Sample records for extremity exercise training

  1. Training with a balance exercise assist robot is more effective than conventional training for frail older adults.

    PubMed

    Ozaki, Kenichi; Kondo, Izumi; Hirano, Satoshi; Kagaya, Hitoshi; Saitoh, Eiichi; Osawa, Aiko; Fujinori, Yoichi

    2017-11-01

    To examine the efficacy of postural strategy training using a balance exercise assist robot (BEAR) as compared with conventional balance training for frail older adults. The present study was designed as a cross-over trial without a washout term. A total of 27 community-dwelling frail or prefrail elderly residents (7 men, 20 women; age range 65-85 years) were selected from a volunteer sample. Two exercises were prepared for interventions: robotic exercise moving the center of gravity by the balance exercise assist robot system; and conventional balance training combining muscle-strengthening exercise, postural strategy training and applied motion exercise. Each exercise was carried out twice a week for 6 weeks. Participants were allocated randomly to either the robotic exercise first group or the conventional balance exercise first group. preferred and maximal gait speeds, tandem gait speeds, timed up-and-go test, functional reach test, functional base of support, center of pressure, and muscle strength of the lower extremities were assessed before and after completion of each exercise program. Robotic exercise achieved significant improvements for tandem gait speed (P = 0.012), functional reach test (P = 0.002), timed up-and-go test (P = 0.023) and muscle strength of the lower extremities (P = 0.001-0.030) compared with conventional exercise. In frail or prefrail older adults, robotic exercise was more effective for improving dynamic balance and lower extremity muscle strength than conventional exercise. These findings suggest that postural strategy training with the balance exercise assist robot is effective to improve the gait instability and muscle weakness often seen in frail older adults. Geriatr Gerontol Int 2017; 17: 1982-1990. © 2017 The Authors. Geriatrics & Gerontology International published by John Wiley & Sons Australia, Ltd on behalf of Japan Geriatrics Society.

  2. Effects of virtual reality-based bilateral upper-extremity training on brain activity in post-stroke patients.

    PubMed

    Lee, Su-Hyun; Kim, Yu-Mi; Lee, Byoung-Hee

    2015-07-01

    [Purpose] This study investigated the therapeutic effects of virtual reality-based bilateral upper-extremity training on brain activity in patients with stroke. [Subjects and Methods] Eighteen chronic stroke patients were divided into two groups: the virtual reality-based bilateral upper-extremity training group (n = 10) and the bilateral upper-limb training group (n = 8). The virtual reality-based bilateral upper-extremity training group performed bilateral upper-extremity exercises in a virtual reality environment, while the bilateral upper-limb training group performed only bilateral upper-extremity exercise. All training was conducted 30 minutes per day, three times per week for six weeks, followed by brain activity evaluation. [Results] Electroencephalography showed significant increases in concentration in the frontopolar 2 and frontal 4 areas, and significant increases in brain activity in the frontopolar 1 and frontal 3 areas in the virtual reality-based bilateral upper-extremity training group. [Conclusion] Virtual reality-based bilateral upper-extremity training can improve the brain activity of stroke patients. Thus, virtual reality-based bilateral upper-extremity training is feasible and beneficial for improving brain activation in stroke patients.

  3. Computer-assisted upper extremity training using interactive biking exercise (iBikE) platform.

    PubMed

    Jeong, In Cheol; Finkelstein, Joseph

    2012-01-01

    Upper extremity exercise training has been shown to improve clinical outcomes in different chronic health conditions. Arm-operated bicycles are frequently used to facilitate upper extremity training however effective use of these devices at patient homes is hampered by lack of remote connectivity with clinical rehabilitation team, inability to monitor exercise progress in real time using simple graphical representation, and absence of an alert system which would prevent exertion levels exceeding those approved by the clinical rehabilitation team. We developed an interactive biking exercise (iBikE) platform aimed at addressing these limitations. The platform uses a miniature wireless 3-axis accelerometer mounted on a patient wrist that transmits the cycling acceleration data to a laptop. The laptop screen presents an exercise dashboard to the patient in real time allowing easy graphical visualization of exercise progress and presentation of exercise parameters in relation to prescribed targets. The iBikE platform is programmed to alert the patient when exercise intensity exceeds the levels recommended by the patient care provider. The iBikE platform has been tested in 7 healthy volunteers (age range: 26-50 years) and shown to reliably reflect exercise progress and to generate alerts at pre-setup levels. Implementation of remote connectivity with patient rehabilitation team is warranted for future extension and evaluation efforts.

  4. Lower Extremity Muscle Thickness During 30-Day 6 degrees Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Ellis, S.; Kirby, L. C.; Greenleaf, J. E.

    1993-01-01

    Muscle thickness was measured in 19 Bed-Rested (BR) men (32-42 year) subjected to IsoTonic (ITE, cycle orgometer) and IsoKi- netic (IKE, torque orgometer) lower extremity exercise training, and NO Exercise (NOE) training. Thickness was measured with ultrasonography in anterior thigh-Rectus Femoris (RF) and Vastus Intermadius (VI), and combined posterior log-soleus, flexor ballucis longus, and tibialis posterior (S + FHL +TP) - muscles. Compared with ambulatory control values, thickness of the (S + FHL + TP) decreased by 90%-12% (p less than 0.05) In all three test groups. The (RF) thickness was unchanged in the two exercise groups, but decreased by 10% (p less than 0.05) in the NOE. The (VI) thickness was unchanged In the ITE group, but decreased by 12%-l6% (p less than 0.05) in the IKE and NOE groups. Thus, intensive, alternating, isotonic cycle ergometer exercise training is as effective as intensive, intermittent, isokinetic exercise training for maintaining thicknesses of rectus femoris and vastus lntermedius anterior thigh muscles, but not posterior log muscles, during prolonged BR deconditioning.

  5. Effects of the lower extremities muscle activation during muscular strength training on an unstable platform with magneto-rheological dampers

    NASA Astrophysics Data System (ADS)

    Piao, YongJun; Choi, YounJung; Kim, JungJa; Kwan, TaeKyu; Kim, Nam-Gyun

    2009-03-01

    Adequate postural balance depends on the spatial and temporal integration of vestibular, visual, and somatosensory information. Especially, the musculoskeletal function (range of joint, flexibility of spine, muscular strength) is essential in maintaining the postural balance. Muscular strength training methods include the use of commercialized devices and repeatable resistance training tools (rubber band, ball, etc). These training systems cost high price and can't control of intensity. Thus we suggest a new training system which can adjust training intensity and indicate the center of pressure of a subject while the training was passively controlled by applying controlled electric current to the Magneto- Rheological damper. And we performed experimental studies on the muscular activities in the lower extremities during maintaining, moving and pushing exercises on an unstable platform with Magneto rheological dampers. A subject executed the maintaining, moving and pushing exercises which were displayed in a monitor. The electromyographic signals of the eight muscles in lower extremities were recorded and analyzed in the time and frequency domain: the muscles of interest were rectus femoris, biceps femoris, tensor fasciae latae, vastus lateralis, vastus medialis, gastrocnemius, tibialis anterior, and soleus. The experimental results showed the difference of muscular activities at the four moving exercises and the nine maintaining exercises. The rate of the increase in the muscular activities was affected by the condition of the unstable platform with MR dampers for the maintaining and moving exercises. The experimental results suggested the choice of different maintaining and moving exercises could selectively train different muscles with varying intensity. Furthermore, the findings also suggested the training using this system can improve the ability of postural balance.

  6. Effects of exercise training using resistance bands on glycaemic control and strength in type 2 diabetes mellitus: a meta-analysis of randomised controlled trials.

    PubMed

    McGinley, Samantha K; Armstrong, Marni J; Boulé, Normand G; Sigal, Ronald J

    2015-04-01

    Resistance exercise using free weights or weight machines improves glycaemic control and strength in people with type 2 diabetes. Resistance band training is potentially less expensive and more accessible, but the effects of resistance band training on glycaemic control and strength in this population are not well understood. This paper aims to systematically review and meta-analyse the effect of resistance band training on haemoglobin A1c (HbA1c) and strength in adults with type 2 diabetes. Database searches were performed in August 2013 (MEDLINE, SPORTDiscus, EMBASE, and CINAHL). Reference lists of eligible articles were hand-searched for additional studies. Randomised trials evaluating the effects of resistance band training in adults with type 2 diabetes on HbA1c or objectively measured strength were selected. Baseline and post-intervention HbA1c and strength were extracted for the intervention and control groups. Details of the exercise interventions and methodological quality were collected. Seven trials met inclusion criteria. Post-intervention-weighted mean HbA1c was nonsignificantly lower in exercise groups compared to control groups [weighted mean difference (WMD) = -0.18 percentage points (-1.91 mmol/mol); P = 0.27]. Post-intervention strength was significantly higher in the exercise groups compared to the control groups in the lower extremities (WMD = 21.90 kg; P < 0.0001), but not in the upper extremities (WMD = 2.27 kg; P = 0.13) or handgrip (WMD = 1.98 kg; P = 0.46). All trials were small and had methodological limitations. Resistance band training did not significantly affect HbA1c, upper extremity, or handgrip strength but significantly increased the strength of the lower extremities in people with type 2 diabetes.

  7. Isokinetic strength and endurance during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bulbulian, R.; Bond, M.

    1994-01-01

    The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle ergometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.

  8. Isokinetic Strength and Endurance During 30-day 6 deg Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Bernauer, E. M.; Ertl, A. C.; Bond, M.; Bulbulian, R.

    1994-01-01

    The purpose of our study was to determine if an intensive, intermittent, isokinetic, lower extremity exercise training program would attenuate or eliminate the decrease of muscular strength and endurance during prolonged bed rest (BR). The 19 male subjects (36 +/- 1 yr, 178 +/- 2 cm, 76.5 +/- 1.7 kg) were allocated into a no exercise (NOE) training group (N = 5), an isotonic (lower extremity cycle orgometer) exercise (ITE) training group (N = 7), and an isokinetic (isokinetic knee flexion-extension) exercise (IKE) training group (N = 7). Peak knee (flexion and extension) and shoulder (abduction-adduction) functions were measured weekly in all groups with one 5-repetition set. After BR, average knee extension total work decreased by 16% with NOE, increased by 27% with IKE, and was unchanged with ITE. Average knee flexion total work and peak torque (strength) responses were unchanged in all groups. Force production increased by 20% with IKE and was unchanged with NOE and ITE. Shoulder total work was unchanged in all groups, while gross average peak torque increased by 27% with ITE and by 22% with IKE, and was unchanged with NOE. Thus, while ITE training can maintain some isokinetic functions during BR, maximal intermittent IKE training can increase other functions above pre-BR control levels.

  9. Preliminary trial of postural strategy training using a personal transport assistance robot for patients with central nervous system disorder.

    PubMed

    Ozaki, Kenichi; Kagaya, Hitoshi; Hirano, Satoshi; Kondo, Izumi; Tanabe, Shigeo; Itoh, Norihide; Saitoh, Eiichi; Fuwa, Toshio; Murakami, Ryo

    2013-01-01

    To examine the efficacy of postural strategy training using a personal transport assistance robot (PTAR) for patients with central nervous system disorders. Single-group intervention trial. Rehabilitation center at a university hospital. Outpatients (N=8; 5 men, 3 women; mean age, 50±13y) with a gait disturbance (mean time after onset, 34±29mo) as a result of central nervous system disorders were selected from a volunteer sample. Two methods of balance exercise using a PTAR were devised: exercise against perturbation and exercise moving the center of gravity. The exercises were performed twice a week for 4 weeks. Preferred and tandem gait speeds, Functional Reach Test, functional base of support, center of pressure (COP), muscle strength of lower extremities, and grip strength were assessed before and after the completion of the exercise program. After the exercise program, enjoyment of exercise was investigated via a visual analog scale questionnaire. After the program, statistically significant improvements were noted for tandem gait speeds (P=.009), Functional Reach Test (P=.003), functional base of support (P=.014), and lower extremity muscle strength (P<.001-.042). On the other hand, preferred gait speeds (P=.151), COP (P=.446-.714), and grip power (P=.584) did not change. Finally, subjects rated that this exercise was more enjoyable than traditional balance exercises. Dynamic balance and lower extremity muscle strength were significantly improved in response to postural strategy training with the PTAR. These results suggest that postural strategy training with the PTAR may contribute to fall prevention of patients with a balance disorder. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  10. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial.

    PubMed

    Voorn, Eric L; Koopman, Fieke S; Brehm, Merel A; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H L; Nollet, Frans

    2016-01-01

    To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. A process evaluation using data from an RCT. Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60-70% heart rate reserve). The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Netherlands National Trial Register NTR1371.

  11. Body temperature and cold sensation during and following exercise under temperate room conditions in cold-sensitive young trained females.

    PubMed

    Fujii, Naoto; Aoki-Murakami, Erii; Tsuji, Bun; Kenny, Glen P; Nagashima, Kei; Kondo, Narihiko; Nishiyasu, Takeshi

    2017-11-01

    We evaluated cold sensation at rest and in response to exercise-induced changes in core and skin temperatures in cold-sensitive exercise trained females. Fifty-eight trained young females were screened by a questionnaire, selecting cold-sensitive (Cold-sensitive, n  = 7) and non-cold-sensitive (Control, n  = 7) individuals. Participants rested in a room at 29.5°C for ~100 min after which ambient temperature was reduced to 23.5°C where they remained resting for 60 min. Participants then performed 30-min of moderate intensity cycling (50% peak oxygen uptake) followed by a 60-min recovery. Core and mean skin temperatures and cold sensation over the whole-body and extremities (fingers and toes) were assessed throughout. Resting core temperature was lower in the Cold-sensitive relative to Control group (36.4 ± 0.3 vs. 36.7 ± 0.2°C). Core temperature increased to similar levels at end-exercise (~37.2°C) and gradually returned to near preexercise rest levels at the end of recovery (>36.6°C). Whole-body cold sensation was greater in the Cold-sensitive relative to Control group during resting at a room temperature of 23.5°C only without a difference in mean skin temperature between groups. In contrast, cold sensation of the extremities was greater in the Cold-sensitive group prior to, during and following exercise albeit this was not paralleled by differences in mean extremity skin temperature. We show that young trained females who are sensitive to cold exhibit augmented whole-body cold sensation during rest under temperate ambient conditions. However, this response is diminished during and following exercise. In contrast, cold sensation of extremities is augmented during resting that persists during and following exercise. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  12. Core stability training: applications to sports conditioning programs.

    PubMed

    Willardson, Jeffrey M

    2007-08-01

    In recent years, fitness practitioners have increasingly recommended core stability exercises in sports conditioning programs. Greater core stability may benefit sports performance by providing a foundation for greater force production in the upper and lower extremities. Traditional resistance exercises have been modified to emphasize core stability. Such modifications have included performing exercises on unstable rather than stable surfaces, performing exercises while standing rather than seated, performing exercises with free weights rather than machines, and performing exercises unilaterally rather than bilaterally. Despite the popularity of core stability training, relatively little scientific research has been conducted to demonstrate the benefits for healthy athletes. Therefore, the purpose of this review was to critically examine core stability training and other issues related to this topic to determine useful applications for sports conditioning programs. Based on the current literature, prescription of core stability exercises should vary based on the phase of training and the health status of the athlete. During preseason and in-season mesocycles, free weight exercises performed while standing on a stable surface are recommended for increases in core strength and power. Free weight exercises performed in this manner are specific to the core stability requirements of sports-related skills due to moderate levels of instability and high levels of force production. Conversely, during postseason and off-season mesocycles, Swiss ball exercises involving isometric muscle actions, small loads, and long tension times are recommended for increases in core endurance. Furthermore, balance board and stability disc exercises, performed in conjunction with plyometric exercises, are recommended to improve proprioceptive and reactive capabilities, which may reduce the likelihood of lower extremity injuries.

  13. Maintenance of exercise training benefits is associated with adequate milk and dairy products intake in elderly hypertensive subjects following detraining.

    PubMed

    Moraes, Wilson Max Almeida Monteiro de; Santos, Neucilane Silveira Dos; Aguiar, Larissa Pereira; Sousa, Luís Gustavo Oliveira de

    2017-01-01

    To investigate whether maintenance of exercise training benefits is associated with adequate milk and dairy products intake in hypertensive elderly subjects after detraining. Twenty-eight elderly hypertensive patients with optimal clinical treatment underwent 16 weeks of multicomponent exercise training program followed by 6 weeks of detraining, and were classified according to milk and dairy products intake as low milk (<3 servings) and high milk (≥3 servings) groups. After exercise training, there was a significant reduction (p<0.001) in body weight, systolic, diastolic and mean blood pressure, an increase in lower and upper limb strength (chair-stand test and elbow flexor test) as well as in aerobic capacity (stationary gait test) and functional capacity (sit down, stand up, and move around the house) in both groups. However, in the Low Milk Intake Group significant changes were observed: body weight (+0.5%), systolic, diastolic and mean blood pressure (+0.9%,+1.4% and +1.1%, respectively), lower extremity strength (-7.0%), aerobic capacity (-3.9%) and functional capacity (+5.4) after detraining. These parameters showed no significant differences between post-detraining and post-training period in High Milk Intake Group. Maintenance of exercise training benefits related to pressure levels, lower extremity strength and aerobic capacity, is associated with adequate milk and dairy products intake in hypertensive elderly subjects following 6 weeks of detraining.

  14. Electromyography-controlled exoskeletal upper-limb-powered orthosis for exercise training after stroke.

    PubMed

    Stein, Joel; Narendran, Kailas; McBean, John; Krebs, Kathryn; Hughes, Richard

    2007-04-01

    Robot-assisted exercise shows promise as a means of providing exercise therapy for weakness that results from stroke or other neurological conditions. Exoskeletal or "wearable" robots can, in principle, provide therapeutic exercise and/or function as powered orthoses to help compensate for chronic weakness. We describe a novel electromyography (EMG)-controlled exoskeletal robotic brace for the elbow (the active joint brace) and the results of a pilot study conducted using this brace for exercise training in individuals with chronic hemiparesis after stroke. Eight stroke survivors with severe chronic hemiparesis were enrolled in this pilot study. One subject withdrew from the study because of scheduling conflicts. A second subject was unable to participate in the training protocol because of insufficient surface EMG activity to control the active joint brace. The six remaining subjects each underwent 18 hrs of exercise training using the device for a period of 6 wks. Outcome measures included the upper-extremity component of the Fugl-Meyer scale and the modified Ashworth scale of muscle hypertonicity. Analysis revealed that the mean upper-extremity component of the Fugl-Meyer scale increased from 15.5 (SD 3.88) to 19 (SD 3.95) (P = 0.04) at the conclusion of training for the six subjects who completed training. Combined (summated) modified Ashworth scale for the elbow flexors and extensors improved from 4.67 (+/-1.2 SD) to 2.33 (+/-0.653 SD) (P = 0.009) and improved for the entire upper limb as well. All subjects tolerated the device, and no complications occurred. EMG-controlled powered elbow orthoses can be successfully controlled by severely impaired hemiparetic stroke survivors. This technique shows promise as a new modality for assisted exercise training after stroke.

  15. Aerobic Exercise Training in Post-Polio Syndrome: Process Evaluation of a Randomized Controlled Trial

    PubMed Central

    Voorn, Eric L.; Koopman, Fieke S.; Brehm, Merel A.; Beelen, Anita; de Haan, Arnold; Gerrits, Karin H. L.; Nollet, Frans

    2016-01-01

    Objective To explore reasons for the lack of efficacy of a high intensity aerobic exercise program in post-polio syndrome (PPS) on cardiorespiratory fitness by evaluating adherence to the training program and effects on muscle function. Design A process evaluation using data from an RCT. Patients Forty-four severely fatigued individuals with PPS were randomized to exercise therapy (n = 22) or usual care (n = 22). Methods Participants in the exercise group were instructed to exercise 3 times weekly for 4 months on a bicycle ergometer (60–70% heart rate reserve). Results The attendance rate was high (median 89%). None of the participants trained within the target heart rate range during >75% of the designated time. Instead, participants exercised at lower intensities, though still around the anaerobic threshold (AT) most of the time. Muscle function did not improve in the exercise group. Conclusion Our results suggest that severely fatigued individuals with PPS cannot adhere to a high intensity aerobic exercise program on a cycle ergometer. Despite exercise intensities around the AT, lower extremity muscle function nor cardiorespiratory fitness improved. Improving the aerobic capacity in PPS is difficult through exercise primarily focusing on the lower extremities, and may require a more individualized approach, including the use of other large muscle groups instead. Trial Registration Netherlands National Trial Register NTR1371 PMID:27419388

  16. Effect of a lateral step-up exercise protocol on quadriceps and lower extremity performance.

    PubMed

    Worrell, T W; Borchert, B; Erner, K; Fritz, J; Leerar, P

    1993-12-01

    Closed kinetic chain exercises have been promoted as more functional and more appropriate than open kinetic chain exercises. Limited research exists demonstrating the effect of closed kinetic chain exercise on quadriceps and lower extremity performance. The purpose of this study was to determine the effect of a lateral step-up exercise protocol on isokinetic quadriceps peak torque and the following lower extremity activities: 1) leg press, 2) maximal step-up repetitions with body weight plus 25%, 3) hop for distance, and 4) 6-m timed hop. Twenty subjects participated in a 4-week training period, and 18 subjects served as controls. For the experimental group, a repeated measure ANOVA comparing pretest and posttest values revealed significant improvements in the leg press (p < or = .05), step-ups (p < or = .05), hop for distance (p < or = .05), and hop for time (p < or = .05) and no significant increase in isokinetic quadriceps peak torque (p > or = .05). Over the course of the training period, weight used for the step-up exercise increased (p < or = .05), repetitions decreased (p < or = .05), and step-up work did not change (p > or = .05). For the control group, no significant change (p > or = .05) occurred in any variable. The inability of the isokinetic dynamometer to detect increases in quadriceps performance is important because the isokinetic values are frequently used as criteria for return to functional activities. We conclude that closed kinetic chain testing and exercise provide additional means to assess and rehabilitate the lower extremity.

  17. The Effect of Shoulder Plyometric Training on Amortization Time and Upper-Extremity Kinematics.

    PubMed

    Swanik, Kathleen A; Thomas, Stephen J; Struminger, Aaron H; Bliven, Kellie C Huxel; Kelly, John D; Swanik, Charles B

    2016-12-01

    Plyometric training is credited with providing benefits in performance and dynamic restraint. However, limited prospective data exist quantifying kinematic adaptations such as amortization time, glenohumeral rotation, and scapulothoracic position, which may underlie the efficacy of plyometric training for upper-extremity rehabilitation or performance enhancement. To measure upper-extremity kinematics and plyometric phase times before and after an 8-wk upper-extremity strength- and plyometric-training program. Randomized pretest-posttest design. Research laboratory. 40 recreationally active men (plyometric group, age 20.43 ± 1.40 y, height 180.00 ± 8.80 cm, weight 73.07 ± 7.21 kg; strength group, age 21.95 ± 3.40 y, height 173.98 ± 11.91 cm, weight 74.79 ± 13.55 kg). Participants were randomly assigned to either a strength-training group or a strength- and plyometric-training group. Each participant performed the assigned training for 8 wk. Dynamic and static glenohumeral and scapular-rotation measurements were taken before and after the training programs. Dynamic measurement of scapular rotation and time spent in each plyometric phase (concentric, eccentric, and amortization) during a ball-toss exercise were recorded while the subjects were fitted with an electromagnetic tracking system. Static measures included scapular upward rotation at 3 different glenohumeral-abduction angles, glenohumeral internal rotation, and glenohumeral external rotation. Posttesting showed that both groups significantly decreased the time spent in the amortization, concentric, and eccentric phases of a ball-toss exercise (P < .01). Both groups also exhibited significantly decreased static external rotation and increased dynamic scapular upward rotation after the training period (P < .01). The only difference between the training protocols was that the plyometric-training group exhibited an increase in internal rotation that was not present in the strength-training group (P < .01). These findings support the use of both upper-extremity plyometrics and strength training for reducing commonly identified upper-extremity-injury risk factors and improving upper-extremity performance.

  18. Short-term effects of upper extremity circuit resistance training on muscle strength and functional independence in patients with paraplegia.

    PubMed

    Yildirim, Adem; Sürücü, Gülseren Dost; Karamercan, Ayşe; Gedik, Dilay Eken; Atci, Nermin; Dülgeroǧlu, Deniz; Özgirgin, Neşe

    2016-11-21

    A number of exercises to strengthen the upper extremities are recommended to increase functional independence and quality of life (QoL) in patients with paraplegia. Circuit resistance training (CRT) is a type of progressive resistive exercise performed repeatedly at fixed mechanical exercise stations. The aim of this study was to investigate the potential benefits of CRT for upper extremity muscle strength, functional independence, and QoL in patients with paraplegia. Twenty-six patients with paraplegia who were participating in a conventional rehabilitation program at a tertiary education and research hospital were enrolled in this study. The participants were randomly assigned to two groups. The exercise group participated in the CRT program, which consisted of repetitive exercises for the upper extremities performed at fixed mechanical stations 5 sessions per week for 6 weeks, in addition to conventional rehabilitation. Participants in the control group received only conventional rehabilitation over the same period. We compared the groups with respect to QoL, as well as isokinetic muscle test outcomes in the upper extremities, using the Functional Independence Measure (FIM) and Borg's scale. We observed significant increases in scores on the physical component of the FIM, Borg's scale, and QoL in both the exercise and control groups. Furthermore, the large majority of isokinetic values were significantly more improved in the exercise group compared to the control group. When post-treatment outcomes were compared between the groups, improvements in scores on the physical component of the FIM and in most isokinetic values were significantly greater in the exercise group. This study showed that CRT has positive effects on muscle strength in the upper extremities and the physical disability components of the FIM when added to conventional rehabilitation programs for paraplegic patients. However, we observed no significant improvement in QoL scores after adding CRT to a conventional treatment regime. Randomized trial (Level II).

  19. A research on the effects of practicing Baduanjin on the lower extremities by using sEMG

    NASA Astrophysics Data System (ADS)

    Jin, Li; Li, Ran; Chen, Jing; Tian, Ye

    2015-03-01

    The purpose of this study was to evaluate the effects of practicing Baduanjin exercises on the lower extremities of subjects, using electromyography analysis, and values of IEMG were calculated. [Subjects] Forty, healthy adults were randomly assigned as subjects to two groups: SG (Study Group, n=20) who received twelve weeks of Baduanjin training, and CG (Control Group, n=20), who received no training. [Methods] A sixteen-channel sEMG system (ME6000, Mega Electronics Ltd., Kuopio, Finland) was selected to record and measure activity changes in two muscles (vastus medialis and vastus lateralis). [Results] After twelve-week of Baduanjin training, the results of this study showed that the SG group had significant increases in values of IEMG in second, fifth and seventh section of the Baduanjin exercises. In second section, the values of IEMG had increased for 56.95% in vastus lateralis (p < 0.05) and for 40.04% in vastus medialis (p < 0.05). In fifth section, the values of IEMG had increased for 37.61% in vastus lateralis (p < 0.05) and for 33.83% in vastus medialis (p < 0.05). In seventh section, the increasement of IEMG values was 47.19% in vastus lateralis (p < 0.05) and 49.31% in vastus medialis (p < 0.05). [Conclusion] This study indicated that performing twelve-week of Baduanjin training can significantly increase the strength and the physical function of the lower extremities among healthy adults. With no adverse events from exercise were reported during the training procedure, the safety and low intensity of Baduanjin exercise was also proved, it could be widely taken as an appropriate no-risk treatment exercise for healthy adults.

  20. Knee-joint proprioception during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.

    1994-01-01

    To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.

  1. Knee-joint proprioception during 30-day 6 degrees head-down bed rest with isotonic and isokinetic exercise training.

    PubMed

    Bernauer, E M; Walby, W F; Ertl, A C; Dempster, P T; Bond, M; Greenleaf, J E

    1994-12-01

    To determine if daily isotonic exercise or isokinetic exercise training coupled with daily leg proprioceptive training, would influence leg proprioceptive tracking responses during bed rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a no-exercise (NOE) training control group (n = 5), and isotonic exercise (ITE, n = 7) and isokinetic exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min periods.d-1, 5 d.week-1. Only the IKE group performed proprioceptive training using a new isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pre-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p < 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9* +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.5%, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both isotonic exercise training (without additional proprioceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.

  2. Knee-Joint Proprioception During 30-Day 6 deg Head-Down Bed Rest with Isotonic and Isokinetic Exercise Training

    NASA Technical Reports Server (NTRS)

    Bernauer, E. M.; Walby, W. F.; Ertl, A. C.; Dempster, P. T.; Bond, M.; Greenleaf, J. E.

    1994-01-01

    To determine if daily isotonic exercise or isokinetic exercise training coupled with daily log proprioceptive training, would influence log proprioceptive tracking responses during Bed Rest (BR), 19 men (36 +/- SD 4 years, 178 +/- 7 cm, 76.8 +/- 7.8 kg) were allocated into a NO-Exercise (NOE) training control group (n = 5), and IsoTanic Exercise (ITE, n = 7) and IsoKinetic Exercise (IKE, n = 7) training groups. Exercise training was conducted during BR for two 30-min period / d, 5 d /week. Only the IKE group performed proprioceptive training using a now isokinetic procedure with each lower extremity for 2.5 min before and after the daily exercise training sessions; proprioceptive testing occurred weekly for all groups. There were no significant differences in proprioceptive tracking scores, expressed as a percentage of the perfect score of 100, in the pro-BR ambulatory control period between the three groups. Knee extension and flexion tracking responses were unchanged with NOE during BR, but were significantly greater (*p less than 0.05) at the end of BR in both exercise groups when compared with NOE responses (extension: NOE 80.7 +/- 0.7%, ITE 82.9 +/- 0.6%, IKE 86.5* +/- 0.7%; flexion: NOE 77.6 +/- 1.50, ITE 80.0 +/- 0.8% (NS), IKE 83.6* +/- 0.8%). Although proprioceptive tracking was unchanged during BR with NOE, both lsotonic exercise training (without additional propriaceptive training) and especially isokinetic exercise training when combined with daily proprioceptive training, significantly improved knee proprioceptive tracking responses after 30 d of BR.

  3. Characteristic analysis of the lower limb muscular strength training system applied with MR dampers.

    PubMed

    Yu, Chang Ho; Piao, Young Jun; Kim, Kyung; Kwon, Tae Kyu

    2014-01-01

    A new training system that can adjust training intensity and indicate the center pressure of a subject was proposed by applying controlled electric current to the Magneto-Rheological damper. The experimental studying on the muscular activities were performed in lower extremities during maintaining and moving exercises, which were processed on an unstable platform with Magneto rheological dampers and recorded in a monitor. The electromyography (EMG) signals of the eight muscles in lower extremities were recorded and analyzed in certain time and frequency domain. Muscles researched in this paper were rectus femoris (RF), biceps femoris (BF), tensor fasciae latae (TFL), vastuslateralis (VL), vastusmedialis (VM), gastrocnemius (Ga), tibialis anterior (TA), and soleus (So). Differences of muscular activities during four moving exercises were studied in our experimental results. The rate of the increment of the muscular activities was affected by the condition of the unstable platform with MR dampers, which suggested the difference of moving exercises could selectively train each muscle with varying intensities. Furthermore, these findings also proposed that this training system can improve the ability of postural balance.

  4. Effects of whole body vibration exercise on neuromuscular function for individuals with knee osteoarthritis: study protocol for a randomized controlled trial.

    PubMed

    Lai, Zhangqi; Wang, Xueqiang; Lee, Seullee; Hou, Xihe; Wang, Lin

    2017-09-20

    Knee osteoarthritis (KOA) is a leading cause of public disability. Neuromuscular function contributes to the development and/or progression of KOA. Whole body vibration (WBV) exercise improve the neuromuscular function of patients with neurological disorders and even that of older patients with limited exercise options. Therefore, WBV exercise may offer an efficient and alternative treatment for individuals with KOA. However, the effects of WBV training on the neuromuscular function of individuals with KOA remain unclear. Therefore, this study attempts to investigate the effect of a 12-week WBV exercise on the neuromuscular function of individuals with KOA. We will conduct a prospective, single-blind randomized controlled trial on 180 KOA patients. Participants will be randomly assigned to the WBV exercise, lower extremity resistance training, and health education groups. The WBV exercise group will participate in a 12-week WBV training. The lower extremity resistance training group will undergo a 12-week lower extremity resistance training of both lower limbs. The control group will receive health education for 12 weeks. After the intervention, the participants will be followed up for 3 months with no active intervention. Primary outcome measures will include anthropometric measurements, gait analysis during walking and stair climbing, muscle strength test of the knee and ankle, proprioception test of the knee and ankle, and neuromuscular response of the leg muscles. Secondary outcome measures will include self-reported pain and physical functional capacity, and physical performance measures. Furthermore, adverse events will be recorded and analyzed. If any participant withdraws from the trial, intention-to-treat analysis will be performed. Important features of this trial mainly include intervention setting, outcome measure selection, and study duration. This study is intended for estimating the effect of WBV intervention on neuromuscular control outcomes. Study results may provide evidence to support the beneficial effects of WBV exercise on the physical performance and neuromuscular control of individuals with KOA to fill the research gap on the efficacy of WBV. Chinese Clinical Trial Registry, ID: ChiCTR-IOR-16009234 . Registered on 21 September 2016.

  5. Effect of Virtual Reality-based Bilateral Upper Extremity Training on Upper Extremity Function after Stroke: A Randomized Controlled Clinical Trial.

    PubMed

    Lee, Suhyun; Kim, Yumi; Lee, Byoung-Hee

    2016-12-01

    In the present study, we aimed to investigate the effect of virtual reality-based bilateral upper extremity training (VRBT) on paretic upper limb function and muscle strength in patients with stroke. Eighteen stroke survivors were assigned to either the VRBT group (n = 10) or the bilateral upper limb training group (BT, n = 8). Patients in the VRBT group performed bilateral upper extremity exercises in a virtual reality environment, whereas those in the BT group performed conventional bilateral upper extremity exercises. All training was conducted for 30 minutes day -1 , 3 days a week, for a period of 6 weeks. Patients were assessed for upper extremity function and hand strength. Compared with the BT group, the VRBT group exhibited significant improvements in upper extremity function and muscle strength (p < 0.05) after the 6-week training programme. The Box and Block test results revealed that upper extremity function and elbow flexion in hand strength were significantly improved in terms of group, time and interaction effect of group by time. Furthermore, the VRBT group demonstrated significant improvements in upper extremity function, as measured by the Jebsen Hand Function Test and Grooved Pegboard test, and in the hand strength test, as measured by elbow extension, grip, palmar pinch, lateral pinch and tip pinch, in both time and the interaction effect of group by time. These results suggest that VRBT is a feasible and beneficial means of improving upper extremity function and muscle strength in individuals following stroke. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  6. Review and role of plyometrics and core rehabilitation in competitive sport.

    PubMed

    Hill, John; Leiszler, Matthew

    2011-01-01

    Core stability and plyometric training have become common elements of training programs in competitive athletes. Core stability allows stabilization of the spine and trunk of the body in order to allow maximal translation of force to the extremities. Plyometric training is more dynamic and involves explosive-strength training. Integration of these exercises theoretically begins with core stabilization using more static exercises, allowing safe and effective transition to plyometric exercises. Both core strengthening and plyometric training have demonstrated mixed but generally positive results on injury prevention rehabilitation of certain types of injuries. Improvement in performance compared to other types of exercise is unclear at this time. This article discusses the theory and strategy behind core stability and plyometric training; reviews the literature on injury prevention, rehabilitation of injury, and performance enhancement with these modalities; and discusses the evaluation and rehabilitation of core stability.

  7. Exercise in the healthy older adult.

    PubMed

    Karani, R; McLaughlin, M A; Cassel, C K

    2001-01-01

    Habitual exercise provides numerous health benefits to the older adult. While dynamic aerobic activities increase stamina and lung capacity, isometric or resistance training improves muscle strength and endurance. Long-term benefits of continued exercise include a decreased risk of death from heart disease, enhanced balance and mobility, a decreased risk of diabetes, and an improvement in depressive symptoms. While the hazards of exercise relate predominantly to extremes of intensity and duration, all older adults should consult with a physician before beginning a new activity program. A prescription for exercise should include both aerobic and resistance training components, and frequent follow-up to improve adherence is highly recommended. (c)2001 CVRR, Inc.

  8. Leg muscle volume during 30-day 6-degree head-down bed rest with isotonic and isokinetic exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Lee, P. L.; Ellis, S.; Selzer, R. H.; Ortendahl, D. A.

    1994-01-01

    Magnetic resonance imaging (MRI) was used to compare the effect of two modes of lower-extremity exercise training on the mass (volume) of posterior leg group (PLG) muscles (soleus, flexor hallucis longus, tibialis posterior, lateral and medial gastrocnemius, and flexor digitorum longus) on 19 men (ages 32-42 years) subjected to intense dynamic-isotonic (ITE, cycle ergometer, number of subjects (N) = 7), isokinetic (IKE, torque egrometer, N = 7), and no exercise (NOE, N = 5) training for 60 min/day during head-down bed rest (HDBR). Total volume of the PLG muscles decreased (p less than 0.05) similarly: ITE = 4.3 +/- SE 1.6%, IKE = 7.7 +/- 1.6%, and NOE = 6.3 +/- 0.8%; combined volume (N = 19) loss was 6.1 +/- 0.9%. Ranges of volume changes were 2.6% to -9.0% (ITE), -2.1% to -14.9% (IKE), and -3.4% to -8/1% (NOE). Correlation coefficients (r) of muscle volume versus thickness measured with ultrasonography were: ITE r + 0.79 (p less than 0.05), IKE r = 0.27 (not significant (NS)), and NOE r = 0.63 (NS). Leg-muscle volume and thickness were highly correlated (r = 0.79) when plasma volume was maintained during HDBR with ITE. Thus, neither intensive lower extremity ITE nor IKE training influence the normal non-exercised posterior leg muscle atrophy during HDBR. The relationship of muscle volume and thickness may depend on the mode of exercise training associated with the maintenance of plasma volume.

  9. Effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players.

    PubMed

    Ko, Kwang-Jun; Ha, Gi-Chul; Kim, Dong-Woo; Kang, Seol-Jung

    2017-10-01

    [Purpose] The study investigated the effects of lower extremity injuries on aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function in high school soccer players. [Subjects and Methods] The study assessed U High School soccer players (n=40) in S area, South Korea, divided into 2 groups: a lower extremity injury group (n=16) comprising those with knee and ankle injuries and a control group (n=24) without injury. Aerobic exercise capacity, anaerobic power, and knee isokinetic muscular function were compared and analyzed. [Results] Regarding the aerobic exercise capacity test, significant differences were observed in maximal oxygen uptake and anaerobic threshold between both groups. For the anaerobic power test, no significant difference was observed in peak power and average power between the groups; however, a significant difference in fatigue index was noted. Regarding the knee isokinetic muscular test, no significant difference was noted in knee flexion, extension, and flexion/extension ratio between both groups. [Conclusion] Lower extremity injury was associated with reduced aerobic exercise capacity and a higher fatigue index with respect to anaerobic exercise capacity. Therefore, it seems necessary to establish post-injury training programs that improve aerobic and anaerobic exercise capacity for soccer players who experience lower extremity injury.

  10. Effects of aquatic exercise training using water-resistance equipment in elderly.

    PubMed

    Katsura, Yoshihiro; Yoshikawa, Takahiro; Ueda, Shin-Ya; Usui, Tatsuya; Sotobayashi, Daisuke; Nakao, Hayato; Sakamoto, Hiroshi; Okumoto, Tamiko; Fujimoto, Shigeo

    2010-03-01

    To prevent falls in Japan, both gait and resistance training of the lower extremities are recommended. However, resistance training for the elderly induces muscle damage. Recently, aquatic exercise using water buoyancy and resistance have commonly been performed by the elderly. We have now produced new water-resistance equipment. The purpose of the present study was to evaluate the efficacy of aquatic exercise training using the new equipment for the elderly. Subjects were divided into two groups: a resistance group of 12 subjects (using water-resistance equipment) and a non-resistance group of eight subjects (without the equipment). The aquatic exercise training was 90 min, three times per week for 8 weeks, and mostly consisted of walking. All subjects underwent anthropometric measurements, physical performance testing, and profile of mood states (POMS). Significant improvements were observed in muscle strength in plantar flexion, and the timed up and go test (TUG) in both groups. Additionally, 10-m obstacle walking and 5-m maximum walking speed and length with eye-open were significantly improved in the resistance group. Also, a low negative correlation was found between the degree of change in TUG and POMS (tension and anxiety) scores in the resistance group. As it became easier to maintain posture, stand, and move, tension and anxiety in everyday life were alleviated with improvement of strength of the lower extremities and balance function. The present aquatic exercise training using water-resistance equipment may be used by the elderly to improve balance and walking ability, which are associated with the prevention of falls.

  11. Effects of off-axis elliptical training on reducing pain and improving knee function in individuals with patellofemoral pain

    PubMed Central

    Tsai, Liang-Ching; Lee, Song Joo; Yang, Aaron J.; Ren, Yupeng; Press, Joel M.; Zhang, Li-Qun

    2014-01-01

    Objective To examine whether an off-axis elliptical training program reduces pain and improves knee function in individuals with patellofemoral pain (PFP). Design Controlled laboratory study, pre-test-post-test. Setting University rehabilitation center. Participants Twelve adult subjects with PFP. Interventions Subjects with PFP completed an exercise program consisting of 18 sessions of lower extremity off-axis training using a custom-made elliptical trainer that allows frontal-plane sliding and transverse-plane pivoting of the footplates. Main Outcome Measures Changes in knee pain and function post-training and 6 weeks following training were evaluated using the Knee Injury and Osteoarthritis Outcome Score (KOOS) and International Knee Documentation Committee (IKDC) scores. Lower extremity off-axis control was assessed by pivoting and sliding instability, calculated as the root mean square (RMS) of the footplate pivoting angle and sliding distance during elliptical exercise. Subjects’ single-leg hop distance and proprioception in detecting lower extremity pivoting motion were also evaluated. Results Subjects reported significantly greater KOOS and IKDC scores (increased by 12–18 points) and hop distance (increased by 0.2 m) following training. A significant decrease in the pivoting and sliding RMS was also observed following training. Additionally, subjects with PFP demonstrated improved pivoting proprioception when tested under a minimum-weight-bearing position. Conclusions An off-axis elliptical training program was effective in enhancing lower extremity neuromuscular control on the frontal and transverse planes, reducing pain and improving knee function in persons with PFP. PMID:25591131

  12. Preventing lower extremity injury in elite orienteerers: study protocol for a randomised controlled trial

    PubMed Central

    Halvarsson, Bodil

    2018-01-01

    Background The high physical load associated with running through uneven terrain contributes toorienteerers being exposed to high injury risk, where the majority of injuries are located in the lower extremities. Specific training programmes have been effective at reducing injury risk in sports. Yet no trial has been conducted in elite orienteering. The aim of this study is to investigate the effectiveness of a specific training programme in preventing lower extremity injury in adult elite orienteerers. Study design Randomised controlled trial (RCT). Methods Seventy-two Swedish elite orienteerers, aged 18–40 years, are allocated to an intervention or control group. The intervention group performs four specific exercises, with three difficult levels intensified every second week over the first 4 weeks, targeting strength, flexibility and coordination of the lower extremity. The exercises are completed four times a week (10 min per session) in conjunction with normal training over 14 weeks. Injury data are collected every second week using a valid injury questionnaire distributed by text messages over 14 weeks. The primary outcome is number of substantial injuries in the lower extremity. The secondary outcomes are incidence of ankle sprains and the average substantial injury prevalence across 14 weeks. Discussion Due to high injury risk and lack of injury prevention trials in orienteering, an RCT investigating the effect of a specific exercise programme in preventing lower extremity injury is warranted. The results of this trial will be beneficial to orienteerers, clubs and federations, and increase our understanding on how lower extremity injuries can be prevented in a physically challenging sport. Trial registration number NCT03408925. PMID:29707231

  13. Virtual Exercise Training Software System

    NASA Technical Reports Server (NTRS)

    Vu, L.; Kim, H.; Benson, E.; Amonette, W. E.; Barrera, J.; Perera, J.; Rajulu, S.; Hanson, A.

    2018-01-01

    The purpose of this study was to develop and evaluate a virtual exercise training software system (VETSS) capable of providing real-time instruction and exercise feedback during exploration missions. A resistive exercise instructional system was developed using a Microsoft Kinect depth-camera device, which provides markerless 3-D whole-body motion capture at a small form factor and minimal setup effort. It was hypothesized that subjects using the newly developed instructional software tool would perform the deadlift exercise with more optimal kinematics and consistent technique than those without the instructional software. Following a comprehensive evaluation in the laboratory, the system was deployed for testing and refinement in the NASA Extreme Environment Mission Operations (NEEMO) analog.

  14. Effectiveness of an upper extremity exercise device integrated with computer gaming for aerobic training in adolescents with spinal cord dysfunction.

    PubMed

    Widman, Lana M; McDonald, Craig M; Abresch, R Ted

    2006-01-01

    To determine whether a new upper extremity exercise device integrated with a video game (GameCycle) requires sufficient metabolic demand and effort to induce an aerobic training effect and to explore the feasibility of using this system as an exercise modality in an exercise intervention. Pre-post intervention. University-based research facility. SUBJECT POPULATION: A referred sample of 8 adolescent subjects with spina bifida (4 girls, 15.5 +/- 0.6 years; 4 boys, 17.5 +/- 0.9 years) was recruited to participate in the project. All subjects had some level of mobility impairment that did not allow them to participate in mainstream sports available to their nondisabled peers. Five subjects used a wheelchair full time, one used a wheelchair occasionally, but walked with forearm crutches, and 2 were fully ambulatory, but had impaired gait. Peak oxygen uptake, maximum work output, aerobic endurance, peak heart rate, rating of perceived exertion, and user satisfaction. Six of the 8 subjects were able to reach a Vo2 of at least 50% of their Vo2 reserve while using the GameCycle. Seven of the 8 subjects reached a heart rate of at least 50% of their heart rate reserve. One subject did not reach either 50% of Vo2 reserve or 50% of heart rate reserve. Seven of the 8 subjects increased their maximum work capability after training with the GameCycle at least 3 times per week for 16 weeks. The data suggest that the GameCycle seems to be adequate as an exercise device to improve oxygen uptake and maximum work capability in adolescents with lower extremity disability caused by spinal cord dysfunction. The subjects in this study reported that the video game component was enjoyable and provided a motivation to exercise.

  15. Aquatic versus land-based exercises as early functional rehabilitation for elite athletes with acute lower extremity ligament injury: a pilot study.

    PubMed

    Kim, Eunkuk; Kim, Taegyu; Kang, Hyunyong; Lee, Jongha; Childers, Martin K

    2010-08-01

    To compare outcomes between aquatic and land-based exercises during early-phase recovery from acute lower extremity ligament injuries in elite athletes. A single-blinded, covariate adaptive randomized, controlled study. National training center for elite athletes. Twenty-two athletes with isolated grade I or II ligament injury in ankles or knees were randomized into either an aquatic or land-based exercise group. Early functional rehabilitation program (ranging, strengthening, proprioceptive training, and functional exercises) was performed in both groups. All exercises were identical except for the training environment. Data were collected at baseline and at 2 and 4 weeks using a visual analog scale (VAS) for pain; static stability (overall stability index [OSI] level 5 and 3); dynamic stability (TCT), and percentage single-limb support time (%SLST). Both groups showed decreases in VAS, OSI 5 and 3, and TCT, with a concomitant increase in %SLST at 2 and 4 weeks (P < .05). No significant differences were detected between the 2 groups in any of the outcome measures. However, the line graphs for VAS, OSI 3, TCT, and %SLST in the aquatic exercise group were steeper than those in the land-based exercise group indicating significant group by time interactions (P < .05). These data indicate that the aquatic exercise group improved more rapidly than the land-based exercise group. For elite athletes with acute ligament sprains in the lower limb, aquatic exercises may provide advantages over standard land-based therapy for rapid return to athletic activities. Consequently, aquatic exercise could be recommended for the initial phase of a rehabilitation program. Copyright © 2010 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.

  16. "Ballistic Six" Upper-Extremity Plyometric Training for the Pediatric Volleyball Players.

    PubMed

    Turgut, Elif; Cinar-Medeni, Ozge; Colakoglu, Filiz F; Baltaci, Gul

    2017-09-19

    The Ballistic Six exercise program includes commonly used upper-body exercises, and the program is recommended for overhead throwing athletes. The purpose of the current study was to investigate the effects of a 12-week the Ballistic Six upper-extremity plyometric training program on upper-body explosive power, endurance, and reaction time in pediatric overhead athletes. Twenty-eight female pediatric volleyball players participated in the study. The participants were randomly divided into 2 study groups: an intervention group (upper-extremity plyometric training in addition to the volleyball training; n = 14) and a control group (the volleyball training only; n = 14). All the participants were assessed before and after a 12-week training program for upper-body power, strength and endurance, and reaction time. Statistical comparison was performed using an analysis of variance test. Comparisons showed that after a 12-week training program, the Ballistic Six upper-body plyometric training program resulted in more improvements in an overhead medicine ball throwing distance and a push-up performance, as well as greater improvements in the reaction time in the nonthrowing arm when compared with control training. In addition, a 12-week training program was found to be effective in achieving improvements in the reaction time in the throwing arm for both groups similarly. Compared with regular training, upper-body plyometric training resulted in additional improvements in upper-body power and strength and endurance among pediatric volleyball players. The findings of the study provide a basis for developing training protocols for pediatric volleyball players.

  17. Exercise Dosing and Prescription-Playing It Safe: Dangers and Prescription.

    PubMed

    Wang, Lei; Ai, Dongmei; Zhang, Ning

    2017-01-01

    Cardiac rehabilitation is a comprehensive and multidisciplinary program, and exercise training is extremely crucial in the whole program. In the past decades, many researches have shown the beneficial effects of exercise for cardiovascular disease (CVD) is indisputable Nevertheless, only a well-designed exercise prescription may achieve the ideal benefits. In this chapter, we will have a discussion of what is exercise prescription and how to establish a scientific and appropriate exercise prescription for CVD patients depending on the current scientific evidence and recommendations.

  18. Effects of calisthenics and Pilates exercises on coordination and proprioception in adult women: a randomized controlled trial.

    PubMed

    Ozer Kaya, Derya; Duzgun, Irem; Baltaci, Gul; Karacan, Selma; Colakoglu, Filiz

    2012-08-01

    To assess and compare the effects of 6 mo of Pilates and calisthenics on multijoint coordination and proprioception of the lower limbs at the 3rd and 6th mo of training. Randomized, controlled, assessor-blinded, repeated-measures. University research laboratory. Healthy, sedentary, female participants age 25-50 y were recruited and randomly divided into 3 groups: a calisthenic exercise group (n = 34, mean age ± SD 40 ± 8 y, body-mass index [BMI] 31.04 ± 4.83 kg/m2), a Pilates exercise group (n = 32, mean age ± SD 37 ± 8 y, BMI 31.04 ± 4.83 kg/m2), and a control group (n = 41, mean age ± SD 41 ± 7 y, BMI 27.09 ± 4.77 kg/m2). The calisthenics and Pilates groups underwent related training programs for 6 mo, while the controls had no specific training. Coordination and proprioception of the lower extremities with concentric and eccentric performances in the closed kinetic chain assessed with the monitored rehab functional squat system at baseline and at the 3rd and 6th mo of training. For the within-group comparison, coordinative concentric and eccentric deviation values were significantly decreased for both dominant and nondominant lower limbs at pretraining and at the 3rd and 6th mo posttraining in the calisthenics group (P < .05). In contrast, there was no improvement in the Pilates group throughout the training. However, for comparisons between groups, the baseline values of coordinative concentric and eccentric deviations were different in the calisthenics group than in Pilates and the controls (P < .05). There were no differences in the proprioception values of either visible or nonvisible movement in any group throughout the training (P > .05). It seems that calisthenic exercises are more likely to improve coordination of the lower extremity after 3 and 6 mo of training than Pilates exercises. Calisthenic exercises may be useful for individuals who require improved coordination.

  19. Extreme Conditioning Programs: Potential Benefits and Potential Risks.

    PubMed

    Knapik, Joseph J

    2015-01-01

    CrossFit, Insanity, Gym Jones, and P90X are examples of extreme conditioning programs (ECPs). ECPs typically involve high-volume and high-intensity physical activities with short rest periods between movements and use of multiple joint exercises. Data on changes in fitness with ECPs are limited to CrossFit investigations that demonstrated improvements in muscle strength, muscular endurance, aerobic fitness, and body composition. However, no study has directly compared CrossFit or other ECPs to other more traditional forms of aerobic and resistance training within the same investigation. These direct comparisons are needed to more adequately evaluate the effectiveness of ECPs. Until these studies emerge, the comparisons with available literature suggest that improvements in CrossFit, in terms of muscular endurance (push-ups, sit-ups), strength, and aerobic capacity, appear to be similar to those seen in more traditional training programs. Investigations of injuries in ECPs are limited to two observational studies that suggest that the overall injury rate is similar to that seen in other exercise programs. Several cases of rhabdomyolysis and cervical carotid artery dissections have been reported during CrossFit training. The symptoms, diagnosis, and treatment of these are reviewed here. Until more data on ECPs emerge, physical training should be aligned with US Army doctrine. If ECPs are included in exercise programs, trainers should (1) have appropriate training certifications, (2) inspect exercise equipment regularly to assure safety, (3) introduce ECPs to new participants, (4) ensure medical clearance of Soldiers with special health problems before participation in ECPs, (4) tailor ECPs to the individual Soldier, (5) adjust rest periods to optimize recovery and reduce fatigue, (6) monitor Soldiers for signs of overtraining, rhabdomyolysis, and other problems, and (7) coordinate exercise programs with other unit training activities to eliminate redundant activities and minimize the risk of overuse injuries. 2015.

  20. Exercise prescription after fragility fracture in older adults: a scoping review

    PubMed Central

    Feehan, Lynne M.; Beck, Charlotte A.; Harris, Susan R.; MacIntyre, Donna L.; Li, Linda C.

    2017-01-01

    Purpose To identify and chart research literature on safety, efficacy or effectiveness of exercise prescription following fracture in older adults. Methods We conducted a systematic, research-user-informed, scoping review. The population of interest was adults aged ≥ 45 years with any fracture. ‘Exercise prescription’ included post-fracture therapeutic exercise, physical activity or rehabilitation interventions. Eligible designs included knowledge synthesis studies, primary interventional studies and observational studies. Trained reviewers independently evaluated citations for inclusion. Results A total of 9415 citations were reviewed with 134 citations (119 unique studies) identified: 13 knowledge syntheses, 95 randomized or controlled clinical trials, and 11 ‘other’ designs, representing 74 articles on lower extremity fractures, 34 on upper extremity, eight on vertebral, and three on mixed body region fractures. Exercise prescription characteristics were often missing or poorly described. Six general categories emerged describing exercise prescription characteristics: timing post-fracture, person prescribing, program design, functional focus, exercise script parameters and co-interventions. Upper extremity and ankle fracture studies focused on fracture healing or structural impairment outcomes, whereas hip fracture studies focused more on activity limitation outcomes. The variety of different outcome measures used made pooling or comparison of outcomes difficult. Conclusions There was insufficient information to identify evidence-informed parameters for safe and effective exercise prescription for older adults following fracture. Key gaps in the literature include limited numbers of studies on exercise prescription following vertebral fracture, poor delineation of effectiveness of different strategies for early post-fracture mobilization following upper extremity fracture, and inconsistent details of exercise prescription characteristics after lower extremity fracture. PMID:20967425

  1. Assessment of the ability of wheelchair subjects with spinal cord injury to perform a specific protocol of shoulder training: a pilot study.

    PubMed

    Merolla, Giovanni; Dellabiancia, Fabio; Filippi, Maria Vittoria; De Santis, Elisa; Alpi, Daniele; Magrini, Paola; Porcellini, Giuseppe

    2014-04-01

    a regular program of exercises in subjects with spinal cord injury (SCI) can contribute to reduce the risk of upper extremities injuries. in this prospective laboratory study we tested the hypothesis that a training machine developed for able-body users is suitable for a shoulder training protocol in 11 paraplegic subjects with SCI. Overall subjects were assessed with the SCIM III, CS, DASH and standard shoulder examination. We set a protocol of shoulder exercises performed with a training machine. Overall subjects were able to perform the protocol but 2 did not complete the exercises n° 6 and 7. The position of the wheelchair during each exercise was recorded. Wheelchair position/loading level were significantly correlated with the protocol n° 2, 3 and 5 as well as BMI/loading level for the exercises n° 5 and 9 and age/loading level for the exercise n° 7. Clinical scores were neither correlated with loading nor with anthropometric data. FROM THE ANALYSIS OF DATA COLLECTED IN THIS STUDY ARISED THAT: 1) the training machine needs some adjustments for paraplegic subjects, 2) the training protocol was appropriate except for the exercises needing a torso-rotation and 3) the template for wheelchair position may be a valid guide for an optimal paraplegic shoulder training.

  2. Elbow joint fatigue and bench-press training.

    PubMed

    Huang, Yen-Po; Chou, You-Li; Chen, Feng-Chun; Wang, Rong-Tyai; Huang, Ming-Jer; Chou, Paul Pei-Hsi

    2014-01-01

    Bench-press exercises are among the most common form of training exercise for the upper extremity because they yield a notable improvement in both muscle strength and muscle endurance. The literature contains various investigations into the effects of different bench-press positions on the degree of muscle activation. However, the effects of fatigue on the muscular performance and kinetics of the elbow joint are not understood fully. To investigate the effects of fatigue on the kinetics and myodynamic performance of the elbow joint in bench-press training. Controlled laboratory study. Motion research laboratory. A total of 18 physically healthy male students (age = 19.6 ± 0.8 years, height = 168.7 ± 5.5 cm, mass = 69.6 ± 8.6 kg) participated in the investigation. All participants were right-hand dominant, and none had a history of upper extremity injuries or disorders. Participants performed bench-press training until fatigued. Maximal possible number of repetitions, cycle time, myodynamic decline rate, elbow-joint force, and elbow-joint moment. We observed a difference in cycle time in the initial (2.1 ± 0.42 seconds) and fatigue (2.58 ± 0.46 seconds) stages of the bench-press exercise (P = .04). As the participants fatigued, we observed an increase in the medial-lateral force (P = .03) and internal-external moment (P ≤ .04) acting on the elbow joint. Moreover, a reduction in the elbow muscle strength was observed in the elbow extension-flexion (P ≤ .003) and forearm supination-pronation (P ≤ .001) conditions. The results suggest that performing bench-press exercises to the point of fatigue increases elbow-joint loading and may further increase the risk of injury. Therefore, when clinicians design bench-press exercise regimens for general athletic training, muscle strengthening, or physical rehabilitation, they should control carefully the maximal number of repetitions.

  3. Role of Nutritional Supplements Complementing Nutrient-Dense Diets: General Versus Sport/Exercise-Specific Dietary Guidelines Related to Energy Expenditure

    NASA Astrophysics Data System (ADS)

    Kleiner, Susan; Greenwood, Mike

    A nutrient-dense diet is a critical aspect in attaining optimal exercise training and athletic performance outcomes. Although including safe and effective nutritional supplements in the dietary design can be extremely helpful in promoting adequate caloric ingestion, they are not sufficient for promoting adequate caloric ingestion based on individualized caloric expenditure needs without the proper diet. Specifically, a strategic and scientifically based nutrient-dense dietary profile should be created by qualified professionals to meet the sport/exercise-specific energy demands of any individual involved in select training intensity protocols. Finally, ingesting the right quantity and quality of nutrient dense calories at precise windows of opportunity becomes vital in attaining desired training and/or competitive performance outcomes.

  4. Assessment of protein synthesis in highly aerobic canine species at the onset and during exercise training.

    PubMed

    Miller, Benjamin F; Ehrlicher, Sarah E; Drake, Joshua C; Peelor, Frederick F; Biela, Laurie M; Pratt-Phillips, Shannon; Davis, Michael; Hamilton, Karyn L

    2015-04-01

    Canis lupus familiaris, the domesticated dog, is capable of extreme endurance performance. The ability to perform sustained aerobic exercise is dependent on a well-developed mitochondrial reticulum. In this study we examined the cumulative muscle protein and DNA synthesis in groups of athletic dogs at the onset of an exercise training program and following a strenuous exercise training program. We hypothesized that both at the onset and during an exercise training program there would be greater mitochondrial protein synthesis rates compared with sedentary control with no difference in mixed or cytoplasmic protein synthesis rates. Protein synthetic rates of three protein fractions and DNA synthesis were determined over 1 wk using (2)H2O in competitive Alaskan Huskies and Labrador Retrievers trained for explosive device detection. Both groups of dogs had very high rates of skeletal muscle protein synthesis in the sedentary state [Alaskan Huskies: Mixed = 2.28 ± 0.12, cytoplasmic (Cyto) = 2.91 ± 0.10, and mitochondrial (Mito) = 2.62 ± 0.07; Labrador Retrievers: Mixed = 3.88 ± 0.37, Cyto = 3.85 ± 0.06, and Mito = 2.92 ± 0.20%/day]. Mitochondrial (Mito) protein synthesis rates did not increase at the onset of an exercise training program. Exercise-trained dogs maintained Mito protein synthesis during exercise training when mixed (Mixed) and cytosolic (Cyto) fractions decreased, and this coincided with a decrease in p-RpS6 but also a decrease in p-ACC signaling. Contrary to our hypothesis, canines did not have large increases in mitochondrial protein synthesis at the onset or during an exercise training program. However, dogs have a high rate of protein synthesis compared with humans that perhaps does not necessitate an extra increase in protein synthesis at the onset of aerobic exercise training. Copyright © 2015 the American Physiological Society.

  5. A comparison of whole-body vibration and resistance training on total work in the rotator cuff.

    PubMed

    Hand, Jason; Verscheure, Susan; Osternig, Louis

    2009-01-01

    Whole-body vibration machines are a relatively new technology being implemented in the athletic setting. Numerous authors have examined the proposed physiologic mechanisms of vibration therapy and performance outcomes. Changes have mainly been observed in the lower extremity after individual exercises, with minimal attention to the upper extremity and resistance training programs. To examine the effects of a novel vibration intervention directed at the upper extremity as a precursor to a supervised, multijoint dynamic resistance training program. Randomized controlled trial. National Collegiate Athletic Association Division IA institution. Thirteen female student-athletes were divided into the following 2 treatment groups: (1) whole-body vibration and resistance training or (2) resistance training only. Participants in the vibration and resistance training group used an experimental vibration protocol of 2 x 60 seconds at 4 mm and 50 Hz, in a modified push-up position, 3 times per week for 10 weeks, just before their supervised resistance training session. Isokinetic total work measurements of the rotator cuff were collected at baseline and at week 5 and week 10. No differences were found between the treatment groups (P > .05). However, rotator cuff output across time increased in both groups (P < .05). Although findings did not differ between the groups, the use of whole-body vibration as a precursor to multijoint exercises warrants further investigation because of the current lack of literature on the topic. Our results indicate that indirectly strengthening the rotator cuff using a multijoint dynamic resistance training program is possible.

  6. Effectiveness of an Upper Extremity Exercise Device Integrated With Computer Gaming for Aerobic Training in Adolescents With Spinal Cord Dysfunction

    PubMed Central

    Widman, Lana M; McDonald, Craig M; Abresch, R. Ted

    2006-01-01

    Background/Objective: To determine whether a new upper extremity exercise device integrated with a video game (GameCycle) requires sufficient metabolic demand and effort to induce an aerobic training effect and to explore the feasibility of using this system as an exercise modality in an exercise intervention. Design: Pre-post intervention. Setting: University-based research facility. Subject Population: A referred sample of 8 adolescent subjects with spina bifida (4 girls, 15.5 ± 0.6 years; 4 boys, 17.5 ± 0.9 years) was recruited to participate in the project. All subjects had some level of mobility impairment that did not allow them to participate in mainstream sports available to their nondisabled peers. Five subjects used a wheelchair full time, one used a wheelchair occasionally, but walked with forearm crutches, and 2 were fully ambulatory, but had impaired gait. Main Outcome Measures: Peak oxygen uptake, maximum work output, aerobic endurance, peak heart rate, rating of perceived exertion, and user satisfaction. Results: Six of the 8 subjects were able to reach a Vo2 of at least 50% of their Vo2 reserve while using the GameCycle. Seven of the 8 subjects reached a heart rate of at least 50% of their heart rate reserve. One subject did not reach either 50% of Vo2 reserve or 50% of heart rate reserve. Seven of the 8 subjects increased their maximum work capability after training with the GameCycle at least 3 times per week for 16 weeks. Conclusions: The data suggest that the GameCycle seems to be adequate as an exercise device to improve oxygen uptake and maximum work capability in adolescents with lower extremity disability caused by spinal cord dysfunction. The subjects in this study reported that the video game component was enjoyable and provided a motivation to exercise. PMID:17044386

  7. Evaluation of the Next-Gen Exercise Software Interface in the NEEMO Analog

    NASA Technical Reports Server (NTRS)

    Hanson, Andrea; Kalogera, Kent; Sandor, Aniko; Hardy, Marc; Frank, Andrew; English, Kirk; Williams, Thomas; Perera, Jeevan; Amonette, William

    2017-01-01

    NSBRI (National Space Biomedical Research Institute) funded research grant to develop the 'NextGen' exercise software for the NEEMO (NASA Extreme Environment Mission Operations) analog. Develop a software architecture to integrate instructional, motivational and socialization techniques into a common portal to enhance exercise countermeasures in remote environments. Increase user efficiency and satisfaction, and institute commonality across multiple exercise systems. Utilized GUI (Graphical User Interface) design principals focused on intuitive ease of use to minimize training time and realize early user efficiency. Project requirement to test the software in an analog environment. Top Level Project Aims: 1) Improve the usability of crew interface software to exercise CMS (Crew Management System) through common app-like interfaces. 2) Introduce virtual instructional motion training. 3) Use virtual environment to provide remote socialization with family and friends, improve exercise technique, adherence, motivation and ultimately performance outcomes.

  8. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training

    PubMed Central

    Schellenberg, Florian; Oberhofer, Katja; Taylor, William R.

    2015-01-01

    Background. Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. Methods. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Results. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. Conclusion. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines. PMID:26417378

  9. Review of Modelling Techniques for In Vivo Muscle Force Estimation in the Lower Extremities during Strength Training.

    PubMed

    Schellenberg, Florian; Oberhofer, Katja; Taylor, William R; Lorenzetti, Silvio

    2015-01-01

    Knowledge of the musculoskeletal loading conditions during strength training is essential for performance monitoring, injury prevention, rehabilitation, and training design. However, measuring muscle forces during exercise performance as a primary determinant of training efficacy and safety has remained challenging. In this paper we review existing computational techniques to determine muscle forces in the lower limbs during strength exercises in vivo and discuss their potential for uptake into sports training and rehabilitation. Muscle forces during exercise performance have almost exclusively been analysed using so-called forward dynamics simulations, inverse dynamics techniques, or alternative methods. Musculoskeletal models based on forward dynamics analyses have led to considerable new insights into muscular coordination, strength, and power during dynamic ballistic movement activities, resulting in, for example, improved techniques for optimal performance of the squat jump, while quasi-static inverse dynamics optimisation and EMG-driven modelling have helped to provide an understanding of low-speed exercises. The present review introduces the different computational techniques and outlines their advantages and disadvantages for the informed usage by nonexperts. With sufficient validation and widespread application, muscle force calculations during strength exercises in vivo are expected to provide biomechanically based evidence for clinicians and therapists to evaluate and improve training guidelines.

  10. Effects of functional stabilization training on pain, function, and lower extremity biomechanics in women with patellofemoral pain: a randomized clinical trial.

    PubMed

    Baldon, Rodrigo de Marche; Serrão, Fábio Viadanna; Scattone Silva, Rodrigo; Piva, Sara Regina

    2014-04-01

    Randomized clinical trial. To compare the effects of functional stabilization training (FST) versus standard training on knee pain and function, lower-limb and trunk kinematics, trunk muscle endurance, and eccentric hip and knee muscle strength in women with patellofemoral pain. A combination of hip- and knee-strengthening exercise may be more beneficial than quadriceps strengthening alone to improve pain and function in individuals with patellofemoral pain. However, there is limited evidence of the effectiveness of these exercise programs on the biomechanics of the lower extremity. Thirty-one women were randomized to either the FST group or standard-training group. Patients attended a baseline assessment session, followed by an 8-week intervention, and were reassessed at the end of the intervention and at 3 months after the intervention. Assessment measures were a 10-cm visual analog scale for pain, the Lower Extremity Functional Scale, and the single-leg triple-hop test. A global rating of change scale was used to measure perceived improvement. Kinematics were assessed during the single-leg squat. Outcome measures also included trunk endurance and eccentric hip and knee muscle strength assessment. The patients in the FST group had less pain at the 3-month follow-up and greater global improvement and physical function at the end of the intervention compared to those in the standard-training group. Lesser ipsilateral trunk inclination, pelvis contralateral depression, hip adduction, and knee abduction, along with greater pelvis anteversion and hip flexion movement excursions during the single-leg squat, were only observed in the FST group after the intervention. Only those in the FST group had greater eccentric hip abductor and knee flexor strength, as well as greater endurance of the anterior, posterior, and lateral trunk muscles, after training. An intervention program consisting of hip muscle strengthening and lower-limb and trunk movement control exercises was more beneficial in improving pain, physical function, kinematics, and muscle strength compared to a program of quadriceps-strengthening exercises alone.

  11. Using Emotional Intelligence in Training Crisis Managers: The Pandora Approach

    ERIC Educational Resources Information Center

    Mackinnon, Lachian; Bacon, Liz; Cortellessa, Gabriella; Cesta, Amedeo

    2013-01-01

    Multi-agency crisis management represents one of the most complex of real-world situations, requiring rapid negotiation and decision-making under extreme pressure. However, the training offered to strategic planners, called Gold Commanders, does not place them under any such pressure. It takes the form of paper-based, table-top exercises, or…

  12. Effects of resistance training on muscle strength, exercise capacity, and mobility in middle-aged and elderly patients with coronary artery disease: A meta-analysis.

    PubMed

    Yamamoto, Shuhei; Hotta, Kazuki; Ota, Erika; Mori, Rintaro; Matsunaga, Atsuhiko

    2016-08-01

    Resistance training (RT) is a core component of cardiac rehabilitation. We investigated the effects of RT on exercise capacity, muscle strength, and mobility in middle-aged and elderly patients with coronary artery disease (CAD). We searched for randomized controlled trials of RT versus usual care, or combined RT and aerobic training (AT) versus AT alone, and identified 440 trials in total from inception to January 2014. Participants who had myocardial infarction, coronary revascularization, angina pectoris or CAD were included in the analysis. Those who had heart failure, heart transplants with either cardiac resynchronization therapy or implantable defibrillators were excluded. Twenty-two trials totaling 1095 participants were analyzed. We performed random-effects meta-analysis. In middle-aged participants, RT increased lower extremity muscle strength [standardized mean difference (SMD): 0.65, 95% confidence interval (CI): 0.35 to 0.95], upper extremity muscle strength (SMD: 0.73, 95% CI: 0.48 to 0.99) and peak oxygen consumption (VO2) [weight mean difference (WMD): 0.92mL/kg/min, 95% CI: 0.12 to 1.72], but did not improve mobility compared with the control. In elderly participants, RT increased lower extremity muscle strength (SMD: 0.63, 95% CI: 0.05 to 1.21), upper extremity muscle strength (SMD: 1.18, 95% CI: 0.56 to 1.80), and peak VO2 (WMD: 0.70mL/kg/min, 95% CI: 0.03 to 1.37), and improved mobility (SMD: 0.61, 95% CI: 0.21 to 1.01) compared with the control. Resistance training could increase exercise capacity and muscle strength in middle-aged and elderly patients, and mobility in elderly patients, with CAD. Copyright © 2015 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  13. Elbow Joint Fatigue and Bench-Press Training

    PubMed Central

    Huang, Yen-Po; Chou, You-Li; Chen, Feng-Chun; Wang, Rong-Tyai; Huang, Ming-Jer; Chou, Paul Pei-Hsi

    2014-01-01

    Context: Bench-press exercises are among the most common form of training exercise for the upper extremity because they yield a notable improvement in both muscle strength and muscle endurance. The literature contains various investigations into the effects of different bench-press positions on the degree of muscle activation. However, the effects of fatigue on the muscular performance and kinetics of the elbow joint are not understood fully. Objective: To investigate the effects of fatigue on the kinetics and myodynamic performance of the elbow joint in bench-press training. Design: Controlled laboratory study. Setting: Motion research laboratory. Patients or Other Participants: A total of 18 physically healthy male students (age = 19.6 ± 0.8 years, height = 168.7 ± 5.5 cm, mass = 69.6 ± 8.6 kg) participated in the investigation. All participants were right-hand dominant, and none had a history of upper extremity injuries or disorders. Intervention(s): Participants performed bench-press training until fatigued. Main Outcome Measure(s): Maximal possible number of repetitions, cycle time, myodynamic decline rate, elbow-joint force, and elbow-joint moment. Results: We observed a difference in cycle time in the initial (2.1 ± 0.42 seconds) and fatigue (2.58 ± 0.46 seconds) stages of the bench-press exercise (P = .04). As the participants fatigued, we observed an increase in the medial-lateral force (P = .03) and internal-external moment (P ≤ .04) acting on the elbow joint. Moreover, a reduction in the elbow muscle strength was observed in the elbow extension-flexion (P ≤ .003) and forearm supination-pronation (P ≤ .001) conditions. Conclusions: The results suggest that performing bench-press exercises to the point of fatigue increases elbow-joint loading and may further increase the risk of injury. Therefore, when clinicians design bench-press exercise regimens for general athletic training, muscle strengthening, or physical rehabilitation, they should control carefully the maximal number of repetitions. PMID:24533529

  14. Selectively bred rat model system for low and high response to exercise training

    PubMed Central

    Pollott, Geoffrey E.; Britton, Steven L.

    2013-01-01

    We initiated a large-scale bidirectional selection experiment in a genetically heterogeneous rat population (N/NIH stock, n = 152) to develop lines of low response trainers (LRT) and high response trainers (HRT) as a contrasting animal model system. Maximal treadmill running distance [meters (m)] was tested before (DIST1) and after (DIST2) standardized aerobic treadmill training over an 8 wk period (3 exercise sessions per week). Response to training was calculated as the change in exercise capacity (ΔDIST = DIST2 − DIST1). A within-family selection and rotational breeding paradigm between 10 families was practiced for both selected lines. For the founder population, exercise training produced a 140 ± 15 m gain in exercise capacity with interindividual variation ranging from −339 to +627 m. After 15 generations of selection (n = 3,114 rats), HRT rats improved 223 ± 20 m as a result of exercise training while exercise capacity declined −65 ± 15 m in LRT rats given the same absolute training environment. The narrow-sense heritability (h2) for ΔDIST was 0.10 ± 0.02. The LRT and HRT lines did not differ significantly for body weight or intrinsic (i.e., DIST1) exercise capacity. Using pedigree records the inbreeding coefficient increased at a rate of 1.7% per generation for HRT and 1.6% per generation for LRT, ∼30% slower than expected from random mating. Animal models developed from heterogeneous stock and enriched via selection, as presented here, often generate extreme values for traits of interest and may prove more useful than current models for uncovering genetic underpinnings. PMID:23715262

  15. Role of fat metabolism in exercise.

    PubMed

    Askew, E W

    1984-07-01

    Fat and carbohydrate are the two major energy sources used during exercise. Either source can predominate, depending upon the duration and intensity of exercise, degree of prior physical conditioning, and the composition of the diet consumed in the days prior to a bout of exercise. Fatty acid oxidation can contribute 50 to 60 per cent of the energy expenditure during a bout of low intensity exercise of long duration. Strenuous submaximal exercise requiring 65 to 80 per cent of VO2 max will utilize less fat (10 to 45 per cent of the energy expended). Exercise training is accompanied by metabolic adaptations that occur in skeletal muscle and adipose tissue and that facilitate a greater delivery and oxidation of fatty acids during exercise. The trained state is characterized by an increased flux of fatty acids through smaller pools of adipose tissue energy. This is reflected by smaller, more metabolically active adipose cells in smaller adipose tissue depots. Peak blood concentrations of free fatty acids and ketone bodies are lower during and following exercise in trained individuals, probably due to increased capacity of the skeletal musculature to oxidize these energy sources. Trained individuals oxidize more fat and less carbohydrate than untrained subjects when performing submaximal work of the same absolute intensity. This increased capacity to utilize energy from fat conserves crucial muscle and liver glycogen stores and can contribute to increased endurance. Further benefits of the enhanced lipid metabolism accompanying chronic aerobic exercise training are decreased cardiac risk factors. Exercise training results in lower blood cholesterol and triglycerides and increased high density lipoprotein cholesterol. High-fat diets are not recommended because of their association with atherosclerotic heart disease. Recent evidence suggests that low-fat high-carbohydrate diets may increase blood triglycerides and reduce high density lipoproteins. This suggests that the chronic ingestion of diets that are extreme in their composition of either fat or carbohydrate should be approached with caution in health-conscious athletes, as well as in sedentary individuals.

  16. Female and Male Size, Strength and Performance: A Review of Current Literature

    DTIC Science & Technology

    1981-11-01

    8217- Study: Fortney, Suzanne M. and L.C. Senay Jr. Effect of Training and Heat Acclimation on Exercise Responses of Sedentary Females. J. Appl. Physiol...Sohar Age and Sex Difference in Response to Short Exposure to Extreme Dry Heat. J. A lied Physiol.: Respirat. Environ. Exercise Physiol. 4(1): I-4, 1978...environmental heat stress. Ci ted References: 24 references :*1 -137- Study: Wells, Christine L. and Steven M. Horvath Responses to Exercise in a Hot

  17. Evaluation of the Physiological Challenges in Extreme Environments: Implications for Enhanced Training, Operational Performance and Sex-Specific Responses

    DTIC Science & Technology

    2017-10-01

    analyses for the first years project. 1. The University of Montana approved the IRB for study 2, “ Effects of Environmental Temperature on Exercise...surrounding phase 2 of the study series. Study 2: Effects of environmental temperature on exercise response and adaptation. We have previously...HH after exercise appears to have a greater effect on muscle oxygen transport (SpO2 and heart rate) than NH. Furthermore, MSTN tends to be further

  18. Effects of Plyometric Training on Muscle-Activation Strategies and Performance in Female Athletes

    PubMed Central

    Swanik, Kathleen A.; Swanik, C. Buz; Straub, Stephen J.

    2004-01-01

    Objective: To evaluate the effects of plyometric training on muscle-activation strategies and performance of the lower extremity during jumping exercises. Subjects: Twenty healthy National Collegiate Athletic Association Division I female athletes. Design and Setting: A pretest and posttest control group design was used. Experimental subjects performed plyometric exercises 2 times per week for 6 weeks. Measurements: We used surface electromyography to assess preparatory and reactive activity of the vastus medialis and vastus lateralis, medial and lateral hamstrings, and hip abductors and adductors. Vertical jump height and sprint speed were assessed with the VERTEC and infrared timing devices, respectively. Results: Multivariate analyses of variance revealed significant (P < .05) increases in firing of adductor muscles during the preparatory phase, with significant interactions for area, mean, and peak. A Tukey honestly significant difference post hoc analysis revealed significant increases in preparatory adductor area, mean, and peak for experimental group. A significant (P = .037) increase in preparatory adductor-to-abductor muscle coactivation in the experimental group was identified, as well as a trend (P = .053) toward reactive quadriceps-to- hamstring muscle coactivation in the experimental group. Pearson correlation coefficients revealed significant between-groups adaptations in muscle activity patterns pretest to posttest. Although not significant, experimental and control subjects had average increases of 5.8% and 2.0% in vertical jump height, respectively. Conclusions: The increased preparatory adductor activity and abductor-to-adductor coactivation represent preprogrammed motor strategies learned during the plyometric training. These data strongly support the role of hip-musculature activation strategies for dynamic restraint and control of lower extremity alignment at ground contact. Plyometric exercises should be incorporated into the training regimens of female athletes and may reduce the risk of injury by enhancing functional joint stability in the lower extremity. PMID:15085208

  19. A Comparison of Whole-Body Vibration and Resistance Training on Total Work in the Rotator Cuff

    PubMed Central

    Hand, Jason; Verscheure, Susan; Osternig, Louis

    2009-01-01

    Abstract Context: Whole-body vibration machines are a relatively new technology being implemented in the athletic setting. Numerous authors have examined the proposed physiologic mechanisms of vibration therapy and performance outcomes. Changes have mainly been observed in the lower extremity after individual exercises, with minimal attention to the upper extremity and resistance training programs. Objective: To examine the effects of a novel vibration intervention directed at the upper extremity as a precursor to a supervised, multijoint dynamic resistance training program. Design: Randomized controlled trial. Setting: National Collegiate Athletic Association Division IA institution. Patients or Other Participants: Thirteen female student-athletes were divided into the following 2 treatment groups: (1) whole-body vibration and resistance training or (2) resistance training only. Intervention(s): Participants in the vibration and resistance training group used an experimental vibration protocol of 2 × 60 seconds at 4 mm and 50 Hz, in a modified push-up position, 3 times per week for 10 weeks, just before their supervised resistance training session. Main Outcome Measure(s): Isokinetic total work measurements of the rotator cuff were collected at baseline and at week 5 and week 10. Results: No differences were found between the treatment groups (P > .05). However, rotator cuff output across time increased in both groups (P < .05). Conclusions: Although findings did not differ between the groups, the use of whole-body vibration as a precursor to multijoint exercises warrants further investigation because of the current lack of literature on the topic. Our results indicate that indirectly strengthening the rotator cuff using a multijoint dynamic resistance training program is possible. PMID:19771284

  20. Effects of resistance exercise training and nandrolone decanoate on body composition and muscle function among patients who receive hemodialysis: A randomized, controlled trial.

    PubMed

    Johansen, Kirsten L; Painter, Patricia L; Sakkas, Giorgos K; Gordon, Patricia; Doyle, Julie; Shubert, Tiffany

    2006-08-01

    Patients who are on hemodialysis commonly experience muscle wasting and weakness, which have a negative effect on physical functioning and quality of life. The objective of this study was to determine whether anabolic steroid administration and resistance exercise training induce anabolic effects among patients who receive maintenance hemodialysis. A randomized 2 x 2 factorial trial of anabolic steroid administration and resistance exercise training was conducted in 79 patients who were receiving maintenance hemodialysis at University of California, San Francisco-affiliated dialysis units. Interventions included double-blinded weekly nandrolone decanoate (100 mg for women; 200 mg for men) or placebo injections and lower extremity resistance exercise training for 12 wk during hemodialysis sessions three times per week using ankle weights. Primary outcomes included change in lean body mass (LBM) measured by dual-energy x-ray absorptiometry, quadriceps muscle cross-sectional area measured by magnetic resonance imaging, and knee extensor muscle strength. Secondary outcomes included changes in physical performance, self-reported physical functioning, and physical activity. Sixty-eight patients completed the study. Patients who received nandrolone decanoate increased their LBM by 3.1 +/- 2.2 kg (P < 0.0001). Exercise did not result in a significant increase in LBM. Quadriceps muscle cross-sectional area increased in patients who were assigned to exercise (P = 0.01) and to nandrolone (P < 0.0001) in an additive manner. Patients who exercised increased their strength in a training-specific fashion, and exercise was associated with an improvement in self-reported physical functioning (P = 0.04 compared with nonexercising groups). Nandrolone decanoate and resistance exercise produced anabolic effects among patients who were on hemodialysis. Further studies are needed to determine whether these interventions improve survival.

  1. The 12-week progressive quadriceps resistance training improves muscle strength, exercise capacity and quality of life in patients with stable chronic heart failure.

    PubMed

    Jankowska, Ewa A; Wegrzynowska, Kinga; Superlak, Malgorzata; Nowakowska, Katarzyna; Lazorczyk, Malgorzata; Biel, Bartosz; Kustrzycka-Kratochwil, Dorota; Piotrowska, Katarzyna; Banasiak, Waldemar; Wozniewski, Marek; Ponikowski, Piotr

    2008-10-30

    Abnormalities in the skeletal musculature underlie exercise intolerance in chronic heart failure (CHF). We investigated, whether in CHF selective resistance training without accompanying aerobic regime favourably affects muscle strength, muscle mass and improves exercise capacity. Ten patients with stable ischaemic CHF in NYHA class III (9 men, age: 70+/-6 years [mean+/-SD], left ventricular ejection fraction: 30+/-5%, peak oxygen consumption [peak VO(2)]: 12.4+/-3.0 mL/min/kg) underwent the rehabilitation programme which consisted of a 12-week training phase (progressive resistance exercises restricted to the quadriceps muscles) followed by a 12-week detraining phase. All subjects completed a training phase of the programme with no adverse events. Resistance training markedly increased quadriceps strength (right leg: 260+/-34 vs. 352+/-28 N, left leg: 264+/-38 vs. 342+/-30 N, both p<0.01 - all comparisons: baseline vs. after training), but did not affect lean tissue mass of lower extremities (both p>0.2). It was accompanied by an improvement in clinical status (all NYHA III vs. all NYHA II, p<0.01), quality of life (Minnesota questionnaire: 44+/-15 vs. 33+/-18 points, p<0.05), exercise capacity assessed using a distance during 6-minute walk test (6MWT: 362+/-83 vs. 455+/-71 m, p<0.01), but not peak VO(2) (p>0.2). Plasma NT-proBNP remained unchanged during the training. At the end of detraining phase, only a partial improvement in quadriceps strength (p<0.05), a 6MWT distance (p<0.05) and NYHA class (p=0.07 vs. baseline) persisted. Applied resistance quadriceps training is safe in patients with CHF. It increases muscle strength, improves clinical status, exercise capacity, and quality of life.

  2. Effects of an Off-Axis Pivoting Elliptical Training Program on Gait Function in Persons With Spastic Cerebral Palsy: A Preliminary Study.

    PubMed

    Tsai, Liang-Ching; Ren, Yupeng; Gaebler-Spira, Deborah J; Revivo, Gadi A; Zhang, Li-Qun

    2017-07-01

    This preliminary study examined the effects of off-axis elliptical training on reducing transverse-plane gait deviations and improving gait function in 8 individuals with cerebral palsy (CP) (15.5 ± 4.1 years) who completed an training program using a custom-made elliptical trainer that allows transverse-plane pivoting of the footplates during exercise. Lower-extremity off-axis control during elliptical exercise was evaluated by quantifying the root-mean-square and maximal angular displacement of the footplate pivoting angle. Lower-extremity pivoting strength was assessed. Gait function and balance were evaluated using 10-m walk test, 6-minute-walk test, and Pediatric Balance Scale. Toe-in angles during gait were quantified. Participants with CP demonstrated a significant decrease in the pivoting angle (root mean square and maximal angular displacement; effect size, 1.00-2.00) and increase in the lower-extremity pivoting strength (effect size = 0.91-1.09) after training. Reduced 10-m walk test time (11.9 ± 3.7 seconds vs. 10.8 ± 3.0 seconds; P = 0.004; effect size = 1.46), increased Pediatric Balance Scale score (43.6 ± 12.9 vs. 45.6 ± 10.8; P = 0.042; effect size = 0.79), and decreased toe-in angle (3.7 ± 10.5 degrees vs. 0.7 ± 11.7 degrees; P = 0.011; effect size = 1.22) were observed after training. We present an intervention to challenge lower-extremity off-axis control during a weight-bearing and functional activity for individuals with CP. Our preliminary findings suggest that this intervention was effective in enhancing off-axis control, gait function, and balance and reducing in-toeing gait in persons with CP.

  3. Exercise prescription for overhead athletes with shoulder pathology: a systematic review with best evidence synthesis.

    PubMed

    Wright, Alexis A; Hegedus, Eric J; Tarara, Daniel T; Ray, Samantha C; Dischiavi, Steven L

    2018-02-01

    To produce a best evidence synthesis of exercise prescription used when treating shoulder pathology in the overhead athlete. A systematic review of exercises used in overhead athletes including case studies and clinical commentaries. MEDLINE, PubMed, SPORTDiscus and CINAHL from database inception through July 8, 2016. We examined data from randomised controlled trials and prospective cohort (level I-IV evidence) studies that addressed exercise intervention in the rehabilitation of the overhead athlete with shoulder pathology. Case studies and clinical commentaries (level V evidence) were examined to account for expert opinion-based research. Data were combined using best evidence synthesis and graded (A-F) recommendations (Centre for Evidence-Based Medicine). There were 33 unique exercises in six level I-IV studies that met our inclusion criteria. Most exercises were single-plane, upper extremity exercises performed below 90 o of elevation. There were 102 unique exercises in 33 level V studies that met our inclusion criteria. These exercises emphasised plyometrics, kinetic chain and sport-specific training. Overall, evidence for exercise interventions in overhead athletes with shoulder pathology is dominated by expert opinion (grade D). There is great variability between exercise approaches suggested by experts and those investigated in research studies and the overall level of evidence is low. The strongest available evidence (level B) supports the use of single-plane, open chain upper extremity exercises performed below 90° of elevation and closed chain upper extremity exercises. Clinical expert pieces support a more advanced, global treatment approach consistent with the complex, multidimensional nature of sport. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  4. Sleep and stress in man: an approach through exercise and exposure to extreme environments.

    PubMed

    Buguet, A; Cespuglio, R; Radomski, M W

    1998-05-01

    In this paper, the effects of exercise on human sleep (in temperate, cold, and hot climates) are compared with those of exposure to extreme environments (tropical, polar climates). Exercise has two effect: (i) when the exercise load is too heavy or if the subject is not trained to the exercise conditions, the hypothalamo-pituitary-adrenocortical axis (HPA) is strongly activated (somatic stress reaction), and a diachronic (delayed) decrease in total sleep time and slow-wave sleep (SWS) occurs with a synchronic (concomitant) sleep disruption (such as a decrease in REM sleep); (ii) a diachronic enhancement of SWS and (or) REM sleep occurs during moderate training and in athletes, with a moderate HPA activation (neurogenic stress reaction). Heat acclimatization (neurogenic stress response) results in a diachronic increase in SWS, contrary to acute heat exposure (somatic stress) which leads to a diachronic decrease in SWS. Nocturnal cold exposure (somatic and (or) neurogenic stress) provokes a synchronic decrease in REM sleep with an activation of stress hormones, which are reduced by previous acclimation (neurogenic pathway); SWS remains undisturbed in the cold, as it occurs at the beginning of the night before body cooling. In conclusion, when the brain can deal with the stressor (neurogenic stress), diachronic increases in SWS and (or) REM sleep occur. When these "central" mechanisms are overloaded, the classical "somatic" stress reaction occurs with diachronic and synchronic disruptions of the sleep structure.

  5. Interval Exercise Therapy for Type 2 Diabetes.

    PubMed

    Hamasaki, Hidetaka

    2018-01-01

    Regular exercise improves glycemic control and reduces cardiovascular risk and mortality in patients with type 2 diabetes. Continuous moderate- to high-intensity exercise has been recommended to manage type 2 diabetes; however, only approximately 30% of diabetic patients achieve the recommended levels of physical activity. The reasons for not engaging in regular exercise vary; however, one of the common reasons is lack of time. Recently, the effectiveness of shortduration interval exercise such as high-intensity interval training and interval walking has been observed. Thus, the author aimed to summarize the current knowledge and discuss recent literature regarding the effects of interval exercise therapy in type 2 diabetes. The author searched the English literature on interval training and type 2 diabetes using Pub- Med. A total of 8 studies met the criteria. Interval exercise is feasible and effective in obtaining glycemic control in patients with type 2 diabetes. It may also improve body composition, insulin sensitivity, aerobic capacity, and oxidative stress more effectively than continuous exercise. As a novel exercise therapy, interval training appears to be effective in managing type 2 diabetes. However, the safety and efficacy of this exercise modality in patients with progressed diabetic complications or a history of cardiovascular disease and in extremely older individuals remain unknown. Additionally, there is considerable heterogeneity in exercise interventions (intensity and duration) between clinical studies. Further studies are needed. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  6. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton.

    PubMed

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement.

  7. Closed-Loop Neuroprosthesis for Reach-to-Grasp Assistance: Combining Adaptive Multi-channel Neuromuscular Stimulation with a Multi-joint Arm Exoskeleton

    PubMed Central

    Grimm, Florian; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits cannot execute task-oriented rehabilitation exercises with their affected upper extremity. Advanced rehabilitation technology may support them in performing such reach-to-grasp movements. The challenge is, however, to provide assistance as needed, while maintaining the participants' commitment during the exercises. In this feasibility study, we introduced a closed-loop neuroprosthesis for reach-to-grasp assistance which combines adaptive multi-channel neuromuscular stimulation with a multi-joint arm exoskeleton. Eighteen severely affected chronic stroke patients were assisted by a gravity-compensating, seven-degree-of-freedom exoskeleton which was attached to the paretic arm for performing reach-to-grasp exercises resembling activities of daily living in a virtual environment. During the exercises, adaptive electrical stimulation was applied to seven different muscles of the upper extremity in a performance-dependent way to enhance the task-oriented movement trajectory. The stimulation intensity was individualized for each targeted muscle and remained subthreshold, i.e., induced no overt support. Closed-loop neuromuscular stimulation could be well integrated into the exoskeleton-based training, and increased the task-related range of motion (p = 0.0004) and movement velocity (p = 0.015), while preserving accuracy. The highest relative stimulation intensity was required to facilitate the grasping function. The facilitated range of motion correlated with the upper extremity Fugl-Meyer Assessment score of the patients (p = 0.028). Combining adaptive multi-channel neuromuscular stimulation with antigravity assistance amplifies the residual motor capabilities of severely affected stroke patients during rehabilitation exercises and may thus provide a customized training environment for patient-tailored support while preserving the participants' engagement. PMID:27445658

  8. Exercise at the Extremes: The Amount of Exercise to Reduce Cardiovascular Events.

    PubMed

    Eijsvogels, Thijs M H; Molossi, Silvana; Lee, Duck-Chul; Emery, Michael S; Thompson, Paul D

    2016-01-26

    Habitual physical activity and regular exercise training improve cardiovascular health and longevity. A physically active lifestyle is, therefore, a key aspect of primary and secondary prevention strategies. An appropriate volume and intensity are essential to maximally benefit from exercise interventions. This document summarizes available evidence on the relationship between the exercise volume and risk reductions in cardiovascular morbidity and mortality. Furthermore, the risks and benefits of moderate- versus high-intensity exercise interventions are compared. Findings are presented for the general population and cardiac patients eligible for cardiac rehabilitation. Finally, the controversy of excessive volumes of exercise in the athletic population is discussed. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Are There Deleterious Cardiac Effects of Acute and Chronic Endurance Exercise?

