Bravini, Elisabetta; Giordano, Andrea; Sartorio, Francesco; Ferriero, Giorgio; Vercelli, Stefano
2017-04-01
To investigate dimensionality and the measurement properties of the Italian Lower Extremity Functional Scale using both classical test theory and Rasch analysis methods, and to provide insights for an improved version of the questionnaire. Rasch analysis of individual patient data. Rehabilitation centre. A total of 135 patients with musculoskeletal diseases of the lower limb. Patients were assessed with the Lower Extremity Functional Scale before and after the rehabilitation. Rasch analysis showed some problems related to rating scale category functioning, items fit, and items redundancy. After an iterative process, which resulted in the reduction of rating scale categories from 5 to 4, and in the deletion of 5 items, the psychometric properties of the Italian Lower Extremity Functional Scale improved. The retained 15 items with a 4-level response format fitted the Rasch model (internal construct validity), and demonstrated unidimensionality and good reliability indices (person-separation reliability 0.92; Cronbach's alpha 0.94). Then, the analysis showed differential item functioning for six of the retained items. The sensitivity to change of the Italian 15-item Lower Extremity Functional Scale was nearly equal to the one of the original version (effect size: 0.93 and 0.98; standardized response mean: 1.20 and 1.28, respectively for the 15-item and 20-item versions). The Italian Lower Extremity Functional Scale had unsatisfactory measurement properties. However, removing five items and simplifying the scoring from 5 to 4 levels resulted in a more valid measure with good reliability and sensitivity to change.
Abbott, J Haxby; Schmitt, John
2014-08-01
Multicenter, prospective, longitudinal cohort study. To investigate the minimum important difference (MID) of the Patient-Specific Functional Scale (PSFS), 4 region-specific outcome measures, and the numeric pain rating scale (NPRS) across 3 levels of patient-perceived global rating of change in a clinical setting. The MID varies depending on the external anchor defining patient-perceived "importance." The MID for the PSFS has not been established across all body regions. One thousand seven hundred eight consecutive patients with musculoskeletal disorders were recruited from 5 physical therapy clinics. The PSFS, NPRS, and 4 region-specific outcome measures-the Oswestry Disability Index, Neck Disability Index, Upper Extremity Functional Index, and Lower Extremity Functional Scale-were assessed at the initial and final physical therapy visits. Global rating of change was assessed at the final visit. MID was calculated for the PSFS and NPRS (overall and for each body region), and for each region-specific outcome measure, across 3 levels of change defined by the global rating of change (small, medium, large change) using receiver operating characteristic curve methodology. The MID for the PSFS (on a scale from 0 to 10) ranged from 1.3 (small change) to 2.3 (medium change) to 2.7 (large change), and was relatively stable across body regions. MIDs for the NPRS (-1.5 to -3.5), Oswestry Disability Index (-12), Neck Disability Index (-14), Upper Extremity Functional Index (6 to 11), and Lower Extremity Functional Scale (9 to 16) are also reported. We reported the MID for small, medium, and large patient-perceived change on the PSFS, NPRS, Oswestry Disability Index, Neck Disability Index, Upper Extremity Functional Index, and Lower Extremity Functional Scale for use in clinical practice and research.
Rasch validation of the Arabic version of the lower extremity functional scale.
Alnahdi, Ali H
2018-02-01
The purpose of this study was to examine the internal construct validity of the Arabic version of the Lower Extremity Functional Scale (20-item Arabic LEFS) using Rasch analysis. Patients (n = 170) with lower extremity musculoskeletal dysfunction were recruited. Rasch analysis of 20-item Arabic LEFS was performed. Once the initial Rasch analysis indicated that the 20-item Arabic LEFS did not fit the Rasch model, follow-up analyses were conducted to improve the fit of the scale to the Rasch measurement model. These modifications included removing misfitting individuals, changing item scoring structure, removing misfitting items, addressing bias caused by response dependency between items and differential item functioning (DIF). Initial analysis indicated deviation of the 20-item Arabic LEFS from the Rasch model. Disordered thresholds in eight items and response dependency between six items were detected with the scale as a whole did not meet the requirement of unidimensionality. Refinements led to a 15-item Arabic LEFS that demonstrated excellent internal consistency (person separation index [PSI] = 0.92) and satisfied all the requirement of the Rasch model. Rasch analysis did not support the 20-item Arabic LEFS as a unidimensional measure of lower extremity function. The refined 15-item Arabic LEFS met all the requirement of the Rasch model and hence is a valid objective measure of lower extremity function. The Rasch-validated 15-item Arabic LEFS needs to be further tested in an independent sample to confirm its fit to the Rasch measurement model. Implications for Rehabilitation The validity of the 20-item Arabic Lower Extremity Functional Scale to measure lower extremity function is not supported. The 15-item Arabic version of the LEFS is a valid measure of lower extremity function and can be used to quantify lower extremity function in patients with lower extremity musculoskeletal disorders.
ERIC Educational Resources Information Center
Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn
2011-01-01
Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five BAMF ordinal scales designed for quick documentation of gross, fine, and oral motor skill levels. Designed to be independent of age and…
Navarro-Pujalte, Esther; Gacto-Sánchez, Mariano; Montilla-Herrador, Joaquina; Escolar-Reina, Pilar; Ángeles Franco-Sierra, María; Medina-Mirapeix, Francesc
2018-01-12
Prospective longitudinal study. To examine the sensitivity of the Mobility Activities Measure for lower extremities and to compare it to the sensitivity of the Physical Functioning Scale (PF-10) and the Patient-Specific Functional Scale (PSFS) at week 4 and week 8 post-hospitalization in outpatient rehabilitation settings. Mobility Activities Measure is a set of short mobility measures to track outpatient rehabilitation progress: its scales have shown good properties but its sensitivity to change has not been reported. Patients with musculoskeletal conditions were recruited at admission in three outpatient rehabilitation settings in Spain. Data were collected at admission, week 4 and week 8 from an initial sample of 236 patients (mean age ± SD = 36.7 ± 11.1). Mobility Activities Measure scales for lower extremity; PF-10; and PSFS. All the Mobility Activities Measure scales were sensitive to both positive and negative changes (the Standardized Response Means (SRMs) ranged between 1.05 and 1.53 at week 4, and between 0.63 and 1.47 at week 8). The summary measure encompassing the three Mobility Activities Measure scales detected a higher proportion of participants who had improved beyond the minimal detectable change (MDC) than detected by the PSFS and the PF-10 both at week 4 (86.64% vs. 69.81% and 42.23%, respectively) and week 8 (71.14% vs. 55.65% and 60.81%, respectively). The three Mobility Activities Measure scales assessing the lower extremity can be used across outpatient rehabilitation settings to provide consistent and sensitive measures of changes in patients' mobility. Implications for rehabilitation All the scales of the Mobility Activities Measure for the lower extremity were sensitive to both positive and negative change across the follow-up periods. Overall, the summary measure encompassing the three Mobility Activities Measure scales for the lower extremity appeared more sensitive to positive changes than the Physical Functioning Scale, especially during the first four weeks of treatment. The summary measure also detected a higher percentage of participants with positive change that exceeded the minimal detectable change than the Patient-Specific Functional Scale and the Physical Functioning Scale at the first follow-up period. By demonstrating their consistency and sensitivity to change, the three Mobility Activities Measures scales can now be considered in order to track patients' functional progress. Mobility Activities Measure can be therefore used in patients with musculoskeletal conditions across outpatient rehabilitation settings to provide estimates of change in mobility activities focusing on the lower extremity.
Yoon, Jisun; Chun, Min Ho; Lee, Sook Joung; Kim, Bo Ryun
2015-06-01
The aim of this study was to evaluate the benefit of virtual reality-based rehabilitation on upper-extremity function in patients with brain tumor. Patients with upper-extremity dysfunction were divided into age-matched and tumor type-matched two groups. The intervention group performed the virtual reality program 30 mins per session for 9 sessions and conventional occupational therapy 30 mins per session for 6 sessions for 3 wks, whereas the control group received conventional occupational therapy alone 30 mins per session for 15 sessions for 3 wks. The Box and Block test, the Manual Function test, and the Fugl-Meyer scale were used to evaluate upper-extremity function. The Korean version of the Modified Barthel Index was used to assess activities of daily living. Forty patients completed the study (20 for each group). Each group exhibited significant posttreatment improvements in the Box and Block test, Manual Function test, Fugl-Meyer scale, and Korean version of the Modified Barthel Index scores. The Box and Block test, the Fugl-Meyer scale, and the Manual Function test showed greater improvements in shoulder/elbow/forearm function in the intervention group and hand function in the control group. Virtual reality-based rehabilitation combined with conventional occupational therapy may be more effective than conventional occupational therapy, especially for proximal upper-extremity function in patients with brain tumor. Further studies considering hand function, such as use of virtual reality programs that targeting hand use, are required.
Humerus fracture bending risk function for the 50th percentile male.
Santago, Anthony C; Cormier, Joseph M; Duma, Stefan M
2008-01-01
The increase in upper extremity injuries in automobile collisions, because of the widespread implantation of airbags, has lead to an increased focus in humerus injury criteria. Risk functions for upper extremity injury that can be used in instrumented upper extremities would be useful. This paper presents a risk function for humerus injury for the 50th percentile male based on bending fracture moment data gathered from previous studies. The data was scaled using two scaling factors, one for mass and one for rate, and the Weibull survival analysis model was then used to develop the risk function. It was determined that a 25% risk of injury corresponds to a 214 Nm bending load, a 50% risk of injury corresponds to a 257 Nm bending load, and a 75% risk of injury corresponds to a 296 Nm bending load. It is believed the risk function can be used with an instrumented upper extremity during vehicle testing.
Boo, Jung-A; Moon, Sang-Hyun; Lee, Sun-Min; Choi, Jung-Hyun; Park, Si-Eun
2016-01-01
[Purpose] The purpose of this study was to determine the effect of whole-body vibration exercise in a sitting position prior to therapy in stroke patients. [Subjects and Methods] Fourteen chronic stroke patients were included in this study. Prior to occupational therapy, whole-body exercise was performed for 10 minutes, 5 times per week, for a total of 8 weeks. Muscle tone and upper extremity function were measured. The Modified Ashworth Scale (MAS) was used to measure muscle tone, and the Manual Function Test (MFT) and Fugl-Meyer Assessment scale (FugM) were used to measure upper extremity function. [Results] MAS score was significantly decreased, and MFT and FugM were significantly increased. [Conclusion] These results indicate that whole-body vibration exercise in a sitting position prior to therapy had a positive effect on muscle tone, and upper extremity function in stroke patients.
Forearm fracture bending risk functin for the 50th percentile male.
Santago, Anthony C; Cormier, Joseph M; Duma, Stefan M; Yoganandan, Narayan; Pintar, Frank A
2008-01-01
The increase in upper extremity injuries in automobile collisions, because of the widespread implantation of airbags, has lead to a better understanding of forearm injury criteria. Risk functions for upper extremity injury that can be used in instrumented upper extremities would be useful. This paper presents a risk function for forearm injury for the 50th percentile male based on bending fracture moment data gathered from previous studies. The data was scaled using two scaling factors, one for orientation and one for mass, and the Weibull survival analysis model was then used to develop the risk function. It was determined that a 25% risk of injury corresponds to an 82 Nm bending load, a 50% risk of injury corresponds to a 100 Nm bending load, and a 75% risk of injury corresponds to a 117 Nm bending load. It is believed the risk function can be used with an instrumented upper extremity during vehicle testing.
Negahban, Hossein; Hessam, Masumeh; Tabatabaei, Saeid; Salehi, Reza; Sohani, Soheil Mansour; Mehravar, Mohammad
2014-01-01
The aim was to culturally translate and validate the Persian lower extremity functional scale (LEFS) in a heterogeneous sample of outpatients with lower extremity musculoskeletal disorders (n = 304). This is a prospective methodological study. After a standard forward-backward translation, psychometric properties were assessed in terms of test-retest reliability, internal consistency, construct validity, dimensionality, and ceiling or floor effects. The acceptable level of intraclass correlation coefficient >0.70 and Cronbach's alpha coefficient >0.70 was obtained for the Persian LEFS. Correlations between Persian LEFS and Short-Form 36 Health Survey (SF-36) subscales of Physical Health component (rs range = 0.38-0.78) were higher than correlations between Persian LEFS and SF-36 subscales of Mental Health component (rs range = 0.15-0.39). A corrected item--total correlation of >0.40 (Spearman's rho) was obtained for all items of the Persian LEFS. Horn's parallel analysis detected a total of two factors. No ceiling or floor effects were detected for the Persian LEFS. The Persian version of the LEFS is a reliable and valid instrument that can be used to measure functional status in Persian-speaking patients with different musculoskeletal disorders of the lower extremity. Implications for Rehabilitation The Persian lower extremity functional scale (LEFS) is a reliable, internally consistent and valid instrument, with no ceiling or floor effects, to determine functional status of heterogeneous patients with musculoskeletal disorders of the lower extremity. The Persian version of the LEFS can be used in clinical and research settings to measure function in Iranian patients with different musculoskeletal disorders of the lower extremity.
Gravo-Aeroelastic Scaling for Extreme-Scale Wind Turbines
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fingersh, Lee J; Loth, Eric; Kaminski, Meghan
2017-06-09
A scaling methodology is described in the present paper for extreme-scale wind turbines (rated at 10 MW or more) that allow their sub-scale turbines to capture their key blade dynamics and aeroelastic deflections. For extreme-scale turbines, such deflections and dynamics can be substantial and are primarily driven by centrifugal, thrust and gravity forces as well as the net torque. Each of these are in turn a function of various wind conditions, including turbulence levels that cause shear, veer, and gust loads. The 13.2 MW rated SNL100-03 rotor design, having a blade length of 100-meters, is herein scaled to the CART3more » wind turbine at NREL using 25% geometric scaling and blade mass and wind speed scaled by gravo-aeroelastic constraints. In order to mimic the ultralight structure on the advanced concept extreme-scale design the scaling results indicate that the gravo-aeroelastically scaled blades for the CART3 are be three times lighter and 25% longer than the current CART3 blades. A benefit of this scaling approach is that the scaled wind speeds needed for testing are reduced (in this case by a factor of two), allowing testing under extreme gust conditions to be much more easily achieved. Most importantly, this scaling approach can investigate extreme-scale concepts including dynamic behaviors and aeroelastic deflections (including flutter) at an extremely small fraction of the full-scale cost.« less
Revised upper limb module for spinal muscular atrophy: Development of a new module.
Mazzone, Elena S; Mayhew, Anna; Montes, Jacqueline; Ramsey, Danielle; Fanelli, Lavinia; Young, Sally Dunaway; Salazar, Rachel; De Sanctis, Roberto; Pasternak, Amy; Glanzman, Allan; Coratti, Giorgia; Civitello, Matthew; Forcina, Nicola; Gee, Richard; Duong, Tina; Pane, Marika; Scoto, Mariacristina; Pera, Maria Carmela; Messina, Sonia; Tennekoon, Gihan; Day, John W; Darras, Basil T; De Vivo, Darryl C; Finkel, Richard; Muntoni, Francesco; Mercuri, Eugenio
2017-06-01
There is a growing need for a robust clinical measure to assess upper limb motor function in spinal muscular atrophy (SMA), as the available scales lack sensitivity at the extremes of the clinical spectrum. We report the development of the Revised Upper Limb Module (RULM), an assessment specifically designed for upper limb function in SMA patients. An international panel with specific neuromuscular expertise performed a thorough review of scales currently available to assess upper limb function in SMA. This review facilitated a revision of the existing upper limb function scales to make a more robust clinical scale. Multiple revisions of the scale included statistical analysis and captured clinically relevant changes to fulfill requirements by regulators and advocacy groups. The resulting RULM scale shows good reliability and validity, making it a suitable tool to assess upper extremity function in the SMA population for multi-center clinical research. Muscle Nerve 55: 869-874, 2017. © 2016 Wiley Periodicals, Inc.
Kim, Jin-young; Kim, Jong-man; Ko, Eun-young
2014-01-01
The purpose this study was to investigate the effect of action observation physical training (AOPT) on the functioning of the upper extremities in children with cerebral palsy (CP), using an evaluation framework based on that of the International Classification of Functioning, Disability and Health (ICF). The subjects were divided into an AOPT group and a physical training (PT) group. AOPT group practiced repeatedly the actions they observed on video clips, in which normal child performed an action with their upper extremities. PT group performed the same actions as the AOPT group did after observing landscape photographs. The subjects participated in twelve 30-min sessions, 3 days a week, for 4 weeks. Evaluation of upper extremity function using the following: the power of grasp and Modified Ashworth Scale for body functions and structures, a Box and Block test, an ABILHAND-Kids questionnaire, and the WeeFIM scale for activity and participation. Measurements were performed before and after the training, and 2 weeks after the end of training. The results of this study showed that, in comparison with the PT group, the functioning of the upper extremities in the AOPT group was significantly improved in body functions and activity and participation according to the ICF framework. This study demonstrates that AOPT has a positive influence on the functioning of the upper extremities in children with CP. It is suggested that this alternative approach for functioning of the upper extremities could be an effective method for rehabilitation in children with CP. PMID:25061598
Serum Vitamin E Concentrations and Recovery of Physical Function During the Year After Hip Fracture
Miller, Ram R.; Hicks, Gregory E.; Orwig, Denise L.; Hochberg, Marc C.; Semba, Richard D.; Yu-Yahiro, Janet A.; Ferrucci, Luigi; Magaziner, Jay; Shardell, Michelle D.
2011-01-01
Background. Poor nutritional status after hip fracture is common and may contribute to physical function decline. Low serum concentrations of vitamin E have been associated with decline in physical function among older adults, but the role of vitamin E in physical recovery from hip fracture has never been explored. Methods. Serum concentrations of α- and γ-tocopherol, the two major forms of vitamin E, were measured in female hip fracture patients from the Baltimore Hip Studies cohort 4 at baseline and at 2-, 6-, and 12-month postfracture follow-up visits. Four physical function measures—Six-Minute Walk Distance, Lower Extremity Gain Scale, Short Form-36 Physical Functioning Domain, and Yale Physical Activity Survey—were assessed at 2, 6, and 12 months postfracture. Generalized estimating equations modeled the relationship between baseline and time-varying serum tocopherol concentrations and physical function after hip fracture. Results. A total of 148 women aged 65 years and older were studied. After adjusting for covariates, baseline vitamin E concentrations were positively associated with Six-Minute Walk Distance, Lower Extremity Gain Scale, and Yale Physical Activity Survey scores (p < .1) and faster improvement in Lower Extremity Gain Scale and Yale Physical Activity Survey scores (p < .008). Time-varying vitamin E was also positively associated with Six-Minute Walk Distance, Lower Extremity Gain Scale, Yale Physical Activity Survey, and Short Form-36 Physical Functioning Domain (p < .03) and faster improvement in Six-Minute Walk Distance and Short Form-36 Physical Functioning Domain (p < .07). Conclusions. Serum concentrations of both α- and γ-tocopherol were associated with better physical function after hip fracture. Vitamin E may represent a potentially modifiable factor related to recovery of postfracture physical function. PMID:21486921
The home stroke rehabilitation and monitoring system trial: a randomized controlled trial.
Linder, Susan M; Rosenfeldt, Anson B; Reiss, Aimee; Buchanan, Sharon; Sahu, Komal; Bay, Curtis R; Wolf, Steven L; Alberts, Jay L
2013-01-01
Because many individuals poststroke lack access to the quality and intensity of rehabilitation to improve upper extremity motor function, a home-based robotic-assisted upper extremity rehabilitation device is being paired with an individualized home exercise program. The primary aim of this project is to determine the effectiveness of robotic-assisted home therapy compared with a home exercise program on upper extremity motor recovery and health-related quality of life for stroke survivors in rural and underserved locations. The secondary aim is to explore whether initial degree of motor function of the upper limb may be a factor in predicting the extent to which patients with stroke may be responsive to a home therapy approach. We hypothesize that the home exercise program intervention, when enhanced with robotic-assisted therapy, will result in significantly better outcomes in motor function and quality of life. A total of 96 participants within six-months of a single, unilateral ischemic, or hemorrhagic stroke will be recruited in this prospective, single-blind, multisite randomized clinical trial. The primary outcome is the change in upper extremity function using the Action Research Arm Test. Secondary outcomes include changes in: upper extremity function (Wolf Motor Function Test), upper extremity impairment (upper extremity portion of the Fugl-Meyer Test), self-reported quality of life (Stroke Impact Scale), and affect (Centers for Epidemiologic Studies Depression Scale). Similar or greater improvements in upper extremity function using the combined robotic home exercise program intervention compared with home exercise program alone will be interpreted as evidence that supports the introduction of in-home technology to augment the recovery of function poststroke. © 2012 The Authors. International Journal of Stroke © 2012 World Stroke Organization.
Is Extremely High Life Satisfaction during Adolescence Advantageous?
ERIC Educational Resources Information Center
Suldo, Shannon M.; Huebner, E. Scott
2006-01-01
This study examined whether extremely high life satisfaction was associated with adaptive functioning or maladaptive functioning. Six hundred ninety-eight secondary level students completed the Students' Life Satisfaction Scale [Huebner, 1991a, School Psychology International, 12, pp. 231-240], Youth Self-Report of the Child Behavior Checklist…
Verheijde, Joseph L; White, Fred; Tompkins, James; Dahl, Peder; Hentz, Joseph G; Lebec, Michael T; Cornwall, Mark
2013-12-01
To investigate reliability, validity, and sensitivity to change of the Lower Extremity Functional Scale (LEFS) in individuals affected by stroke. The secondary objective was to test the validity and sensitivity of a single-item linear analog scale (LAS) of function. Prospective cohort reliability and validation study. A single rehabilitation department in an academic medical center. Forty-three individuals receiving neurorehabilitation for lower extremity dysfunction after stroke were studied. Their ages ranged from 32 to 95 years, with a mean of 70 years; 77% were men. Test-retest reliability was assessed by calculating the classical intraclass correlation coefficient, and the Bland-Altman limits of agreement. Validity was assessed by calculating the Pearson correlation coefficient between the instruments. Sensitivity to change was assessed by comparing baseline scores with end of treatment scores. Measurements were taken at baseline, after 1-3 days, and at 4 and 8 weeks. The LEFS, Short-Form-36 Physical Function Scale, Berg Balance Scale, Six-Minute Walk Test, Five-Meter Walk Test, Timed Up-and-Go test, and the LAS of function were used. The test-retest reliability of the LEFS was found to be excellent (ICC = 0.96). Correlated with the 6 other measures of function studied, the validity of the LEFS was found to be moderate to high (r = 0.40-0.71). Regarding the sensitivity to change, the mean LEFS scores from baseline to study end increased 1.2 SD and for LAS 1.1 SD. LEFS exhibits good reliability, validity, and sensitivity to change in patients with lower extremity impairments secondary to stroke. Therefore, the LEFS can be a clinically efficient outcome measure in the rehabilitation of patients with subacute stroke. The LAS is shown to be a time-saving and reasonable option to track changes in a patient's functional status. Copyright © 2013 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Wii™-habilitation of upper extremity function in children with cerebral palsy. An explorative study.
Winkels, Diny G M; Kottink, Anke I R; Temmink, Rutger A J; Nijlant, Juliëtte M M; Buurke, Jaap H
2013-01-01
Commercially available virtual reality systems can possibly support rehabilitation objectives in training upper arm function in children with Cerebral Palsy (CP). The present study explored the effect of the Nintendo Wii™ training on upper extremity function in children with CP. During six weeks, all children received twice a week training with the Wii™, with their most affected arm. The Melbourne Assessment of Upper Limb Function and ABILHAND-Kids were assessed pre- and post- training. In addition, user satisfaction of both children and health professionals was assessed after training. Enjoyment in gaming was scored on a visual analogue scale scale after each session by the children. Fifteen children with CP participated in the study. The quality of upper extremity movements did not change (-2.1, p > 0.05), while a significant increase of convenience in using hands/arms during performance of daily activities was found (0.6, p < 0.05). Daily activities seem to be easier performed after Wii™ training for most of the included children with CP.
Predictors of Upper-Extremity Physical Function in Older Adults.
Hermanussen, Hugo H; Menendez, Mariano E; Chen, Neal C; Ring, David; Vranceanu, Ana-Maria
2016-10-01
Little is known about the influence of habitual participation in physical exercise and diet on upper-extremity physical function in older adults. To assess the relationship of general physical exercise and diet to upper-extremity physical function and pain intensity in older adults. A cohort of 111 patients 50 or older completed a sociodemographic survey, the Rapid Assessment of Physical Activity (RAPA), an 11-point ordinal pain intensity scale, a Mediterranean diet questionnaire, and three Patient- Reported Outcomes Measurement Information System (PROMIS) based questionnaires: Pain Interference to measure inability to engage in activities due to pain, Upper-Extremity Physical Function, and Depression. Multivariable linear regression modeling was used to characterize the association of physical activity, diet, depression, and pain interference to pain intensity and upper-extremity function. Higher general physical activity was associated with higher PROMIS Upper-Extremity Physical Function and lower pain intensity in bivariate analyses. Adherence to the Mediterranean diet did not correlate with PROMIS Upper-Extremity Physical Function or pain intensity in bivariate analysis. In multivariable analyses factors associated with higher PROMIS Upper-Extremity Physical Function were male sex, non-traumatic diagnosis and PROMIS Pain Interference, with the latter accounting for most of the observed variability (37%). Factors associated with greater pain intensity in multivariable analyses included fewer years of education and higher PROMIS Pain Interference. General physical activity and diet do not seem to be as strongly or directly associated with upper-extremity physical function as pain interference.
Linder, Susan M; Reiss, Aimee; Buchanan, Sharon; Sahu, Komal; Rosenfeldt, Anson B; Clark, Cindy; Wolf, Steven L; Alberts, Jay L
2013-09-01
After stroke, many individuals lack resources to receive the intensive rehabilitation that is thought to improve upper extremity motor function. This case study describes the application of a telerehabilitation intervention using a portable robotic device combined with a home exercise program (HEP) designed to improve upper extremity function. The participant was a 54-year-old man, 22 weeks following right medullary pyramidal ischemic infarct. At baseline, he exhibited residual paresis of the left upper extremity, resulting in impaired motor control consistent with a flexion synergistic pattern, scoring 22 of 66 on the Fugl-Meyer Assessment. The participant completed 85 total hours of training (38 hours of robotic device and 47 hours of HEP) over the 8-week intervention period. The participant demonstrated an improvement of 26 points on the Action Research Arm Test, 5 points on the Functional Ability Scale portion of the Wolf Motor Function Test, and 20 points on the Fugl-Meyer Assessment, all of which surpassed the minimal clinically important difference. Of the 17 tasks of the Wolf Motor Function Test, he demonstrated improvement on 11 of the 15 time-based tasks and both strength measures. The participant reported an overall improvement in his recovery from stroke on the Stroke Impact Scale quality-of-life questionnaire from 40 of 100 to 65 of 100. His score on the Center for Epidemiologic Studies Depression Scale improved by 19 points. This case demonstrates that robotic-assisted therapy paired with an HEP can be successfully delivered within a home environment to a person with stroke. Robotic-assisted therapy may be a feasible and efficacious adjunct to an HEP program to elicit substantial improvements in upper extremity motor function, especially in those persons with stroke who lack access to stroke rehabilitation centers.
Pan, Shin-Liang; Liang, Huey-Wen; Hou, Wen-Hsuan; Yeh, Tian-Shin
2014-11-01
To assess the responsiveness of one generic questionnaire, Medical Outcomes Study Short Form-36 (SF-36), and one region-specific outcome measure, Lower Extremity Functional Scale (LEFS), in patients with traumatic injuries of lower extremities. A prospective and observational study of patients after traumatic injuries of lower extremities. Assessments were performed at baseline and 3 months later. In-patients and out-patients in two university hospitals in Taiwan. A convenience sample of 109 subjects were evaluated and 94 (86%) were followed. Not applicable. Assessments of responsiveness with distribution-based approach (effect size, standardized response mean [SRM], minimal detectable change) and anchor-based approach (receiver's operating curve analysis, ROC analysis). LEFS and physical component score (PCS) of SF-36 were all responsive to global improvement, with fair-to-good accuracy in discriminating between participants with and without improvement. The area under curve gained by ROC analysis for LEFS and SF-36 PCS was similar (0.65 vs. 0.70, p=0.26). Our findings revealed comparable responsiveness of LEFS and PCS of SF-36 in a sample of subjects with traumatic injuries of lower limbs. Either type of functional measure would be suitable for use in clinical trials where improvement in function was an endpoint of interest. Copyright © 2014 Elsevier Ltd. All rights reserved.
Ginsberg, Jill P; Rai, Shesh N; Carlson, Claire A; Meadows, Anna T; Hinds, Pamela S; Spearing, Elena M; Zhang, Lijun; Callaway, Lulie; Neel, Michael D; Rao, Bhaskar N; Marchese, Victoria G
2007-12-01
Comparison of functional mobility and quality of life is performed in patients with lower-extremity bone sarcoma following either amputation, limb-sparing surgery, or rotationplasty with four different types of outcome measures: (1) an objective functional mobility measure that requires patients to physically perform specific tasks, functional mobility assessment (FMA); (2) a clinician administered tool, Musculoskeletal Tumor Society Scale (MSTS); (3) a patient questionnaire, Toronto Extremity Salvage Scale (TESS); and (4) a health-related quality of life (HRQL) measure, Short Form-36 version 2 (SF-36v.2). This is a prospective multi-site study including 91 patients with lower-extremity bone sarcoma following amputation, limb-sparing surgery, or rotationplasty. One of three physical therapists administered the quality of life measure (SF-36v.2) as well as a battery of functional measures (FMA, MSTS, and TESS). Differences between patients who had amputation, limb-sparing surgery, or rotationplasty were consistently demonstrated by the FMA. Patients with limb sparing femur surgery performed better than those patients with an above the knee amputation but similarly to a small number of rotationplasty patients. Several of the more conventional self-report measures were shown to not have the discriminative capabilities of the FMA in these cohorts. In adolescents with lower-extremity bone sarcoma, it may be advantageous to consider the use of a combination of outcome measures, including the FMA, for objective functional mobility assessment along with the TESS for a subjective measure of disability and the SF-36v.2 for a quality-of-life measure. 2007 Wiley-Liss, Inc
Sallés, Laia; Martín-Casas, Patricia; Gironès, Xavier; Durà, María José; Lafuente, José Vicente; Perfetti, Carlo
2017-04-01
[Purpose] This study aims to describe a protocol based on neurocognitive therapeutic exercises and determine its feasibility and usefulness for upper extremity functionality when compared with a conventional protocol. [Subjects and Methods] Eight subacute stroke patients were randomly assigned to a conventional (control group) or neurocognitive (experimental group) treatment protocol. Both lasted 30 minutes, 3 times a week for 10 weeks and assessments were blinded. Outcome measures included: Motor Evaluation Scale for Upper Extremity in Stroke Patients, Motricity Index, Revised Nottingham Sensory Assessment and Kinesthetic and Visual Imagery Questionnaire. Descriptive measures and nonparametric statistical tests were used for analysis. [Results] The results indicate a more favorable clinical progression in the neurocognitive group regarding upper extremity functional capacity with achievement of the minimal detectable change. The functionality results are related with improvements on muscle strength and sensory discrimination (tactile and kinesthetic). [Conclusion] Despite not showing significant group differences between pre and post-treatment, the neurocognitive approach could be a safe and useful strategy for recovering upper extremity movement following stroke, especially regarding affected hands, with better and longer lasting results. Although this work shows this protocol's feasibility with the panel of scales proposed, larger studies are required to demonstrate its effectiveness.
Sallés, Laia; Martín-Casas, Patricia; Gironès, Xavier; Durà, María José; Lafuente, José Vicente; Perfetti, Carlo
2017-01-01
[Purpose] This study aims to describe a protocol based on neurocognitive therapeutic exercises and determine its feasibility and usefulness for upper extremity functionality when compared with a conventional protocol. [Subjects and Methods] Eight subacute stroke patients were randomly assigned to a conventional (control group) or neurocognitive (experimental group) treatment protocol. Both lasted 30 minutes, 3 times a week for 10 weeks and assessments were blinded. Outcome measures included: Motor Evaluation Scale for Upper Extremity in Stroke Patients, Motricity Index, Revised Nottingham Sensory Assessment and Kinesthetic and Visual Imagery Questionnaire. Descriptive measures and nonparametric statistical tests were used for analysis. [Results] The results indicate a more favorable clinical progression in the neurocognitive group regarding upper extremity functional capacity with achievement of the minimal detectable change. The functionality results are related with improvements on muscle strength and sensory discrimination (tactile and kinesthetic). [Conclusion] Despite not showing significant group differences between pre and post-treatment, the neurocognitive approach could be a safe and useful strategy for recovering upper extremity movement following stroke, especially regarding affected hands, with better and longer lasting results. Although this work shows this protocol’s feasibility with the panel of scales proposed, larger studies are required to demonstrate its effectiveness. PMID:28533607
Cintas, Holly Lea; Parks, Rebecca; Don, Sarah; Gerber, Lynn
2011-01-01
Content validity and reliability of the Brief Assessment of Motor Function (BAMF) Upper Extremity Gross Motor Scale (UEGMS) were evaluated in this prospective, descriptive study. The UEGMS is one of five ordinal scales designed for quick documentation of gross, fine and oral motor skill levels. Designed to be independent of age and diagnosis, it is intended for use for infants through young adults. An expert panel of 17 physical therapists and 13 occupational therapists refined the content by responding to a standard questionnaire comprised of questions which asked whether each item should be included, is clearly worded, should be reordered higher or lower, is functionally relevant, and is easily discriminated. Ratings of content validity exceeded the criterion except for two items which may represent different perspectives of physical and occupational therapists. The UEGMS was modified using the quantitative and qualitative feedback from the questionnaires. For reliability, five raters scored videotaped motor performances of ten children. Coefficients for inter-rater (0.94) and intra-rater (0.95) reliability were high. The results provide evidence of content validity and reliability of the UEGMS for assessment of upper extremity gross motor skill. PMID:21599568
[Shoulder disability questionnaires: a systematic review].
Fayad, F; Mace, Y; Lefevre-Colau, M M
2005-07-01
To identify all available shoulder disability questionnaires designed to measure physical functioning and to examine those with satisfactory clinimetric quality. We used the Medline database and the "Guide des outils de mesure de l'évaluation en médecine physique et de réadaptation" textbook to search for questionnaires. Analysis took into account the development methodology, clinimetric quality of the instruments and frequency of their utilization. We classified the instruments according to the International Classification of Functioning, Disability and Health. Thirty-eight instruments have been developed to measure disease-, shoulder- or upper extremity-specific outcome. Four scales assess upper-extremity disability and 3 others shoulder disability. We found 6 scales evaluating disability and shoulder pain, 7 scales measuring the quality of life in patients with various conditions of the shoulder, 14 scales combining objective and subjective measures, 2 pain scales and 2 unclassified scales. Older instruments developed before the advent of modern measurement development methodology usually combine objective and subjective measures. Recent instruments were designed with appropriate methodology. Most are self-administered questionnaires. Numerous shoulder outcome measure instruments are available. There is no "gold standard" for assessing shoulder function outcome in the general population.
Higgins, Johanne; Finch, Lois E; Kopec, Jacek; Mayo, Nancy E
2010-02-01
To create and illustrate the development of a method to parsimoniously and hierarchically assess upper extremity function in persons after stroke. Data were analyzed using Rasch analysis. Re-analysis of data from 8 studies involving persons after stroke. Over 4000 patients with stroke who participated in various studies in Montreal and elsewhere in Canada. Data comprised 17 tests or indices of upper extremity function and health-related quality of life, for a total of 99 items related to upper extremity function. Tests and indices included, among others, the Box and Block Test, the Nine-Hole Peg Test and the Stroke Impact Scale. Data were collected at various times post-stroke from 3 days to 1 year. Once the data fit the model, a bank of items measuring upper extremity function with persons and items organized hierarchically by difficulty and ability in log units was produced. This bank forms the basis for eventual computer adaptive testing. The calibration of the items should be tested further psychometrically, as should the interpretation of the metric arising from using the item calibration to measure the upper extremity of individuals.
Marchese, Victoria G; Rai, Shesh N; Carlson, Claire A; Hinds, Pamela S; Spearing, Elena M; Zhang, Lijun; Callaway, Lulie; Neel, Michael D; Rao, Bhaskar N; Ginsberg, Jill P
2007-08-01
Reliability and validity of a new tool, Functional Mobility Assessment (FMA), were examined in patients with lower-extremity sarcoma. FMA requires the patients to physically perform the functional mobility measures, unlike patient self-report or clinician administered measures. A sample of 114 subjects participated, 20 healthy volunteers and 94 patients with lower-extremity sarcoma after amputation, limb-sparing, or rotationplasty surgery. Reliability of the FMA was examined by three raters testing 20 healthy volunteers and 23 subjects with lower-extremity sarcoma. Concurrent validity was examined using data from 94 subjects with lower-extremity sarcoma who completed the FMA, Musculoskeletal Tumor Society (MSTS), Short-Form 36 (SF-36v2), and Toronto Extremity Salvage Scale (TESS) scores. Construct validity was measured by the ability of the FMA to discriminate between subjects with and without functional mobility deficits. FMA demonstrated excellent reliability (ICC [2,1] >or=0.97). Moderate correlations were found between FMA and SF-36v2 (r = 0.60, P < 0.01), FMA and MSTS (r = 0.68, P < 0.01), and FMA and TESS (r = 0.62, P < 0.01). The patients with lower-extremity sarcoma scored lower on the FMA as compared to healthy controls (P < 0.01). The FMA is a reliable and valid functional outcome measure for patients with lower-extremity sarcoma. This study supports the ability of the FMA to discriminate between patients with varying functional abilities and supports the need to include measures of objective functional mobility in examination of patients with lower-extremity sarcoma.
Kiwanuka, Elizabeth; Cruz, Antonio P
2017-05-01
Lower extremity wounds present a major clinical challenge. This paper introduces a new multistep approach for improved aesthetic and functional outcome for lower extremity wound closure after Mohs micrographic surgery. In this prospective case series, 12 consecutive patients undergoing Mohs micrographic surgery for cutaneous malignancies of the lower extremities underwent closure assisted by elastic bandages, proper positioning with 45° flexion of the knee, buried vertical mattress sutures, and careful eversion, using a premium angled stapler. Assessment of cosmetic outcome was performed by 2 blinded observers, using the Hollander Wound Evaluation Scale. The mean age was 73 ± 9 years with most patients having at least one comorbidity. Six patients (50%) underwent resection of a basal cell carcinoma and 5 patients (42%) underwent resection of a squamous cell carcinoma and 1 patient (8%) underwent resection of a keratoacanthomatous carcinoma. There were no wound complications, and at the 3- to 6-month follow-up, 11 of the 12 wounds (92%) had an optimal Hollander Wound Evaluation Scale score of 6. This new approach to lower extremity wounds provides excellent cosmetic outcome with no reported complications.
Marfeo, Elizabeth E; Ni, Pengsheng; Chan, Leighton; Rasch, Elizabeth K; Jette, Alan M
2014-07-01
The goal of this article was to investigate optimal functioning of using frequency vs. agreement rating scales in two subdomains of the newly developed Work Disability Functional Assessment Battery: the Mood & Emotions and Behavioral Control scales. A psychometric study comparing rating scale performance embedded in a cross-sectional survey used for developing a new instrument to measure behavioral health functioning among adults applying for disability benefits in the United States was performed. Within the sample of 1,017 respondents, the range of response category endorsement was similar for both frequency and agreement item types for both scales. There were fewer missing values in the frequency items than the agreement items. Both frequency and agreement items showed acceptable reliability. The frequency items demonstrated optimal effectiveness around the mean ± 1-2 standard deviation score range; the agreement items performed better at the extreme score ranges. Findings suggest an optimal response format requires a mix of both agreement-based and frequency-based items. Frequency items perform better in the normal range of responses, capturing specific behaviors, reactions, or situations that may elicit a specific response. Agreement items do better for those whose scores are more extreme and capture subjective content related to general attitudes, behaviors, or feelings of work-related behavioral health functioning. Copyright © 2014 Elsevier Inc. All rights reserved.
Temporal Clustering of Regional-Scale Extreme Precipitation Events in Southern Switzerland
NASA Astrophysics Data System (ADS)
Barton, Yannick; Giannakaki, Paraskevi; Von Waldow, Harald; Chevalier, Clément; Pfhal, Stephan; Martius, Olivia
2017-04-01
Temporal clustering of extreme precipitation events on subseasonal time scales is a form of compound extremes and is of crucial importance for the formation of large-scale flood events. Here, the temporal clustering of regional-scale extreme precipitation events in southern Switzerland is studied. These precipitation events are relevant for the flooding of lakes in southern Switzerland and northern Italy. This research determines whether temporal clustering is present and then identifies the dynamics that are responsible for the clustering. An observation-based gridded precipitation dataset of Swiss daily rainfall sums and ECMWF reanalysis datasets are used. To analyze the clustering in the precipitation time series a modified version of Ripley's K function is used. It determines the average number of extreme events in a time period, to characterize temporal clustering on subseasonal time scales and to determine the statistical significance of the clustering. Significant clustering of regional-scale precipitation extremes is found on subseasonal time scales during the fall season. Four high-impact clustering episodes are then selected and the dynamics responsible for the clustering are examined. During the four clustering episodes, all heavy precipitation events were associated with an upperlevel breaking Rossby wave over western Europe and in most cases strong diabatic processes upstream over the Atlantic played a role in the amplification of these breaking waves. Atmospheric blocking downstream over eastern Europe supported this wave breaking during two of the clustering episodes. During one of the clustering periods, several extratropical transitions of tropical cyclones in the Atlantic contributed to the formation of high-amplitude ridges over the Atlantic basin and downstream wave breaking. During another event, blocking over Alaska assisted the phase locking of the Rossby waves downstream over the Atlantic.
Carter, Frances A; Bell, Caroline J; Ali, Anthony N; McKenzie, Janice; Wilkinson, Timothy J
2014-07-18
No previous studies have systematically assessed the psychological functioning of medical students following a major disaster. To describe the psychological functioning of medical students following the earthquakes in Canterbury, New Zealand, and identify predictors of adverse psychological functioning. 7 months following the most severe earthquake, medical students completed the Depression, Anxiety and Stress Scale (DASS), the Post-Traumatic Stress Disorder Checklist, the Eysenck Personality Questionnaire, the Connor Davidson Resilience Scale, the Work and Adjustment Scale, and Likert scales assessing psychological functioning at worst and currently. A substantial minority of medical students reported moderate-extreme difficulties on the DASS subscales 7 months following the most severe earthquake (Depression =12%; Anxiety =9%; Stress =10%). Multiple linear modelling produced a model that predicted 27% of the variance in total scores on the DASS. Variables contributing significantly to the model were: year of medical course, presence of mental health problems prior to the earthquakes, not being New Zealand European, and being higher on retrospectively rated neuroticism prior to the earthquakes. Around 10% of medical students experienced moderate-extreme psychological difficulties 7 months following the most severe earthquake on 22 February 2011. Specific groups at high risk for ongoing psychological symptomatology were able to be identified.
Gemballa, Sven; Bartsch, Peter
2002-09-01
A bony ganoid squamation is the plesiomorphic type in actinopterygians. During evolution, it was replaced by weak and more flexible elasmoid scales. We provide a comparative description of the integument of "ganoid" fishes and "nonganoid" fishes that considers all dermal components of mechanical significance (stratum compactum, morphology of ganoid scales, and their regional differences) in order to develop a functional understanding of the ganoid integument as a whole. Data were obtained for the extant "ganoid" fishes (Polypteridae and Lepisosteidae) and for closely related "lower" actinopterygians (Acipenser ruthenus, Amia calva) and "lower" sarcopterygians (Latimeria chalumnae, Neoceratodus forsteri). Body curvatures during steady undulatory locomotion, sharp turns, prey-strikes, and fast starts in "ganoid" fishes were measured from videotapes. Extreme body curvatures as measured in anesthetized specimens are never reached during steady swimming, but are sometimes closely approached in certain situations (sharp turns, prey-strike). During extreme body curvatures we measured high values of lateral strain on the convex and on the concave side of the body. Scale overlap changes considerably (66-127% in Lepisosteus, 42-140% in Polypterus). The ganoid squamation forms a protective coat, but at the same time it permits extreme body curvatures. This is reflected in characteristic morphological features of the ganoid scales, such as an anterior process, concave anterior margin, and peg-and-socket articulation. These characters are most pronounced in the anterior body region, where maximum changes in scale overlap are required. The anterior processes and anterior concave margin, together with the attached stratum compactum, guide movements in a horizontal plane during bending. Displacements of scales relative to each other are possible for scales of different scale rows, but are impeded in scales of the same scale row due to the peg-and-socket articulation. Furthermore, ganoid scale rows, fibers of collagen layers of the stratum compactum, and the lateral myoseptal structures follow the same oblique orientation, which is needed to achieve extreme body curvatures. There is no evidence that body curvatures are limited by the ganoid squamation in Polypterus or Lepisosteus to any larger extent than by a type of integument devoid of ganoid scales in teleostomes of similar body shape. Our results essentially contradict former functional interpretations: 1) Ganoid scales do not especially limit body curvature during steady undulatory locomotion; 2) They do not act as torsion-resisting devices, but may be able to damp torsion together with the stratum compactum and internal body pressure. Copyright 2002 Wiley-Liss, Inc.
Hamilton, Clayon B; Chesworth, Bert M
2013-11-01
The original 20-item Upper Extremity Functional Index (UEFI) has not undergone Rasch validation. The purpose of this study was to determine whether Rasch analysis supports the UEFI as a measure of a single construct (ie, upper extremity function) and whether a Rasch-validated UEFI has adequate reproducibility for individual-level patient evaluation. This was a secondary analysis of data from a repeated-measures study designed to evaluate the measurement properties of the UEFI over a 3-week period. Patients (n=239) with musculoskeletal upper extremity disorders were recruited from 17 physical therapy clinics across 4 Canadian provinces. Rasch analysis of the UEFI measurement properties was performed. If the UEFI did not fit the Rasch model, misfitting patients were deleted, items with poor response structure were corrected, and misfitting items and redundant items were deleted. The impact of differential item functioning on the ability estimate of patients was investigated. A 15-item modified UEFI was derived to achieve fit to the Rasch model where the total score was supported as a measure of upper extremity function only. The resultant UEFI-15 interval-level scale (0-100, worst to best state) demonstrated excellent internal consistency (person separation index=0.94) and test-retest reliability (intraclass correlation coefficient [2,1]=.95). The minimal detectable change at the 90% confidence interval was 8.1. Patients who were ambidextrous or bilaterally affected were excluded to allow for the analysis of differential item functioning due to limb involvement and arm dominance. Rasch analysis did not support the validity of the 20-item UEFI. However, the UEFI-15 was a valid and reliable interval-level measure of a single dimension: upper extremity function. Rasch analysis supports using the UEFI-15 in physical therapist practice to quantify upper extremity function in patients with musculoskeletal disorders of the upper extremity.
Chesworth, Bert M.
2013-01-01
Background The original 20-item Upper Extremity Functional Index (UEFI) has not undergone Rasch validation. Objective The purpose of this study was to determine whether Rasch analysis supports the UEFI as a measure of a single construct (ie, upper extremity function) and whether a Rasch-validated UEFI has adequate reproducibility for individual-level patient evaluation. Design This was a secondary analysis of data from a repeated-measures study designed to evaluate the measurement properties of the UEFI over a 3-week period. Methods Patients (n=239) with musculoskeletal upper extremity disorders were recruited from 17 physical therapy clinics across 4 Canadian provinces. Rasch analysis of the UEFI measurement properties was performed. If the UEFI did not fit the Rasch model, misfitting patients were deleted, items with poor response structure were corrected, and misfitting items and redundant items were deleted. The impact of differential item functioning on the ability estimate of patients was investigated. Results A 15-item modified UEFI was derived to achieve fit to the Rasch model where the total score was supported as a measure of upper extremity function only. The resultant UEFI-15 interval-level scale (0–100, worst to best state) demonstrated excellent internal consistency (person separation index=0.94) and test-retest reliability (intraclass correlation coefficient [2,1]=.95). The minimal detectable change at the 90% confidence interval was 8.1. Limitations Patients who were ambidextrous or bilaterally affected were excluded to allow for the analysis of differential item functioning due to limb involvement and arm dominance. Conclusion Rasch analysis did not support the validity of the 20-item UEFI. However, the UEFI-15 was a valid and reliable interval-level measure of a single dimension: upper extremity function. Rasch analysis supports using the UEFI-15 in physical therapist practice to quantify upper extremity function in patients with musculoskeletal disorders of the upper extremity. PMID:23813086
Fukuda, Thiago Yukio; Melo, William Pagotti; Zaffalon, Bruno Marcos; Rossetto, Flavio Marcondes; Magalhães, Eduardo; Bryk, Flavio Fernandes; Martin, Robroy L
2012-10-01
Randomized controlled trial. To determine if adding hip-strengthening exercises to a conventional knee exercise program produces better long-term outcomes than conventional knee exercises alone in women with patellofemoral pain syndrome (PFPS). Recent studies have shown that a hip-strengthening program reduces pain and improves function in individuals with PFPS. However, there are no clinical trials evaluating long-term outcomes of this type of program compared to conventional knee-strengthening and -stretching exercises. Fifty-four sedentary women between 20 and 40 years of age, with a diagnosis of unilateral PFPS, were randomly assigned knee exercise (KE) or knee and hip exercise (KHE). The women in the KE group (n = 26; mean age, 23 years) performed a 4-week conventional knee-stretching and -strengthening program. The women in the KHE group (n = 28; mean age, 22 years) performed the same exercises as those in the KE group, as well as strengthening exercises for the hip abductors, lateral rotators, and extensors. An 11-point numeric pain rating scale, the Lower Extremity Functional Scale, the Anterior Knee Pain Scale, and a single-hop test were used as outcome measures at baseline (pretreatment) and 3, 6, and 12 months posttreatment. At baseline, demographic, pain, and functional assessment data were similar between groups. Those in the KHE group had a higher level of function and less pain at 3, 6, and 12 months compared to baseline (P<.05). In contrast, the KE group had reduced pain only at the 3- and 6-month follow-ups (P<.05), without any changes in Lower Extremity Functional Scale, Anterior Knee Pain Scale, or hop testing (P>.05) through the course of the study. Compared to the KE group, the KHE group had less pain and better function at 3, 6, and 12 months posttreatment (P<.05). For the Lower Extremity Functional Scale, the between-group difference in change scores from baseline at 3, 6, and 12 months posttreatment favored the KHE group by 22.0, 22.0, and 20.8 points, respectively. Knee-stretching and -strengthening exercises supplemented by hip posterolateral musculature-strengthening exercises were more effective than knee exercises alone in improving long-term function and reducing pain in sedentary women with PFPS.
Jensen, Elizabeth T; van der Burg, Jelske W; O'Shea, Thomas M; Joseph, Robert M; Allred, Elizabeth N; Heeren, Tim; Leviton, Alan; Kuban, Karl C K
2017-08-01
To assess the association between maternal prepregnancy body mass index and adequacy of pregnancy weight gain in relation to neurocognitive function in school-aged children born extremely preterm. Study participants were 535 ten-year-old children enrolled previously in the prospective multicenter Extremely Low Gestational Age Newborns cohort study who were products of singleton pregnancies. Soon after delivery, mothers provided information about prepregnancy weight. Prepregnancy body mass index and adequacy of weight gain were characterized based on this information. Children underwent a neurocognitive evaluation at 10 years of age. Maternal prepregnancy obesity was associated with increased odds of a lower score for Differential Ability Scales-II Verbal IQ, for Developmental Neuropsychological Assessment-II measures of processing speed and visual fine motor control, and for Wechsler Individual Achievement Test-III Spelling. Children born to mothers who gained an excessive amount of weight were at increased odds of a low score on the Oral and Written Language Scales Oral Expression assessment. Conversely, children whose mother did not gain an adequate amount of weight were at increased odds of a lower score on the Oral and Written Language Scales Oral Expression and Wechsler Individual Achievement Test-III Word Reading assessments. In this cohort of infants born extremely preterm, maternal obesity was associated with poorer performance on some assessments of neurocognitive function. Our findings are consistent with the observational and experimental literature and suggest that opportunities may exist to mitigate risk through education and behavioral intervention before pregnancy. Copyright © 2017 Elsevier Inc. All rights reserved.
Inter-annual Variability of Temperature and Extreme Heat Events during the Nairobi Warm Season
NASA Astrophysics Data System (ADS)
Scott, A.; Misiani, H. O.; Zaitchik, B. F.; Ouma, G. O.; Anyah, R. O.; Jordan, A.
2016-12-01
Extreme heat events significantly stress all organisms in the ecosystem, and are likely to be amplified in peri-urban and urban areas. Understanding the variability and drivers behind these events is key to generating early warnings, yet in Equatorial East Africa, this information is currently unavailable. This study uses daily maximum and minimum temperature records from weather stations within Nairobi and its surroundings to characterize variability in daily minimum temperatures and the number of extreme heat events. ERA-Interim reanalysis is applied to assess the drivers of these events at event and seasonal time scales. At seasonal time scales, high temperatures in Nairobi are a function of large scale climate variability associated with the Atlantic Multi-decadal Oscillation (AMO) and Global Mean Sea Surface Temperature (GMSST). Extreme heat events, however, are more strongly associated with the El Nino Southern Oscillation (ENSO). For instance, the persistence of AMO and ENSO, in particular, provide a basis for seasonal prediction of extreme heat events/days in Nairobi. It is also apparent that the temporal signal from extreme heat events in tropics differs from classic heat wave definitions developed in the mid-latitudes, which suggests that a new approach for defining these events is necessary for tropical regions.
NASA Astrophysics Data System (ADS)
OBrien, J. P.; O'Brien, T. A.
2015-12-01
Single climatic extremes have a strong and disproportionate effect on society and the natural environment. However, the joint occurrence of two or more concurrent extremes has the potential to negatively impact these areas of life in ways far greater than any single event could. California, USA, home to nearly 40 million people and the largest agricultural producer in the United States, is currently experiencing an extreme drought, which has persisted for several years. While drought is commonly thought of in terms of only precipitation deficits, above average temperatures co-occurring with precipitation deficits greatly exacerbate drought conditions. The 2014 calendar year in California was characterized both by extremely low precipitation and extremely high temperatures, which has significantly deepened the already extreme drought conditions leading to severe water shortages and wildfires. While many studies have shown the statistics of 2014 temperature and precipitation anomalies as outliers, none have demonstrated a connection with large-scale, long-term climate trends, which would provide useful relationships for predicting the future trajectory of California climate and water resources. We focus on understanding non-stationarity in the joint distribution of California temperature and precipitation anomalies in terms of large-scale, low-frequency trends in climate such as global mean temperature rise and oscillatory indices such as ENSO and the Pacific Decadal Oscillation among others. We consider temperature and precipitation data from the seven distinct climate divisions in California and employ a novel, high-fidelity kernel density estimation method to directly infer the multivariate distribution of temperature and precipitation anomalies conditioned on the large-scale state of the climate. We show that the joint distributions and associated statistics of temperature and precipitation are non-stationary and vary regionally in California. Further, we show that recurrence intervals of extreme concurrent events vary as a function of time and of teleconnections. This research has implications for predicting and forecasting future temperature and precipitation anomalies, which is critically important for city, water, and agricultural planning in California.
Page, Stephen J; Hill, Valerie; White, Susan
2013-06-01
To compare the efficacy of a repetitive task-specific practice regimen integrating a portable, electromyography-controlled brace called the 'Myomo' versus usual care repetitive task-specific practice in subjects with chronic, moderate upper extremity impairment. Sixteen subjects (7 males; mean age 57.0 ± 11.02 years; mean time post stroke 75.0 ± 87.63 months; 5 left-sided strokes) exhibiting chronic, stable, moderate upper extremity impairment. Subjects were administered repetitive task-specific practice in which they participated in valued, functional tasks using their paretic upper extremities. Both groups were supervised by a therapist and were administered therapy targeting their paretic upper extremities that was 30 minutes in duration, occurring 3 days/week for eight weeks. One group participated in repetitive task-specific practice entirely while wearing the portable robotic, while the other performed the same activity regimen manually. The upper extremity Fugl-Meyer, Canadian Occupational Performance Measure and Stroke Impact Scale were administered on two occasions before intervention and once after intervention. After intervention, groups exhibited nearly identical Fugl-Meyer score increases of ≈2.1 points; the group using robotics exhibited larger score changes on all but one of the Canadian Occupational Performance Measure and Stroke Impact Scale subscales, including a 12.5-point increase on the Stroke Impact Scale recovery subscale. Findings suggest that therapist-supervised repetitive task-specific practice integrating robotics is as efficacious as manual practice in subjects with moderate upper extremity impairment.
Collins, Cristiana Kahl; Gilden, Brad
2016-12-01
Chronic Exertional Compartment Syndrome (CECS) causes significant exercise related pain secondary to increased intra-compartmental pressure (ICP) in the lower extremities. CECS is most often treated with surgery with minimal information available on non-operative approaches to care. This case report presents a case of CECS successfully managed with physical therapy. Case report. A 34-year-old competitive triathlete experienced bilateral anterior and posterior lower leg pain measured with a numerical pain rating scale of 7/10 at two miles of running. Pain decreased to resting levels of 4/10 two hours post exercise. The patient was diagnosed with bilateral CECS with left lower extremity ICP at rest measured at 36 mmHg (deep posterior), 36-38 mmHg (superficial posterior), and 25 mmHg (anterior). Surgery was recommended. The patient chose non-operative care and was treated with physical therapy using the Functional Manual Therapy approach aimed at addressing myofascial restrictions, neuromuscular function and motor control deficits throughout the lower quadrant for 23 visits over 3.5 months. At discharge the patient had returned to running pain free and training for an Olympic distance triathlon. The Lower Extremity Functional Scale improved from 62 to 80. The patient reported minimal post exercise tightness in bilateral lower extremities. Left lower extremity compartment pressure measurements at rest were in normal ranges measuring at 11 mmHg (deep posterior), 8 mmHg (superficial posterior), 19 mmHg (anterior), and 10 mmHg (lateral). Three-years post intervention the patient remained pain free with a Global Rating of Change of 6. This case report describes the successful treatment of a triathlete with Functional Manual Therapy resulting in a return to competitive sports without pain. Level 4.
Hawkes, W. G.; Glowacki, J.; Yu-Yahiro, J.; Hurwitz, S.; Magaziner, J.
2008-01-01
Summary We determined the prevalence of vitamin D deficiency and lower extremity function in women with hip fractures. Women with extremely low vitamin D levels had reduced lower extremity muscle function and increased falls 1 year later. Ensuring vitamin D sufficiency after a hip fracture may improve function and reduce falls. Introduction Hip fractures are the most devastating of fractures, commonly leading to loss of independent ambulation and living. In this retrospective analysis we determined the prevalence of vitamin D deficiency in women with hip fractures and the association between 25-hydroxyvitamin D [25(OH)D] levels and functional impairment one year later. Methods One hundred ten community-dwelling women with hip fractures were recruited from Boston, MA (n= 30) and Baltimore, MD (n=80) before 1998 and 25(OH)D levels were measured by radioimmunoassay. In a subset of women from Baltimore, a performance measure of the lower extremities using the lower extremity gain scale (LEGS) was measured at 2, 6, and 12 months. Falls, grip strength, chair rise time, walking speed, and balance were also determined. Results Vitamin D insufficiency defined as a 25(OH)D ≤32 ng/mL was present in 96% of the women with hip fractures and 38% had extremely low levels ≤9 ng/mL. At 1 year post-fracture, compared to women with a 25(OH) D >9 ng/mL, those with 25(OH)D ≤9 ng/mL had poorer LEGS performance (p<0.0001) and higher fall rates, without group differences in grip strength or balance. Conclusion Vitamin D sufficiency may have important effects on lower extremity function following hip fractures, without excessive healthcare costs. PMID:18373057
Modelling hydrological extremes under non-stationary conditions using climate covariates
NASA Astrophysics Data System (ADS)
Vasiliades, Lampros; Galiatsatou, Panagiota; Loukas, Athanasios
2013-04-01
Extreme value theory is a probabilistic theory that can interpret the future probabilities of occurrence of extreme events (e.g. extreme precipitation and streamflow) using past observed records. Traditionally, extreme value theory requires the assumption of temporal stationarity. This assumption implies that the historical patterns of recurrence of extreme events are static over time. However, the hydroclimatic system is nonstationary on time scales that are relevant to extreme value analysis, due to human-mediated and natural environmental change. In this study the generalized extreme value (GEV) distribution is used to assess nonstationarity in annual maximum daily rainfall and streamflow timeseries at selected meteorological and hydrometric stations in Greece and Cyprus. The GEV distribution parameters (location, scale, and shape) are specified as functions of time-varying covariates and estimated using the conditional density network (CDN) as proposed by Cannon (2010). The CDN is a probabilistic extension of the multilayer perceptron neural network. Model parameters are estimated via the generalized maximum likelihood (GML) approach using the quasi-Newton BFGS optimization algorithm, and the appropriate GEV-CDN model architecture for the selected meteorological and hydrometric stations is selected by fitting increasingly complicated models and choosing the one that minimizes the Akaike information criterion with small sample size correction. For all case studies in Greece and Cyprus different formulations are tested with combinational cases of stationary and nonstationary parameters of the GEV distribution, linear and non-linear architecture of the CDN and combinations of the input climatic covariates. Climatic indices such as the Southern Oscillation Index (SOI), which describes atmospheric circulation in the eastern tropical pacific related to El Niño Southern Oscillation (ENSO), the Pacific Decadal Oscillation (PDO) index that varies on an interdecadal rather than interannual time scale and the atmospheric circulation patterns as expressed by the North Atlantic Oscillation (NAO) index are used to express the GEV parameters as functions of the covariates. Results show that the nonstationary GEV model can be an efficient tool to take into account the dependencies between extreme value random variables and the temporal evolution of the climate.
NASA Astrophysics Data System (ADS)
Yang, Y.; Gan, T. Y.; Tan, X.
2017-12-01
In the past few decades, there have been more extreme climate events around the world, and Canada has also suffered from numerous extreme precipitation events. In this paper, trend analysis, change point analysis, probability distribution function, principal component analysis and wavelet analysis were used to investigate the spatial and temporal patterns of extreme precipitation in Canada. Ten extreme precipitation indices were calculated using long-term daily precipitation data from 164 gauging stations. Several large-scale climate patterns such as El Niño-Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), Pacific-North American (PNA), and North Atlantic Oscillation (NAO) were selected to analyze the relationships between extreme precipitation and climate indices. Convective Available Potential Energy (CAPE), specific humidity, and surface temperature were employed to investigate the potential causes of the trends.The results show statistically significant positive trends for most indices, which indicate increasing extreme precipitation. The majority of indices display more increasing trends along the southern border of Canada while decreasing trends dominate in the central Canadian Prairies (CP). In addition, strong connections are found between the extreme precipitation and climate indices and the effects of climate pattern differ for each region. The seasonal CAPE, specific humidity, and temperature are found to be closely related to Canadian extreme precipitation.
Paolucci, Teresa; Piccinini, Giulia; Nusca, Sveva Maria; Marsilli, Gabriella; Mannocci, Alice; La Torre, Giuseppe; Saraceni, Vincenzo Maria; Vulpiani, Maria Chiara; Villani, Ciro
2018-01-01
[Purpose] The aim of this study was to investigate the clinical effects of a nutraceutical composed (Xinepa®) combined with extremely-low-frequency electromagnetic fields in the carpal tunnel syndrome. [Subjects and Methods] Thirty-one patients with carpal tunnel syndrome were randomized into group 1-A (N=16) (nutraceutical + extremely-low-frequency electromagnetic fields) and group 2-C (n=15) (placebo + extremely-low-frequency electromagnetic fields). The dietary supplement with nutraceutical was twice daily for one month in the 1-A group and both groups received extremely-low-frequency electromagnetic fields at the level of the carpal tunnel 3 times per week for 12 sessions. The Visual Analogue Scale for pain, the Symptoms Severity Scale and Functional Severity Scale of the Boston Carpal Tunnel Questionnaire were used at pre-treatment (T0), after the end of treatment (T1) and at 3 months post-treatment (T2). [Results] At T1 and T2 were not significant differences in outcome measures between the two groups. In group 1-A a significant improvement in the scales were observed at T1 and T2. In group 2-C it was observed only at T1. [Conclusion] Significant clinical effects from pre-treatment to the end of treatment were shown in both groups. Only in group 1-A they were maintained at 3 months post-treatment.
Artz, Neil; Dixon, Samantha; Wylde, Vikki; Marques, Elsa; Beswick, Andrew D; Lenguerrand, Erik; Blom, Ashley W; Gooberman-Hill, Rachael
2017-04-01
To evaluate the feasibility of conducting a randomized controlled trial comparing group-based outpatient physiotherapy with usual care in patients following total knee replacement. A feasibility study for a randomized controlled trial. One secondary-care hospital orthopaedic centre, Bristol, UK. A total of 46 participants undergoing primary total knee replacement. The intervention group were offered six group-based exercise sessions after surgery. The usual care group received standard postoperative care. Participants were not blinded to group allocation. Feasibility was assessed by recruitment, reasons for non-participation, attendance, and completion rates of study questionnaires that included the Lower Extremity Functional Scale and Knee Injury and Osteoarthritis Outcome Score. Recruitment rate was 37%. Five patients withdrew or were no longer eligible to participate. Intervention attendance was high (73%) and 84% of group participants reported they were 'very satisfied' with the exercises. Return of study questionnaires at six months was lower in the usual care (75%) than in the intervention group (100%). Mean (standard deviation) Lower Extremity Functional Scale scores at six months were 45.0 (20.8) in the usual care and 57.8 (15.2) in the intervention groups. Recruitment and retention of participants in this feasibility study was good. Group-based physiotherapy was acceptable to participants. Questionnaire return rates were lower in the usual care group, but might be enhanced by telephone follow-up. The Lower Extremity Functional Scale had high responsiveness and completion rates. Using this outcome measure, 256 participants would be required in a full-scale randomized controlled trial.
Thorpe, Roland James; Kasper, Judith D; Szanton, Sarah L; Frick, Kevin D; Fried, Linda P; Simonsick, Eleanor M
2008-02-01
Race- and poverty-related disparities in physical function are well documented, though little is known about effects of race and poverty on functional decline and the progression of disability. We examined cross-sectional and longitudinal relationships between race, poverty and lower extremity function using data from moderately to severely disabled women in the U.S. Women's Health and Aging Study. Severity of lower extremity functional limitation was determined from scaled responses of reported difficulty walking (1/4) mile, walking across a room, climbing stairs, and stooping, crouching or kneeling. Usual walking speed assessed over 4m was our objective measure of function. Of the 996 women who described themselves as black or white, 284 (29%) were black and 367 (37%) were living at or below 100% of the federal poverty level. Independent of demographic and health-related factors, among white women, the poor exhibited consistently worse lower extremity function than the non-poor; this association, however, was not observed in black women. Among the non-poor, black women had slower walking speeds, and reported more limitation in lower extremity function than their non-poor white counterparts, even after adjusting for demographic variables and health-related characteristics. After 3 years, accounting for baseline function, demographic and health-related factors, race and poverty status were unrelated to functional decline. Thus, while race and poverty status were associated with functional deficits in old age, they do not appear to impact the rate of functional decline or progression of disability over 3 years.
Yildirim, Adem; Sürücü, Gülseren Dost; Karamercan, Ayşe; Gedik, Dilay Eken; Atci, Nermin; Dülgeroǧlu, Deniz; Özgirgin, Neşe
2016-11-21
A number of exercises to strengthen the upper extremities are recommended to increase functional independence and quality of life (QoL) in patients with paraplegia. Circuit resistance training (CRT) is a type of progressive resistive exercise performed repeatedly at fixed mechanical exercise stations. The aim of this study was to investigate the potential benefits of CRT for upper extremity muscle strength, functional independence, and QoL in patients with paraplegia. Twenty-six patients with paraplegia who were participating in a conventional rehabilitation program at a tertiary education and research hospital were enrolled in this study. The participants were randomly assigned to two groups. The exercise group participated in the CRT program, which consisted of repetitive exercises for the upper extremities performed at fixed mechanical stations 5 sessions per week for 6 weeks, in addition to conventional rehabilitation. Participants in the control group received only conventional rehabilitation over the same period. We compared the groups with respect to QoL, as well as isokinetic muscle test outcomes in the upper extremities, using the Functional Independence Measure (FIM) and Borg's scale. We observed significant increases in scores on the physical component of the FIM, Borg's scale, and QoL in both the exercise and control groups. Furthermore, the large majority of isokinetic values were significantly more improved in the exercise group compared to the control group. When post-treatment outcomes were compared between the groups, improvements in scores on the physical component of the FIM and in most isokinetic values were significantly greater in the exercise group. This study showed that CRT has positive effects on muscle strength in the upper extremities and the physical disability components of the FIM when added to conventional rehabilitation programs for paraplegic patients. However, we observed no significant improvement in QoL scores after adding CRT to a conventional treatment regime. Randomized trial (Level II).
2011-01-01
Background Recovery patterns of upper extremity motor function have been described in several longitudinal studies, but most of these studies have had selected samples, short follow up times or insufficient outcomes on motor function. The general understanding is that improvements in upper extremity occur mainly during the first month after the stroke incident and little if any, significant recovery can be gained after 3-6 months. The purpose of this study is to describe the recovery of upper extremity function longitudinally in a non-selected sample initially admitted to a stroke unit with first ever stroke, living in Gothenburg urban area. Methods/Design A sample of 120 participants with a first-ever stroke and impaired upper extremity function will be consecutively included from an acute stroke unit and followed longitudinally for one year. Assessments are performed at eight occasions: at day 3 and 10, week 3, 4 and 6, month 3, 6 and 12 after onset of stroke. The primary clinical outcome measures are Action Research Arm Test and Fugl-Meyer Assessment for Upper Extremity. As additional measures, two new computer based objective methods with kinematic analysis of arm movements are used. The ABILHAND questionnaire of manual ability, Stroke Impact Scale, grip strength, spasticity, pain, passive range of motion and cognitive function will be assessed as well. At one year follow up, two patient reported outcomes, Impact on Participation and Autonomy and EuroQol Quality of Life Scale, will be added to cover the status of participation and aspects of health related quality of life. Discussion This study comprises a non-selected population with first ever stroke and impaired arm function. Measurements are performed both using traditional clinical assessments as well as computer based measurement systems providing objective kinematic data. The ICF classification of functioning, disability and health is used as framework for the selection of assessment measures. The study design with several repeated measurements on motor function will give us more confident information about the recovery patterns after stroke. This knowledge is essential both for optimizing rehabilitation planning as well as providing important information to the patient about the recovery perspectives. Trial registration ClinicalTrials.gov: NCT01115348 PMID:21612620
Extreme-Scale Bayesian Inference for Uncertainty Quantification of Complex Simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biros, George
Uncertainty quantification (UQ)—that is, quantifying uncertainties in complex mathematical models and their large-scale computational implementations—is widely viewed as one of the outstanding challenges facing the field of CS&E over the coming decade. The EUREKA project set to address the most difficult class of UQ problems: those for which both the underlying PDE model as well as the uncertain parameters are of extreme scale. In the project we worked on these extreme-scale challenges in the following four areas: 1. Scalable parallel algorithms for sampling and characterizing the posterior distribution that exploit the structure of the underlying PDEs and parameter-to-observable map. Thesemore » include structure-exploiting versions of the randomized maximum likelihood method, which aims to overcome the intractability of employing conventional MCMC methods for solving extreme-scale Bayesian inversion problems by appealing to and adapting ideas from large-scale PDE-constrained optimization, which have been very successful at exploring high-dimensional spaces. 2. Scalable parallel algorithms for construction of prior and likelihood functions based on learning methods and non-parametric density estimation. Constructing problem-specific priors remains a critical challenge in Bayesian inference, and more so in high dimensions. Another challenge is construction of likelihood functions that capture unmodeled couplings between observations and parameters. We will create parallel algorithms for non-parametric density estimation using high dimensional N-body methods and combine them with supervised learning techniques for the construction of priors and likelihood functions. 3. Bayesian inadequacy models, which augment physics models with stochastic models that represent their imperfections. The success of the Bayesian inference framework depends on the ability to represent the uncertainty due to imperfections of the mathematical model of the phenomena of interest. This is a central challenge in UQ, especially for large-scale models. We propose to develop the mathematical tools to address these challenges in the context of extreme-scale problems. 4. Parallel scalable algorithms for Bayesian optimal experimental design (OED). Bayesian inversion yields quantified uncertainties in the model parameters, which can be propagated forward through the model to yield uncertainty in outputs of interest. This opens the way for designing new experiments to reduce the uncertainties in the model parameters and model predictions. Such experimental design problems have been intractable for large-scale problems using conventional methods; we will create OED algorithms that exploit the structure of the PDE model and the parameter-to-output map to overcome these challenges. Parallel algorithms for these four problems were created, analyzed, prototyped, implemented, tuned, and scaled up for leading-edge supercomputers, including UT-Austin’s own 10 petaflops Stampede system, ANL’s Mira system, and ORNL’s Titan system. While our focus is on fundamental mathematical/computational methods and algorithms, we will assess our methods on model problems derived from several DOE mission applications, including multiscale mechanics and ice sheet dynamics.« less
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson's disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson's disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient's static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson's disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson's disease.
Kim, Arim; Lee, Hye-Sun; Song, Chiang-Soon
2017-01-01
[Purpose] The purpose of this study was to examine the effects of interactive metronome training on the postural stability and upper extremity function of an individual with Parkinson’s disease. [Subject and Methods] The participant of this case study was a 75-year-old female with Parkinson’s disease diagnosed 7 years prior. This study was a single-subject research with an A-B-A design. She received IM training during the treatment phase (B phase) for 40 minutes per session. She was assessed pretest and posttest using the Berg balance scale and Wolf motor function test, and at baseline and the treatment phase using the measured box-and-block test and a Tetrax system. [Results] After training, the patient’s static and dynamic balance, functional activity, and performance time of the upper extremity improved. Interactive metronome therapy improved the manual dexterity of both hands. Interactive metronome therapy also improved the limit of stability of the Parkinson’s disease. [Conclusion] Though a case study, the results of this study suggest that IM therapy is effective at restoring the postural stability and upper extremity function of patients with Parkinson’s disease. PMID:28210066
Page, Stephen J.; Hill, Valerie; White, Susan
2013-01-01
Objective To compare the efficacy of a repetitive task specific practice regimen integrating a portable, electromyography-controlled brace called the “Myomo” versus usual care repetitive task specific practice in subjects with chronic, moderate upper extremity impairment. Subjects 16 subjects (7 males; mean age = 57.0 ± 11.02 years; mean time post stroke = 75.0 ± 87.63 months; 5 left-sided strokes) exhibiting chronic, stable, moderate upper extremity impairment. Interventions Subjects were administered repetitive task specific practice in which they participated in valued, functional tasks using their paretic upper extremities. Both groups were supervised by a therapist and were administered therapy targeting their paretic upper extremities that was 30-minutes in duration, occurring 3 days/week for 8 weeks. However, one group participated in repetitive task specific practice entirely while wearing the portable robotic while the other performed the same activity regimen manually.. Main Outcome Measures The upper extremity Fugl-Meyer, Canadian Occupational Performance measure and Stroke Impact Scale were administered on two occasions before intervention and once after intervention. Results After intervention, groups exhibited nearly-identical Fugl-Meyer score increases of ≈ 2.1 points; the group using robotics exhibited larger score changes on all but one of the Canadian occupational performance measure and Stroke Impact Scale subscales, including a 12.5-point increase on the Stroke Impact Scale recovery subscale. Conclusions Findings suggest that therapist-supervised repetitive task specific practice integrating robotics is as efficacious as manual in subjects with moderate upper extremity impairment. PMID:23147552
Tsai, Liang-Ching; Ren, Yupeng; Gaebler-Spira, Deborah J; Revivo, Gadi A; Zhang, Li-Qun
2017-07-01
This preliminary study examined the effects of off-axis elliptical training on reducing transverse-plane gait deviations and improving gait function in 8 individuals with cerebral palsy (CP) (15.5 ± 4.1 years) who completed an training program using a custom-made elliptical trainer that allows transverse-plane pivoting of the footplates during exercise. Lower-extremity off-axis control during elliptical exercise was evaluated by quantifying the root-mean-square and maximal angular displacement of the footplate pivoting angle. Lower-extremity pivoting strength was assessed. Gait function and balance were evaluated using 10-m walk test, 6-minute-walk test, and Pediatric Balance Scale. Toe-in angles during gait were quantified. Participants with CP demonstrated a significant decrease in the pivoting angle (root mean square and maximal angular displacement; effect size, 1.00-2.00) and increase in the lower-extremity pivoting strength (effect size = 0.91-1.09) after training. Reduced 10-m walk test time (11.9 ± 3.7 seconds vs. 10.8 ± 3.0 seconds; P = 0.004; effect size = 1.46), increased Pediatric Balance Scale score (43.6 ± 12.9 vs. 45.6 ± 10.8; P = 0.042; effect size = 0.79), and decreased toe-in angle (3.7 ± 10.5 degrees vs. 0.7 ± 11.7 degrees; P = 0.011; effect size = 1.22) were observed after training. We present an intervention to challenge lower-extremity off-axis control during a weight-bearing and functional activity for individuals with CP. Our preliminary findings suggest that this intervention was effective in enhancing off-axis control, gait function, and balance and reducing in-toeing gait in persons with CP.
Asymmetrical Pedaling Patterns in Parkinson's Disease Patients
Penko, Amanda L.; Hirsch, Joshua R.; Voelcker-Rehage, Claudia; Martin, Philip E.; Blackburn, Gordon; Alberts, Jay L.
2015-01-01
Background Approximately 1.5 million Americans are affected by Parkinson's disease [1] which includes the symptoms of postural instability and gait dysfunction. Currently, clinical evaluations of postural instability and gait dysfunction consist of a subjective rater assessment of gait patterns using items from the Unified Parkinson's Disease Rating Scale, and assessments can be insensitive to the effectiveness of medical interventions. Current research suggests the importance of cycling for Parkinson's disease patients, and while Parkinson's gait has been evaluated in previous studies, little is known about lower extremity control during cycling. The purpose of this study is to examine the lower extremity coordination patterns of Parkinson's patients during cycling. Methods Twenty five participants, ages 44-72, with a clinical diagnosis of idiopathic Parkinson's disease participated in an exercise test on a cycle ergometer that was equipped with pedal force measurements. Crank torque, crank angle and power produced by right and left leg were measured throughout the test to calculate Symmetry Index at three stages of exercise (20 Watt, 60 Watt, maximum performance). Findings Decreases in Symmetry Index were observed for average power output in Parkinson's patients as workload increased. Maximum power Symmetry Index showed a significant difference in symmetry between performance at both the 20 Watt and 60 Watt stage and the maximal resistance stage. Minimum power Symmetry Index did not show significant differences across the stages of the test. While lower extremity asymmetries were present in Parkinson's patients during pedaling, these asymmetries did not correlate to postural instability and gait dysfunction Unified Parkinson's Disease Rating Scale scores. Interpretation This pedaling analysis allows for a more sensitive measure of lower extremity function than the Unified Parkinson's Disease Rating Scale and may help to provide unique insight into current and future lower extremity function. PMID:25467810
NASA Astrophysics Data System (ADS)
Ganguly, A. R.; Steinbach, M.; Kumar, V.
2009-12-01
The IPCC AR4 not only provided conclusive evidence about anticipated global warming at century scales, but also indicated with a high level of certainty that the warming is caused by anthropogenic emissions. However, an outstanding knowledge-gap is to develop credible projections of climate extremes and their impacts. Climate extremes are defined in this context as extreme weather and hydrological events, as well as changes in regional hydro-meteorological patterns, especially at decadal scales. While temperature extremes from climate models have relatively better skills, hydrological variables and their extremes have significant shortcomings. Credible projections about tropical storms, sea level rise, coastal storm surge, land glacier melts, and landslides remain elusive. The next generation of climate models is expected to have higher precision. However, their ability to provide more accurate projections of climate extremes remains to be tested. Projections of observed trends into the future may not be reliable in non-stationary environments like climate change, even though functional relationships derived from physics may hold. On the other hand, assessments of climate change impacts which are useful for stakeholders and policy makers depend critically on regional and decadal scale projections of climate extremes. Thus, climate impacts scientists often need to develop qualitative inferences about the not so-well predicted climate extremes based on insights from observations (e.g., increased hurricane intensity) or conceptual understanding (e.g., relation of wildfires to regional warming or drying and hurricanes to SST). However, neither conceptual understanding nor observed trends may be reliable when extrapolating in a non-stationary environment. These urgent societal priorities offer fertile grounds for nonlinear modeling and knowledge discovery approaches. Thus, qualitative inferences on climate extremes and impacts may be transformed into quantitative predictive insights based on a combination of hypothesis-guided data analysis and relatively hypothesis-free but data-guided discovery processes. The analysis and discovery approaches need to be cognizant of climate data characteristics like nonlinear processes, low-frequency variability, long-range spatial dependence and long-memory temporal processes; the value of physically-motivated conceptual understanding and functional associations; as well as possible thresholds and tipping points in the impacted natural, engineered or human systems. Case studies focusing on new methodologies as well as novel climate insights are discussed with a focus on stakeholder requirements.
Yeldan, Ipek; Huseyınsınoglu, Burcu Ersoz; Akıncı, Buket; Tarakcı, Ela; Baybas, Sevim; Ozdıncler, Arzu Razak
2015-11-01
[Purpose] The aim of the study was to evaluate the effects of a very early mirror therapy program on functional improvement of the upper extremity in acute stroke patients. [Subjects] Eight stroke patients who were treated in an acute neurology unit were included in the study. [Methods] The patients were assigned alternatively to either the mirror therapy group receiving mirror therapy and neurodevelopmental treatment or the neurodevelopmental treatment only group. The primary outcome measures were the upper extremity motor subscale of the Fugl-Meyer Assessment, Motricity Index upper extremity score, and the Stroke Upper Limb Capacity Scale. Somatosensory assessment with the Ayres Southern California Sensory Integration Test, and the Barthel Index were used as secondary outcome measures. [Results] No statistically significant improvements were found for any measures in either group after the treatment. In terms of minimally clinically important differences, there were improvements in Fugl-Meyer Assessment and Barthel Index in both mirror therapy and neurodevelopmental treatment groups. [Conclusion] The results of this pilot study revealed that very early mirror therapy has no additional effect on functional improvement of upper extremity function in acute stroke patients. Multicenter trials are needed to determine the results of early application of mirror therapy in stroke rehabilitation.
