Sample records for eye trajectory based

  1. Signal-dependent noise determines motor planning

    NASA Astrophysics Data System (ADS)

    Harris, Christopher M.; Wolpert, Daniel M.

    1998-08-01

    When we make saccadic eye movements or goal-directed arm movements, there is an infinite number of possible trajectories that the eye or arm could take to reach the target,. However, humans show highly stereotyped trajectories in which velocity profiles of both the eye and hand are smooth and symmetric for brief movements,. Here we present a unifying theory of eye and arm movements based on the single physiological assumption that the neural control signals are corrupted by noise whose variance increases with the size of the control signal. We propose that in the presence of such signal-dependent noise, the shape of a trajectory is selected to minimize the variance of the final eye or arm position. This minimum-variance theory accurately predicts the trajectories of both saccades and arm movements and the speed-accuracy trade-off described by Fitt's law. These profiles are robust to changes in the dynamics of the eye or arm, as found empirically,. Moreover, the relation between path curvature and hand velocity during drawing movements reproduces the empirical `two-thirds power law',. This theory provides a simple and powerful unifying perspective for both eye and arm movement control.

  2. The Trajectories of Saccadic Eye Movements.

    ERIC Educational Resources Information Center

    Bahill, A. Terry; Stark, Lawrence

    1979-01-01

    Investigates the trajectories of saccadic eye movements, the control signals of the eye, and nature of the mechanisms that generate them, using the techniques of bioengineering in collecting the data. (GA)

  3. Nerve Fiber Flux Analysis Using Wide-Field Swept-Source Optical Coherence Tomography.

    PubMed

    Tan, Ou; Liu, Liang; Liu, Li; Huang, David

    2018-02-01

    To devise a method to quantify nerve fibers over their arcuate courses over an extended peripapillary area using optical coherence tomography (OCT). Participants were imaged with 8 × 8-mm volumetric OCT scans centered at the optic disc. A new quantity, nerve fiber flux (NFF), represents the cross-sectional area transected perpendicular to the nerve fibers. The peripapillary area was divided into 64 tracks with equal flux. An iterative algorithm traced the trajectory of the tracks assuming that the relative distribution of the NFF was conserved with compensation for fiber connections to ganglion cells on the macular side. Average trajectory was averaged from normal eyes and use to calculate the NFF maps for glaucomatous eyes. The NFF maps were divided into eight sectors that correspond to visual field regions. There were 24 healthy and 10 glaucomatous eyes enrolled. The algorithm converged on similar patterns of NFL tracks for all healthy eyes. In glaucomatous eyes, NFF correlated with visual field sensitivity in the arcuate sectors (Spearman ρ = 0.53-0.62). Focal nerve fiber loss in glaucomatous eyes appeared as uniform tracks of NFF defects that followed the expected arcuate fiber trajectory. Using an algorithm based on the conservation of flux, we derived nerve fiber trajectories in the peripapillary area. The NFF map is useful for the visualization of focal defects and quantification of sector nerve fiber loss from wide-area volumetric OCT scans. NFF provides a cumulative measure of volumetric loss along nerve fiber tracks and could improve the detection of focal glaucoma damage.

  4. Eye-hand coupling during closed-loop drawing: evidence of shared motor planning?

    PubMed

    Reina, G Anthony; Schwartz, Andrew B

    2003-04-01

    Previous paradigms have used reaching movements to study coupling of eye-hand kinematics. In the present study, we investigated eye-hand kinematics as curved trajectories were drawn at normal speeds. Eye and hand movements were tracked as a monkey traced ellipses and circles with the hand in free space while viewing the hand's position on a computer monitor. The results demonstrate that the movement of the hand was smooth and obeyed the 2/3 power law. Eye position, however, was restricted to 2-3 clusters along the hand's trajectory and fixed approximately 80% of the time in one of these clusters. The eye remained stationary as the hand moved away from the fixation for up to 200 ms and saccaded ahead of the hand position to the next fixation along the trajectory. The movement from one fixation cluster to another consistently occurred just after the tangential hand velocity had reached a local minimum, but before the next segment of the hand's trajectory began. The next fixation point was close to an area of high curvature along the hand's trajectory even though the hand had not reached that point along the path. A visuo-motor illusion of hand movement demonstrated that the eye movement was influenced by hand movement and not simply by visual input. During the task, neural activity of pre-motor cortex (area F4) was recorded using extracellular electrodes and used to construct a population vector of the hand's trajectory. The results suggest that the saccade onset is correlated in time with maximum curvature in the population vector trajectory for the hand movement. We hypothesize that eye and arm movements may have common, or shared, information in forming their motor plans.

  5. Evaluation of helmet-mounted display targeting symbology based on eye tracking technology

    NASA Astrophysics Data System (ADS)

    Wang, Lijing; Wen, Fuzhen; Ma, Caixin; Zhao, Shengchu; Liu, Xiaodong

    2014-06-01

    The purpose of this paper is to find the Target Locator Lines (TLLs) which perform best by contrasting and comparing experiment based on three kinds of TTLs of fighter HMD. 10 university students, male, with an average age of 21-23, corrected visual acuity 1.5, participated in the experiment. In the experiment, head movement data was obtained by TrackIR. The geometric relationship between the coordinates of the real world and coordinates of the visual display was obtained by calculating the distance from viewpoint to midpoint of both eyes and the head movement data. Virtual helmet system simulation experiment environment was created by drawing TLLs of fighter HMD in the flight simulator visual scene. In the experiment, eye tracker was used to record the time and saccade trajectory. The results were evaluated by the duration of the time and saccade trajectory. The results showed that the symbol"locator line with digital vector length indication" cost most time and had the longest length of the saccade trajectory. It is the most ineffective and most unacceptable way. "Locator line with extending head vector length symbol" cost less time and had less length of the saccade trajectory. It is effective and acceptable;"Locator line with reflected vector length symbol" cost the least time and had the least length of the saccade trajectory. It is the most effective and most acceptable way. "Locator line with reflected vector length symbol" performs best. The results will provide reference value for the research of TTLs in future.

  6. Curved Saccade Trajectories Reveal Conflicting Predictions in Associative Learning

    ERIC Educational Resources Information Center

    Koenig, Stephan; Lachnit, Harald

    2011-01-01

    We report how the trajectories of saccadic eye movements are affected by memory interference acquired during associative learning. Human participants learned to perform saccadic choice responses based on the presentation of arbitrary central cues A, B, AC, BC, AX, BY, X, and Y that were trained to predict the appearance of a peripheral target…

  7. A Pilot Study of Horizontal Head and Eye Rotations in Baseball Batting.

    PubMed

    Fogt, Nick; Persson, Tyler W

    2017-08-01

    The purpose of the study was to measure and compare horizontal head and eye tracking movements as baseball batters "took" pitches and swung at baseball pitches. Two former college baseball players were tested in two conditions. A pitching machine was used to project tennis balls toward the subjects. In the first condition, subjects acted as if they were taking (i.e., not swinging) the pitches. In the second condition, subjects attempted to bat the pitched balls. Head movements were measured with an inertial sensor; eye movements were measured with a video eye tracker. For each condition, the relationship between the horizontal head and eye rotations was similar for the two subjects, as were the overall head-, eye-, and gaze-tracking strategies. In the "take" condition, head movements in the direction of the ball were larger than eye movements for much of the pitch trajectory. Large eye movements occurred only late in the pitch trajectory. Gaze was directed near the ball until approximately 150 milliseconds before the ball arrived at the batter, at which time gaze was directed ahead of the ball to a location near that occupied when the ball crosses the plate. In the "swing" condition, head movements in the direction of the ball were larger than eye movements throughout the pitch trajectory. Gaze was directed near the ball until approximately 50 to 60 milliseconds prior to pitch arrival at the batter. Horizontal head rotations were larger than horizontal eye rotations in both the "take" and "swing" conditions. Gaze was directed ahead of the ball late in the pitch trajectory in the "take" condition, whereas gaze was directed near the ball throughout much of the pitch trajectory in the "swing" condition.

  8. A Bayesian computational model for online character recognition and disability assessment during cursive eye writing.

    PubMed

    Diard, Julien; Rynik, Vincent; Lorenceau, Jean

    2013-01-01

    This research involves a novel apparatus, in which the user is presented with an illusion inducing visual stimulus. The user perceives illusory movement that can be followed by the eye, so that smooth pursuit eye movements can be sustained in arbitrary directions. Thus, free-flow trajectories of any shape can be traced. In other words, coupled with an eye-tracking device, this apparatus enables "eye writing," which appears to be an original object of study. We adapt a previous model of reading and writing to this context. We describe a probabilistic model called the Bayesian Action-Perception for Eye On-Line model (BAP-EOL). It encodes probabilistic knowledge about isolated letter trajectories, their size, high-frequency components of the produced trajectory, and pupil diameter. We show how Bayesian inference, in this single model, can be used to solve several tasks, like letter recognition and novelty detection (i.e., recognizing when a presented character is not part of the learned database). We are interested in the potential use of the eye writing apparatus by motor impaired patients: the final task we solve by Bayesian inference is disability assessment (i.e., measuring and tracking the evolution of motor characteristics of produced trajectories). Preliminary experimental results are presented, which illustrate the method, showing the feasibility of character recognition in the context of eye writing. We then show experimentally how a model of the unknown character can be used to detect trajectories that are likely to be new symbols, and how disability assessment can be performed by opportunistically observing characteristics of fine motor control, as letter are being traced. Experimental analyses also help identify specificities of eye writing, as compared to handwriting, and the resulting technical challenges.

  9. A Bayesian computational model for online character recognition and disability assessment during cursive eye writing

    PubMed Central

    Diard, Julien; Rynik, Vincent; Lorenceau, Jean

    2013-01-01

    This research involves a novel apparatus, in which the user is presented with an illusion inducing visual stimulus. The user perceives illusory movement that can be followed by the eye, so that smooth pursuit eye movements can be sustained in arbitrary directions. Thus, free-flow trajectories of any shape can be traced. In other words, coupled with an eye-tracking device, this apparatus enables “eye writing,” which appears to be an original object of study. We adapt a previous model of reading and writing to this context. We describe a probabilistic model called the Bayesian Action-Perception for Eye On-Line model (BAP-EOL). It encodes probabilistic knowledge about isolated letter trajectories, their size, high-frequency components of the produced trajectory, and pupil diameter. We show how Bayesian inference, in this single model, can be used to solve several tasks, like letter recognition and novelty detection (i.e., recognizing when a presented character is not part of the learned database). We are interested in the potential use of the eye writing apparatus by motor impaired patients: the final task we solve by Bayesian inference is disability assessment (i.e., measuring and tracking the evolution of motor characteristics of produced trajectories). Preliminary experimental results are presented, which illustrate the method, showing the feasibility of character recognition in the context of eye writing. We then show experimentally how a model of the unknown character can be used to detect trajectories that are likely to be new symbols, and how disability assessment can be performed by opportunistically observing characteristics of fine motor control, as letter are being traced. Experimental analyses also help identify specificities of eye writing, as compared to handwriting, and the resulting technical challenges. PMID:24273525

  10. Eye movements and manual interception of ballistic trajectories: effects of law of motion perturbations and occlusions.

    PubMed

    Delle Monache, Sergio; Lacquaniti, Francesco; Bosco, Gianfranco

    2015-02-01

    Manual interceptions are known to depend critically on integration of visual feedback information and experience-based predictions of the interceptive event. Within this framework, coupling between gaze and limb movements might also contribute to the interceptive outcome, since eye movements afford acquisition of high-resolution visual information. We investigated this issue by analyzing subjects' head-fixed oculomotor behavior during manual interceptions. Subjects moved a mouse cursor to intercept computer-generated ballistic trajectories either congruent with Earth's gravity or perturbed with weightlessness (0 g) or hypergravity (2 g) effects. In separate sessions, trajectories were either fully visible or occluded before interception to enforce visual prediction. Subjects' oculomotor behavior was classified in terms of amounts of time they gazed at different visual targets and of overall number of saccades. Then, by way of multivariate analyses, we assessed the following: (1) whether eye movement patterns depended on targets' laws of motion and occlusions; and (2) whether interceptive performance was related to the oculomotor behavior. First, we found that eye movement patterns depended significantly on targets' laws of motion and occlusion, suggesting predictive mechanisms. Second, subjects coupled differently oculomotor and interceptive behavior depending on whether targets were visible or occluded. With visible targets, subjects made smaller interceptive errors if they gazed longer at the mouse cursor. Instead, with occluded targets, they achieved better performance by increasing the target's tracking accuracy and by avoiding gaze shifts near interception, suggesting that precise ocular tracking provided better trajectory predictions for the interceptive response.

  11. Memory and prediction in natural gaze control

    PubMed Central

    Diaz, Gabriel; Cooper, Joseph; Hayhoe, Mary

    2013-01-01

    In addition to stimulus properties and task factors, memory is an important determinant of the allocation of attention and gaze in the natural world. One way that the role of memory is revealed is by predictive eye movements. Both smooth pursuit and saccadic eye movements demonstrate predictive effects based on previous experience. We have previously shown that unskilled subjects make highly accurate predictive saccades to the anticipated location of a ball prior to a bounce in a virtual racquetball setting. In this experiment, we examined this predictive behaviour. We asked whether the period after the bounce provides subjects with visual information about the ball trajectory that is used to programme the pursuit movement initiated when the ball passes through the fixation point. We occluded a 100 ms period of the ball's trajectory immediately after the bounce, and found very little effect on the subsequent pursuit movement. Subjects did not appear to modify their strategy to prolong the fixation. Neither were we able to find an effect on interception performance. Thus, it is possible that the occluded trajectory information is not critical for subsequent pursuit, and subjects may use an estimate of the ball's trajectory to programme pursuit. These results provide further support for the role of memory in eye movements. PMID:24018726

  12. Adaptive eye-gaze tracking using neural-network-based user profiles to assist people with motor disability.

    PubMed

    Sesin, Anaelis; Adjouadi, Malek; Cabrerizo, Mercedes; Ayala, Melvin; Barreto, Armando

    2008-01-01

    This study developed an adaptive real-time human-computer interface (HCI) that serves as an assistive technology tool for people with severe motor disability. The proposed HCI design uses eye gaze as the primary computer input device. Controlling the mouse cursor with raw eye coordinates results in sporadic motion of the pointer because of the saccadic nature of the eye. Even though eye movements are subtle and completely imperceptible under normal circumstances, they considerably affect the accuracy of an eye-gaze-based HCI. The proposed HCI system is novel because it adapts to each specific user's different and potentially changing jitter characteristics through the configuration and training of an artificial neural network (ANN) that is structured to minimize the mouse jitter. This task is based on feeding the ANN a user's initially recorded eye-gaze behavior through a short training session. The ANN finds the relationship between the gaze coordinates and the mouse cursor position based on the multilayer perceptron model. An embedded graphical interface is used during the training session to generate user profiles that make up these unique ANN configurations. The results with 12 subjects in test 1, which involved following a moving target, showed an average jitter reduction of 35%; the results with 9 subjects in test 2, which involved following the contour of a square object, showed an average jitter reduction of 53%. For both results, the outcomes led to trajectories that were significantly smoother and apt at reaching fixed or moving targets with relative ease and within a 5% error margin or deviation from desired trajectories. The positive effects of such jitter reduction are presented graphically for visual appreciation.

  13. Differences in gaze anticipation for locomotion with and without vision

    PubMed Central

    Authié, Colas N.; Hilt, Pauline M.; N'Guyen, Steve; Berthoz, Alain; Bennequin, Daniel

    2015-01-01

    Previous experimental studies have shown a spontaneous anticipation of locomotor trajectory by the head and gaze direction during human locomotion. This anticipatory behavior could serve several functions: an optimal selection of visual information, for instance through landmarks and optic flow, as well as trajectory planning and motor control. This would imply that anticipation remains in darkness but with different characteristics. We asked 10 participants to walk along two predefined complex trajectories (limaçon and figure eight) without any cue on the trajectory to follow. Two visual conditions were used: (i) in light and (ii) in complete darkness with eyes open. The whole body kinematics were recorded by motion capture, along with the participant's right eye movements. We showed that in darkness and in light, horizontal gaze anticipates the orientation of the head which itself anticipates the trajectory direction. However, the horizontal angular anticipation decreases by a half in darkness for both gaze and head. In both visual conditions we observed an eye nystagmus with similar properties (frequency and amplitude). The main difference comes from the fact that in light, there is a shift of the orientations of the eye nystagmus and the head in the direction of the trajectory. These results suggest that a fundamental function of gaze is to represent self motion, stabilize the perception of space during locomotion, and to simulate the future trajectory, regardless of the vision condition. PMID:26106313

  14. Modeling control of eye orientation in three dimensions. I. Role of muscle pulleys in determining saccadic trajectory.

    PubMed

    Raphan, T

    1998-05-01

    This study evaluates the effects of muscle axis shifts on the performance of a vector velocity-position integrator in the CNS. Earlier models of the oculomotor plant assumed that the muscle axes remained fixed relative to the head as the eye rotated into secondary and tertiary eye positions. Under this assumption, the vector integrator model generates torsional transients as the eye moves from secondary to tertiary positions of fixation. The torsional transient represents an eye movement response to a spatial mismatch between the torque axes that remain fixed in the head and the displacement plane that changes by half the angle of the change in eye orientation. When muscle axis shifts were incorporated into the model, the torque axes were closer to the displacement plane at each eye orientation throughout the trajectory, and torsional transients were reduced dramatically. Their size and dynamics were close to reported data. It was also shown that when the muscle torque axes were rotated by 50% of the eye rotation, there was no torsional transient and Listing's law was perfectly obeyed. When muscle torque axes rotated >50%, torsional transients reversed direction compared with what occurred for muscle axis shifts of <50%. The model indicates that Listing's law is implemented by the oculomotor plant subject to a two-dimensional command signal that is confined to the pitch-yaw plane, having zero torsion. Saccades that bring the eye to orientations outside Listing's plane could easily be corrected by a roll pulse that resets the roll state of the velocity-position integrator to zero. This would be a simple implementation of the corrective controller suggested by Van Opstal and colleagues. The model further indicates that muscle axis shifts together with the torque orientation relationship for tissue surrounding the eye and Newton's laws of motion form a sufficient plant model to explain saccadic trajectories and periods of fixation when driven by a vector command confined to the pitch-yaw plane. This implies that the velocity-position integrator is probably realized as a subtractive feedback vector integrator and not as a quaternion-based integrator that implements kinematic transformations to orient the eye.

  15. Spatial coding of eye movements relative to perceived earth and head orientations during static roll tilt

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Paloski, W. H.; Reschke, M. F.