    PubMed Central

    Eijsvogels, Thijs M. H.; Fernandez, Antonio B.; Thompson, Paul D.

    2015-01-01

    Multiple epidemiological studies document that habitual physical activity reduces the risk of atherosclerotic cardiovascular disease (ASCVD), and most demonstrate progressively lower rates of ASCVD with progressively more physical activity. Few studies have included individuals performing high-intensity, lifelong endurance exercise, however, and recent reports suggest that prodigious amounts of exercise may increase markers for, and even the incidence of, cardiovascular disease. This review examines the evidence that extremes of endurance exercise may increase cardiovascular disease risk by reviewing the causes and incidence of exercise-related cardiac events, and the acute effects of exercise on cardiovascular function, the effect of exercise on cardiac biomarkers, including “myocardial” creatine kinase, cardiac troponins, and cardiac natriuretic peptides. This review also examines the effect of exercise on coronary atherosclerosis and calcification, the frequency of atrial fibrillation in aging athletes, and the possibility that exercise may be deleterious in individuals genetically predisposed to such cardiac abnormalities as long QT syndrome, right ventricular cardiomyopathy, and hypertrophic cardiomyopathy. This review is to our knowledge unique because it addresses all known potentially adverse cardiovascular effects of endurance exercise. The best evidence remains that physical activity and exercise training benefit the population, but it is possible that prolonged exercise and exercise training can adversely affect cardiac function in some individuals. This hypothesis warrants further examination. PMID:26607287

  10. Trained humans can exercise safely in extreme dry heat when drinking water ad libitum.

    PubMed

    Nolte, Heinrich W; Noakes, Timothy D; Van Vuuren, Bernard

    2011-09-01

    Guidelines to establish safe environmental exercise conditions are partly based on thermal prescriptive zones. Yet there are reports of self-paced human athletic performances in extreme heat. Eighteen participants undertook a 25-km route march in a dry bulb temperature reaching 44.3°C. The mean (± s) age of the participants was 26.0 ± 3.7 years. Their mean ad libitum water intake was 1264 ± 229 mL · h(-1). Predicted sweat rate was 1789 ± 267 mL · h(-1). Despite an average body mass loss of 2.73 ± 0.98 kg, plasma osmolality and serum sodium concentration did not change significantly during exercise. Total body water fell 1.47 kg during exercise. However, change in body mass did not accurately predict changes in total body water as a 1:1 ratio. There was a significant relationship (negative slope) between post-exercise serum sodium concentration and changes in both body mass and percent total body water. There was no relationship between percent body mass loss and peak exercise core temperature (39 ± 0.9°C) or exercise time. We conclude that participants maintained plasma osmolality, serum sodium concentration, and safe core temperatures by (1) adopting a pacing strategy, (2) high rates of ad libitum water intake, and (3) by a small reduction in total body water to maintain serum sodium concentration. Our findings support the hypothesis that humans are the mammals with the greatest capacity for exercising in extreme heat.

  11. USAF Flight Surgeon Survey: Aircrew Mental Health Referrals and Satisfaction with Local Mental Health Providers Response

    DTIC Science & Technology

    2008-05-01

    Autogenic training exercise; A treatment for airsickness in military pilots. International Journal of Aviation Psychology, 2005; 15(4): 395-412...flying during training , humanitarian, and operational missions can be extremely taxing. Flight surgeons often observe or hear of changes in the...health care is to ease and resolve the emotional or behavioral difficulties of an aviator while attempting to preserve a highly trained USAF asset

  12. Dietary Supplements for Health, Adaptation, and Recovery in Athletes.

    PubMed

    Rawson, Eric S; Miles, Mary P; Larson-Meyer, D Enette

    2018-03-01

    Some dietary supplements are recommended to athletes based on data that supports improved exercise performance. Other dietary supplements are not ergogenic per se, but may improve health, adaptation to exercise, or recovery from injury, and so could help athletes to train and/or compete more effectively. In this review, we describe several dietary supplements that may improve health, exercise adaptation, or recovery. Creatine monohydrate may improve recovery from and adaptation to intense training, recovery from periods of injury with extreme inactivity, cognitive processing, and reduce severity of or enhance recovery from mild traumatic brain injury (mTBI). Omega 3-fatty acid supplementation may also reduce severity of or enhance recovery from mTBI. Replenishment of vitamin D insufficiency or deficiency will likely improve some aspects of immune, bone, and muscle health. Probiotic supplementation can reduce the incidence, duration, and severity of upper respiratory tract infection, which may indirectly improve training or competitive performance. Preliminary data show that gelatin and/or collagen may improve connective tissue health. Some anti-inflammatory supplements, such as curcumin or tart cherry juice, may reduce inflammation and possibly delayed onset muscle soreness (DOMS). Beta-hydroxy beta-methylbutyrate (HMB) does not consistently increase strength and/or lean mass or reduce markers of muscle damage, but more research on recovery from injury that includes periods of extreme inactivity is needed. Several dietary supplements, including creatine monohydrate, omega 3-fatty acids, vitamin D, probiotics, gelatin, and curcumin/tart cherry juice could help athletes train and/or compete more effectively.

  13. Exercise-Induced Skeletal Muscle Damage.

    PubMed

    Evans, W J

    1987-01-01

    In brief: Delayed-onset muscle soreness is most likely caused by structural damage in skeletal muscle after eccentric exercise, in which muscles produce force while lengthening, as in running downhill. This damage may take as long as 12 weeks to repair. Therefore, athletes should allow plenty of time for recovery after events that cause extreme muscle soreness. Because prostaglandin E2 may be important in muscle repair, prostaglandin blockers, such as aspirin, may be useless or even detrimental in the treatment of delayed-onset muscle soreness. Eccentric exercise training may help prevent soreness.

  14. The effect of extremity strength training on fibromyalgia symptoms and disease impact in an existing multidisciplinary treatment program.

    PubMed

    Kas, Tamara; Colby, Megan; Case, Maureen; Vaughn, Dan

    2016-10-01

    The purpose of this study was to examine the effect of upper and lower body extremity strengthening exercise in patients with Fibromyalgia (FM) within an existing multidisciplinary treatment program. Patients between the ages of 18-65 with the medical diagnosis of FM. Comparative study design. The control and experimental group received the same multidisciplinary treatment except that the experimental group performed upper and lower extremity strengthening exercises. The Fibromyalgia Impact Questionnaire (FIQ) was administered at evaluation and discharge from the program in order to measure change in quality of life (QOL). Statistically significant changes in FIQ scores were found for both groups. The addition of extremity strengthening in the experimental group produced an average 4 points greater reduction in FIQ score, however, these results are not considered statistically significant. This study appears to validate the success of a multidisciplinary approach in treating patients with FM, with the possibility for further benefit with the addition of extremity strengthening. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Effects of high-intensity resistance training on strength, mobility, balance, and fatigue in individuals with multiple sclerosis: a randomized controlled trial.

    PubMed

    Hayes, Heather A; Gappmaier, Eduard; LaStayo, Paul C

    2011-03-01

    Resistance exercise via negative, eccentrically induced work (RENEW) has been shown to be associated with improvements in strength, mobility, and balance in multiple clinical populations. However, RENEW has not been reported for individuals with multiple sclerosis (MS). Nineteen individuals with MS (8 men, 11 women; age mean = 49 ± 11 years; Expanded Disability Status Scale [EDSS] mean = 5.2 ± 0.9) were randomized into either standard exercise (STAND) or standard exercise and RENEW training (RENEW) for 3×/week for 12 weeks. Outcome measures were lower extremity strength (hip/knee flexion and extension, ankle plantar and dorsiflexion, and the sum of these individual values [sum strength]); Timed Up and Go (TUG), 10-m walk, self-selected pace (TMWSS) and maximal-pace (TMWMP), stair ascent (S-A) and descent (S-D) and 6-Minute Walk Test (6MWT), Berg Balance Scale (BBS), Fatigue Severity Scale (FSS). No significant time effects or interactions were observed for strength, TUG, TMWSS, TMWMP, or 6MWT. However, the mean difference in sum strength in the RENEW group was 38.60 (representing a 15% increase) compared to the sum strength observed in the STAND group with a mean difference of 5.58 (a 2% increase). A significant interaction was observed for S-A, S-D, and BBS as the STAND group improved whereas the RENEW group did not improve in these measures. Contrary to results in other populations, the addition of eccentric training to standard exercises did not result in significantly greater lower extremity strength gains in this group of individuals with MS. Further this training was not as effective as standard exercise alone in improving balance or the ability to ascend and descend stairs. Following data collection, reassessment of required sample size indicates we were likely underpowered to detect strength differences between groups.

  16. Muscle hypertrophy and fast fiber type conversions in heavy resistance-trained women.

    PubMed

    Staron, R S; Malicky, E S; Leonardi, M J; Falkel, J E; Hagerman, F C; Dudley, G A

    1990-01-01

    Twenty-four women completed a 20-week heavy-resistance weight training program for the lower extremity. Workouts were twice a week and consisted of warm-up exercises followed by three sets each of full squats, vertical leg presses, leg extensions, and leg curls. All exercises were performed to failure using 6-8 RM (repetition maximum). Weight training caused a significant increase in maximal isotonic strength (1 RM) for each exercise. After training, there was a decrease in body fat percentage (p less than 0.05), and an increase in lean body mass (p less than 0.05) with no overall change in thigh girth. Biopsies were obtained before and after training from the superficial portion of the vastus lateralis muscle. Sections were prepared for histological and histochemical examination. Six fiber types (I, IC, IIC, IIA, IIAB, and IIB) were distinguished following routine myofibrillar adenosine triphosphatase histochemistry. Areas were determined for fiber types I, IIA, and IIAB + IIB. The heavy-resistance training resulted in significant hypertrophy of all three groups: I (15%), IIA (45%), and IIAB + IIB (57%). These data are similar to those in men and suggest considerable hypertrophy of all major fiber types is also possible in women if exercise intensity and duration are sufficient. In addition, the training resulted in a significant decrease in the percentage of IIB with a concomitant increase in IIA fibers, suggesting that strength training may lead to fiber conversions.

  17. Effects of high-intensity swimming training on the bones of ovariectomized rats

    PubMed Central

    Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji

    2016-01-01

    [Purpose] This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. [Methods] Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17β-estradiol (OE2) and 6) OVX exercise training and given 17β-estradiol (OEE). SE, OE and OEE rats were used extremely high-intensity swim exercise. The rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 5, the next 9, and the last 5 days, respectively. Between exercise bouts, a 10-s pause was allowed. HIT was originally designed as an exercise method; a method that very quickly induces an increase in the maximum oxygen intake (Tabata I et al., 1996). OEE and OE2 rats were subcutaneously injected ethanol with 25μg/kg body weight 17β-estradiol 3 times per week. [Results] Bone strength, bone mineral density and trabecular bone parameters were measured after a 8-weeks experimental period. Bone strength was significantly higher in the SE, OE, OE2 and OEE group compared with the O group. BV/TV was significant increase in the SE, OE groups compared with the O group. BMD showed no difference in the OE group compared with the O group. [Conclusion] This study demonstrate some beneficial effects of postmenopausal osteoporosis of high-intensity intermittent swimming training on bone structure and strength. PMID:27757386

  18. Effects of high-intensity swimming training on the bones of ovariectomized rats.

    PubMed

    Oh, Taewoong; Tanaka, Sakura; Naka, Tatsuki; Igawa, Shoji

    2016-09-01

    This study was performed to assess the effects of high-intensity intermittent swimming training(HIT) on bone in ovariectomized rats. Six-week-old female Sprague-Dawley rats were randomly assigned to either sham operation or bilateral ovariectomy. After surgery, they were divided into the following four groups: 1) sham-operated sedentary (S), 2) sham-operated exercise training (SE), 3) OVX sedentary (O), 4) OVX exercise training (OE) 5) OVX given 17β-estradiol (OE2) and 6) OVX exercise training and given 17β-estradiol (OEE). SE, OE and OEE rats were used extremely high-intensity swim exercise. The rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 5, the next 9, and the last 5 days, respectively. Between exercise bouts, a 10-s pause was allowed. HIT was originally designed as an exercise method; a method that very quickly induces an increase in the maximum oxygen intake (Tabata I et al., 1996). OEE and OE2 rats were subcutaneously injected ethanol with 25μg/kg body weight 17β-estradiol 3 times per week. Bone strength, bone mineral density and trabecular bone parameters were measured after a 8-weeks experimental period. Bone strength was significantly higher in the SE, OE, OE2 and OEE group compared with the O group. BV/TV was significant increase in the SE, OE groups compared with the O group. BMD showed no difference in the OE group compared with the O group. This study demonstrate some beneficial effects of postmenopausal osteoporosis of high-intensity intermittent swimming training on bone structure and strength.

  19. Striving for success or addiction? Exercise dependence among elite Australian athletes.

    PubMed

    McNamara, Justin; McCabe, Marita P

    2012-01-01

    Exercise dependence is a condition that involves a preoccupation and involvement with training and exercise, and has serious health and performance consequences for athletes. We examined the validity of a biopsychosocial model to explain the development and maintenance of exercise dependence among elite Australian athletes. Participants were 234 elite Australian athletes recruited from institutes and academies of sport. Thirty-four percent of elite athletes were classified as having exercise dependence based on high scores on the measure of exercise dependence. These athletes had a higher body mass index, and more extreme and maladaptive exercise beliefs compared to non-dependent athletes. They also reported higher pressure from coaches and teammates, and lower social support, compared to athletes who were not exercise dependent. These results support the utility of a biopsychosocial model of exercise dependence in understanding the aetiology of exercise dependence among elite athletes. Limitations of the study and future research directions are highlighted.

  20. The effect of arm support combined with rehabilitation games on upper-extremity function in subacute stroke: a randomized controlled trial.

    PubMed

    Prange, Gerdienke B; Kottink, Anke I R; Buurke, Jaap H; Eckhardt, Martine M E M; van Keulen-Rouweler, Bianca J; Ribbers, Gerard M; Rietman, Johan S

    2015-02-01

    Use of rehabilitation technology, such as (electro)mechanical devices or robotics, could partly relieve the increasing strain on stroke rehabilitation caused by an increasing prevalence of stroke. Arm support (AS) training showed improvement of unsupported arm function in chronic stroke. To examine the effect of weight-supported arm training combined with computerized exercises on arm function and capacity, compared with dose-matched conventional reach training in subacute stroke patients. In a single-blind, multicenter, randomized controlled trial, 70 subacute stroke patients received 6 weeks of training with either an AS device combined with computerized exercises or dose-matched conventional training (CON). Arm function was evaluated pretraining and posttraining by Fugl-Meyer assessment (FM), maximal reach distance, Stroke Upper Limb Capacity Scale (SULCS), and arm pain via Visual Analogue Scale, in addition to perceived motivation by Intrinsic Motivation Inventory posttraining. FM and SULCS scores and reach distance improved significantly within both groups. These improvements and experienced pain did not differ between groups. The AS group reported higher interest/enjoyment during training than the CON group. AS training with computerized exercises is as effective as conventional therapy dedicated to the arm to improve arm function and activity in subacute stroke rehabilitation, when applied at the same dose. © The Author(s) 2014.

  1. Core stability training for injury prevention.

    PubMed

    Huxel Bliven, Kellie C; Anderson, Barton E

    2013-11-01

    Enhancing core stability through exercise is common to musculoskeletal injury prevention programs. Definitive evidence demonstrating an association between core instability and injury is lacking; however, multifaceted prevention programs including core stabilization exercises appear to be effective at reducing lower extremity injury rates. PUBMED WAS SEARCHED FOR EPIDEMIOLOGIC, BIOMECHANIC, AND CLINICAL STUDIES OF CORE STABILITY FOR INJURY PREVENTION (KEYWORDS: "core OR trunk" AND "training OR prevention OR exercise OR rehabilitation" AND "risk OR prevalence") published between January 1980 and October 2012. Articles with relevance to core stability risk factors, assessment, and training were reviewed. Relevant sources from articles were also retrieved and reviewed. Stabilizer, mobilizer, and load transfer core muscles assist in understanding injury risk, assessing core muscle function, and developing injury prevention programs. Moderate evidence of alterations in core muscle recruitment and injury risk exists. Assessment tools to identify deficits in volitional muscle contraction, isometric muscle endurance, stabilization, and movement patterns are available. Exercise programs to improve core stability should focus on muscle activation, neuromuscular control, static stabilization, and dynamic stability. Core stabilization relies on instantaneous integration among passive, active, and neural control subsystems. Core muscles are often categorized functionally on the basis of stabilizing or mobilizing roles. Neuromuscular control is critical in coordinating this complex system for dynamic stabilization. Comprehensive assessment and training require a multifaceted approach to address core muscle strength, endurance, and recruitment requirements for functional demands associated with daily activities, exercise, and sport.

  2. Efficacy of neuromuscular electrical stimulation in patients with COPD followed in intensive care unit.

    PubMed

    Akar, Olcay; Günay, Ersin; Sarinc Ulasli, Sevinc; Ulasli, Alper Murat; Kacar, Emre; Sariaydin, Muzaffer; Solak, Özlem; Celik, Sefa; Ünlü, Mehmet

    2017-11-01

    Serious problems on muscle strength and functional status can be seen in bedridden-patients with chronic obstructive pulmonary diseases (COPD) receiving mechanical ventilation. We aimed to investigate the impact of active extremity mobilization and neuromuscular electrical stimulation (NMES) on weaning processes, discharge from hospital and inflammatory mediators in COPD patients receiving mechanical ventilation. Thirty conscious COPD patients (F/M:15/15) hospitalized in the intensive care unit (ICU) with diagnosis of respiratory failure were enrolled to this study. Patients were randomized into three groups, including 10 patients for each. Active extremity-exercise training and NMES were applied to Group-1, only NMES was applied to Group-2 and active extremity exercise training was applied to Group-3. Muscle strengths, mobilization duration and weaning situation were evaluated. Serum cytokine levels were evaluated. Lower extremity muscle-strength was significantly improved in Group-1 (from 3.00 to 5.00, P = 0.014) and 2 (from 4.00 to 5.00, P = 0.046). Upper extremity muscle strength was also significantly improved in all three groups (from 4.00 to 5.00 for all groups, P = 0.038, P = 0.046 and P = 0.034, respectively). Duration of mobilization and discharge from the ICU were similar among groups. There was a significant decrease in serum interleukin (IL)-6 level in Group-1 and in serum IL-8 level in Group-1 and Group-2 after rehabilitation. This study indicates that pulmonary rehabilitation can prevent loss of muscle strength in ICU. Nevertheless, we consider that further studies with larger populations are needed to examine the impact of NMES and/or active and passive muscle training in bedridden ICU patients who are mechanically ventilated. © 2015 John Wiley & Sons Ltd.

  3. [The 18F-FDG myocardial metabolic imaging in twenty seven pilots with regular aerobic training].

    PubMed

    Fang, Ting-Zheng; Zhu, Jia-Rui; Chuan, Ling; Zhao, Wen-Rui; Xu, Gen-Xiang; Yang, Min-Fu; He, Zuo-Xiang

    2009-02-01

    To evaluate the characteristics of myocardial (18)F-FDG imaging in pilots with regular aerobic exercise training. Twenty seven healthy male pilots with regular aerobic exercise training were included in this study. The subjects were divided into fasting (n = 17) or non-fasting group (n = 10). Fluorine-18-labeled deoxyglucose and Tc-99m-sestamibi dual-nuclide myocardial imaging were obtained at rest and at target heart rate during bicycle ergometer test. The exercise and rest myocardial perfusion imaging were analyzed for myocardial ischemia presence. The myocardial metabolism imaging was analyzed with the visual semi-quantitative analyses model of seventeen segments. The secondary-extreme heart rate (195-age) was achieved in all subjects. There was no myocardial ischemia in all perfusion imaging. In the visual qualitative analyses, four myocardial metabolism imaging failed in the fasting group while one failed in the non-fasting group (P > 0.05). In the visual semi-quantitative analyses, myocardial metabolism imaging scores at rest or exercise in all segments were similar between two groups (P > 0.05). In the fasting group, the myocardial metabolism imaging scores during exercise were significantly higher than those at rest in 6 segments (P < 0.05). In the non-fasting group, the scores of 3 exercise myocardial metabolism imaging were significantly higher than those at rest (P < 0.05). Satisfactory high-quality myocardial metabolism imaging could be obtained at fasting and exercise situations in subjects with regular aerobic exercise.

  4. MDS-Multifunctional Dynamometer for Application in Space

    NASA Astrophysics Data System (ADS)

    Adamcik, G.; Barta, N.; Talla, R.; Angeli, T.; Kozlovskaya, I. B.; Grigoriev, A. I.; Tschan, H.; Bachl, N.

    2008-06-01

    The project MDS (Multifunctional Dynamometer for Application in Space) is an international collaboration of the University of Vienna (Faculty of Sport Science, Department of Sport and Exercise Physiology), the Russian Academy of Sciences (Institute of Biomedical Problems) and the Technical University of Vienna (Institute for Engineering Design and Logistics Engineering) with the aim to develop a training and diagnostic device that counteracts the muscle and bone loss during long term space flights. Due to the scientific results of the last years research in space medicine, it is well known, that the muscles and bones of the lower extremities and the trunk are most affected by the atrophy. Based on this knowledge a various number of resistance exercises can be done in order to train the muscles of these parts of the body and to increase the efficiency of the training by intra- and intermuscular coordination. The resisting power for the training is provided by an electric motor, thereby force, position and speed of the training can be well-regulated for different training modes.

  5. Effects of trunk stabilization exercise on the local muscle activity and balance ability of normal subjects.

    PubMed

    Cha, Hyun Gyu

    2018-06-01

    [Purpose] The purpose of this study was to investigate the effects of trunk stabilization exercise on the transvers abdominalis (TA) and internal oblique (IO) muscle activity and balance ability of normal subjects. [Subjects and Methods] Forty healthy male subjects without orthopedic history of the lower extremity were selected for the present study. The experimental group received a hollowing exercise, curl-up and bridging exercise. The control group received a pelvic tilting exercise in the sitting position for the same period of time. [Results] Significant differences in the post-training gains in Balance index, TA, IO were observed between the experimental group and the control group. [Conclusion] The trunk stabilization exercise improved the balance ability and increased the activity of the TA and IO muscle.

  6. Extreme Conditioning Program Induced Acute Hypotensive Effects are Independent of the Exercise Session Intensity

    PubMed Central

    TIBANA, RAMIRES ALSAMIR; ALMEIDA, LEONARDO MESQUISTA; DE SOUSA NETO, IVO VIEIRA; DE SOUSA, NUNO MANUEL FRADE; DE ALMEIDA, JEESER ALVES; DE SALLES, BELMIRO FREITAS; BENTES, CLAUDIO MELIBEU; PRESTES, JONATO; COLLIER, SCOTT R.; VOLTARELLI, FABRICIO AZEVEDO

    2017-01-01

    The aim of the study was to determine the acute systolic (SBP) and diastolic (DBP) blood pressure, rating of perceived exertion (RPE) and heart rate (HR) responses following two intense training sessions (24 hours apart). Nine male extreme conditioning program (ECP) practitioners with more than 6 months of experience (age 26.7 ± 6.6 years; body mass 78.8 ± 13.2 kg; body fat 13.5 ± 6.2 %) completed two experimental ECP sessions. Cardiovascular variables were measured before, immediately after and every 15 min during a 45 min recovery following each experimental session. Compared with pre-exercise data, our results showed a SBP decrease at 30 min post exercise session 1 (P≤0.05) and at 45 min following exercise session 2. DBP decreased (P≤0.05) at 15 min and 30 min following exercise session 1 and at 30 min after the exercise session 2, respectively. HR remained significantly higher (P≤0.05) 45 min following the first and second exercise session compared with pre-exercise values. Exercise session 1 induced a higher increase in HR (86 ± 11% of HRmax versus 82 ± 12% of HRmax, p = 0.01) and RPE (8.8 ± 1.2 versus 8.0 ± 1.2, p = 0.02) when compared to exercise session 2. In conclusion, post-exercise hypotension occurs following strenuous exercise sessions, regardless of the session design, which may have an important role in the prevention of cardiovascular diseases. PMID:29399246

  7. Summary of comprehensive systematic review: Rehabilitation in multiple sclerosis

    PubMed Central

    Haselkorn, Jodie K.; Hughes, Christina; Rae-Grant, Alex; Henson, Lily Jung; Bever, Christopher T.; Lo, Albert C.; Brown, Theodore R.; Kraft, George H.; Getchius, Thomas; Gronseth, Gary; Armstrong, Melissa J.; Narayanaswami, Pushpa

    2015-01-01

    Objective: To systematically review the evidence regarding rehabilitation treatments in multiple sclerosis (MS). Methods: We systematically searched the literature (1970–2013) and classified articles using 2004 American Academy of Neurology criteria. Results: This systematic review highlights the paucity of well-designed studies, which are needed to evaluate the available MS rehabilitative therapies. Weekly home/outpatient physical therapy (8 weeks) probably is effective for improving balance, disability, and gait (MS type unspecified, participants able to walk ≥5 meters) but probably is ineffective for improving upper extremity dexterity (1 Class I). Inpatient exercises (3 weeks) followed by home exercises (15 weeks) possibly are effective for improving disability (relapsing-remitting MS [RRMS], primary progressive MS [PPMS], secondary progressive MS [SPMS], Expanded Disability Status Scale [EDSS] 3.0–6.5) (1 Class II). Six weeks' worth of comprehensive multidisciplinary outpatient rehabilitation possibly is effective for improving disability/function (PPMS, SPMS, EDSS 4.0–8.0) (1 Class II). Motor and sensory balance training or motor balance training (3 weeks) possibly is effective for improving static and dynamic balance, and motor balance training (3 weeks) possibly is effective for improving static balance (RRMS, SPMS, PPMS) (1 Class II). Breathing-enhanced upper extremity exercises (6 weeks) possibly are effective for improving timed gait and forced expiratory volume in 1 second (RRMS, SPMS, PPMS, mean EDSS 4.5); this change is of unclear clinical significance. This technique possibly is ineffective for improving disability (1 Class II). Inspiratory muscle training (10 weeks) possibly improves maximal inspiratory pressure (RRMS, SPMS, PPMS, EDSS 2–6.5) (1 Class II). PMID:26598432

  8. High-Speed Cycling Intervention Improves Rate-Dependent Mobility in Older Adults

    PubMed Central

    Bellumori, Maria; Uygur, Mehmet; Knight, Christopher A.

    2016-01-01

    PURPOSE The aim was to determine the feasibility of a six-week speed-based exercise program that could be used to initiate new exercise behaviors and improve rapid movement in older adults approaching frailty. METHODS The intervention group included 14 older adults (3 males, 11 females, mean (SD) age: 70 (7.6) years, height: 1.6 (.11) m, mass: 76.8 (12.0) kg, BMI: 27.7(4.7)). The control group included 12 older adults (6 males, 6 females, mean (SD) age: 69.2 (6.9) years, height: 1.7 (.09) m, mass: 78.2 (10.9) kg, BMI: 25.3 (2.7)). Subjects included active older adults, including regular exercisers, but none were engaged in sports or exercises with an emphasis on speed (e.g. cycling spin classes or tennis). Stationary recumbent cycling was selected to minimize fall risk and low pedaling resistance reduced musculoskeletal and cardiovascular load. Two weekly 30-minute exercise sessions consisted of interval training in which subjects pedaled at preferred cadence and performed ten 20-s fast cadence intervals separated by 40-s of active recovery at preferred cadence. RESULTS Significant Group by Time interactions (p<.05) supported a 2-s improvement in the timed up and go test and a 34% improvement in rapid isometric knee extension contractions in the exercise group but not in controls. Central neural adaptations are suggested because this lower extremity exercise program also elicited significant improvements in the untrained upper extremities of the exercise group (elbow extension RFD-SF and 9-Hole Peg Test, p<.05). CONCLUSION These results demonstrate that a relatively low dose of speed-based exercise can improve neuromuscular function and tests of mobility in older adults. Such a program serves as a sensible precursor to subsequent, more vigorous training or as an adjunct to a program where a velocity emphasis is lacking. PMID:27501360

  9. Myocardial blood flow and its transit time, oxygen utilization, and efficiency of highly endurance-trained human heart.

    PubMed

    Heinonen, Ilkka; Kudomi, Nobuyuki; Kemppainen, Jukka; Kiviniemi, Antti; Noponen, Tommi; Luotolahti, Matti; Luoto, Pauliina; Oikonen, Vesa; Sipilä, Hannu T; Kopra, Jaakko; Mononen, Ilkka; Duncker, Dirk J; Knuuti, Juhani; Kalliokoski, Kari K

    2014-07-01

    Highly endurance-trained athlete's heart represents the most extreme form of cardiac adaptation to physical stress, but its circulatory alterations remain obscure. In the present study, myocardial blood flow (MBF), blood mean transit time (MTT), oxygen extraction fraction (OEF) and consumption (MVO2), and efficiency of cardiac work were quantified in highly trained male endurance athletes and control subjects at rest and during supine cycling exercise using [(15)O]-labeled radiotracers and positron emission tomography. Heart rate and MBF were lower in athletes both at rest and during exercise. OEF increased in response to exercise in both groups, but was higher in athletes (70 ± 21 vs. 63 ± 11 % at rest and 86 ± 13 vs. 73 ± 10 % during exercise). MTT was longer and vascular resistance higher in athletes both at rest and during exercise, but arterial content of 2,3-diphosphoglycerate (oxygen affinity) was unchanged. MVO2 per gram of myocardium trended (p = 0.08) lower in athletes both at rest and during exercise, while myocardial efficiency of work and MVO2 per beat were not different between groups. Arterial levels of free fatty acids were ~twofold higher in athletes likely leading to higher myocardial fatty acid oxidation and hence oxygen cost, which may have blunted the bradycardia-induced decrease in MVO2. Finally, the observed group differences in MBF, OEF, MTT and vascular resistance remained significant also after they were controlled for differences in MVO2. In conclusion, in highly endurance-trained human heart, increased myocardial blood transition time enables higher oxygen extraction levels with a lower myocardial blood flow and higher vascular resistance. These physiological adaptations to exercise training occur independently of the level of oxygen consumption and together with training-induced bradycardia may serve as mechanisms to increase functional reserve of the human heart.

  10. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation

    PubMed Central

    Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing “assistance-as-needed” during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space (p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion (p = 0.008), accuracy of movement (p = 0.01), and movement velocity (p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement (p = 0.001), grip force (p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 (p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living. PMID:27895550

  11. Closed-Loop Task Difficulty Adaptation during Virtual Reality Reach-to-Grasp Training Assisted with an Exoskeleton for Stroke Rehabilitation.

    PubMed

    Grimm, Florian; Naros, Georgios; Gharabaghi, Alireza

    2016-01-01

    Stroke patients with severe motor deficits of the upper extremity may practice rehabilitation exercises with the assistance of a multi-joint exoskeleton. Although this technology enables intensive task-oriented training, it may also lead to slacking when the assistance is too supportive. Preserving the engagement of the patients while providing "assistance-as-needed" during the exercises, therefore remains an ongoing challenge. We applied a commercially available seven degree-of-freedom arm exoskeleton to provide passive gravity compensation during task-oriented training in a virtual environment. During this 4-week pilot study, five severely affected chronic stroke patients performed reach-to-grasp exercises resembling activities of daily living. The subjects received virtual reality feedback from their three-dimensional movements. The level of difficulty for the exercise was adjusted by a performance-dependent real-time adaptation algorithm. The goal of this algorithm was the automated improvement of the range of motion. In the course of 20 training and feedback sessions, this unsupervised adaptive training concept led to a progressive increase of the virtual training space ( p < 0.001) in accordance with the subjects' abilities. This learning curve was paralleled by a concurrent improvement of real world kinematic parameters, i.e., range of motion ( p = 0.008), accuracy of movement ( p = 0.01), and movement velocity ( p < 0.001). Notably, these kinematic gains were paralleled by motor improvements such as increased elbow movement ( p = 0.001), grip force ( p < 0.001), and upper extremity Fugl-Meyer-Assessment score from 14.3 ± 5 to 16.9 ± 6.1 ( p = 0.026). Combining gravity-compensating assistance with adaptive closed-loop feedback in virtual reality provides customized rehabilitation environments for severely affected stroke patients. This approach may facilitate motor learning by progressively challenging the subject in accordance with the individual capacity for functional restoration. It might be necessary to apply concurrent restorative interventions to translate these improvements into relevant functional gains of severely motor impaired patients in activities of daily living.

  12. Prevalence of injuries among young adults in sport centers: relation to the type and pattern of activity.

    PubMed

    Lubetzky-Vilnai, A; Carmeli, E; Katz-Leurer, M

    2009-12-01

    The rate of injuries resulting from physical exercise in sport centers as well as related factors has not yet been described. The aims of this study were to describe the prevalence of self-reported activity-specific injuries, to identify the relations between injury profile and different types and patterns of physical activity and to assess whether gender is a modifying variable in that connection. Four hundred and fifty-seven men and women aged 20-35 years participated in this cross-sectional study. A questionnaire was used to evaluate the types and patterns of physical activity performed in the 12 months preceding the study and sports injuries sustained during that time. One hundred and ninety of the 457 subjects reported an injury as a result of exercising (41.6%). A relationship was found between weight training and injuries of the upper extremity (UE) for men and between spinning classes and knee injuries for women. Among those who participated in weight-training exercises, more frequent and longer duration exercise was associated with UE injury, and among those who participated in spinning classes more frequent exercise was associated with knee injury. Future injury prevention programs in sport centers should pay special attention to men who participate in weight training and to women who participate in spinning classes.

  13. Exercise effect with the wheelchair aerobic fitness trainer on conditioning and metabolic function in disabled persons: a pilot study.

    PubMed

    Midha, M; Schmitt, J K; Sclater, M

    1999-03-01

    To determine the effect of exercise with the wheelchair aerobic fitness trainer (WAFT) on anthropometric indices, conditioning, and endocrine and metabolic parameters in persons with lower extremity disability. Exercise sessions with the WAFT lasted 20 to 30 minutes for two to three sessions. Tertiary-care Veterans Administration medical center. Twelve subjects (3 with quadriplegia, 7 with paraplegia, 1 with cerebrovascular accident, 1 with bilateral above-knee amputation). Anthropometric indices (heart rate, blood pressure, weight, oxygen utilization, body mass index, upper arm and abdominal circumference, arm power) and endocrine and metabolic parameters (fasting serum glucose, lipids, and thyroid function) were determined before and after 10 weeks of exercise with the WAFT. All patients noted improved feelings of well-being after training. Mean resting heart rate, upper arm fat area, and fasting serum cholesterol level decreased significantly. Peak oxygen consumption, midarm circumference, and free thyroxine index increased significantly with training. WAFT improves quality of life, conditioning, and endocrine-metabolic parameters in disabled persons.

  14. Exercise in waist-high warm water decreases pain and improves health-related quality of life and strength in the lower extremities in women with fibromyalgia.

    PubMed

    Gusi, N; Tomas-Carus, P; Häkkinen, A; Häkkinen, K; Ortega-Alonso, A

    2006-02-15

    To evaluate the short- and long-term efficacy of exercise therapy in a warm, waist-high pool in women with fibromyalgia. Thirty-four women (mean +/- SD tender points 17 +/- 1) were randomly assigned to either an exercise group (n = 17) to perform 3 weekly sessions of training including aerobic, proprioceptive, and strengthening exercises during 12 weeks, or to a control group (n = 17). Maximal unilateral isokinetic strength was measured in the knee extensors and flexors in concentric and eccentric actions at 60 degrees /second and 210 degrees /second, and in the shoulder abductors and adductors in concentric contractions. Health-related quality of life (HRQOL) was assessed using the EQ-5D questionnaire; pain was assessed on a visual analog scale. All were measured at baseline, posttreatment, and after 6 months. The strength of the knee extensors in concentric actions increased by 20% in both limbs after the training period, and these improvements were maintained after the de-training period in the exercise group. The strength of other muscle actions measured did not change. HRQOL improved by 93% (P = 0.007) and pain was reduced by 29% (P = 0.012) in the exercise group during the training, but pain returned close to the pretraining level during the subsequent de-training. However, there were no changes in the control group during the entire period. The therapy relieved pain and improved HRQOL and muscle strength in the lower limbs at low velocity in patients with initial low muscle strength and high number of tender points. Most of these improvements were maintained long term.

  15. The influence of ACE ID and ACTN3 R577X polymorphisms on lower-extremity function in older women in response to high-speed power training.

    PubMed

    Pereira, Ana; Costa, Aldo M; Leitão, José C; Monteiro, António M; Izquierdo, Mikel; Silva, António J; Bastos, Estela; Marques, Mário C

    2013-12-06

    We studied the influence of the ACE I/D and ACTN3 R577X polymorphisms (single or combined) on lower-extremity function in older women in response to high-speed power training. One hundred and thirty-nine healthy older Caucasian women participated in this study (age: 65.5 ± 8.2 years, body mass: 67.0 ± 10.0 kg and height: 1.57 ± 0.06 m). Walking speed (S10) performance and functional capacity assessed by the "get-up and go" (GUG) mobility test were measured at baseline (T1) and after a consecutive 12-week period of high-speed power training (40-75% of one repetition maximum in arm and leg extensor exercises; 3 sets 4-12 reps, and two power exercises for upper and lower extremity). Genomic DNA was extracted from blood samples, and genotyping analyses were performed by PCR methods. Genotype distributions between groups were compared by Chi-Square test and the gains in physical performance were analyzed by two-way, repeated-measures ANOVA. There were no significant differences between genotype groups in men or women for adjusted baseline phenotypes (P > 0.05). ACE I/D and ACTN3 polymorphisms showed a significant interaction genotype-training only in S10 (P = 0.012 and P = 0.044, respectively) and not in the GUG test (P = 0.311 and P = 0.477, respectively). Analyses of the combined effects between genotypes showed no other significant differences in all phenotypes (P < 0.05) at baseline. However, in response to high-speed power training, a significant interaction on walking speed (P = 0.048) was observed between the "power" (ACTN3 RR + RX & ACE DD) versus "non-power" muscularity-oriented genotypes (ACTN3 XX & ACE II + ID)]. Thus, ACE I/D and ACTN3 R577X polymorphisms are likely candidates in the modulation of exercise-related gait speed phenotype in older women but not a significant influence in mobility traits.

  16. Strength changes induced by extreme dieting and exercise in severely obese females.

    PubMed

    Pronk, N P; Donnelly, J E; Pronk, S J

    1992-04-01

    Strength changes, induced by very low-calorie diet (VLCD, 520 kcal/day) alone and in combination with exercise, were determined in 109 severely obese females (46.8 +/- 4.69% fat). Experimental treatments included VLCD alone (LC, n = 40), VLCD with endurance exercise (EE, n = 23), VLCD with endurance exercise and resistance strength training (EERST, n = 23), and VLCD with resistance strength training (RST, n = 23). All subjects participated in the study for 90 days while EE, EERST, and RST exercised four times/week according to specified schedules. Results indicated significant differences for the change scores (baseline to 90 days) for bench press, knee flexion, upper body and lower body composite strength scores between RST and all other groups. RST was the only treatment that increased upper and lower body strength. No differences between groups were found for body mass losses, decrease in percent fat and fat mass. In contrast, these variables showed significant change scores for all groups. Decreases in fat-free mass (FFM) were 5.18 +/- 3.40 kg, 4.79 +/- 4.15 kg (p = 0.001), 4.64 +/- 4.23 kg, and 3.26 +/- 2.67 kg for EE, LC, RST, and EERST, respectively. These data suggest that the combination of resistance strength training and VLCD increases strength despite a loss of FFM. However, endurance exercise and VLCD do not seem to affect body mass loss or FFM loss per se. Moreover, it seems that these increases in strength may represent a training effect which might imply improved central neuromuscular function rather than muscular hypertrophy since FFM decreased in all groups.

  17. Effects of 8-week swimming training on carotid arterial stiffness and hemodynamics in young overweight adults.

    PubMed

    Yuan, Wen-Xue; Liu, Hai-Bin; Gao, Feng-Shan; Wang, Yan-Xia; Qin, Kai-Rong

    2016-12-28

    Exercise has been found to either reduce or increase arterial stiffness. Land-based exercise modalities have been documented as effective physical therapies to decrease arterial stiffness. However, these land-based exercise modalities may not be suitable for overweight individuals, in terms of risks of joint injury. The purpose of this study was to determine the effects of 8-week swimming training and 4-week detraining on carotid arterial stiffness and hemodynamics in young overweight adults. Twenty young male adults who were overweight were recruited and engaged in 8-week of swimming training and 4-week detraining. Five individuals withdrew due to lack of interest and failure to follow the training protocol. Body Fat Percentage (BFP) and carotid hemodynamic variables were measured on a resting day at the following intervals: baseline, 4 weeks, 8 weeks after swimming training and 4 weeks after detraining. A repeated analysis of variance (ANOVA) was used to assess the differences between baseline and each measurement. When significant differences were detected, Tukey's test for post hoc comparisons was used. Eight-week swimming training at moderate intensity decreased BFP, including the trunk and four extremities. Additionally, the BFP of the right and left lower extremities continued to decrease in these overweight adults 4 weeks after ceasing training. Carotid arterial stiffness decreased, while there were no significant changes in arterial diameters. Blood flow velocity, flow rate, maximal and mean wall shear stress increased, while systolic blood pressure and peripheral resistance decreased. No significant differences existed in minimal wall shear stress and oscillatory shear stress. Eight-week swimming training at moderate intensity exhibited beneficial effects on systolic blood pressure, arterial stiffness and blood supply to the brain in overweight adults. Moreover, maximal and mean wall shear stress increased after training. It is worth noting that these changes in hemodynamics did not last 4 weeks. Therefore, further studies are still warranted to clarify the underlying relationship between improvements in arterial stiffness and alterations in wall shear stress.

  18. Comparison of integrated and isolated training on performance measures and neuromuscular control.

    PubMed

    Distefano, Lindsay J; Distefano, Michael J; Frank, Barnett S; Clark, Micheal A; Padua, Darin A

    2013-04-01

    Traditional weight training programs use an exercise prescription strategy that emphasizes improving muscle strength through resistance exercises. Other factors, such as stability, endurance, movement quality, power, flexibility, speed, and agility are also essential elements to improving overall functional performance. Therefore, exercises that incorporate these additional elements may be beneficial additions to traditional resistance training programs. The purpose of the study was to compare the effects of an isolated resistance training program (ISO) and an integrated training program (INT) on movement quality, vertical jump height, agility, muscle strength and endurance, and flexibility. The ISO program consisted of primarily upper and lower extremity progressive resistance exercises. The INT program involved progressive resistance exercises, and core stability, power, and agility exercises. Thirty subjects were cluster randomized to either the ISO (n = 15) or INT (n = 15) training program. Each training group performed their respective programs 2 times per week for 8 weeks. The subjects were assessed before (pretest) and after (posttest) the intervention period using the following assessments: a jump-landing task graded using the Landing Error Scoring System (LESS), vertical jump height, T-test time, push-up and sit-up performance, and the sit-and-reach test. The INT group performed better on the LESS test (pretest: 3.90 ± 1.02, posttest: 3.03 ± 1.02; p = 0.02), faster on the T-test (pretest: 10.35 ± 1.20 seconds, posttest: 9.58 ± 1.02 seconds; p = 0.01), and completed more sit-ups (pretest: 40.20 ± 15.01, posttest: 46.73 ± 14.03; p = 0.045) and push-ups (pretest: 40.67 ± 13.85, posttest: 48.93 ± 15.17; p = 0.05) at posttest compared with pretest, and compared with the ISO group at posttest. Both groups performed more push-ups (p = 0.002), jumped higher (p < 0.001), and reached further (p = 0.008) at posttest compared with that at pretest. Performance enhancement programs should use an integrated approach to exercise selection to optimize performance and movement technique benefits.

  19. Mirror Electromyografic Activity in the Upper and Lower Extremity: A Comparison between Endurance Athletes and Non-Athletes.

    PubMed

    Maudrich, Tom; Kenville, Rouven; Lepsien, Jöran; Villringer, Arno; Ragert, Patrick; Steele, Christopher J

    2017-01-01

    During unimanual motor tasks, muscle activity may not be restricted to the contracting muscle, but rather occurs involuntarily in the contralateral resting limb, even in healthy individuals. This phenomenon has been referred to as mirror electromyographic activity (MEMG). To date, the physiological (non-pathological) form of MEMG has been observed predominately in upper extremities (UE), while remaining sparsely described in lower extremities (LE). Accordingly, evidence regarding the underlying mechanisms and modulation capability of MEMG, i.e., the extent of MEMG in dependency of exerted force during unilateral isometric contractions are insufficiently investigated in terms of LE. Furthermore, it still remains elusive if and how MEMG is affected by long-term exercise training. Here, we provide novel quantitative evidence for physiological MEMG in homologous muscles of LE (tibialis anterior (TA), rectus femoris (RF)) during submaximal unilateral dorsiflexion in healthy young adults. Furthermore, endurance athletes (EA, n = 11) show a higher extent of MEMG in LE compared to non-athletes (NA, n = 11) at high force demands (80% MVC, maximum voluntary contraction). While the underlying neurophysiological mechanisms of MEMG still remain elusive, our study indicates, at least indirectly, that sport-related long-term training might affect the amount of MEMG during strong isometric contractions specifically in trained limbs. To support this assumption of exercise-induced limb-specific MEMG modulation, future studies including different sports disciplines with contrasting movement patterns and parameters should additionally be performed.

  20. Mirror Electromyografic Activity in the Upper and Lower Extremity: A Comparison between Endurance Athletes and Non-Athletes

    PubMed Central

    Maudrich, Tom; Kenville, Rouven; Lepsien, Jöran; Villringer, Arno; Ragert, Patrick; Steele, Christopher J.

    2017-01-01

    During unimanual motor tasks, muscle activity may not be restricted to the contracting muscle, but rather occurs involuntarily in the contralateral resting limb, even in healthy individuals. This phenomenon has been referred to as mirror electromyographic activity (MEMG). To date, the physiological (non-pathological) form of MEMG has been observed predominately in upper extremities (UE), while remaining sparsely described in lower extremities (LE). Accordingly, evidence regarding the underlying mechanisms and modulation capability of MEMG, i.e., the extent of MEMG in dependency of exerted force during unilateral isometric contractions are insufficiently investigated in terms of LE. Furthermore, it still remains elusive if and how MEMG is affected by long-term exercise training. Here, we provide novel quantitative evidence for physiological MEMG in homologous muscles of LE (tibialis anterior (TA), rectus femoris (RF)) during submaximal unilateral dorsiflexion in healthy young adults. Furthermore, endurance athletes (EA, n = 11) show a higher extent of MEMG in LE compared to non-athletes (NA, n = 11) at high force demands (80% MVC, maximum voluntary contraction). While the underlying neurophysiological mechanisms of MEMG still remain elusive, our study indicates, at least indirectly, that sport-related long-term training might affect the amount of MEMG during strong isometric contractions specifically in trained limbs. To support this assumption of exercise-induced limb-specific MEMG modulation, future studies including different sports disciplines with contrasting movement patterns and parameters should additionally be performed. PMID:29085288

  1. Summary of comprehensive systematic review: Rehabilitation in multiple sclerosis: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology.

    PubMed

    Haselkorn, Jodie K; Hughes, Christina; Rae-Grant, Alex; Henson, Lily Jung; Bever, Christopher T; Lo, Albert C; Brown, Theodore R; Kraft, George H; Getchius, Thomas; Gronseth, Gary; Armstrong, Melissa J; Narayanaswami, Pushpa

    2015-11-24

    To systematically review the evidence regarding rehabilitation treatments in multiple sclerosis (MS). We systematically searched the literature (1970-2013) and classified articles using 2004 American Academy of Neurology criteria. This systematic review highlights the paucity of well-designed studies, which are needed to evaluate the available MS rehabilitative therapies. Weekly home/outpatient physical therapy (8 weeks) probably is effective for improving balance, disability, and gait (MS type unspecified, participants able to walk ≥5 meters) but probably is ineffective for improving upper extremity dexterity (1 Class I). Inpatient exercises (3 weeks) followed by home exercises (15 weeks) possibly are effective for improving disability (relapsing-remitting MS [RRMS], primary progressive MS [PPMS], secondary progressive MS [SPMS], Expanded Disability Status Scale [EDSS] 3.0-6.5) (1 Class II). Six weeks' worth of comprehensive multidisciplinary outpatient rehabilitation possibly is effective for improving disability/function (PPMS, SPMS, EDSS 4.0-8.0) (1 Class II). Motor and sensory balance training or motor balance training (3 weeks) possibly is effective for improving static and dynamic balance, and motor balance training (3 weeks) possibly is effective for improving static balance (RRMS, SPMS, PPMS) (1 Class II). Breathing-enhanced upper extremity exercises (6 weeks) possibly are effective for improving timed gait and forced expiratory volume in 1 second (RRMS, SPMS, PPMS, mean EDSS 4.5); this change is of unclear clinical significance. This technique possibly is ineffective for improving disability (1 Class II). Inspiratory muscle training (10 weeks) possibly improves maximal inspiratory pressure (RRMS, SPMS, PPMS, EDSS 2-6.5) (1 Class II). © 2015 American Academy of Neurology.

  2. A prospective study for upper-extremity cumulative trauma disorders of workers in aircraft manufacturing.

    PubMed

    Melhorn, J M

    1996-12-01

    Occupational diseases affect 15 to 20% of all Americans. Cumulative trauma disorders (CTDs) account for 56% of all occupational injuries. The recognition and control of occupational injuries has become a major concern of employees, employers, medicine, and the federal government because of health risk and related costs. Upper-extremity CTDs are identified by the National Institute for Occupational Safety and Health as one of the ten most significant occupational health problems in the United States. It is estimated by the year 2000 that 50 cents on the dollar will be spent on CTDs. Although enlightened aircraft employers have developed primary prevention strategies, primary prevention can never be expected to eliminate 100% of the cases. To evaluate several preventive activities, a CTD risk-assessment program was developed and implemented in cooperation with a major aircraft manufacturer employing over 8000 workers. This program was focused on objectively identifying the relationship of work and other activities to an individual worker experiencing CTDs. Early identification has been linked, when applicable, to intervention algorithms for medical care, job task modification, workplace accommodation, and training. A prospective study group of 212 workers who used rivet guns was placed into a four-way experimental design for ergonomic posture training, exercise training, and rivet-gun type (primary factors). A statistical model was developed for the level of CTD risk and evaluated using the SAS software program (SAS Institute, Inc, Carry, NC). Statistical analysis of the primary factors without regard to associated variables (covariates) demonstrated that only posture training had a beneficial risk reduction for the individual. The impact (beneficial or detrimental) for exercise training and for vibration-dampening rivet guns was probably obscured because of the large variability of the responses regarding the associated variables (covariates). When the covariates were analyzed in conjunction with the four experimental groups, a positive benefit from ergonomic posture training and exercise training was demonstrated for the following groups: the dominant han, time spend in an awkward position, number of standard rivets bucked, number of parts routed, number of parts ground, number of vibration-dampening rivets bucked, and newly hired individuals. A negative effect (increase in individual risk level) for current employees using a vibration-dampening rivet gun was demonstrated. This prospective study helps to identify the possible benefit of education and training for controlling CTDs and demonstrates the usefulness of being able to evaluate materials, methods, machines, and environments as they relate to the individual's risk level for the development of upper-extremity CTDs.

  3. A randomized comparison study regarding the impact of short-duration, high-intensity exercise and traditional exercise on anthropometric and body composition measurement changes in post-menopausal women--A pilot study.

    PubMed

    Grossman, Joan A Cebrick; Payne, Ellen K

    2016-03-01

    The mode and duration of exercise necessary to change body composition and reduce weight remains debatable. Menopause results in hormonal changes that preclude weight loss. This randomized pilot study compared the effects of short-duration, high-intensity interval training and traditional exercise on anthropometric and body composition measurement changes in post-menopausal women. To compare the effects of short-duration, high-intensity interval training and traditional methods of exercise (walking) on anthropometric, body composition and body weight change over a 12-week period. Subjects (N = 18) were post-menopausal, sedentary female volunteers, randomly assigned into one of two exercise groups. Both groups exercised five out of seven days for 12 weeks. The resistance group (n = 8) (54.3 ± 7.3 years; BMI = 28.0 ± 2.1 kg/m(2); mean ± SD) exercised for 15.0 ± 3.5 min, which consisted of five different exercise routines including upper and lower extremity, a cardio segment, yoga and abdominal exercises. The walkers (n = 10) (56.6 ± 5.2 years; BMI = 29.2 ± 2.6 kg/m(2); mean ± SD) exercised for 40.0 ± 5.0 min at 65% of their age-predicted maximum heart rate. Relative (%) body fat was measured via DEXA scan, along with five anthropometric measurements, all of which were taken prior to and after 12 weeks. Independent sample t-tests were probed for differences, p ≤ 0.05. No statistically significant changes were determined between the groups for pre-and post-measurements. The outcomes of this study provide a foundation for future comparisons of short-duration high-intensity interval training exercise and traditional exercise, or walking, on anthropometric and body composition measurement changes in sedentary, overweight, post-menopausal females over a 12-week period. © The Author(s) 2016.

  4. Cold and heat strain during cold-weather field training with nuclear, biological, and chemical protective clothing.

    PubMed

    Rissanen, Sirkka; Rintamäki, Hannu

    2007-02-01

    The objective of this study was to quantify the thermal strain of soldiers wearing nuclear, biological, and chemical protective clothing during short-term field training in cold conditions. Eleven male subjects performed marching exercises at moderate and heavy activity levels for 60 minutes. Rectal temperature (Tre), skin temperatures, and heart rate were monitored. Ambient temperature (Ta) varied from -33 to 0 degrees C. Tre was affected by changes in metabolism, rather than in Ta. Tre increased above 38 degrees during heavy exercise even at -33 degrees C. The mean skin temperature decreased to tolerance level (25 degrees C) at Ta below -25 degrees C with moderate exercise. Finger temperature decreased below 15 degrees C (performance degradation) at Ta of -15 degrees C or cooler. The present results from the field confirm the previous results based on laboratory studies and show that risk of both heat and cold strain is evident, with cooling of extremities being most critical, while wearing nuclear, biological, and chemical protective clothing during cold-weather training.

  5. Age-Matched Comparison of Elite and Non-elite Military Performers during Free Living and Intense Operational Stress

    DTIC Science & Technology

    2009-04-08

    military domain, Morgan et al. (2007) examined heart rate variability ( HRV ) as a predictor of performance during extreme military training. These scientists...the HRV analyses were performed during classroom phases of training, just prior to the stressful field exercises. These observations, then, may not...defense: fear/ anxiety and defensive distance. Neurosci Biobehav Rev, 28(3), 285-305. 21. Taylor MK, Sausen KP, Mujica-Parodi LR, et al: Neurophysiologic

  6. Physical exercise and health.

    PubMed

    Cordero, Alberto; Masiá, M Dolores; Galve, Enrique

    2014-09-01

    Regular physical exercise is an established recommendation for preventing and treating the main modifiable cardiovascular risk factors, such as diabetes mellitus, hypertension, and dyslipidemia. Performing physical activity of moderate intensity for a minimum of 30 min 5 days a week or of high intensity for a minimum of 20 min 3 days a week improves functional capacity and is associated with reductions in the incidence of cardiovascular disease and mortality. Physical exercise induces physiological cardiovascular adaptations that improve physical performance, and only in extreme cases can these adaptations lead to an increased risk of physical exercise-associated complications. The incidence of sudden death or serious complications during physical exercise is very low and is concentrated in people with heart diseases or with pathological cardiac adaptation to exercise. Most of these cases can be detected by cardiology units or well-trained professionals. Copyright © 2014 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  7. A pilot study of biomechanical assessment before and after an integrative training program for adolescents with juvenile fibromyalgia.

    PubMed

    Tran, Susan T; Thomas, Staci; DiCesare, Christopher; Pfeiffer, Megan; Sil, Soumitri; Ting, Tracy V; Williams, Sara E; Myer, Gregory D; Kashikar-Zuck, Susmita

    2016-07-22

    Adolescents with juvenile fibromyalgia (JFM) tend to be very sedentary and avoid participation in physical activity. A prior study suggested that JFM patients show altered biomechanics compared to healthy adolescents which may make them more prone to pain/injury during exercise. A new intervention combining well established cognitive behavioral therapy (CBT) techniques with specialized neuromuscular exercise -Fibromyalgia Integrative Training for Teens (FIT Teens) was developed and shown to be promising in improving functioning in adolescents with JFM. In contrast to traditional exercise programs such as aerobic or resistance training, neuromuscular training is a tailored approach which targets gait, posture, balance and movement mechanics which form the foundation for safe exercise participation with reduced risk for injury or pain (and hence more tolerable by JFM patients). The aim of this pilot feasibility study was to establish whether objective biomechanical assessment including sophisticated 3-D motion analysis would be useful in measuring improvements in strength, balance, gait, and functional performance after participation in the 8-week FIT Teens program. Eleven female participants with JFM (ages 12-18 years) completed pre- and post-treatment assessments of biomechanics, including walking gait analysis, lower extremity strength assessment, functional performance, and dynamic postural stability. Descriptive data indicated that mechanics of walking gait and functional performance appeared to improve after treatment. Hip abduction strength and dynamic postural control also demonstrated improvements bilaterally. Overall, the results of this pilot study offer initial evidence for the utility of biomechanical assessment to objectively demonstrate observable changes in biomechanical performance after an integrated training intervention for youth with JFM. If replicated in larger controlled studies, findings would suggest that through the FIT Teens intervention, adolescents with JFM can progress towards normalized strength and biomechanics, which may enhance their ability to engage in physical exercise.

  8. The effects of 6-week training programs on throwing accuracy, proprioception, and core endurance in baseball.

    PubMed

    Lust, Kathleen R; Sandrey, Michelle A; Bulger, Sean M; Wilder, Nathan

    2009-08-01

    With a limited number of outcomes-based studies, only recommendations for strength-training and rehabilitation programs can be made. To determine the extent to which throwing accuracy, core stability, and proprioception improved after completion of a 6-week training program that included open kinetic chain (OKC), closed kinetic chain (CKC), and/or core-stability exercises. A 2 x 3 factorial design. Division III college. 19 healthy baseball athletes with a control group of 15. Two 6-week programs including OKC, CKC, and core-stabilization exercises that were progressed each week. Functional throwing-performance index, closed kinetic chain upper extremity stability test, back-extensor test, 45 degrees abdominal-fatigue test, and right- and left-side bridging test. There was no significant difference between groups. An increase was evident in all pretest-to-posttest results, with improvement ranging from 1.36% to 140%. Both of the 6-week training programs could be used to increase throwing accuracy, core stability, and proprioception in baseball.

  9. Upper Extremity Muscle Volumes and Functional Strength After Resistance Training in Older Adults

    PubMed Central

    Daly, Melissa; Vidt, Meghan E.; Eggebeen, Joel D.; Simpson, W. Greg; Miller, Michael E.; Marsh, Anthony P.; Saul, Katherine R.

    2014-01-01

    Aging leads to a decline in strength and an associated loss of independence. The authors examined changes in muscle volume, maximum isometric joint moment, functional strength, and 1-repetition maximum (1RM) after resistance training (RT) in the upper extremity of older adults. They evaluated isometric joint moment and muscle volume as predictors of functional strength. Sixteen healthy older adults (average age 75 ± 4.3 yr) were randomized to a 6-wk upper extremity RT program or control group. The RT group increased 1RM significantly (p < .01 for all exercises). Compared with controls, randomization to RT led to greater functional pulling strength (p = .003), isometric shoulder-adduction moment (p = .041), elbow-flexor volume (p = .017), and shoulder-adductor volume (p = .009). Shoulder-muscle volumes and isometric moments were good predictors of functional strength. The authors conclude that shoulder strength is an important factor for performing functional reaching and pulling tasks and a key target for upper extremity RT interventions. PMID:22952203

  10. Part 1: potential dangers of extreme endurance exercise: how much is too much? Part 2: screening of school-age athletes.

    PubMed

    O'Keefe, James H; Lavie, Carl J; Guazzi, Marco

    2015-01-01

    The question is not whether exercise is or isn't one of the very best strategies for improving quality of life, cardiovascular (CV) health and longevity-it is. And there is no debate as to whether or not strenuous high-intensity endurance training produces an amazingly efficient, compliant, and powerful pump-it does. The essence of the controversy centers on what exactly is the ideal pattern of long-term physical activity (PA) for conferring robust and enduring CV health, while also optimizing life expectancy. With that goal in mind, this review will focus on the question: "Is more always better when it comes to exercise?" And if a dose-response curve exists for the therapeutic effects of PA, where is the upper threshold at which point further training begins to detract from the health and longevity benefits noted with moderate exercise? The emerging picture from the cumulative data on this hotly debated topic is that moderate exercise appears to be the sweet spot for bestowing lasting CV health and longevity. However, the specific definition of moderate in this context is not clear yet. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Fall and balance outcomes after an intervention to promote leg strength, balance, and walking in people with diabetic peripheral neuropathy: "feet first" randomized controlled trial.

    PubMed

    Kruse, Robin L; Lemaster, Joseph W; Madsen, Richard W

    2010-11-01

    Weight-bearing exercise has been discouraged for people with diabetes mellitus and peripheral neuropathy (DM+PN). However, people with diabetes mellitus and insensate feet have an increased risk of falling. Lower-extremity exercise and balance training reduce fall risk in some older adults. It is unknown whether those with neuropathy experience similar benefits. As part of a study of the effects of weight-bearing exercise on foot ulceration in people with DM+PN, the effects of a lower-extremity exercise and walking intervention on balance, lower-extremity strength (force-generating capacity), and fall incidence were determined. Design The study was an observer-masked, 12-month randomized controlled trial. Part 1 of the intervention took place in physical therapy offices, and part 2 took place in the community. The participants were 79 people who were mostly sedentary, who had DM+PN, and who were randomly assigned to either a control group (n=38) or an intervention group (n=41). Intervention Part 1 included leg strengthening and balance exercises and a graduated, self-monitored walking program; part 2 included motivational telephone calls. Both groups received regular foot care, foot care education, and 8 sessions with a physical therapist. The measurements collected were strength, balance, and participant-reported falls for the year after enrollment. There were no statistically significant differences between the groups for falls during follow-up. At 12 months, there was a small increase in the amount of time that participants in the intervention group could stand on 1 leg with their eyes closed. No other strength or balance measurements differed between the groups. The study was designed to detect differences in physical activity, not falls. The intensity of the intervention was insufficient to improve strength and balance in this population. The training program had a minimal effect on participants' balance and lower-extremity strength. Increasing weight-bearing activity did not alter the rate of falling for participants in the intervention group relative to that for participants in the control group. People who are sedentary and who have DM+PN appear to be able to increase activity without increasing their rate of falling.

  12. The effect of single-task and dual-task balance exercise programs on balance performance in adults with osteoporosis: a randomized controlled preliminary trial.

    PubMed

    Konak, H E; Kibar, S; Ergin, E S

    2016-11-01

    Osteoporosis is a serious disease characterized by muscle weakness in the lower extremities, shortened length of trunk, and increased dorsal kyphosis leading to poor balance performance. Although balance impairment increases in adults with osteoporosis, falls and fall-related injuries have been shown to occur mainly during the dual-task performance. Several studies have shown that dual-task performance was improved with specific repetitive dual-task exercises. The aims of this study were to compare the effect of single- and dual-task balance exercise programs on static balance, dynamic balance, and activity-specific balance confidence in adults with osteoporosis and to assess the effectiveness of dual-task balance training on gait speed under dual-task conditions. Older adults (N = 42) (age range, 45-88 years) with osteoporosis were randomly assigned into two groups. Single-task balance training group was given single-task balance exercises for 4 weeks, whereas dual-task balance training group received dual-task balance exercises. Participants received 45-min individualized training session, three times a week. Static balance was evaluated by one-leg stance (OLS) and a kinesthetic ability trainer (KAT) device. Dynamic balance was measured by the Berg Balance Scale (BBS), Time Up and Go (TUG) test, and gait speed. Self-confidence was assessed with the Activities-specific Balance Confidence (ABC-6) scale. Assessments were performed at baseline and after the 4-week program. At the end of the treatment periods, KAT score, BBS score, time in OLS and TUG, gait speeds under single- and dual-task conditions, and ABC-6 scale scores improved significantly in all patients (p < 0.05). However, BBS and gait speeds under single- and dual-task conditions showed significantly greater improvement in the dual-task balance training group than in the single-task balance training group (p < 0.05). ABC-6 scale scores improved more in the single-task balance training group than in the dual-task balance training group (p < 0.05). A 4-week single- and dual-task balance exercise programs are effective in improving static balance, dynamic balance, and balance confidence during daily activities in older adults with osteoporosis. However, single- and dual-task gait speeds showed greater improvement following the application of a specific type of dual-task exercise programs. 24102014-2.

  13. Is exercise good for the right ventricle? Concepts for health and disease.

    PubMed

    La Gerche, André; Claessen, Guido

    2015-04-01

    There is substantial evidence supporting the prescription of exercise training in patients with left-sided heart disease, but data on the effects of exercise are far more limited for conditions that primarily affect the right ventricle. There is evolving evidence that right ventricular (RV) function is of critical importance to circulatory function during exercise. Even in healthy individuals with normal pulmonary vascular function, the hemodynamic load on the right ventricle increases relatively more during exercise than that of the left ventricle, and this disproportionate load is far greater in patients with pulmonary hypertension. Exercise-induced increases in pulmonary artery pressures can exceed RV contractile reserve (so-called arterioventricular uncoupling), resulting in attenuated cardiac output and exercise intolerance. In this review, we explore the spectrum of RV reserve-from transient RV dysfunction observed in athletes after extreme bouts of intense endurance exercise to RV failure with minimal exertion in patients with advanced pulmonary hypertension. Recent advances and novel approaches to echocardiographic and cardiac magnetic resonance imaging have provided more accurate means of assessing the right ventricle and pulmonary circulation during exercise such that quantification of exercise reserve may provide a valuable means of assessing prognosis and response to therapies. We discuss the potential benefits and risks of exercise training in both health and disease while recognizing the need for prospective studies that assess the long-term efficacy and safety of exercise interventions in patients with pulmonary vascular and RV pathologic conditions. Copyright © 2015 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  14. Exercise training for intermittent claudication.

    PubMed

    McDermott, Mary M

    2017-11-01

    The objective of this study was to provide an overview of evidence regarding exercise therapies for patients with lower extremity peripheral artery disease (PAD). This manuscript summarizes the content of a lecture delivered as part of the 2016 Crawford Critical Issues Symposium. Multiple randomized clinical trials demonstrate that supervised treadmill exercise significantly improves treadmill walking performance in people with PAD and intermittent claudication symptoms. A meta-analysis of 25 randomized trials demonstrated a 180-meter increase in treadmill walking distance in response to supervised exercise interventions compared with a nonexercising control group. Supervised treadmill exercise has been inaccessible to many patients with PAD because of lack of medical insurance coverage. However, in 2017, the Centers for Medicare and Medicaid Services issued a decision memorandum to support health insurance coverage of 12 weeks of supervised treadmill exercise for patients with walking impairment due to PAD. Recent evidence also supports home-based walking exercise to improve walking performance in people with PAD. Effective home-exercise programs incorporate behavioral change interventions such as a remote coach, goal setting, and self-monitoring. Supervised treadmill exercise programs preferentially improve treadmill walking performance, whereas home-based walking exercise programs preferentially improve corridor walking, such as the 6-minute walk test. Clinical trial evidence also supports arm or leg ergometry exercise to improve walking endurance in people with PAD. Treadmill walking exercise appears superior to resistance training alone for improving walking endurance. Supervised treadmill exercise significantly improves treadmill walking performance in people with PAD by approximately 180 meters compared with no exercise. Recent evidence suggests that home-based exercise is also effective and preferentially improves over-ground walking performance, such as the 6-minute walk test. Copyright © 2017 Society for Vascular Surgery. Published by Elsevier Inc. All rights reserved.

  15. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study.

    PubMed

    Vasudevan, John M; Logan, Andrew; Shultz, Rebecca; Koval, Jeffrey J; Roh, Eugene Y; Fredericson, Michael

    2016-01-01

    Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete's typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants' natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes' averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis.

  16. Comparison of Muscle Onset Activation Sequences between a Golf or Tennis Swing and Common Training Exercises Using Surface Electromyography: A Pilot Study

    PubMed Central

    Shultz, Rebecca; Fredericson, Michael

    2016-01-01

    Aim. The purpose of this pilot study is to use surface electromyography to determine an individual athlete's typical muscle onset activation sequence when performing a golf or tennis forward swing and to use the method to assess to what degree the sequence is reproduced with common conditioning exercises and a machine designed for this purpose. Methods. Data for 18 healthy male subjects were collected for 15 muscles of the trunk and lower extremities. Data were filtered and processed to determine the average onset of muscle activation for each motion. A Spearman correlation estimated congruence of activation order between the swing and each exercise. Correlations of each group were pooled with 95% confidence intervals using a random effects meta-analytic strategy. Results. The averaged sequences differed among each athlete tested, but pooled correlations demonstrated a positive association between each exercise and the participants' natural muscle onset activation sequence. Conclusion. The selected training exercises and Turning Point™ device all partially reproduced our athletes' averaged muscle onset activation sequences for both sports. The results support consideration of a larger, adequately powered study using this method to quantify to what degree each of the selected exercises is appropriate for use in both golf and tennis. PMID:27403454

  17. Exercise Black Skies 2008: Enhancing Live Training Through Virtual Preparation -- Part Two: An Evaluation of Tools and Techniques

    DTIC Science & Technology

    2009-06-01

    visualisation tool. These tools are currently in use at the Surveillance and Control Training Unit (SACTU) in Williamtown, New South Wales, and the School...itself by facilitating the brevity and sharpness of learning points. The playback of video and audio was considered an extremely useful method of...The task assessor’s comments were supported by wall projections and audio replays of relevant mission segments that were controlled by an AAR

  18. The effects of a strength and neuromuscular exercise programme for the lower extremity on knee load, pain and function in obese children and adolescents: study protocol for a randomised controlled trial.

    PubMed

    Horsak, Brian; Artner, David; Baca, Arnold; Pobatschnig, Barbara; Greber-Platzer, Susanne; Nehrer, Stefan; Wondrasch, Barbara

    2015-12-23

    Childhood obesity is one of the most critical and accelerating health challenges throughout the world. It is a major risk factor for developing varus/valgus misalignments of the knee joint. The combination of misalignment at the knee and excess body mass may result in increased joint stresses and damage to articular cartilage. A training programme, which aims at developing a more neutral alignment of the trunk and lower limbs during movement tasks may be able to reduce knee loading during locomotion. Despite the large number of guidelines for muscle strength training and neuromuscular exercises that exist, most are not specifically designed to target the obese children and adolescent demographic. Therefore, the aim of this study is to evaluate a training programme which combines strength and neuromuscular exercises specifically designed to the needs and limitations of obese children and adolescents and analyse the effects of the training programme from a biomechanical and clinical point of view. A single assessor-blinded, pre-test and post-test randomised controlled trial, with one control and one intervention group will be conducted with 48 boys and girls aged between 10 and 18 years. Intervention group participants will receive a 12-week neuromuscular and quadriceps/hip strength training programme. Three-dimensional (3D) gait analyses during level walking and stair climbing will be performed at baseline and follow-up sessions. The primary outcome parameters for this study will be the overall peak external frontal knee moment and impulse during walking. Secondary outcomes include the subscales of the Knee injury and Osteoarthritis Outcome Score (KOOS), frontal and sagittal kinematics and kinetics for the lower extremities during walking and stair climbing, ratings of change in knee-related well-being, pain and function and adherence to the training programme. In addition, the training programme will be evaulated from a clinical and health status perspective by including the following analyses: cardiopulmonary testing to quantify aerobic fitness effects, anthropometric measures, nutritional status and psychological status to characterise the study sample. The findings will help to determine whether a neuromuscular and strength training exercise programme for the obese children population can reduce joint loading during locomotion, and thereby decrease the possible risk of developing degenerative joint diseases later in adulthood. ClinicalTrials NCT02545764 , Date of registration: 24 September 2015.

  19. Carotid-cardiac baroreflex response and LBNP tolerance following resistance training

    NASA Technical Reports Server (NTRS)

    Tatro, D. L.; Dudley, G. A.; Convertino, V. A.

    1992-01-01

    The purpose of this study was to examine the effect of lower body resistance training on cardiovascular control mechanisms and blood pressure maintenance during an orthostatic challenge. Lower body negative pressure (LBNP) tolerance, carotid-cardiac baroreflex function (using neck chamber pressure), and calf compliance were measured in eight healthy males before and after 19 wk of knee extension and leg press training. Resistance training sessions consisted of four or five sets of 6-12 repetitions of each exercise, performed two times per week. Training increased strength 25 +/- 3 (SE) percent (P = 0.0003) and 31 +/- 6 percent (P = 0.0004), respectively, for the leg press and knee extension exercises. Average fiber size in biopsy samples of m. vastus lateralis increased 21 +/- 5 percent (P = 0.0014). Resistance training had no significant effect on LBNP tolerance. However, calf compliance decreased in five of the seven subjects measured, with the group average changing from 4.4 +/- 0.6 ml.mm Hg-1 to 3.9 +/- 0.3 ml.mm Hg-1 (P = 0.3826). The stimulus-response relationship of the carotid-cardiac baroreflex response shifted to the left on the carotid pressure axis as indicated by a reduction of 6 mm Hg in baseline systolic blood pressure (P = 0.0471). In addition, maximum slope increased from 5.4 +/- 1.3 ms.mm Hg-1 before training to 6.6 +/- 1.6 ms.mm Hg-1 after training (P = 0.0141). Our results suggest the possibility that high resistance, lower extremity exercise training can cause a chronic increase in sensitivity and resetting of the carotid-cardiac baroreflex.

  20. The influence of ACE ID and ACTN3 R577X polymorphisms on lower-extremity function in older women in response to high-speed power training

    PubMed Central

    2013-01-01

    Background We studied the influence of the ACE I/D and ACTN3 R577X polymorphisms (single or combined) on lower-extremity function in older women in response to high-speed power training. Methods One hundred and thirty-nine healthy older Caucasian women participated in this study (age: 65.5 ± 8.2 years, body mass: 67.0 ± 10.0 kg and height: 1.57 ± 0.06 m). Walking speed (S10) performance and functional capacity assessed by the “get-up and go” (GUG) mobility test were measured at baseline (T1) and after a consecutive 12-week period of high-speed power training (40-75% of one repetition maximum in arm and leg extensor exercises; 3 sets 4–12 reps, and two power exercises for upper and lower extremity). Genomic DNA was extracted from blood samples, and genotyping analyses were performed by PCR methods. Genotype distributions between groups were compared by Chi-Square test and the gains in physical performance were analyzed by two-way, repeated-measures ANOVA. Results There were no significant differences between genotype groups in men or women for adjusted baseline phenotypes (P > 0.05). ACE I/D and ACTN3 polymorphisms showed a significant interaction genotype-training only in S10 (P = 0.012 and P = 0.044, respectively) and not in the GUG test (P = 0.311 and P = 0.477, respectively). Analyses of the combined effects between genotypes showed no other significant differences in all phenotypes (P < 0.05) at baseline. However, in response to high-speed power training, a significant interaction on walking speed (P = 0.048) was observed between the “power” (ACTN3 RR + RX & ACE DD) versus “non-power” muscularity-oriented genotypes (ACTN3 XX & ACE II + ID)]. Conclusions Thus, ACE I/D and ACTN3 R577X polymorphisms are likely candidates in the modulation of exercise-related gait speed phenotype in older women but not a significant influence in mobility traits. PMID:24313907

  1. A Cluster of Exertional Rhabdomyolysis Cases in a ROTC Program Engaged in an Extreme Exercise Program.

    PubMed

    Raleigh, Meghan F; Barrett, John P; Jones, Brent D; Beutler, Anthony I; Deuster, Patricia A; O'Connor, Francis G

    2018-03-01

    Exertional rhabdomyolysis (ER) is on the rise among service members and high school and college athletes. Reported risk factors for ER include fitness level, sudden increase in exercise intensity and duration, and eccentric predominant exercise. This study examined an ER cluster among Reserve Officer Training Corps cadets who participated in a mandatory, timed, extreme conditioning program (ECP) workout. Forty-four cadets participated in this ECP; 11 were subsequently hospitalized with ER. Thirty-five cadets, including all who developed ER, completed a questionnaire to assess ECP times, prior fitness scores, and other ER risk factors. Cadets completed the ECP workout as individuals or in teams. Nine of 29 (31%) individual and two of 15 (13%) team participants were hospitalized with ER. Among the cadets, no associations were noted between hospitalization for ER and finish time, previous fitness scores, or dietary supplement use. The relative risk of developing ER was significantly increased in those who consumed alcohol in the week preceding the ECP (RR = 4.20; 95% CI 1.95, 9.03). In this cohort of Reserve Officer Training Corps cadets, an ECP resulted in a high rate of hospitalization for ER. Contrary to reported ER risk factors, higher baseline fitness was not protective. Rather, cadet knowledge that ECP performance was strongly linked to final cadet ranking greatly influenced intensity of effort.

  2. Sensory-Challenge Balance Exercises Improve Multisensory Reweighting in Fall-Prone Older Adults.

    PubMed

    Allison, Leslie K; Kiemel, Tim; Jeka, John J

    2018-04-01

    Multisensory reweighting (MSR) deficits in older adults contribute to fall risk. Sensory-challenge balance exercises may have value for addressing the MSR deficits in fall-prone older adults. The purpose of this study was to examine the effect of sensory-challenge balance exercises on MSR and clinical balance measures in fall-prone older adults. We used a quasi-experimental, repeated-measures, within-subjects design. Older adults with a history of falls underwent an 8-week baseline (control) period. This was followed by an 8-week intervention period that included 16 sensory-challenge balance exercise sessions performed with computerized balance training equipment. Measurements, taken twice before and once after intervention, included laboratory measures of MSR (center of mass gain and phase, position, and velocity variability) and clinical tests (Activities-specific Balance Confidence Scale, Berg Balance Scale, Sensory Organization Test, Limits of Stability test, and lower extremity strength and range of motion). Twenty adults 70 years of age and older with a history of falls completed all 16 sessions. Significant improvements were observed in laboratory-based MSR measures of touch gain (P = 0.006) and phase (P = 0.05), Berg Balance Scale (P = 0.002), Sensory Organization Test (P = 0.002), Limits of Stability Test (P = 0.001), and lower extremity strength scores (P = 0.005). Mean values of vision gain increased more than those for touch gain, but did not reach significance. A balance exercise program specifically targeting multisensory integration mechanisms improved MSR, balance, and lower extremity strength in this mechanistic study. These valuable findings provide the scientific rationale for sensory-challenge balance exercise to improve perception of body position and motion in space and potential reduction in fall risk.

  3. Physiological aspects of a vocal exercise.

    PubMed

    Elliot, N; Sundberg, J; Gramming, P

    1997-06-01

    The physiological aim of vocal exercises is mostly understood in intuitive terms only. This article presents an attempt to document the phonatory behavior induced by a vocal exercise. An elevated vertical position of the larynx is frequently associated with hyperfunctional phonatory habits, presumably because it induces an exaggerated vocal fold adduction. Using the multichannel electroglottograph (MEGG), the laryngeal position was determined in a group of subjects who performed a voice exercise that contained extremely prolonged versions of the consonant/b:/. This exercise is used by the coauthor (N.E.) as part of a standard vocal exercise program. Two of the seven subjects were dysphonic phonastenic patients, and the rest were normal trained or untrained persons. Different attempts to calibrate the MEGG confirmed a linear relationship with larynx height, provided electrode positioning was correct. The results showed that the exercise induced substantial vertical displacements of the larynx. Comparison with larynx height during voicing of other consonants showed that the/b/, in particular, tended to lower the larynx.

  4. Body composition influenced by progressive elastic band resistance exercise of sarcopenic obesity elderly women: a pilot randomized controlled trial.

    PubMed

    Huang, Shih-Wei; Ku, Jan-Wen; Lin, Li-Fong; Liao, Chun-De; Chou, Lin-Chuan; Liou, Tsan-Hon

    2017-08-01

    Sarcopenia involves age-related decreases in muscle strength and muscle mass, leading to frailty and disability in elderly people. When combined with obesity, it is defined as sarcopenic obesity (SO), which can result in more functional limitations and metabolic disorders than either disorder alone. The aim of this study was to investigate body composition changes after elastic band resistance training in elderly women with SO. Randomized single-blinded (assessor blinded) controlled pilot trial. Academic medical center. Thirty-five elderly (>60 years old) women with SO. This pilot randomized controlled trial focused on elderly women with SO. The study group underwent progressive elastic band resistance training for 12 weeks (3 times per week). The control group received only a 40-minute lesson about the exercise concept. Dual-energy X-ray absorptiometry was performed before and after intervention to evaluate body composition. Mann-Whitney U and Wilcoxon signed rank tests were used to analyze the differences within and between these groups. In total, 35 elderly women with SO were enrolled and divided into study (N.=18) and control groups (N.=17). No difference was observed in age, biochemical parameters, or Body Mass Index between both groups. After the intervention, the fat proportion of body composition in the right upper extremity (P=0.03), left upper extremity (P=0.04), total fat (P=0.035), and fat percentage (P=0.012) had decreased, and bone mineral density (BMD) (P=0.026), T-score (P=0.028), and Z-score (P=0.021) had increased in the study group. Besides, statistical difference was observed in outcome measurements of right upper extremity (P=0.013), total fat (P=0.023), and fat percentage (P=0.012) between the groups. Our study demonstrated that progressive elastic band resistance exercise can reduce fat mass and increase BMD in elderly women with SO, and that this exercise program is feasible for this demographic. Additional studies with larger sample sizes and longer intervention periods should be conducted. Twelve weeks of progressive elastic band resistance exercise program is safe and effective for SO elder women.

  5. Four-month course of soluble milk proteins interacts with exercise to improve muscle strength and delay fatigue in elderly participants.

    PubMed

    Gryson, Céline; Ratel, Sébastien; Rance, Mélanie; Penando, Stéphane; Bonhomme, Cécile; Le Ruyet, Pascale; Duclos, Martine; Boirie, Yves; Walrand, Stéphane

    2014-12-01

    The benefit of protein supplementation on the adaptive response of muscle to exercise training in older people is controversial. To investigate the independent and combined effects of a multicomponent exercise program with and without a milk-based nutritional supplement on muscle strength and mass, lower-extremity fatigue, and metabolic markers. A sample of 48 healthy sedentary men aged 60.8 ± 0.4 years were randomly assigned to a 16-week multicomponent exercise training program with a milk-based supplement containing, besides proteins [total milk proteins 4 or 10 g/day or soluble milk proteins rich in leucine (PRO) 10 g/day], carbohydrates and fat. Body composition, muscle mass and strength, and time to task failure, an index of muscle fatigue, were measured. Blood lipid, fibrinogen, creatine phosphokinase, glucose, insulin, C-reactive protein, interleukin-6, tumor necrosis factor-α soluble receptors, and endothelial markers were assessed. Body fat mass was reduced after the 4-month training program in groups receiving 10 g/day of protein supplementation (P < .01). The training program sustained with the daily 10 g/day PRO was associated with a significant increase in dominant fat free mass (+5.4%, P < .01) and in appendicular muscle mass (+4.5%, P < .01). Blood cholesterol was decreased in the trained group receiving 10 g/day PRO. The index of insulin resistance (homeostasis model assessment-insulin resistance) and blood creatine phosphokinase were reduced in the groups receiving 10 g/day PRO, irrespective of exercise. The inflammatory and endothelial markers were not different between the groups. Training caused a significant improvement (+10.6% to 19.4%, P < .01) in the maximal oxygen uptake. Increased maximum voluntary contraction force was seen in the trained groups receiving 10 g/day of proteins (about 3%, P < .05). Time to task failure was improved in the trained participants receiving a 10 g/day supplementation with PRO (P < .01). Soluble milk proteins rich in leucine improved time to muscle failure and increase in skeletal muscle mass and strength after prolonged multicomponent exercise training in healthy older men. Copyright © 2014 AMDA – The Society for Post-Acute and Long-Term Care Medicine. Published by Elsevier Inc. All rights reserved.

  6. Shoulder Muscle Activation of Novice and Resistance Trained Women during Variations of Dumbbell Press Exercises

    PubMed Central

    Luczak, Joshua; Bosak, Andy; Riemann, Bryan L.

    2013-01-01

    Previous research has compared the effects of trunk inclination angle on muscle activation using barbells and Smith machines in men. Whether similar effects occur with the use of dumbbells or in women remains unknown. The purpose was to compare upper extremity surface electromyographical (EMG) activity between dumbbell bench, incline, and shoulder presses. Dominate arm EMG data were recorded for collegiate-aged female resistance trained individuals (n = 12) and novice female resistance trained exercisers (n = 12) from which average EMG amplitude for each repetition phase (concentric, eccentric) was computed. No significant differences were found between experienced and novice resistance trained individuals. For the upper trapezius and anterior deltoid muscles, shoulder press activation was significantly greater than incline press which in turn was significantly greater than bench press across both phases. The bench and incline presses promoted significantly greater pectoralis major sternal activation compared to the shoulder press (both phases). While pectoralis major clavicular activation during the incline press eccentric phase was significantly greater than both the bench and shoulder presses, activation during the bench press concentric phase promoted significantly greater activation than the incline press which in turn was significantly greater than the shoulder press. These results provide evidence for selecting exercises in resistance and rehabilitation programs. PMID:26464884

  7. Effect of Gravity on Robot-Assisted Motor Training After Chronic Stroke: A Randomized Trial

    PubMed Central

    Conroy, Susan S.; Whitall, Jill; Dipietro, Laura; Jones-Lush, Lauren M.; Zhan, Min; Finley, Margaret A.; Wittenberg, George F.; Krebs, Hermano I.; Bever, Christopher T.

    2015-01-01

    Objectives To determine the efficacy of 2 distinct 6-week robot-assisted reaching programs compared with an intensive conventional arm exercise program (ICAE) for chronic, stroke-related upper-extremity (UE) impairment. To examine whether the addition of robot-assisted training out of the horizontal plane leads to improved outcomes. Design Randomized controlled trial, single-blinded, with 12-week follow-up. Setting Research setting in a large medical center. Participants Adults (N=62) with chronic, stroke-related arm weakness stratified by impairment severity using baseline UE motor assessments. Interventions Sixty minutes, 3 times a week for 6 weeks of robot-assisted planar reaching (gravity compensated), combined planar with vertical robot-assisted reaching, or intensive conventional arm exercise program. Main Outcome Measure UE Fugl-Meyer Assessment (FMA) mean change from baseline to final training. Results All groups showed modest gains in the FMA from baseline to final with no significant between group differences. Most change occurred in the planar robot group (mean change ± SD, 2.94± 0.77; 95% confidence interval [CI], 1.40 – 4.47). Participants with greater motor impairment (n=41) demonstrated a larger difference in response (mean change ± SD, 2.29±0.72; 95% CI, 0.85–3.72) for planar robot-assisted exercise compared with the intensive conventional arm exercise program (mean change ± SD, 0.43±0.72; 95% CI, −1.00 to 1.86). Conclusions Chronic UE deficits because of stroke are responsive to intensive motor task training. However, training outside the horizontal plane in a gravity present environment using a combination of vertical with planar robots was not superior to training with the planar robot alone. PMID:21849168

  8. What is the most effective posture to conduct vibration from the lower to the upper extremities during whole-body vibration exercise?

    PubMed Central

    Tsukahara, Yuka; Iwamoto, Jun; Iwashita, Kosui; Shinjo, Takuma; Azuma, Koichiro; Matsumoto, Hideo

    2016-01-01

    Background Whole-body vibration (WBV) exercise is widely used for training and rehabilitation. However, the optimal posture for training both the upper and lower extremities simultaneously remains to be established. Objectives The objective of this study was to search for an effective posture to conduct vibration from the lower to the upper extremities while performing WBV exercises without any adverse effects. Methods Twelve healthy volunteers (age: 22–34 years) were enrolled in the study. To measure the magnitude of vibration, four accelerometers were attached to the upper arm, back, thigh, and calf of each subject. Vibrations were produced using a WBV platform (Galileo 900) with an amplitude of 4 mm at two frequencies, 15 and 30 Hz. The following three postures were examined: posture A, standing posture with the knees flexed at 30°; posture B, crouching position with no direct contact between the knees and elbows; and posture C, crouching position with direct contact between the knees and elbows. The ratio of the magnitude of vibration at the thigh, back, and upper arm relative to that at the calf was used as an index of vibration conduction. Results Posture B was associated with a greater magnitude of vibration to the calf than posture A at 15 Hz, and postures B and C were associated with greater magnitudes of vibration than posture A at 30 Hz. Posture C was associated with a vibration conduction to the upper arm that was 4.62 times and 8.26 times greater than that for posture A at 15 and 30 Hz, respectively. Conclusion This study revealed that a crouching position on a WBV platform with direct contact between the knees and elbows was effective for conducting vibration from the lower to the upper extremities. PMID:26793008

  9. Lower-extremity resistance training on unstable surfaces improves proxies of muscle strength, power and balance in healthy older adults: a randomised control trial.

    PubMed

    Eckardt, Nils

    2016-11-24

    It is well documented that both balance and resistance training have the potential to mitigate intrinsic fall risk factors in older adults. However, knowledge about the effects of simultaneously executed balance and resistance training (i.e., resistance training conducted on unstable surfaces [URT]) on lower-extremity muscle strength, power and balance in older adults is insufficient. The objective of the present study was to compare the effects of machine-based stable resistance training (M-SRT) and two types of URT, i.e., machine-based (M-URT) and free-weight URT (F-URT), on measures of lower-extremity muscle strength, power and balance in older adults. Seventy-five healthy community-dwelling older adults aged 65-80 years, were assigned to three intervention groups: M-SRT, M-URT and F-URT. Over a period of ten weeks, all participants exercised two times per week with each session lasting ~60 min. Tests included assessment of leg muscle strength (e.g., maximal isometric leg extension strength), power (e.g., chair rise test) and balance (e.g., functional reach test), carried out before and after the training period. Furthermore, maximal training load of the squat-movement was assessed during the last training week. Maximal training load of the squat-movement was significantly lower in F-URT in comparison to M-SRT and M-URT. However, lower-extremity resistance training conducted on even and uneven surfaces meaningfully improved proxies of strength, power and balance in all groups. M-URT produced the greatest improvements in leg extension strength and F-URT in the chair rise test and functional reach test. Aside from two interaction effects, overall improvements in measures of lower-extremity muscle strength, power and balance were similar across training groups. Importantly, F-URT produced similar results with considerably lower training load as compared to M-SRT and M-URT. Concluding, F-URT seems an effective and safe alternative training program to mitigate intrinsic fall risk factors in older adults. This trial has been registered with clinicaltrials.gov ( NCT02555033 ) on 09/18/2015.

  10. Gait Training Interventions for Lower Extremity Amputees: A Systematic Literature Review

    PubMed Central

    Highsmith, M. Jason; Andrews, Casey R.; Millman, Claire; Fuller, Ashley; Kahle, Jason T.; Klenow, Tyler D.; Lewis, Katherine L.; Bradley, Rachel C.; Orriola, John J.

    2016-01-01

    Lower extremity (LE) amputation patients who use prostheses have gait asymmetries and altered limb loading and movement strategies when ambulating. Subsequent secondary conditions are believed to be associated with gait deviations and lead to long-term complications that impact function and quality of life as a result. The purpose of this study was to systematically review the literature to determine the strength of evidence supporting gait training interventions and to formulate evidence statements to guide practice and research related to therapeutic gait training for lower extremity amputees. A systematic review of three databases was conducted followed by evaluation of evidence and synthesis of empirical evidence statements (EES). Eighteen manuscripts were included in the review, which covered two areas of gait training interventions: 1) overground and 2) treadmill-based. Eight EESs were synthesized. Four addressed overground gait training, one covered treadmill training, and three statements addressed both forms of therapy. Due to the gait asymmetries, altered biomechanics, and related secondary consequences associated with LE amputation, gait training interventions are needed along with study of their efficacy. Overground training with verbal or other auditory, manual, and psychological awareness interventions was found to be effective at improving gait. Similarly, treadmill-based training was found to be effective: 1) as a supplement to overground training; 2) independently when augmented with visual feedback and/or body weight support; or 3) as part of a home exercise plan. Gait training approaches studied improved multiple areas of gait, including sagittal and coronal biomechanics, spatiotemporal measures, and distance walked. PMID:28066520

  11. Heterogeneity of physical function responses to exercise training in older adults.

    PubMed

    Chmelo, Elizabeth A; Crotts, Charlotte I; Newman, Jill C; Brinkley, Tina E; Lyles, Mary F; Leng, Xiaoyan; Marsh, Anthony P; Nicklas, Barbara J

    2015-03-01

    To describe the interindividual variability in physical function responses to supervised resistance and aerobic exercise training interventions in older adults. Data analysis of two randomized, controlled exercise trials. Community-based research centers. Overweight and obese (body mass index (BMI)≥27.0 kg/m2) sedentary men and women aged 65 to 79 (N=95). Five months of 4 d/wk of aerobic training (AT, n=40) or 3 d/wk of resistance training (RT, n=55). Physical function assessments: global measure of lower extremity function (Short Physical Performance Battery (SPPB)), 400-m walk, peak aerobic capacity (VO2 peak), and knee extensor strength. On average, both exercise interventions significantly improved physical function. For AT, there was a 7.9% increase in VO2 peak; individual absolute increases varied from 0.4 to 4.3 mL/kg per minute, and four participants (13%) showed no change or a decrease in VO2 peak. For RT, knee extensor strength improved an average of 8.1%; individual increases varied from 1.2 to 63.7 Nm, and 16 participants (30%) showed no change or a decrease in strength. Usual gait speed, 400-m walk time, chair rise time, and SPPB improved for the majority of AT participants and usual gait speed, chair rise time, and SPPB improved for the majority of RT participants, but there was wide variation in the magnitude of improvement. Only change in 400-m walk time with RT was related to exercise adherence (correlation coefficient=-0.31, P=.004). Despite sufficient levels of adherence to both exercise interventions, some participants did not improve function, and the magnitude of improvement varied widely. Additional research is needed to identify factors that optimize responsiveness to exercise to maximize its functional benefits in older adults. © 2015, Copyright the Authors Journal compilation © 2015, The American Geriatrics Society.