Contributions of Dynamic and Thermodynamic Scaling in Subdaily Precipitation Extremes in India
NASA Astrophysics Data System (ADS)
Ali, Haider; Mishra, Vimal
2018-03-01
Despite the importance of subdaily precipitation extremes for urban areas, the role of dynamic and thermodynamic scaling in changes in precipitation extremes in India remains poorly constrained. Here we estimate contributions from thermodynamic and dynamic scaling on changes in subdaily precipitation extremes for 23 urban locations in India. Subdaily precipitation extremes have become more intense during the last few decades. Moreover, we find a twofold rise in the frequency of subdaily precipitation extremes during 1979-2015, which is faster than the increase in daily precipitation extremes. The contribution of dynamic scaling in this rise in the frequency and intensity of subdaily precipitation extremes is higher than the thermodynamic scaling. Moreover, half-hourly precipitation extremes show higher contributions from the both thermodynamic ( 10%/K) and dynamic ( 15%/K) scaling than daily (6%/K and 9%/K, respectively) extremes indicating the role of warming on the rise in the subdaily precipitation extremes in India. Our findings have implications for better understanding the dynamic response of precipitation extremes under the warming climate over India.
Influence of Response Sets on Authoritarian and Non-Authoritarian Attitude Scales.
ERIC Educational Resources Information Center
Walsh, James A.; And Others
An attempt was made to examine authoritarian and non-authoritarian scales of social attitudes and their reversals as a function of: (1) content consistency; (2) acquiescence; and (3) a tendency to use extreme categories of response. The study questioned whether Adorno's fascism (F), dogmatism (D), ethnocentrism (E), and anti-Semitism (A-S) scales…
Esmaeilzadeh, Sina; Ozcan, Emel; Capan, Nalan
2014-01-01
The aim of the study was to determine effects of ergonomic intervention on work-related upper extremity musculoskeletal disorders (WUEMSDs) among computer workers. Four hundred computer workers answered a questionnaire on work-related upper extremity musculoskeletal symptoms (WUEMSS). Ninety-four subjects with WUEMSS using computers at least 3 h a day participated in a prospective, randomized controlled 6-month intervention. Body posture and workstation layouts were assessed by the Ergonomic Questionnaire. We used the Visual Analogue Scale to assess the intensity of WUEMSS. The Upper Extremity Function Scale was used to evaluate functional limitations at the neck and upper extremities. Health-related quality of life was assessed with the Short Form-36. After baseline assessment, those in the intervention group participated in a multicomponent ergonomic intervention program including a comprehensive ergonomic training consisting of two interactive sessions, an ergonomic training brochure, and workplace visits with workstation adjustments. Follow-up assessment was conducted after 6 months. In the intervention group, body posture (p < 0.001) and workstation layout (p = 0.002) improved over 6 months; furthermore, intensity (p < 0.001), duration (p < 0.001), and frequency (p = 0.009) of WUEMSS decreased significantly in the intervention group compared with the control group. Additionally, the functional status (p = 0.001), and physical (p < 0.001), and mental (p = 0.035) health-related quality of life improved significantly compared with the controls. There was no improvement of work day loss due to WUEMSS (p > 0.05). Ergonomic intervention programs may be effective in reducing ergonomic risk factors among computer workers and consequently in the secondary prevention of WUEMSDs.
Measurement Properties of the Lower Extremity Functional Scale: A Systematic Review.
Mehta, Saurabh P; Fulton, Allison; Quach, Cedric; Thistle, Megan; Toledo, Cesar; Evans, Neil A
2016-03-01
Systematic review of measurement properties. Many primary studies have examined the measurement properties, such as reliability, validity, and sensitivity to change, of the Lower Extremity Functional Scale (LEFS) in different clinical populations. A systematic review summarizing these properties for the LEFS may provide an important resource. To locate and synthesize evidence on the measurement properties of the LEFS and to discuss the clinical implications of the evidence. A literature search was conducted in 4 databases (PubMed, MEDLINE, Embase, and CINAHL), using predefined search terms. Two reviewers performed a critical appraisal of the included studies using a standardized assessment form. A total of 27 studies were included in the review, of which 18 achieved a very good to excellent methodological quality level. The LEFS scores demonstrated excellent test-retest reliability (intraclass correlation coefficients ranging between 0.85 and 0.99) and demonstrated the expected relationships with measures assessing similar constructs (Pearson correlation coefficient values of greater than 0.7). The responsiveness of the LEFS scores was excellent, as suggested by consistently high effect sizes (greater than 0.8) in patients with different lower extremity conditions. Minimal detectable change at the 90% confidence level (MDC90) for the LEFS scores varied between 8.1 and 15.3 across different reassessment intervals in a wide range of patient populations. The pooled estimate of the MDC90 was 6 points and the minimal clinically important difference was 9 points in patients with lower extremity musculoskeletal conditions, which are indicative of true change and clinically meaningful change, respectively. The results of this review support the reliability, validity, and responsiveness of the LEFS scores for assessing functional impairment in a wide array of patient groups with lower extremity musculoskeletal conditions.
Campbell, Catherine; Horlin, Chiara; Reid, Corinne; McMichael, Judy; Forrest, Laura; Brydges, Chris; French, Noel; Anderson, Mike
2015-09-01
The aim of this study was to examine empathic competence in children born extremely preterm (EP, <28 weeks) given vulnerabilities in social relationships. Empathy in typically developing children is mediated by executive functions. Executive functioning is also impaired in preterm children. Of particular interest in this study are the attentional components of executive functioning as mediators of empathic development. Thirty-two 7-year-old EP children and 40 age-matched term children participated in the Project K.I.D.S program and completed the Kids Empathy Development Scale (KEDS), Wechsler Intelligence Scale for Children (WISC-IV), and Test of Everyday Attention for Children (TEA-Ch). Children born extremely preterm exhibited poorer performance on all measures. The mediating role of attention in empathy competence was not supported by mediation modelling when FSIQ was controlled. As predicted, the EP group showed weaker empathic development relative to typically developing children. They also showed poorer attentional abilities. However, the effect of preterm birth on empathy was not mediated by executive-level attention. The cognitive mechanisms underpinning poor empathy competence in EP children remain unclear. Future research needs to examine the role of inhibition, social-emotional recognition, and regulation. © 2015 The British Psychological Society.
Cognitive and motor function of neurologically impaired extremely low birth weight children.
Bernardo, Janine; Friedman, Harriet; Minich, Nori; Taylor, H Gerry; Wilson-Costello, Deanne; Hack, Maureen
2015-01-01
Rates of neurological impairment among extremely low birth weight children (ELBW [<1 kg]) have decreased since 2000; however, their functioning is unexamined. To compare motor and cognitive functioning of ELBW children with neurological impairment, including cerebral palsy and severe hypotonia/hypertonia, between two periods: 1990 to 1999 (n=83) and 2000 to 2005 (n=34). Measures of function at 20 months corrected age included the Mental and Psychomotor Developmental Indexes of the Bayley Scales of Infant Development and the Gross Motor Functional Classification System as primary outcomes and individual motor function items as secondary outcomes. Analysis failed to reveal significant differences for the primary outcomes, although during 2000 to 2005, sitting significantly improved in children with neurological impairment (P=0.003). Decreases in rates of neurological impairment among ELBW children have been accompanied by a suggestion of improved motor function, although cognitive function has not changed.
Oswestry Disability Index is a better indicator of lumbar motion than the Visual Analogue Scale.
Ruiz, Ferrin K; Bohl, Daniel D; Webb, Matthew L; Russo, Glenn S; Grauer, Jonathan N
2014-09-01
Lumbar pathology is often associated with axial pain or neurologic complaints. It is often presumed that such pain is associated with decreased lumbar motion; however, this correlation is not well established. The utility of various outcome measures that are used in both research and clinical practice have been studied, but the connection with range of motion (ROM) has not been well documented. The current study was performed to assess objectively the postulated correlation of lumbar complaints (based on standardized outcome measures) with extremes of lumbar ROM and functional ROM (fROM) with activities of daily living (ADLs) as assessed with an electrogoniometer. This study was a clinical cohort study. Subjects slated to undergo a lumbar intervention (injection, decompression, and/or fusion) were enrolled voluntarily in the study. The two outcome measures used in the study were the Visual Analogue Scale (VAS) for axial extremity, lower extremity, and combined axial and lower extremity, as well as the Oswestry Disability Index (ODI). Pain and disability scores were assessed with the VAS score and ODI. A previously validated electrogoniometer was used to measure ROM (extremes of motion in three planes) and fROM (functional motion during 15 simulated activities of daily living). Pain and disability scores were analyzed for statistically significant association with the motion assessments using linear regression analyses. Twenty-eight men and 39 women were enrolled, with an average age of 55.6 years (range, 18-79 years). The ODI and VAS were associated positively (p<.001). Combined axial and lower extremity VAS scores were associated with lateral and rotational ROM (p<.05), but not with flexion/extension or any fROM. Similar findings were noted for separately analyzed axial and lower extremity VAS scores. On the other hand, the ODI correlated inversely with ROM in all planes, and fROM in at least one plane for 10 of 15 ADLs (p<.05). Extremes of lumbar motion and motions associated with ADLs are of increasing clinical interest. Although the ODI and VAS are associated with each other, the ODI appears to be a better predictor of these motion parameters than the VAS (axial extremity, lower extremity, or combined) and may be more useful in the clinical setting when considering functional movement parameters. Copyright © 2014 Elsevier Inc. All rights reserved.
Tropical precipitation extremes: Response to SST-induced warming in aquaplanet simulations
NASA Astrophysics Data System (ADS)
Bhattacharya, Ritthik; Bordoni, Simona; Teixeira, João.
2017-04-01
Scaling of tropical precipitation extremes in response to warming is studied in aquaplanet experiments using the global Weather Research and Forecasting (WRF) model. We show how the scaling of precipitation extremes is highly sensitive to spatial and temporal averaging: while instantaneous grid point extreme precipitation scales more strongly than the percentage increase (˜7% K-1) predicted by the Clausius-Clapeyron (CC) relationship, extremes for zonally and temporally averaged precipitation follow a slight sub-CC scaling, in agreement with results from Climate Model Intercomparison Project (CMIP) models. The scaling depends crucially on the employed convection parameterization. This is particularly true when grid point instantaneous extremes are considered. These results highlight how understanding the response of precipitation extremes to warming requires consideration of dynamic changes in addition to the thermodynamic response. Changes in grid-scale precipitation, unlike those in convective-scale precipitation, scale linearly with the resolved flow. Hence, dynamic changes include changes in both large-scale and convective-scale motions.
Moon, Hyun Im; Pyun, Sung-Bom; Tae, Woo-Suk; Kwon, Hee Kyu
2016-07-01
Stroke impairs motor, balance, and gait function and influences activities of daily living. Understanding the relationship between brain lesions and deficits can help clinicians set goals during rehabilitation. We sought to elucidate the neural substrates of lower extremity motor, balance, and ambulation function using voxel-based lesion symptom mapping (VLSM) in supratentorial stroke patients. We retrospectively screened patients who met the following criteria: first-ever stroke, supratentorial lesion, and available brain magnetic resonance imaging (MRI) data. MRIs of 133 stroke patients were selected for VLSM analysis. We generated statistical maps of lesions related to lower extremity motor (lower extremity Fugl-Meyer assessment, LEFM), balance (Berg Balance Scale, BBS), and gait (Functional Ambulation Category, FAC) using VLSM. VLSM revealed that lower LEFM scores were associated with damage to the bilateral basal ganglia, insula, internal capsule, and subgyral white matter adjacent to the corona radiata. The lesions were more widely distributed in the left than in the right hemisphere, representing motor and praxis function necessary for performing tasks. However, no associations between lesion maps and balance and gait function were established. Motor impairment of the lower extremities was associated with lesions in the basal ganglia, insula, internal capsule, and white matter adjacent to the corona radiata. However, VLSM revealed no specific lesion locations with regard to balance and gait function. This might be because balance and gait are complex skills that require spatial and temporal integration of sensory input and execution of movement patterns. For more accurate prediction, factors other than lesion location need to be investigated.
Støre-Valen, Jakob; Ryum, Truls; Pedersen, Geir A F; Pripp, Are H; Jose, Paul E; Karterud, Sigmund
2015-09-01
The Global Assessment of Functioning (GAF) Scale is used in routine clinical practice and research to estimate symptom and functional severity and longitudinal change. Concerns about poor interrater reliability have been raised, and the present study evaluated the effect of a Web-based GAF training program designed to improve interrater reliability in routine clinical practice. Clinicians rated up to 20 vignettes online, and received deviation scores as immediate feedback (i.e., own scores compared with expert raters) after each rating. Growth curves of absolute SD scores across the vignettes were modeled. A linear mixed effects model, using the clinician's deviation scores from expert raters as the dependent variable, indicated an improvement in reliability during training. Moderation by content of scale (symptoms; functioning), scale range (average; extreme), previous experience with GAF rating, profession, and postgraduate training were assessed. Training reduced deviation scores for inexperienced GAF raters, for individuals in clinical professions other than nursing and medicine, and for individuals with no postgraduate specialization. In addition, training was most beneficial for cases with average severity of symptoms compared with cases with extreme severity. The results support the use of Web-based training with feedback routines as a means to improve the reliability of GAF ratings performed by clinicians in mental health practice. These results especially pertain to clinicians in mental health practice who do not have a masters or doctoral degree. (c) 2015 APA, all rights reserved.
NASA Astrophysics Data System (ADS)
Buzzicotti, M.; Linkmann, M.; Aluie, H.; Biferale, L.; Brasseur, J.; Meneveau, C.
2018-02-01
The effects of different filtering strategies on the statistical properties of the resolved-to-subfilter scale (SFS) energy transfer are analysed in forced homogeneous and isotropic turbulence. We carry out a-priori analyses of the statistical characteristics of SFS energy transfer by filtering data obtained from direct numerical simulations with up to 20483 grid points as a function of the filter cutoff scale. In order to quantify the dependence of extreme events and anomalous scaling on the filter, we compare a sharp Fourier Galerkin projector, a Gaussian filter and a novel class of Galerkin projectors with non-sharp spectral filter profiles. Of interest is the importance of Galilean invariance and we confirm that local SFS energy transfer displays intermittency scaling in both skewness and flatness as a function of the cutoff scale. Furthermore, we quantify the robustness of scaling as a function of the filtering type.
Buyukavci, Raikan; Akturk, Semra; Ersoy, Yüksel
2018-02-07
Ultrasound-guided botulinum toxin type A injection is an effective treatment for spasticity. Euro-musculus spasticity approach is a new method for administering injections to the correct point of the correct muscle. The clinical outcomes of this practical approach is not yet available in the literature. The purpose of this study was to evaluate the effects on spasticity and the functional outcomes of ultrasound guided botulinum toxin type A injections via the Euro-musculus spasticity approach to treat upper limb spasticity in post-stroke patients. An observational study. Inpatient post-stroke patients. Twenty five post-stroke patients with post-stroke upper limb spasticity were recruited. The ultrasound-guided botulinum toxin type A injections were administered into the spastic target muscles using the Euro-musculus spasticity approach, and all of the patients were enrolled in rehabilitation programmes after the injections. This research included the innervation zone and injection site figures and ultrasound images of each muscle in the upper limb. The degree of spasticity was assessed via the Modified Ashworth Scale and the upper limb motor function via the Fugl Meyer Upper Extremity Scale at the baseline and 4 and 12 weeks after the botulinum toxin type A injection. Significant decreases in the Modified Ashworth Scale scores of the upper limb flexor muscle tone measured 4 and 12 weeks after the botulinum toxin type A injection were found when compared to the baseline scores (p<0.025). When compared with the baseline Fugl Meyer Upper Extremity subgroup scores, the sitting position, wrist and total scores at 4 and 12 weeks were significantly improved (p<0.025). However, only the Fugl Meyer Upper Extremity hand scores were significantly improved 12 weeks after the injection (p<0.025). Ultrasound-guided botulinum toxin type A injection via the Euro- musculus spasticity approach is a practical and effective method for administering injections to the correct point of the correct muscle. Ultrasound-guided botulinum toxin type A injections combined with rehabilitation programmes decrease spasticity and improve the upper extremity motor functions in stroke patients. This new approach for ultrasound- guided botulinum toxin type A injection is very practical and effective method for upper extremity spasticity.
Crowell, Michael S.; Deyle, Gail D.; Owens, Johnny; Gill, Norman W.
2016-01-01
Objectives Severe lower extremity trauma accounts for large healthcare costs and often results in elective amputation and poor long-term outcomes. The purpose of this case series is to describe an orthopedic manual physical therapy (OMPT) approach combined with a return to run (RTR) clinical pathway consisting of high-intensity functional rehabilitation with a custom energy-storing orthosis. Methods Three consecutive male patients, aged 21–23 years, with severe lower extremity musculoskeletal injuries were treated with a combined intervention that included a mean (SD) of 12 (2·1) OMPT sessions and 24 (8·7) functional rehabilitation sessions over a mean of 6 weeks (1·0). Additional training with a custom energy-storing orthosis consisted of a mean of 15 (1·2) additional sessions over 4 weeks. Patient self-report outcome measures and a variety of physical performance tests captured change in function. Results Baseline lower extremity functional scale (LEFS) and foot and ankle ability measure activities of daily living subscale (FAAM-ADL) scores indicated severe disability. All patients exceeded the minimal clinically important difference (MCID) in at least one self-report outcome or physical performance test without a brace. Two of three patients exceeded the MCID for at least two physical performance tests after training with and utilizing a custom energy-storing orthosis. Discussion Clinically meaningful changes in self-reported function or physical performance were observed in all patients. A multi-modal approach, including manual therapy and functional exercise, may address the entire spectrum of impairments in patients with severe lower extremity trauma, resulting in improvements in both braced and un-braced function. PMID:27252581
Baldon, Rodrigo de Marche; Serrão, Fábio Viadanna; Scattone Silva, Rodrigo; Piva, Sara Regina
2014-04-01
Randomized clinical trial. To compare the effects of functional stabilization training (FST) versus standard training on knee pain and function, lower-limb and trunk kinematics, trunk muscle endurance, and eccentric hip and knee muscle strength in women with patellofemoral pain. A combination of hip- and knee-strengthening exercise may be more beneficial than quadriceps strengthening alone to improve pain and function in individuals with patellofemoral pain. However, there is limited evidence of the effectiveness of these exercise programs on the biomechanics of the lower extremity. Thirty-one women were randomized to either the FST group or standard-training group. Patients attended a baseline assessment session, followed by an 8-week intervention, and were reassessed at the end of the intervention and at 3 months after the intervention. Assessment measures were a 10-cm visual analog scale for pain, the Lower Extremity Functional Scale, and the single-leg triple-hop test. A global rating of change scale was used to measure perceived improvement. Kinematics were assessed during the single-leg squat. Outcome measures also included trunk endurance and eccentric hip and knee muscle strength assessment. The patients in the FST group had less pain at the 3-month follow-up and greater global improvement and physical function at the end of the intervention compared to those in the standard-training group. Lesser ipsilateral trunk inclination, pelvis contralateral depression, hip adduction, and knee abduction, along with greater pelvis anteversion and hip flexion movement excursions during the single-leg squat, were only observed in the FST group after the intervention. Only those in the FST group had greater eccentric hip abductor and knee flexor strength, as well as greater endurance of the anterior, posterior, and lateral trunk muscles, after training. An intervention program consisting of hip muscle strengthening and lower-limb and trunk movement control exercises was more beneficial in improving pain, physical function, kinematics, and muscle strength compared to a program of quadriceps-strengthening exercises alone.
Fluet, Gerard G.; Merians, Alma S.; Qiu, Qinyin; Lafond, Ian; Saleh, Soha; Ruano, Viviana; Delmonico, Andrea R.; Adamovich, Sergei V.
2014-01-01
Background and Purpose A majority of studies examining repetitive task practice facilitated by robots for the treatment of upper extremity paresis utilize standardized protocols applied to large groups. Others utilize interventions tailored to patients but don't describe the clinical decision making process utilized to develop and modify interventions. This case report will describe a robot-based intervention customized to match the goals and clinical presentation of a gentleman with upper extremity hemiparesis secondary to stroke. Methods PM is an 85 year-old man with left hemiparesis secondary to an intracerebral hemorrhage five years prior to examination. Outcomes were measured before and after a one month period of home therapy and after a one month robotic intervention. The intervention was designed to address specific impairments identified during his PT examination. When necessary, activities were modified based on the patient's response to his first week of treatment. Outcomes PM trained twelve sessions using six virtually simulated activities. Modifications to original configurations of these activities resulted in performance improvements in five of these activities. PM demonstrated a 35 second improvement in Jebsen Test of Hand Function time and a 44 second improvement in Wolf Motor Function Test time subsequent to the robotic training intervention. Reaching kinematics, 24 hour activity measurement and the Hand and Activities of Daily Living scales of the Stroke Impact Scale all improved as well. Discussion A customized program of robotically facilitated rehabilitation resulted in large short-term improvements in several measurements of upper extremity function in a patient with chronic hemiparesis. PMID:22592063
Extreme weather and climate events with ecological relevance: a review
Meehl, Gerald A.
2017-01-01
Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation. This article is part of the themed issue ‘Behavioural, ecological and evolutionary responses to extreme climatic events’. PMID:28483866
Extreme weather and climate events with ecological relevance: a review.
Ummenhofer, Caroline C; Meehl, Gerald A
2017-06-19
Robust evidence exists that certain extreme weather and climate events, especially daily temperature and precipitation extremes, have changed in regard to intensity and frequency over recent decades. These changes have been linked to human-induced climate change, while the degree to which climate change impacts an individual extreme climate event (ECE) is more difficult to quantify. Rapid progress in event attribution has recently been made through improved understanding of observed and simulated climate variability, methods for event attribution and advances in numerical modelling. Attribution for extreme temperature events is stronger compared with other event types, notably those related to the hydrological cycle. Recent advances in the understanding of ECEs, both in observations and their representation in state-of-the-art climate models, open new opportunities for assessing their effect on human and natural systems. Improved spatial resolution in global climate models and advances in statistical and dynamical downscaling now provide climatic information at appropriate spatial and temporal scales. Together with the continued development of Earth System Models that simulate biogeochemical cycles and interactions with the biosphere at increasing complexity, these make it possible to develop a mechanistic understanding of how ECEs affect biological processes, ecosystem functioning and adaptation capabilities. Limitations in the observational network, both for physical climate system parameters and even more so for long-term ecological monitoring, have hampered progress in understanding bio-physical interactions across a range of scales. New opportunities for assessing how ECEs modulate ecosystem structure and functioning arise from better scientific understanding of ECEs coupled with technological advances in observing systems and instrumentation.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
REISTETTER, TIMOTHY; ABREU, BEATRIZ C.; BEAR-LEHMAN, JANE; OTTENBACHER, KENNETH J.
2010-01-01
The purpose of the study was to investigate the effect of upper extremity (UE) weight bearing on UE impairment functional performance of persons with acquired brain injury (BI). A quasi-experimental design was used to examine a convenience sample of 99 persons with acquired BI and 22 without BI (WBI) living in a community re-entry centre. A computerized force-sensing array pressure map system was used to determine the UE pressure during unilateral and bilateral conditions. Differences between groups were examined using t-tests. Correlations were computed between UE weight bearing and hand function, and functional performance as measured by the Fugl-Meyer scale and functional independence measure (FIM) scale. The group of people with BI exerted significantly lower UE weight bearing during unilateral conditions as compared with persons WBI [left: t (119) = 2.34, p = 0.021; right: t (119) = 4.79, p = 0.043). UE weight-bearing measures correlated strongly with FIM motor scores with bilateral UE conditions yielded the highest significant correlation (bilateral left r = 0.487, p < 0.001; bilateral right r = 0.469, p < 0.01). The results indicated that UE weight-bearing pressure differs in unilateral and bilateral conditions, between persons with and WBI and between persons with stroke and traumatic brain injury. These findings may have implications for occupational therapists that use unilateral versus bilateral motor training for rehabilitation. There is a need to replicate the study design with a randomized and stratified sample of persons with BI. PMID:19551694
Lowe, Jean R.; Duncan, Andrea Freeman; Bann, Carla M.; Fuller, Janell; Hintz, Susan R.; Das, Abhik; Higgins, Rosemary D.; Watterberg, Kristi L.
2013-01-01
Background Difficulties with executive function has been found in preterm children, resulting in difficulties with learning and school performance. Aim This study evaluated the relationship of early working memory as measured by object permanence items to the cognitive and language scores on the Bayley Scales-III in a cohort of children born extremely preterm. Study Design Logistic regression models were conducted to compare object permanence scores derived from the Bayley Scales-III by race/ethnicity and maternal education, controlling for medical covariates. Subjects Extremely preterm toddlers (526), who were part of a Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network's multi-center study, were evaluated at 18-22 months corrected age. Outcome Measures Object permanence scores derived from the Bayley Developmental Scales were compared by race/ethnicity and maternal education, controlling for medical covariates. Results There were no significant differences in object permanence mastery and scores among the treatment groups after controlling for medical and social variables, including maternal education and race/ethnicity. Males and children with intraventricular hemorrhage, retinopathy of prematurity, and bronchopulmonary dysplasia were less likely to demonstrate object permanence mastery and had lower object permanence scores. Children who attained object permanence mastery had significantly higher Bayley Scales-III cognitive and language scores after controlling for medical and socio-economic factors. Conclusions Our measure of object permanence is free of influence from race, ethnic and socio-economic factors. Adding this simple task to current clinical practice could help detect early executive function difficulties in young children. PMID:23993309
Lowe, Jean R; Duncan, Andrea Freeman; Bann, Carla M; Fuller, Janell; Hintz, Susan R; Das, Abhik; Higgins, Rosemary D; Watterberg, Kristi L
2013-12-01
Difficulties with executive function have been found in preterm children, resulting in difficulties with learning and school performance. This study evaluated the relationship of early working memory as measured by object permanence items to the cognitive and language scores on the Bayley Scales-III in a cohort of children born extremely preterm. Logistic regression models were conducted to compare object permanence scores derived from the Bayley Scales-III by race/ethnicity and maternal education, controlling for medical covariates. Extremely preterm toddlers (526), who were part of a Eunice Kennedy Shriver National Institute of Child Health and Human Development Neonatal Research Network's multi-center study, were evaluated at 18-22 months corrected age. Object permanence scores derived from the Bayley Developmental Scales were compared by race/ethnicity and maternal education, controlling for medical covariates. There were no significant differences in object permanence mastery and scores among the treatment groups after controlling for medical and social variables, including maternal education and race/ethnicity. Males and children with intraventricular hemorrhage, retinopathy of prematurity, and bronchopulmonary dysplasia were less likely to demonstrate object permanence mastery and had lower object permanence scores. Children who attained object permanence mastery had significantly higher Bayley Scales-III cognitive and language scores after controlling for medical and socio-economic factors. Our measure of object permanence is free of influence from race, ethnic and socio-economic factors. Adding this simple task to current clinical practice could help detect early executive function difficulties in young children. Published by Elsevier Ireland Ltd.
NASA Astrophysics Data System (ADS)
Xu, Chen; Ahmad, Zeeshan; Aryanfar, Asghar; Viswanathan, Venkatasubramanian; Greer, Julia R.
2017-01-01
Most next-generation Li ion battery chemistries require a functioning lithium metal (Li) anode. However, its application in secondary batteries has been inhibited because of uncontrollable dendrite growth during cycling. Mechanical suppression of dendrite growth through solid polymer electrolytes (SPEs) or through robust separators has shown the most potential for alleviating this problem. Studies of the mechanical behavior of Li at any length scale and temperature are limited because of its extreme reactivity, which renders sample preparation, transfer, microstructure characterization, and mechanical testing extremely challenging. We conduct nanomechanical experiments in an in situ scanning electron microscope and show that micrometer-sized Li attains extremely high strengths of 105 MPa at room temperature and of 35 MPa at 90 °C. We demonstrate that single-crystalline Li exhibits a power-law size effect at the micrometer and submicrometer length scales, with the strengthening exponent of -0.68 at room temperature and of -1.00 at 90 °C. We also report the elastic and shear moduli as a function of crystallographic orientation gleaned from experiments and first-principles calculations, which show a high level of anisotropy up to the melting point, where the elastic and shear moduli vary by a factor of ˜4 between the stiffest and most compliant orientations. The emergence of such high strengths in small-scale Li and sensitivity of this metal’s stiffness to crystallographic orientation help explain why the existing methods of dendrite suppression have been mainly unsuccessful and have significant implications for practical design of future-generation batteries.
Lang, Catherine E.; Birkenmeier, Rebecca; Holm, Margo; Rubinstein, Elaine; Van Swearingen, Jessie; Skidmore, Elizabeth R.
2016-01-01
OBJECTIVE. We examined the feasibility, tolerability, and preliminary efficacy of repetitive task-specific practice for people with unilateral spatial neglect (USN). METHOD. People with USN ≥6 mo poststroke participated in a single-group, repeated-measures study. Attendance, total repetitions, and satisfaction indicated feasibility and pain indicated tolerability. Paired t tests and effect sizes were used to estimate changes in upper-extremity use (Motor Activity Log), function (Action Research Arm Test), and attention (Catherine Bergego Scale). RESULTS. Twenty participants attended 99.4% of sessions and completed a high number of repetitions. Participants reported high satisfaction and low pain, and they demonstrated small, significant improvements in upper-extremity use (before Bonferroni corrections; t = –2.1, p = .04, d = .30), function (t = –3.0, p < .01, d = .20), and attention (t = –3.4, p < .01, d = –.44). CONCLUSION. Repetitive task-specific practice is feasible and tolerable for people with USN. Improvements in upper-extremity use, function, and attention may be attainable. PMID:27294994
Uswatte, Gitendra; Taub, Edward; Morris, David; Vignolo, Mary; McCulloch, Karen
2005-11-01
In research on Constraint-Induced Movement (CI) therapy, a structured interview, the Motor Activity Log (MAL), is used to assess how stroke survivors use their more-impaired arm outside the laboratory. This article examines the psychometrics of the 14-item version of this instrument in 2 chronic stroke samples with mild-to-moderate upper-extremity hemiparesis. Participants (n=41) in the first study completed MALs before and after CI therapy or a placebo control procedure. In addition, caregivers independently completed a MAL on the participants. Participants (n=27) in the second study completed MALs and wore accelerometers that monitored their arm movements for 3 days outside the laboratory before and after an automated form of CI therapy. Validity of the participant MAL Quality of Movement (QOM) scale was supported. Correlations between pretreatment-to-posttreatment change scores on the participant QOM scale and caregiver MAL QOM scale, caregiver MAL amount of use (AOU) scale, and accelerometer recordings were 0.70, 0.73, and 0.91 (P<0.01), respectively. Internal consistency (alpha>0.81), test-retest reliability (r>0.91), stability, and responsiveness (ratio>3) of the participant QOM scale were also supported. The participant AOU and caregiver QOM and AOU scales were internally consistent, stable, and sensitive, but were not reliable. The participant MAL QOM scale can be used exclusively to reliably and validly measure real-world, upper-extremity rehabilitation outcome and functional status in chronic stroke patients with mild-to-moderate hemiparesis.
Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio
2016-01-01
In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting in substantial reduction of hydraulic functionality and, hence increased incidence of xylem dysfunctions.
Rita, Angelo; Borghetti, Marco; Todaro, Luigi; Saracino, Antonio
2016-01-01
In the Mediterranean region, the widely predicted rise in temperature, change in the precipitation pattern, and increase in the frequency of extreme climatic events are expected to alter the shape of ecological communities and to affect plant physiological processes that regulate ecosystem functioning. Although change in the mean values are important, there is increasing evidence that plant distribution, survival, and productivity respond to extremes rather than to the average climatic condition. The present study aims to assess the effects of both mean and extreme climatic conditions on radial growth and functional anatomical traits using long-term tree-ring time series of two co-existing Quercus spp. from a drought-prone site in Southern Italy. In particular, this is the first attempt to apply the Generalized Additive Model for Location, Scale, and Shape (GAMLSS) technique and Bayesian modeling procedures to xylem traits data set, with the aim of (i) detecting non-linear long-term responses to climate and (ii) exploring relationships between climate extreme and xylem traits variability in terms of probability of occurrence. This study demonstrates the usefulness of long-term xylem trait chronologies as records of environmental conditions at annual resolution. Statistical analyses revealed that most of the variability in tree-ring width and specific hydraulic conductivity might be explained by cambial age. Additionally, results highlighted appreciable relationships between xylem traits and climate variability more than tree-ring width, supporting also the evidence that the plant hydraulic traits are closely linked to local climate extremes rather than average climatic conditions. We reported that the probability of extreme departure in specific hydraulic conductivity (Ks) rises at extreme values of Standardized Precipitation Index (SPI). Therefore, changing frequency or intensity of extreme events might overcome the adaptive limits of vascular transport, resulting in substantial reduction of hydraulic functionality and, hence increased incidence of xylem dysfunctions. PMID:27532008
Wei, Xi-Jun; Tong, Kai-Yu; Hu, Xiao-Ling
2011-12-01
Responsiveness of clinical assessments is an important element in the report of clinical effectiveness after rehabilitation. The correlation could reflect the validity of assessments as an indication of clinical performance before and after interventions. This study investigated the correlation and responsiveness of Fugl-Meyer Assessment (FMA), Motor Status Scale (MSS), Action Research Arm Test (ARAT) and the Modified Ashworth Scale (MAS), which are used frequently in effectiveness studies of robotic upper-extremity training in stroke rehabilitation. Twenty-seven chronic stroke patients were recruited for a 20-session upper-extremity rehabilitation robotic training program. This was a rater-blinded randomized controlled trial. All participants were evaluated with FMA, MSS, ARAT, MAS, and Functional Independent Measure before and after robotic training. Spearman's rank correlation coefficient was applied for the analysis of correlation. The standardized response mean (SRM) and Guyatt's responsiveness index (GRI) were used to analyze responsiveness. Spearman's correlation coefficient showed a significantly high correlation (ρ=0.91-0.96) among FMA, MSS, and ARAT and a fair-to-moderate correlation (ρ=0.40-0.62) between MAS and the other assessments. FMA, MSS, and MAS on the wrist showed higher responsiveness (SRM=0.85-0.98, GRI=1.59-3.62), whereas ARAT showed relatively less responsiveness (SRM=0.22, GRI=0.81). The results showed that FMA or MSS would be the best choice for evaluating the functional improvement in stroke studies on robotic upper-extremity training with high responsiveness and good correlation with ARAT. MAS could be used separately to evaluate the spasticity changes after intervention in terms of high responsiveness.
Kinematic and kinetic synergies of the lower extremities during the pull in olympic weightlifting.
Kipp, Kristof; Redden, Josh; Sabick, Michelle; Harris, Chad
2012-07-01
The purpose of this study was to identify multijoint lower extremity kinematic and kinetic synergies in weightlifting and compare these synergies between joints and across different external loads. Subjects completed sets of the clean exercise at loads equal to 65, 75, and 85% of their estimated 1-RM. Functional data analysis was used to extract principal component functions (PCF's) for hip, knee, and ankle joint angles and moments of force during the pull phase of the clean at all loads. The PCF scores were then compared between joints and across loads to determine how much of each PCF was present at each joint and how it differed across loads. The analyses extracted two kinematic and four kinetic PCF's. The statistical comparisons indicated that all kinematic and two of the four kinetic PCF's did not differ across load, but scaled according to joint function. The PCF's captured a set of joint- and load-specific synergies that quantified biomechanical function of the lower extremity during Olympic weightlifting and revealed important technical characteristics that should be considered in sports training and future research.
NASA Astrophysics Data System (ADS)
Avanzi, Francesco; De Michele, Carlo; Gabriele, Salvatore; Ghezzi, Antonio; Rosso, Renzo
2015-04-01
Here, we show how atmospheric circulation and topography rule the variability of depth-duration-frequency (DDF) curves parameters, and we discuss how this variability has physical implications on the formation of extreme precipitations at high elevations. A DDF is a curve ruling the value of the maximum annual precipitation H as a function of duration D and the level of probability F. We consider around 1500 stations over the Italian territory, with at least 20 years of data of maximum annual precipitation depth at different durations. We estimated the DDF parameters at each location by using the asymptotic distribution of extreme values, i.e. the so-called Generalized Extreme Value (GEV) distribution, and considering a statistical simple scale invariance hypothesis. Consequently, a DDF curve depends on five different parameters. A first set relates H with the duration (namely, the mean value of annual maximum precipitation depth for unit duration and the scaling exponent), while a second set links H to F (namely, a scale, position and shape parameter). The value of the shape parameter has consequences on the type of random variable (unbounded, upper or lower bounded). This extensive analysis shows that the variability of the mean value of annual maximum precipitation depth for unit duration obeys to the coupled effect of topography and modal direction of moisture flux during extreme events. Median values of this parameter decrease with elevation. We called this phenomenon "reverse orographic effect" on extreme precipitation of short durations, since it is in contrast with general knowledge about the orographic effect on mean precipitation. Moreover, the scaling exponent is mainly driven by topography alone (with increasing values of this parameter at increasing elevations). Therefore, the quantiles of H(D,F) at durations greater than unit turn to be more variable at high elevations than at low elevations. Additionally, the analysis of the variability of the shape parameter with elevation shows that extreme events at high elevations appear to be distributed according to an upper bounded probability distribution. These evidences could be a characteristic sign of the formation of extreme precipitation events at high elevations.
Wang, Xiaohu; Wei, Lei; Lv, Zhi; Zhao, Bin; Duan, Zhiqing; Wu, Wenjin; Zhang, Bin; Wei, Xiaochun
2017-02-01
Objective To explore the effects of proximal fibular osteotomy as a new surgery for pain relief and improvement of medial joint space and function in patients with knee osteoarthritis. Methods From January 2015 to May 2015, 47 patients who underwent proximal fibular osteotomy for medial compartment osteoarthritis were retrospectively followed up. Preoperative and postoperative weight-bearing and whole lower extremity radiographs were obtained to analyse the alignment of the lower extremity and ratio of the knee joint space (medial/lateral compartment). Knee pain was assessed using a visual analogue scale, and knee ambulation activities were evaluated using the American Knee Society score preoperatively and postoperatively. Results Medial pain relief was observed in almost all patients after proximal fibular osteotomy. Most patients exhibited improved walking postoperatively. Weight-bearing lower extremity radiographs showed an average increase in the postoperative medial knee joint space. Additionally, obvious correction of alignment was observed in the whole lower extremity radiographs in 8 of 47 patients. Conclusions The present study demonstrates that proximal fibular osteotomy effectively relieves pain and improves joint function in patients with medial compartment osteoarthritis at a mean of 13.38 months postoperatively.
NASA Technical Reports Server (NTRS)
Simpson, M. L.; Sayler, G. S.; Fleming, J. T.; Applegate, B.
2001-01-01
The ability to manipulate systems on the molecular scale naturally leads to speculation about the rational design of molecular-scale machines. Cells might be the ultimate molecular-scale machines and our ability to engineer them is relatively advanced when compared with our ability to control the synthesis and direct the assembly of man-made materials. Indeed, engineered whole cells deployed in biosensors can be considered one of the practical successes of molecular-scale devices. However, these devices explore only a small portion of cellular functionality. Individual cells or self-organized groups of cells perform extremely complex functions that include sensing, communication, navigation, cooperation and even fabrication of synthetic nanoscopic materials. In natural systems, these capabilities are controlled by complex genetic regulatory circuits, which are only partially understood and not readily accessible for use in engineered systems. Here, we focus on efforts to mimic the functionality of man-made information-processing systems within whole cells.
Guimaraes, Julio Brandao; Zanoteli, Edmar; Link, Thomas M; de Camargo, Leonardo V; Facchetti, Luca; Nardo, Lorenzo; Fernandes, Artur da Rocha Correa
2017-12-01
The purpose of this prospective study is to assess MRI findings in patients with sporadic inclusion body myositis (IBM) and correlate them with clinical and functional parameters. This study included 12 patients with biopsy-proven sporadic IBM. All patients underwent MRI of the bilateral upper and lower extremities. The images were scored for muscle atrophy, fatty infiltration, and edema pattern. Clinical data included onset and duration of disease. Muscle strength was measured using the Medical Research Council (MRC) scale, and functional status was assessed using the Modified Rankin Scale. Correlation between MRI and different clinical and functional parameters was calculated using the Spearman rank test and Pearson correlation. All patients showed MRI abnormalities, which were more severe within the lower limbs and the distal segments. The most prevalent MRI finding was fat infiltration. There was a statistically significant correlation between disease duration and number of muscles infiltrated by fat (r = 0.65; p = 0.04). The number of muscles with fat infiltration correlated with the sum of the scores of MRC (r = -0.60; p = 0.04) and with the Modified Rankin Scale (r = 0.48; p = 0.03). Our findings suggest that most patients with biopsy-proven sporadic IBM present with a typical pattern of muscle involvement at MRI, more extensively in the lower extremities. Moreover, MRI findings strongly correlated with clinical and functional parameters, because both the extent and severity of muscle involvement assessed by MRI and clinical and functional parameters are associated with the early onset of the disease and its duration.
NASA Astrophysics Data System (ADS)
Tao, F.; Rötter, R.
2013-12-01
Many studies on global climate report that climate variability is increasing with more frequent and intense extreme events1. There are quite large uncertainties from both the plot- and regional-scale models in simulating impacts of climate variability and extremes on crop development, growth and productivity2,3. One key to reducing the uncertainties is better exploitation of experimental data to eliminate crop model deficiencies and develop better algorithms that more adequately capture the impacts of extreme events, such as high temperature and drought, on crop performance4,5. In the present study, in a first step, the inter-annual variability in wheat yield and climate from 1971 to 2012 in Finland was investigated. Using statistical approaches the impacts of climate variability and extremes on wheat growth and productivity were quantified. In a second step, a plot-scale model, WOFOST6, and a regional-scale crop model, MCWLA7, were calibrated and validated, and applied to simulate wheat growth and yield variability from 1971-2012. Next, the estimated impacts of high temperature stress, cold damage, and drought stress on crop growth and productivity based on the statistical approaches, and on crop simulation models WOFOST and MCWLA were compared. Then, the impact mechanisms of climate extremes on crop growth and productivity in the WOFOST model and MCWLA model were identified, and subsequently, the various algorithm and impact functions were fitted against the long-term crop trial data. Finally, the impact mechanisms, algorithms and functions in WOFOST model and MCWLA model were improved to better simulate the impacts of climate variability and extremes, particularly high temperature stress, cold damage and drought stress for location-specific and large area climate impact assessments. Our studies provide a good example of how to improve, in parallel, the plot- and regional-scale models for simulating impacts of climate variability and extremes, as needed for better informed decision-making on adaptation strategies. References 1. Coumou, D. & Rahmstorf, S. A decade of extremes. Nature Clim. Change, 2, 491-496 (2012). 2. Rötter, R. P., Carter, T. R., Olesen, J. E. & Porter, J. R. Crop-climate models need an overhaul. Nature Clim. Change, 1, 175-177 (2011). 3. Asseng, S. et al., Uncertainty in simulating wheat yields under climate change. Nature Clim. Change. 10.1038/nclimate1916. (2013). 4. Porter, J.R., & Semenov, M., Crop responses to climatic variation . Trans. R. Soc. B., 360, 2021-2035 (2005). 5. Porter, J.R. & Christensen, S. Deconstructing crop processes and models via identities. Plant, Cell and Environment . doi: 10.1111/pce.12107 (2013). 6. Boogaard, H.L., van Diepen C.A., Rötter R.P., Cabrera J.M. & van Laar H.H. User's guide for the WOFOST 7.1 crop growth simulation model and Control Center 1.5, Alterra, Wageningen, The Netherlands. (1998) 7. Tao, F. & Zhang, Z. Climate change, wheat productivity and water use in the North China Plain: a new super-ensemble-based probabilistic projection. Agric. Forest Meteorol., 170, 146-165. (2013).
Cudia, Paola; Weis, Luca; Baba, Alfonc; Kiper, Pawel; Marcante, Andrea; Rossi, Simonetta; Angelini, Corrado; Piccione, Francesco
2016-11-01
Functional electrical stimulation (FES) is a new rehabilitative approach that combines electrical stimulation with a functional task. This pilot study evaluated the safety and effectiveness of FES lower extremity training in myotonic dystrophy type 1. This is a controlled pilot study that enrolled 20 patients with myotonic dystrophy type 1 over 2 years. Eight patients (age, 39-67 years) fulfilled the inclusion criteria. Four participants performed FES cycling training for 15 days (one daily session of 30 minutes for 5 days a week). A control group, matched for clinical and genetic variables, who had contraindications to electrical stimulation, performed 6 weeks of conventional resistance and aerobic training. The modified Medical Research Council Scale and functional assessments were performed before and after treatment. Cohen d effect size was used for statistical analysis. Functional electrical stimulation induced lower extremity training was well tolerated and resulted in a greater improvement of tibialis anterior muscle strength (d = 1,583), overall muscle strength (d = 1,723), and endurance (d = 0,626) than conventional training. Functional electrical stimulation might be considered a safe and valid tool to improve muscle function, also in muscles severely compromised in which no other restorative options are available. Confirmation of FES efficacy through further clinical trials is strongly advised.
Gerardo, Charles J; Quackenbush, Eugenia; Lewis, Brandon; Rose, S Rutherfoord; Greene, Spencer; Toschlog, Eric A; Charlton, Nathan P; Mullins, Michael E; Schwartz, Richard; Denning, David; Sharma, Kapil; Kleinschmidt, Kurt; Bush, Sean P; Ryan, Samantha; Gasior, Maria; Anderson, Victoria E; Lavonas, Eric J
2017-08-01
Copperhead snake (Agkistrodon contortrix) envenomation causes limb injury resulting in pain and disability. It is not known whether antivenom administration improves limb function. We determine whether administration of antivenom improves recovery from limb injury in patients envenomated by copperhead snakes. From August 2013 through November 2015, we performed a multicenter, randomized, double-blind, placebo-controlled, clinical trial to evaluate the effect of ovine Crotalidae polyvalent immune Fab (ovine) (CroFab; FabAV) antivenom therapy on recovery of limb function in patients with copperhead snake envenomation at 14 days postenvenomation. The study setting was 18 emergency departments in regions of the United States where copperhead snakes are endemic. Consecutive patients aged 12 years or older with mild- to moderate-severity envenomation received either FabAV or placebo. The primary outcome was limb function 14 days after envenomation, measured by the Patient-Specific Functional Scale. Additional outcomes included the Patient-Specific Functional Scale at other points; the Disorders of the Arm, Shoulder, and Hand, Lower Extremity Functional Scale, and Patient's Global Impression of Change instruments; grip strength; walking speed; quality of life (Patient-Reported Outcomes Measurement Information System Physical Fucntion-10); pain; and analgesic use. Seventy-four patients received study drug (45 FabAV, 29 placebo). Mean age was 43 years (range 12 to 86 years). Fifty-three percent were men, 62% had lower extremity envenomation, and 88% had mild initial severity. The primary outcome, the least square mean Patient-Specific Functional Scale score at 14 days postenvenomation, was 8.6 for FabAV-treated subjects and 7.4 for placebo recipients (difference 1.2; 95% confidence interval 0.1 to 2.3; P=.04). Additional outcome assessments generally favored FabAV. More FabAV-treated subjects experienced treatment-emergent adverse events (56% versus 28%), but few were serious (1 in each group). Treatment with FabAV reduces limb disability measured by the Patient-Specific Functional Scale 14 days after copperhead envenomation. Copyright © 2017 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.
Shashua, Anat; Flechter, Shlomo; Avidan, Liat; Ofir, Dani; Melayev, Alex; Kalichman, Leonid
2015-04-01
A single-blind randomized controlled trial. To evaluate the efficacy of ankle and midfoot mobilization on pain and function of patients with plantar fasciitis (PF). Plantar fasciitis is a degenerative process of the plantar fascia, with a lifetime prevalence of approximately 10%. Limited ankle dorsiflexion is a common finding and apparently acts as a contributing factor to the development of PF. Fifty patients with PF, aged 23 to 73 years, were randomly assigned to either the intervention or control group. Both groups received 8 treatments, twice a week, consisting of stretching exercises and ultrasound. In addition, the intervention group received mobilization of the ankle and midfoot joints. Dorsiflexion range of motion was measured at the beginning and at the end of treatment. The results were evaluated by 3 outcomes: the numeric pain-rating scale, Lower Extremity Functional Scale, and algometry. No significant difference was found between groups in any of the outcomes. Both groups showed a significant difference in the numeric pain-rating scale and Lower Extremity Functional Scale. Both groups significantly improved in dorsiflexion range of motion, with no difference between groups. The addition of ankle and foot joint mobilization aimed at improving dorsiflexion range of motion is not more effective than stretching and ultrasound alone in treating PF. The association between limited ankle dorsiflexion and PF is most probably due to soft tissue limitations, not the joints. Trial registered at ClinicalTrials.gov (registration number NCT01439932). Therapy, level 1b.
AB INITIO Molecular Dynamics Simulations of Water Under Static and Shock Compressed Conditions
NASA Astrophysics Data System (ADS)
Goldman, Nir; Fried, Laurence E.; Mundy, Christopher J.; Kuo, I.-F. William; Curioni, Alessandro; Reed, Evan J.
2007-12-01
We report herein a series of ab initio simulations of water under both static and shocked conditions. We have calculated the coherent x-ray scattering intensity of several phases of water under high pressure, using ab initio Density Functional Theory (DFT). We provide new atomic scattering form factors for water at extreme conditions, which take into account frequently neglected changes in ionic charge and electron delocalization. We have also simulated liquid water undergoing shock loading of velocities from 5-11 km/s using the Multi-Scale Shock Technique (MSST). We show that Density Functional Theory (DFT) molecular dynamics results compare extremely well to experiments on the water shock Hugoniot.
Large-scale Meteorological Patterns Associated with Extreme Precipitation Events over Portland, OR
NASA Astrophysics Data System (ADS)
Aragon, C.; Loikith, P. C.; Lintner, B. R.; Pike, M.
2017-12-01
Extreme precipitation events can have profound impacts on human life and infrastructure, with broad implications across a range of stakeholders. Changes to extreme precipitation events are a projected outcome of climate change that warrants further study, especially at regional- to local-scales. While global climate models are generally capable of simulating mean climate at global-to-regional scales with reasonable skill, resiliency and adaptation decisions are made at local-scales where most state-of-the-art climate models are limited by coarse resolution. Characterization of large-scale meteorological patterns associated with extreme precipitation events at local-scales can provide climatic information without this scale limitation, thus facilitating stakeholder decision-making. This research will use synoptic climatology as a tool by which to characterize the key large-scale meteorological patterns associated with extreme precipitation events in the Portland, Oregon metro region. Composite analysis of meteorological patterns associated with extreme precipitation days, and associated watershed-specific flooding, is employed to enhance understanding of the climatic drivers behind such events. The self-organizing maps approach is then used to characterize the within-composite variability of the large-scale meteorological patterns associated with extreme precipitation events, allowing us to better understand the different types of meteorological conditions that lead to high-impact precipitation events and associated hydrologic impacts. A more comprehensive understanding of the meteorological drivers of extremes will aid in evaluation of the ability of climate models to capture key patterns associated with extreme precipitation over Portland and to better interpret projections of future climate at impact-relevant scales.
Effects of aquatic PNF lower extremity patterns on balance and ADL of stroke patients.
Kim, Eun-Kyung; Lee, Dong-Kyu; Kim, Young-Mi
2015-01-01
[Purpose] This study investigated the effect of aquatic proprioceptive neuromuscular facilitation (PNF) patterns in the lower extremity on balance and activities of daily living (ADL) in stroke patients. [Subjects] Twenty poststroke participants were randomly assigned to an experimental group (n = 10) or a control group (n = 10). The experimental group performed lower extremity patterns in an aquatic environment, and the control group performed lower extremity patterns on the ground. Both exercises were conducted for 30 minutes/day, 5 days/week for 6 weeks. Balance was measured with the Berg Balance Scale (BBS), Timed Up and Go Test (TUGT), Functional Reach Test (FRT), and One Leg Stand Test (OLST). Activities of daily living were measured with the Functional Independence Measure (FIM). A paired t-test was used to measure pre- and post-experiment differences, and an independent t-test was used to measure between-group differences. [Results] The experimental and control groups showed significant differences for all pre- and post-experiment variables. In the between-group comparison, the experimental group was significantly difference from the control group. [Conclusion] These results indicate that performing aquatic proprioceptive neuromuscular facilitation patterns in the lower extremity enhances balance and ADL in stroke patients.
Effects of aquatic PNF lower extremity patterns on balance and ADL of stroke patients
Kim, Eun-Kyung; Lee, Dong-Kyu; Kim, Young-Mi
2015-01-01
[Purpose] This study investigated the effect of aquatic proprioceptive neuromuscular facilitation (PNF) patterns in the lower extremity on balance and activities of daily living (ADL) in stroke patients. [Subjects] Twenty poststroke participants were randomly assigned to an experimental group (n = 10) or a control group (n = 10). The experimental group performed lower extremity patterns in an aquatic environment, and the control group performed lower extremity patterns on the ground. Both exercises were conducted for 30 minutes/day, 5 days/week for 6 weeks. Balance was measured with the Berg Balance Scale (BBS), Timed Up and Go Test (TUGT), Functional Reach Test (FRT), and One Leg Stand Test (OLST). Activities of daily living were measured with the Functional Independence Measure (FIM). A paired t-test was used to measure pre- and post-experiment differences, and an independent t-test was used to measure between-group differences. [Results] The experimental and control groups showed significant differences for all pre- and post-experiment variables. In the between-group comparison, the experimental group was significantly difference from the control group. [Conclusion] These results indicate that performing aquatic proprioceptive neuromuscular facilitation patterns in the lower extremity enhances balance and ADL in stroke patients. PMID:25642076
Bowman, Mary H; Taub, Edward; Uswatte, Gitendra; Delgado, Adriana; Bryson, Camille; Morris, David M; McKay, Staci; Mark, Victor W
2006-01-01
Constraint-Induced Movement therapy (CI therapy) is a recognized rehabilitation approach for persons having stroke with mild to moderately severe motor upper extremity deficits. To date, no rehabilitation treatment protocol has been proven effective that addresses both motor performance and spontaneous upper extremity use in the life situation for chronic stroke participants having severe upper extremity impairment with no active finger extension or thumb abduction. This case report describes treatment of a chronic stroke participant with a plegic hand using a CI therapy protocol that combines CI therapy with selected occupational and physical therapy techniques. Treatment consisted of six sessions of adaptive equipment and upper extremity orthotics training followed by a three-week, six-hour daily intervention of CI therapy plus neurodevelopmental treatment. Outcome measures included the Motor Activity Log for very low functioning patients (Grade 5 MAL), upper extremity portion of the Fugl-Meyer Motor Assessment, Graded Wolf Motor Function Test - for very low functioning patients (gWMFT- Grade 5), and Modified Ashworth Scale. The participant showed improvement on each outcome measure with the largest improvement on the Grade 5 MAL. In follow-up, the participant had good retention of his gains in motor performance and use of his more affected arm for real world activities after 3 months; after a one-week brush-up at 3 months, and at one year post-treatment.
A variational approach to probing extreme events in turbulent dynamical systems
Farazmand, Mohammad; Sapsis, Themistoklis P.
2017-01-01
Extreme events are ubiquitous in a wide range of dynamical systems, including turbulent fluid flows, nonlinear waves, large-scale networks, and biological systems. We propose a variational framework for probing conditions that trigger intermittent extreme events in high-dimensional nonlinear dynamical systems. We seek the triggers as the probabilistically feasible solutions of an appropriately constrained optimization problem, where the function to be maximized is a system observable exhibiting intermittent extreme bursts. The constraints are imposed to ensure the physical admissibility of the optimal solutions, that is, significant probability for their occurrence under the natural flow of the dynamical system. We apply the method to a body-forced incompressible Navier-Stokes equation, known as the Kolmogorov flow. We find that the intermittent bursts of the energy dissipation are independent of the external forcing and are instead caused by the spontaneous transfer of energy from large scales to the mean flow via nonlinear triad interactions. The global maximizer of the corresponding variational problem identifies the responsible triad, hence providing a precursor for the occurrence of extreme dissipation events. Specifically, monitoring the energy transfers within this triad allows us to develop a data-driven short-term predictor for the intermittent bursts of energy dissipation. We assess the performance of this predictor through direct numerical simulations. PMID:28948226
NASA Astrophysics Data System (ADS)
Lenderink, Geert; Barbero, Renaud; Loriaux, Jessica; Fowler, Hayley
2017-04-01
Present-day precipitation-temperature scaling relations indicate that hourly precipitation extremes may have a response to warming exceeding the Clausius-Clapeyron (CC) relation; for The Netherlands the dependency on surface dew point temperature follows two times the CC relation corresponding to 14 % per degree. Our hypothesis - as supported by a simple physical argument presented here - is that this 2CC behaviour arises from the physics of convective clouds. So, we think that this response is due to local feedbacks related to the convective activity, while other large scale atmospheric forcing conditions remain similar except for the higher temperature (approximately uniform warming with height) and absolute humidity (corresponding to the assumption of unchanged relative humidity). To test this hypothesis, we analysed the large-scale atmospheric conditions accompanying summertime afternoon precipitation events using surface observations combined with a regional re-analysis for the data in The Netherlands. Events are precipitation measurements clustered in time and space derived from approximately 30 automatic weather stations. The hourly peak intensities of these events again reveal a 2CC scaling with the surface dew point temperature. The temperature excess of moist updrafts initialized at the surface and the maximum cloud depth are clear functions of surface dew point temperature, confirming the key role of surface humidity on convective activity. Almost no differences in relative humidity and the dry temperature lapse rate were found across the dew point temperature range, supporting our theory that 2CC scaling is mainly due to the response of convection to increases in near surface humidity, while other atmospheric conditions remain similar. Additionally, hourly precipitation extremes are on average accompanied by substantial large-scale upward motions and therefore large-scale moisture convergence, which appears to accelerate with surface dew point. This increase in large-scale moisture convergence appears to be consequence of latent heat release due to the convective activity as estimated from the quasi-geostrophic omega equation. Consequently, most hourly extremes occur in precipitation events with considerable spatial extent. Importantly, this event size appears to increase rapidly at the highest dew point temperature range, suggesting potentially strong impacts of climatic warming.
Wang, Wenqing; Wang, Aihui; Yu, Limin; Han, Xuesong; Jiang, Guiyun; Weng, Changshui; Zhang, Hongwei; Zhou, Zhiqiang
2012-01-01
Stroke patients with hemiplegia exhibit flexor spasms in the upper limb and extensor spasms in the lower limb, and their movement patterns vary greatly. Constraint-induced movement therapy is an upper limb rehabilitation technique used in stroke patients with hemiplegia; however, studies of lower extremity rehabilitation are scarce. In this study, stroke patients with lower limb hemiplegia underwent conventional Bobath therapy for 4 weeks as baseline treatment, followed by constraint-induced movement therapy for an additional 4 weeks. The 10-m maximum walking speed and Berg balance scale scores significantly improved following treatment, and lower extremity motor function also improved. The results of functional MRI showed that constraint-induced movement therapy alleviates the reduction in cerebral functional activation in patients, which indicates activation of functional brain regions and a significant increase in cerebral blood perfusion. These results demonstrate that constraint-induced movement therapy promotes brain functional reorganization in stroke patients with lower limb hemiplegia. PMID:25337108
Whatman, Chris; Hing, Wayne; Hume, Patria
2012-05-01
To investigate physiotherapist agreement in rating movement quality during lower extremity functional tests using two visual rating methods and physiotherapists with differing clinical experience. Clinical measurement. Six healthy individuals were rated by 44 physiotherapists. These raters were in three groups (inexperienced, novice, experienced). Video recordings of all six individuals performing four lower extremity functional tests were visually rated (dichotomous or ordinal scale) using two rating methods (overall or segment) on two occasions separated by 3-4 weeks. Intra and inter-rater agreement for physiotherapists was determined using overall percentage agreement (OPA) and the first order agreement coefficient (AC1). Intra-rater agreement for overall and segment methods ranged from slight to almost perfect (OPA: 29-96%, AC1: 0.01 to 0.96). AC1 agreement was better in the experienced group (84-99% likelihood) and for dichotomous rating (97-100% likelihood). Inter-rater agreement ranged from fair to good (OPA: 45-79%; AC1: 0.22-0.71). AC1 agreement was not influenced by clinical experience but was again better using dichotomous rating. Physiotherapists' visual rating of movement quality during lower extremity functional tests resulted in slight to almost perfect intra-rater agreement and fair to good inter-rater agreement. Agreement improved with increased level of clinical experience and use of dichotomous rating. Copyright © 2011 Elsevier Ltd. All rights reserved.
Gommoll, Carl P.; Chen, Changzheng; Greenberg, William M.; Ruth, Adam
2015-01-01
Objective: In this post hoc analysis, improvement in functional impairment in patients with major depressive disorder (MDD) treated with levomilnacipran extended release (ER) was evaluated by assessing shifts from more severe to less severe functional impairment categories on individual Sheehan Disability Scale (SDS) subscales. Method: SDS data were pooled from 5 phase II/III studies conducted between December 2006 and March 2012 of levomilnacipran ER versus placebo in adult patients with MDD (DSM-IV-TR criteria). Proportions of patients shifting from moderate-extreme baseline impairment (score ≥ 4) to mild-no impairment (score ≤ 3) at end of treatment were assessed for each SDS subscale. Proportions of patients shifting from marked-extreme (score ≥ 7) baseline impairment to moderate-no (score ≤ 6) or mild-no impairment (score ≤ 3) at end of treatment, and shifts in which patients worsened from moderate-no to marked-extreme impairment, were also evaluated. Results: A significantly higher proportion of patients treated with levomilnacipran ER than placebo-treated patients improved from more severe categories of functional impairment at baseline to less severe impairment categories across all SDS subscales: work/school, social life, and family life/home responsibilities (P < .01). Depending on the SDS subscale, 48%–55% of levomilnacipran ER–treated patients with moderate-extreme impairment at baseline improved to mild or no impairment, compared with no more than 40% of placebo patients on any subscale. Almost half (42%–47%) of levomilnacipran ER–treated patients versus only about one-third (29%–34%) of placebo patients improved from marked-extreme to mild or no impairment across functional domains. Conclusions: These results suggest that functional improvement was observed across the SDS functional domains. To our knowledge, this is the first such categorical analysis of functional improvement, as measured by the SDS, for an antidepressant. Trial Registration: ClinicalTrials.gov identifiers: NCT00969709, NCT01377194, NCT00969150, and NCT01034462 and EudraCT identifier: 2006–002404-34 PMID:26644957
The PROMIS physical function correlates with the QuickDASH in patients with upper extremity illness.
Overbeek, Celeste L; Nota, Sjoerd P F T; Jayakumar, Prakash; Hageman, Michiel G; Ring, David
2015-01-01
To assess disability more efficiently with less burden on the patient, the National Institutes of Health has developed the Patient Reported Outcomes Measurement Information System (PROMIS) Physical Function-an instrument based on item response theory and using computer adaptive testing (CAT). Initially, upper and lower extremity disabilities were not separated and we were curious if the PROMIS Physical Function CAT could measure upper extremity disability and the Quick Disability of Arm, Shoulder and Hand (QuickDASH). We aimed to find correlation between the PROMIS Physical Function and the QuickDASH questionnaires in patients with upper extremity illness. Secondarily, we addressed whether the PROMIS Physical Function and QuickDASH correlate with the PROMIS Depression CAT and PROMIS Pain Interference CAT instruments. Finally, we assessed factors associated with QuickDASH and PROMIS Physical Function in multivariable analysis. A cohort of 93 outpatients with upper extremity illnesses completed the QuickDASH and three PROMIS CAT questionnaires: Physical Function, Pain Interference, and Depression. Pain intensity was measured with an 11-point ordinal measure (0-10 numeric rating scale). Correlation between PROMIS Physical Function and the QuickDASH was assessed. Factors that correlated with the PROMIS Physical Function and QuickDASH were assessed in multivariable regression analysis after initial bivariate analysis. There was a moderate correlation between the PROMIS Physical Function and the QuickDASH questionnaire (r=-0.55, p<0.001). Greater disability as measured with the PROMIS and QuickDASH correlated most strongly with PROMIS Depression (r=-0.35, p<0.001 and r=0.34, p<0.001 respectively) and Pain Interference (r=-0.51, p<0.001 and r=0.74, p<0.001 respectively). The factors accounting for the variability in PROMIS scores are comparable to those for the QuickDASH except that the PROMIS Physical Function is influenced by other pain conditions while the QuickDASH is not. The PROMIS Physical Function instrument may be used as an upper extremity disability measure, as it correlates with the QuickDASH questionnaire, and both instruments are influenced most strongly by the degree to which pain interferes with achieving goals. Level III, diagnostic study. See the Instructions for Authors for a complete description of levels of evidence.
Dabaghi-Richerand, A; Haces-García, F; Capdevila-Leonori, R
2015-01-01
The purpose of this study is to determine the prognostic factors of a satisfactory functional outcome in patients using upper extremity prosthetics with a proximal third forearm stump, and above, level of amputation. All patients with longitudinal deficiencies and traumatic amputations of upper extremity with a level of amputation of proximal third forearm and above were included. A total of 49 patients with unilateral upper extremity amputations that had used the prosthetic for a minimum of 2 years were included in the protocol. The Disability arm shoulder hand (DASH) scale was used to determine a good result with a cut-off of less than 40%. The independent variables were the level of amputation, the etiology for its use, initial age of use and number of hours/day using the prosthesis. It was found that patients with a congenital etiology and those that started using the prosthetic before 6 years of age had better functional results. It was found that when adapting a patient with an upper extremity prosthetic, which has a high rejection rate of up to 49%, better functional outcomes are found in those who started using it before 6 years of age, and preferably because of a congenital etiology. It was also found that the number of hours/day strongly correlates with a favorable functional outcome. Copyright © 2014 SECOT. Published by Elsevier Espana. All rights reserved.
Mulcahey, M J; Slavin, Mary D; Ni, Pengsheng; Vogel, Lawrence C; Kozin, Scott H; Haley, Stephen M; Jette, Alan M
2015-09-16
The Cerebral Palsy Computerized Adaptive Test (CP-CAT) is a parent-reported outcomes instrument for measuring lower and upper-extremity function, activity, and global health across impairment levels and a broad age range of children with cerebral palsy (CP). This study was performed to examine whether the Lower Extremity/Mobility (LE) CP-CAT detects change in mobility following orthopaedic surgery in children with CP. This multicenter, longitudinal study involved administration of the LE CP-CAT, the Pediatric Outcomes Data Collection Instrument (PODCI) Transfer/Mobility and Sports/Physical Functioning domains, and the Timed "Up & Go" test (TUG) before and after elective orthopaedic surgery in a convenience sample of 255 children, four to twenty years of age, who had CP and a Gross Motor Function Classification System (GMFCS) level of I, II, or III. Standardized response means (SRMs) and 95% confidence intervals (CIs) were calculated for all measures at six, twelve, and twenty-four months following surgery. SRM estimates for the LE CP-CAT were significantly greater than the SRM estimates for the PODCI Transfer/Mobility domain at twelve months, the PODCI Sports/Physical Functioning domain at twelve months, and the TUG at twelve and twenty-four months. When the results for the children at GMFCS levels I, II, and III were grouped together, the improvements in function detected by the LE CP-CAT at twelve and twenty-four months were found to be greater than the changes detected by the PODCI Transfer/Mobility and Sports/Physical Functioning scales. The LE CP-CAT outperformed the PODCI scales for GMFCS levels I and III at both of these follow-up intervals; none of the scales performed well for patients with GMFCS level II. The results of this study showed that the LE CP-CAT displayed superior sensitivity to change than the PODCI and TUG scales after musculoskeletal surgery in children with CP. Copyright © 2015 by The Journal of Bone and Joint Surgery, Incorporated.
NASA Astrophysics Data System (ADS)
Lindsey, Rebecca; Goldman, Nir; Fried, Laurence
2017-06-01
Atomistic modeling of chemistry at extreme conditions remains a challenge, despite continuing advances in computing resources and simulation tools. While first principles methods provide a powerful predictive tool, the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
NASA Astrophysics Data System (ADS)
Lindsey, Rebecca; Goldman, Nir; Fried, Laurence
Understanding chemistry at extreme conditions is crucial in fields including geochemistry, astrobiology, and alternative energy. First principles methods can provide valuable microscopic insights into such systems while circumventing the risks of physical experiments, however the time and length scales associated with chemistry at extreme conditions (ns and μm, respectively) largely preclude extension of such models to molecular dynamics. In this work, we develop a simulation approach that retains the accuracy of density functional theory (DFT) while decreasing computational effort by several orders of magnitude. We generate n-body descriptions for atomic interactions by mapping forces arising from short density functional theory (DFT) trajectories on to simple Chebyshev polynomial series. We examine the importance of including greater than 2-body interactions, model transferability to different state points, and discuss approaches to ensure smooth and reasonable model shape outside of the distance domain sampled by the DFT training set. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
Toward Zero Micro/Macro-Scale Wear Using Periodic Nano-Layered Coatings.
Penkov, Oleksiy V; Devizenko, Alexander Yu; Khadem, Mahdi; Zubarev, Evgeniy N; Kondratenko, Valeriy V; Kim, Dae-Eun
2015-08-19
Wear is an important phenomenon that affects the efficiency and life of all moving machines. In this regard, extensive efforts have been devoted to achieve the lowest possible wear in sliding systems. With the advent of novel materials in recent years, technology is moving toward realization of zero wear. Here, we report on the development of new functional coatings comprising periodically stacked nanolayers of amorphous carbon and cobalt that are extremely wear resistant at the micro and macro scale. Because of their unique structure, these coatings simultaneously provide high elasticity and ultrahigh shear strength. As a result, almost zero wear was observed even after one million sliding cycles without any lubrication. The wear rate was reduced by 8-10-fold compared with the best previously reported data on extremely low wear materials.
Koyama, Tetsuo; Marumoto, Kohei; Miyake, Hiroji; Domen, Kazuhisa
2013-11-01
This study examined the relationship between fractional anisotropy (FA) values of magnetic resonance-diffusion tensor imaging (DTI) and motor outcome (1 month after onset) in 15 patients with hemiparesis after ischemic stroke of corona radiata lesions. DTI data were obtained on days 14-18. FA values within the cerebral peduncle were analyzed using a computer-automated method. Motor outcome of hemiparesis was evaluated according to Brunnstrom stage (BRS; 6-point scale: severe to normal) for separate shoulder/elbow/forearm, wrist/hand, and lower extremity functions. The ratio of FA values in the affected hemisphere to those in the unaffected hemisphere (rFA) was assessed in relation to the BRS data (Spearman rank correlation test, P<.05). rFA values ranged from .715 to 1.002 (median=.924). BRS ranged from 1 to 6 (median=4) for shoulder/elbow/forearm, from 1 to 6 (median=5) for wrist/hand, and from 2 to 6 (median=4) for the lower extremities. Analysis revealed statistically significant relationships between rFA and upper extremity functions (correlation coefficient=.679 for shoulder/elbow/forearm and .706 for wrist/hand). Although slightly less evident, the relationship between rFA and lower extremity function was also statistically significant (correlation coefficient=.641). FA values within the cerebral peduncle are moderately associated with the outcome of both upper and lower extremity functions, suggesting that DTI may be applicable for outcome prediction in stroke patients with corona radiata infarct. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Andrew, Audra L; Card, Daren C; Ruggiero, Robert P; Schield, Drew R; Adams, Richard H; Pollock, David D; Secor, Stephen M; Castoe, Todd A
2015-05-01
Snakes provide a unique and valuable model system for studying the extremes of physiological remodeling because of the ability of some species to rapidly upregulate organ form and function upon feeding. The predominant model species used to study such extreme responses has been the Burmese python because of the extreme nature of postfeeding response in this species. We analyzed the Burmese python intestine across a time series, before, during, and after feeding to understand the patterns and timing of changes in gene expression and their relationship to changes in intestinal form and function upon feeding. Our results indicate that >2,000 genes show significant changes in expression in the small intestine following feeding, including genes involved in intestinal morphology and function (e.g., hydrolases, microvillus proteins, trafficking and transport proteins), as well as genes involved in cell division and apoptosis. Extensive changes in gene expression occur surprisingly rapidly, within the first 6 h of feeding, coincide with changes in intestinal morphology, and effectively return to prefeeding levels within 10 days. Collectively, our results provide an unprecedented portrait of parallel changes in gene expression and intestinal morphology and physiology on a scale that is extreme both in the magnitude of changes, as well as in the incredibly short time frame of these changes, with up- and downregulation of expression and function occurring in the span of 10 days. Our results also identify conserved vertebrate signaling pathways that modulate these responses, which may suggest pathways for therapeutic modulation of intestinal function in humans. Copyright © 2015 the American Physiological Society.
Warren, Jeffrey M; Hanson, Paul J; Iversen, Colleen M; Kumar, Jitendra; Walker, Anthony P; Wullschleger, Stan D
2015-01-01
There is wide breadth of root function within ecosystems that should be considered when modeling the terrestrial biosphere. Root structure and function are closely associated with control of plant water and nutrient uptake from the soil, plant carbon (C) assimilation, partitioning and release to the soils, and control of biogeochemical cycles through interactions within the rhizosphere. Root function is extremely dynamic and dependent on internal plant signals, root traits and morphology, and the physical, chemical and biotic soil environment. While plant roots have significant structural and functional plasticity to changing environmental conditions, their dynamics are noticeably absent from the land component of process-based Earth system models used to simulate global biogeochemical cycling. Their dynamic representation in large-scale models should improve model veracity. Here, we describe current root inclusion in models across scales, ranging from mechanistic processes of single roots to parameterized root processes operating at the landscape scale. With this foundation we discuss how existing and future root functional knowledge, new data compilation efforts, and novel modeling platforms can be leveraged to enhance root functionality in large-scale terrestrial biosphere models by improving parameterization within models, and introducing new components such as dynamic root distribution and root functional traits linked to resource extraction. No claim to original US Government works. New Phytologist © 2014 New Phytologist Trust.
Integrating plant ecological responses to climate extremes from individual to ecosystem levels.
Felton, Andrew J; Smith, Melinda D
2017-06-19
Climate extremes will elicit responses from the individual to the ecosystem level. However, only recently have ecologists begun to synthetically assess responses to climate extremes across multiple levels of ecological organization. We review the literature to examine how plant responses vary and interact across levels of organization, focusing on how individual, population and community responses may inform ecosystem-level responses in herbaceous and forest plant communities. We report a high degree of variability at the individual level, and a consequential inconsistency in the translation of individual or population responses to directional changes in community- or ecosystem-level processes. The scaling of individual or population responses to community or ecosystem responses is often predicated upon the functional identity of the species in the community, in particular, the dominant species. Furthermore, the reported stability in plant community composition and functioning with respect to extremes is often driven by processes that operate at the community level, such as species niche partitioning and compensatory responses during or after the event. Future research efforts would benefit from assessing ecological responses across multiple levels of organization, as this will provide both a holistic and mechanistic understanding of ecosystem responses to increasing climatic variability.This article is part of the themed issue 'Behavioural, ecological and evolutionary responses to extreme climatic events'. © 2017 The Author(s).
NASA Astrophysics Data System (ADS)
Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.
2015-12-01
Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are being simulated for plausible physical reasons, boosting confidence in future projections of temperature extremes. Conversely, where model skill is identified to be lower, caution should be exercised in interpreting future projections.
Bias correction method for climate change impact assessment at a basin scale
NASA Astrophysics Data System (ADS)
Nyunt, C.; Jaranilla-sanchez, P. A.; Yamamoto, A.; Nemoto, T.; Kitsuregawa, M.; Koike, T.
2012-12-01
Climate change impact studies are mainly based on the general circulation models GCM and these studies play an important role to define suitable adaptation strategies for resilient environment in a basin scale management. For this purpose, this study summarized how to select appropriate GCM to decrease the certain uncertainty amount in analysis. This was applied to the Pampanga, Angat and Kaliwa rivers in Luzon Island, the main island of Philippine and these three river basins play important roles in irrigation water supply, municipal water source for Metro Manila. According to the GCM scores of both seasonal evolution of Asia summer monsoon and spatial correlation and root mean squared error of atmospheric variables over the region, finally six GCM is chosen. Next, we develop a complete, efficient and comprehensive statistical bias correction scheme covering extremes events, normal rainfall and frequency of dry period. Due to the coarse resolution and parameterization scheme of GCM, extreme rainfall underestimation, too many rain days with low intensity and poor representation of local seasonality have been known as bias of GCM. Extreme rainfall has unusual characteristics and it should be focused specifically. Estimated maximum extreme rainfall is crucial for planning and design of infrastructures in river basin. Developing countries have limited technical, financial and management resources for implementing adaptation measures and they need detailed information of drought and flood for near future. Traditionally, the analysis of extreme has been examined using annual maximum series (AMS) adjusted to a Gumbel or Lognormal distribution. The drawback is the loss of the second, third etc, largest rainfall. Another approach is partial duration series (PDS) constructed using the values above a selected threshold and permit more than one event per year. The generalized Pareto distribution (GPD) has been used to model PDS and it is the series of excess over a threshold. In this study, the lowest value of AMS of observed is selected as threshold and simultaneously same frequency is considered as extremes in corresponding GCM gridded series. After fitting to GP distribution, bias corrected GCM extreme is found by using the inverse function of observed extremes. The results show it can remove bias effectively. For projected climate, the same transfer function between historical observed and GCM was applied. Moreover, frequency analysis of maximum extreme intensity estimation was done for validation and then approximate for near future by using identical function as past. To fix the error in the number of no rain days of GCM, ranking order statistics is used and define in GCM same as the frequency of wet days in observed station. After this rank, GCM output will be zero and identify same threshold for future projection. Normal rainfall is classified as between threshold of extreme and no rain day. We assume monthly normal rainfall follow gamma distribution. Then, we mapped the CDF of GCM normal rainfall to station's one in each month and bias corrected rainfall is available. In summary, bias of GCM have been addressed efficiently and validated at point scale by seasonal climatology and at all stations for evaluating downscaled rainfall performance. The results show bias corrected and downscaled scheme is good enough for climate impact study.
On the nonlinearity of spatial scales in extreme weather attribution statements
NASA Astrophysics Data System (ADS)
Angélil, Oliver; Stone, Daíthí; Perkins-Kirkpatrick, Sarah; Alexander, Lisa V.; Wehner, Michael; Shiogama, Hideo; Wolski, Piotr; Ciavarella, Andrew; Christidis, Nikolaos
2018-04-01
In the context of ongoing climate change, extreme weather events are drawing increasing attention from the public and news media. A question often asked is how the likelihood of extremes might have changed by anthropogenic greenhouse-gas emissions. Answers to the question are strongly influenced by the model used, duration, spatial extent, and geographic location of the event—some of these factors often overlooked. Using output from four global climate models, we provide attribution statements characterised by a change in probability of occurrence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature extremes occurring at seven discretised spatial scales and three temporal scales. An understanding of the sensitivity of attribution statements to a range of spatial and temporal scales of extremes allows for the scaling of attribution statements, rendering them relevant to other extremes having similar but non-identical characteristics. This is a procedure simple enough to approximate timely estimates of the anthropogenic contribution to the event probability. Furthermore, since real extremes do not have well-defined physical borders, scaling can help quantify uncertainty around attribution results due to uncertainty around the event definition. Results suggest that the sensitivity of attribution statements to spatial scale is similar across models and that the sensitivity of attribution statements to the model used is often greater than the sensitivity to a doubling or halving of the spatial scale of the event. The use of a range of spatial scales allows us to identify a nonlinear relationship between the spatial scale of the event studied and the attribution statement.
On the nonlinearity of spatial scales in extreme weather attribution statements
DOE Office of Scientific and Technical Information (OSTI.GOV)
Angélil, Oliver; Stone, Daíthí; Perkins-Kirkpatrick, Sarah
In the context of continuing climate change, extreme weather events are drawing increasing attention from the public and news media. A question often asked is how the likelihood of extremes might have changed by anthropogenic greenhouse-gas emissions. Answers to the question are strongly influenced by the model used, duration, spatial extent, and geographic location of the event—some of these factors often overlooked. Using output from four global climate models, we provide attribution statements characterised by a change in probability of occurrence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature extremes occurring at seven discretised spatial scales and three temporalmore » scales. An understanding of the sensitivity of attribution statements to a range of spatial and temporal scales of extremes allows for the scaling of attribution statements, rendering them relevant to other extremes having similar but non-identical characteristics. This is a procedure simple enough to approximate timely estimates of the anthropogenic contribution to the event probability. Furthermore, since real extremes do not have well-defined physical borders, scaling can help quantify uncertainty around attribution results due to uncertainty around the event definition. Results suggest that the sensitivity of attribution statements to spatial scale is similar across models and that the sensitivity of attribution statements to the model used is often greater than the sensitivity to a doubling or halving of the spatial scale of the event. The use of a range of spatial scales allows us to identify a nonlinear relationship between the spatial scale of the event studied and the attribution statement.« less
On the nonlinearity of spatial scales in extreme weather attribution statements
Angélil, Oliver; Stone, Daíthí; Perkins-Kirkpatrick, Sarah; ...