    1998-01-01

    This purpose of this study was to examine the spatial coding of eye movements during static roll tilt (up to +/-45 degrees) relative to perceived earth and head orientations. Binocular videographic recordings obtained in darkness from eight subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the true earth and head orientations. We found that both variability and curvature of gaze trajectories increased with roll tilt. The trajectories of eye movements made along the perceived earth-horizontal (PEH) were more accurate than movements along the perceived head-horizontal (PHH). The trajectories of both PEH and PHH saccades tended to deviate in the same direction as the head tilt. The deviations in gaze trajectories along the perceived earth-vertical (PEV) and perceived head-vertical (PHV) were both similar to the PHH orientation, except that saccades along the PEV deviated in the opposite direction relative to the head tilt. The magnitude of deviations along the PEV, PHH, and PHV corresponded to perceptual overestimations of roll tilt obtained from verbal reports. Both PEV gaze trajectories and perceptual estimates of tilt orientation were different following clockwise rather than counterclockwise tilt rotation; however, the PEH gaze trajectories were less affected by the direction of tilt rotation. Our results suggest that errors in gaze trajectories along PEV and perceived head orientations increase during roll tilt in a similar way to perceptual errors of tilt orientation. Although PEH and PEV gaze trajectories became nonorthogonal during roll tilt, we conclude that the spatial coding of eye movements during roll tilt is overall more accurate for the perceived earth reference frame than for the perceived head reference frame.

  16. Visual strategies underpinning the development of visual-motor expertise when hitting a ball.

    PubMed

    Sarpeshkar, Vishnu; Abernethy, Bruce; Mann, David L

    2017-10-01

    It is well known that skilled batters in fast-ball sports do not align their gaze with the ball throughout ball-flight, but instead adopt a unique sequence of eye and head movements that contribute toward their skill. However, much of what we know about visual-motor behavior in hitting is based on studies that have employed case study designs, and/or used simplified tasks that fall short of replicating the spatiotemporal demands experienced in the natural environment. The aim of this study was to provide a comprehensive examination of the eye and head movement strategies that underpin the development of visual-motor expertise when intercepting a fast-moving target. Eye and head movements were examined in situ for 4 groups of cricket batters, who were crossed for playing level (elite or club) and age (U19 or adult), when hitting balls that followed either straight or curving ('swinging') trajectories. The results provide support for some widely cited markers of expertise in batting, while questioning the legitimacy of others. Swinging trajectories alter the visual-motor behavior of all batters, though in large part because of the uncertainty generated by the possibility of a variation in trajectory rather than any actual change in trajectory per se. Moreover, curving trajectories influence visual-motor behavior in a nonlinear fashion, with targets that curve away from the observer influencing behavior more than those that curve inward. The findings provide a more comprehensive understanding of the development of visual-motor expertise in interception. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Drawing from Memory: Hand-Eye Coordination at Multiple Scales

    PubMed Central

    Spivey, Michael J.

    2013-01-01

    Eyes move to gather visual information for the purpose of guiding behavior. This guidance takes the form of perceptual-motor interactions on short timescales for behaviors like locomotion and hand-eye coordination. More complex behaviors require perceptual-motor interactions on longer timescales mediated by memory, such as navigation, or designing and building artifacts. In the present study, the task of sketching images of natural scenes from memory was used to examine and compare perceptual-motor interactions on shorter and longer timescales. Eye and pen trajectories were found to be coordinated in time on shorter timescales during drawing, and also on longer timescales spanning study and drawing periods. The latter type of coordination was found by developing a purely spatial analysis that yielded measures of similarity between images, eye trajectories, and pen trajectories. These results challenge the notion that coordination only unfolds on short timescales. Rather, the task of drawing from memory evokes perceptual-motor encodings of visual images that preserve coarse-grained spatial information over relatively long timescales as well. PMID:23554894

  18. Interaction between Visual- and Goal-Related Neuronal Signals on the Trajectories of Saccadic Eye Movements

    ERIC Educational Resources Information Center

    White, Brian J.; Theeuwes, Jan; Munoz, Douglas P.

    2012-01-01

    During natural viewing, the trajectories of saccadic eye movements often deviate dramatically from a straight-line path between objects. In human studies, saccades have been shown to deviate toward or away from salient visual distractors depending on visual- and goal-related parameters, but the neurophysiological basis for this is not well…

  19. Interaction of the body, head, and eyes during walking and turning

    NASA Technical Reports Server (NTRS)

    Imai, T.; Moore, S. T.; Raphan, T.; Cohen, B.

    2001-01-01

    Body, head, and eye movements were measured in five subjects during straight walking and while turning corners. The purpose was to determine how well the head and eyes followed the linear trajectory of the body in space and whether head orientation followed changes in the gravito-inertial acceleration vector (GIA). Head and body movements were measured with a video-based motion analysis system and horizontal, vertical, and torsional eye movements with video-oculography. During straight walking, there was lateral body motion at the stride frequency, which was at half the frequency of stepping. The GIA oscillated about the direction of heading, according to the acceleration and deceleration associated with heel strike and toe flexion, and the body yawed in concert with stepping. Despite the linear and rotatory motions of the head and body, the head pointed along the forward motion of the body during straight walking. The head pitch/roll component appeared to compensate for vertical and horizontal acceleration of the head rather than orienting to the tilt of the GIA or anticipating it. When turning corners, subjects walked on a 50-cm radius over two steps or on a 200-cm radius in five to seven steps. Maximum centripetal accelerations in sharp turns were ca.0.4 g, which tilted the GIA ca.21 degrees with regard to the heading. This was anticipated by a roll tilt of the head of up to 8 degrees. The eyes rolled 1-1.5 degrees and moved down into the direction of linear acceleration during the tilts of the GIA. Yaw head deviations moved smoothly through the turn, anticipating the shift in lateral body trajectory by as much as 25 degrees. The trunk did not anticipate the change in trajectory. Thus, in contrast to straight walking, the tilt axes of the head and the GIA tended to align during turns. Gaze was stable in space during the slow phases and jumped forward in saccades along the trajectory, leading it by larger angles when the angular velocity of turning was greater. The anticipatory roll head movements during turning are likely to be utilized to overcome inertial forces that would destabilize balance during turning. The data show that compensatory eye, head, and body movements stabilize gaze during straight walking, while orienting mechanisms direct the eyes, head, and body to tilts of the GIA in space during turning.

  20. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    PubMed Central

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  1. Steering a tractor by means of an EMG-based human-machine interface.

    PubMed

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver's scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.

  2. Spatial Coding of Eye Movements Relative to Perceived Orientations During Roll Tilt with Different Gravitoinertial Loads

    NASA Technical Reports Server (NTRS)

    Wood, Scott; Clement, Gilles

    2013-01-01

    This purpose of this study was to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness from six subjects allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. The trajectories of saccades along perceived horizontal orientations tended to deviate in the same direction as the head tilt, while the deviations in gaze trajectories along the perceived vertical orientations deviated in the opposite direction relative to the head tilt. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. This coupling of horizontal vergence with vertical gaze is in a consistent direction with the vertical slant of the horopter. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements.

  3. Trajectory prediction of saccadic eye movements using a compressed exponential model

    PubMed Central

    Han, Peng; Saunders, Daniel R.; Woods, Russell L.; Luo, Gang

    2013-01-01

    Gaze-contingent display paradigms play an important role in vision research. The time delay due to data transmission from eye tracker to monitor may lead to a misalignment between the gaze direction and image manipulation during eye movements, and therefore compromise the contingency. We present a method to reduce this misalignment by using a compressed exponential function to model the trajectories of saccadic eye movements. Our algorithm was evaluated using experimental data from 1,212 saccades ranging from 3° to 30°, which were collected with an EyeLink 1000 and a Dual-Purkinje Image (DPI) eye tracker. The model fits eye displacement with a high agreement (R2 > 0.96). When assuming a 10-millisecond time delay, prediction of 2D saccade trajectories using our model could reduce the misalignment by 30% to 60% with the EyeLink tracker and 20% to 40% with the DPI tracker for saccades larger than 8°. Because a certain number of samples are required for model fitting, the prediction did not offer improvement for most small saccades and the early stages of large saccades. Evaluation was also performed for a simulated 100-Hz gaze-contingent display using the prerecorded saccade data. With prediction, the percentage of misalignment larger than 2° dropped from 45% to 20% for EyeLink and 42% to 26% for DPI data. These results suggest that the saccade-prediction algorithm may help create more accurate gaze-contingent displays. PMID:23902753

  4. Spatial orientation perception and reflexive eye movements--a perspective, an overview, and some clinical implications

    NASA Technical Reports Server (NTRS)

    Guedry, F. E.; Paloski, W. F. (Principal Investigator)

    1996-01-01

    When head motion includes a linear velocity component, eye velocity required to track an earth-fixed target depends upon: a) angular and linear head velocity, b) target distance, and c) direction of gaze relative to the motion trajectory. Recent research indicates that eye movements (LVOR), presumably otolith-mediated, partially compensate for linear velocity in small head excursions on small devices. Canal-mediated eye velocity (AVOR), otolith-mediated eye velocity (LVOR), and Ocular Torsion (OT) can be measured, one by one, on small devices. However, response dynamics that depend upon the ratio of linear to angular velocity in the motion trajectory and on subject orientation relative to the trajectory are present in a centrifuge paradigm. With this paradigm, two 3-min runs yields measures of: LVOR differentially modulated by different subject orientations in the two runs; OT dynamics in four conditions; two directions of "steady-state" OT, and two directions of AVOR. Efficient assessment of the dynamics (and of the underlying central integrative processes) may require a centrifuge radius of 1.0 meters or more. Clinical assessment of the spatial orientation system should include evaluation of central integrative processes that determine the dynamics of these responses.

  5. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task.

    PubMed

    Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary

    2013-01-16

    Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time.

  6. Saccades to future ball location reveal memory-based prediction in a virtual-reality interception task

    PubMed Central

    Diaz, Gabriel; Cooper, Joseph; Rothkopf, Constantin; Hayhoe, Mary

    2013-01-01

    Despite general agreement that prediction is a central aspect of perception, there is relatively little evidence concerning the basis on which visual predictions are made. Although both saccadic and pursuit eye-movements reveal knowledge of the future position of a moving visual target, in many of these studies targets move along simple trajectories through a fronto-parallel plane. Here, using a naturalistic and racquet-based interception task in a virtual environment, we demonstrate that subjects make accurate predictions of visual target motion, even when targets follow trajectories determined by the complex dynamics of physical interactions and the head and body are unrestrained. Furthermore, we found that, following a change in ball elasticity, subjects were able to accurately adjust their prebounce predictions of the ball's post-bounce trajectory. This suggests that prediction is guided by experience-based models of how information in the visual image will change over time. PMID:23325347

  7. Flight Deck Surface Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Foyle, David C.; Hooey, Becky L.; Bakowski, Deborah L.

    2017-01-01

    Surface Trajectory-Based Operations (STBO) is a future concept for surface operations where time requirements are incorporated into taxi operations to support surface planning and coordination. Pilot-in-the-loop flight deck simulations have been conducted to study flight deck displays algorithms to aid pilots in complying with the time requirements of time-based taxi operations (i.e., at discrete locations in 3 12 D operations or at all points along the route in 4DT operations). The results of these studies (conformance, time-of-arrival error, eye-tracking data, and safety ratings) are presented. Flight deck simulation work done in collaboration with DLR is described. Flight deck research issues in future auto-taxi operations are also introduced.

  8. Active head rotations and eye-head coordination

    NASA Technical Reports Server (NTRS)

    Zangemeister, W. H.; Stark, L.

    1981-01-01

    It is pointed out that head movements play an important role in gaze. The interaction between eye and head movements involves both their shared role in directing gaze and the compensatory vestibular ocular reflex. The dynamics of head trajectories are discussed, taking into account the use of parameterization to obtain the peak velocity, peak accelerations, the times of these extrema, and the duration of the movement. Attention is given to the main sequence, neck muscle EMG and details of the head-movement trajectory, types of head model accelerations, the latency of eye and head movement in coordinated gaze, gaze latency as a function of various factors, and coordinated gaze types. Clinical examples of gaze-plane analysis are considered along with the instantaneous change of compensatory eye movement (CEM) gain, and aspects of variability.

  9. Keeping up appearances: the role of identity concealment in the workplace among adults with degenerative eye conditions and its relationship with wellbeing and career outcomes.

    PubMed

    Spiegel, Tali; De Bel, Vera; Steverink, Nardi

    2016-01-01

    This study aims to describe the interplay between the work trajectories and the passing patterns of individuals with degenerative eye conditions in different phases of their career, as well as the disease progression and the career and well-being outcomes associated with different works and passing trajectories. Qualitative interviews on the topic of work trajectories were conducted with 36 working or retired individuals with degenerative eye conditions. The "bigger picture" method was used to explore passing and concealment behavioral patterns, and their associations with various work trajectories. Five patterns of passing and concealment behavior in the workplace were identified and were linked with various work trajectories among visually impaired study participants: (1) no career adjustments, concealed condition throughout career; (2) revealed condition after adjusting career plans; (3) increasingly open about their condition over the course of their career; (4) engaged in career planning, always open about their condition; and (5) engaged in limited career planning, always open about their condition. Patterns characterized by less planning and more identity concealment were associated with more stress and lower levels of self-acceptance, while patterns characterized by more planning for vision deterioration and less passing behavior were associated with higher levels self-acceptance and fewer obstacles over the course of an individual's career. The study's findings can serve as a guide for health professionals. Many individuals with degenerative eye conditions try to conceal their identity as visually impaired in the professional setting. Different aspects of career outcomes (e.g. age of retirement) and wellbeing outcomes (e.g. self-acceptance and stress) associate with identity concealment patterns of individuals throughout their careers. Identifying concealment patterns will allow health professionals to tackle particular adverse outcomes and challenges associated with these patterns.

  10. Evidence for object permanence in the smooth-pursuit eye movements of monkeys.

    PubMed

    Churchland, Mark M; Chou, I-Han; Lisberger, Stephen G

    2003-10-01

    We recorded the smooth-pursuit eye movements of monkeys in response to targets that were extinguished (blinked) for 200 ms in mid-trajectory. Eye velocity declined considerably during the target blinks, even when the blinks were completely predictable in time and space. Eye velocity declined whether blinks were presented during steady-state pursuit of a constant-velocity target, during initiation of pursuit before target velocity was reached, or during eye accelerations induced by a change in target velocity. When a physical occluder covered the trajectory of the target during blinks, creating the impression that the target moved behind it, the decline in eye velocity was reduced or abolished. If the target was occluded once the eye had reached target velocity, pursuit was only slightly poorer than normal, uninterrupted pursuit. In contrast, if the target was occluded during the initiation of pursuit, while the eye was accelerating toward target velocity, pursuit during occlusion was very different from normal pursuit. Eye velocity remained relatively stable during target occlusion, showing much less acceleration than normal pursuit and much less of a decline than was produced by a target blink. Anticipatory or predictive eye acceleration was typically observed just prior to the reappearance of the target. Computer simulations show that these results are best understood by assuming that a mechanism of eye-velocity memory remains engaged during target occlusion but is disengaged during target blinks.

  11. One in the eye for an orthopaedic surgeon.

    PubMed Central

    Lourie, J.; Hamid, K.

    1996-01-01

    Despite many reports of injuries to surgeons during operative procedures, there is no record of an eye injury caused by a foreign body. Orthopaedic surgeons are particularly vulnerable to such injury. An instance in which a penetrating eye injury occurred while hammering a rasp into the femur during a hip replacement is described. There is a potential oblique trajectory for a foreign body to reach the eye from the operative field despite the use of a visor for eye protection. Images Figure 1 Figure 2 PMID:8659981

  12. Motion-based prediction explains the role of tracking in motion extrapolation.

    PubMed

    Khoei, Mina A; Masson, Guillaume S; Perrinet, Laurent U

    2013-11-01

    During normal viewing, the continuous stream of visual input is regularly interrupted, for instance by blinks of the eye. Despite these frequents blanks (that is the transient absence of a raw sensory source), the visual system is most often able to maintain a continuous representation of motion. For instance, it maintains the movement of the eye such as to stabilize the image of an object. This ability suggests the existence of a generic neural mechanism of motion extrapolation to deal with fragmented inputs. In this paper, we have modeled how the visual system may extrapolate the trajectory of an object during a blank using motion-based prediction. This implies that using a prior on the coherency of motion, the system may integrate previous motion information even in the absence of a stimulus. In order to compare with experimental results, we simulated tracking velocity responses. We found that the response of the motion integration process to a blanked trajectory pauses at the onset of the blank, but that it quickly recovers the information on the trajectory after reappearance. This is compatible with behavioral and neural observations on motion extrapolation. To understand these mechanisms, we have recorded the response of the model to a noisy stimulus. Crucially, we found that motion-based prediction acted at the global level as a gain control mechanism and that we could switch from a smooth regime to a binary tracking behavior where the dot is tracked or lost. Our results imply that a local prior implementing motion-based prediction is sufficient to explain a large range of neural and behavioral results at a more global level. We show that the tracking behavior deteriorates for sensory noise levels higher than a certain value, where motion coherency and predictability fail to hold longer. In particular, we found that motion-based prediction leads to the emergence of a tracking behavior only when enough information from the trajectory has been accumulated. Then, during tracking, trajectory estimation is robust to blanks even in the presence of relatively high levels of noise. Moreover, we found that tracking is necessary for motion extrapolation, this calls for further experimental work exploring the role of noise in motion extrapolation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Quantifying gaze and mouse interactions on spatial visual interfaces with a new movement analytics methodology

    PubMed Central

    2017-01-01

    Eye movements provide insights into what people pay attention to, and therefore are commonly included in a variety of human-computer interaction studies. Eye movement recording devices (eye trackers) produce gaze trajectories, that is, sequences of gaze location on the screen. Despite recent technological developments that enabled more affordable hardware, gaze data are still costly and time consuming to collect, therefore some propose using mouse movements instead. These are easy to collect automatically and on a large scale. If and how these two movement types are linked, however, is less clear and highly debated. We address this problem in two ways. First, we introduce a new movement analytics methodology to quantify the level of dynamic interaction between the gaze and the mouse pointer on the screen. Our method uses volumetric representation of movement, the space-time densities, which allows us to calculate interaction levels between two physically different types of movement. We describe the method and compare the results with existing dynamic interaction methods from movement ecology. The sensitivity to method parameters is evaluated on simulated trajectories where we can control interaction levels. Second, we perform an experiment with eye and mouse tracking to generate real data with real levels of interaction, to apply and test our new methodology on a real case. Further, as our experiment tasks mimics route-tracing when using a map, it is more than a data collection exercise and it simultaneously allows us to investigate the actual connection between the eye and the mouse. We find that there seem to be natural coupling when eyes are not under conscious control, but that this coupling breaks down when instructed to move them intentionally. Based on these observations, we tentatively suggest that for natural tracing tasks, mouse tracking could potentially provide similar information as eye-tracking and therefore be used as a proxy for attention. However, more research is needed to confirm this. PMID:28777822

  14. Quantifying gaze and mouse interactions on spatial visual interfaces with a new movement analytics methodology.

    PubMed

    Demšar, Urška; Çöltekin, Arzu

    2017-01-01

    Eye movements provide insights into what people pay attention to, and therefore are commonly included in a variety of human-computer interaction studies. Eye movement recording devices (eye trackers) produce gaze trajectories, that is, sequences of gaze location on the screen. Despite recent technological developments that enabled more affordable hardware, gaze data are still costly and time consuming to collect, therefore some propose using mouse movements instead. These are easy to collect automatically and on a large scale. If and how these two movement types are linked, however, is less clear and highly debated. We address this problem in two ways. First, we introduce a new movement analytics methodology to quantify the level of dynamic interaction between the gaze and the mouse pointer on the screen. Our method uses volumetric representation of movement, the space-time densities, which allows us to calculate interaction levels between two physically different types of movement. We describe the method and compare the results with existing dynamic interaction methods from movement ecology. The sensitivity to method parameters is evaluated on simulated trajectories where we can control interaction levels. Second, we perform an experiment with eye and mouse tracking to generate real data with real levels of interaction, to apply and test our new methodology on a real case. Further, as our experiment tasks mimics route-tracing when using a map, it is more than a data collection exercise and it simultaneously allows us to investigate the actual connection between the eye and the mouse. We find that there seem to be natural coupling when eyes are not under conscious control, but that this coupling breaks down when instructed to move them intentionally. Based on these observations, we tentatively suggest that for natural tracing tasks, mouse tracking could potentially provide similar information as eye-tracking and therefore be used as a proxy for attention. However, more research is needed to confirm this.