  12. Risk of Lower Extremity Injury in a Military Cadet Population After a Supervised Injury-Prevention Program

    PubMed Central

    Carow, Scott D.; Haniuk, Eric M.; Cameron, Kenneth L.; Padua, Darin A.; Marshall, Stephen W.; DiStefano, Lindsay J.; de la Motte, Sarah J.; Beutler, Anthony I.; Gerber, John P.

    2016-01-01

    Context: Specific movement patterns have been identified as possible risk factors for noncontact lower extremity injuries. The Dynamic Integrated Movement Enhancement (DIME) was developed to modify these movement patterns to decrease injury risk. Objective: To determine if the DIME is effective for preventing lower extremity injuries in US Military Academy (USMA) cadets. Design: Cluster-randomized controlled trial. Setting: Cadet Basic Training at USMA. Patients or Other Participants: Participants were 1313 cadets (1070 men, 243 women). Intervention(s): Participants were cluster randomized to 3 groups. The active warm-up (AWU) group performed standard Army warm-up exercises. The DIME groups were assigned to a DIME cadre-supervised (DCS) group or a DIME expert-supervised (DES) group; the former consisted of cadet supervision and the latter combined cadet and health professional supervision. Groups performed exercises 3 times weekly for 6 weeks. Main Outcome Measure(s): Cumulative risk of lower extremity injury was the primary outcome. We gathered data during Cadet Basic Training and for 9 months during the subsequent academic year. Risk ratios and 95% confidence intervals (CIs) were calculated to compare groups. Results: No differences were seen between the AWU and the combined DIME (DCS and DES) groups during Cadet Basic Training or the academic year. During the academic year, lower extremity injury risk in the DES group decreased 41% (relative risk [RR] = 0.59; 95% CI = 0.38, 0.93; P = .02) compared with the DCS group; a nonsignificant 25% (RR = 0.75; 95% CI = 0.49, 1.14; P = .18) decrease occurred in the DES group compared with the AWU group. Finally, there was a nonsignificant 27% (RR = 1.27; 95% CI = 0.90, 1.78; P = .17) increase in injury risk during the academic year in the DCS group compared with the AWU group. Conclusions: We observed no differences in lower extremity injury risk between the AWU and combined DIME groups. However, the magnitude and direction of the risk ratios in the DES group compared with the AWU group, although not statistically significant, indicate that professional supervision may be a factor in the success of injury-prevention programs. PMID:25117875

  13. Risk of Lower Extremity Injury in a Military Cadet Population After a Supervised Injury-Prevention Program.

    PubMed

    Carow, Scott D; Haniuk, Eric M; Cameron, Kenneth L; Padua, Darin A; Marshall, Stephen W; DiStefano, Lindsay J; de la Motte, Sarah J; Beutler, Anthony I; Gerber, John P

    2016-11-01

     Specific movement patterns have been identified as possible risk factors for noncontact lower extremity injuries. The Dynamic Integrated Movement Enhancement (DIME) was developed to modify these movement patterns to decrease injury risk.  To determine if the DIME is effective for preventing lower extremity injuries in US Military Academy (USMA) cadets.  Cluster-randomized controlled trial.  Cadet Basic Training at USMA.  Participants were 1313 cadets (1070 men, 243 women).  Participants were cluster randomized to 3 groups. The active warm-up (AWU) group performed standard Army warm-up exercises. The DIME groups were assigned to a DIME cadre-supervised (DCS) group or a DIME expert-supervised (DES) group; the former consisted of cadet supervision and the latter combined cadet and health professional supervision. Groups performed exercises 3 times weekly for 6 weeks.  Cumulative risk of lower extremity injury was the primary outcome. We gathered data during Cadet Basic Training and for 9 months during the subsequent academic year. Risk ratios and 95% confidence intervals (CIs) were calculated to compare groups.  No differences were seen between the AWU and the combined DIME (DCS and DES) groups during Cadet Basic Training or the academic year. During the academic year, lower extremity injury risk in the DES group decreased 41% (relative risk [RR] = 0.59; 95% CI = 0.38, 0.93; P = .02) compared with the DCS group; a nonsignificant 25% (RR = 0.75; 95% CI = 0.49, 1.14; P = .18) decrease occurred in the DES group compared with the AWU group. Finally, there was a nonsignificant 27% (RR = 1.27; 95% CI = 0.90, 1.78; P = .17) increase in injury risk during the academic year in the DCS group compared with the AWU group.  We observed no differences in lower extremity injury risk between the AWU and combined DIME groups. However, the magnitude and direction of the risk ratios in the DES group compared with the AWU group, although not statistically significant, indicate that professional supervision may be a factor in the success of injury-prevention programs.

  14. Muscle changes with eccentric exercise: Implications on earth and in space

    NASA Technical Reports Server (NTRS)

    Hargens, Alan R.; Parazynski, Scott; Aratow, Michael; Friden, Jan

    1989-01-01

    Recent investigations of fluid pressure, morpholo gy, and enzyme activities of skeletal muscle exercised eccentrically or concentrically in normal human subjects are reviewed. Intramuscular pressures were measured before, during, and after submaximal exercise and correlated with subjective muscle soreness, fiber size, water content, and blood indices of muscle enzymes. High intensity eccentric exercise is characterized by post exercise pain, elevated intramuscular pressures, and swelling of both type 1 and 2 fibers as compared to concentric exercise. Thus, long periods of unaccustomed, high level eccentric contraction may cause muscle injury, fiber swelling, fluid accumulation, elevated intramuscular pressure, and delayed muscle soreness. Training regimens of progressively increasing eccentric exercise, however, cause less soreness and are extremely efficacious in increasing muscle mass and strength. It is proposed that on Earth, postural muscles are uniquely adapted to low levels of prolonged eccentric contraction that are absent during weightlessness. The almost complete absence of eccentric exercise in space may be an important contributor to muscle atrophy and therefore equipment should be designed to integrate eccentric contractions into exercise protocols for long-term spaceflight.

  15. Cardiac Autonomic and Blood Pressure Responses to an Acute Bout of Kettlebell Exercise.

    PubMed

    Wong, Alexei; Nordvall, Michael; Walters-Edwards, Michelle; Lastova, Kevin; Francavillo, Gwendolyn; Summerfield, Liane; Sanchez-Gonzalez, Marcos

    2017-10-07

    Kettlebell (KB) training has become an extremely popular exercise program for improving both muscle strength and aerobic fitness. However, the cardiac autonomic modulation and blood pressure (BP) responses induced by an acute KB exercise session are currently unknown. Understanding the impact of this exercise modality on the post-exercise autonomic modulation and BP would facilitate appropriate exercise prescription in susceptible populations. The present study evaluated the effects of an acute session of KB exercise on heart rate variability (HRV) and BP responses in healthy individuals. Seventeen (M=10, F=7) healthy subjects completed either a KB or non-exercise control trial in randomized order. HRV and BP measurements were collected at baseline, 3, 10 and 30 min after each trial. There were significant increases (P < 0.01) in heart rate, markers of sympathetic activity (nLF) and sympathovagal balance (nLF/nHF) for 30 min after the trial KB trial, while no changes from baseline were observed after the control trial. There were also significant decreases (P < 0.01) in markers of vagal tone (RMMSD, nHF) for 30 min as well as (P < 0.01) systolic BP and diastolic BP at 10 and 30 min after the trial KB trial while no changes from baseline were observed after the control trial. Our findings indicate that KB exercise increases sympathovagal balance for 30 min post-intervention which is concurrent with an important hypotensive effect. Further research is warranted to evaluate the potential clinical application of KB training in populations that might benefit from post-exercise hypotension, such as hypertensives.

  16. Expected for acquisition movement exercise is more effective for functional recovery than simple exercise in a rat model of hemiplegia.

    PubMed

    Ikeda, Satoshi; Ohwatashi, Akihiko; Harada, Katsuhiro; Kamikawa, Yurie; Yoshida, Akira

    2013-01-01

    The use of novel rehabilitative approaches for effecting functional recovery following stroke is controversial. Effects of different but effective rehabilitative interventions in the hemiplegic patient are not clear. We studied the effects of different rehabilitative approaches on functional recovery in the rat photochecmical cerebral infarction model. Twenty-four male Wistar rats aged 8 weeks were used. The cranial bone was exposed under deep anesthesia. Rose bengal (20 mg/kg) was injected intravenously, and the sensorimotor area of the cerebral cortex was irradiated transcranially for 20 min with a light beam of 533-nm wavelength. Animals were divided into 3 groups. In the simple-exercise group, treadmill exercise was performed for 20 min every day. In the expected for acquisition movement-training group, beam-walking exercise was done for 20 min daily. The control group was left to recover without additional intervention. Hindlimb function was evaluated with the beam-walking test. Following cerebral infarction, dysfunction of the contralateral extremities was observed. Functional recovery was observed earlier in the expected for acquisition training group than in the other groups. Although rats in the treadmill group recovered more quickly than controls, the beam-walking group had the shortest overall recovery time. Exercise facilitated functional recovery in the rat hemiplegic model, and expected for acquisition exercise was more effective than simple exercise. These findings are considered to have important implications for the future development of clinical rehabilitation programs.

  17. Retention of movement pattern changes after a lower extremity injury prevention program is affected by program duration.

    PubMed

    Padua, Darin A; DiStefano, Lindsay J; Marshall, Stephen W; Beutler, Anthony I; de la Motte, Sarah J; DiStefano, Michael J

    2012-02-01

    Changes in movement patterns have been repeatedly observed immediately after completing a lower extremity injury prevention program. However, it is not known if movement pattern changes are maintained after discontinuing the training program. The ability to maintain movement pattern changes after training has ceased may be influenced by the program's duration. The authors hypothesized that among individuals who completed either a 3-month or 9-month training program and who demonstrated immediate movement pattern changes, only those who completed the 9-month training program would maintain movement pattern changes after a 3-month period of no longer performing the exercises. Cohort study; Level of evidence, 2. A total of 140 youth soccer athletes from 15 separate teams volunteered to participate. Athletes' movement patterns were assessed using the Landing Error Scoring System (LESS) at pretest, posttest, and 3 months after ceasing the program (retention test). Eighty-four of the original 140 participants demonstrated improvements in their LESS scores between pretest and posttest (change in LESS score >0) and were included in the final analyses for this study (n = 84; 20 boys and 64 girls; mean age, 14 ± 2 years; age range, 11-17 years). Teams performed 3-month (short-duration group) and 9-month (extended-duration group) injury prevention programs. The exercises performed were identical for both groups. Teams performed the programs as part of their normal warm-up routine. Although both groups improved their total LESS scores from pretest to posttest, only the extended-duration training group retained their improvements 3 months after ceasing the injury prevention program (F(2,137) = 3.38; P = .04). Results suggest that training duration may be an important factor to consider when designing injury prevention programs that facilitate long-term changes in movement control.

  18. Soccer-Specific Warm-Up and Lower Extremity Injury Rates in Collegiate Male Soccer Players

    PubMed Central

    Grooms, Dustin R.; Palmer, Thomas; Onate, James A.; Myer, Gregory D.; Grindstaff, Terry

    2013-01-01

    Context: A number of comprehensive injury-prevention programs have demonstrated injury risk-reduction effects but have had limited adoption across athletic settings. This may be due to program noncompliance, minimal exercise supervision, lack of exercise progression, and sport specificity. A soccer-specific program described as the F-MARC 11+ was developed by an expert group in association with the Federation Internationale de Football Association (FIFA) Medical Assessment and Research Centre (F-MARC) to require minimal equipment and implementation as part of regular soccer training. The F-MARC 11+ has been shown to reduce injury risk in youth female soccer players but has not been evaluated in an American male collegiate population. Objective: To investigate the effects of a soccer-specific warm-up program (F-MARC 11+) on lower extremity injury incidence in male collegiate soccer players. Design: Cohort study. Setting: One American collegiate soccer team followed for 2 seasons. Patients or Other Participants: Forty-one male collegiate athletes aged 18–25 years. Intervention(s): The F-MARC 11+ program is a comprehensive warm-up program targeting muscular strength, body kinesthetic awareness, and neuromuscular control during static and dynamic movements. Training sessions and program progression were monitored by a certified athletic trainer. Main Outcome Measure(s): Lower extremity injury risk and time lost to lower extremity injury. Results: The injury rate in the referent season was 8.1 injuries per 1000 exposures with 291 days lost and 2.2 injuries per 1000 exposures and 52 days lost in the intervention season. The intervention season had reductions in the relative risk (RR) of lower extremity injury of 72% (RR = 0.28, 95% confidence interval = 0.09, 0.85) and time lost to lower extremity injury (P < .01). Conclusions: This F-MARC 11+ program reduced overall risk and severity of lower extremity injury compared with controls in collegiate-aged male soccer athletes. PMID:23848519

  19. Impact of extreme exercise at high altitude on oxidative stress in humans.

    PubMed

    Quindry, John; Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2016-09-15

    Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field-based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox-sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude-induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude-induced hypoxia may have an independent influence on redox-sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  20. Impact of extreme exercise at high altitude on oxidative stress in humans

    PubMed Central

    Dumke, Charles; Slivka, Dustin; Ruby, Brent

    2015-01-01

    Abstract Exercise and oxidative stress research continues to grow as a physiological subdiscipline. The influence of high altitude on exercise and oxidative stress is among the recent topics of intense study in this area. Early findings indicate that exercise at high altitude has an independent influence on free radical generation and the resultant oxidative stress. This review provides a detailed summary of oxidative stress biochemistry as gleaned mainly from studies of humans exercising at high altitude. Understanding of the human response to exercise at altitude is largely derived from field‐based research at altitudes above 3000 m in addition to laboratory studies which employ normobaric hypoxia. The implications of oxidative stress incurred during high altitude exercise appear to be a transient increase in oxidative damage followed by redox‐sensitive adaptations in multiple tissues. These outcomes are consistent for lowland natives, high altitude acclimated sojourners and highland natives, although the latter group exhibits a more robust adaptive response. To date there is no evidence that altitude‐induced oxidative stress is deleterious to normal training or recovery scenarios. Limited evidence suggests that deleterious outcomes related to oxidative stress are limited to instances where individuals are exposed to extreme elevations for extended durations. However, confirmation of this tentative conclusion requires further investigation. More applicably, altitude‐induced hypoxia may have an independent influence on redox‐sensitive adaptive responses to exercise and exercise recovery. If correct, these findings may hold important implications for athletes, mountaineers, and soldiers working at high altitude. These points are raised within the confines of published research on the topic of oxidative stress during exercise at altitude. PMID:26453842

  1. Effects of physical activity on body composition and fatigue perception in patients on thyrotropin-suppressive therapy for differentiated thyroid carcinoma.

    PubMed

    Vigário, Patrícia dos Santos; Chachamovitz, Dhiãnah Santini de Oliveira; Cordeiro, Mônica Fabíola Nogueira; Teixeira, Patrícia de Fátima dos Santos; de Castro, Carmen Lúcia Natividade; de Oliveira, Fátima Palha; Vaisman, Mário

    2011-07-01

    Subclinical thyrotoxicosis (scTox) may be associated with alterations in body composition and fatigue that can be possibly reversed with physical activity. The aim of the present study was to evaluate whether the systematic practice of physical activity improves lower extremity muscle mass and fatigue perception in patients with scTox. We studied 36 patients (2 men) with median age of 48.0 (43.0-51.0) years, body mass index of 27.4 (22.1-30.2) kg/m(2), thyrotropin <0.4 mU/L, and free thyroxine between 0.8 and 1.9 ng/dL and 48 control subjects (C group; 7 men). Patients were randomly divided in two groups according to the adherence to the exercise training: scTox-Tr (n = 19)-patients who adhered to the exercise intervention and scTox-Sed (n = 17)--patients who did not adhere to it. The C group did not participate in the randomization. The exercise training was supervised by a physical education instructor, and it was composed of 60 minutes of aerobic activity and stretching exercises, twice a week, during 12 weeks. In both groups, body composition was assessed (anthropometric method), and the Chalder Fatigue Scale was determined at baseline and after 3 months of intervention (scTox-Tr group) or observation (scTox-Sed group). At baseline, patients with scTox had lower muscle mass and mid-thigh girth and more fatigue on the Chalder Fatigue Scale than euthyroid control subjects. The scTox-Tr group had an increase in muscle mass, reduction in the variables reflecting whole body fat, and lesser perception of fatigue during the exercise training period (p ≤ 0.05 for these parameters at the start and end of the exercise training period). scTox is associated with lower muscle mass and mid-thigh girth and more fatigue. Physical activity training can partially ameliorate these characteristics. More studies are needed to determine what training program would be optimum, both in terms of beneficial effects and for avoiding potential adverse responses.

  2. Moderate Intensity Cycling Exercise after Upper Extremity Resistance Training Interferes Response to Muscle Hypertrophy but Not Strength Gains

    PubMed Central

    Tomiya, Shigeto; Kikuchi, Naoki; Nakazato, Koichi

    2017-01-01

    The purpose of the present study was to examine the effect of 30-min moderate intensity cycling exercise immediately after upper-body resistance training on the muscle hypertrophy and strength gain. Fourteen subjects were randomly divided between two groups. One group performed moderate intensity (55% of maximum oxygen consumption [VO2max], 30 min) cycle training immediately after arm resistance training as concurrent training (CT; n = 7, age: 21.8 ± 0.7 years, height: 1.68 ± 0.06 m, weight: 60.3 ± 7.4 kg); the second group performed the same endurance and arm RT on separate days as control group (SEP; n=7, age: 22.1 ± 0.7 years, height: 1.76 ± 0.05 m, weight: 63.8 ± 3.6 kg). The supervised progressive RT program was designed to induce muscular hypertrophy (3-5 sets of 10 repetitions) with bilateral arm-curl exercise using 75% of the one repetition maximum (1RM) with 2-min rest intervals. The RT program was performed for 8 weeks, twice per week. Muscle cross-sectional area (CSA), 1RM, and VO2max were measured pre- and post-training. Significant increases in muscle CSA from pre- to post-training were observed in both the SEP (p = 0.001, effect size [ES] = 0.84) and the CT groups (p = 0.004, ES = 0.45). A significant increase in 1RM from pre- to post-training was observed in the SEP (p = 0.025, ES = 0.91) and CT groups (p = 0.001, ES = 2.38). There were no interaction effects (time × group) for CSA, 1RM, or VO2max. A significantly higher percentage change of CSA was observed in the SEP group (12.1 ± 4.9%) compared to the CT group (5.0 ± 2.7%, p = 0.029), but no significant difference was observed in the 1RM (SEP: 19.8 ± 16.8%, CT: 24.3 ± 11.1%). The data suggest that significant improvement of CSA and strength can be expected with progressive resistance training with subsequent endurance exercise performed immediately or on a different day. Changes in CSA might be affected by subsequent cycling exercise after 8 weeks of training. Key points Moderate intensity cycling exercise immediately after upper-body resistance training influences the magnitude of muscle hypertrophy and relative value of CSA changes. There was no statistically significant difference in the % change in 1RM between groups after concurrent strength training and moderate intensity endurance training. Timing of endurance training could alter the degree of muscular growth induced by resistance training. PMID:28912657

  3. Lower- extremity biomechanics and maintenance of vertical-jump height during prolonged intermittent exercise.

    PubMed

    Schmitz, Randy J; Cone, John C; Copple, Timothy J; Henson, Robert A; Shultz, Sandra J

    2014-11-01

    Potential biomechanical compensations allowing for maintenance of maximal explosive performance during prolonged intermittent exercise, with respect to the corresponding rise in injury rates during the later stages of exercise or competition, are relatively unknown. To identify lower-extremity countermovement-jump (CMJ) biomechanical factors using a principal-components approach and then examine how these factors changed during a 90-min intermittent-exercise protocol (IEP) while maintaining maximal jump height. Mixed-model design. Laboratory. Fifty-nine intermittent-sport athletes (30 male, 29 female) participated in experimental and control conditions. Before and after a dynamic warm-up and every 15 min during the 1st and 2nd halves of an individually prescribed 90-min IEP, participants were assessed on rating of perceived exertion, sprint/cut speed, and 3-dimensional CMJ biomechanics (experimental). On a separate day, the same measures were obtained every 15 min during 90 min of quiet rest (control). Univariate piecewise growth models analyzed progressive changes in CMJ performance and biomechanical factors extracted from a principal-components analysis of the individual biomechanical dependent variables. While CMJ height was maintained during the 1st and 2nd halves, the body descended less and knee kinetic and energetic magnitudes decreased as the IEP progressed. The results indicate that vertical-jump performance is maintained along with progressive biomechanical changes commonly associated with decreased performance. A better understanding of lower-extremity biomechanics during explosive actions in response to IEP allows us to further develop and individualize performance training programs.

  4. The effects of 12 weeks Pilates-inspired exercise training on functional performance in older women: A randomized clinical trial.

    PubMed

    Vieira, Natália Donzeli; Testa, Daniela; Ruas, Paula Cristine; Salvini, Tânia de Fátima; Catai, Aparecida Maria; Melo, Ruth Caldeira

    2017-04-01

    Recent scientific evidence supports the benefits of Pilates exercises on postural balance and muscle strength of older persons. However, their effects on other aspects of physical fitness, which are also important for independent living in older age, are still unknown. To investigate the effects of a 12-week Pilates-inspired exercise program on the functional performance of community-dwelling older women. Forty community-dwelling older women were randomly enrolled in a Pilates-inspired exercise training (2 times/week, 60 min/session) (PG, n = 21, 66.0 ± 1.4yrs) or kept in the control group (CG; n = 19, 63.3 ± 0.9yrs). The Pilates exercises were conducted in small groups and performed on mats (using accessories such as exercise rubber bands, swiss and exercise balls). The functional performance on one-leg stance (OLS), timed up and go (TUG), five-times-sit-to-stand (STS) and 6-min walk (6 MW) tests was evaluated before and after the 12-week Pilates training or control follow-up period. After 12 weeks, time effects were observed for STS (p = 0.03) and 6 MW tests (p < 0.01). Only among PG subjects did the time spent to rise from a chair and return to a seated position decrease significantly (2.0 s faster, p = 0.02) and the distance walked in 6 min increase (∼30 m, p < 0.01). OLS and TUG performance remained unaltered in both groups. Pilates-inspired exercises improved dynamic balance, lower-extremity strength and aerobic resistance in community-dwelling older women. Therefore, it may be a potentially effective exercise regimen to maintain physical fitness in old age. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. [The stakes of force perseverance training and muscle structure training in rehabilitation. Recommendations of the German Federation for Prevention and Rehabilitation of Heart-Circulatory Diseases e.v].

    PubMed

    Bjarnason-Wehrens, B; Mayer-Berger, W; Meister, E R; Baum, K; Hambrecht, R; Gielen, S

    2004-05-01

    While aerobic endurance training has been a substantial part of international recommendations for cardiac rehabilitation during the last 30 years, there is still a rather reserved attitude of the medical community to resistance exercise in this field. Careful recommendations for resistance exercise in cardiac patients was only published a few years ago. It has been taken for granted that strength exercise elicits a substantial increase in blood pressure and thus imposes, especially in cardiac patients, a risk of potentially fatal cardiovascular complications. Results of the latest studies show that the existing recommended overcaution is not justified. Strength exercise can indeed result in extreme increases of blood pressure, but this is not the case for all loads of this kind. The actual blood pressure response to strength exercise depends on the isometric component, the exercise intensity (load or resistance used), muscle mass activated, the number of repetitions in the set and/or the duration of the contraction as well as involvement of Valsalva maneuver. Intra arterially performed blood pressure measurements during resistance exercise in patients with heart disease showed that strength training carried out at low intensities (40-60% of MVC) and with high numbers of repetitions (15-20) only evokes a moderate increase of blood pressure comparable with blood pressure measures induced by moderate endurance training. If used properly and performed accurately, individually dosed, medically supervised and controlled through experienced sport therapists, a dynamic resistance exercise is-at least for a certain group of patients-not associated with higher risks than an aerobic endurance training and can in addition to endurance training improve muscle force and endurance, have a positive influence on cardiovascular function, metabolism, cardiovascular risk factors as well as psychosocial well-being and overall quality of life. However, with respect to currently available data, resistance exercise cannot be generally recommended for all groups of patients. The appropriate kind and execution of training is highly dependent on current clinical status, cardiac capacity as well as possible accompanying diseases of the patient. Most of the studies carried out up to date included small samples of middle-aged male patients with almost normal levels of aerobic endurance performance and good left ventricular function. Data is missing for risk groups, older patients and women. Therefore, an integration of dynamic resistance exercises in cardiac rehabilitation can only be recommended without hesitation for CHD patients with high physical capacity (good myocardial function, revascularized). Since patients with myocardial ischemia and/or low left ventricular functioning might develop wall motion disturbances and/or dangerous ventricular arrhythmia when performing resistance exercises, prevalence of the following conditions is recommend: moderate to high LV-function, high physical performance (>5-6 metabolic equivalents= >1.4 watts/kg body weight) in absence of angina pectoris symptoms or ST-depression, by maintained current medication. In the proposed recommendations, a classification of risks for resistance training in cardiac rehabilitation is being made based on current data and is complemented by specific recommendations for particular groups of patients and detailed guidelines for setup and completion of the therapy program.

  6. Physiological intensity profile, exercise load and performance predictors of a 65-km mountain ultra-marathon.

    PubMed

    Fornasiero, Alessandro; Savoldelli, Aldo; Fruet, Damiano; Boccia, Gennaro; Pellegrini, Barbara; Schena, Federico

    2018-06-01

    The aims of the study were to describe the physiological profile of a 65-km (4000-m cumulative elevation gain) running mountain ultra-marathon (MUM) and to identify predictors of MUM performance. Twenty-three amateur trail-runners performed anthropometric evaluations and an uphill graded exercise test (GXT) for VO 2max, ventilatory thresholds (VTs), power outputs (PMax, PVTs) and heart rate response (HRmax, HR@VTs). Heart rate (HR) was monitored during the race and intensity was expressed as: Zone I (VT2) for exercise load calculation (training impulse, TRIMP). Mean race intensity was 77.1%±4.4% of HRmax distributed as: 85.7%±19.4% Zone I, 13.9%±18.6% Zone II, 0.4%±0.9% Zone III. Exercise load was 766±110 TRIMP units. Race time (11.8±1.6h) was negatively correlated with VO 2max (r = -0.66, P <0.001) and PMax (r = -0.73, P <0.001), resulting these variables determinant in predicting MUM performance, whereas exercise thresholds did not improve performance prediction. Laboratory variables explained only 59% of race time variance, underlining the multi-factorial character of MUM performance. Our results support the idea that VT1 represents a boundary of tolerable intensity in this kind of events, where exercise load is extremely high. This information can be helpful in identifying optimal pacing strategies to complete such extremely demanding MUMs.

  7. Comparison of joint kinetics during free weight and flywheel resistance exercise.

    PubMed

    Chiu, Loren Z F; Salem, George J

    2006-08-01

    The most common modality for resistance exercise is free weight resistance. Alternative methods of providing external resistance have been investigated, in particular for use in microgravity environments such as space flight. One alternative modality is flywheel inertial resistance, which generates resistance as a function of the mass, distribution of mass, and angular acceleration of the flywheel. The purpose of this investigation was to characterize net joint kinetics of multijoint exercises performed with a flywheel inertial resistance device in comparison to free weights. Eleven trained men and women performed the front squat, lunge, and push press on separate days with free weight or flywheel resistance, while instrumented for biomechanical analysis. Front squats performed with flywheel resistance required greater contribution of the hip and ankle, and less contribution of the knee, compared to free weight. Push presses performed with flywheel resistance had similar impulse requirements at the knee compared to free weight, but greater impulse requirement at the hip and ankle. As used in this investigation, flywheel inertial resistance increases the demand on the hip extensors and ankle plantarflexors and decreases the mechanical demand on the knee extensors for lower extremity exercises such as the front squat and lunge. Exercises involving dynamic lower and upper extremity actions, such as the push press, may benefit from flywheel inertial resistance, due to the increased mechanical demand on the knee extensors.

  8. Scapular resting position, shoulder pain and function in disabled athletes.

    PubMed

    Aytar, Aydan; Zeybek, Aslican; Pekyavas, Nihan Ozunlu; Tigli, Ayca Aytar; Ergun, Nevin

    2015-10-01

    Despite the fact that the number of disabled individuals participating in sports is increasing, there are only sparse reports in the literature concerning overuse injuries. The purpose of this study was to compare scapular resting position, shoulder pain, and function in wheelchair basketball, amputee soccer, and disabled table tennis players. Descriptive study. A total of 63 disabled players from amputee soccer, wheelchair basketball, and disabled table tennis participated in our study. Scapular resting position was taken as primary outcome; pain and function were taken as secondary outcome measurements. Scapular resting position was evaluated with Lateral Scapular Slide Test. Visual Analog Scale was used for evaluating shoulder pain intensity. Quick disabilities of the arm, shoulder, and hand questionnaire were used to assess upper extremity function. There was a significant difference in shoulder pain, function, and scapular resting position in all groups (p < 0.05). Paired comparisons between amputee soccer and wheelchair basketball players and also amputee soccer and disabled table tennis showed difference for all measurement parameters (p < 0.05). When the results are evaluated, it may be stated that amputee soccer players have better scapular resting position than other sports. Crutch usage may not negatively affect scapular resting position and perceived function as much as wheelchair usage. Exercise techniques for shoulder and resting position could be included in training programs of disabled athletes. Wheelchair/crutch usage is a risk, and special exercise techniques for shoulder and dyskinesis could be included in training programs to prevent injury. However, it may not just be important for wheelchair athletes, it may also be important for amputee soccer players. In particular, total upper extremity evaluations and exercises could be added within exercise programs. © The International Society for Prosthetics and Orthotics 2014.

  9. Effects of foot orthotics on running economy: methodological considerations.

    PubMed

    Burke, Jeanmarie R; Papuga, M Owen

    2012-05-01

    The purpose of the study was to collect preliminary data to address methodological considerations that may impact subject-specific reactions to foot orthotics during running. Six endurance-trained recreational runners recruited from a chiropractic college campus wore their preferred running shoes and then inserted either their custom-made orthotics during 1 testing session or their shoe-fitted insoles during the other testing session. Comfort perception was measured for each footwear condition. Measurements of oxygen consumption (VO2) at several moderate exercise intensities, to mimic recreational running, generated an individual's economy-of-running line. Predicted running velocity at VO(2max) (vVO2max) was calculated as an index of endurance performance. Lower extremity muscle activity was recorded. Descriptive statistics, a repeated-measures analysis of variance model, and a paired t test were used to document any systematic changes in running economy, lower extremity muscle activities, and vVO2max within and across subjects as a function of footwear conditions. Decreases in VO2 at several moderate exercise intensities (F((1,5)footwear) = 10.37, P = .023) and increases in vVO2max (t(5) = 4.20, P = .008) occurred in all 6 subjects while wearing their orthotic intervention vs their shoe-fitted insoles. There were no consistent changes in lower extremity muscle activity. Methodological decisions to use a sustained incremental exercise protocol at several moderate exercise intensities and to measure comfort perception of a custom-molded foot orthosis were effective at documenting systematic improvements in running economy among the 6 recreational runners tested. The development of a less physically demanding sustained exercise protocol is necessary to determine underlying neuromuscular mechanisms and/or clinical effectiveness of orthotic interventions. Copyright © 2012 National University of Health Sciences. Published by Mosby, Inc. All rights reserved.

  10. The effects of Tai-Chi in conjunction with thera-band resistance exercise on functional fitness and muscle strength among community-based older people.

    PubMed

    Lin, Shu-Fen; Sung, Huei-Chuan; Li, Tzai-Li; Hsieh, Tsung-Cheng; Lan, Hsiao-Chin; Perng, Shoa-Jen; Smith, Graeme D

    2015-05-01

    The aim of this study was to investigate the effects of Tai-Chi in conjunction with thera-band resistance exercise on functional fitness and muscle strength in community-based older people. Tai-Chi is known to improve functional fitness in older people. Tai-Chi is usually performed with free hands without resistance training and usually focuses on training lower limbs. To date, no study has examined the use of Tai-Chi in conjunction with thera-band resistance exercise in this population. Cluster randomised trial design. Older people at six senior day care centres in Taiwan were assigned to thera-band resistance exercise or control group using a cluster randomisation. The thera-band resistance exercise group (n = 48) received sixty minute thera-band resistance exercise twice weekly for a period of 16 weeks. The control group (n = 47) underwent routine activities in the day care centre, receiving no Tai-Chi or resistance exercise. After receiving the thera-band resistance exercise, intervention participants displayed a significant increase in muscle strength of upper and lower extremities. Significant improvements were recorded on most measures of the Senior Fitness Test, with the exception of the chair-stand and back-scratch test. Thera-band resistance exercise has the potential to improve functional fitness and muscle strength in community-based older people. Thera-band resistance exercise potentially offers a safe and appropriate form of physical activity that nursing staff can easily incorporate into the daily routine of older people in day care centres, potentially improving functional performance and muscle strength. © 2015 John Wiley & Sons Ltd.

  11. Changes in body composition, blood lipid profile, and growth factor hormone in a patient with Prader-willi syndrome during 24 weeks of complex exercise: a single case study.

    PubMed

    Joung, Hee Joung; Lim, In Soo

    2018-03-30

    Prader-Willi syndrome (PWS) is a genetic disorder characterized by excessive appetite with progressive obesity and growth hormone (GH) deficiency. Excessive eating causes progressive obesity with increased risk of morbidities and mortality. Although GH treatment has beneficial effects on patients with PWS, adverse events have occurred during GH treatment. Exercise potentially has a positive effect on obesity management. The purpose of this research was to examine the effects of 24-week complex exercise program on changes in body composition, blood lipid profiles, and growth factor hormone levels in a patient with PWS. The case study participant was a 23-year-old man with PWS who also had type II diabetes mellitus because of extreme obesity. Complex exercises, including strength and aerobic exercises, were conducted 5 times one week for 60 minutes per session, over 24 weeks. Blood sampling was conducted five times: before and at 8, 16, 20, and 24 weeks after commencement of the exercise program. Weight, fat mass, triglycerides/high-density lipoprotein (TG/HDL) ratio, mean blood glucose, and GH decreased after training. Blood insulin and insulin-like growth factor (IGF-1) levels increased after training. At 15 and 20 weeks, insulin injection was discontinued. Insulin levels increased and average blood glucose decreased to normal levels; IGF-1 increased continuously during the 24-week exercise program. Conclusion] Twenty-four weeks of complex exercises had a positive effect on obesity and diabetes in the patient with PWS. Therefore, long-period complex exercises might be an effective intervention for improvement of metabolic factors in PWS patients. ©2018 The Korean Society for Exercise Nutrition.

  12. Virtual reality exercise improves mobility after stroke: an inpatient randomized controlled trial.

    PubMed

    McEwen, Daniel; Taillon-Hobson, Anne; Bilodeau, Martin; Sveistrup, Heidi; Finestone, Hillel

    2014-06-01

    Exercise using virtual reality (VR) has improved balance in adults with traumatic brain injury and community-dwelling older adults. Rigorous randomized studies regarding its efficacy, safety, and applicability with individuals after stroke are lacking. The purpose of this study was to determine whether an adjunct VR therapy improves balance, mobility, and gait in stroke rehabilitation inpatients. A blinded randomized controlled trial studying 59 stroke survivors on an inpatient stroke rehabilitation unit was performed. The treatment group (n=30) received standard stroke rehabilitation therapy plus a program of VR exercises that challenged balance (eg, soccer goaltending, snowboarding) performed while standing. The control group (n=29) received standard stroke rehabilitation therapy plus exposure to identical VR environments but whose games did not challenge balance (performed in sitting). VR training consisted of 10 to 12 thirty-minute daily sessions for a 3-week period. Objective outcome measures of balance and mobility were assessed before, immediately after, and 1 month after training. Confidence intervals and effect sizes favored the treatment group on the Timed Up and Go and the Two-Minute Walk Test, with both groups meeting minimal clinical important differences after training. More individuals in the treatment group than in the control group showed reduced impairment in the lower extremity as measured by the Chedoke McMaster Leg domain (P=0.04) immediately after training. This VR exercise intervention for inpatient stroke rehabilitation improved mobility-related outcomes. Future studies could include nonambulatory participants as well as the implementation strategies for the clinical use of VR. http://www.ANZCTR.org.au/. Unique identifier: ACTRN12613000710729. © 2014 American Heart Association, Inc.

  13. Upper extremity weightlifting injuries: Diagnosis and management.

    PubMed

    Golshani, Kayvon; Cinque, Mark E; O'Halloran, Peter; Softness, Kenneth; Keeling, Laura; Macdonell, J Ryan

    2018-03-01

    Common upper extremity injuries in resistance training athletes include muscle strains, ligament sprains, pectoralis major tendon ruptures, distal biceps tendon ruptures, and chronic shoulder pain and capsulolabral injuries. While each injury is unique in its specific anatomic location and mechanism, each is preventable with proper exercise technique, safety and maintenance of muscle balance. Conservative treatment is the therapeutic modality of choice and these injuries generally resolve with workout modification, appropriate recovery, anti-inflammatory medication, and physical therapy. If conservative treatment fails, surgical intervention is often successful and can return the weightlifter to a level of performance near their pre-injury level.

  14. Core strength training using a combination of home exercises and a dynamic sling system for the management of low back pain in pre-professional ballet dancers: a case series.

    PubMed

    Kline, Jessica Beckmann; Krauss, John R; Maher, Sara F; Qu, Xianggui

    2013-01-01

    Estimates of low back pain prevalence in USA ballet dancers range from 8% to 23%. Lumbar stabilization and extensor muscle training has been shown to act as a hypoalgesic for low back pain. Timing and coordination of multifidi and transverse abdominis muscles are recognized as important factors for spinal stabilization. The purpose of this study was to explore the effects of training methods using home exercises and a dynamic sling system on core strength, disability, and low back pain in pre-professional ballet dancers. Five participants were randomly assigned to start a traditional unsupervised lumbar stabilization home exercise program (HEP) or supervised dynamic sling training to strengthen the core and lower extremities. Measurements were taken at baseline and at weeks 3 and 6 for disability using the patient specific functional scale (PSFS), pain using the Numerical Pain Rating System (NPRS), core strength and endurance using timed plank, side-plank, and bridge positions, and sciatic nerve irritability using the straight leg raise (SLR). Data were analyzed using descriptive statistics. From initial to final measurements, all participants demonstrated an improvement in strength and SLR range, and those with initial pain and disability reported relief of symptoms. These results suggest that dynamic sling training and a HEP may help to increase strength, decrease pain, and improve function in dancers without aggravating sciatic nerve irritation.

  15. Exercise recommendations for individuals with spinal cord injury.

    PubMed

    Jacobs, Patrick L; Nash, Mark S

    2004-01-01

    Persons with spinal cord injury (SCI) exhibit deficits in volitional motor control and sensation that limit not only the performance of daily tasks but also the overall activity level of these persons. This population has been characterised as extremely sedentary with an increased incidence of secondary complications including diabetes mellitus, hypertension and atherogenic lipid profiles. As the daily lifestyle of the average person with SCI is without adequate stress for conditioning purposes, structured exercise activities must be added to the regular schedule if the individual is to reduce the likelihood of secondary complications and/or to enhance their physical capacity. The acute exercise responses and the capacity for exercise conditioning are directly related to the level and completeness of the spinal lesion. Appropriate exercise testing and training of persons with SCI should be based on the individual's exercise capacity as determined by accurate assessment of the spinal lesion. The standard means of classification of SCI is by application of the International Standards for Classification of Spinal Cord Injury, written by the Neurological Standards Committee of the American Spinal Injury Association. Individuals with complete spinal injuries at or above the fourth thoracic level generally exhibit dramatically diminished cardiac acceleration with maximal heart rates less than 130 beats/min. The work capacity of these persons will be limited by reductions in cardiac output and circulation to the exercising musculature. Persons with complete spinal lesions below the T(10) level will generally display injuries to the lower motor neurons within the lower extremities and, therefore, will not retain the capacity for neuromuscular activation by means of electrical stimulation. Persons with paraplegia also exhibit reduced exercise capacity and increased heart rate responses (compared with the non-disabled), which have been associated with circulatory limitations within the paralysed tissues. The recommendations for endurance and strength training in persons with SCI do not vary dramatically from the advice offered to the general population. Systems of functional electrical stimulation activate muscular contractions within the paralysed muscles of some persons with SCI. Coordinated patterns of stimulation allows purposeful exercise movements including recumbent cycling, rowing and upright ambulation. Exercise activity in persons with SCI is not without risks, with increased risks related to systemic dysfunction following the spinal injury. These individuals may exhibit an autonomic dysreflexia, significantly reduced bone density below the spinal lesion, joint contractures and/or thermal dysregulation. Persons with SCI can benefit greatly by participation in exercise activities, but those benefits can be enhanced and the relative risks may be reduced with accurate classification of the spinal injury.

  16. Aerobic anti-gravity exercise in patients with Charcot-Marie-Tooth disease types 1A and X: A pilot study.

    PubMed

    Knak, Kirsten L; Andersen, Linda K; Vissing, John

    2017-12-01

    Charcot-Marie-Tooth (CMT) disease is a hereditary neuropathy associated with impaired walking capacity. Some patients are too weak in the lower extremity muscles to walk at gravity with sufficient intensity or duration to gain benefit. The aim was to investigate the effect of aerobic anti-gravity exercise in weak patients with CMT 1A and X. Five adult patients performed moderate-intensity aerobic anti-gravity exercise 3/week for 10 weeks. There was a significant positive difference in Berg balance scale and postural stability test between test occasions, and walking distance in the 6-min walk test trended to increase. The study indicates that the anti-gravity treadmill training of patients with CMT should be pursued in larger CMT cohorts.

  17. Effectiveness of a balance-focused exercise program for enhancing functional fitness of older adults at risk of falling: A randomised controlled trial.

    PubMed

    Zhao, Yanan; Chung, Pak-Kwong; Tong, Tom K

    This study examined the effectivenss of a balance-focused training program (i.e., Exercise for Balance Improvement Program, ExBP) in improving functional fitness of older nonfallers at risk of falling. Sixty-one participants were randomly assigned to receive 16 weeks of ExBP or Tai Chi (TC) training, or no treatment (CON) with an 8-week follow-up. The Senior Fitness Test battery was applied to assess functional fitness. After the intervention, results revealed significant improvements in all fitness components in the ExBP group. Compared with the CON group, the ExBP group demonstrated more improvements in lower extremity muscle strength, agility and balance, and aerobic endurance. The ExBP group also displayed more improvements in aerobic endurance than the TC group in posttest and follow-up test. Therefore, the balance-focused exercise can be applied as an effective way in improving overall functional fitness among older nonfallers who are at risk of falling. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. A NON-OPERATIVE APPROACH TO THE MANAGEMENT OF CHRONIC EXERTIONAL COMPARTMENT SYNDROME IN A TRIATHLETE: A CASE REPORT.

    PubMed

    Collins, Cristiana Kahl; Gilden, Brad

    2016-12-01

    Chronic Exertional Compartment Syndrome (CECS) causes significant exercise related pain secondary to increased intra-compartmental pressure (ICP) in the lower extremities. CECS is most often treated with surgery with minimal information available on non-operative approaches to care. This case report presents a case of CECS successfully managed with physical therapy. Case report. A 34-year-old competitive triathlete experienced bilateral anterior and posterior lower leg pain measured with a numerical pain rating scale of 7/10 at two miles of running. Pain decreased to resting levels of 4/10 two hours post exercise. The patient was diagnosed with bilateral CECS with left lower extremity ICP at rest measured at 36 mmHg (deep posterior), 36-38 mmHg (superficial posterior), and 25 mmHg (anterior). Surgery was recommended. The patient chose non-operative care and was treated with physical therapy using the Functional Manual Therapy approach aimed at addressing myofascial restrictions, neuromuscular function and motor control deficits throughout the lower quadrant for 23 visits over 3.5 months. At discharge the patient had returned to running pain free and training for an Olympic distance triathlon. The Lower Extremity Functional Scale improved from 62 to 80. The patient reported minimal post exercise tightness in bilateral lower extremities. Left lower extremity compartment pressure measurements at rest were in normal ranges measuring at 11 mmHg (deep posterior), 8 mmHg (superficial posterior), 19 mmHg (anterior), and 10 mmHg (lateral). Three-years post intervention the patient remained pain free with a Global Rating of Change of 6. This case report describes the successful treatment of a triathlete with Functional Manual Therapy resulting in a return to competitive sports without pain. Level 4.

  19. [Rhabdomyolysis in a well-trained woman after unusually intense exercise].

    PubMed

    Larsen, Christian; Jensen, Mogens Pfeiffer

    2014-06-16

    A 35-year-old woman was acutely hospitalized with oedema of the upper limbs, reduced force, severe movement reduction and muscle pain in both upper extremities. Her symptoms started after three days of intense exercise doing kayaking and a lot of pull-ups in crossfit. Rhabdomyolysis is a syndrome, characterized by muscle necrosis. Usually there is a marked elevation of creatine kinase (CK) concentration with symptoms as described and myoglobinuria (dark coloured urine). After hard muscular work there will often be asymptomatic, but significant elevations in CK concentration, and in rare cases life-threatening rhabdomyolysis with electrolyte imbalances and acute kidney failure.

  20. Effects of strength training on body composition, physical functioning, and quality of life in prostate cancer patients during androgen deprivation therapy.

    PubMed

    Nilsen, Tormod S; Raastad, Truls; Skovlund, Eva; Courneya, Kerry S; Langberg, Carl W; Lilleby, Wolfgang; Fosså, Sophie D; Thorsen, Lene

    2015-11-01

    Androgen deprivation therapy (ADT) increases survival rates in prostate cancer (PCa) patients with locally advanced disease, but is associated with side effects that may impair daily function. Strength training may counteract several side effects of ADT, such as changes in body composition and physical functioning, which in turn may affect health-related quality of life (HRQOL). However, additional randomised controlled trials are needed to expand this knowledge. Fifty-eight PCa patients on ADT were randomised to either 16 weeks of high-load strength training (n = 28) or usual care (n = 30). The primary outcome was change in total lean body mass (LBM) assessed by dual x-ray absorptiometry (DXA). Secondary outcomes were changes in regional LBM, fat mass, and areal bone mineral density (aBMD) measured by DXA; physical functioning assessed by 1-repetition maximum (1RM) tests, sit-to-stand test, stair climbing test and Shuttle walk test; and HRQOL as measured by the European Organization for the Research and Treatment of Cancer Quality of Life Questionnaire Core 30. No statistically significant effect of high-load strength training was demonstrated on total LBM (p = 0.16), but significant effects were found on LBM in the lower and upper extremities (0.49 kg, p < 0.01 and 0.15 kg, p < 0.05, respectively). Compared to usual care, high-load strength training showed no effect on fat mass, aBMD or HRQOL, but beneficial effects were observed in all 1RM tests, sit-to-stand test and stair climbing tests. Adherence to the training program was 88% for lower body exercises and 84% for upper body exercises. In summary, high-load strength training improved LBM in extremities and physical functioning, but had no effect on fat mass, aBMD, or HRQOL in PCa patients on ADT.

  1. The GRONORUN 2 study: effectiveness of a preconditioning program on preventing running related injuries in novice runners. The design of a randomized controlled trial.

    PubMed

    Bredeweg, Steef W; Zijlstra, Sjouke; Buist, Ida

    2010-09-01

    Distance running is a popular recreational exercise. It is a beneficial activity for health and well being. However, running may also cause injuries, especially of the lower extremities. In literature there is no agreement what intrinsic and extrinsic factors cause running related injuries (RRIs). In theory, most RRIs are elicited by training errors, this too much, too soon. In a preconditioning program runners can adapt more gradually to the high mechanical loads of running and will be less susceptible to RRIs. In this study the effectiveness of a 4-week preconditioning program on the incidence of RRIs in novice runners prior to a training program will be studied. The GRONORUN 2 (Groningen Novice Running) study is a two arm randomized controlled trial studying the effect of a 4-week preconditioning (PRECON) program in a group of novice runners. All participants wanted to train for the recreational Groningen 4-Mile running event. The PRECON group started a 4-week preconditioning program with walking and hopping exercises 4 weeks before the start of the training program. The control (CON) and PRECON group started a frequently used 9-week training program in preparation for the Groningen 4-Mile running event.During the follow up period participants registered their running exposure, other sporting activities and running related injuries in an Internet based running log. The primary outcome measure was the number of RRIs. RRI was defined as a musculoskeletal ailment or complaint of the lower extremities or back causing a restriction on running for at least three training sessions. The GRONORUN 2 study will add important information to the existing running science. The concept of preconditioning is easy to implement in existing training programs and will hopefully prevent RRIs especially in novice runners. The Netherlands National Trial Register NTR1906. The NTR is part of the WHO Primary Registries.

  2. Short-Term High Intensity Plyometric Training Program Improves Strength, Power and Agility in Male Soccer Players

    PubMed Central

    Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István

    2013-01-01

    The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 – 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer. PMID:23717351

  3. Short-term high intensity plyometric training program improves strength, power and agility in male soccer players.

    PubMed

    Váczi, Márk; Tollár, József; Meszler, Balázs; Juhász, Ivett; Karsai, István

    2013-03-01

    The aim of the present study was to investigate the effects of a short-term in-season plyometric training program on power, agility and knee extensor strength. Male soccer players from a third league team were assigned into an experimental and a control group. The experimental group, beside its regular soccer training sessions, performed a periodized plyometric training program for six weeks. The program included two training sessions per week, and maximal intensity unilateral and bilateral plyometric exercises (total of 40 - 100 foot contacts/session) were executed. Controls participated only in the same soccer training routine, and did not perform plyometrics. Depth vertical jump height, agility (Illinois Agility Test, T Agility Test) and maximal voluntary isometric torque in knee extensors using Multicont II dynamometer were evaluated before and after the experiment. In the experimental group small but significant improvements were found in both agility tests, while depth jump height and isometric torque increments were greater. The control group did not improve in any of the measures. Results of the study indicate that plyometric training consisting of high impact unilateral and bilateral exercises induced remarkable improvements in lower extremity power and maximal knee extensor strength, and smaller improvements in soccer-specific agility. Therefore, it is concluded that short-term plyometric training should be incorporated in the in-season preparation of lower level players to improve specific performance in soccer.

  4. The effect of complex rehabilitation training for 12 weeks on trunk muscle function and spine deformation of patients with SCI.

    PubMed

    Sung, Dong-Hun; Yoon, Seong-Deok; Park, Gi Duck

    2015-03-01

    [Purpose] It is important for patients with incomplete spinal cord injury (SCI) to strengthen their muscle strength and return to the work force one of the ultimate objectives of rehabilitation. This study reports how a single patient with SCI became stabilized in terms of abdominal muscles and back extension muscles, as well as returning the back to the neutral position from spinal deformation, as result of complex exercises performed for 12 weeks. [Subjects] The degree of damage of the subject was rated as C grade. The subject of this study had unstable posture due to paralysis in the lower extremities of the left side after removal of a malignant tumor by surgical operation, and tilting and torsion in the pelvis increased followed by increase of kyphosis in the thoracolumbar spine. The subject was more than two years since diagnosis of incomplete SCI after surgery. [Methods] Using isokinetic lumbar muscle strength measurement equipment, peak torque/weight, total work and average power in flexion and extension of the lumbar region were measured. A trunk measurement system (Formetric 4D, DIERS, Germany), which is a 3D image processing apparatus with high resolution for vertebrae, was used in order to measure 3D vertebrae and pelvis deformation as well as static balance abilities. As an exercise method, a foam roller was used to conduct fascia relaxation massage for warming-up, and postural kyphosis was changed into postural lordosis by lat pull-down using equipment, performed in 5 sets of 15 times preset at 60% intensity of 1RM 4 set of 10 crunch exercises per set using Togu's were done while sitting at the end of Balance pad, and 4 sets of 15 bridge exercises. [Results] All angular speed tests showed a gradual increase in muscle strength. Flexion and extension showed 10% and 3% improvements, respectively. The spine deformation test showed that isokinetic exercise and lat pull-down exercise for 12 weeks resulted in improved spinal shape. [Conclusion] In this study, core stability exercise for deep muscle training and lat pull-down exercise had positive effects on lower extremity muscle strength and the spinal shape of a patient with SCI.

  5. Electrocardiographic abnormalities in amateur male marathon runners.

    PubMed

    Kaleta, Anna M; Lewicka, Ewa; Dąbrowska-Kugacka, Alicja; Lewicka-Potocka, Zuzanna; Wabich, Elżbieta; Szerszyńska, Anna; Dyda, Julia; Sobolewski, Jakub; Koenner, Jakub; Raczak, Grzegorz

    2018-06-18

    Sports activity has become extremely popular among amateurs. Electrocardiography is a useful tool in screening for cardiac pathologies in athletes; however, there is little data on electrocardiographic abnormalities in the group of amateur athletes. The aim of this study was to analyze the abnormalities in resting and exercise electrocardiograms (ECGs) in a group of amateur athletes, and try to determine whether the criteria applied for the general population or for athletes' ECGs should be implemented in this group. In 40 amateur male marathon runners, 3 consecutive 12-lead ECGs were performed: 2-3 weeks before (stage 1), just after the run (stage 2) and 2-3 weeks after the marathon (stage 3). Resting (stage 1) and exercise (stage 2) ECGs were analyzed following the refined criteria for the assessment of athlete's ECG (changes classified as training-related, borderline or training-unrelated). In resting ECGs, at least 1 abnormality was found in 92.5% of the subjects and the most common was sinus bradycardia (62.5%). In post-exercise ECGs, at least 1 abnormality was present in 77.5% of the subjects and the most common was right atrium enlargement (RAE) (42.5%). Training-related ECG variants were more frequent at rest (82.5% vs 42.5%; p = 0.0008), while borderline variants - after the run (22.5% vs 57.5%; p = 0.0004). Training-unrelated abnormalities were found in 15% and 10% of the subjects, respectively (p-value - nonsignificant), and the most common was T-wave inversion. Even if the refined criteria rather than the criteria used for normal sedentary population were applied, the vast majority of amateur runners showed at least 1 abnormality in resting ECGs, which were mainly training-related variants. However, at rest, in 15% of the subjects, pathologic training-unrelated abnormalities were found. The most frequent post-exercise abnormality was right atrial enlargement. General electrocardiographic screening in amateur athletes should be taken into consideration.

  6. Effect of a Lower Extremity Preventive Training Program on Physical Performance Scores in Military Recruits.

    PubMed

    Peck, Karen Y; DiStefano, Lindsay J; Marshall, Stephen W; Padua, Darin A; Beutler, Anthony I; de la Motte, Sarah J; Frank, Barnett S; Martinez, Jessica C; Cameron, Kenneth L

    2017-11-01

    Peck, KY, DiStefano, LJ, Marshall, SW, Padua, DA, Beutler, AI, de la Motte, SJ, Frank, BS, Martinez, JC, and Cameron, KL. Effect of a lower extremity preventive training program on physical performance scores in military recruits. J Strength Cond Res 31(11): 3146-3157, 2017-Exercise-based preventive training programs are designed to improve movement patterns associated with lower extremity injury risk; however, the impact of these programs on general physical fitness has not been evaluated. The purpose of this study was to compare fitness scores between participants in a preventive training program and a control group. One thousand sixty-eight freshmen from a U.S. Service Academy were cluster-randomized into either the intervention or control group during 6 weeks of summer training. The intervention group performed a preventive training program, specifically the Dynamic Integrated Movement Enhancement (DIME), which is designed to improve lower extremity movement patterns. The control group performed the Army Preparation Drill (PD), a warm-up designed to prepare soldiers for training. Main outcome measures were the Army Physical Fitness Test (APFT) raw and scaled (for age and sex) scores. Independent t tests were used to assess between-group differences. Multivariable logistic regression models were used to control for the influence of confounding variables. Dynamic Integrated Movement Enhancement group participants completed the APFT 2-mile run 20 seconds faster compared with the PD group (p < 0.001), which corresponded with significantly higher scaled scores (p < 0.001). Army Physical Fitness Test push-up scores were significantly higher in the DIME group (p = 0.041), but there were no significant differences in APFT sit-up scores. The DIME group had significantly higher total APFT scores compared with the PD group (p < 0.001). Similar results were observed in multivariable models after controlling for sex and body mass index (BMI). Committing time to the implementation of a preventive training program does not appear to negatively affect fitness test scores.

  7. Exercise with vibration dumb-bell enhances neuromuscular excitability measured using TMS.

    PubMed

    Fowler, D E; Tok, M I; Colakoğlu, M; Bademkiran, F; Colakoğlu, Z

    2010-09-01

    The purpose of the study was to examine the effects of exercise without vibration and exercise with vibration (27 Hz) on the cortical silent period (CSP) and cortical motor threshold (CMT) measured using transcranial magnetic stimulation (TMS). In 22 university athletes, a circular coil attached to a TMS stimulator was applied over the contralateral motor cortex of the target forearm. Resting cortical motor thresholds for dominant and non-dominant extremities were measured for each participant. Then, 15 biceps curls (15 flexion and 15 extension movements) were performed with the dominant arm using a single vibration dumbbell with the vibration turned off. On a different day, the same biceps curl protocol was performed with the dumbbell vibrating at 27 Hz (2 mm amplitude). A supra-threshold TMS stimulus (1.5x CMT) was delivered while participants were voluntarily contracting the flexor digitorum sublimus muscle (30% MVC grip strength) to determine cortical silent periods before and after each upper extremity exercise protocol. Cortical motor thresholds were measured at rest and after the vibration exercise protocol. All subjects completed the study protocol as designed. After TMS, the CSP in the dominant (exercised) extremities increased after exercise without vibration from a resting (pre-exercise) mean of 57.3 ms to 70.4 ms (P<0.05) and after exercise with vibration, the CSP decreased to a mean of 49.4 ms (P<0.02). The CSP in the non-dominant (unexercised) extremities decreased from resting values of 75.6 ms to 69.3 ms (P=0.935) after the exercise-only protocol and decreased to 49.4 ms (P<0.01) after the vibration exercise protocol. The cortical motor threshold in exercised extremities decreased from a resting mean of 41.4 μV to a postvibration exercise mean of 38.6 μV (P<0.01). In non-exercised extremities, the CMT also decreased, from mean of 43.5 μV to 39.9 μV after the vibration-exercise (P<0.01). Vibration exercise enhances bilateral corticospinal excitability, as demonstrated by a shortened cortical silent period and lower cortical motor threshold in both exercised and non-exercised extremities.

  8. Implementation of specific strength training among industrial laboratory technicians: long-term effects on back, neck and upper extremity pain.

    PubMed

    Pedersen, Mogens Theisen; Andersen, Christoffer H; Zebis, Mette K; Sjøgaard, Gisela; Andersen, Lars L

    2013-10-09

    Previous studies have shown positive effects of physical exercise at the workplace on musculoskeletal disorders. However, long-term adherence remains a challenge. The present study evaluates long-term adherence and effects of a workplace strength training intervention on back, neck and upper extremity pain among laboratory technicians. Cluster-randomized controlled trial involving 537 industrial laboratory technicians. Subjects were randomized at the cluster level to one of two groups: training group 1 (TG1, n = 282) performing supervised strength training from February to June 2009 (round one) or training group 2 (TG2, n = 255) performing supervised strength training from August to December 2009 (round two). The outcome measures were changes in self-reported pain intensity (0-9) in the back, neck and upper extremity as well as Disability of the Arm, Shoulder and Hand (DASH, 0-100). Regular adherence, defined as at least one training session per week, was achieved by around 85% in both groups in the supervised training periods. In the intention-to-treat analyses there were significant group by time effects for pain in the neck, right shoulder, right hand and lower back and DASH-resulting in significant reductions in pain (mean 0.3 to 0.5) and DASH (mean 3.9) in the scheduled training group compared to the reference group. For TG1 there were no significant changes in pain in round two, i.e. they maintained the pain reduction achieved in round one. Subgroup analyses among those with severe pain (> = 3 on a scale of 0-9) showed a significant group by time effect for pain in the neck, right shoulder, upper back and lower back. For these subgroups the pain reduction in response to training ranged from 1.1 to 1.8. Specific strength training at the workplace can lead to significant long-term reductions in spinal and upper extremity pain and DASH. The pain reductions achieved during the intensive training phase with supervision appears to be maintained a half year later.

  9. Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1

    PubMed Central

    Lee, Kyoung-Hee

    2015-01-01

    This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program. PMID:26180287

  10. Effects of a virtual reality-based exercise program on functional recovery in stroke patients: part 1.

    PubMed

    Lee, Kyoung-Hee

    2015-06-01

    This study aimed to determine the effects of a virtual reality exercise program using the Interactive Rehabilitation and Exercise System (IREX) on the recovery of motor and cognitive function and the performance of activities of daily living in stroke patients. [Subjects] The study enrolled 10 patients diagnosed with stroke who received occupational therapy at the Department of Rehabilitation Medicine of Hospital A between January and March 2014. [Methods] The patients took part in the virtual reality exercise program for 30 minutes each day, three times per week, for 4 weeks. Then, the patients were re-evaluated to determine changes in upper extremity function, cognitive function, and performance of activities of daily living 4 weeks after the baseline assessment. [Results] In the experimental group, there were significant differences in the Korea-Mini Mental Status Evaluation, Korean version of the modified Barthel index, and Fugl-Meyer assessment scores between the baseline and endpoint. [Conclusion] The virtual reality exercise program was effective for restoring function in stroke patients. Further studies should develop systematic protocols for rehabilitation training with a virtual reality exercise program.

  11. Aerobic Fitness Level Typical of Elite Athletes is not Associated With Even Faster VO2 Kinetics During Cycling Exercise

    PubMed Central

    Figueira, Tiago R.; Caputo, Fabrizio; Machado, Carlos E.P.; Denadai, Benedito S.

    2008-01-01

    The aim of this study was to address the question if the VO2 kinetics is further improved as the aerobic training status increases from trained to elite level athletes. Maximal oxygen uptake (VO2max), work-rate associated to VO2max (IVO2max) and VO2 kinetics of moderate (Mod) and maximal exercise (Max) were determined in fifty- five subjects. Then, they were assigned into three groups: low (LF), intermediate (IF) and high (HF) aerobic fitness level. In average, the VO2max of LF, IF and HF groups were, respectively, 36.0 ± 3.1, 51.1 ± 4.5 and 68.1 ± 3.9 ml·kg·min-1 (p ≤ 0.05 among each other). VO2 kinetics mean response time of both exercise intensities were significantly faster (p ≤ 0.05) in HF (Mod, 27.5 ± 5.5 s; Max, 32.6 ± 8.3 s) and IF (Mod, 25.0 ± 3.1 s; Max, 42.6 ± 10.4 s) when compared to LF (Mod, 35.7 ± 7.9 s; Max: 57.8 ± 17.8 s). We can conclude that VO2 kinetics is improved as the fitness level is increased from low to intermediate but not further improved as the aerobic fitness level increases from intermediate to high. Key points Currently, it is reasonable to believe that the rate-limiting step of VO2 kinetics depends on exercise intensity. The well known physiological adaptations induced by endurance training are likely the most extreme means to overcome rate-limiting steps determining VO2 kinetics across exercise intensities. However, exercise adaptation leading individuals to the high-end of aerobic fitness level range (VO2max > 65 ml.kg.min-1) is not able to further improve VO2 kinetics during both, moderate and maximal intensity exercise. PMID:24150145

  12. Innovative STRoke Interactive Virtual thErapy (STRIVE) online platform for community-dwelling stroke survivors: a randomised controlled trial protocol.

    PubMed

    Johnson, Liam; Bird, Marie-Louise; Muthalib, Makii; Teo, Wei-Peng

    2018-01-09

    The STRoke Interactive Virtual thErapy (STRIVE) intervention provides community-dwelling stroke survivors access to individualised, remotely supervised progressive exercise training via an online platform. This trial aims to determine the clinical efficacy of the STRIVE intervention and its effect on brain activity in community-dwelling stroke survivors. In a multisite, assessor-blinded randomised controlled trial, 60 stroke survivors >3 months poststroke with mild-to-moderate upper extremity impairment will be recruited and equally randomised by location (Melbourne, Victoria or Launceston, Tasmania) to receive 8 weeks of virtual therapy (VT) at a local exercise training facility or usual care. Participants allocated to VT will perform 3-5 upper limb exercises individualised to their impairment severity and preference, while participants allocated to usual care will be asked to maintain their usual daily activities. The primary outcome measures will be upper limb motor function and impairment, which will be assessed using the Action Research Arm Test and Upper Extremity Fugl-Meyer, respectively. Secondary outcome measures include upper extremity function and spasticity, as measured by the box and block test and Modified AshworthScale, respectively, and task-related changes in bilateral sensorimotor cortex haemodynamics during hand reaching and wrist extension movements as measured by functional near-infrared spectroscopy. Quality of life will be measured using the Euro-Quality of Life-5 Dimension-5 Level Scale, and the Motor Activity Log-28 will be used to measure use of the hemiparetic arm. All measures will be assessed at baseline and immediately postintervention. The study was approved by the Deakin University Human Research Ethics Committee in May 2017 (No. 2017-087). The results will be disseminated in peer-reviewed journals and presented at major international stroke meetings. ACTRN12617000745347; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Innovative STRoke Interactive Virtual thErapy (STRIVE) online platform for community-dwelling stroke survivors: a randomised controlled trial protocol

    PubMed Central

    Bird, Marie-Louise; Muthalib, Makii

    2018-01-01

    Introduction The STRoke Interactive Virtual thErapy (STRIVE) intervention provides community-dwelling stroke survivors access to individualised, remotely supervised progressive exercise training via an online platform. This trial aims to determine the clinical efficacy of the STRIVE intervention and its effect on brain activity in community-dwelling stroke survivors. Methods and analysis In a multisite, assessor-blinded randomised controlled trial, 60 stroke survivors >3 months poststroke with mild-to-moderate upper extremity impairment will be recruited and equally randomised by location (Melbourne, Victoria or Launceston, Tasmania) to receive 8 weeks of virtual therapy (VT) at a local exercise training facility or usual care. Participants allocated to VT will perform 3–5 upper limb exercises individualised to their impairment severity and preference, while participants allocated to usual care will be asked to maintain their usual daily activities. The primary outcome measures will be upper limb motor function and impairment, which will be assessed using the Action Research Arm Test and Upper Extremity Fugl-Meyer, respectively. Secondary outcome measures include upper extremity function and spasticity, as measured by the box and block test and Modified AshworthScale, respectively, and task-related changes in bilateral sensorimotor cortex haemodynamics during hand reaching and wrist extension movements as measured by functional near-infrared spectroscopy. Quality of life will be measured using the Euro-Quality of Life-5 Dimension-5 Level Scale, and the Motor Activity Log-28 will be used to measure use of the hemiparetic arm. All measures will be assessed at baseline and immediately postintervention. Ethics and dissemination The study was approved by the Deakin University Human Research Ethics Committee in May 2017 (No. 2017–087). The results will be disseminated in peer-reviewed journals and presented at major international stroke meetings. Trial registration number ACTRN12617000745347; Pre-results. PMID:29317414

  14. Effect of Exercise Training and +Gz Acceleration Training on Men

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Simonson, Shawn R.; Stocks, Jodie M.; Evans, Joyce; Knapp, Charles F.; Cowell, Stephenie A.; Pemberton, Kendra N.; Wilson, Heather W.; Vener, Jamie M.; Evetts, Simon N.

    2001-01-01

    Countermeasures for reduction in work capacity (maximal oxygen uptake and strength) during spaceflight and enhanced orthostatic intolerance during re-entry, landing and egress from the return vehicle are continuing problems. The purpose for this study was to test the hypothesis that passive-acceleration training; supine, interval, exercise plus acceleration training and exercise combined with acceleration training would improve orthostatic tolerance in ambulatory men; and that addition of the aerobic exercise conditioning would not alter this improved tolerance from that of passive-acceleration training. Seven men (24-38 yr) underwent "Passive" training on the Ames human-powered centrifuge (HPC) for 30 min, "Exercise" training on the cycle ergometer with constant +Gz acceleration; and "Combined" exercise training at 40% to 90% of the HPC +Gz(max) exercise level. Maximal supine exercise loads increased significant (P<0.05) by 8.3% (Passive), 12.6% (Exercise), and by 15.4% (Combined) after training, but their post-training maximal oxygen uptakes and maximal heart rates were unchanged. Maximal time to fatigue (endurance) was unchanged with Passive was increased (P<0.05) with Exercise and Combined training. Thus, the exercise in the Exercise and Combined training Phases resulted in greater maximal loads and endurance without effect on maximal oxygen uptake or heart rate. There was a 4% to 6% increase (P<0.05) in all four quadriceps muscle volumes (right and left) after post-Combined training. Resting pre-tilt heart rate was elevated by 12.9% (P<0.05) only after Passive training suggesting that the exercise training attenuated the HR response. Plasma volume (% Delta) was uniformly decreased by 8% to 14% (P<0.05) at tilt-tolerance pre- vs. post-training indicating essentially no effect of training on the level of hypovolemia. Post-training tilt-tolerance time and heart rate were increased (P<0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training appeared to attenuate the increased Passive tilt-tolerance.

  15. Physical exercise and menstrual cycle alterations. What are the mechanisms?

    PubMed

    Keizer, H A; Rogol, A D

    1990-10-01

    The prevalence of menstrual cycle alterations in athletes is considerably higher than in sedentary controls. There appears to be a multicausal aetiology, which makes it extremely difficult to dissociate the effects of physical exercise on the menstrual cycle from the other predisposing factors. From cross-sectional studies it appeared that physical training eventually might lead to shortening of the luteal phase and secondary amenorrhoea. Prospective studies in both trained and previously untrained women have shown that the amount and/or the intensity of exercise has to exceed a certain limit in order to elicit this phenomenon. We hypothesise, therefore, that apart from a certain predisposition, athletes with a training-induced altered menstrual cycle are overreached (short term overtraining, which is reversible in days to weeks after training reduction). Menstrual cycle alterations are most likely caused by subtle changes in the episodic secretion pattern of luteinising hormone (LH) as have been found in sedentary women with hypothalamic amenorrhoea as well as in athletes after very demanding training. The altered LH secretion then, might be caused by an increased corticotrophin-releasing hormone (CRH) secretion which inhibits the gonadotrophin-releasing hormone (GnRH) release. In addition, increased CRH tone will lead to increased beta-endorphin levels which will also inhibit the GnRH signaller. Finally, the continuous activation of the adrenals will result in a higher catecholamine production, which may be converted to catecholestrogens. These compounds are known to be potent inhibitors of GnRH secretion. In conclusion, menstrual cycle alterations are likely to occur after very demanding training, which causes an increase secretion of antireproductive hormones. These hormones can inhibit the normal pulsatile secretion pattern of the gonadotrophins.

  16. Military exercises, knee and ankle joint position sense, and injury in male conscripts: a pilot study.

    PubMed

    Mohammadi, Farshid; Azma, Kamran; Naseh, Iman; Emadifard, Reza; Etemadi, Yasaman

    2013-01-01

    The high incidence of lower limb injuries associated with physical exercises in military conscripts suggests that fatigue may be a risk factor for injuries. Researchers have hypothesized that lower limb injuries may be related to altered ankle and knee joint position sense (JPS) due to fatigue. To evaluate if military exercises could alter JPS and to examine the possible relation of JPS to future lower extremity injuries in military service. Cohort study. Laboratory. A total of 50 male conscripts (age = 21.4 ± 2.3 years, height = 174.5 ± 6.4 cm, mass = 73.1 ± 6.3 kg) from a unique military base were recruited randomly. main outcome measure(s): Participants performed 8 weeks of physical activities at the beginning of a military course. In the first part of the study, we instructed participants to recognize predetermined positions before and after military exercises so we could examine the effects of military exercise on JPS. The averages of the absolute error and the variable error of 3 trials were recorded. We collected data on the frequency of lower extremity injuries over 8 weeks. Next, the participants were divided into 2 groups: injured and uninjured. Separate 2 × 2 × 2 (group-by-time-by-joint) mixed-model analyses of variance were used to determine main effects and interactions of these factors for each JPS measure. In the second part of the study, we examined whether the effects of fatigue on JPS were related to the development of injury during an 8-week training program. We calculated Hedges effect sizes for JPS changes postexercise in each group and compared change scores between groups. We found group-by-time interactions for all JPS variables (F range = 2.86-4.05, P < .01). All participants showed increases in JPS errors postexercise (P < .01), but the injured group had greater changes for all the variables (P < .01). Military conscripts who sustained lower extremity injuries during an 8-week military exercise program had greater loss of JPS acuity than conscripts who did not sustain injuries. The changes in JPS found after 1 bout of exercise may have predictive ability for future musculoskeletal injuries.

  17. The Effects of Physical Exercise and Cognitive Training on Memory and Neurotrophic Factors.

    PubMed

    Heisz, Jennifer J; Clark, Ilana B; Bonin, Katija; Paolucci, Emily M; Michalski, Bernadeta; Becker, Suzanna; Fahnestock, Margaret

    2017-11-01

    This study examined the combined effect of physical exercise and cognitive training on memory and neurotrophic factors in healthy, young adults. Ninety-five participants completed 6 weeks of exercise training, combined exercise and cognitive training, or no training (control). Both the exercise and combined training groups improved performance on a high-interference memory task, whereas the control group did not. In contrast, neither training group improved on general recognition performance, suggesting that exercise training selectively increases high-interference memory that may be linked to hippocampal function. Individuals who experienced greater fitness improvements from the exercise training (i.e., high responders to exercise) also had greater increases in the serum neurotrophic factors brain-derived neurotrophic factor and insulin-like growth factor-1. These high responders to exercise also had better high-interference memory performance as a result of the combined exercise and cognitive training compared with exercise alone, suggesting that potential synergistic effects might depend on the availability of neurotrophic factors. These findings are especially important, as memory benefits accrued from a relatively short intervention in high-functioning young adults.

  18. Physical therapy for a child with sudden-onset choreoathetosis: a case report.

    PubMed

    Smith, Hilary J

    2014-01-01

    This case report describes the physical therapy examination, intervention, and outcomes for a 5-year-old girl who developed choreoathetosis following mitral valve repair. This child was admitted to an inpatient short-term rehabilitation program with marked choreoathetosis and dependence for all functional mobility. She received physical therapy twice a day for 5 weeks. Physical therapy intervention included therapeutic exercise emphasizing stabilization and closed chain exercises, aquatic therapy, and functional training to improve gross motor skills and mobility. Tests and measures included the Selective Control Assessment of the Lower Extremity, 66-item Gross Motor Function Measure, and Pediatric Evaluation of Disability Inventory. At discharge, this child demonstrated improvements in her Selective Control Assessment of the Lower Extremity, Gross Motor Function Measure, and Pediatric Evaluation of Disability Inventory scores. She was independent in all functional mobility tasks. This case study describes physical therapy tests and measures, intervention, and positive outcomes for a child with sudden-onset choreoathetosis.

  19. A practical guide to exercise training for heart failure patients.

    PubMed

    Smart, Neil; Fang, Zhi You; Marwick, Thomas H

    2003-02-01

    Exercise training has been shown to improve exercise capacity in patients with heart failure. We sought to examine the optimal strategy of exercise training for patients with heart failure. Review of the published data on the characteristics of the training program, with comparison of physiologic markers of exercise capacity in heart failure patients and healthy individuals and comparison of the change in these characteristics after an exercise training program. Many factors, including the duration, supervision, and venue of exercise training; the volume of working muscle; the delivery mode (eg, continuous vs. intermittent exercise), training intensity; and the concurrent effects of medical treatments may influence the results of exercise training in heart failure. Starting in an individually prescribed and safely monitored hospital-based program, followed by progression to an ongoing and progressive home program of exercise appears to be the best solution to the barriers of anxiety, adherence, and "ease of access" encountered by the heart failure patient. Various exercise training programs have been shown to improve exercise capacity and symptom status in heart failure, but these improvements may only be preserved with an ongoing maintenance program.

  20. High-intensity exercise training for the prevention of type 2 diabetes mellitus.

    PubMed

    Rynders, Corey A; Weltman, Arthur

    2014-02-01

    Aerobic exercise training and diet are recommended for the primary prevention of type 2 diabetes mellitus and cardiovascular disease. The American Diabetes Association (ADA) recommends that adults with prediabetes engage in ≥ 150 minutes per week of moderate activity and target a 7% weight loss. However, traditional moderate-intensity (MI) exercise training programs are often difficult to sustain for prediabetic adults; a commonly cited barrier to physical activity in this population is the "lack of time" to exercise. When matched for total energy expenditure, high-intensity (HI) exercise training has a lower overall time commitment compared with traditional low-intensity (LI) or MI exercise training. Several recent studies comparing HI exercise training with LI and MI exercise training reported that HI exercise training improves skeletal muscle metabolic control and cardiovascular function in a comparable and/or superior way relative to LI and MI exercise training. Although patients can accrue all exercise benefits by performing LI or MI activities such as walking, HI activities represent a time-efficient alternative to meeting physical activity guidelines. High-intensity exercise training is a potent tool for improving cardiometabolic risk for prediabetic patients with limited time and may be prescribed when appropriate.

  1. Water-based exercise training for chronic obstructive pulmonary disease.

    PubMed

    McNamara, Renae J; McKeough, Zoe J; McKenzie, David K; Alison, Jennifer A

    2013-12-18

    Land-based exercise training improves exercise capacity and quality of life in people with chronic obstructive pulmonary disease (COPD). Water-based exercise training is an alternative mode of physical exercise training that may appeal to the older population attending pulmonary rehabilitation programmes, those who are unable to complete land-based exercise programmes and people with COPD with comorbid physical and medical conditions. To assess the effects of water-based exercise training in people with COPD. A search of the Cochrane Airways Group Specialised Register of trials, which is derived from systematic searches of bibliographic databases, including the Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE, EMBASE, CINAHL, AMED and PsycINFO, was conducted (from inception to August 2013). Handsearching was done to identify further qualifying studies from reference lists of relevant studies. Review authors included randomised or quasi-randomised controlled trials in which water-based exercise training of at least four weeks' duration was compared with no exercise training or any other form of exercise training in people with COPD. Swimming was excluded. We used standard methodological procedures expected by The Cochrane Collaboration. Five studies were included with a total of 176 participants (71 people participated in water-based exercise training and 54 in land-based exercise training; 51 completed no exercise training). All studies compared supervised water-based exercise training versus land-based exercise training and/or no exercise training in people with COPD (with average forced expiratory volume in one second (FEV1) %predicted ranging from 39% to 62%). Sample sizes ranged from 11 to 53 participants. The exercise training programmes lasted from four to 12 weeks, and the mean age of participants ranged from 57 to 73 years. A moderate risk of bias was due to lack of reporting of randomisation, allocation and blinding procedures in some studies, as well as small sample sizes.Compared with no exercise, water-based exercise training improved the six-minute walk distance (mean difference (MD) 62 metres; 95% confidence interval (CI) 44 to 80 metres; three studies; 99 participants; moderate quality evidence), the incremental shuttle walk distance (MD 50 metres; 95% CI 20 to 80 metres; one study; 30 participants; high quality evidence) and the endurance shuttle walk distance (MD 371 metres; 95% CI 121 to 621 metres; one study; 30 participants; high quality evidence). Quality of life was also improved after water-based exercise training compared with no exercise (standardised mean difference (SMD) -0.97, 95% CI -0.37 to -1.57; two studies; 49 participants; low quality evidence). Compared with land-based exercise training, water-based exercise training did not significantly change the six-minute walk distance (MD 11 metres; 95% CI -11 to 33 metres; three studies; 62 participants; moderate quality evidence) or the incremental shuttle walk distance (MD 9 metres; 95% CI -15 to 34 metres; two studies; 59 participants; low quality evidence). However, the endurance shuttle walk distance improved following water-based exercise training compared with land-based exercise training (MD 313 metres; 95% CI 232 to 394 metres; two studies; 59 participants; moderate quality evidence). No significant differences were found between water-based exercise training and land-based exercise training for quality of life, as measured by the St George's Respiratory Questionnaire or by three of four domains of the Chronic Respiratory Disease Questionnaire (CRDQ); however, the fatigue domain of the CRDQ showed a statistically significant difference in favour of water-based exercise (MD -3.00; 95% CI -5.26 to -0.74; one study; 30 participants). Only one study reported long-term outcomes after water-based exercise training for quality of life and body composition, and no significant change was observed between baseline results and six-month follow-up results. One minor adverse event was reported for water-based exercise training (based on reporting from two studies; 20 participants). Impact of disease severity could not be examined because data were insufficient. There is limited quality evidence that water-based exercise training is safe and improves exercise capacity and quality of life in people with COPD immediately after training. There is limited quality evidence that water-based exercise training offers advantages over land-based exercise training in improving endurance exercise capacity, but we remain uncertain as to whether it leads to better quality of life. Little evidence exists examining the long-term effect of water-based exercise training.

  2. The recovery of running ability in an adolescent male after traumatic brain injury: a case study.

    PubMed

    Moriello, Gabriele; Frear, Matthew; Seaburg, Kristin

    2009-06-01

    The purpose of this case study was to document outcomes after a rehabilitation program in an adolescent male after traumatic brain injury. Three years after sustaining an injury in a skiing accident, a 17-year-old boy participated in a rehabilitation program with the goal of acquiring the ability to run one mile with his peers. On initial evaluation, the individual had significant left lower extremity weakness, impaired standing balance, limited endurance, and running limitations. He was able to run 10 m wearing a plastic ankle-foot orthosis on the left side but required supervision for safety. The intervention included strength training once weekly for 17 weeks, body weight-supported, treadmill-based locomotor training once weekly for 15 weeks followed by a combination of overground locomotor training and strengthening exercise once weekly for six weeks. After the intervention, muscle strength of the lower extremities increased and the individual was able to run one mile independently. The quality of his running improved, with better mechanics to absorb forces at impact during the absorption phase and increased lower extremity extension during the propulsion phase. A rehabilitation program consisting of strengthening and locomotor training improved running speed, quality, and endurance in an adolescent male after traumatic brain injury. He was able to progress to a less restrictive carbon fiber brace as a result of gains in lower extremity strength. This change in ability allowed him to participate in physical education by running on a track and playing softball with his peers.

  3. Aerobic exercise enhances neural correlates of motor skill learning.

    PubMed

    Singh, Amaya M; Neva, Jason L; Staines, W Richard

    2016-03-15

    Repetitive, in-phase bimanual motor training tasks can expand the excitable cortical area of the trained muscles. Recent evidence suggests that an acute bout of moderate-intensity aerobic exercise can enhance the induction of rapid motor plasticity at the motor hotspot. However, these changes have not been investigated throughout the entire cortical representation. Furthermore, it is unclear how exercise-induced changes in excitability may relate to motor performance. We investigated whether aerobic exercise could enhance the neural correlates of motor learning. We hypothesized that the combination of exercise and training would increase the excitable cortical area to a greater extent than either exercise or training alone, and that the addition of exercise would enhance performance on a motor training task. 25 young, healthy, right-handed individuals were recruited and divided into two groups and three experimental conditions. The exercise group performed exercise alone (EX) and exercise followed by training (EXTR) while the training group performed training alone (TR). The combination of exercise and training increased excitability within the cortical map of the trained muscle to a greater extent than training alone. However, there was no difference in performance between the two groups. These results indicate that exercise may enhance the cortical adaptations to motor skill learning. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Blood temperature and perfusion to exercising and non-exercising human limbs.

    PubMed

    González-Alonso, José; Calbet, José A L; Boushel, Robert; Helge, Jørn W; Søndergaard, Hans; Munch-Andersen, Thor; van Hall, Gerrit; Mortensen, Stefan P; Secher, Niels H

    2015-10-01

    What is the central question of this study? Temperature-sensitive mechanisms are thought to contribute to blood-flow regulation, but the relationship between exercising and non-exercising limb perfusion and blood temperature is not established. What is the main finding and its importance? The close coupling among perfusion, blood temperature and aerobic metabolism in exercising and non-exercising extremities across different exercise modalities and activity levels and the tight association between limb vasodilatation and increases in plasma ATP suggest that both temperature- and metabolism-sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes. Temperature-sensitive mechanisms may contribute to blood-flow regulation, but the influence of temperature on perfusion to exercising and non-exercising human limbs is not established. Blood temperature (TB ), blood flow and oxygen uptake (V̇O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher than arm blood flow (ABF) in association with higher TB and limb V̇O2. Leg and arm vascular conductance during exercise compared with rest was related closely to TB (r(2) = 0.91; P < 0.05), plasma ATP (r(2) = 0.94; P < 0.05) and limb V̇O2 (r(2) = 0.99; P < 0.05). During incremental leg exercise, LBF increased in association with elevations in TB and limb V̇O2, whereas ABF, arm TB and V̇O2 remained largely unchanged. During incremental arm exercise, both ABF and LBF increased in relationship to similar increases in V̇O2. In 12 trained males, increases in femoral TB and LBF during incremental leg exercise were mirrored by similar pulmonary artery TB and cardiac output dynamics, suggesting that processes in active limbs dominate central temperature and perfusion responses. The present data reveal a close coupling among perfusion, TB and aerobic metabolism in exercising and non-exercising extremities and a tight association between limb vasodilatation and increases in plasma ATP. These findings suggest that temperature and V̇O2 contribute to the regulation of limb perfusion through control of intravascular ATP. © 2015 The Authors Experimental Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society.

  5. Blood temperature and perfusion to exercising and non‐exercising human limbs

    PubMed Central

    Calbet, José A. L.; Boushel, Robert; Helge, Jørn W.; Søndergaard, Hans; Munch‐Andersen, Thor; van Hall, Gerrit; Mortensen, Stefan P.; Secher, Niels H.

    2015-01-01

    New Findings What is the central question of this study? Temperature‐sensitive mechanisms are thought to contribute to blood‐flow regulation, but the relationship between exercising and non‐exercising limb perfusion and blood temperature is not established. What is the main finding and its importance? The close coupling among perfusion, blood temperature and aerobic metabolism in exercising and non‐exercising extremities across different exercise modalities and activity levels and the tight association between limb vasodilatation and increases in plasma ATP suggest that both temperature‐ and metabolism‐sensitive mechanisms are important for the control of human limb perfusion, possibly by activating ATP release from the erythrocytes. Temperature‐sensitive mechanisms may contribute to blood‐flow regulation, but the influence of temperature on perfusion to exercising and non‐exercising human limbs is not established. Blood temperature (T B), blood flow and oxygen uptake (V˙O2) in the legs and arms were measured in 16 healthy humans during 90 min of leg and arm exercise and during exhaustive incremental leg or arm exercise. During prolonged exercise, leg blood flow (LBF) was fourfold higher than arm blood flow (ABF) in association with higher T B and limb V˙O2. Leg and arm vascular conductance during exercise compared with rest was related closely to T B (r 2 = 0.91; P < 0.05), plasma ATP (r 2 = 0.94; P < 0.05) and limb V˙O2 (r 2 = 0.99; P < 0.05). During incremental leg exercise, LBF increased in association with elevations in T B and limb V˙O2, whereas ABF, arm T B and V˙O2 remained largely unchanged. During incremental arm exercise, both ABF and LBF increased in relationship to similar increases in V˙O2. In 12 trained males, increases in femoral T B and LBF during incremental leg exercise were mirrored by similar pulmonary artery T B and cardiac output dynamics, suggesting that processes in active limbs dominate central temperature and perfusion responses. The present data reveal a close coupling among perfusion, T B and aerobic metabolism in exercising and non‐exercising extremities and a tight association between limb vasodilatation and increases in plasma ATP. These findings suggest that temperature and V˙O2 contribute to the regulation of limb perfusion through control of intravascular ATP. PMID:26268717

  6. Effect of mirror use on lower extremity muscle strength of patients with chronic stroke.

    PubMed

    Kim, Myoung-Kwon; Choe, Yu-Won; Shin, Young-Jun; Peng, Cheng; Choi, Eun-Hong

    2018-02-01

    [Purpose] This study examines the effect on muscle strength of lower extremity muscle strength exercise while using a mirror on the non-paretic side in patients with chronic stroke. [Subjects and Methods] Subjects were randomly assigned to a non-mirror lower extremity exercise group (n=10), a mirror lower extremity exercise group (n=10), or a mirror lower extremity muscle strength exercise group (n=10). Subjects were asked to do the exercise assigned to their group (5 sets 30 times a day, 5 times weekly for 4 weeks) with general physical therapy in the hospital. Muscle strength in the knee extensor and flexor of paretic and non-paretic side were measured using electrical muscle testing device before and after the intervention. [Results] Muscle strength significantly increased within each group after intervention. No significant differences were found among the three groups. [Conclusion] This study showed that the lower extremity muscle strength exercise of the non-paretic side using a mirror has a positive effect on muscle strength in patient with chronic stroke.

  7. The Effect of Prolonged Physical Activity Performed during Extreme Caloric Deprivation on Cardiac Function

    PubMed Central

    Planer, David; Leibowitz, David; Hadid, Amir; Erlich, Tomer; Sharon, Nir; Paltiel, Ora; Jacoby, Elad; Lotan, Chaim; Moran, Daniel S.

    2012-01-01

    Background Endurance exercise may induce transient cardiac dysfunction. Data regarding the effect of caloric restriction on cardiac function is limited. We studied the effect of physical activity performed during extreme caloric deprivation on cardiac function. Methods Thirty-nine healthy male soldiers (mean age 20±0.3 years) were studied during a field training exercise lasted 85–103 hours, with negligible food intake and unlimited water supply. Anthropometric measurements, echocardiographic examinations and blood and urine tests were performed before and after the training exercise. Results Baseline VO2 max was 59±5.5 ml/kg/min. Participants' mean weight reduction was 5.7±0.9 kg. There was an increase in plasma urea (11.6±2.6 to 15.8±3.8 mmol/L, p<0.001) and urine osmolarity (692±212 to 1094±140 mmol/kg, p<0.001) and a decrease in sodium levels (140.5±1.0 to 136.6±2.1 mmol/L, p<0.001) at the end of the study. Significant alterations in diastolic parameters included a decrease in mitral E wave (93.6 to 83.5 cm/s; p = 0.003), without change in E/A and E/E′ ratios, and an increase in iso-volumic relaxation time (73.9 to 82.9 ms, p = 0.006). There was no change in left or right ventricular systolic function, or pulmonary arterial pressure. Brain natriuretic peptide (BNP) levels were significantly reduced post-training (median 9 to 0 pg/ml, p<0.001). There was no elevation in Troponin T or CRP levels. On multivariate analysis, BNP reduction correlated with sodium levels and weight reduction (R = 0.8, p<0.001). Conclusions Exposure to prolonged physical activity performed under caloric deprivation resulted in minor alterations of left ventricular diastolic function. BNP levels were significantly reduced due to negative water and sodium balance. PMID:22384007

  8. The effect of prolonged physical activity performed during extreme caloric deprivation on cardiac function.

    PubMed

    Planer, David; Leibowitz, David; Hadid, Amir; Erlich, Tomer; Sharon, Nir; Paltiel, Ora; Jacoby, Elad; Lotan, Chaim; Moran, Daniel S

    2012-01-01

    Endurance exercise may induce transient cardiac dysfunction. Data regarding the effect of caloric restriction on cardiac function is limited. We studied the effect of physical activity performed during extreme caloric deprivation on cardiac function. Thirty-nine healthy male soldiers (mean age 20 ± 0.3 years) were studied during a field training exercise lasted 85-103 hours, with negligible food intake and unlimited water supply. Anthropometric measurements, echocardiographic examinations and blood and urine tests were performed before and after the training exercise. Baseline VO(2) max was 59 ± 5.5 ml/kg/min. Participants' mean weight reduction was 5.7 ± 0.9 kg. There was an increase in plasma urea (11.6 ± 2.6 to 15.8 ± 3.8 mmol/L, p<0.001) and urine osmolarity (692 ± 212 to 1094 ± 140 mmol/kg, p<0.001) and a decrease in sodium levels (140.5 ± 1.0 to 136.6 ± 2.1 mmol/L, p<0.001) at the end of the study. Significant alterations in diastolic parameters included a decrease in mitral E wave (93.6 to 83.5 cm/s; p = 0.003), without change in E/A and E/E' ratios, and an increase in iso-volumic relaxation time (73.9 to 82.9 ms, p = 0.006). There was no change in left or right ventricular systolic function, or pulmonary arterial pressure. Brain natriuretic peptide (BNP) levels were significantly reduced post-training (median 9 to 0 pg/ml, p<0.001). There was no elevation in Troponin T or CRP levels. On multivariate analysis, BNP reduction correlated with sodium levels and weight reduction (R = 0.8, p<0.001). Exposure to prolonged physical activity performed under caloric deprivation resulted in minor alterations of left ventricular diastolic function. BNP levels were significantly reduced due to negative water and sodium balance.