2017-06-17
In the context of continuing climate change, extreme weather events are drawing increasing attention from the public and news media. A question often asked is how the likelihood of extremes might have changed by anthropogenic greenhouse-gas emissions. Answers to the question are strongly influenced by the model used, duration, spatial extent, and geographic location of the event—some of these factors often overlooked. Using output from four global climate models, we provide attribution statements characterised by a change in probability of occurrence due to anthropogenic greenhouse-gas emissions, for rainfall and temperature extremes occurring at seven discretised spatial scales and three temporalmore » scales. An understanding of the sensitivity of attribution statements to a range of spatial and temporal scales of extremes allows for the scaling of attribution statements, rendering them relevant to other extremes having similar but non-identical characteristics. This is a procedure simple enough to approximate timely estimates of the anthropogenic contribution to the event probability. Furthermore, since real extremes do not have well-defined physical borders, scaling can help quantify uncertainty around attribution results due to uncertainty around the event definition. Results suggest that the sensitivity of attribution statements to spatial scale is similar across models and that the sensitivity of attribution statements to the model used is often greater than the sensitivity to a doubling or halving of the spatial scale of the event. The use of a range of spatial scales allows us to identify a nonlinear relationship between the spatial scale of the event studied and the attribution statement.« less
Lower extremity EMG-driven modeling of walking with automated adjustment of musculoskeletal geometry
Meyer, Andrew J.; Patten, Carolynn
2017-01-01
Neuromusculoskeletal disorders affecting walking ability are often difficult to manage, in part due to limited understanding of how a patient’s lower extremity muscle excitations contribute to the patient’s lower extremity joint moments. To assist in the study of these disorders, researchers have developed electromyography (EMG) driven neuromusculoskeletal models utilizing scaled generic musculoskeletal geometry. While these models can predict individual muscle contributions to lower extremity joint moments during walking, the accuracy of the predictions can be hindered by errors in the scaled geometry. This study presents a novel EMG-driven modeling method that automatically adjusts surrogate representations of the patient’s musculoskeletal geometry to improve prediction of lower extremity joint moments during walking. In addition to commonly adjusted neuromusculoskeletal model parameters, the proposed method adjusts model parameters defining muscle-tendon lengths, velocities, and moment arms. We evaluated our EMG-driven modeling method using data collected from a high-functioning hemiparetic subject walking on an instrumented treadmill at speeds ranging from 0.4 to 0.8 m/s. EMG-driven model parameter values were calibrated to match inverse dynamic moments for five degrees of freedom in each leg while keeping musculoskeletal geometry close to that of an initial scaled musculoskeletal model. We found that our EMG-driven modeling method incorporating automated adjustment of musculoskeletal geometry predicted net joint moments during walking more accurately than did the same method without geometric adjustments. Geometric adjustments improved moment prediction errors by 25% on average and up to 52%, with the largest improvements occurring at the hip. Predicted adjustments to musculoskeletal geometry were comparable to errors reported in the literature between scaled generic geometric models and measurements made from imaging data. Our results demonstrate that with appropriate experimental data, joint moment predictions for walking generated by an EMG-driven model can be improved significantly when automated adjustment of musculoskeletal geometry is included in the model calibration process. PMID:28700708
An IRT Analysis of Preservice Teacher Self-Efficacy in Technology Integration
ERIC Educational Resources Information Center
Browne, Jeremy
2011-01-01
The need for rigorously developed measures of preservice teacher traits regarding technology integration training has been acknowledged (Kay 2006), but such instruments are still extremely rare. The Technology Integration Confidence Scale (TICS) represents one such measure, but past analyses of its functioning have been limited by sample size and…
Mirror therapy enhances upper extremity motor recovery in stroke patients.
Mirela Cristina, Luca; Matei, Daniela; Ignat, Bogdan; Popescu, Cristian Dinu
2015-12-01
The purpose of this study was to evaluate the effects of mirror therapy program in addition with physical therapy methods on upper limb recovery in patients with subacute ischemic stroke. 15 subjects followed a comprehensive rehabilitative treatment, 8 subjects received only control therapy (CT) and 7 subjects received mirror therapy (MT) for 30 min every day, five times a week, for 6 weeks in addition to the conventional therapy. Brunnstrom stages, Fugl-Meyer Assessment (upper extremity), the Ashworth Scale, and Bhakta Test (finger flexion scale) were used to assess changes in upper limb motor recovery and motor function after intervention. After 6 weeks of treatment, patients in both groups showed significant improvements in the variables measured. Patients who received MT showed greater improvements compared to the CT group. The MT treatment results included: improvement of motor functions, manual skills and activities of daily living. The best results were obtained when the treatment was started soon after the stroke. MT is an easy and low-cost method to improve motor recovery of the upper limb.
Scaling of Precipitation Extremes Modelled by Generalized Pareto Distribution
NASA Astrophysics Data System (ADS)
Rajulapati, C. R.; Mujumdar, P. P.
2017-12-01
Precipitation extremes are often modelled with data from annual maximum series or peaks over threshold series. The Generalized Pareto Distribution (GPD) is commonly used to fit the peaks over threshold series. Scaling of precipitation extremes from larger time scales to smaller time scales when the extremes are modelled with the GPD is burdened with difficulties arising from varying thresholds for different durations. In this study, the scale invariance theory is used to develop a disaggregation model for precipitation extremes exceeding specified thresholds. A scaling relationship is developed for a range of thresholds obtained from a set of quantiles of non-zero precipitation of different durations. The GPD parameters and exceedance rate parameters are modelled by the Bayesian approach and the uncertainty in scaling exponent is quantified. A quantile based modification in the scaling relationship is proposed for obtaining the varying thresholds and exceedance rate parameters for shorter durations. The disaggregation model is applied to precipitation datasets of Berlin City, Germany and Bangalore City, India. From both the applications, it is observed that the uncertainty in the scaling exponent has a considerable effect on uncertainty in scaled parameters and return levels of shorter durations.
Fluet, Gerard G; Merians, Alma S; Qiu, Qinyin; Saleh, Soha; Ruano, Viviana; Delmonico, Andrea R; Adamovich, Sergei V
2014-09-01
A majority of studies examining repetitive task practice facilitated by robots for the treatment of upper extremity paresis utilize standardized protocols applied to large groups. This study will describe a virtually simulated, robot-based intervention customized to match the goals and clinical presentation of a gentleman with upper extremity hemiparesis secondary to stroke. MP, the subject of this case, is an 85-year-old man with left hemiparesis secondary to an intracerebral hemorrhage 5 years prior to examination. Outcomes were measured before and after a 1-month period of home therapy and after a 1-month virtually simulated, robotic intervention. The intervention was designed to address specific impairments identified during his PT examination. When necessary, activities were modified based on MP's response to his first week of treatment. MP's home training program produced a 3-s decline in Wolf Motor Function Test (WMFT) time and a 5-s improvement in Jebsen Test of Hand Function (JTHF) time. He demonstrated an additional 35-s improvement in JTHF and an additional 44-s improvement in WMFT subsequent to the robotic training intervention. A 24-h activity measurement and the Hand and Activities of Daily Living scales of the Stroke Impact Scale improved following the robotic intervention. Based on his responses to training we feel that we have established that a customized program of virtually simulated, robotically facilitated rehabilitation was feasible and resulted in larger improvements than an intensive home training program in several measurements of upper extremity function in our patient with chronic hemiparesis.
Kim, Jung Hee; Lee, Byoung-Hee
2015-06-01
The objective of this study was to evaluate the effects of mirror therapy in combination with biofeedback functional electrical stimulation (BF-FES) on motor recovery of the upper extremities after stroke. Twenty-nine patients who suffered a stroke > 6 months prior participated in this study and were randomly allocated to three groups. The BF-FES + mirror therapy and FES + mirror therapy groups practiced training for 5 × 30 min sessions over a 4-week period. The control group received a conventional physical therapy program. The following clinical tools were used to assess motor recovery of the upper extremities: electrical muscle tester, electrogoniometer, dual-inclinometer, electrodynamometer, the Box and Block Test (BBT) and Jabsen Taylor Hand Function Test (JHFT), the Functional Independence Measure, the Modified Ashworth Scale, and the Stroke Specific Quality of Life (SSQOL) assessment. The BF-FES + mirror therapy group showed significant improvement in wrist extension as revealed by the Manual Muscle Test and Range of Motion (p < 0.05). The BF-FES + mirror therapy group showed significant improvement in the BBT, JTHT, and SSQOL compared with the FES + mirror therapy group and control group (p < 0.05). We found that BF-FES + mirror therapy induced motor recovery and improved quality of life. These results suggest that mirror therapy, in combination with BF-FES, is feasible and effective for motor recovery of the upper extremities after stroke. Copyright © 2014 John Wiley & Sons, Ltd.
Wolf, Steven L.; Winstein, Carolee J.; Miller, J Phillip; Thompson, Paul A.; Taub, Edward; Uswatte, Gitendra; Morris, David; Blanton, Sarah; Nichols-Larsen, Deborah; Clark, Patricia C.
2008-01-01
Summary Background Constraint-Induced Movement therapy (CIMT) uses a variety of treatment components, including restricted use of the better upper extremity, to promote increased use of the contralesional limb for many hours each weekday over two consecutive weeks. The EXCITE Trial demonstrated the efficacy of this intervention for patients 3-9 months post-stroke who were followed for the next 12 months. We assessed the retention of improvements through 24 months. Method Measurements were made every four months for impaired upper extremity function (Wolf Motor Function Test - WMFT and Motor Activity Log - MAL) and health related quality of life (Stroke Impact Scale - SIS) amongst 106/222 participants randomized into one arm of the EXCITE Trial in which they received CIMT rather than usual and customary care. Findings There was no observed regression from the treatment effects observed at 12 months after treatment during the next 12 months for the primary outcome measures of WMFT and MAL. In fact, the additional changes were in the direction of increased therapeutic effect. For the strength components of the WMFT the changes were significant (P < .05) Secondary outcome variables, including the SIS, exhibited a similar pattern. Interpretation Mild to moderately impaired patients who are 3-9 months post-stroke demonstrate substantial improvement in functional use of the paretic upper extremity and quality of life 2 years after receiving a 2-week CIMT intervention. Thus this intervention has persistent benefits. PMID:18077218
NASA Astrophysics Data System (ADS)
Black, R. X.
2017-12-01
We summarize results from a project focusing on regional temperature and precipitation extremes over the continental United States. Our project introduces a new framework for evaluating these extremes emphasizing their (a) large-scale organization, (b) underlying physical sources (including remote-excitation and scale-interaction) and (c) representation in climate models. Results to be reported include the synoptic-dynamic behavior, seasonality and secular variability of cold waves, dry spells and heavy rainfall events in the observational record. We also study how the characteristics of such extremes are systematically related to Northern Hemisphere planetary wave structures and thus planetary- and hemispheric-scale forcing (e.g., those associated with major El Nino events and Arctic sea ice change). The underlying physics of event onset are diagnostically quantified for different categories of events. Finally, the representation of these extremes in historical coupled climate model simulations is studied and the origins of model biases are traced using new metrics designed to assess the large-scale atmospheric forcing of local extremes.
de los Reyes-Guzmán, Ana; Dimbwadyo-Terrer, Iris; Trincado-Alonso, Fernando; Monasterio-Huelin, Félix; Torricelli, Diego; Gil-Agudo, Angel
2014-08-01
Quantitative measures of human movement quality are important for discriminating healthy and pathological conditions and for expressing the outcomes and clinically important changes in subjects' functional state. However the most frequently used instruments for the upper extremity functional assessment are clinical scales, that previously have been standardized and validated, but have a high subjective component depending on the observer who scores the test. But they are not enough to assess motor strategies used during movements, and their use in combination with other more objective measures is necessary. The objective of the present review is to provide an overview on objective metrics found in literature with the aim of quantifying the upper extremity performance during functional tasks, regardless of the equipment or system used for registering kinematic data. A search in Medline, Google Scholar and IEEE Xplore databases was performed following a combination of a series of keywords. The full scientific papers that fulfilled the inclusion criteria were included in the review. A set of kinematic metrics was found in literature in relation to joint displacements, analysis of hand trajectories and velocity profiles. These metrics were classified into different categories according to the movement characteristic that was being measured. These kinematic metrics provide the starting point for a proposed objective metrics for the functional assessment of the upper extremity in people with movement disorders as a consequence of neurological injuries. Potential areas of future and further research are presented in the Discussion section. Copyright © 2014 Elsevier Ltd. All rights reserved.
Pilot study of a targeted dance class for physical rehabilitation in children with cerebral palsy.
López-Ortiz, Citlali; Egan, Tara; Gaebler-Spira, Deborah J
2016-01-01
This pilot study evaluates the effects of a targeted dance class utilizing classical ballet principles for rehabilitation of children with cerebral palsy on balance and upper extremity control. Twelve children with cerebral palsy (ages 7-15 years) with Gross Motor Function Classification scores II-IV participated in this study and were assigned to either a control group or targeted dance class group. Targeted dance class group participated in 1-h classes three times per week in a 4-week period. The Pediatric Balance Scale and the Quality of Upper Extremity Skills Test were administered before, after, and 1 month after the targeted dance class. Improvements in the Pediatric Balance Scale were present in the targeted dance class group in before versus after and before versus 1 month follow-up comparisons (p-value = 0.0088 and p-value = 0.019, respectively). The Pediatric Balance Scale changes were not significant in the control group. The Quality of Upper Extremity Skills Test did not reach statistical differences in either group. Classical ballet as an art form involves physical training, musical accompaniment, social interactions, and emotional expression that could serve as adjunct to traditional physical therapy. This pilot study demonstrated improvements in balance control. A larger study with a more homogeneous sample is warranted.
Park, Gi-Tae; Kim, Mihyun
2016-01-01
[Purpose] The purpose of this study was to investigate the relationship between mobility assessed by the Modified Rivermead Mobility Index and variables associated with physical function in stroke patients. [Subjects and Methods] One hundred stroke patients (35 males and 65 females; age 58.60 ± 13.91 years) participated in this study. Modified Rivermead Mobility Index, muscle strength (manual muscle test), muscle tone (Modified Ashworth Scale), range of motion of lower extremity, sensory function (light touch and proprioception tests), and coordination (heel to shin and lower-extremity motor coordination tests) were assessed. [Results] The Modified Rivermead Mobility Index was correlated with all the physical function variables assessed, except the degree of knee extension. In addition, stepwise linear regression analysis revealed that coordination (heel to shin test) was the explanatory variable closely associated with mobility in stroke patients. [Conclusion] The Modified Rivermead Mobility Index score was significantly correlated with all the physical function variables. Coordination (heel to shin test) was closely related to mobility function. These results may be useful in developing rehabilitation programs for stroke patients. PMID:27630440
Sahinoğlu, Dilek; Coskun, Gürsoy; Bek, Nilgün
2017-02-01
Adaptive seating supports for cerebral palsy are recommended to develop and maintain optimum posture, and functional use of upper extremities. To compare the effectiveness of different seating adaptations regarding postural alignment and related functions and to investigate the effects of these seating adaptations on different motor levels. Prospective study. A total of 20 children with spastic cerebral palsy (Gross Motor Function Classification System 3-5) were included. Postural control and function (Seated Postural Control Measure, Sitting Assessment Scale) were measured in three different systems: standard chair, adjustable seating system and custom-made orthosis. In results of all participants ungrouped, there was a significant difference in most parameters of both measurement tools in favor of custom-made orthosis and adjustable seating system when compared to standard chair ( p < 0.0017). There was a difference among interventions in most of the Seated Postural Control Measure results in Level 4 when subjects were grouped according to Gross Motor Function Classification System levels. A difference was observed between standard chair and adjustable seating system in foot control, arm control, and total Sitting Assessment Scale scores; and between standard chair and custom-made orthosis in trunk control, arm control, and total Sitting Assessment Scale score in Level 4. There was no difference in adjustable seating system and custom-made orthosis in Sitting Assessment Scale in this group of children ( p < 0.017). Although custom-made orthosis fabrication is time consuming, it is still recommended since it is custom made, easy to use, and low-cost. On the other hand, the adjustable seating system can be modified according to a patient's height and weight. Clinical relevance It was found that Gross Motor Function Classification System Level 4 children benefitted most from the seating support systems. It was presented that standard chair is sufficient in providing postural alignment. Both custom-made orthosis and adjustable seating system have pros and cons and the best solution for each will be dependent on a number of factors.
Long-term functional changes in an estuarine fish assemblage.
Baptista, J; Martinho, F; Nyitrai, D; Pardal, M A; Dolbeth, M
2015-08-15
The functional diversity of the fish assemblages of the Mondego estuary was studied for a discontinuous 30-year period (1988-2012). During this time, hydrological changes occurred due to man-induced alterations and weather extremes. These changes led to alterations in the structure and function of the fish community. Species richness and functional richness decreased over time and the fish community started to explore new micro-habitats and food resources. Before severe hydrological changes, the community was dominated by pelagic, detritivorous and species with wider salinity ranges. After, the community became dominated by demersal, benthic, piscivorous and marine species. During a drought, omnivorous became increasingly important, reflecting greater possibilities of using available feeding resources. We have also found an increase in sub-tropical species throughout the years, which might be related to gradual temperature increases at a global scale. This study also confirmed estuaries as extremely important for restocking several commercial species. Copyright © 2015 Elsevier Ltd. All rights reserved.
Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy.
Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M; Fowler, Eileen; Greenberg, Marcia B; Malkus, Elizabeth C; Rebibo, Odelia; Siener, Catherine S; Caraco, Yoseph; Kolodny, Edwin H; Lau, Heather A; Pestronk, Alan; Shieh, Perry; Skrinar, Alison M; Mayhew, Jill E
2017-09-01
To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function.
Comparison of the hedonic general Labeled Magnitude Scale with the hedonic 9-point scale.
Kalva, Jaclyn J; Sims, Charles A; Puentes, Lorenzo A; Snyder, Derek J; Bartoshuk, Linda M
2014-02-01
The hedonic 9-point scale was designed to compare palatability among different food items; however, it has also been used occasionally to compare individuals and groups. Such comparisons can be invalid because scale labels (for example, "like extremely") can denote systematically different hedonic intensities across some groups. Addressing this problem, the hedonic general Labeled Magnitude Scale (gLMS) frames affective experience in terms of the strongest imaginable liking/disliking of any kind, which can yield valid group comparisons of food palatability provided extreme hedonic experiences are unrelated to food. For each scale, 200 panelists rated affect for remembered food products (including favorite and least favorite foods) and sampled foods; they also sampled taste stimuli (quinine, sucrose, NaCl, citric acid) and rated their intensity. Finally, subjects identified experiences representing the endpoints of the hedonic gLMS. Both scales were similar in their ability to detect within-subject hedonic differences across a range of food experiences, but group comparisons favored the hedonic gLMS. With the 9-point scale, extreme labels were strongly associated with extremes in food affect. In contrast, gLMS data showed that scale extremes referenced nonfood experiences. Perceived taste intensity significantly influenced differences in food liking/disliking (for example, those experiencing the most intense tastes, called supertasters, showed more extreme liking and disliking for their favorite and least favorite foods). Scales like the hedonic gLMS are suitable for across-group comparisons of food palatability. © 2014 Institute of Food Technologists®
Nadrowski, Karin; Pietsch, Katherina; Baruffol, Martin; Both, Sabine; Gutknecht, Jessica; Bruelheide, Helge; Heklau, Heike; Kahl, Anja; Kahl, Tiemo; Niklaus, Pascal; Kröber, Wenzel; Liu, Xiaojuan; Mi, Xiangcheng; Michalski, Stefan; von Oheimb, Goddert; Purschke, Oliver; Schmid, Bernhard; Fang, Teng; Welk, Erik; Wirth, Christian
2014-01-01
Future climates are likely to include extreme events, which in turn have great impacts on ecological systems. In this study, we investigated possible effects that could mitigate stem breakage caused by a rare and extreme ice storm in a Chinese subtropical forest across a gradient of forest diversity. We used Bayesian modeling to correct stem breakage for tree size and variance components analysis to quantify the influence of taxon, leaf and wood functional traits, and stand level properties on the probability of stem breakage. We show that the taxon explained four times more variance in individual stem breakage than did stand level properties; trees with higher specific leaf area (SLA) were less susceptible to breakage. However, a large part of the variation at the taxon scale remained unexplained, implying that unmeasured or undefined traits could be used to predict damage caused by ice storms. When aggregated at the plot level, functional diversity and wood density increased after the ice storm. We suggest that for the adaption of forest management to climate change, much can still be learned from looking at functional traits at the taxon level. PMID:24879434
The Motor Activity Log-28: assessing daily use of the hemiparetic arm after stroke.
Uswatte, G; Taub, E; Morris, D; Light, K; Thompson, P A
2006-10-10
Data from monkeys with deafferented forelimbs and humans after stroke indicate that tests of the motor capacity of impaired extremities can overestimate their spontaneous use. Before the Motor Activity Log (MAL) was developed, no instruments assessed spontaneous use of a hemiparetic arm outside the treatment setting. To study the MAL's reliability and validity for assessing real-world quality of movement (QOM scale) and amount of use (AOU scale) of the hemiparetic arm in stroke survivors. Participants in a multisite clinical trial completed a 30-item MAL before and after treatment (n = 106) or an equivalent no-treatment period (n = 116). Participants also completed the Stroke Impact Scale (SIS) and wore accelerometers that monitored arm movement for three consecutive days outside the laboratory. All were 3 to 12 months post-stroke and had mild to moderate paresis of an upper extremity. After an item analysis, two MAL tasks were eliminated. Revised participant MAL QOM scores were reliable (r =0.82). Validity was also supported. During the first observation period, the correlation between QOM and SIS Hand Function scale scores was 0.72. The corresponding correlation for QOM and accelerometry values was 0.52. Participant QOM and AOU scores were highly correlated (r = 0.92). The participant Motor Activity Log is reliable and valid in individuals with subacute stroke. It might be employed to assess the real-world effects of upper extremity neurorehabilitation and detect deficits in spontaneous use of the hemiparetic arm in daily life.
Dubuc, Nicole; Haley, Stephen; Ni, Pengsheng; Kooyoomjian, Jill; Jette, Alan
2004-03-18
We evaluated the Late-Life Function and Disability Instrument's (LLFDI) concurrent validity, comprehensiveness and precision by comparing it with the Short-Form-36 physical functioning (PF-10) and the London Handicap Scale (LHS). We administered the LLFDI, PF-10 and LHS to 75 community-dwelling adults (> 60 years of age). We used Pearson correlation coefficients to examine concurrent validity and Rasch analysis to compare the item hierarchies, content ranges and precision of the PF-10 and LLFDI function domains, and the LHS and the LLFDI disability domains. LLFDI Function (lower extremity scales) and PF-10 scores were highly correlated (r = 0.74 - 0.86, p > 0.001); moderate correlations were found between the LHS and the LLFDI Disability limitation (r = 0.66, p < 0.0001) and Disability frequency (r = 0.47, p < 0.001) scores. The LLFDI had a wider range of content coverage, less ceiling effects and better relative precision across the spectrum of function and disability than the PF-10 and the LHS. The LHS had slightly more content range and precision in the lower end of the disability scale than the LLFDI. The LLFDI is a more comprehensive and precise instrument compared to the PF-10 and LHS for assessing function and disability in community-dwelling older adults.
Walston, Zachary; Hernandez, Luis; Yake, Dale
2018-06-06
Conservative therapies for complex regional pain syndrome (CRPS) have traditionally focused on exercise and desensitization techniques targeted at the involved extremity. The primary purpose of this case series is to report on the potential benefit of utilizing manual therapy to the lumbar spine in conjunction with traditional conservative care when treating patients with lower extremity CRPS. Two patients with the diagnosis of lower extremity CRPS were treated with manual therapy to the lumbar spine in conjunction with education, exercise, desensitization, and soft tissue techniques for the extremity. Patient 1 received 13 sessions over 6 weeks resulting in a 34-point improvement in oswestry disability index (ODI) and 35-point improvement in lower extremity functional scale (LEFS). Patient 2 received 21 sessions over 12 weeks resulting in a 28-point improvement in ODI and a 41-point improvement in LEFS. Both patients exhibited reductions in pain and clinically meaningful improvements in function. Manual therapies when applied to the lumbar spine in these patients as part of a comprehensive treatment plan resulted in improved spinal mobility, decreased pain, and reduction is distal referred symptoms. Although one cannot infer a cause and effect relationship from a case series, this report identifies meaningful clinical outcomes potentially associated with manual physical therapy to the lumbar spine for two patients with complex regional pain syndrome type 1.
NASA Astrophysics Data System (ADS)
Popovicheva, O.; Kistler, M.; Kireeva, E.; Persiantseva, N.; Timofeev, M.; Kopeikin, V.; Kasper-Giebl, A.
2014-10-01
Enhancement of biomass burning-related research is essential for the assessment of large-scale wildfires impact on pollution at regional and global scale. Starting since 6 August 2010 Moscow was covered with thick smoke of unusually high PM10 and BC concentrations, considerably affected by huge forest and peat fires around megacity. This work presents the first comprehensive physico-chemical characterization of aerosols during extreme smoke event in Moscow in August 2010. Sampling was performed in the Moscow center and suburb as well as one year later, in August 2011 during a period when no biomass burning was observed. Small-scale experimental fires of regional biomass were conducted in the Moscow region. Carbon content, functionalities of organic/inorganic compounds, tracers of biomass burning (anhydrosaccharides), ionic composition, and structure of smoke were analyzed by thermal-optical analysis, FTIR spectroscopy, liquid and ion chromatography, and electron microscopy. Carbonaceous aerosol in August 2010 was dominated by organic species with elemental carbon (EC) as minor component. High average OC/EC near 27.4 is found, comparable to smoke of regional biomass smoldering fire, and exceeded 3 times the value observed in August 2011. Organic functionalities of Moscow smoke aerosols were hydroxyl, aliphatic, aromatic, acid and non-acid carbonyl, and nitro compound groups, almost all of them indicate wildfires around city as the source of smoke. The ratio of levoglucosan (LG) to mannosan near 5 confirms the origin of smoke from coniferous forest fires around megacity. Low ratio of LG/OC near 0.8% indicates the degradation of major molecular tracer of biomass burning in urban environment. Total concentration of inorganic ions dominated by sulfates SO4 2 - and ammonium NH4+ was found about 5 times higher during large-scale wildfires than in August 2011. Together with strong sulfate and ammonium absorbance in smoke aerosols, these observations prove the formation of secondary inorganic species associated with wildfire gaseous emissions and their transformation in aged smoke. Accumulation of carbonyl compounds during extreme smoke event in Moscow resulted from photochemical aging and secondary organic aerosol (SOA) formation in the urban atmosphere. The mixture of carbonaceous particles and dust revealed multicomponent structure of Moscow smoke aerosols, pointing the difference with non-smoke ambient aerosols. The abundance of group containing soot and tar balls approached at least a half of total aerosol concentration during extreme event, relating to elevated OC, EC and SOA. Fly ash groups contained calcium sulfates and carbonates from soil entrainment by hot air convection. Small-scale open fire experiments support the identification of specific chemical features of regional biomass burning and demonstrate the strong impact of large-scale wildfires on aerosol chemistry and air quality in highly polluted megacity.
Large-Scale Meteorological Patterns Associated with Extreme Precipitation in the US Northeast
NASA Astrophysics Data System (ADS)
Agel, L. A.; Barlow, M. A.
2016-12-01
Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. Tropopause height provides a compact representation of large-scale circulation patterns, as it is linked to mid-level circulation, low-level thermal contrasts and low-level diabatic heating. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into a larger context. Six tropopause patterns are identified on extreme days: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong upward motion during, and moisture transport preceding, extreme precipitation events.
Manual Physical Therapy Following Immobilization for Stable Ankle Fracture: A Case Series.
Painter, Elizabeth E; Deyle, Gail D; Allen, Christopher; Petersen, Evan J; Croy, Theodore; Rivera, Kenneth P
2015-09-01
Case series. Ankle fractures commonly result in persistent pain, stiffness, and functional impairments. There is insufficient evidence to favor any particular rehabilitation approach after ankle fracture. The purpose of this case series was to describe an impairment-based manual physical therapy approach to treating patients with conservatively managed ankle fractures. Patients with stable ankle fractures postimmobilization were treated with manual physical therapy and exercise targeted at associated impairments in the lower limb. The primary outcome measure was the Lower Extremity Functional Scale. Secondary outcome measures included the ankle lunge test, numeric pain-rating scale, and global rating of change. Outcome measures were collected at baseline (performed within 7 days of immobilization removal) and at 4 and 12 weeks postbaseline. Eleven patients (mean age, 39.6 years; range, 18-64 years; 2 male), after ankle fracture-related immobilization (mean duration, 48 days; range, 21-75 days), were treated for an average of 6.6 sessions (range, 3-10 sessions) over a mean of 46.1 days (range, 13-81 days). Compared to baseline, statistically significant and clinically meaningful improvements were observed in Lower Extremity Functional Scale score (P = .001; mean change, 21.9 points; 95% confidence interval: 10.4, 33.4) and in the ankle lunge test (P = .001; mean change, 7.8 cm; 95% confidence interval: 3.9, 11.7) at 4 weeks. These changes persisted at 12 weeks. Statistically significant and clinically meaningful improvements in self-reported function and ankle range of motion were observed at 4 and 12 weeks following treatment with impairment-based manual physical therapy. All patients tolerated treatment well. Results suggest that this approach may have efficacy in this population. Therapy, level 4.
Structure and functioning of dryland ecosystems in a changing world.
Maestre, Fernando T; Eldridge, David J; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2016-11-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change.
Structure and functioning of dryland ecosystems in a changing world
Maestre, Fernando T.; Eldridge, David J.; Soliveres, Santiago; Kéfi, Sonia; Delgado-Baquerizo, Manuel; Bowker, Matthew A.; García-Palacios, Pablo; Gaitán, Juan; Gallardo, Antonio; Lázaro, Roberto; Berdugo, Miguel
2017-01-01
Understanding how drylands respond to ongoing environmental change is extremely important for global sustainability. Here we review how biotic attributes, climate, grazing pressure, land cover change and nitrogen deposition affect the functioning of drylands at multiple spatial scales. Our synthesis highlights the importance of biotic attributes (e.g. species richness) in maintaining fundamental ecosystem processes such as primary productivity, illustrate how N deposition and grazing pressure are impacting ecosystem functioning in drylands worldwide, and highlight the importance of the traits of woody species as drivers of their expansion in former grasslands. We also emphasize the role of attributes such as species richness and abundance in controlling the responses of ecosystem functioning to climate change. This knowledge is essential to guide conservation and restoration efforts in drylands, as biotic attributes can be actively managed at the local scale to increase ecosystem resilience to global change. PMID:28239303
The Microphysical Structure of Extreme Precipitation as Inferred from Ground-Based Raindrop Spectra.
NASA Astrophysics Data System (ADS)
Uijlenhoet, Remko; Smith, James A.; Steiner, Matthias
2003-05-01
The controls on the variability of raindrop size distributions in extreme rainfall and the associated radar reflectivity-rain rate relationships are studied using a scaling-law formalism for the description of raindrop size distributions and their properties. This scaling-law formalism enables a separation of the effects of changes in the scale of the raindrop size distribution from those in its shape. Parameters controlling the scale and shape of the scaled raindrop size distribution may be related to the microphysical processes generating extreme rainfall. A global scaling analysis of raindrop size distributions corresponding to rain rates exceeding 100 mm h1, collected during the 1950s with the Illinois State Water Survey raindrop camera in Miami, Florida, reveals that extreme rain rates tend to be associated with conditions in which the variability of the raindrop size distribution is strongly number controlled (i.e., characteristic drop sizes are roughly constant). This means that changes in properties of raindrop size distributions in extreme rainfall are largely produced by varying raindrop concentrations. As a result, rainfall integral variables (such as radar reflectivity and rain rate) are roughly proportional to each other, which is consistent with the concept of the so-called equilibrium raindrop size distribution and has profound implications for radar measurement of extreme rainfall. A time series analysis for two contrasting extreme rainfall events supports the hypothesis that the variability of raindrop size distributions for extreme rain rates is strongly number controlled. However, this analysis also reveals that the actual shapes of the (measured and scaled) spectra may differ significantly from storm to storm. This implies that the exponents of power-law radar reflectivity-rain rate relationships may be similar, and close to unity, for different extreme rainfall events, but their prefactors may differ substantially. Consequently, there is no unique radar reflectivity-rain rate relationship for extreme rain rates, but the variability is essentially reduced to one free parameter (i.e., the prefactor). It is suggested that this free parameter may be estimated on the basis of differential reflectivity measurements in extreme rainfall.
A dynamical systems approach to studying midlatitude weather extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Caballero, Rodrigo; Faranda, Davide
2017-04-01
Extreme weather occurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. The ability to predict these events is therefore a topic of crucial importance. Here we propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We show that simple dynamical systems metrics can be used to identify sets of large-scale atmospheric flow patterns with similar spatial structure and temporal evolution on time scales of several days to a week. In regions where these patterns favor extreme weather, they afford a particularly good predictability of the extremes. We specifically test this technique on the atmospheric circulation in the North Atlantic region, where it provides predictability of large-scale wintertime surface temperature extremes in Europe up to 1 week in advance.
McDonald, Deborah Dillon; Shellman, Juliette M; Graham, Lindsey; Harrison, Lisa
2016-09-01
The study purpose was to examine the association between reminiscence functions, optimism, depressive symptoms, physical activity, and pain in older adults with chronic lower extremity osteoarthritis pain. One hundred ninety-five community-dwelling adults were interviewed using the Modified Reminiscence Functions Scale, Brief Pain Inventory, Life Orientation Test-Revised, Center for Epidemiologic Studies Short Depression Scale, and Physical Activity Scale for the Elderly in random counterbalanced order. Structural equation modeling supported chronic pain as positively associated with depressive symptoms and comorbidities and unrelated to physical activity. Depressive symptoms were positively associated with self-negative reminiscence and negatively associated with optimism. Spontaneous reminiscence was not associated with increased physical activity or reduced pain. Individuals may require facilitated integrative reminiscence to assist them in reinterpreting negative memories in a more positive way. Facilitated integrative reminiscence about enjoyed past physical activity is a potential way to increase physical activity, but must be tested in future research. [Res Gerontol Nurs. 2016; 9(5):223-231.]. Copyright 2016, SLACK Incorporated.
Characterization of Strength and Function in Ambulatory Adults With GNE Myopathy
Argov, Zohar; Bronstein, Faye; Esposito, Alicia; Feinsod-Meiri, Yael; Florence, Julaine M.; Fowler, Eileen; Greenberg, Marcia B.; Malkus, Elizabeth C.; Rebibo, Odelia; Siener, Catherine S.; Caraco, Yoseph; Kolodny, Edwin H.; Lau, Heather A.; Pestronk, Alan; Shieh, Perry; Mayhew, Jill E.
2017-01-01
Abstract Objective: To characterize the pattern and extent of muscle weakness and impact on physical functioning in adults with GNEM. Methods: Strength and function were assessed in GNEM subjects (n = 47) using hand-held dynamometry, manual muscle testing, upper and lower extremity functional capacity tests, and the GNEM-Functional Activity Scale (GNEM-FAS). Results: Profound upper and lower muscle weakness was measured using hand-held dynamometry in a characteristic pattern, previously described. Functional tests and clinician-reported outcomes demonstrated the consequence of muscle weakness on physical functioning. Conclusions: The characteristic pattern of upper and lower muscle weakness associated with GNEM and the resulting functional limitations can be reliably measured using these clinical outcome assessments of muscle strength and function. PMID:28827485
Materials @ LANL: Solutions for National Security Challenges
NASA Astrophysics Data System (ADS)
Teter, David
2012-10-01
Materials science activities impact many programmatic missions at LANL including nuclear weapons, nuclear energy, renewable energy, global security and nonproliferation. An overview of the LANL materials science strategy and examples of materials science programs will be presented. Major materials leadership areas are in materials dynamics, actinides and correlated electron materials, materials in radiation extremes, energetic materials, integrated nanomaterials and complex functional materials. Los Alamos is also planning a large-scale, signature science facility called MaRIE (Matter Radiation Interactions in Extremes) to address in-situ characterization of materials in dynamic and radiation environments using multiple high energy probes. An overview of this facility will also be presented.
NASA Astrophysics Data System (ADS)
Pandey, R. K.; Sathiyanarayanan, Rajesh; Kwon, Unoh; Narayanan, Vijay; Murali, K. V. R. M.
2013-07-01
We investigate the physical properties of a portion of the gate stack of an ultra-scaled complementary metal-oxide-semiconductor (CMOS) device. The effects of point defects, such as oxygen vacancy, oxygen, and aluminum interstitials at the HfO2/TiN interface, on the effective work function of TiN are explored using density functional theory. We compute the diffusion barriers of such point defects in the bulk TiN and across the HfO2/TiN interface. Diffusion of these point defects across the HfO2/TiN interface occurs during the device integration process. This results in variation of the effective work function and hence in the threshold voltage variation in the devices. Further, we simulate the effects of varying the HfO2/TiN interface stoichiometry on the effective work function modulation in these extremely-scaled CMOS devices. Our results show that the interface rich in nitrogen gives higher effective work function, whereas the interface rich in titanium gives lower effective work function, compared to a stoichiometric HfO2/TiN interface. This theoretical prediction is confirmed by the experiment, demonstrating over 700 meV modulation in the effective work function.
Pilot study of a targeted dance class for physical rehabilitation in children with cerebral palsy
López-Ortiz, Citlali; Egan, Tara; Gaebler-Spira, Deborah J
2016-01-01
Introduction: This pilot study evaluates the effects of a targeted dance class utilizing classical ballet principles for rehabilitation of children with cerebral palsy on balance and upper extremity control. Methods: Twelve children with cerebral palsy (ages 7–15 years) with Gross Motor Function Classification scores II–IV participated in this study and were assigned to either a control group or targeted dance class group. Targeted dance class group participated in 1-h classes three times per week in a 4-week period. The Pediatric Balance Scale and the Quality of Upper Extremity Skills Test were administered before, after, and 1 month after the targeted dance class. Results: Improvements in the Pediatric Balance Scale were present in the targeted dance class group in before versus after and before versus 1 month follow-up comparisons (p-value = 0.0088 and p-value = 0.019, respectively). The Pediatric Balance Scale changes were not significant in the control group. The Quality of Upper Extremity Skills Test did not reach statistical differences in either group. Conclusion: Classical ballet as an art form involves physical training, musical accompaniment, social interactions, and emotional expression that could serve as adjunct to traditional physical therapy. This pilot study demonstrated improvements in balance control. A larger study with a more homogeneous sample is warranted. PMID:27721977
Zhang, Mi; Wen, Xue Fa; Zhang, Lei Ming; Wang, Hui Min; Guo, Yi Wen; Yu, Gui Rui
2018-02-01
Extreme high temperature is one of important extreme weathers that impact forest ecosystem carbon cycle. In this study, applying CO 2 flux and routine meteorological data measured during 2003-2012, we examined the impacts of extreme high temperature and extreme high temperature event on net carbon uptake of subtropical coniferous plantation in Qianyanzhou. Combining with wavelet analysis, we analyzed environmental controls on net carbon uptake at different temporal scales, when the extreme high temperature and extreme high temperature event happened. The results showed that mean daily cumulative NEE decreased by 51% in the days with daily maximum air temperature range between 35 ℃ and 40 ℃, compared with that in the days with the range between 30 ℃ and 34 ℃. The effects of the extreme high temperature and extreme high temperature event on monthly NEE and annual NEE related to the strength and duration of extreme high tempe-rature event. In 2003, when strong extreme high temperature event happened, the sum of monthly cumulative NEE in July and August was only -11.64 g C·m -2 ·(2 month) -1 . The value decreased by 90%, compared with multi-year average value. At the same time, the relative variation of annual NEE reached -6.7%. In July and August, when the extreme high temperature and extreme high temperature event occurred, air temperature (T a ) and vapor press deficit (VPD) were the dominant controller for the daily variation of NEE. The coherency between NEE T a and NEE VPD was 0.97 and 0.95, respectively. At 8-, 16-, and 32-day periods, T a , VPD, soil water content at 5 cm depth (SWC), and precipitation (P) controlled NEE. The coherency between NEE SWC and NEE P was higher than 0.8 at monthly scale. The results indicated that atmospheric water deficit impacted NEE at short temporal scale, when the extreme high temperature and extreme high temperature event occurred, both of atmospheric water deficit and soil drought stress impacted NEE at long temporal scales in this ecosystem.
ERIC Educational Resources Information Center
Hellweg, Susan A.
A study was designed to examine an underlying assumption regarding the use of the semantic differential in measuring the credibility and homophily of a communicator, namely, that responses to an ideal source position themselves at one extreme end of the scale, reflecting the monotonic function of the instrument such that the highest response…
Christopher Potter; Tan Pang-Ning; Vipin Kumar; Chris Kucharik; Steven Klooster; Vanessa Genovese; Warren Cohen; Sean Healey
2005-01-01
Ecosystem structure and function are strongly affected by disturbance events, many of which in North America are associated with seasonal temperature extremes, wildfires, and tropical storms. This study was conducted to evaluate patterns in a 19-year record of global satellite observations of vegetation phenology from the advanced very high resolution radiometer (AVHRR...
Virtual Reality to Assess and Treat Lower Extremity Disorders in Post-stroke Patients.
Luque-Moreno, C; Oliva-Pascual-Vaca, A; Kiper, P; Rodríguez-Blanco, C; Agostini, M; Turolla, A
2016-01-01
This article is part of the Focus Theme of Methods of Information in Medicine on "Methodologies, Models and Algorithms for Patients Rehabilitation". To identify support of a virtual reality system in the kinematic assessment and physiotherapy approach to gait disorders in individuals with stroke. We adapt Virtual Reality Rehabilitation System (VRRS), software widely used in the functional recovery of the upper limb, for its use on the lower limb of hemiplegic patients. Clinical scales have been used to relate them with the kinematic assessment provided by the system. A description of the use of reinforced feedback provided by the system on the recovery of deficits in several real cases in the field of physiotherapy is performed. Specific examples of functional tasks have been detailed, to be considered in creating intelligent health technologies to improve post-stroke gait. Both participants improved scores on the clinical scales, the kinematic parameters in leg stance on plegic lower extremity and walking speed > Minimally Clinically Important Difference (MCID). The use of the VRRS software attached to a motion tracking capture system showed their practical utility and safety in enriching physiotherapeutic assessment and treatment in post-stroke gait disorders.
Improving the local wavenumber method by automatic DEXP transformation
NASA Astrophysics Data System (ADS)
Abbas, Mahmoud Ahmed; Fedi, Maurizio; Florio, Giovanni
2014-12-01
In this paper we present a new method for source parameter estimation, based on the local wavenumber function. We make use of the stable properties of the Depth from EXtreme Points (DEXP) method, in which the depth to the source is determined at the extreme points of the field scaled with a power-law of the altitude. Thus the method results particularly suited to deal with local wavenumber of high-order, as it is able to overcome its known instability caused by the use of high-order derivatives. The DEXP transformation enjoys a relevant feature when applied to the local wavenumber function: the scaling-law is in fact independent of the structural index. So, differently from the DEXP transformation applied directly to potential fields, the Local Wavenumber DEXP transformation is fully automatic and may be implemented as a very fast imaging method, mapping every kind of source at the correct depth. Also the simultaneous presence of sources with different homogeneity degree can be easily and correctly treated. The method was applied to synthetic and real examples from Bulgaria and Italy and the results agree well with known information about the causative sources.
Osu, Rieko; Otaka, Yohei; Ushiba, Junichi; Sakata, Sachiko; Yamaguchi, Tomofumi; Fujiwara, Toshiyuki; Kondo, Kunitsugu; Liu, Meigen
2012-01-01
For the recovery of hemiparetic hand function, a therapy was developed called contralateral homonymous muscle activity stimulated electrical stimulation (CHASE), which combines electrical stimulation and bilateral movements, and its feasibility was studied in three chronic stroke patients with severe hand hemiparesis. Patients with a subcortical lesion were asked to extend their wrist and fingers bilaterally while an electromyogram (EMG) was recorded from the extensor carpi radialis (ECR) muscle in the unaffected hand. Electric stimulation was applied to the homonymous wrist and finger extensors of the affected side. The intensity of the electrical stimulation was computed based on the EMG and scaled so that the movements of the paretic hand looked similar to those of the unaffected side. The patients received 30-minutes of therapy per day for 2 weeks. Improvement in the active range of motion of wrist extension was observed for all patients. There was a decrease in the scores of modified Ashworth scale in the flexors. Fugl-Meyer assessment scores of motor function of the upper extremities improved in two of the patients. The results suggest a positive outcome can be obtained using the CHASE system for upper extremity rehabilitation of patients with severe hemiplegia.
NASA Astrophysics Data System (ADS)
Cannon, Alex
2017-04-01
Estimating historical trends in short-duration rainfall extremes at regional and local scales is challenging due to low signal-to-noise ratios and the limited availability of homogenized observational data. In addition to being of scientific interest, trends in rainfall extremes are of practical importance, as their presence calls into question the stationarity assumptions that underpin traditional engineering and infrastructure design practice. Even with these fundamental challenges, increasingly complex questions are being asked about time series of extremes. For instance, users may not only want to know whether or not rainfall extremes have changed over time, they may also want information on the modulation of trends by large-scale climate modes or on the nonstationarity of trends (e.g., identifying hiatus periods or periods of accelerating positive trends). Efforts have thus been devoted to the development and application of more robust and powerful statistical estimators for regional and local scale trends. While a standard nonparametric method like the regional Mann-Kendall test, which tests for the presence of monotonic trends (i.e., strictly non-decreasing or non-increasing changes), makes fewer assumptions than parametric methods and pools information from stations within a region, it is not designed to visualize detected trends, include information from covariates, or answer questions about the rate of change in trends. As a remedy, monotone quantile regression (MQR) has been developed as a nonparametric alternative that can be used to estimate a common monotonic trend in extremes at multiple stations. Quantile regression makes efficient use of data by directly estimating conditional quantiles based on information from all rainfall data in a region, i.e., without having to precompute the sample quantiles. The MQR method is also flexible and can be used to visualize and analyze the nonlinearity of the detected trend. However, it is fundamentally a univariate technique, and cannot incorporate information from additional covariates, for example ENSO state or physiographic controls on extreme rainfall within a region. Here, the univariate MQR model is extended to allow the use of multiple covariates. Multivariate monotone quantile regression (MMQR) is based on a single hidden-layer feedforward network with the quantile regression error function and partial monotonicity constraints. The MMQR model is demonstrated via Monte Carlo simulations and the estimation and visualization of regional trends in moderate rainfall extremes based on homogenized sub-daily precipitation data at stations in Canada.
Use of computer games as an intervention for stroke.
Proffitt, Rachel M; Alankus, Gazihan; Kelleher, Caitlin L; Engsberg, Jack R
2011-01-01
Current rehabilitation for persons with hemiparesis after stroke requires high numbers of repetitions to be in accordance with contemporary motor learning principles. The motivational characteristics of computer games can be harnessed to create engaging interventions for persons with hemiparesis after stroke that incorporate this high number of repetitions. The purpose of this case report was to test the feasibility of using computer games as a 6-week home therapy intervention to improve upper extremity function for a person with stroke. One person with left upper extremity hemiparesis after stroke participated in a 6-week home therapy computer game intervention. The games were customized to her preferences and abilities and modified weekly. Her performance was tracked and analyzed. Data from pre-, mid-, and postintervention testing using standard upper extremity measures and the Reaching Performance Scale (RPS) were analyzed. After 3 weeks, the participant demonstrated increased upper extremity range of motion at the shoulder and decreased compensatory trunk movements during reaching tasks. After 6 weeks, she showed functional gains in activities of daily living (ADLs) and instrumental ADLs despite no further improvements on the RPS. Results indicate that computer games have the potential to be a useful intervention for people with stroke. Future work will add additional support to quantify the effectiveness of the games as a home therapy intervention for persons with stroke.
The origins of multifractality in financial time series and the effect of extreme events
NASA Astrophysics Data System (ADS)
Green, Elena; Hanan, William; Heffernan, Daniel
2014-06-01
This paper presents the results of multifractal testing of two sets of financial data: daily data of the Dow Jones Industrial Average (DJIA) index and minutely data of the Euro Stoxx 50 index. Where multifractal scaling is found, the spectrum of scaling exponents is calculated via Multifractal Detrended Fluctuation Analysis. In both cases, further investigations reveal that the temporal correlations in the data are a more significant source of the multifractal scaling than are the distributions of the returns. It is also shown that the extreme events which make up the heavy tails of the distribution of the Euro Stoxx 50 log returns distort the scaling in the data set. The most extreme events are inimical to the scaling regime. This result is in contrast to previous findings that extreme events contribute to multifractality.
Duff, Margaret; Chen, Yinpeng; Cheng, Long; Liu, Sheng-Min; Blake, Paul; Wolf, Steven L; Rikakis, Thanassis
2013-05-01
Adaptive mixed reality rehabilitation (AMRR) is a novel integration of motion capture technology and high-level media computing that provides precise kinematic measurements and engaging multimodal feedback for self-assessment during a therapeutic task. We describe the first proof-of-concept study to compare outcomes of AMRR and traditional upper-extremity physical therapy. Two groups of participants with chronic stroke received either a month of AMRR therapy (n = 11) or matched dosing of traditional repetitive task therapy (n = 10). Participants were right handed, between 35 and 85 years old, and could independently reach to and at least partially grasp an object in front of them. Upper-extremity clinical scale scores and kinematic performances were measured before and after treatment. Both groups showed increased function after therapy, demonstrated by statistically significant improvements in Wolf Motor Function Test and upper-extremity Fugl-Meyer Assessment (FMA) scores, with the traditional therapy group improving significantly more on the FMA. However, only participants who received AMRR therapy showed a consistent improvement in kinematic measurements, both for the trained task of reaching to grasp a cone and the untrained task of reaching to push a lighted button. AMRR may be useful in improving both functionality and the kinematics of reaching. Further study is needed to determine if AMRR therapy induces long-term changes in movement quality that foster better functional recovery.
Disaggregating pain and its effect on physical functional limitations.
Lichtenstein, M J; Dhanda, R; Cornell, J E; Escalante, A; Hazuda, H P
1998-09-01
Pain is a common impairment that limits the abilities of older persons. The purposes of this article are to: (i) describe the distribution of pain location using the McGill Pain Map (MPM) in a community-based cohort of aged subjects; (ii) investigate whether individual areas of pain could be sensibly grouped into regions of pain; (iii) determine whether intensity, frequency, and location constitute independent dimensions of pain; and (iv) determine whether these three pain dimensions make differential contributions to the presence of self-reported physical functional limitations. A total of 833 Mexican American and European American subjects, aged 65-79 years, were enrolled in the San Antonio Longitudinal Study of Aging and were interviewed in their homes between 1992 and 1996. A total of 373 (46%) of the subjects reported having pain in the past week. Physical functional limitations were ascertained using the nine items from the Nagi scale. Three composite scales were created: upper extremity, lower extremity, and total. Pain intensity and frequency were ascertained using the McGill Pain Questionnaire. Pain location was ascertained by using the MPM. Pain was reported in every area of the MPM. Using multiple groups confirmatory factor analysis, the 36 areas were grouped into 7 regions of pain: head, arms, hands and wrists, trunk, back, upper leg, and lower leg. Among persons with pain, pain frequency, intensity, and location were weakly associated with each other. Pain regions were primarily independent of each other, yet weak associations existed between 6 of the 21 pair-wise correlations between regions. Pain regions were differentially associated with individual physical functional limitations. Pain in the upper leg was associated with 8 of the 9 physical tasks. In multivariate analyses, age, gender, and ethnic group accounted for only 2-3% of the variance in physical tasks. In multivariate analyses, age, gender, and ethnic group accounted for only 2-3% of the variance in physical functional limitations. Pain intensity accounted for 5-6% of the variance in the composite scores of functional limitation. Pain frequency accounted for 4-5% of the variance in upper extremity limitations but did not contribute to the modeling of lower extremity limitations. In contrast, pain location accounted for 9-14% of the variance in physical functional limitations. We tested a method for ascertaining pain location and clearly demonstrated that pain location is an important determinant of self-reported physical functional limitations. The MPM methodology may be used in population-based studies or in clinical samples that focus on specific impairments and seek to control for pain frequency and intensity. Future studies can link specific diseases with the common impairment of pain and tease out the pathways that lead to other impairments (e.g., weakness), functional limitations, and disability.
A Multi-Scale Approach to Airway Hyperresponsiveness: From Molecule to Organ
Lauzon, Anne-Marie; Bates, Jason H. T.; Donovan, Graham; Tawhai, Merryn; Sneyd, James; Sanderson, Michael J.
2012-01-01
Airway hyperresponsiveness (AHR), a characteristic of asthma that involves an excessive reduction in airway caliber, is a complex mechanism reflecting multiple processes that manifest over a large range of length and time scales. At one extreme, molecular interactions determine the force generated by airway smooth muscle (ASM). At the other, the spatially distributed constriction of the branching airways leads to breathing difficulties. Similarly, asthma therapies act at the molecular scale while clinical outcomes are determined by lung function. These extremes are linked by events operating over intermediate scales of length and time. Thus, AHR is an emergent phenomenon that limits our understanding of asthma and confounds the interpretation of studies that address physiological mechanisms over a limited range of scales. A solution is a modular computational model that integrates experimental and mathematical data from multiple scales. This includes, at the molecular scale, kinetics, and force production of actin-myosin contractile proteins during cross-bridge and latch-state cycling; at the cellular scale, Ca2+ signaling mechanisms that regulate ASM force production; at the tissue scale, forces acting between contracting ASM and opposing viscoelastic tissue that determine airway narrowing; at the organ scale, the topographic distribution of ASM contraction dynamics that determine mechanical impedance of the lung. At each scale, models are constructed with iterations between theory and experimentation to identify the parameters that link adjacent scales. This modular model establishes algorithms for modeling over a wide range of scales and provides a framework for the inclusion of other responses such as inflammation or therapeutic regimes. The goal is to develop this lung model so that it can make predictions about bronchoconstriction and identify the pathophysiologic mechanisms having the greatest impact on AHR and its therapy. PMID:22701430
NASA Astrophysics Data System (ADS)
Pierini, J. O.; Restrepo, J. C.; Aguirre, J.; Bustamante, A. M.; Velásquez, G. J.
2017-04-01
A measure of the variability in seasonal extreme streamflow was estimated for the Colombian Caribbean coast, using monthly time series of freshwater discharge from ten watersheds. The aim was to detect modifications in the streamflow monthly distribution, seasonal trends, variance and extreme monthly values. A 20-year length time moving window, with 1-year successive shiftments, was applied to the monthly series to analyze the seasonal variability of streamflow. The seasonal-windowed data were statistically fitted through the Gamma distribution function. Scale and shape parameters were computed using the Maximum Likelihood Estimation (MLE) and the bootstrap method for 1000 resample. A trend analysis was performed for each windowed-serie, allowing to detect the window of maximum absolute values for trends. Significant temporal shifts in seasonal streamflow distribution and quantiles (QT), were obtained for different frequencies. Wet and dry extremes periods increased significantly in the last decades. Such increase did not occur simultaneously through the region. Some locations exhibited continuous increases only at minimum QT.
Trasobares, J.; Vuillaume, D.; Théron, D.; Clément, N.
2016-01-01
Molecular electronics originally proposed that small molecules sandwiched between electrodes would accomplish electronic functions and enable ultimate scaling to be reached. However, so far, functional molecular devices have only been demonstrated at low frequency. Here, we demonstrate molecular diodes operating up to 17.8 GHz. Direct current and radio frequency (RF) properties were simultaneously measured on a large array of molecular junctions composed of gold nanocrystal electrodes, ferrocenyl undecanethiol molecules and the tip of an interferometric scanning microwave microscope. The present nanometre-scale molecular diodes offer a current density increase by several orders of magnitude compared with that of micrometre-scale molecular diodes, allowing RF operation. The measured S11 parameters show a diode rectification ratio of 12 dB which is linked to the rectification behaviour of the direct current conductance. From the RF measurements, we extrapolate a cut-off frequency of 520 GHz. A comparison with the silicon RF-Schottky diodes, architecture suggests that the RF-molecular diodes are extremely attractive for scaling and high-frequency operation. PMID:27694833
Divergence of perturbation theory in large scale structures
NASA Astrophysics Data System (ADS)
Pajer, Enrico; van der Woude, Drian
2018-05-01
We make progress towards an analytical understanding of the regime of validity of perturbation theory for large scale structures and the nature of some non-perturbative corrections. We restrict ourselves to 1D gravitational collapse, for which exact solutions before shell crossing are known. We review the convergence of perturbation theory for the power spectrum, recently proven by McQuinn and White [1], and extend it to non-Gaussian initial conditions and the bispectrum. In contrast, we prove that perturbation theory diverges for the real space two-point correlation function and for the probability density function (PDF) of the density averaged in cells and all the cumulants derived from it. We attribute these divergences to the statistical averaging intrinsic to cosmological observables, which, even on very large and "perturbative" scales, gives non-vanishing weight to all extreme fluctuations. Finally, we discuss some general properties of non-perturbative effects in real space and Fourier space.
NASA Technical Reports Server (NTRS)
Wang, Guiling; Wang, Dagang; Trenberth, Kevin E.; Erfanian, Amir; Yu, Miao; Bosilovich, Michael G.; Parr, Dana T.
2017-01-01
Theoretical models predict that, in the absence of moisture limitation, extreme precipitation intensity could exponentially increase with temperatures at a rate determined by the Clausius-Clapeyron (C-C) relationship. Climate models project a continuous increase of precipitation extremes for the twenty-first century over most of the globe. However, some station observations suggest a negative scaling of extreme precipitation with very high temperatures, raising doubts about future increase of precipitation extremes. Here we show for the present-day climate over most of the globe,the curve relating daily precipitation extremes with local temperatures has a peak structure, increasing as expected at the low medium range of temperature variations but decreasing at high temperatures. However, this peak-shaped relationship does not imply a potential upper limit for future precipitation extremes. Climate models project both the peak of extreme precipitation and the temperature at which it peaks (T(sub peak)) will increase with warming; the two increases generally conform to the C-C scaling rate in mid- and high-latitudes,and to a super C-C scaling in most of the tropics. Because projected increases of local mean temperature (T(sub mean)) far exceed projected increases of T(sub peak) over land, the conventional approach of relating extreme precipitation to T(sub mean) produces a misleading sub-C-C scaling rate.
Luria, Shai; Rivkin, Gurion; Avitzour, Malka; Liebergall, Meir; Mintz, Yoav; Mosheiff, Ram
2013-03-01
Explosion injuries to the upper extremity have specific clinical characteristics that differ from injuries due to other mechanisms. To evaluate the upper extremity injury pattern of attacks on civilian targets, comparing bomb explosion injuries to gunshot injuries and their functional recovery using standard outcome measures. Of 157 patients admitted to the hospital between 2000 and 2004, 72 (46%) sustained explosion injuries and 85 (54%) gunshot injuries. The trauma registry files were reviewed and the patients completed the DASH Questionnaire (Disabilities of Arm, Shoulder and Hand) and SF-12 (Short Form-12) after a minimum period of 1 year. Of the 157 patients, 72 (46%) had blast injuries and 85 (54%) had shooting injuries. The blast casualties had higher Injury Severity Scores (47% vs. 22% with a score of > 16, P = 0.02) and higher percent of patients treated in intensive care units (47% vs. 28%, P = 0.02). Although the Abbreviated Injury Scale score of the upper extremity injury was similar in the two groups, the blast casualties were found to have more bilateral and complex soft tissue injuries and were treated surgically more often. No difference was found in the SF-12 or DASH scores between the groups at follow up. The casualties with upper extremity blast injuries were more severely injured and sustained more bilateral and complex soft tissue injuries to the upper extremity. However, the rating of the local injury to the isolated limb is similar, as was the subjective functional recovery.
Lee, Han Suk; Kim, Jin Ung
2013-01-01
[Purpose] We evaluated the effect of self-directed exercise using a task board on function and pain in the upper extremities of stroke patients [Subjects and Methods] We used the one group pre-post test design. Seven stroke patients who were selected based on the inclusion criteria participated in the program once a week for 10 weeks. The self-directed exercise comprised 5 stages that were divided according to the level of difficulty. The exercise was performed for 60 minutes using a special task board that we designed. The FMA (Fugl-Meyer Motor Assessment), VAS (Visual Analogue Scale), and speed of stacking were assessed to evaluate the amount of use of the affected arm at before and after intervention. [Results] The scores of the VAS and FMA, but not that of the speed of stacking cups, were improved. There was no significant correlation between the changes in VAS, FMA, and the speed of stacking cups. [Conclusion] The findings suggest that self-directed exercise with the task board could improve the levels of function and pain in the upper extremities. We suggest that self-directed exercise can be utilized as a clinical rehabilitation program and improve therapeutic effects. PMID:24259894
NASA Astrophysics Data System (ADS)
Drobinski, P.; Alonzo, B.; Bastin, S.; Silva, N. Da; Muller, C.
2016-04-01
Expected changes to future extreme precipitation remain a key uncertainty associated with anthropogenic climate change. Extreme precipitation has been proposed to scale with the precipitable water content in the atmosphere. Assuming constant relative humidity, this implies an increase of precipitation extremes at a rate of about 7% °C-1 globally as indicated by the Clausius-Clapeyron relationship. Increases faster and slower than Clausius-Clapeyron have also been reported. In this work, we examine the scaling between precipitation extremes and temperature in the present climate using simulations and measurements from surface weather stations collected in the frame of the HyMeX and MED-CORDEX programs in Southern France. Of particular interest are departures from the Clausius-Clapeyron thermodynamic expectation, their spatial and temporal distribution, and their origin. Looking at the scaling of precipitation extreme with temperature, two regimes emerge which form a hook shape: one at low temperatures (cooler than around 15°C) with rates of increase close to the Clausius-Clapeyron rate and one at high temperatures (warmer than about 15°C) with sub-Clausius-Clapeyron rates and most often negative rates. On average, the region of focus does not seem to exhibit super Clausius-Clapeyron behavior except at some stations, in contrast to earlier studies. Many factors can contribute to departure from Clausius-Clapeyron scaling: time and spatial averaging, choice of scaling temperature (surface versus condensation level), and precipitation efficiency and vertical velocity in updrafts that are not necessarily constant with temperature. But most importantly, the dynamical contribution of orography to precipitation in the fall over this area during the so-called "Cevenoles" events, explains the hook shape of the scaling of precipitation extremes.
Metsavaht, Leonardo; Leporace, Gustavo; Riberto, Marcelo; Sposito, Maria Matilde M; Del Castillo, Letícia N C; Oliveira, Liszt P; Batista, Luiz Alberto
2012-11-01
Clinical measurement. To translate and culturally adapt the Lower Extremity Functional Scale (LEFS) into a Brazilian Portuguese version, and to test the construct and content validity and reliability of this version in patients with knee injuries. There is no Brazilian Portuguese version of an instrument to assess the function of the lower extremity after orthopaedic injury. The translation of the original English version of the LEFS into a Brazilian Portuguese version was accomplished using standard guidelines and tested in 31 patients with knee injuries. Subsequently, 87 patients with a variety of knee disorders completed the Brazilian Portuguese LEFS, the Medical Outcomes Study 36-Item Short-Form Health Survey, the Western Ontario and McMaster Universities Osteoarthritis Index, and the International Knee Documentation Committee Subjective Knee Evaluation Form and a visual analog scale for pain. All patients were retested within 2 days to determine reliability of these measures. Validation was assessed by determining the level of association between the Brazilian Portuguese LEFS and the other outcome measures. Reliability was documented by calculating internal consistency, test-retest reliability, and standard error of measurement. The Brazilian Portuguese LEFS had a high level of association with the physical component of the Medical Outcomes Study 36-Item Short-Form Health Survey (r = 0.82), the Western Ontario and McMaster Universities Osteoarthritis Index (r = 0.87), the International Knee Documentation Committee Subjective Knee Evaluation Form (r = 0.82), and the pain visual analog scale (r = -0.60) (all, P<.05). The Brazilian Portuguese LEFS had a low level of association with the mental component of the Medical Outcomes Study 36-Item Short-Form Health Survey (r = 0.38, P<.05). The internal consistency (Cronbach α = .952) and test-retest reliability (intraclass correlation coefficient = 0.957) of the Brazilian Portuguese version of the LEFS were high. The standard error of measurement was low (3.6) and the agreement was considered high, demonstrated by the small differences between test and retest and the narrow limit of agreement, as observed in Bland-Altman and survival-agreement plots. The translation of the LEFS into a Brazilian Portuguese version was successful in preserving the semantic and measurement properties of the original version and was shown to be valid and reliable in a Brazilian population with knee injuries.
The Top 10 Challenges in Extreme-Scale Visual Analytics
Wong, Pak Chung; Shen, Han-Wei; Johnson, Christopher R.; Chen, Chaomei; Ross, Robert B.
2013-01-01
In this issue of CG&A, researchers share their R&D findings and results on applying visual analytics (VA) to extreme-scale data. Having surveyed these articles and other R&D in this field, we’ve identified what we consider the top challenges of extreme-scale VA. To cater to the magazine’s diverse readership, our discussion evaluates challenges in all areas of the field, including algorithms, hardware, software, engineering, and social issues. PMID:24489426
Facilitating Co-Design for Extreme-Scale Systems Through Lightweight Simulation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engelmann, Christian; Lauer, Frank
This work focuses on tools for investigating algorithm performance at extreme scale with millions of concurrent threads and for evaluating the impact of future architecture choices to facilitate the co-design of high-performance computing (HPC) architectures and applications. The approach focuses on lightweight simulation of extreme-scale HPC systems with the needed amount of accuracy. The prototype presented in this paper is able to provide this capability using a parallel discrete event simulation (PDES), such that a Message Passing Interface (MPI) application can be executed at extreme scale, and its performance properties can be evaluated. The results of an initial prototype aremore » encouraging as a simple 'hello world' MPI program could be scaled up to 1,048,576 virtual MPI processes on a four-node cluster, and the performance properties of two MPI programs could be evaluated at up to 16,384 virtual MPI processes on the same system.« less
Serafini, Gianluca; Gonda, Xenia; Canepa, Giovanna; Pompili, Maurizio; Rihmer, Zoltan; Amore, Mario; Engel-Yeger, Batya
2017-03-01
The involvement of extreme sensory processing patterns, impulsivity, alexithymia, and hopelessness was hypothesized to contribute to the complex pathophysiology of major depression and bipolar disorder. However, the nature of the relation between these variables has not been thoroughly investigated. This study aimed to explore the association between extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness. We recruited 281 euthymic participants (mean age=47.4±12.1) of which 62.3% with unipolar major depression and 37.7% with bipolar disorder. All participants completed the Adolescent/Adult Sensory Profile (AASP), Toronto Alexithymia Scale (TAS-20), second version of the Beck Depression Inventory (BDI-II), Barratt Impulsivity Scale (BIS), and Beck Hopelessness Scale (BHS). Lower registration of sensory input showed a significant correlation with depression, impulsivity, attentional/motor impulsivity, and alexithymia. It was significantly more frequent among participants with elevated hopelessness, and accounted for 22% of the variance in depression severity, 15% in greater impulsivity, 36% in alexithymia, and 3% in hopelessness. Elevated sensory seeking correlated with enhanced motor impulsivity and decreased non-planning impulsivity. Higher sensory sensitivity and sensory avoiding correlated with depression, impulsivity, and alexithymia. The study was limited by the relatively small sample size and cross-sectional nature of the study. Furthermore, only self-report measures that may be potentially biased by social desirability were used. Extreme sensory processing patterns, impulsivity, alexithymia, depression, and hopelessness may show a characteristic pattern in patients with major affective disorders. The careful assessment of sensory profiles may help in developing targeted interventions and improve functional/adaptive strategies. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Loikith, Paul C.
Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. Several novel metrics are used to systematically identify and describe these patterns for the entire continent. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. The influence of the Pacific North American (PNA) pattern, the Northern Annular Mode (NAM), and the El Niño-Southern Oscillation (ENSO) on extreme temperature days and months shows that associations between extreme temperatures and the PNA and NAM are stronger than associations with ENSO. In general, the association with extremes tends to be stronger on monthly than daily time scales. Extreme temperatures are associated with the PNA and NAM in locations typically influenced by these circulation patterns; however many extremes still occur on days when the amplitude and polarity of these patterns do not favor their occurrence. In winter, synoptic-scale, transient weather disturbances are important drivers of extreme temperature days; however these smaller-scale events are often concurrent with amplified PNA or NAM patterns. Associations are weaker in summer when other physical mechanisms affecting the surface energy balance, such as anomalous soil moisture content, are associated with extreme temperatures. Analysis of historical runs from seventeen climate models from the CMIP5 database suggests that most models simulate realistic circulation patterns associated with extreme temperature days in most places. Model-simulated patterns tend to resemble observed patterns better in the winter than the summer and at 500 hPa than at the surface. There is substantial variability among the suite of models analyzed and most models simulate circulation patterns more realistically away from influential features such as large bodies of water and complex topography.
Kim, TaeHoon; Kim, SeongSik; Lee, ByoungHee
2016-03-01
The purpose of this study was to investigate whether action observational training (AOT) plus brain-computer interface-based functional electrical stimulation (BCI-FES) has a positive influence on motor recovery of paretic upper extremity in patients with stroke. This was a hospital-based, randomized controlled trial with a blinded assessor. Thirty patients with a first-time stroke were randomly allocated to one of two groups: the BCI-FES group (n = 15) and the control group (n = 15). The BCI-FES group administered to AOT plus BCI-FES on the paretic upper extremity five times per week during 4 weeks while both groups received conventional therapy. The primary outcomes were the Fugl-Meyer Assessment of the Upper Extremity, Motor Activity Log (MAL), Modified Barthel Index and range of motion of paretic arm. A blinded assessor evaluated the outcomes at baseline and 4 weeks. All baseline outcomes did not differ significantly between the two groups. After 4 weeks, the Fugl-Meyer Assessment of the Upper Extremity sub-items (total, shoulder and wrist), MAL (MAL-Activity of Use and Quality of Movement), Modified Barthel Index and wrist flexion range of motion were significantly higher in the BCI-FES group (p < 0.05). AOT plus BCI-based FES is effective in paretic arm rehabilitation by improving the upper extremity performance. The motor improvements suggest that AOT plus BCI-based FES can be used as a therapeutic tool for stroke rehabilitation. The limitations of the study are that subjects had a certain limited level of upper arm function, and the sample size was comparatively small; hence, it is recommended that future large-scale trials should consider stratified and lager populations according to upper arm function. Copyright © 2015 John Wiley & Sons, Ltd.
Lemola, Sakari; Oser, Nadine; Urfer-Maurer, Natalie; Brand, Serge; Holsboer-Trachsler, Edith; Bechtel, Nina; Grob, Alexander; Weber, Peter; Datta, Alexandre N
2017-01-01
To determine whether the relationship of gestational age (GA) with brain volumes and cognitive functions is linear or whether it follows a threshold model in preterm and term born children during school-age. We studied 106 children (M = 10 years 1 month, SD = 16 months; 40 females) enrolled in primary school: 57 were healthy very preterm children (10 children born 24-27 completed weeks' gestation (extremely preterm), 14 children born 28-29 completed weeks' gestation, 19 children born 30-31 completed weeks' gestation (very preterm), and 14 born 32 completed weeks' gestation (moderately preterm)) all born appropriate for GA (AGA) and 49 term-born children. Neuroimaging involved voxel-based morphometry with the statistical parametric mapping software. Cognitive functions were assessed with the WISC-IV. General Linear Models and multiple regressions were conducted controlling age, sex, and maternal education. Compared to groups of children born 30 completed weeks' gestation and later, children born <28 completed weeks' gestation had less gray matter volume (GMV) and white matter volume (WMV) and poorer cognitive functions including decreased full scale IQ, and processing speed. Differences in GMV partially mediated the relationship between GA and full scale IQ in preterm born children. In preterm children who are born AGA and without major complications GA is associated with brain volume and cognitive functions. In particular, decreased brain volume becomes evident in the extremely preterm group (born <28 completed weeks' gestation). In preterm children born 30 completed weeks' gestation and later the relationship of GA with brain volume and cognitive functions may be less strong as previously thought.
NASA Astrophysics Data System (ADS)
Takayabu, Yukari; Hamada, Atsushi; Mori, Yuki; Murayama, Yuki; Liu, Chuntao; Zipser, Edward
2015-04-01
While extreme rainfall has a huge impact upon human society, the characteristics of the extreme precipitation vary from region to region. Seventeen years of three dimensional precipitation measurements from the space-borne precipitation radar equipped with the Tropical Precipitation Measurement Mission satellite enabled us to describe the characteristics of regional extreme precipitation globally. Extreme rainfall statistics are based on rainfall events defined as a set of contiguous PR rainy pixels. Regional extreme rainfall events are defined as those in which maximum near-surface rainfall rates are higher than the corresponding 99.9th percentile in each 2.5degree x2.5degree horizontal resolution grid. First, regional extreme rainfall is characterized in terms of its intensity and event size. Regions of ''intense and extensive'' extreme rainfall are found mainly over oceans near coastal areas and are likely associated with tropical cyclones and convective systems associated with the establishment of monsoons. Regions of ''intense but less extensive'' extreme rainfall are distributed widely over land and maritime continents, probably related to afternoon showers and mesoscale convective systems. Regions of ''extensive but less intense'' extreme rainfall are found almost exclusively over oceans, likely associated with well-organized mesoscale convective systems and extratropical cyclones. Secondly, regional extremes in terms of surface rainfall intensity and those in terms of convection height are compared. Conventionally, extremely tall convection is considered to contribute the largest to the intense rainfall. Comparing probability density functions (PDFs) of 99th percentiles in terms of the near surface rainfall intensity in each regional grid and those in terms of the 40dBZ echo top heights, it is found that heaviest precipitation in the region is not associated with tallest systems, but rather with systems with moderate heights. Interestingly, this separation of extremely heavy precipitation from extremely tall convection is found to be quite universal, irrespective of regions. Rainfall characteristics and environmental conditions both indicate the importance of warm-rain processes in producing extreme rainfall rates. Thus it is demonstrated that, even in regions where severe convective storms are representative extreme weather events, the heaviest rainfall events are mostly associated with less intense convection. Third, the size effect of rainfall events on the precipitation intensity is investigated. Comparisons of normalized PDFs of foot-print size rainfall intensity for different sizes of rainfall events show that footprint-scale extreme rainfall becomes stronger as the rainfall events get larger. At the same time, stratiform ratio in area as well as in rainfall amount increases with the size, confirming larger sized features are more organized systems. After all, it is statistically shown that organization of precipitation not only brings about an increase in extreme volumetric rainfall but also an increase in probability of the satellite footprint scale extreme rainfall.
Robot-aided assessment of lower extremity functions: a review.
Maggioni, Serena; Melendez-Calderon, Alejandro; van Asseldonk, Edwin; Klamroth-Marganska, Verena; Lünenburger, Lars; Riener, Robert; van der Kooij, Herman
2016-08-02
The assessment of sensorimotor functions is extremely important to understand the health status of a patient and its change over time. Assessments are necessary to plan and adjust the therapy in order to maximize the chances of individual recovery. Nowadays, however, assessments are seldom used in clinical practice due to administrative constraints or to inadequate validity, reliability and responsiveness. In clinical trials, more sensitive and reliable measurement scales could unmask changes in physiological variables that would not be visible with existing clinical scores.In the last decades robotic devices have become available for neurorehabilitation training in clinical centers. Besides training, robotic devices can overcome some of the limitations in traditional clinical assessments by providing more objective, sensitive, reliable and time-efficient measurements. However, it is necessary to understand the clinical needs to be able to develop novel robot-aided assessment methods that can be integrated in clinical practice.This paper aims at providing researchers and developers in the field of robotic neurorehabilitation with a comprehensive review of assessment methods for the lower extremities. Among the ICF domains, we included those related to lower extremities sensorimotor functions and walking; for each chapter we present and discuss existing assessments used in routine clinical practice and contrast those to state-of-the-art instrumented and robot-aided technologies. Based on the shortcomings of current assessments, on the identified clinical needs and on the opportunities offered by robotic devices, we propose future directions for research in rehabilitation robotics. The review and recommendations provided in this paper aim to guide the design of the next generation of robot-aided functional assessments, their validation and their translation to clinical practice.
Projected changes to precipitation extremes over the Canadian Prairies using multi-RCM ensemble
NASA Astrophysics Data System (ADS)
Masud, M. B.; Khaliq, M. N.; Wheater, H. S.
2016-12-01
Information on projected changes to precipitation extremes is needed for future planning of urban drainage infrastructure and storm water management systems and to sustain socio-economic activities and ecosystems at local, regional and other scales of interest. This study explores the projected changes to seasonal (April-October) precipitation extremes at daily, hourly and sub-hourly scales over the Canadian Prairie Provinces of Alberta, Saskatchewan, and Manitoba, based on the North American Regional Climate Change Assessment Program multi-Regional Climate Model (RCM) ensemble and regional frequency analysis. The performance of each RCM is evaluated regarding boundary and performance errors to study various sources of uncertainties and the impact of large-scale driving fields. In the absence of RCM-simulated short-duration extremes, a framework is developed to derive changes to extremes of these durations. Results from this research reveal that the relative changes in sub-hourly extremes are higher than those in the hourly and daily extremes. Overall, projected changes in precipitation extremes are larger for southeastern parts of this region than southern and northern areas, and smaller for southwestern and western parts of the study area. Keywords: climate change, precipitation extremes, regional frequency analysis, NARCCAP, Canadian Prairie provinces
Materials by Design—A Perspective From Atoms to Structures
Buehler, Markus J.
2013-01-01
Biological materials are effectively synthesized, controlled, and used for a variety of purposes—in spite of limitations in energy, quality, and quantity of their building blocks. Whereas the chemical composition of materials in the living world plays a some role in achieving functional properties, the way components are connected at different length scales defines what material properties can be achieved, how they can be altered to meet functional requirements, and how they fail in disease states and other extreme conditions. Recent work has demonstrated this by using large-scale computer simulations to predict materials properties from fundamental molecular principles, combined with experimental work and new mathematical techniques to categorize complex structure-property relationships into a systematic framework. Enabled by such categorization, we discuss opportunities based on the exploitation of concepts from distinct hierarchical systems that share common principles in how function is created, linking music to materials science. PMID:24163499
Ravindran, Sindhu; Jambek, Asral Bahari; Muthusamy, Hariharan; Neoh, Siew-Chin
2015-01-01
A novel clinical decision support system is proposed in this paper for evaluating the fetal well-being from the cardiotocogram (CTG) dataset through an Improved Adaptive Genetic Algorithm (IAGA) and Extreme Learning Machine (ELM). IAGA employs a new scaling technique (called sigma scaling) to avoid premature convergence and applies adaptive crossover and mutation techniques with masking concepts to enhance population diversity. Also, this search algorithm utilizes three different fitness functions (two single objective fitness functions and multi-objective fitness function) to assess its performance. The classification results unfold that promising classification accuracy of 94% is obtained with an optimal feature subset using IAGA. Also, the classification results are compared with those of other Feature Reduction techniques to substantiate its exhaustive search towards the global optimum. Besides, five other benchmark datasets are used to gauge the strength of the proposed IAGA algorithm.
Evaluating the Large-Scale Environment of Extreme Events Using Reanalyses
NASA Astrophysics Data System (ADS)
Bosilovich, M. G.; Schubert, S. D.; Koster, R. D.; da Silva, A. M., Jr.; Eichmann, A.
2014-12-01
Extreme conditions and events have always been a long standing concern in weather forecasting and national security. While some evidence indicates extreme weather will increase in global change scenarios, extremes are often related to the large scale atmospheric circulation, but also occurring infrequently. Reanalyses assimilate substantial amounts of weather data and a primary strength of reanalysis data is the representation of the large-scale atmospheric environment. In this effort, we link the occurrences of extreme events or climate indicators to the underlying regional and global weather patterns. Now, with greater than 3o years of data, reanalyses can include multiple cases of extreme events, and thereby identify commonality among the weather to better characterize the large-scale to global environment linked to the indicator or extreme event. Since these features are certainly regionally dependent, and also, the indicators of climate are continually being developed, we outline various methods to analyze the reanalysis data and the development of tools to support regional evaluation of the data. Here, we provide some examples of both individual case studies and composite studies of similar events. For example, we will compare the large scale environment for Northeastern US extreme precipitation with that of highest mean precipitation seasons. Likewise, southerly winds can shown to be a major contributor to very warm days in the Northeast winter. While most of our development has involved NASA's MERRA reanalysis, we are also looking forward to MERRA-2 which includes several new features that greatly improve the representation of weather and climate, especially for the regions and sectors involved in the National Climate Assessment.
NASA Astrophysics Data System (ADS)
Kusangaya, Samuel; Warburton Toucher, Michele L.; van Garderen, Emma Archer
2018-02-01
Downscaled General Circulation Models (GCMs) output are used to forecast climate change and provide information used as input for hydrological modelling. Given that our understanding of climate change points towards an increasing frequency, timing and intensity of extreme hydrological events, there is therefore the need to assess the ability of downscaled GCMs to capture these extreme hydrological events. Extreme hydrological events play a significant role in regulating the structure and function of rivers and associated ecosystems. In this study, the Indicators of Hydrologic Alteration (IHA) method was adapted to assess the ability of simulated streamflow (using downscaled GCMs (dGCMs)) in capturing extreme river dynamics (high and low flows), as compared to streamflow simulated using historical climate data from 1960 to 2000. The ACRU hydrological model was used for simulating streamflow for the 13 water management units of the uMngeni Catchment, South Africa. Statistically downscaled climate models obtained from the Climate System Analysis Group at the University of Cape Town were used as input for the ACRU Model. Results indicated that, high flows and extreme high flows (one in ten year high flows/large flood events) were poorly represented both in terms of timing, frequency and magnitude. Simulated streamflow using dGCMs data also captures more low flows and extreme low flows (one in ten year lowest flows) than that captured in streamflow simulated using historical climate data. The overall conclusion was that although dGCMs output can reasonably be used to simulate overall streamflow, it performs poorly when simulating extreme high and low flows. Streamflow simulation from dGCMs must thus be used with caution in hydrological applications, particularly for design hydrology, as extreme high and low flows are still poorly represented. This, arguably calls for the further improvement of downscaling techniques in order to generate climate data more relevant and useful for hydrological applications such as in design hydrology. Nevertheless, the availability of downscaled climatic output provide the potential of exploring climate model uncertainties in different hydro climatic regions at local scales where forcing data is often less accessible but more accurate at finer spatial scales and with adequate spatial detail.
NASA Technical Reports Server (NTRS)
Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.;
2015-01-01
The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.
Solid amine development program
NASA Technical Reports Server (NTRS)
Lovell, J. S.
1973-01-01
A regenerable solid amine material to perform the functions of humidity control and CO2 removal for space shuttle type vehicle is reported. Both small scale and large scale testing have shown this material to be competitive, especially for the longer shuttle missions. However, it had been observed that the material off-gasses ammonia under certain conditions. This presents two concerns. The first, that the ammonia would contaminate the cabin atmosphere, and second, that the material is degrading with time. An extensive test program has shown HS-C to produce only trace quantities of atmospheric contaminants, and under normal extremes, to have no practical life limitation.