  15. Relationship between saccadic eye movements and formation of the Krukenberg's spindle-a CFD study.

    PubMed

    Boushehrian, Hamidreza Hajiani; Abouali, Omid; Jafarpur, Khosrow; Ghaffarieh, Alireza; Ahmadi, Goodarz

    2017-09-01

    In this research, a series of numerical simulations for evaluating the effects of saccadic eye movement on the aqueous humour (AH) flow field and movement of pigment particles in the anterior chamber (AC) was performed. To predict the flow field of AH in the AC, the unsteady forms of continuity, momentum balance and conservation of energy equations were solved using the dynamic mesh technique for simulating the saccadic motions. Different orientations of the human eye including horizontal, vertical and angles of 10° and 20° were considered. The Lagrangian particle trajectory analysis approach was used to find the trajectories of pigment particles in the eye. Particular attention was given to the relation between the saccadic eye movement and potential formation of Krukenberg's spindle in the eye. The simulation results revealed that the natural convection flow was an effective mechanism for transferring pigment particles from the iris to near the cornea. In addition, the saccadic eye movement was the dominant mechanism for deposition of pigment particles on the cornea, which could lead to the formation of Krukenberg's spindle. The effect of amplitude of saccade motion angle in addition to the orientation of the eye on the formation of Krukenberg's spindle was investigated. © The authors 2016. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  16. Biometric recognition via texture features of eye movement trajectories in a visual searching task.

    PubMed

    Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei; Zhang, Chenggang

    2018-01-01

    Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers' temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases.

  17. Biometric recognition via texture features of eye movement trajectories in a visual searching task

    PubMed Central

    Li, Chunyong; Xue, Jiguo; Quan, Cheng; Yue, Jingwei

    2018-01-01

    Biometric recognition technology based on eye-movement dynamics has been in development for more than ten years. Different visual tasks, feature extraction and feature recognition methods are proposed to improve the performance of eye movement biometric system. However, the correct identification and verification rates, especially in long-term experiments, as well as the effects of visual tasks and eye trackers’ temporal and spatial resolution are still the foremost considerations in eye movement biometrics. With a focus on these issues, we proposed a new visual searching task for eye movement data collection and a new class of eye movement features for biometric recognition. In order to demonstrate the improvement of this visual searching task being used in eye movement biometrics, three other eye movement feature extraction methods were also tested on our eye movement datasets. Compared with the original results, all three methods yielded better results as expected. In addition, the biometric performance of these four feature extraction methods was also compared using the equal error rate (EER) and Rank-1 identification rate (Rank-1 IR), and the texture features introduced in this paper were ultimately shown to offer some advantages with regard to long-term stability and robustness over time and spatial precision. Finally, the results of different combinations of these methods with a score-level fusion method indicated that multi-biometric methods perform better in most cases. PMID:29617383

  18. Multipulse control of saccadic eye movements

    NASA Technical Reports Server (NTRS)

    Lehman, S. L.; Stark, L.

    1981-01-01

    We present three conclusions regarding the neural control of saccadic eye movements, resulting from comparisons between recorded movements and computer simulations. The controller signal to the muscles is probably a multipulse-step. This kind of signal drives the fastest model trajectories. Finally, multipulse signals explain differences between model and electrophysiological results.

  19. Schema generation in recurrent neural nets for intercepting a moving target.

    PubMed

    Fleischer, Andreas G

    2010-06-01

    The grasping of a moving object requires the development of a motor strategy to anticipate the trajectory of the target and to compute an optimal course of interception. During the performance of perception-action cycles, a preprogrammed prototypical movement trajectory, a motor schema, may highly reduce the control load. Subjects were asked to hit a target that was moving along a circular path by means of a cursor. Randomized initial target positions and velocities were detected in the periphery of the eyes, resulting in a saccade toward the target. Even when the target disappeared, the eyes followed the target's anticipated course. The Gestalt of the trajectories was dependent on target velocity. The prediction capability of the motor schema was investigated by varying the visibility range of cursor and target. Motor schemata were determined to be of limited precision, and therefore visual feedback was continuously required to intercept the moving target. To intercept a target, the motor schema caused the hand to aim ahead and to adapt to the target trajectory. The control of cursor velocity determined the point of interception. From a modeling point of view, a neural network was developed that allowed the implementation of a motor schema interacting with feedback control in an iterative manner. The neural net of the Wilson type consists of an excitation-diffusion layer allowing the generation of a moving bubble. This activation bubble runs down an eye-centered motor schema and causes a planar arm model to move toward the target. A bubble provides local integration and straightening of the trajectory during repetitive moves. The schema adapts to task demands by learning and serves as forward controller. On the basis of these model considerations the principal problem of embedding motor schemata in generalized control strategies is discussed.

  20. From eye movements to actions: how batsmen hit the ball.

    PubMed

    Land, M F; McLeod, P

    2000-12-01

    In cricket, a batsman watches a fast bowler's ball come toward him at a high and unpredictable speed, bouncing off ground of uncertain hardness. Although he views the trajectory for little more than half a second, he can accurately judge where and when the ball will reach him. Batsmen's eye movements monitor the moment when the ball is released, make a predictive saccade to the place where they expect it to hit the ground, wait for it to bounce, and follow its trajectory for 100-200 ms after the bounce. We show how information provided by these fixations may allow precise prediction of the ball's timing and placement. Comparing players with different skill levels, we found that a short latency for the first saccade distinguished good from poor batsmen, and that a cricket player's eye movement strategy contributes to his skill in the game.

  1. Discrimination of curvature from motion during smooth pursuit eye movements and fixation.

    PubMed

    Ross, Nicholas M; Goettker, Alexander; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2017-09-01

    Smooth pursuit and motion perception have mainly been investigated with stimuli moving along linear trajectories. Here we studied the quality of pursuit movements to curved motion trajectories in human observers and examined whether the pursuit responses would be sensitive enough to discriminate various degrees of curvature. In a two-interval forced-choice task subjects pursued a Gaussian blob moving along a curved trajectory and then indicated in which interval the curve was flatter. We also measured discrimination thresholds for the same curvatures during fixation. Motion curvature had some specific effects on smooth pursuit properties: trajectories with larger amounts of curvature elicited lower open-loop acceleration, lower pursuit gain, and larger catch-up saccades compared with less curved trajectories. Initially, target motion curvatures were underestimated; however, ∼300 ms after pursuit onset pursuit responses closely matched the actual curved trajectory. We calculated perceptual thresholds for curvature discrimination, which were on the order of 1.5 degrees of visual angle (°) for a 7.9° curvature standard. Oculometric sensitivity to curvature discrimination based on the whole pursuit trajectory was quite similar to perceptual performance. Oculometric thresholds based on smaller time windows were higher. Thus smooth pursuit can quite accurately follow moving targets with curved trajectories, but temporal integration over longer periods is necessary to reach perceptual thresholds for curvature discrimination. NEW & NOTEWORTHY Even though motion trajectories in the real world are frequently curved, most studies of smooth pursuit and motion perception have investigated linear motion. We show that pursuit initially underestimates the curvature of target motion and is able to reproduce the target curvature ∼300 ms after pursuit onset. Temporal integration of target motion over longer periods is necessary for pursuit to reach the level of precision found in perceptual discrimination of curvature. Copyright © 2017 the American Physiological Society.

  2. Frames of reference for gaze saccades evoked during stimulation of lateral intraparietal cortex.

    PubMed

    Constantin, A G; Wang, H; Martinez-Trujillo, J C; Crawford, J D

    2007-08-01

    Previous studies suggest that stimulation of lateral intraparietal cortex (LIP) evokes saccadic eye movements toward eye- or head-fixed goals, whereas most single-unit studies suggest that LIP uses an eye-fixed frame with eye-position modulations. The goal of our study was to determine the reference frame for gaze shifts evoked during LIP stimulation in head-unrestrained monkeys. Two macaques (M1 and M2) were implanted with recording chambers over the right intraparietal sulcus and with search coils for recording three-dimensional eye and head movements. The LIP region was microstimulated using pulse trains of 300 Hz, 100-150 microA, and 200 ms. Eighty-five putative LIP sites in M1 and 194 putative sites in M2 were used in our quantitative analysis throughout this study. Average amplitude of the stimulation-evoked gaze shifts was 8.67 degrees for M1 and 7.97 degrees for M2 with very small head movements. When these gaze-shift trajectories were rotated into three coordinate frames (eye, head, and body), gaze endpoint distribution for all sites was most convergent to a common point when plotted in eye coordinates. Across all sites, the eye-centered model provided a significantly better fit compared with the head, body, or fixed-vector models (where the latter model signifies no modulation of the gaze trajectory as a function of initial gaze position). Moreover, the probability of evoking a gaze shift from any one particular position was modulated by the current gaze direction (independent of saccade direction). These results provide causal evidence that the motor commands from LIP encode gaze command in eye-fixed coordinates but are also subtly modulated by initial gaze position.

  3. The Valec fireball and predicted meteorite fall

    NASA Technical Reports Server (NTRS)

    Ceplecha, Z.; Spurny, P.

    1987-01-01

    A fireball was photographed with a luminous trajectory below a height of 20 km. On Aug. 3, 1984, seven stations photographed this slow moving fireball, which traversed 94 km of luminous trajectory in 9.2 sec and terminated its visible flight at a height of 19.1 km. The computed dark flight trajectory intersected the surface close to Valec, a small village 40 km west of Brno. The Valec fireball was the lowest photographed fireball ever. The Valec fireball was photographed by fish eye cameras. The positional precision of all the records were within the range of 1 to 2 minutes of arc. All computations were done using the FIRBAL program, a set of almost 4000 Fortran statements run on EC 1040 computer. The average computed mass at the terminal point, i.e., the predicted mass of the biggest meteorite, was 16 kg. This number is based on the dynamical data at the terminal point solely. Visual data was also collected from occasional observers. This observed phenomenon is discussed.

  4. Modeling eye-head gaze shifts in multiple contexts without motor planning

    PubMed Central

    Haji-Abolhassani, Iman; Guitton, Daniel

    2016-01-01

    During gaze shifts, the eyes and head collaborate to rapidly capture a target (saccade) and fixate it. Accordingly, models of gaze shift control should embed both saccadic and fixation modes and a mechanism for switching between them. We demonstrate a model in which the eye and head platforms are driven by a shared gaze error signal. To limit the number of free parameters, we implement a model reduction approach in which steady-state cerebellar effects at each of their projection sites are lumped with the parameter of that site. The model topology is consistent with anatomy and neurophysiology, and can replicate eye-head responses observed in multiple experimental contexts: 1) observed gaze characteristics across species and subjects can emerge from this structure with minor parametric changes; 2) gaze can move to a goal while in the fixation mode; 3) ocular compensation for head perturbations during saccades could rely on vestibular-only cells in the vestibular nuclei with postulated projections to burst neurons; 4) two nonlinearities suffice, i.e., the experimentally-determined mapping of tectoreticular cells onto brain stem targets and the increased recruitment of the head for larger target eccentricities; 5) the effects of initial conditions on eye/head trajectories are due to neural circuit dynamics, not planning; and 6) “compensatory” ocular slow phases exist even after semicircular canal plugging, because of interconnections linking eye-head circuits. Our model structure also simulates classical vestibulo-ocular reflex and pursuit nystagmus, and provides novel neural circuit and behavioral predictions, notably that both eye-head coordination and segmental limb coordination are possible without trajectory planning. PMID:27440248

  5. A Lagrangian trajectory view on transport and mixing processes between the eye, eyewall, and environment using a high resolution simulation of Hurricane Bonnie (1998)

    NASA Technical Reports Server (NTRS)

    Cram, Thomas A.; Persing, John; Montgomery, Michael T.; Braun, Scott A.

    2006-01-01

    The transport and mixing characteristics of a large sample of air parcels within a mature and vertically sheared hurricane vortex is examined. Data from a high-resolution (2 km grid spacing) numerical simulation of "real-case" Hurricane Bonnie (1998) is used to calculate Lagrangian trajectories of air parcels in various subdomains of the hurricane (namely, the eye, eyewall, and near-environment) to study the degree of interaction (transport and mixing) between these subdomains. It is found that 1) there is transport and mixing from the low-level eye to the eyewall that carries high- Be air which can enhance the efficiency of the hurricane heat engine; 2) a portion of the low-level inflow of the hurricane bypasses the eyewall to enter the eye, that both replaces the mass of the low-level eye and lingers for a sufficient time (order 1 hour) to acquire enhanced entropy characteristics through interaction with the ocean beneath the eye; 3) air in the mid- to upper-level eye is exchanged with the eyewall such that more than half the air of the eye is exchanged in five hours in this case of a sheared hurricane; and 4) that one-fifth of the mass in the eyewall at a height of 5 km has an origin in the mid- to upper-level environment where thet(sub e) is much less than in the eyewall, which ventilates the ensemble average eyewall theta(sub e) by about 1 K. Implications of these findings to the problem of hurricane intensity forecasting are discussed.

  6. Simulation-Based Analysis of Reentry Dynamics for the Sharp Atmospheric Entry Vehicle

    NASA Technical Reports Server (NTRS)

    Tillier, Clemens Emmanuel

    1998-01-01

    This thesis describes the analysis of the reentry dynamics of a high-performance lifting atmospheric entry vehicle through numerical simulation tools. The vehicle, named SHARP, is currently being developed by the Thermal Protection Materials and Systems branch of NASA Ames Research Center, Moffett Field, California. The goal of this project is to provide insight into trajectory tradeoffs and vehicle dynamics using simulation tools that are powerful, flexible, user-friendly and inexpensive. Implemented Using MATLAB and SIMULINK, these tools are developed with an eye towards further use in the conceptual design of the SHARP vehicle's trajectory and flight control systems. A trajectory simulator is used to quantify the entry capabilities of the vehicle subject to various operational constraints. Using an aerodynamic database computed by NASA and a model of the earth, the simulator generates the vehicle trajectory in three-dimensional space based on aerodynamic angle inputs. Requirements for entry along the SHARP aerothermal performance constraint are evaluated for different control strategies. Effect of vehicle mass on entry parameters is investigated, and the cross range capability of the vehicle is evaluated. Trajectory results are presented and interpreted. A six degree of freedom simulator builds on the trajectory simulator and provides attitude simulation for future entry controls development. A Newtonian aerodynamic model including control surfaces and a mass model are developed. A visualization tool for interpreting simulation results is described. Control surfaces are roughly sized. A simple controller is developed to fly the vehicle along its aerothermal performance constraint using aerodynamic flaps for control. This end-to-end demonstration proves the suitability of the 6-DOF simulator for future flight control system development. Finally, issues surrounding real-time simulation with hardware in the loop are discussed.

  7. Study of the human postural control system during quiet standing using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2009-05-01

    The detrended fluctuation analysis is used to study the behavior of different time series obtained from the trajectory of the center of pressure, the output of the activity of the human postural control system. The results suggest that these trajectories present two different regimes in their scaling properties: persistent (for high frequencies, short-range time scale) to antipersistent (for low frequencies, long-range time scale) behaviors. The similitude between the results obtained for the measurements, done with both eyes open and eyes closed, indicate either that the visual system may be disregarded by the postural control system while maintaining the quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with the type of analysis performed here.

  8. Self-bending of optical waveguides in a dry photosensitive medium

    NASA Astrophysics Data System (ADS)

    Malallah, Ra'ed; Wan, Min; Muniraj, Inbarasan; Cassidy, Derek; Sheridan, John T.

    2018-03-01

    Optical waveguide trajectories formed in an AA/PVA a photopolymer material photosensitive at 532 nm are examined. The transmission of light by this materials is discussed. The bending and arching of the waveguides which occur are investigated. The prediction of our model are shown to agree with the observed of trajectories. The largest index changes taking place at any time during the exposure, i.e. during SWW formation are found at the positions where the largest light intensity is present. Typically, such as maxima exist close to the input face at the location of the Primary Eye or at the location of the Secondary Eyes deeper with in the material. All photosensitive materials have a maximum saturation value of refractive index change that it is possible to induce, which is also discussed.