  9. The effect of position on the percentage of body mass supported during traditional and modified push-up variants.

    PubMed

    Suprak, David N; Dawes, Jay; Stephenson, Mark D

    2011-02-01

    The push-up is a popular upper-extremity weight-bearing exercise. However, limited information is available regarding its effectiveness. Much of the past research has focused on muscle activation levels, whereas very little has examined the forces encountered during push-up variants. The purpose of the present study was to examine the effect of position within the range of motion on the percentage of body mass (BM) supported by the upper extremities during the traditional and modified (knees-down) push-up. Twenty-eight highly strength-trained male subjects were positioned with their hands on a force platform in 4 static positions, consisting of the up and down position in both the traditional and modified push-up exercise. The performance measures included the average vertical ground reaction force (GRF), expressed as a percentage of BM, supported in each of the 4 static positions and the percentage of change between the up and down positions in each push-up exercise. In both the traditional and modified push-ups, subjects supported less weight in the up vs. the down position. The percentage change in % BM from the up to the down position was greater in the modified push-up variant. The pattern of resistances to the push-up exercises observed in this study may be a result of differing moment arms between the support surface contact point (knees or feet) and the hands. These results may be useful in prescribing programs for strengthening and/or rehabilitation for both the prime movers and stabilizers of the upper extremity. Further, range of motion may need to be altered to accommodate strength differences in beginners and clients rehabilitating from injury.

  10. Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle.

    PubMed

    Terada, S; Yokozeki, T; Kawanaka, K; Ogawa, K; Higuchi, M; Ezaki, O; Tabata, I

    2001-06-01

    This study was performed to assess the effects of short-term, extremely high-intensity intermittent exercise training on the GLUT-4 content of rat skeletal muscle. Three- to four-week-old male Sprague-Dawley rats with an initial body weight ranging from 45 to 55 g were used for this study. These rats were randomly assigned to an 8-day period of high-intensity intermittent exercise training (HIT), relatively high-intensity intermittent prolonged exercise training (RHT), or low-intensity prolonged exercise training (LIT). Age-matched sedentary rats were used as a control. In the HIT group, the rats repeated fourteen 20-s swimming bouts with a weight equivalent to 14, 15, and 16% of body weight for the first 2, the next 4, and the last 2 days, respectively. Between exercise bouts, a 10-s pause was allowed. RHT consisted of five 17-min swimming bouts with a 3-min rest between bouts. During the first bout, the rat swam without weight, whereas during the following four bouts, the rat was attached to a weight equivalent to 4 and 5% of its body weight for the first 5 days and the following 3 days, respectively. Rats in the LIT group swam 6 h/day for 8 days in two 3-h bouts separated by 45 min of rest. In the first experiment, the HIT, LIT, and control rats were compared. GLUT-4 content in the epitrochlearis muscle in the HIT and LIT groups after training was significantly higher than that in the control rats by 83 and 91%, respectively. Furthermore, glucose transport activity, stimulated maximally by both insulin (2 mU/ml) (HIT: 48%, LIT: 75%) and contractions (25 10-s tetani) (HIT: 55%, LIT: 69%), was higher in the training groups than in the control rats. However, no significant differences in GLUT-4 content or in maximal glucose transport activity in response to both insulin and contractions were observed between the two training groups. The second experiment demonstrated that GLUT-4 content after HIT did not differ from that after RHT (66% higher in trained rats than in control). In conclusion, the present investigation demonstrated that 8 days of HIT lasting only 280 s elevated both GLUT-4 content and maximal glucose transport activity in rat skeletal muscle to a level similar to that attained after LIT, which has been considered a tool to increase GLUT-4 content maximally.

  11. Effects of Locomotor Exercise Intensity on Gait Performance in Individuals With Incomplete Spinal Cord Injury

    PubMed Central

    Leech, Kristan A.; Kinnaird, Catherine R.; Holleran, Carey L.; Kahn, Jennifer

    2016-01-01

    Background High-intensity stepping practice may be a critical component to improve gait following motor incomplete spinal cord injury (iSCI). However, such practice is discouraged by traditional theories of rehabilitation that suggest high-intensity locomotor exercise degrades gait performance. Accordingly, such training is thought to reinforce abnormal movement patterns, although evidence to support this notion is limited. Objective The purposes of this study were: (1) to evaluate the effects of short-term manipulations in locomotor intensity on gait performance in people with iSCI and (2) to evaluate potential detrimental effects of high-intensity locomotor training on walking performance. Design A single-day, repeated-measures, pretraining-posttraining study design was used. Methods Nineteen individuals with chronic iSCI performed a graded-intensity locomotor exercise task with simultaneous collection of lower extremity kinematic and electromyographic data. Measures of interest were compared across intensity levels of 33%, 67%, and 100% of peak gait speed. A subset of 9 individuals participated in 12 weeks of high-intensity locomotor training. Similar measurements were collected and compared between pretraining and posttraining evaluations. Results The results indicate that short-term increases in intensity led to significant improvements in muscle activity, spatiotemporal metrics, and joint excursions, with selected improvements in measures of locomotor coordination. High-intensity locomotor training led to significant increases in peak gait speed (0.64–0.80 m/s), and spatiotemporal and kinematic metrics indicate a trend for improved coordination. Limitations Measures of gait performance were assessed during treadmill ambulation and not compared with a control group. Generalizability of these results to overground ambulation is unknown. Conclusions High-intensity locomotor exercise and training does not degrade, but rather improves, locomotor function and quality in individuals with iSCI, which contrasts with traditional theories of motor dysfunction following neurologic injury. PMID:27313241

  12. Effects of interactive metronome training on upper extremity function, ADL and QOL in stroke patients.

    PubMed

    Yu, Ga-Hui; Lee, Jae-Shin; Kim, Su-Kyoung; Cha, Tae-Hyun

    2017-01-01

    Rhythm and timing training is stimulation that substitutes for a damaged function controls muscular movement or temporal element, which has positive impacts on the neurological aspect and movement of the brain. This study is to assess the changes caused by rhythm and timing training using an interactive metronome (IM) on upper extremity function, ADL and QOL in stroke patients. In order to assess the effects of IM training, a group experiment was conducted on 30 stroke patients. Twelve sessions of IM training were provided for the experimental group three times a week for four weeks, while the control group was trained with a Bilateral arm Self-Exercise (BSE) for the same period. Both groups were evaluated by pre- and post-tests through MFT, MAL, K-MBI and SS-QOL. There were more statistically significant differences (<0.05) in the total score of MFT and the finger control item in the IM Group than in the BSE Group. With respect to ADL, there were more statistically significant differences (<0.05) in the total score of K-MBI and the dressing item in the IM Group than in the BSE Group. The study proposes that IM training can be applied as an occupational therapy program in patients with various diseases who need to adjust the time for performing movements as well as stroke patients.

  13. Design of the multicenter standardized supervised exercise training intervention for the claudication: exercise vs endoluminal revascularization (CLEVER) study.

    PubMed

    Bronas, Ulf G; Hirsch, Alan T; Murphy, Timothy; Badenhop, Dalynn; Collins, Tracie C; Ehrman, Jonathan K; Ershow, Abby G; Lewis, Beth; Treat-Jacobson, Diane J; Walsh, M Eileen; Oldenburg, Niki; Regensteiner, Judith G

    2009-11-01

    The CLaudication: Exercise Vs Endoluminal Revascularization (CLEVER) study is the first randomized, controlled, clinical, multicenter trial that is evaluating a supervised exercise program compared with revascularization procedures to treat claudication. In this report, the methods and dissemination techniques of the supervised exercise training intervention are described. A total of 217 participants are being recruited and randomized to one of three arms: (1) optimal medical care; (2) aortoiliac revascularization with stent; or (3) supervised exercise training. Of the enrolled patients, 84 will receive supervised exercise therapy. Supervised exercise will be administered according to a protocol designed by a central CLEVER exercise training committee based on validated methods previously used in single center randomized control trials. The protocol will be implemented at each site by an exercise committee member using training methods developed and standardized by the exercise training committee. The exercise training committee reviews progress and compliance with the protocol of each participant weekly. In conclusion, a multicenter approach to disseminate the supervised exercise training technique and to evaluate its efficacy, safety and cost-effectiveness for patients with claudication due to peripheral arterial disease (PAD) is being evaluated for the first time in CLEVER. The CLEVER study will further establish the role of supervised exercise training in the treatment of claudication resulting from PAD and provide standardized methods for use of supervised exercise training in future PAD clinical trials as well as in clinical practice.

  14. Abundance in proteins expressed after functional electrical stimulation cycling or arm cycling ergometry training in persons with chronic spinal cord injury.

    PubMed

    Gorgey, Ashraf S; Graham, Zachary A; Bauman, William A; Cardozo, Christopher; Gater, David R

    2017-07-01

    Longitudinal design. The study determined the effects of two forms of exercise training on the abundance of two proteins, (glucose transporter-4 [GLUT-4], adenosine monophosphate kinase [AMPK]) involved in glucose utilization and the transcriptional coactivator that regulates the genes involved in energy metabolism and mitochondrial biogenesis (peroxisome proliferator-activated receptor (PPAR) coactivator 1 alpha [PGC-1α]), in muscles in men with chronic motor-complete spinal cord injury (SCI). Clinical trial at a Medical Center. Nine men with chronic motor-complete SCI participated in functional electrical stimulation lower extremity cycling (FES-LEC; n = 4) or arm cycling ergometer (arm-cycling ergometer [ACE]; n = 5) 5 days/week for 16 weeks. Whole body composition was measured by dual energy X-ray absorptiometry. An intravenous glucose tolerance test was performed to measure glucose effectiveness (Sg) and insulin sensitivity (Si). Muscle biopsies of the right vastus lateralis (VL) and triceps muscles were collected one week prior to and post the exercise training intervention. Neither training intervention altered body composition or carbohydrate metabolism. GLUT-4 increased by 3.8 fold in the VL after FES training and increased 0.6 fold in the triceps after ACE training. PGC-1α increased by 2.3 fold in the VL after FES training and 3.8 fold in the triceps after ACE training. AMPK increased by 3.4 fold in the VL after FES training and in the triceps after ACE training. FES-LEC and ACE training were associated with greater protein expressions in the trained muscles by effectively influencing the abundance of GLUT-4, AMPK and PGC-1α. Thus, FES-LEC training of paralyzed muscle can modulate protein expression similar to that of trained and innervated muscle.

  15. Resistance to Aerobic Exercise Training Causes Metabolic Dysfunction and Reveals Novel Exercise-Regulated Signaling Networks

    PubMed Central

    Lessard, Sarah J.; Rivas, Donato A.; Alves-Wagner, Ana B.; Hirshman, Michael F.; Gallagher, Iain J.; Constantin-Teodosiu, Dumitru; Atkins, Ryan; Greenhaff, Paul L.; Qi, Nathan R.; Gustafsson, Thomas; Fielding, Roger A.; Timmons, James A.; Britton, Steven L.; Koch, Lauren G.; Goodyear, Laurie J.

    2013-01-01

    Low aerobic exercise capacity is a risk factor for diabetes and a strong predictor of mortality, yet some individuals are “exercise-resistant” and unable to improve exercise capacity through exercise training. To test the hypothesis that resistance to aerobic exercise training underlies metabolic disease risk, we used selective breeding for 15 generations to develop rat models of low and high aerobic response to training. Before exercise training, rats selected as low and high responders had similar exercise capacities. However, after 8 weeks of treadmill training, low responders failed to improve their exercise capacity, whereas high responders improved by 54%. Remarkably, low responders to aerobic training exhibited pronounced metabolic dysfunction characterized by insulin resistance and increased adiposity, demonstrating that the exercise-resistant phenotype segregates with disease risk. Low responders had impaired exercise-induced angiogenesis in muscle; however, mitochondrial capacity was intact and increased normally with exercise training, demonstrating that mitochondria are not limiting for aerobic adaptation or responsible for metabolic dysfunction in low responders. Low responders had increased stress/inflammatory signaling and altered transforming growth factor-β signaling, characterized by hyperphosphorylation of a novel exercise-regulated phosphorylation site on SMAD2. Using this powerful biological model system, we have discovered key pathways for low exercise training response that may represent novel targets for the treatment of metabolic disease. PMID:23610057

  16. Popular Weight Loss Strategies: a Review of Four Weight Loss Techniques.

    PubMed

    Obert, Jonathan; Pearlman, Michelle; Obert, Lois; Chapin, Sarah

    2017-11-09

    The purpose of this paper is to review the epidemiology of obesity and the most recent literature on popular fad diets and exercise regimens that are used for weight loss. The weight loss plans that will be discussed in this article include juicing or detoxification diets, intermittent fasting, the paleo diet, and high intensity training. Despite the growing popularity of fad diets and exercise plans for weight loss, there are limited studies that actually suggest these particular regimens are beneficial and lead to long-term weight loss. Juicing or detoxification diets tend to work because they lead to extremely low caloric intake for short periods of time, however tend to lead to weight gain once a normal diet is resumed. Both intermittent fasting and the paleo diet lead to weight loss because of overall decreased caloric intake as well. Lastly, studies on short bursts of high intensity training have shown remarkable weight loss and improvements in cardiovascular health. Review of the literature does suggest that some fad diets and exercise plans do lead to weight loss; however, the studies are quite limited and are all based on the concept of caloric restriction.

  17. ACTN3: More than Just a Gene for Speed

    PubMed Central

    Pickering, Craig; Kiely, John

    2017-01-01

    Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3, which has commonly been referred to as “a gene for speed”. Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes. PMID:29326606

  18. ACTN3: More than Just a Gene for Speed.

    PubMed

    Pickering, Craig; Kiely, John

    2017-01-01

    Over the last couple of decades, research has focused on attempting to understand the genetic influence on sports performance. This has led to the identification of a number of candidate genes which may help differentiate between elite and non-elite athletes. One of the most promising genes in that regard is ACTN3 , which has commonly been referred to as "a gene for speed". Recent research has examined the influence of this gene on other performance phenotypes, including exercise adaptation, exercise recovery, and sporting injury risk. In this review, we identified 19 studies exploring these phenotypes. Whilst there was large variation in the results of these studies, as well as extremely heterogeneous cohorts, there is overall a tentative consensus that ACTN3 genotype can impact the phenotypes of interest. In particular, the R allele of a common polymorphism (R577X) is associated with enhanced improvements in strength, protection from eccentric training-induced muscle damage, and sports injury. This illustrates that ACTN3 is more than just a gene for speed, with potentially wide-ranging influence on muscle function, knowledge of which may aid in the future personalization of exercise training programmes.

  19. Effect of +Gz Acceleration on the Oxygen Uptake-Excercise Load Relationship during Lower Extremity Ergometer Excercise

    NASA Technical Reports Server (NTRS)

    Jackson, Catherine G. R.

    1996-01-01

    Long term spaceflight and habitation of a space station and/or the moon require that astronauts be provided with sufficient environmental and physiological support so that they can not only function in microgravity but be returned to earth safely. As the duration of habitation in microgravity increase the effects of the concomitant deconditioning of body systems becomes a concern for added exercise in space and for reentry to Earth gravity. Many countermeasures have been proposed to maintain proper functioning of the body, but none have proved sufficient, especially when the cost of crew time spent in these activities is considered. The issue of appropriate countermeasures remains unresolved. Spaceflight deconditioning decreases tolerance to +Gz acceleration, head to foot, the direction which is experienced during reentry; the result is that the crew member is more prone to becoming pre-syncopal or syncopal, thus exacerbating the orthostatic intolerance. All ground-based research using microgravity analogues has produced this same lowered G tolerance. When intermittent exposure to +1 to +4 Gz acceleration training was used, some alleviation of orthosatic intolerance and negative physiological effects of deconditioning occurred. Exercise alone was not as effective; but the added G force was. The physiological responses to acceleration added to exercise training have not been clearly shown. We will test the hypothesis that there will be no difference in the exercise oxygen uptake-exercise load relationship with added +Gz acceleration. We wi also compare oxygen uptake during graded exercise-acceleration loads in the human-powered short arm centrifuge with those from normal supine exercise loads. The human-powered short arm centrifuge was built by NASA engineers at Ames Research Center.

  20. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    PubMed

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need to adopt an individualized diet for each athlete performing a specific sport or in a specific period of training, clinically supervised with inclusion of blood analysis and physiological tests, in a comprehensive nutritional assessment. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. The effects of high intensity short rest resistance exercise on muscle damage markers in men and women.

    PubMed

    Heavens, Kristen R; Szivak, Tunde K; Hooper, David R; Dunn-Lewis, Courtenay; Comstock, Brett A; Flanagan, Shawn D; Looney, David P; Kupchak, Brian R; Maresh, Carl M; Volek, Jeff S; Kraemer, William J

    2014-04-01

    Within and between sexes, universal load prescription (as assigned in extreme conditioning programs) creates extreme ranges in individual training intensities. Exercise intensity has been proposed to be the main factor determining the degree of muscle damage. Thus, the purpose of this study was to examine markers of muscle damage in resistance-trained men (n = 9) and women (n = 9) from a high intensity (HI) short rest (SR) (HI/SR) resistance exercise protocol. The HI/SR consisted of a descending pyramid scheme starting at 10 repetitions, decreasing 1 repetition per set for the back squat, bench press, and deadlift, as fast as possible. Blood was drawn pre-exercise (pre), immediately postexercise (IP), 15 minutes postexercise (+15), 60 minutes postexercise (+60), and 24 hours postexercise (+24). Women demonstrated significant increases in interleukin 6 (IL-6; IP), creatine kinase (CK; +24), myoglobin (IP, +15, +60), and a greater relative increase when compared with men (+15, +60). Men demonstrated significant increases in myoglobin (IP, +15, +60, +24), IL-6 (IP, +15), CK (IP, +60, +24), and testosterone (IP, +15). There were significant sex interactions observed in CK (IP, +60, +24) and testosterone (IP, +15, +60, +24). Women completed the protocol faster (women: 34:04 ± 9:40 minutes, men: 39:22 ± 14:43 minutes), and at a slightly higher intensity (women: 70.1 ± 3.5%, men 68.8 ± 3.1%); however, men performed significantly more work (men: 14384.6 ± 1854.5 kg, women: 8774.7 ± 1612.7 kg). Overall, women demonstrated a faster inflammatory response with increased acute damage, whereas men demonstrated a greater prolonged damage response. Therefore, strength and conditioning professionals need to be aware of the level of stress imposed on individuals when creating such volitional high intensity metabolic type workouts and allow for adequate progression and recovery from such workouts.

  2. Intermittent versus continuous exercise training in chronic heart failure: a meta-analysis.

    PubMed

    Smart, Neil A; Dieberg, Gudrun; Giallauria, Francesco

    2013-06-20

    We conducted a meta-analysis of randomized, controlled trials of combined strength and intermittent aerobic training, intermittent aerobic training only and continuous exercise training in heart failure patients. A systematic search was conducted of Medline (Ovid) (1950-September 2011), Embase.com (1974-September 2011), Cochrane Central Register of Controlled Trials and CINAHL (1981-September 19 2011). The search strategy included a mix of MeSH and free text terms for the key concepts heart failure, exercise training, interval training and intermittent exercise training. The included studies contained an aggregate of 446 patients, 212 completed intermittent exercise training, 66 only continuous exercise training, 59 completed combined intermittent and strength training and 109 sedentary controls. Weighted mean difference (MD) in Peak VO2 was 1.04mlkg(-1)min(-1) and (95% C.I.) was 0.42-1.66 (p=0.0009) in intermittent versus continuous exercise training respectively. Weighted mean difference in Peak VO2 was -1.10mlkg(-1)min(-1) (95% C.I.) was -1.83-0.37 p=0.003 for intermittent only versus intermittent and strength (combined) training respectively. In studies reporting VE/VCO2 for intermittent versus control groups, MD was -1.50 [(95% C.I. -2.64, -0.37), p=0.01] and for intermittent versus continuous exercise training MD was -1.35 [(95% C.I. -2.15, -0.55), p=0.001]. Change in peak VO2 was positively correlated with weekly exercise energy expenditure for intermittent exercise groups (r=0.48, p=0.05). Combined strength and intermittent exercise appears superior for peak VO2 changes when compared to intermittent exercise of similar exercise energy expenditure. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. Effects of continuous vs interval exercise training on oxygen uptake efficiency slope in patients with coronary artery disease.

    PubMed

    Prado, D M L; Rocco, E A; Silva, A G; Rocco, D F; Pacheco, M T; Silva, P F; Furlan, V

    2016-02-01

    The oxygen uptake efficiency slope (OUES) is a submaximal index incorporating cardiovascular, peripheral, and pulmonary factors that determine the ventilatory response to exercise. The purpose of this study was to evaluate the effects of continuous exercise training and interval exercise training on the OUES in patients with coronary artery disease. Thirty-five patients (59.3±1.8 years old; 28 men, 7 women) with coronary artery disease were randomly divided into two groups: continuous exercise training (n=18) and interval exercise training (n=17). All patients performed graded exercise tests with respiratory gas analysis before and 3 months after the exercise-training program to determine ventilatory anaerobic threshold (VAT), respiratory compensation point, and peak oxygen consumption (peak VO2). The OUES was assessed based on data from the second minute of exercise until exhaustion by calculating the slope of the linear relation between oxygen uptake and the logarithm of total ventilation. After the interventions, both groups showed increased aerobic fitness (P<0.05). In addition, both the continuous exercise and interval exercise training groups demonstrated an increase in OUES (P<0.05). Significant associations were observed in both groups: 1) continuous exercise training (OUES and peak VO2 r=0.57; OUES and VO2 VAT r=0.57); 2) interval exercise training (OUES and peak VO2 r=0.80; OUES and VO2 VAT r=0.67). Continuous and interval exercise training resulted in a similar increase in OUES among patients with coronary artery disease. These findings suggest that improvements in OUES among CAD patients after aerobic exercise training may be dependent on peripheral and central mechanisms.

  4. Gaming and Conventional Exercises for Improvement of Arm Function After Stroke: A Randomized Controlled Pilot Study.

    PubMed

    Kottink, Anke I R; Prange, Gerdienke B; Krabben, Thijs; Rietman, Johan S; Buurke, Jaap H

    2014-06-01

    The use of new technologies in rehabilitation, such as virtual reality and/or computerized gaming exercises, may be useful to enable patients to practice intensively in a motivating way. The objective of the present randomized controlled pilot study was to compare the effect of reach training using a target group specific-designed rehabilitation game to time-matched standardized conventional reach training on arm function after stroke. Twenty chronic stroke patients were randomized to either the rehabilitation game group or the conventional training group. Both groups received three arm training sessions of 30 minutes each week, during a period of 6 weeks. Arm (the upper extremity part of Fugl-Meyer [FM] assessment) and hand (the Action Research Arm [ARA] test) functions were tested 1 week before (T0) and 1 week after (T1) training. A follow-up measurement was performed at 1 month after T1 (T2). ARA and FM scores improved significantly within both groups. Post hoc comparisons revealed significant increases in test scores between T0 and T1 and between T0 and T2 for both ARA and FM, but not for changes from T1 to T2. There were no significant differences between both groups for either clinical test. The present randomized controlled pilot study showed that both arm and hand function improved as much after training with a rehabilitation game as after time-matched conventional training.

  5. Upper extremities flexibility comparisons of collegiate "soft" martial art practitioners with other athletes.

    PubMed

    Huang, C-C; Yang, Y-H; Chen, C-H; Chen, T-W; Lee, C-L; Wu, C-L; Chuang, S-H; Huang, M-H

    2008-03-01

    The aim of this study was to compare the flexibility of the upper extremities in collegiate students involved in Aikido (a kind of soft martial art attracting youth) training with those involved in other sports. Fifty freshmen with a similar frequency of exercise were divided into the Aikido group (n = 18), the upper-body sports group (n = 17), and the lower-body sports group (n = 15) according to the sports that they participated in. Eight classes of range of motion in upper extremities were taken for all subjects by the same clinicians. The Aikido group had significantly better flexibility than the upper-body sports group except for range of motion in shoulder flexion (p = 0.22), shoulder lateral rotation (p > 0.99), and wrist extension (p > 0.99). The Aikido group also had significantly better flexibility than the lower-body sports group (p < 0.01) and the sedentary group (p < 0.01) in all classes of range of motion. The upper-body sports group was significantly more flexible in five classes of range of motion and significantly tighter in range of motion of wrist flexion (p < 0.01) compared to the lower-body sports group. It was concluded that the youths participating in soft martial arts had good upper extremities flexibility that might not result from regular exercise alone.

  6. 33 CFR 155.5061 - Alternative Training and Exercise Program.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 33 Navigation and Navigable Waters 2 2014-07-01 2014-07-01 false Alternative Training and Exercise... Nontank Vessel Response Plans § 155.5061 Alternative Training and Exercise Program. (a) Owners or... exercise requirements of §§ 155.5055 and 155.5060, may meet an Alternative Training and Exercise Program...

  7. Skeletal Muscle Hypertrophy with Concurrent Exercise Training: Contrary Evidence for an Interference Effect.

    PubMed

    Murach, Kevin A; Bagley, James R

    2016-08-01

    Over the last 30+ years, it has become axiomatic that performing aerobic exercise within the same training program as resistance exercise (termed concurrent exercise training) interferes with the hypertrophic adaptations associated with resistance exercise training. However, a close examination of the literature reveals that the interference effect of concurrent exercise training on muscle growth in humans is not as compelling as previously thought. Moreover, recent studies show that, under certain conditions, concurrent exercise may augment resistance exercise-induced hypertrophy in healthy human skeletal muscle. The purpose of this article is to outline the contrary evidence for an acute and chronic interference effect of concurrent exercise on skeletal muscle growth in humans and provide practical literature-based recommendations for maximizing hypertrophy when training concurrently.

  8. Effect of Lower Extremity Stretching Exercises on Balance in Geriatric Population.

    PubMed

    Reddy, Ravi Shankar; Alahmari, Khalid A

    2016-07-01

    The purpose of this study was to find "Effect of lower extremity stretching exercises on balance in the geriatric population. 60 subjects (30 male and 30 female) participated in the study. The subjects underwent 10 weeks of lower limb stretching exercise program. Pre and post 10 weeks stretching exercise program, the subjects were assessed for balance, using single limb stance time in seconds and berg balance score. These outcome measures were analyzed. Pre and post lower extremity stretching on balance was analyzed using paired t test. Of 60 subjects 50 subjects completed the stretching exercise program. Paired sample t test analysis showed a significant improvement in single limb stance time (eyes open and eyes closed) (p<0.001) and berg balance score (p<0.001). Lower extremity stretching exercises enhances balance in the geriatric population and thereby reduction in the number of falls.

  9. κ-opioid receptor is involved in the cardioprotection induced by exercise training

    PubMed Central

    Li, Juan; Tian, Fei; Feng, Na; Fan, Rong; Jia, Min; Guo, Haitao; Cheng, Liang; Liu, Jincheng; Chen, Wensheng; Pei, Jianming

    2017-01-01

    The present study was designed to test the hypothesis that exercise training elicited a cardioprotective effect against ischemia and reperfusion (I/R) via the κ-opioid receptor (κ-OR)-mediated signaling pathway. Rats were randomly divided into four groups: the control group, the moderate intensity exercise (ME) group, the high intensity exercise (HE) group, and the acute exercise (AE) group. For the exercise training protocols, the rats were subjected to one week of adaptive treadmill training, while from the second week, the ME and HE groups were subjected to eight weeks of exercise training, and the AE group was subjected to three days of adaptive treadmill training and one day of vigorous exercise. After these protocols, the three exercise training groups were divided into different treatment groups, and the rats were subjected to 30 min of ischemia and 120 min of reperfusion. Changes in infarct size and serum cTnT (cardiac troponin T) caused by I/R were reduced by exercise training. Moreover, cardiac dysfunction caused by I/R was also alleviated by exercise training. These effects of exercise training were reversed by nor-BNI (a selective κ-OR antagonist), Compound C (a selective AMPK inhibitor), Akt inhibitor and L-NAME (a non-selective eNOS inhibitor). Expression of κ-OR and phosphorylation of AMPK, Akt and eNOS were significantly increased in the ME, HE and AE groups. These findings demonstrated that the cardioprotective effect of exercise training is possibly mediated by the κ-OR-AMPK-Akt-eNOS signaling pathway. PMID:28301473

  10. Spontaneous Coronary Artery Dissection

    MedlinePlus

    ... blood vessels. Fibromuscular dysplasia occurs more often in women than it does in men. Extreme physical exercise. People who recently participated in extreme or intense exercises, such as extreme aerobic activities, may be at higher risk of SCAD. Severe ...

  11. Cycle-Powered Short Radius (1.9 m) Centrifuge: Effect of Exercise Versus Passive Acceleration on Heart Rate in Humans

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Gundo, D. P.; Watenpaugh, D. E.; Mulenburg, G. M.; Mckenzie, M. A.; Looft-Wilson, R.; Hargens, A. R.

    1997-01-01

    In addition to extensive use of lower extremity physical exercise training as a countermeasure for the work capacity component of spaceflight deconditioning, some form of additional head-to-foot (+Gz) gravitational (orthostatic) stress may be required to further attenuate or prevent the signs and symptoms (nausea, vertigo, instability, fatigue) of the general reentry syndrome (GRS) that can reduce astronaut performance during landing. Orthostatic (head-to-foot) stress can be induced by standing, by lower body negative pressure, and by +Gz acceleration. One important question is whether acceleration training alone or with concurrent leg exercise would provide sufficient additive stimulation to attenuate the GRS. Use of a new human-powered centrifuge may be the answer. Thus, the purpose for this study was to compare heart rate (HR), i.e., a stress response during human-powered acceleration, in four men (35-62 yr) and two women (30-31 yr) during exercise acceleration versus passive acceleration (by an off-board operator) at 100% (maximal acceleration = A(max)), and at 25%, 50%, and 75% of A(max). Mean (+/-SE) A(max) was 43.7 +/- 1.3 rpm (+3.9 +/- 0.2Gz). Mean HR at exercise A(max) was 189 +/- 13 b/min (50-70 sec run time), and 142 +/- 22 b/min at passive A(max) (40-70 sec run time). Regression of mean HR on the various +Gz levels indicated explained variance (correlations squared) of r(exp 2) = 0.88 (exercise) and r(exp 2) = 0.96 (passive): exercise HR of 107 +/- 4 (25%) to 189 +/- 13 (100%) b/min were 43-50 b/min higher (p less than 0.05) than comparable passive HR of 64 +/- 2 to 142 +/- 22 b/min. Thus, exercise adds significant physiological stress during +Gz acceleration. Inflight use of this combined exercise and acceleration countermeasure may maintain work capacity as well as normalize acceleration and orthostatic tolerances which could attenuate or perhaps eliminate the GRS.

  12. The effectiveness of session rating of perceived exertion to monitor resistance training load in acute burns patients.

    PubMed

    Grisbrook, Tiffany L; Gittings, Paul M; Wood, Fiona M; Edgar, Dale W

    2017-02-01

    Session-rating of perceived exertion (RPE) is a method frequently utilised in exercise and sports science to quantify training load of an entire aerobic exercise session. It has also been demonstrated that session-RPE is a valid and reliable method to quantify training load during resistance exercise, in healthy and athletic populations. This study aimed to investigate the effectiveness of session-RPE as a method to quantify exercise intensity during resistance training in patients with acute burns. Twenty burns patients (mean age=31.65 (±10.09) years), with a mean TBSA of 16.4% (range=6-40%) were recruited for this study. Patients were randomly allocated to the resistance training (n=10) or control group (n=10). All patients completed a four week resistance training programme. Training load (session-RPE×session duration), resistance training session-volume and pre-exercise pain were recorded for each exercise session. The influence of; age, gender, %TBSA, exercise group (resistance training vs. control), pre-exercise pain, resistance training history and session-volume on training load were analysed using a multilevel mixed-effects linear regression. Session-volume did not influence training load in the final regression model, however training load was significantly greater in the resistance training group, compared with the control group (p<0.001). Pre-exercise pain significantly influenced training load, where increasing pain was associated with a higher session-RPE (p=0.004). Further research is indicated to determine the exact relationship between pain, resistance training history, exercise intensity and session-RPE and training load before it can be used as a method to monitor and prescribe resistance training load in acute burns patients. Copyright © 2016 Elsevier Ltd and ISBI. All rights reserved.

  13. The effects of pilates on balance, mobility and strength in patients with multiple sclerosis.

    PubMed

    Guclu-Gunduz, Arzu; Citaker, Seyit; Irkec, Ceyla; Nazliel, Bijen; Batur-Caglayan, Hale Zeynep

    2014-01-01

    Although there are evidences as to Pilates developing dynamic balance, muscle strength and flexibility in healthy people, evidences related to its effects on Multiple Sclerosis patients are insufficient. The aims of this study were to investigate the effects of Pilates on balance, mobility, and strength in ambulatory patients with Multiple Sclerosis. Twenty six patients were divided into two groups as experimental (n = 18) and control (n = 8) groups for an 8-week treatment program. The experimental group underwent Pilates and the control group did abdominal breathing and active extremity exercises at home. Balance and mobility were measured with Berg Balance Scale and Timed up and go test, upper and lower muscle strength with hand-held dynamometer. Confidence in balance skills while performing daily activities was evaluated with Activities Specific Balance Confidence Scale. Improvements were observed in balance, mobility, and upper and lower extremity muscle strength in the Pilates group (p < 0.05). No significant differences in any outcome measures were observed in the control group (p > 0.05). Due to its structure which is made up of balance and strengthening exercises, Pilates training may develop balance, mobility and muscle strength of MS patients. For this reason, we think that, Pilates exercises which are appropriate for the disability level of the patient may be suggested.

  14. The European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool: A digital training and decision support system for optimized exercise prescription in cardiovascular disease. Concept, definitions and construction methodology.

    PubMed

    Hansen, Dominique; Dendale, Paul; Coninx, Karin; Vanhees, Luc; Piepoli, Massimo F; Niebauer, Josef; Cornelissen, Veronique; Pedretti, Roberto; Geurts, Eva; Ruiz, Gustavo R; Corrà, Ugo; Schmid, Jean-Paul; Greco, Eugenio; Davos, Constantinos H; Edelmann, Frank; Abreu, Ana; Rauch, Bernhard; Ambrosetti, Marco; Braga, Simona S; Barna, Olga; Beckers, Paul; Bussotti, Maurizio; Fagard, Robert; Faggiano, Pompilio; Garcia-Porrero, Esteban; Kouidi, Evangelia; Lamotte, Michel; Neunhäuserer, Daniel; Reibis, Rona; Spruit, Martijn A; Stettler, Christoph; Takken, Tim; Tonoli, Cajsa; Vigorito, Carlo; Völler, Heinz; Doherty, Patrick

    2017-07-01

    Background Exercise rehabilitation is highly recommended by current guidelines on prevention of cardiovascular disease, but its implementation is still poor. Many clinicians experience difficulties in prescribing exercise in the presence of different concomitant cardiovascular diseases and risk factors within the same patient. It was aimed to develop a digital training and decision support system for exercise prescription in cardiovascular disease patients in clinical practice: the European Association of Preventive Cardiology Exercise Prescription in Everyday Practice and Rehabilitative Training (EXPERT) tool. Methods EXPERT working group members were requested to define (a) diagnostic criteria for specific cardiovascular diseases, cardiovascular disease risk factors, and other chronic non-cardiovascular conditions, (b) primary goals of exercise intervention, (c) disease-specific prescription of exercise training (intensity, frequency, volume, type, session and programme duration), and (d) exercise training safety advices. The impact of exercise tolerance, common cardiovascular medications and adverse events during exercise testing were further taken into account for optimized exercise prescription. Results Exercise training recommendations and safety advices were formulated for 10 cardiovascular diseases, five cardiovascular disease risk factors (type 1 and 2 diabetes, obesity, hypertension, hypercholesterolaemia), and three common chronic non-cardiovascular conditions (lung and renal failure and sarcopaenia), but also accounted for baseline exercise tolerance, common cardiovascular medications and occurrence of adverse events during exercise testing. An algorithm, supported by an interactive tool, was constructed based on these data. This training and decision support system automatically provides an exercise prescription according to the variables provided. Conclusion This digital training and decision support system may contribute in overcoming barriers in exercise implementation in common cardiovascular diseases.

  15. Exercise training improves function of circulating angiogenic cells in patients with chronic heart failure.

    PubMed

    Van Craenenbroeck, Emeline M; Hoymans, Vicky Y; Beckers, Paul J; Possemiers, Nadine M; Wuyts, Kurt; Paelinck, Bernard P; Vrints, Christiaan J; Conraads, Viviane M

    2010-09-01

    Alterations in circulating angiogenic cells (CAC) and endothelial progenitor cells (EPC), known to contribute to endothelial repair, could explain the reversal of endothelial function in response to exercise training. Moreover, training-induced vascular remodeling might affect the acute response of EPC and CAC following a single exercise bout. We studied the impact of exercise training on CAC function and numbers of CD34(+)/KDR(+) EPC in patients with chronic heart failure (CHF) and we assessed the effect of acute exercise on CAC and EPC in sedentary and trained patients. Twenty-one sedentary CHF patients underwent 6-month exercise training and were compared to a non-trained control group (n = 17) and 10 healthy age-matched subjects. At baseline and follow-up, flow-mediated dilation was assessed and graded exercise testing (GXT) was performed. Before and immediately after GXT, CAC migratory capacity was assessed in vitro and circulating CD34(+)/KDR(+) EPC were quantified using flow cytometry. At baseline, CAC migration was significantly impaired in sedentary CHF patients but normalized acutely after GXT. Training corrected endothelial dysfunction, which coincided with a 77% increase in CAC migration (P = 0.0001). Moreover, the GXT-induced improvement detected at baseline was no longer observed after training. Numbers of CD34(+)/KDR(+) EPC increased following 6-month exercise training (P = 0.021), but were not affected by GXT, either prior or post-training. In conclusion, the present findings demonstrate for the first time that exercise training in CHF reverses CAC dysfunction and increases numbers of CD34(+)/KDR(+) EPC, which is accompanied by improvement of peripheral endothelial function. The acute exercise-induced changes in CAC function wane with exercise training, suggesting that repetitive exercise bouts progressively lead to functional endothelial repair.

  16. Low Volume Aerobic Training Heightens Muscle Deoxygenation in Early Post-Angina Pectoris Patients.

    PubMed

    Takagi, Shun; Murase, Norio; Kime, Ryotaro; Niwayama, Masatsugu; Osada, Takuya; Katsumura, Toshihito

    2016-01-01

    The aim of this study was to investigate the effect of low volume aerobic exercise training on muscle O2 dynamics during exercise in early post-angina pectoris (AP) patients, as a pilot study. Seven AP patients (age: 72 ± 6 years) participated in aerobic exercise training for 12 weeks. Training consisted of continuous cycling exercise for 30 min at the individual's estimated lactate threshold, and the subjects trained for 15 ± 5 exercise sessions over 12 weeks. Before and after training, the subjects performed ramp cycling exercise until exhaustion. Muscle O2 saturation (SmO2) and relative changes from rest in deoxygenated hemoglobin concentration (∆Deoxy-Hb) and total hemoglobin concentration (∆Total-Hb) were monitored at the vastus lateralis by near infrared spatial resolved spectroscopy during exercise. The SmO2 was significantly lower and ∆Deoxy-Hb was significantly higher after training than before training, while there were no significant changes in ∆Total-Hb. These results indicated that muscle deoxygenation and muscle O2 extraction were potentially heightened by aerobic exercise training in AP patients, even though the exercise training volume was low.

  17. Exercise training in children and adolescents with cystic fibrosis: theory into practice.

    PubMed

    Williams, Craig A; Benden, Christian; Stevens, Daniel; Radtke, Thomas

    2010-01-01

    Physical activity and exercise training play an important role in the clinical management of patients with cystic fibrosis (CF). Exercise training is more common and recognized as an essential part of rehabilitation programmes and overall CF care. Regular exercise training is associated with improved aerobic and anaerobic capacity, higher pulmonary function, and enhanced airway mucus clearance. Furthermore, patients with higher aerobic fitness have an improved survival. Aerobic and anaerobic training may have different effects, while the combination of both have been reported to be beneficial in CF. However, exercise training remains underutilised and not always incorporated into routine CF management. We provide an update on aerobic and anaerobic responses to exercise and general training recommendations in children and adolescents with CF. We propose that an active lifestyle and exercise training are an efficacious part of regular CF patient management.

  18. Exercise and end-stage kidney disease: functional exercise capacity and cardiovascular outcomes.

    PubMed

    Parsons, Trisha L; King-Vanvlack, Cheryl E

    2009-11-01

    This review examined published reports of the impact of extradialytic and intradialytic exercise programs on physiologic aerobic exercise capacity, functional exercise endurance, and cardiovascular outcomes in individuals with ESKD. Studies spanning 30 years from the first published report of exercise in the ESKD population were reviewed. Studies conducted in the first half of the publication record focused on the efficacy of exercise training programs performed "off"-dialysis with respect to the modification of traditional cardiovascular risk factors, aerobic capacity, and its underlying determinants. In the latter half of the record, there had been a shift to include other client-centered goals such as physical function and quality of life. There is evidence that both intra- and extradialytic programs can significantly enhance aerobic exercise capacity, but moderate-intensity extradialytic programs may result in greater gains in those individuals who initially have extremely poor aerobic capacity. Functionally, substantive improvements in exercise endurance in excess of the minimum clinical significant difference can occur following either low- or moderate-intensity exercise regardless of the initial level of performance. Reductions in blood pressure and enhanced vascular functioning reported after predominantly intradialytic exercise programs suggest that either low- or moderate-intensity exercise programs can confer cardiovascular benefit. Regardless of prescription model, there was an overall lack of evidence regarding the impact of exercise-induced changes in exercise capacity, endurance, and cardiovascular function on a number of relevant health outcomes (survival, morbidity, and cardiovascular risk), and, more importantly, there is no evidence on the long-term impact of exercise and/or physical activity interventions on these health outcomes.

  19. Exercise Prescriptions for Training and Rehabilitation in Patients with Heart and Lung Disease.

    PubMed

    Palermo, Pietro; Corrà, Ugo

    2017-07-01

    Rehabilitation in patients with advanced cardiac and pulmonary disease has been shown to increase survival and improve quality of life, among many other benefits. Exercise training is the fundamental ingredient in these rehabilitation programs. However, determining the amount of exercise is not straightforward or uniform. Most rehabilitation and training programs fix the time of exercise and set the exercise intensity to the goals of the rehabilitation program and the exercise-related hurdles of the individual. The exercise training intensity prescription must balance the desired gain in conditioning with safety. Symptom-limited cardiopulmonary exercise testing is the fundamental tool to identify the exercise intensity and define the appropriate training. In addition, cardiopulmonary exercise testing provides an understanding of the systems involved in oxygen transport and utilization, making it possible to identify the factors limiting exercise capacity in individual patients.

  20. Short-Term Intensified Cycle Training Alters Acute and Chronic Responses of PGC1α and Cytochrome C Oxidase IV to Exercise in Human Skeletal Muscle

    PubMed Central

    Stepto, Nigel K.; Benziane, Boubacar; Wadley, Glenn D.; Chibalin, Alexander V.; Canny, Benedict J.; Eynon, Nir; McConell, Glenn K.

    2012-01-01

    Reduced activation of exercise responsive signalling pathways have been reported in response to acute exercise after training; however little is known about the adaptive responses of the mitochondria. Accordingly, we investigated changes in mitochondrial gene expression and protein abundance in response to the same acute exercise before and after 10-d of intensive cycle training. Nine untrained, healthy participants (mean±SD; VO2peak 44.1±17.6 ml/kg/min) performed a 60 min bout of cycling exercise at 164±18 W (72% of pre-training VO2peak). Muscle biopsies were obtained from the vastus lateralis muscle at rest, immediately and 3 h after exercise. The participants then underwent 10-d of cycle training which included four high-intensity interval training sessions (6×5 min; 90–100% VO2peak) and six prolonged moderate-intensity sessions (45–90 min; 75% VO2peak). Participants repeated the pre-training exercise trial at the same absolute work load (64% of pre-training VO2peak). Muscle PGC1-α mRNA expression was attenuated as it increased by 11- and 4- fold (P<0.001) after exercise pre- and post-training, respectively. PGC1-α protein expression increased 1.5 fold (P<0.05) in response to exercise pre-training with no further increases after the post-training exercise bout. RIP140 protein abundance was responsive to acute exercise only (P<0.01). COXIV mRNA (1.6 fold; P<0.01) and COXIV protein expression (1.5 fold; P<0.05) were increased by training but COXIV protein expression was decreased (20%; P<0.01) by acute exercise pre- and post-training. These findings demonstrate that short-term intensified training promotes increased mitochondrial gene expression and protein abundance. Furthermore, acute indicators of exercise-induced mitochondrial adaptation appear to be blunted in response to exercise at the same absolute intensity following short-term training. PMID:23285255

  1. Affect-regulated exercise intensity: does training at an intensity that feels 'good' improve physical health?

    PubMed

    Parfitt, Gaynor; Alrumh, Amnah; Rowlands, Alex V

    2012-11-01

    Affect-regulated exercise to feel 'good' can be used to control exercise intensity amongst both active and sedentary individuals and should support exercise adherence. It is not known, however, whether affect-regulated exercise training can lead to physical health gains. The aim of this study was to examine if affect-regulated exercise to feel 'good' leads to improved fitness over the course of an 8-week training programme. A repeated measures design (pretest-posttest) with independent groups (training and control). 20 sedentary females completed a submaximal graded exercise test and were then allocated to either a training group or control group. The training group completed two supervised sessions and one unsupervised session per week for 8 weeks. Exercise intensity was affect-regulated to feel 'good'. Following the 8 weeks of training, both groups completed a second submaximal graded exercise test. Repeated measures analyses of variance indicated a significant increase in the time to reach ventilatory threshold in the training group (318 ± 23.7s) compared to control (248 ± 16.9s). Overall compliance to training was high (>92%). Participants in the training group exercised at intensities that would be classified as being in the lower range of the recommended guidelines (≈ 50% V˙O(2) max) for cardiovascular health. Affect-regulated exercise to feel 'good' can be used in a training programme to regulate exercise intensity. This approach led to a 19% increase in time to reach ventilatory threshold, which is indicative of improved fitness. Copyright © 2012 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  2. The relevance of applying exercise training principles when designing therapeutic interventions for patients with inflammatory myopathies: a systematic review.

    PubMed

    Baschung Pfister, Pierrette; de Bruin, Eling D; Tobler-Ammann, Bernadette C; Maurer, Britta; Knols, Ruud H

    2015-10-01

    Physical exercise seems to be a safe and effective intervention in patients with inflammatory myopathy (IM). However, the optimal training intervention is not clear. To achieve an optimum training effect, physical exercise training principles must be considered and to replicate research findings, FITT components (frequency, intensity, time, and type) of exercise training should be reported. This review aims to evaluate exercise interventions in studies with IM patients in relation to (1) the application of principles of exercise training, (2) the reporting of FITT components, (3) the adherence of participants to the intervention, and (4) to assess the methodological quality of the included studies. The literature was searched for exercise studies in IM patients. Data were extracted to evaluate the application of the training principles, the reporting of and the adherence to the exercise prescription. The Downs and Black checklist was used to assess methodological quality of the included studies. From the 14 included studies, four focused on resistance, two on endurance, and eight on combined training. In terms of principles of exercise training, 93 % reported specificity, 50 % progression and overload, and 79 % initial values. Reversibility and diminishing returns were never reported. Six articles reported all FITT components in the prescription of the training though no study described adherence to all of these components. Incomplete application of the exercise training principles and insufficient reporting of the exercise intervention prescribed and completed hamper the reproducibility of the intervention and the ability to determine the optimal dose of exercise.

  3. Enhanced information regarding exercise training as treatment is needed. An interview study in patients with chronic obstructive pulmonary disease.

    PubMed

    Nordvall Strömberg, Petronella; Fjellman-Wiklund, Anncristine; Wadell, Karin

    2015-01-01

    The purpose of this study is to describe thoughts and attitudes of patients with chronic obstructive pulmonary disease (COPD) when talking about exercise training as treatment. Semi-structured interviews were performed and analyzed with the grounded theory method. Four men and six women were interviewed (ages 66-84 years), with moderate to severe COPD, and no experience of organized exercise training as treatment for COPD. The analysis resulted in one core category, unknown territory, and three categories, good for those who can, but not for me; fear of future; and mastering. Exercise training as treatment was perceived by the participants as something unknown. It was also described as important for others but not for them. Their perceptions were that they could not perform exercise training, and did not have the knowledge of what or how to perform exercise that was good for them. Patients with COPD, with no previous experience of exercise training as treatment for their disease, describe exercise training as something unknown and unimportant for them. The results provide important knowledge for healthcare professionals regarding how to educate patients with COPD about the content and benefits of exercise training as treatment. Implications for Rehabilitation Exercise training is effective for patients with chronic obstructive pulmonary disease (COPD) with regard to dyspnea, physical capacity, health-related quality of life, and health care use. Patients with COPD perceive a lack of information regarding exercise training as treatment. The information and the presentation of exercise training as treatment might be of importance to get better adherence to this treatment.

  4. Benefits of supplemental oxygen in exercise training in nonhypoxemic chronic obstructive pulmonary disease patients.

    PubMed

    Emtner, Margareta; Porszasz, Janos; Burns, Mary; Somfay, Attila; Casaburi, Richard

    2003-11-01

    Supplemental oxygen improves exercise tolerance of normoxemic and hypoxemic chronic obstructive pulmonary disease (COPD) patients. We determined whether nonhypoxemic COPD patients undergoing exercise training while breathing supplemental oxygen achieve higher intensity and therefore improve exercise capacity more than patients breathing air. A double-blinded trial was performed involving 29 nonhypoxemic patients (67 years, exercise SaO2 > 88%) with COPD (FEV1 = 36% predicted). All exercised on cycle ergometers for 45 minutes, 3 times per week for 7 weeks at high-intensity targets. During exercise, they received oxygen (3 L/minute) (n = 14) or compressed air (3 L/minute) (n = 15). Both groups had a higher exercise tolerance after training and when breathing oxygen. However, the oxygen-trained group increased the training work rate more rapidly than the air-trained group. The mean +/- SD work rate during the last week was 62 +/- 19 W (oxygen-trained group) and 52 +/- 22 W (air-trained group) (p < 0.01). After training, endurance in constant work rate tests increased more in the oxygen-trained group (14.5 minutes) than in the air-trained group (10.5 minutes) (p < 0.05). At isotime, the breathing rate decreased four breaths per minute in the oxygen-trained group and one breath per minute in the air-trained group (p = 0.001). We conclude that supplemental oxygen provided during high-intensity training yields higher training intensity and evidence of gains in exercise tolerance in laboratory testing.

  5. Benefits of exercise training and the correlation between aerobic capacity and functional outcomes and quality of life in elderly patients with coronary artery disease.

    PubMed

    Chen, Chia-Hsin; Chen, Yi-Jen; Tu, Hung-Pin; Huang, Mao-Hsiung; Jhong, Jing-Hui; Lin, Ko-Long

    2014-10-01

    Cardiopulmonary exercise training is beneficial to people with coronary artery disease (CAD). Nevertheless, the correlation between aerobic capacity, and functional mobility and quality of life in elderly CAD patients is less addressed. The purpose of the current study is to investigate the beneficial effects of exercise training in elderly people with CAD, integrating exercise stress testing, functional mobility, handgrip strength, and health-related quality of life. Elderly people with CAD were enrolled from the outpatient clinic of a cardiac rehabilitation unit in a medical center. Participants were assigned to the exercise training group (N = 21) or the usual care group (N = 15). A total of 36 sessions of exercise training, completed in 12 weeks, was prescribed. Echocardiography, exercise stress testing, the 6-minute walking test, Timed Up and Go test, and handgrip strength testing were performed, and the Short-Form 36 questionnaire (SF-36) was administered at baseline and at 12-week follow-up. Peak oxygen consumption improved significantly after training. The heart rate recovery improved from 13.90/minute to 16.62/minute after exercise training. Functional mobility and handgrip strength also improved after training. Significant improvements were found in SF-36 physical function, social function, role limitation due to emotional problems, and mental health domains. A significant correlation between dynamic cardiopulmonary exercise testing parameters, the 6-minute walking test, Timed Up and Go test, handgrip strength, and SF-36 physical function and general health domains was also detected. Twelve-week, 36-session exercise training, including moderate-intensity cardiopulmonary exercise training, strengthening exercise, and balance training, is beneficial to elderly patients with CAD, and cardiopulmonary exercise testing parameters correlate well with balance and quality of life. Copyright © 2014. Published by Elsevier Taiwan.

  6. Influence of Sequential vs. Simultaneous Dual-Task Exercise Training on Cognitive Function in Older Adults.

    PubMed

    Tait, Jamie L; Duckham, Rachel L; Milte, Catherine M; Main, Luana C; Daly, Robin M

    2017-01-01

    Emerging research indicates that exercise combined with cognitive training may improve cognitive function in older adults. Typically these programs have incorporated sequential training, where exercise and cognitive training are undertaken separately. However, simultaneous or dual-task training, where cognitive and/or motor training are performed simultaneously with exercise, may offer greater benefits. This review summary provides an overview of the effects of combined simultaneous vs. sequential training on cognitive function in older adults. Based on the available evidence, there are inconsistent findings with regard to the cognitive benefits of sequential training in comparison to cognitive or exercise training alone. In contrast, simultaneous training interventions, particularly multimodal exercise programs in combination with secondary tasks regulated by sensory cues, have significantly improved cognition in both healthy older and clinical populations. However, further research is needed to determine the optimal characteristics of a successful simultaneous training program for optimizing cognitive function in older people.

  7. Exercise training during rehabilitation of patients with COPD: a current perspective.

    PubMed

    Spruit, Martijn A; Troosters, Thierry; Trappenburg, Jacob C A; Decramer, Marc; Gosselink, Rik

    2004-03-01

    Patients with chronic obstructive pulmonary disease (COPD) suffer frequently from physiologic and psychological impairments, such as dyspnea, peripheral muscle weakness, exercise intolerance, decreased health-related quality of life (HRQOL) and emotional distress. Rehabilitation programmes have shown to result in significant changes in perceived dyspnea and fatigue, utilisation of healthcare resources, exercise performance and HRQOL. Exercise training, which consists of whole-body exercise training and local resistance training, is the cornerstone of these programmes. Regrettably, the positive effects of respiratory rehabilitation deteriorate over time, especially after short programmes. Hence, attention should be given to the aftercare of these patients to prevent them to revert again to a sedentary lifestyle. On empirical basis three possibilities seem to be clinically feasible: (1) continuous outpatient exercise training; (2) exercise training in a home-based or community-based setting; or (3) exercise training sessions in a group of asthma and COPD patients.

  8. Effects of aerobic training intensity on resting, exercise and post-exercise blood pressure, heart rate and heart-rate variability.

    PubMed

    Cornelissen, V A; Verheyden, B; Aubert, A E; Fagard, R H

    2010-03-01

    We aimed to investigate the effects of endurance training intensity (1) on systolic blood pressure (SBP) and heart rate (HR) at rest before exercise, and during and after a maximal exercise test; and (2) on measures of HR variability at rest before exercise and during recovery from the exercise test, in at least 55-year-old healthy sedentary men and women. A randomized crossover study comprising three 10-week periods was performed. In the first and third period, participants exercised at lower or higher intensity (33% or 66% of HR reserve) in random order, with a sedentary period in between. Training programmes were identical except for intensity, and were performed under supervision thrice for 1 h per week. The results show that in the three conditions, that is, at rest before exercise, during exercise and during recovery, we found endurance training at lower and higher intensity to reduce SBP significantly (P<0.05) and to a similar extent. Further, SBP during recovery was, on average, not lower than at rest before exercise, and chronic endurance training did not affect the response of SBP after an acute bout of exercise. The effect of training on HR at rest, during exercise and recovery was more pronounced (P<0.05) with higher intensity. Finally, endurance training had no significant effect on sympathovagal balance. In conclusion, in participants at higher age, both training programmes exert similar effects on SBP at rest, during exercise and during post-exercise recovery, whereas the effects on HR are more pronounced after higher intensity training.

  9. Psychophysiological Responses to Group Exercise Training Sessions: Does Exercise Intensity Matter?

    PubMed

    Vandoni, Matteo; Codrons, Erwan; Marin, Luca; Correale, Luca; Bigliassi, Marcelo; Buzzachera, Cosme Franklim

    2016-01-01

    Group exercise training programs were introduced as a strategy for improving health and fitness and potentially reducing dropout rates. This study examined the psychophysiological responses to group exercise training sessions. Twenty-seven adults completed two group exercise training sessions of moderate and vigorous exercise intensities in a random and counterbalanced order. The %HRR and the exertional and arousal responses to vigorous session were higher than those during the moderate session (p<0.05). Consequently, the affective responses to vigorous session were less pleasant than those during moderate session (p<0.05). These results suggest that the psychophysiological responses to group exercise training sessions are intensity-dependent. From an adherence perspective, interventionists are encouraged to emphasize group exercise training sessions at a moderate intensity to maximize affective responses and to minimize exertional responses, which in turn may positively affect future exercise behavior.

  10. Motivational and psychological correlates of bodybuilding dependence

    PubMed Central

    EMINI, NEIM N.; BOND, MALCOLM J.

    2014-01-01

    Abstract Background and aims: Exercise may become physically and psychologically maladaptive if taken to extremes. One example is the dependence reported by some individuals who engage in weight training. The current study explored potential psychological, motivational, emotional and behavioural concomitants of bodybuilding dependence, with a particular focus on motives for weight training. Using a path analysis paradigm, putative causal models sought to explain associations among key study variables. Methods: A convenience sample of 101 men aged between 18 and 67 years was assembled from gymnasia in Adelaide, South Australia. Active weight trainers voluntarily completed a questionnaire that included measures of bodybuilding dependence (social dependency, training dependency, and mastery), anger, hostility and aggression, stress and motivations for weight training. Results: Three motives for weight training were identified: mood control, physique anxiety and personal challenge. Of these, personal challenge and mood control were the most directly salient to dependence. Social dependency was particularly relevant to personal challenge, whereas training dependency was associated with both personal challenge and mood control. Mastery demonstrated a direct link with physique anxiety, thus reflecting a unique component of exercise dependence. Conclusions: While it was not possible to determine causality with the available data, the joint roles of variables that influence, or are influenced by, bodybuilding dependence are identified. Results highlight unique motivations for bodybuilding and suggest that dependence could be a result of, and way of coping with, stress manifesting as aggression. A potential framework for future research is provided through the demonstration of plausible causal linkages among these variables. PMID:25317342

  11. Motivational and psychological correlates of bodybuilding dependence.

    PubMed

    Emini, Neim N; Bond, Malcolm J

    2014-09-01

    Exercise may become physically and psychologically maladaptive if taken to extremes. One example is the dependence reported by some individuals who engage in weight training. The current study explored potential psychological, motivational, emotional and behavioural concomitants of bodybuilding dependence, with a particular focus on motives for weight training. Using a path analysis paradigm, putative causal models sought to explain associations among key study variables. A convenience sample of 101 men aged between 18 and 67 years was assembled from gymnasia in Adelaide, South Australia. Active weight trainers voluntarily completed a questionnaire that included measures of bodybuilding dependence (social dependency, training dependency, and mastery), anger, hostility and aggression, stress and motivations for weight training. Three motives for weight training were identified: mood control, physique anxiety and personal challenge. Of these, personal challenge and mood control were the most directly salient to dependence. Social dependency was particularly relevant to personal challenge, whereas training dependency was associated with both personal challenge and mood control. Mastery demonstrated a direct link with physique anxiety, thus reflecting a unique component of exercise dependence. While it was not possible to determine causality with the available data, the joint roles of variables that influence, or are influenced by, bodybuilding dependence are identified. RESULTS highlight unique motivations for bodybuilding and suggest that dependence could be a result of, and way of coping with, stress manifesting as aggression. A potential framework for future research is provided through the demonstration of plausible causal linkages among these variables.

  12. Effects of Progressive Resistance Strength Training on Knee Biomechanics During Single Leg Step-up in Persons with Mild Knee Osteoarthritis

    PubMed Central

    McQuade, Kevin James; de Oliveira, Anamaria Siriani

    2011-01-01

    Background The goal of this study was to determine if increasing strength in primary knee extensors and flexors would directly affect net knee joint moments during a common functional task in persons with knee osteoarthritis. Methods An exploratory single sample clinical trial with pre-post treatment measures was used to study volunteers with clinical diagnosis of mild knee OA in one knee. Subjects participated in an individually supervised training program 3 times a week for eight weeks consisting of progressive resistive exercises for knee extensors and knee flexors. Pre and post training outcome assessments included: 1. Net internal knee joint moments, 2. Electromyography of primary knee extensors and flexors, and 3. Self-report measures of knee pain and function. The distribution of lower extremity joint moments as a percent of the total support moment was also investigated. Findings Pain, symptoms, activities of daily life, quality of life, stiffness, and function scores showed significant improvement following strength training. Knee internal valgus and hip internal rotation moments showed increasing but non-statistically significant changes post-training. There were no significant differences in muscle co-contraction activation of the Quadriceps and Hamstrings. Interpretations While exercise continues to be an important element of OA management, the results of this study suggest improvements in function, pain, and other symptoms, as a result of strength training may not be causally related to specific biomechanical changes in net joint moments. PMID:21514018

  13. Supported treadmill ambulation for amyotrophic lateral sclerosis: a pilot study.

    PubMed

    Sanjak, Mohammed; Bravver, Elena; Bockenek, William L; Norton, H James; Brooks, Benjamin R

    2010-12-01

    To determine the feasibility, tolerability, safety, and exercise treatment-effect size of repetitive rhythmic exercise mediated by supported treadmill ambulation training (STAT) for patients with amyotrophic lateral sclerosis (ALS). Interventional with repeated-measures design. Multidisciplinary ALS clinic at academic medical center. Convenience sample of patients with ALS (N=9) who were ambulatory with assistive devices (Sinaki-Mulder stages II-III). Repetitive rhythmic exercise-STAT (30min total; 5min of exercise intercalated with 5min of rest) performed 3 times a week for 8 weeks. ALS Functional Rating Scale-Revised (ALSFRS-R), percentage of predicted vital capacity (VC), total lower-extremities manual muscle test (MMT), rate of perceived exertion (RPE), Fatigue Severity Scale (FSS), and maximum voluntary isometric contraction (MVIC) in 10 lower and 10 upper extremities. Gait performance, which included walking distance, speed, steps, and stride length, was evaluated during treadmill and ground 6-minute walk tests (6MWTs) and 25-foot walk test (25FWT). Feasibility issues decreased screened participants by 4 patients (31%). Nine patients were enrolled, but 6 patients (67%) completed the study and 3 (23% of original cohort; 33% of enrolled cohort) could not complete the exercise intervention because of non-ALS-related medical problems. Tolerability of the intervention measures during the treadmill 6MWT showed improvement in RPE (P≤.05) and FSS score (P≥.05). Safety measures (ALSFRS-R, VC, MMT) showed no decrease and showed statistical improvement in ALSFRS-R score (P≤.05) during the study interval. Exercise treatment-effect size showed variable improvements. Gait speed, distance, and stride length during the treadmill 6MWT improved significantly (P≤.05) after 4 weeks and improvements were maintained after 8 weeks compared with baseline. Walking distance during the ground 6MWT increased significantly after 4 weeks and was maintained after 8 weeks compared with baseline (P≤.05). Walking speed during the 25FWT and lower-extremity MVIC improved, but were not statistically significant. Repetitive rhythmic exercise-STAT is feasible, tolerated, and safe for patients with ALS. Repetitive rhythmic exercise-STAT treatment-effect size across a number of ALS-related measures was consistent with improved work capacity and gait function in patients with ALS who are dependent on assistive devices for ambulation. Repetitive rhythmic exercise-STAT should be evaluated further in larger studies to determine the stability of this improved function in relation to the rate of progression of the underlying ALS. Copyright © 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. Novel All-Extremity High-Intensity Interval Training Improves Aerobic Fitness, Cardiac Function and Insulin Resistance in Healthy Older Adults

    PubMed Central

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M.; Petersen, John W.; Christou, Demetra D.

    2016-01-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1 years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4 minutes 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4x/week for 8 weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (P<0.0001) and 4% (P=0.001) respectively in HIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; P<0.0001). Insulin resistance (homeostatic model assessment) decreased only in HIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. PMID:27346646

  15. Novel all-extremity high-intensity interval training improves aerobic fitness, cardiac function and insulin resistance in healthy older adults.

    PubMed

    Hwang, Chueh-Lung; Yoo, Jeung-Ki; Kim, Han-Kyul; Hwang, Moon-Hyon; Handberg, Eileen M; Petersen, John W; Christou, Demetra D

    2016-09-01

    Aging is associated with decreased aerobic fitness and cardiac remodeling leading to increased risk for cardiovascular disease. High-intensity interval training (HIIT) on the treadmill has been reported to be more effective in ameliorating these risk factors compared with moderate-intensity continuous training (MICT) in patients with cardiometabolic disease. In older adults, however, weight-bearing activities are frequently limited due to musculoskeletal and balance problems. The purpose of this study was to examine the feasibility and safety of non-weight-bearing all-extremity HIIT in older adults. In addition, we tested the hypothesis that all-extremity HIIT will be more effective in improving aerobic fitness, cardiac function, and metabolic risk factors compared with all-extremity MICT. Fifty-one healthy sedentary older adults (age: 65±1years) were randomized to HIIT (n=17), MICT (n=18) or non-exercise control (CONT; n=16). HIIT (4×4min 90% of peak heart rate; HRpeak) and isocaloric MICT (70% of HRpeak) were performed on a non-weight-bearing all-extremity ergometer, 4×/week for 8weeks under supervision. All-extremity HIIT was feasible in older adults and resulted in no adverse events. Aerobic fitness (peak oxygen consumption; VO2peak) and ejection fraction (echocardiography) improved by 11% (P<0.0001) and 4% (P=0.001), respectively in HIIT, while no changes were observed in MICT and CONT (P≥0.1). Greater improvements in ejection fraction were associated with greater improvements in VO2peak (r=0.57; P<0.0001). Insulin resistance (homeostatic model assessment) decreased only in HIIT by 26% (P=0.016). Diastolic function, body composition, glucose and lipids were unaffected (P≥0.1). In conclusion, all-extremity HIIT is feasible and safe in older adults. HIIT, but not MICT, improved aerobic fitness, ejection fraction, and insulin resistance. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Terahop and Lawrence Livermore National LaboratoryStructural Fire RF Testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haugen, P; Pratt, G

    The Georgia Public Safety Training Center's Live Fire Training Facility in Forsyth, GA is a three story structure constructed of rebar-reinforced concrete wall and floors. All the door and window coverings on the building are constructed of thick, plate metal to withstand the high temperatures generated inside the building during training exercises. All of the building's walls and floors are 1-foot thick, and regular concrete columns run up along the inside of the wall increasing the thickness to 20-inches in those locations. A center concrete staircase divides the structure in half. For typical exercises, fires are started in the backmore » right corner of the building on the first floor and in the front right corner on the second floor as shown in Figure 2. Due to the high heat generated during these exercises, measured at 300 F on the floor and 700 F near the ceilings, there were limited locations at which equipment could be placed that did not incorporate heat shielding, such as the Lawrence Livermore National Laboratory's UWB system. However, upon inspection of the building, two preferable locations were identified in which equipment could be placed that would be protected from the temperature extremes generated by the fires. These locations are identified in Figure 2 as the tested TX locations. These were preferred locations because, while they protected the hardware from temperature extremes, they also force the RF transmission path through the building to cross very near the fire locations and anticipated plasma generation regions. Both of the locations listed in Figure 2 were tested by the UWB equipment and found to be suitable deployment locations to establish a solid RF link for data collection. The transmission location on the first floor was ultimately chosen for use during the actual exercises because it was accessible to the data collection team during the exercises. This allowed them to remove the hardware once the testing was complete without having to wait for the entire day of exercises to complete. Unfortunately, RF transmission directly through the central location of the fire on the first floor was not possible, so the transmission path had to be shifted approximately 6-feet off the side of the fire's center. The corner where the fire was located on the first floor was re-enforced with a mixture of concrete and metal fibers for heat resistance. This material was highly reflective, permitting very little RF energy to pass through it. This phenomenon was also observed and verified by Terahop's testing, discussed in the next section. An image of these re-enforced walls and a close up of the actual wall material containing the metal fibers can bee seen in Figure 3.« less

  17. Exercise training in patients with heart disease: review of beneficial effects and clinical recommendations.

    PubMed

    Gielen, Stephan; Laughlin, M Harold; O'Conner, Christopher; Duncker, Dirk J

    2015-01-01

    Over the last decades exercise training has evolved into an established evidence-based therapeutic strategy with prognostic benefits in many cardiovascular diseases (CVDs): In stable coronary artery disease (CAD) exercise training attenuates disease progression by beneficially influencing CVD risk factors (i.e., hyperlipidemia, hypertension) and coronary endothelial function. In heart failure (HF) with reduced ejection fraction (HFrEF) training prevents the progressive loss of exercise capacity by antagonizing peripheral skeletal muscle wasting and by promoting left ventricular reverse remodeling with reduction in cardiomegaly and improvement of ejection fraction. Novel areas for exercise training interventions include HF with preserved ejection fraction (HFpEF), pulmonary hypertension, and valvular heart disease. In HFpEF, randomized studies indicate a lusitropic effect of training on left ventricular diastolic function associated with symptomatic improvement of exercise capacity. In pulmonary hypertension, reductions in pulmonary artery pressure were observed following endurance exercise training. Recently, innovative training methods such as high-intensity interval training, resistance training and others have been introduced. Although their prognostic value still needs to be determined, these approaches may achieve superior improvements in aerobic exercise capacity and gain in muscle mass, respectively. In this review, we give an overview of the prognostic and symptomatic benefits of exercise training in the most common cardiac disease entities. Additionally, key guideline recommendations for the initiation of training programs are summarized. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Exercise and BMI z-score in Overweight and Obese Children and Adolescents: A Systematic Review and Network Meta-Analysis of Randomized Trials.

    PubMed

    Kelley, George A; Kelley, Kristi S; Pate, Russell R

    2017-05-01

    Examine the effects of selected types of exercise (aerobic, strength training, both) on BMI z-score in overweight and obese children and adolescents. Randomized exercise intervention trials ≥ 4 weeks were included. Studies were retrieved by searching six electronic databases, cross-referencing and expert review. Dual selection and abstraction occurred. Risk of bias and confidence in cumulative evidence were assessed. Network meta-analysis was performed using multivariate random-effects meta-regression models while surface under the cumulative ranking curves were used to calculate a hierarchy of exercise treatments. The number needed to treat (NNT) and percentile improvement (U 3 ) were also calculated. Thirty-four studies representing 2,239 participants were included. Median exercise occurred 3 times per week, 50 minutes per session over a 12-week period. Statistically significant reductions in BMI z-score were found for aerobic exercise and combined aerobic and strength exercise, but not strength training alone (M±SD, 95% CI: aerobic, -0.10, -0.15 to -0.05; aerobic and strength, -0.11, -0.19 to -0.03; strength, 0.04, -0.07 to 0.15). Combined aerobic and strength training was ranked best, followed by aerobic exercise and strength training. The NNT was 2 for both aerobic exercise and combined aerobic exercise and strength training. Percentile improvements were 28.8% for aerobic exercise and 31.5% for combined aerobic exercise and strength training. Confidence in effect estimates was ranked as low for aerobic exercise and very low for combined aerobic and strength training as well as strength training. Aerobic exercise and combined aerobic exercise and strength training are associated with reductions in BMI z-score. © 2016 Chinese Cochrane Center, West China Hospital of Sichuan University and John Wiley & Sons Australia, Ltd.

  19. Exercise and BMI z-score in Overweight and Obese Children and Adolescents: A Systematic Review and Network Meta-Analysis of Randomized Trials

    PubMed Central

    George, Kelley; Kristi, Kelley; Russell, Pate

    2017-01-01

    Aim Examine the effects of selected types of exercise (aerobic, strength training, both) on BMI z-score in overweight and obese children and adolescents. Methods Randomized exercise intervention trials ≥ 4 weeks were included. Studies were retrieved by searching six electronic databases, cross-referencing and expert review. Dual selection and abstraction occurred. Risk of bias and confidence in cumulative evidence were assessed. Network meta-analysis was performed using multivariate random-effects meta-regression models while surface under the cumulative ranking curves were used to calculate a hierarchy of exercise treatments. The number needed to treat (NNT) and percentile improvement (U3) were also calculated. Results Thirty-four studies representing 2,239 participants were included. Median exercise occurred 3 times per week, 50 minutes per session over a 12-week period. Statistically significant reductions in BMI z-score were found for aerobic exercise and combined aerobic and strength exercise, but not strength training alone (M±SD, 95% CI: aerobic, -0.10, -0.15 to -0.05; aerobic and strength, -0.11, -0.19, -0.03; strength, 0.04, -0.07 to 0.15). Combined aerobic and strength training was ranked best, followed by aerobic exercise and strength training. The NNT was 2 for both aerobic exercise and combined aerobic exercise and strength training. Percentile improvements were 28.8% for aerobic exercise and 31.5% for combined aerobic exercise and strength training. Confidence in effect estimates was ranked as low for aerobic exercise and very low for combined aerobic and strength training as well as strength training. Conclusions Aerobic exercise and combined aerobic exercise and strength training are associated with reductions in BMI z-score. PMID:27792271

  20. Effect of a combination of whole body vibration exercise and squat training on body balance, muscle power, and walking ability in the elderly.

    PubMed

    Osugi, Tomohiro; Iwamoto, Jun; Yamazaki, Michio; Takakuwa, Masayuki

    2014-01-01

    A randomized controlled trial was conducted to clarify the beneficial effect of whole body vibration (WBV) exercise plus squat training on body balance, muscle power, and walking ability in the elderly with knee osteoarthritis and/or spondylosis. Of 35 ambulatory patients (14 men and 21 women) who were recruited at our outpatient clinic, 28 (80.0%, 12 men and 16 women) participated in the trial. The subjects (mean age 72.4 years) were randomly divided into two groups (n=14 in each group), ie, a WBV exercise alone group and a WBV exercise plus squat training group. A 4-minute WBV exercise (frequency 20 Hz) was performed 2 days per week in both groups; squat training (20 times per minute) was added during the 4-minute WBV training session in the WBV exercise plus squat training group. The duration of the trial was 6 months. The exercise and training program was safe and well tolerated. WBV exercise alone improved indices of body balance and walking velocity from baseline values. However, WBV exercise plus squat training was more effective for improving tandem gait step number and chair-rising time compared with WBV exercise alone. These results suggest the benefit and safety of WBV exercise plus squat training for improving physical function in terms of body balance and muscle power in the elderly.

  1. Impact of high- and low-intensity targeted exercise training on the type of substrate utilization in obese boys submitted to a hypocaloric diet.

    PubMed

    Brandou, F; Savy-Pacaux, A M; Marie, J; Bauloz, M; Maret-Fleuret, I; Borrocoso, S; Mercier, J; Brun, J F

    2005-09-01

    We assessed the effect of two programs combining a hypocaloric diet with low-intensity (LI) or high-intensity (HI) exercise training, during two months, on substrate utilization at exercise in obese children. Fifteen obese boys participated in a combined program of exercise and caloric restriction-induced weight loss (diet starting two weeks before the training program). The maximal fat oxidation point (Lipox max) was determined to individualize exercise training. Training consisted of cycling at either LI (Lipox max) for seven children or HI (Lipoxmax+40% Lipox max) for eight children. All children exhibited a decrease in weight (LI: -5.2 kg +/- 0.7 (P<0.01), HI: -7 kg +/- 0.7 (P<0.01)). While in the LI group, both fat and CHO oxidation were unchanged after training, HI group oxidize less fat and more CHO after training when exercising at 20% and 30% Wmax th (P = 0.02). While a LI exercise training program maintains (but does not improve) the ability to oxidize fat at exercise, HI training actually shifts towards CHO the balance of substrate oxidation during exercise. Thus, a low intensity training protocol seems to counteract to some extent the decline in lipid oxidation at exercise that occurs after a hypocaloric diet, and is thus likely to be synergistic to diet in the weight lowering strategy.

  2. Cycle training induces muscle hypertrophy and strength gain: strategies and mechanisms.

    PubMed

    Ozaki, Hayao; Loenneke, J P; Thiebaud, R S; Abe, T

    2015-03-01

    Cycle training is widely performed as a major part of any exercise program seeking to improve aerobic capacity and cardiovascular health. However, the effect of cycle training on muscle size and strength gain still requires further insight, even though it is known that professional cyclists display larger muscle size compared to controls. Therefore, the purpose of this review is to discuss the effects of cycle training on muscle size and strength of the lower extremity and the possible mechanisms for increasing muscle size with cycle training. It is plausible that cycle training requires a longer period to significantly increase muscle size compared to typical resistance training due to a much slower hypertrophy rate. Cycle training induces muscle hypertrophy similarly between young and older age groups, while strength gain seems to favor older adults, which suggests that the probability for improving in muscle quality appears to be higher in older adults compared to young adults. For young adults, higher-intensity intermittent cycling may be required to achieve strength gains. It also appears that muscle hypertrophy induced by cycle training results from the positive changes in muscle protein net balance.

  3. Effectiveness of Interval Exercise Training in Patients with COPD

    PubMed Central

    Kortianou, Eleni A.; Nasis, Ioannis G.; Spetsioti, Stavroula T.; Daskalakis, Andreas M.; Vogiatzis, Ioannis

    2010-01-01

    Physical training is beneficial and should be included in the comprehensive management of all patients with COPD independently of disease severity. Different rehabilitative strategies and training modalities have been proposed to optimize exercise tolerance. Interval exercise training has been used as an effective alternative modality to continuous exercise in patients with moderate and severe COPD. Although in healthy elderly individuals and patients with chronic heart failure there is evidence that this training modality is superior to continuous exercise in terms of physiological training effects, in patients with COPD, there is not such evidence. Nevertheless, in patients with COPD application of interval training has been shown to be equally effective to continuous exercise as it induces equivalent physiological training effects but with less symptoms of dyspnea and leg discomfort during training. The main purpose of this review is to summarize previous studies of the effectiveness of interval training in COPD and also to provide arguments in support of the application of interval training to overcome the respiratory and peripheral muscle limiting factors of exercise capacity. To this end we make recommendations on how best to implement interval training in the COPD population in the rehabilitation setting so as to maximize training effects. PMID:20957074

  4. Aquatic exercise training and stable heart failure: A systematic review and meta-analysis.

    PubMed

    Adsett, Julie A; Mudge, Alison M; Morris, Norman; Kuys, Suzanne; Paratz, Jennifer D

    2015-01-01

    A meta-analysis and review of the evidence was conducted to determine the efficacy of aquatic exercise training for individuals with heart failure compared to traditional land-based programmes. A systematic search was conducted for studies published prior to March 2014, using MEDLINE, PUBMED, Cochrane Library, CINAHL and PEDro databases. Key words and synonyms relating to aquatic exercise and heart failure comprised the search strategy. Interventions included aquatic exercise or a combination of aquatic plus land-based training, whilst comparator protocols included usual care, no exercise or land-based training alone. The primary outcome of interest was exercise performance. Studies reporting on muscle strength, quality of life and a range of haemodynamic and physiological parameters were also reviewed. Eight studies met criteria, accounting for 156 participants. Meta-analysis identified studies including aquatic exercise to be superior to comparator protocols for 6 minute walk test (p < 0.004) and peak power (p < 0.044). Compared to land-based training programmes, aquatic exercise training provided similar benefits for VO(2peak), muscle strength and quality of life, though was not superior. Cardiac dimensions, left ventricular ejection fraction, cardiac output and BNP were not influenced by aquatic exercise training. For those with stable heart failure, aquatic exercise training can improve exercise capacity, muscle strength and quality of life similar to land-based training programmes. This form of exercise may provide a safe and effective alternative for those unable to participate in traditional exercise programmes. Crown Copyright © 2015. Published by Elsevier Ireland Ltd. All rights reserved.

  5. Dynamic exercise training prevents exercise pressor reflex overactivity in spontaneously hypertensive rats

    PubMed Central

    Iwamoto, Gary A.; Vongpatanasin, Wanpen; Mitchell, Jere H.; Smith, Scott A.

    2015-01-01

    Cardiovascular responses to exercise are exaggerated in hypertension. We previously demonstrated that this heightened cardiovascular response to exercise is mediated by an abnormal skeletal muscle exercise pressor reflex (EPR) with important contributions from its mechanically and chemically sensitive components. Exercise training attenuates exercise pressor reflex function in healthy subjects as well as in heart failure rats. However, whether exercise training has similar physiological benefits in hypertension remains to be elucidated. Thus we tested the hypothesis that the EPR overactivity manifest in hypertension is mitigated by exercise training. Changes in mean arterial pressure (MAP) and renal sympathetic nerve activity (RSNA) in response to muscle contraction, passive muscle stretch, and hindlimb intra-arterial capsaicin administration were examined in untrained normotensive Wistar-Kyoto rats (WKYUT; n = 6), exercise-trained WKY (WKYET; n = 7), untrained spontaneously hypertensive rats (SHRUT; n = 8), and exercise-trained SHR (SHRET; n = 7). Baseline MAP after decerebration was significantly decreased by 3 mo of wheel running in SHRET (104 ± 9 mmHg) compared with SHRUT (125 ± 10 mmHg). As previously reported, the pressor and renal sympathetic responses to muscle contraction, stretch, and capsaicin administration were significantly higher in SHRUT than WKYUT. Exercise training significantly attenuated the enhanced contraction-induced elevations in MAP (SHRUT: 53 ± 11 mmHg; SHRET: 19 ± 3 mmHg) and RSNA (SHRUT: 145 ± 32%; SHRET: 57 ± 11%). Training produced similar attenuating effects in SHR during passive stretch and capsaicin administration. These data demonstrate that the abnormally exaggerated EPR function that develops in hypertensive rats is significantly diminished by exercise training. PMID:26163445

  6. Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes

    PubMed Central

    Chaouachi, Mehdi; Granacher, Urs; Makhlouf, Issam; Hammami, Raouf; Behm, David G; Chaouachi, Anis

    2017-01-01

    The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players (13.9 ± 0.3 years) participated in an 8-week training program that either alternated individual balance (e.g., exercises on unstable surfaces) and plyometric (e.g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately >30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence. Key points The combination of balance and plyometric exercises can induce significant and substantial training improvements in muscle strength, power, speed, agility, and balance with adolescent youth athletes The within training session sequence of balance and plyometric exercises does not substantially affect these training improvements. PMID:28344461

  7. Towards evidence based strength training: a comparison of muscle forces during deadlifts, goodmornings and split squats.

    PubMed

    Schellenberg, Florian; Taylor, William R; Lorenzetti, Silvio

    2017-01-01

    To ensure an efficient and targeted adaptation with low injury risk during strength exercises, knowledge of the participant specific internal loading conditions is essential. The goal of this study was to calculate the lower limb muscles forces during the strength exercises deadlifts, goodmornings and splits squats by means of musculoskeletal simulation. 11 participants were assessed performing 10 different variations of split squats by varying the step length as well as the maximal frontal tibia angle, and 13 participants were measured performing deadlift and goodmorning exercises. Using individualised musculoskeletal models, forces of the Quadriceps ( four parts), Hamstrings (four parts) and m. gluteus maximus (three parts) were computed. Deadlifts resulted highest loading for the Quadriceps, especially for the vasti (18-34 N/kg), but not for the rectus femoris (8-10 N/kg), which exhibited its greatest loading during split squats (13-27 N/kg) in the rear limb. Hamstrings were loaded isometrically during goodmornings but dynamically during deadlifts. For the m. gluteus maximus , the highest loading was observed during split squats in the front limb (up to 25 N/kg), while deadlifts produced increasingly, large loading over large ranges of motion in hip and knee. Acting muscle forces vary between exercises, execution form and joint angle. For all examined muscles, deadlifts produced considerable loading over large ranges of motion, while split squats seem to be highly dependent upon exercise variation. This study provides key information to design strength-training programs with respect to loading conditions and ranges of motion of lower extremity muscles.

  8. Resistance training is accompanied by increases in hip strength and changes in lower extremity biomechanics during running.

    PubMed

    Snyder, Kelli R; Earl, Jennifer E; O'Connor, Kristian M; Ebersole, Kyle T

    2009-01-01

    Movement and muscle activity of the hip have been shown to affect movement of the lower extremity, and been related to injury. The purpose of this study was to determine if increased hip strength affects lower extremity mechanics during running. Within subject, repeated measures design. Fifteen healthy women volunteered. Hip abduction and external rotation strength were measured using a hand-held dynamometer. Three-dimensional biomechanical data of the lower extremity were collected during running using a high-speed motion capture system. Measurements were made before, at the mid-point, and after a 6-week strengthening program using closed-chain hip rotation exercises. Joint range of motion (rearfoot eversion, knee abduction, hip adduction, and internal rotation), eversion velocity, eversion angle at heel strike, and peak joint moments (rearfoot inversion, knee abduction, hip abduction, and external rotation) were analyzed using repeated measures analysis of variance (P

  9. Pelvic floor muscle training exercises

    MedlinePlus

    ... this page: //medlineplus.gov/ency/article/003975.htm Pelvic floor muscle training exercises To use the sharing features on this page, please enable JavaScript. Pelvic floor muscle training exercises are a series of exercises designed to ...

  10. Effects of combined exercise training and electromyostimulation treatments in chronic heart failure: A prospective multicentre study.

    PubMed

    Iliou, Marie C; Vergès-Patois, Bénédicte; Pavy, Bruno; Charles-Nelson, Anais; Monpère, Catherine; Richard, Rudy; Verdier, Jean C

    2017-08-01

    Background Exercise training as part of a comprehensive cardiac rehabilitation is recommended for patients with cardiac heart failure. It is a valuable method for the improvement of exercise tolerance. Some studies reported a similar improvement with quadricipital electrical myostimulation, but the effect of combined exercise training and electrical myostimulation in cardiac heart failure has not been yet evaluated in a large prospective multicentre study. Purpose The aim of this study was to determine whether the addition of low frequency electrical myostimulation to exercise training may improve exercise capacity and/or muscular strength in cardiac heart failure patients. Methods Ninety-one patients were included (mean age: 58 ± 9 years; New York Heart Association II/III: 52/48%, left ventricular ejection fraction: 30 ± 7%) in a prospective French study. The patients were randomised into two groups: 41 patients in exercise training and 50 in exercise training + electrical myostimulation. All patients underwent 20 exercise training sessions. In addition, in the exercise training + electrical myostimulation group, patients underwent 20 low frequency (10 Hz) quadricipital electrical myostimulation sessions. Each patient underwent a cardiopulmonary exercise test, a six-minute walk test, a muscular function evaluation and a quality of life questionnaire, before and at the end of the study. Results A significant improvement of exercise capacity (Δ peak oxygen uptake+15% in exercise training group and +14% in exercise training + electrical myostimulation group) and of quality of life was observed in both groups without statistically significant differences between the two groups. Mean creatine kinase level increased in the exercise training group whereas it remained stable in the combined group. Conclusions This prospective multicentre study shows that electrical myostimulation on top of exercise training does not demonstrate any significant additional improvement in exercise capacity in cardiac heart failure patients.

  11. Exercise Versus +Gz Acceleration Training

    NASA Technical Reports Server (NTRS)

    Greenleaf, John E.; Simonson, S. R.; Stocks, J. M.; Evans, J. M.; Knapp, C. F.; Dalton, Bonnie P. (Technical Monitor)

    2002-01-01

    Decreased working capacity and "orthostatic" intolerance are two major problems for astronauts during and after landing from spaceflight in a return vehicle. The purpose was to test the hypotheses that (1) supine-passive-acceleration training, supine-interval-exercise plus acceleration training, and supine exercise plus acceleration training will improve orthostatic tolerance (OT) in ambulatory men; and that (2) addition of aerobic exercise conditioning will not influence this enhanced OT from that of passive-acceleration training. Seven untrained men (24-38 yr) underwent 3 training regimens (30 min/d x 5d/wk x 3wk on the human-powered centrifuge - HPC): (a) Passive acceleration (alternating +1.0 Gz to 50% Gzmax); (b) Exercise acceleration (alternating 40% - 90% V02max leg cycle exercise plus 50% of HPCmax acceleration); and (c) Combined intermittent exercise-acceleration at 40% to 90% HPCmax. Maximal supine exercise workloads increased (P < 0.05) by 8.3% with Passive, by 12.6% with Exercise, and by 15.4% with Combined; but maximal V02 and HR were unchanged in all groups. Maximal endurance (time to cessation) was unchanged with Passive, but increased (P < 0.05) with Exercise and Combined. Resting pre-tilt HR was elevated by 12.9% (P < 0.05) only after Passive training, suggesting that exercise training attenuated this HR response. All resting pre-tilt blood pressures (SBP, DBP, MAP) were not different pre- vs. post-training. Post-training tilt-tolerance time and HR were increased (P < 0.05) only with Passive training by 37.8% and by 29.1%, respectively. Thus, addition of exercise training attenuated the increased Passive tilt tolerance. Resting (pre-tilt) and post-tilt cardiac R-R interval, stroke volume, end-diastolic volume, and cardiac output were all uniformly reduced (P < 0.05) while peripheral resistance was uniformly increased (P < 0.05) pre-and post-training for the three regimens indicating no effect of any training regimen on those cardiovascular variables. Plasma volume (% delta) was uniformly decreased by 8% to 14% (P < 0.05) at tilt-tolerance pre- vs. post-training for all regimens indicating no effect of these training regimens on the level of vascular fluid shifts.

  12. COPD and exercise: does it make a difference?

    PubMed Central

    Burtin, Chris; De Boever, Patrick; Langer, Daniël; Vogiatzis, Ioannis; Wouters, Emiel F.M.; Franssen, Frits M.E.

    2016-01-01

    Key points Physiological changes are observed following a structured exercise training programme in patients with COPD, without changes in resting lung function. Exercise training is the cornerstone of a comprehensive pulmonary rehabilitation programme in patients with COPD. Most comorbidities in patients referred for pulmonary rehabilitation remain undiagnosed and untreated. After careful screening, it is safe for COPD patients with comorbidities to obtain significant and clinically relevant improvements in functional exercise capacity and health status after an exercise-based pulmonary rehabilitation programme. Educational aims To inform readers of the positive effects of exercise-based pulmonary rehabilitation in patients with COPD, even with comorbid conditions. To inform readers of the importance of physical activity in patients with COPD. Exercise training is widely regarded as the cornerstone of pulmonary rehabilitation in patients with chronic obstructive pulmonary disease (COPD). Indeed, exercise training has been identified as the best available means of improving muscle function and exercise tolerance in patients with COPD. So, exercise training truly makes a difference in the life of patients with COPD. In this review, an overview is provided on the history of exercise training (as standalone intervention or as part of a comprehensive pulmonary rehabilitation programme), exercise training in comorbid patients with COPD, and the impact of physical activity counselling in a clean air environment. PMID:27408645

  13. The influence of nontraditional training modalities on physical performance: review of the literature.

    PubMed

    O'Hara, Reginald B; Serres, Jennifer; Traver, Kyle L; Wright, Bruce; Vojta, Chris; Eveland, Ed

    2012-10-01

    The primary purpose of this effort was to review several forms of nontraditional (NT) training programs, including heavy lower extremity strength training, CrossFit training, kettlebell training, and agility training, and discuss the effects of these exercise regimens on physical performance. The secondary purpose was to evaluate NT fitness training programs for evidence that they may provide beneficial options to help airmen improve their fitness scores. A search of the literature for 1980-2010 was performed using the Franzello Aeromedical Library, Public Medicine, and Air Force Institute of Technology search engines. There were 50 articles located and the authors selected 29 articles that specifically addressed the primary and secondary purposes of this literature review. This review indicates that an NT training approach is warranted in the general Air Force population. Heavy leg strength training and agility training show promise in enhancing aerobic fitness and improving fitness scores, particularly among members who have difficulty passing a physical fitness test. Most of the nontraditional forms of physical training are not supported in the scientific literature, with the exception of heavy leg strength training and agility training. However, even these NT forms of training require further investigation.