Cosmological models with a hybrid scale factor in an extended gravity theory
NASA Astrophysics Data System (ADS)
Mishra, B.; Tripathy, S. K.; Tarai, Sankarsan
2018-03-01
A general formalism to investigate Bianchi type V Ih universes is developed in an extended theory of gravity. A minimally coupled geometry and matter field is considered with a rescaled function of f(R,T) substituted in place of the Ricci scalar R in the geometrical action. Dynamical aspects of the models are discussed by using a hybrid scale factor (HSF) that behaves as power law in an initial epoch and as an exponential form at late epoch. The power law behavior and the exponential behavior appear as two extreme cases of the present model.
Vinnars, Marie-Therese; Vollmer, Brigitte; Nasiell, Josefine; Papadogiannakis, Nikos; Westgren, Magnus
2015-09-01
Previously, cerebral palsy has been associated with placental infarctions diagnosed macroscopically by midwifes. However, the risk of misclassification of infarctionsis is high without a histological verification. Therefore, the objective of this study was to study placental histopathology in relation to developmental outcome at 2.5 years corrected age in a population born extremely preterm. A prospective cohort study was carried out at Karolinska University Hospital, Stockholm, Sweden on a population of 139 live born infants delivered <27 gestational weeks during 2004-2007. A senior perinatal pathologist, who was blinded to outcome data, evaluated all placental slides microscopically. Neuromotor and sensory functions of the children were evaluated. Bayley Scales of Infant and Toddler Development-III (Bayley-III) were used to assess development at corrected age 2.5 years. The outcome data were evaluated without reference to obstetrical and pathology data. The primary outcome measure was neurological and developmental status at 2.5 years of corrected age. This was measured as diagnosis of cerebral palsy, visual impairment, hearing impairment as well as performance on Bayley-III scales evaluating cognitive, language and motor functions. Two out of seven children with placental infarction were diagnosed with cerebral palsy compared with one child of 51 without placental infarction (p = 0.036). For developmental outcome according to Bayley-III at 2.5 years no statistically significant associations with placental pathology were found. A possible association between placental infarction, verified by microscopic examination, and cerebral palsy has been identified in this extremely preterm population. © 2015 Nordic Federation of Societies of Obstetrics and Gynecology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, L; Khan, M; Aizenberg, J
Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. This combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mishchenko, Lidiya; Khan, M.; Aizenberg, Joanna
Certain natural organisms use micro-patterned surface chemistry, or ice-nucleating species, to control water condensation and ice nucleation for survival under extreme conditions. As an analogy to these biological approaches, it is shown that functionalized, hydrophilic polymers and particles deposited on the tips of superhydrophobic posts induce precise topographical control over water condensation and freezing at the micrometer scale. A bottom-up deposition process is used to take advantage of the limited contact area of a non-wetting aqueous solution on a superhydrophobic surface. Hydrophilic polymer deposition on the tips of these geometrical structures allows spatial control over the nucleation, growth, and coalescencemore » of micrometer-scale water droplets. The hydrophilic tips nucleate water droplets with extremely uniform nucleation and growth rates, uniform sizes, an increased stability against coalescence, and asymmetric droplet morphologies. Furthermore, control of freezing behavior is also demonstrated via deposition of ice-nucleating AgI nanoparticles on the tips of these structures. The combination of the hydrophilic polymer and AgI particles on the tips was used to achieve templating of ice nucleation at the micrometer scale. Preliminary results indicate that control over ice crystal size, spatial symmetry, and position might be possible with this method. This type of approach can serve as a platform for systematically analyzing micrometer-scale condensation and freezing phenomena, and as a model for natural systems.« less
Plavsić, Aleksandra; Svirtlih, Laslo; Stefanović, Aleksandra; Jović, Stevan; Durović, Aleksandar; Popović, Mirjana
2011-01-01
New neurorehabilitation together with conventional techniques provide methods and technologies for maximizing what is preserved from the sensory motor system after cerebrovascular insult. The rehabilitation technique named functional electrical therapy was investigated in more than 60 patients in acute, subacute and chronic phase after cerebrovascular insult. The functional sensory information generated by functional electrical therapy was hypothesized to result in the intensive functional brain training of the activities performed. Functional electrical therapy is a combination of functional exercise and electrical therapy. The functional electrical therapy protocol comprises voluntary movement of the paretic arm in synchrony with the electrically assisted hand functions in order to perform typical daily activities. The daily treatment of 30 minutes lasts three weeks. The outcome measures include several tests for the evaluation of arm/hand functionality: upper extremity function test, drawing test, modified Aschworth scale, motor activity log and passive range of movement. Results from our several clinical studies showed that functional electrical therapy, if applied in acute and subacute stroke patients, leads to faster and greater improvement of functioning of the hemiplegic arm/hand compared to the control group. The outcomes were significantly superior at all times after the treatment for the higher functioning group. Additional well-planned clinical studies are needed to determine the adequate dose of treatment (timing, duration, intensity) with functional electrical therapy regarding the patient's status. A combination with other techniques should be further investigated.
Skvortsova, V I; Ivanova, G E; Kovrazhkina, E A; Rumiantseva, N A; Staritsyn, A N; Suvorov, A Iu; Sogomonian, E K
2008-01-01
An aim of the study was to evaluate efficacy of using Gait Trainer GT1, a robot-assisted gait trainer with a system of body-weight support, for the rehabilitation of gait in patients in the acute period of cerebral stroke. A main group included 30 patients in the acute period of ischemic and hemorrhage stroke and a control group--20 age- and sex matched patients. Patients of both groups had daily kinesitherapy sessions with a rehabilitator. Patients of the main group had additional sessions on the Gait Trainer GT1 from the moment of functional readiness to adequate orthostatic probe. Efficacy of rehabilitation was assessed in the four following phases: the first verticalization of patient in the standing position, adaptation of patient to the standing position, walking with assistance, independent walking. Muscular power (scores) in all muscles of low extremities, muscle tonus (the Ashfort scale), amplitude of tendinous reflexes on the reflexes scale, sensory disturbances and discoordination syndromes (specially elaborated scales), pathological positions in the axial muscular system and extremities, functional status (a steadiness scale, the Berg balance scale, the Barthel scale, 5 m test) were assessed in each phase. Stabilometry was conducted for objective evaluation of vertical balance function. The duration of sessions on GT1 and a number of exercises were depended on the patient's tolerability to physical activity. Percentage of relief was determined by the ability of a patient to balance in the standing position. Each patient had 8-10 sessions. A significant improvement of the functional status: ability to balance in standing position, walking, increase of self-care skills were observed in both groups. No significant differences in the level of functional improvements were found compared to the control group. However some peculiarities of the rehabilitation of primary neurologic deficit were observed during CT1-trainings: the normalization of muscle tonus both in spastic and hypotonic muscles, predominate rehabilitation of flexor muscular system (p = 0.005), significant improvement of deep and surface sensitivity (p < 0.005). The stabilometric data revealed the normalization of strategy of vertical posture support--from hip to ankle (p = 0.001), proprioceptive control of balance by the Romberg coefficient (p = 0.005). Robot-assisted gait trainers are commonly used in trainings of step patterns in highly disabled patients who are not able to walk without assistance. These peculiarities of the rehabilitation of primary neurologic deficit during the GT-trainings allowed to use a differential approach to a candidate selection for the sessions.
Dogru Huzmeli, Esra; Yildirim, Sibel Aksu; Kilinc, Muhammed
2017-04-01
Some studies show that sensorial rehabilitation is effective on functionality. The aim of this study is to investigate the effect of sensory training of the posterior thigh on the functionality of upper extremity and trunk control in stroke patients. Thirteen subjects (53.23 ± 6.82 years) were included in the intervention group and 13 subjects (58.69 ± 5.94 years) in the control group. The control and intervention groups were treated for ten sessions. The control group was treated only with neurodevelopmental treatment, and the intervention group was treated with sensorial training on the posterior thigh in addition to the neurodevelopmental treatment. Subjects were evaluated three times, pre- and post-treatment and 10 days after finishing the treatment. Trunk control was assessed by the Trunk Impairment Scale, reaching function by the Functional Reach Test, balance by the Berg Balance Test, upper extremity symptom and disability severity by the Disabilities of the Arm, Shoulder, Hand and Minnesota, independence level in daily living activities by the Barthel Index, and sensory function of the posterior thigh by sensorial tests. In the post-treatment assessment, it was found that the intervention group was better than the control group in the parameter of functional reach while sitting (p < 0.005). In the third assessment, reaching while sitting and independence level were better in the intervention group than the control group (p < 0.005). There was no difference in sensorial assessment between the groups. Sensory training of the posterior thigh should be included in the rehabilitation programme of stroke patients.
Cleland, Joshua A; Mintken, Paul E; McDevitt, Amy; Bieniek, Melanie L; Carpenter, Kristin J; Kulp, Katherine; Whitman, Julie M
2013-01-01
Randomized clinical trial. To compare the effectiveness of manual therapy and exercise (MTEX) to a home exercise program (HEP) in the management of individuals with an inversion ankle sprain. An in-clinic exercise program has been found to yield similar outcomes as an HEP for individuals with an inversion ankle sprain. However, no studies have compared an MTEX approach to an HEP. Patients with an inversion ankle sprain completed the Foot and Ankle Ability Measure (FAAM) activities of daily living subscale, the FAAM sports subscale, the Lower Extremity Functional Scale, and the numeric pain rating scale. Patients were randomly assigned to either an MTEX or an HEP treatment group. Outcomes were collected at baseline, 4 weeks, and 6 months. The primary aim (effects of treatment on pain and disability) was examined with a mixed-model analysis of variance. The hypothesis of interest was the 2-way interaction (group by time). Seventy-four patients (mean ± SD age, 35.1 ± 11.0 years; 48.6% female) were randomized into the MTEX group (n = 37) or the HEP group (n = 37). The overall group-by-time interaction for the mixed-model analysis of variance was statistically significant for the FAAM activities of daily living subscale (P<.001), FAAM sports subscale (P<.001), Lower Extremity Functional Scale (P<.001), and pain (P ≤.001). Improvements in all functional outcome measures and pain were significantly greater at both the 4-week and 6-month follow-up periods in favor of the MTEX group. The results suggest that an MTEX approach is superior to an HEP in the treatment of inversion ankle sprains. Registered at clinicaltrials.gov (NCT00797368). Therapy, level 1b-.
Oh, Hyun Seung; Kim, Eun Joo; Kim, Doo Young; Kim, Soo Jeong
2016-06-01
To investigate the effects of adjuvant mental practice (MP) on affected upper limb function following a stroke using three-dimensional (3D) motion analysis. In this AB/BA crossover study, we studied 10 hemiplegic patients who had a stroke within the past 6 months. The patients were randomly allocated to two groups: one group received MP combined with conventional rehabilitation therapy for the first 3 weeks followed by conventional rehabilitation therapy alone for the final 3 weeks; the other group received the same therapy but in reverse order. The MP tasks included drinking from a cup and opening a door. MP was individually administered for 20 minutes, 3 days a week for 3 weeks. To assess the tasks, we used 3D motion analysis and three additional tests: the Fugl-Meyer Assessment of the upper extremity (FMA-UE) and the motor activity logs for amount of use (MAL-AOU) and quality of movement (MAL-QOM). Assessments were performed immediately before treatment (T0), 3 weeks into treatment (T1), and 6 weeks into treatment (T2). Based on the results of the 3D motion analysis and the FMA-UE index (p=0.106), the MAL-AOU scale (p=0.092), and MAL-QOM scale (p=0.273), adjuvant MP did not result in significant improvements. Adjuvant MP had no significant effect on upper limb function following a stroke, according to 3D motion analysis and three clinical assessment tools (the FMA-UE index and the two MAL scales). The importance of this study is its use of objective 3D motion analysis to evaluate the effects of MP. Further studies will be needed to validate these findings.
Settlement-Size Scaling among Prehistoric Hunter-Gatherer Settlement Systems in the New World
Haas, W. Randall; Klink, Cynthia J.; Maggard, Greg J.; Aldenderfer, Mark S.
2015-01-01
Settlement size predicts extreme variation in the rates and magnitudes of many social and ecological processes in human societies. Yet, the factors that drive human settlement-size variation remain poorly understood. Size variation among economically integrated settlements tends to be heavy tailed such that the smallest settlements are extremely common and the largest settlements extremely large and rare. The upper tail of this size distribution is often formalized mathematically as a power-law function. Explanations for this scaling structure in human settlement systems tend to emphasize complex socioeconomic processes including agriculture, manufacturing, and warfare—behaviors that tend to differentially nucleate and disperse populations hierarchically among settlements. But, the degree to which heavy-tailed settlement-size variation requires such complex behaviors remains unclear. By examining the settlement patterns of eight prehistoric New World hunter-gatherer settlement systems spanning three distinct environmental contexts, this analysis explores the degree to which heavy-tailed settlement-size scaling depends on the aforementioned socioeconomic complexities. Surprisingly, the analysis finds that power-law models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gatherer settlement-size variation. This finding reveals that incipient forms of hierarchical settlement structure may have preceded socioeconomic complexity in human societies and points to a need for additional research to explicate how mobile foragers came to exhibit settlement patterns that are more commonly associated with hierarchical organization. We propose that hunter-gatherer mobility with preferential attachment to previously occupied locations may account for the observed structure in site-size variation. PMID:26536241
Grotjahn, Richard; Black, Robert; Leung, Ruby; ...
2015-05-22
This paper reviews research approaches and open questions regarding data, statistical analyses, dynamics, modeling efforts, and trends in relation to temperature extremes. Our specific focus is upon extreme events of short duration (roughly less than 5 days) that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). Methods used to define extreme events statistics and to identify and connect LSMPs to extreme temperatures are presented. Recent advances in statistical techniques can connect LSMPs to extreme temperatures through appropriately defined covariates that supplements more straightforward analyses. A wide array of LSMPs, ranging from synoptic tomore » planetary scale phenomena, have been implicated as contributors to extreme temperature events. Current knowledge about the physical nature of these contributions and the dynamical mechanisms leading to the implicated LSMPs is incomplete. There is a pressing need for (a) systematic study of the physics of LSMPs life cycles and (b) comprehensive model assessment of LSMP-extreme temperature event linkages and LSMP behavior. Generally, climate models capture the observed heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreaks frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Climate models have been used to investigate past changes and project future trends in extreme temperatures. Overall, modeling studies have identified important mechanisms such as the effects of large-scale circulation anomalies and land-atmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs more specifically to understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated so more research is needed to understand the limitations of climate models and improve model skill in simulating extreme temperatures and their associated LSMPs. Furthermore, the paper concludes with unresolved issues and research questions.« less
Quantitative evaluation of phonetograms in the case of functional dysphonia.
Airainer, R; Klingholz, F
1993-06-01
According to the laryngeal clinical findings, figures making up a scale were assigned to vocally trained and vocally untrained persons suffering from different types of functional dysphonia. The different types of dysphonia--from the manifested hypofunctional to the extreme hyperfunctional dysphonia--were classified by means of this scale. Besides, the subjects' phonetograms were measured and approximated by three ellipses, what rendered possible the definition of phonetogram parameters. The combining of selected phonetogram parameters to linear combinations served the purpose of a phonetographic evaluation. The linear combinations were to bring phonetographic and clinical evaluations into correspondence as accurately as possible. It was necessary to use different kinds of linear combinations for male and female singers and nonsingers. As a result of the reclassification of 71 and the new classification of 89 patients, it was possible to graduate the types of functional dysphonia by means of computer-aided phonetogram evaluation with a clinically acceptable error rate. This method proved to be an important supplement to the conventional diagnostics of functional dysphonia.
Dry, drier, driest: An Australian story of extreme years and potential ecosystem collapse
NASA Astrophysics Data System (ADS)
Wardle, G. M.; Dickman, C. R.; Greenville, A. C.
2016-12-01
Ecosystems are expected to undergo large changes due to an increase in the frequency and intensity of extreme events. We can expect droughts to be longer, flooding to be more intense, and heatwaves and fires to increase. Importantly, at the regional scale these projections which are based on global climate models come with additional uncertainties that challenge how we can plan and evaluate options for adaptation. For many ecosystems, the understanding of the interdependencies and function is still limited, and particularly so for areas such as inland Australia that already exhibit unpredictable rainfall and lack strong seasonality. These drylands are water-limited and operate differently in dry, or wet years, when episodic pulses of resources drive increases in productivity. Increased extremes have the potential to disrupt the function of these highly dynamic and complex systems through feedbacks, synergies and through memory or delayed responses to change. Using our long-term work in the Simpson Desert as a case study, we explore the trends in productivity, the responses of flora and fauna to these opportunities and the spatial connectedness and heterogeneities that support the persistence of the ecosystem through dry times. Theory tells us that ecosystems may shift states abruptly when they cross critical thresholds. For example, arid grasslands may no longer have the capacity to return to a productive state following good rains. This happens under desertification, where plant cover and growth is limited — with flow on consequences for the entire ecosystem. Forecasting such changes is crucial but the fundamental knowledge relies on information that spans both long time scales and large spatial scales. We examine the knowledge gaps in quantifying ecosystem collapse using our IUCN ecosystem risk assessment of the Georgina gidgee woodlands. We conclude by arguing that without long-term data on trends and integration across the biophysical and and biological components at large spatial scales we cannot hope to anticipate ecosystem collapse and take appropriate action. The Terrestrial Ecosystem Research Network is leading the way for Australia to contribute to this important global ecosystem capability.
Mulcahey, M J; Merenda, Lisa; Tian, Feng; Kozin, Scott; James, Michelle; Gogola, Gloria; Ni, Pengsheng
2013-01-01
This study examined the psychometric properties of item pools relevant to upper-extremity function and activity performance and evaluated simulated 5-, 10-, and 15-item computer adaptive tests (CATs). In a multicenter, cross-sectional study of 200 children and youth with brachial plexus birth palsy (BPBP), parents responded to upper-extremity (n = 52) and activity (n = 34) items using a 5-point response scale. We used confirmatory and exploratory factor analysis, ordinal logistic regression, item maps, and standard errors to evaluate the psychometric properties of the item banks. Validity was evaluated using analysis of variance and Pearson correlation coefficients. Results show that the two item pools have acceptable model fit, scaled well for children and youth with BPBP, and had good validity, content range, and precision. Simulated CATs performed comparably to the full item banks, suggesting that a reduced number of items provide similar information to the entire set of items. Copyright © 2013 by the American Occupational Therapy Association, Inc.
Temporal and spatial characterization of zenith total delay (ZTD) in North Europe
NASA Astrophysics Data System (ADS)
Stoew, B.; Elgered, G.
2003-04-01
The estimates of ZTD are often treated as realizations of random walk stochastic processes. We derive the corresponding process parameters for 34 different locations in North Europe using two measurement techniques - Global Positioning System (GPS) and Water Vapor Radiometer (WVR). GPS-estimated ZTD is an excellent candidate for data assimilation in numerical weather prediction (NWP) models in terms of both spatial and temporal resolution. We characterize the long term behavior of the ZTD as a function of site latitude and height. The spatial characteristics of the ZTD are studied as a function of site separation and season. We investigate the influence of the time-interpolated atmospheric pressure data used for the estimation of zenith wet delay (ZWD) from ZTD. Characterization of extreme atmospheric events can aid the development of an early warning system. We consider two types of extreme meteorological phenomena with regard to their spatial scales. The first type concerns larger regions (including several GPS sites); the extreme weather is characterized by intense precipitation which may result in a flood. The second type is related to local variations in the ZWD/ZTD and can be used for detection/monitoring of passing atmospheric fronts.
NASA Astrophysics Data System (ADS)
Agel, Laurie; Barlow, Mathew; Feldstein, Steven B.; Gutowski, William J.
2018-03-01
Patterns of daily large-scale circulation associated with Northeast US extreme precipitation are identified using both k-means clustering (KMC) and Self-Organizing Maps (SOM) applied to tropopause height. The tropopause height provides a compact representation of the upper-tropospheric potential vorticity, which is closely related to the overall evolution and intensity of weather systems. Extreme precipitation is defined as the top 1% of daily wet-day observations at 35 Northeast stations, 1979-2008. KMC is applied on extreme precipitation days only, while the SOM algorithm is applied to all days in order to place the extreme results into the overall context of patterns for all days. Six tropopause patterns are identified through KMC for extreme day precipitation: a summertime tropopause ridge, a summertime shallow trough/ridge, a summertime shallow eastern US trough, a deeper wintertime eastern US trough, and two versions of a deep cold-weather trough located across the east-central US. Thirty SOM patterns for all days are identified. Results for all days show that 6 SOM patterns account for almost half of the extreme days, although extreme precipitation occurs in all SOM patterns. The same SOM patterns associated with extreme precipitation also routinely produce non-extreme precipitation; however, on extreme precipitation days the troughs, on average, are deeper and the downstream ridges more pronounced. Analysis of other fields associated with the large-scale patterns show various degrees of anomalously strong moisture transport preceding, and upward motion during, extreme precipitation events.
Kurtz, Matthew M; Donato, Jad; Rose, Jennifer
2011-11-01
To study the relationship of superior (i.e., ≥ 90th percentile), average (11th-89th percentile) or extremely low (i.e., ≤ 10th percentile) crystallized verbal skills to neurocognitive profiles, symptoms and everyday life function in schizophrenia. Crystallized verbal skill was derived from Vocabulary subtest scores from the Wechsler Adult Intelligence Scale (WAIS). Out of a sample of 165 stable outpatients with schizophrenia we identified 25 participants with superior crystallized verbal skill, 104 participants with average verbal skill, and 36 participants with extremely low crystallized verbal skill. Each participant was administered measures of attention, working memory, verbal learning and memory, problem-solving and processing speed, as well as symptom and performance-based adaptive life skill assessments. The magnitude of neuropsychological impairment across the three groups was different, after adjusting for group differences in education and duration of illness. Working memory, and verbal learning and memory skills were different across all three groups, while processing speed differentiated the extremely low verbal skill group from the other two groups and problem-solving differentiated the very low verbal skill group from the superior verbal skill group. There were no group differences in sustained attention. Capacity measures of everyday life skills were different across each of the three groups. Crystallized verbal skill in schizophrenia is related to the magnitude of impairment in neurocognitive function and performance-based skills in everyday life function. Patterns of neuropsychological impairment were similar across different levels of crystallized verbal skill.
Leversen, Katrine Tyborg; Sommerfelt, Kristian; Elgen, Irene Bircow; Eide, Geir Egil; Irgens, Lorentz M; Júlíusson, Pétur B; Markestad, Trond
2012-03-01
To examine the predictive value of early assessments on developmental outcome at 5 years in children born extremely preterm. This is a prospective observational study of all infants born in Norway in 1999-2000 with gestational age (GA) <28 weeks or birth weight (BW) <1000 g. At 2 years of age, paediatricians assessed mental and motor development from milestones. At 5 years, parents completed questionnaires on development and professional support before cognitive function was assessed with Wechsler Preschool and Primary Scale of Intelligence-Revised (WPPSI-R) and motor function with the Movement Assessment Battery for children (ABC test). Twenty-six of 373 (7%) children had cerebral palsy at 2 and 29 of 306 (9%) children at 5 years. Of children without major impairments, 51% (95% CI 35-67) of those with and 22% (95% CI 16-28) without mental delay at 2 years had IQ <85 at 5 years, and 36% (95% CI 20-53 with and 16% (95% CI 11-21) without motor delay at 2 years had an ABC score >95th percentile (poor function). Approximately half of those without major impairments but IQ <85 or ABC score >95th percentile had received support or follow-up beyond routine primary care. Previous assessments had limited value in predicting cognitive and motor function at 5 years in these extremely preterm children without major impairments. © 2011 The Author(s)/Acta Paediatrica © 2011 Foundation Acta Paediatrica.
Multi-functional Extreme Environment Surfaces: Nanotribology for Air and Space
2010-09-14
SPANNING THE PHYSICAL SCALES OF MODERN TRIBOLOGY ( QCM ) (STM) Fundamental Challenges and Unsolved Issues How do adsorbed and tribo-generated films impact...Space Applications Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Thrust II: Cryotribology and...Nanocrystalline Diamond for Space Applications Satellite bearings, InfraRed sensor mechanisms Jet engine bearings 2 mm NCD MCD 300 mm Five Years ago: Three
NASA Astrophysics Data System (ADS)
Adhi, H. A.; Wijaya, S. K.; Prawito; Badri, C.; Rezal, M.
2017-03-01
Stroke is one of cerebrovascular diseases caused by the obstruction of blood flow to the brain. Stroke becomes the leading cause of death in Indonesia and the second in the world. Stroke also causes of the disability. Ischemic stroke accounts for most of all stroke cases. Obstruction of blood flow can cause tissue damage which results the electrical changes in the brain that can be observed through the electroencephalogram (EEG). In this study, we presented the results of automatic detection of ischemic stroke and normal subjects based on the scaling exponent EEG obtained through detrended fluctuation analysis (DFA) using extreme learning machine (ELM) as the classifier. The signal processing was performed with 18 channels of EEG in the range of 0-30 Hz. Scaling exponents of the subjects were used as the input for ELM to classify the ischemic stroke. The performance of detection was observed by the value of accuracy, sensitivity and specificity. The result showed, performance of the proposed method to classify the ischemic stroke was 84 % for accuracy, 82 % for sensitivity and 87 % for specificity with 120 hidden neurons and sine as the activation function of ELM.
Influence of spatial and temporal scales in identifying temperature extremes
NASA Astrophysics Data System (ADS)
van Eck, Christel M.; Friedlingstein, Pierre; Mulder, Vera L.; Regnier, Pierre A. G.
2016-04-01
Extreme heat events are becoming more frequent. Notable are severe heatwaves such as the European heatwave of 2003, the Russian heat wave of 2010 and the Australian heatwave of 2013. Surface temperature is attaining new maxima not only during the summer but also during the winter. The year of 2015 is reported to be a temperature record breaking year for both summer and winter. These extreme temperatures are taking their human and environmental toll, emphasizing the need for an accurate method to define a heat extreme in order to fully understand the spatial and temporal spread of an extreme and its impact. This research aims to explore how the use of different spatial and temporal scales influences the identification of a heat extreme. For this purpose, two near-surface temperature datasets of different temporal scale and spatial scale are being used. First, the daily ERA-Interim dataset of 0.25 degree and a time span of 32 years (1979-2010). Second, the daily Princeton Meteorological Forcing Dataset of 0.5 degree and a time span of 63 years (1948-2010). A temperature is considered extreme anomalous when it is surpassing the 90th, 95th, or the 99th percentile threshold based on the aforementioned pre-processed datasets. The analysis is conducted on a global scale, dividing the world in IPCC's so-called SREX regions developed for the analysis of extreme climate events. Pre-processing is done by detrending and/or subtracting the monthly climatology based on 32 years of data for both datasets and on 63 years of data for only the Princeton Meteorological Forcing Dataset. This results in 6 datasets of temperature anomalies from which the location in time and space of the anomalous warm days are identified. Comparison of the differences between these 6 datasets in terms of absolute threshold temperatures for extremes and the temporal and spatial spread of the extreme anomalous warm days show a dependence of the results on the datasets and methodology used. This stresses the need for a careful selection of data and methodology when identifying heat extremes.
Delgado, M R.; Hirtz, D; Aisen, M; Ashwal, S; Fehlings, D L.; McLaughlin, J; Morrison, L A.; Shrader, M W.; Tilton, A; Vargus-Adams, J
2010-01-01
Objective: To evaluate published evidence of efficacy and safety of pharmacologic treatments for childhood spasticity due to cerebral palsy. Methods: A multidisciplinary panel systematically reviewed relevant literature from 1966 to July 2008. Results: For localized/segmental spasticity, botulinum toxin type A is established as an effective treatment to reduce spasticity in the upper and lower extremities. There is conflicting evidence regarding functional improvement. Botulinum toxin type A was found to be generally safe in children with cerebral palsy; however, the Food and Drug Administration is presently investigating isolated cases of generalized weakness resulting in poor outcomes. No studies that met criteria are available on the use of phenol, alcohol, or botulinum toxin type B injections. For generalized spasticity, diazepam is probably effective in reducing spasticity, but there are insufficient data on its effect on motor function and its side-effect profile. Tizanidine is possibly effective, but there are insufficient data on its effect on function and its side-effect profile. There were insufficient data on the use of dantrolene, oral baclofen, and intrathecal baclofen, and toxicity was frequently reported. Recommendations: For localized/segmental spasticity that warrants treatment, botulinum toxin type A should be offered as an effective and generally safe treatment (Level A). There are insufficient data to support or refute the use of phenol, alcohol, or botulinum toxin type B (Level U). For generalized spasticity that warrants treatment, diazepam should be considered for short-term treatment, with caution regarding toxicity (Level B), and tizanidine may be considered (Level C). There are insufficient data to support or refute use of dantrolene, oral baclofen, or continuous intrathecal baclofen (Level U). GLOSSARY AAN = American Academy of Neurology; AE = adverse event; AS = Ashworth scale; BoNT-A = botulinum toxin type A; BoNT-B = botulinum toxin type B; CP = cerebral palsy; FDA = Food and Drug Administration; GAS = Goal Attainment Scale; GMFM = Gross Motor Function Measure; ITB = intrathecal baclofen; MAS = Modified Ashworth scale; OT = occupational therapy; PT = physiotherapy; QUEST = Quality of Upper Extremity Skills Test; TS = Tardieu scale. PMID:20101040
NASA Astrophysics Data System (ADS)
Lenderink, Geert; Attema, Jisk
2015-08-01
Scenarios of future changes in small scale precipitation extremes for the Netherlands are presented. These scenarios are based on a new approach whereby changes in precipitation extremes are set proportional to the change in water vapor amount near the surface as measured by the 2m dew point temperature. This simple scaling framework allows the integration of information derived from: (i) observations, (ii) a new unprecedentedly large 16 member ensemble of simulations with the regional climate model RACMO2 driven by EC-Earth, and (iii) short term integrations with a non-hydrostatic model Harmonie. Scaling constants are based on subjective weighting (expert judgement) of the three different information sources taking also into account previously published work. In all scenarios local precipitation extremes increase with warming, yet with broad uncertainty ranges expressing incomplete knowledge of how convective clouds and the atmospheric mesoscale circulation will react to climate change.
Forner, Alicia; Valladares, Fernando; Bonal, Damien; Granier, André; Grossiord, Charlotte; Aranda, Ismael
2018-03-15
It has been known for a long time that drought intensity is a critical variable in determining water stress of Mediterranean tree species. However, not as much attention has been paid to other drought characteristics, for example the timing of the dry periods. We investigated the impact of the timing and intensity of extreme droughts on growing season length, growth and water-use efficiency of three tree species, Pinus nigra ssp. Salzmannii J.F. Arnold, Quercus ilex ssp. ballota (Desf.) Samp. and Quercus faginea Lam. coexisting in a continental Mediterranean ecosystem. Over the study period (2009-13), intense droughts were observed at annual and seasonal scales, particularly during 2011 and 2012. In 2012, an atypically dry winter and spring was followed by an intense summer drought. Quercus faginea growth was affected more by drought timing than by drought intensity, probably because of its winter-deciduous leaf habit. Pinus nigra showed a lower decrease in secondary growth than observed in the two Quercus species in extremely dry years. Resilience to extreme droughts was different among species, with Q. faginea showing poorer recovery of growth after very dry years. The highest intra- and inter-annual plasticity in water-use efficiency was observed in P. nigra, which maintained a more water-saving strategy. Our results revealed that the timing of extreme drought events can affect tree function to a larger extent than drought intensity, especially in deciduous species. Legacy effects of drought over months and years significantly strengthened the impact of drought timing and intensity on tree function.
TNT equivalency of M10 propellant
NASA Technical Reports Server (NTRS)
Mcintyre, F. L.; Price, P.
1978-01-01
Peak, side-on blast overpressure and scaled, positive impulse have been measured for M10 single-perforated propellant, web size 0.018 inches, using configurations that simulate the handling of bulk material during processing and shipment. Quantities of 11.34, 22.7, 45.4, and 65.8 kg were tested in orthorhombic shipping containers and fiberboard boxes. High explosive equivalency values for each test series were obtained as a function of scaled distance by comparison to known pressure, arrival time and impulse characteristics for hemispherical TNT surface bursts. The equivalencies were found to depend significantly on scaled distance, with higher values of 150-100 percent (pressure) and 350-125 percent (positive impulse) for the extremes within the range from 1.19 to 3.57 m/cube root of kg. Equivalencies as low as 60-140 percent (pressure) and 30-75 percent (positive impulse) were obtained in the range of 7.14 to 15.8 m/cube root of kg. Within experimental error, both peak pressure and positive impulse scaled as a function of charge weight for all quantities tested in the orthorhombic configuration.
Lattice QCD Thermodynamics and RHIC-BES Particle Production within Generic Nonextensive Statistics
NASA Astrophysics Data System (ADS)
Tawfik, Abdel Nasser
2018-05-01
The current status of implementing Tsallis (nonextensive) statistics on high-energy physics is briefly reviewed. The remarkably low freezeout-temperature, which apparently fails to reproduce the firstprinciple lattice QCD thermodynamics and the measured particle ratios, etc. is discussed. The present work suggests a novel interpretation for the so-called " Tsallis-temperature". It is proposed that the low Tsallis-temperature is due to incomplete implementation of Tsallis algebra though exponential and logarithmic functions to the high-energy particle-production. Substituting Tsallis algebra into grand-canonical partition-function of the hadron resonance gas model seems not assuring full incorporation of nonextensivity or correlations in that model. The statistics describing the phase-space volume, the number of states and the possible changes in the elementary cells should be rather modified due to interacting correlated subsystems, of which the phase-space is consisting. Alternatively, two asymptotic properties, each is associated with a scaling function, are utilized to classify a generalized entropy for such a system with large ensemble (produced particles) and strong correlations. Both scaling exponents define equivalence classes for all interacting and noninteracting systems and unambiguously characterize any statistical system in its thermodynamic limit. We conclude that the nature of lattice QCD simulations is apparently extensive and accordingly the Boltzmann-Gibbs statistics is fully fulfilled. Furthermore, we found that the ratios of various particle yields at extreme high and extreme low energies of RHIC-BES is likely nonextensive but not necessarily of Tsallis type.
Deviations from uniform power law scaling in nonstationary time series
NASA Technical Reports Server (NTRS)
Viswanathan, G. M.; Peng, C. K.; Stanley, H. E.; Goldberger, A. L.
1997-01-01
A classic problem in physics is the analysis of highly nonstationary time series that typically exhibit long-range correlations. Here we test the hypothesis that the scaling properties of the dynamics of healthy physiological systems are more stable than those of pathological systems by studying beat-to-beat fluctuations in the human heart rate. We develop techniques based on the Fano factor and Allan factor functions, as well as on detrended fluctuation analysis, for quantifying deviations from uniform power-law scaling in nonstationary time series. By analyzing extremely long data sets of up to N = 10(5) beats for 11 healthy subjects, we find that the fluctuations in the heart rate scale approximately uniformly over several temporal orders of magnitude. By contrast, we find that in data sets of comparable length for 14 subjects with heart disease, the fluctuations grow erratically, indicating a loss of scaling stability.
Johnson, Liam; Bird, Marie-Louise; Muthalib, Makii; Teo, Wei-Peng
2018-01-09
The STRoke Interactive Virtual thErapy (STRIVE) intervention provides community-dwelling stroke survivors access to individualised, remotely supervised progressive exercise training via an online platform. This trial aims to determine the clinical efficacy of the STRIVE intervention and its effect on brain activity in community-dwelling stroke survivors. In a multisite, assessor-blinded randomised controlled trial, 60 stroke survivors >3 months poststroke with mild-to-moderate upper extremity impairment will be recruited and equally randomised by location (Melbourne, Victoria or Launceston, Tasmania) to receive 8 weeks of virtual therapy (VT) at a local exercise training facility or usual care. Participants allocated to VT will perform 3-5 upper limb exercises individualised to their impairment severity and preference, while participants allocated to usual care will be asked to maintain their usual daily activities. The primary outcome measures will be upper limb motor function and impairment, which will be assessed using the Action Research Arm Test and Upper Extremity Fugl-Meyer, respectively. Secondary outcome measures include upper extremity function and spasticity, as measured by the box and block test and Modified AshworthScale, respectively, and task-related changes in bilateral sensorimotor cortex haemodynamics during hand reaching and wrist extension movements as measured by functional near-infrared spectroscopy. Quality of life will be measured using the Euro-Quality of Life-5 Dimension-5 Level Scale, and the Motor Activity Log-28 will be used to measure use of the hemiparetic arm. All measures will be assessed at baseline and immediately postintervention. The study was approved by the Deakin University Human Research Ethics Committee in May 2017 (No. 2017-087). The results will be disseminated in peer-reviewed journals and presented at major international stroke meetings. ACTRN12617000745347; Pre-results. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.
Bird, Marie-Louise; Muthalib, Makii
2018-01-01
Introduction The STRoke Interactive Virtual thErapy (STRIVE) intervention provides community-dwelling stroke survivors access to individualised, remotely supervised progressive exercise training via an online platform. This trial aims to determine the clinical efficacy of the STRIVE intervention and its effect on brain activity in community-dwelling stroke survivors. Methods and analysis In a multisite, assessor-blinded randomised controlled trial, 60 stroke survivors >3 months poststroke with mild-to-moderate upper extremity impairment will be recruited and equally randomised by location (Melbourne, Victoria or Launceston, Tasmania) to receive 8 weeks of virtual therapy (VT) at a local exercise training facility or usual care. Participants allocated to VT will perform 3–5 upper limb exercises individualised to their impairment severity and preference, while participants allocated to usual care will be asked to maintain their usual daily activities. The primary outcome measures will be upper limb motor function and impairment, which will be assessed using the Action Research Arm Test and Upper Extremity Fugl-Meyer, respectively. Secondary outcome measures include upper extremity function and spasticity, as measured by the box and block test and Modified AshworthScale, respectively, and task-related changes in bilateral sensorimotor cortex haemodynamics during hand reaching and wrist extension movements as measured by functional near-infrared spectroscopy. Quality of life will be measured using the Euro-Quality of Life-5 Dimension-5 Level Scale, and the Motor Activity Log-28 will be used to measure use of the hemiparetic arm. All measures will be assessed at baseline and immediately postintervention. Ethics and dissemination The study was approved by the Deakin University Human Research Ethics Committee in May 2017 (No. 2017–087). The results will be disseminated in peer-reviewed journals and presented at major international stroke meetings. Trial registration number ACTRN12617000745347; Pre-results. PMID:29317414
Evangelista, Cláudia Carolina Silva; Guidelli, Giovanna Vieira; Borges, Gustavo; Araujo, Thais Fenz; de Souza, Tiago Alves Jorge; Neves, Ubiraci Pereira da Costa; Tunnacliffe, Alan; Pereira, Tiago Campos
2017-01-01
Abstract The molecular basis of anhydrobiosis, the state of suspended animation entered by some species during extreme desiccation, is still poorly understood despite a number of transcriptome and proteome studies. We therefore conducted functional screening by RNA interference (RNAi) for genes involved in anhydrobiosis in the holo-anhydrobiotic nematode Panagrolaimus superbus. A new method of survival analysis, based on staining, and proof-of-principle RNAi experiments confirmed a role for genes involved in oxidative stress tolerance, while a novel medium-scale RNAi workflow identified a further 40 anhydrobiosis-associated genes, including several involved in proteostasis, DNA repair and signal transduction pathways. This suggests that multiple genes contribute to anhydrobiosis in P. superbus. PMID:29111563
Absolute measurement of undulator radiation in the extreme ultraviolet
NASA Astrophysics Data System (ADS)
Maezawa, H.; Mitani, S.; Suzuki, Y.; Kanamori, H.; Tamamushi, S.; Mikuni, A.; Kitamura, H.; Sasaki, T.
1983-04-01
The spectral brightness of undulator radiation emitted by the model PMU-1 incorporated in the SOR-RING, the dedicated synchrotron radiation source in Tokyo, has been studied in the extreme ultraviolet region from 21.6 to 72.9 eV as a function of the electron energy γ, the field parameter K, and the angle of observation ϴ in the absolute scale. A series of measurements covering the first and the second harmonic component of undulator radiation was compared with the fundamental formula λ n= {λ 0}/{2nγ 2}( {1+K 2}/{2}+γϴ 2 and the effects of finite emittance were studied. The brightness at the first peak was smaller than the theoretical value, while an enhanced second harmonic component was observed.
The analysis of dependence between extreme rainfall and storm surge in the coastal zone
NASA Astrophysics Data System (ADS)
Zheng, F.; Westra, S.
2012-12-01
Flooding in coastal catchments can be caused by runoff generated by an extreme rainfall event, elevated sea levels due to an extreme storm surge event, or the combination of both processes occurring simultaneously or in close succession. Dependence in extreme rainfall and storm surge arises because common meteorological forcings often drive both variables; for example, cyclonic systems may produce extreme rainfall, strong onshore winds and an inverse barometric effect simultaneously, which the former factor influencing catchment discharge and the latter two factors influencing storm surge. Nevertheless there is also the possibility that only one of the variables is extreme at any given time, so that the dependence between rainfall and storm surge is not perfect. Quantification of the strength of dependence between these processes is critical in evaluating the magnitude of flood risk in the coastal zone. This may become more important in the future as the majority of the coastal areas are threatened by the sea level rise due to the climate change. This research uses the most comprehensive record of rainfall and storm surge along the coastline of Australia collected to-date to investigate the strength of dependence between the extreme rainfall and storm surge along the Australia coastline. A bivariate logistic threshold-excess model was employed to this end to carry out the dependence analysis. The strength of the estimated dependence is then evaluated as a function of several factors including: the distance between the tidal gauge and the rain gauge; the lag between the extreme precipitation event and extreme surge event; and the duration of the maximum storm burst. The results show that the dependence between the extreme rainfall and storm surge along the Australia coastline is statistically significant, although some locations clearly exhibit stronger dependence than others. We hypothesize that this is due to a combination of large-scale meteorological effects as well as local scale bathymetry. Additionally, significant dependence can be observed over spatial distances of up to several hundred kilometers, implying that meso-scale meteorological forcings may play an important role in driving the dependence. This is also consistent with the result which shows that significant dependence often remaining for lags of up to one or two days between extremal rainfall and storm surge events. The influence of storm burst duration can also be observed, with rainfall extremes lasting more than several hours typically being more closely associated with storm surge compared with sub-hourly rainfall extremes. These results will have profound implications for how flood risk is evaluated along the coastal zone in Australia, with the strength of dependence varying depending on: (1) the dominant meteorological conditions; (2) the local estuary configuration, influencing the strength of the surge; and (3) the catchment attributes, influencing the duration of the storm burst that will deliver the peak flood events. Although a strong random component remains, we show that the probability of an extreme storm surge during an extreme rainfall event (or vice versa) can be up to ten times greater than under the situation under which there is no dependence, suggesting that failure to account for these interactions can result in a substantial underestimation of flood risk.
Wilson, Lorna R M; Hopcraft, Keith I
2017-12-01
The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.
NASA Astrophysics Data System (ADS)
Wilson, Lorna R. M.; Hopcraft, Keith I.
2017-12-01
The problem of zero crossings is of great historical prevalence and promises extensive application. The challenge is to establish precisely how the autocorrelation function or power spectrum of a one-dimensional continuous random process determines the density function of the intervals between the zero crossings of that process. This paper investigates the case where periodicities are incorporated into the autocorrelation function of a smooth process. Numerical simulations, and statistics about the number of crossings in a fixed interval, reveal that in this case the zero crossings segue between a random and deterministic point process depending on the relative time scales of the periodic and nonperiodic components of the autocorrelation function. By considering the Laplace transform of the density function, we show that incorporating correlation between successive intervals is essential to obtaining accurate results for the interval variance. The same method enables prediction of the density function tail in some regions, and we suggest approaches for extending this to cover all regions. In an ever-more complex world, the potential applications for this scale of regularity in a random process are far reaching and powerful.
NASA Technical Reports Server (NTRS)
Neudeck, Philip G.; Chen, Liangyu; Spry, David J.; Beheim, Glenn M.; Chang, Carl W.
2014-01-01
This work reports DC electrical characterization of a 76 mm diameter 4H-SiC JFET test wafer fabricated as part of NASA's on-going efforts to realize medium-scale ICs with prolonged and stable circuit operation at temperatures as high as 500 degC. In particular, these measurements provide quantitative parameter ranges for use in JFET IC design and simulation. Larger than expected parameter variations were observed both as a function of position across the wafer as well as a function of ambient testing temperature from 23 degC to 500 degC.
Concurrent neuromechanical and functional gains following upper-extremity power training post-stroke
2013-01-01
Background Repetitive task practice is argued to drive neural plasticity following stroke. However, current evidence reveals that hemiparetic weakness impairs the capacity to perform, and practice, movements appropriately. Here we investigated how power training (i.e., high-intensity, dynamic resistance training) affects recovery of upper-extremity motor function post-stroke. We hypothesized that power training, as a component of upper-extremity rehabilitation, would promote greater functional gains than functional task practice without deleterious consequences. Method Nineteen chronic hemiparetic individuals were studied using a crossover design. All participants received both functional task practice (FTP) and HYBRID (combined FTP and power training) in random order. Blinded evaluations performed at baseline, following each intervention block and 6-months post-intervention included: Wolf Motor Function Test (WMFT-FAS, Primary Outcome), upper-extremity Fugl-Meyer Motor Assessment, Ashworth Scale, and Functional Independence Measure. Neuromechanical function was evaluated using isometric and dynamic joint torques and concurrent agonist EMG. Biceps stretch reflex responses were evaluated using passive elbow stretches ranging from 60 to 180º/s and determining: EMG onset position threshold, burst duration, burst intensity and passive torque at each speed. Results Primary outcome: Improvements in WMFT-FAS were significantly greater following HYBRID vs. FTP (p = .049), regardless of treatment order. These functional improvements were retained 6-months post-intervention (p = .03). Secondary outcomes: A greater proportion of participants achieved minimally important differences (MID) following HYBRID vs. FTP (p = .03). MIDs were retained 6-months post-intervention. Ashworth scores were unchanged (p > .05). Increased maximal isometric joint torque, agonist EMG and peak power were significantly greater following HYBRID vs. FTP (p < .05) and effects were retained 6-months post-intervention (p’s < .05). EMG position threshold and burst duration were significantly reduced at fast speeds (≥120º/s) (p’s < 0.05) and passive torque was reduced post-washout (p < .05) following HYBRID. Conclusions Functional and neuromechanical gains were greater following HYBRID vs. FPT. Improved stretch reflex modulation and increased neuromuscular activation indicate potent neural adaptations. Importantly, no deleterious consequences, including exacerbation of spasticity or musculoskeletal complaints, were associated with HYBRID. These results contribute to an evolving body of contemporary evidence regarding the efficacy of high-intensity training in neurorehabilitation and the physiological mechanisms that mediate neural recovery. PMID:23336711
Patten, Carolynn; Condliffe, Elizabeth G; Dairaghi, Christine A; Lum, Peter S
2013-01-21
Repetitive task practice is argued to drive neural plasticity following stroke. However, current evidence reveals that hemiparetic weakness impairs the capacity to perform, and practice, movements appropriately. Here we investigated how power training (i.e., high-intensity, dynamic resistance training) affects recovery of upper-extremity motor function post-stroke. We hypothesized that power training, as a component of upper-extremity rehabilitation, would promote greater functional gains than functional task practice without deleterious consequences. Nineteen chronic hemiparetic individuals were studied using a crossover design. All participants received both functional task practice (FTP) and HYBRID (combined FTP and power training) in random order. Blinded evaluations performed at baseline, following each intervention block and 6-months post-intervention included: Wolf Motor Function Test (WMFT-FAS, Primary Outcome), upper-extremity Fugl-Meyer Motor Assessment, Ashworth Scale, and Functional Independence Measure. Neuromechanical function was evaluated using isometric and dynamic joint torques and concurrent agonist EMG. Biceps stretch reflex responses were evaluated using passive elbow stretches ranging from 60 to 180º/s and determining: EMG onset position threshold, burst duration, burst intensity and passive torque at each speed. Improvements in WMFT-FAS were significantly greater following HYBRID vs. FTP (p = .049), regardless of treatment order. These functional improvements were retained 6-months post-intervention (p = .03). A greater proportion of participants achieved minimally important differences (MID) following HYBRID vs. FTP (p = .03). MIDs were retained 6-months post-intervention. Ashworth scores were unchanged (p > .05). Increased maximal isometric joint torque, agonist EMG and peak power were significantly greater following HYBRID vs. FTP (p < .05) and effects were retained 6-months post-intervention (p's < .05). EMG position threshold and burst duration were significantly reduced at fast speeds (≥120º/s) (p's < 0.05) and passive torque was reduced post-washout (p < .05) following HYBRID. Functional and neuromechanical gains were greater following HYBRID vs. FPT. Improved stretch reflex modulation and increased neuromuscular activation indicate potent neural adaptations. Importantly, no deleterious consequences, including exacerbation of spasticity or musculoskeletal complaints, were associated with HYBRID. These results contribute to an evolving body of contemporary evidence regarding the efficacy of high-intensity training in neurorehabilitation and the physiological mechanisms that mediate neural recovery.
Importance of electromyography and the electrophysiological severity scale in forensic reports.
Bilgin, Nursel Gamsiz; Ozge, Aynur; Mert, Ertan; Yalçinkaya, Deniz E; Kar, Hakan
2007-05-01
Forensic reports on traumatic peripheral nerve injuries include dysfunction degrees of extremities, which are arranged according to the Turkish Penalty Code. The aim of this study is to discuss the role and importance of electromyography while preparing forensic reports in the cases of traumatic peripheral nerve injuries and the usefulness of scoring systems. A modified global scale, recommended by Mondelli et al., was used to assess the electrophysiological impairment of each peripheral nerve. Forensic reports of 106 patients, reported between 2002 and 2004, were evaluated. Thirty-four percent of the cases were reported as "total loss of function," 41.5% were reported as "functional disability," and there were no dysfunctions in the other cases in forensic reports that were prepared based on Council of Social Insurance Regulations of Health Processes and Guide prepared by the Council of Forensic Medicine and profession associations of forensic medicine. When we rearranged these forensic reports based on the electrophysiological severity scale (ESS), it was clearly found that all of the score 2 cases and 86.7% of the score 3 cases corresponded to "functional disability" and 91.4% of the score 4 cases correspond to "total loss of function." We found a significant correlation between the ESS and functional evaluation in peripheral nerve injury cases. Evaluation of functional disabilities in peripheral nerve injuries with the ESS represents a standardized and objective method used for forensic reports.
Expanding the scale of molecular biophysics.
Levine, Herbert
2016-10-07
Here, I argue that some of the secrets of complex biological function rely on assemblies of many heterogeneous proteins that together enable sophisticated sensing and actuating processes. Evolution seems to delight in making these structures and in continually elaborating upon their capabilities. Developing tools that can go beyond the few protein limit, both on the experimental frontier and from a theoretical, conceptual framework, should be an extremely high priority for the next generation of molecular biophysicists.
Manual therapy in the management of a patient with a symptomatic Morton's Neuroma: A case report.
Sault, Josiah D; Morris, Matthew V; Jayaseelan, Dhinu J; Emerson-Kavchak, Alicia J
2016-02-01
Patients with Morton's neuroma are rarely referred to physical therapy. This case reports the resolution of pain, increase in local pressure pain thresholds, and improvement of scores on the Lower Extremity Functional Scale and Foot and Ankle Ability Measure following a course of joint based manual therapy for a patient who had failed standard conservative medical treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.
Neblett, Randy; Mayer, Tom G; Williams, Mark J; Asih, Sali; Cuesta-Vargas, Antonio I; Hartzell, Meredith M; Gatchel, Robert J
2017-12-01
To assess the clinical validity and factor structure of the Fear-Avoidance Components Scale (FACS), a new fear-avoidance measure. In this study, 426 chronic musculoskeletal pain disorder patients were admitted to a Functional Restoration Program (FRP). They were categorized into 5 FACS severity levels, from subclinical to extreme, at admission, and again at discharge. Associations with objective lifting performance and other patient-reported psychosocial measures were determined at admission and discharge, and objective work outcomes for this predominantly disabled cohort, were assessed 1 year later. Those patients in the severe and extreme FACS severity groups at admission were more likely to "drop out" of treatment than those in the lower severity groups (P=0.05). At both admission and discharge, the FACS severity groups were highly and inversely correlated with objective lifting performance and patient-reported fear-avoidance-related psychosocial variables, including kinesiophobia, pain intensity, depressive symptoms, perceived disability, perceived injustice, and insomnia (Ps<0.001). All variables showed improvement at FRP discharge. Patients in the extreme FACS severity group at discharge were less likely to return to, or retain, work 1 year later (P≤0.02). A factor analysis identified a 2-factor solution. Strong associations were found among FACS scores and other patient-reported psychosocial and objective lifting performance variables at both admission and discharge. High discharge-FACS scores were associated with worse work outcomes 1 year after discharge. The FACS seems to be a valid and clinically useful measure for predicting attendance, physical performance, distress, and relevant work outcomes in FRP treatment of chronic musculoskeletal pain disorder patients.
Sauers, Eric L; Bay, R Curtis; Snyder Valier, Alison R; Ellery, Traci; Huxel Bliven, Kellie C
2017-03-01
Upper extremity (UE) region-specific, patient-reported outcome (PRO) scales assess injuries to the UE but do not account for the demands of overhead throwing athletes or measure patient-oriented domains of health-related quality of life (HRQOL). To develop the Functional Arm Scale for Throwers (FAST), a UE region-specific and population-specific PRO scale that assesses multiple domains of disablement in throwing athletes with UE injuries. In stage I, a beta version of the scale was developed for subsequent factor identification, final item reduction, and construct validity analysis during stage II. Descriptive laboratory study. Three-stage scale development was utilized: Stage I (item generation and initial item reduction) and stage II (factor analysis, final item reduction, and construct validity) are reported herein, and stage III (establishment of measurement properties [reliability and validity]) will be reported in a companion paper. In stage I, a beta version was developed, incorporating National Center for Medical Rehabilitation Research disablement domains and ensuring a blend of sport-related and non-sport-related items. An expert panel and focus group assessed importance and interpretability of each item. During stage II, the FAST was reduced, preserving variance characteristics and factor structure of the beta version and construct validity of the final FAST scale. During stage I, a 54-item beta version and a separate 9-item pitcher module were developed. During stage II, a 22-item FAST and 9-item pitcher module were finalized. The factor solution for FAST scale items included pain (n = 6), throwing (n = 10), activities of daily living (n = 5), psychological impact (n = 4), and advancement (n = 3). The 6-item pain subscale crossed factors. The remaining subscales and pitcher module are distinctive, correlated, and internally consistent and may be interpreted individually or combined. This article describes the development of the FAST, which assesses clinical outcomes and HRQOL of throwing athletes after UE injury. The FAST encompasses multiple domains of disability and demonstrates excellent construct validity. The FAST provides a single UE region-specific and population-specific PRO scale for high-demand throwers to facilitate measurement of impact of UE injuries on HRQOL and clinical outcomes while quantifying recovery for comparative effectiveness studies.
NASA Astrophysics Data System (ADS)
Keilis-Borok, V. I.; Soloviev, A. A.
2010-09-01
Socioeconomic and natural complex systems persistently generate extreme events also known as disasters, crises, or critical transitions. Here we analyze patterns of background activity preceding extreme events in four complex systems: economic recessions, surges in homicides in a megacity, magnetic storms, and strong earthquakes. We use as a starting point the indicators describing the system's behavior and identify changes in an indicator's trend. Those changes constitute our background events (BEs). We demonstrate a premonitory pattern common to all four systems considered: relatively large magnitude BEs become more frequent before extreme event. A premonitory change of scaling has been found in various models and observations. Here we demonstrate this change in scaling of uniformly defined BEs in four real complex systems, their enormous differences notwithstanding.
NASA Astrophysics Data System (ADS)
Herath, Sujeewa Malwila; Sarukkalige, Ranjan; Nguyen, Van Thanh Van
2018-01-01
Understanding the relationships between extreme daily and sub-daily rainfall events and their governing factors is important in order to analyse the properties of extreme rainfall events in a changing climate. Atmospheric temperature is one of the dominant climate variables which has a strong relationship with extreme rainfall events. In this study, a temperature-rainfall binning technique is used to evaluate the dependency of extreme rainfall on daily maximum temperature. The Clausius-Clapeyron (C-C) relation was found to describe the relationship between daily maximum temperature and a range of rainfall durations from 6 min up to 24 h for seven Australian weather stations, the stations being located in Adelaide, Brisbane, Canberra, Darwin, Melbourne, Perth and Sydney. The analysis shows that the rainfall - temperature scaling varies with location, temperature and rainfall duration. The Darwin Airport station shows a negative scaling relationship, while the other six stations show a positive relationship. To identify the trend in scaling relationship over time the same analysis is conducted using data covering 10 year periods. Results indicate that the dependency of extreme rainfall on temperature also varies with the analysis period. Further, this dependency shows an increasing trend for more extreme short duration rainfall and a decreasing trend for average long duration rainfall events at most stations. Seasonal variations of the scale changing trends were analysed by categorizing the summer and autumn seasons in one group and the winter and spring seasons in another group. Most of 99th percentile of 6 min, 1 h and 24 h rain durations at Perth, Melbourne and Sydney stations show increasing trend for both groups while Adelaide and Darwin show decreasing trend. Furthermore, majority of scaling trend of 50th percentile are decreasing for both groups.
Extreme-volatility dynamics in crude oil markets
NASA Astrophysics Data System (ADS)
Jiang, Xiong-Fei; Zheng, Bo; Qiu, Tian; Ren, Fei
2017-02-01
Based on concepts and methods from statistical physics, we investigate extreme-volatility dynamics in the crude oil markets, using the high-frequency data from 2006 to 2010 and the daily data from 1986 to 2016. The dynamic relaxation of extreme volatilities is described by a power law, whose exponents usually depend on the magnitude of extreme volatilities. In particular, the relaxation before and after extreme volatilities is time-reversal symmetric at the high-frequency time scale, but time-reversal asymmetric at the daily time scale. This time-reversal asymmetry is mainly induced by exogenous events. However, the dynamic relaxation after exogenous events exhibits the same characteristics as that after endogenous events. An interacting herding model both with and without exogenous driving forces could qualitatively describe the extreme-volatility dynamics.
Causing Factors for Extreme Precipitation in the Western Saudi-Arabian Peninsula
NASA Astrophysics Data System (ADS)
Alharbi, M. M.; Leckebusch, G. C.
2015-12-01
In the western coast of Saudi Arabia the climate is in general semi-arid but extreme precipitation events occur on a regular basis: e.g., on 26th November 2009, when 122 people were killed and 350 reported missing in Jeddah following more than 90mm in just four hours. Our investigation will a) analyse major drivers of the generation of extremes and b) investigate major responsible modes of variability for the occurrence of extremes. Firstly, we present a systematic analysis of station based observations of the most relevant extreme events (1985-2013) for 5 stations (Gizan, Makkah, Jeddah, Yenbo and Wejh). Secondly, we investigate the responsible mechanism on the synoptic to large-scale leading to the generation of extremes and will analyse factors for the time variability of extreme event occurrence. Extreme events for each station are identified in the wet season (Nov-Jan): 122 events show intensity above the respective 90th percentile. The most extreme events are systematically investigated with respect to the responsible forcing conditions which we can identify as: The influence of the Soudan Low, active Red-Sea-Trough situations established via interactions with mid-latitude tropospheric wave activity, low pressure systems over the Mediterranean, the influence of the North Africa High, the Arabian Anticyclone and the influence of the Indian monsoon trough. We investigate the role of dynamical forcing factors like the STJ and the upper-troposphere geopotential conditions and the relation to smaller local low-pressure systems. By means of an empirical orthogonal function (EOF) analysis based on MSLP we investigate the possibility to objectively quantify the influence of existing major variability modes and their role for the generation of extreme precipitation events.
Reconstructing metabolic flux vectors from extreme pathways: defining the alpha-spectrum.
Wiback, Sharon J; Mahadevan, Radhakrishnan; Palsson, Bernhard Ø
2003-10-07
The move towards genome-scale analysis of cellular functions has necessitated the development of analytical (in silico) methods to understand such large and complex biochemical reaction networks. One such method is extreme pathway analysis that uses stoichiometry and thermodynamic irreversibly to define mathematically unique, systemic metabolic pathways. These extreme pathways form the edges of a high-dimensional convex cone in the flux space that contains all the attainable steady state solutions, or flux distributions, for the metabolic network. By definition, any steady state flux distribution can be described as a nonnegative linear combination of the extreme pathways. To date, much effort has been focused on calculating, defining, and understanding these extreme pathways. However, little work has been performed to determine how these extreme pathways contribute to a given steady state flux distribution. This study represents an initial effort aimed at defining how physiological steady state solutions can be reconstructed from a network's extreme pathways. In general, there is not a unique set of nonnegative weightings on the extreme pathways that produce a given steady state flux distribution but rather a range of possible values. This range can be determined using linear optimization to maximize and minimize the weightings of a particular extreme pathway in the reconstruction, resulting in what we have termed the alpha-spectrum. The alpha-spectrum defines which extreme pathways can and cannot be included in the reconstruction of a given steady state flux distribution and to what extent they individually contribute to the reconstruction. It is shown that accounting for transcriptional regulatory constraints can considerably shrink the alpha-spectrum. The alpha-spectrum is computed and interpreted for two cases; first, optimal states of a skeleton representation of core metabolism that include transcriptional regulation, and second for human red blood cell metabolism under various physiological, non-optimal conditions.
Polatajko, Helene; Baum, Carolyn; Rios, Jorge; Cirone, Dianne; Doherty, Meghan; McEwen, Sara
2016-01-01
The purpose of this study was to estimate the effect of Cognitive Orientation to Daily Occupational Performance (CO–OP) compared with usual occupational therapy on upper-extremity movement, cognitive flexibility, and stroke impact in people less than 3 mo after stroke. An exploratory, single-blind randomized controlled trial was conducted with people referred to outpatient occupational therapy services at two rehabilitation centers. Arm movement was measured with the Action Research Arm Test, cognitive flexibility with the Delis–Kaplan Executive Function System Trail Making subtest, and stroke impact with subscales of the Stroke Impact Scale. A total of 35 participants were randomized, and 26 completed the intervention. CO–OP demonstrated measurable effects over usual care on all measures. These data provide early support for the use of CO–OP to improve performance and remediate cognitive and arm movement impairments after stroke over usual care; however, future study is warranted to confirm the effects observed in this trial. PMID:26943113
Calculating p-values and their significances with the Energy Test for large datasets
NASA Astrophysics Data System (ADS)
Barter, W.; Burr, C.; Parkes, C.
2018-04-01
The energy test method is a multi-dimensional test of whether two samples are consistent with arising from the same underlying population, through the calculation of a single test statistic (called the T-value). The method has recently been used in particle physics to search for samples that differ due to CP violation. The generalised extreme value function has previously been used to describe the distribution of T-values under the null hypothesis that the two samples are drawn from the same underlying population. We show that, in a simple test case, the distribution is not sufficiently well described by the generalised extreme value function. We present a new method, where the distribution of T-values under the null hypothesis when comparing two large samples can be found by scaling the distribution found when comparing small samples drawn from the same population. This method can then be used to quickly calculate the p-values associated with the results of the test.
A library of protein cage architectures as nanomaterials.
Flenniken, M L; Uchida, M; Liepold, L O; Kang, S; Young, M J; Douglas, T
2009-01-01
Virus capsids and other structurally related cage-like proteins such as ferritins, dps, and heat shock proteins have three distinct surfaces (inside, outside, interface) that can be exploited to generate nanomaterials with multiple functionality by design. Protein cages are biological in origin and each cage exhibits extremely homogeneous size distribution. This homogeneity can be used to attain a high degree of homogeneity of the templated material and its associated property. A series of protein cages exhibiting diversity in size, functionality, and chemical and thermal stabilities can be utilized for materials synthesis under a variety of conditions. Since synthetic approaches to materials science often use harsh temperature and pH, it is an advantage to utilize protein cages from extreme environments. In this chapter, we review recent studies on discovering novel protein cages from harsh natural environments such as the acidic thermal hot springs at Yellowstone National Park (YNP) and on utilizing protein cages as nano-scale platforms for developing nanomaterials with wide range of applications from electronics to biomedicine.
Manchikanti, Laxmaiah; Cash, Kimberly A.; Pampati, Vidyasagar; Wargo, Bradley W.; Malla, Yogesh
2012-01-01
Study Design: A randomized, double-blind, active controlled trial. Objective: To evaluate the effectiveness of cervical interlaminar epidural injections of local anesthetic with or without steroids in the management of chronic neck pain and upper extremity pain in patients with disc herniation and radiculitis. Summary of Background Data: Epidural injections in managing chronic neck and upper extremity pain are commonly employed interventions. However, their long-term effectiveness, indications, and medical necessity, of their use and their role in various pathologies responsible for persistent neck and upper extremity pain continue to be debated, even though, neck and upper extremity pain secondary to disc herniation and radiculitis, is described as the common indication. There is also paucity of high quality literature. Methods: One-hundred twenty patients were randomly assigned to one of 2 groups: Group I patients received cervical interlaminar epidural injections of local anesthetic (lidocaine 0.5%, 5 mL); Group II patients received 0.5% lidocaine, 4 mL, mixed with 1 mL of nonparticulate betamethasone. Primary outcome measure was ≥ 50 improvement in pain and function. Outcome assessments included Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), opioid intake, employment, and changes in weight. Results: Significant pain relief and functional status improvement (≥ 50%) was demonstrated in 72% of patients who received local anesthetic only and 68% who received local anesthetic and steroids. In the successful group of participants, significant improvement was illustrated in 77% in local anesthetic group and 82% in local anesthetic with steroid group. Conclusions: Cervical interlaminar epidural injections with or without steroids may provide significant improvement in pain and function for patients with cervical disc herniation and radiculitis. PMID:22859902
Manchikanti, Laxmaiah; Cash, Kimberly A; Pampati, Vidyasagar; Wargo, Bradley W; Malla, Yogesh
2012-01-01
A randomized, double-blind, active controlled trial. To evaluate the effectiveness of cervical interlaminar epidural injections of local anesthetic with or without steroids in the management of chronic neck pain and upper extremity pain in patients with disc herniation and radiculitis. Epidural injections in managing chronic neck and upper extremity pain are commonly employed interventions. However, their long-term effectiveness, indications, and medical necessity, of their use and their role in various pathologies responsible for persistent neck and upper extremity pain continue to be debated, even though, neck and upper extremity pain secondary to disc herniation and radiculitis, is described as the common indication. There is also paucity of high quality literature. One-hundred twenty patients were randomly assigned to one of 2 groups: Group I patients received cervical interlaminar epidural injections of local anesthetic (lidocaine 0.5%, 5 mL); Group II patients received 0.5% lidocaine, 4 mL, mixed with 1 mL of nonparticulate betamethasone. Primary outcome measure was ≥ 50 improvement in pain and function. Outcome assessments included Numeric Rating Scale (NRS), Oswestry Disability Index (ODI), opioid intake, employment, and changes in weight. Significant pain relief and functional status improvement (≥ 50%) was demonstrated in 72% of patients who received local anesthetic only and 68% who received local anesthetic and steroids. In the successful group of participants, significant improvement was illustrated in 77% in local anesthetic group and 82% in local anesthetic with steroid group. Cervical interlaminar epidural injections with or without steroids may provide significant improvement in pain and function for patients with cervical disc herniation and radiculitis.
Zwaan, Eva M; IJsselmuiden, Alexander J J; van Rosmalen, Joost; van Geuns, Robert-Jan M; Amoroso, Giovanni; Moerman, Esther; Ritt, Marco J P F; Schreuders, Ton A R; Kofflard, Marcel J M; Holtzer, Carlo A J
2016-12-01
The aim of this study is to provide a complete insight in the access-site morbidity and upper extremity function after Transradial Percutaneous Coronary Intervention (TR-PCI). In percutaneous coronary intervention the Transradial Approach (TRA) is gaining popularity as a default technique. It is a very promising technique with respect to post-procedure complications, but the exact effects of TRA on upper extremity function are unknown. The effects of trAnsRadial perCUtaneouS coronary intervention on upper extremity function (ARCUS) trial is a multicenter prospective cohort study that will be conducted in all patients admitted for TR-PCI. Clinical outcomes will be monitored during a follow-up of 6 months, with its primary endpoint at two weeks of follow-up. To investigate the complete upper extremity function, a combination of physical examinations and validated questionnaires will be used to provide information on anatomical integrity, strength, range of motion (ROM), coordination, sensibility, pain, and functioning in everyday life. Procedural and material specifications will be registered in order to include all possible aspects influencing upper extremity function. Results from this study will elucidate the effect of TR-PCI on upper extremity function. This creates the opportunity to further optimize TR-PCI, to make improvements in functional outcome and to prevent morbidity regarding full upper extremity function. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Dowling, N Maritza; Bolt, Daniel M; Deng, Sien; Li, Chenxi
2016-05-26
Patient-reported outcome (PRO) measures play a key role in the advancement of patient-centered care research. The accuracy of inferences, relevance of predictions, and the true nature of the associations made with PRO data depend on the validity of these measures. Errors inherent to self-report measures can seriously bias the estimation of constructs assessed by the scale. A well-documented disadvantage of self-report measures is their sensitivity to response style (RS) effects such as the respondent's tendency to select the extremes of a rating scale. Although the biasing effect of extreme responding on constructs measured by self-reported tools has been widely acknowledged and studied across disciplines, little attention has been given to the development and systematic application of methodologies to assess and control for this effect in PRO measures. We review the methodological approaches that have been proposed to study extreme RS effects (ERS). We applied a multidimensional item response theory model to simultaneously estimate and correct for the impact of ERS on trait estimation in a PRO instrument. Model estimates were used to study the biasing effects of ERS on sum scores for individuals with the same amount of the targeted trait but different levels of ERS. We evaluated the effect of joint estimation of multiple scales and ERS on trait estimates and demonstrated the biasing effects of ERS on these trait estimates when used as explanatory variables. A four-dimensional model accounting for ERS bias provided a better fit to the response data. Increasing levels of ERS showed bias in total scores as a function of trait estimates. The effect of ERS was greater when the pattern of extreme responding was the same across multiple scales modeled jointly. The estimated item category intercepts provided evidence of content independent category selection. Uncorrected trait estimates used as explanatory variables in prediction models showed downward bias. A comprehensive evaluation of the psychometric quality and soundness of PRO assessment measures should incorporate the study of ERS as a potential nuisance dimension affecting the accuracy and validity of scores and the impact of PRO data in clinical research and decision making.
NASA Astrophysics Data System (ADS)
Qi, Juanjuan; Chen, Ke; Zhang, Shuhao; Yang, Yun; Guo, Lin; Yang, Shihe
2017-03-01
The controllable self-assembly of nanosized building blocks into larger specific structures can provide an efficient method of synthesizing novel materials with excellent properties. The self-assembly of nanocrystals by assisted means is becoming an extremely active area of research, because it provides a method of producing large-scale advanced functional materials with potential applications in the areas of energy, electronics, optics, and biologics. In this study, we applied an efficient strategy, namely, the use of ‘pressure control’ to the assembly of silver sulfide (Ag2S) nanospheres with a diameter of approximately 33 nm into large-scale, uniform Ag2S sub-microspheres with a size of about 0.33 μm. More importantly, this strategy realizes the online control of the overall reaction system, including the pressure, reaction time, and temperature, and could also be used to easily fabricate other functional materials on an industrial scale. Moreover, the thermodynamics and kinetics parameters for the thermal decomposition of silver diethyldithiocarbamate (Ag(DDTC)) are also investigated to explore the formation mechanism of the Ag2S nanosized building blocks which can be assembled into uniform sub-micron scale architecture. As a method of producing sub-micron Ag2S particles by means of the pressure-controlled self-assembly of nanoparticles, we foresee this strategy being an efficient and universally applicable option for constructing other new building blocks and assembling novel and large functional micromaterials on an industrial scale.
NASA Astrophysics Data System (ADS)
Price, Aaron; Lee, H.
2010-01-01
Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.
Amputation: Not a failure for severe lower extremity combat injury.
van Dongen, Thijs T C F; Huizinga, Eelco P; de Kruijff, Loes G M; van der Krans, Arie C; Hoogendoorn, Jochem M; Leenen, Luke P H; Hoencamp, Rigo
2017-02-01
The use of improvised explosive devices is a frequent method of insurgents to inflict harm on deployed military personnel. Consequently, lower extremity injuries make up the majority of combat related trauma. The wounding pattern of an explosion is not often encountered in a civilian population and can lead to substantial disability. It is therefore important to study the impact of these lower extremity injuries and their treatment (limb salvage versus amputation) on functional outcome and quality of life. All Dutch repatriated service members receiving treatment for wounds on the lower extremity sustained in the Afghan theater between august 2005 and August 2014, were invited to participate in this observational cohort study. We conducted a survey regarding their physical and mental health using the Short Form health survey 36, EuroQoL 6 dimensions and Lower Extremity Functional Scale questionnaires. Results were collated in a specifically designed electronic database combined with epidemiology and hospital statistics gathered from the archive of the Central Military Hospital. Statistical analyses were performed to identify differences between combat and non-combat related injuries and between limb salvage treatment and amputation. In comparison with non-battle injury patients, battle casualties were significantly younger of age, sustained more severe injuries, needed more frequent operations and clinical rehabilitation. Their long-term outcome scores in areas concerning well-being, social and cognitive functioning, were significantly lower. Regarding treatment, amputees experienced higher physical well-being and less pain compared to those treated with limb salvage surgery. Sustaining a combat injury to the lower extremity can lead to partial or permanent dysfunction. However, wounded service members, amputees included, are able to achieve high levels of activity and participation in society, proving a remarkable resilience. These long-term results demonstrate that amputation is not a failure for casualty and surgeon, and strengthen a life before limb (damage control surgery) mindset in the initial phase. For future research, we recommend the use of adequate coding and injury scoring systems to predict outcome and give insight in the attributes that are supportive for the resilience that is needed to cope with a serious battle injury. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sütbeyaz, Serap; Yavuzer, Gunes; Sezer, Nebahat; Koseoglu, B Füsun
2007-05-01
To evaluate the effects of mirror therapy, using motor imagery training, on lower-extremity motor recovery and motor functioning of patients with subacute stroke. Randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 6 months. Rehabilitation education and research hospital. A total of 40 inpatients with stroke (mean age, 63.5 y), all within 12 months poststroke and without volitional ankle dorsiflexion. Thirty minutes per day of the mirror therapy program, consisting of nonparetic ankle dorsiflexion movements or sham therapy, in addition to a conventional stroke rehabilitation program, 5 days a week, 2 to 5 hours a day, for 4 weeks. The Brunnstrom stages of motor recovery, spasticity assessed by the Modified Ashworth Scale (MAS), walking ability (Functional Ambulation Categories [FAC]), and motor functioning (motor items of the FIM instrument). The mean change score and 95% confidence interval (CI) of the Brunnstrom stages (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 0.8; 95% CI, 0.5-1.2; P=.002), as well as the FIM motor score (mean, 21.4; 95% CI, 18.2-24.7; vs mean, 12.5; 95% CI, 9.6-14.8; P=.001) showed significantly more improvement at follow-up in the mirror group compared with the control group. Neither MAS (mean, 0.8; 95% CI, 0.4-1.2; vs mean, 0.3; 95% CI, 0.1-0.7; P=.102) nor FAC (mean, 1.7; 95% CI, 1.2-2.1; vs mean, 1.5; 95% CI, 1.1-1.9; P=.610) showed a significant difference between the groups. Mirror therapy combined with a conventional stroke rehabilitation program enhances lower-extremity motor recovery and motor functioning in subacute stroke patients.
Lo, Wai Leung; Lin, Qiang; Xiao, Xiang; Raghavan, Preeti; Huang, Dong-Feng
2015-01-01
Objective. Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Setting. Inpatient department of rehabilitation medicine at a university-affiliated hospital. Participants. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Interventions. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Main Outcome Measures. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Results. Both groups improved on balance and lower extremity motor function measures (P < 0.05), with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P < 0.05) after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P < 0.05) for the BWSTT group during the stance and swing phases compared to baseline. Conclusion. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function. PMID:26649295
Mao, Yu-Rong; Lo, Wai Leung; Lin, Qiang; Li, Le; Xiao, Xiang; Raghavan, Preeti; Huang, Dong-Feng
2015-01-01
Gait performance is an indicator of mobility impairment after stroke. This study evaluated changes in balance, lower extremity motor function, and spatiotemporal gait parameters after receiving body weight supported treadmill training (BWSTT) and conventional overground walking training (CT) in patients with subacute stroke using 3D motion analysis. Inpatient department of rehabilitation medicine at a university-affiliated hospital. 24 subjects with unilateral hemiplegia in the subacute stage were randomized to the BWSTT (n = 12) and CT (n = 12) groups. Parameters were compared between the two groups. Data from twelve age matched healthy subjects were recorded as reference. Patients received gait training with BWSTT or CT for an average of 30 minutes/day, 5 days/week, for 3 weeks. Balance was measured by the Brunel balance assessment. Lower extremity motor function was evaluated by the Fugl-Meyer assessment scale. Kinematic data were collected and analyzed using a gait capture system before and after the interventions. Both groups improved on balance and lower extremity motor function measures (P < 0.05), with no significant difference between the two groups after intervention. However, kinematic data were significantly improved (P < 0.05) after BWSTT but not after CT. Maximum hip extension and flexion angles were significantly improved (P < 0.05) for the BWSTT group during the stance and swing phases compared to baseline. In subacute patients with stroke, BWSTT can lead to improved gait quality when compared with conventional gait training. Both methods can improve balance and motor function.
xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit
DOE Office of Scientific and Technical Information (OSTI.GOV)
Heroux, Michael A.; Bartlett, Roscoe; Demeshko, Irina
Here, extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundationmore » for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.« less
xSDK Foundations: Toward an Extreme-scale Scientific Software Development Kit
Heroux, Michael A.; Bartlett, Roscoe; Demeshko, Irina; ...
2017-03-01
Here, extreme-scale computational science increasingly demands multiscale and multiphysics formulations. Combining software developed by independent groups is imperative: no single team has resources for all predictive science and decision support capabilities. Scientific libraries provide high-quality, reusable software components for constructing applications with improved robustness and portability. However, without coordination, many libraries cannot be easily composed. Namespace collisions, inconsistent arguments, lack of third-party software versioning, and additional difficulties make composition costly. The Extreme-scale Scientific Software Development Kit (xSDK) defines community policies to improve code quality and compatibility across independently developed packages (hypre, PETSc, SuperLU, Trilinos, and Alquimia) and provides a foundationmore » for addressing broader issues in software interoperability, performance portability, and sustainability. The xSDK provides turnkey installation of member software and seamless combination of aggregate capabilities, and it marks first steps toward extreme-scale scientific software ecosystems from which future applications can be composed rapidly with assured quality and scalability.« less
Changes and Attribution of Extreme Precipitation in Climate Models: Subdaily and Daily Scales
NASA Astrophysics Data System (ADS)
Zhang, W.; Villarini, G.; Scoccimarro, E.; Vecchi, G. A.
2017-12-01
Extreme precipitation events are responsible for numerous hazards, including flooding, soil erosion, and landslides. Because of their significant socio-economic impacts, the attribution and projection of these events is of crucial importance to improve our response, mitigation and adaptation strategies. Here we present results from our ongoing work.In terms of attribution, we use idealized experiments [pre-industrial control experiment (PI) and 1% per year increase (1%CO2) in atmospheric CO2] from ten general circulation models produced under the Coupled Model Intercomparison Project Phase 5 (CMIP5) and the fraction of attributable risk to examine the CO2 effects on extreme precipitation at the sub-daily and daily scales. We find that the increased CO2 concentration substantially increases the odds of the occurrence of sub-daily precipitation extremes compared to the daily scale in most areas of the world, with the exception of some regions in the sub-tropics, likely in relation to the subsidence of the Hadley Cell. These results point to the large role that atmospheric CO2 plays in extreme precipitation under an idealized framework. Furthermore, we investigate the changes in extreme precipitation events with the Community Earth System Model (CESM) climate experiments using the scenarios consistent with the 1.5°C and 2°C temperature targets. We find that the frequency of annual extreme precipitation at a global scale increases in both 1.5°C and 2°C scenarios until around 2070, after which the magnitudes of the trend become much weaker or even negative. Overall, the frequency of global annual extreme precipitation is similar between 1.5°C and 2°C for the period 2006-2035, and the changes in extreme precipitation in individual seasons are consistent with those for the entire year. The frequency of extreme precipitation in the 2°C experiments is higher than for the 1.5°C experiment after the late 2030s, particularly for the period 2071-2100.
Role of absorbing aerosols on hot extremes in India in a GCM
NASA Astrophysics Data System (ADS)
Mondal, A.; Sah, N.; Venkataraman, C.; Patil, N.
2017-12-01
Temperature extremes and heat waves in North-Central India during the summer months of March through June are known for causing significant impact in terms of human health, productivity and mortality. While greenhouse gas-induced global warming is generally believed to intensify the magnitude and frequency of such extremes, aerosols are usually associated with an overall cooling, by virtue of their dominant radiation scattering nature, in most world regions. Recently, large-scale atmospheric conditions leading to heat wave and extreme temperature conditions have been analysed for the North-Central Indian region. However, the role of absorbing aerosols, including black carbon and dust, is still not well understood, in mediating hot extremes in the region. In this study, we use 30-year simulations from a chemistry-coupled atmosphere-only General Circulation Model (GCM), ECHAM6-HAM2, forced with evolving aerosol emissions in an interactive aerosol module, along with observed sea surface temperatures, to examine large-scale and mesoscale conditions during hot extremes in India. The model is first validated with observed gridded temperature and reanalysis data, and is found to represent observed variations in temperature in the North-Central region and concurrent large-scale atmospheric conditions during high temperature extremes realistically. During these extreme events, changes in near surface properties include a reduction in single scattering albedo and enhancement in short-wave solar heating rate, compared to climatological conditions. This is accompanied by positive anomalies of black carbon and dust aerosol optical depths. We conclude that the large-scale atmospheric conditions such as the presence of anticyclones and clear skies, conducive to heat waves and high temperature extremes, are exacerbated by absorbing aerosols in North-Central India. Future air quality regulations are expected to reduce sulfate particles and their masking of GHG warming. It is concurrently important to mitigate emissions of warming black carbon particles, to manage future climate change-induced hot extremes.
[Efficacy of interventions with video games consoles in stroke patients: a systematic review].