  9. Dynamic trajectory-based couch motion for improvement of radiation therapy trajectories in cranial SRT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, R. Lee; Thomas, Christopher G., E-mail: Chris.Thomas@cdha.nshealth.ca; Department of Medical Physics, Nova Scotia Cancer Centre, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia B3H 1V7

    2015-05-15

    Purpose: To investigate potential improvement in external beam stereotactic radiation therapy plan quality for cranial cases using an optimized dynamic gantry and patient support couch motion trajectory, which could minimize exposure to sensitive healthy tissue. Methods: Anonymized patient anatomy and treatment plans of cranial cancer patients were used to quantify the geometric overlap between planning target volumes and organs-at-risk (OARs) based on their two-dimensional projection from source to a plane at isocenter as a function of gantry and couch angle. Published dose constraints were then used as weighting factors for the OARs to generate a map of couch-gantry coordinate space,more » indicating degree of overlap at each point in space. A couch-gantry collision space was generated by direct measurement on a linear accelerator and couch using an anthropomorphic solid-water phantom. A dynamic, fully customizable algorithm was written to generate a navigable ideal trajectory for the patient specific couch-gantry space. The advanced algorithm can be used to balance the implementation of absolute minimum values of overlap with the clinical practicality of large-scale couch motion and delivery time. Optimized cranial cancer treatment trajectories were compared to conventional treatment trajectories. Results: Comparison of optimized treatment trajectories with conventional treatment trajectories indicated an average decrease in mean dose to the OARs of 19% and an average decrease in maximum dose to the OARs of 12%. Degradation was seen for homogeneity index (6.14% ± 0.67%–5.48% ± 0.76%) and conformation number (0.82 ± 0.02–0.79 ± 0.02), but neither was statistically significant. Removal of OAR constraints from volumetric modulated arc therapy optimization reveals that reduction in dose to OARs is almost exclusively due to the optimized trajectory and not the OAR constraints. Conclusions: The authors’ study indicated that simultaneous couch and gantry motion during radiation therapy to minimize the geometrical overlap in the beams-eye-view of target volumes and the organs-at-risk can have an appreciable dose reduction to organs-at-risk.« less

  10. Eye tracking a self-moved target with complex hand-target dynamics

    PubMed Central

    Landelle, Caroline; Montagnini, Anna; Madelain, Laurent

    2016-01-01

    Previous work has shown that the ability to track with the eye a moving target is substantially improved when the target is self-moved by the subject's hand compared with when being externally moved. Here, we explored a situation in which the mapping between hand movement and target motion was perturbed by simulating an elastic relationship between the hand and target. Our objective was to determine whether the predictive mechanisms driving eye-hand coordination could be updated to accommodate this complex hand-target dynamics. To fully appreciate the behavioral effects of this perturbation, we compared eye tracking performance when self-moving a target with a rigid mapping (simple) and a spring mapping as well as when the subject tracked target trajectories that he/she had previously generated when using the rigid or spring mapping. Concerning the rigid mapping, our results confirmed that smooth pursuit was more accurate when the target was self-moved than externally moved. In contrast, with the spring mapping, eye tracking had initially similar low spatial accuracy (though shorter temporal lag) in the self versus externally moved conditions. However, within ∼5 min of practice, smooth pursuit improved in the self-moved spring condition, up to a level similar to the self-moved rigid condition. Subsequently, when the mapping unexpectedly switched from spring to rigid, the eye initially followed the expected target trajectory and not the real one, thereby suggesting that subjects used an internal representation of the new hand-target dynamics. Overall, these results emphasize the stunning adaptability of smooth pursuit when self-maneuvering objects with complex dynamics. PMID:27466129

  11. Context effects on smooth pursuit and manual interception of a disappearing target.

    PubMed

    Kreyenmeier, Philipp; Fooken, Jolande; Spering, Miriam

    2017-07-01

    In our natural environment, we interact with moving objects that are surrounded by richly textured, dynamic visual contexts. Yet most laboratory studies on vision and movement show visual objects in front of uniform gray backgrounds. Context effects on eye movements have been widely studied, but it is less well known how visual contexts affect hand movements. Here we ask whether eye and hand movements integrate motion signals from target and context similarly or differently, and whether context effects on eye and hand change over time. We developed a track-intercept task requiring participants to track the initial launch of a moving object ("ball") with smooth pursuit eye movements. The ball disappeared after a brief presentation, and participants had to intercept it in a designated "hit zone." In two experiments ( n = 18 human observers each), the ball was shown in front of a uniform or a textured background that either was stationary or moved along with the target. Eye and hand movement latencies and speeds were similarly affected by the visual context, but eye and hand interception (eye position at time of interception, and hand interception timing error) did not differ significantly between context conditions. Eye and hand interception timing errors were strongly correlated on a trial-by-trial basis across all context conditions, highlighting the close relation between these responses in manual interception tasks. Our results indicate that visual contexts similarly affect eye and hand movements but that these effects may be short-lasting, affecting movement trajectories more than movement end points. NEW & NOTEWORTHY In a novel track-intercept paradigm, human observers tracked a briefly shown object moving across a textured, dynamic context and intercepted it with their finger after it had disappeared. Context motion significantly affected eye and hand movement latency and speed, but not interception accuracy; eye and hand position at interception were correlated on a trial-by-trial basis. Visual context effects may be short-lasting, affecting movement trajectories more than movement end points. Copyright © 2017 the American Physiological Society.

  12. Eye movement training is most effective when it involves a task-relevant sensorimotor decision.

    PubMed

    Fooken, Jolande; Lalonde, Kathryn M; Mann, Gurkiran K; Spering, Miriam

    2018-04-01

    Eye and hand movements are closely linked when performing everyday actions. We conducted a perceptual-motor training study to investigate mutually beneficial effects of eye and hand movements, asking whether training in one modality benefits performance in the other. Observers had to predict the future trajectory of a briefly presented moving object, and intercept it at its assumed location as accurately as possible with their finger. Eye and hand movements were recorded simultaneously. Different training protocols either included eye movements or a combination of eye and hand movements with or without external performance feedback. Eye movement training did not transfer across modalities: Irrespective of feedback, finger interception accuracy and precision improved after training that involved the hand, but not after isolated eye movement training. Conversely, eye movements benefited from hand movement training or when external performance feedback was given, thus improving only when an active interceptive task component was involved. These findings indicate only limited transfer across modalities. However, they reveal the importance of creating a training task with an active sensorimotor decision to improve the accuracy and precision of eye and hand movements.

  13. Longitudinal sleep EEG trajectories indicate complex patterns of adolescent brain maturation.

    PubMed

    Feinberg, Irwin; Campbell, Ian G

    2013-02-15

    New longitudinal sleep data spanning ages 6-10 yr are presented and combined with previous data to analyze maturational trajectories of delta and theta EEG across ages 6-18 yr in non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. NREM delta power (DP) increased from age 6 to age 8 yr and then declined. Its highest rate of decline occurred between ages 12 and 16.5 yr. We attribute the delta EEG trajectories to changes in synaptic density. Whatever their neuronal underpinnings, these age curves can guide research into the molecular-genetic mechanisms that underlie adolescent brain development. The DP trajectories in NREM and REM sleep differed strikingly. DP in REM did not initially increase but declined steadily from age 6 to age 16 yr. We hypothesize that the DP decline in REM reflects maturation of the same brain arousal systems that eliminate delta waves in waking EEG. Whereas the DP age curves differed in NREM and REM sleep, theta age curves were similar in both, roughly paralleling the age trajectory of REM DP. The different maturational curves for NREM delta and theta indicate that they serve different brain functions despite having similar within-sleep dynamics and responses to sleep loss. Period-amplitude analysis of NREM and REM delta waveforms revealed that the age trends in DP were driven more by changes in wave amplitude rather than incidence. These data further document the powerful and complex link between sleep and brain maturation. Understanding this relationship would shed light on both brain development and the function of sleep.

  14. Incidents Prediction in Road Junctions Using Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Hajji, Tarik; Alami Hassani, Aicha; Ouazzani Jamil, Mohammed

    2018-05-01

    The implementation of an incident detection system (IDS) is an indispensable operation in the analysis of the road traffics. However the IDS may, in no case, represent an alternative to the classical monitoring system controlled by the human eye. The aim of this work is to increase detection and prediction probability of incidents in camera-monitored areas. Knowing that, these areas are monitored by multiple cameras and few supervisors. Our solution is to use Artificial Neural Networks (ANN) to analyze moving objects trajectories on captured images. We first propose a modelling of the trajectories and their characteristics, after we develop a learning database for valid and invalid trajectories, and then we carry out a comparative study to find the artificial neural network architecture that maximizes the rate of valid and invalid trajectories recognition.

  15. Computations underlying the visuomotor transformation for smooth pursuit eye movements

    PubMed Central

    Murdison, T. Scott; Leclercq, Guillaume; Lefèvre, Philippe

    2014-01-01

    Smooth pursuit eye movements are driven by retinal motion and enable us to view moving targets with high acuity. Complicating the generation of these movements is the fact that different eye and head rotations can produce different retinal stimuli but giving rise to identical smooth pursuit trajectories. However, because our eyes accurately pursue targets regardless of eye and head orientation (Blohm G, Lefèvre P. J Neurophysiol 104: 2103–2115, 2010), the brain must somehow take these signals into account. To learn about the neural mechanisms potentially underlying this visual-to-motor transformation, we trained a physiologically inspired neural network model to combine two-dimensional (2D) retinal motion signals with three-dimensional (3D) eye and head orientation and velocity signals to generate a spatially correct 3D pursuit command. We then simulated conditions of 1) head roll-induced ocular counterroll, 2) oblique gaze-induced retinal rotations, 3) eccentric gazes (invoking the half-angle rule), and 4) optokinetic nystagmus to investigate how units in the intermediate layers of the network accounted for different 3D constraints. Simultaneously, we simulated electrophysiological recordings (visual and motor tunings) and microstimulation experiments to quantify the reference frames of signals at each processing stage. We found a gradual retinal-to-intermediate-to-spatial feedforward transformation through the hidden layers. Our model is the first to describe the general 3D transformation for smooth pursuit mediated by eye- and head-dependent gain modulation. Based on several testable experimental predictions, our model provides a mechanism by which the brain could perform the 3D visuomotor transformation for smooth pursuit. PMID:25475344

  16. Characterizing the human postural control system using detrended fluctuation analysis

    NASA Astrophysics Data System (ADS)

    Teresa Blázquez, M.; Anguiano, Marta; de Saavedra, Fernando Arias; Lallena, Antonio M.; Carpena, Pedro

    2010-01-01

    Detrended fluctuation analysis is used to study the behaviour of the time series of the position of the center of pressure, output from the activity of a human postural control system. The results suggest that these trajectories present a crossover in their scaling properties from persistent (for high frequencies, short-range time scale) to anti-persistent (for low frequencies, long-range time scale) behaviours. The values of the scaling exponent found for the persistent parts of the trajectories are very similar for all the cases analysed. The similarity of the results obtained for the measurements done with both eyes open and both eyes closed indicate either that the visual system may be disregarded by the postural control system, while maintaining quiet standing, or that the control mechanisms associated with each type of information (visual, vestibular and somatosensory) cannot be disentangled with this technique.

  17. Flight performance in night-flying sweat bees suffers at low light levels.

    PubMed

    Theobald, Jamie Carroll; Coates, Melissa M; Wcislo, William T; Warrant, Eric J

    2007-11-01

    The sweat bee Megalopta (Hymenoptera: Halictidae), unlike most bees, flies in extremely dim light. And although nocturnal insects are often equipped with superposition eyes, which greatly enhance light capture, Megalopta performs visually guided flight with apposition eyes. We examined how light limits Megalopta's flight behavior by measuring flight times and corresponding light levels and comparing them with flight trajectories upon return to the nest. We found the average time to land increased in dim light, an effect due not to slow approaches, but to circuitous approaches. Some landings, however, were quite fast even in the dark. To explain this, we examined the flight trajectories and found that in dim light, landings became increasingly error prone and erratic, consistent with repeated landing attempts. These data agree well with the premise that Megalopta uses visual summation, sacrificing acuity in order to see and fly at the very dimmest light intensities that its visual system allows.

  18. Neurodevelopmental changes of reading the mind in the eyes

    PubMed Central

    Op de Macks, Zdeňa A.; Güroğlu, Berna; Rombouts, Serge A. R. B.; Van der Molen, Maurits W.; Crone, Eveline A.

    2012-01-01

    The eyes provide important information for decoding the mental states of others. In this fMRI study we examined how reading the mind in the eyes develops across adolescence and we tested the developmental trajectories of brain regions involved in this basic perceptual mind-reading ability. Participants from three age groups (early adolescents, mid adolescents and young adults) participated in the study and performed an adapted version of the ‘Reading the Mind in the Eyes task’, in which photographs of the eye region of faces were presented. Behavioral results show that the ability to decode the feelings and thoughts of others from the eyes develops before early adolescence. For all ages, brain activity was found in the posterior superior temporal sulcus during reading the mind in the eyes relative to a control condition requiring age and gender judgments using the same eyes stimuli. Only early adolescents showed additional involvement of the medial prefrontal cortex, the inferior frontal gyrus and the temporal pole. The results are discussed in the light of recent findings on the development of the social brain network. PMID:21515640

  19. Dissociation of eye and head components of gaze shifts by stimulation of the omnipause neuron region.

    PubMed

    Gandhi, Neeraj J; Sparks, David L

    2007-07-01

    Natural movements often include actions integrated across multiple effectors. Coordinated eye-head movements are driven by a command to shift the line of sight by a desired displacement vector. Yet because extraocular and neck motoneurons are separate entities, the gaze shift command must be separated into independent signals for eye and head movement control. We report that this separation occurs, at least partially, at or before the level of pontine omnipause neurons (OPNs). Stimulation of the OPNs prior to and during gaze shifts temporally decoupled the eye and head components by inhibiting gaze and eye saccades. In contrast, head movements were consistently initiated before gaze onset, and ongoing head movements continued along their trajectories, albeit with some characteristic modulations. After stimulation offset, a gaze shift composed of an eye saccade, and a reaccelerated head movement was produced to preserve gaze accuracy. We conclude that signals subject to OPN inhibition produce the eye-movement component of a coordinated eye-head gaze shift and are not the only signals involved in the generation of the head component of the gaze shift.

  20. Perception of object trajectory: parsing retinal motion into self and object movement components.

    PubMed

    Warren, Paul A; Rushton, Simon K

    2007-08-16

    A moving observer needs to be able to estimate the trajectory of other objects moving in the scene. Without the ability to do so, it would be difficult to avoid obstacles or catch a ball. We hypothesized that neural mechanisms sensitive to the patterns of motion generated on the retina during self-movement (optic flow) play a key role in this process, "parsing" motion due to self-movement from that due to object movement. We investigated this "flow parsing" hypothesis by measuring the perceived trajectory of a moving probe placed within a flow field that was consistent with movement of the observer. In the first experiment, the flow field was consistent with an eye rotation; in the second experiment, it was consistent with a lateral translation of the eyes. We manipulated the distance of the probe in both experiments and assessed the consequences. As predicted by the flow parsing hypothesis, manipulating the distance of the probe had differing effects on the perceived trajectory of the probe in the two experiments. The results were consistent with the scene geometry and the type of simulated self-movement. In a third experiment, we explored the contribution of local and global motion processing to the results of the first two experiments. The data suggest that the parsing process involves global motion processing, not just local motion contrast. The findings of this study support a role for optic flow processing in the perception of object movement during self-movement.

  1. Comparison of a laboratory grade force platform with a Nintendo Wii Balance Board on measurement of postural control in single-leg stance balance tasks.

    PubMed

    Huurnink, Arnold; Fransz, Duncan P; Kingma, Idsart; van Dieën, Jaap H

    2013-04-26

    Training and testing of balance have potential applications in sports and medicine. Laboratory grade force plates (FP) are considered the gold standard for the measurement of balance performance. Measurements in these systems are based on the parameterization of center of pressure (CoP) trajectories. Previous research validated the inexpensive, widely available and portable Nintendo Wii Balance Board (WBB). The novelty of the present study is that FP and WBB are compared on CoP data that was collected simultaneously, by placing the WBB on the FP. Fourteen healthy participants performed ten sequences of single-leg stance tasks with eyes open (EO), eyes closed (EC) and after a sideways hop (HOP). Within trial comparison of the two systems showed small root-mean-square differences for the CoP trajectories in the x and y direction during the three tasks (mean±SD; EO: 0.33±0.10 and 0.31±0.16 mm; EC: 0.58±0.17 and 0.63±0.19 mm; HOP: 0.74±0.34 and 0.74±0.27 mm, respectively). Additionally, during all 420 trials, comparison of FP and WBB revealed very high Pearson's correlation coefficients (r) of the CoP trajectories (x: 0.999±0.002; y: 0.998±0.003). A general overestimation was found on the WBB compared to the FP for 'CoP path velocity' (EO: 5.3±1.9%; EC: 4.0±1.4%; HOP: 4.6±1.6%) and 'mean absolute CoP sway' (EO: 3.5±0.7%; EC: 3.7±0.5%; HOP: 3.6±1.0%). This overestimation was highly consistent over the 140 trials per task (r>0.996). The present findings demonstrate that WBB is sufficiently accurate in quantifying CoP trajectory, and overall amplitude and velocity during single-leg stance balance tasks. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Game of thrown bombs in 3D: using high speed cameras and photogrammetry techniques to reconstruct bomb trajectories at Stromboli (Italy)

    NASA Astrophysics Data System (ADS)

    Gaudin, D.; Taddeucci, J.; Scarlato, P.; Del Bello, E.; Houghton, B. F.; Orr, T. R.; Andronico, D.; Kueppers, U.

    2015-12-01

    Large juvenile bombs and lithic clasts, produced and ejected during explosive volcanic eruptions, follow ballistic trajectories. Of particular interest are: 1) the determination of ejection velocity and launch angle, which give insights into shallow conduit conditions and geometry; 2) particle trajectories, with an eye on trajectory evolution caused by collisions between bombs, as well as the interaction between bombs and ash/gas plumes; and 3) the computation of the final emplacement of bomb-sized clasts, which is important for hazard assessment and risk management. Ground-based imagery from a single camera only allows the reconstruction of bomb trajectories in a plan perpendicular to the line of sight, which may lead to underestimation of bomb velocities and does not allow the directionality of the ejections to be studied. To overcome this limitation, we adapted photogrammetry techniques to reconstruct 3D bomb trajectories from two or three synchronized high-speed video cameras. In particular, we modified existing algorithms to consider the errors that may arise from the very high velocity of the particles and the impossibility of measuring tie points close to the scene. Our method was tested during two field campaigns at Stromboli. In 2014, two high-speed cameras with a 500 Hz frame rate and a ~2 cm resolution were set up ~350m from the crater, 10° apart and synchronized. The experiment was repeated with similar parameters in 2015, but using three high-speed cameras in order to significantly reduce uncertainties and allow their estimation. Trajectory analyses for tens of bombs at various times allowed for the identification of shifts in the mean directivity and dispersal angle of the jets during the explosions. These time evolutions are also visible on the permanent video-camera monitoring system, demonstrating the applicability of our method to all kinds of explosive volcanoes.

  3. Project Physics Handbook 1, Concepts of Motion.

    ERIC Educational Resources Information Center

    Harvard Univ., Cambridge, MA. Harvard Project Physics.

    Thirteen experiments and 15 activities are presented in this unit handbook for student use. The experiment sections are concerned with naked-eye observation in astronomy, regularity and time, variations in data, uniform motion, gravitational acceleration, Galileo's experiments, Netson's laws, inertial and gravitational mass, trajectories, and…

  4. Internally-generated error signals in monkey frontal eye field during an inferred motion task

    PubMed Central

    Ferrera, Vincent P.; Barborica, Andrei

    2010-01-01

    An internal model for predictive saccades in frontal cortex was investigated by recording neurons in monkey frontal eye field during an inferred motion task. Monkeys were trained to make saccades to the extrapolated position of a small moving target that was rendered temporarily invisible and whose trajectory was altered. On roughly two-thirds of the trials, monkeys made multiple saccades while the target was invisible. Primary saccades were correlated with extrapolated target position. Secondary saccades significantly reduced residual errors resulting from imperfect accuracy of the first saccade. These observations suggest that the second saccade was corrective. As there was no visual feedback, corrective saccades could only be driven by an internally generated error signal. Neuronal activity in the frontal eye field was directionally tuned prior to both primary and secondary saccades. Separate subpopulations of cells encoded either saccade direction or direction error prior to the second saccade. These results suggest that FEF neurons encode the error after the first saccade, as well as the direction of the second saccade. Hence, FEF appears to contribute to detecting and correcting movement errors based on internally generated signals. PMID:20810882

  5. New method for remote and repeatable monitoring of intraocular pressure variations.

    PubMed

    Margalit, Israel; Beiderman, Yevgeny; Skaat, Alon; Rosenfeld, Elkanah; Belkin, Michael; Tornow, Ralf-Peter; Mico, Vicente; Garcia, Javier; Zalevsky, Zeev

    2014-02-01

    We present initial steps toward a new measurement device enabling high-precision, noncontact remote and repeatable monitoring of intraocular pressure (IOP)-based on an innovative measurement principle. Using only a camera and a laser source, the device measures IOP by tracking the secondary speckle pattern trajectories produced by the reflection of an illuminating laser beam from the iris or the sclera. The device was tested on rabbit eyes using two different methods to modify IOP: via an infusion bag and via mechanical pressure. In both cases, the eyes were stimulated with increasing and decreasing ramps of the IOP. As IOP variations changed the speckle distributions reflected back from the eye, data were recorded under various optical configurations to define and optimize the best experimental configuration for the IOP extraction. The association between the data provided by our proposed device and that resulting from controlled modification of the IOP was assessed, revealing high correlation (R2=0.98) and sensitivity and providing a high-precision measurement (5% estimated error) for the best experimental configuration. Future steps will be directed toward applying the proposed measurement principle in clinical trials for monitoring IOP with human subjects.