  14. Cardiovascular response to exercise training in the systemic right ventricle of adults with transposition of the great arteries

    PubMed Central

    Shafer, K M; Janssen, L; Carrick-Ranson, G; Rahmani, S; Palmer, D; Fujimoto, N; Livingston, S; Matulevicius, S A; Forbess, L W; Brickner, B; Levine, B D

    2015-01-01

    We aimed to assess the haemodynamic effects of exercise training in transposition of the great arteries (TGA) patients with systemic right ventricles (SRVs). TGA patients have limited exercise tolerance and early mortality due to systemic (right) ventricular failure. Whether exercise training enhances or injures the SRV is unclear. Fourteen asymptomatic patients (34 ± 10 years) with TGA and SRV were enrolled in a 12 week exercise training programme (moderate and high-intensity workouts). Controls were matched on age, gender, BMI and physical activity. Exercise testing pre- and post- training included: (a) submaximal and peak; (b) prolonged (60 min) submaximal endurance and (c) high-intensity intervals. Oxygen uptake (; Douglas bag technique), cardiac output (, foreign-gas rebreathing), ventricular function (echocardiography and cardiac MRI) and serum biomarkers were assessed. TGA patients had lower peak , , and stroke volume (SV), a blunted / slope, and diminished SV response to exercise (SV increase from rest: TGA = 15.2%, controls = 68.9%, P < 0.001) compared with controls. After training, TGA patients increased peak by 6 ± 8.5%, similar to controls (interaction P = 0.24). The magnitude of SV reserve on initial testing correlated with training response (r = 0.58, P = 0.047), though overall, no change in peak was observed. High-sensitivity troponin T (hs-TnT) and N-terminal prohormone of brain naturetic peptide (NT pro-BNP) were low and did not change with acute exercise or after training. Our data show that TGA patients with SRVs in this study safely participated in exercise training and improved peak . Neither prolonged submaximal exercise, nor high-intensity intervals, nor short-term exercise training seem to injure the systemic right ventricle. Key Points Patients with transposition of the great arteries (TGA) and systemic right ventricles have premature congestive heart failure; there is also a growing concern that athletes who perform extraordinary endurance exercise may injure the right ventricle. Therefore we felt it essential to determine whether exercise training might injure a systemic right ventricle which is loaded with every heartbeat. Previous studies have shown that short term exercise training is feasible in TGA patients, but its effect on ventricular function is unclear. We demonstrate that systemic right ventricular function is preserved (and may be improved) in TGA patients with exercise training programmes that are typical of recreational and sports participation, with no evidence of injury on biomarker assessment. Stroke volume reserve during exercise correlates with exercise training response in our TGA patients, identifying this as a marker of a systemic right ventricle (SRV) that may most tolerate (and possibly even be improved by) exercise training. PMID:25809342

  15. Exercise following myocardial infarction. Current recommendations.

    PubMed

    Leon, A S

    2000-05-01

    Cardiac rehabilitation services are comprehensive long term programmes designed to limit the physiological and psychological effects of cardiovascular disease (CVD), control cardiac symptoms and reduce the risk of subsequent CVD events by stabilising or partially reversing the underlying atherosclerosis process through risk factor modification. Exercise training is the cornerstone of such programmes. Ideally, exercise conditioning or training for the stable cardiac patient should include a combination of cardiorespiratory endurance (aerobic) training, arm exercises and muscular conditioning resistance (strength) training. Flexibility exercises should also be performed, usually as part of the warm-up and cool-down routines preceding and following endurance and strength training. This review discusses the potential physiological, psychological and health benefits of regular exercise and provides guidelines for exercise training for the rehabilitation of post-myocardial infarction patients following hospitalisation.

  16. Benefits of Exercise Training in Multiple Sclerosis.

    PubMed

    Motl, Robert W; Sandroff, Brian M

    2015-09-01

    Exercise training represents a behavioral approach for safely managing many of the functional, symptomatic, and quality of life consequences of multiple sclerosis (MS). This topical review paper summarizes evidence from literature reviews and meta-analyses, supplemented by recent individual studies, indicating that exercise training can yield small but important improvements in walking, balance, cognition, fatigue, depression, and quality of life in MS. The paper highlights limitations of research on exercise training and its consequences and future research directions and provides an overview for promotion of exercise training in MS based on recent prescriptive guidelines. Collectively, the evidence for the benefits of exercise training in MS suggests that the time is ripe for the promotion of exercise by healthcare providers, particularly neurologists as a central part of the clinical care and management of MS patients.

  17. Innovative strength training-induced neuroplasticity and increased muscle size and strength in children with spastic cerebral palsy: an experimenter-blind case study--three-month follow-up.

    PubMed

    Lee, Dong Ryul; Kim, Yun Hee; Kim, Dong A; Lee, Jung Ah; Hwang, Pil Woo; Lee, Min Jin; You, Sung Hyun

    2014-01-01

    In children with cerebral palsy (CP), the never-learned-to-use (NLTU) effect and underutilization suppress the normal development of cortical plasticity in the paretic limb, which further inhibits its functional use and increases associated muscle weakness. To highlight the effects of a novel comprehensive hand repetitive intensive strengthening training system on neuroplastic changes associated with upper extremity (UE) muscle strength and motor performance in children with spastic hemiplegic CP. Two children with spastic hemiplegic CP were recruited. Intervention with the comprehensive hand repetitive intensive strengthening training system was provided for 60 min a day, three times a week, for 10 weeks. Neuroplastic changes, muscle size, strength, and associated motor function were measured using functional magnetic resonance imaging (MRI), ultrasound imaging, and standardized motor tests, respectively. The functional MRI data showed that the comprehensive hand repetitive intensive strengthening training intervention produced measurable neuroplastic changes in the neural substrates associated with motor control and learning. These neuroplastic changes were associated with increased muscle size, strength and motor function. These results provide compelling evidence of neuroplastic changes and associated improvements in muscle size and motor function following innovative upper extremity strengthening exercise.

  18. Influence of Sequential vs. Simultaneous Dual-Task Exercise Training on Cognitive Function in Older Adults

    PubMed Central

    Tait, Jamie L.; Duckham, Rachel L.; Milte, Catherine M.; Main, Luana C.; Daly, Robin M.

    2017-01-01

    Emerging research indicates that exercise combined with cognitive training may improve cognitive function in older adults. Typically these programs have incorporated sequential training, where exercise and cognitive training are undertaken separately. However, simultaneous or dual-task training, where cognitive and/or motor training are performed simultaneously with exercise, may offer greater benefits. This review summary provides an overview of the effects of combined simultaneous vs. sequential training on cognitive function in older adults. Based on the available evidence, there are inconsistent findings with regard to the cognitive benefits of sequential training in comparison to cognitive or exercise training alone. In contrast, simultaneous training interventions, particularly multimodal exercise programs in combination with secondary tasks regulated by sensory cues, have significantly improved cognition in both healthy older and clinical populations. However, further research is needed to determine the optimal characteristics of a successful simultaneous training program for optimizing cognitive function in older people. PMID:29163146

  19. Exercise Training for Heart Failure Patients with and without Systolic Dysfunction: An Evidence-Based Analysis of How Patients Benefit

    PubMed Central

    Smart, Neil

    2011-01-01

    Significant benefits can be derived by heart failure patients from exercise training. This paper provides an evidence-based assessment of expected clinical benefits of exercise training for heart failure patients. Meta-analyses and randomized, controlled trials of exercise training in heart failure patients were reviewed from a search of PubMed, Cochrane Controlled Trial Registry (CCTR), CINAHL, and EMBASE. Exercise training improves functional capacity, quality of life, hospitalization, and systolic and diastolic function in heart failure patients. Heart failure patients with preserved systolic function (HFnEF) participating in exercise training studies are more likely to be women and are 5–7 years older than their systolic heart failure (CHF) counterparts. All patients exhibit low functional capacities, although in HFnEF patients this may be age related, therefore subtle differences in exercise prescriptions are required. Published works report that exercise training is beneficial for heart failure patients with and without systolic dysfunction. PMID:20953365

  20. Sympathetic adaptations to one-legged training

    NASA Technical Reports Server (NTRS)

    Ray, C. A.

    1999-01-01

    The purpose of the present study was to determine the effect of leg exercise training on sympathetic nerve responses at rest and during dynamic exercise. Six men were trained by using high-intensity interval and prolonged continuous one-legged cycling 4 day/wk, 40 min/day, for 6 wk. Heart rate, mean arterial pressure (MAP), and muscle sympathetic nerve activity (MSNA; peroneal nerve) were measured during 3 min of upright dynamic one-legged knee extensions at 40 W before and after training. After training, peak oxygen uptake in the trained leg increased 19 +/- 2% (P < 0.01). At rest, heart rate decreased from 77 +/- 3 to 71 +/- 6 beats/min (P < 0.01) with no significant changes in MAP (91 +/- 7 to 91 +/- 11 mmHg) and MSNA (29 +/- 3 to 28 +/- 1 bursts/min). During exercise, both heart rate and MAP were lower after training (108 +/- 5 to 96 +/- 5 beats/min and 132 +/- 8 to 119 +/- 4 mmHg, respectively, during the third minute of exercise; P < 0.01). MSNA decreased similarly from rest during the first 2 min of exercise both before and after training. However, MSNA was significantly less during the third minute of exercise after training (32 +/- 2 to 22 +/- 3 bursts/min; P < 0.01). This training effect on MSNA remained when MSNA was expressed as bursts per 100 heartbeats. Responses to exercise in five untrained control subjects were not different at 0 and 6 wk. These results demonstrate that exercise training prolongs the decrease in MSNA during upright leg exercise and indicates that attenuation of MSNA to exercise reported with forearm training also occurs with leg training.

  1. Endurance Training with or without Glucose-Fructose Ingestion: Effects on Lactate Metabolism Assessed in a Randomized Clinical Trial on Sedentary Men.

    PubMed

    Rosset, Robin; Lecoultre, Virgile; Egli, Léonie; Cros, Jérémy; Rey, Valentine; Stefanoni, Nathalie; Sauvinet, Valérie; Laville, Martine; Schneiter, Philippe; Tappy, Luc

    2017-04-20

    Glucose-fructose ingestion increases glucose and lactate oxidation during exercise. We hypothesized that training with glucose-fructose would induce key adaptations in lactate metabolism. Two groups of eight sedentary males were endurance-trained for three weeks while ingesting either glucose-fructose (GF) or water (C). Effects of glucose-fructose on lactate appearance, oxidation, and clearance were measured at rest and during exercise, pre-training, and post-training. Pre-training, resting lactate appearance was 3.6 ± 0.5 vs. 3.6 ± 0.4 mg·kg -1 ·min -1 in GF and C, and was increased to 11.2 ± 1.4 vs. 8.8 ± 0.7 mg·kg -1 ·min -1 by exercise (Exercise: p < 0.01). Lactate oxidation represented 20.6% ± 1.0% and 17.5% ± 1.7% of lactate appearance at rest, and 86.3% ± 3.8% and 86.8% ± 6.6% during exercise (Exercise: p < 0.01) in GF and C, respectively. Training with GF increased resting lactate appearance and oxidation (Training × Intervention: both p < 0.05), but not during exercise (Training × Intervention: both p > 0.05). Training with GF and C had similar effects to increase lactate clearance during exercise (+15.5 ± 9.2 and +10.1 ± 5.9 mL·kg -1 ·min -1 ; Training: p < 0.01; Training × Intervention: p = 0.97). The findings of this study show that in sedentary participants, glucose-fructose ingestion leads to high systemic lactate appearance, most of which is disposed non-oxidatively at rest and is oxidized during exercise. Training with or without glucose-fructose increases lactate clearance, without altering lactate appearance and oxidation during exercise.

  2. Endurance Training with or without Glucose-Fructose Ingestion: Effects on Lactate Metabolism Assessed in a Randomized Clinical Trial on Sedentary Men

    PubMed Central

    Rosset, Robin; Lecoultre, Virgile; Egli, Léonie; Cros, Jérémy; Rey, Valentine; Stefanoni, Nathalie; Sauvinet, Valérie; Laville, Martine; Schneiter, Philippe; Tappy, Luc

    2017-01-01

    Glucose-fructose ingestion increases glucose and lactate oxidation during exercise. We hypothesized that training with glucose-fructose would induce key adaptations in lactate metabolism. Two groups of eight sedentary males were endurance-trained for three weeks while ingesting either glucose-fructose (GF) or water (C). Effects of glucose-fructose on lactate appearance, oxidation, and clearance were measured at rest and during exercise, pre-training, and post-training. Pre-training, resting lactate appearance was 3.6 ± 0.5 vs. 3.6 ± 0.4 mg·kg−1·min−1 in GF and C, and was increased to 11.2 ± 1.4 vs. 8.8 ± 0.7 mg·kg−1·min−1 by exercise (Exercise: p < 0.01). Lactate oxidation represented 20.6 ± 1.0% and 17.5 ± 1.7% of lactate appearance at rest, and 86.3 ± 3.8% and 86.8 ± 6.6% during exercise (Exercise: p < 0.01) in GF and C, respectively. Training with GF increased resting lactate appearance and oxidation (Training × Intervention: both p < 0.05), but not during exercise (Training × Intervention: both p > 0.05). Training with GF and C had similar effects to increase lactate clearance during exercise (+15.5 ± 9.2 and +10.1 ± 5.9 mL·kg−1·min−1; Training: p < 0.01; Training × Intervention: p = 0.97). The findings of this study show that in sedentary participants, glucose-fructose ingestion leads to high systemic lactate appearance, most of which is disposed non-oxidatively at rest and is oxidized during exercise. Training with or without glucose-fructose increases lactate clearance, without altering lactate appearance and oxidation during exercise. PMID:28425966

  3. [Sport and atopy].

    PubMed

    Didier, A; Mazieres, J; Kouevijin, G; Tetu, L; Rivière, D

    2003-11-01

    The atopic diseases, asthma, allergic rhinitis and atopic dermatitis, are common in children, adolescents and young adults. They may have important consequences on physical exercise, especially asthma. Elite athletes have been observed to have a high prevalence of asthma (and perhaps also rhinitis). The reasons for this observation are still debated, but different mechanisms linked to the intensity of physical activity in athletes are probably involved. Exercise-induced symptoms should be confirmed not only from the clinical history but also by objective measurements of lung function. In elite athletes confirmation of exercise-induced asthma might be difficult and may require special diagnostic tests such as bronchial provocation by eucapnic voluntary hyperventilation. Several drugs are effective in exercise-induced prevention of nasal and bronchial symptoms. Therapeutic approaches for atopic diseases in international guidelines (GINA and ARIA) are generally compatible with anti-doping laws but require compliance with specific prescription rules. A better understanding of mechanisms and risk factors involved in the increase of asthma prevalence in elite athletes may permit prevention by modifying training conditions during exercise. Atopic diseases are common in athletes. They require special therapeutic considerations. The increasing prevalence of respiratory asthma-like symptoms in elite athlete is opening new paths for research into airway physiology in extreme conditions.

  4. Effect of Aerobic Exercise Training on Mood in People With Traumatic Brain Injury: A Pilot Study.

    PubMed

    Weinstein, Ali A; Chin, Lisa M K; Collins, John; Goel, Divya; Keyser, Randall E; Chan, Leighton

    Exercise training is associated with elevations in mood in patients with various chronic illnesses and disabilities. However, little is known regarding the effect of exercise training on short and long-term mood changes in those with traumatic brain injury (TBI). The purpose of this study was to examine the time course of mood alterations in response to a vigorous, 12-week aerobic exercise training regimen in ambulatory individuals with chronic TBI (>6 months postinjury). Short and long-term mood changes were measured using the Profile of Mood States-Short Form, before and after specific aerobic exercise bouts performed during the 12-week training regimen. Ten subjects with nonpenetrating TBI (6.6 ± 6.8 years after injury) completed the training regimen. A significant improvement in overall mood was observed following 12 weeks of aerobic exercise training (P = .04), with moderate to large effect sizes observed for short-term mood improvements following individual bouts of exercise. Specific improvements in long-term mood state and short-term mood responses following individual exercise sessions were observed in these individuals with TBI. The largest improvement in overall mood was observed at 12 weeks of exercise training, with improvements emerging as early as 4 weeks into the training regimen.

  5. Effects of exercise training on systo-diastolic ventricular dysfunction in patients with hypertension: an echocardiographic study with tissue velocity and strain imaging evaluation.

    PubMed

    Leggio, Massimo; Mazza, Andrea; Cruciani, Giancarlo; Sgorbini, Luca; Pugliese, Marco; Bendini, Maria Grazia; Severi, Paolo; Jesi, Anna Patrizia

    2014-07-01

    There is a lack of detailed data regarding the effect of exercise training in pharmacologically treated hypertensive patients. Therefore, the aim of this study was to evaluate the effects of exercise training on left and right ventricular morphologic and functional parameters by means of conventional echocardiography and sensitive new echocardiographic techniques including tissue Doppler velocity and strain imaging, that were performed in pharmacologically treated hypertensive patients at baseline and at the end of a specific exercise training protocol for primary prevention of cardiovascular disease. We selected 116 pharmacologically treated hypertensive patients who completed the exercise training protocol. All patients underwent a clinical history and examination; transthoracic echocardiography and exercise testing were performed at baseline and at the end of the exercise training protocol. Conventional echocardiography revealed a mild degree of diastolic dysfunction without significant differences or variations from baseline to the end of the exercise training protocol. In contrast, tissue Doppler velocity and strain imaging measurements demonstrated and highlighted the positive influence of exercise training: for both left and right ventricle myocardial early peak diastolic velocities (Em), the ratio of myocardial early-late peak diastolic velocity (Em/Am), myocardial peak systolic velocities (Sm) and peak strain and strain rate values significantly increased at the end of the exercise training protocol, suggesting a relationship between exercise capacity and both left and right ventricular systo-diastolic function. Our study, by means of newer more sensitive echocardiographic techniques, clearly demonstrated the positive impact of exercise training on both left and right ventricular systo-diastolic function, in terms of adjunctive subclinical improvement, in pharmacologically treated hypertensive patients.

  6. Clinical Utility of Exercise Training in Heart Failure with Reduced and Preserved Ejection Fraction

    PubMed Central

    Asrar Ul Haq, Muhammad; Goh, Cheng Yee; Levinger, Itamar; Wong, Chiew; Hare, David L

    2015-01-01

    Reduced exercise tolerance is an independent predictor of hospital readmission and mortality in patients with heart failure (HF). Exercise training for HF patients is well established as an adjunct therapy, and there is sufficient evidence to support the favorable role of exercise training programs for HF patients over and above the optimal medical therapy. Some of the documented benefits include improved functional capacity, quality of life (QoL), fatigue, and dyspnea. Major trials to assess exercise training in HF have, however, focused on heart failure with reduced ejection fraction (HFREF). At least half of the patients presenting with HF have heart failure with preserved ejection fraction (HFPEF) and experience similar symptoms of exercise intolerance, dyspnea, and early fatigue, and similar mortality risk and rehospitalization rates. The role of exercise training in the management of HFPEF remains less clear. This article provides a brief overview of pathophysiology of reduced exercise tolerance in HFREF and heart failure with preserved ejection fraction (HFPEF), and summarizes the evidence and mechanisms by which exercise training can improve symptoms and HF. Clinical and practical aspects of exercise training prescription are also discussed. PMID:25698883

  7. Acceptability of the aquatic environment for exercise training by people with chronic obstructive pulmonary disease with physical comorbidities: Additional results from a randomised controlled trial.

    PubMed

    McNamara, Renae J; McKeough, Zoe J; McKenzie, David K; Alison, Jennifer A

    2015-06-01

    Water-based exercise training is a relatively new concept in the management of people with COPD. This study aimed to examine the acceptability of the aquatic environment as a medium for exercise training in people with COPD with physical comorbidities. Following a supervised eight week, three times a week, water-based exercise training programme conducted in a hospital hydrotherapy pool as part of a randomised controlled trial, participants completed a questionnaire about their experience with exercise training in the pool including adverse events, barriers and factors enabling exercise programme completion, satisfaction with the aquatic environment and their preference for an exercise training environment. All 18 participants (mean (SD) age 72 (10) years; FEV1% predicted 60 (10) %) who commenced the water-based exercise training programme completed the questionnaire. Three participants withdrew from training. High acceptability of the water and air temperature, shower and change-room facilities, staff assistance and modes of pool entry was reported (94% to 100%). Six factors were highly rated as enabling exercise programme adherence and completion: staff support (chosen by 93% of participants), enjoyment (80%), sense of achievement (80%), noticeable improvements (73%), personal motivation (73%) and participant support (53%). Eighty-nine percent of the participants indicated they would continue with water-based exercise. This study provides the first insight into the acceptability of the aquatic environment for exercise training in people with COPD and indicates water-based exercise and the aquatic environment is well accepted. Copyright © 2014 Chartered Society of Physiotherapy. Published by Elsevier Ltd. All rights reserved.

  8. Effect of the low- versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus.

    PubMed

    Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok

    2015-10-01

    [Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus.

  9. Effect of the low- versus high-intensity exercise training on endoplasmic reticulum stress and GLP-1 in adolescents with type 2 diabetes mellitus

    PubMed Central

    Lee, Sung Soo; Yoo, Jae Ho; So, Yong Seok

    2015-01-01

    [Purpose] The primary objective of this study was to investigate the effect of low-intensity exercise training compare with high-intensity exercise training on endoplasmic reticulum stress and glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. [Subjects and Methods] The low-intensity exercise training group performed aerobic exercise training at an intensity of ≤ 45% of the heart rate reserve. The high-intensity interval exercise training group performed interval exercise training at an intensity of ≥ 80% of the heart rate reserve. The exercise-related energy consumption was determined for both groups on a per-week basis (1,200 kcal/week). [Results] Both groups showed improvement in the glucose-regulated protein 78 and dipeptidyl peptidase-4, but the size of the between-group effect was not statistically significant. The high-intensity interval exercise training group showed a significant reduction in percentage body fat. The C-peptide level increased after the 12-weeks programs and was significantly different, between the groups. Fasting glucose, insulin resistance in the fasting state according to homeostasis model assessment, and leptin decreased after the 12-weeks exercise program and were significantly different between the groups, and glucagon-like peptide-1 increased after the 12-week exercise programs and was significantly different between the groups. [Conclusion] In conclusion high-intensity interval exercise training, as defined in this study, may lead to improvements in body composition, glycemic control, endoplasmic reticulum stress, and the glucagon-like peptide-1 in adolescents with type 2 diabetes mellitus. PMID:26644644

  10. Effects of exercise training on circulating and skeletal muscle renin-angiotensin system in chronic heart failure rats.

    PubMed

    Gomes-Santos, Igor Lucas; Fernandes, Tiago; Couto, Gisele Kruger; Ferreira-Filho, Julio César Ayres; Salemi, Vera Maria Cury; Fernandes, Fernanda Barrinha; Casarini, Dulce Elena; Brum, Patricia Chakur; Rossoni, Luciana Venturini; de Oliveira, Edilamar Menezes; Negrao, Carlos Eduardo

    2014-01-01

    Accumulated evidence shows that the ACE-AngII-AT1 axis of the renin-angiotensin system (RAS) is markedly activated in chronic heart failure (CHF). Recent studies provide information that Angiotensin (Ang)-(1-7), a metabolite of AngII, counteracts the effects of AngII. However, this balance between AngII and Ang-(1-7) is still little understood in CHF. We investigated the effects of exercise training on circulating and skeletal muscle RAS in the ischemic model of CHF. Male Wistar rats underwent left coronary artery ligation or a Sham operation. They were divided into four groups: 1) Sedentary Sham (Sham-S), 2) exercise-trained Sham (Sham-Ex), sedentary CHF (CHF-S), and exercise-trained CHF (CHF-Ex). Angiotensin concentrations and ACE and ACE2 activity in the circulation and skeletal muscle (soleus and plantaris) were quantified. Skeletal muscle ACE and ACE2 protein expression, and AT1, AT2, and Mas receptor gene expression were also evaluated. CHF reduced ACE2 serum activity. Exercise training restored ACE2 and reduced ACE activity in CHF. Exercise training reduced plasma AngII concentration in both Sham and CHF rats and increased the Ang-(1-7)/AngII ratio in CHF rats. CHF and exercise training did not change skeletal muscle ACE and ACE2 activity and protein expression. CHF increased AngII levels in both soleus and plantaris muscle, and exercise training normalized them. Exercise training increased Ang-(1-7) in the plantaris muscle of CHF rats. The AT1 receptor was only increased in the soleus muscle of CHF rats, and exercise training normalized it. Exercise training increased the expression of the Mas receptor in the soleus muscle of both exercise-trained groups, and normalized it in plantaris muscle. Exercise training causes a shift in RAS towards the Ang-(1-7)-Mas axis in skeletal muscle, which can be influenced by skeletal muscle metabolic characteristics. The changes in RAS circulation do not necessarily reflect the changes occurring in the RAS of skeletal muscle.

  11. The influence of training characteristics on the effect of aerobic exercise training in patients with chronic heart failure: A meta-regression analysis.

    PubMed

    Vromen, T; Kraal, J J; Kuiper, J; Spee, R F; Peek, N; Kemps, H M

    2016-04-01

    Although aerobic exercise training has shown to be an effective treatment for chronic heart failure patients, there has been a debate about the design of training programs and which training characteristics are the strongest determinants of improvement in exercise capacity. Therefore, we performed a meta-regression analysis to determine a ranking of the individual effect of the training characteristics on the improvement in exercise capacity of an aerobic exercise training program in chronic heart failure patients. We focused on four training characteristics; session frequency, session duration, training intensity and program length, and their product; total energy expenditure. A systematic literature search was performed for randomized controlled trials comparing continuous aerobic exercise training with usual care. Seventeen unique articles were included in our analysis. Total energy expenditure appeared the only training characteristic with a significant effect on improvement in exercise capacity. However, the results were strongly dominated by one trial (HF-action trial), accounting for 90% of the total patient population and showing controversial results compared to other studies. A repeated analysis excluding the HF-action trial confirmed that the increase in exercise capacity is primarily determined by total energy expenditure, followed by session frequency, session duration and session intensity. These results suggest that the design of a training program requires high total energy expenditure as a main goal. Increases in training frequency and session duration appear to yield the largest improvement in exercise capacity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  12. Combined short-arm centrifuge and aerobic exercise training improves cardiovascular function and physical working capacity in humans.

    PubMed

    Yang, Chang-Bin; Zhang, Shu; Zhang, Yu; Wang, Bing; Yao, Yong-Jie; Wang, Yong-Chun; Wu, Yan-Hong; Liang, Wen-Bin; Sun, Xi-Qing

    2010-12-01

    Musculoskeletal and cardiovascular deconditioning occurring in long-term spaceflight gives rise to the needs to develop new strategies to counteract these adverse effects. Short-arm centrifuge combined with ergometer has been proposed as a strategy to counteract adverse effects of microgravity. This study sought to investigate whether the combination of short-arm centrifuge and aerobic exercise training have advantages over short-arm centrifuge or aerobic exercise training alone. One week training was conducted by 24 healthy men. They were randomly divided into 3 groups: (1) short-arm centrifuge training, (2) aerobic exercise training, 40 W, and (3) combined short-arm centrifuge and aerobic exercise training. Before and after training, the cardiac pump function represented by stroke volume, cardiac output, left ventricular ejection time, and total peripheral resistance was evaluated. Variability of heart rate and systolic blood pressure were determined by spectral analysis. Physical working capacity was surveyed by near maximal physical working capacity test. The 1-week combined short-arm centrifuge and aerobic exercise training remarkably ameliorated the cardiac pump function and enhanced vasomotor sympathetic nerve modulation and improved physical working capacity by 10.9% (P<.05, n=8). In contrast, neither the short-arm centrifuge nor the aerobic exercise group showed improvements in these functions. These results demonstrate that combined short-arm centrifuge and aerobic exercise training has advantages over short-arm centrifuge or aerobic exercise training alone in influencing several physiologically important cardiovascular functions in humans. The combination of short-arm centrifuge and aerobic exercise offers a promising countermeasure to microgravity.

  13. Upper extremity sensory feedback therapy in chronic cerebrovascular accident patients with impaired expressive aphasia and auditory comprehension.

    PubMed

    Balliet, R; Levy, B; Blood, K M

    1986-05-01

    Electromyographic (EMG) sensory feedback therapy (SFT) was used in the neuromuscular retraining of the nonfunctional upper extremity in five chronic left cerebrovascular accident (CVA) patients with impaired expressive and auditory comprehension. Speech diagnoses included global, moderate-to-severe Broca, and Wernicke aphasias. These patients had experienced increased despondency associated with previous therapy failures and often had indicated that they wished to have their involved extremity amputated, so that it would no longer be in the way. In this study, specific behavioral training strategies to increase patient involvement were used, including: general relaxation, modified SFT instruction, and home exercises, which were supported by family and/or friends. After an average of 50 therapy sessions, all patients were successfully retrained to use their right upper extremity at the gross-assist level. This resulted in feelings of increased self-esteem to the extent that amputation was no longer requested. It is concluded that EMG SFT can be beneficial in the neuromuscular reeducation of paretic upper extremity muscles of CVA patients with expressive aphasia and (impaired) auditory comprehension.

  14. Potential Adverse Cardiovascular Effects From Excessive Endurance Exercise

    PubMed Central

    O'Keefe, James H.; Patil, Harshal R.; Lavie, Carl J.; Magalski, Anthony; Vogel, Robert A.; McCullough, Peter A.

    2012-01-01

    A routine of regular exercise is highly effective for prevention and treatment of many common chronic diseases and improves cardiovascular (CV) health and longevity. However, long-term excessive endurance exercise may induce pathologic structural remodeling of the heart and large arteries. Emerging data suggest that chronic training for and competing in extreme endurance events such as marathons, ultramarathons, ironman distance triathlons, and very long distance bicycle races, can cause transient acute volume overload of the atria and right ventricle, with transient reductions in right ventricular ejection fraction and elevations of cardiac biomarkers, all of which return to normal within 1 week. Over months to years of repetitive injury, this process, in some individuals, may lead to patchy myocardial fibrosis, particularly in the atria, interventricular septum, and right ventricle, creating a substrate for atrial and ventricular arrhythmias. Additionally, long-term excessive sustained exercise may be associated with coronary artery calcification, diastolic dysfunction, and large-artery wall stiffening. However, this concept is still hypothetical and there is some inconsistency in the reported findings. Furthermore, lifelong vigorous exercisers generally have low mortality rates and excellent functional capacity. Notwithstanding, the hypothesis that long-term excessive endurance exercise may induce adverse CV remodeling warrants further investigation to identify at-risk individuals and formulate physical fitness regimens for conferring optimal CV health and longevity. PMID:22677079

  15. Adherence to exercise and affective responses: comparison between outdoor and indoor training.

    PubMed

    Lacharité-Lemieux, Marianne; Brunelle, Jean-Pierre; Dionne, Isabelle J

    2015-07-01

    Postmenopausal women, despite their increased cardiovascular risk, do not meet physical activity recommendations. Outdoor exercise bouts induce more positive affective responses than the same indoor exercise. Outdoor training could therefore increase exercise adherence. This study aims to compare the long-term effects of outdoor and indoor training on affective outcomes and adherence to exercise training in postmenopausal women. In a 12-week randomized trial, 23 healthy (body mass index, 22-29 kg/m) postmenopausal women (aged 52-69 y) were assigned to either outdoor training or indoor training and performed three weekly 1-hour sessions of identical aerobic and resistance training. Adherence, affective valence (Feeling Scale), affective states (Exercise-Induced Feeling Inventory), and rating of perceived exertion were measured during exercise sessions, whereas depression symptoms (Beck Depression Inventory) and physical activity level (Physical Activity Scale for the Elderly) were assessed before and after the intervention. After 12 weeks of training, exercise-induced changes in affective valence were higher for the outdoor training group (P ≤ 0.05). A significant group-by-time interaction was found for postexercise tranquility (P ≤ 0.01), with a significant increase outdoors and a significant decrease indoors (both P ≤ 0.05). A time effect was revealed for positive engagement, which decreased across time in the indoor group (P ≤ 0.05). Adherence to training (97% vs 91%) was significantly higher outdoors (P ≤ 0.01). Between baseline and week 12, depression symptoms decreased and physical activity level increased only for the outdoor group (P ≤ 0.01 and P ≤ 0.05, respectively). Outdoor training enhances affective responses to exercise and leads to greater exercise adherence than indoor training in postmenopausal women.

  16. Exercise and sports in cardiac patients and athletes at risk: Balance between benefit and harm.

    PubMed

    Maisch, B

    2015-05-01

    Physical training has a well-established role in the primary and secondary prevention of coronary artery disease. Moderate exercise has been shown to be beneficial in chronic stable heart failure. Competitive sports, however, is contraindicated in most forms of hypertrophic cardiomyopathy (HCM), in myocarditis, in pericarditis, and in right ventricular cardiomyopathy/dysplasia. In most European countries, the recommendations of medical societies or public bodies state that these diseases have to be ruled out by prescreening before an individual can take up competitive sports. But the intensity and quality of this health check vary considerably from country to country, from the type of sports activity, and from the individuals who want to participate in sports. Prescreening on an individual basis should also be considered for leisure sports, particularly in people who decide to start training in middle age after years of physical inactivity to regain physical fitness. In leisure sports the initiative for a medical check-up lies primarily in the hands of the "healthy" individual. If she or he plans to participate in extreme forms of endurance sports with excessive training periods such as a marathon or ultramarathon and competitive cycling or rowing, they should be aware that high-intensity endurance sports can lead to structural alterations of the heart muscle even in healthy individuals. Physical exercise in patients with heart disease should be accompanied by regular medical check-ups. Most rehabilitation programs in Europe perform physical activity and training schedules according to current guidelines. Little is known about athletes who are physically handicapped and participate in competitive sports or the Paralympics, and even less is known about individuals with intellectual disabilities (ID) who participate in local, regional, international competitions or the Special Olympics or just in leisure sport activities.

  17. Unusual cause of exercise-induced ventricular fibrillation in a well-trained adult endurance athlete: a case report.

    PubMed

    Vogt, Stefan; Koenig, Daniel; Prettin, Stephan; Pottgiesser, Torben; Allgeier, Juergen; Dickhuth, Hans-Hermann; Hirschmueller, Anja

    2008-04-23

    The diseases responsible for sudden deaths in athletes differ considerably with regard to age. In young athletes, congenital malformations of the heart and/or vascular system cause the majority of deaths and can only be detected noninvasively by complex diagnostics. In contrast, in older athletes who die suddenly, atherosclerotic disease of the coronary arteries is mostly found. Reports of congenital coronary anomalies as a cause of sudden death in older athletes are rare. A 48-year-old man who was a well-trained, long-distance runner collapsed at the finish of a half marathon because of a myocardial infarction with ventricular fibrillation. Coronary angiography showed an anomalous origin of the right coronary artery from the left sinus of Valsalva with minimal wall alterations. Multislice computed tomography of the coronary arteries confirmed these findings. Cardiomagnetic resonance imaging demonstrated a mild hypokinesia of the basal right- and left-ventricular posterior wall. An electrophysiological study showed an inducible temporary polymorphic ventricular tachycardia and an inducible ventricular fibrillation. The athlete was subsequently treated by acetylsalicylic acid 100 mg (0-1-0), bisoprolol 2.5 mg (1-0-0) and atorvastatin 10 mg (0-0-1) and was instructed to keep his training intensity under the 'individual anaerobic threshold'. Intense and long-lasting exercise under extreme environmental conditions, particularly heat, should also be avoided. This case report presents a coronary anomaly as the most likely reason for an exercise-induced myocardial infarction with ventricular fibrillation in a well-trained 48-year-old endurance athlete. Therefore, coronary anomalies have also to be considered as a possible cause of cardiac problems in older athletes.

  18. Examining physiotherapist use of structured aerobic exercise testing to decrease barriers to aerobic exercise.

    PubMed

    Foster B Sc, Evan; Fraser, Julia E; Inness PhD, Elizabeth L; Munce, Sarah; Biasin, Louis; Poon, Vivien; Bayley, Mark

    2018-04-03

    To determine the frequency of physiotherapist-administered aerobic exercise testing/training, the proportion of physiotherapists who administer this testing/training, and the barriers that currently exist across different practice environments. A secondary objective is to identify the learning needs of physiotherapists for the development of an education curriculum in aerobic exercise testing and training with electrocardiograph (ECG) administration and interpretation. National, cross-sectional survey. Registered physiotherapists practicing in Canada. Out of 137 participants, most (75%) physiotherapists prescribed aerobic exercise on a regular basis (weekly); however, 65% had never conducted an aerobic exercise test. There were no significant differences in frequency of aerobic exercise testing across different practice environments or across years of physiotherapy experience. Physiotherapists perceived the main barriers to aerobic exercise testing as being a lack of equipment/space (78%), time (65%), and knowledge (56%). Although most (82%) were uncomfortable administering 12-lead ECG-monitored aerobic exercise tests, 60% stated they would be interested in learning more about ECG interpretation. This study found that physiotherapists are regularly implementing aerobic exercise. This exercise was infrequently guided by formal aerobic exercise testing, which could increase access to safe and effective exercise within the optimal aerobic training zone. As well, this could facilitate training in patients with cardiovascular diagnoses that require additional testing for medical clearance. Increased ECG training and access to equipment for physiotherapists may augment pre-screening aerobic exercise testing. This training should include learning the key arrhythmias for aerobic exercise test termination as defined by the American College of Sports Medicine.

  19. Development and validation of an exercise performance support system for people with lower extremity impairment.

    PubMed

    Minor, M A; Reid, J C; Griffin, J Z; Pittman, C B; Patrick, T B; Cutts, J H

    1998-02-01

    To identify innovative strategies to support appropriate, self-directed exercise that increase physical activity levels of people with arthritis. This article reports on one interactive, multimedia exercise performance support system (PSS) for people with lower extremity impairments in strength or flexibility. An interdisciplinary team developed the PSS using self-report of lower extremity musculoskeletal impairments (flexibility and strength) to produce an individualized exercise program with video and print educational materials. Initial evaluation has investigated the validity and reliability of program assessments and recommendations. PSS self-report and professional assessments were similar, with more impairments indicated by self-report. PSS exercise recommendations were similar to those made by 3 expert physical therapists using the same exercise data base. Results of PSS impairment assessments were stable over a 1-week period. PSS exercise recommendations appear to be reliable and a valid reflection of current exercise knowledge in rheumatology. Furthermore, users were able to complete the computer-based program with minimal assistance and reported it to be enjoyable and informative.

  20. Different Exercise Training Interventions and Drop-Landing Biomechanics in High School Female Athletes

    PubMed Central

    Pfile, Kate R.; Hart, Joseph M.; Herman, Daniel C.; Hertel, Jay; Kerrigan, D. Casey; Ingersoll, Christopher D.

    2013-01-01

    Context: Anterior cruciate ligament (ACL) injuries are common in female athletes and are related to poor neuromuscular control. Comprehensive neuromuscular training has been shown to improve biomechanics; however, we do not know which component of neuromuscular training is most responsible for the changes. Objective: To assess the efficacy of either a 4-week core stability program or plyometric program in altering lower extremity and trunk biomechanics during a drop vertical jump (DVJ). Design: Cohort study. Setting: High school athletic fields and motion analysis laboratory. Patients or Other Participants: Twenty-three high school female athletes (age = 14.8 ± 0.8 years, height = 1.7 ± 0.07 m, mass = 57.7 ± 8.5 kg). Intervention(s): Independent variables were group (core stability, plyometric, control) and time (pretest, posttest). Participants performed 5 DVJs at pretest and posttest. Intervention participants engaged in a 4-week core stability or plyometric program. Main Outcome Measure(s): Dependent variables were 3-dimensional hip, knee, and trunk kinetics and kinematics during the landing phase of a DVJ. We calculated the group means and associated 95% confidence intervals for the first 25% of landing. Cohen d effect sizes with 95% confidence intervals were calculated for all differences. Results: We found within-group differences for lower extremity biomechanics for both intervention groups (P ≤ .05). The plyometric group decreased the knee-flexion and knee internal-rotation angles and the knee-flexion and knee-abduction moments. The core stability group decreased the knee-flexion and knee internal-rotation angles and the hip-flexion and hip internal-rotation moments. The control group decreased the knee external-rotation moment. All kinetic changes had a strong effect size (Cohen d > 0.80). Conclusions: Both programs resulted in biomechanical changes, suggesting that both types of exercises are warranted for ACL injury prevention and should be implemented by trained professionals. PMID:23768121

  1. Clinical management practices adopted by physiotherapists in India for chronic obstructive pulmonary disease: A national survey.

    PubMed

    Jingar, Aripta; Alaparthi, Gopala Krishna; Vaishali, K; Krishnan, Shyam; Zulfeequer; Unnikrishnan, B

    2013-04-01

    Evidence supports the use of pulmonary rehabilitation in the treatment of chronic obstructive pulmonary disease (COPD) patients both during acute exacerbation and at later stages. It is used in India; but, to date, there has been no study that has investigated the structure of pulmonary rehabilitation programs for COPD patients in India. The recent study aims to determine the current practice patterns of Indian Physiotherapists for COPD patients admitted in Intensive Care Units (ICUs) and wards in terms of assessment and treatment. A questionnaire-based survey was conducted across India. Questionnaires were distributed to around 800 physiotherapists via E-mail. Physiotherapists with a Master Degree and a specialization in cardiopulmonary science or a minimum of 1 year of experience in treating cardiopulmonary patients were included. The questionnaires addressed assessment measures and treatment techniques given to COPD patients. A total of 342 completed questionnaires were received, yielding a response rate of 43.8%, with a majority of responses from Karnataka, Maharashtra and Gujarat. The assessment and treatment techniques used were almost similar between ICUs and wards. More than 80% of the responders carried out the assessment of certain respiratory impairments in both ICUs and wards. An objective measure of dyspnea was taken by less than 40% of the responders, with little attention given to functional exercise capacity and health-related quality of life. Eighty-five percent of the responders used Dyspnea-relieving strategies and traditional airway clearance techniques in both ICUs and wards. Eighty-three percent of the responders were giving patients in the wards training for upper and lower extremity. Fifty percent were giving strength training in the wards. Whether patients are admitted in ICUs or Wards, the practice pattern adopted by Physiotherapists to treat them vary very little with respect to certain measures taken. Assessment predominantly focused on respiratory impairment measures, followed by dyspnea-quantifying measures, with little attention given to functional exercise capacity and health-related quality of life measures. Treatment techniques given were concentrated on dyspnea-relieving strategies, airway clearance techniques and upper and lower extremity exercises, with little attention given to strength training.

  2. Within Session Sequence of Balance and Plyometric Exercises Does Not Affect Training Adaptations with Youth Soccer Athletes.

    PubMed

    Chaouachi, Mehdi; Granacher, Urs; Makhlouf, Issam; Hammami, Raouf; Behm, David G; Chaouachi, Anis

    2017-03-01

    The integration of balance and plyometric training has been shown to provide significant improvements in sprint, jump, agility, and other performance measures in young athletes. It is not known if a specific within session balance and plyometric exercise sequence provides more effective training adaptations. The objective of the present study was to investigate the effects of using a sequence of alternating pairs of exercises versus a block (series) of all balance exercises followed by a block of plyometric exercises on components of physical fitness such as muscle strength, power, speed, agility, and balance. Twenty-six male adolescent soccer players (13.9 ± 0.3 years) participated in an 8-week training program that either alternated individual balance (e.g., exercises on unstable surfaces) and plyometric (e.g., jumps, hops, rebounds) exercises or performed a block of balance exercises prior to a block of plyometric exercises within each training session. Pre- and post-training measures included proxies of strength, power, agility, sprint, and balance such as countermovement jumps, isometric back and knee extension strength, standing long jump, 10 and 30-m sprints, agility, standing stork, and Y-balance tests. Both groups exhibited significant, generally large magnitude (effect sizes) training improvements for all measures with mean performance increases of approximately >30%. There were no significant differences between the training groups over time. The results demonstrate the effectiveness of combining balance and plyometric exercises within a training session on components of physical fitness with young adolescents. The improved performance outcomes were not significantly influenced by the within session exercise sequence.

  3. The effect of exercise training in adults with multiple sclerosis with severe mobility disability: A systematic review and future research directions.

    PubMed

    Edwards, Thomas; Pilutti, Lara A

    2017-08-01

    There is evidence for the benefits of exercise training in persons with multiple sclerosis (MS). However, these benefits have primarily been established in individuals with mild-to-moderate disability (i.e., Expanded Disability Status Scale [EDSS] scores 1.0-5.5), rather than among those with significant mobility impairment. Further, the approaches to exercise training that have been effective in persons with mild-to-moderate MS disability may not be physically accessible for individuals with mobility limitations. Therefore, there is a demand for an evidence-base on the benefits of physically accessible exercise training approaches for managing disability in people with MS with mobility impairment. To conduct a systematic review of the current literature pertaining to exercise training in individuals with multiple sclerosis (MS) with severe mobility disability. Four electronic databases (PubMed, EMBASE, OvidMEDLINE, and PsychINFO) were searched for relevant articles published up until October 2016. The review focused on English-language studies that examined the effect of exercise training in people with MS with severe mobility disability, characterized as the need for assistance in ambulation or EDSS score ≥ 6.0. The inclusion criteria involved full-text articles that: (i) included participants with a diagnosis of MS; (ii) included primarily participants with a reported EDSS score ≥ 6.0 and/or definitively described disability consistent with this level of neurological impairment; and (iii) implemented a prospective, structured exercise intervention. Data were analyzed using a descriptive approach and summarized by exercise training modality (conventional or adapted exercise training), and by outcome (disability, physical fitness, physical function, and symptoms and participation). Initially, 1164 articles were identified and after removal of duplicates, 530 articles remained. In total, 512 articles did not meet the inclusion criteria. 19 articles were included in the final review. Five studies examined conventional exercise training (aerobic and resistance training), and thirteen studies examined adapted exercise modalities including body-weight support treadmill training (BWSTT), total-body recumbent stepper training (TBRST), and electrical stimulation cycling (ESAC). Outcomes related to mobility, fatigue, and quality of life (QOL) were most frequently reported. Two of five studies examining conventional resistance exercise training reported significant improvements in physical fitness, physical function, and/or symptomatic and participatory outcomes. Nine of 13 studies examining adapted exercise training reported significant improvements in disability, physical fitness, physical function, and/or symptomatic and participatory outcomes. There is limited, but promising evidence for the benefits of exercise training in persons with MS with severe mobility disability. Considering the lack of effective therapeutic strategies for managing long-term disability accumulation, exercise training could be considered as an alternative approach. Further research is necessary to optimize the prescription and efficacy of exercise training for adults with MS with severe mobility disability. Copyright © 2017. Published by Elsevier B.V.

  4. Effect of exercise training program in post-CRET post-CABG patients with normal and subnormal ejection fraction (EF > 50% or < 50%) after coronary artery bypass grafting surgery.

    PubMed

    Ansari, Basit; Qureshi, Masood A; Zohra, Raheela Rahmat

    2014-11-01

    The aim of the present study is to compare the effect of exercise training program in post-Cardiac Rehabilitation Exercise Training (CRET), post-CABG patients with normal & subnormal ejection fraction (EF >50% or <50%) who have undergoing coronary artery bypass grafting (CABG) surgery. The study was conducted on 100 cardiac patients of both sexes (age: 57-65 years) who after CABG surgery, were referred to the department of Physiotherapy and Rehabilitation between 2008 and 2010 at Liaquat National Hospital & Medical College, Karachi. The patients undertook exercise training program (using treadmill, Recumbent Bike), keeping in view the Borg's scale of perceived exertion, for 6 weeks. Heart Rate (HR) and Blood Pressure (BP) were measured & compared in post CABG Patients with EF (>50% or <50%) at the start and end of the exercise training program. Statistical formulae were applied to analyze the improvement in cardiac functional indicators. Exercise significantly restores the values of HR and BP (systolic) in post CABGT Patients with EF (>50% or <50%) from the baseline to the last session of the training program. There appeared significant improvement in cardiac function four to six weeks of treadmill exercise training program. After CABG all patients showed similar improvement in cardiac function with exercise training program. The exercise training program is beneficial for improving exercise capacity linked with recovery cardiac function in Pakistani CABG patients.

  5. Aerobic training in adults after atrial switch procedure for transposition of the great arteries improves exercise capacity without impairing systemic right ventricular function.

    PubMed

    Westhoff-Bleck, Mechthild; Schieffer, Bernhard; Tegtbur, Uwe; Meyer, Gerd Peter; Hoy, Ludwig; Schaefer, Arnd; Tallone, Ezequiel Marcello; Tutarel, Oktay; Mertins, Ramona; Wilmink, Lena Mara; Anker, Stefan D; Bauersachs, Johann; Roentgen, Philipp

    2013-12-05

    Exercise training safely and efficiently improves symptoms in patients with heart failure due to left ventricular dysfunction. However, studies in congenital heart disease with systemic right ventricle are scarce and results are controversial. In a randomised controlled study we investigated the effect of aerobic exercise training on exercise capacity and systemic right ventricular function in adults with d-transposition of the great arteries after atrial redirection surgery (28.2 ± 3.0 years after Mustard procedure). 48 patients (31 male, age 29.3 ± 3.4 years) were randomly allocated to 24 weeks of structured exercise training or usual care. Primary endpoint was the change in maximum oxygen uptake (peak VO2). Secondary endpoints were systemic right ventricular diameters determined by cardiac magnetic resonance imaging (CMR). Data were analysed per intention to treat analysis. At baseline peak VO2 was 25.5 ± 4.7 ml/kg/min in control and 24.0 ± 5 ml/kg/min in the training group (p=0.3). Training significantly improved exercise capacity (treatment effect for peak VO2 3.8 ml/kg/min, 95% CI: 1.8 to 5.7; p=0.001), work load (p=0.002), maximum exercise time (p=0.002), and NYHA class (p=0.046). Systemic ventricular function and volumes determined by CMR remained unchanged. None of the patients developed signs of cardiac decompensation or arrhythmias while on exercise training. Aerobic exercise training did not detrimentally affect systemic right ventricular function, but significantly improved exercise capacity and heart failure symptoms. Aerobic exercise training can be recommended for patients following atrial redirection surgery to improve exercise capacity and to lessen or prevent heart failure symptoms. ( ClinicalTrials.gov #NCT00837603). © 2013.

  6. Effects of exercise training in patients with idiopathic pulmonary arterial hypertension.

    PubMed

    de Man, F S; Handoko, M L; Groepenhoff, H; van 't Hul, A J; Abbink, J; Koppers, R J H; Grotjohan, H P; Twisk, J W R; Bogaard, H-J; Boonstra, A; Postmus, P E; Westerhof, N; van der Laarse, W J; Vonk-Noordegraaf, A

    2009-09-01

    We determined the physiological effects of exercise training on exercise capacity and quadriceps muscle function in patients with idiopathic pulmonary arterial hypertension (iPAH). In total, 19 clinically stable iPAH patients (New York Heart Association II-III) underwent a supervised exercise training programme for the duration of 12 weeks. Maximal capacity, endurance capacity and quadriceps function were assessed at baseline and after 12 weeks. In 12 patients, serial quadriceps muscle biopsies were obtained. 6-min walk distance and peak exercise capacity did not change after training. However, endurance capacity improved significantly after training, demonstrated by a shift of the anaerobic threshold to a higher workload (from 32+/-5 to 46+/-6 W; p = 0.003) together with an increase in exercise endurance time (p<0.001). Moreover, exercise training increased quadriceps strength by 13% (p = 0.005) and quadriceps endurance by 34% (p = 0.001). Training enhanced aerobic capacity of the quadriceps, by increasing capillarisation (1.36+/-0.10 to 1.78+/-0.13 capillaries per muscle fibre; p<0.001) and oxidative enzyme activity, especially of the type-I (slow) muscle fibres. No changes were found in cross-sectional area and fibre type distribution. Exercise training in iPAH improves exercise endurance and quadriceps muscle function, which is also reflected by structural changes of the quadriceps.

  7. Effect of confinement in small space flight size cages on insulin sensitivity of exercise-trained rats

    NASA Technical Reports Server (NTRS)

    Mondon, C. E.; Dolkas, C. B.; Reaven, G. M.

    1983-01-01

    The effect of confinement in small cages (simulating the size to be used in future space Shuttle missions) on insulin sensitivity was studied in rats having an increased insulin sensitivity due to exercise training prior to confinement. Oral glucose tolerance tests (OGTT) were given to both control and exercise-trained rats before and after placement in the small cages for 7 days. The insulin resistance was assessed by the product of the area of the insulin and glucose curves of the OGTT (IG index). Results show that the values obtained before confinement were one-half as high in exercise-trained rats as those in control rats, reflecting an increased sensitivity to insulin with exercise training. After 7 days confinement, the IG index was found to be not significantly different from initial values for both control and exercise-trained rats. These findings suggest that increased insulin sensitivity in exercise-trained rats persists 7 days after cessation of running activity. The data also indicate that exercise training, before flight, may be beneficial in minimizing the loss of insulin sensitivity expected with decreased use of gravity dependent muscles during exposure to hypogravity in space flight.

  8. Changes in drop-jump landing biomechanics during prolonged intermittent exercise.

    PubMed

    Schmitz, Randy J; Cone, John C; Tritsch, Amanda J; Pye, Michele L; Montgomery, Melissa M; Henson, Robert A; Shultz, Sandra J

    2014-03-01

    As injury rates rise in the later stages of sporting activities, a better understanding of lower extremity biomechanics in the later phases of gamelike situations may improve training and injury prevention programs. Lower extremity biomechanics of a drop-jump task (extracted from a principal components analysis) would reveal factors associated with risk of anterior cruciate ligament injury during a 90-minute individualized intermittent exercise protocol (IEP) and for 1 hour following the IEP. Controlled laboratory study. Level 4. Fifty-nine athletes (29 women, 30 men) completed 3 sessions. The first session assessed fitness for an IEP designed to simulate the demands of a soccer match. An experimental session assessed drop-jump biomechanics, after a dynamic warm-up, every 15 minutes during the 90-minute IEP, and for 1 hour following the IEP. A control session with no exercise assessed drop-jump performance at the same intervals. Two biomechanical factors early in the first half (hip flexion at initial contact and hip loading; ankle loading and knee shear force) decreased at the end of the IEP and into the 60-minute recovery period, while a third factor (knee loading) decreased only during the recovery period (P ≤ 0.05). The individualized sport-specific IEP may have more subtle effects on landing biomechanics when compared with short-term, exhaustive fatigue protocols. Potentially injurious landing biomechanics may not occur until the later stages of soccer activity.

  9. Aerobic exercise training promotes additional cardiac benefits better than resistance exercise training in postmenopausal rats with diabetes.

    PubMed

    Quinteiro, Hugo; Buzin, Morgana; Conti, Filipe Fernandes; Dias, Danielle da Silva; Figueroa, Diego; Llesuy, Susana; Irigoyen, Maria-Cláudia; Sanches, Iris Callado; De Angelis, Kátia

    2015-05-01

    The aim of this study was to evaluate the effects of aerobic exercise training or resistance exercise training on cardiac morphometric, functional, and oxidative stress parameters in rats with ovarian hormone deprivation and diabetes. Female Wistar rats (200-220 g) were divided into a sham-operated group (euglycemic sham-operated sedentary [ES]; n = 8) and three ovariectomized (bilateral removal of ovaries) and diabetic (streptozotocin 50 mg/kg IV) groups as follows: diabetic ovariectomized sedentary (DOS; n = 8), diabetic ovariectomized undergoing aerobic exercise training (DOTA; n = 8), and diabetic ovariectomized undergoing resistance exercise training (DOTR; n = 8). After 8 weeks of resistance (ladder) or aerobic (treadmill) exercise training, left ventricle function and morphometry were evaluated by echocardiography, whereas oxidative stress was evaluated at the left ventricle. The DOS group presented with increased left ventricle cavity in diastole and relative wall thickness (RWT), and these changes were attenuated in both DOTA and DOTR groups. Systolic and diastolic function was impaired in the DOS group compared with the ES group, and only the DOTA group was able to reverse this dysfunction. Lipoperoxidation and glutathione redox balance were improved in both trained groups compared with the DOS group. Glutathione peroxidase and superoxide dismutase were higher in the DOTA group than in the other studied groups. Correlations were observed between lipoperoxidation and left ventricle cavity in diastole (r = 0.55), between redox balance and RWT (r = 0.62), and between lipoperoxidation and RWT (r = -0.60). Aerobic exercise training and resistance exercise training promote attenuation of cardiac morphometric dysfunction associated with a reduction in oxidative stress in an experimental model of diabetes and menopause. However, only dynamic aerobic exercise training is able to attenuate systolic and diastolic dysfunction under this condition.

  10. Autophagy Is a Promoter for Aerobic Exercise Performance during High Altitude Training

    PubMed Central

    Zhang, Ying

    2018-01-01

    High altitude training is one of the effective strategies for improving aerobic exercise performance at sea level via altitude acclimatization, thereby improving oxygen transport and/or utilization. But its underlying molecular mechanisms on physiological functions and exercise performance of athletes are still vague. More recent evidence suggests that the recycling of cellular components by autophagy is an important process of the body involved in the adaptive responses to exercise. Whether high altitude training can activate autophagy or whether high altitude training can improve exercise performance through exercise-induced autophagy is still unclear. In this narrative review article, we will summarize current research advances in the improvement of exercise performance through high altitude training and its reasonable molecular mechanisms associated with autophagy, which will provide a new field to explore the molecular mechanisms of adaptive response to high altitude training. PMID:29849885

  11. Plasma lactic dehydrogenase activities in men during bed rest with exercise training

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Juhos, L. T.; Young, H. L.

    1985-01-01

    Peak oxygen uptake and the activity of lactic dehydrogenase (LDH-T) and its five isoenzymes were measured by spectrophotometer in seven men before, during, and after bed rest and exercise training. Exercise training consisted of isometric leg exercises of 250 kcal/hr for a period of one hour per day. It is found that LDH-T was reduced by 0.05 percent in all three regimens by day 10 of bed rest, and that the decrease occurred at different rates. The earliest reduction in LDH-T activity in the no-exercise regimen was associated with a decrease in peak oxygen uptake of 12.3 percent. It is concluded that isometric (aerobic) muscular strength training appear to maintain skeletal muscle integrity better during bed rest than isotonic exercise training. Reduced hydrostatic pressure during bed rest, however, ultimately counteracts the effects of both moderate isometric and isotonic exercise training, and may result in decreased LDH-T activity.

  12. Biofeedback Training in Crisis Managers: A Randomized Controlled Trial.

    PubMed

    Janka, A; Adler, C; Brunner, B; Oppenrieder, S; Duschek, S

    2017-06-01

    Working in crisis environments represents a major challenge, especially for executive personnel engaged in directing disaster operations, i.e. crisis managers. Crisis management involves operating under conditions of extreme stress resulting, for instance, from high-level decision-making, principal responsibility for personnel, multitasking or working under conditions of risk and time pressure. The present study aimed to investigate the efficacy of a newly developed biofeedback training procedure based on electrodermal activity, especially designed for the target group of crisis managers. The training comprised exercises promoting acquisition of control over sympathetic arousal under resting conditions and during exposure to visual, acoustic and cognitive stressors resembling situations related to crisis management. In a randomized controlled design, 36 crisis managers were assigned to either a biofeedback training group or waiting list control group. Subjective stress was assessed using the Perceived Stress Scale. In the training group, stress level markedly decreased; the decrease remained stable at follow-up 2 months after the training. The results indicate that biofeedback training in crisis management is an effective method for stress management that may help to reduce vulnerability to stress-related performance decline and stress-related disease.

  13. Exercise Training and Energy Expenditure following Weight Loss

    PubMed Central

    Hunter, Gary R.; Fisher, Gordon; Neumeier, William H.; Carter, Stephen J.; Plaisance, Eric P.

    2015-01-01

    Purpose Determine the effects of aerobic or resistance training on activity related energy expenditure (AEE, kcal/d) and physical activity index (ARTE) following weight loss. It was hypothesized that weight loss without exercise training would be accompanied by a decrease in AEE, ARTE, and non-training physical activity energy expenditure (NEAT) and that exercise training would prevent decreases in free living energy expenditure. Methods 140 pre-menopausal women underwent an average of 25 pound weight loss during an 800 kcal/day diet of furnished food. One group aerobically trained 3 times/wk (40 min/d), another resistance trained 3 times/wk (10 exercises/2 sets x10 repetitions) and the third group did not exercise. DXA was used to measure body composition, indirect calorimetry to measure resting (REE) and walking energy expenditure, and doubly labeled water to measure total energy expenditure (TEE). AEE, ARTE, and non-training physical activity energy expenditure (NEAT) were calculated. Results TEE, REE, and NEAT all decreased following weight loss for the no exercise group, but not for the aerobic and resistance trainers. Only REE decreased in the two exercise groups. The resistance trainers increased ARTE. Heart rate and oxygen uptake while walking on the flat and up a grade were consistently related to TEE, AEE, NEAT, and ARTE. Conclusion Exercise training prevents a decrease in energy expenditure, including free living energy expenditure separate from the exercise training, following weight loss. Resistance training increased physical activity, while ease and economy in walking associates with increased TEE, AEE, NEAT, and ARTE. PMID:25606816

  14. Exercise-Trained Men and Women: Role of Exercise and Diet on Appetite and Energy Intake

    PubMed Central

    Howe, Stephanie M.; Hand, Taryn M.; Manore, Melinda M.

    2014-01-01

    The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals. PMID:25389897

  15. Exercise-trained men and women: role of exercise and diet on appetite and energy intake.

    PubMed

    Howe, Stephanie M; Hand, Taryn M; Manore, Melinda M

    2014-11-10

    The regulation of appetite and energy intake is influenced by numerous hormonal and neural signals, including feedback from changes in diet and exercise. Exercise can suppress subjective appetite ratings, subsequent energy intake, and alter appetite-regulating hormones, including ghrelin, peptide YY, and glucagon-like peptide 1(GLP-1) for a period of time post-exercise. Discrepancies in the degree of appetite suppression with exercise may be dependent on subject characteristics (e.g., body fatness, fitness level, age or sex) and exercise duration, intensity, type and mode. Following an acute bout of exercise, exercise-trained males experience appetite suppression, while data in exercise-trained women are limited and equivocal. Diet can also impact appetite, with low-energy dense diets eliciting a greater sense of fullness at a lower energy intake. To date, little research has examined the combined interaction of exercise and diet on appetite and energy intake. This review focuses on exercise-trained men and women and examines the impact of exercise on hormonal regulation of appetite, post-exercise energy intake, and subjective and objective measurements of appetite. The impact that low-energy dense diets have on appetite and energy intake are also addressed. Finally, the combined effects of high-intensity exercise and low-energy dense diets are examined. This research is in exercise-trained women who are often concerned with weight and body image issues and consume low-energy dense foods to keep energy intakes low. Unfortunately, these low-energy intakes can have negative health consequences when combined with high-levels of exercise. More research is needed examining the combined effect of diet and exercise on appetite regulation in fit, exercise-trained individuals.

  16. Influence of BDNF Genotype and Exercise on BDNF Serum Levels and VO2 Max after Acute Exercise and Post Training

    DTIC Science & Technology

    2017-07-29

    exercise prescription and training. 15. SUBJECT TERMS cognitive, physical training, BDNF, Val66Val, Val66Met, VO2Max 16. SECURITY CLASSIFICATION...Key Words: Functional agility training, physical training, cognitive upregulation, brain-derived neurotrophic factor, BDNF, Val66Val, Val66Met...cognitive output [21,29,30]. Met carriers may also experience better physical function recovery post-brain injury event [31]. Importantly, exercise may

  17. The influence of training characteristics on the effect of exercise training in patients with coronary artery disease: Systematic review and meta-regression analysis.

    PubMed

    Kraal, Jos J; Vromen, Tom; Spee, Ruud; Kemps, Hareld M C; Peek, Niels

    2017-10-15

    Although exercise-based cardiac rehabilitation improves exercise capacity of coronary artery disease patients, it is unclear which training characteristic determines this improvement. Total energy expenditure and its constituent training characteristics (training intensity, session frequency, session duration and programme length) vary considerably among clinical trials, making it hard to compare studies directly. Therefore, we performed a systematic review and meta-regression analysis to assess the effect of total energy expenditure and its constituent training characteristics on exercise capacity. We identified randomised controlled trials comparing continuous aerobic exercise training with usual care for patients with coronary artery disease. Studies were included when training intensity, session frequency, session duration and programme length was described, and exercise capacity was reported in peakVO 2 . Energy expenditure was calculated from the four training characteristics. The effect of training characteristics on exercise capacity was determined using mixed effects linear regression analyses. The analyses were performed with and without total energy expenditure as covariate. Twenty studies were included in the analyses. The mean difference in peakVO 2 between the intervention group and control group was 3.97ml·min -1 ·kg -1 (p<0.01, 95% CI 2.86 to 5.07). Total energy expenditure was significantly related to improvement of exercise capacity (effect size 0.91ml·min -1 ·kg -1 per 100J·kg, p<0.01, 95% CI 0.77 to 1.06), no effect was found for its constituent training characteristics after adjustment for total energy expenditure. We conclude that the design of an exercise programme should primarily be aimed at optimising total energy expenditure rather than on one specific training characteristic. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Beneficial effects of exercise training in heart failure are lost in male diabetic rats.

    PubMed

    Boudia, Dalila; Domergue, Valérie; Mateo, Philippe; Fazal, Loubina; Prud'homme, Mathilde; Prigent, Héloïse; Delcayre, Claude; Cohen-Solal, Alain; Garnier, Anne; Ventura-Clapier, Renée; Samuel, Jane-Lise

    2017-12-01

    Exercise training has been demonstrated to have beneficial effects in patients with heart failure (HF) or diabetes. However, it is unknown whether diabetic patients with HF will benefit from exercise training. Male Wistar rats were fed either a standard (Sham, n = 53) or high-fat, high-sucrose diet ( n = 66) for 6 mo. After 2 mo of diet, the rats were already diabetic. Rats were then randomly subjected to either myocardial infarction by coronary artery ligation (MI) or sham operation. Two months later, heart failure was documented by echocardiography and animals were randomly subjected to exercise training with treadmill for an additional 8 wk or remained sedentary. At the end, rats were euthanized and tissues were assayed by RT-PCR, immunoblotting, spectrophotometry, and immunohistology. MI induced a similar decrease in ejection fraction in diabetic and lean animals but a higher premature mortality in the diabetic group. Exercise for 8 wk resulted in a higher working power developed by MI animals with diabetes and improved glycaemia but not ejection fraction or pathological phenotype. In contrast, exercise improved the ejection fraction and increased adaptive hypertrophy after MI in the lean group. Trained diabetic rats with MI were nevertheless able to develop cardiomyocyte hypertrophy but without angiogenic responses. Exercise improved stress markers and cardiac energy metabolism in lean but not diabetic-MI rats. Hence, following HF, the benefits of exercise training on cardiac function are blunted in diabetic animals. In conclusion, exercise training only improved the myocardial profile of infarcted lean rats fed the standard diet. NEW & NOTEWORTHY Exercise training is beneficial in patients with heart failure (HF) or diabetes. However, less is known of the possible benefit of exercise training for HF patients with diabetes. Using a rat model where both diabetes and MI had been induced, we showed that 2 mo after MI, 8 wk of exercise training failed to improve cardiac function and metabolism in diabetic animals in contrast to lean animals.

  19. Exercise for Those with Chronic Heart Failure: Matching Programs to Patients.

    ERIC Educational Resources Information Center

    Braith, Randy W.

    2002-01-01

    Exercise training increases functional capacity and improves symptoms in selected patients with chronic heart failure and moderate-to-severe left ventricular systolic dysfunction. Aerobic training forms the basis of such a program. This paper describes contributors to exercise intolerance, responses to exercise training, favorable outcomes with…

  20. The Effect of Different Doses of Aerobic Exercise Training on Exercise Blood Pressure in Overweight and Obese Postmenopausal Women

    PubMed Central

    Swift, Damon L.; Earnest, Conrad P.; Katzmarzyk, Peter T.; Rankinen, Tuomo; Blair, Steven N.; Church, Timothy S.

    2011-01-01

    Objective Abnormally elevated exercise blood pressure is associated with increased risk of cardiovascular disease. Aerobic exercise training has been shown to reduce exercise blood pressure. However, it is unknown if these improvements occur in a dose dependent manner. The purpose of the present study is to determine the effect of different doses of aerobic exercise training on exercise blood pressure in obese postmenopausal women. Methods Participants (n=404) were randomized to one of 4 groups: 4, 8, or 12 kilocalories per kilogram of energy expenditure per week (kcal/kg/week) or the non-exercise control group for 6 months. Exercise blood pressure was obtained during the 50 watts stage of a cycle ergometer maximal exercise test. Results There was a significant reduction in systolic blood pressure at 50 watts in the 4 kcal/kg/week (−10.9 mmHg, p< 0.001), 8 kcal/kg/week (−9.9 mmHg, p= 0.022), and 12 kcal/kg/week (−13.7 mmHg, p<0.001) compared to control (−4.2 mmHg). Only the highest exercise training dose significantly reduced diastolic blood pressure (−4.3 mmHg, p= 0.033) compared to control. Additionally, resting blood pressure was not altered following exercise training (p>0.05) compared to control, and was not associated with changes in exercise systolic (r=0.09, p=0.09) or diastolic (r=0.10, p=0.08) blood pressure. Conclusions Aerobic exercise training reduces exercise blood pressure and may be more modifiable than changes in resting blood pressure. A high dose of aerobic exercise is recommended to successfully reduce both exercise systolic and diastolic blood pressure, and therefore may attenuate the CVD risk associated with abnormally elevated exercise blood pressure. PMID:22547251

  1. Changes in ventilatory threshold with exercise training in a sedentary population: the HERITAGE Family Study.

    PubMed

    Gaskill, S E; Walker, A J; Serfass, R A; Bouchard, C; Gagnon, J; Rao, D C; Skinner, J S; Wilmore, J H; Leon, A S

    2001-11-01

    The purpose of this study was to evaluate the effect of exercise training intensity relative to the ventilatory threshold (VT) on changes in work (watts) and VO2 at the ventilatory threshold and at maximal exercise in previously sedentary participants in the HERITAGE Family Study. We hypothesized that those who exercised below their VT would improve less in VO2 at the ventilatory threshold (VO2vt) and VO2max than those who trained at an intensity greater than their VT. Supervised cycle ergometer training was performed at the 4 participating clinical centers, 3 times a week for 20 weeks. Exercise training progressed from the HR corresponding to 55% VO2max for 30 minutes to the HR associated with 75% VO2max for 50 minutes for the final 6 weeks. VT was determined at baseline and after exercise training using standardized methods. 432 sedentary white and black men (n = 224) and women (n = 208), aged 17 to 65 years, were retrospectively divided into groups based on whether exercise training was initiated below, at, or above VT. 1) Training intensity (relative to VT) accounting for about 26% of the improvement in VO2vt (R2 = 0.26, p < 0.0001). 2) The absolute intensity of training in watts (W) accounted for approximately 56% of the training effect at VT (R2 = 0.56, p < 0.0001) with post-training watts at VT (VT(watts)) being not significantly different than W during training (p > 0.70). 3) Training intensity (relative to VT) had no effect on DeltaVO2max. These data clearly show that as a result of aerobic training both the VO2 and W associated with VT respond and become similar to the absolute intensity of sustained (3 x /week for 50 min) aerobic exercise training. Higher intensities of exercise, relative to VT, result in larger gains in VO2vt but not in VO2max.

  2. Gender differences in substrate utilisation during exercise.

    PubMed

    Ruby, B C; Robergs, R A

    1994-06-01

    The selection and utilisation of metabolic substrates during endurance exercise are regulated by a complex array of effectors. These factors include, but are not limited to, endurance training and cardiorespiratory fitness, exercise intensity and duration, muscle morphology and histology, hormonal factors and diet. Although the effects of these factors on substrate utilisation patterns are well understood, the variation in substrate utilisation during endurance exercise between males and females is not. Because of the extreme heterogeneity in exercise protocols and individuals studied, the differences in substrate utilisation between males and females remain somewhat inconclusive. Regardless of heterogeneity, if the results from studies are interpreted collectively, an apparent gender difference in the selection and metabolism of substrates can be seen in sedentary individuals. However, this difference between genders diminishes as the level of cardiorespiratory fitness is increased to that of highly trained individuals. During rest and lower intensity exercise, the preferential metabolism of lipid occurs with a concomitant sparing of muscle glycogen. However, as the intensity of exercise is increased, the relative contribution of carbohydrate also increases. The exercise intensity at which the shift from lipid to carbohydrate is determined and regulated by the previously mentioned factors. Because the intensity and duration of exercise play a predominant role, the variation in exercise protocols poses a methodological concern when interpreting previous research. When attempting to compare the metabolism of substrates during endurance exercise, appropriate selection and interpretation of measurement techniques are necessary. Measurement techniques include the nonprotein respiratory exchange ratio, muscle and fat biopsies and the measurement of various blood metabolites, such as free fatty acids and glycerol. Similarly, in vitro analysis of lipolytic activity has also been demonstrated in males and females in response to varying levels of female gonadotrophic hormones. When comparing the substrate utilisation patterns between males and females, the area of hormonal regulation has received less attention. Often the catecholamine response to endurance exercise is measured; however, the gonadotrophic hormones, particularly those of the female, have received less attention when comparing genders. Indeed, the regulatory nature of the female gonadotrophic hormones has been demonstrated. Collectively, the effects of elevated estrogen, as in the luteal phase of menstruation, appear to promote lipolytic activity. Estrogen-mediated lipolytic activation occurs by apparently altering the sensitivity to lipoprotein lipase and by increasing the levels of human growth hormone (somatotropin), an activator of lipolysis.(ABSTRACT TRUNCATED AT 400 WORDS)

  3. Exercise training increases basal tone in arterioles distal to chronic coronary occlusion

    PubMed Central

    Heaps, Cristine L.; Mattox, Mildred L.; Kelly, Katherine A.; Meininger, Cynthia J.; Parker, Janet L.

    2014-01-01

    Endurance exercise training increases basal active tone in coronary arteries and enhances myogenic tone in coronary arterioles of control animals. Paradoxically, exercise training has also been shown to augment nitric oxide production and nitric oxide-mediated relaxation in coronary arterioles. The purpose of the present study was to examine the effect of exercise training on basal active tone of arterioles (~150 µm ID) isolated from the collateral-dependent region of hearts exposed to chronic coronary occlusion. Ameroid occluders were surgically placed around the proximal left circumflex coronary artery of miniature swine. Arterioles were isolated from both the collateral-dependent and nonoccluded myocardial regions of sedentary (pen confined) and exercise-trained (treadmill run; 14 wk) pigs. Coronary tone was studied in isolated arterioles using microvessel myographs and standard isometric techniques. Exposure to nominally Ca2+-free external solution reduced resting tension in all arterioles; decreases were most profound (P < 0.05) in arterioles from the collateral-dependent region of exercise-trained animals. Furthermore, nitric oxide synthase (NOS) inhibition (Nω-nitro-l-arginine methylester; 100 µM) unmasked markedly increased nitric oxide-sensitive tone in arterioles from the collateral-dependent region of exercise-trained swine. Blockade of K+ channels revealed significantly enhanced K+ channel contribution to basal tone in collateral-dependent arterioles of exercise-trained pigs. Protein content of endothelial NOS (eNOS) and phosphorylated eNOS (pS1179), determined by immunoblot, was elevated in arterioles from exercise-trained animals with the greatest effect in collateral-dependent vasculature. Taken together, we demonstrate the interaction of opposing exercise training-enhanced arteriolar basal active tone, nitric oxide production, and K+ channel activity in chronic coronary occlusion, potentially enhancing the capacity to regulate blood flow to collateral-dependent myocardium. PMID:16243909

  4. Quantifying the placebo effect in psychological outcomes of exercise training: a meta-analysis of randomized trials.

    PubMed

    Lindheimer, Jacob B; O'Connor, Patrick J; Dishman, Rod K

    2015-05-01

    The placebo effect could account for some or all of the psychological benefits attributed to exercise training. The magnitude of the placebo effect in psychological outcomes of randomized controlled exercise training trials has not been quantified. The aim of this investigation was to estimate the magnitude of the population placebo effect in psychological outcomes from placebo conditions used in exercise training studies and compare it to the observed effect of exercise training. Articles published before 1 July 2013 were located using Google Scholar, MEDLINE, PsycINFO, and The Cochrane Library. To be included in the analysis, studies were required to have (1) a design that randomly assigned participants to exercise training, placebo, and control conditions and (2) an assessment of a subjective (i.e., anxiety, depression, energy, fatigue) or an objective (i.e., cognitive) psychological outcome. Meta-analytic and multi-level modeling techniques were used to analyze effects from nine studies involving 661 participants. Hedges' d effect sizes were calculated, and random effects models were used to estimate the overall magnitude of the placebo and exercise training effects. After adjusting for nesting effects, the placebo mean effect size was 0.20 (95% confidence interval [CI] -0.02, 0.41) and the observed effect of exercise training was 0.37 (95% CI 0.11, 0.63). A small body of research suggests both that (1) the placebo effect is approximately half of the observed psychological benefits of exercise training and (2) there is an urgent need for creative research specifically aimed at better understanding the role of the placebo effect in the mental health consequences of exercise training.

  5. Exercise training does not increase muscle FNDC5 protein or mRNA expression in pigs

    PubMed Central

    Fain, John N.; Company, Joseph M.; Booth, Frank W.; Laughlin, M. Harold; Padilla, Jaume; Jenkins, Nathan T.; Bahouth, Suleiman W.; Sacks, Harold S.

    2013-01-01

    Background Exercise training elevates circulating irisin and induces the expression of the FNDC5 gene in skeletal muscles of mice. Our objective was to determine whether exercise training also increases FNDC5 protein or mRNA expression in the skeletal muscles of pigs as well as plasma irisin. Methods Castrated male pigs of the Rapacz familial hypercholesterolemic (FHM) strain and normal (Yucatan miniature) pigs were sacrificed after 16–20 weeks of exercise training. Samples of cardiac muscle, deltoid and triceps brachii muscle, subcutaneous and epicardial fat were obtained and FNDC5 mRNA, along with that of 6 other genes, was measured in all tissues of FHM pigs by reverse transcription polymerase chain reaction. FNDC protein in deltoid and triceps brachii was determined by Western blotting in both FHM and normal pigs. Citrate synthase activity was measured in the muscle samples of all pigs as an index of exercise training. Irisin was measured by an ELISA assay. Results There was no statistically significant effect of exercise training on FNDC5 gene expression in epicardial or subcutaneous fat, deltoid muscle, triceps brachii muscle or heart muscle. Exercise-training elevated circulating levels of irisin in the FHM pigs and citrate synthase activity in deltoid and triceps brachii muscle. A similar increase in citrate synthase activity was seen in muscle extracts of exercise-trained normal pigs but there was no alteration in circulating irisin. Conclusion Exercise training in pigs does not increase FNDC5 mRNA or protein in the deltoid or triceps brachii of FHM or normal pigs while increasing circulating irisin only in the FHM pigs. These data indicate that the response to exercise training in normal pigs is not comparable to that seen in mice. PMID:23831442

  6. Effects of interval aerobic training combined with strength exercise on body composition, glycaemic and lipid profile and aerobic capacity of obese rats.

    PubMed

    Coll-Risco, Irene; Aparicio, Virginia A; Nebot, Elena; Camiletti-Moirón, Daniel; Martínez, Rosario; Kapravelou, Garyfallia; López-Jurado, María; Porres, Jesús M; Aranda, Pilar

    2016-08-01

    The purpose of this study was to investigate the effects of interval aerobic training combined with strength exercise in the same training session on body composition, and glycaemic and lipid profile in obese rats. Sixteen lean Zucker rats and sixteen obese Zucker rats were randomly divided into exercise and sedentary subgroups (4 groups, n = 8). Exercise consisted of interval aerobic training combined with strength exercise in the same training session. The animals trained 60 min/day, 5 days/week for 8 weeks. Body composition, lipid and glycaemic profiles and inflammatory markers were assessed. Results showed that fat mass was reduced in both lean and obese rats following the exercise training (effect size (95% confidence interval (CI)) = 1.8 (0.5-3.0)). Plasma low-density lipoprotein-cholesterol and fasting glucose were lower in the exercise compared to the sedentary groups (d = 2.0 (0.7-3.2) and 1.8 (0.5-3.0), respectively). Plasma insulin was reduced in exercise compared to sedentary groups (d = 2.1 (0.8-3.4)). Some exercise × phenotype interactions showed that the highest decreases in insulin, homeostatic model assessment-insulin resistance, fasting and postprandial glucose were observed in the obese + exercise group (all, P < 0.01). The findings of this study suggest that interval aerobic training combined with strength exercise would improve body composition, and lipid and glycaemic profiles, especially in obese rats.

  7. A Scientific Rationale to Improve Resistance Training Prescription in Exercise Oncology.

    PubMed

    Fairman, Ciaran M; Zourdos, Michael C; Helms, Eric R; Focht, Brian C

    2017-08-01

    To date, the prevailing evidence in the field of exercise oncology supports the safety and efficacy of resistance training to attenuate many oncology treatment-related adverse effects, such as risk for cardiovascular disease, increased fatigue, and diminished physical functioning and quality of life. Moreover, findings in the extant literature supporting the benefits of exercise for survivors of and patients with cancer have resulted in the release of exercise guidelines from several international agencies. However, despite research progression and international recognition, current exercise oncology-based exercise prescriptions remain relatively basic and underdeveloped, particularly in regards to resistance training. Recent publications have called for a more precise manipulation of training variables such as volume, intensity, and frequency (i.e., periodization), given the large heterogeneity of a cancer population, to truly optimize clinically relevant patient-reported outcomes. Indeed, increased attention to integrating fundamental principles of exercise physiology into the exercise prescription process could optimize the safety and efficacy of resistance training during cancer care. The purpose of this article is to give an overview of the current state of resistance training prescription and discuss novel methods that can contribute to improving approaches to exercise prescription. We hope this article may facilitate further evaluation of best practice regarding resistance training prescription, monitoring, and modification to ultimately optimize the efficacy of integrating resistance training as a supportive care intervention for survivors or and patients with cancer.

  8. The effect of different training exercises on the performance outcome on the da Vinci Skills Simulator.

    PubMed

    Walliczek-Dworschak, U; Schmitt, M; Dworschak, P; Diogo, I; Ecke, A; Mandapathil, M; Teymoortash, A; Güldner, C

    2017-06-01

    Increasing usage of robotic surgery presents surgeons with the question of how to acquire the special skills required. This study aimed to analyze the effect of different exercises on their performance outcomes. This prospective study was conducted on the da Vinci Skills Simulator from December 2014 till August 2015. Sixty robotic novices were included and randomized to three groups of 20 participants each. Each group performed three different exercises with comparable difficulty levels. The exercises were performed three times in a row within two training sessions, with an interval of 1 week in between. On the final training day, two new exercises were added and a questionnaire was completed. Technical metrics of performance (overall score, time to complete, economy of motion, instrument collisions, excessive instrument force, instruments out of view, master work space range, drops, missed targets, misapplied energy time, blood loss and broken vessels) were recorded by the simulator software for further analysis. Training with different exercises led to comparable results in performance metrics for the final exercises among the three groups. A significant skills gain was recorded between the first and last exercises, with improved performance in overall score, time to complete and economy of motion for all exercises in all three groups. As training with different exercises led to comparable results in robotic training, the type of exercise seems to play a minor role in the outcome. For a robotic training curriculum, it might be important to choose exercises with comparable difficulty levels. In addition, it seems to be advantageous to limit the duration of the training to maintain the concentration throughout the entire session.

  9. The influence of age, gender, and training on exercise efficiency.

    PubMed

    Woo, J Susie; Derleth, Christina; Stratton, John R; Levy, Wayne C

    2006-03-07

    The aim of this study was to determine whether changes in oxygen efficiency occur with aging or exercise training in healthy young and older subjects. Exercise capacity declines with age and improves with exercise training. Whether changes in oxygen efficiency, defined as the oxygen cost per unit work, contributes to the effects of aging or training has not yet been defined. Sixty-one healthy subjects were recruited into four groups of younger women (ages 20 to 33 years, n = 15), younger men (ages 20 to 30 years, n = 12), older women (ages 65 to 79 years, n = 16), and older men (ages 65 to 77 years, n = 18). All subjects underwent cardiopulmonary exercise testing to analyze aerobic parameters before and after three to six months of supervised aerobic exercise training. Before training, younger subjects had a much higher exercise capacity, as shown by a 42% higher peak oxygen consumption (VO2) (ml/kg/min, p < 0.0001). This was associated with an 11% lower work VO2/W (p = 0.02) and an 8% higher efficiency than older subjects (p = 0.03). With training, older subjects displayed a larger increase in peak W/kg (+29% vs. +12%, p = 0.001), a larger decrease in work VO2/W (-24% vs. -2%, p < 0.0001), and a greater improvement in exercise efficiency (+30% vs. 2%, p < 0.0001) compared to the young. Older age is associated with a decreased exercise efficiency and an increase in the oxygen cost of exercise, which contribute to a decreased exercise capacity. These age-related changes are reversed with exercise training, which improves efficiency to a greater degree in the elderly than in the young.

  10. Spine lateral flexion strength development differences between exercises with pelvic stabilization and without pelvic stabilization

    NASA Astrophysics Data System (ADS)

    Straton, Alexandru; Gidu, Diana Victoria; Micu, Alexandru

    2015-02-01

    Poor lateral flexor muscle strength can be an important source of lumbar/thoracic back pain in women. The purpose of this study was to evaluate pelvic stabilization (PS) and no pelvic stabilization (NoPS) lateral flexion strength exercise training on the development of isolated right and left lateral flexion strength. Isometric torque of the isolated right and left lateral flexion muscles was measured at two positions (0° and 30° opposed angle range of motion) on 42 healthy women before and after 8 weeks of PS and NoPS lateral flexion strength exercise training. Subjects were assigned in three groups, the first (n=14) trained 3 times/week with PS lateral flexion strength exercise, the second (n=14) trained 3 times/week with NoPS lateral flexion strength exercise and the third (control, n=14) did not train. Post training isometric strength values describing PS and NoPS lateral flexion strength improved in greater extent for the PS lateral flexion strength exercise group and in lesser extent for the NoPS lateral flexion strength exercise group, in both angles (p<0.05) relative to controls. These data indicate that the most effective way of training the spine lateral flexion muscles is PS lateral flexion strength exercises; NoPS lateral flexion strength exercises can be an effective way of training for the spine lateral flexion muscles, if there is no access to PS lateral flexion strength training machines.

  11. Mitochondria-specific antioxidant supplementation does not influence endurance exercise training-induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake.

    PubMed

    Shill, Daniel D; Southern, W Michael; Willingham, T Bradley; Lansford, Kasey A; McCully, Kevin K; Jenkins, Nathan T

    2016-12-01

    Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non-specific antioxidants on exercise training-induced vascular adaptations remain elusive. Circulating angiogenic cells (CACs) are an exercise-inducible subset of white blood cells that maintain vascular integrity. We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men. We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole-body aerobic adaptations to exercise training. These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training-induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria-specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3 + , CD3 + /CD31 + , CD14 + /CD31 + , CD31 + , CD34 + /VEGFR2 + and CD62E + peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m -2 , and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14 + /CD31 + , CD62E + and CD34 + /VEGFR2 + CACs, respectively, and reduced CD3 + /CD31 - PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial-targeted antioxidant does not influence skeletal muscle or whole-body aerobic adaptations to exercise training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  12. The role of exercise training in the treatment of hypertension: an update.

    PubMed

    Hagberg, J M; Park, J J; Brown, M D

    2000-09-01

    Hypertension is a very prevalent cardiovascular (CV) disease risk factor in developed countries. All current treatment guidelines emphasise the role of nonpharmacological interventions, including physical activity, in the treatment of hypertension. Since our most recent review of the effects of exercise training on patients with hypertension, 15 studies have been published in the English literature. These results continue to indicate that exercise training decreases blood pressure (BP) in approximately 75% of individuals with hypertension, with systolic and diastolic BP reductions averaging approximately 11 and 8mm Hg, respectively. Women may reduce BP more with exercise training than men, and middle-aged people with hypertension may obtain greater benefits than young or older people. Low to moderate intensity training appears to be as, if not more, beneficial as higher intensity training for reducing BP in individuals with hypertension. BP reductions are rapidly evident although, at least for systolic BP, there is a tendency for greater reductions with more prolonged training. However, sustained BP reductions are evident during the 24 hours following a single bout of exercise in patients with hypertension. Asian and Pacific Island patients with hypertension reduce BP, especially systolic BP, more and more consistently than Caucasian patients. The minimal data also indicate that African-American patients reduce BP with exercise training. Some evidence indicates that common genetic variations may identify individuals with hypertension likely to reduce BP with exercise training. Patients with hypertension also improve plasma lipoprotein-lipid profiles and improve insulin sensitivity to the same degree as normotensive individuals with exercise training. Some evidence also indicates that exercise training in hypertensive patients may result in regression of pathological left ventricular hypertrophy. These results continue to support the recommendation that exercise training is an important initial or adjunctive step that is highly efficacious in the treatment of individuals with mild to moderate elevations in BP.

  13. Sharing a Personal Trainer: Personal and Social Benefits of Individualized, Small-Group Training.

    PubMed

    Wayment, Heidi A; McDonald, Rachael L

    2017-11-01

    Wayment, HA and McDonald, RL. Sharing a personal trainer: personal and social benefits of individualized, small-group training. J Strength Cond Res 31(11): 3137-3145, 2017-We examined a novel personal fitness training program that combines personal training principles in a small-group training environment. In a typical training session, exercisers warm-up together but receive individualized training for 50 minutes with 1-5 other adults who range in age, exercise experience, and goals for participation. Study participants were 98 regularly exercising adult members of a fitness studio in the southwestern United States (64 women and 32 men), aged 19-78 years (mean, 46.52 years; SD = 14.15). Average membership time was 2 years (range, 1-75 months; mean, 23.54 months; SD = 20.10). In collaboration with the program directors, we developed a scale to assess satisfaction with key features of this unique training program. Participants completed an online survey in Fall 2015. Hypotheses were tested with a serial mediator model (model 6) using the SPSS PROCESS module. In support of the basic tenets of self-determination theory, satisfaction with small-group, individualized training supported basic psychological needs, which in turn were associated with greater autonomous exercise motivation and life satisfaction. Satisfaction with this unique training method was also associated with greater exercise self-efficacy. Autonomous exercise motivation was associated with both exercise self-efficacy and greater self-reported health and energy. Discussion focuses on why exercise programs that foster a sense of social belonging (in addition to motivation and efficacy) may be helpful for successful adherence to an exercise program.

  14. Exercise training starting at weaning age preserves cardiac pacemaker function in adulthood of diet-induced obese rats.

    PubMed

    Carvalho de Lima, Daniel; Guimarães, Juliana Bohnen; Rodovalho, Gisele Vieira; Silveira, Simonton Andrade; Haibara, Andrea Siqueira; Coimbra, Cândido Celso

    2014-08-01

    Peripheral sympathetic overdrive in young obese subjects contributes to further aggravation of insulin resistance, diabetes, and hypertension, thus inducing worsening clinical conditions in adulthood. Exercise training has been considered a strategy to repair obesity autonomic dysfunction, thereby reducing the cardiometabolic risk. Therefore, the aim of this study was to assess the effect of early exercise training, starting immediately after weaning, on cardiac autonomic control in diet-induced obese rats. Male Wistar rats (weaning) were divided into four groups: (i) a control group (n = 6); (ii) an exercise-trained control group (n = 6); (iii) a diet-induced obesity group (n = 6); and (iv) an exercise-trained diet-induced obesity group (n = 6). The development of obesity was induced by 9 weeks of palatable diet intake, and the training program was implemented in a motor-driven treadmill (5 times per week) during the same period. After this period, animals were submitted to vein and artery catheter implantation to assess cardiac autonomic balance by methylatropine (3 mg/kg) and propranolol (4 mg/kg) administration. Exercise training increased running performance in both groups (p < 0.05). Exercise training also prevented the increased resting heart rate in obese rats, which seemed to be related to cardiac pacemaker activity preservation (p < 0.05). Additionally, the training program preserved the pressure and bradycardia responses to autonomic blockade in obese rats (p < 0.05). An exercise program beginning at weaning age prevents cardiovascular dysfunction in obese rats, indicating that exercise training may be used as a nonpharmacological therapeutic strategy for the treatment of cardiometabolic diseases.

  15. Regular exercise training reverses ectonucleotidase alterations and reduces hyperaggregation of platelets in metabolic syndrome patients.

    PubMed

    Martins, Caroline Curry; Bagatini, Margarete Dulce; Cardoso, Andréia Machado; Zanini, Daniela; Abdalla, Fátima Husein; Baldissarelli, Jucimara; Dalenogare, Diéssica Padilha; Farinha, Juliano Boufleur; Schetinger, Maria Rosa Chitolina; Morsch, Vera Maria

    2016-02-15

    Alterations in the activity of ectonucleotidase enzymes have been implicated in cardiovascular diseases, whereas regular exercise training has been shown to prevent these alterations. However, nothing is known about it relating to metabolic syndrome (MetS). We investigated the effect of exercise training on platelet ectonucleotidase enzymes and on the aggregation profile of MetS patients. We studied 38 MetS patients who performed regular concurrent exercise training for 30 weeks. Anthropometric measurements, biochemical profiles, hydrolysis of adenine nucleotides in platelets and platelet aggregation were collected from patients before and after the exercise intervention as well as from individuals of the control group. An increase in the hydrolysis of adenine nucleotides (ATP, ADP and AMP) and a decrease in adenosine deamination in the platelets of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training (P<0.001). Additionally, an increase in platelet aggregation was observed in the MetS patients (P<0.001) and the exercise training prevented platelet hyperaggregation in addition to decrease the classic cardiovascular risks. An alteration of ectonucleotidase enzymes occurs during MetS, whereas regular exercise training had a protective effect on these enzymes and on platelet aggregation. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Resistance training and aerobic training improve muscle strength and aerobic capacity in chronic inflammatory demyelinating polyneuropathy.

    PubMed

    Markvardsen, Lars H; Overgaard, Kristian; Heje, Karen; Sindrup, Søren H; Christiansen, Ingelise; Vissing, John; Andersen, Henning

    2018-01-01

    We investigated the effects of aerobic and resistance exercise in patients with chronic inflammatory demyelinating polyneuropathy (CIDP). Eighteen CIDP patients treated with subcutaneous immunoglobulin performed 12 weeks of aerobic exercise and 12 weeks of resistance exercise after a run-in period of 12 weeks without exercise. Three times weekly the participants performed aerobic exercise on an ergometer bike or resistance exercise with unilateral training of knee and elbow flexion/extension. Primary outcomes were maximal oxygen consumption velocity (VO 2 -max) and maximal combined isokinetic muscle strength (cIKS) of knee and elbow flexion/extension. VO 2 -max and muscle strength were unchanged during run-in (-4.9% ± 10.3%, P = 0.80 and -3.7% ± 10.1%, P = 0.17, respectively). Aerobic exercise increased VO 2 -max by 11.0% ± 14.7% (P = 0.02). Resistance exercise resulted in an increase of 13.8% ± 16.0% (P = 0.0004) in cIKS. Aerobic exercise training and resistance exercise training improve fitness and strength in CIDP patients. Muscle Nerve 57: 70-76, 2018. © 2017 Wiley Periodicals, Inc.