Ortiz-Huerta, J H; Perez-de-Heredia-Torres, M; Guijo-Blanco, V; Santamaria-Vazquez, M
2018-01-16
In recent years video games and games consoles have been developed that are potentially useful in rehabilitation, which has led to studies conducted to evaluate the degree of efficacy of these treatments for people following a stroke. To analyse the literature available related to the effectiveness of applying video games consoles in the functional recovery of the upper extremities in subjects who have survived a stroke. A review of the literature was conducted in the CINHAL, Medline, PEDro, PsycArticles, PsycInfo, Science Direct, Scopus and Web of Science databases, using the query terms 'video game', 'stroke', 'hemiplegia', 'upper extremity' and 'hemiparesis'. After applying the eligibility criteria (clinical trials published between 2007 and 2017, whose participants were adults who had suffered a stroke with involvement of the upper extremity and who used video games), the scientific quality of the selected studies was rated by means of the PEDro scale. Eleven valid clinical trials were obtained for the systematic review. The studies that were selected, all of which were quantitative, presented different data and the inferential results indicated different levels of significance between control and experimental groups (82%) or between the different types of treatment (18%). The use of video games consoles is a useful complement for the conventional rehabilitation of the upper extremities of persons who have survived a stroke, since it increases rehabilitation time and enhances the recovery of motor functioning. Nevertheless, homogeneous intervention protocols need to be implemented in order to standardise the intervention.
Approaching the exa-scale: a real-world evaluation of rendering extremely large data sets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Patchett, John M; Ahrens, James P; Lo, Li - Ta
2010-10-15
Extremely large scale analysis is becoming increasingly important as supercomputers and their simulations move from petascale to exascale. The lack of dedicated hardware acceleration for rendering on today's supercomputing platforms motivates our detailed evaluation of the possibility of interactive rendering on the supercomputer. In order to facilitate our understanding of rendering on the supercomputing platform, we focus on scalability of rendering algorithms and architecture envisioned for exascale datasets. To understand tradeoffs for dealing with extremely large datasets, we compare three different rendering algorithms for large polygonal data: software based ray tracing, software based rasterization and hardware accelerated rasterization. We presentmore » a case study of strong and weak scaling of rendering extremely large data on both GPU and CPU based parallel supercomputers using Para View, a parallel visualization tool. Wc use three different data sets: two synthetic and one from a scientific application. At an extreme scale, algorithmic rendering choices make a difference and should be considered while approaching exascale computing, visualization, and analysis. We find software based ray-tracing offers a viable approach for scalable rendering of the projected future massive data sizes.« less
Wei, Jiao; Herrler, Tanja; Gu, Bin; Yang, Mei; Li, Qingfeng; Dai, Chuanchang; Xie, Feng
2018-05-01
The repair of extensive upper limb skin lesions in pediatric patients is extremely challenging due to substantial limitations of flap size and donor-site morbidity. We aimed to create an oversize preexpanded flap based on intercostal artery perforators for large-scale resurfacing of the upper extremity in children. Between March 2013 and August 2016, 11 patients underwent reconstructive treatment for extensive skin lesions in the upper extremity using a preexpanded intercostal artery perforator flap. Preoperatively, 2 to 4 candidate perforators were selected as potential pedicle vessels based on duplex ultrasound examination. After tissue expander implantation in the thoracodorsal area, regular saline injections were performed until the expanded flap was sufficient in size. Then, a pedicled flap was formed to resurface the skin lesion of the upper limb. The pedicles were transected 3 weeks after flap transfer. Flap survival, complications, and long-term outcome were evaluated. The average time of tissue expansion was 133 days with a mean final volume of 1713 mL. The thoracoabdominal flaps were based on 2 to 6 pedicles and used to resurface a mean skin defect area of 238 cm ranging from 180 to 357 cm. In all cases, primary donor-site closure was achieved. Marginal necrosis was seen in 5 cases. The reconstructed limbs showed satisfactory outcome in both aesthetic and functional aspects. The preexpanded intercostal artery perforator flap enables 1-block repair of extensive upper limb skin lesions. Due to limited donor-site morbidity and a pedicled technique, this resurfacing approach represents a useful tool especially in pediatric patients.
Chenjie Huang; Y.L. Lin; M.L. Kaplan; Joseph J.J. Charney
2009-01-01
This study has employed both observational data and numerical simulation results to diagnose the synoptic-scale and mesoscale environments conducive to forest fires during the October 2003 extreme fire event in southern California. A three-stage process is proposed to illustrate the coupling of the synoptic-scale forcing that is evident from the observations,...
Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob
2015-01-01
Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon–climate feedbacks. PMID:25752680
Frank, Dorothea; Reichstein, Markus; Bahn, Michael; Thonicke, Kirsten; Frank, David; Mahecha, Miguel D; Smith, Pete; van der Velde, Marijn; Vicca, Sara; Babst, Flurin; Beer, Christian; Buchmann, Nina; Canadell, Josep G; Ciais, Philippe; Cramer, Wolfgang; Ibrom, Andreas; Miglietta, Franco; Poulter, Ben; Rammig, Anja; Seneviratne, Sonia I; Walz, Ariane; Wattenbach, Martin; Zavala, Miguel A; Zscheischler, Jakob
2015-08-01
Extreme droughts, heat waves, frosts, precipitation, wind storms and other climate extremes may impact the structure, composition and functioning of terrestrial ecosystems, and thus carbon cycling and its feedbacks to the climate system. Yet, the interconnected avenues through which climate extremes drive ecological and physiological processes and alter the carbon balance are poorly understood. Here, we review the literature on carbon cycle relevant responses of ecosystems to extreme climatic events. Given that impacts of climate extremes are considered disturbances, we assume the respective general disturbance-induced mechanisms and processes to also operate in an extreme context. The paucity of well-defined studies currently renders a quantitative meta-analysis impossible, but permits us to develop a deductive framework for identifying the main mechanisms (and coupling thereof) through which climate extremes may act on the carbon cycle. We find that ecosystem responses can exceed the duration of the climate impacts via lagged effects on the carbon cycle. The expected regional impacts of future climate extremes will depend on changes in the probability and severity of their occurrence, on the compound effects and timing of different climate extremes, and on the vulnerability of each land-cover type modulated by management. Although processes and sensitivities differ among biomes, based on expert opinion, we expect forests to exhibit the largest net effect of extremes due to their large carbon pools and fluxes, potentially large indirect and lagged impacts, and long recovery time to regain previous stocks. At the global scale, we presume that droughts have the strongest and most widespread effects on terrestrial carbon cycling. Comparing impacts of climate extremes identified via remote sensing vs. ground-based observational case studies reveals that many regions in the (sub-)tropics are understudied. Hence, regional investigations are needed to allow a global upscaling of the impacts of climate extremes on global carbon-climate feedbacks. © 2015 The Authors. Global Change Biology published by John Wiley & Sons Ltd.
The Generation of a Stochastic Flood Event Catalogue for Continental USA
NASA Astrophysics Data System (ADS)
Quinn, N.; Wing, O.; Smith, A.; Sampson, C. C.; Neal, J. C.; Bates, P. D.
2017-12-01
Recent advances in the acquisition of spatiotemporal environmental data and improvements in computational capabilities has enabled the generation of large scale, even global, flood hazard layers which serve as a critical decision-making tool for a range of end users. However, these datasets are designed to indicate only the probability and depth of inundation at a given location and are unable to describe the likelihood of concurrent flooding across multiple sites.Recent research has highlighted that although the estimation of large, widespread flood events is of great value to flood mitigation and insurance industries, to date it has been difficult to deal with this spatial dependence structure in flood risk over relatively large scales. Many existing approaches have been restricted to empirical estimates of risk based on historic events, limiting their capability of assessing risk over the full range of plausible scenarios. Therefore, this research utilises a recently developed model-based approach to describe the multisite joint distribution of extreme river flows across continental USA river gauges. Given an extreme event at a site, the model characterises the likelihood neighbouring sites are also impacted. This information is used to simulate an ensemble of plausible synthetic extreme event footprints from which flood depths are extracted from an existing global flood hazard catalogue. Expected economic losses are then estimated by overlaying flood depths with national datasets defining asset locations, characteristics and depth damage functions. The ability of this approach to quantify probabilistic economic risk and rare threshold exceeding events is expected to be of value to those interested in the flood mitigation and insurance sectors.This work describes the methodological steps taken to create the flood loss catalogue over a national scale; highlights the uncertainty in the expected annual economic vulnerability within the USA from extreme river flows; and presents future developments to the modelling approach.
Dimitriou, Konstantinos; Kassomenos, Pavlos
2015-01-01
Three years of hourly O3 concentration measurements from a metropolitan and a medium scale urban area in Greece: Athens and Ioannina respectively, were analyzed in conjunction with hourly wind speed/direction data and air mass trajectories, aiming to reveal local and regional contributions respectively. Conditional Probability Function was used to indicate associations among distinct wind directions and extreme O3 episodes. Backward trajectory clusters were elaborated by Potential Source Contribution Function on a grid of a 0.5°×0.5° resolution, in order to localize potential exogenous sources of O3 and its precursors. In Athens, an increased likelihood of extreme O3 events at the Northern suburbs was associated with the influence of SSW-SW sea breeze from Saronikos Gulf, due to O3 transportation from the city center. In Ioannina, the impacts of O3 conveyance from the city center to the suburban monitoring site were weaker. Potential O3 transboundary sources for Athens were mainly localized over Balkan Peninsula, Greece and the Aegean Sea. Potential Source Contribution Function hotspots were isolated over the industrialized area of Ptolemaida basin and above the region of Thessaloniki. Potential regional O3 sources for Ioannina were indicated across northern Greece and Balkan Peninsula, whereas peak Potential Source Contribution Function values were particularly observed over the urban area of Sofia in Bulgaria. The implemented methods, revealed local and potential transboundary source areas of O3, influencing Athens and Ioannina. Differences among the two cities were highlighted and the role of topography was emerged. These findings can be used in order to reduce the emission of O3 precursors. Copyright © 2014 Elsevier B.V. All rights reserved.
TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vörös, Zoltán; Narita, Yasuhito; Yordanova, Emiliya
2016-03-01
Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives.more » During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.« less
bigSCale: an analytical framework for big-scale single-cell data.
Iacono, Giovanni; Mereu, Elisabetta; Guillaumet-Adkins, Amy; Corominas, Roser; Cuscó, Ivon; Rodríguez-Esteban, Gustavo; Gut, Marta; Pérez-Jurado, Luis Alberto; Gut, Ivo; Heyn, Holger
2018-06-01
Single-cell RNA sequencing (scRNA-seq) has significantly deepened our insights into complex tissues, with the latest techniques capable of processing tens of thousands of cells simultaneously. Analyzing increasing numbers of cells, however, generates extremely large data sets, extending processing time and challenging computing resources. Current scRNA-seq analysis tools are not designed to interrogate large data sets and often lack sensitivity to identify marker genes. With bigSCale, we provide a scalable analytical framework to analyze millions of cells, which addresses the challenges associated with large data sets. To handle the noise and sparsity of scRNA-seq data, bigSCale uses large sample sizes to estimate an accurate numerical model of noise. The framework further includes modules for differential expression analysis, cell clustering, and marker identification. A directed convolution strategy allows processing of extremely large data sets, while preserving transcript information from individual cells. We evaluated the performance of bigSCale using both a biological model of aberrant gene expression in patient-derived neuronal progenitor cells and simulated data sets, which underlines the speed and accuracy in differential expression analysis. To test its applicability for large data sets, we applied bigSCale to assess 1.3 million cells from the mouse developing forebrain. Its directed down-sampling strategy accumulates information from single cells into index cell transcriptomes, thereby defining cellular clusters with improved resolution. Accordingly, index cell clusters identified rare populations, such as reelin ( Reln )-positive Cajal-Retzius neurons, for which we report previously unrecognized heterogeneity associated with distinct differentiation stages, spatial organization, and cellular function. Together, bigSCale presents a solution to address future challenges of large single-cell data sets. © 2018 Iacono et al.; Published by Cold Spring Harbor Laboratory Press.
Sebastião, Emerson; Sandroff, Brian M; Learmonth, Yvonne C; Motl, Robert W
2016-07-01
To examine the validity of the timed Up and Go (TUG) test as a measure of functional mobility in persons with multiple sclerosis (MS) by using a comprehensive framework based on construct validity (ie, convergent and divergent validity). Cross-sectional study. Hospital setting. Community-residing persons with MS (N=47). Not applicable. Main outcome measures included the TUG test, timed 25-foot walk test, 6-minute walk test, Multiple Sclerosis Walking Scale-12, Late-Life Function and Disability Instrument, posturography evaluation, Activities-specific Balance Confidence scale, Symbol Digits Modalities Test, Expanded Disability Status Scale, and the number of steps taken per day. The TUG test was strongly associated with other valid outcome measures of ambulatory mobility (Spearman rank correlation, rs=.71-.90) and disability status (rs=.80), moderately to strongly associated with balance confidence (rs=.66), and weakly associated with postural control (ie, balance) (rs=.31). The TUG test was moderately associated with cognitive processing speed (rs=.59), but not associated with other nonambulatory measures (ie, Late-Life Function and Disability Instrument-upper extremity function). Our findings support the validity of the TUG test as a measure of functional mobility. This warrants its inclusion in patients' assessment alongside other valid measures of functional mobility in both clinical and research practice in persons with MS. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Optimal crop selection and water allocation under limited water supply in irrigation
NASA Astrophysics Data System (ADS)
Stange, Peter; Grießbach, Ulrike; Schütze, Niels
2015-04-01
Due to climate change, extreme weather conditions such as droughts may have an increasing impact on irrigated agriculture. To cope with limited water resources in irrigation systems, a new decision support framework is developed which focuses on an integrated management of both irrigation water supply and demand at the same time. For modeling the regional water demand, local (and site-specific) water demand functions are used which are derived from optimized agronomic response on farms scale. To account for climate variability the agronomic response is represented by stochastic crop water production functions (SCWPF). These functions take into account different soil types, crops and stochastically generated climate scenarios. The SCWPF's are used to compute the water demand considering different conditions, e.g., variable and fixed costs. This generic approach enables the consideration of both multiple crops at farm scale as well as of the aggregated response to water pricing at a regional scale for full and deficit irrigation systems. Within the SAPHIR (SAxonian Platform for High Performance IRrigation) project a prototype of a decision support system is developed which helps to evaluate combined water supply and demand management policies.
Density Functional O(N) Calculations
NASA Astrophysics Data System (ADS)
Ordejón, Pablo
1998-03-01
We have developed a scheme for performing Density Functional Theory calculations with O(N) scaling.(P. Ordejón, E. Artacho and J. M. Soler, Phys. Rev. B, 53), 10441 (1996) The method uses arbitrarily flexible and complete Atomic Orbitals (AO) basis sets. This gives a wide range of choice, from extremely fast calculations with minimal basis sets, to greatly accurate calculations with complete sets. The size-efficiency of AO bases, together with the O(N) scaling of the algorithm, allow the application of the method to systems with many hundreds of atoms, in single processor workstations. I will present the SIESTA code,(D. Sanchez-Portal, P. Ordejón, E. Artacho and J. M. Soler, Int. J. Quantum Chem., 65), 453 (1997) in which the method is implemented, with several LDA, LSD and GGA functionals available, and using norm-conserving, non-local pseudopotentials (in the Kleinman-Bylander form) to eliminate the core electrons. The calculation of static properties such as energies, forces, pressure, stress and magnetic moments, as well as molecular dynamics (MD) simulations capabilities (including variable cell shape, constant temperature and constant pressure MD) are fully implemented. I will also show examples of the accuracy of the method, and applications to large-scale materials and biomolecular systems.
NASA Astrophysics Data System (ADS)
Shih, Hong-Yan; Goldenfeld, Nigel
Experiments on transitional turbulence in pipe flow seem to show that turbulence is a transient metastable state since the measured mean lifetime of turbulence puffs does not diverge asymptotically at a critical Reynolds number. Yet measurements reveal that the lifetime scales with Reynolds number in a super-exponential way reminiscent of extreme value statistics, and simulations and experiments in Couette and channel flow exhibit directed percolation type scaling phenomena near a well-defined transition. This universality class arises from the interplay between small-scale turbulence and a large-scale collective zonal flow, which exhibit predator-prey behavior. Why is asymptotically divergent behavior not observed? Using directed percolation and a stochastic individual level model of predator-prey dynamics related to transitional turbulence, we investigate the relation between extreme value statistics and power law critical behavior, and show that the paradox is resolved by carefully defining what is measured in the experiments. We theoretically derive the super-exponential scaling law, and using finite-size scaling, show how the same data can give both super-exponential behavior and power-law critical scaling.
Scale-invariant properties of public-debt growth
NASA Astrophysics Data System (ADS)
Petersen, A. M.; Podobnik, B.; Horvatic, D.; Stanley, H. E.
2010-05-01
Public debt is one of the important economic variables that quantitatively describes a nation's economy. Because bankruptcy is a risk faced even by institutions as large as governments (e.g., Iceland), national debt should be strictly controlled with respect to national wealth. Also, the problem of eliminating extreme poverty in the world is closely connected to the study of extremely poor debtor nations. We analyze the time evolution of national public debt and find "convergence": initially less-indebted countries increase their debt more quickly than initially more-indebted countries. We also analyze the public debt-to-GDP ratio {\\cal R} , a proxy for default risk, and approximate the probability density function P({\\cal R}) with a Gamma distribution, which can be used to establish thresholds for sustainable debt. We also observe "convergence" in {\\cal R} : countries with initially small {\\cal R} increase their {\\cal R} more quickly than countries with initially large {\\cal R} . The scaling relationships for debt and {\\cal R} have practical applications, e.g. the Maastricht Treaty requires members of the European Monetary Union to maintain {\\cal R} < 0.6 .
Responsiveness of outcome measures for upper limb prosthetic rehabilitation.
Resnik, Linda; Borgia, Matthew
2016-02-01
There is limited research on responsiveness of prosthetic rehabilitation outcome measures. To examine responsiveness of the Box and Block test, Jebsen-Taylor Hand Function tests, Upper Extremity Functional Scale, University of New Brunswick skill and spontaneity tests, Activity Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale. This was a quasi-experimental study with repeated measurements in a convenience sample of upper limb amputees. Measures were collected before, during, and after training with the DEKA Arm. Largest effect sizes were observed for Patient-Specific Functional Scale (effect size: 1.59, confidence interval: 1.00, 2.14), Activity Measure for Upper Limb Amputation (effect size: 1.33, confidence interval: 0.73, 1.90), and University of New Brunswick skill test (effect size: 1.18, confidence interval: 0.61, 1.73). Other measures that were responsive to change were Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, and University of New Brunswick spontaneity test. Responsiveness and pattern of responsiveness varied by prosthetic level. The Box and Block test, Jebsen-Taylor Hand Function light and heavy can tests, University of New Brunswick skill and spontaneity tests, Activities Measure for Upper Limb Amputation, and the Patient-Specific Functional Scale were responsive to change during prosthetic training. These findings have implications for choice of measures for research and practice and inform clinicians about the amount of training necessary to maximize outcomes with the DEKA Arm. Findings on responsiveness of outcome measures have implications for the choice of measures for clinical trials and practice. Findings regarding the responsiveness to change over the course of training can inform clinicians about the amount of training that may be necessary to maximize specific outcomes with the DEKA Arm. © The International Society for Prosthetics and Orthotics 2014.
Relating rainfall characteristics to cloud top temperatures at different scales
NASA Astrophysics Data System (ADS)
Klein, Cornelia; Belušić, Danijel; Taylor, Christopher
2017-04-01
Extreme rainfall from mesoscale convective systems (MCS) poses a threat to lives and livelihoods of the West African population through increasingly frequent devastating flooding and loss of crops. However, despite the significant impact of such extreme events, the dominant processes favouring their occurrence are still under debate. In the data-sparse West African region, rainfall radar data from the Tropical Rainfall Measuring Mission (TRMM) gives invaluable information on the distribution and frequency of extreme rainfall. The TRMM 2A25 product provides a 15-year dataset of snapshots of surface rainfall from 2-4 overpasses per day. Whilst this sampling captures the overall rainfall characteristics, it is neither long nor frequent enough to diagnose changes in MCS properties, which may be linked to the trend towards rainfall intensification in the region. On the other hand, Meteosat geostationary satellites provide long-term sub-hourly records of cloud top temperatures, raising the possibility of combining these with the high-quality rainfall data from TRMM. In this study, we relate TRMM 2A25 rainfall to Meteosat Second Generation (MSG) cloud top temperatures, which are available from 2004 at 15 minutes intervals, to get a more detailed picture of the structure of intense rainfall within the life cycle of MCS. We find TRMM rainfall intensities within an MCS to be strongly coupled with MSG cloud top temperatures: the probability for extreme rainfall increases from <10% for minimum temperatures warmer than -40°C to over 70% when temperatures drop below -70°C, confirming the potential in analysing cloud-top temperatures as a proxy for extreme rain. The sheer size of MCS raises the question which scales of sub-cloud structures are more likely to be associated with extreme rain than others. In the end, this information could help to associate scale changes in cloud top temperatures with processes that affect the probability of extreme rain. We use 2D continuous wavelets to decompose cloud top temperatures into power spectra at scales between 15 and 200km. From these, cloud sub-structures are identified as circular areas of respective scale with local power maxima in their centre. These areas are then mapped onto coinciding TRMM rainfall, allowing us to assign rainfall fields to sub-cloud features of different scales. We find a higher probability for extreme rainfall for cloud features above a scale of 30km, with features 100km contributing most to the number of extreme rainfall pixels. Over the average diurnal cycle, the number of smaller cloud features between 15-60km shows an increase between 15 - 1700UTC, gradually developing into larger ones. The maximum of extreme rainfall pixels around 1900UTC coincides with a peak for scales 100km, suggesting a dominant role of these scales for intense rain for the analysed cloud type. Our results demonstrate the suitability of 2D wavelet decomposition for the analysis of sub-cloud structures and their relation to rainfall characteristics, and help us to understand long-term changes in the properties of MCS.
Mahoney, Kate; Bajuk, Barbara; Oei, Julee; Lui, Kei; Abdel-Latif, Mohamed E
2017-01-01
To compare neurodevelopmental outcomes at 2-3 years in extremely premature outborn and inborn infants. Population-based retrospective cohort study. Geographically defined area of New South Wales (NSW) and the Australian Capital Territory (ACT) served by a network of 10 neonatal intensive care units (NICUs). All premature infants <29 weeks gestation born between 1998 and 2004 in the setting. At 2-3 years, corrected age, 1473 children were assessed with either the Griffiths Mental Developmental Scales (GMDS) or the Bayley Scales of Infant Development (BSID-II). Moderate/severe functional disability (FD) defined as: developmental delay (GMDS general quotient (GQ) or BSID-II mental developmental index (MDI)) > 2 standard deviations (SD) below the mean; cerebral palsy (CP) requiring aids; sensorineural or conductive deafness (requiring amplification); or bilateral blindness (visual acuity <6/60 in better eye). At 2-3 years, moderate/severe functional disability does not appear to be significantly different between outborn and inborn infants (adjusted OR 0.782; 95% CI 0.424-1.443). However, there were a significant number of outborn infants lost to follow up (23.3% versus 42.9%). In this cohort, at 2-3 years follow up neurodevelopmental outcome does not appear to be significantly different between outborn and inborn infants. These results should be interpreted with caution given the limitation of this study.
Oceanic forcing of coral reefs.
Lowe, Ryan J; Falter, James L
2015-01-01
Although the oceans play a fundamental role in shaping the distribution and function of coral reefs worldwide, a modern understanding of the complex interactions between ocean and reef processes is still only emerging. These dynamics are especially challenging owing to both the broad range of spatial scales (less than a meter to hundreds of kilometers) and the complex physical and biological feedbacks involved. Here, we review recent advances in our understanding of these processes, ranging from the small-scale mechanics of flow around coral communities and their influence on nutrient exchange to larger, reef-scale patterns of wave- and tide-driven circulation and their effects on reef water quality and perceived rates of metabolism. We also examine regional-scale drivers of reefs such as coastal upwelling, internal waves, and extreme disturbances such as cyclones. Our goal is to show how a wide range of ocean-driven processes ultimately shape the growth and metabolism of coral reefs.
Ni, Pengsheng; McDonough, Christine M; Jette, Alan M; Bogusz, Kara; Marfeo, Elizabeth E; Rasch, Elizabeth K; Brandt, Diane E; Meterko, Mark; Haley, Stephen M; Chan, Leighton
2013-09-01
To develop and test an instrument to assess physical function for Social Security Administration (SSA) disability programs, the SSA-Physical Function (SSA-PF) instrument. Item response theory (IRT) analyses were used to (1) create a calibrated item bank for each of the factors identified in prior factor analyses, (2) assess the fit of the items within each scale, (3) develop separate computer-adaptive testing (CAT) instruments for each scale, and (4) conduct initial psychometric testing. Cross-sectional data collection; IRT analyses; CAT simulation. Telephone and Internet survey. Two samples: SSA claimants (n=1017) and adults from the U.S. general population (n=999). None. Model fit statistics, correlation, and reliability coefficients. IRT analyses resulted in 5 unidimensional SSA-PF scales: Changing & Maintaining Body Position, Whole Body Mobility, Upper Body Function, Upper Extremity Fine Motor, and Wheelchair Mobility for a total of 102 items. High CAT accuracy was demonstrated by strong correlations between simulated CAT scores and those from the full item banks. On comparing the simulated CATs with the full item banks, very little loss of reliability or precision was noted, except at the lower and upper ranges of each scale. No difference in response patterns by age or sex was noted. The distributions of claimant scores were shifted to the lower end of each scale compared with those of a sample of U.S. adults. The SSA-PF instrument contributes important new methodology for measuring the physical function of adults applying to the SSA disability programs. Initial evaluation revealed that the SSA-PF instrument achieved considerable breadth of coverage in each content domain and demonstrated noteworthy psychometric properties. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Bauder, J A S; Morawetz, L; Warren, A D; Krenn, H W
2015-01-01
Extremely long proboscides are rare among butterflies outside of the Hesperiidae, yet representatives of several genera of skipper butterflies possess proboscides longer than 50 mm. Although extremely elongated mouthparts can be regarded as advantageous adaptations to gain access to nectar in deep-tubed flowers, the scarcity of long-proboscid butterflies is a phenomenon that has not been adequately accounted for. So far, the scarceness was explained by functional costs arising from increased flower handling times caused by decelerated nectar intake rates. However, insects can compensate for the negative influence of a long proboscis through changes in the morphological configuration of the feeding apparatus. Here, we measured nectar intake rates in 34 species representing 21 Hesperiidae genera from a Costa Rican lowland rainforest area to explore the impact of proboscis length, cross-sectional area of the food canal and body size on intake rate. Long-proboscid skippers did not suffer from reduced intake rates due to their large body size and enlarged food canals. In addition, video analyses of the flower-visiting behaviour revealed that suction times increased with proboscis length, suggesting that long-proboscid skippers drink a larger amount of nectar from deep-tubed flowers. Despite these advantages, we showed that functional costs of exaggerated mouthparts exist in terms of longer manipulation times per flower. Finally, we discuss the significance of scaling relationships on the foraging efficiency of butterflies and why some skipper taxa, in particular, have evolved extremely long proboscides. PMID:25682841
Halo abundance and assembly history with extreme-axion wave dark matter at z ≥ 4
NASA Astrophysics Data System (ADS)
Schive, Hsi-Yu; Chiueh, Tzihong
2018-01-01
Wave dark matter (ψDM) composed of extremely light bosons (mψ ˜ 10 - 22 eV), with quantum pressure suppressing structures below a kpc-scale de Broglie wavelength, has become a viable dark matter candidate. Compared to the conventional free-particle ψDM (FPψDM), the extreme-axion ψDM model (EAψDM) proposed by Zhang & Chiueh features a larger cut-off wavenumber and a broad spectral bump in the matter transfer function. Here, we conduct cosmological simulations to compare the halo abundances and assembly histories at z = 4-11 between three different scenarios: FPψDM, EAψDM and cold dark matter (CDM). We show that EAψDM produces significantly more abundant low-mass haloes than FPψDM with the same mψ, and therefore could alleviate the tension in mψ required by the Lyα forest data and by the kpc-scale dwarf galaxy cores. We also find that, compared to the CDM counterparts, massive EAψDM haloes are, on average, 3-4 times more massive at z = 10-11 due to their earlier formation, undergo a slower mass accretion at 7 ≲ z ≲ 11, and then show a rapidly rising major merger rate exceeding CDM by ˜ 50 per cent at 4 ≲ z ≲ 7. This fact suggests that EAψDM haloes may exhibit more prominent starbursts at z ≲ 7.
Watering Graphene for Devices and Electricity
NASA Astrophysics Data System (ADS)
Guo, Wanlin; Yin, Jun; Li, Xuemei; Zhang, Zhuhua
2013-03-01
Graphene bring us into a fantastic two-dimensional (2D) age of nanotechnology, which can be fabricated and applied at wafer scale, visible at single layer but showing exceptional properties distinguished from its bulk form graphite, linking the properties of atomic layers with the engineering scale of our mankind. We shown that flow-induced-voltage in graphene can be 20 folds higher than in graphite, not only due to the giant Seebeck coefficient of single layer graphene, but also the exceptional interlayer interaction in few layer graphene. Extremely excitingly, water flow over graphene can generate electricity through unexpected interaction of the ions in the water with the graphene. We also find extraordinary mechanical-electric-magnetic coupling effects in graphene and BN systems. Such extraordinary multifield coupling effects in graphene and functional nanosystems open up new vistas in nanotechnology for efficient energy conversion, self-powering flexible devices and novel functional systems.
Dorian, Paul; Cvitkovic, Suzan S; Kerr, Charles R; Crystal, Eugene; Gillis, Anne M; Guerra, Peter G; Mitchell, L Brent; Roy, Denis; Skanes, Allan C; Wyse, D George
2006-04-01
The severity of symptoms caused by atrial fibrillation (AF) is extremely variable. Quantifying the effect of AF on patient well-being is important but there is no simple, commonly accepted measure of the effect of AF on quality of life (QoL). Current QoL measures are cumbersome and impractical for clinical use. To create a simple, concise and readily usable AF severity score to facilitate treatment decisions and physician communication. The Canadian Cardiovascular Society (CCS) Severity of Atrial Fibrillation (SAF) Scale is analogous to the CCS Angina Functional Class. The CCS-SAF score is determined using three steps: documentation of possible AF-related symptoms (palpitations, dyspnea, dizziness/syncope, chest pain, weakness/fatigue); determination of symptom-rhythm correlation; and assessment of the effect of these symptoms on patient daily function and QoL. CCS-SAF scores range from 0 (asymptomatic) to 4 (severe impact of symptoms on QoL and activities of daily living). Patients are also categorized by type of AF (paroxysmal versus persistent/permanent). The CCS-SAF Scale will be validated using accepted measures of patient-perceived severity of symptoms and impairment of QoL and will require 'field testing' to ensure its applicability and reproducibility in the clinical setting. This type of symptom severity scale, like the New York Heart Association Functional Class for heart failure symptoms and the CCS Functional Class for angina symptoms, trades precision and comprehensiveness for simplicity and ease of use at the bedside. A common language to quantify AF severity may help to improve patient care.
Study of multi-functional precision optical measuring system for large scale equipment
NASA Astrophysics Data System (ADS)
Jiang, Wei; Lao, Dabao; Zhou, Weihu; Zhang, Wenying; Jiang, Xingjian; Wang, Yongxi
2017-10-01
The effective application of high performance measurement technology can greatly improve the large-scale equipment manufacturing ability. Therefore, the geometric parameters measurement, such as size, attitude and position, requires the measurement system with high precision, multi-function, portability and other characteristics. However, the existing measuring instruments, such as laser tracker, total station, photogrammetry system, mostly has single function, station moving and other shortcomings. Laser tracker needs to work with cooperative target, but it can hardly meet the requirement of measurement in extreme environment. Total station is mainly used for outdoor surveying and mapping, it is hard to achieve the demand of accuracy in industrial measurement. Photogrammetry system can achieve a wide range of multi-point measurement, but the measuring range is limited and need to repeatedly move station. The paper presents a non-contact opto-electronic measuring instrument, not only it can work by scanning the measurement path but also measuring the cooperative target by tracking measurement. The system is based on some key technologies, such as absolute distance measurement, two-dimensional angle measurement, automatically target recognition and accurate aiming, precision control, assembly of complex mechanical system and multi-functional 3D visualization software. Among them, the absolute distance measurement module ensures measurement with high accuracy, and the twodimensional angle measuring module provides precision angle measurement. The system is suitable for the case of noncontact measurement of large-scale equipment, it can ensure the quality and performance of large-scale equipment throughout the process of manufacturing and improve the manufacturing ability of large-scale and high-end equipment.
Predicting Chronic Climate-Driven Disturbances and Their Mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Nate G.; Michaletz, Sean T.; Bennett, Katrina E.
Society increasingly demands the stable provision of ecosystem resources to support our population. Resource risks from climate-driven disturbances--including drought, heat, insect outbreaks, and wildfire--are rising as a chronic state of disequilibrium results from increasing temperatures and a greater frequency of extreme events. This confluence of increased demand and risk may soon reach critical thresholds. We explain here why extreme chronic disequilibrium of ecosystem function is likely to increase dramatically across the globe, creating no-analog conditions that challenge adaptation. We also present novel mechanistic theory that combines models for disturbance mortality and metabolic scaling to link size-dependent plant mortality to changesmore » in ecosystem stocks and fluxes. Efforts must anticipate and model chronic ecosystem disequilibrium to properly prepare for resilience planning.« less
Predicting Chronic Climate-Driven Disturbances and Their Mitigation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDowell, Nate G.; Michaletz, Sean T.; Bennett, Katrina E.
Society increasingly demands the stable provision of ecosystem resources to support our population. Resource risks from climate-driven disturbances, including drought, heat, insect outbreaks, and wildfire, are growing as a chronic state of disequilibrium results from increasing temperatures and a greater frequency of extreme events. This confluence of increased demand and risk may soon reach critical thresholds. Here, we explain here why extreme chronic disequilibrium of ecosystem function is likely to increase dramatically across the globe, creating no-analog conditions that challenge adaptation. We also present novel mechanistic theory that combines models for disturbance mortality and metabolic scaling to link size-dependent plantmore » mortality to changes in ecosystem stocks and fluxes. Our efforts must anticipate and model chronic ecosystem disequilibrium to properly prepare for resilience planning.« less
Predicting Chronic Climate-Driven Disturbances and Their Mitigation
McDowell, Nate G.; Michaletz, Sean T.; Bennett, Katrina E.; ...
2017-11-13
Society increasingly demands the stable provision of ecosystem resources to support our population. Resource risks from climate-driven disturbances, including drought, heat, insect outbreaks, and wildfire, are growing as a chronic state of disequilibrium results from increasing temperatures and a greater frequency of extreme events. This confluence of increased demand and risk may soon reach critical thresholds. Here, we explain here why extreme chronic disequilibrium of ecosystem function is likely to increase dramatically across the globe, creating no-analog conditions that challenge adaptation. We also present novel mechanistic theory that combines models for disturbance mortality and metabolic scaling to link size-dependent plantmore » mortality to changes in ecosystem stocks and fluxes. Our efforts must anticipate and model chronic ecosystem disequilibrium to properly prepare for resilience planning.« less
Brennan, Gerard P; Hunter, Stephen J; Snow, Greg; Minick, Kate I
2017-12-01
The Centers for Medicare and Medicaid Services (CMS) require physical therapists document patients' functional limitations. The process is not standardized. A systematic approach to determine a patient's functional limitations and responsiveness to change is needed. The purpose of this study is to compare patient-reported outcomes (PROs) responsiveness to change using 7-level severity/complexity modifier scale proposed by Medicare to a derived scale implemented by Intermountain Healthcare's Rehabilitation Outcomes Management System (ROMS). This was a retrospective, observational cohort design. 165,183 PROs prior to July 1, 2013, were compared to 46,334 records from July 1, 2013, to December 31, 2015. Histograms and ribbon plots illustrate distribution and change of patients' scores. ROMS raw score ranges were calculated and compared to CMS' severity/complexity levels based on score percentage. Distribution of the population was compared based on the 2 methods. Sensitivity and specificity were compared for responsiveness to change based on minimal clinically important difference (MCID). Histograms demonstrated few patient scores placed in CMS scale levels at the extremes, whereas the majority of scores placed in 2 middle levels (CJ, CK). ROMS distributed scores more evenly across levels. Ribbon plots illustrated advantage of ROMS' using narrower score ranges. Greater chance for patients to change levels was observed with ROMS when an MCID was achieved. ROMS narrower scale levels resulted in greater sensitivity and good specificity. Geographic representation for the United States was limited. Without patients' global rating of change, a reference standard to gauge validation of improvement could not be provided. ROMS provides a standard approach to identify accurately functional limitation modifier levels and to detect improvement more accurately than a straight across transposition using the CMS scale. © 2017 American Physical Therapy Association
Multiscale Measurement of Extreme Response Style
ERIC Educational Resources Information Center
Bolt, Daniel M.; Newton, Joseph R.
2011-01-01
This article extends a methodological approach considered by Bolt and Johnson for the measurement and control of extreme response style (ERS) to the analysis of rating data from multiple scales. Specifically, it is shown how the simultaneous analysis of item responses across scales allows for more accurate identification of ERS, and more effective…
NASA Astrophysics Data System (ADS)
Schroeer, K.; Kirchengast, G.
2016-12-01
Relating precipitation intensity to temperature is a popular approach to assess potential changes of extreme events in a warming climate. Potential increases in extreme rainfall induced hazards, such as flash flooding, serve as motivation. It has not been addressed whether the temperature-precipitation scaling approach is meaningful on a regional to local level, where the risk of climate and weather impact is dealt with. Substantial variability of temperature sensitivity of extreme precipitation has been found that results from differing methodological assumptions as well as from varying climatological settings of the study domains. Two aspects are consistently found: First, temperature sensitivities beyond the expected consistency with the Clausius-Clapeyron (CC) equation are a feature of short-duration, convective, sub-daily to sub-hourly high-percentile rainfall intensities at mid-latitudes. Second, exponential growth ceases or reverts at threshold temperatures that vary from region to region, as moisture supply becomes limited. Analyses of pooled data, or of single or dispersed stations over large areas make it difficult to estimate the consequences in terms of local climate risk. In this study we test the meaningfulness of the scaling approach from an impact scale perspective. Temperature sensitivities are assessed using quantile regression on hourly and sub-hourly precipitation data from 189 stations in the Austrian south-eastern Alpine region. The observed scaling rates vary substantially, but distinct regional and seasonal patterns emerge. High sensitivity exceeding CC-scaling is seen on the 10-minute scale more than on the hourly scale, in storms shorter than 2 hours duration, and in shoulder seasons, but it is not necessarily a significant feature of the extremes. To be impact relevant, change rates need to be linked to absolute rainfall amounts. We show that high scaling rates occur in lower temperature conditions and thus have smaller effect on absolute precipitation intensities. While reporting of mere percentage numbers can be misleading, scaling studies can add value to process understanding on the local scale, if the factors that influence scaling rates are considered from both a methodological and a physical perspective.
NASA Astrophysics Data System (ADS)
Rodríguez, Estiven; Salazar, Juan Fernando; Villegas, Juan Camilo; Mercado-Bettín, Daniel
2018-07-01
Extreme flows are key components of river flow regimes that affect manifold hydrological, geomorphological and ecological processes with societal relevance. One fundamental characteristic of extreme flows in river basins is that they exhibit scaling properties which can be identified through scaling (power) laws. Understanding the physical mechanisms behind such scaling laws is a continuing challenge in hydrology, with potential implications for the prediction of river flow regimes in a changing environment and ungauged basins. After highlighting that the scaling properties are sensitive to environmental change, we develop a physical interpretation of how temporal changes in scaling exponents relate to the capacity of river basins to regulate extreme river flows. Regulation is defined here as the basins' capacity to either dampen high flows or to enhance low flows. Further, we use this framework to infer temporal changes in the regulation capacity of five large basins in tropical South America. Our results indicate that, during the last few decades, the Amazon river basin has been reducing its capacity to enhance low flows, likely as a consequence of pronounced environmental change in its south and south-eastern sub-basins. The proposed framework is widely applicable to different basins, and provides foundations for using scaling laws as empirical tools for inferring temporal changes of hydrological regulation, particularly relevant for identifying and managing hydrological consequences of environmental change.
NASA Astrophysics Data System (ADS)
Rosendahl, D. H.; Ćwik, P.; Martin, E. R.; Basara, J. B.; Brooks, H. E.; Furtado, J. C.; Homeyer, C. R.; Lazrus, H.; Mcpherson, R. A.; Mullens, E.; Richman, M. B.; Robinson-Cook, A.
2017-12-01
Extreme precipitation events cause significant damage to homes, businesses, infrastructure, and agriculture, as well as many injures and fatalities as a result of fast-moving water or waterborne diseases. In the USA, these natural hazard events claimed the lives of more than 300 people during 2015 - 2016 alone, with total damage reaching $24.4 billion. Prior studies of extreme precipitation events have focused on the sub-daily to sub-weekly timeframes. However, many decisions for planning, preparing and resilience-building require sub-seasonal to seasonal timeframes (S2S; 14 to 90 days), but adequate forecasting tools for prediction do not exist. Therefore, the goal of this newly funded project is an enhancement in understanding of the large-scale forcing and dynamics of S2S extreme precipitation events in the United States, and improved capability for modeling and predicting such events. Here, we describe the project goals, objectives, and research activities that will take place over the next 5 years. In this project, a unique team of scientists and stakeholders will identify and understand weather and climate processes connected with the prediction of S2S extreme precipitation events by answering these research questions: 1) What are the synoptic patterns associated with, and characteristic of, S2S extreme precipitation evens in the contiguous U.S.? 2) What role, if any, do large-scale modes of climate variability play in modulating these events? 3) How predictable are S2S extreme precipitation events across temporal scales? 4) How do we create an informative prediction of S2S extreme precipitation events for policymaking and planing? This project will use observational data, high-resolution radar composites, dynamical climate models and workshops that engage stakeholders (water resource managers, emergency managers and tribal environmental professionals) in co-production of knowledge. The overarching result of this project will be predictive models to reduce of the societal and economic impacts of extreme precipitation events. Another outcome will include statistical and co-production frameworks, which could be applied across other meteorological extremes, all time scales and in other parts of the world to increase resilience to extreme meteorological events.
NASA Astrophysics Data System (ADS)
Knist, Sebastian; Goergen, Klaus; Simmer, Clemens
2018-02-01
We perform simulations with the WRF regional climate model at 12 and 3 km grid resolution for the current and future climates over Central Europe and evaluate their added value with a focus on the daily cycle and frequency distribution of rainfall and the relation between extreme precipitation and air temperature. First, a 9 year period of ERA-Interim driven simulations is evaluated against observations; then global climate model runs (MPI-ESM-LR RCP4.5 scenario) are downscaled and analyzed for three 12-year periods: a control, a mid-of-century and an end-of-century projection. The higher resolution simulations reproduce both the diurnal cycle and the hourly intensity distribution of precipitation more realistically compared to the 12 km simulation. Moreover, the observed increase of the temperature-extreme precipitation scaling from the Clausius-Clapeyron (C-C) scaling rate of 7% K-1 to a super-adiabatic scaling rate for temperatures above 11 °C is reproduced only by the 3 km simulation. The drop of the scaling rates at high temperatures under moisture limited conditions differs between sub-regions. For both future scenario time spans both simulations suggest a slight decrease in mean summer precipitation and an increase in hourly heavy and extreme precipitation. This increase is stronger in the 3 km runs. Temperature-extreme precipitation scaling curves in the future climate are projected to shift along the 7% K-1 trajectory to higher peak extreme precipitation values at higher temperatures. The curves keep their typical shape of C-C scaling followed by super-adiabatic scaling and a drop-off at higher temperatures due to moisture limitation.
[Measurement of shoulder disability in the athlete: a systematic review].
Fayad, F; Mace, Y; Lefevre-Colau, M M; Poiraudeau, S; Rannou, F; Revel, M
2004-08-01
To identify all available shoulder disability questionnaires and to examine those that could be used for athlete. We systematically reviewed the literature in Medline using the keywords shoulder, function, scale, index, score, questionnaire, disability, quality of life, assessment, and evaluation. We searched for scales used for athletes with the keywords scale name AND (sport OR athlete). Data were completed by using the "Guide des Outils de Mesure et d'Evaluation en Médecine Physique et de Réadaptation" textbook. Analysis took into account the clinimetric quality of the instruments and the number of items specifically related to sports. A total of 37 instruments have been developed to measure disease-, shoulder-specific or upper extremity specific outcome. Older instruments were developed before the advent of modern measurement methods. They usually combined objective and subjective measures. Recent instruments were designed with use of more advanced methods. Most are self-administered questionnaires. Fourteen scales included items assessing sport activity. Four of these scales have been used to assess shoulder disability in athlete. Six scales have been used to assess such disability but do not have specific items related to sports. There is no gold standard for assessing shoulder outcome in the general population and no validated outcome instruments specifically for athletes. We suggest the use of ASES, WOSI and WORC scales for evaluating shoulder function in the recreational athletes. The DASH scale should be evaluated in this population. The principal criterion in evaluating shoulder function in the high level athlete is a return to the same level of sport performance. Further studies are required to identify measurement tools for shoulder disability that have a high predictive value for return to sport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang
Mid-latitude extreme weather events are responsible for a large part of climate-related damage. Yet large uncertainties remain in climate model projections of heat waves, droughts, and heavy rain/snow events on regional scales, limiting our ability to effectively use these projections for climate adaptation and mitigation. These uncertainties can be attributed to both the lack of spatial resolution in the models, and to the lack of a dynamical understanding of these extremes. The approach of this project is to relate the fine-scale features to the large scales in current climate simulations, seasonal re-forecasts, and climate change projections in a very widemore » range of models, including the atmospheric and coupled models of ECMWF over a range of horizontal resolutions (125 to 10 km), aqua-planet configuration of the Model for Prediction Across Scales and High Order Method Modeling Environments (resolutions ranging from 240 km – 7.5 km) with various physics suites, and selected CMIP5 model simulations. The large scale circulation will be quantified both on the basis of the well tested preferred circulation regime approach, and very recently developed measures, the finite amplitude Wave Activity (FAWA) and its spectrum. The fine scale structures related to extremes will be diagnosed following the latest approaches in the literature. The goal is to use the large scale measures as indicators of the probability of occurrence of the finer scale structures, and hence extreme events. These indicators will then be applied to the CMIP5 models and time-slice projections of a future climate.« less
Lee, Suhyun; Kim, Yumi; Lee, Byoung-Hee
2016-12-01
In the present study, we aimed to investigate the effect of virtual reality-based bilateral upper extremity training (VRBT) on paretic upper limb function and muscle strength in patients with stroke. Eighteen stroke survivors were assigned to either the VRBT group (n = 10) or the bilateral upper limb training group (BT, n = 8). Patients in the VRBT group performed bilateral upper extremity exercises in a virtual reality environment, whereas those in the BT group performed conventional bilateral upper extremity exercises. All training was conducted for 30 minutes day -1 , 3 days a week, for a period of 6 weeks. Patients were assessed for upper extremity function and hand strength. Compared with the BT group, the VRBT group exhibited significant improvements in upper extremity function and muscle strength (p < 0.05) after the 6-week training programme. The Box and Block test results revealed that upper extremity function and elbow flexion in hand strength were significantly improved in terms of group, time and interaction effect of group by time. Furthermore, the VRBT group demonstrated significant improvements in upper extremity function, as measured by the Jebsen Hand Function Test and Grooved Pegboard test, and in the hand strength test, as measured by elbow extension, grip, palmar pinch, lateral pinch and tip pinch, in both time and the interaction effect of group by time. These results suggest that VRBT is a feasible and beneficial means of improving upper extremity function and muscle strength in individuals following stroke. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Assessing Regional Scale Variability in Extreme Value Statistics Under Altered Climate Scenarios
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brunsell, Nathaniel; Mechem, David; Ma, Chunsheng
Recent studies have suggested that low-frequency modes of climate variability can significantly influence regional climate. The climatology associated with extreme events has been shown to be particularly sensitive. This has profound implications for droughts, heat waves, and food production. We propose to examine regional climate simulations conducted over the continental United States by applying a recently developed technique which combines wavelet multi–resolution analysis with information theory metrics. This research is motivated by two fundamental questions concerning the spatial and temporal structure of extreme events. These questions are 1) what temporal scales of the extreme value distributions are most sensitive tomore » alteration by low-frequency climate forcings and 2) what is the nature of the spatial structure of variation in these timescales? The primary objective is to assess to what extent information theory metrics can be useful in characterizing the nature of extreme weather phenomena. Specifically, we hypothesize that (1) changes in the nature of extreme events will impact the temporal probability density functions and that information theory metrics will be sensitive these changes and (2) via a wavelet multi–resolution analysis, we will be able to characterize the relative contribution of different timescales on the stochastic nature of extreme events. In order to address these hypotheses, we propose a unique combination of an established regional climate modeling approach and advanced statistical techniques to assess the effects of low-frequency modes on climate extremes over North America. The behavior of climate extremes in RCM simulations for the 20th century will be compared with statistics calculated from the United States Historical Climatology Network (USHCN) and simulations from the North American Regional Climate Change Assessment Program (NARCCAP). This effort will serve to establish the baseline behavior of climate extremes, the validity of an innovative multi–resolution information theory approach, and the ability of the RCM modeling framework to represent the low-frequency modulation of extreme climate events. Once the skill of the modeling and analysis methodology has been established, we will apply the same approach for the AR5 (IPCC Fifth Assessment Report) climate change scenarios in order to assess how climate extremes and the the influence of lowfrequency variability on climate extremes might vary under changing climate. The research specifically addresses the DOE focus area 2. Simulation of climate extremes under a changing climate. Specific results will include (1) a better understanding of the spatial and temporal structure of extreme events, (2) a thorough quantification of how extreme values are impacted by low-frequency climate teleconnections, (3) increased knowledge of current regional climate models ability to ascertain these influences, and (4) a detailed examination of the how the distribution of extreme events are likely to change under different climate change scenarios. In addition, this research will assess the ability of the innovative wavelet information theory approach to characterize extreme events. Any and all of these results will greatly enhance society’s ability to understand and mitigate the regional ramifications of future global climate change.« less
NASA Astrophysics Data System (ADS)
Yeo, I. Y.; Lang, M.; Lee, S.; Huang, C.; Jin, H.; McCarty, G.; Sadeghi, A.
2017-12-01
The wetland ecosystem plays crucial roles in improving hydrological function and ecological integrity for the downstream water and the surrounding landscape. However, changing behaviours and functioning of wetland ecosystems are poorly understood and extremely difficult to characterize. Improved understanding on hydrological behaviours of wetlands, considering their interaction with surrounding landscapes and impacts on downstream waters, is an essential first step toward closing the knowledge gap. We present an integrated wetland-catchment modelling study that capitalizes on recently developed inundation maps and other geospatial data. The aim of the data-model integration is to improve spatial prediction of wetland inundation and evaluate cumulative hydrological benefits at the catchment scale. In this paper, we highlight problems arising from data preparation, parameterization, and process representation in simulating wetlands within a distributed catchment model, and report the recent progress on mapping of wetland dynamics (i.e., inundation) using multiple remotely sensed data. We demonstrate the value of spatially explicit inundation information to develop site-specific wetland parameters and to evaluate model prediction at multi-spatial and temporal scales. This spatial data-model integrated framework is tested using Soil and Water Assessment Tool (SWAT) with improved wetland extension, and applied for an agricultural watershed in the Mid-Atlantic Coastal Plain, USA. This study illustrates necessity of spatially distributed information and a data integrated modelling approach to predict inundation of wetlands and hydrologic function at the local landscape scale, where monitoring and conservation decision making take place.
Measuring water fluxes in forests: The need for integrative platforms of analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ward, Eric J.
To understand the importance of analytical tools such as those provided by Berdanier et al. (2016) in this issue of Tree Physiology, one must understand both the grand challenges facing Earth system modelers, as well as the minutia of engaging in ecophysiological research in the field. It is between these two extremes of scale that many ecologists struggle to translate empirical research into useful conclusions that guide our understanding of how ecosystems currently function and how they are likely to change in the future. Likewise, modelers struggle to build complexity into their models that match this sophisticated understanding of howmore » ecosystems function, so that necessary simplifications required by large scales do not themselves change the conclusions drawn from these simulations. As both monitoring technology and computational power increase, along with the continual effort in both empirical and modeling research, the gap between the scale of Earth system models and ecological observations continually closes. In addition, this creates a need for platforms of model–data interaction that incorporate uncertainties in both simulations and observations when scaling from one to the other, moving beyond simple comparisons of monthly or annual sums and means.« less
Measuring water fluxes in forests: The need for integrative platforms of analysis
Ward, Eric J.
2016-08-09
To understand the importance of analytical tools such as those provided by Berdanier et al. (2016) in this issue of Tree Physiology, one must understand both the grand challenges facing Earth system modelers, as well as the minutia of engaging in ecophysiological research in the field. It is between these two extremes of scale that many ecologists struggle to translate empirical research into useful conclusions that guide our understanding of how ecosystems currently function and how they are likely to change in the future. Likewise, modelers struggle to build complexity into their models that match this sophisticated understanding of howmore » ecosystems function, so that necessary simplifications required by large scales do not themselves change the conclusions drawn from these simulations. As both monitoring technology and computational power increase, along with the continual effort in both empirical and modeling research, the gap between the scale of Earth system models and ecological observations continually closes. In addition, this creates a need for platforms of model–data interaction that incorporate uncertainties in both simulations and observations when scaling from one to the other, moving beyond simple comparisons of monthly or annual sums and means.« less
Turvey, Samuel T; Pettorelli, Nathalie
2014-12-07
Languages share key evolutionary properties with biological species, and global-level spatial congruence in richness and threat is documented between languages and several taxonomic groups. However, there is little understanding of the functional connection between diversification or extinction in languages and species, or the relationship between linguistic and species richness across different spatial scales. New Guinea is the world's most linguistically rich region and contains extremely high biological diversity. We demonstrate significant positive relationships between language and mammal richness in New Guinea across multiple spatial scales, revealing a likely functional relationship over scales at which infra-island diversification may occur. However, correlations are driven by spatial congruence between low levels of language and species richness. Regional biocultural richness may have showed closer congruence before New Guinea's linguistic landscape was altered by Holocene demographic events. In contrast to global studies, we demonstrate a significant negative correlation across New Guinea between areas with high levels of threatened languages and threatened mammals, indicating that landscape-scale threats differ between these groups. Spatial resource prioritization to conserve biodiversity may not benefit threatened languages, and conservation policy must adopt a multi-faceted approach to protect biocultural diversity as a whole.
Mittal, Sandeep; Farmer, Jean-Pierre; Al-Atassi, Borhan; Montpetit, Kathleen; Gervais, Nathalie; Poulin, Chantal; Cantin, Marie-André; Benaroch, Thierry E
2002-03-01
Suprasegmental effects following selective posterior rhizotomy have been frequently reported. However, few studies have used validated functional outcome measures to report the surgical results beyond 3 years. The authors analyzed data obtained from the McGill Rhizotomy Database to determine the long-term impact of lumbosacral dorsal rhizotomy on fine motor skills. The study population comprised children with debilitating spasticity who underwent SPR and were evaluated by a multidisciplinary team preoperatively, at 6 months and 1 year postoperatively. Quantitative standardized assessments of upper extremity function were obtained using the fine motor skills section of the Peabody Developmental Motor Scales (PDMS) test. Of 70 patients who met the entry criteria for the study, 45 and 25 completed the 3- and 5-year assessments, respectively. Statistical analysis demonstrated significant improvements in grasping, hand use, eye-hand coordination, and manual dexterity at 1 year after SPR. More importantly, all improvements were maintained at 3 and 5 years following SPR. This study supports that significant improvements in upper extremity fine motor function using the PDMS evaluative measure are present after SPR and that these suprasegmental benefits are durable. Copyright 2002 S. Karger AG, Basel
De Jager, Nathan R.; Rohweder, Jason J.
2011-01-01
Different organisms respond to spatial structure in different terms and across different spatial scales. As a consequence, efforts to reverse habitat loss and fragmentation through strategic habitat restoration ought to account for the different habitat density and scale requirements of various taxonomic groups. Here, we estimated the local density of floodplain forest surrounding each of ~20 million 10-m forested pixels of the Upper Mississippi and Illinois River floodplains by using moving windows of multiple sizes (1–100 ha). We further identified forest pixels that met two local density thresholds: 'core' forest pixels were nested in a 100% (unfragmented) forested window and 'dominant' forest pixels were those nested in a >60% forested window. Finally, we fit two scaling functions to declines in the proportion of forest cover meeting these criteria with increasing window length for 107 management-relevant focal areas: a power function (i.e. self-similar, fractal-like scaling) and an exponential decay function (fractal dimension depends on scale). The exponential decay function consistently explained more variation in changes to the proportion of forest meeting both the 'core' and 'dominant' criteria with increasing window length than did the power function, suggesting that elevation, soil type, hydrology, and human land use constrain these forest types to a limited range of scales. To examine these scales, we transformed the decay constants to measures of the distance at which the probability of forest meeting the 'core' and 'dominant' criteria was cut in half (S 1/2, m). S 1/2 for core forest was typically between ~55 and ~95 m depending on location along the river, indicating that core forest cover is restricted to extremely fine scales. In contrast, half of all dominant forest cover was lost at scales that were typically between ~525 and 750 m, but S 1/2 was as long as 1,800 m. S 1/2 is a simple measure that (1) condenses information derived from multi-scale analyses, (2) allows for comparisons of the amount of forest habitat available to species with different habitat density and scale requirements, and (3) can be used as an index of the spatial continuity of habitat types that do not scale fractally.
Uncertainty in determining extreme precipitation thresholds
NASA Astrophysics Data System (ADS)
Liu, Bingjun; Chen, Junfan; Chen, Xiaohong; Lian, Yanqing; Wu, Lili
2013-10-01
Extreme precipitation events are rare and occur mostly on a relatively small and local scale, which makes it difficult to set the thresholds for extreme precipitations in a large basin. Based on the long term daily precipitation data from 62 observation stations in the Pearl River Basin, this study has assessed the applicability of the non-parametric, parametric, and the detrended fluctuation analysis (DFA) methods in determining extreme precipitation threshold (EPT) and the certainty to EPTs from each method. Analyses from this study show the non-parametric absolute critical value method is easy to use, but unable to reflect the difference of spatial rainfall distribution. The non-parametric percentile method can account for the spatial distribution feature of precipitation, but the problem with this method is that the threshold value is sensitive to the size of rainfall data series and is subjected to the selection of a percentile thus make it difficult to determine reasonable threshold values for a large basin. The parametric method can provide the most apt description of extreme precipitations by fitting extreme precipitation distributions with probability distribution functions; however, selections of probability distribution functions, the goodness-of-fit tests, and the size of the rainfall data series can greatly affect the fitting accuracy. In contrast to the non-parametric and the parametric methods which are unable to provide information for EPTs with certainty, the DFA method although involving complicated computational processes has proven to be the most appropriate method that is able to provide a unique set of EPTs for a large basin with uneven spatio-temporal precipitation distribution. The consistency between the spatial distribution of DFA-based thresholds with the annual average precipitation, the coefficient of variation (CV), and the coefficient of skewness (CS) for the daily precipitation further proves that EPTs determined by the DFA method are more reasonable and applicable for the Pearl River Basin.
Censored rainfall modelling for estimation of fine-scale extremes
NASA Astrophysics Data System (ADS)
Cross, David; Onof, Christian; Winter, Hugo; Bernardara, Pietro
2018-01-01
Reliable estimation of rainfall extremes is essential for drainage system design, flood mitigation, and risk quantification. However, traditional techniques lack physical realism and extrapolation can be highly uncertain. In this study, we improve the physical basis for short-duration extreme rainfall estimation by simulating the heavy portion of the rainfall record mechanistically using the Bartlett-Lewis rectangular pulse (BLRP) model. Mechanistic rainfall models have had a tendency to underestimate rainfall extremes at fine temporal scales. Despite this, the simple process representation of rectangular pulse models is appealing in the context of extreme rainfall estimation because it emulates the known phenomenology of rainfall generation. A censored approach to Bartlett-Lewis model calibration is proposed and performed for single-site rainfall from two gauges in the UK and Germany. Extreme rainfall estimation is performed for each gauge at the 5, 15, and 60 min resolutions, and considerations for censor selection discussed.
Patient-reported outcomes of pain and physical functioning in neurofibromatosis clinical trials.
Wolters, Pamela L; Martin, Staci; Merker, Vanessa L; Tonsgard, James H; Solomon, Sondra E; Baldwin, Andrea; Bergner, Amanda L; Walsh, Karin; Thompson, Heather L; Gardner, Kathy L; Hingtgen, Cynthia M; Schorry, Elizabeth; Dudley, William N; Franklin, Barbara
2016-08-16
Tumors and other disease complications of neurofibromatosis (NF) can cause pain and negatively affect physical functioning. To document the clinical benefit of treatment in NF trials targeting these manifestations, patient-reported outcomes (PROs) assessing pain and physical functioning should be included as study endpoints. Currently, there is no consensus on the selection and use of such measures in the NF population. This article presents the recommendations of the PRO group of the Response Evaluation in Neurofibromatosis and Schwannomatosis (REiNS) International Collaboration for assessing the domains of pain and physical functioning for NF clinical trials. The REiNS PRO group reviewed and rated existing PRO measures assessing pain intensity, pain interference, and physical functioning using their systematic method. Final recommendations are based primarily on 4 main criteria: patient characteristics, item content, psychometric properties, and feasibility for clinical trials. The REiNS PRO group chose the Numeric Rating Scale-11 (≥8 years) to assess pain intensity, the Pain Interference Index (6-24 years) and the Patient-Reported Outcome Measurement Information System (PROMIS) Pain Interference Scale (≥18 years) to evaluate pain interference, and the PROMIS Physical Functioning Scale to measure upper extremity function and mobility (≥5 years) for NF clinical trials. The REiNS Collaboration currently recommends these PRO measures to assess the domains of pain and physical functioning for NF clinical trials; however, further research is needed to evaluate their use in individuals with NF. A final consensus recommendation for the pain interference measure will be disseminated in a future publication based on findings from additional published research. © 2016 American Academy of Neurology.
Dynamical systems proxies of atmospheric predictability and mid-latitude extremes
NASA Astrophysics Data System (ADS)
Messori, Gabriele; Faranda, Davide; Caballero, Rodrigo; Yiou, Pascal
2017-04-01
Extreme weather ocurrences carry enormous social and economic costs and routinely garner widespread scientific and media coverage. Many extremes (for e.g. storms, heatwaves, cold spells, heavy precipitation) are tied to specific patterns of midlatitude atmospheric circulation. The ability to identify these patterns and use them to enhance the predictability of the extremes is therefore a topic of crucial societal and economic value. We propose a novel predictability pathway for extreme events, by building upon recent advances in dynamical systems theory. We use two simple dynamical systems metrics - local dimension and persistence - to identify sets of similar large-scale atmospheric flow patterns which present a coherent temporal evolution. When these patterns correspond to weather extremes, they therefore afford a particularly good forward predictability. We specifically test this technique on European winter temperatures, whose variability largely depends on the atmospheric circulation in the North Atlantic region. We find that our dynamical systems approach provides predictability of large-scale temperature extremes up to one week in advance.
NASA Astrophysics Data System (ADS)
Schäfer, L.; Dierksheide, U.; Klaas, M.; Schröder, W.
2011-03-01
A new method to describe statistical information from passive scalar fields has been proposed by Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006)]. They used direct numerical simulations (DNS) of homogeneous shear flow to introduce the innovative concept. This novel method determines the local minimum and maximum points of the fluctuating scalar field via gradient trajectories, starting from every grid point in the direction of the steepest ascending and descending scalar gradients. Relying on gradient trajectories, a dissipation element is defined as the region of all the grid points, the trajectories of which share the same pair of maximum and minimum points. The procedure has also been successfully applied to various DNS fields of homogeneous shear turbulence using the three velocity components and the kinetic energy as scalar fields [L. Wang and N. Peters, "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. In this spirit, dissipation elements are, for the first time, determined from experimental data of a fully developed turbulent channel flow. The dissipation elements are deduced from the gradients of the instantaneous fluctuation of the three velocity components u', v', and w' and the instantaneous kinetic energy k', respectively. The measurements are conducted at a Reynolds number of 1.7×104 based on the channel half-height δ and the bulk velocity U. The required three-dimensional velocity data are obtained investigating a 17.75×17.75×6 mm3 (0.355δ×0.355δ×0.12δ) test volume using tomographic particle-image velocimetry. Detection and analysis of dissipation elements from the experimental velocity data are discussed in detail. The statistical results are compared to the DNS data from Wang and Peters ["The length-scale distribution function of the distance between extremal points in passive scalar turbulence," J. Fluid Mech. 554, 457 (2006); "Length-scale distribution functions and conditional means for various fields in turbulence," J. Fluid Mech. 608, 113 (2008)]. Similar characteristics have been found especially for the pdf's of the large dissipation element length regarding the exponential decay. In agreement with the DNS results, over 99% of the experimental dissipation elements possess a length that is smaller than three times the average element length.
Taghizadeh, Ghorban; Azad, Akram; Kashefi, Sepiede; Fallah, Soheila; Daneshjoo, Fatemeh
2017-11-14
Blinded randomized controlled trial. Patients with Parkinson disease (PD) have sensory problems, but there is still no accurate understanding of the effects of sensory-motor interventions on PD. To investigate the effects of sensory-motor training (SMT) on hand and upper extremity sensory and motor function in patients with PD. Forty patients with PD were allocated to the SMT group or the control group (CG) (mean ages ± standard deviation: SMT, 61.05 ± 13.9 years; CG, 59.15 ± 11.26 years). The CG received the common rehabilitation therapies, whereas the SMT group received SMT. The SMT included discrimination of temperatures, weights, textures, shapes, and objects and was performed 5 times each week for 2 weeks. Significantly reducing the error rates in the haptic object recognition test (dominant hand [DH]: F = 15.36, P = .001, and effect size [ES] = 0.29; nondominant hand [NDH]: F = 9.33, P = .004, and ES = 0.21) and the error means in the wrist proprioception sensation test (DH: F = 9.11, P = .005, and ES = 0.19; NDH: F = 13.04, P = .001, and ES = 0.26) and increasing matched objects in the hand active sensation test (DH: F = 12.15, P = .001, and ES = 0.24; NDH: F = 5.03, P = .03, and ES = 0.12) founded in the SMT. Also, the DH (F = 6.65, P = .01, and ES = 0.15), both hands (F = 7.61, P = .009, and ES = 0.17), and assembly (F = 7.02, P = .01, and ES = 0.15) subtests of fine motor performance, as well as DH (F = 10.1, P = .003, and ES = 0.21) and NDH (F = 8.37, P = .006, and ES = 0.18) in upper extremity functional performance, were improved in the SMT. SMT improved hand and upper extremity sensory-motor function in patients with PD. The SMT group showed improved sensory and motor function. But these results were limited to levels 1 to 3 of the Hoehn and Yahr Scale. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Epidemic failure detection and consensus for extreme parallelism
Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas; ...
2017-02-01
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less
Wii-based movement therapy to promote improved upper extremity function post-stroke: a pilot study.
Mouawad, Marie R; Doust, Catherine G; Max, Madeleine D; McNulty, Penelope A
2011-05-01
Virtual-reality is increasingly used to improve rehabilitation outcomes. The Nintendo Wii offers an in-expensive alternative to more complex systems. To investigate the efficacy of Wii-based therapy for post-stroke rehabilitation. Seven patients (5 men, 2 women, aged 42-83 years; 1-38 months post-stroke, mean 15.3 months) and 5 healthy controls (3 men, 2 women, aged 41-71 years) undertook 1 h of therapy on 10 consecutive weekdays. Patients progressively increased home practice to 3 h per day. Functional ability improved for every patient. The mean performance time significantly decreased per Wolf Motor Function Test task, from 3.2 to 2.8 s, and Fugl-Meyer Assessment scores increased from 42.3 to 47.3. Upper extremity range-of-motion increased by 20.1º and 14.33º for passive and active movements, respectively. Mean Motor Activity Log (Quality of Movement scale) scores increased from 63.2 to 87.5, reflecting a transfer of functional recovery to everyday activities. Balance and dexterity did not improve significantly. No significant change was seen in any of these measures for healthy controls, despite improved skill levels for Wii games. An intensive 2-week protocol resulted in significant and clinically relevant improvements in functional motor ability post-stroke. These gains translated to improvement in activities of daily living.
Towards a Unified Framework in Hydroclimate Extremes Prediction in Changing Climate
NASA Astrophysics Data System (ADS)
Moradkhani, H.; Yan, H.; Zarekarizi, M.; Bracken, C.
2016-12-01
Spatio-temporal analysis and prediction of hydroclimate extremes are of paramount importance in disaster mitigation and emergency management. The IPCC special report on managing the risks of extreme events and disasters emphasizes that the global warming would change the frequency, severity, and spatial pattern of extremes. In addition to climate change, land use and land cover changes also influence the extreme characteristics at regional scale. Therefore, natural variability and anthropogenic changes to the hydroclimate system result in nonstationarity in hydroclimate variables. In this presentation recent advancements in developing and using Bayesian approaches to account for non-stationarity in hydroclimate extremes are discussed. Also, implications of these approaches in flood frequency analysis, treatment of spatial dependence, the impact of large-scale climate variability, the selection of cause-effect covariates, with quantification of model errors in extreme prediction is explained. Within this framework, the applicability and usefulness of the ensemble data assimilation for extreme flood predictions is also introduced. Finally, a practical and easy to use approach for better communication with decision-makers and emergency managers is presented.
Spatial correlation of the dynamic propensity of a glass-forming liquid
NASA Astrophysics Data System (ADS)
Razul, M. Shajahan G.; Matharoo, Gurpreet S.; Poole, Peter H.
2011-06-01
We present computer simulation results on the dynamic propensity (as defined by Widmer-Cooper et al 2004 Phys. Rev. Lett. 93 135701) in a Kob-Andersen binary Lennard-Jones liquid system consisting of 8788 particles. We compute the spatial correlation function for the dynamic propensity as a function of both the reduced temperature T, and the time scale on which the particle displacements are measured. For T <= 0.6, we find that non-zero correlations occur at the largest length scale accessible in our system. We also show that a cluster-size analysis of particles with extremal values of the dynamic propensity, as well as 3D visualizations, reveal spatially correlated regions that approach the size of our system as T decreases, consistently with the behavior of the spatial correlation function. Next, we define and examine the 'coordination propensity', the isoconfigurational average of the coordination number of the minority B particles around the majority A particles. We show that a significant correlation exists between the spatial fluctuations of the dynamic and coordination propensities. In addition, we find non-zero correlations of the coordination propensity occurring at the largest length scale accessible in our system for all T in the range 0.466 < T < 1.0. We discuss the implications of these results for understanding the length scales of dynamical heterogeneity in glass-forming liquids.
Tanigawa, Makoto; Stein, Jason; Park, John; Kosa, Peter; Cortese, Irene; Bielekova, Bibiana
2017-01-01
While magnetic resonance imaging contrast-enhancing lesions represent an excellent screening tool for disease-modifying treatments in relapsing-remitting multiple sclerosis (RRMS), this biomarker is insensitive for testing therapies against compartmentalized inflammation in progressive multiple sclerosis (MS). Therefore, alternative sensitive outcomes are needed. Using machine learning, clinician-acquired disability scales can be combined with timed measures of neurological functions such as walking speed (e.g. 25-foot walk; 25FW) or fine finger movements (e.g. 9-hole peg test; 9HPT) into sensitive composite clinical scales, such as the recently developed combinatorial, weight-adjusted disability scale (CombiWISE). Ideally, these complementary simplified measurements of certain neurological functions could be performed regularly at patients' homes using smartphones. We asked whether tests amenable to adaptation to smartphone technology, such as finger and foot tapping have comparable sensitivity and specificity to current non-clinician-acquired disability measures. We observed that finger and foot tapping can differentiate RRMS and progressive MS in a cross-sectional study and can also measure yearly and two-year disease progression in the latter, with better power (based on z-scores) in comparison to currently utilized 9HPT and 25FW. Replacing the 9HPT and 25FW with simplified tests broadly adaptable to smartphone technology may enhance the power of composite scales for progressive MS.
Fiber optic photoelastic pressure sensor for high temperature gases
NASA Technical Reports Server (NTRS)
Wesson, Laurence N.; Redner, Alex S.; Baumbick, Robert J.
1990-01-01
A novel fiber optic pressure sensor based on the photoelastic effects has been developed for extremely high temperature gases. At temperatures varying from 25 to 650 C, the sensor experiences no change in the peak pressure of the transfer function and only a 10 percent drop in dynamic range. Refinement of the sensor has resulted in an optoelectronic interface and processor software which can calculate pressure values within 1 percent of full scale at any temperature within the full calibrated temperature range.
New Solid Polymer Electrolytes for Improved Lithium Batteries
NASA Technical Reports Server (NTRS)
Hehemann, David G.
2002-01-01
The objective of this work was to identify, synthesize and incorporate into a working prototype, next-generation solid polymer electrolytes, that allow our pre-existing solid-state lithium battery to function better under extreme conditions. We have synthesized polymer electrolytes in which emphasis was placed on the temperature-dependent performance of these candidate electrolytes. This project was designed to produce and integrate novel polymer electrolytes into a lightweight thin-film battery that could easily be scaled up for mass production and adapted to different applications.
NASA Astrophysics Data System (ADS)
Voigt, M.; Lorenz, P.; Kruschke, T.; Osinski, R.; Ulbrich, U.; Leckebusch, G. C.
2012-04-01
Winterstorms and related gusts can cause extensive socio-economic damages. Knowledge about the occurrence and the small scale structure of such events may help to make regional estimations of storm losses. For a high spatial and temporal representation, the use of dynamical downscaling methods (RCM) is a cost-intensive and time-consuming option and therefore only applicable for a limited number of events. The current study explores a methodology to provide a statistical downscaling, which offers small scale structured gust fields from an extended large scale structured eventset. Radial-basis-function (RBF) networks in combination with bidirectional Kohonen (BDK) maps are used to generate the gustfields on a spatial resolution of 7 km from the 6-hourly mean sea level pressure field from ECMWF reanalysis data. BDK maps are a kind of neural network which handles supervised classification problems. In this study they are used to provide prototypes for the RBF network and give a first order approximation for the output data. A further interpolation is done by the RBF network. For the training process the 50 most extreme storm events over the North Atlantic area from 1957 to 2011 are used, which have been selected from ECMWF reanalysis datasets ERA40 and ERA-Interim by an objective wind based tracking algorithm. These events were downscaled dynamically by application of the DWD model chain GME → COSMO-EU. Different model parameters and their influence on the quality of the generated high-resolution gustfields are studied. It is shown that the statistical RBF network approach delivers reasonable results in modeling the regional gust fields for untrained events.
Kolmogorov-Kraichnan Scaling in the Inverse Energy Cascade of Two-Dimensional Plasma Turbulence
NASA Astrophysics Data System (ADS)
Antar, G. Y.
2003-08-01
Turbulence in plasmas that are magnetically confined, such as tokamaks or linear devices, is two dimensional or at least quasi two dimensional due to the strong magnetic field, which leads to extreme elongation of the fluctuations, if any, in the direction parallel to the magnetic field. These plasmas are also compressible fluid flows obeying the compressible Navier-Stokes equations. This Letter presents the first comprehensive scaling of the structure functions of the density and velocity fields up to 10th order in the PISCES linear plasma device and up to 6th order in the Mega-Ampère Spherical Tokamak (MAST). In the two devices, it is found that the scaling of the turbulent fields is in good agreement with the prediction of the Kolmogorov-Kraichnan theory for two-dimensional turbulence in the energy cascade subrange.
The NASA Energy and Water Cycle Extreme (NEWSE) Integration Project
NASA Technical Reports Server (NTRS)
House, P. R.; Lapenta, W.; Schiffer, R.
2008-01-01
Skillful predictions of water and energy cycle extremes (flood and drought) are elusive. To better understand the mechanisms responsible for water and energy extremes, and to make decisive progress in predicting these extremes, the collaborative NASA Energy and Water cycle Extremes (NEWSE) Integration Project, is studying these extremes in the U.S. Southern Great Plains (SGP) during 2006-2007, including their relationships with continental and global scale processes, and assessment of their predictability on multiple space and time scales. It is our hypothesis that an integrative analysis of observed extremes which reflects the current understanding of the role of SST and soil moisture variability influences on atmospheric heating and forcing of planetary waves, incorporating recently available global and regional hydro- meteorological datasets (i.e., precipitation, water vapor, clouds, etc.) in conjunction with advances in data assimilation, can lead to new insights into the factors that lead to persistent drought and flooding. We will show initial results of this project, whose goals are to provide an improved definition, attribution and prediction on sub-seasonal to interannual time scales, improved understanding of the mechanisms of decadal drought and its predictability, including the impacts of SST variability and deep soil moisture variability, and improved monitoring/attributions, with transition to applications; a bridging of the gap between hydrological forecasts and stakeholders (utilization of probabilistic forecasts, education, forecast interpretation for different sectors, assessment of uncertainties for different sectors, etc.).
Trends in mean and extreme temperatures over Ibadan, Southwest Nigeria
NASA Astrophysics Data System (ADS)
Abatan, Abayomi A.; Osayomi, Tolulope; Akande, Samuel O.; Abiodun, Babatunde J.; Gutowski, William J.
2018-02-01
In recent times, Ibadan has been experiencing an increase in mean temperature which appears to be linked to anthropogenic global warming. Previous studies have indicated that the warming may be accompanied by changes in extreme events. This study examined trends in mean and extreme temperatures over Ibadan during 1971-2012 at annual and seasonal scales using the high-resolution atmospheric reanalysis from European Centre for Medium-Range Weather Forecasts (ECMWF) twentieth-century dataset (ERA-20C) at 15 grid points. Magnitudes of linear trends in mean and extreme temperatures and their statistical significance were calculated using ordinary least squares and Mann-Kendall rank statistic tests. The results show that Ibadan has witnessed an increase in annual and seasonal mean minimum temperatures. The annual mean maximum temperature exhibited a non-significant decline in most parts of Ibadan. While trends in cold extremes at annual scale show warming, trends in coldest night show greater warming than in coldest day. At the seasonal scale, we found that Ibadan experienced a mix of positive and negative trends in absolute extreme temperature indices. However, cold extremes show the largest trend magnitudes, with trends in coldest night showing the greatest warming. The results compare well with those obtained from a limited number of stations. This study should inform decision-makers and urban planners about the ongoing warming in Ibadan.
Miki, Emi; Yamane, Shingo; Yamaoka, Mai; Fujii, Hiroe; Ueno, Hiroka; Kawahara, Toshie; Tanaka, Keiko; Tamashiro, Hiroaki; Inoue, Eiji; Okamoto, Takatsugu; Kuriyama, Masaru
2016-09-01
The study aim was to investigate the validity and reliability of the Functional Independence Measure and Functional Assessment Measure (FIM + FAM), which is unfamiliar in Japan, by using its Japanese version (FIM + FAM-j) in patients with cerebrovascular accident (CVA). Forty-two CVA patients participated. Criterion validity was examined by correlating the full scale and subscales of FIM + FAM-j with several well-established measurements using Spearman's correlation coefficient. Reliability was evaluated by internal consistency (tested by Cronbach's alpha coefficient) and intra-rater reliability (tested by Kendall's tau correlation coefficient). Good-to-excellent criterion validity was found between the full scale and motor subscales of the FIM + FAM-j and the Barthel Index, National Institutes of Health Stroke Scale, modified Rankin Scale, and lower extremity Brunnstrom Recovery Stage. High internal consistency was observed within the full-scale FIM + FAM-j and the motor and cognitive subscales (Cronbach's alphas were 0.968, 0.954, and 0.948, respectively). Additionally, good intra-rater reliability was observed within the full scale and motor subscales, and excellent reliability for the cognitive subscales (taus were 0.83, 0.80, and 0.98, respectively). This study showed that the FIM + FAM-j demonstrated acceptable levels of validity and reliability when used for CVA as a measure of disability.
Ozaki, Kenichi; Kagaya, Hitoshi; Hirano, Satoshi; Kondo, Izumi; Tanabe, Shigeo; Itoh, Norihide; Saitoh, Eiichi; Fuwa, Toshio; Murakami, Ryo
2013-01-01
To examine the efficacy of postural strategy training using a personal transport assistance robot (PTAR) for patients with central nervous system disorders. Single-group intervention trial. Rehabilitation center at a university hospital. Outpatients (N=8; 5 men, 3 women; mean age, 50±13y) with a gait disturbance (mean time after onset, 34±29mo) as a result of central nervous system disorders were selected from a volunteer sample. Two methods of balance exercise using a PTAR were devised: exercise against perturbation and exercise moving the center of gravity. The exercises were performed twice a week for 4 weeks. Preferred and tandem gait speeds, Functional Reach Test, functional base of support, center of pressure (COP), muscle strength of lower extremities, and grip strength were assessed before and after the completion of the exercise program. After the exercise program, enjoyment of exercise was investigated via a visual analog scale questionnaire. After the program, statistically significant improvements were noted for tandem gait speeds (P=.009), Functional Reach Test (P=.003), functional base of support (P=.014), and lower extremity muscle strength (P<.001-.042). On the other hand, preferred gait speeds (P=.151), COP (P=.446-.714), and grip power (P=.584) did not change. Finally, subjects rated that this exercise was more enjoyable than traditional balance exercises. Dynamic balance and lower extremity muscle strength were significantly improved in response to postural strategy training with the PTAR. These results suggest that postural strategy training with the PTAR may contribute to fall prevention of patients with a balance disorder. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Dimitrijevic, I M; Kocic, M N; Lazovic, M P; Mancic, D D; Marinkovic, O K; Zlatanovic, D S
2016-08-01
Lumbosacral radiculopathy is a pathological process that refers to the dysfunction of one or more spinal nerve roots in the lumbosacral region of the spine. Some studies have shown that infrared thermography can estimate the severity of the clinical manifestation of unilateral lumbosacral radiculopathy. This study aimed to examine the correlation of the regional thermal deficit of the affected lower extremity with pain intensity, mobility of the lumbar spine, and functional status in patients with unilateral lumbosacral radiculopathy. This cross-sectional study was conducted at the Clinic for Physical Medicine and Rehabilitation of the Clinical Center Niš, Serbia. A total of 69 patients with unilateral lumbosacral radiculopathy of discogenic origin were recruited, with the following clinical parameters evaluated: (1) pain intensity by using a visual analogue scale, separately at rest and during active movement; (2) mobility of the lumbar spine by Schober test and the fingertip-to-floor test; and (3) functional status by the Oswestry Disability Index. Temperature differences between the symmetrical regions of the lower extremities were detected by infrared thermography. A quantitative analysis of thermograms determined the regions of interest with maximum thermal deficit. Correlation of maximum thermal deficit with each tested parameter was then determined. A significant and strong positive correlation was found between the regional thermal deficit and pain intensity at rest, as well as pain during active movements (rVAS - rest=0.887, rVAS - activity=0.890; P<0.001). The regional thermal deficit significantly and strongly correlated with the Oswestry Disability Index score and limited mobility of the lumbar spine (P<0.001). In patients with unilateral lumbosacral radiculopathy, the values of regional thermal deficit of the affected lower extremity are correlated with pain intensity, mobility of the lumbar spine, and functional status of the patient.