  6. 5D imaging via light sheet microscopy reveals cell dynamics during the eye-antenna disc primordium formation in Drosophila

    NASA Astrophysics Data System (ADS)

    Huang, Yu Shan; Ku, Hui Yu; Tsai, Yun Chi; Chang, Chin Hao; Pao, Sih Hua; Sun, Y. Henry; Chiou, Arthur

    2017-03-01

    5D images of engrailed (en) and eye gone (eyg) gene expressions during the course of the eye-antenna disc primordium (EADP) formation of Drosophila embryos from embryonic stages 13 through 16 were recorded via light sheet microscopy and analyzed to reveal the cell dynamics involved in the development of the EADP. Detailed analysis of the time-lapsed images revealed the process of EADP formation and its invagination trajectory, which involved an inversion of the EADP anterior-posterior axis relative to the body. Furthermore, analysis of the en-expression pattern in the EADP provided strong evidence that the EADP is derived from one of the en-expressing head segments.

  7. Centripetal force draws the eyes, not memory of the target, toward the center.

    PubMed

    Kerzel, Dirk

    2003-05-01

    Many observers believe that a target will continue on a curved trajectory after exiting a spiral tube. Similarly, when observers were asked to localize the final position of a target moving on a circular orbit, displacement of the judged position in the direction of forward motion ("representational momentum") and toward the center of the orbit was observed (cf. T. L. Hubbard, 1996). The present study shows that memory displacement of targets on a circular orbit is affected by eye movements. Forward displacement was larger with ocular pursuit of the target, whereas inward displacement was larger with motionless eyes. The results challenge an account attributing forward and inward displacement to mental analogues of momentum and centripetal force, respectively.

  8. Dynamic Imaging of the Eye, Optic Nerve, and Extraocular Muscles With Golden Angle Radial MRI

    PubMed Central

    Smith, David S.; Smith, Alex K.; Welch, E. Brian; Smith, Seth A.

    2017-01-01

    Purpose The eye and its accessory structures, the optic nerve and the extraocular muscles, form a complex dynamic system. In vivo magnetic resonance imaging (MRI) of this system in motion can have substantial benefits in understanding oculomotor functioning in health and disease, but has been restricted to date to imaging of static gazes only. The purpose of this work was to develop a technique to image the eye and its accessory visual structures in motion. Methods Dynamic imaging of the eye was developed on a 3-Tesla MRI scanner, based on a golden angle radial sequence that allows freely selectable frame-rate and temporal-span image reconstructions from the same acquired data set. Retrospective image reconstructions at a chosen frame rate of 57 ms per image yielded high-quality in vivo movies of various eye motion tasks performed in the scanner. Motion analysis was performed for a left–right version task where motion paths, lengths, and strains/globe angle of the medial and lateral extraocular muscles and the optic nerves were estimated. Results Offline image reconstructions resulted in dynamic images of bilateral visual structures of healthy adults in only ∼15-s imaging time. Qualitative and quantitative analyses of the motion enabled estimation of trajectories, lengths, and strains on the optic nerves and extraocular muscles at very high frame rates of ∼18 frames/s. Conclusions This work presents an MRI technique that enables high-frame-rate dynamic imaging of the eyes and orbital structures. The presented sequence has the potential to be used in furthering the understanding of oculomotor mechanics in vivo, both in health and disease. PMID:28813574

  9. Changing Roles in Information Distribution. 1994 NFAIS Report Series, 1.

    ERIC Educational Resources Information Center

    Cunningham, Ann Marie, Ed.; Wicks, Wendy, Ed.

    This report tracks the evolution of information through the eyes of the five traditional "players"--author, primary publisher, secondary publisher, distributor, and information consumer. It maps the trajectory of publishing through the media landscape--from print to online to CD-ROM to networks. Representatives from each constituency…

  10. Prenatal growth of the interorbital septum in Macaca mulatta.

    PubMed

    Lozanoff, Scott; Doll, Sara; Hallgrimsson, Benedikt; Neufeld, Eric

    2004-12-01

    The interorbital septum is the portion of the anterior cranial base directly contiguous with the eyes. It is considered to be a primitive trait that has evolved independently in various primate groups as a result of ocular and olfactory convergence with concomitant encephalization. This process is hypothesized to have reduced the size of the lateral nasal capsule exposing the anterior cranial base to the ocular apparatus and thus creating an interorbital septum. The purpose of this study was to determine whether differential growth trajectories occur among the chondrocranial elements corresponding to this hypothesis. Macaca mulatta embryos from the Zingeser Collection were selected for this analysis since this primate shows a well-developed interorbital septum throughout ontogeny. Embryos between 40 and 90 days of gestation were selected from the collection and coronal sections including the eye, anterior cranial base and lateral nasal capsule were subjected to video microscopy and computerized reconstruction using SURFdriver Software. Tissue volumes were computed for these tissues while chondrocytic growth attributes were measured utilizing stereological techniques. Results showed a strong correlation between the volume of the lateral nasal capsule and anterior cranial base and these two structures showed a consistent correlation with an increasing eye volume. Chondrocytic volume density and average diameter were larger in the lateral nasal capsule while shape, numerical density and average volume did not differ between the two tissues. These data suggest if differential growth does account for a reduction of the nasal capsule compared to the central cranial base stem, it does not appear to result from differential tissue size change. However, certain cellular growth activities leading to premature chondrocytic hypertrophy may be involved.

  11. CFD Analysis of Swing of Cricket Ball and Trajectory Prediction

    NASA Astrophysics Data System (ADS)

    G, Jithin; Tom, Josin; Ruishikesh, Kamat; Jose, Jyothish; Kumar, Sanjay

    2013-11-01

    This work aims to understand the aerodynamics associated with the flight and swing of a cricket ball and predict its flight trajectory over the course of the game: at start (smooth ball) and as the game progresses (rough ball). Asymmetric airflow over the ball due to seam orientation and surface roughness can cause flight deviation (swing). The values of Drag, Lift and Side forces which are crucial for determining the trajectory of the ball were found with the help of FLUENT using the standard K- ɛ model. Analysis was done to study how the ball velocity, spin imparted to be ball and the tilt of the seam affects the movement of the ball through air. The governing force balance equations in 3 dimensions in combination a MATLAB code which used Heun's method was used for obtaining the trajectory of the ball. The conditions for the conventional swing and reverse swing to occur were deduced from the analysis and found to be in alignment with the real life situation. Critical seam angle for maximum swing and transition speed for normal to reverse swing were found out. The obtained trajectories were compared to real life hawk eye trajectories for validation. The analysis results were in good agreement with the real life situation.

  12. Decoding with limited neural data: a mixture of time-warped trajectory models for directional reaches.

    PubMed

    Corbett, Elaine A; Perreault, Eric J; Körding, Konrad P

    2012-06-01

    Neuroprosthetic devices promise to allow paralyzed patients to perform the necessary functions of everyday life. However, to allow patients to use such tools it is necessary to decode their intent from neural signals such as electromyograms (EMGs). Because these signals are noisy, state of the art decoders integrate information over time. One systematic way of doing this is by taking into account the natural evolution of the state of the body--by using a so-called trajectory model. Here we use two insights about movements to enhance our trajectory model: (1) at any given time, there is a small set of likely movement targets, potentially identified by gaze; (2) reaches are produced at varying speeds. We decoded natural reaching movements using EMGs of muscles that might be available from an individual with spinal cord injury. Target estimates found from tracking eye movements were incorporated into the trajectory model, while a mixture model accounted for the inherent uncertainty in these estimates. Warping the trajectory model in time using a continuous estimate of the reach speed enabled accurate decoding of faster reaches. We found that the choice of richer trajectory models, such as those incorporating target or speed, improves decoding particularly when there is a small number of EMGs available.

  13. Zebrafish tracking using convolutional neural networks.

    PubMed

    Xu, Zhiping; Cheng, Xi En

    2017-02-17

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

  14. Zebrafish tracking using convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Xu, Zhiping; Cheng, Xi En

    2017-02-01

    Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.

  15. Directional measures of postural sway as predictors of balance instability and accidental falls

    PubMed Central

    Janusz, Błaszczyk W.; Beck, Monika; Szczepańska, Justyna; Sadowska, Dorota; Bacik, Bogdan; Juras, Grzegorz

    2016-01-01

    Abstract Despite the obvious advantages and popularity of static posturography, universal standards for posturographic tests have not been developed thus far. Most of the center-of-foot pressure (COP) indices are strongly dependent on an individual experimental design, and are susceptible to distortions, which makes results of their analysis incomparable. In this research, we present a novel approach to the analysis of the COP trajectory based on the directional features of postural sway. Our novel output measures: the sway directional indices (DI) and sway vector (SV) were applied to assess the postural stability in the group of young able-bodied subjects. Towards this aim, the COP trajectories were recorded in 100 students standing still for 60 s, with eyes open (EO) and then, with eyes closed (EC). Each record was subdivided then into 20, 30 and 60 s samples. Interclass correlation coefficients were calculated from the samples. The controlled variables (visual conditions) uniquely affected the output measures, but only in case of proper signal pretreatment (low-pass filtering). In filtering below 6 Hz, the DI and SV provided a unique set of descriptors for postural control. Both sway measures were highly independent of the trial length and the sampling frequency, and were unaffected by the sampling noise. Directional indices of COP filtered at 6 Hz showed high to very high reliability, with ICC range of 0.7-0.9. Results of a single 60 s trial are sufficient to reach acceptable reliability for both DI and SV. In conclusion, the directional sway measures may be recommended as the primary standard in static posturography. PMID:28149395

  16. Workload assessment of surgeons: correlation between NASA TLX and blinks.

    PubMed

    Zheng, Bin; Jiang, Xianta; Tien, Geoffrey; Meneghetti, Adam; Panton, O Neely M; Atkins, M Stella

    2012-10-01

    Blinks are known as an indicator of visual attention and mental stress. In this study, surgeons' mental workload was evaluated utilizing a paper assessment instrument (National Aeronautics and Space Administration Task Load Index, NASA TLX) and by examining their eye blinks. Correlation between these two assessments was reported. Surgeons' eye motions were video-recorded using a head-mounted eye-tracker while the surgeons performed a laparoscopic procedure on a virtual reality trainer. Blink frequency and duration were computed using computer vision technology. The level of workload experienced during the procedure was reported by surgeons using the NASA TLX. A total of 42 valid videos were recorded from 23 surgeons. After blinks were computed, videos were divided into two groups based on the blink frequency: infrequent group (≤ 6 blinks/min) and frequent group (more than 6 blinks/min). Surgical performance (measured by task time and trajectories of tool tips) was not significantly different between these two groups, but NASA TLX scores were significantly different. Surgeons who blinked infrequently reported a higher level of frustration (46 vs. 34, P = 0.047) and higher overall level of workload (57 vs. 47, P = 0.045) than those who blinked more frequently. The correlation coefficients (Pearson test) between NASA TLX and the blink frequency and duration were -0.17 and 0.446. Reduction of blink frequency and shorter blink duration matched the increasing level of mental workload reported by surgeons. The value of using eye-tracking technology for assessment of surgeon mental workload was shown.

  17. The effect of sensory uncertainty due to amblyopia (lazy eye) on the planning and execution of visually-guided 3D reaching movements.

    PubMed

    Niechwiej-Szwedo, Ewa; Goltz, Herbert C; Chandrakumar, Manokaraananthan; Wong, Agnes M F

    2012-01-01

    Impairment of spatiotemporal visual processing in amblyopia has been studied extensively, but its effects on visuomotor tasks have rarely been examined. Here, we investigate how visual deficits in amblyopia affect motor planning and online control of visually-guided, unconstrained reaching movements. Thirteen patients with mild amblyopia, 13 with severe amblyopia and 13 visually-normal participants were recruited. Participants reached and touched a visual target during binocular and monocular viewing. Motor planning was assessed by examining spatial variability of the trajectory at 50-100 ms after movement onset. Online control was assessed by examining the endpoint variability and by calculating the coefficient of determination (R(2)) which correlates the spatial position of the limb during the movement to endpoint position. Patients with amblyopia had reduced precision of the motor plan in all viewing conditions as evidenced by increased variability of the reach early in the trajectory. Endpoint precision was comparable between patients with mild amblyopia and control participants. Patients with severe amblyopia had reduced endpoint precision along azimuth and elevation during amblyopic eye viewing only, and along the depth axis in all viewing conditions. In addition, they had significantly higher R(2) values at 70% of movement time along the elevation and depth axes during amblyopic eye viewing. Sensory uncertainty due to amblyopia leads to reduced precision of the motor plan. The ability to implement online corrections depends on the severity of the visual deficit, viewing condition, and the axis of the reaching movement. Patients with mild amblyopia used online control effectively to compensate for the reduced precision of the motor plan. In contrast, patients with severe amblyopia were not able to use online control as effectively to amend the limb trajectory especially along the depth axis, which could be due to their abnormal stereopsis.

  18. The Effect of Sensory Uncertainty Due to Amblyopia (Lazy Eye) on the Planning and Execution of Visually-Guided 3D Reaching Movements

    PubMed Central

    Niechwiej-Szwedo, Ewa; Goltz, Herbert C.; Chandrakumar, Manokaraananthan; Wong, Agnes M. F.

    2012-01-01

    Background Impairment of spatiotemporal visual processing in amblyopia has been studied extensively, but its effects on visuomotor tasks have rarely been examined. Here, we investigate how visual deficits in amblyopia affect motor planning and online control of visually-guided, unconstrained reaching movements. Methods Thirteen patients with mild amblyopia, 13 with severe amblyopia and 13 visually-normal participants were recruited. Participants reached and touched a visual target during binocular and monocular viewing. Motor planning was assessed by examining spatial variability of the trajectory at 50–100 ms after movement onset. Online control was assessed by examining the endpoint variability and by calculating the coefficient of determination (R2) which correlates the spatial position of the limb during the movement to endpoint position. Results Patients with amblyopia had reduced precision of the motor plan in all viewing conditions as evidenced by increased variability of the reach early in the trajectory. Endpoint precision was comparable between patients with mild amblyopia and control participants. Patients with severe amblyopia had reduced endpoint precision along azimuth and elevation during amblyopic eye viewing only, and along the depth axis in all viewing conditions. In addition, they had significantly higher R2 values at 70% of movement time along the elevation and depth axes during amblyopic eye viewing. Conclusion Sensory uncertainty due to amblyopia leads to reduced precision of the motor plan. The ability to implement online corrections depends on the severity of the visual deficit, viewing condition, and the axis of the reaching movement. Patients with mild amblyopia used online control effectively to compensate for the reduced precision of the motor plan. In contrast, patients with severe amblyopia were not able to use online control as effectively to amend the limb trajectory especially along the depth axis, which could be due to their abnormal stereopsis. PMID:22363549

  19. Eye center localization and gaze gesture recognition for human-computer interaction.

    PubMed

    Zhang, Wenhao; Smith, Melvyn L; Smith, Lyndon N; Farooq, Abdul

    2016-03-01

    This paper introduces an unsupervised modular approach for accurate and real-time eye center localization in images and videos, thus allowing a coarse-to-fine, global-to-regional scheme. The trajectories of eye centers in consecutive frames, i.e., gaze gestures, are further analyzed, recognized, and employed to boost the human-computer interaction (HCI) experience. This modular approach makes use of isophote and gradient features to estimate the eye center locations. A selective oriented gradient filter has been specifically designed to remove strong gradients from eyebrows, eye corners, and shadows, which sabotage most eye center localization methods. A real-world implementation utilizing these algorithms has been designed in the form of an interactive advertising billboard to demonstrate the effectiveness of our method for HCI. The eye center localization algorithm has been compared with 10 other algorithms on the BioID database and six other algorithms on the GI4E database. It outperforms all the other algorithms in comparison in terms of localization accuracy. Further tests on the extended Yale Face Database b and self-collected data have proved this algorithm to be robust against moderate head poses and poor illumination conditions. The interactive advertising billboard has manifested outstanding usability and effectiveness in our tests and shows great potential for benefiting a wide range of real-world HCI applications.

  20. Performing saccadic eye movements or blinking improves postural control.

    PubMed

    Rougier, Patrice; Garin, Mélanie

    2007-07-01

    To determine the relationship between eye movement and postural control on an undisturbed upright stance maintenance protocol, 15 young, healthy individuals were tested in various conditions. These conditions included imposed blinking patterns and horizontal and vertical saccadic eye movements. The directions taken by the center of pressure (CP) were recorded via a force platform on which the participants remained in an upright position. The CP trajectories were used to estimate, via a low-pass filter, the vertically projected movements of the center of gravity (CGv) and consequently the difference CP-CGv. An analysis of the frequency shows that regular bilateral blinking does not produce a significant change in postural control. In contrast, performing saccadic eye movements induces some reduced amplitude for both basic CGv and CP-CGv movements principally along the antero-posterior axis. The present result supports the theory that some ocular movements may modify postural control in the maintenance of the upright standing position in human participants.

  1. Looking away: distractor influences on saccadic trajectory and endpoint in prosaccade and antisaccade tasks.

    PubMed

    Laidlaw, Kaitlin E W; Zhu, Mona J H; Kingstone, Alan

    2016-06-01

    Successful target selection often occurs concurrently with distractor inhibition. A better understanding of the former thus requires a thorough study of the competition that arises between target and distractor representations. In the present study, we explore whether the presence of a distractor influences saccade processing via interfering with visual target and/or saccade goal representations. To do this, we asked participants to make either pro- or antisaccade eye movements to a target and measured the change in their saccade trajectory and landing position (collectively referred to as deviation) in response to distractors placed near or far from the saccade goal. The use of an antisaccade paradigm may help to distinguish between stimulus- and goal-related distractor interference, as unlike with prosaccades, these two features are dissociated in space when making a goal-directed antisaccade response away from a visual target stimulus. The present results demonstrate that for both pro- and antisaccades, distractors near the saccade goal elicited the strongest competition, as indicated by greater saccade trajectory deviation and landing position error. Though distractors far from the saccade goal elicited, on average, greater deviation away in antisaccades than in prosaccades, a time-course analysis revealed a significant effect of far-from-goal distractors in prosaccades as well. Considered together, the present findings support the view that goal-related representations most strongly influence the saccade metrics tested, though stimulus-related representations may play a smaller role in determining distractor-based interference effects on saccade execution under certain circumstances. Further, the results highlight the advantage of considering temporal changes in distractor-based interference.

  2. A real-time dynamic-MLC control algorithm for delivering IMRT to targets undergoing 2D rigid motion in the beam's eye view.