  17. Concluding remarks: nutritional strategies to support the adaptive response to prolonged exercise training.

    PubMed

    van Loon, Luc J C; Tipton, Kevin D

    2013-01-01

    Nutrition plays a key role in allowing the numerous training hours to be translated into useful adaptive responses of various tissues in the individual athlete. Research over the last decade has shown many examples of the impact of dietary interventions to modulate the skeletal muscle adaptive response to prolonged exercise training. Proper nutritional coaching should be applied throughout both training and competition, each with their specific requirements regarding nutrient provision. Such dietary support will improve exercise training efficiency and, as such, further increase performance capacity. Here, we provide an overview on the properties of various nutritional interventions that may be useful to support the adaptive response to exercise training and competition and, as such, to augment exercise training efficiency. Copyright © 2013 Nestec Ltd., Vevey/S. Karger AG, Basel.

  18. Moving Beyond Cardio: The Value of Resistance Training, Balance Training, and Other Forms of Exercise in the Management of Diabetes

    PubMed Central

    Colberg, Sheri R.; Sigal, Ronald J.

    2015-01-01

    IN BRIEF Traditionally, aerobic training has been a central focus of exercise promotion for diabetes management. However, people with diabetes have much to gain from other forms of exercise. This article reviews the evidence and recommendations on resistance, balance, and flexibility training, as well as other, less traditional, forms of exercise such as yoga and Tai Chi. PMID:25717274

  19. The Effect of Increasing Volume of Exercise on Activation Pattern of Vastus Medialis and Lateralis and its Correlation With Anterior Knee Pain in Karate Elites

    PubMed Central

    Safar Cherati, Afsaneh; Lotfian, Sara; Jamshidi, Aliashraf; Sanjari, Mohammad Ali; Razi, Mohammad

    2016-01-01

    Background The effects of exercise volume on the pattern of muscle activity is one of the most important factors in training management and injury risk reduction. In the lower limb, the quadriceps muscle which plays a determining role in performing the stance and other karate techniques could be injured in intensive exercise and may induce anterior knee pain in athletes. Objectives The aim of this study was to determine the relationship between training volume and muscle activity of vastus medialis and vastus lateralis and its association with anterior knee pain in karate elites. Patients and Methods Male and female athletes from national junior and cadet karate team (14 to 18 years) were invited to participate in the study at the beginning and the end of the training camps. Studies involved measurement of electromyographic muscle activity of vastus medialis and vastus lateralis in both lower extremities with surface electromyography device and assessment of movement by electrogoniometery. Muscle activity was recorded in three tests of dachi, walking up and walking down stairs. Simultaneously, anterior knee pain was evaluated using visual analogue scale and anterior knee pain scale questionnaire. Results Eight athletes of a total number of 23 reported increased ratings of pain in their right knees. No differences in muscle activity were observed in tests of Dachi and stairs between the groups with and without pain. Comparing Dachi task pattern at the beginning and end of training camps, there was no significant difference in pattern of biomechanical movement; however, reducing the amount of muscle activity in early and late phases of tasks was observed in electromyographic assessment. Conclusions The results showed that performing the same task after a six-week training period, less muscle activity was required in all phases in two groups of tasks, including karate-specific movement (dachi) and activities of daily living (up or down stairs). PMID:27826403

  20. The Effect of Increasing Volume of Exercise on Activation Pattern of Vastus Medialis and Lateralis and its Correlation With Anterior Knee Pain in Karate Elites.

    PubMed

    Safar Cherati, Afsaneh; Lotfian, Sara; Jamshidi, Aliashraf; Sanjari, Mohammad Ali; Razi, Mohammad

    2016-09-01

    The effects of exercise volume on the pattern of muscle activity is one of the most important factors in training management and injury risk reduction. In the lower limb, the quadriceps muscle which plays a determining role in performing the stance and other karate techniques could be injured in intensive exercise and may induce anterior knee pain in athletes. The aim of this study was to determine the relationship between training volume and muscle activity of vastus medialis and vastus lateralis and its association with anterior knee pain in karate elites. Male and female athletes from national junior and cadet karate team (14 to 18 years) were invited to participate in the study at the beginning and the end of the training camps. Studies involved measurement of electromyographic muscle activity of vastus medialis and vastus lateralis in both lower extremities with surface electromyography device and assessment of movement by electrogoniometery. Muscle activity was recorded in three tests of dachi, walking up and walking down stairs. Simultaneously, anterior knee pain was evaluated using visual analogue scale and anterior knee pain scale questionnaire. Eight athletes of a total number of 23 reported increased ratings of pain in their right knees. No differences in muscle activity were observed in tests of Dachi and stairs between the groups with and without pain. Comparing Dachi task pattern at the beginning and end of training camps, there was no significant difference in pattern of biomechanical movement; however, reducing the amount of muscle activity in early and late phases of tasks was observed in electromyographic assessment. The results showed that performing the same task after a six-week training period, less muscle activity was required in all phases in two groups of tasks, including karate-specific movement (dachi) and activities of daily living (up or down stairs).

  1. Cardiac parasympathetic reactivation following exercise: implications for training prescription.

    PubMed

    Stanley, Jamie; Peake, Jonathan M; Buchheit, Martin

    2013-12-01

    The objective of exercise training is to initiate desirable physiological adaptations that ultimately enhance physical work capacity. Optimal training prescription requires an individualized approach, with an appropriate balance of training stimulus and recovery and optimal periodization. Recovery from exercise involves integrated physiological responses. The cardiovascular system plays a fundamental role in facilitating many of these responses, including thermoregulation and delivery/removal of nutrients and waste products. As a marker of cardiovascular recovery, cardiac parasympathetic reactivation following a training session is highly individualized. It appears to parallel the acute/intermediate recovery of the thermoregulatory and vascular systems, as described by the supercompensation theory. The physiological mechanisms underlying cardiac parasympathetic reactivation are not completely understood. However, changes in cardiac autonomic activity may provide a proxy measure of the changes in autonomic input into organs and (by default) the blood flow requirements to restore homeostasis. Metaboreflex stimulation (e.g. muscle and blood acidosis) is likely a key determinant of parasympathetic reactivation in the short term (0-90 min post-exercise), whereas baroreflex stimulation (e.g. exercise-induced changes in plasma volume) probably mediates parasympathetic reactivation in the intermediate term (1-48 h post-exercise). Cardiac parasympathetic reactivation does not appear to coincide with the recovery of all physiological systems (e.g. energy stores or the neuromuscular system). However, this may reflect the limited data currently available on parasympathetic reactivation following strength/resistance-based exercise of variable intensity. In this review, we quantitatively analyse post-exercise cardiac parasympathetic reactivation in athletes and healthy individuals following aerobic exercise, with respect to exercise intensity and duration, and fitness/training status. Our results demonstrate that the time required for complete cardiac autonomic recovery after a single aerobic-based training session is up to 24 h following low-intensity exercise, 24-48 h following threshold-intensity exercise and at least 48 h following high-intensity exercise. Based on limited data, exercise duration is unlikely to be the greatest determinant of cardiac parasympathetic reactivation. Cardiac autonomic recovery occurs more rapidly in individuals with greater aerobic fitness. Our data lend support to the concept that in conjunction with daily training logs, data on cardiac parasympathetic activity are useful for individualizing training programmes. In the final sections of this review, we provide recommendations for structuring training microcycles with reference to cardiac parasympathetic recovery kinetics. Ultimately, coaches should structure training programmes tailored to the unique recovery kinetics of each individual.

  2. Aerobic Training Improves Quality of Life in Women with Polycystic Ovary Syndrome.

    PubMed

    Costa, Eduardo Caldas; de Sá, Joceline Cássia Ferezini; Stepto, Nigel Keith; Costa, Ingrid Bezerra Barbosa; Farias-Junior, Luiz Fernando; da Nóbrega Tomaz Moreira, Simone; Soares, Elvira Maria Mafaldo; Lemos, Telma Maria Araújo Moura; Browne, Rodrigo Alberto Vieira; Azevedo, George Dantas

    2018-02-13

    To investigate the effects of a supervised aerobic exercise training intervention on health-related quality of life (HRQL), cardiorespiratory fitness, cardiometabolic profile, and affective response in overweight/obese women with polycystic ovary syndrome (PCOS). Twenty-seven overweight/obese inactive women with PCOS (body mass index, BMI ≥ 25 kg/m; aged from 18 to 34 years) were allocated into an exercise group (n = 14) and a control group (n = 13). Progressive aerobic exercise training was performed three times per week (~150 min/week) over 16 weeks. Cardiorespiratory fitness, HRQL, and cardiometabolic profile were evaluated before and after the intervention. Affective response (i.e., feeling of pleasure/displeasure) was evaluated during the exercise sessions. The exercise group improved 21 ± 12% of cardiorespiratory fitness (p < 0.001) and HRQL in the following domains: physical-functioning, general health, and mental health (p < 0.05). Moreover, the exercise group decreased BMI, waist circumference, systolic and diastolic blood pressure, and total cholesterol level (p < 0.05). The affective response varied from "good" to "fairly good" (i.e., positive affective response) in an exercise intensity dependent manner during the exercise training sessions. Progressive aerobic exercise training improved HRQL, cardiorespiratory fitness, and cardiometabolic profile of overweight/obese women with PCOS. Moreover, the participants reported the exercise training sessions as pleasant over the intervention. These results reinforce the importance of supervised exercise training as a therapeutic approach for overweight/obese women with PCOS.

  3. Exercise Capacity and Response to Training Quantitative Trait Loci in a NZW X 129S1 Intercross and Combined Cross Analysis of Inbred Mouse Strains

    PubMed Central

    Massett, Michael P.; Avila, Joshua J.; Kim, Seung Kyum

    2015-01-01

    Genetic factors determining exercise capacity and the magnitude of the response to exercise training are poorly understood. The aim of this study was to identify quantitative trait loci (QTL) associated with exercise training in mice. Based on marked differences in training responses in inbred NZW (-0.65 ± 1.73 min) and 129S1 (6.18 ± 3.81 min) mice, a reciprocal intercross breeding scheme was used to generate 285 F2 mice. All F2 mice completed an exercise performance test before and after a 4-week treadmill running program, resulting in an increase in exercise capacity of 1.54 ± 3.69 min (range = -10 to +12 min). Genome-wide linkage scans were performed for pre-training, post-training, and change in run time. For pre-training exercise time, suggestive QTL were identified on Chromosomes 5 (57.4 cM, 2.5 LOD) and 6 (47.8 cM, 2.9 LOD). A significant QTL for post-training exercise capacity was identified on Chromosome 5 (43.4 cM, 4.1 LOD) and a suggestive QTL on Chromosomes 1 (55.7 cM, 2.3 LOD) and 8 (66.1 cM, 2.2 LOD). A suggestive QTL for the change in run time was identified on Chromosome 6 (37.8 cM, 2.7 LOD). To identify shared QTL, this data set was combined with data from a previous F2 cross between B6 and FVB strains. In the combined cross analysis, significant novel QTL for pre-training exercise time and change in exercise time were identified on Chromosome 12 (54.0 cM, 3.6 LOD) and Chromosome 6 (28.0 cM, 3.7 LOD), respectively. Collectively, these data suggest that combined cross analysis can be used to identify novel QTL and narrow the confidence interval of QTL for exercise capacity and responses to training. Furthermore, these data support the use of larger and more diverse mapping populations to identify the genetic basis for exercise capacity and responses to training. PMID:26710100

  4. Distractive Auditory Stimuli in the Form of Music in Individuals With COPD: A Systematic Review.

    PubMed

    Lee, Annemarie L; Desveaux, Laura; Goldstein, Roger S; Brooks, Dina

    2015-08-01

    Music has been used as a distractive auditory stimulus (DAS) in patients with COPD, but its effects are unclear. This systematic review aimed to establish the effect of DAS on exercise capacity, symptoms, and health-related quality of life (HRQOL) under three conditions: (1) during exercise training, (2) during exercise testing, and (3) for symptom management at rest. Randomized controlled or crossover trials as well as cohort studies of DAS during exercise training, during formal exercise testing, and for symptom management among individuals with COPD were identified from a search of seven databases. Two reviewers independently assessed study quality. Weighted mean differences (WMDs) with 95% CIs were calculated using a random-effects model. Thirteen studies (12 of which were randomized controlled or crossover trials) in 415 participants were included. DAS increased exercise capacity when applied over at least 2 months of exercise training (WMD, 98 m; 95% CI, 47-150 m). HRQOL improved only after a training duration of 3 months. Less dyspnea was noted with DAS during exercise training, but this was not consistently observed in short-term exercise testing or as a symptom management strategy at rest. DAS appears to reduce symptoms of dyspnea and fatigue when used during exercise training, with benefits observed in exercise capacity and HRQOL. When applied during exercise testing, the effects on exercise capacity and symptoms and as a strategy for symptom management at rest are inconsistent.

  5. Injuries in an Extreme Conditioning Program.

    PubMed

    Aune, Kyle T; Powers, Joseph M

    2016-10-19

    Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occur to the shoulder and back. Cross-sectional study. Level 4. This is a retrospective survey of injuries reported by athletes participating in an ECP. An injury survey was sent to 1100 members of Iron Tribe Fitness, a gym franchise with 5 locations across Birmingham, Alabama, that employs exercises consistent with an ECP in this study. An injury was defined as a physical condition resulting from ECP participation that caused the athlete to either seek medical treatment, take time off from exercising, or make modifications to his or her technique to continue. A total of 247 athletes (22%) completed the survey. The majority (57%) of athletes were male (n = 139), and 94% of athletes were white (n = 227). The mean age of athletes was 38.9 years (±8.9 years). Athletes reported participation in the ECP for, on average, 3.6 hours per week (± 1.2 hours). Eighty-five athletes (34%) reported that they had sustained an injury while participating in the ECP. A total of 132 injuries were recorded, yielding an estimated incidence of 2.71 per 1000 hours. The shoulder or upper arm was the most commonly injured body site, accounting for 38 injuries (15% of athletes). Athletes with a previous shoulder injury were 8.1 times as likely to injure their shoulder in the ECP compared with athletes with healthy shoulders. The trunk, back, head, or neck (n = 29, 12%) and the leg or knee (n = 29, 12%) were the second most commonly injured sites. The injury incidence rate among athletes with < 6 months of experience in the ECP was 2.5 times greater than that of more experienced athletes (≥6 months of experience). Of the 132 injuries, 23 (17%) required surgical intervention. Squat cleans, ring dips, overhead squats, and push presses were more likely to cause injury. Athletes reported that 35% of injuries were due to overexertion and 20% were due to improper technique. The estimated injury rate among athletes participating in this ECP was similar to the rate of injury in weightlifting and most other recreational activities. The shoulder or upper arm was the most commonly injured area, and previous shoulder injury predisposed to new shoulder injury. New athletes are at considerable risk of injury compared with more experienced athletes. Extreme conditioning programs are growing in popularity, and there is disagreement between science and anecdotal reports from athletes, coaches, and physicians about their relative safety. This study estimates the incidence of injury in extreme conditioning programs which appears to be similar to other weight-training programs. © 2016 The Author(s).

  6. Injuries in an Extreme Conditioning Program

    PubMed Central

    Aune, Kyle T.; Powers, Joseph M.

    2016-01-01

    Background: Extreme conditioning programs (ECPs) are fitness training regimens relying on aerobic, plyometric, and resistance training exercises, often with high levels of intensity for a short duration of time. These programs have grown rapidly in popularity in recent years, but science describing the safety profile of these programs is lacking. Hypothesis: The rate of injury in the extreme conditioning program is greater than the injury rate of weightlifting and the majority of injuries occur to the shoulder and back. Study Design: Cross-sectional study. Level of Evidence: Level 4. Methods: This is a retrospective survey of injuries reported by athletes participating in an ECP. An injury survey was sent to 1100 members of Iron Tribe Fitness, a gym franchise with 5 locations across Birmingham, Alabama, that employs exercises consistent with an ECP in this study. An injury was defined as a physical condition resulting from ECP participation that caused the athlete to either seek medical treatment, take time off from exercising, or make modifications to his or her technique to continue. Results: A total of 247 athletes (22%) completed the survey. The majority (57%) of athletes were male (n = 139), and 94% of athletes were white (n = 227). The mean age of athletes was 38.9 years (±8.9 years). Athletes reported participation in the ECP for, on average, 3.6 hours per week (± 1.2 hours). Eighty-five athletes (34%) reported that they had sustained an injury while participating in the ECP. A total of 132 injuries were recorded, yielding an estimated incidence of 2.71 per 1000 hours. The shoulder or upper arm was the most commonly injured body site, accounting for 38 injuries (15% of athletes). Athletes with a previous shoulder injury were 8.1 times as likely to injure their shoulder in the ECP compared with athletes with healthy shoulders. The trunk, back, head, or neck (n = 29, 12%) and the leg or knee (n = 29, 12%) were the second most commonly injured sites. The injury incidence rate among athletes with <6 months of experience in the ECP was 2.5 times greater than that of more experienced athletes (≥6 months of experience). Of the 132 injuries, 23 (17%) required surgical intervention. Squat cleans, ring dips, overhead squats, and push presses were more likely to cause injury. Athletes reported that 35% of injuries were due to overexertion and 20% were due to improper technique. Conclusion: The estimated injury rate among athletes participating in this ECP was similar to the rate of injury in weightlifting and most other recreational activities. The shoulder or upper arm was the most commonly injured area, and previous shoulder injury predisposed to new shoulder injury. New athletes are at considerable risk of injury compared with more experienced athletes. Clinical Relevance: Extreme conditioning programs are growing in popularity, and there is disagreement between science and anecdotal reports from athletes, coaches, and physicians about their relative safety. This study estimates the incidence of injury in extreme conditioning programs, which appears to be similar to other weight-training programs. PMID:27760844

  7. Facilitation of the Cognitive Enhancing Effects of Working Memory Training Through Conjoint Voluntary Aerobic Exercise

    PubMed Central

    Smith, Andrew M.; Spiegler, Kevin M.; Sauce, Bruno; Wass, Christopher D.; Sturzoiu, Tudor; Matzel, Louis D.

    2013-01-01

    Increases in performance on tests of attention and learning are often observed shortly after a period of aerobic exercise, and evidence suggests that humans who engage in regular exercise are partially protected from age-related cognitive decline. However, the cognitive benefits of exercise are typically short-lived, limiting the practical application of these observations. We explored whether physical exercise would induce lasting changes in general cognitive ability if that exercise was combined with working memory training, which is purported to broadly impact on cognitive performance. Mice received either exercise (six weeks of voluntary running wheel access), working memory training, both treatments, or various control treatments. Near the completion of this period of exercise, working memory training (in a dual radial-arm maze) was initiated (alternating with days of exercise), and was continued for several weeks. Upon completion of these treatments, animals were assessed (2–4 weeks later) for performance on four diverse learning tasks, and the aggregate performance of individual animals across all four learning tasks was estimated. Working memory training alone promoted small increases in general cognitive performance, although any beneficial effects of exercise alone had dissipated by the time of learning assessments. However, the two treatments in combination more than doubled the improvement in general cognitive performance supported by working memory training alone. Unlike the transient effects that acute aerobic exercise can have on isolated learning tasks, these results indicate that an acute period of exercise combined with working memory training can have synergistic and lasting impact on general cognitive performance. PMID:24036169

  8. Effects of exercise training on glucose control, lipid metabolism, and insulin sensitivity in hypertriglyceridemia and non-insulin dependent diabetes mellitus.

    PubMed

    Lampman, R M; Schteingart, D E

    1991-06-01

    Exercise training has potential benefits for patients with hyperlipidemia and/or non-insulin dependent diabetes mellitus. In nondiabetic, nonobese subjects with hypertriglyceridemia, exercise training alone increased insulin sensitivity, improved glucose tolerance, and lowered serum triglyceride and cholesterol levels. These improvements did not occur when exercise training alone was given to similar patients with impaired glucose tolerance. In severely obese (X = 125 kg) subjects without diabetes melitus, a 600 calorie diet alone decreased glucose and insulin concentrations and improved glucose tolerance but did not increase insulin sensitivity. The addition of exercise training improved insulin sensitivity. Obese, non-insulin dependent diabetes mellitus subjects on sulfonylurea therapy alone increased insulin levels but failed to improve insulin sensitivity or glucose levels. In contrast, the addition of exercise training to this medication resulted in improved insulin sensitivity and lowered glucose levels. We conclude that exercise training has major effects on lowering triglyceride levels in hyperlipidemic subjects and can potentiate the effect of diet or drug therapy on glucose metabolism in patients with non-insulin dependent diabetes mellitus.

  9. Exercise training modalities in chronic heart failure: does high intensity aerobic interval training make the difference?

    PubMed

    Giallauria, Francesco; Smart, Neil Andrew; Cittadini, Antonio; Vigorito, Carlo

    2016-10-14

    Exercise training (ET) is strongly recommended in patients with chronic heart failure (CHF). Moderate-intensity aerobic continuous ET is the best established training modality in CHF patients. In the last decade, however, high-intensity interval exercise training (HIIT) has aroused considerable interest in cardiac rehabilitation community. Basically, HIIT consists of repeated bouts of high-intensity exercise alternated with recovery periods. In CHF patients, HIIT exerts larger improvements in exercise capacity compared to moderate-continuous ET. These results are intriguing, mostly considering that better functional capacity translates into an improvement of symptoms and quality of life. Notably, HIIT did not reveal major safety issues; although CHF patients should be clinically stable, have had recent exposure to at least regular moderate-intensity exercise, and appropriate supervision and monitoring during and after the exercise session are mandatory. The impact of HIIT on cardiac dimensions and function and on endothelial function remains uncertain. HIIT should not replace other training modalities in heart failure but should rather complement them. Combining and tailoring different ET modalities according to each patient's baseline clinical characteristics (i.e. exercise capacity, personal needs, preferences and goals) seem the most astute approach to exercise prescription.

  10. Continuous low- to moderate-intensity exercise training is as effective as moderate- to high-intensity exercise training at lowering blood HbA(1c) in obese type 2 diabetes patients.

    PubMed

    Hansen, D; Dendale, P; Jonkers, R A M; Beelen, M; Manders, R J F; Corluy, L; Mullens, A; Berger, J; Meeusen, R; van Loon, L J C

    2009-09-01

    Exercise represents an effective interventional strategy to improve glycaemic control in type 2 diabetes patients. However, the impact of exercise intensity on the benefits of exercise training remains to be established. In the present study, we compared the clinical benefits of 6 months of continuous low- to moderate-intensity exercise training with those of continuous moderate- to high-intensity exercise training, matched for energy expenditure, in obese type 2 diabetes patients. Fifty male obese type 2 diabetes patients (age 59 +/- 8 years, BMI 32 +/- 4 kg/m(2)) participated in a 6 month continuous endurance-type exercise training programme. All participants performed three supervised exercise sessions per week, either 55 min at 50% of whole body peak oxygen uptake (VO(2)peak (low to moderate intensity) or 40 min at 75% of VO(2)peak (moderate to high intensity). Oral glucose tolerance, blood glycated haemoglobin, lipid profile, body composition, maximal workload capacity, whole body and skeletal muscle oxidative capacity and skeletal muscle fibre type composition were assessed before and after 2 and 6 months of intervention. The entire 6 month intervention programme was completed by 37 participants. Continuous endurance-type exercise training reduced blood glycated haemoglobin levels, LDL-cholesterol concentrations, body weight and leg fat mass, and increased VO(2)peak, lean muscle mass and skeletal muscle cytochrome c oxidase and citrate synthase activity (p < 0.05). No differences were observed between the groups training at low to moderate or moderate to high intensity. When matched for energy cost, prolonged continuous low- to moderate-intensity endurance-type exercise training is equally effective as continuous moderate- to high-intensity training in lowering blood glycated haemoglobin and increasing whole body and skeletal muscle oxidative capacity in obese type 2 diabetes patients. ISRCTN32206301 None.

  11. Exercise training improves muscle vasodilatation in individuals with T786C polymorphism of endothelial nitric oxide synthase gene.

    PubMed

    Negrao, Marcelo V; Alves, Cleber R; Alves, Guilherme B; Pereira, Alexandre C; Dias, Rodrigo G; Laterza, Mateus C; Mota, Gloria F; Oliveira, Edilamar M; Bassaneze, Vinícius; Krieger, Jose E; Negrao, Carlos E; Rondon, Maria Urbana P B

    2010-09-01

    Allele T at promoter region of the eNOS gene has been associated with an increase in coronary disease mortality, suggesting that this allele increases susceptibility for endothelial dysfunction. In contrast, exercise training improves endothelial function. Thus, we hypothesized that: 1) Muscle vasodilatation during exercise is attenuated in individuals homozygous for allele T, and 2) Exercise training improves muscle vasodilatation in response to exercise for TT genotype individuals. From 133 preselected healthy individuals genotyped for the T786C polymorphism, 72 participated in the study: TT (n = 37; age 27 ± 1 yr) and CT+CC (n = 35; age 26 ± 1 yr). Forearm blood flow (venous occlusion plethysmography) and blood pressure (oscillometric automatic cuff) were evaluated at rest and during 30% handgrip exercise. Exercise training consisted of three sessions per week for 18 wk, with intensity between anaerobic threshold and respiratory compensation point. Resting forearm vascular conductance (FVC, P = 0.17) and mean blood pressure (P = 0.70) were similar between groups. However, FVC responses during handgrip exercise were significantly lower in TT individuals compared with CT+CC individuals (0.39 ± 0.12 vs. 1.08 ± 0.27 units, P = 0.01). Exercise training significantly increased peak VO(2) in both groups, but resting FVC remained unchanged. This intervention significantly increased FVC response to handgrip exercise in TT individuals (P = 0.03), but not in CT+CC individuals (P = 0.49), leading to an equivalent FVC response between TT and CT+CC individuals (1.05 ± 0.18 vs. 1.59 ± 0.27 units, P = 0.27). In conclusion, exercise training improves muscle vasodilatation in response to exercise in TT genotype individuals, demonstrating that genetic variants influence the effects of interventions such as exercise training.

  12. Oxygen uptake during mini trampoline exercise in normal-weight, endurance-trained adults and in overweight-obese, inactive adults: A proof-of-concept study.

    PubMed

    Höchsmann, Christoph; Rossmeissl, Anja; Baumann, Sandra; Infanger, Denis; Schmidt-Trucksäss, Arno

    2018-03-15

    To examine cardiorespiratory exertion during mini trampoline exercises of different intensities in both endurance-trained athletes and overweight-obese adults. Physically healthy participants (Group A: normal-weight, endurance-trained athletes; Group B: inactive, overweight-obese adults) participated in two measurement appointments and three training sessions in between appointments, in which participants familiarized themselves with the use of the mini trampoline and the execution of the exercises. The primary outcome was the ⩒O 2peak for each of the six mini trampoline exercises relative to the ⩒O 2peak as established during an all-out exercise test on a bike ergometer during the first measurement appointment. Secondary outcomes were average ⩒O 2 as well as maximum and average heart rate. The six mini trampoline exercises generated ⩒O 2peak values between 42% and 81% in the endurance-trained athletes and between 58% and 87% in the overweight-obese participants, both in relation to the bike ergometer ⩒O 2peak . Average ⩒O 2 values ranged from 35% to 69% (endurance-trained athletes) and from 48% to 71% (overweight-obese participants), depending on exercise. Average heart rate likewise lay in a range that can be categorized as moderate-to-vigorous aerobic exercise for both groups. A moderate-to-strong correlation (0.658 to 0.875, depending on exercise) between bike ergometer ⩒O 2peak and mini trampoline ⩒O 2peak was found for all six exercises. Mini trampoline exercise has the potential to produce training intensities that concur with established exercise guidelines. The exercise intensity is self-adjusting and allows for an effective and safe workout for different users with a wide range of fitness levels.

  13. Relationships between rating-of-perceived-exertion- and heart-rate-derived internal training load in professional soccer players: a comparison of on-field integrated training sessions.

    PubMed

    Campos-Vazquez, Miguel Angel; Mendez-Villanueva, Alberto; Gonzalez-Jurado, Jose Antonio; León-Prados, Juan Antonio; Santalla, Alfredo; Suarez-Arrones, Luis

    2015-07-01

    To describe the internal training load (ITL) of common training sessions performed during a typical week and to determine the relationships between different indicators of ITL commonly employed in professional football (soccer). Session-rating-of-perceived-exertion TL (sRPE-TL) and heart-rate- (HR) derived measurements of ITL as Edwards TL and Stagno training impulses (TRIMPMOD) were used in 9 players during 3 periods of the season. The relationships between them were analyzed in different training sessions during a typical week: skill drills/circuit training + small-sided games (SCT+SSGs), ball-possession games+technical-tactical exercises (BPG+TTE), tactical training (TT), and prematch activation (PMa). HR values obtained during SCT+SSGs and BPG+TTE were substantially greater than those in the other 2 sessions, all the ITL markers and session duration were substantially greater in SCT+SSGs than in any other session, and all ITL measures in BPG+TTE were substantially greater than in TT and PMa sessions. Large relationships were found between HR>80% HRmax and HR>90% HRmax vs sRPE-TL during BPG+TTE and TT sessions (r=.61-.68). Very large relationships were found between Edwards TL and sRPE-TL and between TRIMPMOD and sRPE-TL in sessions with BPG+TTE and TT (r=.73-.87). Correlations between the different HR-based methods were always extremely large (r=.92-.98), and unclear correlations were observed for other relationships between variables. sRPE-TL provided variable-magnitude within-individual correlations with HR-derived measures of training intensity and load during different types of training sessions typically performed during a week in professional soccer. Caution should be applied when using RPE- or HR-derived measures of exercise intensity/load in soccer training interchangeably.

  14. The efficacy of early initiated, supervised, progressive resistance training compared to unsupervised, home-based exercise after unicompartmental knee arthroplasty: a single-blinded randomized controlled trial.

    PubMed

    Jørgensen, Peter B; Bogh, Søren B; Kierkegaard, Signe; Sørensen, Henrik; Odgaard, Anders; Søballe, Kjeld; Mechlenburg, Inger

    2017-01-01

    To examine if supervised progressive resistance training was superior to home-based exercise in rehabilitation after unicompartmental knee arthroplasty. Single blinded, randomized clinical trial. Surgery, progressive resistance training and testing was carried out at Aarhus University Hospital and home-based exercise was carried out in the home of the patient. Fifty five patients were randomized to either progressive resistance training or home-based exercise. Patients were randomized to either progressive resistance training (home based exercise five days/week and progressive resistance training two days/week) or control group (home based exercise seven days/week). Preoperative assessment, 10-week (primary endpoint) and one-year follow-up were performed for leg extension power, spatiotemporal gait parameters and knee injury and osteoarthritis outcome score (KOOS). Forty patients (73%) completed 1-year follow-up. Patients in the progressive resistance training group participated in average 11 of 16 training sessions. Leg extension power increased from baseline to 10-week follow-up in progressive resistance training group (progressive resistance training: 0.28 W/kg, P= 0.01, control group: 0.01 W/kg, P=0.93) with no between-group difference. Walking speed and KOOS scores increased from baseline to 10-week follow-up in both groups with no between-group difference (six minutes walk test P=0.63, KOOS P>0.29). Progressive resistance training two days/week combined with home based exercise five days/week was not superior to home based exercise seven days/week in improving leg extension power of the operated leg.

  15. Strength and Aerobic Exercises Improve Spatial Memory in Aging Rats Through Stimulating Distinct Neuroplasticity Mechanisms.

    PubMed

    Vilela, Thais Ceresér; Muller, Alexandre Pastoris; Damiani, Adriani Paganini; Macan, Tamires Pavei; da Silva, Sabrina; Canteiro, Paula Bortoluzzi; de Sena Casagrande, Alisson; Pedroso, Giulia Dos Santos; Nesi, Renata Tiscoski; de Andrade, Vanessa Moraes; de Pinho, Ricardo Aurino

    2017-12-01

    Aging is associated with impaired cognition and memory and increased susceptibility to neurodegenerative disorders. Physical exercise is neuroprotective; however, the major evidence of this effect involves studies of only aerobic training in young animals. The benefits of other exercise protocols such as strength training in aged animals remains unknown. Here, we investigated the effect of aerobic and strength training on spatial memory and hippocampal plasticity in aging rats. Aging Wistar rats performed aerobic or strength training for 50 min 3 to 4 days/week for 8 weeks. Spatial memory and neurotrophic and glutamatergic signaling in the hippocampus of aged rats were evaluated after aerobic or strength training. Both aerobic and strength training improved cognition during the performance of a spatial memory task. Remarkably, the improvement in spatial memory was accompanied by an increase in synaptic plasticity proteins within the hippocampus after exercise training, with some differences in the intracellular functions of those proteins between the two exercise protocols. Moreover, neurotrophic signaling (CREB, BDNF, and the P75 NTR receptor) increased after training for both exercise protocols, and aerobic exercise specifically increased glutamatergic proteins (NMDA receptor and PSD-95). We also observed a decrease in DNA damage after aerobic training. In contrast, strength training increased levels of PKCα and the proinflammatory factors TNF-α and IL-1β. Overall, our results show that both aerobic and strength training improved spatial memory in aging rats through inducing distinct molecular mechanisms of neuroplasticity. Our findings extend the idea that exercise protocols can be used to improve cognition during aging.

  16. Elevated central venous pressure: a consequence of exercise training-induced hypervolemia?

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.; Mack, G. W.; Nadel, E. R.

    1991-01-01

    Resting blood volumes and arterial and central venous pressures (CVP) were measured in 14 men before and after exercise training to determine whether training-induced hypervolemia is accompanied by a change in total vascular capacitance. In addition, resting levels of plasma arginine vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (Ald), and norepinephrine (NE) were measured. The same measurements were conducted in seven subjects who did not undergo exercise and acted as controls. Exercise training consisted of 10 wk of controlled cycle exercise for 30 min/day, 4 days/wk at 75-80% of maximal O2 uptake (VO2max). A training effect was verified by a 20% increase in VO2max, a resting bradycardia, and a 9% increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased by 16% (P less than 0.05). The percent change in blood volume from before to after training was linearly related to the percent change in CVP (r = 0.903, P less than 0.05). As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was unchanged after exercise training. Plasma AVP, ANP, Ald, and NE were unaltered. Our results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance.

  17. Comparison of the effects of virtual reality-based balance exercises and conventional exercises on balance and fall risk in older adults living in nursing homes in Turkey.

    PubMed

    Yeşilyaprak, Sevgi Sevi; Yıldırım, Meriç Şenduran; Tomruk, Murat; Ertekin, Özge; Algun, Z Candan

    2016-01-01

    There is limited information on effective balance training techniques including virtual reality (VR)-based balance exercises in residential settings and no studies have been designed to compare the effects of VR-based balance exercises with conventional balance exercises in older adults living in nursing homes in Turkey. The objective of our study was to investigate the effects of VR-based balance exercises on balance and fall risk in comparison to conventional balance exercises in older adults living in nursing homes. A total sample of 18 subjects (65-82 years of age) with fall history who were randomly assigned to either the VR group (Group 1, n = 7) or the conventional exercise group (Group 2, n = 11) completed the exercise training. In both groups, Berg balance score (BBS), timed up & go duration, and left leg stance and tandem stance duration with eyes closed significantly improved with time (p < 0.05), but changes were similar in both groups (p > 0.05) after training, indicating that neither the exercise method was superior. Similar improvements were found in balance and fall risk with VR-based balance training and conventional balance training in older adults living in the nursing home. Both exercise trainings can be preferable by health care professionals considering fall prevention. Appropriate patient selection is essential.

  18. Comparison of 2 Different Exercise Approaches: Tai Chi Versus Otago, in Community-Dwelling Older Women.

    PubMed

    Son, Nam-Kuk; Ryu, Young Uk; Jeong, Hye-Won; Jang, Young-Hwan; Kim, Hyeong-Dong

    2016-01-01

    Regular exercise can delay age-related risk factors and can maintain or improve physical health and activity in older adults leading to a decrease in fall risk. The purpose of this study was to compare 2 different interventions for fall prevention, tai chi (TC) and Otago, by examining lower extremity strength, balance, and spatiotemporal gait parameters in community-dwelling older women. We performed a randomized trial in which subjects were assigned to 1 of 2 groups: the TC group (n = 21; age, 72.8 ± 4.7 years, range: 65-83 years), which participated in a modified Sun-style TC exercise program; and the Otago group (n = 24; age, 71.5 ± 3.6 years, range: 65-79 years), which participated in the Otago exercise program. The Timed Up and Go (TUG) test, functional reach (FR) test, one-leg standing (OLS) test, 5 times sit-to-stand test (5×STS), 30-second sit-to-stand (30s STS) test, and gait parameters (gait velocity, step length, step width, stride time, and cadence) were measured before and after the intervention. Both groups showed statistically significant improvements in balance (TUG and OLS tests), lower extremity strength (5×STS and 30s STS tests), and spatiotemporal gait parameters, except for step width and step length (P < .05). The Otago group showed a significantly improved FR, whereas the TC group showed a significantly improved step length after the intervention (P < .05). Furthermore, the Otago group exhibited greater improvements in the TUG (P < .001), FR (P < .001), 5×CST (P < .01), and 30-second CST (P < .01) tests: a faster cadence (P < .001) and shorter stride time (P < .001) when compared with the TC group. The TC group showed greater improvements in the OLS test, step length, and step width (P < .01) and faster gait velocity (P < .05) than the Otago group. The findings from this study support the efficacy of the TC and Otago exercise programs in improving mobility in this sample of subjects. Furthermore, the Otago group showed greater improvement in lower extremity strength, whereas the TC group showed greater improvement in balance (OLS test). Also, the TC group showed a greater improvement in gait velocity after TC training program compared with the Otago exercise program. However, this study does not elucidate which exercise program is a more effective intervention method with older women for fall prevention.

  19. Colonic transit in soccer players.

    PubMed

    Sesboüé, B; Arhan, P; Devroede, G; Lecointe-Besançon, I; Congard, P; Bouchoucha, M; Fabre, J

    1995-04-01

    To evaluate the effects of exercise on colonic function, we measured total and segmental transit times in 11 male soccer players and nine male radiology student technicians. Diet was kept constant in all subjects, who maintained their normal activities. For the soccer players, normal activities included 15 h of training and one match each week. Transit times were measured with radioopaque markers, using the multiple-ingestion, single-radiograph technique. No overall difference in large bowel transit was observed between the two groups. Right colon transit was considerably slower in the soccer players, whereas left colon and rectal transit were slightly accelerated. We conclude that an intensive sport activity only modifies regional differences in large bowel function. This may be of importance in extreme conditions, such as those experienced by marathon runners. Data should be obtained before prescribing exercise to treat constipation.

  20. Time to adapt exercise training regimens in pulmonary rehabilitation – a review of the literature

    PubMed Central

    Lee, Annemarie L; Holland, Anne E

    2014-01-01

    Exercise intolerance, exertional dyspnea, reduced health-related quality of life, and acute exacerbations are features characteristic of chronic obstructive pulmonary disease (COPD). Patients with a primary diagnosis of COPD often report comorbidities and other secondary manifestations, which diversifies the clinical presentation. Pulmonary rehabilitation that includes whole body exercise training is a critical part of management, and core programs involve endurance and resistance training for the upper and lower limbs. Improvement in maximal and submaximal exercise capacity, dyspnea, fatigue, health-related quality of life, and psychological symptoms are outcomes associated with exercise training in pulmonary rehabilitation, irrespective of the clinical state in which it is commenced. There may be benefits for the health care system as well as the individual patient, with fewer exacerbations and subsequent hospitalization reported with exercise training. The varying clinical profile of COPD may direct the need for modification to traditional training strategies for some patients. Interval training, one-legged cycling (partitioning) and non-linear periodized training appear to be equally or more effective than continuous training. Inspiratory muscle training may have a role as an adjunct to whole body training in selected patients. The benefits of balance training are also emerging. Strategies to ensure that health enhancing behaviors are adopted and maintained are essential. These may include training for an extended duration, alternative environments to undertake the initial program, maintenance programs following initial exercise training, program repetition, and incorporation of approaches to address behavioral change. This may be complemented by methods designed to maximize uptake and completion of a pulmonary rehabilitation program. PMID:25419125

  1. Time to adapt exercise training regimens in pulmonary rehabilitation--a review of the literature.

    PubMed

    Lee, Annemarie L; Holland, Anne E

    2014-01-01

    Exercise intolerance, exertional dyspnea, reduced health-related quality of life, and acute exacerbations are features characteristic of chronic obstructive pulmonary disease (COPD). Patients with a primary diagnosis of COPD often report comorbidities and other secondary manifestations, which diversifies the clinical presentation. Pulmonary rehabilitation that includes whole body exercise training is a critical part of management, and core programs involve endurance and resistance training for the upper and lower limbs. Improvement in maximal and submaximal exercise capacity, dyspnea, fatigue, health-related quality of life, and psychological symptoms are outcomes associated with exercise training in pulmonary rehabilitation, irrespective of the clinical state in which it is commenced. There may be benefits for the health care system as well as the individual patient, with fewer exacerbations and subsequent hospitalization reported with exercise training. The varying clinical profile of COPD may direct the need for modification to traditional training strategies for some patients. Interval training, one-legged cycling (partitioning) and non-linear periodized training appear to be equally or more effective than continuous training. Inspiratory muscle training may have a role as an adjunct to whole body training in selected patients. The benefits of balance training are also emerging. Strategies to ensure that health enhancing behaviors are adopted and maintained are essential. These may include training for an extended duration, alternative environments to undertake the initial program, maintenance programs following initial exercise training, program repetition, and incorporation of approaches to address behavioral change. This may be complemented by methods designed to maximize uptake and completion of a pulmonary rehabilitation program.

  2. Resistance-training exercises with different stability requirements: time course of task specificity.

    PubMed

    Saeterbakken, Atle Hole; Andersen, Vidar; Behm, David G; Krohn-Hansen, Espen Krogseth; Smaamo, Mats; Fimland, Marius Steiro

    2016-12-01

    The aim of the study was to assess the task-specificity (greater improvements in trained compared to non-trained tasks), transferability and time-course adaptations of resistance-training programs with varying instability requirements. Thirty-six resistance-trained men were randomized to train chest press 2 days week -1 for 10 week (6 repetitions × 4 series) using a Swiss ball, Smith machine or dumbbells. A six-repetition maximum-strength test with the aforementioned exercises and traditional barbell chest press were performed by all participants at the first, 7th, 14th and final training session in addition to electromyographic activities of the prime movers measured during isometric bench press. The groups training with the unstable Swiss-ball and dumbbells, but not the stable Smith-machine, demonstrated task-specificity, which became apparent in the early phase and remained throughout the study. The improvements in the trained exercise tended to increase more with instability (dumbbells vs. Smith machine, p = 0.061). The group training with Smith machine had similar improvements in the non-trained exercises. Greater improvements were observed in the early phase of the strength-training program (first-7th session) for all groups in all three exercises, but most notably for the unstable exercises. No differences were observed between the groups or testing times for EMG activity. These findings suggest that among resistance-trained individuals, the concept of task-specificity could be most relevant in resistance training with greater stability requirements, particularly due to rapid strength improvements for unstable resistance exercises.

  3. Exercise and associated dietary extremes impact on gut microbial diversity.

    PubMed

    Clarke, Siobhan F; Murphy, Eileen F; O'Sullivan, Orla; Lucey, Alice J; Humphreys, Margaret; Hogan, Aileen; Hayes, Paula; O'Reilly, Maeve; Jeffery, Ian B; Wood-Martin, Ruth; Kerins, David M; Quigley, Eamonn; Ross, R Paul; O'Toole, Paul W; Molloy, Michael G; Falvey, Eanna; Shanahan, Fergus; Cotter, Paul D

    2014-12-01

    The commensal microbiota, host immunity and metabolism participate in a signalling network, with diet influencing each component of this triad. In addition to diet, many elements of a modern lifestyle influence the gut microbiota but the degree to which exercise affects this population is unclear. Therefore, we explored exercise and diet for their impact on the gut microbiota. Since extremes of exercise often accompany extremes of diet, we addressed the issue by studying professional athletes from an international rugby union squad. Two groups were included to control for physical size, age and gender. Compositional analysis of the microbiota was explored by 16S rRNA amplicon sequencing. Each participant completed a detailed food frequency questionnaire. As expected, athletes and controls differed significantly with respect to plasma creatine kinase (a marker of extreme exercise), and inflammatory and metabolic markers. More importantly, athletes had a higher diversity of gut micro-organisms, representing 22 distinct phyla, which in turn positively correlated with protein consumption and creatine kinase. The results provide evidence for a beneficial impact of exercise on gut microbiota diversity but also indicate that the relationship is complex and is related to accompanying dietary extremes. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  4. Influence of Whole-Body Vibration Training Without Visual Feedback on Balance and Lower-Extremity Muscle Strength of the Elderly: A Randomized Controlled Trial.

    PubMed

    Tseng, Shiuan-Yu; Lai, Chung-Liang; Chang, Kai-Ling; Hsu, Pi-Shan; Lee, Meng-Chih; Wang, Chun-Hou

    2016-02-01

    The purpose of this study was to investigate the influence of whole-body vibration (WBV) training without visual feedback on balance and lower-extremity muscle strength in the elderly.Elderly subjects who did not exercise regularly participated in this study. Subjects were randomly divided into a WBV with eyes open group, a visual feedback-deprived plus WBV (VFDWBV) group, and a control group (0 Hz, eyes open). WBV training was provided over a 3-month period, 3 times per week for 5 min each session. Balance performance was measured with the limits of stability test, and muscle strength was measured with an isokinetic dynamometer.A total of 45 elderly subjects with an average age of 69.22  ±  3.97 years, divided into a WBV group (n = 14), a VFDWBV group (n = 17), and a control group (n = 14), completed the trial. Statistically significant differences were found in the balance performance of the 3 groups at different time points (time × group interaction: F = 13.213, P < 0.001), and the VFDWBV group had more improvement in balance than the WBV and control groups. The strength of the knee extensor and flexor muscles had time × group interactions: F = 29.604, P < 0.001 and F = 4.684, P = 0.015, respectively; the VFDWBV group had more improvement on lower-extremity muscle strength than the WBV and control groups. The 6-month follow-up showed that the rates of hospital visits for medical services due to falls were 0% in the WBV group (0/14), 0% in the VFDWBV group (0/17), and 28.57% in the control group (4/14).Results showed that WBV training at 20  Hz without visual feedback can significantly improve the balance performance and lower-extremity muscle strength of the elderly.

  5. Effect of whole-body vibration exercise in a sitting position prior to therapy on muscle tone and upper extremity function in stroke patients.

    PubMed

    Boo, Jung-A; Moon, Sang-Hyun; Lee, Sun-Min; Choi, Jung-Hyun; Park, Si-Eun

    2016-01-01

    [Purpose] The purpose of this study was to determine the effect of whole-body vibration exercise in a sitting position prior to therapy in stroke patients. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. Prior to occupational therapy, whole-body exercise was performed for 10 minutes, 5 times per week, for a total of 8 weeks. Muscle tone and upper extremity function were measured. The Modified Ashworth Scale (MAS) was used to measure muscle tone, and the Manual Function Test (MFT) and Fugl-Meyer Assessment scale (FugM) were used to measure upper extremity function. [Results] MAS score was significantly decreased, and MFT and FugM were significantly increased. [Conclusion] These results indicate that whole-body vibration exercise in a sitting position prior to therapy had a positive effect on muscle tone, and upper extremity function in stroke patients.

  6. Effect of a group intervention in the primary healthcare setting on continuing adherence to physical exercise routines in obese women.

    PubMed

    del Rey-Moya, Luz Maria; Castilla-Álvarez, Carmen; Pichiule-Castañeda, Myrian; Rico-Blázquez, Milagros; Escortell-Mayor, Esperanza; Gómez-Quevedo, Rosa

    2013-08-01

    To determine the effect of a seven-week-long, group-delivered, nurse-monitored, exercise training programme on the adherence of obese women to physical exercise routines at 12 months. The worldwide obesity epidemic is posing huge public health challenges. The main cause of obesity in Europe is very possibly a sedentary lifestyle. Uncertainty exists regarding whether people will continue to exercise once a structured intervention programme of physical activity ends. No-control-group (before-after) intervention study. One Hundred Seventy-Four women from the Madrid region (Spain) aged ≥ 45 years with a body mass index of ≥30 undertook a maximum of 21 × 1 hour exercise training programme sessions (three per week) over seven weeks starting in February 2009. The number of women making use of exercise training programme before the intervention, and at 6 and 12 months postintervention, was recorded using the Nursing Outcome Classification. Information was collected by interviewing the study subjects. Bivariate (McNemar and Student's t-tests) and multivariate (binary logistic regression) analyses were then performed. The Nursing Outcome Classification Indicator 'Does the subject follow an exercise training programme?' showed that at the end of one year, the percentage of women who remained adhered to exercise training programme increased in those who completed the study (from 11-41%). As the number of programmed exercise training programme sessions completed increased beyond 14, so too did the likelihood of adhering to an exercise training programme regime at one year. The results show that an exercise training programme intervention can encourage obese women to continue exercising after exercise interventions end. This type of intervention could provide a valuable means of helping women lose weight and improve their health. It may also have important economic benefits for health systems. Clinical trials with longer follow-up times and in other populations are needed to confirm the present results. © 2013 John Wiley & Sons Ltd.

  7. Concurrent exercise training: do opposites distract?

    PubMed

    Coffey, Vernon G; Hawley, John A

    2017-05-01

    Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when 'phenotype specificity' occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance-based exercise) and increased muscle mass (through resistance-based exercise), typically termed 'concurrent training'. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this 'interference' effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  8. Structural remodeling of coronary resistance arteries: effects of age and exercise training

    PubMed Central

    Hanna, Mina A.; Taylor, Curtis R.; Chen, Bei; La, Hae-Sun; Maraj, Joshua J.; Kilar, Cody R.; Behnke, Bradley J.; Delp, Michael D.

    2014-01-01

    Age is known to induce remodeling and stiffening of large-conduit arteries; however, little is known of the effects of age on remodeling and mechanical properties of coronary resistance arteries. We employed a rat model of aging to investigate whether 1) age increases wall thickness and stiffness of coronary resistance arteries, and 2) exercise training reverses putative age-induced increases in wall thickness and stiffness of coronary resistance arteries. Young (4 mo) and old (21 mo) Fischer 344 rats remained sedentary or underwent 10 wk of treadmill exercise training. Coronary resistance arteries were isolated for determination of wall-to-lumen ratio, effective elastic modulus, and active and passive responses to changes in intraluminal pressure. Elastin and collagen content of the vascular wall were assessed histologically. Wall-to-lumen ratio increased with age, but this increase was reversed by exercise training. In contrast, age reduced stiffness, and exercise training increased stiffness in coronary resistance arteries from old rats. Myogenic responsiveness was reduced with age and restored by exercise training. Collagen-to-elastin ratio (C/E) of the wall did not change with age and was reduced with exercise training in arteries from old rats. Thus age induces hypertrophic remodeling of the vessel wall and reduces the stiffness and myogenic function of coronary resistance arteries. Exercise training reduces wall-to-lumen ratio, increases wall stiffness, and restores myogenic function in aged coronary resistance arteries. The restorative effect of exercise training on myogenic function of coronary resistance arteries may be due to both changes in vascular smooth muscle phenotype and expression of extracellular matrix proteins. PMID:25059239

  9. Exercise Effects on Fitness and Bone Mineral Density in Early Postmenopausal Women: 1-Year EFOPS Results.

    ERIC Educational Resources Information Center

    Kemmler, Wolfgang; Engelke, Klaus; Lauber, Dirk; Weineck, Juergen; Hensen, Johannes; Kalender, Willi A.

    2002-01-01

    Investigated the effect of intense exercise training on physical fitness, coronary heart disease, bone mineral density (BMD), and parameters related to quality of life in early postmenopausal women with osteopenia. Data on woman in control and exercise training groups indicated that the intense exercise training program was effective in improving…

  10. [Effects of an inpatient pulmonary rehabilitation program on dyspnea, exercise capacity, and health related quality of life for patients with chronic lung disease].

    PubMed

    Lee, Chang Kwan

    2007-04-01

    The purpose of this study was to examine the effects of an inpatient pulmonary rehabilitation program on dyspnea, exercise capacity, and health related quality of life in inpatients with chronic lung disease. This quasi experimental study was designed with a nonequivalent control group pre-post test time series. Twenty three patients were assigned to the experimental group and nineteen to the control group. The inpatient pulmonary rehabilitation program was composed of upper and lower extremity exercise, breathing retraining, inspiratory muscle training, education, relaxation and telephone contacts. This program consisted of 4 sessions with inpatients and 4 weeks at home after discharge. The control group was given a home based pulmonary rehabilitation program at the time of discharge. The outcomes were measured by the Borg score, 6MWD and the Chronic Respiratory Disease Questionnaire(CRQ). There was a statistically significant difference in dyspnea between the experimental group and control group, but not among time sequence, or interaction between groups and time sequence. Also significant improvements in exercise capacity and health related quality of life were found only in the experimental group. An Inpatient pulmonary rehabilitation program may be a useful intervention to reduce dyspnea, and increase exercise capacity and health related quality of life for chronic lung disease patients.

  11. Influence of Chronic Moderate Sleep Restriction and Exercise Training on Anxiety, Spatial Memory, and Associated Neurobiological Measures in Mice

    PubMed Central

    Zielinski, Mark R.; Davis, J. Mark; Fadel, James R.; Youngstedt, Shawn D.

    2013-01-01

    Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (~4 h loss/day) vs. ad libitum sleep] × 2 [exercise (1 h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. PMID:23644185

  12. Effect of exercise training and food restriction on endothelium-dependent relaxation in the Otsuka Long-Evans Tokushima Fatty rat, a model of spontaneous NIDDM.

    PubMed

    Sakamoto, S; Minami, K; Niwa, Y; Ohnaka, M; Nakaya, Y; Mizuno, A; Kuwajima, M; Shima, K

    1998-01-01

    We investigated whether endothelial function may be impaired in the Otsuka Long-Evans Tokushima Fatty (OLETF) rat, a model of spontaneous NIDDM. The effect of exercise training and food restriction on endothelial function was also studied. OLETF rats were divided into three groups at age 16 weeks: sedentary, exercise trained, and food restricted (70% of the food intake of sedentary rats). Otsuka Long-Evans Tokushima rats were used as the age-matched nondiabetic controls. Endothelium-dependent relaxation of the thoracic aorta induced by histamine was significantly attenuated in the sedentary or food-restricted rats, and exercise training improved endothelial function. Relaxation induced by sodium nitroprusside, a donor of nitric oxide, did not differ significantly among groups. Both exercise training and food restriction significantly suppressed plasma levels of glucose and insulin and serum levels of triacylglycerol and cholesterol and reduced the accumulation of abdominal fat. Insulin sensitivity, as measured by the hyperinsulinemic-euglycemic clamp technique, was significantly decreased in sedentary rats but was enhanced in exercise-trained and food-restricted rats. The urinary excretion of nitrite was significantly decreased in sedentary and food-restricted rats compared with nondiabetic rats and was significantly increased in exercise-trained rats. These results indicate that exercise training, but not food restriction, prevents endothelial dysfunction in NIDDM rats, presumably due to the exercise-induced increase in the production of nitric oxide.

  13. Concurrent exercise training: do opposites distract?

    PubMed Central

    Coffey, Vernon G.

    2016-01-01

    Abstract Specificity is a core principle of exercise training to promote the desired adaptations for maximising athletic performance. The principle of specificity of adaptation is underpinned by the volume, intensity, frequency and mode of contractile activity and is most evident when contrasting the divergent phenotypes that result after undertaking either prolonged endurance or resistance training. The molecular profiles that generate the adaptive response to different exercise modes have undergone intense scientific scrutiny. Given divergent exercise induces similar signalling and gene expression profiles in skeletal muscle of untrained or recreationally active individuals, what is currently unclear is how the specificity of the molecular response is modified by prior training history. The time course of adaptation and when ‘phenotype specificity’ occurs has important implications for exercise prescription. This context is essential when attempting to concomitantly develop resistance to fatigue (through endurance‐based exercise) and increased muscle mass (through resistance‐based exercise), typically termed ‘concurrent training’. Chronic training studies provide robust evidence that endurance exercise can attenuate muscle hypertrophy and strength but the mechanistic underpinning of this ‘interference’ effect with concurrent training is unknown. Moreover, despite the potential for several key regulators of muscle metabolism to explain an incompatibility in adaptation between endurance and resistance exercise, it now seems likely that multiple integrated, rather than isolated, effectors or processes generate the interference effect. Here we review studies of the molecular responses in skeletal muscle and evidence for the interference effect with concurrent training within the context of the specificity of training adaptation. PMID:27506998

  14. Cardiovascular responses to static exercise in distance runners and weight lifters

    NASA Technical Reports Server (NTRS)

    Longhurst, J. C.; Kelly, A. R.; Gonyea, W. J.; Mitchell, J. H.

    1980-01-01

    Three groups of athletes including long-distance runners, competitive and amateur weight lifters, and age- and sex-matched control subjects have been studied by hemodynamic and echocardiographic methods in order to determine the effect of the training programs on the cardiovascular response to static exercise. Blood pressure, heart rate, and double product data at rest and at fatigue suggest that competitive endurance (dynamic exercise) training alters the cardiovascular response to static exercise. In contrast to endurance exercise, weight lifting (static exercise) training does not alter the cardiovascular response to static exercise: weight lifters responded to static exercise in a manner very similar to that of the control subjects.

  15. Strength training alone, exercise therapy alone, and exercise therapy with passive manual mobilisation each reduce pain and disability in people with knee osteoarthritis: a systematic review.

    PubMed

    Jansen, Mariette J; Viechtbauer, Wolfgang; Lenssen, Antoine F; Hendriks, Erik J M; de Bie, Rob A

    2011-01-01

    What are the effects of strength training alone, exercise therapy alone, and exercise with additional passive manual mobilisation on pain and function in people with knee osteoarthritis compared to control? What are the effects of these interventions relative to each other? A meta-analysis of randomised controlled trials. Adults with osteoarthritis of the knee. INTERVENTION TYPES: Strength training alone, exercise therapy alone (combination of strength training with active range of motion exercises and aerobic activity), or exercise with additional passive manual mobilisation, versus any non-exercise control. Comparisons between the three interventions were also sought. The primary outcome measures were pain and physical function. 12 trials compared one of the interventions against control. The effect size on pain was 0.38 (95% CI 0.23 to 0.54) for strength training, 0.34 (95% CI 0.19 to 0.49) for exercise, and 0.69 (95% CI 0.42 to 0.96) for exercise plus manual mobilisation. Each intervention also improved physical function significantly. No randomised comparisons of the three interventions were identified. However, meta-regression indicated that exercise plus manual mobilisations improved pain significantly more than exercise alone (p = 0.03). The remaining comparisons between the three interventions for pain and physical function were not significant. Exercise therapy plus manual mobilisation showed a moderate effect size on pain compared to the small effect sizes for strength training or exercise therapy alone. To achieve better pain relief in patients with knee osteoarthritis physiotherapists or manual therapists might consider adding manual mobilisation to optimise supervised active exercise programs. Copyright © 2011 Australian Physiotherapy Association. Published by .. All rights reserved.

  16. Exercise Guidelines to Promote Cardiometabolic Health in Spinal Cord Injured Humans: Time to Raise the Intensity?

    PubMed

    Nightingale, Tom E; Metcalfe, Richard S; Vollaard, Niels B; Bilzon, James L

    2017-08-01

    Spinal cord injury (SCI) is a life-changing event that, as a result of paralysis, negatively influences habitual levels of physical activity and hence cardiometabolic health. Performing regular structured exercise therefore appears extremely important in persons with SCI. However, exercise options are mainly limited to the upper body, which involves a smaller activated muscle mass compared with the mainly leg-based activities commonly performed by nondisabled individuals. Current exercise guidelines for SCI focus predominantly on relative short durations of moderate-intensity aerobic upper-body exercise, yet contemporary evidence suggests this is not sufficient to induce meaningful improvements in risk factors for the prevention of cardiometabolic disease in this population. As such, these guidelines and their physiological basis require reappraisal. In this special communication, we propose that high-intensity interval training (HIIT) may be a viable alternative exercise strategy to promote vigorous-intensity exercise and prevent cardiometabolic disease in persons with SCI. Supplementing the limited data from SCI cohorts with consistent findings from studies in nondisabled populations, we present strong evidence to suggest that HIIT is superior to moderate-intensity aerobic exercise for improving cardiorespiratory fitness, insulin sensitivity, and vascular function. The potential application and safety of HIIT in this population is also discussed. We conclude that increasing exercise intensity could offer a simple, readily available, time-efficient solution to improve cardiometabolic health in persons with SCI. We call for high-quality randomized controlled trials to examine the efficacy and safety of HIIT in this population. Copyright © 2017 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  17. Serum biochemical, blood gas and antioxidant status in search and rescue dogs before and after simulated fieldwork.

    PubMed

    Spoo, J W; Zoran, D L; Downey, R L; Bischoff, K; Wakshlag, J J

    2015-10-01

    The aim of the study was to assess the physiological and antioxidant status before and after a 4 h search and rescue field exercise, with handlers, under warm-weather conditions performing activities compared to a control group of similarly trained dogs at rest. Serum chemistry demonstrated a decrease in serum sodium (Na) and potassium (K) in both exercising and control groups, however only Na was decreased significantly (P < 0.05) after exercise and hematocrits (HCTs) remained unchanged. The exercise group demonstrated significantly decreased serum phosphorus (P) and magnesium (Mg) compared to pre-exercise values, as did the control group (P < 0.025). There was also a significant increase in creatinine kinase concentrations in the exercise groups (P < 0.025). Serum non-esterified fatty acids were increased only in the exercise group after exercise, suggesting fat mobilization to produce energy. The mean total serum antioxidant potential in searching dogs was no different from the pre- and post-exercise values in the control dogs. Serum vitamin E concentrations did not differ between the two groups, with a decreasing trend in both groups. There was a modest decrease in serum uric acid in the control group, while there was a significant rise after exercise in the searching group (P < 0.01). Multiple changes in serum chemistry, HCTs and blood gases were documented in this study, and were similar to those observed after other endurance activities. The lack of hemoconcentration in this field search exercise suggested that even in extreme environmental conditions (heat and humidity), dogs with access to water do not experience significant dehydration or diminished antioxidant status. Copyright © 2015. Published by Elsevier Ltd.

  18. Positive effects of 1-year football and strength training on mechanical muscle function and functional capacity in elderly men.

    PubMed

    Sundstrup, Emil; Jakobsen, Markus Due; Andersen, Lars Louis; Andersen, Thomas Rostgaard; Randers, Morten Bredsgaard; Helge, Jørn Wulff; Suetta, Charlotte; Schmidt, Jakob Friis; Bangsbo, Jens; Krustrup, Peter; Aagaard, Per

    2016-06-01

    A decline in physical capacity takes place with increasing age that negatively affects overall physical function including work ability and the ability to perform typical activities of daily living (ADL). The overall aim of the present study was to determine the neuromuscular adaptations to long-term (1 year) football and strength training in older untrained adults, and to assess the concurrent effect on functional ADL capacity. Twenty-seven healthy elderly males (68.2 ± 3.2 years) were randomly assigned to 12 months of either recreational football training (FT: n = 10), strength training (ST: n = 9) or served as inactive controls (CON: n = 8). Recreational football training consisted of small-sided training sessions whereas strength training consisted of high intensity exercises targeting the lower extremity and upper body. Maximal thigh muscle strength and rate of force development (RFD) were assessed with isokinetic dynamometry, while postural balance and vertical jumping performance were evaluated using force plate analysis. Furthermore, functional ability was evaluated by stair-ascent and chair-rising testing. A total of nine, nine and seven participants from FT, ST and CON, respectively, were included in the analysis. Both exercise regimens led to substantial gains in functional ability, evidenced by 24 and 18 % reduced stair-ascent time, and 32 and 21 % increased chair-rising performance in FT and ST, respectively (all P < 0.05). Long-term strength training led to increased concentric (14 %; P < 0.01) and isometric (23 %; P < 0.001) quadriceps and isometric hamstring strength (44 %; P < 0.0001), whereas football training mainly resulted in enhanced hamstring strength (18 %, P < 0.05) and RFD (89 %, P < 0.0001). Long-term (1 year) strength training led to increased quadriceps and hamstring strength, whereas the adaptations to football training mainly included enhanced strength and rapid force capacity of the hamstring muscles. Gains in functional ability were observed in response to both training regimens, evidenced by reduced stair-ascent time and increased chair-rising performance. Long-term football exercise and strength training both appear to be effective interventional strategies to improve factors of importance for ADL by counteracting the age-related decline in lower limb strength and functional capacity among old male adults. This could potentially be a way to improve work ability of senior workers.

  19. Reactions of immune system to physical exercises.

    PubMed

    Pershin, Boris B; Geliev, Anatoly B; Tolstov, Dmitry V; Kovalchuk, Leonid V; Medvedev, Vladimir Ya

    2002-04-01

    The great attention to reactions of immune system to the physical exercises in sportsmen is linked to the growth of training volumes, to the increase of competition numbers and to the elevation of morbidity. Immune deficiency may be considered as the detonator of pathological processes among which acute respiratory diseases (ARD) are investigated most completely in sports medicine. Other pathologies require long-term observations, but it is not so simple to do due to the frequent renewal of sports groups. Besides ARD, there are reports about the growth of cases of poliomyelitis, endotoxemia, allergic and autoimmune disorders. Immune reactions in sportsmen are developed at the background of fever, impaired balance of ergotrophic hormone activity and in a number of cases under conditions of systemic endotoxemia. We have described the extreme type of immune deficiency in sportsmen, in which we could not determine different isotypes of Ig. The phenomenon of Ig disappearance is reproduced under the experimental conditions that opened the way to study its mechanisms. Physical exercises decrease function of immunocompetent cells, their antiviral resistance, antigen presentation and expression of class II MHC molecules. With the involvement of macrophages hyperproduction of IL-6 is developed in muscle tissues. After physical exercises other cytokines also change the state of immunity. Also, neuropeptides getting in touch the links between endocrine and immune systems may make a contribution to immunosuppression. The immunosuppression may be prevented by use of special carbohydrate diets and by administration of complexed preparations. The prophylaxis is capable to control the morbidity, profoundly to increase the training volumes and to enhance the labor efficiency.

  20. Exercise training protects against aging-induced mitochondrial fragmentation in mouse skeletal muscle in a PGC-1α dependent manner.

    PubMed

    Halling, Jens Frey; Ringholm, Stine; Olesen, Jesper; Prats, Clara; Pilegaard, Henriette

    2017-10-01

    Aging is associated with impaired mitochondrial function, whereas exercise training enhances mitochondrial content and function in part through activation of PGC-1α. Mitochondria form dynamic networks regulated by fission and fusion with profound effects on mitochondrial functions, yet the effects of aging and exercise training on mitochondrial network structure remain unclear. This study examined the effects of aging and exercise training on mitochondrial network structure using confocal microscopy on mitochondria-specific stains in single muscle fibers from PGC-1α KO and WT mice. Hyperfragmentation of mitochondrial networks was observed in aged relative to young animals while exercise training normalized mitochondrial network structure in WT, but not in PGC-1α KO. Mitochondrial fission protein content (FIS1 and DRP1) relative to mitochondrial content was increased with aging in both WT and PGC-1α KO mice, while exercise training lowered mitochondrial fission protein content relative to mitochondrial content only in WT. Mitochondrial fusion protein content (MFN1/2 and OPA1) was unaffected by aging and lifelong exercise training in both PGC-1α KO and WT mice. The present results provide evidence that exercise training rescues aging-induced mitochondrial fragmentation in skeletal muscle by suppressing mitochondrial fission protein expression in a PGC-1α dependent manner. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Exercise training reverses the negative effects of chronic L-arginine supplementation on insulin sensitivity.

    PubMed

    Salgueiro, Rafael Barrera; Gerlinger-Romero, Frederico; Guimarães-Ferreira, Lucas; de Castro Barbosa, Thais; Nunes, Maria Tereza

    2017-12-15

    L-Arginine has emerged as an important supplement for athletes and non-athletes in order to improve performance. Arginine has been extensively used as substrate for nitric oxide synthesis, leading to increased vasodilatation and hormonal secretion. However, the chronic consumption of arginine has been shown to impair insulin sensitivity. In the present study, we aimed to evaluate whether chronic arginine supplementation associated with exercise training would have a beneficial impact on insulin sensitivity. We, therefore, treated Wistar rats for 4weeks with arginine, associated or not with exercise training (treadmill). We assessed the somatotropic activation, by evaluating growth hormone (GH) gene expression and protein content in the pituitary, as well is GH concentration in the serum. Additionally, we evaluate whole-body insulin sensitivity, by performing an insulin tolerance test. Skeletal muscle morpho-physiological parameters were also assessed. Insulin sensitivity was impaired in the arginine-treated rats. However, exercise training reversed the negative effects of arginine. Arginine and exercise training increased somatotropic axis function, muscle mass and body weight gain. The combination arginine and exercise training further decreased total fat mass. Our results confirm that chronic arginine supplementation leads to insulin resistance, which can be reversed in the association with exercise training. We provide further evidence that exercise training is an important tool to improve whole-body metabolism. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Six-month exercise training program to treat post-thrombotic syndrome: a randomized controlled two-centre trial

    PubMed Central

    Kahn, Susan R.; Shrier, Ian; Shapiro, Stan; Houweling, Adrielle H.; Hirsch, Andrew M.; Reid, Robert D.; Kearon, Clive; Rabhi, Khalil; Rodger, Marc A.; Kovacs, Michael J.; Anderson, David R.; Wells, Philip S.

    2011-01-01

    Background Exercise training may have the potential to improve post-thrombotic syndrome, a frequent, chronic complication of deep venous thrombosis. We conducted a randomized controlled two-centre pilot trial to assess the feasibility of a multicentre-based evaluation of a six-month exercise training program to treat post-thrombotic syndrome and to obtain preliminary data on the effectiveness of such a program. Methods Patients were randomized to receive exercise training (a six-month trainer-supervised program) or control treatment (an education session with monthly phone follow-ups). Levels of eligibility, consent, adherence and retention were used as indicators of study feasibility. Primary outcomes were change from baseline to six months in venous disease-specific quality of life (as measured using the Venous Insufficiency Epidemiological and Economic Study Quality of Life [VEINES-QOL] questionnaire) and severity of post-thrombotic syndrome (as measured by scores on the Villalta scale) in the exercise training group versus the control group, assessed by t tests. Secondary outcomes were change in generic quality of life (as measured using the Short-Form Health Survey-36 [SF-36] questionnaire), category of severity of post-thrombotic syndrome, leg strength, leg flexibility and time on treadmill. Results Of 95 patients with post-thrombotic syndrome, 69 were eligible, 43 consented and were randomized, and 39 completed the study. Exercise training was associated with improvement in VEINES-QOL scores (exercise training mean change 6.0, standard deviation [SD] 5.1 v. control mean change 1.4, SD 7.2; difference 4.6, 95% CI 0.54 to 8.7; p = 0.027) and improvement in scores on the Villalta scale (exercise training mean change −3.6, SD 3.7 v. control mean change −1.6, SD 4.3; difference −2.0, 95% CI −4.6 to 0.6; p = 0.14). Most secondary outcomes also showed greater improvement in the exercise training group. Interpretation Exercise training may improve post-thrombotic syndrome. It would be feasible to definitively evaluate exercise training as a treatment for post-thrombotic syndrome in a large multicentre trial. PMID:21098066

  3. Evaluation of different time schedules in training with the Da Vinci simulator.

    PubMed

    Güldner, C; Orth, A; Dworschak, P; Diogo, I; Mandapathil, M; Teymoortash, A; Walliczek-Dworschak, U

    2017-10-01

    This prospective study analyzed the effect of different time schedules in training on the main performance outcomes: overall score, time to complete, and economy of motion. The study was performed on the da Vinci Skills Simulator from December 2014 to April 2016. Forty robotic novices were randomized into two groups of 20 participants, which trained in the same three exercises but with different intervals between their training sessions. Each group performed training in Peg Board 1 in their first week, Match Board 2 in their second week, and Ring and Rail 2 in their third week. On their last day, Needle Targeting and Energy Dissection 2, for which no previous training had been received, were performed. Regarding the different training intervals, group 1 trained each exercise six times in a row once a week. Group 2 performed their training once a day for 5 days. Technical performance parameters were recorded by the Mimics simulator software for further analysis. In addition, the participants were asked to fill out a questionnaire concerning the robotics training. Group 2 performed significantly better compared to group 1 in the main metrics in the more advanced exercises. For the easier exercises, the training frequency did not lead to significant differences in performance outcome. A significant skills gain was seen between the first and last training sessions for all exercises in both groups. Performance in the final exercise NT was significantly better in group 2 than group 1. Regarding ED 2, no difference was found between the two groups. As the training of group 2 led to significantly better outcomes, we suggest that, especially for advanced exercises, it seems to be more favorable to perform training every day for a short period than to train once a week six times in a row.

  4. Community-based group exercise for persons with Parkinson disease: a randomized controlled trial.

    PubMed

    Combs, Stephanie A; Diehl, M Dyer; Chrzastowski, Casey; Didrick, Nora; McCoin, Brittany; Mox, Nicholas; Staples, William H; Wayman, Jessica

    2013-01-01

    The purpose of this study was to compare group boxing training to traditional group exercise on function and quality of life in persons with Parkinson disease (PD). A convenience sample of adults with PD (n = 31) were randomly assigned to boxing training or traditional exercise for 24-36 sessions, each lasting 90 minutes, over 12 weeks. Boxing training included: stretching, boxing (e.g. lateral foot work, punching bags), resistance exercises, and aerobic training. Traditional exercise included: stretching, resistance exercises, aerobic training, and balance activities. Participants were tested before and after completion of training on balance, balance confidence, mobility, gait velocity, gait endurance, and quality of life. The traditional exercise group demonstrated significantly greater gains in balance confidence than the boxing group (p < 0.025). Only the boxing group demonstrated significant improvements in gait velocity and endurance over time with a medium between-group effect size for the gait endurance (d = 0.65). Both groups demonstrated significant improvements with the balance, mobility, and quality of life with large within-group effect sizes (d ≥ 0.80). While groups significantly differed in balance confidence after training, both groups demonstrated improvements in most outcome measures. Supporting options for long-term community-based group exercise for persons with PD will be an important future consideration for rehabilitation professionals.

  5. Effect of long-term exercise training on blood viscosity during endurance exercise at an anaerobic threshold intensity.

    PubMed

    Adachi, H; Sakurai, S; Tanehata, M; Oshima, S; Taniguchi, K

    2000-11-01

    Blood viscosity (etaB) is low in athletes, but the effect of exercise training on etaB during endurance exercise at an anaerobic threshold (AT) intensity in non-athletes is not well known, although it is known that exercise training sometimes induces the hyperviscosity syndrome. Fourteen subjects were recruited and divided into 2 groups: those who trained at an AT intensity for 30 min/day, 3 times weekly for 1 year (Group T, n=8), and sedentary subjects (Group C, n=6). The test protocol consisted of a single 30-min treadmill exercise at each individual's AT intensity, which was determined in advance. The etaB, plasma viscosity (etaP), and hematocrit were measured just before and at the end of the treadmill exercise. The subjects were not allowed to drink any water before exercise. In the Group C subjects, the hematocrit and etaP increased significantly and the etaB tended to increase. However, in the Group T subjects, the hematocrit and etaP did not increase and the etaB decreased significantly. These data indicate that long-term exercise training attenuates the increase in blood viscosity during exercise.

  6. Exercise training improves characteristics of exercise oscillatory ventilation in chronic heart failure.

    PubMed

    Panagopoulou, Niki; Karatzanos, Eleftherios; Dimopoulos, Stavros; Tasoulis, Athanasios; Tachliabouris, Ioannis; Vakrou, Styliani; Sideris, Antonios; Gratziou, Christina; Nanas, Serafim

    2017-05-01

    Background Exercise oscillatory ventilation in chronic heart failure has been suggested as a factor related to adverse cardiac events, aggravated prognosis and higher mortality. Exercise training is well known to affect exercise capacity and mechanisms of pathophysiology beneficially in chronic heart failure. Little is known, however, about the exercise training effects on characteristics of exercise oscillatory ventilation in chronic heart failure patients. Design and methods Twenty (out of 38) stable chronic heart failure patients exhibited exercise oscillatory ventilation (age 54 ± 11 years, peak oxygen uptake 15.0 ± 5.0 ml/kg per minute). Patients attended 36 sessions of high intensity interval exercise. All patients underwent cardiopulmonary exercise testing before and after the programme. Assessment of exercise oscillatory ventilation was based on the amplitude of cyclic fluctuations in breathing during rest and exercise. All values are mean ± SD. Results Exercise training reduced ( P < 0.05) the percentage of exercise oscillatory ventilation duration (79.0 ± 13.0 to 50.0 ± 25.0%), while average amplitude (5.2 ± 2.0 to 4.9 ± 1.6 L/minute) and length (44.0 ± 10.9 to 41.0 ± 6.7 seconds) did not change ( P > 0.05). Exercise oscillatory ventilation patients also increased exercise capacity ( P < 0.05). Conclusions A rehabilitation programme based on high intensity interval training improved exercise oscillatory ventilation observed in chronic heart failure patients, as well as cardiopulmonary efficiency and functional capacity.

  7. The effect of low extremity plyometric training on back muscle power of high school throwing event athletes.

    PubMed

    Park, Gi Duck; Lee, Joong Chul; Lee, Juri

    2014-01-01

    [Purpose] The physical strength elements required for athletic throwing events include muscle strength, swiftness, agility, speed, flexibility, and physical balance. Although plyometric training and weight training are implemented as representative training methods for improving swiftness and agility, most studies of it have been conducted with players of other sports. [Subjects] The study subjects were 10 throwing event athletes attending K physical education high school. The subjects were randomly assigned to a control group of five subjects and an experimental group of five subjects. To analyze the body composition, an Inbody 3.0 instrument (Biospace, Korea) was used as experimental equipment to measure heights, weight, body fat percentages, and muscle masses and a Biodex system 4.0 (BIODEX, USA) was used to measure isokinetic muscle-joint and lumbar muscle strengths. The plyometric training consisted of 15 techniques out of the training methods introduced in the 'Power up plyometric training'. The plyometric program was implemented without any training load three times per week during daybreak exercises for the experimental group. The number of times and the number of sets were changed over time as follows: three sets of 10 times in the 1st -4th weeks, three sets of 15 times in the 5th-8th weeks, and five sets of 15 times in the 9th-12th weeks. [Results] According to the ANCOVA results of lumbar extensor muscle strength at 60°/sec, the overall reliability of the model was significant. According to the ANCOVA results of lumbar flexor muscle strength at 60°/sec, the overall reliability of the model was significant. [Conclusion] Plyometric training positively affected high school throwing event athletes. To summarize the study findings, the application of plyometric training with high intensity and loads improved the results of athletes who perform highly intensive exercises at normal times.

  8. Aerobic exercise improves reverse cholesterol transport in cholesteryl ester transfer protein transgenic mice.

    PubMed

    Rocco, D D F M; Okuda, L S; Pinto, R S; Ferreira, F D; Kubo, S K; Nakandakare, E R; Quintão, E C R; Catanozi, S; Passarelli, M

    2011-07-01

    We analyzed the effect of a 6-week aerobic exercise training program on the in vivo macrophage reverse cholesterol transport (RCT) in human cholesteryl ester transfer protein (CETP) transgenic (CETP-tg) mice. Male CETP-tg mice were randomly assigned to a sedentary group or a carefully supervised exercise training group (treadmill 15 m/min, 30 min sessions, five sessions per week). The levels of plasma lipids were determined by enzymatic methods, and the lipoprotein profile was determined by fast protein liquid chromatography (FPLC). CETP activity was determined by measuring the transfer rate of ¹⁴C-cholesterol from HDL to apo-B containing lipoproteins, using plasma from CETP-tg mice as a source of CETP. The reverse cholesterol transport was determined in vivo by measuring the [³H]-cholesterol recovery in plasma and feces (24 and 48 h) and in the liver (48 h) following a peritoneal injection of [³H]-cholesterol labeled J774-macrophages into both sedentary and exercise trained mice. The protein levels of liver receptors were determined by immunoblot, and the mRNA levels for liver enzymes were measured using RT-PCR. Exercise training did not significantly affect the levels of plasma lipids or CETP activity. The HDL fraction assessed by FPLC was higher in exercise-trained compared to sedentary mice. In comparison to the sedentary group, a greater recovery of [³H]-cholesterol from the injected macrophages was found in the plasma, liver and feces of exercise-trained animals. The latter occurred even with a reduction in the liver CYP7A1 mRNA level in exercised trained animals. Exercise training increased the liver LDL receptor and ABCA-1 protein levels, although the SR-BI protein content was unchanged. The RCT benefit in CETP-tg mice elicited by exercise training helps to elucidate the role of exercise in the prevention of atherosclerosis in humans.

  9. Benefits of HIV testing during military exercises.

    PubMed

    Gross, M L; Rendin, R W; Childress, C W; Kerstein, M D

    1989-12-01

    During U.S. Marine Corps Reserve summer 2-week active duty for training periods, 6,482 people were tested for human immunodeficiency virus (HIV). Testing at an initial exercise, Solar Flare, trained a cadre of contact teams to, in turn, train other personnel in phlebotomy and the HIV protocol at three other exercises (141 Navy Reserve and Inspector-Instructor hospital corpsmen were trained). Corpsmen could be trained with an indoctrination of 120 minutes and a mean of 15 phlebotomies. After 50 phlebotomies, the administration, identification, and labeling process plus phlebotomy could be completed in 90 seconds. HIV testing during military exercises is both good for training and cost-effective.

  10. Performance and mood-state parameters during 30-day 6 deg head-down bed rest with exercise training

    NASA Technical Reports Server (NTRS)

    Deroshia, Charles W.; Greenleaf, J. E.

    1993-01-01

    A study aimed at determining if the performance and mood impairments occur in bed-rested subjects, and if different exercise-training regimens modify or prevent them is presented. Eighteen healthy men were divided into three groups performing no exercise, isotonic exercise, and isokinetic exercise. Few deleterious changes occurred in performance and mood of the three groups which did not exceed baseline ambulatory levels. It is concluded that mood and performance did not deteriorate in response to prolonged bedrest and were not altered by exercise training.

  11. Three weeks of eccentric training combined with overspeed exercises enhances power and running speed performance gains in trained athletes.

    PubMed

    Cook, Christian J; Beaven, C Martyn; Kilduff, Liam P

    2013-05-01

    Eccentric and overspeed training modalities are effective in improving components of muscular power. Eccentric training induces specific training adaptations relating to muscular force, whereas overspeed stimuli target the velocity component of power expression. We aimed to compare the effects of traditional or eccentric training with volume-matched training that incorporated overspeed exercises. Twenty team-sport athletes performed 4 counterbalanced 3-week training blocks consecutively as part of a preseason training period: (1) traditional resistance training; (2) eccentric-only resistance training; (3) traditional resistance training with overspeed exercises; and (4) eccentric resistance training with overspeed exercises. The overspeed exercises performed were assisted countermovement jumps and downhill running. Improvements in bench press (15.0 ± 5.1 kg; effect size [ES]: 1.52), squat (19.5 ± 9.1 kg; ES: 1.12), and peak power in the countermovement jump (447 ± 248 W; ES: 0.94) were observed following the 12-week training period. Greater strength increases were observed as a result of the eccentric training modalities (ES: 0.72-1.09) with no effect of the overspeed stimuli on these measures (p > 0.05). Eccentric training with overspeed stimuli was more effective than traditional resistance training in increasing peak power in the countermovement jump (94 ± 55 W; ES: 0.95). Eccentric training induced no beneficial training response in maximal running speed (p > 0.05); however, the addition of overspeed exercises salvaged this relatively negative effect when compared with eccentric training alone (0.03 ± 0.01 seconds; ES: 1.33). These training results achieved in 3-week training blocks suggest that it is important to target-specific aspects of both force and movement velocity to enhance functional measures of power expression.

  12. Physical Exercise as Therapy for Frailty.

    PubMed

    Aguirre, Lina E; Villareal, Dennis T

    2015-01-01

    Longitudinal studies demonstrate that regular physical exercise extends longevity and reduces the risk of physical disability. Decline in physical activity with aging is associated with a decrease in exercise capacity that predisposes to frailty. The frailty syndrome includes a lowered activity level, poor exercise tolerance, and loss of lean body and muscle mass. Poor exercise tolerance is related to aerobic endurance. Aerobic endurance training can significantly improve peak oxygen consumption by ∼10-15%. Resistance training is the best way to increase muscle strength and mass. Although the increase in muscle mass in response to resistance training may be attenuated in frail older adults, resistance training can significantly improve muscle strength, particularly in institutionalized patients, by ∼110%. Because both aerobic and resistance training target specific components of frailty, studies combining aerobic and resistance training provide the most promising evidence with respect to successfully treating frailty. At the molecular level, exercise reduces frailty by decreasing muscle inflammation, increasing anabolism, and increasing muscle protein synthesis. More studies are needed to determine which exercises are best suited, most effective, and safe for this population. Based on the available studies, an individualized multicomponent exercise program that includes aerobic activity, strength exercises, and flexibility is recommended to treat frailty. © 2015 Michael E. DeBakey VA Medical Center (US Government) Published by S. Karger AG, Basel.

  13. In obese mice, exercise training increases 11β-HSD1 expression, contributing to glucocorticoid activation and suppression of pulmonary inflammation.

    PubMed

    Du, Shu-Fang; Yu, Qing; Chuan, Kai; Ye, Chang-Lin; He, Ze-Jia; Liu, Shu-Juan; Zhu, Xiao-Yan; Liu, Yu-Jian

    2017-10-01

    Exercise training is advocated for treating chronic inflammation and obesity-related metabolic syndromes. Glucocorticoids (GCs), the anti-inflammatory hormones, are synthesized or metabolized in extra-adrenal organs. This study aims to examine whether exercise training affects obesity-associated pulmonary inflammation by regulating local GC synthesis or metabolism. We found that sedentary obese ( ob/ob ) mice exhibited increased levels of interleukin (IL)-1β, IL-18, monocyte chemotactic protein (MCP)-1, and leukocyte infiltration in lung tissues compared with lean mice, which was alleviated by 6 wk of exercise training. Pulmonary corticosterone levels were decreased in ob/ob mice. Exercise training increased pulmonary corticosterone levels in both lean and ob/ob mice. Pulmonary corticosterone levels were negatively correlated with IL-1β, IL-18, and MCP-1. Immunohistochemical staining of the adult mouse lung sections revealed positive immunoreactivities for the steroidogenic acute regulatory protein, the cholesterol side-chain cleavage enzyme (CYP11A1), the steroid 21-hydroxylase (CYP21), 3β-hydroxysteroid dehydrogenase (3β-HSD), and type 1 and type 2 11β-hydroxysteroid dehydrogenase (11β-HSD) but not for 11β-hydroxylase (CYP11B1). Exercise training significantly increased pulmonary 11β-HSD1 expression in both lean and ob/ob mice. In contrast, exercise training per se had no effect on pulmonary 11β-HSD2 expression, although pulmonary 11β-HSD2 levels in ob/ob mice were significantly higher than in lean mice. RU486, a glucocorticoid receptor antagonist, blocked the anti-inflammatory effects of exercise training in lung tissues of obese mice and increased inflammatory cytokines in lean exercised mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local GC activation and suppression of pulmonary inflammation in obese mice. NEW & NOTEWORTHY Treadmill training leads to a significant increase in pulmonary corticosterone levels in ob/ob mice, which is in parallel with the favorable effects of exercise on obesity-associated pulmonary inflammation. Exercise training increases pulmonary 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) expression but has no significant effect on 11β-HSD2 expression in both lean and ob/ob mice. These findings indicate that exercise training increases pulmonary expression of 11β-HSD1, thus contributing to local glucocorticoid activation and suppression of pulmonary inflammation in obese mice. Copyright © 2017 the American Physiological Society.

  14. PGC-1α and exercise intensity dependent adaptations in mouse skeletal muscle

    PubMed Central

    Dethlefsen, Maja Munk; Bangsbo, Jens; Pilegaard, Henriette

    2017-01-01

    The aim of the present study was to examine the role of PGC-1α in intensity dependent exercise and exercise training-induced metabolic adaptations in mouse skeletal muscle. Whole body PGC-1α knockout (KO) and littermate wildtype (WT) mice performed a single treadmill running bout at either low intensity (LI) for 40 min or moderate intensity (MI) for 20 min. Blood and quadriceps muscles were removed either immediately after exercise or at 3h or 6h into recovery from exercise and from resting controls. In addition PGC-1α KO and littermate WT mice were exercise trained at either low intensity (LIT) for 40 min or at moderate intensity (MIT) for 20 min 2 times pr. day for 5 weeks. In the first and the last week of the intervention period, mice performed a graded running endurance test. Quadriceps muscles were removed before and after the training period for analyses. The acute exercise bout elicited intensity dependent increases in LC3I and LC3II protein and intensity independent decrease in p62 protein in skeletal muscle late in recovery and increased LC3II with exercise training independent of exercise intensity and volume in WT mice. Furthermore, acute exercise and exercise training did not increase LC3I and LC3II protein in PGC-1α KO. In addition, exercise-induced mRNA responses of PGC-1α isoforms were intensity dependent. In conclusion, these findings indicate that exercise intensity affected autophagy markers differently in skeletal muscle and suggest that PGC-1α regulates both acute and exercise training-induced autophagy in skeletal muscle potentially in a PGC-1α isoform specific manner. PMID:29049322

  15. Exercise training regulates SOD-1 and oxidative stress in porcine aortic endothelium.

    PubMed

    Rush, James W E; Turk, James R; Laughlin, M Harold

    2003-04-01

    Vascular oxidative stress contributes to endothelial dysfunction. Aerobic exercise training improves vascular function. The purpose of this study was to test the hypothesis that exercise training would improve the balance of antioxidant to prooxidant enzymes and reduce markers of oxidative stress in aortic endothelial cells (AEC). Female Yucatan miniature pigs either remained sedentary (SED) or were exercise trained (EX) for 16-19 wk. EX pigs had increased AEC SOD-1 protein levels and Cu/Zn SOD activity of the whole aorta compared with SED pigs. Protein levels of other antioxidant enzymes (SOD-2, catalase) were not affected by exercise training. Protein levels of p67(phox), a subunit of the prooxidant enzyme NAD(P)H oxidase, were reduced in EX vs. SED AEC. These EX adaptations were associated with lower AEC malondialdehyde levels and decreased phosphorylation of ERK-1/2. Endothelial nitric oxide synthase protein, protein nitrotyrosine content, and heme oxygenase-1 protein were not different in EX vs. SED pigs. We conclude that chronic aerobic exercise training influenced both antioxidant and prooxidant enzymes and decreased indexes of oxidative stress in AEC. These adaptations may contribute to improved endothelial function with exercise training.

  16. Cycle training modulates satellite cell and transcriptional responses to a bout of resistance exercise.

    PubMed

    Murach, Kevin A; Walton, R Grace; Fry, Christopher S; Michaelis, Sami L; Groshong, Jason S; Finlin, Brian S; Kern, Philip A; Peterson, Charlotte A

    2016-09-01

    This investigation evaluated whether moderate-intensity cycle ergometer training affects satellite cell and molecular responses to acute maximal concentric/eccentric resistance exercise in middle-aged women. Baseline and 72 h postresistance exercise vastus lateralis biopsies were obtained from seven healthy middle-aged women (56 ± 5 years, BMI 26 ± 1, VO2max 27 ± 4) before and after 12 weeks of cycle training. Myosin heavy chain (MyHC) I- and II-associated satellite cell density and cross-sectional area was determined via immunohistochemistry. Expression of 93 genes representative of the muscle-remodeling environment was also measured via NanoString. Overall fiber size increased ~20% with cycle training (P = 0.052). MyHC I satellite cell density increased 29% in response to acute resistance exercise before endurance training and 50% with endurance training (P < 0.05). Following endurance training, MyHC I satellite cell density decreased by 13% in response to acute resistance exercise (acute resistance × training interaction, P < 0.05). Genes with an interaction effect tracked with satellite cell behavior, increasing in the untrained state and decreasing in the endurance trained state in response to resistance exercise. Similar satellite cell and gene expression response patterns indicate coordinated regulation of the muscle environment to promote adaptation. Moderate-intensity endurance cycle training modulates the response to acute resistance exercise, potentially conditioning the muscle for more intense concentric/eccentric activity. These results suggest that cycle training is an effective endurance exercise modality for promoting growth in middle-aged women, who are susceptible to muscle mass loss with progressing age. © 2016 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.

  17. Elevated pentraxin 3 level at the early stage of exercise training is associated with reduction of arterial stiffness in middle-aged and older adults.