Trend in frequency of extreme precipitation events over Ontario from ensembles of multiple GCMs
NASA Astrophysics Data System (ADS)
Deng, Ziwang; Qiu, Xin; Liu, Jinliang; Madras, Neal; Wang, Xiaogang; Zhu, Huaiping
2016-05-01
As one of the most important extreme weather event types, extreme precipitation events have significant impacts on human and natural environment. This study assesses the projected long term trends in frequency of occurrence of extreme precipitation events represented by heavy precipitation days, very heavy precipitation days, very wet days and extreme wet days over Ontario, based on results of 21 CMIP3 GCM runs. To achieve this goal, first, all model data are linearly interpolated onto 682 grid points (0.45° × 0.45°) in Ontario; Next, biases in model daily precipitation amount are corrected with a local intensity scaling method to make the total wet days and total wet day precipitation from each of the GCMs are consistent with that from the climate forecast system reanalysis data, and then the four indices are estimated for each of the 21 GCM runs for 1968-2000, 2046-2065 and 2081-2100. After that, with the assumption that the rate parameter of the Poisson process for the occurrence of extreme precipitation events may vary with time as climate changes, the Poisson regression model which expresses the log rate as a linear function of time is used to detect the trend in frequency of extreme events in the GCMs simulations; Finally, the trends and their uncertainty are estimated. The result shows that in the twenty-first century annual heavy precipitation days, very heavy precipitation days and very wet days and extreme wet days are likely to significantly increase over major parts of Ontario and particularly heavy precipitation days, very wet days are very likely to significantly increase in some sub-regions in eastern Ontario. However, trends of seasonal indices are not significant.
Han, De-Xiong; Zhuang, Li-Xing; Zhang, Ying
2011-06-01
To assess the therapeutic effect of Jin's "Sanzhen" therapy combined with rehabilitation training on limb-motor function of stroke patients by using Fugl-Meyer scale. A total of 254 hemiplegic stroke outpatients and inpatients from 7 hospitals were randomly divided into Jin's "Sanzhen" (JSZ) group (n = 83), rehabilitation group (n = 84) and combination group (n = 87). Acupuncture was applied to acupoints of Jin's "Sanzhen" including Quchi (LI 11), Waiguan (SJ 5) and Hegu (LI 4); Futu (ST 32). Zusanli (ST 36) and Sanyinjiao (SP 6); etc. The acupuncture needles were retained for 30 min after "Deqi". Rehabilitation training included passive joint movement, standing-sitting training, tapping-pressing stimulation, walking training, etc. The treatment was conducted once daily, 5 sessions a week and for 4 weeks. Fugl-Meyer scale composed of 100-point motor domain of the upper- and lower-extremity sections was used to assess the patients' motor function. On day 28 after the treatment, of the 83.84 and 87 hemiplegic stroke patients in the JSZ, rehabilitation and combination groups, 48 (57.8%), 31 (36.9%) and 50 (57.5%) experienced marked improvement in their clinical symptoms and signs, 26 (31.3%), 44 (52.4%) and 31(35.6%) had an improvement, and 9 (10.8%), 9 (10.7%) and 6 (6.9%) failed in the treatment, with the total effective rates being 89.2%, 89.3% and 93.1%, respectively. The neurological deficit score (NDS) of the combination group was significantly lower than that of the rehabilitation group (P < 0.05). The Fugl-Meyer assessment score (FMAS) for extremity motor function of the combination group was apparently higher than those of the JSZ and rehabilitation groups (P < 0.05). No significant differences were found between the JSZ and rehabilitation groups in both NDS and FMAS (P > 0.05). Jin's "Sanzhen" therapy combined with rehabilitation training can significantly improve the limb motor function of hemiplegic stroke patients, and has a good synergistic effect.
Yozbatiran, Nuray; Keser, Zafer; Davis, Matthew; Stampas, Argyrios; O'Malley, Marcia K; Cooper-Hay, Catherine; Frontera, Joel; Fregni, Felipe; Francisco, Gerard E
2016-07-15
After cervical spinal cord injury, current options for treatment of upper extremity motor functions have been limited to traditional approaches. However, there is a substantial need to explore more rigorous alternative treatments to facilitate motor recovery. To demonstrate whether anodal-primary motor cortex (M1) excitability enhancement (with cathodal-supra orbital area) (atDCS) combined with robot-assisted arm training (R-AAT) will provide greater improvement in contralateral arm and hand motor functions compared to sham stimulation (stDCS) and R-AAT in patients with chronic, incomplete cervical spinal cord injury (iCSCI). In this parallel-group, double-blinded, randomized and sham-controlled trial, nine participants with chronic iCSCI (AIS C and D level) were randomized to receive 10 sessions of atDCS or stDSC combined with R-AAT. Feasibility and tolerability was assessed with attrition rate and occurrence of adverse events, Changes in arm and hand function were assessed with Jebson Taylor Hand Function Test (JTHFT). Amount of Use Scale of Motor Activity Log (AOU-MAL), American Spinal Injury Association Upper Extremity Motor Score and Modified Ashworth Scale (MAS) at baseline, after treatment, and at two-month follow-up. None of the participants missed a treatment session or dropped-out due to adverse events related to the treatment protocol. Participants tended to perform better in JTHFT and AOU-MAL after treatment. Active group at post-treatment and two-month follow-up demonstrated better arm and hand performance compared to sham group. These preliminary findings support that modulating excitatory input of the corticospinal tracts on spinal circuits may be a promising strategy in improving arm and hand functions in persons with incomplete tetraplegia. Further study is needed to explore the underlying mechanisms of recovery.
Lo, Albert C.; Guarino, Peter; Krebs, Hermano I.; Volpe, Bruce T.; Bever, Christopher T.; Duncan, Pamela W.; Ringer, Robert J.; Wagner, Todd H.; Richards, Lorie G.; Bravata, Dawn M.; Haselkorn, Jodie K.; Wittenberg, George F.; Federman, Daniel G.; Corn, Barbara H.; Maffucci, Alysia D.; Peduzzi, Peter
2017-01-01
Background Chronic upper extremity impairment due to stroke has significant medical, psychosocial, and financial consequences, but few studies have examined the effectiveness of rehabilitation therapy during the chronic stroke period. Objective To test the safety and efficacy of the MIT-Manus robotic device for chronic upper extremity impairment following stroke. Methods The VA Cooperative Studies Program initiated a multicenter, randomized, controlled trial in November 2006 (VA ROBOTICS). Participants with upper extremity impairment ≥6 months poststroke were randomized to robot-assisted therapy (RT), intensive comparison therapy (ICT), or usual care (UC). RT and ICT consisted of three 1-hour treatment sessions per week for 12 weeks. The primary outcome was change in the Fugl-Meyer Assessment upper extremity motor function score at 12 weeks relative to baseline. Secondary outcomes included the Wolf Motor Function Test and the Stroke Impact Scale. Results A total of 127 participants were randomized: 49 to RT, 50 to ICT, and 28 to UC. The majority of participants were male (96%), with a mean age of 65 years. The primary stroke type was ischemic (85%), and 58% of strokes occurred in the anterior circulation. Twenty percent of the participants reported a stroke in addition to their index stroke. The average time from the index stroke to enrollment was 56 months (range, 6 months to 24 years). The mean Fugl-Meyer score at entry was 18.9. Conclusions VA ROBOTICS demonstrates the feasibility of conducting multicenter clinical trials to rigorously test new rehabilitative devices before their introduction to clinical practice. The results are expected in early 2010. PMID:19541917
Slump, Jelena; Hofer, Stefan O P; Ferguson, Peter C; Wunder, Jay S; Griffin, Anthony M; Hoekstra, Harald J; Bastiaannet, Esther; O'Neill, Anne C
2018-04-12
Flap reconstruction plays an essential role in facilitating limb preservation in patients with extremity soft tissue sarcoma (ESTS). However, the effect of flap choice on the rates of postoperative complications and functional outcomes has not been clearly established. This study directly compares the outcomes of free and pedicled flap reconstructions in patients with ESTS. Two hundred sixty-six patients who underwent flap reconstruction following ESTS resection were included. Associations between flap type and complications were determined using logistic regression analyses. Functional outcome was evaluated using the Toronto Extremity Salvage Score (TESS) and the Musculoskeletal Tumor Society Scales (MSTS). There was no significant difference between complication rates in the pedicled and free flap groups (32% vs. 38%, p = 0.38). In the lower limb, pedicled flaps had complication rates similar to those of free flaps on univariate analysis (odds ratio [OR] = 1.12, 95% confidence interval [CI] = 0.56-2.26, p = 0.75). Conversely, in the upper limb, pedicled flaps were associated with fewer complications on univariate analysis (OR = 0.31, 95% CI = 0.11-0.86, p = 0.03), but this was not significant on multivariate analysis (OR = 0.45, 95% CI = 0.13-1.59, p = 0.22). Obesity was a strong predictor of complications in the upper limb group on multivariate analysis (body mass index [BMI] ≥ 30 kg/m 2 , OR = 7.01, 95% CI = 1.28-38.51, p = 0.03). There was no significant difference in functional outcomes between both flap groups in either upper or lower limbs. Postoperative complications and functional outcomes for patients undergoing free and pedicled flaps are similar in ESTS reconstruction. Selecting the most suitable reconstructive option in each individual case is paramount to preserving function while minimizing postoperative morbidity. Copyright © 2018 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.
Robust increase in extreme summer rainfall intensity during the past four decades observed in China
NASA Astrophysics Data System (ADS)
Xiao, Chan; Wu, Peili; Zhang, Lixia; Song, Lianchun
2016-12-01
Global warming increases the moisture holding capacity of the atmosphere and consequently the potential risks of extreme rainfall. Here we show that maximum hourly summer rainfall intensity has increased by about 11.2% on average, using continuous hourly gauge records for 1971-2013 from 721 weather stations in China. The corresponding event accumulated precipitation has on average increased by more than 10% aided by a small positive trend in events duration. Linear regression of the 95th percentile daily precipitation intensity with daily mean surface air temperature shows a negative scaling of -9.6%/K, in contrast to a positive scaling of 10.6%/K for hourly data. This is made up of a positive scaling below the summer mean temperature and a negative scaling above. Using seasonal means instead of daily means, we find a consistent scaling rate for the region of 6.7-7%/K for both daily and hourly precipitation extremes, about 10% higher than the regional Clausius-Clapeyron scaling of 6.1%/K based on a mean temperature of 24.6 °C. With up to 18% further increase in extreme precipitation under continuing global warming towards the IPCC’s 1.5 °C target, risks of flash floods will exacerbate on top of the current incapability of urban drainage systems in a rapidly urbanizing China.
Grassland responses to precipitation extremes
USDA-ARS?s Scientific Manuscript database
Grassland ecosystems are naturally subjected to periods of prolonged drought and sequences of wet years. Climate change is expected to enhance the magnitude and frequency of extreme events at the intraannual and multiyear scales. Are grassland responses to extreme precipitation simply a response to ...
NASA Astrophysics Data System (ADS)
Bao, Jiawei; Sherwood, Steven C.; Colin, Maxime; Dixit, Vishal
2017-10-01
The behavior of tropical extreme precipitation under changes in sea surface temperatures (SSTs) is investigated with the Weather Research and Forecasting Model (WRF) in three sets of idealized simulations: small-domain tropical radiative-convective equilibrium (RCE), quasi-global "aquapatch", and RCE with prescribed mean ascent from the tropical band in the aquapatch. We find that, across the variations introduced including SST, large-scale circulation, domain size, horizontal resolution, and convective parameterization, the change in the degree of convective organization emerges as a robust mechanism affecting extreme precipitation. Higher ratios of change in extreme precipitation to change in mean surface water vapor are associated with increases in the degree of organization, while lower ratios correspond to decreases in the degree of organization. The spread of such changes is much larger in RCE than aquapatch tropics, suggesting that small RCE domains may be unreliable for assessing the temperature-dependence of extreme precipitation or convective organization. When the degree of organization does not change, simulated extreme precipitation scales with surface water vapor. This slightly exceeds Clausius-Clapeyron (CC) scaling, because the near-surface air warms 10-25% faster than the SST in all experiments. Also for simulations analyzed here with convective parameterizations, there is an increasing trend of organization with SST.
Precipitation extreme changes exceeding moisture content increases in MIROC and IPCC climate models
Sugiyama, Masahiro; Shiogama, Hideo; Emori, Seita
2010-01-01
Precipitation extreme changes are often assumed to scale with, or are constrained by, the change in atmospheric moisture content. Studies have generally confirmed the scaling based on moisture content for the midlatitudes but identified deviations for the tropics. In fact half of the twelve selected Intergovernmental Panel on Climate Change (IPCC) models exhibit increases faster than the climatological-mean precipitable water change for high percentiles of tropical daily precipitation, albeit with significant intermodel scatter. Decomposition of the precipitation extreme changes reveals that the variations among models can be attributed primarily to the differences in the upward velocity. Both the amplitude and vertical profile of vertical motion are found to affect precipitation extremes. A recently proposed scaling that incorporates these dynamical effects can capture the basic features of precipitation changes in both the tropics and midlatitudes. In particular, the increases in tropical precipitation extremes significantly exceed the precipitable water change in Model for Interdisciplinary Research on Climate (MIROC), a coupled general circulation model with the highest resolution among IPCC climate models whose precipitation characteristics have been shown to reasonably match those of observations. The expected intensification of tropical disturbances points to the possibility of precipitation extreme increases beyond the moisture content increase as is found in MIROC and some of IPCC models. PMID:20080720
White, Richard S A; Wintle, Brendan A; McHugh, Peter A; Booker, Douglas J; McIntosh, Angus R
2017-06-14
Despite growing concerns regarding increasing frequency of extreme climate events and declining population sizes, the influence of environmental stochasticity on the relationship between population carrying capacity and time-to-extinction has received little empirical attention. While time-to-extinction increases exponentially with carrying capacity in constant environments, theoretical models suggest increasing environmental stochasticity causes asymptotic scaling, thus making minimum viable carrying capacity vastly uncertain in variable environments. Using empirical estimates of environmental stochasticity in fish metapopulations, we showed that increasing environmental stochasticity resulting from extreme droughts was insufficient to create asymptotic scaling of time-to-extinction with carrying capacity in local populations as predicted by theory. Local time-to-extinction increased with carrying capacity due to declining sensitivity to demographic stochasticity, and the slope of this relationship declined significantly as environmental stochasticity increased. However, recent 1 in 25 yr extreme droughts were insufficient to extirpate populations with large carrying capacity. Consequently, large populations may be more resilient to environmental stochasticity than previously thought. The lack of carrying capacity-related asymptotes in persistence under extreme climate variability reveals how small populations affected by habitat loss or overharvesting, may be disproportionately threatened by increases in extreme climate events with global warming. © 2017 The Author(s).
Development of disability in chronic obstructive pulmonary disease: beyond lung function.
Eisner, Mark D; Iribarren, Carlos; Blanc, Paul D; Yelin, Edward H; Ackerson, Lynn; Byl, Nancy; Omachi, Theodore A; Sidney, Stephen; Katz, Patricia P
2011-02-01
COPD is a major cause of disability, but little is known about how disability develops in this condition. The authors analysed data from the Function, Living, Outcomes and Work (FLOW) Study which enrolled 1202 Kaiser Permanente Northern California members with COPD at baseline and re-evaluated 1051 subjects at 2-year follow-up. The authors tested the specific hypothesis that the development of specific non-respiratory impairments (abnormal body composition and muscle strength) and functional limitations (decreased lower extremity function, poor balance, mobility-related dyspnoea, reduced exercise performance and decreased cognitive function) will determine the risk of disability in COPD, after controlling for respiratory impairment (FEV(1) and oxygen saturation). The Valued Life Activities Scale was used to assess disability in terms of a broad range of daily activities. The primary disability outcome measure was defined as an increase in the proportion of activities that cannot be performed of 3.3% or greater from baseline to 2-year follow-up (the estimated minimal important difference). Multivariable logistic regression was used for analysis. Respiratory impairment measures were related to an increased prospective risk of disability (multivariate OR 1.75; 95% CI 1.26 to 2.44 for 1 litre decrement of FEV(1) and OR 1.57 per 5% decrement in oxygen saturation; 95% CI 1.13 to 2.18). Non-respiratory impairment (body composition and lower extremity muscle strength) and functional limitations (lower extremity function, exercise performance, and mobility-related dyspnoea) were all associated with an increased longitudinal risk of disability after controlling for respiratory impairment (p<0.05 in all cases). Non-respiratory impairment and functional limitations were predictive of prospective disability, above-and-beyond sociodemographic characteristics, smoking status and respiratory impairment (area under the receiver operating characteristic curve increased from 0.65 to 0.75; p<0.001). Development of non-respiratory impairment and functional limitations, which reflect the systemic nature of COPD, appear to be critical determinants of disablement. Prevention and treatment of disability require a comprehensive approach to the COPD patient.
Ji, Eun-Kyu; Lee, Sang-Heon
2016-11-01
[Purpose] The purpose of this study was to investigate the effects of virtual reality training combined with modified constraint-induced movement therapy on upper extremity motor function recovery in acute stage stroke patients. [Subjects and Methods] Four acute stage stroke patients participated in the study. A multiple baseline single subject experimental design was utilized. Modified constraint-induced movement therapy was used according to the EXplaining PLastICITy after stroke protocol during baseline sessions. Virtual reality training with modified constraint-induced movement therapy was applied during treatment sessions. The Manual Function Test and the Box and Block Test were used to measure upper extremity function before every session. [Results] The subjects' upper extremity function improved during the intervention period. [Conclusion] Virtual reality training combined with modified constraint-induced movement is effective for upper extremity function recovery in acute stroke patients.
Extreme reaction times determine fluctuation scaling in human color vision
NASA Astrophysics Data System (ADS)
Medina, José M.; Díaz, José A.
2016-11-01
In modern mental chronometry, human reaction time defines the time elapsed from stimulus presentation until a response occurs and represents a reference paradigm for investigating stochastic latency mechanisms in color vision. Here we examine the statistical properties of extreme reaction times and whether they support fluctuation scaling in the skewness-kurtosis plane. Reaction times were measured for visual stimuli across the cardinal directions of the color space. For all subjects, the results show that very large reaction times deviate from the right tail of reaction time distributions suggesting the existence of dragon-kings events. The results also indicate that extreme reaction times are correlated and shape fluctuation scaling over a wide range of stimulus conditions. The scaling exponent was higher for achromatic than isoluminant stimuli, suggesting distinct generative mechanisms. Our findings open a new perspective for studying failure modes in sensory-motor communications and in complex networks.
Climate teleconnections, weather extremes, and vector-borne disease outbreaks
USDA-ARS?s Scientific Manuscript database
Fluctuations in climate lead to extremes in temperature, rainfall, flooding, and droughts. These climate extremes create ideal ecological conditions that promote mosquito-borne disease transmission that impact global human and animal health. One well known driver of such global scale climate fluctua...
Gardner, Bethany T.; Dale, Ann Marie; Buckner-Petty, Skye; Rachford, Robert; Strickland, Jaime; Kaskutas, Vicki; Evanoff, Bradley
2017-01-01
Purpose Few studies have explored measures of function across a range of health outcomes in a general working population. Using four upper extremity (UE) case definitions from the scientific literature, we described the performance of functional measures of work, activities of daily living, and overall health. Methods A sample of 573 workers completed several functional measures: modified recall versions of the QuickDASH, Levine Functional Status Scale (FSS), DASH Work module (DASH-W), and standard SF-8 physical component score. We determined case status based on four UE case definitions: 1) UE symptoms, 2) UE musculoskeletal disorders (MSD), 3) carpal tunnel syndrome (CTS), and 4) work limitations due to UE symptoms. We calculated effect sizes for each case definition to show the magnitude of the differences that were detected between cases and non-cases for each case definition on each functional measure. Sensitivity and specificity analyses showed how well each measure identified functional impairments across the UE case definitions. Results All measures discriminated between cases and non-cases for each case definition with the largest effect sizes for CTS and work limitations, particularly for the modified FSS and DASH-W measures. Specificity was high and sensitivity was low for outcomes of UE symptoms and UE MSD in all measures. Sensitivity was high for CTS and work limitations. Conclusions Functional measures developed specifically for use in clinical, treatment-seeking populations may identify mild levels of impairment in relatively healthy, active working populations, but measures performed better among workers with CTS or those reporting limitations at work. PMID:26091980
Ni, Pengsheng; McDonough, Christine M.; Jette, Alan M.; Bogusz, Kara; Marfeo, Elizabeth E.; Rasch, Elizabeth K.; Brandt, Diane E.; Meterko, Mark; Chan, Leighton
2014-01-01
Objectives To develop and test an instrument to assess physical function (PF) for Social Security Administration (SSA) disability programs, the SSA-PF. Item Response Theory (IRT) analyses were used to 1) create a calibrated item bank for each of the factors identified in prior factor analyses, 2) assess the fit of the items within each scale, 3) develop separate Computer-Adaptive Test (CAT) instruments for each scale, and 4) conduct initial psychometric testing. Design Cross-sectional data collection; IRT analyses; CAT simulation. Setting Telephone and internet survey. Participants Two samples: 1,017 SSA claimants, and 999 adults from the US general population. Interventions None. Main Outcome Measure Model fit statistics, correlation and reliability coefficients, Results IRT analyses resulted in five unidimensional SSA-PF scales: Changing & Maintaining Body Position, Whole Body Mobility, Upper Body Function, Upper Extremity Fine Motor, and Wheelchair Mobility for a total of 102 items. High CAT accuracy was demonstrated by strong correlations between simulated CAT scores and those from the full item banks. Comparing the simulated CATs to the full item banks, very little loss of reliability or precision was noted, except at the lower and upper ranges of each scale. No difference in response patterns by age or sex was noted. The distributions of claimant scores were shifted to the lower end of each scale compared to those of a sample of US adults. Conclusions The SSA-PF instrument contributes important new methodology for measuring the physical function of adults applying to the SSA disability programs. Initial evaluation revealed that the SSA-PF instrument achieved considerable breadth of coverage in each content domain and demonstrated noteworthy psychometric properties. PMID:23578594
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2007-12-01
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable extreme events, due to a number of factors including extensive poverty, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of a state-of-the-art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. Once the model's ability to reproduce extremes has been assessed, idealised regions of SST anomalies are used to force the model, with the overall aim of investigating the ways in which SST anomalies influence rainfall extremes over southern Africa. In this paper, results from sensitivity testing of the UK Meteorological Office Hadley Centre's climate model's domain size are firstly presented. Then simulations of current climate from the model, operating in both regional and global mode, are compared to the MIRA dataset at daily timescales. Thirdly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset. Finally, the results from the idealised SST experiments are briefly presented, suggesting associations between rainfall extremes and both local and remote SST anomalies.
Muscle Strength and Changes in Physical Function in Women With Systemic Lupus Erythematosus.
Andrews, James S; Trupin, Laura; Schmajuk, Gabriela; Barton, Jennifer; Margaretten, Mary; Yazdany, Jinoos; Yelin, Edward H; Katz, Patricia P
2015-08-01
Cross-sectional studies have observed that muscle weakness is associated with worse physical function among women with systemic lupus erythematosus (SLE). The present study examines whether reduced upper and lower extremity muscle strength predict declines in function over time among adult women with SLE. One hundred forty-six women from a longitudinal SLE cohort participated in the study. All measures were collected during in-person research visits approximately 2 years apart. Upper extremity muscle strength was assessed by grip strength. Lower extremity muscle strength was assessed by peak knee torque of extension and flexion. Physical function was assessed using the Short Physical Performance Battery (SPPB). Regression analyses modeled associations of baseline upper and lower extremity muscle strength with followup SPPB scores controlling for baseline SPPB, age, SLE duration, SLE disease activity (Systemic Lupus Activity Questionnaire), physical activity level, prednisone use, body composition, and depression. Secondary analyses tested whether associations of baseline muscle strength with followup in SPPB scores differed between intervals of varying baseline muscle strength. Lower extremity muscle strength strongly predicted changes over 2 years in physical function even when controlling for covariates. The association of reduced lower extremity muscle strength with reduced physical function in the future was greatest among the weakest women. Reduced lower extremity muscle strength predicted clinically significant declines in physical function, especially among the weakest women. Future studies should test whether therapies that promote preservation of lower extremity muscle strength may prevent declines in function among women with SLE. © 2015, American College of Rheumatology.
A Generalized Framework for Non-Stationary Extreme Value Analysis
NASA Astrophysics Data System (ADS)
Ragno, E.; Cheng, L.; Sadegh, M.; AghaKouchak, A.
2017-12-01
Empirical trends in climate variables including precipitation, temperature, snow-water equivalent at regional to continental scales are evidence of changes in climate over time. The evolving climate conditions and human activity-related factors such as urbanization and population growth can exert further changes in weather and climate extremes. As a result, the scientific community faces an increasing demand for updated appraisal of the time-varying climate extremes. The purpose of this study is to offer a robust and flexible statistical tool for non-stationary extreme value analysis which can better characterize the severity and likelihood of extreme climatic variables. This is critical to ensure a more resilient environment in a changing climate. Following the positive feedback on the first version of Non-Stationary Extreme Value Analysis (NEVA) Toolbox by Cheng at al. 2014, we present an improved version, i.e. NEVA2.0. The upgraded version herein builds upon a newly-developed hybrid evolution Markov Chain Monte Carlo (MCMC) approach for numerical parameters estimation and uncertainty assessment. This addition leads to a more robust uncertainty estimates of return levels, return periods, and risks of climatic extremes under both stationary and non-stationary assumptions. Moreover, NEVA2.0 is flexible in incorporating any user-specified covariate other than the default time-covariate (e.g., CO2 emissions, large scale climatic oscillation patterns). The new feature will allow users to examine non-stationarity of extremes induced by physical conditions that underlie the extreme events (e.g. antecedent soil moisture deficit, large-scale climatic teleconnections, urbanization). In addition, the new version offers an option to generate stationary and/or non-stationary rainfall Intensity - Duration - Frequency (IDF) curves that are widely used for risk assessment and infrastructure design. Finally, a Graphical User Interface (GUI) of the package is provided, making NEVA accessible to a broader audience.
The spatial return level of aggregated hourly extreme rainfall in Peninsular Malaysia
NASA Astrophysics Data System (ADS)
Shaffie, Mardhiyyah; Eli, Annazirin; Wan Zin, Wan Zawiah; Jemain, Abdul Aziz
2015-07-01
This paper is intended to ascertain the spatial pattern of extreme rainfall distribution in Peninsular Malaysia at several short time intervals, i.e., on hourly basis. Motivation of this research is due to historical records of extreme rainfall in Peninsular Malaysia, whereby many hydrological disasters at this region occur within a short time period. The hourly periods considered are 1, 2, 3, 6, 12, and 24 h. Many previous hydrological studies dealt with daily rainfall data; thus, this study enables comparison to be made on the estimated performances between daily and hourly rainfall data analyses so as to identify the impact of extreme rainfall at a shorter time scale. Return levels based on the time aggregate considered are also computed. Parameter estimation using L-moment method for four probability distributions, namely, the generalized extreme value (GEV), generalized logistic (GLO), generalized Pareto (GPA), and Pearson type III (PE3) distributions were conducted. Aided with the L-moment diagram test and mean square error (MSE) test, GLO was found to be the most appropriate distribution to represent the extreme rainfall data. At most time intervals (10, 50, and 100 years), the spatial patterns revealed that the rainfall distribution across the peninsula differ for 1- and 24-h extreme rainfalls. The outcomes of this study would provide additional information regarding patterns of extreme rainfall in Malaysia which may not be detected when considering only a higher time scale such as daily; thus, appropriate measures for shorter time scales of extreme rainfall can be planned. The implementation of such measures would be beneficial to the authorities to reduce the impact of any disastrous natural event.
Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities
2015-09-01
Award Number: W81XWH-12-2-0128 TITLE: Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities...2014 - 29 Aug 2015 4. TITLE AND SUBTITLE Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities 5a...effectiveness of a regenerative scaffold for the restoration of functional musculotendinous tissue , including the restoration of blood supply and innervation
Spatial variability of extreme rainfall at radar subpixel scale
NASA Astrophysics Data System (ADS)
Peleg, Nadav; Marra, Francesco; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo
2018-01-01
Extreme rainfall is quantified in engineering practice using Intensity-Duration-Frequency curves (IDF) that are traditionally derived from rain-gauges and more recently also from remote sensing instruments, such as weather radars. These instruments measure rainfall at different spatial scales: rain-gauge samples rainfall at the point scale while weather radar averages precipitation on a relatively large area, generally around 1 km2. As such, a radar derived IDF curve is representative of the mean areal rainfall over a given radar pixel and neglects the within-pixel rainfall variability. In this study, we quantify subpixel variability of extreme rainfall by using a novel space-time rainfall generator (STREAP model) that downscales in space the rainfall within a given radar pixel. The study was conducted using a unique radar data record (23 years) and a very dense rain-gauge network in the Eastern Mediterranean area (northern Israel). Radar-IDF curves, together with an ensemble of point-based IDF curves representing the radar subpixel extreme rainfall variability, were developed fitting Generalized Extreme Value (GEV) distributions to annual rainfall maxima. It was found that the mean areal extreme rainfall derived from the radar underestimate most of the extreme values computed for point locations within the radar pixel (on average, ∼70%). The subpixel variability of rainfall extreme was found to increase with longer return periods and shorter durations (e.g. from a maximum variability of 10% for a return period of 2 years and a duration of 4 h to 30% for 50 years return period and 20 min duration). For the longer return periods, a considerable enhancement of extreme rainfall variability was found when stochastic (natural) climate variability was taken into account. Bounding the range of the subpixel extreme rainfall derived from radar-IDF can be of major importance for different applications that require very local estimates of rainfall extremes.
Functional diversity response to hardwood forest management varies across taxa and spatial scales.
Murray, Bryan D; Holland, Jeffrey D; Summerville, Keith S; Dunning, John B; Saunders, Michael R; Jenkins, Michael A
2017-06-01
Contemporary forest management offers a trade-off between the potential positive effects of habitat heterogeneity on biodiversity, and the potential harm to mature forest communities caused by habitat loss and perforation of the forest canopy. While the response of taxonomic diversity to forest management has received a great deal of scrutiny, the response of functional diversity is largely unexplored. However, functional diversity may represent a more direct link between biodiversity and ecosystem function. To examine how forest management affects diversity at multiple spatial scales, we analyzed a long-term data set that captured changes in taxonomic and functional diversity of moths (Lepidoptera), longhorned beetles (Coleoptera: Cerambycidae), and breeding birds in response to contemporary silvicultural systems in oak-hickory hardwood forests. We used these data sets to address the following questions: how do even- and uneven-aged silvicultural systems affect taxonomic and functional diversity at the scale of managed landscapes compared to the individual harvested and unharvested forest patches that comprise the landscapes, and how do these silvicultural systems affect the functional similarity of assemblages at the scale of managed landscapes and patches? Due to increased heterogeneity within landscapes, we expected even-aged silviculture to increase and uneven-aged silviculture to decrease functional diversity at the landscape level regardless of impacts at the patch level. Functional diversity responses were taxon-specific with respect to the direction of change and time since harvest. Responses were also consistent across patch and landscape levels within each taxon. Moth assemblage species richness, functional richness, and functional divergence were negatively affected by harvesting, with stronger effects resulting from uneven-aged than even-aged management. Longhorned beetle assemblages exhibited a peak in species richness two years after harvesting, while functional diversity metrics did not differ between harvested and unharvested patches and managed landscapes. The species and functional richness of breeding bird assemblages increased in response to harvesting with more persistent effects in uneven- than in even-aged managed landscapes. For moth and bird assemblages, species turnover was driven by species with more extreme trait combinations. Our study highlights the variability of multi-taxon functional diversity in response to forest management across multiple spatial scales. © 2017 by the Ecological Society of America.
Thibodeau, Michel A; Leonard, Rachel C; Abramowitz, Jonathan S; Riemann, Bradley C
2015-12-01
The Dimensional Obsessive-Compulsive Scale (DOCS) is a promising measure of obsessive-compulsive disorder (OCD) symptoms but has received minimal psychometric attention. We evaluated the utility and reliability of DOCS scores. The study included 832 students and 300 patients with OCD. Confirmatory factor analysis supported the originally proposed four-factor structure. DOCS total and subscale scores exhibited good to excellent internal consistency in both samples (α = .82 to α = .96). Patient DOCS total scores reduced substantially during treatment (t = 16.01, d = 1.02). DOCS total scores discriminated between students and patients (sensitivity = 0.76, 1 - specificity = 0.23). The measure did not exhibit gender-based differential item functioning as tested by Mantel-Haenszel chi-square tests. Expected response options for each item were plotted as a function of item response theory and demonstrated that DOCS scores incrementally discriminate OCD symptoms ranging from low to extremely high severity. Incremental differences in DOCS scores appear to represent unbiased and reliable differences in true OCD symptom severity. © The Author(s) 2014.
Functional recovery patterns in seriously injured automotive crash victims.
McMurry, Timothy L; Poplin, Gerald S; Crandall, Jeff
2016-09-01
The functional capacity index (FCI) is designed to predict functional loss 12 months post-injury for each injury in the 2008 Abbreviated Injury Scale (AIS) manual on a scale from 0 (death) to 100 (full recovery), but FCI has never been validated. This study compared FCI predicted loss with patient-reported 12-month outcomes as measured through the Short Form 36 (SF-36) health assessment survey. Using follow-up data collected on 2,858 adult car crash occupants in the Crash Injury Research and Engineering Network (CIREN) database, we compared FCI predicted outcomes to occupants' Physical Component Summary (PCS) scores, which are weighted averages of the SF-36 items addressing physical function. Our analyses included descriptive statistics, plots of typical recovery patterns, and a mixed effects regression model that describes PCS as a function of FCI, demographics, comorbidities, and injury pattern while also adjusting for the occupants' pre-crash physical capabilities. We further examined injuries in patients who report a significant drop in PCS 12 months post-crash despite being predicted to fully recover. At baseline, the CIREN population exhibited PCS scores similar to the overall population (mean = 51.1, SD = 10.3). Twelve months post-crash, occupants with predicted impairment (FCI < 100) report a substantial decrease in physical function, and those who were predicted to fully recover still report some, albeit less, impairment. In the multivariate mixed-effects regression model, FCI is a strongly significant (P-value <.0001) predictor of PCS, with each 1-point drop in FCI predicting a 0.27-point drop in PCS. Maximum AIS severities in the head, spine, and lower extremity body regions were also significantly associated with PCS (P-values <.05). Among occupants who were expected to fully recover but who report a significant drop in PCS at 12 months, spinal fractures without cord involvement account for 5 of the 10 most common AIS 2+ injuries. FCI was associated with 12-month outcomes but may not adequately describe the recovery from some head, spine, and lower extremity injuries. Some occupants who were expected to recover still report functional loss 12 months post-injury.
Bauder, J A S; Morawetz, L; Warren, A D; Krenn, H W
2015-03-01
Extremely long proboscides are rare among butterflies outside of the Hesperiidae, yet representatives of several genera of skipper butterflies possess proboscides longer than 50 mm. Although extremely elongated mouthparts can be regarded as advantageous adaptations to gain access to nectar in deep-tubed flowers, the scarcity of long-proboscid butterflies is a phenomenon that has not been adequately accounted for. So far, the scarceness was explained by functional costs arising from increased flower handling times caused by decelerated nectar intake rates. However, insects can compensate for the negative influence of a long proboscis through changes in the morphological configuration of the feeding apparatus. Here, we measured nectar intake rates in 34 species representing 21 Hesperiidae genera from a Costa Rican lowland rainforest area to explore the impact of proboscis length, cross-sectional area of the food canal and body size on intake rate. Long-proboscid skippers did not suffer from reduced intake rates due to their large body size and enlarged food canals. In addition, video analyses of the flower-visiting behaviour revealed that suction times increased with proboscis length, suggesting that long-proboscid skippers drink a larger amount of nectar from deep-tubed flowers. Despite these advantages, we showed that functional costs of exaggerated mouthparts exist in terms of longer manipulation times per flower. Finally, we discuss the significance of scaling relationships on the foraging efficiency of butterflies and why some skipper taxa, in particular, have evolved extremely long proboscides. © 2015 The Authors. Journal of Evolutionary Biology published by John Wiley & Sons ltd on behalf of European Society for Evolutionary Biology.
Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung
2015-06-01
The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients.
Park, Jin-Young; Chang, Moonyoung; Kim, Kyeong-Mi; Kim, Hee-Jung
2015-01-01
The purpose of this study was to examine the effects of mirror therapy on upper-extremity function and activities of daily living in chronic stroke patients. [Subjects and Methods] Fifteen subjects were each assigned to a mirror therapy group and a sham therapy group. The Fugl-Meyer Motor Function Assessment and the Box and Block Test were performed to compare paretic upper-extremity function and hand coordination abilities. The functional independence measurement was conducted to compare abilities to perform activities of daily living. [Results] Paretic upper-extremity function and hand coordination abilities were significantly different between the mirror therapy and sham therapy groups. Intervention in the mirror therapy group was more effective than in the sham therapy group for improving the ability to perform activities of daily living. Self-care showed statistically significant differences between the two groups. [Conclusion] Mirror therapy is effective in improving paretic upper-extremity function and activities of daily living in chronic stroke patients. PMID:26180297
Dry cupping for plantar fasciitis: a randomized controlled trial.
Ge, Weiqing; Leson, Chelsea; Vukovic, Corey
2017-05-01
[Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested.
Dry cupping for plantar fasciitis: a randomized controlled trial
Ge, Weiqing; Leson, Chelsea; Vukovic, Corey
2017-01-01
[Purpose] The purpose of this study was to determine the effects of dry cupping on pain and function of patients with plantar fasciitis. [Subjects and Methods] Twenty-nine subjects (age 15 to 59 years old, 20 females and 9 males), randomly assigned into the two groups (dry cupping therapy and electrical stimulation therapy groups), participated in this study. The research design was a randomized controlled trial (RCT). Treatments were provided to the subjects twice a week for 4 weeks. Outcome measurements included the Visual Analogue Pain Scale (VAS) (at rest, first in the morning, and with activities), the Foot and Ankle Ability Measure (FAAM), the Lower Extremity Functional Scale (LEFS), as well as the pressure pain threshold. [Results]The data indicated that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function significantly in the population tested, as all the 95% Confidence Intervals (CIs) did not include 0 except for the pressure pain threshold. There was no significant difference between the dry cupping therapy and electrical stimulation groups in all the outcome measurements. [Conclusion] These results support that both dry cupping therapy and electrical stimulation therapy could reduce pain and increase function in the population tested. PMID:28603360
The ELGAN study of the brain and related disorders in extremely low gestational age newborns.
O'Shea, T M; Allred, E N; Dammann, O; Hirtz, D; Kuban, K C K; Paneth, N; Leviton, A
2009-11-01
Extremely low gestational age newborns (ELGANs) are at increased risk for structural and functional brain abnormalities. To identify factors that contribute to brain damage in ELGANs. Multi-center cohort study. We enrolled 1506 ELGANs born before 28 weeks gestation at 14 sites; 1201 (80%) survived to 2 years corrected age. Information about exposures and characteristics was collected by maternal interview, from chart review, microbiologic and histological examination of placentas, and measurement of proteins in umbilical cord and early postnatal blood spots. Indicators of white matter damage, i.e. ventriculomegaly and echolucent lesions, on protocol cranial ultrasound scans; head circumference and developmental outcomes at 24 months adjusted age, i.e., cerebral palsy, mental and motor scales of the Bayley Scales of Infant Development, and a screen for autism spectrum disorders. ELGAN Study publications thus far provide evidence that the following are associated with ultrasongraphically detected white matter damage, cerebral palsy, or both: preterm delivery attributed to preterm labor, prelabor premature rupture of membranes, or cervical insufficiency; recovery of microorganisms in the placenta parenchyma, including species categorized as human skin microflora; histological evidence of placental inflammation; lower gestational age at delivery; greater neonatal illness severity; severe chronic lung disease; neonatal bacteremia; and necrotizing enterocolitis. In addition to supporting a potential role for many previously identified antecedents of brain damage in ELGANs, our study is the first to provide strong evidence that brain damage in extremely preterm infants is associated with microorganisms in placenta parenchyma.
Şener, Hülya Özlem; Malkoç, Mehtap; Ergin, Gülbin; Karadibak, Didem; Yavuzşen, Tuğba
2017-01-01
The aim of the present study was to compare the effects of clinical Pilates exercises with those of the standard lymphedema exercises on lymphedema developing after breast cancer treatment. The study comprised 60 female patients with a mean age of 53.2±7.7 years who developed lymphedema after having breast cancer treatment. The patients were randomized into two groups: the clinical Pilates exercise group (n=30), and the control group (n=30). Before, and at the 8th week of treatment, the following parameters were measured: the severity of lymphedema, limb circumferences, body image using the Social Appearance Anxiety Scale, quality of life with the European Organization for Research and Treatment of Cancer (EORTC) quality of life questionnaire (QLQ-BR23), and upper extremity function using the Disabilities of the Arm, Shoulder and Hand (DASH) outcome measure. Both groups performed one-hour exercises three days a week for 8 weeks. After treatment, the symptoms recovered significantly in both groups. Reductions in the severity of lymphedema, improvements in the social appearance anxiety scale scores, quality of life scores, and upper extremity functions scores in the clinical Pilates exercise group were greater than those in the control group. Clinical Pilates exercises were determined to be more effective on the symptoms of patients with lymphedema than were standard lymphedema exercises. Clinical Pilates exercises could be considered a safe model and would contribute to treatment programs.
Şener, Hülya Özlem; Malkoç, Mehtap; Ergin, Gülbin; Karadibak, Didem; Yavuzşen, Tuğba
2017-01-01
Objective The aim of the present study was to compare the effects of clinical Pilates exercises with those of the standard lymphedema exercises on lymphedema developing after breast cancer treatment. Materials and Methods The study comprised 60 female patients with a mean age of 53.2±7.7 years who developed lymphedema after having breast cancer treatment. The patients were randomized into two groups: the clinical Pilates exercise group (n=30), and the control group (n=30). Before, and at the 8th week of treatment, the following parameters were measured: the severity of lymphedema, limb circumferences, body image using the Social Appearance Anxiety Scale, quality of life with the European Organization for Research and Treatment of Cancer (EORTC) quality of life questionnaire (QLQ-BR23), and upper extremity function using the Disabilities of the Arm, Shoulder and Hand (DASH) outcome measure. Both groups performed one-hour exercises three days a week for 8 weeks. Results After treatment, the symptoms recovered significantly in both groups. Reductions in the severity of lymphedema, improvements in the social appearance anxiety scale scores, quality of life scores, and upper extremity functions scores in the clinical Pilates exercise group were greater than those in the control group. Clinical Pilates exercises were determined to be more effective on the symptoms of patients with lymphedema than were standard lymphedema exercises. Conclusions Clinical Pilates exercises could be considered a safe model and would contribute to treatment programs. PMID:28331763
A Review of Recent Advances in Research on Extreme Heat Events
NASA Technical Reports Server (NTRS)
Horton, Radley M.; Mankin, Justin S.; Lesk, Corey; Coffel, Ethan; Raymond, Colin
2016-01-01
Reviewing recent literature, we report that changes in extreme heat event characteristics such as magnitude, frequency, and duration are highly sensitive to changes in mean global-scale warming. Numerous studies have detected significant changes in the observed occurrence of extreme heat events, irrespective of how such events are defined. Further, a number of these studies have attributed present-day changes in the risk of individual heat events and the documented global-scale increase in such events to anthropogenic-driven warming. Advances in process-based studies of heat events have focused on the proximate land-atmosphere interactions through soil moisture anomalies, and changes in occurrence of the underlying atmospheric circulation associated with heat events in the mid-latitudes. While evidence for a number of hypotheses remains limited, climate change nevertheless points to tail risks of possible changes in heat extremes that could exceed estimates generated from model outputs of mean temperature. We also explore risks associated with compound extreme events and nonlinear impacts associated with extreme heat.
Nerve conduction velocity in human limbs with late sequelae after local cold injury.
Arvesen, A; Wilson, J; Rosén, L
1996-06-01
Cold-induced neuropathy may play a dominant role in the long-term sequelae with cold sensitivity after local cold injuries (LCIs). Somatosensory functions were assessed and nerve conduction velocity (NCV) and motor distal delay (MDD) were measured in the limbs of 31 Norwegian former soldiers with persistent cold intolerance 3-4 years after the primary LCI. NCV measurements were performed in 24 lower and 16 upper extremities. NCV was related to degree of overall subjective complaints quantified by means of a visual analogue scale (VAS). Motor (MNCV) and sensory conduction velocity (SNCV) in the lower extremities and SNCV in the hands were significantly decreased compared with controls. MDD was pathologically increased in the feet. NCV of the forearms ranged from normal to significant reduction. The more pronounced effect on the lower extremities may be caused by deeper cooling of the calves compared with forearms for several reasons. No significant associations were found between VAS and NCV except for the right median nerve. NCV measurements may provide objective findings in cold-injured patients and in those with few or no conspicuous clinical signs.
Voyager Observations of the Color of Saturn's Ring
NASA Technical Reports Server (NTRS)
Estrada, Paul R.; Cuzzi, Jeffrey N.; Morrison, David (Technical Monitor)
1994-01-01
Previously unreduced high resolution Voyager 2 images of Saturn's main rings are used to generate reflectivity (I/F) profiles as a function of radius. Ratios of profiles taken from green, violet, orange, and UV filter images are then produced. The I/F ratios are diagnostic of composition, and provide us with information on the rings' present state of compositional evolution. The rings are extremely reddish in color which suggests that they could not be pure water ice. The most likely candidates for the non-icy components are silicates and organics. The sources of these pollutants are of extreme importance in determining the compositional history of the rings. The radial profiles of ring color ratio exhibit several very interesting properties: (a) broad-scale, fairly smooth, color variations which are only weakly correlated with underlying ring structure (optical depth variations) across the outer C ring and inner B ring as well as the Cassini division region. These variations are probably consistent with ballistic transport; (b) fine-scale, noise-Like (but unquestionably real) color variations across at least the outer two-thirds of the B ring. Not only the "redness" but the spectral shape varies. These variations are currently unexplained. Groundbased spectroscopic observations should be pursued to study the implied compositional heterogeneities on at least the larger scales. This data set will be used for modeling of the color and composition of the main rings using ballistic transport and radiative transfer theories.
Huri, Meral; Şahin, Sedef; Kayıhan, Hülya
2016-11-01
The present study was designed to compare hand function in autistic children with history of upper extremity trauma with that of autistic children those who do not have history of trauma. The study group included total of 65 children diagnosed with autism spectrum disorder (ASD) and was divided into 2 groups: children with trauma history (Group I) and control group (Group II) (Group I: n=28; Group II: n=37). Hand function was evaluated with 9-Hole Peg Test and Jebsen Hand Function Test. Somatosensory function was evaluated using somatosensory subtests of Sensory Integration and Praxis Test. Results were analyzed with Student's t-test and Mann-Whitney U test using SPSS version 20 software. Hand function and somatosensory perception test scores were statistically significantly better in children without upper extremity trauma history (p<0.05). When association between hand function tests and upper extremity somatosensory perception tests was taken into account, statistically significant correlations were found between all parameters of hand function tests and Manual Form Perception and Localization of Tactile Stimuli Test results (p<0.05). Autistic children with upper extremity trauma history had poor somatosensory perception and hand function. It is important to raise awareness among emergency service staff and inform them about strong relationship between somatosensory perception, hand function, and upper extremity trauma in children with ASD in order to develop appropriate rehabilitation process and prevent further trauma.
Exact Extremal Statistics in the Classical 1D Coulomb Gas
NASA Astrophysics Data System (ADS)
Dhar, Abhishek; Kundu, Anupam; Majumdar, Satya N.; Sabhapandit, Sanjib; Schehr, Grégory
2017-08-01
We consider a one-dimensional classical Coulomb gas of N -like charges in a harmonic potential—also known as the one-dimensional one-component plasma. We compute, analytically, the probability distribution of the position xmax of the rightmost charge in the limit of large N . We show that the typical fluctuations of xmax around its mean are described by a nontrivial scaling function, with asymmetric tails. This distribution is different from the Tracy-Widom distribution of xmax for Dyson's log gas. We also compute the large deviation functions of xmax explicitly and show that the system exhibits a third-order phase transition, as in the log gas. Our theoretical predictions are verified numerically.
Hays, Ron D; Spritzer, Karen L; Amtmann, Dagmar; Lai, Jin-Shei; Dewitt, Esi Morgan; Rothrock, Nan; Dewalt, Darren A; Riley, William T; Fries, James F; Krishnan, Eswar
2013-11-01
To create upper-extremity and mobility subdomain scores from the Patient-Reported Outcomes Measurement Information System (PROMIS) physical functioning adult item bank. Expert reviews were used to identify upper-extremity and mobility items from the PROMIS item bank. Psychometric analyses were conducted to assess empirical support for scoring upper-extremity and mobility subdomains. Data were collected from the U.S. general population and multiple disease groups via self-administered surveys. The sample (N=21,773) included 21,133 English-speaking adults who participated in the PROMIS wave 1 data collection and 640 Spanish-speaking Latino adults recruited separately. Not applicable. We used English- and Spanish-language data and existing PROMIS item parameters for the physical functioning item bank to estimate upper-extremity and mobility scores. In addition, we fit graded response models to calibrate the upper-extremity items and mobility items separately, compare separate to combined calibrations, and produce subdomain scores. After eliminating items because of local dependency, 16 items remained to assess upper extremity and 17 items to assess mobility. The estimated correlation between upper extremity and mobility was .59 using existing PROMIS physical functioning item parameters (r=.60 using parameters calibrated separately for upper-extremity and mobility items). Upper-extremity and mobility subdomains shared about 35% of the variance in common, and produced comparable scores whether calibrated separately or together. The identification of the subset of items tapping these 2 aspects of physical functioning and scored using the existing PROMIS parameters provides the option of scoring these subdomains in addition to the overall physical functioning score. Copyright © 2013 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Gómez-Valero, S; García-Pérez, F; Flórez-García, M T; Miangolarra-Page, J C
The aim of this study was to conduct a systematic review of self-administered knee-disability functional assessment questionnaires adapted to Spanish, analysing the quality of the transcultural adaptation procedure and the psychometric properties of the new version. A search was conducted in the main biomedical databases to find knee-function assessment scales adapted into Spanish, in order to assess their questionnaire adaptation process as well as their psychometric properties. Ten scales were identified; 3 for lower limb: 2 for any type of pathologies (Lower Limb Functional Index [LLFI]; Lower Extremity Functional Scale [LEFS]) and 1 specific for arthrosis (Arthrosis des Membres Inférieurs et Qualité de vie [AMICAL]); Other 3 for knee and hip pathologies (Western Ontario and McMaster Universities Osteoarthritis [WOMAC] index; Osteoarthritis Knee and Hip Quality of Life [OAKHQOL] questionnaire; Hip and Knee Questionnaire [HKQ]), and other 4 for knee: 2 general scales (Knee Injury and Osteoarthritis Outcome Score [KOOS]; Knee Society Clinical Rating System [KSS]) and 2 specifics (Victorian Institute of Sport Assessment [VISA-P] questionnaire for patients with patellar tendinopathy and Kujala Score for patellofemoral pain). The transcultural adaptation procedure was satisfactory, albeit somewhat less rigorous for HKQ and LLFI. In no study were all psychometric properties assessed. Reliability was analyzed in all cases, except in KSS. Validity was measured in all questionnaires. The transcultural adaptation procedure was satisfactory and the psychometric properties analysed were similar to both the original version and other versions adapted to other languages. Copyright © 2017 SECOT. Publicado por Elsevier España, S.L.U. All rights reserved.
Evaluation of pediatric upper extremity peripheral nerve injuries.
Ho, Emily S
2015-01-01
The evaluation of motor and sensory function of the upper extremity after a peripheral nerve injury is critical to diagnose the location and extent of nerve injury as well as document functional recovery in children. The purpose of this paper is to describe an approach to the evaluation of the pediatric upper extremity peripheral nerve injuries through a critical review of currently used tests of sensory and motor function. Outcome studies on pediatric upper extremity peripheral nerve injuries in the Medline database were reviewed. The evaluation of the outcome in children less than 10 years of age with an upper extremity peripheral nerve injury includes careful observation of preferred prehension patterns, examination of muscle atrophy and sudomotor function, provocative tests, manual muscle testing and tests of sensory threshold and tactile gnosis. The evaluation of outcome in children with upper extremity peripheral nerve injuries warrants a unique approach. Copyright © 2015 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Final Technical Report for DE-SC0005467
DOE Office of Scientific and Technical Information (OSTI.GOV)
Broccoli, Anthony J.
2014-09-14
The objective of this project is to gain a comprehensive understanding of the key atmospheric mechanisms and physical processes associated with temperature extremes in order to better interpret and constrain uncertainty in climate model simulations of future extreme temperatures. To achieve this objective, we first used climate observations and a reanalysis product to identify the key atmospheric circulation patterns associated with extreme temperature days over North America during the late twentieth century. We found that temperature extremes were associated with distinctive signatures in near-surface and mid-tropospheric circulation. The orientations and spatial scales of these circulation anomalies vary with latitude, season,more » and proximity to important geographic features such as mountains and coastlines. We next examined the associations between daily and monthly temperature extremes and large-scale, recurrent modes of climate variability, including the Pacific-North American (PNA) pattern, the northern annular mode (NAM), and the El Niño-Southern Oscillation (ENSO). The strength of the associations are strongest with the PNA and NAM and weaker for ENSO, and also depend upon season, time scale, and location. The associations are stronger in winter than summer, stronger for monthly than daily extremes, and stronger in the vicinity of the centers of action of the PNA and NAM patterns. In the final stage of this project, we compared climate model simulations of the circulation patterns associated with extreme temperature days over North America with those obtained from observations. Using a variety of metrics and self-organizing maps, we found the multi-model ensemble and the majority of individual models from phase 5 of the Coupled Model Intercomparison Project (CMIP5) generally capture the observed patterns well, including their strength and as well as variations with latitude and season. The results from this project indicate that current models are capable of simulating the large-scale meteorological patterns associated with daily temperature extremes and they suggest that such models can be used to evaluate the extent to which changes in atmospheric circulation will influence future changes in temperature extremes.« less
ERIC Educational Resources Information Center
Tutz, Gerhard; Berger, Moritz
2016-01-01
Heterogeneity in response styles can affect the conclusions drawn from rating scale data. In particular, biased estimates can be expected if one ignores a tendency to middle categories or to extreme categories. An adjacent categories model is proposed that simultaneously models the content-related effects and the heterogeneity in response styles.…
A characterization of workflow management systems for extreme-scale applications
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia
We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less
Temporal variability in the suspended sediment load and streamflow of the Doce River
NASA Astrophysics Data System (ADS)
Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva
2017-10-01
Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.
A characterization of workflow management systems for extreme-scale applications
Ferreira da Silva, Rafael; Filgueira, Rosa; Pietri, Ilia; ...
2017-02-16
We present that the automation of the execution of computational tasks is at the heart of improving scientific productivity. Over the last years, scientific workflows have been established as an important abstraction that captures data processing and computation of large and complex scientific applications. By allowing scientists to model and express entire data processing steps and their dependencies, workflow management systems relieve scientists from the details of an application and manage its execution on a computational infrastructure. As the resource requirements of today’s computational and data science applications that process vast amounts of data keep increasing, there is a compellingmore » case for a new generation of advances in high-performance computing, commonly termed as extreme-scale computing, which will bring forth multiple challenges for the design of workflow applications and management systems. This paper presents a novel characterization of workflow management systems using features commonly associated with extreme-scale computing applications. We classify 15 popular workflow management systems in terms of workflow execution models, heterogeneous computing environments, and data access methods. Finally, the paper also surveys workflow applications and identifies gaps for future research on the road to extreme-scale workflows and management systems.« less
A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit.
Chakrabarti, B; Lastras-Montaño, M A; Adam, G; Prezioso, M; Hoskins, B; Payvand, M; Madhavan, A; Ghofrani, A; Theogarajan, L; Cheng, K-T; Strukov, D B
2017-02-14
Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore's law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + "Molecular") architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit.
A multiply-add engine with monolithically integrated 3D memristor crossbar/CMOS hybrid circuit
Chakrabarti, B.; Lastras-Montaño, M. A.; Adam, G.; Prezioso, M.; Hoskins, B.; Cheng, K.-T.; Strukov, D. B.
2017-01-01
Silicon (Si) based complementary metal-oxide semiconductor (CMOS) technology has been the driving force of the information-technology revolution. However, scaling of CMOS technology as per Moore’s law has reached a serious bottleneck. Among the emerging technologies memristive devices can be promising for both memory as well as computing applications. Hybrid CMOS/memristor circuits with CMOL (CMOS + “Molecular”) architecture have been proposed to combine the extremely high density of the memristive devices with the robustness of CMOS technology, leading to terabit-scale memory and extremely efficient computing paradigm. In this work, we demonstrate a hybrid 3D CMOL circuit with 2 layers of memristive crossbars monolithically integrated on a pre-fabricated CMOS substrate. The integrated crossbars can be fully operated through the underlying CMOS circuitry. The memristive devices in both layers exhibit analog switching behavior with controlled tunability and stable multi-level operation. We perform dot-product operations with the 2D and 3D memristive crossbars to demonstrate the applicability of such 3D CMOL hybrid circuits as a multiply-add engine. To the best of our knowledge this is the first demonstration of a functional 3D CMOL hybrid circuit. PMID:28195239
Bivariate extreme value distributions
NASA Technical Reports Server (NTRS)
Elshamy, M.
1992-01-01
In certain engineering applications, such as those occurring in the analyses of ascent structural loads for the Space Transportation System (STS), some of the load variables have a lower bound of zero. Thus, the need for practical models of bivariate extreme value probability distribution functions with lower limits was identified. We discuss the Gumbel models and present practical forms of bivariate extreme probability distributions of Weibull and Frechet types with two parameters. Bivariate extreme value probability distribution functions can be expressed in terms of the marginal extremel distributions and a 'dependence' function subject to certain analytical conditions. Properties of such bivariate extreme distributions, sums and differences of paired extremals, as well as the corresponding forms of conditional distributions, are discussed. Practical estimation techniques are also given.
Large-scale drivers of local precipitation extremes in convection-permitting climate simulations
NASA Astrophysics Data System (ADS)
Chan, Steven C.; Kendon, Elizabeth J.; Roberts, Nigel M.; Fowler, Hayley J.; Blenkinsop, Stephen
2016-04-01
The Met Office 1.5-km UKV convective-permitting models (CPM) is used to downscale present-climate and RCP8.5 60-km HadGEM3 GCM simulations. Extreme UK hourly precipitation intensities increase with local near-surface temperatures and humidity; for temperature, the simulated increase rate for the present-climate simulation is about 6.5% K**-1, which is consistent with observations and theoretical expectations. While extreme intensities are higher in the RCP8.5 simulation as higher temperatures are sampled, there is a decline at the highest temperatures due to circulation and relative humidity changes. Extending the analysis to the broader synoptic scale, it is found that circulation patterns, as diagnosed by MSLP or circulation type, play an increased role in the probability of extreme precipitation in the RCP8.5 simulation. Nevertheless for both CPM simulations, vertical instability is the principal driver for extreme precipitation.
NASA Technical Reports Server (NTRS)
Pulkkinen, Antti; Bernabeu, Emanuel; Eichner, Jan; Viljanen, Ari; Ngwira, Chigomezyo
2015-01-01
Motivated by the needs of the high-voltage power transmission industry, we use data from the high-latitude IMAGE magnetometer array to study characteristics of extreme geoelectric fields at regional scales. We use 10-s resolution data for years 1993-2013, and the fields are characterized using average horizontal geoelectric field amplitudes taken over station groups that span about 500-km distance. We show that geoelectric field structures associated with localized extremes at single stations can be greatly different from structures associated with regionally uniform geoelectric fields, which are well represented by spatial averages over single stations. Visual extrapolation and rigorous extreme value analysis of spatially averaged fields indicate that the expected range for 1-in-100-year extreme events are 3-8 V/km and 3.4-7.1 V/km, respectively. The Quebec reference ground model is used in the calculations.
NASA Astrophysics Data System (ADS)
Schroeer, K.; Kirchengast, G.
2018-06-01
Potential increases in extreme rainfall induced hazards in a warming climate have motivated studies to link precipitation intensities to temperature. Increases exceeding the Clausius-Clapeyron (CC) rate of 6-7%/°C-1 are seen in short-duration, convective, high-percentile rainfall at mid latitudes, but the rates of change cease or revert at regionally variable threshold temperatures due to moisture limitations. It is unclear, however, what these findings mean in term of the actual risk of extreme precipitation on a regional to local scale. When conditioning precipitation intensities on local temperatures, key influences on the scaling relationship such as from the annual cycle and regional weather patterns need better understanding. Here we analyze these influences, using sub-hourly to daily precipitation data from a dense network of 189 stations in south-eastern Austria. We find that the temperature sensitivities in the mountainous western region are lower than in the eastern lowlands. This is due to the different weather patterns that cause extreme precipitation in these regions. Sub-hourly and hourly intensities intensify at super-CC and CC-rates, respectively, up to temperatures of about 17 °C. However, we also find that, because of the regional and seasonal variability of the precipitation intensities, a smaller scaling factor can imply a larger absolute change in intensity. Our insights underline that temperature precipitation scaling requires careful interpretation of the intent and setting of the study. When this is considered, conditional scaling factors can help to better understand which influences control the intensification of rainfall with temperature on a regional scale.
NASA Astrophysics Data System (ADS)
Wen, Xian-Huan; Gómez-Hernández, J. Jaime
1998-03-01
The macrodispersion of an inert solute in a 2-D heterogeneous porous media is estimated numerically in a series of fields of varying heterogeneity. Four different random function (RF) models are used to model log-transmissivity (ln T) spatial variability, and for each of these models, ln T variance is varied from 0.1 to 2.0. The four RF models share the same univariate Gaussian histogram and the same isotropic covariance, but differ from one another in terms of the spatial connectivity patterns at extreme transmissivity values. More specifically, model A is a multivariate Gaussian model for which, by definition, extreme values (both high and low) are spatially uncorrelated. The other three models are non-multi-Gaussian: model B with high connectivity of high extreme values, model C with high connectivity of low extreme values, and model D with high connectivities of both high and low extreme values. Residence time distributions (RTDs) and macrodispersivities (longitudinal and transverse) are computed on ln T fields corresponding to the different RF models, for two different flow directions and at several scales. They are compared with each other, as well as with predicted values based on first-order analytical results. Numerically derived RTDs and macrodispersivities for the multi-Gaussian model are in good agreement with analytically derived values using first-order theories for log-transmissivity variance up to 2.0. The results from the non-multi-Gaussian models differ from each other and deviate largely from the multi-Gaussian results even when ln T variance is small. RTDs in non-multi-Gaussian realizations with high connectivity at high extreme values display earlier breakthrough than in multi-Gaussian realizations, whereas later breakthrough and longer tails are observed for RTDs from non-multi-Gaussian realizations with high connectivity at low extreme values. Longitudinal macrodispersivities in the non-multi-Gaussian realizations are, in general, larger than in the multi-Gaussian ones, while transverse macrodispersivities in the non-multi-Gaussian realizations can be larger or smaller than in the multi-Gaussian ones depending on the type of connectivity at extreme values. Comparing the numerical results for different flow directions, it is confirmed that macrodispersivities in multi-Gaussian realizations with isotropic spatial correlation are not flow direction-dependent. Macrodispersivities in the non-multi-Gaussian realizations, however, are flow direction-dependent although the covariance of ln T is isotropic (the same for all four models). It is important to account for high connectivities at extreme transmissivity values, a likely situation in some geological formations. Some of the discrepancies between first-order-based analytical results and field-scale tracer test data may be due to the existence of highly connected paths of extreme conductivity values.
Lowes, Linda P; Alfano, Lindsay N; Yetter, Brent A; Worthen-Chaudhari, Lise; Hinchman, William; Savage, Jordan; Samona, Patrick; Flanigan, Kevin M; Mendell, Jerry R
2013-03-14
Individuals with dystrophinopathy lose upper extremity strength in proximal muscles followed by those more distal. Current upper extremity evaluation tools fail to fully capture changes in upper extremity strength and function across the disease spectrum as they tend to focus solely on distal ability. The Kinect by Microsoft is a gaming interface that can gather positional information about an individual's upper extremity movement which can be used to determine functional reaching volume, velocity of movement, and rate of fatigue while playing an engaging video game. The purpose of this study was to determine the feasibility of using the Kinect platform to assess upper extremity function in individuals with dystrophinopathy across the spectrum of abilities. Investigators developed a proof-of-concept device, ACTIVE (Abilities Captured Through Interactive Video Evaluation), to measure functional reaching volume, movement velocity, and rate of fatigue. Five subjects with dystrophinopathy and 5 normal controls were tested using ACTIVE during one testing session. A single subject with dystrophinopathy was simultaneously tested with ACTIVE and a marker-based motion analysis system to establish preliminary validity of measurements. ACTIVE proof-of-concept ranked the upper extremity abilities of subjects with dystrophinopathy by Brooke score, and also differentiated them from performance of normal controls for the functional reaching volume and velocity tests. Preliminary test-retest reliability of the ACTIVE for 2 sequential trials was excellent for functional reaching volume (ICC=0.986, p<0.001) and velocity trials (ICC=0.963, p<0.001). The data from our pilot study with ACTIVE proof-of-concept demonstrates that newly available gaming technology has potential to be used to create a low-cost, widely-accessible and functional upper extremity outcome measure for use with children and adults with dystrophinopathy.
Community dynamics and ecosystem simplification in a high-CO2 ocean.
Kroeker, Kristy J; Gambi, Maria Cristina; Micheli, Fiorenza
2013-07-30
Disturbances are natural features of ecosystems that promote variability in the community and ultimately maintain diversity. Although it is recognized that global change will affect environmental disturbance regimes, our understanding of the community dynamics governing ecosystem recovery and the maintenance of functional diversity in future scenarios is very limited. Here, we use one of the few ecosystems naturally exposed to future scenarios of environmental change to examine disturbance and recovery dynamics. We examine the recovery patterns of marine species from a physical disturbance across different acidification regimes caused by volcanic CO2 vents. Plots of shallow rocky reef were cleared of all species in areas of ambient, low, and extreme low pH that correspond to near-future and extreme scenarios for ocean acidification. Our results illustrate how acidification decreases the variability of communities, resulting in homogenization and reduced functional diversity at a landscape scale. Whereas the recovery trajectories in ambient pH were highly variable and resulted in a diverse range of assemblages, recovery was more predictable with acidification and consistently resulted in very similar algal-dominated assemblages. Furthermore, low pH zones had fewer signs of biological disturbance (primarily sea urchin grazing) and increased recovery rates of the dominant taxa (primarily fleshy algae). Together, our results highlight how environmental change can cause ecosystem simplification via environmentally mediated changes in community dynamics in the near future, with cascading impacts on functional diversity and ecosystem function.
NASA Astrophysics Data System (ADS)
Ray, Nadja; Rupp, Andreas; Prechtel, Alexander
2017-09-01
Upscaling transport in porous media including both biomass development and simultaneous structural changes in the solid matrix is extremely challenging. This is because both affect the medium's porosity as well as mass transport parameters and flow paths. We address this challenge by means of a multiscale model. At the pore scale, the local discontinuous Galerkin (LDG) method is used to solve differential equations describing particularly the bacteria's and the nutrient's development. Likewise, a sticky agent tightening together solid or bio cells is considered. This is combined with a cellular automaton method (CAM) capturing structural changes of the underlying computational domain stemming from biomass development and solid restructuring. Findings from standard homogenization theory are applied to determine the medium's characteristic time- and space-dependent properties. Investigating these results enhances our understanding of the strong interplay between a medium's functional properties and its geometric structure. Finally, integrating such properties as model parameters into models defined on a larger scale enables reflecting the impact of pore scale processes on the larger scale.
NASA Astrophysics Data System (ADS)
Matsui, T.; Mocko, D. M.
2015-12-01
We examine radar-gauge merged 1/8-degree hourly precipitation data from the North American Land Data Assimilation System (NLDAS) Phase-II datasets from 1997 to 2013. For each 1/8 grid, we derived statistics of single-event storm duration, total accumulated precipitation, and dry period between each storm events during cold (Oct-Mar) seasons, and histogram of event-by-event statistics are used to estimate the thresholds for extreme (below-1%) and very extreme (below-0.1%) events. In this way, we constructed unique climatology maps of the extreme precipitation-drought frequencies and probability density functions. This climatology map depicted that cold-season extremely heavy precipitation events are populated over West Coast, Deep South, and coastal zone of North East, suggesting impacts of land-falling maritime storm systems. Simultaneously, datasets depicts that long-extended precipitation events are mostly populated over North West, and lower Mississippi Basin up to North East centered at Appalachian Mountains, resembling east Pacific storm tracks and nor'easter storm tracks, respectively. Furthermore, season-by-season statistics of these extreme events were examined for each National Climate Assessment (NCA) regimes in comparison with a number of major atmospheric oscillations and teleconnection patterns as well as Arctic Amplifications. Index of Arctic Amplification includes variability of 500mb zonal wind speed and pole-to-midlatitude differences in atmospheric thickness, linking to the phase speed of the Rossby wave. Finally, we present ensemble correlations scores, and discuss the physical processes and underlying mechanisms for their key characteristics as well as the predictive skill and predictability of the extreme events from sub-seasonal to interannual scales during cold seasons.
NASA Astrophysics Data System (ADS)
Büntgen, Ulf; Brázdil, Rudolf; Heussner, Karl-Uwe; Hofmann, Jutta; Kontic, Raymond; Kyncl, Tomáš; Pfister, Christian; Chromá, Kateřina; Tegel, Willy
2011-12-01
A predicted rise in anthropogenic greenhouse gas emissions and associated effects on the Earth's climate system likely imply more frequent and severe weather extremes with alternations in hydroclimatic parameters expected to be most critical for ecosystem functioning, agricultural yield, and human health. Evaluating the return period and amplitude of modern climatic extremes in light of pre-industrial natural changes is, however, limited by generally too short instrumental meteorological observations. Here we introduce and analyze 11,873 annually resolved and absolutely dated ring width measurement series from living and historical fir ( Abies alba Mill.) trees sampled across France, Switzerland, Germany, and the Czech Republic, which continuously span the AD 962-2007 period. Even though a dominant climatic driver of European fir growth was not found, ring width extremes were evidently triggered by anomalous variations in Central European April-June precipitation. Wet conditions were associated with dynamic low-pressure cells, whereas continental-scale droughts coincided with persistent high-pressure between 35 and 55°N. Documentary evidence independently confirms many of the dendro signals over the past millennium, and further provides insight on causes and consequences of ambient weather conditions related to the reconstructed extremes. A fairly uniform distribution of hydroclimatic extremes throughout the Medieval Climate Anomaly, Little Ice Age and Recent Global Warming may question the common believe that frequency and severity of such events closely relates to climate mean stages. This joint dendro-documentary approach not only allows extreme climate conditions of the industrial era to be placed against the backdrop of natural variations, but also probably helps to constrain climate model simulations over exceptional long timescales.
Prange, Gerdienke B; Kottink, Anke I R; Buurke, Jaap H; Eckhardt, Martine M E M; van Keulen-Rouweler, Bianca J; Ribbers, Gerard M; Rietman, Johan S
2015-02-01
Use of rehabilitation technology, such as (electro)mechanical devices or robotics, could partly relieve the increasing strain on stroke rehabilitation caused by an increasing prevalence of stroke. Arm support (AS) training showed improvement of unsupported arm function in chronic stroke. To examine the effect of weight-supported arm training combined with computerized exercises on arm function and capacity, compared with dose-matched conventional reach training in subacute stroke patients. In a single-blind, multicenter, randomized controlled trial, 70 subacute stroke patients received 6 weeks of training with either an AS device combined with computerized exercises or dose-matched conventional training (CON). Arm function was evaluated pretraining and posttraining by Fugl-Meyer assessment (FM), maximal reach distance, Stroke Upper Limb Capacity Scale (SULCS), and arm pain via Visual Analogue Scale, in addition to perceived motivation by Intrinsic Motivation Inventory posttraining. FM and SULCS scores and reach distance improved significantly within both groups. These improvements and experienced pain did not differ between groups. The AS group reported higher interest/enjoyment during training than the CON group. AS training with computerized exercises is as effective as conventional therapy dedicated to the arm to improve arm function and activity in subacute stroke rehabilitation, when applied at the same dose. © The Author(s) 2014.
Kozlowski, Allan J; Singh, Ritika; Victorson, David; Miskovic, Ana; Lai, Jin-Shei; Harvey, Richard L; Cella, David; Heinemann, Allen W
2015-11-01
To examine agreement between patient and proxy responses on the Quality of Life in Neurological Disorders (Neuro-QoL) instruments after stroke. Cross-sectional observational substudy of the longitudinal, multisite, multicondition Neuro-QoL validation study. In-person, interview-guided, patient-reported outcomes. Convenience sample of dyads (N=86) of community-dwelling persons with stroke and their proxy respondents. Not applicable. Dyads concurrently completed short forms of 8 or 9 items for the 13 Neuro-QoL adult domains using the patient-proxy perspective. Agreement was examined at the scale-level with difference scores, intraclass correlation coefficients (ICCs), effect size statistics, and Bland-Altman plots, and at the item-level with kappa coefficients. We found no mean differences between patients and proxies on the Applied Cognition-General Concerns, Depression, Satisfaction With Social Roles and Activities, Stigma, and Upper Extremity Function (Fine Motor, activities of daily living) short forms. Patients rated themselves more favorably on the Applied Cognition-Executive Function, Ability to Participate in Social Roles and Activities, Lower Extremity Function (Mobility), Positive Affect and Well-Being, Anxiety, Emotional and Behavioral Dyscontrol, and Fatigue short forms. The largest mean patient-proxy difference observed was 3 T-score points on the Lower Extremity Function (Mobility). ICCs ranged from .34 to .59. However, limits of agreement showed dyad differences exceeding ±20 T-score points, and item-level agreement ranged from not significant to weighted kappa=.34. Proxy responses on Neuro-QoL short forms can complement responses of moderate- to high-functioning community-dwelling persons with stroke and augment group-level analyses, but do not substitute for individual patient ratings. Validation is needed for other stroke populations. Copyright © 2015 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Dynamic properties of small-scale solar wind plasma fluctuations.
Riazantseva, M O; Budaev, V P; Zelenyi, L M; Zastenker, G N; Pavlos, G P; Safrankova, J; Nemecek, Z; Prech, L; Nemec, F
2015-05-13
The paper presents the latest results of the studies of small-scale fluctuations in a turbulent flow of solar wind (SW) using measurements with extremely high temporal resolution (up to 0.03 s) of the bright monitor of SW (BMSW) plasma spectrometer operating on astrophysical SPECTR-R spacecraft at distances up to 350,000 km from the Earth. The spectra of SW ion flux fluctuations in the range of scales between 0.03 and 100 s are systematically analysed. The difference of slopes in low- and high-frequency parts of spectra and the frequency of the break point between these two characteristic slopes was analysed for different conditions in the SW. The statistical properties of the SW ion flux fluctuations were thoroughly analysed on scales less than 10 s. A high level of intermittency is demonstrated. The extended self-similarity of SW ion flux turbulent flow is constantly observed. The approximation of non-Gaussian probability distribution function of ion flux fluctuations by the Tsallis statistics shows the non-extensive character of SW fluctuations. Statistical characteristics of ion flux fluctuations are compared with the predictions of a log-Poisson model. The log-Poisson parametrization of the structure function scaling has shown that well-defined filament-like plasma structures are, as a rule, observed in the turbulent SW flows. © 2015 The Author(s) Published by the Royal Society. All rights reserved.
NASA Astrophysics Data System (ADS)
Berton, Rouzbeh; Driscoll, Charles T.; Adamowski, Jan F.
2017-10-01
A series of hydroclimatic teleconnection patterns were identified between variations in either Atlantic or Pacific oceanic indices with precipitation and discharge anomalies in the northeastern United States. We hypothesized that temporal annual or seasonal changes in discharge could be explained by variations in extreme phases of the Atlantic Multi-decadal Oscillation (AMO index, SST: Sea Surface Temperature anomalies) and the North Atlantic Oscillation (NAO index, SLP: Sea-Level Pressure anomalies) up to three seasons in advance. The Merrimack River watershed, the fourth largest basin in New England, with a drainage area of 13,000 km2, is a compelling study site because it not only provides an opportunity to investigate the teleconnection between hydrologic variables and large-scale climate circulation patterns, but also how those patterns may become obscured by anthropogenic disturbances such as river regulation or urban development. We considered precipitation and discharge data of 21 gauging stations within the Merrimack River watershed, including the Hubbard Brook Experimental Forest (HBEF), NH, with a median record length of 55 years beginning as early as 1904. The discharge anomalies were statistically significant (p-value ≤ 0.2) between extreme positive and negative phases of AMO (1857-2011) and NAO (1900-2011) and revealed the potential teleconnectivity of climate circulation patterns with discharge. Annual and seasonal correlations of discharge were examined with the extreme phases of AMO and NAO at zero-, one-, or two- year/season lags (total of 30 scenarios). When AMO was greater than 0.2, the strongest correlations of AMO and NAO with discharge were observed at headwater catchments. This correlation weakened downstream towards larger regulated and/or developed sub-basins. We introduced a simple approach for near-term prediction of drought and flooding events. An exponential decay function was regressed through the historic occurrence of the relative frequency of wet, average, and dry discharge conditions with regards to the extreme phases of AMO and NAO. While the function was decaying, the tail asymptotically merged into and stabilized at the theoretical probability of the event. As the basin scale increased, the probability of wet, average, and dry discharge conditions decreased. The Merrimack River watershed will most likely experience greater than average discharge as its extreme condition, therefore development should be avoided on flood plains. Furthermore, the current reservoir storage capacity in the Merrimack should be improved in order to accommodate excess water input and minimize flood damage. Future research should target changes in the magnitude and timing of high discharge events in order to develop adaptation strategies for aging hydraulic infrastructure in the region.
Sensitivity of Rainfall Extremes Under Warming Climate in Urban India
NASA Astrophysics Data System (ADS)
Ali, H.; Mishra, V.
2017-12-01
Extreme rainfall events in urban India halted transportation, damaged infrastructure, and affected human lives. Rainfall extremes are projected to increase under the future climate. We evaluated the relationship (scaling) between rainfall extremes at different temporal resolutions (daily, 3-hourly, and 30 minutes), daily dewpoint temperature (DPT) and daily air temperature at 850 hPa (T850) for 23 urban areas in India. Daily rainfall extremes obtained from Global Surface Summary of Day Data (GSOD) showed positive regression slopes for most of the cities with median of 14%/K for the period of 1979-2013 for DPT and T850, which is higher than Clausius-Clapeyron (C-C) rate ( 7%). Moreover, sub-daily rainfall extremes are more sensitive to both DPT and T850. For instance, 3-hourly rainfall extremes obtained from Tropical Rainfall Measurement Mission (TRMM 3B42 V7) showed regression slopes more than 16%/K aginst DPT and T850 for the period of 1998-2015. Half-hourly rainfall extremes from the Integrated Multi-satellitE Retrievals (IMERGE) of Global precipitation mission (GPM) also showed higher sensitivity against changes in DPT and T850. The super scaling of rainfall extremes against changes in DPT and T850 can be attributed to convective nature of precipitation in India. Our results show that urban India may witness non-stationary rainfall extremes, which, in turn will affect stromwater designs and frequency and magniture of urban flooding.
Farrell, Elizabeth; Naber, Erin; Geigle, Paula
2010-01-01
This case describes the outcomes of a multifaceted rehabilitation program including body weight-supported overground gait training (BWSOGT) in a nonambulatory child with cerebral palsy (CP) and the impact of this treatment on the child's functional mobility. The patient is a nonambulatory 10-year-old female with CP who during an inpatient rehabilitation stay participated in direct, physical therapy 6 days per week for 5 weeks. Physical therapy interventions included stretching of her bilateral lower extremities, transfer training, bed mobility training, balance training, kinesiotaping, supported standing in a prone stander, two trials of partial weight-supported treadmill training, and for 4 weeks, three to five times per week, engaged in 30 minutes of BWSOGT using the Up n' go gait trainer, Lite Gait Walkable, and Rifton Pacer gait trainer. Following the multifaceted rehabilitation program, the patient demonstrated increased step initiation, increased weight bearing through bilateral lower extremities, improved bed mobility, and increased participation in transfers. The child's Gross Motor Functional Measure (GMFM) scores increased across four dimensions and her Physical Abilities and Mobility Scale (PAMS) increased significantly. This case report illustrates that a multifaceted rehabilitation program including BWSOGT was an effective intervention strategy to improve functional mobility in this nonambulatory child with CP.
Marchese, Victoria G; Spearing, Elena; Callaway, Lulie; Rai, Shesh N; Zhang, Lijun; Hinds, Pamela S; Carlson, Claire A; Neel, Michael D; Rao, Bhaskar N; Ginsberg, Jill
2006-01-01
The study was designed to examine relationships between range of motion (ROM), functional mobility, and quality of life (QL) in patients with lower-extremity sarcoma (LES) after limb-sparing surgery Sixty-eight patients with LES (age, 10-26 years) participated. The patients performed hip flexion, hip extension, knee flexion, and knee extension, Timed Up and Down Stairs (TUDS), Timed Up and Go (TUG), nine-minute run-walk (9-min), and completed the QL measure, Short-Form-36 version two (SF-36v2). Significant correlations (p < 0.01) were found between hip extension and SF-36v2 physical component scale (PCS; r = 0.33), TUDS (r = -0.32), TUG (r = -0.33); hip flexion and TUDS (r = -0.31), TUG (r = -0.39), 9-min (r = 0.44); knee flexion and TUDS (r = -0.52), TUG (r = -0.40), 9-min (r = 0.37); SF-36v2 PCS and TUDS (r = -0.56), TUG (r = -0.51), 9-min (r = 0.60). ROM correlates with functional mobility and QL in patients with LES after limb-sparing surgery. ROM exercises are important component of a physical therapy program for children and adolescents with LES.