    PubMed

    McMahon, Ryan; Berbeco, Ross; Nishioka, Seiko; Ishikawa, Masayori; Papiez, Lech

    2008-09-01

    An MLC control algorithm for delivering intensity modulated radiation therapy (IMRT) to targets that are undergoing two-dimensional (2D) rigid motion in the beam's eye view (BEV) is presented. The goal of this method is to deliver 3D-derived fluence maps over a moving patient anatomy. Target motion measured prior to delivery is first used to design a set of planned dynamic-MLC (DMLC) sliding-window leaf trajectories. During actual delivery, the algorithm relies on real-time feedback to compensate for target motion that does not agree with the motion measured during planning. The methodology is based on an existing one-dimensional (ID) algorithm that uses on-the-fly intensity calculations to appropriately adjust the DMLC leaf trajectories in real-time during exposure delivery [McMahon et al., Med. Phys. 34, 3211-3223 (2007)]. To extend the 1D algorithm's application to 2D target motion, a real-time leaf-pair shifting mechanism has been developed. Target motion that is orthogonal to leaf travel is tracked by appropriately shifting the positions of all MLC leaves. The performance of the tracking algorithm was tested for a single beam of a fractionated IMRT treatment, using a clinically derived intensity profile and a 2D target trajectory based on measured patient data. Comparisons were made between 2D tracking, 1D tracking, and no tracking. The impact of the tracking lag time and the frequency of real-time imaging were investigated. A study of the dependence of the algorithm's performance on the level of agreement between the motion measured during planning and delivery was also included. Results demonstrated that tracking both components of the 2D motion (i.e., parallel and orthogonal to leaf travel) results in delivered fluence profiles that are superior to those that track the component of motion that is parallel to leaf travel alone. Tracking lag time effects may lead to relatively large intensity delivery errors compared to the other sources of error investigated. However, the algorithm presented is robust in the sense that it does not rely on a high level of agreement between the target motion measured during treatment planning and delivery.

  3. Energy calibration of the fly's eye detector

    NASA Technical Reports Server (NTRS)

    Baltrusaitis, R. M.; Cassiday, G. L.; Cooper, R.; Elbert, J. W.; Gerhardy, P. R.; Ko, S.; Loh, E. C.; Mizumoto, Y.; Sokolsky, P.; Steck, D.

    1985-01-01

    The methods used to calibrate the Fly's eye detector to evaluate the energy of EAS are discussed. The energy of extensive air showers (EAS) as seen by the Fly's Eye detector are obtained from track length integrals of observed shower development curves. The energy of the parent cosmic ray primary is estimated by applying corrections to account for undetected energy in the muon, neutrino and hadronic channels. Absolute values for E depend upon the measurement of shower sizes N sub e(x). The following items are necessary to convert apparent optical brightness into intrinsical optical brightness: (1) an assessment of those factors responsible for light production by the relativistic electrons in an EAS and the transmission of light thru the atmosphere, (2) calibration of the optical detection system, and (3) a knowledge of the trajectory of the shower.

  4. Cerebral palsy characterization by estimating ocular motion

    NASA Astrophysics Data System (ADS)

    González, Jully; Atehortúa, Angélica; Moncayo, Ricardo; Romero, Eduardo

    2017-11-01

    Cerebral palsy (CP) is a large group of motion and posture disorders caused during the fetal or infant brain development. Sensorial impairment is commonly found in children with CP, i.e., between 40-75 percent presents some form of vision problems or disabilities. An automatic characterization of the cerebral palsy is herein presented by estimating the ocular motion during a gaze pursuing task. Specifically, After automatically detecting the eye location, an optical flow algorithm tracks the eye motion following a pre-established visual assignment. Subsequently, the optical flow trajectories are characterized in the velocity-acceleration phase plane. Differences are quantified in a small set of patients between four to ten years.

  5. Interactive orbital proximity operations planning system

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1989-01-01

    An interactive, graphical proximity operations planning system was developed which allows on-site design of efficient, complex, multiburn maneuvers in the dynamic multispacecraft environment about the space station. Maneuvering takes place in, as well as out of, the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of relative orbital motion trajectories and complex operational constraints, which are both time varying and highly dependent on the mission scenario. This difficulty is greatly overcome by visualizing the relative trajectories and the relative constraints in an easily interpretable, graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of the space station and co-orbiting spacecraft on the background of the station's orbital plane. The operator has control over two modes of operation: (1) a viewing system mode, which enables him or her to explore the spatial situation about the space station and thus choose and frame in on areas of interest; and (2) a trajectory design mode, which allows the interactive editing of a series of way-points and maneuvering burns to obtain a trajectory which complies with all operational constraints. Through a graphical interactive process, the operator will continue to modify the trajectory design until all operational constraints are met. The effectiveness of this display format in complex trajectory design is presently being evaluated in an ongoing experimental program.

  6. TH-EF-BRB-02: Feasibility of Optimization for Dynamic Trajectory Radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fix, MK; Frei, D; Volken, W

    2016-06-15

    Purpose: Over the last years, volumetric modulated arc therapy (VMAT) has been widely introduced into clinical routine using a coplanar delivery technique. However, VMAT might be improved by including dynamic couch and collimator rotations, leading to dynamic trajectory radiotherapy (DTRT). In this work the feasibility and the potential benefit of DTRT was investigated. Methods: A general framework for the optimization was developed using the Eclipse Scripting Research Application Programming Interface (ESRAPI). Based on contoured target and organs at risk (OARs), the structures are extracted using the ESRAPI. Sampling potential beam directions, regularly distributed on a sphere using a Fibanocci-lattice, themore » fractional volume-overlap of each OAR and the target is determined and used to establish dynamic gantry-couch movements. Then, for each gantry-couch track the most suitable collimator angle is determined for each control point by optimizing the area between the MLC leaves and the target contour. The resulting dynamic trajectories are used as input to perform the optimization using a research version of the VMAT optimization algorithm and the ESRAPI. The feasibility of this procedure was tested for a clinically motivated head and neck case. Resulting dose distributions for the VMAT plan and for the dynamic trajectory treatment plan were compared based on DVH-parameters. Results: While the DVH for the target is virtually preserved, improvements in maximum dose for the DTRT plan were achieved for all OARs except for the inner-ear, where maximum dose remains the same. The major improvements in maximum dose were 6.5% of the prescribed dose (66 Gy) for the parotid and 5.5% for the myelon and the eye. Conclusion: The result of this work suggests that DTRT has a great potential to reduce dose to OARs with similar target coverage when compared to conventional VMAT treatment plans. This work was supported by Varian Medical Systems. This work was supported by Varian Medical Systems.« less

  7. A kinematic model for 3-D head-free gaze-shifts

    PubMed Central

    Daemi, Mehdi; Crawford, J. Douglas

    2015-01-01

    Rotations of the line of sight are mainly implemented by coordinated motion of the eyes and head. Here, we propose a model for the kinematics of three-dimensional (3-D) head-unrestrained gaze-shifts. The model was designed to account for major principles in the known behavior, such as gaze accuracy, spatiotemporal coordination of saccades with vestibulo-ocular reflex (VOR), relative eye and head contributions, the non-commutativity of rotations, and Listing's and Fick constraints for the eyes and head, respectively. The internal design of the model was inspired by known and hypothesized elements of gaze control physiology. Inputs included retinocentric location of the visual target and internal representations of initial 3-D eye and head orientation, whereas outputs were 3-D displacements of eye relative to the head and head relative to shoulder. Internal transformations decomposed the 2-D gaze command into 3-D eye and head commands with the use of three coordinated circuits: (1) a saccade generator, (2) a head rotation generator, (3) a VOR predictor. Simulations illustrate that the model can implement: (1) the correct 3-D reference frame transformations to generate accurate gaze shifts (despite variability in other parameters), (2) the experimentally verified constraints on static eye and head orientations during fixation, and (3) the experimentally observed 3-D trajectories of eye and head motion during gaze-shifts. We then use this model to simulate how 2-D eye-head coordination strategies interact with 3-D constraints to influence 3-D orientations of the eye-in-space, and the implications of this for spatial vision. PMID:26113816

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liang, J; Kim, S; Hristov, D

    Purpose: To assess the potential benefit of trajectory modulated arc therapy (TMAT) for treatments of small benign intracranial tumor, pituitary adenoma. Methods: A TMAT planning platform that incorporates complex source motion trajectory involving synchronized gantry rotation with translational and rotational couch movement was used for the study. The platform couples an interactive trajectory generation tool with a VMAT algorithm that performs multi-resolution, progressive sampling MLC optimization on a user-designed trajectory. A continuous couch rotation of 160° angular span with ±20° mini gantry arcs was used to emulate a non-coplanar horizontal arc-like trajectory. Compared to conventional non-coplanar gantry arcs (60°-100° gantrymore » rotation with couch kicks), TMAT limited the unnecessary low to medium dose spread in the anterior and posterior directions, where primary OARs (e.g., brainstem, optic chiasm, optic nerves, and lens) are in close proximity to the targeted pituitary tumor volume. For 5 standard fractionation pituitary adenoma cases (50.4Gy/28fractions), TMAT and non-coplanar VMAT plans were generated and compared under equivalent objectives/constraints. TMAT delivery was implemented and demonstrated on Varian TrueBeam via XML scripts. Results: Both techniques showed good target coverage while OARs were able to meet the constraints on QUANTEC guidelines. Notably, TMAT decreased the dose deposition in the anterior-to-posterior direction surrounding PTV. TMAT significantly reduced the mean doses on brainstem, optic nerves, eyes and lens by 47.29%±13.17%, 28.51%±8.68%, 80.82%±8.71% and 65.38%±19.99% compared with VMAT, all p≤0.01. Percentage reductions of maximum point dose in eyes and lens were 75.68%±10.30% and 70.72%±18.62% respectively for TMAT versus VMAT, all p≤0.01. A representative isocentric TMAT pituitary plan was delivered via an XML script with 200 control points and 282 MUs. Conclusion: Deliverable TMAT plans were achieved in developer mode in TrueBeam. TMAT was shown to be superior for pituitary adenoma irradiation in terms of OARs sparing.« less

  9. Evidence for a general stiffening motor control pattern in neck pain: a cross sectional study.

    PubMed

    Meisingset, Ingebrigt; Woodhouse, Astrid; Stensdotter, Ann-Katrin; Stavdahl, Øyvind; Lorås, Håvard; Gismervik, Sigmund; Andresen, Hege; Austreim, Kristian; Vasseljen, Ottar

    2015-03-17

    Neck pain is associated with several alterations in neck motion and motor control. Previous studies have investigated single constructs of neck motor control, while few have applied a comprehensive set of tests to investigate cervical motor control. This comparative cross- sectional study aimed to investigate different motor control constructs in neck pain patients and healthy controls. A total of 166 subjects participated in the study, 91 healthy controls (HC) and 75 neck pain patients (NP) with long-lasting moderate to severe neck pain. Neck flexibility, proprioception, head steadiness, trajectory movement control, and postural sway were assessed using a 3D motion tracking system (Liberty). The different constructs of neck motion and motor control were based on tests used in previous studies. Neck flexibility was lower in NP compared to HC, indicated by reduced cervical ROM and conjunct motion. Movement velocity was slower in NP compared to HC. Tests of head steadiness showed a stiffer movement pattern in NP compared to HC, indicated by lower head angular velocity. NP patients departed less from a predictable trajectory movement pattern (figure of eight) compared to healthy controls, but there was no difference for unpredictable movement patterns (the Fly test). No differences were found for postural sway in standing with eyes open and eyes closed. However, NP patients had significantly larger postural sway when standing on a balance pad. Proprioception did not differ between the groups. Largest effect sizes (ES) were found for neck flexibility (ES range: 0.2-0.8) and head steadiness (ES range: 1.3-2.0). Neck flexibility was the only construct that showed a significant association with current neck pain, while peak velocity was the only variable that showed a significant association with kinesiophobia. NP patients showed an overall stiffer and more rigid neck motor control pattern compared to HC, indicated by lower neck flexibility, slower movement velocity, increased head steadiness and more rigid trajectory head motion patterns. Only neck flexibility showed a significant association with clinical features in NP patients.

  10. Contextual effects on smooth-pursuit eye movements.

    PubMed

    Spering, Miriam; Gegenfurtner, Karl R

    2007-02-01

    Segregating a moving object from its visual context is particularly relevant for the control of smooth-pursuit eye movements. We examined the interaction between a moving object and a stationary or moving visual context to determine the role of the context motion signal in driving pursuit. Eye movements were recorded from human observers to a medium-contrast Gaussian dot that moved horizontally at constant velocity. A peripheral context consisted of two vertically oriented sinusoidal gratings, one above and one below the stimulus trajectory, that were either stationary or drifted into the same or opposite direction as that of the target at different velocities. We found that a stationary context impaired pursuit acceleration and velocity and prolonged pursuit latency. A drifting context enhanced pursuit performance, irrespective of its motion direction. This effect was modulated by context contrast and orientation. When a context was briefly perturbed to move faster or slower eye velocity changed accordingly, but only when the context was drifting along with the target. Perturbing a context into the direction orthogonal to target motion evoked a deviation of the eye opposite to the perturbation direction. We therefore provide evidence for the use of absolute and relative motion cues, or motion assimilation and motion contrast, for the control of smooth-pursuit eye movements.

  11. Statistical patterns of visual search for hidden objects

    PubMed Central

    Credidio, Heitor F.; Teixeira, Elisângela N.; Reis, Saulo D. S.; Moreira, André A.; Andrade Jr, José S.

    2012-01-01

    The movement of the eyes has been the subject of intensive research as a way to elucidate inner mechanisms of cognitive processes. A cognitive task that is rather frequent in our daily life is the visual search for hidden objects. Here we investigate through eye-tracking experiments the statistical properties associated with the search of target images embedded in a landscape of distractors. Specifically, our results show that the twofold process of eye movement, composed of sequences of fixations (small steps) intercalated by saccades (longer jumps), displays characteristic statistical signatures. While the saccadic jumps follow a log-normal distribution of distances, which is typical of multiplicative processes, the lengths of the smaller steps in the fixation trajectories are consistent with a power-law distribution. Moreover, the present analysis reveals a clear transition between a directional serial search to an isotropic random movement as the difficulty level of the searching task is increased. PMID:23226829

  12. Interactive orbital proximity operations planning system

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1990-01-01

    An interactive graphical planning system for on-site planning of proximity operations in the congested multispacecraft environment about the space station is presented. The system shows the astronaut a bird's eye perspective of the space station, the orbital plane, and the co-orbiting spacecraft. The system operates in two operational modes: (1) a viewpoint mode, in which the astronaut is able to move the viewpoint around in the orbital plane to range in on areas of interest; and (2) a trajectory design mode, in which the trajectory is planned. Trajectory design involves the composition of a set of waypoints which result in a fuel-optimal trajectory which satisfies all operational constraints, such as departure and arrival constraints, plume impingement constraints, and structural constraints. The main purpose of the system is to present the trajectory and the constraints in an easily interpretable graphical format. Through a graphical interactive process, the trajectory waypoints are edited until all operational constraints are satisfied. A series of experiments was conducted to evaluate the system. Eight airline pilots with no prior background in orbital mechanics participated in the experiments. Subject training included a stand-alone training session of about 6 hours duration, in which the subjects became familiar with orbital mechanics concepts and performed a series of exercises to familiarize themselves with the control and display features of the system. They then carried out a series of production runs in which 90 different trajectory design situations were randomly addressed. The purpose of these experiments was to investigate how the planning time, planning efforts, and fuel expenditures were affected by the planning difficulty. Some results of these experiments are presented.

  13. Adjustment of saccade characteristics during head movements.

    NASA Technical Reports Server (NTRS)

    Morasso, P.; Bizzi, E.; Dichgans, J.

    1973-01-01

    Saccade characteristics have been studied during coordinated eye-head movements in monkeys. Amplitude, duration, and peak velocity of saccades with head turning were compared with saccades executed while the head was artificially restrained. The results indicate that the saccade characteristics are modulated as a function of head movement, hence the gaze movement (eye+head) exactly matches saccades with head fixed. Saccade modulation is achieved by way of negative vestibulo-ocular feedback. The neck proprioceptors, because of their longer latency, are effective only if the head starts moving prior to the onset of saccade. It is concluded that saccades make with head turning are not 'ballistic' movements because their trajectory is not entirely predetermined by a central command.

  14. Eye position affects flight altitude in visual approach to landing independent of level of expertise of pilot

    PubMed Central

    Camachon, Cyril; Montagne, Gilles

    2018-01-01

    The present study addresses the effect of the eye position in the cockpit on the flight altitude during the final approach to landing. Three groups of participants with different levels of expertise (novices, trainees, and certified pilots) were given a laptop with a flight simulator and they were asked to maintain a 3.71° glide slope while landing. Each participant performed 40 approaches to the runway. During 8 of the approaches, the point of view that the flight simulator used to compute the visual scene was slowly raised or lowered with 4 cm with respect to the cockpit, hence moving the projection of the visible part of the cockpit down or up in the visible scene in a hardly noticeable manner. The increases and decreases in the simulated eye height led to increases and decreases in the altitude of the approach trajectories, for all three groups of participants. On the basis of these results, it is argued that the eye position of pilots during visual approaches is a factor that contributes to the risk of black hole accidents. PMID:29795618

  15. Effects of changes in size, speed and distance on the perception of curved 3D trajectories

    PubMed Central

    Zhang, Junjun; Braunstein, Myron L.; Andersen, George J.

    2012-01-01

    Previous research on the perception of 3D object motion has considered time to collision, time to passage, collision detection and judgments of speed and direction of motion, but has not directly studied the perception of the overall shape of the motion path. We examined the perception of the magnitude of curvature and sign of curvature of the motion path for objects moving at eye level in a horizontal plane parallel to the line of sight. We considered two sources of information for the perception of motion trajectories: changes in angular size and changes in angular speed. Three experiments examined judgments of relative curvature for objects moving at different distances. At the closest distance studied, accuracy was high with size information alone but near chance with speed information alone. At the greatest distance, accuracy with size information alone decreased sharply but accuracy for displays with both size and speed information remained high. We found similar results in two experiments with judgments of sign of curvature. Accuracy was higher for displays with both size and speed information than with size information alone, even when the speed information was based on parallel projections and was not informative about sign of curvature. For both magnitude of curvature and sign of curvature judgments, information indicating that the trajectory was curved increased accuracy, even when this information was not directly relevant to the required judgment. PMID:23007204

  16. Look into my eyes: Investigating joint attention using interactive eye-tracking and fMRI in a developmental sample.

    PubMed

    Oberwelland, E; Schilbach, L; Barisic, I; Krall, S C; Vogeley, K; Fink, G R; Herpertz-Dahlmann, B; Konrad, K; Schulte-Rüther, M

    2016-04-15

    Joint attention, the shared attentional focus of at least two people on a third significant object, is one of the earliest steps in social development and an essential aspect of reciprocal interaction. However, the neural basis of joint attention (JA) in the course of development is completely unknown. The present study made use of an interactive eye-tracking paradigm in order to examine the developmental trajectories of JA and the influence of a familiar interaction partner during the social encounter. Our results show that across children and adolescents JA elicits a similar network of "social brain" areas as well as attention and motor control associated areas as in adults. While other-initiated JA particularly recruited visual, attention and social processing areas, self-initiated JA specifically activated areas related to social cognition, decision-making, emotions and motivational/reward processes highlighting the rewarding character of self-initiated JA. Activation was further enhanced during self-initiated JA with a familiar interaction partner. With respect to developmental effects, activation of the precuneus declined from childhood to adolescence and additionally shifted from a general involvement in JA towards a more specific involvement for self-initiated JA. Similarly, the temporoparietal junction (TPJ) was broadly involved in JA in children and more specialized for self-initiated JA in adolescents. Taken together, this study provides first-time data on the developmental trajectories of JA and the effect of a familiar interaction partner incorporating the interactive character of JA, its reciprocity and motivational aspects. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Volitional control of anticipatory ocular pursuit responses under stabilised image conditions in humans.