    PubMed

    Zempo-Miyaki, A; Fujie, S; Sato, K; Hasegawa, N; Sanada, K; Maeda, S; Hamaoka, T; Iemitsu, M

    2016-09-01

    Regular exercise improves aging-induced deterioration of arterial stiffness, and is associated with elevated production of pentraxin 3 (PTX3) and anti-inflammatory as well as anti-atherosclerotic effects. However, the time-dependent effect of exercise training on arterial stiffness and PTX3 production remains unclear. The purpose of this study was to investigate the time course of the association between the effects of training on the circulating PTX3 level and arterial stiffness in middle-aged and older adults. Thirty-two healthy Japanese subjects (66.2±1.3 year) were randomly divided into two groups: training (exercise intervention) and sedentary controls. Subjects in the training group completed 8 weeks of aerobic exercise training (60-70% peak oxygen uptake (VO2peak) for 45 min, 3 days per week); during the training period, we evaluated plasma PTX3 concentration and carotid-femoral pulse wave velocity (cfPWV) every 2 wk. cfPWV gradually declined over the 8-week training period, and was significantly reduced after 6 and 8 week of exercise intervention (P<0.05). Plasma PTX3 level was significantly increased after 4 weeks of the intervention (P<0.05). In addition, the exercise training-induced reduction in cfPWV was negatively correlated with the percent change in plasma PTX3 level after 6 week (r=-0.54, P<0.05) and 8 weeks (r=-0.51, P<0.05) of the intervention, but not correlated at 4 weeks. Plasma PTX3 level was elevated at the early stage of the exercise training intervention, and was subsequently associated with training-induced alteration of arterial stiffness in middle-aged and older adults.

  18. Exercise training alters the balance between vasoactive compounds in skeletal muscle of individuals with essential hypertension.

    PubMed

    Hansen, Ane H; Nyberg, Michael; Bangsbo, Jens; Saltin, Bengt; Hellsten, Ylva

    2011-11-01

    The effects of physical training on the formation of vasodilating and vasoconstricting compounds, as well as on related proteins important for vascular function, were examined in skeletal muscle of individuals with essential hypertension (n=10). Muscle microdialysis samples were obtained from subjects with hypertension before and after 16 weeks of physical training. Muscle dialysates were analyzed for thromboxane A(2), prostacyclin, nucleotides, and nitrite/nitrate. Protein levels of thromboxane synthase, prostacyclin synthase, cyclooxygenase 1 and 2, endothelial nitric oxide synthase (eNOS), cystathionine-γ-lyase, cytochrome P450 4A and 2C9, and the purinergic receptors P2X1 and P2Y2 were determined in skeletal muscle. The protein levels were compared with those of normotensive control subjects (n=12). Resting muscle dialysate thromboxane A(2) and prostacyclin concentrations were lower (P<0.05) after training compared with before training. Before training, dialysate thromboxane A(2) decreased with acute exercise, whereas after training, no changes were found. Before training, dialysate prostacyclin levels did not increase with acute exercise, whereas after training there was an 82% (P<0.05) increase from rest to exercise. The exercise-induced increase in ATP and ADP was markedly reduced after training (P<0.05). The amount of eNOS protein in the hypertensive subjects was 40% lower (P<0.05) than in the normotensive control subjects, whereas cystathionine-γ-lyase levels were 25% higher (P<0.05), potentially compensating for the lower eNOS level. We conclude that exercise training alters the balance between vasodilating and vasoconstricting compounds as evidenced by a decrease in the level of thromboxane, reduction in the exercise-induced increase in ATP and a greater exercise-induced increase in prostacyclin.

  19. Exercise training modulates functional sympatholysis and α-adrenergic vasoconstrictor responsiveness in hypertensive and normotensive individuals

    PubMed Central

    Mortensen, Stefan P; Nyberg, Michael; Gliemann, Lasse; Thaning, Pia; Saltin, Bengt; Hellsten, Ylva

    2014-01-01

    Essential hypertension is linked to an increased sympathetic vasoconstrictor activity and reduced tissue perfusion. We investigated the role of exercise training on functional sympatholysis and postjunctional α-adrenergic responsiveness in individuals with essential hypertension. Leg haemodynamics were measured before and after 8 weeks of aerobic training (3–4 times per week) in eight hypertensive (47 ± 2 years) and eight normotensive untrained individuals (46 ± 1 years) during arterial tyramine infusion, arterial ATP infusion and/or one-legged knee extensions. Before training, exercise hyperaemia and leg vascular conductance (LVC) were lower in the hypertensive individuals (P < 0.05) and tyramine lowered exercise hyperaemia and LVC in both groups (P < 0.05). Training lowered blood pressure in the hypertensive individuals (P < 0.05) and exercise hyperaemia was similar to the normotensive individuals in the trained state. After training, tyramine did not reduce exercise hyperaemia or LVC in either group. When tyramine was infused at rest, the reduction in blood flow and LVC was similar between groups, but exercise training lowered the magnitude of the reduction in blood flow and LVC (P < 0.05). There was no difference in the vasodilatory response to infused ATP or in muscle P2Y2 receptor content between the groups before and after training. However, training lowered the vasodilatory response to ATP and increased skeletal muscle P2Y2 receptor content in both groups (P < 0.05). These results demonstrate that exercise training improves functional sympatholysis and reduces postjunctional α-adrenergic responsiveness in both normo- and hypertensive individuals. The ability for functional sympatholysis and the vasodilator and sympatholytic effect of intravascular ATP appear not to be altered in essential hypertension. PMID:24860173

  20. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus)

    PubMed Central

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L.

    2015-01-01

    ABSTRACT Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. PMID:25987736

  1. In Vivo, Fatty Acid Translocase (CD36) Critically Regulates Skeletal Muscle Fuel Selection, Exercise Performance, and Training-induced Adaptation of Fatty Acid Oxidation*

    PubMed Central

    McFarlan, Jay T.; Yoshida, Yuko; Jain, Swati S.; Han, Xioa-Xia; Snook, Laelie A.; Lally, James; Smith, Brennan K.; Glatz, Jan F. C.; Luiken, Joost J. F. P.; Sayer, Ryan A.; Tupling, A. Russell; Chabowski, Adrian; Holloway, Graham P.; Bonen, Arend

    2012-01-01

    For ∼40 years it has been widely accepted that (i) the exercise-induced increase in muscle fatty acid oxidation (FAO) is dependent on the increased delivery of circulating fatty acids, and (ii) exercise training-induced FAO up-regulation is largely attributable to muscle mitochondrial biogenesis. These long standing concepts were developed prior to the recent recognition that fatty acid entry into muscle occurs via a regulatable sarcolemmal CD36-mediated mechanism. We examined the role of CD36 in muscle fuel selection under basal conditions, during a metabolic challenge (exercise), and after exercise training. We also investigated whether CD36 overexpression, independent of mitochondrial changes, mimicked exercise training-induced FAO up-regulation. Under basal conditions CD36-KO versus WT mice displayed reduced fatty acid transport (−21%) and oxidation (−25%), intramuscular lipids (less than or equal to −31%), and hepatic glycogen (−20%); but muscle glycogen, VO2max, and mitochondrial content and enzymes did not differ. In acutely exercised (78% VO2max) CD36-KO mice, fatty acid transport (−41%), oxidation (−37%), and exercise duration (−44%) were reduced, whereas muscle and hepatic glycogen depletions were accelerated by 27–55%, revealing 2-fold greater carbohydrate use. Exercise training increased mtDNA and β-hydroxyacyl-CoA dehydrogenase similarly in WT and CD36-KO muscles, but FAO was increased only in WT muscle (+90%). Comparable CD36 increases, induced by exercise training (+44%) or by CD36 overexpression (+41%), increased FAO similarly (84–90%), either when mitochondrial biogenesis and FAO enzymes were up-regulated (exercise training) or when these were unaltered (CD36 overexpression). Thus, sarcolemmal CD36 has a key role in muscle fuel selection, exercise performance, and training-induced muscle FAO adaptation, challenging long held views of mechanisms involved in acute and adaptive regulation of muscle FAO. PMID:22584574

  2. The incidence of training responsiveness to cardiorespiratory fitness and cardiometabolic measurements following individualized and standardized exercise prescription: study protocol for a randomized controlled trial.

    PubMed

    Weatherwax, Ryan M; Harris, Nigel K; Kilding, Andrew E; Dalleck, Lance C

    2016-12-19

    There is individual variability to cardiorespiratory fitness (CRF) training, but the underlying cause is not well understood. Traditionally, a standardized approach to exercise prescription has utilized relative percentages of maximal heart rate, heart rate reserve (HRR), maximal oxygen uptake (VO 2 max), or VO 2 reserve to establish exercise intensity. However, this model fails to take into consideration individual metabolic responses to exercise and may attribute to the variability in training responses. It has been proposed that an individualized approach would take into consideration metabolic responses to exercises to increase responsiveness to training. In this randomized control trial, participants will undergo a 12-week exercise intervention using individualized (ventilatory thresholds) and standardized (HRR) methods to prescribe CRF training intensity. Following the intervention, participants will be categorized as responders or non-responders based on changes in maximal aerobic abilities. Participants who are non-responders will complete a second 12-week intervention in a crossover design to determine whether they can become responders with a differing exercise prescription. There are four main research outcomes: (1) determine the cohort-specific technical error to use in the categorization of response rate; (2) determine if an individualized intensity prescription is superior to a standard approach in regards to VO 2 max and cardiometabolic risk factors; (3) investigate the time course changes throughout 12 weeks of CRF training between the two intervention groups; and (4) determine if non-responders can become responders if the exercise prescription is modified. The findings from this research will provide evidence on the effectiveness of individualized exercise prescription related to training responsiveness of VO 2 max and cardiometabolic risk factors compared to a standardized approach and further our understanding of individual exercise responses. If the individualized approach proposed is deemed effective, it may change the way exercise specialists prescribe exercise intensity to enhance training responsiveness. ClinicalTrials.gov, NCT02868710 . Registered on 15 August 2016.

  3. Exercise training improves hemodynamic recovery to isometric exercise in obese men with type 2 diabetes but not in obese women.

    PubMed

    Kanaley, Jill A; Goulopoulou, Styliani; Franklin, Ruth; Baynard, Tracy; Carhart, Robert L; Weinstock, Ruth S; Fernhall, Bo

    2012-12-01

    Women with type 2 diabetes (T2D) show greater rates of mortality due to ischemic heart disease than men with T2D. We aimed to examine cardiovascular and autonomic function responses to isometric handgrip (IHG) exercise between men and women with T2D, before and after an exercise training program. Hemodynamic responses were measured in 22 men and women with T2D during and following a 3-min IHG test, and before and after 16 wks of aerobic exercise training. Women had a smaller decrease in mean arterial pressure (MAP) and systolic blood pressure (BP) during recovery from IHG (ΔMAP(REC)) than men pre- and post-training (P<0.05). Men showed a greater reduction in diastolic BP during recovery from IHG (P<0.05), and exercise training improved this response in men but not in women (men, pre-training: -13.9±1.8, post-training: -20.5±5.3 mmHg vs. women, pre-training: -10.7±1.7, post-training: -4.1±4.9 mmHg; P<0.05). Men had a greater reduction in sympathetic modulation of vasomotor tone (P<0.05), as estimated by blood pressure variability, following IHG. This response was accentuated after training, while this training effect was not seen in women. Post-training ΔMAP(REC) was correlated with recovery of low frequency component of the BP spectrum (ΔLF(SBPrec), r=0.52, P<0.05). Differences in BP recovery immediately following IHG may be attributed to gender differences in cardiovascular autonomic modulation. An improvement in these responses occurs following aerobic exercise training in obese men, but not in obese women with T2D which reflects a better adaptive autonomic response to exercise training. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. Does Eccentric Exercise Reduce Pain and Improve Strength in Physically Active Adults With Symptomatic Lower Extremity Tendinosis? A Systematic Review

    PubMed Central

    Wasielewski, Noah J; Kotsko, Kevin M

    2007-01-01

    Objective: To critically review evidence for the effectiveness of eccentric exercise to treat lower extremity tendinoses. Data Sources: Databases used to locate randomized controlled trials (RCTs) included PubMed (1980–2006), CINAHL (1982–2006), Web of Science (1995–2006), SPORT Discus (1980–2006), Physiotherapy Evidence Database (PEDro), and the Cochrane Collaboration Database. Key words included tendon, tendonitis, tendinosis, tendinopathy, exercise, eccentric, rehabilitation, and therapy. Study Selection: The criteria for trial selection were (1) the literature was written in English, (2) the research design was an RCT, (3) the study participants were adults with a clinical diagnosis of tendinosis, (4) the outcome measures included pain or strength, and (5) eccentric exercise was used to treat lower extremity tendinosis. Data Extraction: Specific data were abstracted from the RCTs, including eccentric exercise protocol, adjunctive treatments, concurrent physical activity, and treatment outcome. Data Synthesis: The calculated post hoc statistical power of the selected studies (n = 11) was low, and the average methodologic score was 5.3/10 based on PEDro criteria. Eccentric exercise was compared with no treatment (n = 1), concentric exercise (n = 5), an alternative eccentric exercise protocol (n = 1), stretching (n = 2), night splinting (n = 1), and physical agents (n = 1). In most trials, tendinosis-related pain was reduced with eccentric exercise over time, but only in 3 studies did eccentric exercise decrease pain relative to the control treatment. Similarly, the RCTs demonstrated that strength-related measures improved over time, but none revealed significant differences relative to the control treatment. Based on the best evidence available, it appears that eccentric exercise may reduce pain and improve strength in lower extremity tendinoses, but whether eccentric exercise is more effective than other forms of therapeutic exercise for the resolution of tendinosis symptoms remains questionable. PMID:18059998

  5. Acute hormonal responses in elite junior weightlifters.

    PubMed

    Kraemer, W J; Fry, A C; Warren, B J; Stone, M H; Fleck, S J; Kearney, J T; Conroy, B P; Maresh, C M; Weseman, C A; Triplett, N T

    1992-02-01

    To date, no published studies have demonstrated resistance exercise-induced increases in serum testosterone in adolescent males. Furthermore, few data are available on the effects of training experience and lifting performance on acute hormonal responses to weightlifting in young males. Twenty-eight junior elite male Olympic-style weightlifters (17.3 +/- 1.4 yrs) volunteered for the study. An acute weightlifting exercise protocol using moderate to high intensity loads and low volume, characteristic of many weightlifting training sessions, was examined. The exercise protocol was directed toward the training associated with the snatch lift weightlifting exercise. Blood samples were obtained from a superficial arm vein at 7 a.m. (for baseline measurements), and again at pre-exercise, 5 min post-, and 15 min post-exercise time points for determination of serum testosterone, cortisol, growth hormone, plasma beta-endorphin, and whole blood lactate. The exercise protocol elicited significant (p less than or equal to 0.05) increases in each of the hormones and whole blood lactate compared to pre-exercise measures. While not being significantly older, subsequent analysis revealed that subjects with greater than 2 years training experience exhibited significant exercise-induced increases in serum testosterone from pre-exercise to 5 min post-exercise (16.2 +/- 6.2 to 21.4 +/- 7.9 nmol.l-1), while those with less than or equal to 2 years training showed no significant serum testosterone differences. None of the other hormones or whole blood lactate appear to be influenced by training experience.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Effects of Exercise Training on Exercise Capacity in Pulmonary Arterial Hypertension: A Systematic Review of Clinical Trials.

    PubMed

    Babu, Abraham Samuel; Padmakumar, Ramachandran; Maiya, Arun G; Mohapatra, Aswini Kumar; Kamath, R L

    2016-04-01

    Pulmonary arterial hypertension (PAH) causes profound functional limitations and poor quality of life. Yet, there is only a limited literature available on the role of exercise training. This paper systematically reviews the effects of exercise training on exercise capacity in PAH. A systematic search of databases (PubMed, CINAHL, CENTRAL, Web of Science and PEDRo) was undertaken for English language articles published between 1(st) January 1980 and 31(st) March 2015. Quality rating for all articles was done using the Downs and Black scoring system. Fifteen articles of good (n=4), moderate (n=6) and poor (n=5) quality were included in the review. Exercise interventions included aerobic, resistance, inspiratory muscle training or a combination, for 6-18 weeks. Improvements were seen in exercise capacity (six minute walk distance (6MWD) and peak VO2) by 17-96m and 1.1-2.1ml/Kg/min, functional class by one class and quality of life, with minimal adverse events. There is evidence to recommend the use of exercise training as an adjunct to medical treatment in PAH. More clinical trials and research are required to assess the effects of different types of exercise programs in patients with PAH, while focussing on strong exercise endpoints to quantify the improvements seen with exercise training. Copyright © 2015 Australian and New Zealand Society of Cardiac and Thoracic Surgeons (ANZSCTS) and the Cardiac Society of Australia and New Zealand (CSANZ). Published by Elsevier B.V. All rights reserved.

  7. Effect of short-term training on GLUT-4 mRNA and protein expression in human skeletal muscle.

    PubMed

    Kraniou, Giorgos N; Cameron-Smith, David; Hargreaves, Mark

    2004-09-01

    Six untrained, male subjects (23 +/- 1 years old, 84 +/- 5 kg, (O(2)peak)= 3.7 +/- 0.8 l min(-1)) exercised for 60 min at 75 +/- 1%(O(2)peak) on 7 consecutive days. Muscle samples were obtained before the start of cycle exercise training and 24 h after the first and seventh exercise sessions and analysed for citrate synthase activity, glycogen and glucose transporter 4 (GLUT-4) mRNA and protein expression. Exercise training increased (P < 0.05) citrate synthase by approximately 20% and muscle glycogen concentration by approximately 40%. GLUT-4 mRNA levels 24 h after the first and seventh exercise sessions were similar to those measured before the start of exercise training. In contrast, GLUT-4 protein expression was increased after 7 days of exercise training (12.4 +/- 1.5 versus 3.4 +/- 1.0 arbitray units (a.u.), P < 0.05) and although it tended to be higher 24 h after the first exercise session (6.0 +/- 3.0 versus 3.4 +/- 1.0 a.u.), this was not significantly different (P= 0.09). These results support the suggestion that the adaptive increase in skeletal muscle GLUT-4 protein expression with short-term exercise training arises from the repeated, transient increases in GLUT-gene transcription following each exercise bout leading to a gradual accumulation of GLUT-4 protein, despite GLUT-4 mRNA returning to basal levels between exercise stimuli.

  8. Influence of Disease Severity and Exercise Limitation on Exercise Training Intensity and Load and Health Benefits From Pulmonary Rehabilitation in Patients with COPD: AN EXPLORATORY STUDY.

    PubMed

    Huynh, Virginia C; Fuhr, Desi P; Byers, Bradley W; Selzler, Anne-Marie; Moore, Linn E; Stickland, Michael K

    2018-04-11

    Some patients with chronic obstructive pulmonary disease (COPD) fail to achieve health benefits with pulmonary rehabilitation (PR). Exercise intensity and load represent stimulus for adaptation but it is unclear whether inappropriate exercise intensity and/or load are affected by severity of COPD, which may affect health benefits. The purpose was to determine whether COPD severity and/or the severity of pulmonary limitation to exercise (PLE) impacted exercising intensity or load and whether resultant intensity/load affected health outcomes derived from PR. Patients with COPD (n = 58, age = 67 ± 7 y, forced expiratory volume in the first second of expiration [FEV1] % predicted = 52 ± 21%) were recruited upon referral to PR. Primary health outcomes evaluated were 6-min walk distance and St George's Respiratory Questionnaire. Patients were stratified for disease severity using Global Initiative for Obstructive Lung Disease (GOLD) staging and PLE severity by change in inspiratory capacity during exercise. Exercise intensity and load were calculated from daily exercise records. Participants achieved comparable training duration and load regardless of GOLD severity. Patients with more severe PLE achieved greater training duration (more severe: 546 ± 143 min., less severe: 451 ± 109 min., P = .036), and relative training load (more severe: 2200.8 ± 595.3 kcal, less severe: 1648.3 ± 597.8 kcal, P = .007). Greater overall training load was associated with greater improvements in 6-min walk distance (r = 0.24, P = .035). No significant relationships were observed between PLE, GOLD severity, training parameters, and St George's Respiratory Questionnaire response. Improvements in exercise tolerance can be explained by achieving greater training loads, demonstrating the importance of appropriate training load to maximize health outcomes in PR.

  9. Functional training improves club head speed and functional fitness in older golfers.

    PubMed

    Thompson, Christian J; Cobb, Karen Myers; Blackwell, John

    2007-02-01

    Functional training programs have been used in a variety of rehabilitation settings with documented success. Based on that success, the concept of functional training has gained popularity in applied fitness settings to enhance sport performance. However, there has been little or no research studying the efficacy of functional training programs on the improvement of sport performance or functional fitness. Thus, it was the purpose of this study to determine the effect of a progressive functional training program on club head speed and functional fitness in older male golfers. Eighteen male golfers (age: 70.7 +/- 9.1 [SD] years) were randomly assigned to an exercise (N = 11) or control (N = 7) group. The exercise group participated in an 8-week progressive functional training program including flexibility exercises, core stability exercises, balance exercises, and resistance exercises. Pre- and postmeasurements included club head speed of a driver by radar (exercise and Control) and Fullerton Senior Fitness Test measurements (exercise only). One-way analysis of covariance was performed on club head speed measurements using pretest measurements as the covariate. Paired t-tests were performed to analyze Senior Fitness Test variables. After the intervention, maximal club head speed increased in the exercise group (127.3 +/- 13.4 to 133.6 +/- 14.2 km x hr(-1)) compared with the control group (134.5 +/- 14.6 to 133.3 +/- 11.2 km x hr(-1); p < 0.05). Additionally, improvements (p < 0.05) were detected for most Senior Fitness Test variables in the exercise group. In summary, this functional training program resulted in significant improvements in club head speed and several components of functional fitness. Future research should continue to examine the effect of functional training programs on sport performance and functional fitness in older adults.

  10. Implementation in action: how Australian Exercise Physiologists approach exercise prescription for people with mental illness.

    PubMed

    Stanton, Robert; Rosenbaum, Simon; Lederman, Oscar; Happell, Brenda

    2018-04-01

    Accredited Exercise Physiologists (AEPs) are trained to deliver exercise and physical activity interventions for people with chronic and complex health conditions including those with mental illness. However, their views on exercise for mental illness, their exercise prescription practices, and need for further training are unknown. To examine the way in which Australian AEPs prescribe exercise for people with mental illness. Eighty-one AEPs (33.3 ± 10.4 years) completed an online version of the Exercise in Mental Illness Questionnaire. Findings are reported using descriptive statistics. AEPs report a high level of knowledge and confidence in prescribing exercise for people with mental illness. AEPs rate exercise to be at least of equal value to many established treatments for mental illness, and frequently prescribe exercise based on current best-practice principles. A need for additional training was identified. The response rate was low (2.4%) making generalisations from the findings difficult. Exercise prescription practices utilised by AEPs are consistent with current best-practice guidelines and there is frequent consultation with consumers to individualise exercise based on their preferences and available resources. Further training is deemed important.

  11. Efficacy of a 3 month training program on the jump-landing technique in jump-landing sports. Design of a cluster randomized controlled trial

    PubMed Central

    2010-01-01

    Background With the relatively high rate of injuries to the lower extremity due to jump-landing movement patterns and the accompanied high costs, there is need for determining potential preventive programs. A program on the intervention of jump-landing technique is possibly an important preventative measure since it appeared to reduce the incidence of lower extremity injuries. In real life situations, amateur sports lack the infrastructure and funds to have a sports physician or therapist permanently supervising such a program. Therefore the current prevention program is designed so that it could be implemented by coaches alone. Objective The objective of this randomized controlled trial is to evaluate the effect of a coach supervised intervention program targeting jump-landing technique on the incidence of lower extremity injuries. Methods Of the 110 Flemish teams of the elite division, 24 teams are included and equally randomized to two study groups. An equal selection of female and male teams with allocation to intervention and control group is obtained. The program is a modification of other prevention programs previously proven to be effective. All exercises in the current program are adjusted so that a more progressive development in the exercise is presented. Both the control and intervention group continue with their normal training routine, while the intervention group carries out the program on jump-landing technique. The full intervention program has a duration of three months and is performed 2 times a week during warm-up (5-10 min). Injuries are registered during the entire season. Discussion The results of this study can give valuable information on the effect of a coach supervised intervention program on jump-landing technique and injury occurrence. Results will become available in 2011. Trial registration Trial registration number: NTR2560 PMID:21144030

  12. Exercise Training and Energy Expenditure following Weight Loss.

    PubMed

    Hunter, Gary R; Fisher, Gordon; Neumeier, William H; Carter, Stephen J; Plaisance, Eric P

    2015-09-01

    This study aims to determine the effects of aerobic or resistance training on activity-related energy expenditure (AEE; kcal·d(-1)) and physical activity index (activity-related time equivalent (ARTE)) following weight loss. It was hypothesized that weight loss without exercise training would be accompanied by decreases in AEE, ARTE, and nontraining physical activity energy expenditure (nonexercise activity thermogenesis (NEAT)) and that exercise training would prevent decreases in free-living energy expenditure. One hundred forty premenopausal women had an average weight loss of 25 lb during a diet (800 kcal·d(-1)) of furnished food. One group aerobically trained 3 times per week (40 min·d(-1)), another group resistance-trained 3 times per week (10 exercises/2 sets × 10 repetitions), and the third group did not exercise. Dual-energy x-ray absorptiometry was used to measure body composition, indirect calorimetry was used to measure resting energy expenditure (REE) and walking energy expenditure, and doubly labeled water was used to measure total energy expenditure (TEE). AEE, ARTE, and nontraining physical activity energy expenditure (NEAT) were calculated. TEE, REE, and NEAT all decreased following weight loss for the no-exercise group, but not for aerobic and resistance trainers. Only REE decreased in the two exercise groups. Resistance trainers increased ARTE. HR and oxygen uptake while walking on the flat and up a grade were consistently related to TEE, AEE, NEAT, and ARTE. Exercise training prevents a decrease in energy expenditure, including free-living energy expenditure separate from exercise training, following weight loss. Resistance training increases physical activity, whereas economy/ease of walking is associated with increased TEE, AEE, NEAT, and ARTE.

  13. Exercise training improves in vivo endothelial repair capacity of early endothelial progenitor cells in subjects with metabolic syndrome.

    PubMed

    Sonnenschein, Kristina; Horváth, Tibor; Mueller, Maja; Markowski, Andrea; Siegmund, Tina; Jacob, Christian; Drexler, Helmut; Landmesser, Ulf

    2011-06-01

    Endothelial dysfunction and injury are considered to contribute considerably to the development and progression of atherosclerosis. It has been suggested that intense exercise training can increase the number and angiogenic properties of early endothelial progenitor cells (EPCs). However, whether exercise training stimulates the capacity of early EPCs to promote repair of endothelial damage and potential underlying mechanisms remain to be determined. The present study was designed to evaluate the effects of moderate exercise training on in vivo endothelial repair capacity of early EPCs, and their nitric oxide and superoxide production as characterized by electron spin resonance spectroscopy analysis in subjects with metabolic syndrome. Twenty-four subjects with metabolic syndrome were randomized to an 8 weeks exercise training or a control group. Superoxide production and nitric oxide (NO) availability of early EPCs were characterized by using electron spin resonance (ESR) spectroscopy analysis. In vivo endothelial repair capacity of EPCs was examined by transplantation into nude mice with defined carotid endothelial injury. Endothelium-dependent, flow-mediated vasodilation was analysed using high-resolution ultrasound. Importantly, exercise training resulted in a substantially improved in vivo endothelial repair capacity of early EPCs (24.0 vs 12.7%; p < 0.05) and improved endothelium-dependent vasodilation. Nitric oxide production of EPCs was substantially increased after exercise training, but not in the control group. Moreover, exercise training reduced superoxide production of EPCs, which was not observed in the control group. The present study suggests for the first time that moderate exercise training increases nitric oxide production of early endothelial progenitor cells and reduces their superoxide production. Importantly, this is associated with a marked beneficial effect on the in vivo endothelial repair capacity of early EPCs in subjects with metabolic syndrome.

  14. The home stroke rehabilitation and monitoring system trial: a randomized controlled trial.

    PubMed

    Linder, Susan M; Rosenfeldt, Anson B; Reiss, Aimee; Buchanan, Sharon; Sahu, Komal; Bay, Curtis R; Wolf, Steven L; Alberts, Jay L

    2013-01-01

    Because many individuals poststroke lack access to the quality and intensity of rehabilitation to improve upper extremity motor function, a home-based robotic-assisted upper extremity rehabilitation device is being paired with an individualized home exercise program. The primary aim of this project is to determine the effectiveness of robotic-assisted home therapy compared with a home exercise program on upper extremity motor recovery and health-related quality of life for stroke survivors in rural and underserved locations. The secondary aim is to explore whether initial degree of motor function of the upper limb may be a factor in predicting the extent to which patients with stroke may be responsive to a home therapy approach. We hypothesize that the home exercise program intervention, when enhanced with robotic-assisted therapy, will result in significantly better outcomes in motor function and quality of life. A total of 96 participants within six-months of a single, unilateral ischemic, or hemorrhagic stroke will be recruited in this prospective, single-blind, multisite randomized clinical trial. The primary outcome is the change in upper extremity function using the Action Research Arm Test. Secondary outcomes include changes in: upper extremity function (Wolf Motor Function Test), upper extremity impairment (upper extremity portion of the Fugl-Meyer Test), self-reported quality of life (Stroke Impact Scale), and affect (Centers for Epidemiologic Studies Depression Scale). Similar or greater improvements in upper extremity function using the combined robotic home exercise program intervention compared with home exercise program alone will be interpreted as evidence that supports the introduction of in-home technology to augment the recovery of function poststroke. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.

  15. Exposing college students to exercise: the training interventions and genetics of exercise response (TIGER) study

    USDA-ARS?s Scientific Manuscript database

    The Training Interventions and Genetics of Exercise Response (TIGER) study is an exercise program designed to introduce sedentary college students to regular physical activity and to identify genetic factors that influence response to exercise. A multiracial/ethnic cohort (N = 1,567; 39% male), age ...

  16. Changes in Drop-Jump Landing Biomechanics During Prolonged Intermittent Exercise

    PubMed Central

    Schmitz, Randy J.; Cone, John C.; Tritsch, Amanda J.; Pye, Michele L.; Montgomery, Melissa M.; Henson, Robert A.; Shultz, Sandra J.

    2014-01-01

    Background: As injury rates rise in the later stages of sporting activities, a better understanding of lower extremity biomechanics in the later phases of gamelike situations may improve training and injury prevention programs. Hypothesis: Lower extremity biomechanics of a drop-jump task (extracted from a principal components analysis) would reveal factors associated with risk of anterior cruciate ligament injury during a 90-minute individualized intermittent exercise protocol (IEP) and for 1 hour following the IEP. Study Design: Controlled laboratory study. Level of Evidence: Level 4. Methods: Fifty-nine athletes (29 women, 30 men) completed 3 sessions. The first session assessed fitness for an IEP designed to simulate the demands of a soccer match. An experimental session assessed drop-jump biomechanics, after a dynamic warm-up, every 15 minutes during the 90-minute IEP, and for 1 hour following the IEP. A control session with no exercise assessed drop-jump performance at the same intervals. Results: Two biomechanical factors early in the first half (hip flexion at initial contact and hip loading; ankle loading and knee shear force) decreased at the end of the IEP and into the 60-minute recovery period, while a third factor (knee loading) decreased only during the recovery period (P ≤ 0.05). Conclusion: The individualized sport-specific IEP may have more subtle effects on landing biomechanics when compared with short-term, exhaustive fatigue protocols. Clinical Relevance: Potentially injurious landing biomechanics may not occur until the later stages of soccer activity. PMID:24587862

  17. Influence of chronic moderate sleep restriction and exercise training on anxiety, spatial memory, and associated neurobiological measures in mice.

    PubMed

    Zielinski, Mark R; Davis, J Mark; Fadel, James R; Youngstedt, Shawn D

    2013-08-01

    Sleep deprivation can have deleterious effects on cognitive function and mental health. Moderate exercise training has myriad beneficial effects on cognition and mental health. However, physiological and behavioral effects of chronic moderate sleep restriction and its interaction with common activities, such as moderate exercise training, have received little investigation. The aims of this study were to examine the effects of chronic moderate sleep restriction and moderate exercise training on anxiety-related behavior, spatial memory, and neurobiological correlates in mice. Male mice were randomized to one of four 11-week treatments in a 2 [sleep restriction (∼4h loss/day) vs. ad libitum sleep] × 2 [exercise (1h/day/6 d/wk) vs. sedentary activity] experimental design. Anxiety-related behavior was assessed with the elevated-plus maze, and spatial learning and memory were assessed with the Morris water maze. Chronic moderate sleep restriction did not alter anxiety-related behavior, but exercise training significantly attenuated anxiety-related behavior. Spatial learning and recall, hippocampal cell activity (i.e., number of c-Fos positive cells), and brain derived neurotrophic factor were significantly lower after chronic moderate sleep restriction, but higher after exercise training. Further, the benefit of exercise training for some memory variables was evident under normal sleep, but not chronic moderate sleep restriction conditions. These data indicate clear detrimental effects of chronic moderate sleep restriction on spatial memory and that the benefits of exercise training were impaired after chronic moderate sleep restriction. Published by Elsevier B.V.

  18. Effects of different exercise interventions on risk of falls, gait ability, and balance in physically frail older adults: a systematic review.

    PubMed

    Cadore, Eduardo Lusa; Rodríguez-Mañas, Leocadio; Sinclair, Alan; Izquierdo, Mikel

    2013-04-01

    The aim of this review was to recommend training strategies that improve the functional capacity in physically frail older adults based on scientific literature, focusing specially in supervised exercise programs that improved muscle strength, fall risk, balance, and gait ability. Scielo, Science Citation Index, MEDLINE, Scopus, Sport Discus, and ScienceDirect databases were searched from 1990 to 2012. Studies must have mentioned the effects of exercise training on at least one of the following four parameters: Incidence of falls, gait, balance, and lower-body strength. Twenty studies that investigated the effects of multi-component exercise training (10), resistance training (6), endurance training (1), and balance training (3) were included in the present revision. Ten trials investigated the effects of exercise on the incidence of falls in elderly with physical frailty. Seven of them have found a fewer falls incidence after physical training when compared with the control group. Eleven trials investigated the effects of exercise intervention on the gait ability. Six of them showed enhancements in the gait ability. Ten trials investigated the effects of exercise intervention on the balance performance and seven of them demonstrated enhanced balance. Thirteen trials investigated the effects of exercise intervention on the muscle strength and nine of them showed increases in the muscle strength. The multi-component exercise intervention composed by strength, endurance and balance training seems to be the best strategy to improve rate of falls, gait ability, balance, and strength performance in physically frail older adults.

  19. Effects of Different Exercise Interventions on Risk of Falls, Gait Ability, and Balance in Physically Frail Older Adults: A Systematic Review

    PubMed Central

    Cadore, Eduardo Lusa; Rodríguez-Mañas, Leocadio; Sinclair, Alan

    2013-01-01

    Abstract The aim of this review was to recommend training strategies that improve the functional capacity in physically frail older adults based on scientific literature, focusing specially in supervised exercise programs that improved muscle strength, fall risk, balance, and gait ability. Scielo, Science Citation Index, MEDLINE, Scopus, Sport Discus, and ScienceDirect databases were searched from 1990 to 2012. Studies must have mentioned the effects of exercise training on at least one of the following four parameters: Incidence of falls, gait, balance, and lower-body strength. Twenty studies that investigated the effects of multi-component exercise training (10), resistance training (6), endurance training (1), and balance training (3) were included in the present revision. Ten trials investigated the effects of exercise on the incidence of falls in elderly with physical frailty. Seven of them have found a fewer falls incidence after physical training when compared with the control group. Eleven trials investigated the effects of exercise intervention on the gait ability. Six of them showed enhancements in the gait ability. Ten trials investigated the effects of exercise intervention on the balance performance and seven of them demonstrated enhanced balance. Thirteen trials investigated the effects of exercise intervention on the muscle strength and nine of them showed increases in the muscle strength. The multi-component exercise intervention composed by strength, endurance and balance training seems to be the best strategy to improve rate of falls, gait ability, balance, and strength performance in physically frail older adults. PMID:23327448

  20. Effectiveness and efficiency of different weight machine-based strength training programmes for patients with hip or knee osteoarthritis: a protocol for a quasi-experimental controlled study in the context of health services research.

    PubMed

    Krauss, Inga; Müller, Gerhard; Steinhilber, Benjamin; Haupt, Georg; Janssen, Pia; Martus, Peter

    2017-01-01

    Osteoarthritis is a chronic musculoskeletal disease with a major impact on the individual and the healthcare system. As there is no cure, therapy aims for symptom release and reduction of disease progression. Physical exercises have been defined as a core treatment for osteoarthritis. However, research questions related to dose response, sustainability of effects, economic efficiency and safety are still open and will be evaluated in this trial, investigating a progressive weight machine-based strength training. This is a quasi-experimental controlled trial in the context of health services research. The intervention group (n=300) is recruited from participants of an offer for insurants of a health insurance company suffering from hip or knee osteoarthritis. Potential participants of the control group are selected and written to from the insurance database according to predefined matching criteria. The final statistical twins from the control responders will be determined via propensity score matching (n=300). The training intervention comprises 24 supervised mandatory sessions (2/week) and another 12 facultative sessions (1/week). Exercises include resistance training for the lower extremity and core muscles by use of weight machines and small training devices. The training offer is available at two sites. They differ with respect to the weight machines in use resulting in different dosage parameters. Primary outcomes are self-reported pain and function immediately after the 12-week intervention period. Health-related quality of life, self-efficacy, cost utility and safety will be evaluated as secondary outcomes. Secondary analysis will be undertaken with two strata related to study site. Participants will be followed up 6, 12 and 24 months after baseline. German Clinical Trial Register DRKS00009257. Pre-results.

  1. Balance training with multi-task exercises improves fall-related self-efficacy, gait, balance performance and physical function in older adults with osteoporosis: a randomized controlled trial.

    PubMed

    Halvarsson, Alexandra; Franzén, Erika; Ståhle, Agneta

    2015-04-01

    To evaluate the effects of a balance training program including dual- and multi-task exercises on fall-related self-efficacy, fear of falling, gait and balance performance, and physical function in older adults with osteoporosis with an increased risk of falling and to evaluate whether additional physical activity would further improve the effects. Randomized controlled trial, including three groups: two intervention groups (Training, or Training+Physical activity) and one Control group, with a 12-week follow-up. Stockholm County, Sweden. Ninety-six older adults, aged 66-87, with verified osteoporosis. A specific and progressive balance training program including dual- and multi-task three times/week for 12 weeks, and physical activity for 30 minutes, three times/week. Fall-related self-efficacy (Falls Efficacy Scale-International), fear of falling (single-item question - 'In general, are you afraid of falling?'), gait speed with and without a cognitive dual-task at preferred pace and fast walking (GAITRite®), balance performance tests (one-leg stance, and modified figure of eight), and physical function (Late-Life Function and Disability Instrument). Both intervention groups significantly improved their fall-related self-efficacy as compared to the controls (p ≤ 0.034, 4 points) and improved their balance performance. Significant differences over time and between groups in favour of the intervention groups were found for walking speed with a dual-task (p=0.003), at fast walking speed (p=0.008), and for advanced lower extremity physical function (p=0.034). This balance training program, including dual- and multi-task, improves fall-related self-efficacy, gait speed, balance performance, and physical function in older adults with osteoporosis. © The Author(s) 2014.

  2. Exercise Training During +Gz Acceleration

    NASA Technical Reports Server (NTRS)

    Greenleaf, J. E.; Chou, J. L.; Simonson, S. R.; Jackson, C. G. R.; Barnes, P. R.

    1999-01-01

    The overall purpose is to study the effect of passive (without exercise) and active (with exercise) +Gz (head-to-foot) acceleration training, using a short-arm (1.9m radius) centrifuge, on post- training maximal oxygen uptake (VO2 max, work capacity) and 70 deg head-up tilt (orthostatic) tolerance in ambulatory subjects to test the hypothesis that (a) both passive and active acceleration training will improve post-training tilt-tolerance, and (b) there will be no difference in tilt-tolerance between passive and active exercise acceleration training because increased hydrostatic and blood pressures, rather than increased muscular metabolism, will provide the major adaptive stimulus. The purpose of the pilot study was to test the hypothesis that there would be no significant difference in the metabolic responses (oxygen uptake, heart rate, pulmonary ventilation, or respiratory exchange ratio) during supine exercise with moderate +Gz acceleration.

  3. Exercise training modulates the hepatic renin-angiotensin system in fructose-fed rats.

    PubMed

    Frantz, Eliete Dalla Corte; Medeiros, Renata Frauches; Giori, Isabele Gomes; Lima, Juliana Bittencourt Silveira; Bento-Bernardes, Thais; Gaique, Thaiane Gadioli; Fernandes-Santos, Caroline; Fernandes, Tiago; Oliveira, Edilamar Menezes; Vieira, Carla Paulo; Conte-Junior, Carlos Adam; Oliveira, Karen Jesus; Nobrega, Antonio Claudio Lucas

    2017-09-01

    What is the central question of this study? What are the effects of exercise training on the hepatic renin-angiotensin system and their contribution to damage resulting from fructose overload in rats? What is the main finding and its importance? Exercise training attenuated the deleterious actions of the angiotensin-converting enzyme/angiotensin II/angiotensin II type 1 receptor axis and increased expression of the counter-regulatory (angiotensin-converting enzyme 2/angiotensin (1-7)/Mas receptor) axis in the liver. Therefore, our study provides evidence that exercise training modulates the hepatic renin-angiotensin system, which contributes to reducing the progression of metabolic dysfunction and non-alcoholic fatty liver disease in fructose-fed rats. The renin-angiotensin system (RAS) has been implicated in the development of metabolic syndrome. We investigated whether the hepatic RAS is modulated by exercise training and whether this modulation improves the deleterious effects of fructose overload in rats. Male Wistar rats were divided into (n = 8 each) control (CT), exercise control (CT-Ex), high-fructose (HFr) and exercise high-fructose (HFr-Ex) groups. Fructose-drinking rats received d-fructose (100 g l -1 ). After 2 weeks, CT-Ex and HFr-Ex rats were assigned to a treadmill training protocol at moderate intensity for 8 weeks (60 min day -1 , 4 days per week). We assessed body mass, glucose and lipid metabolism, hepatic histopathology, angiotensin-converting enzyme (ACE) and angiotensin-converting enzyme 2 (ACE2) activity, the angiotensin concentration and the expression profile of proteins affecting the hepatic RAS, gluconeogenesis and inflammation. Neither fructose overload nor exercise training influenced body mass gain and serum ACE and ACE2 activity. The HFr group showed hyperinsulinaemia, but exercise training normalized this parameter. Exercise training was effective in preventing hepatic steatosis and in preventing triacylglycerol and glycogen accumulation. Furthermore, exercise improved the response to the deleterious effects of HFr overload by normalizing the gluconeogenesis pathway and the protein levels of interleukin-6 and tumour necrosis factor-α. The HFr rats displayed increased hepatic ACE activity and protein expression and angiotensin II concentration, which were attenuated by exercise training. Exercise training restored the ACE2/angiotensin-(1-7)/Mas receptor axis. Exercise training may favour the counter-regulatory ACE2/angiotensin-(1-7)/Mas receptor axis over the classical RAS (ACE/angiotensin II/angiotensin II type 1 receptor axis), which could be responsible for the reduction of metabolic dysfunction and the prevention of non-alcoholic fatty liver disease. © 2017 The Authors. Experimental Physiology © 2017 The Physiological Society.

  4. Elevated central venous pressure: A consequence of exercise training-induced hypervolemia

    NASA Technical Reports Server (NTRS)

    Convertino, Victor A.; Mack, Gary W.; Nadel, Ethan R.

    1990-01-01

    Resting plasma volumes, and arterial and central venous pressures (CVP) were measured in 16 men before and after exercise training to determine if training-induced hypervolemia could be explained by a change in total vascular capacitance. In addition, resting levels of plasma vasopressin (AVP), atrial natriuretic peptide (ANP), aldosterone (ALD), and norepinephrine (NE) were measured before and after training. The same measurements of vacular volume, pressures, and plasma hormones were measured in 8 subjects who did not undergo exercise and acted as controls. The exercise training program consisted of 10 weeks of controlled cycle exercise for 30 min/d, 4 d/wk at 75 to 80 percent of maximal oxygen uptake (VO2max). A training effect was verified by a 20 percent increase in VO2max, a resting bradycardia, and a 370 ml (9 percent) increase in blood volume. Mean arterial blood pressure was unaltered by exercise training, but resting CVP increased. The percent change in blood volume from before to after training was linearly related to the percent change in CVP. As a consequence of elevations in both blood volume and CVP, the volume-to-pressure ratio was essentially unchanged following exercise training. Plasma AVP, ANP, ALD, and NE were unaltered. Results indicate that elevated CVP is a consequence of training-induced hypervolemia without alteration in total effective venous capacitance. This may represent a resetting of the pressure-volume stimulus-response relation for regulation of blood volume.

  5. Exercise and Human Immunodeficiency Virus (HIV-1) Infection

    NASA Technical Reports Server (NTRS)

    Lawless, DeSales; Jackson, Catherine G. R.; Greenleaf, John E.

    1995-01-01

    The human immune system is highly efficient and remarkably protective when functioning properly. Similar to other physiological systems, it functions best when the body is maintained with a balanced diet, sufficient rest and a moderately stress-free lifestyle. It can be disrupted by inappropriate drug use and extreme emotion or exertion. The functioning of normal or compromised immune systems can be enhanced by properly prescribed moderate exercise conditioning regimens in healthy people, and in some human immunodeficiency virus (HIV-1)-infected patients but not in others who unable to complete an interval training program. Regular exercise conditioning in healthy people reduces cardiovascular risk factors, increases stamina, facilitates bodyweight control, and reduces stress by engendering positive feelings of well-being. Certain types of cancer may also be suppressed by appropriate exercise conditioning. Various exercise regimens are being evaluated as adjunct treatments for medicated patients with the HIV-1 syndrome. Limited anecdotal evidence from patients suggests that moderate exercise conditioning is per se responsible for their survival well beyond expectancy. HIV-1-infected patients respond positively, both physiologically and psychologically, to moderate exercise conditioning. However, the effectiveness of any exercise treatment programme depends on its mode, frequency, intensity and duration when prescribed o complement the pathological condition of the patient. The effectiveness of exercise conditioning regimens in patients with HIV-1 infection is reviewed in this article. In addition, we discuss mechanisms and pathways, involving the interplay of psychological and physiological factors, through which the suppressed immune system can be enhanced. The immune modulators discussed are endogenous opioids, cytokines, neurotransmitters and other hormones. Exercise conditioning treatment appears to be more effective when combined with other stress management procedures.

  6. Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs.

    PubMed

    Jankord, Ryan; Ganjam, Venkataseshu K; Turk, James R; Hamilton, Marc T; Laughlin, M Harold

    2008-06-01

    Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo-pituitary-adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16-20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals.

  7. Exercise training alters effect of high-fat feeding on the ACTH stress response in pigs

    PubMed Central

    Jankord, Ryan; Ganjam, Venkataseshu K.; Turk, James R.; Hamilton, Marc T.; Laughlin, M. Harold

    2009-01-01

    Eating and physical activity behaviors influence neuroendocrine output. The purpose of this study was to test, in an animal model of diet-induced cardiovascular disease, the effects of high-fat feeding and exercise training on hypothalamo–pituitary–adrenocortical (HPA) axis activity. We hypothesized that a high-fat diet would increase circulating free fatty acids (FFAs) and decrease the adrenocorticotropic hormone (ACTH) and cortisol response to an acute stressor. We also hypothesized that exercise training would reverse the high-fat diet-induced changes in FFAs and thereby restore the ACTH and cortisol response. Pigs were placed in 1 of 4 groups (normal diet, sedentary; normal diet, exercise training; high-fat diet, sedentary; high-fat diet, exercise training; n = 8/group). Animals were placed on their respective dietary and activity treatments for 16–20 weeks. After completion of the treatments animals were anesthetized and underwent surgical intubation. Blood samples were collected after surgery and the ACTH and cortisol response to surgery was determined and the circulating concentrations of FFAs, glucose, cholesterol, insulin, and IGF-1 were measured. Consistent with our hypothesis, high-fat feeding increased FFAs by 200% and decreased the ACTH stress response by 40%. In exercise-trained animals, the high-fat diet also increased FFA; however, the increase in FFA in exercise-trained pigs was accompanied by a 60% increase in the ACTH response. The divergent effect of high-fat feeding on ACTH response was not expected, as exercise training alone had no effect on the ACTH response. Results demonstrate a significant interaction between diet and exercise and their effect on the ACTH response. The divergent effects of high-fat diet could not be explained by changes in weight gain, blood glucose, insulin, or IGF-1, as these were altered by high-fat feeding, but unaffected by exercise training. Thus, the increase in FFA with high-fat feeding may explain the blunted ACTH response to an acute stressor in sedentary animals, but cannot explain the exaggerated response in exercise trained animals. PMID:18461098

  8. Is exercise training safe and beneficial in patients receiving left ventricular assist device therapy?

    PubMed

    Alsara, Osama; Perez-Terzic, Carmen; Squires, Ray W; Dandamudi, Sanjay; Miranda, William R; Park, Soon J; Thomas, Randal J

    2014-01-01

    Because a limited number of patients receive heart transplantation, alternative therapies, such as left ventricular assist device (LVAD) therapy, have emerged. Published studies have shown that LVAD implantation, by itself, improves exercise tolerance to the point where it is comparable to those with mild heart failure. The improvement in exercise capacity is maximally achieved 12 weeks after LVAD therapy and can continue even after explantation of the device. This effect varies, depending on the type of LVAD and exercise training. The available data in the literature on safety and benefits of exercise training in patients after LVAD implantation are limited, but the data that are available suggest that training trends to be safe and have an impact on exercise capacity in LVAD patients. Although no studies were identified on the role of cardiac rehabilitation programs in the management of LVAD patients, it appears that cardiac rehabilitation programs offer an ideal setting for the provision of supervised exercise training in this patient group.

  9. Preparing for Large-Force Exercises with Distributed Simulation: A Panel Presentation

    DTIC Science & Technology

    2010-07-01

    Preparing for Large Force Exercises with Distributed Simulation: A Panel Presentation Peter Crane, Winston Bennett, Michael France Air Force...used distributed simulation training to complement live-fly exercises to prepare for LFEs. In this panel presentation , the speakers will describe... presentations on how detailed analysis of training needs is necessary to structure simulator scenarios and how future training exercises could be made more

  10. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis--a randomised controlled trial.

    PubMed

    Lee, Annemarie L; Hill, Catherine J; Cecins, Nola; Jenkins, Sue; McDonald, Christine F; Burge, Angela T; Rautela, Linda; Stirling, Robert G; Thompson, Philip J; Holland, Anne E

    2014-04-15

    Exercise training is recommended for non-cystic fibrosis (CF) bronchiectasis, but the long-term effects are unclear. This randomised controlled trial aimed to determine the effects of exercise training and review of airway clearance therapy (ACT) on exercise capacity, health related quality of life (HRQOL) and the incidence of acute exacerbations in people with non-CF bronchiectasis. Participants were randomly allocated to 8 weeks of supervised exercise training and review of ACT, or control. Primary outcomes of exercise capacity and HRQOL (Chronic respiratory disease questionnaire) and secondary outcomes of cough-related QOL (Leicester cough questionnaire) and psychological symptoms (Hospital anxiety and depression scale) were measured at baseline, following completion of the intervention period and at 6 and 12 months follow up. Secondary outcomes of the exacerbation rate and time to first exacerbation were analysed over 12 months. Eighty-five participants (mean FEV1 74% predicted; median Modified Medical Research Council Dyspnoea grade of 1 (IQR [1-3]) were included. Exercise training increased the incremental shuttle walk distance (mean difference to control 62 m, 95% CI 24 to 101 m) and the 6-minute walking distance (mean difference to control 41 m, 95% CI 19 to 63 m), but these improvements were not sustained at 6 or 12 months. Exercise training reduced dyspnoea (p = 0.009) and fatigue (p = 0.01) but did not impact on cough-related QOL or mood. Exercise training reduced the frequency of acute exacerbations (median 1[IQR 1-3]) compared to the control group (2[1-3]) over 12 months follow up (p = 0.012), with a longer time to first exacerbation with exercise training of 8 months (95% CI 7 to 9 months) compared to the control group (6 months [95% CI 5 to 7 months], p = 0.047). Exercise training in bronchiectasis is associated with short term improvement in exercise capacity, dyspnoea and fatigue and fewer exacerbations over 12 months. ClinicalTrials.gov (NCT00885521).

  11. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis – a randomised controlled trial

    PubMed Central

    2014-01-01

    Background Exercise training is recommended for non-cystic fibrosis (CF) bronchiectasis, but the long-term effects are unclear. This randomised controlled trial aimed to determine the effects of exercise training and review of airway clearance therapy (ACT) on exercise capacity, health related quality of life (HRQOL) and the incidence of acute exacerbations in people with non-CF bronchiectasis. Methods Participants were randomly allocated to 8 weeks of supervised exercise training and review of ACT, or control. Primary outcomes of exercise capacity and HRQOL (Chronic respiratory disease questionnaire) and secondary outcomes of cough-related QOL (Leicester cough questionnaire) and psychological symptoms (Hospital anxiety and depression scale) were measured at baseline, following completion of the intervention period and at 6 and 12 months follow up. Secondary outcomes of the exacerbation rate and time to first exacerbation were analysed over 12 months. Results Eighty-five participants (mean FEV1 74% predicted; median Modified Medical Research Council Dyspnoea grade of 1 (IQR [1–3]) were included. Exercise training increased the incremental shuttle walk distance (mean difference to control 62 m, 95% CI 24 to 101 m) and the 6-minute walking distance (mean difference to control 41 m, 95% CI 19 to 63 m), but these improvements were not sustained at 6 or 12 months. Exercise training reduced dyspnoea (p = 0.009) and fatigue (p = 0.01) but did not impact on cough-related QOL or mood. Exercise training reduced the frequency of acute exacerbations (median 1[IQR 1–3]) compared to the control group (2[1–3]) over 12 months follow up (p = 0.012), with a longer time to first exacerbation with exercise training of 8 months (95% CI 7 to 9 months) compared to the control group (6 months [95% CI 5 to 7 months], p = 0.047). Conclusions Exercise training in bronchiectasis is associated with short term improvement in exercise capacity, dyspnoea and fatigue and fewer exacerbations over 12 months. Trial registry ClinicalTrials.gov (NCT00885521). PMID:24731015

  12. Evolving methods to combine cognitive and physical training for individuals with mild cognitive impairment: study protocol for a randomized controlled study.

    PubMed

    Lee, Ya-Yun; Wu, Ching-Yi; Teng, Ching-Hung; Hsu, Wen-Chuin; Chang, Ku-Chou; Chen, Poyu

    2016-10-28

    Nonpharmacologic interventions, such as cognitive training or physical exercise, are effective in improving cognitive functions for older adults with mild cognitive impairment (MCI). Some researchers have proposed that combining physical exercise with cognitive training may augment the benefits of cognition. However, strong evidence is lacking regarding whether a combined therapy is superior to a single type of training for older adults with MCI. Moreover, which combination approach - combining physical exercise with cognitive training sequentially or simultaneously - is more advantageous for cognitive improvement is not yet clear. This proposed study is designed to clarify these questions. This study is a single-blinded, multicenter, randomized controlled trial. Eighty individuals with MCI will be recruited and randomly assigned to cognitive training (COG), physical exercise training (PE), sequential training (SEQ), and dual-task training (DUAL) groups. The intervention programs will be 90 min/day, 2-3 days/week, for a total of 36 training sessions. The participants in the SEQ group will first perform 45 min of physical exercise followed by 45 min of cognitive training, whereas those in the DUAL group will perform physical exercise and cognitive training simultaneously. Participants will be assessed at baseline, after the intervention, and at 6-month follow-up. The primary cognitive outcome tests will include the Montreal Cognitive Assessment and the color-naming Stroop test. Other outcomes will include assessments that evaluate the cognitive, physical, and daily functions of older adults with MCI. The results of this proposed study will provide important information regarding the feasibility and intervention effects of combining physical exercise and cognitive training for older individuals with MCI. ClinicalTrials.gov Identifier: NCT02512627 , registered on 20 July 2015.

  13. Effects of menstrual cycle, oral contraception, and training on exercise-induced changes in circulating DHEA-sulphate and testosterone in young women.

    PubMed

    Enea, C; Boisseau, N; Ottavy, M; Mulliez, J; Millet, C; Ingrand, I; Diaz, V; Dugué, B

    2009-06-01

    The objective of this study was to ascertain the effects of menstrual cycle, oral contraception, and training status on the exercise-induced changes in circulating DHEA-sulphate and testosterone in young women. Twenty-eight healthy women were assigned to an untrained group (n = 16) or a trained group (n = 12) depending on their training background. The untrained group was composed of nine oral contraceptive users (OC+) and seven eumenorrheic women (OC-). The trained group was composed of OC+ subjects only. All the OC+ subjects were taking the same low-dose oral contraception. Three laboratory sessions were organised in a randomised order: a prolonged exercise test until exhaustion, a short-term exhaustive exercise test, and a control session. Blood specimens were collected before, during and after the exercise tests and at the same time of the day during the control session. Basal circulating testosterone was significantly lower in trained as compared to untrained subjects. In all subjects, the prolonged exhaustive exercise induced a significant increase in circulating DHEA-s and testosterone. The short-term exercise induced a significant increase in circulating DHEA-s in untrained eumenorrheic and in trained OC users only. Menstrual phases in OC- did not influence the responses. It was found that exhaustive physical exercise induced an increase in circulating DHEA-s and testosterone in young women. Oral contraception may limit short-term exercise-induced changes.

  14. Cell-derived microparticles promote coagulation after moderate exercise.

    PubMed

    Sossdorf, Maik; Otto, Gordon P; Claus, Ralf A; Gabriel, Holger H W; Lösche, Wolfgang

    2011-07-01

    Cell-derived procoagulant microparticles (MP) might be able to contribute to exercise-induced changes in blood hemostasis. This study aimed to examine (i) the concentration and procoagulant activity of cell-derived MP after a moderate endurance exercise and (ii) the differences in the release, clearance, and activity of MP before and after exercise between trained and untrained individuals. All subjects performed a single bout of physical exercise on a bicycle ergometer for 90 min at 80% of their individual anaerobic threshold. MP were identified and quantified by flow cytometry measurements. Procoagulant activity of MP was measured by a prothrombinase activity assay as well as tissue factor-induced fibrin formation in MP-containing plasma. At baseline, no differences were observed for the absolute number and procoagulant activities of MP between trained and untrained subjects. However, trained individuals had a lower number of tissue factor-positive monocyte-derived MP compared with untrained individuals. In trained subjects, exercise induced a significant increase in the number of MP derived from platelets, monocytes, and endothelial cells, with maximum values at 45 min after exercise and returned to basal levels at 2 h after exercise. Untrained subjects revealed a similar increase in platelet-derived MP, but their level was still increased at 2 h after exercise, indicating a reduced clearance compared with trained individuals. Procoagulant activities of MP were increased immediately after exercise and remained elevated up to 2 h after exercise. We conclude that increased levels of MP were found in healthy individuals after an acute bout of exercise, that the amount of circulating MP contributes to an exercise-induced increase of hemostatic potential, and that there were differences in kinetic and dynamic characteristics between trained and untrained individuals.

  15. Irisin in response to acute and chronic whole-body vibration exercise in humans.

    PubMed

    Huh, Joo Young; Mougios, Vassilis; Skraparlis, Athanasios; Kabasakalis, Athanasios; Mantzoros, Christos S

    2014-07-01

    Irisin is a recently identified myokine, suggested to mediate the beneficial effects of exercise by inducing browning of white adipocytes and thus increasing energy expenditure. In humans, the regulation of irisin by exercise is not completely understood. We investigated the effect of acute and chronic whole-body vibration exercise, a moderate-intensity exercise that resembles shivering, on circulating irisin levels in young healthy subjects. Healthy untrained females participated in a 6-week program of whole-body vibration exercise training. Blood was drawn before and immediately after an acute bout of exercise at baseline (week 0) and after 6 weeks of training. The resting irisin levels were not different at baseline (week 0) and after 6 weeks of training. At both 0 and 6 weeks of training, an acute bout of vibration exercise significantly elevated circulating irisin levels by 9.5% and 18.1%, respectively (p=0.05 for the percent change of irisin levels). Acute bouts of whole-body vibration exercise are effective in increasing circulating irisin levels but chronic training does not change levels of baseline irisin levels in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Combined exercise for people with type 2 diabetes mellitus: a systematic review.

    PubMed

    Oliveira, César; Simões, Mário; Carvalho, Joana; Ribeiro, José

    2012-11-01

    Type 2 diabetes mellitus has emerged as a major non-communicable chronic diseases in many countries. The importance of exercise in the prevention and management of this disease is evident. This paper briefly reviews the effects of combining aerobic and resistance exercises on glycemic control, and details the training and characteristics of various interventions in adults with type 2 diabetes mellitus. Literature searches were performed using electronic databases between the 1st of January 1950 and the 15th of September 2011. Of the 403 articles retrieved, 28 studies met our inclusion criteria. Combined exercise protocols seem to improve glycemic control to a greater extent than isolated forms of exercise. Nevertheless, length, duration, intensity, mode, number of exercises, sets and repetitions varied markedly among studies. Supervised training sessions, recommended structured exercises, and splitting aerobic and resistance training in separate sessions may be relevant for best results. Future studies should analyze the effects of different aerobic and resistance training modes, different training and progression methods, and whether one type of exercise is optimal, as these issues are likely to convey greater knowledge on type 2 diabetes mellitus management through combined exercise. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  17. Exercise Training positively modulates the Ectonucleotidase Enzymes in Lymphocytes of Metabolic Syndrome Patients.

    PubMed

    Martins, C C; Bagatini, M D; Cardoso, A M; Zanini, D; Abdalla, F H; Baldissarelli, J; Dalenogare, D P; Dos Santos, D L; Schetinger, M R C; Morsch, V M M

    2016-11-01

    In this study, we investigated the cardiovascular risk factors as well as ectonucleotidase activities in lymphocytes of metabolic syndrome (MetS) patients before and after an exercise intervention. 20 MetS patients, who performed regular concurrent exercise training for 30 weeks, 3 times/week, were studied. Anthropometric, biochemical, inflammatory and hepatic parameters and hydrolysis of adenine nucleotides and nucleoside in lymphocytes were collected from patients before and after 15 and 30 weeks of the exercise intervention as well as from participants of the control group. An increase in the hydrolysis of ATP and ADP, and a decrease in adenosine deamination in lymphocytes of MetS patients before the exercise intervention were observed (P<0.001). However, these alterations were reversed by exercise training after 30 weeks of intervention. Additionally, exercise training reduced the inflammatory and hepatic markers to baseline levels after 30 weeks of exercise. Our results clearly indicated alteration in ectonucleotidase enzymes in lymphocytes in the MetS, whereas regular exercise training had a protective effect on the enzymatic alterations and on inflammatory and hepatic parameters, especially if it is performed regularly and for a long period. © Georg Thieme Verlag KG Stuttgart · New York.

  18. Nutritional strategies to support concurrent training.

    PubMed

    Perez-Schindler, Joaquin; Hamilton, D Lee; Moore, Daniel R; Baar, Keith; Philp, Andrew

    2015-01-01

    Concurrent training (the combination of endurance exercise to resistance training) is a common practice for athletes looking to maximise strength and endurance. Over 20 years ago, it was first observed that performing endurance exercise after resistance exercise could have detrimental effects on strength gains. At the cellular level, specific protein candidates have been suggested to mediate this training interference; however, at present, the physiological reason(s) behind the concurrent training effect remain largely unknown. Even less is known regarding the optimal nutritional strategies to support concurrent training and whether unique nutritional approaches are needed to support endurance and resistance exercise during concurrent training approaches. In this review, we will discuss the importance of protein supplementation for both endurance and resistance training adaptation and highlight additional nutritional strategies that may support concurrent training. Finally, we will attempt to synergise current understanding of the interaction between physiological responses and nutritional approaches into practical recommendations for concurrent training.

  19. Resistance to the beneficial effects of exercise in type 2 diabetes: are some individuals programmed to fail?

    PubMed

    Stephens, Natalie A; Sparks, Lauren M

    2015-01-01

    Exercise benefits most, but not all, individuals with type 2 diabetes (T2D). The beneficial effects are well studied, but why some individuals do not respond favorably to exercise training is largely unexplored. It is critical to treatment and prevention strategies to identify individuals with T2D that have a blunted metabolic response to exercise and investigate the underlying mechanisms that might predict this "programmed response to fail." We carried out a systematic review of classic and contemporary primary reports on clinical human and animal exercise studies. We also referenced unpublished data from our previous studies, as well those of collaborators. Genetic and epigenetic components and their associations with the exercise response were also examined. As evidence of the exercise resistance premise, we and others found that supervised exercise training results in substantial response variations in glucose homeostasis, insulin sensitivity, and muscle mitochondrial density, wherein approximately 15-20% of individuals fail to improve their metabolic health with exercise. Classic genetic studies have shown that the extent of the exercise training response is largely heritable, whereas new evidence demonstrates that DNA hypomethylation is linked to the exercise response in skeletal muscle. DNA sequence variation and/or epigenetic modifications may, therefore, dictate the exercise training response. Studies dedicated to uncovering the mechanisms of exercise resistance will advance the field of exercise and T2D, allowing interventions to be targeted to those most likely to benefit and identify novel approaches to treat those who do not experience metabolic improvements after exercise training.

  20. Exercise training-enhanced, endothelium-dependent dilation mediated by altered regulation of BKCa channels in collateral-dependent porcine coronary arterioles

    PubMed Central

    Xie, Wei; Parker, Janet L.; Heaps, Cristine L.

    2012-01-01

    Objective Test the hypothesis that exercise training increases the contribution of large-conductance, Ca2+-dependent K+ (BKCa) channels to endothelium-mediated dilation in coronary arterioles from collateral-dependent myocardial regions of chronically occluded pig hearts and may function downstream of H2O2. Methods An ameroid constrictor was placed around the proximal left circumflex coronary artery to induce gradual occlusion in Yucatan miniature swine. Eight weeks postoperatively, pigs were randomly assigned to sedentary or exercise training (treadmill; 14 wk) regimens. Results Exercise training significantly enhanced bradykinin-mediated dilation in collateral-dependent arterioles (~125 μm diameter) compared with sedentary pigs. The BKCa-channel blocker, iberiotoxin alone or in combination with the H2O2 scavenger, polyethylene glycol catalase, reversed exercise training-enhanced dilation in collateral-dependent arterioles. Iberiotoxin-sensitive whole-cell K+ currents (i.e., BKCa-channel currents) were not different between smooth muscle cells of nonoccluded and collateral-dependent arterioles of sedentary and exercise trained groups. Conclusions These data provide evidence that BKCa-channel activity contributes to exercise training-enhanced endothelium-dependent dilation in collateral-dependent coronary arterioles despite no change in smooth muscle BKCa-channel current. Taken together, our findings suggest that a component of the bradykinin signaling pathway, which stimulates BKCa channels, is enhanced by exercise training in collateral-dependent arterioles and suggest a potential role for H2O2 as the mediator. PMID:23002811

  1. Protocol for Fit Bodies, Fine Minds: a randomized controlled trial on the affect of exercise and cognitive training on cognitive functioning in older adults

    PubMed Central

    O'Dwyer, Siobhan T; Burton, Nicola W; Pachana, Nancy A; Brown, Wendy J

    2007-01-01

    Background Declines in cognitive functioning are a normal part of aging that can affect daily functioning and quality of life. This study will examine the impact of an exercise training program, and a combined exercise and cognitive training program, on the cognitive and physical functioning of older adults. Methods/Design Fit Bodies, Fine Minds is a randomized, controlled trial. Community-dwelling adults, aged between 65 and 75 years, are randomly allocated to one of three groups for 16 weeks. The exercise-only group do three 60-minute exercise sessions per week. The exercise and cognitive training group do two 60-minute exercise sessions and one 60-minute cognitive training session per week. A no-training control group is contacted every 4 weeks. Measures of cognitive functioning, physical fitness and psychological well-being are taken at baseline (0 weeks), post-test (16 weeks) and 6-month follop (40 weeks). Qualitative responses to the program are taken at post-test. Discussion With an increasingly aged population, interventions to improve the functioning and quality of life of older adults are particularly important. Exercise training, either alone or in combination with cognitive training, may be an effective means of optimizing cognitive functioning in older adults. This study will add to the growing evidence base on the effectiveness of these interventions. Trial Registration Australian Clinical Trials Register: ACTRN012607000151437 PMID:17915035

  2. Aerobic Exercise Training and Arterial Changes in African-Americans versus Caucasians

    PubMed Central

    Ranadive, Sushant M.; Yan, Huimin; Lane, Abbi D.; Kappus, Rebecca M.; Cook, Marc D.; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A.; Wilund, Kenneth R.; Fernhall, Bo

    2015-01-01

    African-Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared to their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. Purpose The purpose of this study was to examine the effect of 8 weeks of moderate-high intensity aerobic training in young healthy sedentary AA and CA men and women. Methods Sixty-four healthy volunteers (men = 28, women = 36) with mean age = 24 underwent measures of arterial structure, function and blood pressure variables at baseline, post-4 week control period and 8 weeks post-training. Results There was a significant increase in VO2peak amongst both groups post exercise training. Brachial systolic blood pressure decreased significantly following control period in both groups but not following exercise training. Carotid pulse pressure decreased significantly in both groups post exercise training as compared to baseline. There was no change in any of the other blood pressure variables. AAs had a higher intima-media thickness at baseline and post-control period, but significantly decreased following exercise training compared to CAs. AAs had significantly lower baseline forearm blood flow and RH compared to CAs, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (cPWV) and wave-reflection (AIx) between the two groups at any time point. Conclusions This is the first study to show that, 8 weeks of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AAs, making it comparable to the CAs and with minimal effects on blood pressure variables. PMID:26225767

  3. Aerobic Exercise Training and Arterial Changes in African Americans versus Caucasians.

    PubMed

    Ranadive, Sushant M; Yan, Huimin; Lane, Abbi D; Kappus, Rebecca M; Cook, Marc D; Sun, Peng; Harvey, Idethia; Ploutz-Synder, Robert; Woods, Jeffrey A; Wilund, Kenneth R; Fernhall, B O

    2016-01-01

    African Americans (AA) have increased carotid artery intima-media thickness and decreased vascular function compared with their Caucasian (CA) peers. Aerobic exercise prevents and potentially reverses arterial dysfunction. The purpose of this study was to examine the effect of 8 wk of moderate- to high-intensity aerobic training in young healthy sedentary AA and CA men and women. Sixty-four healthy volunteers (men, 28; women, 36) with mean age 24 yr underwent measures of arterial structure, function, and blood pressure (BP) variables at baseline, after the 4-wk control period, and 8 wk after training. There was a significant increase in VO2peak among both groups after exercise training. Brachial systolic BP decreased significantly after the control period in both groups but not after exercise training. Carotid pulse pressure decreased significantly in both groups after exercise training as compared with that in baseline. There was no change in any of the other BP variables. AA had higher intima-media thickness at baseline and after the control period but it significantly decreased after exercise training compared with that of CA. AA had significantly lower baseline forearm blood flow and reactive hyperemia compared with those of CA, but exercise training had no effect on these variables. There was no significant difference in arterial stiffness (central pulse wave velocity) and wave-reflection (augmentation index) between the two groups at any time point. This is the first study to show that 8 wk of aerobic exercise training causes significant improvement in the arterial structure in young, healthy AA, making it comparable with the CA and with minimal effects on BP variables.

  4. The use of instability to train the core musculature.

    PubMed

    Behm, David G; Drinkwater, Eric J; Willardson, Jeffrey M; Cowley, Patrick M

    2010-02-01

    Training of the trunk or core muscles for enhanced health, rehabilitation, and athletic performance has received renewed emphasis. Instability resistance exercises have become a popular means of training the core and improving balance. Whether instability resistance training is as, more, or less effective than traditional ground-based resistance training is not fully resolved. The purpose of this review is to address the effectiveness of instability resistance training for athletic, nonathletic, and rehabilitation conditioning. The anatomical core is defined as the axial skeleton and all soft tissues with a proximal attachment on the axial skeleton. Spinal stability is an interaction of passive and active muscle and neural subsystems. Training programs must prepare athletes for a wide variety of postures and external forces, and should include exercises with a destabilizing component. While unstable devices have been shown to be effective in decreasing the incidence of low back pain and increasing the sensory efficiency of soft tissues, they are not recommended as the primary exercises for hypertrophy, absolute strength, or power, especially in trained athletes. For athletes, ground-based free-weight exercises with moderate levels of instability should form the foundation of exercises to train the core musculature. Instability resistance exercises can play an important role in periodization and rehabilitation, and as alternative exercises for the recreationally active individual with less interest or access to ground-based free-weight exercises. Based on the relatively high proportion of type I fibers, the core musculature might respond well to multiple sets with high repetitions (e.g., >15 per set); however, a particular sport may necessitate fewer repetitions.

  5. Effects of intensity and duration of exercise on muscular responses to training of thoroughbred racehorses.

    PubMed

    Rivero, José-Luis L; Ruz, Antonio; Martí-Korff, Silvia; Estepa, José-Carlos; Aguilera-Tejero, Escolástico; Werkman, Jutta; Sobotta, Mathias; Lindner, Arno

    2007-05-01

    This study examined the effects of the intensity and duration of exercise on the nature and magnitude of training adaptations in muscle of adolescent (2-3 yr old) racehorses. Six thoroughbreds that had been pretrained for 2 mo performed six consecutive conditioning programs of varying lactate-guided intensities [velocities eliciting blood lactate concentrations of 2.5 mmol/l (v2.5) and 4 mmol/l (v4), respectively] and durations (5, 15, 25 min). Pre- and posttraining gluteus muscle biopsies were analyzed for myosin heavy chain content, fiber-type composition, fiber size, capillarization, and fiber histochemical oxidative and glycolytic capabilities. Although training adaptations were similar in nature, they varied greatly in magnitude among the different training protocols. Overall, the use of v4 as the exercise intensity for 25 min elicited the most consistent training adaptations in muscle, whereas the minimal training stimulus that evoked any significant change was identified with exercises of 15 min at v2.5. Within this range, muscular adaptations showed significant trends to be proportional to the exercise load of specific training programs. Taken together, these data suggest that muscular adaptations to training in horses occur on a continuum that is based on the exercise intensity and duration of training. The practical implications of this study are that exercises for 15 to 25 min/day at velocities between v2.5 and v4 can improve in the short term (3 wk) the muscular stamina in thoroughbreds. However, exercises of 5-15 min at v4 are necessary to enhance muscular features related to strength (hypertrophy).

  6. Exercise Training and Cognitive Rehabilitation: A Symbiotic Approach for Rehabilitating Walking and Cognitive Functions in Multiple Sclerosis?

    PubMed

    Motl, Robert W; Sandroff, Brian M; DeLuca, John

    2016-07-01

    The current review develops a rationale and framework for examining the independent and combined effects of exercise training and cognitive rehabilitation on walking and cognitive functions in persons with multiple sclerosis (MS). To do so, we first review evidence for improvements in walking and cognitive outcomes with exercise training and cognitive rehabilitation in MS. We then review evidence regarding cognitive-motor coupling and possible cross-modality transfer effects of exercise training and cognitive rehabilitation. We lastly present a macro-level framework for considering mechanisms that might explain improvements in walking and cognitive dysfunction with exercise and cognitive rehabilitation individually and combined in MS. We conclude that researchers should consider examining the effects of exercise training and cognitive rehabilitation on walking, cognition, and cognitive-motor interactions in MS and the possible physiological and central mechanisms for improving these functions. © The Author(s) 2015.

  7. The Effect of Low Extremity Plyometric Training on Back Muscle Power of High School Throwing Event Athletes

    PubMed Central

    Park, Gi Duck; Lee, Joong Chul; Lee, Juri

    2014-01-01

    [Purpose] The physical strength elements required for athletic throwing events include muscle strength, swiftness, agility, speed, flexibility, and physical balance. Although plyometric training and weight training are implemented as representative training methods for improving swiftness and agility, most studies of it have been conducted with players of other sports. [Subjects] The study subjects were 10 throwing event athletes attending K physical education high school. The subjects were randomly assigned to a control group of five subjects and an experimental group of five subjects. To analyze the body composition, an Inbody 3.0 instrument (Biospace, Korea) was used as experimental equipment to measure heights, weight, body fat percentages, and muscle masses and a Biodex system 4.0 (BIODEX, USA) was used to measure isokinetic muscle-joint and lumbar muscle strengths. The plyometric training consisted of 15 techniques out of the training methods introduced in the ‘Power up plyometric training’. The plyometric program was implemented without any training load three times per week during daybreak exercises for the experimental group. The number of times and the number of sets were changed over time as follows: three sets of 10 times in the 1st −4th weeks, three sets of 15 times in the 5th–8th weeks, and five sets of 15 times in the 9th−12th weeks. [Results] According to the ANCOVA results of lumbar extensor muscle strength at 60°/sec, the overall reliability of the model was significant. According to the ANCOVA results of lumbar flexor muscle strength at 60°/sec, the overall reliability of the model was significant. [Conclusion] Plyometric training positively affected high school throwing event athletes. To summarize the study findings, the application of plyometric training with high intensity and loads improved the results of athletes who perform highly intensive exercises at normal times. PMID:24567698

  8. Effects of regular aerobic exercise on visual perceptual learning.

    PubMed

    Connell, Charlotte J W; Thompson, Benjamin; Green, Hayden; Sullivan, Rachel K; Gant, Nicholas

    2017-12-02

    This study investigated the influence of five days of moderate intensity aerobic exercise on the acquisition and consolidation of visual perceptual learning using a motion direction discrimination (MDD) task. The timing of exercise relative to learning was manipulated by administering exercise either before or after perceptual training. Within a matched-subjects design, twenty-seven healthy participants (n = 9 per group) completed five consecutive days of perceptual training on a MDD task under one of three interventions: no exercise, exercise before the MDD task, or exercise after the MDD task. MDD task accuracy improved in all groups over the five-day period, but there was a trend for impaired learning when exercise was performed before visual perceptual training. MDD task accuracy (mean ± SD) increased in exercise before by 4.5 ± 6.5%; exercise after by 11.8 ± 6.4%; and no exercise by 11.3 ± 7.2%. All intervention groups displayed similar MDD threshold reductions for the trained and untrained motion axes after training. These findings suggest that moderate daily exercise does not enhance the rate of visual perceptual learning for an MDD task or the transfer of learning to an untrained motion axis. Furthermore, exercise performed immediately prior to a visual perceptual learning task may impair learning. Further research with larger groups is required in order to better understand these effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. Physiological adaptations to interval training and the role of exercise intensity.

    PubMed

    MacInnis, Martin J; Gibala, Martin J

    2017-05-01

    Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high-intensity interval training (HIIT; 'near maximal' efforts) and sprint interval training (SIT; 'supramaximal' efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate-intensity continuous training (MICT) such as increased aerobic capacity (V̇O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched-work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole-body level, V̇O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V̇O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. © 2016 The Authors. The Journal of Physiology © 2016 The Physiological Society.

  10. Physiological adaptations to interval training and the role of exercise intensity

    PubMed Central

    MacInnis, Martin J.

    2016-01-01

    Abstract Interval exercise typically involves repeated bouts of relatively intense exercise interspersed by short periods of recovery. A common classification scheme subdivides this method into high‐intensity interval training (HIIT; ‘near maximal’ efforts) and sprint interval training (SIT; ‘supramaximal’ efforts). Both forms of interval training induce the classic physiological adaptations characteristic of moderate‐intensity continuous training (MICT) such as increased aerobic capacity (V˙O2 max ) and mitochondrial content. This brief review considers the role of exercise intensity in mediating physiological adaptations to training, with a focus on the capacity for aerobic energy metabolism. With respect to skeletal muscle adaptations, cellular stress and the resultant metabolic signals for mitochondrial biogenesis depend largely on exercise intensity, with limited work suggesting that increases in mitochondrial content are superior after HIIT compared to MICT, at least when matched‐work comparisons are made within the same individual. It is well established that SIT increases mitochondrial content to a similar extent to MICT despite a reduced exercise volume. At the whole‐body level, V˙O2 max is generally increased more by HIIT than MICT for a given training volume, whereas SIT and MICT similarly improve V˙O2 max despite differences in training volume. There is less evidence available regarding the role of exercise intensity in mediating changes in skeletal muscle capillary density, maximum stroke volume and cardiac output, and blood volume. Furthermore, the interactions between intensity and duration and frequency have not been thoroughly explored. While interval training is clearly a potent stimulus for physiological remodelling in humans, the integrative response to this type of exercise warrants further attention, especially in comparison to traditional endurance training. PMID:27748956

  11. Effect of vibration on muscle strength imbalance in lower extremity using multi-control whole body vibration platform.

    PubMed

    Yu, Chang Ho; Seo, Shin Bae; Kang, Seung Rok; Kim, Kyung; Kwon, Tae Kyu

    2015-01-01

    This study shows the improvement of muscle activity and muscle strength imbalance in the lower extremities through independent exercise loads in vibration platform. Twenty females of age 20 participated in this study. The subjects were divided into WBV group, with more than 10% of muscle strength imbalance between left and right the lower extremities, and control group, with less than 10% of muscle strength imbalance between left and right the lower extremities. As the prior experiment showed, different exercise postures provide different muscular activities. As a result, the highest muscular activity was found to be in the low squat posture. Therefore, the LS posture was selected for the exercise in this experiment. Vibration intensities were applied to dominant muscle and non-dominant muscle, and the vibration frequency was fixed at 25Hz for the WBV group. The control group was asked to perform the same exercise as the WBV group, without stimulated vibration. This exercise was conducted for a total of 4 weeks. As a result, the WBV group which showed an average deviation of 16% before the experiment, tended to decrease approximately to 5%. In this study, vibration exercise using load deviation is shown to be effective in improving the muscle strength imbalance.

  12. The perceived feasibility and acceptability of a conceptually challenging exercise training program in older adults.

    PubMed

    Miller, Clint T; Teychenne, Megan; Maple, Jaimie-Lee

    2018-01-01

    Exercise training is an essential component of falls prevention strategies, but they do not fully address components of physical function that leads to falls. The training approaches to achieve this may not be perceived as appropriate or even feasible in older adults. This study aims to assess the perceived feasibility and acceptability of novel exercise training approaches not usually prescribed to older adults. Fourteen adults were exposed to conceptually and physically demanding exercises. Interviews were then conducted to determine perceptions and acceptability of individual exercise tasks. Qualitative thematic analysis was used to identify themes. Safety and confidence, acceptability, and population participation were the key themes identified. Staff knowledge, presence, program design, and overt safety equipment were important for alleviating initial apprehension. Although physically demanding, participants expressed satisfaction when challenged. Prior disposition, understanding the value, and the appeal of novel exercises were perceived to influence program engagement. Given the evidence for acceptability, this type of training is feasible and may be appropriate as part of an exercise training program for older adults. Further research should be conducted to confirm that the physical adaptations to exercise training approaches as presented in this study occur in a similar manner to that observed in younger adults, and to also determine whether these adaptations lead to prolonged independence and reduced falls in older adults compared to usual care.

  13. A framework for prescription in exercise-oncology research†

    PubMed Central

    Sasso, John P; Eves, Neil D; Christensen, Jesper F; Koelwyn, Graeme J; Scott, Jessica; Jones, Lee W

    2015-01-01

    The field of exercise-oncology has increased dramatically over the past two decades, with close to 100 published studies investigating the efficacy of structured exercise training interventions in patients with cancer. Of interest, despite considerable differences in study population and primary study end point, the vast majority of studies have tested the efficacy of an exercise prescription that adhered to traditional guidelines consisting of either supervised or home-based endurance (aerobic) training or endurance training combined with resistance training, prescribed at a moderate intensity (50–75% of a predetermined physiological parameter, typically age-predicted heart rate maximum or reserve), for two to three sessions per week, for 10 to 60 min per exercise session, for 12 to 15 weeks. The use of generic exercise prescriptions may, however, be masking the full therapeutic potential of exercise treatment in the oncology setting. Against this background, this opinion paper provides an overview of the fundamental tenets of human exercise physiology known as the principles of training, with specific application of these principles in the design and conduct of clinical trials in exercise-oncology research. We contend that the application of these guidelines will ensure continued progress in the field while optimizing the safety and efficacy of exercise treatment following a cancer diagnosis. PMID:26136187

  14. A pilot study on quantification of training load: The use of HRV in training practice.

    PubMed

    Saboul, Damien; Balducci, Pascal; Millet, Grégoire; Pialoux, Vincent; Hautier, Christophe

    2016-01-01

    Recent laboratory studies have suggested that heart rate variability (HRV) may be an appropriate criterion for training load (TL) quantification. The aim of this study was to validate a novel HRV index that may be used to assess TL in field conditions. Eleven well-trained long-distance male runners performed four exercises of different duration and intensity. TL was evaluated using Foster and Banister methods. In addition, HRV measurements were performed 5 minutes before exercise and 5 and 30 minutes after exercise. We calculated HRV index (TLHRV) based on the ratio between HRV decrease during exercise and HRV increase during recovery. HRV decrease during exercise was strongly correlated with exercise intensity (R = -0.70; p < 0.01) but not with exercise duration or training volume. TLHRV index was correlated with Foster (R = 0.61; p = 0.01) and Banister (R = 0.57; p = 0.01) methods. This study confirms that HRV changes during exercise and recovery phase are affected by both intensity and physiological impact of the exercise. Since the TLHRV formula takes into account the disturbance and the return to homeostatic balance induced by exercise, this new method provides an objective and rational TL index. However, some simplification of the protocol measurement could be envisaged for field use.

  15. Automated Management of Exercise Intervention at the Point of Care: Application of a Web-Based Leg Training System

    PubMed Central

    2015-01-01

    Background Recent advances in information and communication technology have prompted development of Web-based health tools to promote physical activity, the key component of cardiac rehabilitation and chronic disease management. Mobile apps can facilitate behavioral changes and help in exercise monitoring, although actual training usually takes place away from the point of care in specialized gyms or outdoors. Daily participation in conventional physical activities is expensive, time consuming, and mostly relies on self-management abilities of patients who are typically aged, overweight, and unfit. Facilitation of sustained exercise training at the point of care might improve patient engagement in cardiac rehabilitation. Objective In this study we aimed to test the feasibility of execution and automatic monitoring of several exercise regimens on-site using a Web-enabled leg training system. Methods The MedExercise leg rehabilitation machine was equipped with wireless temperature sensors in order to monitor its usage by the rise of temperature in the resistance unit (Δt°). Personal electronic devices such as laptop computers were fitted with wireless gateways and relevant software was installed to monitor the usage of training machines. Cloud-based software allowed monitoring of participant training over the Internet. Seven healthy participants applied the system at various locations with training protocols typically used in cardiac rehabilitation. The heart rates were measured by fingertip pulse oximeters. Results Exercising in home chairs, in bed, and under an office desk was made feasible and resulted in an intensity-dependent increase of participants’ heart rates and Δt° in training machine temperatures. Participants self-controlled their activities on smart devices, while a supervisor monitored them over the Internet. Individual Δt° reached during 30 minutes of moderate-intensity continuous training averaged 7.8°C (SD 1.6). These Δt° were used as personalized daily doses of exercise with automatic email alerts sent upon achieving them. During 1-week training at home, automatic notifications were received on 4.4 days (SD 1.8). Although the high intensity interval training regimen was feasible on-site, it was difficult for self- and remote management. Opportunistic leg exercise under the desk, while working with a computer, and training in bed while viewing television were less intensive than dosed exercise bouts, but allowed prolonged leg mobilization of 73.7 minutes/day (SD 29.7). Conclusions This study demonstrated the feasibility of self-control exercise training on-site, which was accompanied by online monitoring, electronic recording, personalization of exercise doses, and automatic reporting of adherence. The results suggest that this technology and its applications are useful for the delivery of Web-based exercise rehabilitation and cardiac training programs at the point of care. PMID:28582243

  16. Exercise training improves peak oxygen consumption and haemodynamics in patients with severe pulmonary arterial hypertension and inoperable chronic thrombo-embolic pulmonary hypertension: a prospective, randomized, controlled trial

    PubMed Central

    Ehlken, Nicola; Lichtblau, Mona; Klose, Hans; Weidenhammer, Johannes; Fischer, Christine; Nechwatal, Robert; Uiker, Sören; Halank, Michael; Olsson, Karen; Seeger, Werner; Gall, Henning; Rosenkranz, Stephan; Wilkens, Heinrike; Mertens, Dirk; Seyfarth, Hans-Jürgen; Opitz, Christian; Ulrich, Silvia; Egenlauf, Benjamin; Grünig, Ekkehard

    2016-01-01

    Abstract Aims The impact of exercise training on the right heart and pulmonary circulation has not yet been invasively assessed in patients with pulmonary hypertension (PH) and right heart failure. This prospective randomized controlled study investigates the effects of exercise training on peak VO2/kg, haemodynamics, and further clinically relevant parameters in PH patients. Methods and results Eighty-seven patients with pulmonary arterial hypertension and inoperable chronic thrombo-embolic PH (54% female, 56 ± 15 years, 84% World Health Organization functional class III/IV, 53% combination therapy) on stable disease-targeted medication were randomly assigned to a control and training group. Medication remained unchanged during the study period. Non-invasive assessments and right heart catheterization at rest and during exercise were performed at baseline and after 15 weeks. Primary endpoint was the change in peak VO2/kg. Secondary endpoints included changes in haemodynamics. For missing data, multiple imputation and responder analyses were performed. The study results showed a significant improvement of peak VO2/kg in the training group (difference from baseline to 15 weeks: training +3.1 ± 2.7 mL/min/kg equals +24.3% vs. control −0.2 ± 2.3 mL/min/kg equals +0.9%, P < 0.001). Cardiac index (CI) at rest and during exercise, mean pulmonary arterial pressure, pulmonary vascular resistance, 6 min walking distance, quality of life, and exercise capacity significantly improved by exercise training. Conclusion Low-dose exercise training at 4–7 days/week significantly improved peak VO2/kg, haemodynamics, and further clinically relevant parameters. The improvements of CI at rest and during exercise indicate that exercise training may improve the right ventricular function. Further, large multicentre trials are necessary to confirm these results. PMID:26231884

  17. Military Applicability of Interval Training for Health and Performance.

    PubMed

    Gibala, Martin J; Gagnon, Patrick J; Nindl, Bradley C

    2015-11-01

    Militaries from around the globe have predominantly used endurance training as their primary mode of aerobic physical conditioning, with historical emphasis placed on the long distance run. In contrast to this traditional exercise approach to training, interval training is characterized by brief, intermittent bouts of intense exercise, separated by periods of lower intensity exercise or rest for recovery. Although hardly a novel concept, research over the past decade has shed new light on the potency of interval training to elicit physiological adaptations in a time-efficient manner. This work has largely focused on the benefits of low-volume interval training, which involves a relatively small total amount of exercise, as compared with the traditional high-volume approach to training historically favored by militaries. Studies that have directly compared interval and moderate-intensity continuous training have shown similar improvements in cardiorespiratory fitness and the capacity for aerobic energy metabolism, despite large differences in total exercise and training time commitment. Interval training can also be applied in a calisthenics manner to improve cardiorespiratory fitness and strength, and this approach could easily be incorporated into a military conditioning environment. Although interval training can elicit physiological changes in men and women, the potential for sex-specific adaptations in the adaptive response to interval training warrants further investigation. Additional work is needed to clarify adaptations occurring over the longer term; however, interval training deserves consideration from a military applicability standpoint as a time-efficient training strategy to enhance soldier health and performance. There is value for military leaders in identifying strategies that reduce the time required for exercise, but nonetheless provide an effective training stimulus.

  18. Acute responses to exercise training and relationship with exercise adherence in moderate chronic obstructive pulmonary disease.

    PubMed

    Rizk, Amanda K; Wardini, Rima; Chan-Thim, Emilie; Bacon, Simon L; Lavoie, Kim L; Pepin, Véronique

    2015-11-01

    The objectives of our study were to (i) compare, in chronic obstructive pulmonary disease (COPD) patients, acute responses to continuous training at high intensity (CTHI), continuous training at ventilatory threshold (CTVT) and interval training (IT); (ii) examine associations between acute responses and 12-week adherence; and (iii) investigate whether the relationship between acute responses and adherence is mediated/moderated by affect/vigour. Thirty-five COPD patients (forced expiratory volume in 1 second = 60.2 ± 15.8% predicted), underwent baseline assessments, were randomly assigned to CTHI, CTVT or IT, were monitored throughout about before training, and underwent 12 weeks of exercise training during which adherence was tracked. Compared with CTHI, CTVT was associated with lower respiratory exchange ratio, heart rate and respiratory rate (RR), while IT induced higher [Formula: see text], [Formula: see text]maximal voluntary ventilation, RR and lower pulse oxygen saturation. From pre- to post-exercise, positive affect increased (F = 9.74, p < 0.001) and negative affect decreased (F = 6.43, p = 0.005) across groups. CTVT reported greater end-exercise vigour compared to CTHI (p = 0.01) and IT (p = 0.02). IT exhibited lowest post-exercise vigour (p = 0.04 versus CTHI, p = 0.02 versus CTVT) and adherence rate (F = 6.69, p = 0.004). Mean [Formula: see text] (r = -0.466, p = 0.007) and end-exercise vigour (r = 0.420, p = 0.017) were most strongly correlated with adherence. End-exercise vigour moderated the relationship between [Formula: see text] and adherence (β = 2.74, t(32) = 2.32, p = 0.03). In summary, CTHI, CTVT and IT improved affective valence from rest to post-exercise and induced a significant 12-week exercise training effect. However, they elicited different acute physiological responses, which in turn were associated with differences in 12-week adherence to the target training intensity. This association was moderated by acute end-exercise vigour. © The Author(s) 2015.