Regionally dependent summer heat wave response to increased surface temperature in the US
NASA Astrophysics Data System (ADS)
Lopez, H.; Dong, S.; Kirtman, B. P.; Goni, G. J.; Lee, S. K.; Atlas, R. M.; West, R.
2017-12-01
Climate projections for the 21st Century suggest an increase in the occurrence of heat waves. However, the time it takes for the externally forced signal of climate change to emerge against the background of natural variability (i.e., Time of Emergence, ToE) particularly on the regional scale makes reliable future projection of heat waves challenging. Here, we combine observations and model simulations under present and future climate forcing to assess internal variability versus external forcing in modulating US heat waves. We characterized the most common heat wave patterns over the US by the use of clustering of extreme events by their spatial distribution. For each heat wave cluster, we assess changes in the probability density function (PDF) of summer temperature extremes by modeling the PDF as a stochastically generated skewed (SGS) distribution. The probability of necessary causation for each heat wave cluster was also quantified, allowing to make assessments of heat extreme attribution to anthropogenic climate change. The results suggest that internal variability will dominate heat wave occurrence over the Great Plains with ToE occurring in the 2050s (2070s) and of occurrence of ratio of warm-to-cold extremes of 1.7 (1.7) for the Northern (Southern) Plains. In contrast, external forcing will dominate over the Western (Great Lakes) region with ToE occurring as early as in the 2020s (2030s) and warm-to-cold extremes ratio of 6.4 (10.2), suggesting caution in attributing heat extremes to external forcing due to their regional dependence.
A Harder Rain is Going to Fall: Challenges for Actionable Projections of Extremes
NASA Astrophysics Data System (ADS)
Collins, W.
2014-12-01
Hydrometeorological extremes are projected to increase in both severity and frequency as the Earth's surface continues to warm in response to anthropogenic emissions of greenhouse gases. These extremes will directly affect the availability and reliability of water and other critical resources. The most comprehensive suite of multi-model projections has been assembled under the Coupled Model Intercomparison Project version 5 (CMIP5) and assessed in the Fifth Assessment (AR5) of the Intergovernmental Panel on Climate Change (IPCC). In order for these projections to be actionable, the projections should exhibit consistency and fidelity down to the local length and timescales required for operational resource planning, for example the scales relevant for water allocations from a major watershed. In this presentation, we summarize the length and timescales relevant for resource planning and then use downscaled versions of the IPCC simulations over the contiguous United States to address three questions. First, over what range of scales is there quantitative agreement between the simulated historical extremes and in situ measurements? Second, does this range of scales in the historical and future simulations overlap with the scales relevant for resource management and adaptation? Third, does downscaling enhance the degree of multi-model consistency at scales smaller than the typical global model resolution? We conclude by using these results to highlight requirements for further model development to make the next generation of models more useful for planning purposes.
Complex multifractal nature in Mycobacterium tuberculosis genome
Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.
2017-01-01
The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences. PMID:28440326
Complex multifractal nature in Mycobacterium tuberculosis genome
NASA Astrophysics Data System (ADS)
Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.
2017-04-01
The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences.
NASA Astrophysics Data System (ADS)
Boddohi, Soheil; Killingsworth, Christopher; Kipper, Matt
2008-03-01
Chitosan (a weak polycation) and heparin (a strong polyanion) are used to make polyelectrolyte multilayers (PEM). PEM thickness and composition are determined as a function of solution pH (4.6 to 5.8) and ionic strength (0.1 to 0.5 M). Over this range, increasing pH increases the PEM thickness; however, the sensitivity to changes in pH is a strong function of ionic strength. The PEM thickness data are correlated to the polymer conformation in solution. Polyelectrolyte conformation in solution is characterized by gel permeation chromatography (GPC). The highest sensitivity of PEM structure to pH is obtained at intermediate ionic strength. Different interactions govern the conformation and adsorption phenomena at low and high ionic strength, leading to reduced sensitivity to solution pH at extreme ionic strengths. The correspondence between PEM thickness and polymer solution conformation offers opportunities to tune polymer thin film structure at the nanometer length scale by controlling simple, reproducible processing conditions.
Paik, Young-Rim; Lee, Jeong-Hoon; Lee, Doo-Ho; Park, Hee-Su; Oh, Dong-Hwan
2017-12-01
[Purpose] This study investigated the effects of mirror therapy and neuromuscular electrical stimulation on upper extremity function in stroke patients. [Subjects and Methods] This study recruited 8 stroke patients. All patients were treated with mirror therapy and neuromuscular electrical stimulation five times per week for 4 weeks. Upper limb function evaluation was performed using upper extremity part of fugl meyer assessment. [Results] Before and after intervention, fugl meyer assessment showed significant improvement. [Conclusion] In this study, mirror therapy and neuromuscular electrical stimulation are effective methods for upper extremity function recovery in stroke patients.
Advanced Dynamically Adaptive Algorithms for Stochastic Simulations on Extreme Scales
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiu, Dongbin
2017-03-03
The focus of the project is the development of mathematical methods and high-performance computational tools for stochastic simulations, with a particular emphasis on computations on extreme scales. The core of the project revolves around the design of highly efficient and scalable numerical algorithms that can adaptively and accurately, in high dimensional spaces, resolve stochastic problems with limited smoothness, even containing discontinuities.
NASA Astrophysics Data System (ADS)
Wang, Cailin; Ren, Xuehui; Li, Ying
2017-04-01
We defined the threshold of extreme precipitation using detrended fluctuation analysis based on daily precipitation during 1955-2013 in Kuandian County, Liaoning Province. Three-dimensional copulas were introduced to analyze the characteristics of four extreme precipitation factors: the annual extreme precipitation day, extreme precipitation amount, annual average extreme precipitation intensity, and extreme precipitation rate of contribution. The results show that (1) the threshold is 95.0 mm, extreme precipitation events generally occur 1-2 times a year, the average extreme precipitation intensity is 100-150 mm, and the extreme precipitation amount is 100-270 mm accounting for 10 to 37 % of annual precipitation. (2) The generalized extreme value distribution, extreme value distribution, and generalized Pareto distribution are suitable for fitting the distribution function for each element of extreme precipitation. The Ali-Mikhail-Haq (AMH) copula function reflects the joint characteristics of extreme precipitation factors. (3) The return period of the three types has significant synchronicity, and the joint return period and co-occurrence return period have long delay when the return period of the single factor is long. This reflects the inalienability of extreme precipitation factors. The co-occurrence return period is longer than that of the single factor and joint return period. (4) The single factor fitting only reflects single factor information of extreme precipitation but is unrelated to the relationship between factors. Three-dimensional copulas represent the internal information of extreme precipitation factors and are closer to the actual. The copula function is potentially widely applicable for the multiple factors of extreme precipitation.
Wright, F V; Boschen, K; Jutai, J
2005-05-01
Conductive education (CE) is a holistic educational system that uses an active cognitive approach to teach individuals with motor disorders to become more functional participants in daily activities. While CE's popularity continues to grow in North America and Europe, its effectiveness has not been established. The lack of definition of responsive outcome measures for evaluation of CE programmes has limited the interpretability of conclusions from earlier studies evaluating effectiveness. To determine which measures from a core set were most responsive to physical, functional and psychosocial changes associated with a school-based CE programme. This was a one-group before and after data collection design using an 8-month follow-up period. We enrolled a referral sample of nine children with cerebral palsy in Kindergarten or Grade 1 (Gross Motor Function Classification System levels 3, 4 or 5). The study took place within a school-based CE programme at a Canadian children's rehabilitation centre. Children participated in a CE full-day class for an entire school year. Physical, functional, psychosocial and participation measures included: Gross Motor Function Measure (GMFM), Quality of Upper Extremity Skills Test (QUEST), Peabody Developmental Motor Scales, Paediatric Evaluation of Disability Inventory (PEDI), Pictorial Scale of Perceived Competence and Social Acceptance for Young Children, Individualized Educational Plan, and Goal Attainment Scaling (GAS). Four children from the study's second year were also evaluated on the Impact on Family Scale (IFS), GAS and School Function Assessment. The Gross Motor Function Measure, QUEST, PEDI (Caregiver Assistance) and IFS were most responsive to change. GAS was useful in documenting and quantifying goals. Problems were encountered in evaluating self-esteem and school participation. Several strong measures of outcome were identified. Further work is needed to find valid and sensitive psychosocial and school participation measures for these young children.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilke, Jeremiah J; Kenny, Joseph P.
2015-02-01
Discrete event simulation provides a powerful mechanism for designing and testing new extreme- scale programming models for high-performance computing. Rather than debug, run, and wait for results on an actual system, design can first iterate through a simulator. This is particularly useful when test beds cannot be used, i.e. to explore hardware or scales that do not yet exist or are inaccessible. Here we detail the macroscale components of the structural simulation toolkit (SST). Instead of depending on trace replay or state machines, the simulator is architected to execute real code on real software stacks. Our particular user-space threading frameworkmore » allows massive scales to be simulated even on small clusters. The link between the discrete event core and the threading framework allows interesting performance metrics like call graphs to be collected from a simulated run. Performance analysis via simulation can thus become an important phase in extreme-scale programming model and runtime system design via the SST macroscale components.« less
NASA Astrophysics Data System (ADS)
Tecza, Matthias; Thatte, Niranjan; Clarke, Fraser; Lynn, James; Freeman, David; Roberts, Jennifer; Dekany, Richard
2012-09-01
When commissioned in November 2008 at the Palomar 200 inch Hale Telescope, the Oxford SWIFT I and z band integral field spectrograph, fed by the adaptive optics system PALAO, provided a wide (3×) range of spatial resolutions: three plate scales of 235 mas, 160 mas, and 80 mas per spaxel over a contiguous field-of-view of 89×44 pixels. Depending on observing conditions and guide star brightness we can choose a seeing limited scale of 235 mas per spaxel, or 160 mas and 80 mas per spaxel for very bright guide star AO with substantial increase of enclosed energy. Over the last two years PALAO was upgraded to PALM-3000: an extreme, high-order adaptive optics system with two deformable mirrors with more than 3000 actuators, promising diffraction limited performance in SWIFT's wavelength range. In order to take advantage of this increased spatial resolution we upgraded SWIFT with new pre-optics allowing us to spatially Nyquist sample the diffraction limited PALM-3000 point spread function with 16 mas resolution, reducing the spaxel scale by another factor of 5×. We designed, manufactured, integrated and tested the new pre-optics in the first half of 2011 and commissioned it in December 2011. Here we present the opto-mechanical design and assembly of the new scale changing optics, as well as laboratory and on-sky commissioning results. In optimal observing conditions we achieve substantial Strehl ratios, delivering the near diffraction limited spatial resolution in the I and z bands.
Impact of climate change on European weather extremes
NASA Astrophysics Data System (ADS)
Duchez, Aurelie; Forryan, Alex; Hirschi, Joel; Sinha, Bablu; New, Adrian; Freychet, Nicolas; Scaife, Adam; Graham, Tim
2015-04-01
An emerging science consensus is that global climate change will result in more extreme weather events with concomitant increasing financial losses. Key questions that arise are: Can an upward trend in natural extreme events be recognised and predicted at the European scale? What are the key drivers within the climate system that are changing and making extreme weather events more frequent, more intense, or both? Using state-of-the-art coupled climate simulations from the UK Met Office (HadGEM3-GC2, historical and future scenario runs) as well as reanalysis data, we highlight the potential of the currently most advanced forecasting systems to progress understanding of the causative drivers of European weather extremes, and assess future frequency and intensity of extreme weather under various climate change scenarios. We characterize European extremes in these simulations using a subset of the 27 core indices for temperature and precipitation from The Expert Team on Climate Change Detection and Indices (Tank et al., 2009). We focus on temperature and precipitation extremes (e.g. extremes in daily and monthly precipitation and temperatures) and relate them to the atmospheric modes of variability over Europe in order to establish the large-scale atmospheric circulation patterns that are conducive to the occurrence of extreme precipitation and temperature events. Klein Tank, Albert M.G., and Francis W. Zwiers. Guidelines on Analysis of Extremes in a Changing Climate in Support of Informed Decisions for Adaptation. WMO-TD No. 1500. Climate Data and Monitoring. World Meteorological Organization, 2009.
Drake, John E; Tjoelker, Mark G; Vårhammar, Angelica; Medlyn, Belinda E; Reich, Peter B; Leigh, Andrea; Pfautsch, Sebastian; Blackman, Chris J; López, Rosana; Aspinwall, Michael J; Crous, Kristine Y; Duursma, Remko A; Kumarathunge, Dushan; De Kauwe, Martin G; Jiang, Mingkai; Nicotra, Adrienne B; Tissue, David T; Choat, Brendan; Atkin, Owen K; Barton, Craig V M
2018-06-01
Heatwaves are likely to increase in frequency and intensity with climate change, which may impair tree function and forest C uptake. However, we have little information regarding the impact of extreme heatwaves on the physiological performance of large trees in the field. Here, we grew Eucalyptus parramattensis trees for 1 year with experimental warming (+3°C) in a field setting, until they were greater than 6 m tall. We withheld irrigation for 1 month to dry the surface soils and then implemented an extreme heatwave treatment of 4 consecutive days with air temperatures exceeding 43°C, while monitoring whole-canopy exchange of CO 2 and H 2 O, leaf temperatures, leaf thermal tolerance, and leaf and branch hydraulic status. The heatwave reduced midday canopy photosynthesis to near zero but transpiration persisted, maintaining canopy cooling. A standard photosynthetic model was unable to capture the observed decoupling between photosynthesis and transpiration at high temperatures, suggesting that climate models may underestimate a moderating feedback of vegetation on heatwave intensity. The heatwave also triggered a rapid increase in leaf thermal tolerance, such that leaf temperatures observed during the heatwave were maintained within the thermal limits of leaf function. All responses were equivalent for trees with a prior history of ambient and warmed (+3°C) temperatures, indicating that climate warming conferred no added tolerance of heatwaves expected in the future. This coordinated physiological response utilizing latent cooling and adjustment of thermal thresholds has implications for tree tolerance of future climate extremes as well as model predictions of future heatwave intensity at landscape and global scales. © 2018 John Wiley & Sons Ltd.
Luyster, Rhiannon J; Kuban, Karl C K; O'Shea, T Michael; Paneth, Nigel; Allred, Elizabeth N; Leviton, Alan
2011-07-01
The Modified Checklist for Autism in Toddlers (M-CHAT) has yielded elevated rates of screening failure for children born preterm or with low birthweight. We extended these findings with a detailed examination of M-CHAT items in a large sample of children born at extremely low gestational age. The sample was grouped according to children's current limitations and degree of impairment. The aim was to better understand how disabilities might influence M-CHAT scores. Fourteen participating institutions of the Extremely Low Gestational Age Newborns (ELGAN) Study prospectively collected information about 1086 infants who were born before the 28th week of gestation and had an assessment at age 24-months. The 24-month visit included a neurological assessment, the Bayley Scales of Infant Development, Second edition (BSID-II), M-CHAT and a medical history form. Outcome measures included the distribution of failed M-CHAT items among groups classified according to cerebral palsy diagnosis, gross motor function, BSID-II scores and vision or hearing impairments. M-CHAT items were failed more frequently by children with concurrently identified impairments (motor, cognitive, vision and hearing). In addition, the frequency of item failure increased with the severity of impairment. The failed M-CHAT items were often, but not consistently, related to children's specific impairments. Importantly, four of the six M-CHAT 'critical items' were commonly affected by presence and severity of concurrent impairments. The strong association between impaired sensory or motor function and M-CHAT results among extremely low gestational age children suggests that such impairments might give rise to false positive M-CHAT screening. © 2011 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Wu, J.; van der Linden, L.; Lasslop, G.; Carvalhais, N.; Pilegaard, K.; Beier, C.; Ibrom, A.
2012-04-01
The ecosystem carbon balance is affected by both external climatic forcing (e.g. solar radiation, air temperature and humidity) and internal dynamics in the ecosystem functional properties (e.g. canopy structure, leaf photosynthetic capacity and carbohydrate reserve). In order to understand to what extent and at which temporal scale, climatic variability and functional changes regulated the interannual variation (IAV) in the net ecosystem exchange of CO2 (NEE), data-driven analysis and semi-empirical modelling (Lasslop et al. 2010) were performed based on a 13 year NEE record in a temperate deciduous forest (Pilegaard et al 2011, Wu et al. 2012). We found that the sensitivity of carbon fluxes to climatic variability was significantly higher at shorter than at longer time scales and changed seasonally. This implied that the changing distribution of climate anomalies during the vegetation period could have stronger impacts on future ecosystem carbon balances than changes in average climate. At the annual time scale, approximately 80% of the interannual variability in NEE was attributed to the variation in the model parameters, indicating the observed IAV in the carbon dynamics at the investigated site was dominated by changes in ecosystem functioning. In general this study showed the need for understanding the mechanisms of ecosystem functional change. The method can be applied at other sites to explore ecosystem behavior across different plant functional types and climate gradients. Incorporating ecosystem functional change into process based models will reduce the uncertainties in long-term predictions of ecosystem carbon balances in global climate change projections. Acknowledgements. This work was supported by the EU FP7 project CARBO-Extreme, the DTU Climate Centre and the Danish national project ECOCLIM (Danish Council for Strategic Research).
Surface-agnostic highly stretchable and bendable conductive MXene multilayers
An, Hyosung; Habib, Touseef; Shah, Smit; Gao, Huili; Radovic, Miladin; Green, Micah J.; Lutkenhaus, Jodie L.
2018-01-01
Stretchable, bendable, and foldable conductive coatings are crucial for wearable electronics and biometric sensors. These coatings should maintain functionality while simultaneously interfacing with different types of surfaces undergoing mechanical deformation. MXene sheets as conductive two-dimensional nanomaterials are promising for this purpose, but it is still extremely difficult to form surface-agnostic MXene coatings that can withstand extreme mechanical deformation. We report on conductive and conformal MXene multilayer coatings that can undergo large-scale mechanical deformation while maintaining a conductivity as high as 2000 S/m. MXene multilayers are successfully deposited onto flexible polymer sheets, stretchable poly(dimethylsiloxane), nylon fiber, glass, and silicon. The coating shows a recoverable resistance response to bending (up to 2.5-mm bending radius) and stretching (up to 40% tensile strain), which was leveraged for detecting human motion and topographical scanning. We anticipate that this discovery will allow for the implementation of MXene-based coatings onto mechanically deformable objects. PMID:29536044
NASA Astrophysics Data System (ADS)
Subramanian, A. C.; Lavers, D.; Matsueda, M.; Shukla, S.; Cayan, D. R.; Ralph, M.
2017-12-01
Atmospheric rivers (ARs) - elongated plumes of intense moisture transport - are a primary source of hydrological extremes, water resources and impactful weather along the West Coast of North America and Europe. There is strong demand in the water management, societal infrastructure and humanitarian sectors for reliable sub-seasonal forecasts, particularly of extreme events, such as floods and droughts so that actions to mitigate disastrous impacts can be taken with sufficient lead-time. Many recent studies have shown that ARs in the Pacific and the Atlantic are modulated by large-scale modes of climate variability. Leveraging the improved understanding of how these large-scale climate modes modulate the ARs in these two basins, we use the state-of-the-art multi-model forecast systems such as the North American Multi-Model Ensemble (NMME) and the Subseasonal-to-Seasonal (S2S) database to help inform and assess the probabilistic prediction of ARs and related extreme weather events over the North American and European West Coasts. We will present results from evaluating probabilistic forecasts of extreme precipitation and AR activity at the sub-seasonal scale. In particular, results from the comparison of two winters (2015-16 and 2016-17) will be shown, winters which defied canonical El Niño teleconnection patterns over North America and Europe. We further extend this study to analyze probabilistic forecast skill of AR events in these two basins and the variability in forecast skill during certain regimes of large-scale climate modes.
Measurements of observables during detonator function
NASA Astrophysics Data System (ADS)
Smilowitz, Laura; Henson, Bryan; Remelius, Dennis
Thermal explosion and detonation are two phenomena which can both occur as the response of explosives to thermal or mechanical insults. Thermal explosion is typically considered in the safety envelope and detonation is considered in the performance regime of explosive behavior. However, the two regimes are tied together by a phenomenon called deflagration to detonation transition (DDT). In this talk, I will discuss experiments on commercial detonators aimed at understanding the mechanism for energy release during detonator function. Diagnostic development towards measuring temperature, pressure, and density during the extreme conditions and time scales of detonation will be discussed. Our current ability to perform table-top dynamic radiography on functioning detonators will be described. Dynamic measurements of temperature, pressure, and density will be shown and discussion of the function of a detonator will be given in terms of our current understanding of deflagration, detonation, and the transition between the two.
Motor function domains in alternating hemiplegia of childhood.
Masoud, Melanie; Gordon, Kelly; Hall, Amanda; Jasien, Joan; Lardinois, Kara; Uchitel, Julie; Mclean, Melissa; Prange, Lyndsey; Wuchich, Jeffrey; Mikati, Mohamad A
2017-08-01
To characterize motor function profiles in alternating hemiplegia of childhood, and to investigate interrelationships between these domains and with age. We studied a cohort of 23 patients (9 males, 14 females; mean age 9y 4mo, range 4mo-43y) who underwent standardized tests to assess gross motor, upper extremity motor control, motor speech, and dysphagia functions. Gross Motor Function Classification System (GMFCS), Gross Motor Function Measure-88 (GMFM-88), Manual Ability Classification System (MACS), and Revised Melbourne Assessment (MA2) scales manifested predominantly mild impairments; motor speech, moderate to severe; Modified Dysphagia Outcome and Severity Scale (M-DOSS), mild-to moderate deficits. GMFCS correlated with GMFM-88 scores (Pearson's correlation, p=0.002), MACS (p=0.038), and MA2 fluency (p=0.005) and accuracy (p=0.038) scores. GMFCS did not correlate with motor speech (p=0.399), MA2 dexterity (p=0.247), range of motion (p=0.063), or M-DOSS (p=0.856). Motor speech was more severely impaired than the GMFCS (p<0.013). There was no correlation between any of the assessment tools and age (p=0.210-0.798). Our data establish a detailed profile of motor function in alternating hemiplegia of childhood, argue against the presence of worse motor function in older patients, identify tools helpful in evaluating this population, and identify oropharyngeal function as the more severely affected domain, suggesting that brain areas controlling this function are more affected than others. © 2017 Mac Keith Press.
Günay, S M; Tuna, Z; Oskay, D
2016-12-31
Rheumatoid arthritis (RA) often results in impairments in upper extremities, especially in the small joints of hand. Involvement of hand brings limitations in activities of daily living. However, it is commonly observed that patient-reported functional status of hand does not always corresponds to their actual physical performance in the clinical setting. The aim of this pilot study is to investigate the relationship between patient self-reported and objectively measured hand functions in patients with RA. Twenty-six patients (51±13 years) with RA diagnosis participated in the study. Hand grip and pinch (lateral, bipod, tripod) strengths were measured and Jebsen Hand Function Test (JHFT) was performed for objective functional performance. Duruöz Hand Index and Beck Depression Inventory - Turkish version were completed by patients. Grip and all three-pinch strength results significantly correlated with Duruöz Hand Index scores (p<0.05). JHFT results except the sentence writing also correlated with the Duruöz scores (p<0.05). Our results showed that self-reported outcome scales might be used for determining functional level of hand in patients with RA in rheumatology practice. Objective quantitative functional tests are the best methods in evaluating functional level of hand, but require valid and reliable equipment with accurate calibration. Therefore, in case of unavailability of objective assessment tools, patient-reported scales may also reflect the real status of hand functions.
Kurtz, J E; Lee, P A; Sherker, J L
1999-06-01
This study examines the internal consistency and temporal stability of informant ratings from two widely used instruments for normal personality assessment, the revised NEO Personality Inventory (NEO PI-R) and the Interpersonal Adjective Scales (IAS). Well-known adult targets were selected by 109 undergraduate students and rated on two occasions separated by a 6-month interval. With few exceptions, estimates of internal consistency are adequate to good for both instruments. NEO PI-R domain scores yield coefficient alphas ranging from .89 to .96, with a median of .80 for the 30 facet scales. IAS octant scales show coefficient alphas ranging from .83 to .92. Retest Pearson correlations are above .70 for each of the NEO PI-R domain scores and both IAS axis coordinates, and intraclass correlations are above .60 for all scales from both instruments. Score changes were small but statistically significant for three of the five NEO PI-R domains at retest. The retest stability of IAS type classifications varies as a function of the extremity of the associated octant scores.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.
Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less
Large Scale Meteorological Pattern of Extreme Rainfall in Indonesia
NASA Astrophysics Data System (ADS)
Kuswanto, Heri; Grotjahn, Richard; Rachmi, Arinda; Suhermi, Novri; Oktania, Erma; Wijaya, Yosep
2014-05-01
Extreme Weather Events (EWEs) cause negative impacts socially, economically, and environmentally. Considering these facts, forecasting EWEs is crucial work. Indonesia has been identified as being among the countries most vulnerable to the risk of natural disasters, such as floods, heat waves, and droughts. Current forecasting of extreme events in Indonesia is carried out by interpreting synoptic maps for several fields without taking into account the link between the observed events in the 'target' area with remote conditions. This situation may cause misidentification of the event leading to an inaccurate prediction. Grotjahn and Faure (2008) compute composite maps from extreme events (including heat waves and intense rainfall) to help forecasters identify such events in model output. The composite maps show large scale meteorological patterns (LSMP) that occurred during historical EWEs. Some vital information about the EWEs can be acquired from studying such maps, in addition to providing forecaster guidance. Such maps have robust mid-latitude meteorological patterns (for Sacramento and California Central Valley, USA EWEs). We study the performance of the composite approach for tropical weather condition such as Indonesia. Initially, the composite maps are developed to identify and forecast the extreme weather events in Indramayu district- West Java, the main producer of rice in Indonesia and contributes to about 60% of the national total rice production. Studying extreme weather events happening in Indramayu is important since EWEs there affect national agricultural and fisheries activities. During a recent EWE more than a thousand houses in Indramayu suffered from serious flooding with each home more than one meter underwater. The flood also destroyed a thousand hectares of rice plantings in 5 regencies. Identifying the dates of extreme events is one of the most important steps and has to be carried out carefully. An approach has been applied to identify the dates involving observations from multiple sites (rain gauges). The approach combines the POT (Peaks Over Threshold) with 'declustering' of the data to approximate independence based on the autocorrelation structure of each rainfall series. The cross correlation among sites is considered also to develop the event's criteria yielding a rational choice of the extreme dates given the 'spotty' nature of the intense convection. Based on the identified dates, we are developing a supporting tool for forecasting extreme rainfall based on the corresponding large-scale meteorological patterns (LSMPs). The LSMPs methodology focuses on the larger-scale patterns that the model are better able to forecast, as those larger-scale patterns create the conditions fostering the local EWE. Bootstrap resampling method is applied to highlight the key features that statistically significant with the extreme events. Grotjahn, R., and G. Faure. 2008: Composite Predictor Maps of Extraordinary Weather Events in the Sacramento California Region. Weather and Forecasting. 23: 313-335.
Opportunities for nonvolatile memory systems in extreme-scale high-performance computing
Vetter, Jeffrey S.; Mittal, Sparsh
2015-01-12
For extreme-scale high-performance computing systems, system-wide power consumption has been identified as one of the key constraints moving forward, where DRAM main memory systems account for about 30 to 50 percent of a node's overall power consumption. As the benefits of device scaling for DRAM memory slow, it will become increasingly difficult to keep memory capacities balanced with increasing computational rates offered by next-generation processors. However, several emerging memory technologies related to nonvolatile memory (NVM) devices are being investigated as an alternative for DRAM. Moving forward, NVM devices could offer solutions for HPC architectures. Researchers are investigating how to integratemore » these emerging technologies into future extreme-scale HPC systems and how to expose these capabilities in the software stack and applications. In addition, current results show several of these strategies could offer high-bandwidth I/O, larger main memory capacities, persistent data structures, and new approaches for application resilience and output postprocessing, such as transaction-based incremental checkpointing and in situ visualization, respectively.« less
Ayachit, Utkarsh; Bauer, Andrew; Duque, Earl P. N.; ...
2016-11-01
A key trend facing extreme-scale computational science is the widening gap between computational and I/O rates, and the challenge that follows is how to best gain insight from simulation data when it is increasingly impractical to save it to persistent storage for subsequent visual exploration and analysis. One approach to this challenge is centered around the idea of in situ processing, where visualization and analysis processing is performed while data is still resident in memory. Our paper examines several key design and performance issues related to the idea of in situ processing at extreme scale on modern platforms: Scalability, overhead,more » performance measurement and analysis, comparison and contrast with a traditional post hoc approach, and interfacing with simulation codes. We illustrate these principles in practice with studies, conducted on large-scale HPC platforms, that include a miniapplication and multiple science application codes, one of which demonstrates in situ methods in use at greater than 1M-way concurrency.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Katti, Amogh; Di Fatta, Giuseppe; Naughton, Thomas
Future extreme-scale high-performance computing systems will be required to work under frequent component failures. The MPI Forum s User Level Failure Mitigation proposal has introduced an operation, MPI Comm shrink, to synchronize the alive processes on the list of failed processes, so that applications can continue to execute even in the presence of failures by adopting algorithm-based fault tolerance techniques. This MPI Comm shrink operation requires a failure detection and consensus algorithm. This paper presents three novel failure detection and consensus algorithms using Gossiping. The proposed algorithms were implemented and tested using the Extreme-scale Simulator. The results show that inmore » all algorithms the number of Gossip cycles to achieve global consensus scales logarithmically with system size. The second algorithm also shows better scalability in terms of memory and network bandwidth usage and a perfect synchronization in achieving global consensus. The third approach is a three-phase distributed failure detection and consensus algorithm and provides consistency guarantees even in very large and extreme-scale systems while at the same time being memory and bandwidth efficient.« less
Associations of Foot Posture and Function to Lower Extremity Pain: The Framingham Foot Study
Riskowski, JL; Dufour, AB; Hagedorn, TJ; Hillstrom, Howard; Casey, VA; Hannan, MT
2014-01-01
Objective Studies have implicated foot posture and foot function as risk factors for lower extremity pain. Empirical population-based evidence for this assertion is lacking; therefore, the purpose of this study was to evaluate cross-sectional associations of foot posture and foot function to lower extremity joint pain in a population-based study of adults. Methods Participants were members of the Framingham Foot Study. lower extremity joint pain was determined by the response to the NHANES-type question, “On most days do you have pain, aching or stiffness in your [hips, knees, ankles, or feet]?” Modified Arch Index (MAI) classified participants as having planus, rectus (referent) or cavus foot posture. Center of Pressure Excursion Index (CPEI) classified participants as having over-pronated, normal (referent) or over-supinated foot function. Crude and adjusted (age, gender, BMI) logistic regression determined associations of foot posture and function to lower extremity pain. Results Participants with planus structure had higher odds of knee (1.57, 95% CI: 1.24– 1.99) or ankle (1.47, 95% CI: 1.05–2.06) pain, whereas those with a cavus foot structure had increased odds of ankle pain only (7.56, 95% CI: 1.99–28.8) and pain at one lower extremity site (1.37, 95% CI: 1.04–1.80). Associations between foot function and lower extremity joint pain were not statistically significant, except for a reduced risk of hip pain in those with an over-supinated foot function (0.69, 95% CI: 0.51–0.93). Conclusions These findings offer a link between foot posture and lower extremity pain, highlighting the need for longitudinal or intervention studies. PMID:24591410
Riskowski, Jody L; Dufour, Alyssa B; Hagedorn, Thomas J; Hillstrom, Howard J; Casey, Virginia A; Hannan, Marian T
2013-11-01
Studies have implicated foot posture and foot function as risk factors for lower extremity pain. Empirical population-based evidence for this assertion is lacking; therefore, the purpose of this study was to evaluate cross-sectional associations of foot posture and foot function to lower extremity joint pain in a population-based study of adults. Participants were members of the Framingham Foot Study. Lower extremity joint pain was determined by the response to the National Health and Nutrition Examination Survey-type question, "On most days do you have pain, aching or stiffness in your (hips, knees, ankles, or feet)?" The Modified Arch Index classified participants as having planus, rectus (referent), or cavus foot posture. The Center of Pressure Excursion Index classified participants as having overpronated, normal (referent), or oversupinated foot function. Crude and adjusted (age, sex, and body mass index) logistic regression determined associations of foot posture and function to lower extremity pain. Participants with planus structure had higher odds of knee (odds ratio [OR] 1.57, 95% confidence interval [95% CI] 1.24-1.99) or ankle (OR 1.47, 95% CI 1.05-2.06) pain, whereas those with a cavus foot structure had increased odds of ankle pain only (OR 7.56, 95% CI 1.99-28.8) and pain at 1 lower extremity site (OR 1.37, 95% CI 1.04-1.80). Associations between foot function and lower extremity joint pain were not statistically significant except for a reduced risk of hip pain in those with an oversupinated foot function (OR 0.69, 95% CI 0.51-0.93). These findings offer a link between foot posture and lower extremity pain, highlighting the need for longitudinal or intervention studies. Copyright © 2013 by the American College of Rheumatology.
Rotations of large inertial cubes, cuboids, cones, and cylinders in turbulence
NASA Astrophysics Data System (ADS)
Pujara, Nimish; Oehmke, Theresa B.; Bordoloi, Ankur D.; Variano, Evan A.
2018-05-01
We conduct experiments to investigate the rotations of freely moving particles in a homogeneous isotropic turbulent flow. The particles are nearly neutrally buoyant and the particle size exceeds the Kolmogorov scale so that they are too large to be considered passive tracers. Particles of several different shapes are considered including those that break axisymmetry and fore-aft symmetry. We find that regardless of shape the mean-square particle angular velocity scales as deq -4 /3, where de q is the equivalent diameter of a volume-matched sphere. This scaling behavior is consistent with the notion that velocity differences across a length de q in the flow are responsible for particle rotation. We also find that the probability density functions (PDFs) of particle angular velocity collapse for particles of different shapes and similar de q. The significance of these results is that the rotations of an inertial, nonspherical particle are only functions of its volume and not its shape. The magnitude of particle angular velocity appears log-normally distributed and individual Cartesian components show long tails. With increasing de q, the tails of the PDF become less pronounced, meaning that extreme events of angular velocity become less common for larger particles.
Subsynoptic-scale features associated with extreme surface gusts in UK extratropical cyclone events
NASA Astrophysics Data System (ADS)
Earl, N.; Dorling, S.; Starks, M.; Finch, R.
2017-04-01
Numerous studies have addressed the mesoscale features within extratropical cyclones (ETCs) that are responsible for the most destructive winds, though few have utilized surface observation data, and most are based on case studies. By using a 39-station UK surface observation network, coupled with in-depth analysis of the causes of extreme gusts during the period 2008-2014, we show that larger-scale features (warm and cold conveyer belts) are most commonly associated with the top 1% of UK gusts but smaller-scale features generate the most extreme winds. The cold conveyor belt is far more destructive when joining the momentum of the ETC, rather than earlier in its trajectory, ahead of the approaching warm front. Sting jets and convective lines account for two thirds of severe surface gusts in the UK.
NASA Astrophysics Data System (ADS)
Walz, M. A.; Donat, M.; Leckebusch, G. C.
2017-12-01
As extreme wind speeds are responsible for large socio-economic losses in Europe, a skillful prediction would be of great benefit for disaster prevention as well as for the actuarial community. Here we evaluate patterns of large-scale atmospheric variability and the seasonal predictability of extreme wind speeds (e.g. >95th percentile) in the European domain in the dynamical seasonal forecast system ECMWF System 4, and compare to the predictability based on a statistical prediction model. The dominant patterns of atmospheric variability show distinct differences between reanalysis and ECMWF System 4, with most patterns in System 4 extended downstream in comparison to ERA-Interim. The dissimilar manifestations of the patterns within the two models lead to substantially different drivers associated with the occurrence of extreme winds in the respective model. While the ECMWF System 4 is shown to provide some predictive power over Scandinavia and the eastern Atlantic, only very few grid cells in the European domain have significant correlations for extreme wind speeds in System 4 compared to ERA-Interim. In contrast, a statistical model predicts extreme wind speeds during boreal winter in better agreement with the observations. Our results suggest that System 4 does not seem to capture the potential predictability of extreme winds that exists in the real world, and therefore fails to provide reliable seasonal predictions for lead months 2-4. This is likely related to the unrealistic representation of large-scale patterns of atmospheric variability. Hence our study points to potential improvements of dynamical prediction skill by improving the simulation of large-scale atmospheric dynamics.
Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities
2016-10-01
Award Number: W81XWH-12-2-0128 TITLE: Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities...SUBTITLE Instructive Biologic Scaffold for Functional Tissue Regeneration Following Trauma to the Extremities 5a. CONTRACT NUMBER 5b. GRANT NUMBER...identification of cell phenotype, extracellular 5 matrix characterization, and histomorphometric analysis. The main endpoint of this study was to
Springtime extreme moisture transport into the Arctic and its impact on sea ice concentration
NASA Astrophysics Data System (ADS)
Yang, Wenchang; Magnusdottir, Gudrun
2017-05-01
Recent studies suggest that springtime moisture transport into the Arctic can initiate sea ice melt that extends to a large area in the following summer and fall, which can help explain Arctic sea ice interannual variability. Yet the impact from an individual moisture transport event, especially the extreme ones, is unclear on synoptic to intraseasonal time scales and this is the focus of the current study. Springtime extreme moisture transport into the Arctic from a daily data set is found to be dominant over Atlantic longitudes. Lag composite analysis shows that these extreme events are accompanied by a substantial sea ice concentration reduction over the Greenland-Barents-Kara Seas that lasts around a week. Surface air temperature also becomes anomalously high over these seas and cold to the west of Greenland as well as over the interior Eurasian continent. The blocking weather regime over the North Atlantic is mainly responsible for the extreme moisture transport, occupying more than 60% of the total extreme days, while the negative North Atlantic Oscillation regime is hardly observed at all during the extreme transport days. These extreme moisture transport events appear to be preceded by eastward propagating large-scale tropical convective forcing by as long as 2 weeks but with great uncertainty due to lack of statistical significance.
Statistical downscaling modeling with quantile regression using lasso to estimate extreme rainfall
NASA Astrophysics Data System (ADS)
Santri, Dewi; Wigena, Aji Hamim; Djuraidah, Anik
2016-02-01
Rainfall is one of the climatic elements with high diversity and has many negative impacts especially extreme rainfall. Therefore, there are several methods that required to minimize the damage that may occur. So far, Global circulation models (GCM) are the best method to forecast global climate changes include extreme rainfall. Statistical downscaling (SD) is a technique to develop the relationship between GCM output as a global-scale independent variables and rainfall as a local- scale response variable. Using GCM method will have many difficulties when assessed against observations because GCM has high dimension and multicollinearity between the variables. The common method that used to handle this problem is principal components analysis (PCA) and partial least squares regression. The new method that can be used is lasso. Lasso has advantages in simultaneuosly controlling the variance of the fitted coefficients and performing automatic variable selection. Quantile regression is a method that can be used to detect extreme rainfall in dry and wet extreme. Objective of this study is modeling SD using quantile regression with lasso to predict extreme rainfall in Indramayu. The results showed that the estimation of extreme rainfall (extreme wet in January, February and December) in Indramayu could be predicted properly by the model at quantile 90th.
Hung, Man; Nickisch, Florian; Beals, Timothy C; Greene, Tom; Clegg, Daniel O; Saltzman, Charles L
2012-08-01
Accurately measuring, reporting and comparing outcomes is essential for improving health care delivery. Current challenges with available health status scales include patient fatigue, floor/ceiling effects and validity/reliability. This study compared Patient Reported Outcomes Measurement Information System (PROMIS)-based Lower Extremity Physical Function Computerized Adaptive Test (LE CAT) and two legacy scales -the Foot and Function Index (FFI) and the sport module from the Foot and Ankle Ability Measure (spFAAM) -for 287 patients scheduled for elective foot and ankle surgery. We documented the time required by patients to complete the instrument, instrument precision, and the extent to which each instrument covered the full range of physical functioning across the patient sample. Average time of test administration: 66 seconds for LE CAT, 130 seconds for spFAAM and 239 seconds for FFI. All three instruments were fairly precise at intermediate physical functioning levels (i.e., Standard Error of Measurement < 0.35), were relatively less precise at the higher trait levels and the LE CAT maintained precision in the lower range while the spFAAM and FFI's had decreased precision. The LE CAT had less floor/ceiling effects than the FFI and the spFAAM. The LE CAT showed considerable advantage compared to legacy scales for measuring patient-reported outcomes in orthopaedic patients with foot and ankle problems. A paradigm shift to broader use of PROMIS-based CATs should be considered to improve precision and reduce patient burden with patient-reported outcome measuremen foot and ankle patients.
Extreme Precipitation and High-Impact Landslides
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Huffman, George; Peters-Lidard, Christa
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides; however, there remain large uncertainties in characterizing the distribution of these hazards and meteorological triggers at the global scale. Researchers have evaluated the spatiotemporal distribution of extreme rainfall and landslides at local and regional scale primarily using in situ data, yet few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This research uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from Tropical Rainfall Measuring Mission (TRMM) data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurence of precipitation and rainfall-triggered landslides globally. The GLC, available from 2007 to the present, contains information on reported rainfall-triggered landslide events around the world using online media reports, disaster databases, etc. When evaluating this database, we observed that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This research also considers the sources for this extreme rainfall, citing teleconnections from ENSO as likely contributors to regional precipitation variability. This work demonstrates the potential for using satellite-based precipitation estimates to identify potentially active landslide areas at the global scale in order to improve landslide cataloging and quantify landslide triggering at daily, monthly and yearly time scales.
NASA Astrophysics Data System (ADS)
Tomas, A.; Menendez, M.; Mendez, F. J.; Coco, G.; Losada, I. J.
2012-04-01
In the last decades, freak or rogue waves have become an important topic in engineering and science. Forecasting the occurrence probability of freak waves is a challenge for oceanographers, engineers, physicists and statisticians. There are several mechanisms responsible for the formation of freak waves, and different theoretical formulations (primarily based on numerical models with simplifying assumption) have been proposed to predict the occurrence probability of freak wave in a sea state as a function of N (number of individual waves) and kurtosis (k). On the other hand, different attempts to parameterize k as a function of spectral parameters such as the Benjamin-Feir Index (BFI) and the directional spreading (Mori et al., 2011) have been proposed. The objective of this work is twofold: (1) develop a statistical model to describe the uncertainty of maxima individual wave height, Hmax, considering N and k as covariates; (2) obtain a predictive formulation to estimate k as a function of aggregated sea state spectral parameters. For both purposes, we use free surface measurements (more than 300,000 20-minutes sea states) from the Spanish deep water buoy network (Puertos del Estado, Spanish Ministry of Public Works). Non-stationary extreme value models are nowadays widely used to analyze the time-dependent or directional-dependent behavior of extreme values of geophysical variables such as significant wave height (Izaguirre et al., 2010). In this work, a Generalized Extreme Value (GEV) statistical model for the dimensionless maximum wave height (x=Hmax/Hs) in every sea state is used to assess the probability of freak waves. We allow the location, scale and shape parameters of the GEV distribution to vary as a function of k and N. The kurtosis-dependency is parameterized using third-order polynomials and the model is fitted using standard log-likelihood theory, obtaining a very good behavior to predict the occurrence probability of freak waves (x>2). Regarding the second objective of this work, we apply different algorithms using three spectral parameters (wave steepness, directional dispersion, frequential dispersion) as predictors, to estimate the probability density function of the kurtosis for a given sea state. ACKNOWLEDGMENTS The authors thank to Puertos del Estado (Spanish Ministry of Public Works) for providing the free surface measurement database.
Microsurgery within reconstructive surgery of extremities.
Pheradze, I; Pheradze, T; Tsilosani, G; Goginashvili, Z; Mosiava, T
2006-05-01
Reconstructive surgery of extremities is an object of a special attention of surgeons. Vessel and nerve damages, deficiency of soft tissue, bone, associated with infection results in a complete loss of extremity function, it also raises a question of amputation. The goal of the study was to improve the role of microsurgery in reconstructive surgery of limbs. We operated on 294 patients with various diseases and damages of extremities: pathology of nerves, vessels, tissue loss. An original method of treatment of large simultaneous functional defects of limbs has been used. Good functional and aesthetic results were obtained. Results of reconstructive operations on extremities might be improved by using of microsurgery methods. Microsurgery is deemed as a method of choice for extremities' reconstructive surgery as far as outcomes achieved through application of microsurgical technique significantly surpass the outcomes obtained through the use of routine surgical methods.
Lin, Chueh-Ho; Chou, Li-Wei; Luo, Hong-Ji; Tsai, Po-Yi; Lieu, Fu-Kong; Chiang, Shang-Lin; Sung, Wen-Hsu
2015-01-01
Objective We investigated the training effects of interlimb force coupling training on paretic upper extremity outcomes in patients with chronic stroke and analyzed the relationship between motor recovery of the paretic hand, arm and functional performances on paretic upper limb. Design A randomized controlled trial with outcome assessment at baseline and after 4 weeks of intervention. Setting Taipei Veterans General Hospital, National Yang-Ming University. Participants Thirty-three subjects with chronic stroke were recruited and randomly assigned to training (n = 16) and control groups (n = 17). Interventions The computer-aided interlimb force coupling training task with visual feedback included different grip force generation methods on both hands. Main Outcome Measures The Barthel Index (BI), the upper extremity motor control Fugl-Meyer Assessment (FMA-UE), the Motor Assessment Score (MAS), and the Wolf Motor Function Test (WMFT). All assessments were executed by a blinded evaluator, and data management and statistical analysis were also conducted by a blinded researcher. Results The training group demonstrated greater improvement on the FMA-UE (p<.001), WMFT (p<.001), MAS (p = .004) and BI (p = .037) than the control group after 4 weeks of intervention. In addition, a moderate correlation was found between the improvement of scores for hand scales of the FMA and other portions of the FMA UE (r = .528, p = .018) or MAS (r = .596, p = .015) in the training group. Conclusion Computer-aided interlimb force coupling training improves the motor recovery of a paretic hand, and facilitates motor control and enhances functional performance in the paretic upper extremity of people with chronic stroke. Trial Registration ClinicalTrials.gov NCT02247674. PMID:26193492
Liegl, Gregor; Rose, Matthias; Correia, Helena; Fischer, H Felix; Kanlidere, Sibel; Mierke, Annett; Obbarius, Alexander; Nolte, Sandra
2018-01-01
To translate the PROMIS Physical Function (PF) item bank version 1.2 into German and to investigate psychometric properties of resulting full bank and seven derived short forms. Cross-sectional psychometric study. Inpatient and outpatient clinics of the Department of Psychosomatic Medicine at Charité-Universitätsmedizin Berlin, Germany. A total of 10 adult patients with various chronic diseases participated in cognitive debriefing interviews. The final item bank was administered to n = 266 adult patients with a broad range of medical conditions. Patient-reported outcome assessment as part of routine care. PROMIS v1.2 PF bank; MOS SF-36 PF scale (PF-10). Cross-cultural adaptation of the item bank followed established guidelines. For the final German translation, the corrected item-total correlations ranged from 0.44 to 0.84. Cronbach's alpha was high for each PROMIS PF short form ( α = 0.88-0.96). The full PROMIS PF bank and most short forms correlated highly with the SF-36 PF-10 ( r = 0.85-0.90), with the exception of PROMIS Upper Extremity ( r = 0.64). PROMIS Upper Extremity showed ceiling effects and lower agreement with the full bank than other short forms. Unidimensionality was supported for all PROMIS PF measures using traditional factor analysis and nonparametric item response theory. The German PROMIS PF bank was found to be conceptually equivalent to the English version and fulfilled the psychometric requirements for use of short forms in clinical practice. Future studies should pay particular attention to samples with upper extremity functional limitations to further investigate the dimensional structure of PF as conceptualized according to PROMIS.
Multiscale image contrast amplification (MUSICA)
NASA Astrophysics Data System (ADS)
Vuylsteke, Pieter; Schoeters, Emile P.
1994-05-01
This article presents a novel approach to the problem of detail contrast enhancement, based on multiresolution representation of the original image. The image is decomposed into a weighted sum of smooth, localized, 2D basis functions at multiple scales. Each transform coefficient represents the amount of local detail at some specific scale and at a specific position in the image. Detail contrast is enhanced by non-linear amplification of the transform coefficients. An inverse transform is then applied to the modified coefficients. This yields a uniformly contrast- enhanced image without artefacts. The MUSICA-algorithm is being applied routinely to computed radiography images of chest, skull, spine, shoulder, pelvis, extremities, and abdomen examinations, with excellent acceptance. It is useful for a wide range of applications in the medical, graphical, and industrial area.
Greenville, Aaron C; Wardle, Glenda M; Dickman, Chris R
2012-01-01
Extreme climatic events, such as flooding rains, extended decadal droughts and heat waves have been identified increasingly as important regulators of natural populations. Climate models predict that global warming will drive changes in rainfall and increase the frequency and severity of extreme events. Consequently, to anticipate how organisms will respond we need to document how changes in extremes of temperature and rainfall compare to trends in the mean values of these variables and over what spatial scales the patterns are consistent. Using the longest historical weather records available for central Australia – 100 years – and quantile regression methods, we investigate if extreme climate events have changed at similar rates to median events, if annual rainfall has increased in variability, and if the frequency of large rainfall events has increased over this period. Specifically, we compared local (individual weather stations) and regional (Simpson Desert) spatial scales, and quantified trends in median (50th quantile) and extreme weather values (5th, 10th, 90th, and 95th quantiles). We found that median and extreme annual minimum and maximum temperatures have increased at both spatial scales over the past century. Rainfall changes have been inconsistent across the Simpson Desert; individual weather stations showed increases in annual rainfall, increased frequency of large rainfall events or more prolonged droughts, depending on the location. In contrast to our prediction, we found no evidence that intra-annual rainfall had become more variable over time. Using long-term live-trapping records (22 years) of desert small mammals as a case study, we demonstrate that irruptive events are driven by extreme rainfalls (>95th quantile) and that increases in the magnitude and frequency of extreme rainfall events are likely to drive changes in the populations of these species through direct and indirect changes in predation pressure and wildfires. PMID:23170202
Exact simulation of max-stable processes.
Dombry, Clément; Engelke, Sebastian; Oesting, Marco
2016-06-01
Max-stable processes play an important role as models for spatial extreme events. Their complex structure as the pointwise maximum over an infinite number of random functions makes their simulation difficult. Algorithms based on finite approximations are often inexact and computationally inefficient. We present a new algorithm for exact simulation of a max-stable process at a finite number of locations. It relies on the idea of simulating only the extremal functions, that is, those functions in the construction of a max-stable process that effectively contribute to the pointwise maximum. We further generalize the algorithm by Dieker & Mikosch (2015) for Brown-Resnick processes and use it for exact simulation via the spectral measure. We study the complexity of both algorithms, prove that our new approach via extremal functions is always more efficient, and provide closed-form expressions for their implementation that cover most popular models for max-stable processes and multivariate extreme value distributions. For simulation on dense grids, an adaptive design of the extremal function algorithm is proposed.
Alon, Gad; Levitt, Alan F; McCarthy, Patricia A
2007-01-01
To test if functional electrical stimulation (FES) can enhance the recovery of upper extremity function during early stroke rehabilitation. Open-label block-randomized trial, begun during inpatient rehabilitation and continued at the patients' home. Patients were assigned to either FES combined with task-specific upper extremity rehabilitation (n = 7) or a control group that received task-specific therapy alone (n = 8) over 12 weeks. Outcome measures . Hand function (Box & Blocks, B & B; Jebsen-Taylor light object lift, J-T) and motor control (modified Fugl-Meyer, mF-M) were video-recorded for both upper extremities at baseline, 4, 8, and 12 weeks. B&B mean score at 12 weeks favored (P = .049) the FES group (42.3 +/- 16.6 blocks) over the control group (26.3 +/- 11.0 blocks). The FES group J-T task was 6.7 +/- 2.9 seconds and faster (P = .049) than the 11.8 +/- 5.4 seconds of the control group. Mean mF-M score of the FES group at 12 weeks was 49.3 +/- 5.1 points out of 54, compared to the control group that scored 40.6 +/- 8.2 points (P = .042). All patients regained hand function. Upper extremity task-oriented training that begins soon after stroke that incorporates FES may improve upper extremity functional use in patients with mild/moderate paresis more than task-oriented training without FES.
Soares, Wuber J. S.; Lima, Camila A.; Bilton, Tereza L.; Ferrioli, Eduardo; Dias, Rosângela C.; Perracini, Monica R.
2015-01-01
Objective: To investigate the relationship between self-perceived fatigue with different physical functioning tests and functional performance scales used for evaluating mobility-related disability among community-dwelling older persons. Method: This is a cross-sectional, population-based study. The sample was composed of older persons with 65 years of age or more living in Cuiabá, MT, and Barueri, SP, Brazil. The data for this study is from the FIBRA Network Study. The presence of self-perceived fatigue was assessed using self-reports based on the Center for Epidemiologic Studies-Depression Scale. The Lawton instrumental activities of daily living scale (IADL) and the advanced activities of daily living scale (AADL) were used to assess performance and participation restriction. The following physical functioning tests were used: five-step test (FST), the Short Physical Performance Battery (SPPB), and usual gait speed (UGS). Three models of logistic regression analysis were conducted, and a significance level of α<0.05 was adopted. Results: The sample was composed of 776 older adults with a mean age (SD) of 71.9 (5.9) years, of whom the majority were women (74%). The prevalence of self-perceived fatigue within the participants was 20%. After adjusting for covariates, SPPB, UGS, IADL, and AADL remained associated with self-perceived fatigue in the final multivariate regression model. Conclusion: Our results suggest that there is an association between self-perceived fatigue and lower extremity function, usual gait speed and activity limitation and participation restriction in older adults. Further cohort studies are needed to investigate which physical performance measure may be able to predict the negative impact of fatigue in older adults. PMID:26039035
Öksüz, Çigdem; Alemdaroglu, Ipek; Kilinç, Muhammed; Abaoğlu, Hatice; Demirci, Cevher; Karahan, Sevilay; Yilmaz, Oznur; Yildirim, Sibel Aksu
2017-10-01
This study was performed to examine the reliability and validity of the Turkish version of ABILHAND-Kids questionnaire which assesses manual functions of children with neuromuscular diseases (NMDs). A cross sectional survey study design and Rasch analysis were used to assess the reliability and validity of the Turkish version of scale. Ninety-three children with different neuromuscular disorders and their parents were included in the study. The scale was applied to the parents with face-to-face interview twice; on their first visit and after an interval of 15 days. The test-retest reliability was assessed with intraclass correlation coefficient (ICC), and internal consistency of the multi-item subscales by calculating Cronbach alpha values. Brooke Upper Extremity Functional Classification (BUEFC) and Wee-Functional Independency Measurement (Wee-FIM) were correlated to determine the construct validity. The ICC value for the test/retest reliability was 0.94. The internal consistency was 0.81. Floor (1.1%) and ceiling (11.8%) effects were not significant. There were moderate correlations between the Turkish version of ABILHAND-Kids and Wee-FIM (0.67) and BUEFC (-0.37). Rasch analysis indicated good item fit, unidimensionality, and model fit. The Turkish version of ABILHAND-Kids questionnaire was found to be a reliable and valid scale for the assessment of the manual ability of children with NMDs.
Changing Amazon biomass and the role of atmospheric CO2 concentration, climate, and land use
NASA Astrophysics Data System (ADS)
Almeida Castanho, Andrea D.; Galbraith, David; Zhang, Ke; Coe, Michael T.; Costa, Marcos H.; Moorcroft, Paul
2016-01-01
The Amazon tropical evergreen forest is an important component of the global carbon budget. Its forest floristic composition, structure, and function are sensitive to changes in climate, atmospheric composition, and land use. In this study biomass and productivity simulated by three dynamic global vegetation models (Integrated Biosphere Simulator, Ecosystem Demography Biosphere Model, and Joint UK Land Environment Simulator) for the period 1970-2008 are compared with observations from forest plots (Rede Amazónica de Inventarios Forestales). The spatial variability in biomass and productivity simulated by the DGVMs is low in comparison to the field observations in part because of poor representation of the heterogeneity of vegetation traits within the models. We find that over the last four decades the CO2 fertilization effect dominates a long-term increase in simulated biomass in undisturbed Amazonian forests, while land use change in the south and southeastern Amazonia dominates a reduction in Amazon aboveground biomass, of similar magnitude to the CO2 biomass gain. Climate extremes exert a strong effect on the observed biomass on short time scales, but the models are incapable of reproducing the observed impacts of extreme drought on forest biomass. We find that future improvements in the accuracy of DGVM predictions will require improved representation of four key elements: (1) spatially variable plant traits, (2) soil and nutrients mediated processes, (3) extreme event mortality, and (4) sensitivity to climatic variability. Finally, continued long-term observations and ecosystem-scale experiments (e.g. Free-Air CO2 Enrichment experiments) are essential for a better understanding of the changing dynamics of tropical forests.
Complexity-aware simple modeling.
Gómez-Schiavon, Mariana; El-Samad, Hana
2018-02-26
Mathematical models continue to be essential for deepening our understanding of biology. On one extreme, simple or small-scale models help delineate general biological principles. However, the parsimony of detail in these models as well as their assumption of modularity and insulation make them inaccurate for describing quantitative features. On the other extreme, large-scale and detailed models can quantitatively recapitulate a phenotype of interest, but have to rely on many unknown parameters, making them often difficult to parse mechanistically and to use for extracting general principles. We discuss some examples of a new approach-complexity-aware simple modeling-that can bridge the gap between the small-scale and large-scale approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Williams, C.; Kniveton, D.; Layberry, R.
2009-04-01
It is increasingly accepted that that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The subcontinent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite derived rainfall data from the Microwave Infra-Red Algorithm (MIRA). This dataset covers the period from 1993-2002 and the whole of southern Africa at a spatial resolution of 0.1 degree longitude/latitude. The ability of a climate model to simulate current climate provides some indication of how much confidence can be applied to its future predictions. In this paper, simulations of current climate from the UK Meteorological Office Hadley Centre's climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. This concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of rainfall variability over southern Africa. Secondly, the ability of the model to reproduce daily rainfall extremes will be assessed, again by a comparison with extremes from the MIRA dataset.
NASA Astrophysics Data System (ADS)
Torrungrueng, Danai; Johnson, Joel T.; Chou, Hsi-Tseng
2002-03-01
The novel spectral acceleration (NSA) algorithm has been shown to produce an $[\\mathcal{O}]$(Ntot) efficient iterative method of moments for the computation of radiation/scattering from both one-dimensional (1-D) and two-dimensional large-scale quasi-planar structures, where Ntot is the total number of unknowns to be solved. This method accelerates the matrix-vector multiplication in an iterative method of moments solution and divides contributions between points into ``strong'' (exact matrix elements) and ``weak'' (NSA algorithm) regions. The NSA method is based on a spectral representation of the electromagnetic Green's function and appropriate contour deformation, resulting in a fast multipole-like formulation in which contributions from large numbers of points to a single point are evaluated simultaneously. In the standard NSA algorithm the NSA parameters are derived on the basis of the assumption that the outermost possible saddle point, φs,max, along the real axis in the complex angular domain is small. For given height variations of quasi-planar structures, this assumption can be satisfied by adjusting the size of the strong region Ls. However, for quasi-planar structures with large height variations, the adjusted size of the strong region is typically large, resulting in significant increases in computational time for the computation of the strong-region contribution and degrading overall efficiency of the NSA algorithm. In addition, for the case of extremely large scale structures, studies based on the physical optics approximation and a flat surface assumption show that the given NSA parameters in the standard NSA algorithm may yield inaccurate results. In this paper, analytical formulas associated with the NSA parameters for an arbitrary value of φs,max are presented, resulting in more flexibility in selecting Ls to compromise between the computation of the contributions of the strong and weak regions. In addition, a ``multilevel'' algorithm, decomposing 1-D extremely large scale quasi-planar structures into more than one weak region and appropriately choosing the NSA parameters for each weak region, is incorporated into the original NSA method to improve its accuracy.
NASA Astrophysics Data System (ADS)
Xie, Zunyi; Huete, Alfredo; Ma, Xuanlong; Restrepo-Coupe, Natalia; Devadas, Rakhesh; Clarke, Kenneth; Lewis, Megan
2016-12-01
Arid wetlands are important for biodiversity conservation, but sensitive and vulnerable to climate variability and hydroclimatic events. Amplification of the water cycle, including the increasing frequency and severity of droughts and wet extremes, is expected to alter spatial and temporal hydrological patterns in arid wetlands globally, with potential threats to ecosystem services and their functioning. Despite these pressing challenges, the ecohydrological interactions and resilience of arid wetlands to highly variable water regimes over long time periods remain largely unknown. Recent broad-scale drought and floods over Australia provide unique opportunities to improve our understanding of arid wetland ecosystem responses to hydroclimatic extremes. Here we analysed the ecohydrological dynamics of the Coongie Lakes arid wetland in central Australia, one of the world's largest Ramsar-designated wetlands, using more than two decades (1988-2011) of vegetation and floodwater extent retrievals derived from Landsat satellite observations. To explore the impacts of large-scale hydrological fluctuations on the arid wetland, we further coupled Landsat measurements with Total Water Storage Anomaly (TWSA) data obtained from the Gravity Recovery and Climate Experiment (GRACE) satellites. Pronounced seasonal and inter-annual variabilities of flood and vegetation activities were observed over the wetland, with variations in vegetation growth extent highly correlated with flood extent (r = 0.64, p < 0.05) that ranged from nearly zero to 3456 km2. We reported the hydrological dynamics and associated ecosystem responses to be largely driven by the two phases (El Niño and La Niña) of the El Nino-Southern Oscillation (ENSO) ocean-atmosphere system. Changes in flood and vegetation extent were better explained by GRACE-TWSA (r = 0.8, lag = 0 month) than rainfall (r = 0.34, lag = 3 months) over the water source area, demonstrating that TWS is a valuable hydrological indicator for complex dryland river systems. The protracted Millennium Drought from 2001 to 2009 resulted in long-term absence of major flood events, which substantially suppressed wetland vegetation growth. However, the 2010-11 La Niña induced flooding events led to an exceptionally large resurgence of vegetation, with a mean vegetation growth extent anomaly exceeding the historical average (1988-2011) by more than 1.5 standard deviations, suggesting a significant resilience of arid wetland ecosystems to climate variability. This study showed the ecological functioning of arid wetlands is particularly sensitive to large-scale hydrological fluctuations and extreme drought conditions, and vulnerable to future altered water regimes due to climate change. The methods developed herein can be applied to arid wetlands located in other dryland river systems across the globe.
NASA Astrophysics Data System (ADS)
Barros, A. P.
2008-12-01
--"The last major climatic oscillation peak was about 1856, or 74 years ago. Practically all of our important railroad and public highway work has been done since that time. Most of our parks systems driveways, and roads of all type for auto travel, in the various States, have been completed within the past 30 years, namely, beginning at the very lowest point of our climatic swing (1900-1910). There is every reason to believe, therefore, as the next 20 years comes on apace, we will witness considerable damage to work done during the past regime of weather."-- Schuman, 1931 At the beginning of the 21st century, as at the beginning of the 20th century, the fundamental question is whether the nation is more prepared for natural disasters today than it was eight decades ago. Indeed, the question is whether the best science, engineering and policy tools are in place to prepare for and respond to extreme events. Changes in the risk and magnitude of extreme precipitation events rank among the most studied impacts, and indicators (symptoms) of climatic variations. Extreme precipitation translates generally into extreme flooding, landslides, collapse of lifeline infrastructure, and the breakdown of public health services among others. In approaching the problem of quantifying the risk and magnitude of extreme precipitation events, there are two major challenges: 1) it is difficult to characterize "observed" (20th century) conditions due to the lack of long-term observations - i.e., short and incomplete historical records; and 2) it is difficult to characterize "predicted" (21st century) conditions due to the lack of skill of precipitation forecasts at spatial and temporal scales meaningful for impact studies, and the short-duration of climate model simulations themselves. The first challenge translates in estimating the probability of occurrence (rare) and magnitude (very large) of events that may have not happened yet. The second challenge is that of quantifying uncertainty and separating climatic variability and change from model error. Nonstationarity and persistence at multiple scales confound the problem. From an economics perspective, the unprecedented success of environmental control and "conservation" in the 20th century, present another yet challenge in terms of social expectations and human development, including the right to sustainable (high) quality of life. In this presentation, we illustrate these challenges by considering first the estimation of Probable Maximum Precipitation, an engineering design criterion typically used in dam design, and examine how it varies spatially across the continental US according to physiographic region and as a function of climate regime. Second, we explore the spatial and temporal scales that link climate variability to macroscale environmental planning, and the notion of place-based adaptive riskgrade analysis.
NASA Astrophysics Data System (ADS)
Dong, Y.; Li, X.; Choi, F.; Willams, G.; Somero, G. N.; Helmuth, B.
2016-12-01
Changing patterns of species' biogeographic distributions are driven by cumulative effects of much smaller scale processes. Specifically, vulnerability of animals to thermal stress is the result of physiological sensitivities to body temperature (Tb), local microclimatic conditions, and abilities to anticipate extreme conditions and move to cooler refugia. These variables have rarely been quantified simultaneously over large geographic scales. We analyzed the thermal tolerances of three species of rocky intertidal snails from eight sites spanning 11.5 degrees of latitude along the Chinese coast. Using a biophysical model, we estimated potential Tb in sun-exposed and shaded microhabitats for all species at these sites for 30 years. We then compared maximum predicted Tb against the temperatures at which cardiac function was impaired (Arrhenius Break Temperatures, ABT) and lethal limits were reached (cardiac Flat Line Temperatures, FLT) to calculate thermal Safety Margins (TSM) for normal physiological function (TSMABT) and heat death (TSMFLT). Regular exceedance of FLT in sun-exposed microhabitats was predicted for only one site in the middle of the geographic gradient. However, ABT was exceeded at sun-exposed microhabitats in most sites, suggesting significant physiological impairment for snails that fail to move into the shade. An autocorrelation analysis of snail Tb showed that predictability of extreme temperatures was lowest at the hottest sites, an indication that reliance on behavioral thermoregulation may be a risky strategy. Observed large differences in ABT and FLT among conspecifics emphasize the critical role of physiological polymorphisms in governing the vulnerability of populations to heat stress.
Fitzgerald, G. Kelley; White, Daniel K.; Piva, Sara R.
2012-01-01
Objective Understanding how changes in physical and psychological factors following therapeutic exercise are associated with treatment outcome could have important implications for refining rehabilitation programs for knee osteoarthritis (KOA). The objective of the study was to examine the association of changes in these factors with changes in pain and function after an exercise program for people with (KOA). Methods 152 people with KOA completed an exercise program consisting of lower extremity strengthening, stretching, range of motion, balance and agility, and aerobic exercises. Change from baseline to the 2-month follow-up was calculated for physical and psychological factors including self-reported knee instability, quadriceps strength, knee range of motion, lower extremity muscle flexibility, fear of physical activity, anxiety, and depressive symptoms. Treatment response was defined as a minimum of a 20% improvement from baseline in BOTH the Numerical Pain Rating Scale (NKPR) and the WOMAC physical function scale. The association of each factor with treatment response was examined with logistic regression mutually adjusted for age, sex, BMI, radiographic severity and exercise group. Results Change in self-reported knee instability (odds ratio (95%CI) = 1.67 (1.13, 2.47) and fear of physical activity (odds ratio (95%CI) = 0.93 (0.88, 1.00) were the only two factors that were significantly associated with treatment response after adjustment for covariates. Conclusion Improvement in knee instability and fear of physical activity were associated with an increased odds of a positive treatment response following therapeutic exercise in subjects with KOA. PMID:22674892
Animal taxa contrast in their scale-dependent responses to land use change in rural Africa.
Foord, Stefan Hendrik; Swanepoel, Lourens Hendrik; Evans, Steven William; Schoeman, Colin Stefan; Erasmus, Barend Frederik N; Schoeman, M Corrie; Keith, Mark; Smith, Alain; Mauda, Evans Vusani; Maree, Naudene; Nembudani, Nkhumeleni; Dippenaar-Schoeman, Anna Sophia; Munyai, Thinandavha Caswell; Taylor, Peter John
2018-01-01
Human-dominated landscapes comprise the bulk of the world's terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that maintain diversity in these landscapes. Here we identify scales at which animal diversity responds by partitioning regional diversity in a rural African agro-ecosystem between one temporal and four spatial scales. Human land use practices are the main driver of diversity in all seven animal assemblages considered, with medium sized mammals and birds most affected. Even the least affected taxa, bats and non-volant small mammals (rodents), responded with increased abundance in settlements and agricultural sites respectively. Regional turnover was important to invertebrate taxa and their response to human land use was intermediate between that of the vertebrate extremes. Local scale (< 300 m) heterogeneity was the next most important level for all taxa, highlighting the importance of fine scale processes for the maintenance of biodiversity. Identifying the triggers of these changes within the context of functional landscapes would provide the context for the long-term sustainability of these rapidly changing landscapes.
Animal taxa contrast in their scale-dependent responses to land use change in rural Africa
Swanepoel, Lourens Hendrik; Evans, Steven William; Schoeman, Colin Stefan; Erasmus, Barend Frederik N.; Schoeman, M. Corrie; Keith, Mark; Smith, Alain; Mauda, Evans Vusani; Maree, Naudene; Nembudani, Nkhumeleni; Dippenaar-Schoeman, Anna Sophia; Munyai, Thinandavha Caswell; Taylor, Peter John
2018-01-01
Human-dominated landscapes comprise the bulk of the world’s terrestrial surface and Africa is predicted to experience the largest relative increase over the next century. A multi-scale approach is required to identify processes that maintain diversity in these landscapes. Here we identify scales at which animal diversity responds by partitioning regional diversity in a rural African agro-ecosystem between one temporal and four spatial scales. Human land use practices are the main driver of diversity in all seven animal assemblages considered, with medium sized mammals and birds most affected. Even the least affected taxa, bats and non-volant small mammals (rodents), responded with increased abundance in settlements and agricultural sites respectively. Regional turnover was important to invertebrate taxa and their response to human land use was intermediate between that of the vertebrate extremes. Local scale (< 300 m) heterogeneity was the next most important level for all taxa, highlighting the importance of fine scale processes for the maintenance of biodiversity. Identifying the triggers of these changes within the context of functional landscapes would provide the context for the long-term sustainability of these rapidly changing landscapes. PMID:29738559
Rasch Analysis of the Power as Knowing Participation in Change Tool--the Brazilian version.
Guedes, Erika de Souza; Orozco-Vargas, Luiz Carlos; Turrini, Ruth Natália Teresa; de Sousa, Regina Márcia Cardoso; dos Santos, Mariana Alvina; da Cruz, Diná de Almeida Lopes Monteiro
2013-01-01
the objective of this study was to evaluate the items contained in the Brazilian version of the Power as Knowing Participation in Change Tool (PKPCT). investigation of the psychometric properties of the mentioned questionnaire through Rasch analysis. the data from 952 nursing assistants and 627 baccalaureate nurses were analyzed (average age 44.1 (SD=9.5); 13.0% men). The subscales Choices, Awareness, Freedom and Involvement were tested separately and presented unidimensionality; the categories of the responses given to the items were compiled from 7 to 3 levels and the items fit the model well, except for the following/leading item, in which the infit and outfit values were above 1.4; this item has also presented Differential Item Functioning (DIF) according to the participant's role. The reliability of the items was of 0.99 and the reliability of the participants ranged from 0.80 to 0.84 in the subscales. Items with extremely high levels of difficulty were not identified. the PKPCT should not be viewed as unidimensional, items with extremely high levels of difficulty in the scale need to be created and the differential functioning of some items has to be further investigated.
McCombe Waller, Sandy; Whitall, Jill; Jenkins, Toye; Magder, Laurence S; Hanley, Daniel F; Goldberg, Andrew; Luft, Andreas R
2014-12-14
Recovering useful hand function after stroke is a major scientific challenge for patients with limited motor recovery. We hypothesized that sequential training beginning with proximal bilateral followed by unilateral task oriented training is superior to time-matched unilateral training alone. Proximal bilateral training could optimally prepare the motor system to respond to the more challenging task-oriented training. Twenty-six participants with moderate severity hemiparesis Intervention: PARTICIPANTS received either 6-weeks of bilateral proximal training followed sequentially by 6-weeks unilateral task-oriented training (COMBO) or 12-weeks of unilateral task-oriented training alone (SAEBO). A subset of 8 COMB0 and 9 SAEBO participants underwent three functional magnetic resonance imaging (fMRI) scans of hand and elbow movement every 6 weeks. Fugl-Meyer Upper extremity scale, Modified Wolf Motor Function Test, University of Maryland Arm Questionnaire for Stroke, Motor cortex activation (fMRI). The COMBO group demonstrated significantly greater gains between baseline and 12-weeks over all outcome measures (p = .018 based on a MANOVA test) and specifically in the Modified Wolf Motor Function test (time). Both groups demonstrated within-group gains on the Fugl-Meyer Upper Extremity test (impairment) and University of Maryland Arm Questionnaire for Stroke (functional use). fMRI subset analyses showed motor cortex (primary and premotor) activation during hand movement was significantly increased by sequential combination training but not by task-oriented training alone. Sequentially combining a proximal bilateral before a unilateral task-oriented training may be an effective way to facilitate gains in arm and hand function in those with moderate to severe paresis post-stroke compared to unilateral task oriented training alone.
Forest-fire model as a supercritical dynamic model in financial systems
NASA Astrophysics Data System (ADS)
Lee, Deokjae; Kim, Jae-Young; Lee, Jeho; Kahng, B.
2015-02-01
Recently large-scale cascading failures in complex systems have garnered substantial attention. Such extreme events have been treated as an integral part of self-organized criticality (SOC). Recent empirical work has suggested that some extreme events systematically deviate from the SOC paradigm, requiring a different theoretical framework. We shed additional theoretical light on this possibility by studying financial crisis. We build our model of financial crisis on the well-known forest fire model in scale-free networks. Our analysis shows a nontrivial scaling feature indicating supercritical behavior, which is independent of system size. Extreme events in the supercritical state result from bursting of a fat bubble, seeds of which are sown by a protracted period of a benign financial environment with few shocks. Our findings suggest that policymakers can control the magnitude of financial meltdowns by keeping the economy operating within reasonable duration of a benign environment.
Temporal and spatial scaling impacts on extreme precipitation
NASA Astrophysics Data System (ADS)
Eggert, B.; Berg, P.; Haerter, J. O.; Jacob, D.; Moseley, C.
2015-01-01
Both in the current climate and in the light of climate change, understanding of the causes and risk of precipitation extremes is essential for protection of human life and adequate design of infrastructure. Precipitation extreme events depend qualitatively on the temporal and spatial scales at which they are measured, in part due to the distinct types of rain formation processes that dominate extremes at different scales. To capture these differences, we first filter large datasets of high-resolution radar measurements over Germany (5 min temporally and 1 km spatially) using synoptic cloud observations, to distinguish convective and stratiform rain events. In a second step, for each precipitation type, the observed data are aggregated over a sequence of time intervals and spatial areas. The resulting matrix allows a detailed investigation of the resolutions at which convective or stratiform events are expected to contribute most to the extremes. We analyze where the statistics of the two types differ and discuss at which resolutions transitions occur between dominance of either of the two precipitation types. We characterize the scales at which the convective or stratiform events will dominate the statistics. For both types, we further develop a mapping between pairs of spatially and temporally aggregated statistics. The resulting curve is relevant when deciding on data resolutions where statistical information in space and time is balanced. Our study may hence also serve as a practical guide for modelers, and for planning the space-time layout of measurement campaigns. We also describe a mapping between different pairs of resolutions, possibly relevant when working with mismatched model and observational resolutions, such as in statistical bias correction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kelly, Brandon C.; Becker, Andrew C.; Sobolewska, Malgosia
2014-06-10
We present the use of continuous-time autoregressive moving average (CARMA) models as a method for estimating the variability features of a light curve, and in particular its power spectral density (PSD). CARMA models fully account for irregular sampling and measurement errors, making them valuable for quantifying variability, forecasting and interpolating light curves, and variability-based classification. We show that the PSD of a CARMA model can be expressed as a sum of Lorentzian functions, which makes them extremely flexible and able to model a broad range of PSDs. We present the likelihood function for light curves sampled from CARMA processes, placingmore » them on a statistically rigorous foundation, and we present a Bayesian method to infer the probability distribution of the PSD given the measured light curve. Because calculation of the likelihood function scales linearly with the number of data points, CARMA modeling scales to current and future massive time-domain data sets. We conclude by applying our CARMA modeling approach to light curves for an X-ray binary, two active galactic nuclei, a long-period variable star, and an RR Lyrae star in order to illustrate their use, applicability, and interpretation.« less
NASA Astrophysics Data System (ADS)
Wang, J.
2013-12-01
Extreme weather events have already significantly influenced North America. During 2005-2011, the extreme events have increased by 250 %, from four or fewer events occurring in 2005, while 14 events occurring in 2011 (www.ncdc.noaa.gov/billions/). In addition, extreme rainfall amounts, frequency, and intensity were all expected to increase under greenhouse warming scenarios (Wehner 2005; Kharin et al. 2007; Tebaldi et al. 2006). Global models are powerful tools to investigate the climate and climate change on large scales. However, such models do not represent local terrain and mesoscale weather systems well owing to their coarse horizontal resolution (150-300 km). To capture the fine-scale features of extreme weather events, regional climate models (RCMs) with a more realistic representation of the complex terrain and heterogeneous land surfaces are needed (Mass et al. 2002). This study uses the Nested Regional Climate model (NRCM) to perform regional scale climate simulations on a 12-km × 12-km high resolution scale over North America (including Alaska; with 600 × 515 grid cells at longitude and latitude), known as CORDEX_North America, instead of small regions as studied previously (eg., Dominguez et al. 2012; Gao et al. 2012). The performance and the biases of the NRCM extreme precipitation calculations (2000-2010) have been evaluated with PRISM precipitation (Daly et al. 1997) by Wang and Kotamarthi (2013): the NRCM replicated very well the monthly amount of extreme precipitation with less than 3% overestimation over East CONUS, and the frequency of extremes over West CONUS and upper Mississippi River Basin. The Representative Concentration Pathway (RCP) 8.5 and RCP 4.5 from the new Community Earth System Model version 1.0 (CESM v1.0) are dynamically downscaled to predict the extreme rainfall events at the end-of-century (2085-2095) and to explore the uncertainties of future extreme precipitation induced by different scenarios over distinct regions. We have corrected the CO2 atmospheric concentration in the longwave/shortwave radiation schemes of the NRCM according to the recommended datasets by CMIP5 (Clarke et al. 2007; Riahi et al. 2007). We have also corrected an inconsistency in skin temperature during the downscaling process by modifying the land/sea mask of CLM 4.0 as mentioned by Gao et al. (2012). Acknowledgements: This work was supported under a military interdepartmental purchase request from the SERDP, RC-2242, through U.S. Department of Energy contract DE-AC02-06CH11357.
The trend of the multi-scale temporal variability of precipitation in Colorado River Basin
NASA Astrophysics Data System (ADS)
Jiang, P.; Yu, Z.
2011-12-01
Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.
Ju, Yumi; Yoon, In-Jin
2018-01-01
[Purpose] Modified constraint-induced movement therapy and mirror therapy are recognized as stroke rehabilitation methods. The aim of the present study was to determine whether these therapies influence upper extremity function and whether upper extremity function influences the ability to perform activities of daily living in further. [Subjects and Methods] Twenty-eight stroke patients participated in the study. Interventions were administered five times per week for 3 weeks. Activities of daily living or self-exercise were performed after modified constraint-induced movement therapy or mirror therapy, respectively. Analyses were performed on the results of the Manual Function Test and the Korean version of the Modified Barthel Index to determine the factors influencing activities of daily living. [Results] Both groups showed improvement in upper extremity function, but only the modified constraint-induced movement therapy group showed a correlation between upper extremity function and performance in the hygiene, eating, and dressing. The improved hand manipulation function found in the modified constraint-induced movement therapy had statistically significant influences on eating and dressing. [Conclusion] Our results suggest that a patient's attempts to move the affected side result in improved performance in activities of daily living as well as physical function.
Ju, Yumi; Yoon, In-Jin
2018-01-01
[Purpose] Modified constraint-induced movement therapy and mirror therapy are recognized as stroke rehabilitation methods. The aim of the present study was to determine whether these therapies influence upper extremity function and whether upper extremity function influences the ability to perform activities of daily living in further. [Subjects and Methods] Twenty-eight stroke patients participated in the study. Interventions were administered five times per week for 3 weeks. Activities of daily living or self-exercise were performed after modified constraint-induced movement therapy or mirror therapy, respectively. Analyses were performed on the results of the Manual Function Test and the Korean version of the Modified Barthel Index to determine the factors influencing activities of daily living. [Results] Both groups showed improvement in upper extremity function, but only the modified constraint-induced movement therapy group showed a correlation between upper extremity function and performance in the hygiene, eating, and dressing. The improved hand manipulation function found in the modified constraint-induced movement therapy had statistically significant influences on eating and dressing. [Conclusion] Our results suggest that a patient’s attempts to move the affected side result in improved performance in activities of daily living as well as physical function. PMID:29410571
NASA Astrophysics Data System (ADS)
Medellín, G.; Brinkkemper, J. A.; Torres-Freyermuth, A.; Appendini, C. M.; Mendoza, E. T.; Salles, P.
