LPS commonly decrease in size and enhancement on MRI following RT. • Myxoid LPS often increase in fatty component on MRI following RT.

  20. Compilation of 1986 annual reports of the Navy ELF (extremely low frequency) communications system ecological-monitoring program. Volume 2. Tabs D-G. Annual progress report, January-December 1986

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-07-01

    The U.S. Navy is conducting a long-term program to monitor for possible effects from the operation of its Extremely Low Frequency (ELF) Communications System to resident biota and their ecological relationships. This report documents progress of the following studies: Soil Amoeba; Soil and Litter Arthropoda and Earthworm Studies; Biological Studies on Pollinating insects: Megachilid Bees; and Small Vertebrates: Small Mammals and Nesting Birds.

Top