  19. Moderate Load Eccentric Exercise; A Distinct Novel Training Modality

    PubMed Central

    Hoppeler, Hans

    2016-01-01

    Over the last 20 years a number of studies have been published using progressive eccentric exercise protocols on motorized ergometers or similar devices that allow for controlled application of eccentric loads. Exercise protocols ramp eccentric loads over an initial 3 weeks period in order to prevent muscle damage and delayed onset muscle soreness. Final training loads reach 400–500 W in rehabilitative settings and over 1200 W in elite athletes. Training is typically carried out three times per week for durations of 20–30 min. This type of training has been characterizes as moderate load eccentric exercise. It has also been denoted RENEW (Resistance Exercise via Negative Eccentric Work by LaStayo et al., 2014). It is distinct from plyometric exercises (i.e., drop jumps) that impose muscle loads of several thousand Watts on muscles and tendons. It is also distinct from eccentric overload training whereby loads in a conventional strength training setting are increased in the eccentric phase of the movement to match concentric loads. Moderate load eccentric exercise (or RENEW) has been shown to be similarly effective as conventional strength training in increasing muscle strength and muscle volume. However, as carried out at higher angular velocities of joint movement, it reduces joint loads. A hallmark of moderate load eccentric exercise is the fact that the energy requirements are typically 4-fold smaller than in concentric exercise of the same load. This makes moderate load eccentric exercise training the tool of choice in medical conditions with limitations in muscle energy supply. The use and effectiveness of moderate load eccentric exercise has been demonstrated mostly in small scale studies for cardiorespiratory conditions, sarcopenia of old age, cancer, diabetes type 2, and neurological conditions. It has also been used effectively in the prevention and rehabilitation of injuries of the locomotor system in particular the rehabilitation after anterior cruciate ligament surgery. PMID:27899894

  20. A systematic review of the effects of different types of therapeutic exercise on physiologic and functional measurements in patients with HIV/AIDS

    PubMed Central

    Gomes-Neto, Mansueto; Conceição, Cristiano Sena; Carvalho, Vitor Oliveira; Brites, Carlos

    2013-01-01

    Several studies have reported the benefits of exercise training for adults with HIV, although there is no consensus regarding the most efficient modalities. The aim of this study was to determine the effects of different types of exercise on physiologic and functional measurements in patients with HIV using a systematic strategy for searching randomized controlled trials. The sources used in this review were the Cochrane Library, EMBASE, MEDLINE, and PEDro from 1950 to August 2012. We selected randomized controlled trials examining the effects of exercise on body composition, muscle strength, aerobic capacity, and/or quality of life in adults with HIV. Two independent reviewers screened the abstracts using the Cochrane Collaboration's protocol. The PEDro score was used to evaluate methodological quality. In total, 29 studies fulfilled the inclusion criteria. Individual studies suggested that exercise training contributed to improvement of physiologic and functional parameters, but that the gains were specific to the type of exercise performed. Resistance exercise training improved outcomes related to body composition and muscle strength, with little impact on quality of life. Aerobic exercise training improved body composition and aerobic capacity. Concurrent training produced significant gains in all outcomes evaluated, although moderate intensity and a long duration were necessary. We concluded that exercise training was shown to be a safe and beneficial intervention in the treatment of patients with HIV. PMID:24037014

  1. Comparison of two techniques of robot-aided upper limb exercise training after stroke.

    PubMed

    Stein, Joel; Krebs, Hermano Igo; Frontera, Walter R; Fasoli, Susan E; Hughes, Richard; Hogan, Neville

    2004-09-01

    This study examined whether incorporating progressive resistive training into robot-aided exercise training provides incremental benefits over active-assisted robot-aided exercise for the upper limb after stroke. A total of 47 individuals at least 1 yr poststroke were enrolled in this 6-wk training protocol. Paretic upper limb motor abilities were evaluated using clinical measures and a robot-based assessment to determine eligibility for robot-aided progressive resistive training at study entry. Subjects capable of participating in resistance training were randomized to receive either active-assisted robot-aided exercises or robot-aided progressive resistance training. Subjects who were incapable of participating in resistance training underwent active-assisted robotic therapy and were again screened for eligibility after 3 wks of robotic therapy. Those subjects capable of participating in resistance training at 3 wks were then randomized to receive either robot-aided resistance training or to continue with robot-aided active-assisted training. One subject withdrew due to unrelated medical issues, and data for the remaining 46 subjects were analyzed. Subjects in all groups showed improvement in measures of motor control (mean increase in Fugl-Meyer of 3.3; 95% confidence interval, 2.2-4.4) and maximal force (mean increase in maximal force of 3.5 N, P = 0.027) over the course of robot-aided exercise training. No differences in outcome measures were observed between the resistance training groups and the matched active-assisted training groups. Subjects' ability to perform the robotic task at the time of group assignment predicted the magnitude of the gain in motor control. The incorporation of robot-aided progressive resistance exercises into a program of robot-aided exercise did not favorably or negatively affect the gains in motor control or strength associated with this training, though interpretation of these results is limited by sample size. Individuals with better motor control at baseline experienced greater increases in motor control with robotic training.

  2. Longitudinal changes in reproductive hormones and menstrual cyclicity in cynomolgus monkeys during strenuous exercise training: abrupt transition to exercise-induced amenorrhea.

    PubMed

    Williams, N I; Caston-Balderrama, A L; Helmreich, D L; Parfitt, D B; Nosbisch, C; Cameron, J L

    2001-06-01

    Cross-sectional studies of exercise-induced reproductive dysfunction have documented a high proportion of menstrual cycle disturbances in women involved in strenuous exercise training. However, longitudinal studies have been needed to examine individual susceptibility to exercise-induced reproductive dysfunction and to elucidate the progression of changes in reproductive function that occur with strenuous exercise training. Using the female cynomolgus monkey (Macaca fascicularis), we documented changes in menstrual cyclicity and patterns of LH, FSH, estradiol, and progesterone secretion as the animals developed exercise-induced amenorrhea. As monkeys gradually increased running to 12.3 +/- 0.9 km/day, body weight did not change significantly although food intake remained constant. The time spent training until amenorrhea developed varied widely among animals (7-24 months; mean = 14.3 +/- 2.2 months) and was not correlated with initial body weight, training distance, or food intake. Consistent changes in function of the reproductive axis occurred abruptly, one to two menstrual cycles before the development of amenorrhea. These included significant declines in plasma reproductive hormone concentrations, an increase in follicular phase length, and a decrease in luteal phase progesterone secretion. These data document a high level of interindividual variability in the development of exercise-induced reproductive dysfunction, delineate the progression of changes in reproductive hormone secretion that occur with exercise training, and illustrate an abrupt transition from normal cyclicity to an amenorrheic state in exercising individuals, that is not necessarily associated with weight loss.

  3. 16 Weeks of Training with the International Space Station Advanced Resistive Exercise Device (aRED) Is not Different than Training with Free Weights

    NASA Technical Reports Server (NTRS)

    Loehr, J. A.; Lee, S. M. C.; English, K. E.; Leach, M.; Bentley, J.; Nash, R.; Hagan, R. D.

    2008-01-01

    The advanced Resistive Exercise Device (aRED) is a resistive exercise system designed to maintain muscle mass and strength in microgravity by simulating free weight (FW) exercise. aRED utilizes vacuum cylinders and inertial flywheels to replicate the constant mass and inertial components, respectively, of FW exercise in normal gravity. PURPOSE: To compare the effectiveness of aRED and FW resistive exercise training in ambulatory subjects. METHODS: Untrained subjects were assigned to two groups, FW (6 males, 3 females) and aRED (8 males, 3 females), and performed squat (SQ), heel raise (HR), and deadlift (DL) exercises 3 d wk-1 for 16 wks. SQ, HR and DL strength (1RM) were measured using FW hardware pre-, mid- and post-training. Subjects participated in a periodized training protocol with the exercise prescription based on a percentage of 1RM. Thigh and lower leg muscle volume were assessed using Magnetic Resonance Imaging (MRI), and leg (LLM) and total body lean mass (BLM) were measured using Dual Energy X-ray Absorptiometry (DXA) pre- and post-training. RESULTS: SQ 1RM increased in both FW (48.9+/-6.1%) and aRED (31.2+/-3.8%) groups, and there was a greater training response in FW compared with aRED (p=0.01). HR and DL 1RM increased in FW (HR: 12.3+/-2.4%, DL: 23.3+/-4.4%) and aRED (HR: 18.0+/-1.6%, DL: 23.2+'-2.8%), but there were no differences between groups. Thigh muscle volume was greater following training in both groups (FW: 9.8+/-0.9%, aRED: 7.1+/-1.2%) but lower leg muscle volume increased only in the FW group (3.0+/-1.1%). Lean tissue mass increased in both FW (LLM: 3.9+/-1.1%, BLM: 2.5+/-0.7%) and aRED (LLM: 4.8+/-0.7%, BLM: 2.6 0.7%). There were no between group differences in muscle volume or lean mass in response to training. CONCLUSIONS: In general, the increase in muscle strength, muscle volume, and lean tissue mass when training with aRED was not different than when using the same training protocol with FW. The smaller increase in SQ 1RM in the aRED group may be the result of undersizing the aRED flywheels which were intended to mimic the inertial component of the SQ movement when performing FW exercises. However, the biomechanical differences observed in body position during the performance of the aRED SQ, which may have affected training and testing, cannot be excluded as a factor that may have affected SQ 1RM results. PRACTICAL APPLICATIONS: Improvements in muscle strength, muscle volume and lean mass similar to FW exercise training may be elicited using an alternative source of resistance during exercise training. The acceleration of a mass during resistive exercise may result in greater muscle tension when changing the direction of movement resulting in enhanced strength gains. Therefore, to maximize the benefits of resistive exercise, the inertial components of FW exercise should be considered during exercise selection and hardware design. ACKNOWLEDGEMENT: This investigation was supported by NASA-JSC s Exercise Countermeasures Project.

  4. Alternative to traditional stretching methods for flexibility enhancement in well-trained combat athletes: local vibration versus whole-body vibration.

    PubMed

    Kurt, C

    2015-09-01

    This study aimed to compare the effect of local vibration (LV) and whole body vibration (WBV) on lower body flexibility and to assess whether vibration treatments were more effective than traditionally used static and dynamic stretching methods. Twenty-four well-trained male combat athletes (age: 22.7 ± 3.3 years) performed four exercise protocols - LV (30 Hz, 4 mm), WBV (30 Hz, 4 mm), static stretching (SS), and dynamic stretching (DS) - in four sessions of equal duration 48 hours apart in a randomized, balanced order. During a 15-minute recovery after each protocol, subjects performed the stand and reach test (S&R) at the 15th second and the 2(nd), 4(th), 6(th), 8(th), 10(th) and 15(th) minute. There was a similar change pattern in S&R scores across the 15-minute recovery after each protocol (p = 0.572), remaining significantly elevated throughout the recovery. A significant main protocol effect was found for absolute change in S&R scores relative to baseline (p = 0.015). These changes were statistically greater in LV than WBV and DS. Changes in SS were not significantly different from LV, but were consistently lower than LV with almost moderate effect sizes. After LV, a greater percentage of subjects increased flexibility above the minimum detectable change compared to other protocols. Subjects with high flexibility (n = 12) benefited more from LV compared with other methods (effect size ≥ 0.862). In conclusion, LV was an effective alternative exercise modality to acutely increase lower extremity flexibility for well-trained athletes compared with WBV and traditional stretching exercises.

  5. Forced Aerobic Exercise Preceding Task Practice Improves Motor Recovery Poststroke.

    PubMed

    Linder, Susan M; Rosenfeldt, Anson B; Dey, Tanujit; Alberts, Jay L

    To understand how two types of aerobic exercise affect upper-extremity motor recovery post-stroke. Our aims were to (1) evaluate the feasibility of having people who had a stroke complete an aerobic exercise intervention and (2) determine whether forced or voluntary exercise differentially facilitates upper-extremity recovery when paired with task practice. Seventeen participants with chronic stroke completed twenty-four 90-min sessions over 8 wk. Aerobic exercise was immediately followed by task practice. Participants were randomized to forced or voluntary aerobic exercise groups or to task practice only. Improvement on the Fugl-Meyer Assessment exceeded the minimal clinically important difference: 12.3, 4.8, and 4.4 for the forced exercise, voluntary exercise, and repetitive task practice-only groups, respectively. Only the forced exercise group exhibited a statistically significant improvement. People with chronic stroke can safely complete intensive aerobic exercise. Forced aerobic exercise may be optimal in facilitating motor recovery associated with task practice. Copyright © 2017 by the American Occupational Therapy Association, Inc.

  6. Effects of Long-Term Exercise Interventions on Glycaemic Control in Type 1 and Type 2 Diabetes: a Systematic Review.

    PubMed

    Röhling, M; Herder, C; Roden, M; Stemper, T; Müssig, K

    2016-09-01

    Aim: Physical activity is one of the cornerstones in the prevention and management of diabetes mellitus, but the effects of different training forms on metabolic control still remain unclear. The aims of this review are to summarize the recommendations of 5 selected diabetes associations and to systematically review the effects of long-term supervised exercise interventions without calorie-restriction on glycemic control in people with type 1 and 2 diabetes focusing on resistance, endurance and combined training consisting of both endurance and resistance training. Methods: Literature searches were performed using MEDLINE for articles published between January 1, 2000 and March 17, 2015. Of 76 articles retrieved, 15 randomized and controlled studies met the inclusion criteria and allowed for examining the effect of exercise training in type 1 and 2 diabetes. Results: Diabetes associations recommend volume-focused exercise in their guidelines. In our analysis, all 3 training forms have the potential to improve the glycemic control, as assessed by HbA 1c (absolute changes in HbA 1c ranging from -0.1% to -1.1% (-1.1 to -12 mmol/mol) in resistance training, from -0.2% to -1.6% (-2.2 to -17.5 mmol/mol) in endurance training and from +0.1% to -1.5% (+1.1 to -16.4 mmol/mol) in combined training, respectively). Conclusions: There is evidence that combined exercise training may improve glycemic control to a greater extent than single forms of exercise, especially under moderate-intensive training conditions with equal training durations. In addition, intensity of training appears to be an important determinant of the degree of metabolic improvement. Nonetheless, it is still unknown to what extent exercise effects glycemic homeostasis. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Interservice/Industry Training, Simulation and Conference. Abstracts.

    DTIC Science & Technology

    1999-12-02

    solutions in the areas of military training, exercises and planning. The resulting loss of the ’reality’ in conventional live exercises due to...view, such as that required for driver training or aerial combat. VR headsets have a distracting weight and inertia that makes them unsuitable for...exercises and planning. The resulting loss of the ’reality’ in conventional live exercises due to restrictions in the availability of supporting

  8. Exercise training in adults with repaired tetralogy of Fallot: A randomized controlled pilot study of continuous versus interval training.

    PubMed

    Novaković, Marko; Prokšelj, Katja; Rajkovič, Uroš; Vižintin Cuderman, Tjaša; Janša Trontelj, Katja; Fras, Zlatko; Jug, Borut

    2018-03-15

    Adults with repaired tetralogy of Fallot (ToF) have impaired exercise capacity, vascular and cardiac autonomic function, and quality of life (QoL). Specific effects of high-intensity interval or moderate continuous exercise training on these parameters in adults with repaired ToF remain unknown. Thirty adults with repaired ToF were randomized to either high-intensity interval, moderate intensity continuous training (36 sessions, 2-3 times a week) or usual care (no supervised exercise). Exercise capacity, flow-mediated vasodilation, pulse wave velocity, NT-proBNP and fibrinogen levels, heart rate variability and recovery, and QoL (SF-36 questionnaire) were determined at baseline and after the intervention period. Twenty-seven patients (mean age 39±9years, 63% females, 9 from each group) completed this pilot study. Both training groups improved in at least some parameters of cardiovascular health compared to no exercise. Interval-but not continuous-training improved VO2peak (21.2 to 22.9ml/kg/min, p=0.004), flow-mediated vasodilation (8.4 to 12.9%, p=0.019), pulse wave velocity (5.4 to 4.8m/s, p=0.028), NT-proBNP (202 to 190ng/L, p=0.032) and fibrinogen levels (2.67 to 2.46g/L, p=0.018). Conversely, continuous-but not interval-training improved heart rate variability (low-frequency domain, 0.32 to 0.22, p=0.039), heart rate recovery after 2min post-exercise (40 to 47 beats, p=0.023) and mental domain of SF-36 (87 to 95, p=0.028). Both interval and continuous exercise training modalities were safe. Interval training seems more efficacious in improving exercise capacity, vascular function, NT-proBNP and fibrinogen levels, while continuous training seems more efficacious in improving cardiac autonomic function and QoL. (Clinicaltrials.gov, NCT02643810). Copyright © 2018 Elsevier Ireland Ltd. All rights reserved.

  9. Risks and Benefits of Exercise Training in Adults With Congenital Heart Disease.

    PubMed

    Chaix, Marie-A; Marcotte, François; Dore, Annie; Mongeon, François-Pierre; Mondésert, Blandine; Mercier, Lise-Andrée; Khairy, Paul

    2016-04-01

    Exercise capacity in adults with various forms of congenital heart disease is substantially lower than that of the general population. Although the underlying congenital heart defect, and its sequelae, certainly contribute to observed exercise limitations, there is evidence suggesting that deconditioning and a sedentary lifestyle are important implicated factors. The prevalence of acquired cardiovascular comorbidities is on the increase in the aging population with congenital heart disease, such that obesity and a sedentary lifestyle confer increased risk. Health fears and misconceptions are common barriers to regular physical activity in adults with congenital heart disease, despite evidence linking lower functional capacity to poor outcomes, and data supporting the safety and efficacy of exercise in bestowing numerous physical and psychosocial rewards. With few exceptions, adults with congenital heart disease should be counselled to exercise regularly. In this contemporary review, we provide a practical approach to assessing adults with congenital heart disease before exercise training. We examine available evidence supporting the safety and benefits of exercise training. Risks associated with exercise training in adults with congenital heart disease are discussed, particularly with regard to sudden cardiac death. Finally, recommendations for exercise training are provided, with consideration for the type of congenital heart disease, the nature (ie, static vs dynamic) and intensity (ie, low, medium, high) of the physical activity, and associated factors such as systemic ventricular dysfunction and residual defects. Further research is required to determine optimal exercise regimens and to identify effective strategies to implement exercise training as a key determinant of healthy living. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  10. Cross-training in birds: cold and exercise training produce similar changes in maximal metabolic output, muscle masses and myostatin expression in house sparrows (Passer domesticus).

    PubMed

    Zhang, Yufeng; Eyster, Kathleen; Liu, Jin-Song; Swanson, David L

    2015-07-01

    Maximal metabolic outputs for exercise and thermogenesis in birds presumably influence fitness through effects on flight and shivering performance. Because both summit (Msum, maximum thermoregulatory metabolic rate) and maximum (MMR, maximum exercise metabolic rate) metabolic rates are functions of skeletal muscle activity, correlations between these measurements and their mechanistic underpinnings might occur. To examine whether such correlations occur, we measured the effects of experimental cold and exercise training protocols for 3 weeks on body (Mb) and muscle (Mpec) masses, basal metabolic rate (BMR), Msum, MMR, pectoralis mRNA and protein expression for myostatin, and mRNA expression of TLL-1 and TLL-2 (metalloproteinase activators of myostatin) in house sparrows (Passer domesticus). Both training protocols increased Msum, MMR, Mb and Mpec, but BMR increased with cold training and decreased with exercise training. No significant differences occurred for pectoralis myostatin mRNA expression, but cold and exercise increased the expression of TLL-1 and TLL-2. Pectoralis myostatin protein levels were generally reduced for both training groups. These data clearly demonstrate cross-training effects of cold and exercise in birds, and are consistent with a role for myostatin in increasing pectoralis muscle mass and driving organismal increases in metabolic capacities. © 2015. Published by The Company of Biologists Ltd.

  11. Aquatic Exercise Training is Effective in Maintaining Exercise Performance in Trained Heart Failure Patients: A Randomised Crossover Pilot Trial.

    PubMed

    Adsett, Julie; Morris, Norman; Kuys, Suzanne; Hwang, Rita; Mullins, Robert; Khatun, Mohsina; Paratz, Jennifer; Mudge, Alison

    2017-06-01

    Providing flexible models and a variety of exercise options are fundamental to supporting long-term exercise participation for patients with heart failure (HF). The aim of this pilot study was to determine the feasibility and efficacy of aquatic exercise training during a maintenance phase for a clinical heart failure population. In this 2 x 2 crossover design trial, individuals who had previously completed HF rehabilitation were randomised into either a land-based or aquatic training program once per week for six weeks, after which time they changed to the alternate exercise training protocol for an additional six weeks. Six-minute walk test (6MWT), grip strength, walk speed, and measures of balance were compared for the two training protocols. Fifty-one participants (43 males, mean age 69.2 yrs) contributed data for the analysis. Both groups maintained function during the follow-up period, however improvements in 6MWT were greater in the land-based training group (95% CI: 0.7, 22.5; p=0.038), by a mean difference of 10.8 metres. No significant difference was observed for other parameters when the two training protocols were compared. Attending an aquatic exercise program once per week is feasible for patients with stable HF and may provide a suitable option to maintain functional performance in select patients. Crown Copyright © 2016. Published by Elsevier B.V. All rights reserved.

  12. Effects of Directional Exercise on Lingual Strength

    ERIC Educational Resources Information Center

    Clark, Heather M.; O'Brien, Katy; Calleja, Aimee; Corrie, Sarah Newcomb

    2009-01-01

    Purpose: To examine the application of known muscle training principles to tongue strengthening exercises and to answer the following research questions: (a) Did lingual strength increase following 9 weeks of training? (b) Did training conducted using an exercise moving the tongue in one direction result in strength changes for tongue movements in…

  13. Improved heart rate recovery despite reduced exercise performance following heavy training: A within-subject analysis.

    PubMed

    Thomson, Rebecca L; Bellenger, Clint R; Howe, Peter R C; Karavirta, Laura; Buckley, Jonathan D

    2016-03-01

    The recovery of heart rate (HRR) after exercise is a potential indicator of fitness which has been shown to respond to changes in training. This study investigated the within-individual association between HRR and exercise performance following three different training loads. 11 male cyclists/triathletes were tested after two weeks of light training, two weeks of heavy training and two days of rest. Exercise performance was measured using a 5-min maximal cycling time-trial. HRR was measured over 60s during supine recovery. Exercise performance decreased 2.2±2.5% following heavy training compared with post-light training (p=0.01), and then increased 4.0±4.2% following rest (p=0.004). Most HRR indices indicated a more rapid recovery of heart rate (HR) following heavy training, and reverted to post light training levels following two days of rest. HRR indices did not differ between post-light training and after the rest period (p>0.6). There were inverse within-subject relationships between indices of HRR and performance (r=-0.6, p≤0.004). Peak HR decreased 3.2±5.1bpm following heavy training (p=0.06) and significantly increased 4.9±4.3bpm following recovery (p=0.004). There was a moderate within-subject relationship between peak HR and exercise performance (r=0.7, p≤0.001). Controlling for peak HR reduced the relationships between HRR and performance (r=-0.4-0.5, p<0.05). This study demonstrated that HRR tracks short-term changes in exercise performance within-individuals, such that increases in HRR are associated with poorer exercise performance following heavy training. Peak HR can be compromised under conditions of fatigue, and needs to be taken into account in HRR analyses. Copyright © 2015 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. The Effects of Exercise Training in Addition to Energy Restriction on Functional Capacities and Body Composition in Obese Adults during Weight Loss: A Systematic Review

    PubMed Central

    Miller, Clint T.; Fraser, Steve F.; Levinger, Itamar; Straznicky, Nora E.; Dixon, John B.; Reynolds, John; Selig, Steve E.

    2013-01-01

    Background Obesity is associated with impairments of physical function, cardiovascular fitness, muscle strength and the capacity to perform activities of daily living. This review examines the specific effects of exercise training in relation to body composition and physical function demonstrated by changes in cardiovascular fitness, and muscle strength when obese adults undergo energy restriction. Methods Electronic databases were searched for randomised controlled trials comparing energy restriction plus exercise training to energy restriction alone. Studies published to May 2013 were included if they used multi-component methods for analysing body composition and assessed measures of fitness in obese adults. Results Fourteen RCTs met the inclusion criteria. Heterogeneity of study characteristics prevented meta-analysis. Energy restriction plus exercise training was more effective than energy restriction alone for improving cardiovascular fitness, muscle strength, and increasing fat mass loss and preserving lean body mass, depending on the type of exercise training. Conclusion Adding exercise training to energy restriction for obese middle-aged and older individuals results in favourable changes to fitness and body composition. Whilst weight loss should be encouraged for obese individuals, exercise training should be included in lifestyle interventions as it offers additional benefits. PMID:24409219

  15. Factors Influencing Obstacle Crossing Performance in Patients with Parkinson's Disease

    PubMed Central

    Liao, Ying-Yi; Yang, Yea-Ru; Wu, Yih-Ru; Wang, Ray-Yau

    2014-01-01

    Background Tripping over obstacles is the major cause of falls in community-dwelling patients with Parkinson's disease (PD). Understanding the factors associated with the obstacle crossing behavior may help to develop possible training programs for crossing performance. This study aimed to identify the relationships and important factors determining obstacle crossing performance in patients with PD. Methods Forty-two idiopathic patients with PD (Hoehn and Yahr stages I to III) participated in this study. Obstacle crossing performance was recorded by the Liberty system, a three-dimensional motion capture device. Maximal isometric strength of the lower extremity was measured by a handheld dynamometer. Dynamic balance and sensory integration ability were assessed using the Balance Master system. Movement velocity (MV), maximal excursion (ME), and directional control (DC) were obtained during the limits of stability test to quantify dynamic balance. The sum of sensory organization test (SOT) scores was used to quantify sensory organization ability. Results Both crossing stride length and stride velocity correlated significantly with lower extremity muscle strength, dynamic balance control (forward and sideward), and sum of SOT scores. From the regression model, forward DC and ankle dorsiflexor strength were identified as two major determinants for crossing performance (R2 = .37 to.41 for the crossing stride length, R2 = .43 to.44 for the crossing stride velocity). Conclusions Lower extremity muscle strength, dynamic balance control and sensory integration ability significantly influence obstacle crossing performance. We suggest an emphasis on muscle strengthening exercises (especially ankle dorsiflexors), balance training (especially forward DC), and sensory integration training to improve obstacle crossing performance in patients with PD. PMID:24454723

  16. Learning in a Virtual Environment Using Haptic Systems for Movement Re-Education: Can This Medium Be Used for Remodeling Other Behaviors and Actions?

    PubMed Central

    Merians, Alma S; Fluet, Gerard G; Qiu, Qinyin; Lafond, Ian; Adamovich, Sergei V

    2011-01-01

    Robotic systems that are interfaced with virtual reality gaming and task simulations are increasingly being developed to provide repetitive intensive practice to promote increased compliance and facilitate better outcomes in rehabilitation post-stroke. A major development in the use of virtual environments (VEs) has been to incorporate tactile information and interaction forces into what was previously an essentially visual experience. Robots of varying complexity are being interfaced with more traditional virtual presentations to provide haptic feedback that enriches the sensory experience and adds physical task parameters. This provides forces that produce biomechanical and neuromuscular interactions with the VE that approximate real-world movement more accurately than visual-only VEs, simulating the weight and force found in upper extremity tasks. The purpose of this article is to present an overview of several systems that are commercially available for ambulation training and for training movement of the upper extremity. We will also report on the system that we have developed (NJIT-RAVR system) that incorporates motivating and challenging haptic feedback effects into VE simulations to facilitate motor recovery of the upper extremity post-stroke. The NJIT-RAVR system trains both the upper arm and the hand. The robotic arm acts as an interface between the participants and the VEs, enabling multiplanar movements against gravity in a three-dimensional workspace. The ultimate question is whether this medium can provide a motivating, challenging, gaming experience with dramatically decreased physical difficulty levels, which would allow for participation by an obese person and facilitate greater adherence to exercise regimes. PMID:21527097

  17. Influence of training and competitive sessions on peripheral β-endorphin levels in training show jumping horses.

    PubMed

    Cravana, Cristina; Medica, P; Ragonese, G; Fazio, E

    2017-01-01

    To investigate the effects of training sessions on circulating β-endorphin changes in sport horses before and after competition and to ascertain whether competition would affect this response. A total of 24 trained jumping horses were randomly assigned to one of two training groups: Group A (competing) and Group B (not competing). To determined plasma β-endorphin concentrations, two pre- and post-competition training weeks at aerobic workout and two competitive show jumping event days at anaerobic workout were measured before, 5 and 30 min after exercise. Exercise intensity is described using lactate concentrations and heart rate. The circuit design, intensity, and duration of training sessions were the same for both groups. In Group A, one-way analysis of variance for repeated measures (RM-ANOVA) showed significant effects of exercise on β-endorphin changes (F=14.41; p<0.001), only in the post-competition training sessions, while in Group B showed no significant effects. Two-way RM-ANOVA showed, after post-competition training sessions, a significant difference between Group A and Group B (F=6.235; p=0.023), with higher β-endorphin changes in Group A, compared to Group B. During the competitive show jumping sessions, one-way RM ANOVA showed significant effects of exercise on β-endorphin changes (F=51.10; p<0.001). The statistical analysis, in Group A, showed a significant difference between post-competition training and competitive exercise (F=6.32; p=0.024) with higher β-endorphin values in competitive sessions compared to those of post-competition training. Lactate concentrations seem to be the main factors being correlated with the raise of β-endorphin during anaerobic exercise of competitive events. Exercise of low intensity, as well as that one of training sessions, does not appear to stimulate a significant increased release of β-endorphin and it may depend on the duration of the exercise program. Moreover, the responses during exercise in the course of post-competition training sessions seem to be significantly different from those the pre-competition training. These data show that the preliminary competitive stress induced additional significant changes of β-endorphin pattern. It would reflect the need of a long-lasting modulation of fatigue and pain perception related to the effect of an additional physical and mental effort for the consecutive competitive and training sessions.

  18. Enhanced Training for Cyber Situational Awareness in Red versus Blue Team Exercises

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carbajal, Armida J.; Stevens-Adams, Susan Marie; Silva, Austin Ray

    This report summarizes research conducted through the Sandia National Laboratories Enhanced Training for Cyber Situational Awareness in Red Versus Blue Team Exercises Laboratory Directed Research and Development project. The objective of this project was to advance scientific understanding concerning how to best structure training for cyber defenders. Two modes of training were considered. The baseline training condition (Tool-Based training) was based on current practices where classroom instruction focuses on the functions of a software tool with various exercises in which students apply those functions. In the second training condition (Narrative-Based training), classroom instruction addressed software functions, but in the contextmore » of adversary tactics and techniques. It was hypothesized that students receiving narrative-based training would gain a deeper conceptual understanding of the software tools and this would be reflected in better performance within a red versus blue team exercise.« less

  19. Physical activity participation and constraints among athletic training students.

    PubMed

    Stanek, Justin; Rogers, Katherine; Anderson, Jordan

    2015-02-01

    Researchers have examined the physical activity (PA) habits of certified athletic trainers; however, none have looked specifically at athletic training students. To assess PA participation and constraints to participation among athletic training students. Cross-sectional study. Entry-level athletic training education programs (undergraduate and graduate) across the United States. Participants were 1125 entry-level athletic training students. Self-reported PA participation, including a calculated PA index based on a typical week. Leisure constraints and demographic data were also collected. Only 22.8% (252/1105) of athletic training students were meeting the American College of Sports Medicine recommendations for PA through moderate-intensity cardiorespiratory exercise. Although 52.3% (580/1105) were meeting the recommendations through vigorous-intensity cardiorespiratory exercise, 60.5% (681/1125) were meeting the recommendations based on the combined total of moderate or vigorous cardiorespiratory exercise. In addition, 57.2% (643/1125) of respondents met the recommendations for resistance exercise. Exercise habits of athletic training students appear to be better than the national average and similar to those of practicing athletic trainers. Students reported structural constraints such as lack of time due to work or studies as the most significant barrier to exercise participation. Athletic training students experienced similar constraints to PA participation as practicing athletic trainers, and these constraints appeared to influence their exercise participation during their entry-level education. Athletic training students may benefit from a greater emphasis on work-life balance during their entry-level education to promote better health and fitness habits.

  20. Epidemiological patterns of traumatic musculoskeletal injuries and non-traumatic disorders in Japan Self-Defense Forces.

    PubMed

    Amako, Masatoshi; Yato, Yoshiyuki; Yoshihara, Yasuo; Arino, Hiroshi; Sasao, Hiroshi; Nemoto, Osamu; Imai, Tomohito; Sugihara, Atsushi; Tsukazaki, Satoshi; Sakurai, Yutaka; Nemoto, Koichi

    2018-05-01

    The epidemiological patterns of musculoskeletal injuries or disorders in military personnel have not been well documented and a better understanding is required for proper preventative measures and treatment. Here, we investigated musculoskeletal injuries or disorders among members of the Japan Self-Defense Forces. All orthopedic patients (n = 22,340) who consulted to Japan Self-Defense Forces Hospitals were investigated for their type of injury or disorder, the injured body part, the mechanism, and the cause of injuries. Thirty-nine percent of the cases were classified as traumatic injuries, and 61% were classified as non-traumatic disorders. Of the traumatic injury patients, the injured body part was the upper extremity in 32%, the trunk in 23%, and the lower extremities in 45% of the cases. The most common injured body location was the knee followed by the hand/finger and ankle. Exercise was the most common cause of injury, followed by traffic accident and military training. Contusions were the most common traumatic injuries, followed by sprains and fractures. Of non-traumatic disorders, the lower extremities were reported as the injured part in 43% of the disorders. Lumbar spine disorders were the most common non-traumatic disorders, followed by tendon and joint disorders. Over one-third of orthopedic cases among members of the Japan Self-Defense Forces are traumatic injuries, with the knee being the body part most commonly injured and exercise being the leading cause of injury.

  1. Black tea high-molecular-weight polyphenol stimulates exercise training-induced improvement of endurance capacity in mouse via the link between AMPK and GLUT4.

    PubMed

    Eguchi, Tomoaki; Kumagai, Chiaki; Fujihara, Takashi; Takemasa, Thoru; Ozawa, Tetsuo; Numata, Osamu

    2013-01-01

    Aerobic exercise can promote "fast-to-slow transition" in skeletal muscles, i.e. an increase in oxidative fibers, mitochondria, and myoglobin and improvement in glucose and lipid metabolism. Here, we found that mice administered Mitochondria Activation Factor (MAF) combined with exercise training could run longer distances and for a longer time compared with the exercise only group; MAF is a high-molecular-weight polyphenol purified from black tea. Furthermore, MAF intake combined with exercise training increased phosphorylation of AMPK and mRNA level of glucose transporter 4 (GLUT4). Thus, our data demonstrate for the first time that MAF activates exercise training-induced intracellular signaling pathways that involve AMPK, and improves endurance capacity.

  2. Race, exercise training, and outcomes in chronic heart failure: Findings from Heart Failure - A Controlled Trial Investigating Outcomes in Exercise TraiNing (HF-ACTION)

    PubMed Central

    Mentz, Robert J.; Bittner, Vera; Schulte, Phillip J.; Fleg, Jerome L.; Piña, Ileana L.; Keteyian, Steven J.; Moe, Gordon; Nigam, Anil; Swank, Ann M.; Onwuanyi, Anekwe E.; Fitz-Gerald, Meredith; Kao, Andrew; Ellis, Stephen J.; Kraus, William E.; Whellan, David J.; O'Connor, Christopher M.

    2014-01-01

    Background The strength of race as an independent predictor of long-term outcomes in a contemporary chronic heart failure (HF) population and its association with exercise training response have not been well established. We aimed to investigate the association between race and outcomes and to explore interactions with exercise training in patients with ambulatory HF. Methods We performed an analysis of HF-ACTION, which randomized 2331 patients with HF having an ejection fraction ≤35% to usual care with or without exercise training. We examined characteristics and outcomes (mortality/hospitalization, mortality, and cardiovascular mortality/HF hospitalization) by race using adjusted Cox models and explored an interaction with exercise training. Results There were 749 self-identified black patients (33%). Blacks were younger with significantly more hypertension and diabetes, less ischemic etiology, and lower socioeconomic status versus whites. Blacks had shorter 6-minute walk distance and lower peak VO2 at baseline. Over a median follow-up of 2.5 years, black race was associated with increased risk for all outcomes except mortality. After multivariable adjustment, black race was associated with increased mortality/hospitalization (hazard ratio [HR] 1.16, 95% CI 1.01–1.33) and cardiovascular mortality/HF hospitalization (HR 1.46, 95% CI 1.20–1.77). The hazard associated with black race was largely caused by increased HF hospitalization (HR 1.58, 95% CI 1.27–1.96), given similar cardiovascular mortality. There was no interaction between race and exercise training on outcomes (P >.5). Conclusions Black race in patients with chronic HF was associated with increased prevalence of modifiable risk factors, lower exercise performance, and increased HF hospitalization, but not increased mortality or a differential response to exercise training. PMID:24016498

  3. Sleep quality, sleep duration and physical activity in obese adolescents: effects of exercise training.

    PubMed

    Mendelson, M; Borowik, A; Michallet, A-S; Perrin, C; Monneret, D; Faure, P; Levy, P; Pépin, J-L; Wuyam, B; Flore, P

    2016-02-01

    Decreased sleep duration and altered sleep quality are risk factors for obesity in youth. Structured exercise training has been shown to increase sleep duration and improve sleep quality. This study aimed at evaluating the impact of exercise training for improving sleep duration, sleep quality and physical activity in obese adolescents (OB). Twenty OB (age: 14.5 ± 1.5 years; body mass index: 34.0 ± 4.7 kg m(-2) ) and 20 healthy-weight adolescents (HW) completed an overnight polysomnography and wore an accelerometer (SenseWear Bodymedia) for 7 days. OB participated in a 12-week supervised exercise-training programme consisting of 180 min of exercise weekly. Exercise training was a combination of aerobic exercise and resistance training. Sleep duration was greater in HW compared with OB (P < 0.05). OB presented higher apnoea-hypopnoea index than HW (P < 0.05). Physical activity (average daily metabolic equivalent of tasks [METs]) by accelerometer was lower in OB (P < 0.05). After exercise training, obese adolescents increased their sleep duration (+64.4 min; effect size: 0.88; P = 0.025) and sleep efficiency (+7.6%; effect size: 0.76; P = 0.028). Physical activity levels were increased in OB as evidenced by increased steps per day and average daily METs (P < 0.05). Improved sleep duration was associated with improved average daily METs (r = 0.48, P = 0.04). The present study confirms altered sleep duration and quality in OB. Exercise training improves sleep duration, sleep quality and physical activity. © 2015 World Obesity.

  4. Whole-body vibration exercise training reduces arterial stiffness in postmenopausal women with prehypertension and hypertension.

    PubMed

    Figueroa, Arturo; Kalfon, Roy; Madzima, Takudzwa A; Wong, Alexei

    2014-02-01

    The purpose of this study was to examine the impact of whole-body vibration (WBV) exercise training on arterial stiffness (pulse wave velocity [PWV]), blood pressure (BP), and leg muscle function in postmenopausal women. Twenty-five postmenopausal women with prehypertension and hypertension (mean [SE]; age, 56 [1] y; systolic BP, 139 [2] mm Hg; body mass index, 34.7 [0.8] kg/m2) were randomized to 12 weeks of WBV exercise training (n = 13) or to the no-exercise control group. Systolic BP, diastolic BP, mean arterial pressure, heart rate, carotid-femoral PWV, brachial-ankle PWV, femoral-ankle PWV (legPWV), leg lean mass, and leg muscle strength were measured before and after 12 weeks. There was a group-by-time interaction (P < 0.05) for arterial stiffness, BP, and strength as brachial-ankle PWV (-1.3 [0.3] m/s, P < 0.01), legPWV (-0.81 [0.22] m/s, P < 0.01), systolic BP (-12 [3] mm Hg, P < 0.01), diastolic BP (-6 [2] mm Hg, P < 0.01), and mean arterial pressure (-9 [3] mm Hg, P < 0.01) decreased and as strength increased (21.0% [2.2%], P < 0.001) after WBV exercise training compared with no change after control. Heart rate decreased (-3 [1] beats/min, P < 0.05) after WBV exercise training, but there was no interaction (P > 0.05). Leg lean mass and carotid-femoral PWV were not significantly (P > 0.05) affected by WBV exercise training or control. Our findings indicate that WBV exercise training improves systemic and leg arterial stiffness, BP, and leg muscle strength in postmenopausal women with prehypertension or hypertension. WBV exercise training may decrease cardiovascular and disability risks in postmenopausal women by reducing legPWV and increasing leg muscle strength.

  5. Exercise training attenuates neutrophil infiltration and elastase expression in adipose tissue of high-fat-diet-induced obese mice

    PubMed Central

    Kawanishi, Noriaki; Niihara, Hiroyuki; Mizokami, Tsubasa; Yada, Koichi; Suzuki, Katsuhiko

    2015-01-01

    The innate immune system is associated with the development of local inflammation. Neutrophils play an essential role in the development of the adipose tissue (AT) inflammation associated with obesity by producing elastase, which can promote the activation and infiltration of macrophages. Exercise training attenuates AT inflammation via suppression of macrophage infiltration. However, the mechanisms driving this phenomenon remains to be elucidated. Here, we evaluated the effects of exercise training on the infiltration of neutrophils and elastase expression in an obese mouse model. Four-week-old male C57BL/6J mice were randomly assigned to one of three groups that either received a normal diet (ND) plus sedentary activity (n = 15), a high-fat diet (HFD) plus sedentary activity (n = 15), or a HFD plus exercise training (n = 15). Mice were fed the ND or HFD from the age of 4 weeks until 20 weeks. Mice in the exercise group ran on a treadmill for 60 min/day, 5 days/week over the same experimental period. Mice fed with the HFD had increased content of macrophages in the AT and increased inflammatory cytokine mRNA levels, which were reduced by exercise training. Similarly, AT from the HFD sedentary mice contained more neutrophils than AT from the ND mice, and the amount of neutrophils in this tissue in HFD-fed mice was lowered by exercise training. The mRNA levels of neutrophil elastase in AT were lower in the HFD exercise-trained mice than those in the HFD sedentary mice. These results suggest that exercise training plays a critical role in reducing macrophage infiltration and AT inflammation by regulating the infiltration of neutrophils. PMID:26341995

  6. Effects of exercise training on the glutathione antioxidant system.

    PubMed

    Elokda, Ahmed S; Nielsen, David H

    2007-10-01

    The glutathione (GSH) antioxidant system has been shown to play an important role in the maintenance of good health and disease prevention. Various approaches have been used to enhance GSH availability including diet, nutritional supplementation, and drug administration, with minor to moderate success. Exercise training has evolved as a new approach. The purpose of this study was to investigate the effects of aerobic exercise training (AET), circuit weight training (CWT), and combined training (AET+CWT) on general adaptations, and resistance to acutely induced oxidative stress, as assessed by changes in the GSH antioxidant system. Eighty healthy sedentary volunteers participated in the study who were randomly assigned to four groups: control (no exercise); AET, CWT, and AET+CWT. Exercise training programs were designed to simulate outpatient cardiac rehabilitation (40 min x 3 days x 6 weeks). Venous blood sampling was taken at rest and post maximal graded exercise test (GXT). A new improved spectrophotometric venous assay analysis technique was used. A mixed model repeated measures analysis of variance design was used with t-tests for preplanned comparisons evaluated at Bonferroni-adjusted alpha levels. Effectiveness of the exercise training programs was demonstrated by significant between-group (exercise group versus control) comparisons. AET, CWT, and AET+CWT showed significant pretraining-posttraining increases in resting GSH and glutathione-glutathione disulfide ratio (GSH:GSSG), and significant decreases in GSSG levels (P<0.005). AET+CWT showed the most pronounced effect compared with AET or CWT alone (P<0.025). This study represents the first longitudinal investigation involving the effects of multiple modes of exercise training on the GSH antioxidant system with evidence, suggesting the GHS:GSSG ratio as the most sensitive change marker. The significant findings of this study have potential clinical implications to individuals involved in cardiac and pulmonary rehabilitation.

  7. [Application of the 6-Minute Walking Test and Shuttle Walking Test in the Exercise Tests of Patients With COPD].

    PubMed

    Ho, Chiung-Fang; Maa, Suh-Hwa

    2016-08-01

    Exercise training improves the management of stable chronic obstructive pulmonary disease (COPD). COPD patients benefit from exercise training programs in terms of improved VO2 peak values and decreased dyspnea, fatigue, hospital admissions, and rates of mortality, increasing exercise capacity and health-related quality of life (HRQOL). COPD is often associated with impairment in exercise tolerance. About 51% of patients have a limited capacity for normal activity, which often further degrades exercise capacity, creating a vicious circle. Exercise testing is highly recommended to assess a patient's individualized functions and limitations in order to determine the optimal level of training intensity prior to initiating an exercise-training regimen. The outcomes of exercise testing provide a powerful indicator of prognosis in COPD patients. The six-minute walking test (6MWT) and the incremental shuttle-walking test (ISWT) are widely used in exercise testing to measure a patient's exercise ability by walking distances. While nursing-related articles published in Taiwan frequently cite and use the 6MWT to assess exercise capacity in COPD patients, the ISWT is rarely used. This paper introduces the testing method, strengths and weaknesses, and application of the two tests in order to provide clinical guidelines for assessing the current exercise capacity of COPD patients.

  8. Exercise for the Overweight Patient.

    ERIC Educational Resources Information Center

    Work, Janis A.

    1990-01-01

    Exercise can help patients maintain lean body mass during weight loss. Although exercise is not extremely useful in shedding excess pounds, it helps keep off weight lost through calorie restriction. This article discusses the specifics of exercise prescription, types of exercise, motivation to exercise, and special problems such as diabetes. (SM)

  9. Benefits of Exercise in Rheumatoid Arthritis

    PubMed Central

    Cooney, Jennifer K.; Law, Rebecca-Jane; Matschke, Verena; Lemmey, Andrew B.; Moore, Jonathan P.; Ahmad, Yasmeen; Jones, Jeremy G.; Maddison, Peter; Thom, Jeanette M.

    2011-01-01

    This paper aims to highlight the importance of exercise in patients with rheumatoid arthritis (RA) and to demonstrate the multitude of beneficial effects that properly designed exercise training has in this population. RA is a chronic, systemic, autoimmune disease characterised by decrements to joint health including joint pain and inflammation, fatigue, increased incidence and progression of cardiovascular disease, and accelerated loss of muscle mass, that is, “rheumatoid cachexia”. These factors contribute to functional limitation, disability, comorbidities, and reduced quality of life. Exercise training for RA patients has been shown to be efficacious in reversing cachexia and substantially improving function without exacerbating disease activity and is likely to reduce cardiovascular risk. Thus, all RA patients should be encouraged to include aerobic and resistance exercise training as part of routine care. Understanding the perceptions of RA patients and health professionals to exercise is key to patients initiating and adhering to effective exercise training. PMID:21403833

  10. Effects of a Single Bout of Aerobic Exercise Versus Resistance Training on Cognitive Vulnerabilities for Anxiety Disorders.

    PubMed

    Broman-Fulks, Joshua J; Kelso, Kerry; Zawilinski, Laci

    2015-01-01

    The purpose of this study was to compare the relative effects of a single bout of aerobic exercise versus resistance training on cognitive vulnerabilities for anxiety disorders. Seventy-seven participants (60% female; 84% Caucasian) were randomized to complete 20 min of moderate-intensity aerobic exercise, resistance training, or rest, followed by a 35% CO2/65% O2 inhalation challenge task. Results indicated that aerobic exercise and resistance training were significantly and equally effective in reducing anxiety sensitivity (AS) compared with rest ((η(2)(p ) = 52), though only aerobic exercise significantly attenuated reactivity to the CO2 challenge task. Neither form of exercise generated observable effects on distress tolerance, discomfort intolerance, or state anxiety (all ps >.10). The results of this study are discussed with regard to their implications for the use of exercise interventions for anxiety and related forms of psychopathology, and potential directions for future research are discussed.

  11. Effect of exercise training on walking mobility in multiple sclerosis: a meta-analysis.

    PubMed

    Snook, Erin M; Motl, Robert W

    2009-02-01

    The study used meta-analytic procedures to examine the overall effect of exercise training interventions on walking mobility among individuals with multiple sclerosis. A search was conducted for published exercise training studies from 1960 to November 2007 using MEDLINE, PsychINFO, CINAHL, and Current Contents Plus. Studies were selected if they measured walking mobility, using instruments identified as acceptable walking mobility constructs and outcome measures for individuals with neurologic disorders, before and after an intervention that included exercise training. Forty-two published articles were located and reviewed, and 22 provided enough data to compute effect sizes expressed as Cohen's d. Sixty-six effect sizes were retrieved from the 22 publications with 600 multiple sclerosis participants and yielded a weighted mean effect size of g = 0.19 (95% confidence interval, 0.09-0.28). There were larger effects associated with supervised exercise training ( g = 0.32), exercise programs that were less than 3 months in duration (g = 0.28), and mixed samples of relapsing-remitting and progressive multiple sclerosis (g = 0.52). The cumulative evidence supports that exercise training is associated with a small improvement in walking mobility among individuals with multiple sclerosis.

  12. Exercise training attenuated chronic cigarette smoking-induced up-regulation of FIZZ1/RELMα in lung of rats.

    PubMed

    Ma, Wan-li; Cai, Peng-cheng; Xiong, Xian-zhi; Ye, Hong

    2013-02-01

    FIZZ/RELM is a new gene family named "found in inflammatory zone" (FIZZ) or "resistin-like molecule" (RELM). FIZZ1/RELMα is specifically expressed in lung tissue and associated with pulmonary inflammation. Chronic cigarette smoking up-regulates FIZZ1/RELMα expression in rat lung tissues, the mechanism of which is related to cigarette smoking-induced airway hyperresponsiveness. To investigate the effect of exercise training on chronic cigarette smoking-induced airway hyperresponsiveness and up-regulation of FIZZ1/RELMα, rat chronic cigarette smoking model was established. The rats were treated with regular exercise training and their airway responsiveness was measured. Hematoxylin and eosin (HE) staining, immunohistochemistry and in situ hybridization of lung tissues were performed to detect the expression of FIZZ1/RELMα. Results revealed that proper exercise training decreased airway hyperresponsiveness and pulmonary inflammation in rat chronic cigarette smoking model. Cigarette smoking increased the mRNA and protein levels of FIZZ1/RELMα, which were reversed by the proper exercise. It is concluded that proper exercise training prevents up-regulation of FIZZ1/RELMα induced by cigarette smoking, which may be involved in the mechanism of proper exercise training modulating airway hyperresponsiveness.

  13. A six-week neuromuscular training program for competitive junior tennis players.

    PubMed

    Barber-Westin, Sue D; Hermeto, Alex A; Noyes, Frank R

    2010-09-01

    This study evaluated the effectiveness of a tennis-specific training program on improving neuromuscular indices in competitive junior players. Tennis is a demanding sport because it requires speed, agility, explosive power, and aerobic conditioning along with the ability to react and anticipate quickly, and there are limited studies that evaluate these indices in young players after a multiweek training program. The program designed for this study implemented the essential components of a previously published neuromuscular training program and also included exercises designed to improve dynamic balance, agility, speed, and strength. Fifteen junior tennis players (10 girls, 5 boys; mean age, 13.0 +/- 1.5 years) who routinely participated in local tournaments and high-school teams participated in the 6-week supervised program. Training was conducted 3 times a week, with sessions lasting 1.5 hours that included a dynamic warm-up, plyometric and jump training, strength training (lower extremity, upper extremity, core), tennis-specific drills, and flexibility. After training, statistically significant improvements and large-to-moderate effect sizes were found in the single-leg triple crossover hop for both legs (p < 0.05), the baseline forehand (p = 0.006) and backhand (p = 0.0008) tests, the service line (p = 0.0009) test, the 1-court suicide (p < 0.0001), the 2-court suicide (p = 0.02), and the abdominal endurance test (p = 0.01). Mean improvements between pretrain and posttrain test sessions were 15% for the single-leg triple crossover hop, 10-11% for the baseline tests, 18% for the service line test, 21% for the 1-court suicide, 10% for the 2-court suicide, and 76% for the abdominal endurance test. No athlete sustained an injury or developed an overuse syndrome as a result of the training program. The results demonstrate that this program is feasible, low in cost, and appears to be effective in improving the majority of neuromuscular indices tested. We accomplished our goal of developing training and testing procedures that could all be performed on the tennis court.

  14. Effects of exercise training on pulmonary mechanics and functional status in patients with prolonged mechanical ventilation.

    PubMed

    Chen, Yen-Huey; Lin, Hui-Ling; Hsiao, Hsiu-Feng; Chou, Lan-Ti; Kao, Kuo-Chin; Huang, Chung-Chi; Tsai, Ying-Huang

    2012-05-01

    The functional status and outcomes in patients with prolonged mechanical ventilation (PMV) are often limited by poor endurance and pulmonary mechanics, which result from the primary diseases or prolonged time bedridden. We evaluate the impact of exercise training on pulmonary mechanics, physical functional status, and hospitalization outcomes in PMV patients. Twenty-seven subjects with PMV in our respiratory care center (RCC) were divided randomly into an exercise training group (n = 12) and a control group (n = 15). The exercise program comprised 10 sessions of exercise training. The measurement of pulmonary mechanics and physical functional status (Functional Independence Measurement and Barthel index) were performed pre-study and post-study. The hospitalization outcomes included: days of mechanical ventilation, hospitalization days, and weaning and mortality rates during RCC stay. The training group had significant improvement in tidal volume (143.6 mL vs 192.5 mL, P = .02) and rapid shallow breathing index after training (162.2 vs 110.6, P = .009). No significant change was found in the control group except respiratory rate. Both groups had significant improvement in functional status during the study. However, the training group had greater changes in FIM score than the control group (44.6 vs 34.2, P = .024). The training group also had shorter RCC stay and higher weaning and survival rates than the control group, although no statistical difference was found. Subjects with PMV in our RCC demonstrated significant improvement in pulmonary mechanics and functional status after exercise training. The application of exercise training may be helpful for PMV patients to improve hospitalization outcomes.

  15. How do cardiorespiratory fitness improvements vary with physical training modality in heart failure patients? A quantitative guide

    PubMed Central

    Smart, Neil A

    2013-01-01

    BACKGROUND: Peak oxygen consumption (VO2) is the gold standard measure of cardiorespiratory fitness and a reliable predictor of survival in chronic heart failure patients. Furthermore, any form of physical training usually improves cardiorespiratory fitness, although the magnitude of improvement in peak VO2 may vary across different training prescriptions. OBJECTIVE: To quantify, and subsequently rank, the magnitude of improvement in peak VO2 for different physical training prescriptions using data from published meta-analyses and randomized controlled trials. METHODS: Prospective randomized controlled parallel trials and meta-analyses of exercise training in chronic heart failure patients that provided data on change in peak VO2 for nine a priori comparative analyses were examined. RESULTS: All forms of physical training were beneficial, although the improvement in peak VO2 varied with modality. High-intensity interval exercise yielded the largest increase in peak VO2, followed in descending order by moderate-intensity aerobic exercise, functional electrical stimulation, inspiratory muscle training, combined aerobic and resistance training, and isolated resistance training. With regard to setting, the present study was unable to determine whether outpatient or unsupervised home exercise provided greater benefits in terms of peak VO2 improvment. CONCLUSIONS: Interval exercise is not suitable for all patients, especially the high-intensity variety; however, when indicated, this form of exercise should be adopted to optimize peak VO2 adaptations. Other forms of activity, such as functional electrical stimulation, may be more appropriate for patients who are not capable of high-intensity interval training, especially for severely deconditioned patients who are initially unable to exercise. PMID:24294043

  16. Exercise Testing, Training, and Beta-Adrenergic Blockade.

    ERIC Educational Resources Information Center

    Wilmore, Jack H.

    1988-01-01

    This article summarizes the current knowledge on the effects of beta-adrenergic blocking drugs, used widely for treatment of cardiovascular diseases, on exercise performance, training benefits, and exercise prescription. (IAH)

  17. The impact of experiential exercises on communication and relational skills in a suicide prevention gatekeeper-training program for college resident advisors.

    PubMed

    Pasco, Susan; Wallack, Cory; Sartin, Robert M; Dayton, Rebecca

    2012-01-01

    In an effort to identify students at risk for suicide, many colleges are implementing suicide prevention training for campus gatekeepers. This study evaluated the efficacy of a 3-hour, experiential-based gatekeeper training that included an emphasis on enhancing communication skills and relational connection in addition to the didactic foci of standard gatekeeper training. Sixty-five college student resident advisors (RAs) were trained with Campus Connect. The training was dismantled to examine the specific contribution of experiential exercises on training outcomes. Compared to didactic training alone, following participation in experiential exercises RAs' training outcome scores exhibited additional improvement on the Suicide Intervention Response Inventory-2 and a 14-item self-report measure of self-efficacy for specific suicide- and crisis-related knowledge and skills. In gatekeeper training, experiential exercises emphasizing awareness and empathic responding and practice of these skills contribute to an improvement in crisis response skills above and beyond that of didactic training alone.

  18. Exposing College Students to Exercise: The Training Interventions and Genetics of Exercise Response (TIGER) Study

    ERIC Educational Resources Information Center

    Sailors, Mary H.; Jackson, Andrew S.; McFarlin, Brian K.; Turpin, Ian; Ellis, Kenneth J.; Foreyt, John P.; Hoelscher, Deanna M.; Bray, Molly S.

    2010-01-01

    Objective: The Training Interventions and Genetics of Exercise Response (TIGER) study is an exercise program designed to introduce sedentary college students to regular physical activity and to identify genetic factors that influence response to exercise. Participants: A multiracial/ethnic cohort (N = 1,567; 39% male), age 18 to 35 years,…

  19. The Value of Removing Daily Obstacles via Everyday Problem-Solving Theory: Developing an Applied Novel Procedure to Increase Self-Efficacy for Exercise

    PubMed Central

    Artistico, Daniele; Pinto, Angela Marinilli; Douek, Jill; Black, Justin; Pezzuti, Lina

    2012-01-01

    The objective of the study was to develop a novel procedure to increase self-efficacy for exercise. Gains in one’s ability to resolve day-to-day obstacles for entering an exercise routine were expected to cause an increase in self-efficacy for exercise. Fifty-five sedentary participants (did not exercise regularly for at least 4 months prior to the study) who expressed an intention to exercise in the near future were selected for the study. Participants were randomly assigned to one of three conditions: (1) an Experimental Group in which they received a problem-solving training session to learn new strategies for solving day-to-day obstacles that interfere with exercise, (2) a Control Group with Problem-Solving Training which received a problem-solving training session focused on a typical day-to-day problem unrelated to exercise, or (3) a Control Group which did not receive any problem-solving training. Assessment of obstacles to exercise and perceived self-efficacy for exercise were conducted at baseline; perceived self-efficacy for exercise was reassessed post-intervention (1 week later). No differences in perceived challenges posed by obstacles to exercise or self-efficacy for exercise were observed across groups at baseline. The Experimental Group reported greater improvement in self-efficacy for exercise compared to the Control Group with Training and the Control Group. Results of this study suggest that a novel procedure that focuses on removing obstacles to intended planned fitness activities is effective in increasing self-efficacy to engage in exercise among sedentary adults. Implications of these findings for use in applied settings and treatment studies are discussed. PMID:23372560

  20. The Value of Removing Daily Obstacles via Everyday Problem-Solving Theory: Developing an Applied Novel Procedure to Increase Self-Efficacy for Exercise.

    PubMed

    Artistico, Daniele; Pinto, Angela Marinilli; Douek, Jill; Black, Justin; Pezzuti, Lina

    2013-01-01

    The objective of the study was to develop a novel procedure to increase self-efficacy for exercise. Gains in one's ability to resolve day-to-day obstacles for entering an exercise routine were expected to cause an increase in self-efficacy for exercise. Fifty-five sedentary participants (did not exercise regularly for at least 4 months prior to the study) who expressed an intention to exercise in the near future were selected for the study. Participants were randomly assigned to one of three conditions: (1) an Experimental Group in which they received a problem-solving training session to learn new strategies for solving day-to-day obstacles that interfere with exercise, (2) a Control Group with Problem-Solving Training which received a problem-solving training session focused on a typical day-to-day problem unrelated to exercise, or (3) a Control Group which did not receive any problem-solving training. Assessment of obstacles to exercise and perceived self-efficacy for exercise were conducted at baseline; perceived self-efficacy for exercise was reassessed post-intervention (1 week later). No differences in perceived challenges posed by obstacles to exercise or self-efficacy for exercise were observed across groups at baseline. The Experimental Group reported greater improvement in self-efficacy for exercise compared to the Control Group with Training and the Control Group. Results of this study suggest that a novel procedure that focuses on removing obstacles to intended planned fitness activities is effective in increasing self-efficacy to engage in exercise among sedentary adults. Implications of these findings for use in applied settings and treatment studies are discussed.

  1. Psychosocial Factors, Exercise Adherence, and Outcomes in Heart Failure Patients: Insights from HF-ACTION

    PubMed Central

    Cooper, Lauren B.; Mentz, Robert J.; Sun, Jie-Lena; Schulte, Phillip J; Fleg, Jerome L.; Cooper, Lawton S.; Piña, Ileana L.; Leifer, Eric S.; Kraus, William E.; Whellan, David J.; Keteyian, Steven J.; O’Connor, Christopher M.

    2016-01-01

    Background Psychosocial factors may influence adherence with exercise training for heart failure patients. We aimed to describe the association between social support and barriers to participation with exercise adherence and clinical outcomes. Methods and Results Of patients enrolled in HF-ACTION, 2279 (97.8%) completed surveys to assess social support and barriers to exercise, resulting in the perceived social support score (PSSS) and barriers to exercise score (BTES). Higher PSSS indicated higher levels of social support, while higher BTES indicated more barriers to exercise. Exercise time at 3 and 12 months correlated with PSSS (r= 0.09 and r= 0.13, respectively) and BTES (r= − 0.11 and r= − 0.12, respectively), with higher exercise time associated with higher PSSS and lower BTES (All p <0.005). For CV death or HF hospitalization, there was a significant interaction between randomization group and BTES (p=0.035), which corresponded to a borderline association between increasing BTES and CV death or HF hospitalization in the exercise group (HR 1.25, 95% CI: 0.99, 1.59) but no association in the usual care group (HR 0.83, 95% CI: 0.66, 1.06). Conclusions Poor social support and high barriers to exercise were associated with lower exercise time. PSSS did not impact the effect of exercise training on outcomes. However, for CV death or HF hospitalization, exercise training had a greater impact on patients with lower BTES. Given that exercise training improves outcomes in heart failure patients, assessment of perceived barriers may facilitate individualized approaches to implement exercise training therapy in clinical practice. Clinical Trial Registration URL: http://www.clinicaltrials.gov. Unique identifier: NCT00047437. PMID:26578668

  2. Repairing the brain with physical exercise: Cortical thickness and brain volume increases in long-term pediatric brain tumor survivors in response to a structured exercise intervention.

    PubMed

    Szulc-Lerch, Kamila U; Timmons, Brian W; Bouffet, Eric; Laughlin, Suzanne; de Medeiros, Cynthia B; Skocic, Jovanka; Lerch, Jason P; Mabbott, Donald J

    2018-01-01

    There is growing evidence that exercise induced experience dependent plasticity may foster structural and functional recovery following brain injury. We examined the efficacy of exercise training for neural and cognitive recovery in long-term pediatric brain tumor survivors treated with radiation. We conducted a controlled clinical trial with crossover of exercise training (vs. no training) in a volunteer sample of 28 children treated with cranial radiation for brain tumors (mean age = 11.5 yrs.; mean time since diagnosis = 5.7 yrs). The endpoints were anatomical T1 MRI data and multiple behavioral outcomes presenting a broader analysis of structural MRI data across the entire brain. This included an analysis of changes in cortical thickness and brain volume using automated, user unbiased approaches. A series of general linear mixed effects models evaluating the effects of exercise training on cortical thickness were performed in a voxel and vertex-wise manner, as well as for specific regions of interest. In exploratory analyses, we evaluated the relationship between changes in cortical thickness after exercise with multiple behavioral outcomes, as well as the relation of these measures at baseline. Exercise was associated with increases in cortical thickness within the right pre and postcentral gyri. Other notable areas of increased thickness related to training were present in the left pre and postcentral gyri, left temporal pole, left superior temporal gyrus, and left parahippocampal gyrus. Further, we observed that compared to a separate cohort of healthy children, participants displayed multiple areas with a significantly thinner cortex prior to training and fewer differences following training, indicating amelioration of anatomical deficits. Partial least squares analysis (PLS) revealed specific patterns of relations between cortical thickness and various behavioral outcomes both after training and at baseline. Overall, our results indicate that exercise training in pediatric brain tumor patients treated with radiation has a beneficial impact on brain structure. We argue that exercise training should be incorporated into the development of neuro-rehabilitative treatments for long-term pediatric brain tumor survivors and other populations with acquired brain injury. (ClinicalTrials.gov, NCT01944761).

  3. Attitudes and preferences towards exercise training in individuals with alcohol use disorders in a residential treatment setting.

    PubMed

    Stoutenberg, Mark; Warne, James; Vidot, Denise; Jimenez, Erika; Read, Jennifer P

    2015-02-01

    Alcohol use disorders (AUD) are a major public health concern due to their association with several acute and chronic health conditions. Exercise training offers a myriad of physical and mental health benefits, and may be a promising adjunct intervention for those in AUD treatment. The purpose of this study was to explore the possible role of exercise training as a treatment strategy by examining the attitudes, beliefs, and preferences of individuals entering residential AUD treatment. Surveys were administered to eligible individuals with AUD within 2days of intake to one of two residential treatment centers. The survey asked respondents about their attitudes, beliefs, and preferences towards exercise training as a part of their residential treatment. Respondents were in favor of receiving exercise counseling as part of their treatment (70.6%), in a face-to-face format (90.0%), and from an exercise counselor at the treatment center (55.5%). The top reported benefits included: improved health, feeling good about oneself, and feeling more confident. The most commonly reported barriers to exercise training included transportation issues, lack of motivation, knowledge, and proper equipment, and cost. Our study supports previous work in individuals with substance abuse disorders and suggests that exercise training would be widely accepted as a part of residential treatment for AUD. This study also identified several strategies that can be used to individualize exercise training programs to better meet the needs of AUD patients and maximize their participation in future interventions. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Mitochondria‐specific antioxidant supplementation does not influence endurance exercise training‐induced adaptations in circulating angiogenic cells, skeletal muscle oxidative capacity or maximal oxygen uptake

    PubMed Central

    Shill, Daniel D.; Southern, W. Michael; Willingham, T. Bradley; Lansford, Kasey A.; McCully, Kevin K.

    2016-01-01

    Key points Reducing excessive oxidative stress, through chronic exercise or antioxidants, can decrease the negative effects induced by excessive amounts of oxidative stress. Transient increases in oxidative stress produced during acute exercise facilitate beneficial vascular training adaptations, but the effects of non‐specific antioxidants on exercise training‐induced vascular adaptations remain elusive.Circulating angiogenic cells (CACs) are an exercise‐inducible subset of white blood cells that maintain vascular integrity.We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training in CACs, muscle mitochondrial capacity and maximal oxygen uptake in young healthy men.We show that endurance exercise training increases multiple CAC types, an adaptation that is not altered by MitoQ supplementation. Additionally, MitoQ does not affect skeletal muscle or whole‐body aerobic adaptations to exercise training.These results indicate that MitoQ supplementation neither enhances nor attenuates endurance training adaptations in young healthy men. Abstract Antioxidants have been shown to improve endothelial function and cardiovascular outcomes. However, the effects of antioxidants on exercise training‐induced vascular adaptations remain elusive. General acting antioxidants combined with exercise have not impacted circulating angiogenic cells (CACs). We investigated whether mitochondria‐specific antioxidant (MitoQ) supplementation would affect the response to 3 weeks of endurance exercise training on CD3+, CD3+/CD31+, CD14+/CD31+, CD31+, CD34+/VEGFR2+ and CD62E+ peripheral blood mononuclear cells (PBMCs), muscle mitochondrial capacity, and maximal oxygen uptake (VO2 max ) in healthy men aged 22.1 ± 0.7 years, with a body mass index of 26.9 ± 0.9 kg m–2, and 24.8 ± 1.3% body fat. Analysis of main effects revealed that training induced 33, 105 and 285% increases in CD14+/CD31+, CD62E+ and CD34+/VEGFR2+ CACs, respectively, and reduced CD3+/CD31− PBMCs by 14%. There was no effect of MitoQ on CAC levels. Also independent of MitoQ supplementation, exercise training significantly increased quadriceps muscle mitochondrial capacity by 24% and VO2 max by roughly 7%. In conclusion, endurance exercise training induced increases in multiple CAC types, and this adaptation is not modified by MitoQ supplementation. Furthermore, we demonstrate that a mitochondrial‐targeted antioxidant does not influence skeletal muscle or whole‐body aerobic adaptations to exercise training. PMID:27501153

  5. The action of pre-exercise low-level laser therapy (LLLT) on the expression of IL-6 and TNF-α proteins and on the functional fitness of elderly rats subjected to aerobic training.

    PubMed

    Amadio, Eliane Martins; Serra, Andrey Jorge; Guaraldo, Simone A; Silva, José Antônio; Antônio, Ednei Luis; Silva, Flávio; Portes, Leslie Andrews; Tucci, Paulo José Ferreira; Leal-Junior, Ernesto Cesar Pinto; de Carvalho, Paulo de Tarso Camillo

    2015-04-01

    The aim of the present study was to determine whether low-level laser therapy (LLLT), when used in conjunction with aerobic training, interferes with the expression of inflammatory markers IL-6 and TNF-α, thereby influencing the performance of old rats participating in swimming. A total of 30 Wistar rats (Rattus norvegicus albinus) were used for this study: 24 aged rats, and 6 young rats. The older animals were randomly divided into four groups designated as follows: aged-control, aged-exercise, aged-LLLT, aged-LLLT/exercise group, and young-control animals. Aerobic capacity (VO2max) was analyzed before and after training period. The aged-exercise and aged-LLLT/exercise groups were trained for 6 weeks. LLLT laser was applied before each training session with 808 nm and 4 J of energy to the indicated groups throughout training. The rats were euthanized, and muscle tissue and serum were collected for muscle cross-sectional area and IL-6 and TNF-α protein analysis. In VO2 showed statistical difference between young- and aged-control groups (used as baseline) (p < 0.05). The same difference can be observed in the young control group compared with all intervention groups (exercise, LLLT and LLLT + exercise). In comparison with the aged-control group, a difference was observed only for comparison with the exercise group (p < 0.05), and exercise associated with LLLT group (p < 0.001). Levels of IL-6 and TNF-α for the aged-exercise and the aged-LLLT/exercise groups were significantly decreased compared to the aged-control group (p < 0.05). Analysis of the transverse section of the gastrocnemius muscle showed a significant difference between the aged-exercise and aged-LLLT/exercise groups (p < 0.001). These results suggest that laser therapy in conjunction with aerobic training may provide a therapeutic approach for reducing the inflammatory markers (IL-6 and TNF-α), however, LLLT without exercise was not able to improve physical performance of aged rats.

  6. Importance of characteristics and modalities of physical activity and exercise in the management of cardiovascular health in individuals with cardiovascular disease (Part III).

    PubMed

    Vanhees, L; Rauch, B; Piepoli, M; van Buuren, F; Takken, T; Börjesson, M; Bjarnason-Wehrens, B; Doherty, P; Dugmore, D; Halle, M

    2012-12-01

    The beneficial effect of exercise training and exercise-based cardiac rehabilitation on symptom-free exercise capacity,cardiovascular and skeletal muscle function, quality of life, general healthy lifestyle, and reduction of depressive symptoms and psychosocial stress is nowadays well recognized. However, it remains largely obscure, which characteristics of physical activity (PA) and exercise training--frequency, intensity, time (duration), type (mode), and volume (dose: intensity x duration) of exercise--are the most effective. The present paper, therefore, will deal with these exercise characteristics in the management of individuals with cardiovascular disease, i.e. coronary artery disease and chronic heart failure patients, but also in patients with congenital or valvular heart disease. Based on the current literature, and if sufficient evidence is available, recommendations from the European Association on Cardiovascular Prevention and Rehabilitation are formulated regarding frequency, intensity, time and type of PA, and safety aspects during exercise inpatients with cardiovascular disease. This paper is the third in a series of three papers, all devoted to the same theme: the importance of the exercise characteristics in the management of cardiovascular health. Part I is directed to the general population and Part II to individuals with cardiovascular risk factors. In general, PA recommendations and exercise training programmes for patients with coronary artery disease or chronic heart failure need to be tailored to the individual's exercise capacity and risk profile, with the aim to reach and maintain the individually highest fitness level possible and to perform endurance exercise training 30–60 min daily (3–5 days per week) in combination with resistance training 2–3 times a week. Because of the frequently reported dose–response relationship between training effect and exercise intensity, one should seek sufficiently high training intensities, although more scientific evidence on effect sizes and safety is warranted. At present, there is insufficient data to give more specific recommendations on type, dosage, and intensity of exercise in some other cardiovascular diseases, such as congenital heart disease, valve disease, cardiomyopathies, channelopathies, and patients with implanted devices.

  7. Exercise training in older adults, what effects on muscle oxygenation? A systematic review.

    PubMed

    Fiogbé, Elie; de Vassimon-Barroso, Verena; de Medeiros Takahashi, Anielle Cristhine

    2017-07-01

    To determine the effects of different modality of exercise training programs on muscle oxygenation in older adults. Relevant articles were searched in PubMed, Web of Science, Science Direct and Scopus, using the keywords: "Aged" AND "Muscle oxygenation" AND (Exercise OR "Exercise therapy" OR "Exercise Movement Techniques" OR Hydrotherapy), without limitation concerning the publication date. To be included in the full analysis, the study had to be a randomized controlled trial in which older adults participants (mean age: 65 years at least) were submitted to an exercise-training program and muscle oxygenation assessment. The searches resulted in 1238 articles from which 7 met all the inclusion criteria. The trials involved 370 older adults (68.7±1.7years), healthy and with peripheral arterial disease. Studies included resistance and endurance exercises as well as walking sessions. Training sessions were 2-6 time per week, lasted 3-24 months and with different training intensity throughout studies. After a long-term resistance training, healthy older adults showed enhanced muscle oxygen extraction capacity, regulation of vessels and vascular endothelium function; endurance training is reported to improve microvascular blood flow and matching of oxygen delivery to oxygen utilization, muscle oxidative capacity and muscle saturation, and walking sessions results in better muscle oxygen availability and muscle oxygen extraction capacity in older adults with peripheral arterial disease. This review supports the fact that depending on the clinical status of the participants and the modality, exercise training improves different aspects of the muscle oxygenation in older adults. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Morphological assessment of pancreatic islet hormone content following aerobic exercise training in rats with poorly controlled Type 1 diabetes mellitus.

    PubMed

    McDonald, Matthew W; Murray, Michael R; Hall, Katharine E; Noble, Earl G; Melling, C W James

    2014-01-01

    Regular exercise has been shown to improve many complications of Type 1 diabetes mellitus (T1DM) including enhanced glucose tolerance and increased cardiac function. While exercise training has been shown to increase insulin content in pancreatic islets of rats with T1DM, experimental models were severely hyperglycemic and not undergoing insulin treatment. Further, research to date has yet to determine how exercise training alters glucagon content in pancreatic islets. The purpose of the present investigation was to determine the impact of a 10-week aerobic training program on pancreatic islet composition in insulin-treated rats with T1DM. Second, it was determined whether the acute, exercise-mediated reduction in blood glucose experienced in rats with T1DM would become larger in magnitude following aerobic exercise training. Diabetes was induced in male Sprague-Dawley rats by multiple low dose injections of streptozotocin (20mg/kg i.p.) and moderate intensity aerobic exercise training was performed on a motorized treadmill for one hour per day for a total of 10 weeks. Rats with T1DM demonstrated significantly less islet insulin, and significantly more islet glucagon hormone content compared with non-T1DM rats, which did not significantly change following aerobic training. The reduction in blood glucose in response to a single exercise bout was similar across 10 weeks of training. Results also support the view that different subpopulations of islets exist, as small islets (<50 μm diameter) had significantly more insulin and glucagon in rats with and without T1DM.

  9. Does exercise training affect resting metabolic rate in adolescents with obesity?

    PubMed

    Alberga, Angela S; Prud'homme, Denis; Sigal, Ronald J; Goldfield, Gary S; Hadjiyannakis, Stasia; Gougeon, Réjeanne; Phillips, Penny; Malcolm, Janine; Wells, George A; Doucette, Steve; Ma, Jinhui; Kenny, Glen P

    2017-01-01

    We evaluated the hypothesis that resistance exercise training performed alone or in combination with aerobic exercise training would increase resting metabolic rate (RMR) relative to aerobic-only and nonexercising control groups. Postpubertal adolescents (N = 304) aged 14-18 years with obesity (body mass index (BMI) ≥ 95th percentile) or overweight (BMI ≥ 85th percentile + additional diabetes risk factor(s)) were randomized to 4 groups for 22 weeks: Aerobic exercise training, Resistance exercise training, Combined aerobic and resistance exercise training, or Control. All participants received dietary counselling targeting a daily energy deficit of 250 kcal. RMR was measured by indirect calorimetry and body composition by magnetic resonance imaging. There was no significant change in RMR in any group, in spite of significant within-group increases in fat-free mass in the Aerobic, Resistance, and Combined exercise training groups. RMR at baseline and 6 months were Aerobic: 1972 ± 38 and 1990 ± 41; Resistance: 2024 ± 37 and 1992 ± 41; Combined: 2023 ± 38 and 1995 ± 38; Control: 2075 ± 38 and 2073 ± 39 kcal/day (p > 0.05). There were no between-group differences in RMR after adjustment for total body weight or fat-free mass between groups over time. Per-protocol analyses including only participants with ≥70% adherence, and analyses stratified by sex, also showed no within- or between-group differences in RMR. In conclusion, despite an increase in fat-free mass in all exercise groups, 6 months of aerobic, resistance, or combined training with modest dietary restriction did not increase RMR compared with diet only in adolescents with obesity.

  10. Chronic aerobic exercise training attenuates aortic stiffening and endothelial dysfunction through preserving aortic mitochondrial function in aged rats.

    PubMed

    Gu, Qi; Wang, Bing; Zhang, Xiao-Feng; Ma, Yan-Ping; Liu, Jian-Dong; Wang, Xiao-Ze

    2014-08-01

    Aging leads to large vessel arterial stiffening and endothelial dysfunction, which are important determinants of cardiovascular risk. The aim of present work was to assess the effects of chronic aerobic exercise training on aortic stiffening and endothelial dysfunction in aged rats and investigate the underlying mechanism about mitochondrial function. Chronic aerobic exercise training attenuated aortic stiffening with age marked by reduced collagen concentration, increased elastin concentration and reduced pulse wave velocity (PWV), and prevented aging-related endothelial dysfunction marked by improved endothelium-mediated vascular relaxation of aortas in response to acetylcholine. Chronic aerobic exercise training abated oxidative stress and nitrosative stress in aortas of aged rats. More importantly, we found that chronic aerobic exercise training in old rats preserved aortic mitochondrial function marked by reduced reactive oxygen species (ROS) formation and mitochondrial swelling, increased ATP formation and mitochondrial DNA content, and restored activities of complexes I and III and electron-coupling capacity between complexes I and III and between complexes II and III. In addition, it was found that chronic aerobic exercise training in old rats enhanced protein expression of uncoupling protein 2 (UCP-2), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), manganese superoxide dismutase (Mn-SOD), aldehyde dehydrogenase 2 (ALDH-2), prohibitin (PHB) and AMP-activated kinase (AMPK) phosphorylation in aortas. In conclusion, chronic aerobic exercise training preserved mitochondrial function in aortas, which, at least in part, explained the aorta-protecting effects of exercise training in aging. Copyright © 2014 Elsevier Inc. All rights reserved.

  11. Neither Hematocrit Normalization nor Exercise Training Restores Oxygen Consumption to Normal Levels in Hemodialysis Patients

    PubMed Central

    Stray-Gundersen, James; Parsons, Dora Beth; Thompson, Jeffrey R.

    2016-01-01

    Patients treated with hemodialysis develop severely reduced functional capacity, which can be partially ameliorated by correcting anemia and through exercise training. In this study, we determined perturbations of an erythroid-stimulating agent and exercise training to examine if and where limitation to oxygen transport exists in patients on hemodialysis. Twenty-seven patients on hemodialysis completed a crossover study consisting of two exercise training phases at two hematocrit (Hct) values: 30% (anemic) and 42% (physiologic; normalized by treatment with erythroid-stimulating agent). To determine primary outcome measures of peak power and oxygen consumption (VO2) and secondary measures related to components of oxygen transport and utilization, all patients underwent numerous tests at five time points: baseline, untrained at Hct of 30%, after training at Hct of 30%, untrained at Hct of 42%, and after training at Hct of 42%. Hct normalization, exercise training, or the combination thereof significantly improved peak power and VO2 relative to values in the untrained anemic phase. Hct normalization increased peak arterial oxygen and arteriovenous oxygen difference, whereas exercise training improved cardiac output, citrate synthase activity, and peak tissue diffusing capacity. However, although the increase in arterial oxygen observed in the combination phase reached a value similar to that in healthy sedentary controls, the increase in peak arteriovenous oxygen difference did not. Muscle biopsy specimens showed markedly thickened endothelium and electron–dense interstitial deposits. In conclusion, exercise and Hct normalization had positive effects but failed to normalize exercise capacity in patients on hemodialysis. This effect may be caused by abnormalities identified within skeletal muscle. PMID:27153927

  12. Effect of aerobic vs combined aerobic-strength training on 1-year, post-cardiac rehabilitation outcomes in women after a cardiac event.

    PubMed

    Arthur, Heather M; Gunn, Elizabeth; Thorpe, Kevin E; Ginis, Kathleen Martin; Mataseje, Lin; McCartney, Neil; McKelvie, Robert S

    2007-11-01

    To compare the effect and sustainability of 6 months combined aerobic/strength training vs aerobic training alone on quality of life in women after coronary artery by-pass graft surgery or myocardial infarction. Prospective, 2-group, randomized controlled trial. Ninety-two women who were 8-10 weeks post-coronary artery by-pass graft surgery or myocardial infarction, able to attend supervised exercise, and fluent in English. The aerobic training alone group had supervised exercise twice a week for 6 months. The aerobic/strength training group received aerobic training plus upper and lower body resistance exercises. The amount of active exercise time was matched between groups. The primary outcome, quality of life, was measured by the MOS SF-36; secondary outcomes were self-efficacy, strength and exercise capacity. After 6 months of supervised exercise training both groups showed statistically significant improvements in physical quality of life (p = 0.0002), peak VO2 (19% in aerobic/strength training vs 22% in aerobic training alone), strength (p < 0.0001) and self-efficacy for stair climbing (p = 0.0024), lifting (p < 0.0001) and walking (p = 0.0012). However, by 1-year follow-up there was a statistically significant difference in physical quality of life in favor of the aerobic/strength training group (p = 0.05). Women with coronary artery disease stand to benefit from both aerobic training alone and aerobic/strength training. However, continued improvement in physical quality of life may be achieved through combined strength and aerobic training.

  13. Comparison of Different Forms of Exercise Training in Patients With Cardiac Disease: Where Does High-Intensity Interval Training Fit?

    PubMed

    Gayda, Mathieu; Ribeiro, Paula A B; Juneau, Martin; Nigam, Anil

    2016-04-01

    In this review, we discuss the most recent forms of exercise training available to patients with cardiac disease and their comparison or their combination (or both) during short- and long-term (phase II and III) cardiac rehabilitation programs. Exercise training modalities to be discussed include inspiratory muscle training (IMT), resistance training (RT), continuous aerobic exercise training (CAET), and high-intensity interval training (HIIT). Particular emphasis is placed on HIIT compared or combined (or both) with other forms such as CAET or RT. For example, IMT combined with CAET was shown to be superior to CAET alone for improving functional capacity, ventilatory function, and quality of life in patients with chronic heart failure. Similarly, RT combined with CAET was shown to optimize benefits with respect to functional capacity, muscle function, and quality of life. Furthermore, in recent years, HIIT has emerged as an alternative or complementary (or both) exercise modality to CAET, providing equivalent if not superior benefits to conventional continuous aerobic training with respect to aerobic fitness, cardiovascular function, quality of life, efficiency, safety, tolerance, and exercise adherence in both short- and long-term training studies. Finally, short-interval HIIT was shown to be useful in the initiation and improvement phases of cardiac rehabilitation, whereas moderate- or longer-interval (or both) HIIT protocols appear to be more appropriate for the improvement and maintenance phases because of their high physiological stimulus. We now propose progressive models of exercise training (phases II-III) for patients with cardiac disease, including a more appropriate application of HIIT based on the scientific literature in the context of a multimodal cardiac rehabilitation program. Copyright © 2016 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  14. Effect of Exercise Training on Non-Exercise Physical Activity: A Systematic Review and Meta-Analysis of Randomized Controlled Trials.

    PubMed

    Fedewa, Michael V; Hathaway, Elizabeth D; Williams, Tyler D; Schmidt, Michael D

    2017-06-01

    Many overweight and obese individuals use exercise when attempting to lose weight. However, the improvements in weight and body composition are often far less than expected. Levels of physical activity outside of the structured exercise program are believed to change and may be responsible for the unsuccessful weight loss. The purpose of this meta-analysis was to provide a quantitative estimate of the change in non-exercise physical activity (NEPA) during exercise interventions. All studies included in the meta-analysis were peer-reviewed and published in English. Participants were randomized to a non-exercise comparison group or exercise training group with an intervention lasting ≥2 weeks. NEPA was measured at baseline and at various times during the study. Hedges' d effect size (ES) was used to adjust for small sample bias, and random-effects models were used to calculate the mean ES and explore potential moderators. The cumulative results of 44 effects gathered from ten studies published between 1997 and 2015 indicated that NEPA did not change significantly during exercise training (ES = 0.02, 95% confidence interval [CI] -0.09 to 0.13; p = 0.723). Duration of the exercise session (β = -0.0039), intervention length (β = 0.0543), and an age × sex (β = -0.0005) interaction indicated that the increase in NEPA may be attenuated in older women during exercise training and during shorter exercise interventions with longer sessions (all p < 0.005). On average, no statistically or clinically significant mean change in NEPA occurs during exercise training. However, session duration and intervention length, age, and sex should be accounted for when designing exercise programs to improve long-term sustainability and improve the likelihood of weight loss success, as the initial decrease in NEPA appears to dissipate with continued training.

  15. High-intensity exercise training induces morphological and biochemical changes in skeletal muscles.

    PubMed

    Toti, L; Bartalucci, A; Ferrucci, M; Fulceri, F; Lazzeri, G; Lenzi, P; Soldani, P; Gobbi, P; La Torre, A; Gesi, M

    2013-12-01

    IN THE PRESENT STUDY WE INVESTIGATED THE EFFECT OF TWO DIFFERENT EXERCISE PROTOCOLS ON FIBRE COMPOSITION AND METABOLISM OF TWO SPECIFIC MUSCLES OF MICE: the quadriceps and the gastrocnemius. Mice were run daily on a motorized treadmill, at a velocity corresponding to 60% or 90% of the maximal running velocity. Blood lactate and body weight were measured during exercise training. We found that at the end of training the body weight significantly increased in high-intensity exercise mice compared to the control group (P=0.0268), whereas it decreased in low-intensity exercise mice compared to controls (P=0.30). In contrast, the food intake was greater in both trained mice compared to controls (P < 0.0001 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively). These effects were accompanied by a progressive reduction in blood lactate levels at the end of training in both the exercised mice compared with controls (P=0.03 and P < 0.0001 for low-intensity and high-intensity exercise mice, respectively); in particular, blood lactate levels after high-intensity exercise were significantly lower than those measured in low-intensity exercise mice (P=0.0044). Immunoblotting analysis demonstrated that high-intensity exercise training produced a significant increase in the expression of mitochondrial enzymes contained within gastrocnemius and quadriceps muscles. These changes were associated with an increase in the amount of slow fibres in both these muscles of high-intensity exercise mice, as revealed by the counts of slow fibres stained with specific antibodies (P < 0.0001 for the gastrocnemius; P=0.0002 for the quadriceps). Our results demonstrate that high-intensity exercise, in addition to metabolic changes consisting of a decrease in blood lactate and body weight, induces an increase in the mitochondrial enzymes and slow fibres in different skeletal muscles of mice, which indicates an exercise-induced increase in the aerobic metabolism.

  16. Plasma inflammatory biomarkers response to aerobic versus resisted exercise training for chronic obstructive pulmonary disease patients.

    PubMed

    Abd El-Kader, Shehab M; Al-Jiffri, Osama H; Al-Shreef, Fadwa M

    2016-06-01

    Chronic obstructive pulmonary disease (COPD) is a main risk for morbidity, associated with alterations in systemic inflammation. Recent studies proved that morbidity and mortality of COPD is related to systemic inflammation as it contributes to the pathogenesis of atherosclerosis and cardiovascular disease. However, increase of inflammatory cytokines adversely affects quality of life, alteration in ventilatory and skeletal muscles functions. Moreover, exercise training has many beneficial effects in correction of the adverse effects of COPD. This study aimed to compare the response of inflammatory cytokines of COPD to aerobic versus resisted exercises. One hundred COPD diseased patients participated in this study and were randomly included in two groups; the first group received aerobic exercise, whereas the second group received resisted exercise training for 12 weeks. The mean values of TNF-α, Il-2, IL-4, IL-6 and CRP were significantly decreased in both groups. Also; there was a significant difference between both groups at the end of the study with more reduction in patients who received aerobic exercise training. Aerobic exercise is more appropriate than resisted exercise training in modulating inflammatory cytokines level in patients with chronic obstructive pulmonary disease.

  17. Core Muscle Activation in Suspension Training Exercises.

    PubMed

    Cugliari, Giovanni; Boccia, Gennaro

    2017-02-01

    A quantitative observational laboratory study was conducted to characterize and classify core training exercises executed in a suspension modality on the base of muscle activation. In a prospective single-group repeated measures design, seventeen active male participants performed four suspension exercises typically associated with core training (roll-out, bodysaw, pike and knee-tuck). Surface electromyographic signals were recorded from lower and upper parts of rectus abdominis, external oblique, internal oblique, lower and upper parts of erector spinae muscles using concentric bipolar electrodes. The average rectified values of electromyographic signals were normalized with respect to individual maximum voluntary isometric contraction of each muscle. Roll-out exercise showed the highest activation of rectus abdominis and oblique muscles compared to the other exercises. The rectus abdominis and external oblique reached an activation higher than 60% of the maximal voluntary contraction (or very close to that threshold, 55%) in roll-out and bodysaw exercises. Findings from this study allow the selection of suspension core training exercises on the basis of quantitative information about the activation of muscles of interest. Roll-out and bodysaw exercises can be considered as suitable for strength training of rectus abdominis and external oblique muscles.

  18. [Exercise therapy as a therapeutic concept].

    PubMed

    Reer, R; Ziegler, M; Braumann, K-M

    2005-08-01

    Lack of exercise is a primary cause for today's level of morbidity and mortality in the Western world. Thus, exercise as a therapeutic modality has an important role. Beneficial effects of exercise have been extensively documented, specifically in primary and secondary prevention of coronary heart disease (CHD), diabetes mellitus, hypertension, disorders of fat metabolism, heart insufficiency, cancer, etc. A regular (at least 3 x per week) endurance training program of 30-40 min duration at an intensity of 65-70% of VO(2)max involving large muscle groups is recommended. The specific exercise activity can also positively affect individuals with orthopedic disease patterns, i.e., osteoporosis, back pain, postoperative rehabilitation, etc. Endurance strength training in the form of sequential training involving approx. 8-10 different exercises for the most important muscle groups 2 x per week is a suitable exercise therapy. One to three sets with 8-12 repetitions per exercise should be performed until volitional exhaustion of the trained muscle groups among healthy adults and 15-20 repetitions among older and cardiac patients. Apart from a positive effect on the locomotor system, this type of strength training has positive effects on CHD, diabetes mellitus, and cancer.

  19. Stress reactivity to and recovery from a standardised exercise bout: a study of 31 runners practising relaxation techniques

    PubMed Central

    Solberg, E; Ingjer, F; Holen, A; Sundgot-Borgen, J; Nilsson, S; Holme, I

    2000-01-01

    Objective—To compare the efficacy in runners of two relaxation techniques with regard to exercise reactivity and recovery after exercise. Methods—Thirty one adult male runners were studied prospectively for six months in three groups practising either meditation (n = 11) or autogenic training (n = 11) or serving as controls (n = 10). Before and after the six months relaxation intervention, indicators of reactivity to exercise and metabolism after exercise (blood lactate concentration, heart rate (HR), and oxygen consumption (VO2)), were tested immediately after and 10 minutes after exercise. Resting HR was also assessed weekly at home during the trial. State anxiety was measured before and after the intervention. Results—After the relaxation training, blood lactate concentration after exercise was significantly (p<0.01) decreased in the meditation group compared with the control group. No difference was observed in lactate responses between the autogenic training group and the control group. There were no significant differences among the groups with regard to HR, VO2, or levels of anxiety. Conclusion—Meditation training may reduce the lactate response to a standardised exercise bout. Key Words: autogenic training; lactate; meditation; recovery; relaxation; psychology PMID:10953899

  20. The essential role of exercise in the management of type 2 diabetes.

    PubMed

    Kirwan, John P; Sacks, Jessica; Nieuwoudt, Stephan

    2017-07-01

    Exercise is typically one of the first management strategies advised for patients newly diagnosed with type 2 diabetes. Together with diet and behavior modification, exercise is an essential component of all diabetes and obesity prevention and lifestyle intervention programs. Exercise training, whether aerobic or resistance training or a combination, facilitates improved glucose regulation. High-intensity interval training is also effective and has the added benefit of being very time-efficient. While the efficacy, scalability, and affordability of exercise for the prevention and management of type 2 diabetes are well established, sustainability of exercise recommendations for patients remains elusive. Copyright © 2017 Cleveland Clinic.

Top