2016-01-01
We present a downscaling approach for the study of wave-induced extreme water levels at a location on a barrier island in Yucatán (Mexico). Wave information from a 30-year wave hindcast is validated with in situ measurements at 8 m water depth. The maximum dissimilarity algorithm is employed for the selection of 600 representative cases, encompassing different combinations of wave characteristics and tidal level. The selected cases are propagated from 8 m water depth to the shore using the coupling of a third-generation wave model and a phase-resolving non-hydrostatic nonlinear shallow-water equation model. Extreme wave run-up, R2%, is estimated for the simulated cases and can be further employed to reconstruct the 30-year time series using an interpolation algorithm. Downscaling results show run-up saturation during more energetic wave conditions and modulation owing to tides. The latter suggests that the R2% can be parameterized using a hyperbolic-like formulation with dependency on both wave height and tidal level. The new parametric formulation is in agreement with the downscaling results (r2 = 0.78), allowing a fast calculation of wave-induced extreme water levels at this location. Finally, an assessment of beach vulnerability to wave-induced extreme water levels is conducted at the study area by employing the two approaches (reconstruction/parameterization) and a storm impact scale. The 30-year extreme water level hindcast allows the calculation of beach vulnerability as a function of return periods. It is shown that the downscaling-derived parameterization provides reasonable results as compared with the numerical approach. This methodology can be extended to other locations and can be further improved by incorporating the storm surge contributions to the extreme water level.
Physical Exam Risk Factors for Lower Extremity Injury in High School Athletes: A Systematic Review
Onate, James A.; Everhart, Joshua S.; Clifton, Daniel R.; Best, Thomas M.; Borchers, James R.; Chaudhari, Ajit M.W.
2016-01-01
Objective A stated goal of the preparticipation physical evaluation (PPE) is to reduce musculoskeletal injury, yet the musculoskeletal portion of the PPE is reportedly of questionable use in assessing lower extremity injury risk in high school-aged athletes. The objectives of this study are: (1) identify clinical assessment tools demonstrated to effectively determine lower extremity injury risk in a prospective setting, and (2) critically assess the methodological quality of prospective lower extremity risk assessment studies that use these tools. Data Sources A systematic search was performed in PubMed, CINAHL, UptoDate, Google Scholar, Cochrane Reviews, and SportDiscus. Inclusion criteria were prospective injury risk assessment studies involving athletes primarily ages 13 to 19 that used screening methods that did not require highly specialized equipment. Methodological quality was evaluated with a modified physiotherapy evidence database (PEDro) scale. Main Results Nine studies were included. The mean modified PEDro score was 6.0/10 (SD, 1.5). Multidirectional balance (odds ratio [OR], 3.0; CI, 1.5–6.1; P < 0.05) and physical maturation status (P < 0.05) were predictive of overall injury risk, knee hyperextension was predictive of anterior cruciate ligament injury (OR, 5.0; CI, 1.2–18.4; P < 0.05), hip external: internal rotator strength ratio of patellofemoral pain syndrome (P = 0.02), and foot posture index of ankle sprain (r = −0.339, P = 0.008). Conclusions Minimal prospective evidence supports or refutes the use of the functional musculoskeletal exam portion of the current PPE to assess lower extremity injury risk in high school athletes. Limited evidence does support inclusion of multidirectional balance assessment and physical maturation status in a musculoskeletal exam as both are generalizable risk factors for lower extremity injury. PMID:26978166
A Metastatistical Approach to Satellite Estimates of Extreme Rainfall Events
NASA Astrophysics Data System (ADS)
Zorzetto, E.; Marani, M.
2017-12-01
The estimation of the average recurrence interval of intense rainfall events is a central issue for both hydrologic modeling and engineering design. These estimates require the inference of the properties of the right tail of the statistical distribution of precipitation, a task often performed using the Generalized Extreme Value (GEV) distribution, estimated either from a samples of annual maxima (AM) or with a peaks over threshold (POT) approach. However, these approaches require long and homogeneous rainfall records, which often are not available, especially in the case of remote-sensed rainfall datasets. We use here, and tailor it to remotely-sensed rainfall estimates, an alternative approach, based on the metastatistical extreme value distribution (MEVD), which produces estimates of rainfall extreme values based on the probability distribution function (pdf) of all measured `ordinary' rainfall event. This methodology also accounts for the interannual variations observed in the pdf of daily rainfall by integrating over the sample space of its random parameters. We illustrate the application of this framework to the TRMM Multi-satellite Precipitation Analysis rainfall dataset, where MEVD optimally exploits the relatively short datasets of satellite-sensed rainfall, while taking full advantage of its high spatial resolution and quasi-global coverage. Accuracy of TRMM precipitation estimates and scale issues are here investigated for a case study located in the Little Washita watershed, Oklahoma, using a dense network of rain gauges for independent ground validation. The methodology contributes to our understanding of the risk of extreme rainfall events, as it allows i) an optimal use of the TRMM datasets in estimating the tail of the probability distribution of daily rainfall, and ii) a global mapping of daily rainfall extremes and distributional tail properties, bridging the existing gaps in rain gauges networks.
NASA Astrophysics Data System (ADS)
Abaurrea, J.; Asín, J.; Cebrián, A. C.
2018-02-01
The occurrence of extreme heat events in maximum and minimum daily temperatures is modelled using a non-homogeneous common Poisson shock process. It is applied to five Spanish locations, representative of the most common climates over the Iberian Peninsula. The model is based on an excess over threshold approach and distinguishes three types of extreme events: only in maximum temperature, only in minimum temperature and in both of them (simultaneous events). It takes into account the dependence between the occurrence of extreme events in both temperatures and its parameters are expressed as functions of time and temperature related covariates. The fitted models allow us to characterize the occurrence of extreme heat events and to compare their evolution in the different climates during the observed period. This model is also a useful tool for obtaining local projections of the occurrence rate of extreme heat events under climate change conditions, using the future downscaled temperature trajectories generated by Earth System Models. The projections for 2031-60 under scenarios RCP4.5, RCP6.0 and RCP8.5 are obtained and analysed using the trajectories from four earth system models which have successfully passed a preliminary control analysis. Different graphical tools and summary measures of the projected daily intensities are used to quantify the climate change on a local scale. A high increase in the occurrence of extreme heat events, mainly in July and August, is projected in all the locations, all types of event and in the three scenarios, although in 2051-60 the increase is higher under RCP8.5. However, relevant differences are found between the evolution in the different climates and the types of event, with a specially high increase in the simultaneous ones.
Toshniwal, Gokul; Sunder, Rani; Thomas, Ronald; Dureja, G P
2012-01-01
Interventional pain management techniques play an important role in the multidisciplinary approach to management of complex regional pain syndrome (CRPS). In this preliminary study we compared the efficacy of continuous stellate ganglion (CSG) block with that of continuous infraclavicular brachial plexus (CIBP) block in management of CRPS type I of upper extremity. Thirty-three patients with CRPS type I of upper extremity were randomly assigned to either CSG or CIBP group. Patients were treated for 1 week with continuous infusion of 0.125% bupivacaine at 2and 5mL/h, respectively. Catheter was removed at 1 week and patients were followed up for 4 weeks. The outcome was evaluated in terms of neuropathic pain scale score (NPSS), edema scores (Grades 0-2), and range of motion (ROM) of all upper extremity joints (Grades 0-2). CIBP group showed statistically significant improvement in NPSS compared with CSG group during the first 12 hours after the procedures (P value <0.05). After 12 hours, the NPSS was comparable between the groups. At 4 weeks, both groups showed clinically significant improvement in edema score and ROM of all upper extremity joints when compared with the baseline. This preliminary study suggests that CIBP block and CSG block may be feasible and effective interventional techniques for the management of CRPS type I of upper extremities. Hence, we recommend a larger well-randomized, well-controlled, clinical trial to confirm our findings and determine if any significant difference exists between the groups in terms of long-term pain relief and functional restoration. Wiley Periodicals, Inc.
Gravitational Waves From the Kerr/CFT Correspondence
NASA Astrophysics Data System (ADS)
Porfyriadis, Achilleas
Astronomical observation suggests the existence of near-extreme Kerr black holes in the sky. Properties of diffeomorphisms imply that dynamics of the near-horizon region of near-extreme Kerr are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this thesis we compute the gravitational radiation emitted by a small compact object that orbits in the near-horizon region and plunges into the horizon of a large rapidly rotating black hole. We study the holographically dual processes in the context of the Kerr/CFT correspondence and find our conformal field theory (CFT) computations in perfect agreement with the gravity results. We compute the radiation emitted by a particle on the innermost stable circular orbit (ISCO) of a rapidly spinning black hole. We confirm previous estimates of the overall scaling of the power radiated, but show that there are also small oscillations all the way to extremality. Furthermore, we reveal an intricate mode-by-mode structure in the flux to infinity, with only certain modes having the dominant scaling. The scaling of each mode is controlled by its conformal weight. Massive objects in adiabatic quasi-circular inspiral towards a near-extreme Kerr black hole quickly plunge into the horizon after passing the ISCO. The post-ISCO plunge trajectory is shown to be related by a conformal map to a circular orbit. Conformal symmetry of the near-horizon region is then used to compute analytically the gravitational radiation produced during the plunge phase. Most extreme-mass-ratio-inspirals of small compact objects into supermassive black holes end with a fast plunge from an eccentric last stable orbit. We use conformal transformations to analytically solve for the radiation emitted from various fast plunges into extreme and near-extreme Kerr black holes.
Attribution of Extreme Rainfall Events in the South of France Using EURO-CORDEX Simulations
NASA Astrophysics Data System (ADS)
Luu, L. N.; Vautard, R.; Yiou, P.
2017-12-01
The Mediterranean region regularly undergoes episodes of intense precipitation in the fall season that exceed 300mm a day. This study focuses on the role of climate change on the dynamics of the events that occur in the South of France. We used an ensemble of 10 EURO-CORDEX model simulations with two horizontal resolutions (EUR-11: 0.11° and EUR-44: 0.44°) for the attribution of extreme rainfall in the fall in the Cevennes mountain range (South of France). The biases of the simulations were corrected with simple scaling adjustment and a quantile correction (CDFt). This produces five datasets including EUR-44 and EUR-11 with and without scaling adjustment and CDFt-EUR-11, on which we test the impact of resolution and bias correction on the extremes. Those datasets, after pooling all of models together, are fitted by a stationary Generalized Extreme Value distribution for several periods to estimate a climate change signal in the tail of distribution of extreme rainfall in the Cévenne region. Those changes are then interpreted by a scaling model that links extreme rainfall with mean and maximum daily temperature. The results show that higher-resolution simulations with bias adjustment provide a robust and confident increase of intensity and likelihood of occurrence of autumn extreme rainfall in the area in current climate in comparison with historical climate. The probability (exceedance probability) of 1-in-1000-year event in historical climate may increase by a factor of 1.8 under current climate with a confident interval of 0.4 to 5.3 following the CDFt bias-adjusted EUR-11. The change of magnitude appears to follow the Clausius-Clapeyron relation that indicates a 7% increase in rainfall per 1oC increase in temperature.
The Extreme Mechanics of Soft Structures
NASA Astrophysics Data System (ADS)
Reis, Pedro
2015-03-01
I will present a series of experimental investigations on the rich behavior of soft mechanical structures, which, similarly to soft materials, can undergo large deformations under a variety of loading conditions. Soft structures typically comprise slender elements that can readily undergo mechanical instabilities to achieve extreme flexibility and reversible reconfigurations. This field has came to be warmly known as `Extreme Mechanics', where one of the fundamental challenges lies in rationalizing the geometric nonlinearities that arise in the post-buckling regime. I shall focus on problems involving thin elastic rods and shells, through examples ranging from the deployment of submarine cables onto the seabed, locomotion of uniflagellar bacteria, crystallography of curved wrinkling and its usage for active aerodynamic drag reduction. The main common feature underlying this series of studies is the prominence of geometry, and its interplay with mechanics, in dictating complex mechanical behavior that is relevant and applicable over a wide range of length scales. Moreover, our findings suggest that we rethink our relationship with mechanical instabilities which, rather than modes of failure, can be embraced as opportunities for functionality that are scalable, reversible, and robust. The author knowledges financial support from the National Science Foundation, CMMI-1351449 (CAREER).
Dynamical ocean-atmospheric drivers of floods and droughts
NASA Astrophysics Data System (ADS)
Perdigão, Rui A. P.; Hall, Julia
2014-05-01
The present study contributes to a better depiction and understanding of the "facial expression" of the Earth in terms of dynamical ocean-atmospheric processes associated to both floods and droughts. For this purpose, the study focuses on nonlinear dynamical and statistical analysis of ocean-atmospheric mechanisms contributing to hydrological extremes, broadening the analytical hydro-meteorological perspective of floods and hydrological droughts to driving mechanisms and feedbacks at the global scale. In doing so, the analysis of the climate-related causality of hydrological extremes is not limited to the synoptic situation in the region where the events take place. Rather, it goes further in the train of causality, peering into dynamical interactions between planetary-scale ocean and atmospheric processes that drive weather regimes and influence the antecedent and event conditions associated to hydrological extremes. In order to illustrate the approach, dynamical ocean-atmospheric drivers are investigated for a selection of floods and droughts. Despite occurring in different regions with different timings, common underlying mechanisms are identified for both kinds of hydrological extremes. For instance, several analysed events are seen to have resulted from a large-scale atmospheric situation consisting on standing planetary waves encircling the northern hemisphere. These correspond to wider vortices locked in phase, resulting in wider and more persistent synoptic weather patterns, i.e. with larger spatial and temporal coherence. A standing train of anticyclones and depressions thus encircled the mid and upper latitudes of the northern hemisphere. The stationary regime of planetary waves occurs when the mean eastward zonal flow decreases up to a point in which it no longer exceeds the westward phase propagation of the Rossby waves produced by the latitude-varying Coriolis effect. The ocean-atmospheric causes for this behaviour and consequences on hydrological extremes are investigated and the findings supported with spatiotemporal geostatistical analysis and nonlinear geophysical models. Overall, the study provides a three-fold contribution to the research on hydrological extremes: Firstly, it improves their physical attribution by better understanding the dynamical reasons behind the meteorological drivers. Secondly, it brings out fundamental early warning signs for potential hydrological extremes, by bringing out global ocean-atmospheric features that manifest themselves much earlier than the regional weather patterns. Thirdly, it provides tools for addressing and understanding hydrological regime changes at wider spatiotemporal scales, by providing links to planetary-scale dynamical processes that play a crucial role in multi-decadal global climate variability.
Using damage data to estimate the risk from summer convective precipitation extremes
NASA Astrophysics Data System (ADS)
Schroeer, Katharina; Tye, Mari
2017-04-01
This study explores the potential added value from including loss and damage data to understand the risks from high-intensity short-duration convective precipitation events. Projected increases in these events are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows, and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to this, not only are extreme events rare, but such small-scale events are likely to be underreported where they do not coincide with the observation network. Reports of private loss and damage on a local administrative unit scale (LAU 2 level) are used to explore the relationship between observed rainfall events and damages reportedly related to hydro-meteorological processes. With 480 Austrian municipalities located within our south-eastern Alpine study region, the damage data are available on a much smaller scale than the available rainfall data. Precipitation is recorded daily at 185 gauges and 52% of these stations additionally deliver sub-hourly rainfall information. To obtain physically plausible information, damage and rainfall data are grouped and analyzed on a catchment scale. The data indicate that rainfall intensities are higher on days that coincide with a damage claim than on days for which no damage was reported. However, approximately one third of the damages related to hydro-meteorological hazards were claimed on days for which no rainfall was recorded at any gauge in the respective catchment. Our goal is to assess whether these events indicate potential extreme events missing in the observations. Damage always is a consequence of an asset being exposed and susceptible to a hazardous process, and naturally, many factors influence whether an extreme rainfall event causes damage. We set up a statistical model to test whether the relationship between extreme rainfall events and damages is robust enough to estimate a potential underrepresentation of high intensity rainfall events in ungauged areas. Risk-relevant factors of socio-economic vulnerability, land cover, streamflow data, and weather type information are included to improve and sharpen the analysis. Within this study, we first aim to identify which rainfall events are most damaging and which factors affect the damages - seen as a proxy for the vulnerability - related to summer convective rainfall extremes in different catchment types. Secondly, we aim to detect potentially unreported damaging rainfall events and estimate the likelihood of such cases. We anticipate this damage perspective on summertime extreme convective precipitation to be beneficial for risk assessment, uncertainty management, and decision making with respect to weather and climate extremes on the regional-to-local level.
Haddad, M. Alex; Budich, Justin M.; Eckenrode, Brian J.
2016-01-01
ABSTRACT Study design Case report Background Isolated, grade III lateral collateral ligament knee injuries are an uncommon traumatic injury with little guidance available in the literature for conservative management and prognosis for return to sport. The purpose of this case report is to describe the clinical decision-making in both differential diagnosis and physical therapy management of an isolated grade III lateral collateral ligament sprain in an adolescent multi-sport high school athlete. Case Description A 16 year-old male, high school, multi-sport athlete (cross country, wrestling, track and field) sustained a traumatic knee injury during a wrestling match when his involved lower extremity was forcefully externally rotated by his opponent. Initial clinical presentation revealed pain and increased laxity with varus stress testing of the left knee, which was subsequently identified via MRI as a complete lateral collateral ligament rupture (grade III). A conservative physical therapy program was developed targeting the active and neuromuscular subsystems, theorized to compensate for the lack of an intact lateral collateral ligament. Outcomes The subject attended 18 visits of physical therapy over a period of 12 weeks. His rehabilitation program focused on functional strengthening of the posterolateral corner, enhancement of neuromuscular control, and graded progression to sports specific drills. Return to play decisions were based on a combination of lower extremity functional performance measures, condition specific outcome measures and subjective performance on sports specific tasks. At discharge from physical therapy, he reported 0/10 pain, scored a 76/80 on the Lower Extremity Functional Scale, and was able to return to competitive track and field events. Discussion Few descriptions in the literature exist for the conservative management of isolated, grade III lateral collateral ligament injuries. A program of selective functional strengthening, proprioceptive training, and graded sport specific activities may allow these individuals to return to sport with conservative management. Levels of Evidence 4 (Single Case Report) PMID:27525183
Lana, Alberto; Struijk, Ellen; Guallar-Castillón, Pilar; Martín-Moreno, Jose María; Rodríguez Artalejo, Fernando; Lopez-Garcia, Esther
2016-11-01
leptin resistance, which may develop during the ageing process, stimulates the production of pro-inflammatory cytokines and insulin resistance that could impair the muscle function. However, the role of leptin on physical functioning among older adults has not yet been elucidated. to examine the association between serum leptin levels and physical function impairment in older adults. prospective study of 1,556 individuals 60 years and older from the Seniors-ENRICA cohort, who were free of physical function limitation at baseline. serum leptin was measured in 2008-10, and incident functional limitation was assessed through 2012. Self-reported limitations in agility and mobility were assessed with the Rosow and Breslau scale, limitation in the lower extremity function was measured with the Short Physical Performance Battery, and impairment in the overall physical performance with the physical component summary of the SF-12. after adjustment for potential confounders and compared to individuals in the lowest quartile of leptin concentration, those in the highest quartile showed increased risk of impaired physical function; the odds ratio (95% confidence interval) and P-trend was: 1.95 (1.11-3.43), P = 0.006 for self-reported impaired mobility; 1.76 (1.08-2.87), P = 0.02 for self-reported impaired agility; 1.48 (1.02-2.15), P = 0.04 for limitation in the lower extremity function; and 1.97 (1.20-3.22), P = 0.01, for decreased overall physical performance. These associations were only modestly explained by C-reactive protein and insulin resistance. Moreover, the associations held across groups with varying health status and were independent of estimated total body fat. higher leptin concentration was associated with increased risk of impaired physical function. Preserving metabolic function during the old age could help delaying physical function decline. © The Author 2016. Published by Oxford University Press on behalf of the British Geriatrics Society. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Kaplan, Christopher J.; Kraus, Peter M.; Ross, Andrew D.; Zürch, Michael; Cushing, Scott K.; Jager, Marieke F.; Chang, Hung-Tzu; Gullikson, Eric M.; Neumark, Daniel M.; Leone, Stephen R.
2018-05-01
Extreme ultraviolet (XUV) transient reflectivity around the germanium M4 ,5 edge (3 d core-level to valence transition) at 30 eV is advanced to obtain the transient dielectric function of crystalline germanium [100] on femtosecond to picosecond time scales following photoexcitation by broadband visible-to-infrared (VIS/NIR) pulses. By fitting the transient dielectric function, carrier-phonon induced relaxations are extracted for the excited carrier distribution. The measurements reveal a hot electron relaxation rate of 3.2 ±0.2 ps attributed to the X -L intervalley scattering and a hot hole relaxation rate of 600 ±300 fs ascribed to intravalley scattering within the heavy hole (HH) band, both in good agreement with previous work. An overall energy shift of the XUV dielectric function is assigned to a thermally induced band gap shrinkage by formation of acoustic phonons, which is observed to be on a timescale of 4-5 ps, in agreement with previously measured optical phonon lifetimes. The results reveal that the transient reflectivity signal at an angle of 66∘ with respect to the surface normal is dominated by changes to the real part of the dielectric function, due to the near critical angle of incidence of the experiment (66∘-70∘) for the range of XUV energies used. This work provides a methodology for interpreting XUV transient reflectivity near core-level transitions, and it demonstrates the power of the XUV spectral region for measuring ultrafast excitation dynamics in solids.
Mirror therapy improves hand function in subacute stroke: a randomized controlled trial.
Yavuzer, Gunes; Selles, Ruud; Sezer, Nebahat; Sütbeyaz, Serap; Bussmann, Johannes B; Köseoğlu, Füsun; Atay, Mesut B; Stam, Henk J
2008-03-01
To evaluate the effects of mirror therapy on upper-extremity motor recovery, spasticity, and hand-related functioning of inpatients with subacute stroke. Randomized, controlled, assessor-blinded, 4-week trial, with follow-up at 6 months. Rehabilitation education and research hospital. A total of 40 inpatients with stroke (mean age, 63.2y), all within 12 months poststroke. Thirty minutes of mirror therapy program a day consisting of wrist and finger flexion and extension movements or sham therapy in addition to conventional stroke rehabilitation program, 5 days a week, 2 to 5 hours a day, for 4 weeks. The Brunnstrom stages of motor recovery, spasticity assessed by the Modified Ashworth Scale (MAS), and hand-related functioning (self-care items of the FIM instrument). The scores of the Brunnstrom stages for the hand and upper extremity and the FIM self-care score improved more in the mirror group than in the control group after 4 weeks of treatment (by 0.83, 0.89, and 4.10, respectively; all P<.01) and at the 6-month follow-up (by 0.16, 0.43, and 2.34, respectively; all P<.05). No significant differences were found between the groups for the MAS. In our group of subacute stroke patients, hand functioning improved more after mirror therapy in addition to a conventional rehabilitation program compared with a control treatment immediately after 4 weeks of treatment and at the 6-month follow-up, whereas mirror therapy did not affect spasticity.
Quantifying variability in fast and slow solar wind: From turbulence to extremes
NASA Astrophysics Data System (ADS)
Tindale, E.; Chapman, S. C.; Moloney, N.; Watkins, N. W.
2017-12-01
Fast and slow solar wind exhibit variability across a wide range of spatiotemporal scales, with evolving turbulence producing fluctuations on sub-hour timescales and the irregular solar cycle modulating the system over many years. Here, we apply the data quantile-quantile (DQQ) method [Tindale and Chapman 2016, 2017] to over 20 years of Wind data, to study the time evolution of the statistical distribution of plasma parameters in fast and slow solar wind. This model-independent method allows us to simultaneously explore the evolution of fluctuations across all scales. We find a two-part functional form for the statistical distributions of the interplanetary magnetic field (IMF) magnitude and its components, with each region of the distribution evolving separately over the solar cycle. Up to a value of 8nT, turbulent fluctuations dominate the distribution of the IMF, generating the approximately lognormal shape found by Burlaga [2001]. The mean of this core-turbulence region tracks solar cycle activity, while its variance remains constant, independent of the fast or slow state of the solar wind. However, when we test the lognormality of this core-turbulence component over time, we find the model provides a poor description of the data at solar maximum, where sharp peaks in the distribution dominate over the lognormal shape. At IMF values higher than 8nT, we find a separate, extremal distribution component, whose moments are sensitive to solar cycle phase, the peak activity of the cycle and the solar wind state. We further investigate these `extremal' values using burst analysis, where a burst is defined as a continuous period of exceedance over a predefined threshold. This form of extreme value statistics allows us to study the stochastic process underlying the time series, potentially supporting a probabilistic forecast of high-energy events. Tindale, E., and S.C. Chapman (2016), Geophys. Res. Lett., 43(11) Tindale, E., and S.C. Chapman (2017), submitted Burlaga, L.F. (2001), J. Geophys. Res., 106(A8)
Extreme-scale Algorithms and Solver Resilience
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dongarra, Jack
A widening gap exists between the peak performance of high-performance computers and the performance achieved by complex applications running on these platforms. Over the next decade, extreme-scale systems will present major new challenges to algorithm development that could amplify this mismatch in such a way that it prevents the productive use of future DOE Leadership computers due to the following; Extreme levels of parallelism due to multicore processors; An increase in system fault rates requiring algorithms to be resilient beyond just checkpoint/restart; Complex memory hierarchies and costly data movement in both energy and performance; Heterogeneous system architectures (mixing CPUs, GPUs,more » etc.); and Conflicting goals of performance, resilience, and power requirements.« less
Ward, Irene; Pivko, Susan; Brooks, Gary; Parkin, Kate
2011-11-01
To demonstrate sensitivity to change of the Stroke Rehabilitation Assessment of Movement (STREAM) as well as the concurrent and predictive validity of the STREAM in an acute rehabilitation setting. Prospective cohort study. Acute, in-patient rehabilitation department within a tertiary-care teaching hospital in the United States. Thirty adults with a newly diagnosed, first ischemic stroke. Clinical assessments were conducted on admission and then again on discharge from the rehabilitation hospital with the STREAM (total STREAM and upper extremity, lower extremity, and mobility subscales), Functional Independence Measure (FIM), and Stroke Impact Scale-16 (SIS-16). Sensitivity to change was determined with the Wilcoxon signed rank test and by the calculation of standardized response means. Spearman correlations were used to assess concurrent validity of the total STREAM and STREAM subscales with the FIM and SIS-16 on admission and discharge. We determined predictive validity for all instruments by correlating admission scores with actual and predicted length of stay and by testing associations between admission scores and discharge destination (home vs subacute facility). Not applicable. For all instruments, there was statistically significant improvement from admission to discharge. The standardized response means for the total STREAM and STREAM subscales were large. Spearman correlations between the total STREAM and STREAM subscales and the FIM and SIS-16 were moderate to excellent, both on admission and discharge. Among change scores, only the SIS-16 correlated with the total STREAM. All 3 instruments were significantly associated with discharge destination; however, the associations were strongest for the total STREAM and STREAM subscales. All instruments showed moderate-to-excellent correlations with predicted and actual length of stay. The STREAM is sensitive to change and demonstrates good concurrent and predictive validity as compared with the FIM and SIS-16 in the acute inpatient rehabilitation population. Copyright © 2011 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All rights reserved.
Computational approach on PEB process in EUV resist: multi-scale simulation
NASA Astrophysics Data System (ADS)
Kim, Muyoung; Moon, Junghwan; Choi, Joonmyung; Lee, Byunghoon; Jeong, Changyoung; Kim, Heebom; Cho, Maenghyo
2017-03-01
For decades, downsizing has been a key issue for high performance and low cost of semiconductor, and extreme ultraviolet lithography is one of the promising candidates to achieve the goal. As a predominant process in extreme ultraviolet lithography on determining resolution and sensitivity, post exposure bake has been mainly studied by experimental groups, but development of its photoresist is at the breaking point because of the lack of unveiled mechanism during the process. Herein, we provide theoretical approach to investigate underlying mechanism on the post exposure bake process in chemically amplified resist, and it covers three important reactions during the process: acid generation by photo-acid generator dissociation, acid diffusion, and deprotection. Density functional theory calculation (quantum mechanical simulation) was conducted to quantitatively predict activation energy and probability of the chemical reactions, and they were applied to molecular dynamics simulation for constructing reliable computational model. Then, overall chemical reactions were simulated in the molecular dynamics unit cell, and final configuration of the photoresist was used to predict the line edge roughness. The presented multiscale model unifies the phenomena of both quantum and atomic scales during the post exposure bake process, and it will be helpful to understand critical factors affecting the performance of the resulting photoresist and design the next-generation material.
Structural and Mechanical Properties of Intermediate Filaments under Extreme Conditions and Disease
NASA Astrophysics Data System (ADS)
Qin, Zhao
Intermediate filaments are one of the three major components of the cytoskeleton in eukaryotic cells. It was discovered during the recent decades that intermediate filament proteins play key roles to reinforce cells subjected to large-deformation as well as participate in signal transduction. However, it is still poorly understood how the nanoscopic structure, as well as the biochemical properties of these protein molecules contribute to their biomechanical functions. In this research we investigate the material function of intermediate filaments under various extreme mechanical conditions as well as disease states. We use a full atomistic model and study its response to mechanical stresses. Learning from the mechanical response obtained from atomistic simulations, we build mesoscopic models following the finer-trains-coarser principles. By using this multiple-scale model, we present a detailed analysis of the mechanical properties and associated deformation mechanisms of intermediate filament network. We reveal the mechanism of a transition from alpha-helices to beta-sheets with subsequent intermolecular sliding under mechanical force, which has been inferred previously from experimental results. This nanoscale mechanism results in a characteristic nonlinear force-extension curve, which leads to a delocalization of mechanical energy and prevents catastrophic fracture. This explains how intermediate filament can withstand extreme mechanical deformation of > 1 00% strain despite the presence of structural defects. We combine computational and experimental techniques to investigate the molecular mechanism of Hutchinson-Gilford progeria syndrome, a premature aging disease. We find that the mutated lamin tail .domain is more compact and stable than the normal one. This altered structure and stability may enhance the association of intermediate filaments with the nuclear membrane, providing a molecular mechanism of the disease. We study the nuclear membrane association with intermediate filaments by focusing on the effect of calcium on the maturation process of lamin A. Our result shows that calcium plays a regulatory role in the post-translational processing of lam in A by tuning its molecular conformation and mechanics. Based on these findings we demonstrate that multiple-scale computational modeling provides a useful tool in understanding the biomechanical property and disease mechanism of intermediate filaments. We provide a perspective on research opportunities to improve the foundation for engineering the mechanical and biochemical functions of biomaterials. (Copies available exclusively from MIT Libraries, libraries.mit.edu/docs - docs@mit.edu)
Jeon, Somyung; Kim, Young; Jung, Kyoungsim; Chung, Yijung
2017-01-01
The purpose of this study was to examine the effects of task-oriented electromyography-triggered stimulation for shoulder subluxation, muscle activation, pain and upper extremity function in hemiparetic stroke patients. Twenty participants with subacute hemiparetic stroke were recruited for this study and were randomly divided into two groups: experimental group (n = 10) and control group (n = 10). Subjects in the experimental group participated in task-oriented electromyography triggered stimulation for 30 minutes, five times a week for four weeks, whereas the control group received cyclic functional electrical stimulation for 30 minutes, five times a week for four weeks. Subjects in both groups received conventional physical therapy for four weeks (30 min/day, five times/week). Data collected included the degree of shoulder subluxation which had been confirmed by X-ray, muscle activation of the supraspinatus and posterior deltoid muscles by electromyography, pain by the Visual Analogue Scale (VAS), and hand function by the Fugl-Meyer Assessment (FMA) before and after the four week exercise period. The results showed significant improvement in shoulder subluxation, muscle activation, and VAS results in the experimental group, compared with the control group(p < 0.05). FMA scores showed no significant differences between the two groups. In conclusion, task-oriented electromyography-triggered stimulation improved shoulder subluxation, muscle activation, pain and upper extremity function. These results suggest that task-oriented electromyography-triggered stimulation is effective and beneficial for individuals with subacute stroke, and that further studies should be conducted on multivarious anatomical regions.
Zhang, Xian; Niu, Jiaojiao; Liang, Yili; Liu, Xueduan; Yin, Huaqun
2016-01-19
Metagenomics allows us to acquire the potential resources from both cultivatable and uncultivable microorganisms in the environment. Here, shotgun metagenome sequencing was used to investigate microbial communities from the surface layer of low grade copper tailings that were industrially bioleached at the Dexing Copper Mine, China. A bioinformatics analysis was further performed to elucidate structural and functional properties of the microbial communities in a copper bioleaching heap. Taxonomic analysis revealed unexpectedly high microbial biodiversity of this extremely acidic environment, as most sequences were phylogenetically assigned to Proteobacteria, while Euryarchaeota-related sequences occupied little proportion in this system, assuming that Archaea probably played little role in the bioleaching systems. At the genus level, the microbial community in mineral surface-layer was dominated by the sulfur- and iron-oxidizing acidophiles such as Acidithiobacillus-like populations, most of which were A. ferrivorans-like and A. ferrooxidans-like groups. In addition, Caudovirales were the dominant viral type observed in this extremely environment. Functional analysis illustrated that the principal participants related to the key metabolic pathways (carbon fixation, nitrogen metabolism, Fe(II) oxidation and sulfur metabolism) were mainly identified to be Acidithiobacillus-like, Thiobacillus-like and Leptospirillum-like microorganisms, indicating their vital roles. Also, microbial community harbored certain adaptive mechanisms (heavy metal resistance, low pH adaption, organic solvents tolerance and detoxification of hydroxyl radicals) as they performed their functions in the bioleaching system. Our study provides several valuable datasets for understanding the microbial community composition and function in the surface-layer of copper bioleaching heap.
Heating-insensitive scale increase caused by convective precipitation
NASA Astrophysics Data System (ADS)
Haerter, Jan; Moseley, Christopher; Berg, Peter
2017-04-01
The origin of intense convective extremes and their unusual temperature dependence has recently challenged traditional thermodynamic arguments, based on the Clausius-Clapeyron relation. In a sequence of studies (Lenderink and v. Mejgaard, Nat Geosc, 2008; Berg, Haerter, Moseley, Nat Geosc, 2013; and Moseley, Hohenegger, Berg, Haerter, Nat Geosc, 2016) the argument of convective-type precipitation overcoming the 7%/K increase in extremes by dynamical, rather than thermodynamic, processes has been promoted. How can the role of dynamical processes be approached for precipitating convective cloud? One-phase, non-precipitating Rayleigh-Bénard convection is a classical problem in complex systems science. When a fluid between two horizontal plates is sufficiently heated from below, convective rolls spontaneously form. In shallow, non-precipitating atmospheric convection, rolls are also known to form under specific conditions, with horizontal scales roughly proportional to the boundary layer height. Here we explore within idealized large-eddy simulations, how the scale of convection is modified, when precipitation sets in and intensifies in the course of diurnal solar heating. Before onset of precipitation, Bénard cells with relatively constant diameter form, roughly on the scale of the atmospheric boundary layer. We find that the onset of precipitation then signals an approximately linear (in time) increase in horizontal scale. This scale increase progresses at a speed which is rather insensitive to changes in surface temperature or changes in the rate at which boundary conditions change, hinting at spatial characteristics, rather than temperature, as a possible control on spatial scales of convection. When exploring the depth of spatial correlations, we find that precipitation onset causes a sudden disruption of order and a subsequent complete disintegration of organization —until precipitation eventually ceases. Returning to the initial question of convective extremes, we conclude that the formation of extreme events is a highly nonlinear process. However, our results suggest that crucial features of convective organization throughout the day may be independent of temperature - with possible implications for large-scale model parameterizations. Yet, the timing of the onset of initial precipitation depends strongly on the temperature boundary conditions, where higher temperatures, or earlier, moderate heating, lead to earlier initiation of convection and hence allow for more time for development and the production of extremes.
Scale dependence of entrainment-mixing mechanisms in cumulus clouds
Lu, Chunsong; Liu, Yangang; Niu, Shengjie; ...
2014-12-17
This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less
Extreme events as foundation of Lévy walks with varying velocity
NASA Astrophysics Data System (ADS)
Kutner, Ryszard
2002-11-01
In this work we study the role of extreme events [E.W. Montroll, B.J. West, in: J.L. Lebowitz, E.W. Montrell (Eds.), Fluctuation Phenomena, SSM, vol. VII, North-Holland, Amsterdam, 1979, p. 63; J.-P. Bouchaud, M. Potters, Theory of Financial Risks from Statistical Physics to Risk Management, Cambridge University Press, Cambridge, 2001; D. Sornette, Critical Phenomena in Natural Sciences. Chaos, Fractals, Selforganization and Disorder: Concepts and Tools, Springer, Berlin, 2000] in determining the scaling properties of Lévy walks with varying velocity. This model is an extension of the well-known Lévy walks one [J. Klafter, G. Zumofen, M.F. Shlesinger, in M.F. Shlesinger, G.M. Zaslavsky, U. Frisch (Eds.), Lévy Flights and Related Topics ion Physics, Lecture Notes in Physics, vol. 450, Springer, Berlin, 1995, p. 196; G. Zumofen, J. Klafter, M.F. Shlesinger, in: R. Kutner, A. Pȩkalski, K. Sznajd-Weron (Eds.), Anomalous Diffusion. From Basics to Applications, Lecture Note in Physics, vol. 519, Springer, Berlin, 1999, p. 15] introduced in the context of chaotic dynamics where a fixed value of the walker velocity is assumed for simplicity. Such an extension seems to be necessary when the open and/or complex system is studied. The model of Lévy walks with varying velocity is spanned on two coupled velocity-temporal hierarchies: the first one consisting of velocities and the second of corresponding time intervals which the walker spends between the successive turning points. Both these hierarchical structures are characterized by their own self-similar dimensions. The extreme event, which can appear within a given time interval, is defined as a single random step of the walker having largest length. By finding power-laws which describe the time-dependence of this displacement and its statistics we obtained two independent diffusion exponents, which are related to the above-mentioned dimensions and which characterize the extreme event kinetics. In this work we show the principal influence of extreme events on the basic quantities (one-step distributions and moments as well as two-step correlation functions) of the continuous-time random walk formalism. Besides, we construct both the waiting-time distribution and sojourn probability density directly in a real space and time in the scaling form by proper component analysis which takes into account all possible fluctuations of the walker steps in contrast to the extreme event analysis. In this work we pay our attention to the basic quantities, since the summarized multi-step ones were already discussed earlier [Physica A 264 (1999) 107; Comp. Phys. Commun. 147 (2002) 565]. Moreover, we study not only the scaling phenomena but also, assuming a finite number of hierarchy levels, the breaking of scaling and its dependence on control parameters. This seems to be important for studying empirical systems the more so as there are still no closed formulae describing this phenomenon except the one for truncated Lévy flights [Phys. Rev. Lett. 73 (1994) 2946]. Our formulation of the model made possible to develop an efficient Monte Carlo algorithm [Physica A 264 (1999) 107; Comp. Phys. Commun. 147 (2002) 565] where no MC step is lost.
Improved motor performance in chronic spinal cord injury following upper-limb robotic training.
Cortes, Mar; Elder, Jessica; Rykman, Avrielle; Murray, Lynda; Avedissian, Manuel; Stampas, Argyrios; Thickbroom, Gary W; Pascual-Leone, Alvaro; Krebs, Hermano Igo; Valls-Sole, Josep; Edwards, Dylan J
2013-01-01
Recovering upper-limb motor function has important implications for improving independence of patients with tetraplegia after traumatic spinal cord injury (SCI). To evaluate the feasibility, safety and effectiveness of robotic-assisted training of upper limb in a chronic SCI population. A total of 10 chronic tetraplegic SCI patients (C4 to C6 level of injury, American Spinal Injury Association Impairment Scale, A to D) participated in a 6-week wrist-robot training protocol (1 hour/day 3 times/week). The following outcome measures were recorded at baseline and after the robotic training: a) motor performance, assessed by robot-measured kinematics, b) corticospinal excitability measured by transcranial magnetic stimulation (TMS), and c) changes in clinical scales: motor strength (Upper extremity motor score), pain level (Visual Analog Scale) and spasticity (Modified Ashworth scale). No adverse effects were observed during or after the robotic training. Statistically significant improvements were found in motor performance kinematics: aim (pre 1.17 ± 0.11 raduans, post 1.03 ± 0.08 raduans, p = 0.03) and smoothness of movement (pre 0.26 ± 0.03, post 0.31 ± 0.02, p = 0.03). These changes were not accompanied by changes in upper-extremity muscle strength or corticospinal excitability. No changes in pain or spasticity were found. Robotic-assisted training of the upper limb over six weeks is a feasible and safe intervention that can enhance movement kinematics without negatively affecting pain or spasticity in chronic SCI. In addition, robot-assisted devices are an excellent tool to quantify motor performance (kinematics) and can be used to sensitively measure changes after a given rehabilitative intervention.
Stein, Joel; Narendran, Kailas; McBean, John; Krebs, Kathryn; Hughes, Richard
2007-04-01
Robot-assisted exercise shows promise as a means of providing exercise therapy for weakness that results from stroke or other neurological conditions. Exoskeletal or "wearable" robots can, in principle, provide therapeutic exercise and/or function as powered orthoses to help compensate for chronic weakness. We describe a novel electromyography (EMG)-controlled exoskeletal robotic brace for the elbow (the active joint brace) and the results of a pilot study conducted using this brace for exercise training in individuals with chronic hemiparesis after stroke. Eight stroke survivors with severe chronic hemiparesis were enrolled in this pilot study. One subject withdrew from the study because of scheduling conflicts. A second subject was unable to participate in the training protocol because of insufficient surface EMG activity to control the active joint brace. The six remaining subjects each underwent 18 hrs of exercise training using the device for a period of 6 wks. Outcome measures included the upper-extremity component of the Fugl-Meyer scale and the modified Ashworth scale of muscle hypertonicity. Analysis revealed that the mean upper-extremity component of the Fugl-Meyer scale increased from 15.5 (SD 3.88) to 19 (SD 3.95) (P = 0.04) at the conclusion of training for the six subjects who completed training. Combined (summated) modified Ashworth scale for the elbow flexors and extensors improved from 4.67 (+/-1.2 SD) to 2.33 (+/-0.653 SD) (P = 0.009) and improved for the entire upper limb as well. All subjects tolerated the device, and no complications occurred. EMG-controlled powered elbow orthoses can be successfully controlled by severely impaired hemiparetic stroke survivors. This technique shows promise as a new modality for assisted exercise training after stroke.
Extreme-Scale Computing Project Aims to Advance Precision Oncology | FNLCR Staging
Two government agencies and five national laboratories are collaborating to develop extremely high-performance computing capabilities that will analyze mountains of research and clinical data to improve scientific understanding of cancer, predict dru
[Extreme Climatic Events in the Altai Republic According to Dendrochronological Data].
Barinov, V V; Myglan, V S; Nazarov, A N; Vaganov, E A; Agatova, A R; Nepop, R K
2016-01-01
The results of dating of extreme climatic events by damage to the anatomical structure and missing tree rings of the Siberian larch in the upper forest boundary of the Altai Republic are given. An analysis of the spatial distribution of the revealed dates over seven plots (Kokcy, Chind, Ak-ha, Jelo, Tute, Tara, and Sukor) allowed us to distinguish the extreme events on interregional (1700, 1783, 1788, 1812, 1814, 1884), regional (1724, 1775, 1784, 1835, 1840, 1847, 1850, 1852, 1854, 1869, 1871, 1910, 1917, 1927, 1938, 1958, 1961), and local (1702, 1736, 1751, 1785, 1842, 1843,1874, 1885, 1886, 1919, 2007, and 2009) scales. It was shown that the events of an interregional scale correspond with the dates of major volcanic eruptions (Grimsvotn, Lakagigar, Etna, Awu, Tambora, Soufriere St. Vinsent, Mayon, and Krakatau volcanos) and extreme climatic events, crop failures, lean years, etc., registered in historical sources.
Local finite-amplitude wave activity as an objective diagnostic of midlatitude extreme weather
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Gang; Lu, Jian; Burrows, Alex D.
Midlatitude extreme weather events are responsible for a large part of climate related damage, yet our understanding of these extreme events is limited, partly due to the lack of a theoretical basis for midlatitude extreme weather. In this letter, the local finite-amplitude wave activity (LWA) of Huang and Nakamura [2015] is introduced as a diagnostic of the 500-hPa geopotential height (Z500) to characterizing midlatitude weather events. It is found that the LWA climatology and its variability associated with the Arctic Oscillation (AO) agree broadly with the previously reported blocking frequency in literature. There is a strong seasonal and spatial dependencemore » in the trend13 s of LWA in recent decades. While there is no observational evidence for a hemispheric-scale increase in wave amplitude, robust trends in wave activity can be identified at the regional scales, with important implications for regional climate change.« less
Microhabitats in the tropics buffer temperature in a globally coherent manner
Scheffers, Brett R.; Evans, Theodore A.; Williams, Stephen E.; Edwards, David P.
2014-01-01
Vegetated habitats contain a variety of fine-scale features that can ameliorate temperate extremes. These buffered microhabitats may be used by species to evade extreme weather and novel climates in the future. Yet, the magnitude and extent of this buffering on a global scale remains unknown. Across all tropical continents and using 36 published studies, we assessed temperature buffering from within microhabitats across various habitat strata and structures (e.g. soil, logs, epiphytes and tree holes) and compared them to non-buffered macro-scale ambient temperatures (the thermal control). Microhabitats buffered temperature by 3.9°C and reduced maximum temperatures by 3.5°C. Buffering was most pronounced in tropical lowlands where temperatures were most variable. With the expected increase in extreme weather events, microhabitats should provide species with a local layer of protection that is not captured by traditional climate assessments, which are typically derived from macro-scale temperatures (e.g. satellites). Our data illustrate the need for a next generation of predictive models that account for species' ability to move within microhabitats to exploit favourable buffered microclimates. PMID:25540160
Cross-timescale Interference and Rainfall Extreme Events in South Eastern South America
NASA Astrophysics Data System (ADS)
Munoz, Angel G.
The physical mechanisms and predictability associated with extreme daily rainfall in South East South America (SESA) are investigated for the December-February season. Through a k-mean analysis, a robust set of daily circulation regimes is identified and then it is used to link the frequency of rainfall extreme events with large-scale potential predictors at subseasonal-to-seasonal scales. This basic set of daily circulation regimes is related to the continental and oceanic phases of the South Atlantic Convergence Zone (SACZ) and wave train patterns superimposed on the Southern Hemisphere Polar Jet. Some of these recurrent synoptic circulation types are conducive to extreme rainfall events in the region through synoptic control of different meso-scale physical features and, at the same time, are influenced by climate phenomena that could be used as sources of potential predictability. Extremely high rainfall (as measured by the 95th- and 99th-percentiles) is preferentially associated with two of these weather types, which are characterized by moisture advection intrusions from lower latitudes and the Pacific; another three weather types, characterized by above-normal moisture advection toward lower latitudes or the Andes, are preferentially associated with dry days (days with no rain). The analysis permits the identification of several subseasonal-to-seasonal scale potential predictors that modulate the occurrence of circulation regimes conducive to extreme rainfall events in SESA. It is conjectured that a cross-timescale interference between the different climate drivers improves the predictive skill of extreme precipitation in the region. The potential and real predictive skill of the frequency of extreme rainfall is then evaluated, finding evidence indicating that mechanisms of climate variability at one timescale contribute to the predictability at another scale, i.e., taking into account the interference of different potential sources of predictability at different timescales increases the predictive skill. This fact is in agreement with the Cross-timescale Interference Conjecture proposed in the first part of the thesis. At seasonal scale, a combination of those weather types tends to outperform all the other potential predictors explored, i.e., sea surface temperature patterns, phases of the Madden-Julian Oscillation, and combinations of both. Spatially averaged Kendall’s τ improvements of 43% for the potential predictability and 23% for realtime predictions are attained with respect to standard models considering sea-surface temperature fields alone. A new subseasonal-to-seasonal predictive methodology for extreme rainfall events is proposed, based on probability forecasts of seasonal sequences of these weather types. The cross-validated realtime skill of the new probabilistic approach, as measured by the Hit Score and the Heidke Skill Score, is on the order of twice that associated with climatological values. The approach is designed to offer useful subseasonal-to-seasonal climate information to decision-makers interested not only in how many extreme events will happen in the season, but also in how, when and where those events will probably occur. In order to gain further understanding about how the cross-timescale interference occurs, an externally-forced Lorenz model is used to explore the impact of different kind of forcings, at inter-annual and decadal scales, in the establishment of constructive interactions associated with the simulated “extreme events”. Using a wavelet analysis, it is shown that this simple model is capable of reproducing the same kind of cross-timescale structures observed in the wavelet power spectrum of the Nino3.4 index only when it is externally forced by both inter-annual and decadal signals: the annual cycle and a decadal forcing associated with the natural solar variability. The nature of this interaction is non-linear, and it impacts both mean and extreme values in the time series. No predictive power was found when using metrics like standard deviation and auto-correlation. Nonetheless, it was proposed that an early warning signal for occurrence of extreme rainfall in SESA may be possible via a continuous monitoring of relative phases between the cross-timescale leading components.
[Validation of a scale measuring coping with extreme risks].
López-Vázquez, Esperanza; Marván, María Luisa
2004-01-01
The objective of this study was to validate, in Mexico, the French coping scale "Echelle Toulousaine de Coping". In the fall of 2001, the scale questionnaire was applied to 209 subjects living in different areas of Mexico, exposed to five different types of extreme natural or industrial risks. The discriminatory capacity of the items, as well as the factorial structure and internal consistency of the scale, were analyzed using Mann-Whitney's U test, principal components factorial analysis, and Cronbach's alpha. The final scale was composed of 26 items forming two groups: active coping and passive coping. Internal consistency of the instrument was high, both in the total sample and in the subsample of natural and industrial risks. The coping scale is reliable and valid for the Mexican population. The English version of this paper is available at: http://www.insp.mx/salud/index.html.
Generalized IRT Models for Extreme Response Style
ERIC Educational Resources Information Center
Jin, Kuan-Yu; Wang, Wen-Chung
2014-01-01
Extreme response style (ERS) is a systematic tendency for a person to endorse extreme options (e.g., strongly disagree, strongly agree) on Likert-type or rating-scale items. In this study, we develop a new class of item response theory (IRT) models to account for ERS so that the target latent trait is free from the response style and the tendency…
Villeneuve, Myriam; Penhune, Virginia; Lamontagne, Anouk
2014-01-01
Music-supported therapy was shown to induce improvements in motor skills in stroke survivors. Whether all stroke individuals respond similarly to the intervention and whether gains can be maintained over time remain unknown. We estimated the immediate and retention effects of a piano training program on upper extremity function in persons with chronic stroke. Thirteen stroke participants engaged in a 3-week piano training comprising supervised sessions (9 × 60 min) and home practice. Fine and gross manual dexterity, movement coordination, and functional use of the upper extremity were assessed at baseline, pre-intervention, post-intervention, and at a 3-week follow-up. Significant improvements were observed for all outcomes at post-intervention and follow-up compared to pre-intervention scores. Larger magnitudes of change in manual dexterity and functional use of the upper extremity were associated with higher initial levels of motor recovery. Piano training can result in sustainable improvements in upper extremity function in chronic stroke survivors. Individuals with a higher initial level of motor recovery at baseline appear to benefit the most from this intervention.
Cichoń, Natalia; Bijak, Michał; Miller, Elżbieta; Saluk, Joanna
2017-07-01
As a result of ischaemia/reperfusion, massive generation of reactive oxygen species occurs, followed by decreased activity of antioxidant enzymes. Extremely low frequency electromagnetic fields (ELF-EMF) can modulate oxidative stress, but there are no clinical antioxidant studies in brain stroke patients. The aim of our study was to investigate the effect of ELF-EMF on clinical and antioxidant status in post-stroke patients. Fifty-seven patients were divided into two groups: ELF-EMF and non-ELF-EMF. Both groups underwent the same 4-week rehabilitation program. Additionally, the ELF-EMF group was exposed to an ELF-EMF field of 40 Hz, 7 mT for 15 min/day for 4 weeks (5 days a week). The activity of catalase and superoxide dismutase was measured in hemolysates, and total antioxidant status (TAS) determined in plasma. Functional status was assessed before and after the series of treatments using Activities of Daily Living (ADL), Mini-Mental State Examination (MMSE), and Geriatric Depression Scale (GDS). Applied ELF-EMF significantly increased enzymatic antioxidant activity; however, TAS levels did not change in either group. Results show that ELF-EMF induced a significant improvement in functional (ADL) and mental (MMSE, GDS) status. Clinical parameters had positive correlation with the level of enzymatic antioxidant protection. Bioelectromagnetics. 38:386-396, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Contributions of natural climate changes and human activities to the trend of extreme precipitation
NASA Astrophysics Data System (ADS)
Gao, Lu; Huang, Jie; Chen, Xingwei; Chen, Ying; Liu, Meibing
2018-06-01
This study focuses on the analysis of the nonstationarity characteristics of extreme precipitation and their attributions in the southeastern coastal region of China. The maximum daily precipitation (MDP) series is extracted from observations at 79 meteorological stations in the study area during the first flood season (April-June) from 1960 to 2012. The trends of the mean (Mn) and variance (Var) of MDP are detected using the Generalized Additive Models for Location, Scale, and Shape parameters (GAMLSS) and Mann-Kendall test. The contributions of natural climate change and human activities to the Mn and Var changes of MDP are investigated using six large-scale circulation variables and emissions of four greenhouse gases based on GAMLSS and a contribution analysis method. The results demonstrate that the nonstationarity of extreme precipitation on local scales is significant. The Mn and Var of extreme precipitation increase in the north of Zhejiang, the middle of Fujian, and the south of Guangdong. In general, natural climate change contributes more to Mn from 1960 to 2012 than to Var. However, human activities cause a greater Var in the rapid socioeconomic development period (1986-2012) than in the slow socioeconomic development period (1960-1985), especially in Zhejiang and Guangdong. The community should pay more attention to the possibility of extreme precipitation events and associated disasters triggered by human activities.
ERIC Educational Resources Information Center
Montpetit, Kathleen; Haley, Stephen; Bilodeau, Nathalie; Ni, Pengsheng; Tian, Feng; Gorton, George, III; Mulcahey, M. J.
2011-01-01
This article reports on the content range and measurement precision of an upper extremity (UE) computer adaptive testing (CAT) platform of physical function in children with cerebral palsy. Upper extremity items representing skills of all abilities were administered to 305 parents. These responses were compared with two traditional standardized…
Gracitelli, Guilherme C; Meric, Gokhan; Briggs, Dustin T; Pulido, Pamela A; McCauley, Julie C; Belloti, João Carlos; Bugbee, William D
2015-04-01
In most treatment algorithms, osteochondral allograft (OCA) transplantation is regarded as an alternative salvage procedure when other, previous reparative treatments have failed. To compare the outcomes of a retrospective matched-pair cohort of (1) primary OCA transplantation and (2) OCA transplantation after failure of previous subchondral marrow stimulation. Cohort study; Level of evidence, 3. An OCA database was used to identify 46 knees that had OCA transplantation performed as a primary treatment (group 1) and 46 knees that underwent OCA transplantation after failure of previous subchondral marrow stimulation (group 2). All patients had a minimum of 2 years' follow-up. Patients in each group were matched for age (±5 years), diagnosis (osteochondral lesion, degenerative chondral lesion, traumatic chondral injury), and graft size (small, <5 cm2; medium, 5-10 cm2; large, >10 cm2). The groups had similar body mass indexes, sex distributions, and graft locations (femoral condyle, patella, and trochlea. The number and type of further surgeries after the OCA transplantation were assessed; failure was defined as any reoperation resulting in removal of the graft. Functional outcomes were evaluated by use of the modified Merle d'Aubigné-Postel (18-point) scale, International Knee Documentation Committee (IKDC) subjective knee evaluation form, Knee injury and Osteoarthritis Outcomes Score (KOOS), and the Knee Society function (KS-F) scale. Patient satisfaction, according to a 5-point scale from "extremely satisfied" to "dissatisfied," was recorded at the latest follow-up. Eleven of 46 knees (24%) in group 1 had reoperations, compared with 20 of 46 knees (44%) in group 2 (P = .04). The OCA was classified as a failure in 5 knees (11%) in group 1 and 7 knees (15%) in group 2 (P = .53). At 10 years of follow-up, survivorship of the graft was 87.4% and 86% in groups 1 and 2, respectively. Both groups showed improvement in pain and function on all subjective scores from preoperatively to the latest follow-up (all P < .001). Results showed that 87% of patients in group 1 and 97% in group 2 were "satisfied" or "extremely satisfied" with the OCA transplantation. Favorable results were shown in both groups with significant improvement of functional scores and excellent survivorship. Despite the higher reoperation rate in the previously treated group, previous subchondral marrow stimulation did not adversely affect the survivorship and functional outcome of OCA transplantation. © 2015 The Author(s).
Quinn, Lori; Busse, Monica; Dal Bello-Haas, Vanina
2013-01-01
Parkinson Disease (PD) and Huntington Disease (HD) are degenerative neurological diseases, which can result in impairments and activity limitations affecting the upper extremities from early in the disease process. The progressive nature of these diseases poses unique challenges for therapists aiming to effectively maximize physical functioning and minimize participation restrictions in these patient groups. Research is underway in both diseases to develop effective disease-modifying agents and pharmacological interventions, as well as mobility-focused rehabilitation protocols. Rehabilitation, and in particular task-specific interventions, has the potential to influence the upper extremity functional abilities of patients with these degenerative conditions. However to date, investigations of interventions specifically addressing upper extremity function have been limited in both PD, and in particular HD. In this paper, we provide an update of the known pathological features of PD and HD as they relate to upper extremity function. We further review the available literature on the use of outcome measures, and the clinical management of upper extremity function in both conditions. Due to the currently limited evidence base in both diseases, we recommend utilization of a clinical management framework specific for degenerative conditions that can serve as a guideline for disease management. Copyright © 2013. Published by Elsevier Inc.
Turbulent transport measurements with a laser Doppler velocimeter
NASA Technical Reports Server (NTRS)
Edwards, R. V.; Angus, J. C.; Dunning, J. W., Jr.
1972-01-01
The power spectrum of phototube current from a laser Doppler velocimeter operating in the heterodyne mode has been computed. The spectrum is obtained in terms of the space time correlation function of the fluid. The spectral width and shape predicted by the theory are in agreement with experiment. For normal operating parameters the time average spectrum contains information only for times shorter than the Lagrangian integral time scale of the turbulence. To examine the long time behavior, one must use either extremely small scattering angles, much longer wavelength radiation or a different mode of signal analysis, e.g., FM detection.
Maximum likelihood estimation for life distributions with competing failure modes
NASA Technical Reports Server (NTRS)
Sidik, S. M.
1979-01-01
Systems which are placed on test at time zero, function for a period and die at some random time were studied. Failure may be due to one of several causes or modes. The parameters of the life distribution may depend upon the levels of various stress variables the item is subject to. Maximum likelihood estimation methods are discussed. Specific methods are reported for the smallest extreme-value distributions of life. Monte-Carlo results indicate the methods to be promising. Under appropriate conditions, the location parameters are nearly unbiased, the scale parameter is slight biased, and the asymptotic covariances are rapidly approached.
Han, Yong; Liu, Da-Jiang; Evans, James W
2014-08-13
Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Han, Yong; Liu, Da-Jiang; Evans, James W
2014-08-13
Far-from-equilibrium shape and structure evolution during formation and post-assembly sintering of bimetallic nanoclusters is extremely sensitive to the periphery diffusion and intermixing kinetics. Precise characterization of the many distinct local-environment-dependent diffusion barriers is achieved for epitaxial nanoclusters using density functional theory to assess interaction energies both with atoms at adsorption sites and at transition states. Kinetic Monte Carlo simulation incorporating these barriers then captures structure evolution on the appropriate time scale for two-dimensional core-ring and intermixed Au-Ag nanoclusters on Ag(100).
Montpetit, Kathleen; Haley, Stephen; Bilodeau, Nathalie; Ni, Pengsheng; Tian, Feng; Gorton, George; Mulcahey, M J
2011-02-01
This article reports on the content range and measurement precision of an upper extremity (UE) computer adaptive testing (CAT) platform of physical function in children with cerebral palsy. Upper extremity items representing skills of all abilities were administered to 305 parents. These responses were compared with two traditional standardized measures: Pediatric Outcomes Data Collection Instrument and Functional Independence Measure for Children. The UE CAT correlated strongly with the upper extremity component of these measures and had greater precision when describing individual functional ability. The UE item bank has wider range with items populating the lower end of the ability spectrum. This new UE item bank and CAT have the capability to quickly assess children of all ages and abilities with good precision and, most importantly, with items that are meaningful and appropriate for their age and level of physical function.
Trukhmanov, I M; Suslova, G A; Ponomarenko, G N
This paper is devoted to the characteristic of the informative value of the functional step test with the application of the heel cushions in the children for the purpose of differential diagnostics of anatomic and functional differences in the length of the lower extremities. A total of 85 schoolchildren with different length of the lower extremities have been examined. The comparative evaluation of the results of clinical and instrumental examinations was undertaken. The data obtained with the help of the functional step test give evidence of its very high sensitivity, specificity, and clinical significant as a tool for the examination of the children with different length of the low extremities. It is concluded that the test is one of the most informative predictors of the effectiveness of rehabilitation in the children with different length of the lower extremities.
Predictors of Drought Recovery across Forest Ecosystems
NASA Astrophysics Data System (ADS)
Anderegg, W.
2016-12-01
The impacts of climate extremes on terrestrial ecosystems are poorly understood but central for predicting carbon cycle feedbacks to climate change. Coupled climate-carbon cycle models typically assume that vegetation recovery from extreme drought is immediate and complete, which conflicts with basic plant physiological understanding. Here, we discuss what we have learned about forest ecosystem recovery from extreme drought across spatial and temporal scales, drawing on inference from tree rings, eddy covariance data, large scale gross primary productivity products, and ecosystem models. In tree rings, we find pervasive and substantial "legacy effects" of reduced growth and incomplete recovery for 1-4 years after severe drought, and that legacy effects are most prevalent in dry ecosystems, Pinaceae, and species with low hydraulic safety margins. At larger scales, we see relatively rapid recovery of ecosystem fluxes, with strong influences of ecosystem productivity and diversity and longer recovery periods in high latidue forests. In contrast, no or limited legacy effects are simulated in current climate-vegetation models after drought, and we highlight some of the key missing mechanisms in dynamic vegetation models. Our results reveal hysteresis in forest ecosystem carbon cycling and delayed recovery from climate extremes and help advance a predictive understanding of ecosystem recovery.
Time Burden of Standardized Hip Questionnaires.
Chughtai, Morad; Khlopas, Anton; Mistry, Jaydev B; Gwam, Chukwuweike U; Elmallah, Randa K; Mont, Michael A
2016-04-01
Many standardized scales and questionnaires have been developed to assess outcomes of patients undergoing total hip arthroplasty (THA). However, these surveys can be a burden to both patients and orthopaedists as some are time-inefficient. In addition, there is a paucity of reports assessing the time it takes to complete them. In this study we aimed to: (1) assess how long it takes to complete the most common standardized hip questionnaires; (2) determine the presence of variation in completion time; and (3) evaluate the effects of age, gender, and level of education on completion time. Based on a previous study, we selected the seven most commonly used hip scoring systems-Western Ontario and McMaster Universities Hip Outcome Assessment (WOMAC), Harris Hip Score (HHS), Hip Disability and Osteoarthritis Outcome Score (HOOS), Larson Score, Short-form 36 (SF-36), modified Merle d'Aubigne and Postel Score (MDA), and Lower Extremity Functional Scale (LEFS). The standardized scales and questionnaires were randomly administered to 70 subjects. The subjects were unaware that they were being timed during completion of the questionnaire. We obtained the coefficients of variation of time for each questionnaire. The mean time to complete the questionnaire was then stratified and compared based on age, gender, and level of education. The mean time to complete each of the systems is listed in ascending order: Modified Merle d'Aubigne and Postel Score (MDA), Lower Extremity Functional Scale (LEFS), Western Ontario and McMaster Universities Hip Outcome Assessment (WOMAC), Harris Hip Score (HHS), Larson Score, Hip Disability and Osteoarthritis Outcome Score (HOOS), and Short-form 36 (SF-36). The WOMAC and Larson Score coefficients of variation were the largest, and the HOOS and MDA were the smallest. There was a significantly higher mean time to completion in those who were above or equal to the age of 55 years as compared to those who were below the age of 55 (227 vs. 166 seconds). There was no significant association found in time of completion between gender or education level. Standardized scales and questionnaire which assess THA patients can be burdensome and time-inefficient, which may lead to task-induced fatigue. This may result in inaccurate THA patient assessments, which do not reflect the patient's true state. Future studies should aim to create an encompassing questionnaire that is time efficient and can replace all currently used validated systems.
Changing Pattern of Indian Monsoon Extremes: Global and Local Factors
NASA Astrophysics Data System (ADS)
Ghosh, Subimal; Shastri, Hiteshri; Pathak, Amey; Paul, Supantha
2017-04-01
Indian Summer Monsoon Rainfall (ISMR) extremes have remained a major topic of discussion in the field of global change and hydro-climatology over the last decade. This attributes to multiple conclusions on changing pattern of extremes along with poor understanding of multiple processes at global and local scales associated with monsoon extremes. At a spatially aggregate scale, when number of extremes in the grids are summed over, a statistically significant increasing trend is observed for both Central India (Goswami et al., 2006) and all India (Rajeevan et al., 2008). However, such a result over Central India does not satisfy flied significance test of increase and no decrease (Krishnamurthy et al., 2009). Statistically rigorous extreme value analysis that deals with the tail of the distribution reveals a spatially non-uniform trend of extremes over India (Ghosh et al., 2012). This results into statistically significant increasing trend of spatial variability. Such an increase of spatial variability points to the importance of local factors such as deforestation and urbanization. We hypothesize that increase of spatial average of extremes is associated with the increase of events occurring over large region, while increase in spatial variability attributes to local factors. A Lagrangian approach based dynamic recycling model reveals that the major contributor of moisture to wide spread extremes is Western Indian Ocean, while land surface also contributes around 25-30% of moisture during the extremes in Central India. We further test the impacts of local urbanization on extremes and find the impacts are more visible over West central, Southern and North East India. Regional atmospheric simulations coupled with Urban Canopy Model (UCM) shows that urbanization intensifies extremes in city areas, but not uniformly all over the city. The intensification occurs over specific pockets of the urban region, resulting an increase in spatial variability even within the city. This also points to the need of setting up multiple weather stations over the city at a finer resolution for better understanding of urban extremes. We conclude that the conventional method of considering large scale factors is not sufficient for analysing the monsoon extremes and characterization of the same needs a blending of both global and local factors. Ghosh, S., Das, D., Kao, S-C. & Ganguly, A. R. Lack of uniform trends but increasing spatial variability in observed Indian rainfall extremes. Nature Clim. Change 2, 86-91 (2012) Goswami, B. N., Venugopal, V., Sengupta, D., Madhusoodanan, M. S. & Xavier, P. K. Increasing trend of extreme rain events over India in a warming environment. Science 314, 1442-1445 (2006). Krishnamurthy, C. K. B., Lall, U. & Kwon, H-H. Changing frequency and intensity of rainfall extremes over India from 1951 to 2003. J. Clim. 22, 4737-4746 (2009). Rajeevan, M., Bhate, J. & Jaswal, A. K. Analysis of variability and trends of extreme rainfall events over India using 104 years of gridded daily rainfall data. Geophys. Res. Lett. 35, L18707 (2008).
Kalmet, Pishtiwan H S; Meys, Guido; V Horn, Yvette Y; Evers, Silvia M A A; Seelen, Henk A M; Hustinx, Paul; Janzing, Heinrich; Vd Veen, Alexander; Jaspars, Coen; Sintenie, Jan Bernard; Blokhuis, Taco J; Poeze, Martijn; Brink, Peter R G
2018-02-02
The standard aftercare treatment in surgically treated trauma patients with fractures around or in a joint, known as (peri)- or intra-articular fractures of the lower extremities, is either non-weight bearing or partial weight bearing. We have developed an early permissive weight bearing post-surgery rehabilitation protocol in surgically treated patients with fractures of the lower extremities. In this proposal we want to compare our early permissive weight bearing protocol to the existing current non-weight bearing guidelines in a prospective comparative cohort study. The study is a prospective multicenter comparative cohort study in which two rehabilitation aftercare treatments will be contrasted, i.e. permissive weight bearing and non-weight bearing according to the AO-guideline. The study population consists of patients with a surgically treated fracture of the pelvis/acetabulum or a surgically treated (peri)- or intra-articular fracture of the lower extremities. The inclusion period is 12 months. The duration of follow up is 6 months, with measurements taken at baseline, 2,6,12 and 26 weeks post-surgery. ADL with Lower Extremity Functional Scale. Outcome variables for compliance, as measured with an insole pressure measurement system, encompass peak load and step duration. This study will investigate the (cost-) effectiveness of a permissive weight bearing aftercare protocol. The results will provide evidence whether a permissive weight bearing protocol is more effective than the current non-weight bearing protocol. The study is registered in the Dutch Trial Register ( NTR6077 ). Date of registration: 01-09-2016.
NASA Astrophysics Data System (ADS)
Gao, X.; Schlosser, C. A.
2013-12-01
Global warming is expected to alter the frequency and/or magnitude of extreme precipitation events. Such changes could have substantial ecological, economic, and sociological consequences. However, climate models in general do not correctly reproduce the frequency and intensity distribution of precipitation, especially at the regional scale. In this study, gridded data from a dense network of surface precipitation gauges and a global atmospheric analysis at a coarser scale are combined to develop a diagnostic framework for the large-scale meteorological conditions (i.e. flow features, moisture supply) that dominate during extreme precipitation. Such diagnostic framework is first evaluated with the late 20th century simulations from an ensemble of climate models participating in the Coupled Model Intercomparison Project Phase 5 (CMIP5), and is found to produce more consistent (and less uncertain) total and interannaul number of extreme days with the observations than the model-based precipitation over the south-central United States and the Western United States examined in this study. The framework is then applied to the CMIP5 multi-model projections for two radiative forcing scenarios (Representative Concentration Pathways 4.5 and 8.5) to assess the potential future changes in the probability of precipitation extremes over the same study regions. We further analyze the accompanying circulation features and their changes that may be responsible for shifts in extreme precipitation in response to changed climate. The results from this study may guide hazardous weather watches and help society develop adaptive strategies for preventing catastrophic losses.
Assessing changes in extreme convective precipitation from a damage perspective
NASA Astrophysics Data System (ADS)
Schroeer, K.; Tye, M. R.
2016-12-01
Projected increases in high-intensity short-duration convective precipitation are expected even in regions that are likely to become more arid. Such high intensity precipitation events can trigger hazardous flash floods, debris flows and landslides that put people and local assets at risk. However, the assessment of local scale precipitation extremes is hampered by its high spatial and temporal variability. In addition to which, not only are extreme events rare, but such small scale events are likely to be underreported where they don't coincide with the observation network. Rather than focus solely on the convective precipitation, understanding the characteristics of these extremes which drive damage may be more effective to assess future risks. Two sources of data are used in this study. First, sub-daily precipitation observations over the Southern Alps enable an examination of seasonal and regional patterns in high-intensity convective precipitation and their relationship with weather types. Secondly, reports of private loss and damage on a household scale are used to identify which events are most damaging, or what conditions potentially enhance the vulnerability to these extremes.This study explores the potential added value from including recorded loss and damage data to understand the risks from summertime convective precipitation events. By relating precipitation generating weather types to the severity of damage we hope to develop a mechanism to assess future risks. A further benefit would be to identify from damage reports the likely occurrence of precipitation extremes where no direct observations are available and use this information to validate remotely sensed observations.
Extreme precipitation in WRF during the Newcastle East Coast Low of 2007
NASA Astrophysics Data System (ADS)
Gilmore, James B.; Evans, Jason P.; Sherwood, Steven C.; Ekström, Marie; Ji, Fei
2016-08-01
In the context of regional downscaling, we study the representation of extreme precipitation in the Weather Research and Forecasting (WRF) model, focusing on a major event that occurred on the 8th of June 2007 along the coast of eastern Australia (abbreviated "Newy"). This was one of the strongest extra-tropical low-pressure systems off eastern Australia in the last 30 years and was one of several storms comprising a test bed for the WRF ensemble that underpins the regional climate change projections for eastern Australia (New South Wales/Australian Capital Territory Regional Climate Modelling Project, NARCliM). Newy provides an informative case study for examining precipitation extremes as simulated by WRF set up for regional downscaling. Here, simulations from the NARCliM physics ensemble of Newy available at ˜10 km grid spacing are used. Extremes and spatio-temporal characteristics are examined using land-based daily and hourly precipitation totals, with a particular focus on hourly accumulations. Of the different physics schemes assessed, the cumulus and the boundary layer schemes cause the largest differences. Although the Betts-Miller-Janjic cumulus scheme produces better rainfall totals over the entire storm, the Kain-Fritsch cumulus scheme promotes higher and more realistic hourly extreme precipitation totals. Analysis indicates the Kain-Fritsch runs are correlated with larger resolved grid-scale vertical moisture fluxes, which are produced through the influence of parameterized convection on the larger-scale circulation and the subsequent convergence and ascent of moisture. Results show that WRF qualitatively reproduces spatial precipitation patterns during the storm, albeit with some errors in timing. This case study indicates that whilst regional climate simulations of an extreme event such as Newy in WRF may be well represented at daily scales irrespective of the physics scheme used, the representation at hourly scales is likely to be physics scheme dependent.
A rational decision rule with extreme events.
Basili, Marcello
2006-12-01
Risks induced by extreme events are characterized by small or ambiguous probabilities, catastrophic losses, or windfall gains. Through a new functional, that mimics the restricted Bayes-Hurwicz criterion within the Choquet expected utility approach, it is possible to represent the decisionmaker behavior facing both risky (large and reliable probability) and extreme (small or ambiguous probability) events. A new formalization of the precautionary principle (PP) is shown and a new functional, which encompasses both extreme outcomes and expectation of all the possible results for every act, is claimed.
NASA Astrophysics Data System (ADS)
Guo, Enliang; Zhang, Jiquan; Si, Ha; Dong, Zhenhua; Cao, Tiehua; Lan, Wu
2017-10-01
Environmental changes have brought about significant changes and challenges to water resources and management in the world; these include increasing climate variability, land use change, intensive agriculture, and rapid urbanization and industrial development, especially much more frequency extreme precipitation events. All of which greatly affect water resource and the development of social economy. In this study, we take extreme precipitation events in the Midwest of Jilin Province as an example; daily precipitation data during 1960-2014 are used. The threshold of extreme precipitation events is defined by multifractal detrended fluctuation analysis (MF-DFA) method. Extreme precipitation (EP), extreme precipitation ratio (EPR), and intensity of extreme precipitation (EPI) are selected as the extreme precipitation indicators, and then the Kolmogorov-Smirnov (K-S) test is employed to determine the optimal probability distribution function of extreme precipitation indicators. On this basis, copulas connect nonparametric estimation method and the Akaike Information Criterion (AIC) method is adopted to determine the bivariate copula function. Finally, we analyze the characteristics of single variable extremum and bivariate joint probability distribution of the extreme precipitation events. The results show that the threshold of extreme precipitation events in semi-arid areas is far less than that in subhumid areas. The extreme precipitation frequency shows a significant decline while the extreme precipitation intensity shows a trend of growth; there are significant differences in spatiotemporal of extreme precipitation events. The spatial variation trend of the joint return period gets shorter from the west to the east. The spatial distribution of co-occurrence return period takes on contrary changes and it is longer than the joint return period.
Wavelets and distributed approximating functionals
NASA Astrophysics Data System (ADS)
Wei, G. W.; Kouri, D. J.; Hoffman, D. K.
1998-07-01
A general procedure is proposed for constructing father and mother wavelets that have excellent time-frequency localization and can be used to generate entire wavelet families for use as wavelet transforms. One interesting feature of our father wavelets (scaling functions) is that they belong to a class of generalized delta sequences, which we refer to as distributed approximating functionals (DAFs). We indicate this by the notation wavelet-DAFs. Correspondingly, the mother wavelets generated from these wavelet-DAFs are appropriately called DAF-wavelets. Wavelet-DAFs can be regarded as providing a pointwise (localized) spectral method, which furnishes a bridge between the traditional global methods and local methods for solving partial differential equations. They are shown to provide extremely accurate numerical solutions for a number of nonlinear partial differential equations, including the Korteweg-de Vries (KdV) equation, for which a previous method has encountered difficulties (J. Comput. Phys. 132 (1997) 233).
NASA Technical Reports Server (NTRS)
Kirschbaum, Dalia; Adler, Robert; Adler, David; Peters-Lidard, Christa; Huffman, George
2012-01-01
It is well known that extreme or prolonged rainfall is the dominant trigger of landslides worldwide. While research has evaluated the spatiotemporal distribution of extreme rainfall and landslides at local or regional scales using in situ data, few studies have mapped rainfall-triggered landslide distribution globally due to the dearth of landslide data and consistent precipitation information. This study uses a newly developed Global Landslide Catalog (GLC) and a 13-year satellite-based precipitation record from TRMM data. For the first time, these two unique products provide the foundation to quantitatively evaluate the co-occurrence of precipitation and landslides globally. Evaluation of the GLC indicates that 2010 had a large number of high-impact landslide events relative to previous years. This study considers how variations in extreme and prolonged satellite-based rainfall are related to the distribution of landslides over the same time scales for three active landslide areas: Central America, the Himalayan Arc, and central-eastern China. Several test statistics confirm that TRMM rainfall generally scales with the observed increase in landslide reports and fatal events for 2010 and previous years over each region. These findings suggest that the co-occurrence of satellite precipitation and landslide reports may serve as a valuable indicator for characterizing the spatiotemporal distribution of landslide-prone areas in order to establish a global rainfall-triggered landslide climatology. This study characterizes the variability of satellite precipitation data and reported landslide activity at the globally scale in order to improve landslide cataloging, forecasting and quantify potential triggering sources at daily, monthly and yearly time scales.
Scapular resting position, shoulder pain and function in disabled athletes.
Aytar, Aydan; Zeybek, Aslican; Pekyavas, Nihan Ozunlu; Tigli, Ayca Aytar; Ergun, Nevin
2015-10-01
Despite the fact that the number of disabled individuals participating in sports is increasing, there are only sparse reports in the literature concerning overuse injuries. The purpose of this study was to compare scapular resting position, shoulder pain, and function in wheelchair basketball, amputee soccer, and disabled table tennis players. Descriptive study. A total of 63 disabled players from amputee soccer, wheelchair basketball, and disabled table tennis participated in our study. Scapular resting position was taken as primary outcome; pain and function were taken as secondary outcome measurements. Scapular resting position was evaluated with Lateral Scapular Slide Test. Visual Analog Scale was used for evaluating shoulder pain intensity. Quick disabilities of the arm, shoulder, and hand questionnaire were used to assess upper extremity function. There was a significant difference in shoulder pain, function, and scapular resting position in all groups (p < 0.05). Paired comparisons between amputee soccer and wheelchair basketball players and also amputee soccer and disabled table tennis showed difference for all measurement parameters (p < 0.05). When the results are evaluated, it may be stated that amputee soccer players have better scapular resting position than other sports. Crutch usage may not negatively affect scapular resting position and perceived function as much as wheelchair usage. Exercise techniques for shoulder and resting position could be included in training programs of disabled athletes. Wheelchair/crutch usage is a risk, and special exercise techniques for shoulder and dyskinesis could be included in training programs to prevent injury. However, it may not just be important for wheelchair athletes, it may also be important for amputee soccer players. In particular, total upper extremity evaluations and exercises could be added within exercise programs. © The International Society for Prosthetics and Orthotics 2014.
Identification and characterization of extraordinary rainstorms in Italy
NASA Astrophysics Data System (ADS)
Libertino, Andrea; Ganora, Daniele; Claps, Pierluigi
2017-04-01
Despite its generally mild climate, Italy, as most of the Mediterranean region, is prone to the development of "super-extreme" events with extraordinary rainfall intensities. The main triggering mechanisms of these events is nowadays quite well known, but more research is needed to transform this knowledge in directions to build updated rainstorm hazard maps at the national scale. Moreover, a precise definition of "super-extremes" is still lacking, since the original suggestion of a second specific EV1 component made with the TCEV distribution. The above considerations led us to consider Italy a peculiar and challenging case study, where the geographic and orographic settings, associated with recurring storm-induced disasters, require an updated assessment of the "super-extreme" rainfall hazard at the country scale. Until now, the lack of a unique dataset of rainfall extremes has made the above task difficult to reach. In this work we report the results of the analysis made on a comprehensive and uniform set of rainfall annual maxima, collected from the different authorities in charge, representing the reference dataset of extremes from 1 to 24 hours duration. The database includes more than 6000 measuring points nationwide, spanning the period 1916 - 2014. Our analysis aims at identifying a meaningful population of records deviating from an "ordinary" definition of extreme value distribution, and assessing the stationarity in the timing of these events at the national scale. The first problems that need to be overcome are related to the not uniform distribution of data in time and space. Then the evaluation of meaningful relative thresholds aimed at selecting significant samples for the trend assessment has to be addressed. A first investigation attempt refers to the events exceeding a threshold that identify an average of one occurrence per year all over Italy, i.e. with a 1/1000 overall probability of exceedance. Geographic representation of these "outliers", scaled on local averages, demonstrates some prevailing clustering on the Thyrrenian coastal areas. Subsequent application of quantile regressions, aimed at minimizing the temporal non-uniformity of samples, shows significant increasing trends on the extremes of very short duration. Further efforts have been undertaken to explore the selection of a common national set of higher order parameters all over Italy, that would make less arduous to identify the probability of occurrence of "super-extremes" in the country.
de la Torre, B; Ellner, M; Pou, P; Nicoara, N; Pérez, Rubén; Gómez-Rodríguez, J M
2016-06-17
We show that noncontact atomic force microscopy (AFM) is sensitive to the local stiffness in the atomic-scale limit on weakly coupled 2D materials, as graphene on metals. Our large amplitude AFM topography and dissipation images under ultrahigh vacuum and low temperature resolve the atomic and moiré patterns in graphene on Pt(111), despite its extremely low geometric corrugation. The imaging mechanisms are identified with a multiscale model based on density-functional theory calculations, where the energy cost of global and local deformations of graphene competes with short-range chemical and long-range van der Waals interactions. Atomic contrast is related with short-range tip-sample interactions, while the dissipation can be understood in terms of global deformations in the weakly coupled graphene layer. Remarkably, the observed moiré modulation is linked with the subtle variations of the local interplanar graphene-substrate interaction, opening a new route to explore the local mechanical properties of 2D materials at the atomic scale.