    PubMed

    Barnes, G; Goodbody, S; Collins, S

    1995-01-01

    Ocular pursuit responses have been examined in humans in three experiments in which the pursuit target image has been fully or partially stabilised on the fovea by feeding a recorded eye movement signal back to drive the target motion. The objective was to establish whether subjects could volitionally control smooth eye movement to reproduce trajectories of target motion in the absence of a concurrent target motion stimulus. In experiment 1 subjects were presented with a target moving with a triangular waveform in the horizontal axis with a frequency of 0.325 Hz and velocities of +/- 10-50 degrees/s. The target was illuminated twice per cycle for pulse durations (PD) of 160-640 ms as it passed through the centre position; otherwise subjects were in darkness. Subjects initially tracked the target motion in a conventional closed-loop mode for four cycles. Prior to the next target presentation the target image was stabilised on the fovea, so that any target motion generated resulted solely from volitional eye movement. Subjects continued to make anticipatory smooth eye movements both to the left and the right with a velocity trajectory similar to that observed in the closed-loop phase. Peak velocity in the stabilised-image mode was highly correlated with that in the prior closed-loop phase, but was slightly less (84% on average). In experiment 2 subjects were presented with a continuously illuminated target that was oscillated sinusoidally at frequencies of 0.2-1.34 Hz and amplitudes of +/- 5-20 degrees. After four cycles of closed-loop stimulation the image was stabilised on the fovea at the time of peak target displacement. Subjects continued to generate an oscillatory smooth eye velocity pattern that mimicked the sinusoidal motion of the previous closed-loop phase for at least three further cycles. The peak eye velocity generated ranged from 57-95% of that in the closed-loop phase at frequencies up to 0.8 Hz but decreased significantly at 1.34 Hz. In experiment 3 subjects were presented with a stabilised display throughout and generated smooth eye movements with peak velocity up to 84 degrees/s in the complete absence of any prior external target motion stimulus, by transferring their attention alternately to left and right of the centre of the display. Eye velocity was found to be dependent on the eccentricity of the centre of attention and the frequency of alternation. When the target was partially stabilised on the retina by feeding back only a proportion (Kf = 0.6-0.9) of the eye movement signal to drive the target, subjects were still able to generate smooth movements at will, even though the display did not move as far or as fast as the eye. Peak eye velocity decreased as Kf decreased, suggesting that there was a continuous competitive interaction between the volitional drive and the visual feedback provided by the relative motion of the display with respect to the retina. These results support the evidence for two separate mechanisms of smooth eye movement control in ocular pursuit: reflex control from retinal velocity error feedback and volitional control from an internal source. Arguments are presented to indicate how smooth pursuit may be controlled by matching a voluntarily initiated estimate of the required smooth movement, normally derived from storage of past re-afferent information, against current visual feedback information. Such a mechanism allows preemptive smooth eye movements to be made that can overcome the inherent delays in the visual feedback pathway.

  18. Simple Mindreading Abilities Predict Complex Theory of Mind: Developmental Delay in Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Pino, Maria Chiara; Mazza, Monica; Mariano, Melania; Peretti, Sara; Dimitriou, Dagmara; Masedu, Francesco; Valenti, Marco; Franco, Fabia

    2017-01-01

    Theory of mind (ToM) is impaired in individuals with autism spectrum disorders (ASD). The aims of this study were to: (i) examine the developmental trajectories of ToM abilities in two different mentalizing tasks in children with ASD compared to TD children; and (ii) to assess if a ToM simple test known as eyes-test could predict performance on…

  19. Modeling Inter-trial Variability of Saccade Trajectories: Effects of Lesions of the Oculomotor Part of the Fastigial Nucleus

    PubMed Central

    Eggert, Thomas; Straube, Andreas

    2016-01-01

    This study investigates the inter-trial variability of saccade trajectories observed in five rhesus macaques (Macaca mulatta). For each time point during a saccade, the inter-trial variance of eye position and its covariance with eye end position were evaluated. Data were modeled by a superposition of three noise components due to 1) planning noise, 2) signal-dependent motor noise, and 3) signal-dependent premotor noise entering within an internal feedback loop. Both planning noise and signal-dependent motor noise (together called accumulating noise) predict a simple S-shaped variance increase during saccades, which was not sufficient to explain the data. Adding noise within an internal feedback loop enabled the model to mimic variance/covariance structure in each monkey, and to estimate the noise amplitudes and the feedback gain. Feedback noise had little effect on end point noise, which was dominated by accumulating noise. This analysis was further extended to saccades executed during inactivation of the caudal fastigial nucleus (cFN) on one side of the cerebellum. Saccades ipsiversive to an inactivated cFN showed more end point variance than did normal saccades. During cFN inactivation, eye position during saccades was statistically more strongly coupled to eye position at saccade end. The proposed model could fit the variance/covariance structure of ipsiversive and contraversive saccades. Inactivation effects on saccade noise are explained by a decrease of the feedback gain and an increase of planning and/or signal-dependent motor noise. The decrease of the fitted feedback gain is consistent with previous studies suggesting a role for the cerebellum in an internal feedback mechanism. Increased end point variance did not result from impaired feedback but from the increase of accumulating noise. The effects of cFN inactivation on saccade noise indicate that the effects of cFN inactivation cannot be explained entirely with the cFN’s direct connections to the saccade-related premotor centers in the brainstem. PMID:27351741

  20. WE-AB-209-06: Dynamic Collimator Trajectory Algorithm for Use in VMAT Treatment Deliveries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacDonald, L; Thomas, C; Syme, A

    2016-06-15

    Purpose: To develop advanced dynamic collimator positioning algorithms for optimal beam’s-eye-view (BEV) fitting of targets in VMAT procedures, including multiple metastases stereotactic radiosurgery procedures. Methods: A trajectory algorithm was developed, which can dynamically modify the angle of the collimator as a function of VMAT control point to provide optimized collimation of target volume(s). Central to this algorithm is a concept denoted “whitespace”, defined as area within the jaw-defined BEV field, outside of the PTV, and not shielded by the MLC when fit to the PTV. Calculating whitespace at all collimator angles and every control point, a two-dimensional topographical map depictingmore » the tightness-of-fit of the MLC was generated. A variety of novel searching algorithms identified a number of candidate trajectories of continuous collimator motion. Ranking these candidate trajectories according to their accrued whitespace value produced an optimal solution for navigation of this map. Results: All trajectories were normalized to minimum possible (i.e. calculated without consideration of collimator motion constraints) accrued whitespace. On an acoustic neuroma case, a random walk algorithm generated a trajectory with 151% whitespace; random walk including a mandatory anchor point improved this to 148%; gradient search produced a trajectory with 137%; and bi-directional gradient search generated a trajectory with 130% whitespace. For comparison, a fixed collimator angle of 30° and 330° accumulated 272% and 228% of whitespace, respectively. The algorithm was tested on a clinical case with two metastases (single isocentre) and identified collimator angles that allow for simultaneous irradiation of the PTVs while minimizing normal tissue irradiation. Conclusion: Dynamic collimator trajectories have the potential to improve VMAT deliveries through increased efficiency and reduced normal tissue dose, especially in treatment of multiple cranial metastases, without significant safety concerns that hinder immediate clinical implementation.« less

  1. Effects of ornamentation and phylogeny on the evolution of wing shape in stalk-eyed flies (Diopsidae).

    PubMed

    Husak, J F; Ribak, G; Baker, R H; Rivera, G; Wilkinson, G S; Swallow, J G

    2013-06-01

    Exaggerated male ornaments are predicted to be costly to their bearers, but these negative effects may be offset by the correlated evolution of compensatory traits. However, when locomotor systems, such as wings in flying species, evolve to decrease such costs, it remains unclear whether functional changes across related species are achieved via the same morphological route or via alternate changes that have similar function. We conducted a comparative analysis of wing shape in relation to eye-stalk elongation across 24 species of stalk-eyed flies, using geometric morphometrics to determine how species with increased eye span, a sexually selected trait, have modified wing morphology as a compensatory mechanism. Using traditional and phylogenetically informed multivariate analyses of shape in combination with phenotypic trajectory analysis, we found a strong phylogenetic signal in wing shape. However, dimorphic species possessed shifted wing veins with the result of lengthening and narrowing wings compared to monomorphic species. Dimorphic species also had changes that seem unrelated to wing size, but instead may govern wing flexion. Nevertheless, the lack of a uniform, compensatory pattern suggests that stalk-eyed flies used alternative modifications in wing structure to increase wing area and aspect ratio, thus taking divergent morphological routes to compensate for exaggerated eye stalks. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  2. Hypothesis test for synchronization: twin surrogates revisited.

    PubMed

    Romano, M Carmen; Thiel, Marco; Kurths, Jürgen; Mergenthaler, Konstantin; Engbert, Ralf

    2009-03-01

    The method of twin surrogates has been introduced to test for phase synchronization of complex systems in the case of passive experiments. In this paper we derive new analytical expressions for the number of twins depending on the size of the neighborhood, as well as on the length of the trajectory. This allows us to determine the optimal parameters for the generation of twin surrogates. Furthermore, we determine the quality of the twin surrogates with respect to several linear and nonlinear statistics depending on the parameters of the method. In the second part of the paper we perform a hypothesis test for phase synchronization in the case of experimental data from fixational eye movements. These miniature eye movements have been shown to play a central role in neural information processing underlying the perception of static visual scenes. The high number of data sets (21 subjects and 30 trials per person) allows us to compare the generated twin surrogates with the "natural" surrogates that correspond to the different trials. We show that the generated twin surrogates reproduce very well all linear and nonlinear characteristics of the underlying experimental system. The synchronization analysis of fixational eye movements by means of twin surrogates reveals that the synchronization between the left and right eye is significant, indicating that either the centers in the brain stem generating fixational eye movements are closely linked, or, alternatively that there is only one center controlling both eyes.

  3. Gaze Behavior in One-Handed Catching and Its Relation with Interceptive Performance: What the Eyes Can't Tell

    PubMed Central

    Cesqui, Benedetta; Mezzetti, Maura; Lacquaniti, Francesco; d'Avella, Andrea

    2015-01-01

    In ball sports, it is usually acknowledged that expert athletes track the ball more accurately than novices. However, there is also evidence that keeping the eyes on the ball is not always necessary for interception. Here we aimed at gaining new insights on the extent to which ocular pursuit performance is related to catching performance. To this end, we analyzed eye and head movements of nine subjects catching a ball projected by an actuated launching apparatus. Four different ball flight durations and two different ball arrival heights were tested and the quality of ocular pursuit was characterized by means of several timing and accuracy parameters. Catching performance differed across subjects and depended on ball flight characteristics. All subjects showed a similar sequence of eye movement events and a similar modulation of the timing of these events in relation to the characteristics of the ball trajectory. On a trial-by-trial basis there was a significant relationship only between pursuit duration and catching performance, confirming that keeping the eyes on the ball longer increases catching success probability. Ocular pursuit parameters values and their dependence on flight conditions as well as the eye and head contributions to gaze shift differed across subjects. However, the observed average individual ocular behavior and the eye-head coordination patterns were not directly related to the individual catching performance. These results suggest that several oculomotor strategies may be used to gather information on ball motion, and that factors unrelated to eye movements may underlie the observed differences in interceptive performance. PMID:25793989

  4. Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    PubMed

    Kannape, Oliver Alan; Barré, Arnaud; Aminian, Kamiar; Blanke, Olaf

    2014-01-01

    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation.

  5. Keep your eyes on the ball: smooth pursuit eye movements enhance prediction of visual motion.

    PubMed

    Spering, Miriam; Schütz, Alexander C; Braun, Doris I; Gegenfurtner, Karl R

    2011-04-01

    Success of motor behavior often depends on the ability to predict the path of moving objects. Here we asked whether tracking a visual object with smooth pursuit eye movements helps to predict its motion direction. We developed a paradigm, "eye soccer," in which observers had to either track or fixate a visual target (ball) and judge whether it would have hit or missed a stationary vertical line segment (goal). Ball and goal were presented briefly for 100-500 ms and disappeared from the screen together before the perceptual judgment was prompted. In pursuit conditions, the ball moved towards the goal; in fixation conditions, the goal moved towards the stationary ball, resulting in similar retinal stimulation during pursuit and fixation. We also tested the condition in which the goal was fixated and the ball moved. Motion direction prediction was significantly better in pursuit than in fixation trials, regardless of whether ball or goal served as fixation target. In both fixation and pursuit trials, prediction performance was better when eye movements were accurate. Performance also increased with shorter ball-goal distance and longer presentation duration. A longer trajectory did not affect performance. During pursuit, an efference copy signal might provide additional motion information, leading to the advantage in motion prediction.

  6. What triggers catch-up saccades during visual tracking?

    PubMed

    de Brouwer, Sophie; Yuksel, Demet; Blohm, Gunnar; Missal, Marcus; Lefèvre, Philippe

    2002-03-01

    When tracking moving visual stimuli, primates orient their visual axis by combining two kinds of eye movements, smooth pursuit and saccades, that have very different dynamics. Yet, the mechanisms that govern the decision to switch from one type of eye movement to the other are still poorly understood, even though they could bring a significant contribution to the understanding of how the CNS combines different kinds of control strategies to achieve a common motor and sensory goal. In this study, we investigated the oculomotor responses to a large range of different combinations of position error and velocity error during visual tracking of moving stimuli in humans. We found that the oculomotor system uses a prediction of the time at which the eye trajectory will cross the target, defined as the "eye crossing time" (T(XE)). The eye crossing time, which depends on both position error and velocity error, is the criterion used to switch between smooth and saccadic pursuit, i.e., to trigger catch-up saccades. On average, for T(XE) between 40 and 180 ms, no saccade is triggered and target tracking remains purely smooth. Conversely, when T(XE) becomes smaller than 40 ms or larger than 180 ms, a saccade is triggered after a short latency (around 125 ms).

  7. Virtual reality implementation in neurosurgical practice: the "can't take my eyes off you" effect.

    PubMed

    Matis, Georgios K; Silva, Danilo O de A; Chrysou, Olga I; Karanikas, Michail; Pelidou, Sygkliti-Henrietta; Birbilis, Theodossios A; Bernardo, Antonio; Stieg, Philip

    2013-01-01

    During the last few years, virtual reality (VR) has been increasingly implemented in the neurosurgical practice. The scope of this paper is to briefly outline the educational role of this novel technology in training surgeons. At the same time, the ability of VR workstations such as the Dextroscope® to consistently simulate the surgical trajectory to the lesion-target is highlighted. The authors shed light to the current applications of VR systems in the neurosurgical field by describing not only the advantages of those systems, but their principal drawbacks as well. It seems that VR has come to stay and it is already the new best friend of residents due to its "Can't take my eyes off you effect".

  8. Does Visual Impairment Affect Mobility Over Time? The Salisbury Eye Evaluation Study

    PubMed Central

    Swenor, Bonnielin K.; Muñoz, Beatriz; West, Sheila K.

    2013-01-01

    Purpose. To determine if the odds of mobility disability increases at a different rate among visually impaired (VI) as compared with nonvisually impaired (NVI) over an 8-year period. Methods. A total of 2520 Salisbury Eye Evaluation Study participants were followed 2, 6, and 8 years after baseline. VI was defined as best-corrected visual acuity worse than 20/40, or visual field of approximately less than 20°. Self-reported difficulty with three tasks was assessed at each visit: walking up 10 steps, walking down 10 steps, and walking 150 feet. Generalized estimating equation models included a 6-year spline, and explored differences in mobility difficulty trajectories by including an interaction between VI status and the spline terms. Odds ratios (OR) and 95% confidence intervals (CI) compared mobility difficulty for each task by VI status. Results. At baseline, the VI were significantly more likely to report difficulty mobility tasks than the NVI (ORdifficultywalkingup10steps = 1.37, CI: 1.02–1.80; ORdifficultywalkingdown10steps = 1.55, CI: 1.16–2.08; ORdifficultywalking150feet = 1.50, CI: 1.10–2.04). The trajectory of mobility disability did not differ by VI status from baseline to the 6-year visit. However, the difference between the VI and NVI declined at the 8-year visit, which may be due to loss of VI participants at risk of developing mobility difficulty. Conclusions. The VI were more likely to report mobility disability than the NVI, but the trajectory of mobility disability was not steeper among the VI as compared to the NVI over the study period. PMID:24176902

  9. Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson’s Disease: A Proof of Concept

    PubMed Central

    Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco

    2017-01-01

    Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson’s disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking. PMID:28293213

  10. Curved Walking Rehabilitation with a Rotating Treadmill in Patients with Parkinson's Disease: A Proof of Concept.

    PubMed

    Godi, Marco; Giardini, Marica; Nardone, Antonio; Turcato, Anna Maria; Caligari, Marco; Pisano, Fabrizio; Schieppati, Marco

    2017-01-01

    Training subjects to step-in-place eyes open on a rotating platform while maintaining a fixed body orientation in space [podokinetic stimulation (PKS)] produces a posteffect consisting in inadvertent turning around while stepping-in-place eyes closed [podokinetic after-rotation (PKAR)]. Since the rationale for rehabilitation of curved walking in Parkinson's disease is not fully known, we tested the hypothesis that repeated PKS favors the production of curved walking in these patients, who are uneasy with turning, even when straight walking is little affected. Fifteen patients participated in 10 training sessions distributed in 3 weeks. Both counterclockwise and clockwise PKS were randomly administered in each session. PKS velocity and duration were gradually increased over sessions. The velocity and duration of the following PKAR were assessed. All patients showed PKAR, which increased progressively in peak velocity and duration. In addition, before and at the end of the treatment, all patients walked overground along linear and circular trajectories. Post-training, the velocity of walking bouts increased, more so for the circular than the linear trajectory. Cadence was not affected. This study has shown that parkinsonian patients learn to produce turning while stepping when faced with appropriate training and that this capacity translates into improved overground curved walking.

  11. Experimental Evaluation of an Integrated Datalink and Automation-Based Strategic Trajectory Concept

    NASA Technical Reports Server (NTRS)

    Mueller, Eric

    2007-01-01

    This paper presents research on the interoperability of trajectory-based automation concepts and technologies with modern Flight Management Systems and datalink communication available on many of today s commercial aircraft. A tight integration of trajectory-based ground automation systems with the aircraft Flight Management System through datalink will enable mid-term and far-term benefits from trajectory-based automation methods. A two-way datalink connection between the trajectory-based automation resident in the Center/TRACON Automation System and the Future Air Navigation System-1 integrated FMS/datalink in NASA Ames B747-400 Level D simulator has been established and extensive simulation of the use of datalink messages to generate strategic trajectories completed. A strategic trajectory is defined as an aircraft deviation needed to solve a conflict or honor a route request and then merge the aircraft back to its nominal preferred trajectory using a single continuous trajectory clearance. Engineers on the ground side of the datalink generated lateral and vertical trajectory clearances and transmitted them to the Flight Management System of the 747; the airborne automation then flew the new trajectory without human intervention, requiring the flight crew only to review and to accept the trajectory. This simulation established the protocols needed for a significant majority of the trajectory change types required to solve a traffic conflict or deviate around weather. This demonstration provides a basis for understanding the requirements for integration of trajectory-based automation with current Flight Management Systems and datalink to support future National Airspace System operations.

  12. Trajectory Optimization Using Adjoint Method and Chebyshev Polynomial Approximation for Minimizing Fuel Consumption During Climb

    NASA Technical Reports Server (NTRS)

    Nguyen, Nhan T.; Hornby, Gregory; Ishihara, Abe

    2013-01-01

    This paper describes two methods of trajectory optimization to obtain an optimal trajectory of minimum-fuel- to-climb for an aircraft. The first method is based on the adjoint method, and the second method is based on a direct trajectory optimization method using a Chebyshev polynomial approximation and cubic spine approximation. The approximate optimal trajectory will be compared with the adjoint-based optimal trajectory which is considered as the true optimal solution of the trajectory optimization problem. The adjoint-based optimization problem leads to a singular optimal control solution which results in a bang-singular-bang optimal control.

  13. Rhesus Monkeys Behave As If They Perceive the Duncker Illusion

    PubMed Central

    Zivotofsky, A. Z.; Goldberg, M. E.; Powell, K. D.

    2008-01-01

    The visual system uses the pattern of motion on the retina to analyze the motion of objects in the world, and the motion of the observer him/herself. Distinguishing between retinal motion evoked by movement of the retina in space and retinal motion evoked by movement of objects in the environment is computationally difficult, and the human visual system frequently misinterprets the meaning of retinal motion. In this study, we demonstrate that the visual system of the Rhesus monkey also misinterprets retinal motion. We show that monkeys erroneously report the trajectories of pursuit targets or their own pursuit eye movements during an epoch of smooth pursuit across an orthogonally moving background. Furthermore, when they make saccades to the spatial location of stimuli that flashed early in an epoch of smooth pursuit or fixation, they make large errors that appear to take into account the erroneous smooth eye movement that they report in the first experiment, and not the eye movement that they actually make. PMID:16102233

  14. Simple Mindreading Abilities Predict Complex Theory of Mind: Developmental Delay in Autism Spectrum Disorders.

    PubMed

    Pino, Maria Chiara; Mazza, Monica; Mariano, Melania; Peretti, Sara; Dimitriou, Dagmara; Masedu, Francesco; Valenti, Marco; Franco, Fabia

    2017-09-01

    Theory of mind (ToM) is impaired in individuals with autism spectrum disorders (ASD). The aims of this study were to: (i) examine the developmental trajectories of ToM abilities in two different mentalizing tasks in children with ASD compared to TD children; and (ii) to assess if a ToM simple test known as eyes-test could predict performance on the more advanced ToM task, i.e. comic strip test. Based on a sample of 37 children with ASD and 55 TD children, our results revealed slower development at varying rates in all ToM measures in children with ASD, with delayed onset compared to TD children. These results could stimulate new treatments for social abilities, which would lessen the social deficit in ASD.

  15. Trajectory-Based Loads for the Ares I-X Test Flight Vehicle

    NASA Technical Reports Server (NTRS)

    Vause, Roland F.; Starr, Brett R.

    2011-01-01

    In trajectory-based loads, the structural engineer treats each point on the trajectory as a load case. Distributed aero, inertial, and propulsion forces are developed for the structural model which are equivalent to the integrated values of the trajectory model. Free-body diagrams are then used to solve for the internal forces, or loads, that keep the applied aero, inertial, and propulsion forces in dynamic equilibrium. There are several advantages to using trajectory-based loads. First, consistency is maintained between the integrated equilibrium equations of the trajectory analysis and the distributed equilibrium equations of the structural analysis. Second, the structural loads equations are tied to the uncertainty model for the trajectory systems analysis model. Atmosphere, aero, propulsion, mass property, and controls uncertainty models all feed into the dispersions that are generated for the trajectory systems analysis model. Changes in any of these input models will affect structural loads response. The trajectory systems model manages these inputs as well as the output from the structural model over thousands of dispersed cases. Large structural models with hundreds of thousands of degrees of freedom would execute too slowly to be an efficient part of several thousand system analyses. Trajectory-based loads provide a means for the structures discipline to be included in the integrated systems analysis. Successful applications of trajectory-based loads methods for the Ares I-X vehicle are covered in this paper. Preliminary design loads were based on 2000 trajectories using Monte Carlo dispersions. Range safety loads were tied to 8423 malfunction turn trajectories. In addition, active control system loads were based on 2000 preflight trajectories using Monte Carlo dispersions.

  16. An incremental DPMM-based method for trajectory clustering, modeling, and retrieval.

    PubMed

    Hu, Weiming; Li, Xi; Tian, Guodong; Maybank, Stephen; Zhang, Zhongfei

    2013-05-01

    Trajectory analysis is the basis for many applications, such as indexing of motion events in videos, activity recognition, and surveillance. In this paper, the Dirichlet process mixture model (DPMM) is applied to trajectory clustering, modeling, and retrieval. We propose an incremental version of a DPMM-based clustering algorithm and apply it to cluster trajectories. An appropriate number of trajectory clusters is determined automatically. When trajectories belonging to new clusters arrive, the new clusters can be identified online and added to the model without any retraining using the previous data. A time-sensitive Dirichlet process mixture model (tDPMM) is applied to each trajectory cluster for learning the trajectory pattern which represents the time-series characteristics of the trajectories in the cluster. Then, a parameterized index is constructed for each cluster. A novel likelihood estimation algorithm for the tDPMM is proposed, and a trajectory-based video retrieval model is developed. The tDPMM-based probabilistic matching method and the DPMM-based model growing method are combined to make the retrieval model scalable and adaptable. Experimental comparisons with state-of-the-art algorithms demonstrate the effectiveness of our algorithm.

  17. Persistence in eye movement during visual search

    NASA Astrophysics Data System (ADS)

    Amor, Tatiana A.; Reis, Saulo D. S.; Campos, Daniel; Herrmann, Hans J.; Andrade, José S.

    2016-02-01

    As any cognitive task, visual search involves a number of underlying processes that cannot be directly observed and measured. In this way, the movement of the eyes certainly represents the most explicit and closest connection we can get to the inner mechanisms governing this cognitive activity. Here we show that the process of eye movement during visual search, consisting of sequences of fixations intercalated by saccades, exhibits distinctive persistent behaviors. Initially, by focusing on saccadic directions and intersaccadic angles, we disclose that the probability distributions of these measures show a clear preference of participants towards a reading-like mechanism (geometrical persistence), whose features and potential advantages for searching/foraging are discussed. We then perform a Multifractal Detrended Fluctuation Analysis (MF-DFA) over the time series of jump magnitudes in the eye trajectory and find that it exhibits a typical multifractal behavior arising from the sequential combination of saccades and fixations. By inspecting the time series composed of only fixational movements, our results reveal instead a monofractal behavior with a Hurst exponent , which indicates the presence of long-range power-law positive correlations (statistical persistence). We expect that our methodological approach can be adopted as a way to understand persistence and strategy-planning during visual search.

  18. Sensor fusion in identified visual interneurons.

    PubMed

    Parsons, Matthew M; Krapp, Holger G; Laughlin, Simon B

    2010-04-13

    Animal locomotion often depends upon stabilization reflexes that use sensory feedback to maintain trajectories and orientation. Such stabilizing reflexes are critically important for the blowfly, whose aerodynamic instability permits outstanding maneuverability but increases the demands placed on flight control. Flies use several sensory systems to drive reflex responses, and recent studies have provided access to the circuitry responsible for combining and employing these sensory inputs. We report that lobula plate VS neurons combine inputs from two optical sensors, the ocelli and the compound eyes. Both systems deliver essential information on in-flight rotations, but our neuronal recordings reveal that the ocelli encode this information in three axes, whereas the compound eyes encode in nine. The difference in dimensionality is reconciled by tuning each VS neuron to the ocellar axis closest to its compound eye axis. We suggest that this simple projection combines the speed of the ocelli with the accuracy of the compound eyes without compromising either. Our findings also support the suggestion that the coordinates of sensory information processing are aligned with axes controlling the natural modes of the fly's flight to improve the efficiency with which sensory signals are transformed into appropriate motor commands.

  19. Effect of driving experience on anticipatory look-ahead fixations in real curve driving.

    PubMed

    Lehtonen, Esko; Lappi, Otto; Koirikivi, Iivo; Summala, Heikki

    2014-09-01

    Anticipatory skills are a potential factor for novice drivers' curve accidents. Behavioural data show that steering and speed regulation are affected by forward planning of the trajectory. When approaching a curve, the relevant visual information for online steering control and for planning is located at different eccentricities, creating a need to disengage the gaze from the guidance of steering to anticipatory look-ahead fixations over curves. With experience, peripheral vision can be increasingly used in the visual guidance of steering. This could leave experienced drivers more gaze time to invest on look-ahead fixations over curves, facilitating the trajectory planning. Eighteen drivers (nine novices, nine experienced) drove an instrumented vehicle on a rural road four times in both directions. Their eye movements were analyzed in six curves. The trajectory of the car was modelled and divided to approach, entry and exit phases. Experienced drivers spent less time on the road-ahead and more time on the look-ahead fixations over the curves. Look-ahead fixations were also more common in the approach than in the entry phase of the curve. The results suggest that with experience drivers allocate greater part of their visual attention to trajectory planning. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Cell phone based balance trainer.

    PubMed

    Lee, Beom-Chan; Kim, Jeonghee; Chen, Shu; Sienko, Kathleen H

    2012-02-08

    In their current laboratory-based form, existing vibrotactile sensory augmentation technologies that provide cues of body motion are impractical for home-based rehabilitation use due to their size, weight, complexity, calibration procedures, cost, and fragility. We have designed and developed a cell phone based vibrotactile feedback system for potential use in balance rehabilitation training in clinical and home environments. It comprises an iPhone with an embedded tri-axial linear accelerometer, custom software to estimate body tilt, a "tactor bud" accessory that plugs into the headphone jack to provide vibrotactile cues of body tilt, and a battery. Five young healthy subjects (24 ± 2.8 yrs, 3 females and 2 males) and four subjects with vestibular deficits (42.25 ± 13.5 yrs, 2 females and 2 males) participated in a proof-of-concept study to evaluate the effectiveness of the system. Healthy subjects used the system with eyes closed during Romberg, semi-tandem Romberg, and tandem Romberg stances. Subjects with vestibular deficits used the system with both eyes-open and eyes-closed conditions during semi-tandem Romberg stance. Vibrotactile feedback was provided when the subject exceeded either an anterior-posterior (A/P) or a medial-lateral (M/L) body tilt threshold. Subjects were instructed to move away from the vibration. The system was capable of providing real-time vibrotactile cues that informed corrective postural responses. When feedback was available, both healthy subjects and those with vestibular deficits significantly reduced their A/P or M/L RMS sway (depending on the direction of feedback), had significantly smaller elliptical area fits to their sway trajectory, spent a significantly greater mean percentage time within the no feedback zone, and showed a significantly greater A/P or M/L mean power frequency. The results suggest that the real-time feedback provided by this system can be used to reduce body sway. Its advantages over more complex laboratory-based and commercial balance training systems in terms of cost, size, weight, functionality, flexibility, and accessibility make it a good candidate for further home-based balance training evaluation.

  1. Cell phone based balance trainer

    PubMed Central

    2012-01-01

    Background In their current laboratory-based form, existing vibrotactile sensory augmentation technologies that provide cues of body motion are impractical for home-based rehabilitation use due to their size, weight, complexity, calibration procedures, cost, and fragility. Methods We have designed and developed a cell phone based vibrotactile feedback system for potential use in balance rehabilitation training in clinical and home environments. It comprises an iPhone with an embedded tri-axial linear accelerometer, custom software to estimate body tilt, a "tactor bud" accessory that plugs into the headphone jack to provide vibrotactile cues of body tilt, and a battery. Five young healthy subjects (24 ± 2.8 yrs, 3 females and 2 males) and four subjects with vestibular deficits (42.25 ± 13.5 yrs, 2 females and 2 males) participated in a proof-of-concept study to evaluate the effectiveness of the system. Healthy subjects used the system with eyes closed during Romberg, semi-tandem Romberg, and tandem Romberg stances. Subjects with vestibular deficits used the system with both eyes-open and eyes-closed conditions during semi-tandem Romberg stance. Vibrotactile feedback was provided when the subject exceeded either an anterior-posterior (A/P) or a medial-lateral (M/L) body tilt threshold. Subjects were instructed to move away from the vibration. Results The system was capable of providing real-time vibrotactile cues that informed corrective postural responses. When feedback was available, both healthy subjects and those with vestibular deficits significantly reduced their A/P or M/L RMS sway (depending on the direction of feedback), had significantly smaller elliptical area fits to their sway trajectory, spent a significantly greater mean percentage time within the no feedback zone, and showed a significantly greater A/P or M/L mean power frequency. Conclusion The results suggest that the real-time feedback provided by this system can be used to reduce body sway. Its advantages over more complex laboratory-based and commercial balance training systems in terms of cost, size, weight, functionality, flexibility, and accessibility make it a good candidate for further home-based balance training evaluation. PMID:22316167

  2. Experiments on Maxwell's fish-eye dynamics in elastic plates

    NASA Astrophysics Data System (ADS)

    Lefebvre, Gautier; Dubois, Marc; Beauvais, Romain; Achaoui, Younes; Ing, Ros Kiri; Guenneau, Sébastien; Sebbah, Patrick

    2015-01-01

    We experimentally demonstrate that a Duraluminium thin plate with a thickness profile varying radially in a piecewise constant fashion as h ( r ) = h ( 0 ) ( 1 + (r / R max ) 2 ) 2 , with h(0) = 0.5 mm, h(Rmax) = 2 mm, and Rmax = 10 cm, behaves in many ways as Maxwell's fish-eye lens in optics. Its imaging properties for a Gaussian pulse with central frequencies 30 kHz and 60 kHz are very similar to those predicted by ray trajectories (great circles) on a virtual sphere (rays emanating from the North pole meet at the South pole). However, the refocusing time depends on the carrier frequency as a direct consequence of the dispersive nature of flexural waves in thin plates. Importantly, experimental results are in good agreement with finite-difference-time-domain simulations.

  3. Adjustable Trajectory Design Based on Node Density for Mobile Sink in WSNs

    PubMed Central

    Yang, Guisong; Liu, Shuai; He, Xingyu; Xiong, Naixue; Wu, Chunxue

    2016-01-01

    The design of movement trajectories for mobile sink plays an important role in data gathering for Wireless Sensor Networks (WSNs), as it affects the network coverage, and packet delivery ratio, as well as the network lifetime. In some scenarios, the whole network can be divided into subareas where the nodes are randomly deployed. The node densities of these subareas are quite different, which may result in a decreased packet delivery ratio and network lifetime if the movement trajectory of the mobile sink cannot adapt to these differences. To address these problems, we propose an adjustable trajectory design method based on node density for mobile sink in WSNs. The movement trajectory of the mobile sink in each subarea follows the Hilbert space-filling curve. Firstly, the trajectory is constructed based on network size. Secondly, the adjustable trajectory is established based on node density in specific subareas. Finally, the trajectories in each subarea are combined to acquire the whole network’s movement trajectory for the mobile sink. In addition, an adaptable power control scheme is designed to adjust nodes’ transmitting range dynamically according to the movement trajectory of the mobile sink in each subarea. The simulation results demonstrate that the proposed trajectories can adapt to network changes flexibly, thus outperform both in packet delivery ratio and in energy consumption the trajectories designed only based on the network size and the whole network node density. PMID:27941662

  4. Control of a HexaPOD treatment couch for robot-assisted radiotherapy.

    PubMed

    Hermann, Christian; Ma, Lei; Wilbert, Jürgen; Baier, Kurt; Schilling, Klaus

    2012-10-01

    Moving tumors, for example in the vicinity of the lungs, pose a challenging problem in radiotherapy, as healthy tissue should not be irradiated. Apart from gating approaches, one standard method is to irradiate the complete volume within which a tumor moves plus a safety margin containing a considerable volume of healthy tissue. This work deals with a system for tumor motion compensation using the HexaPOD® robotic treatment couch (Medical Intelligence GmbH, Schwabmünchen, Germany). The HexaPOD, carrying the patient during treatment, is instructed to perform translational movements such that the tumor motion, from the beams-eye view of the linear accelerator, is eliminated. The dynamics of the HexaPOD are characterized by time delays, saturations, and other non-linearities that make the design of control a challenging task. The focus of this work lies on two control methods for the HexaPOD that can be used for reference tracking. The first method uses a model predictive controller based on a model gained through system identification methods, and the second method uses a position control scheme useful for reference tracking. We compared the tracking performance of both methods in various experiments with real hardware using ideal reference trajectories, prerecorded patient trajectories, and human volunteers whose breathing motion was compensated by the system.

  5. Status and perspectives of the studies on anomalous phosphene perceptions in the frame of the ALTEA program

    NASA Astrophysics Data System (ADS)

    Narici, Livio; Carozzo, Simone; Casolino, Marco; de Martino, Angelo; di Fino, Luca; Larosa, Marianna; Paci, Maurizio; Rinaldi, Adele; Sannita, Walter G.; Zaconte, Veronica; Schardt, Dieter; Khan, Elias; Marechal, Francoise; Nelson, Gregory; Obenaus, Andre; Titova, Elena

    One of the major aims of the ALTEA program is to study the anomalous phosphenes per-ceptions reported by astronauts since Apollo 11 lunar flight. This is pursued via space and ground-based experiments. The ALTEA detection systems in the ISS allow concurrent mea-surement of the particles travelling through the brain/eyes of the astronauts (discriminating Z and trajectory of the ions), as well as the electrophysiological brain activity, including the retinogram, and the instances of phosphene perceptions. These measurements permitted to document the electrophysiological responses to particle passages concomitant with phosphene perception with links between the electrophysiological signals and ions traveling through the eye. We have also measured the average number of ions impinging in the eye / brain of the astronaut per minute. On ground-based experiments we have measured the mouse electrophys-iological responses to very short (¡ 5 ms) 12C bursts in the eyes, and the summation effect of the 12C/light stimuli concomitance. We also studied hadron therapy patients reporting phosphenes when irradiated. At the carbon-ion treatment unit at GSI (Darmstadt, Germany) we also em-ployed electrophysiological recording, while at the proton therapy center in Orsay, France and at Loma Linda (CA, USA) we are collecting subjective data from treated patients. In the GSI case we have been able to measure electrophysiological responses to ion bursts and to link the perceptions to specific irradiated regions. At Loma Linda the perceived phosphenes correlate temporally with individual accelerator spills, so that the patients can count them. They appear bright white or intense cobalt blue (essentially no other colors) depending on the portion of the eye/optic nerve receiving dose. Foul or burning smells and taste illusions that may last from days to more than a week were also reported during irradiation. In Orsay patients routinely perceive flashes, mostly light blue, but also white yellow and purple, but not with every spill. Finally, in vitro 12C irradiation of rhodopsin at GSI provided us evidence that rhodopsin, at the earliest stage of the process of vision, can be activated by ion traversals. Further ground measurements allowed us to propose a model for a rhodopsin activation mediated by recombi-nation of the ions-generated peroxyl radicals, followed by chemiluminescence. Our most recent results and analyses will be presented and compared.

  6. Inhibition in movement plan competition: reach trajectories curve away from remembered and task-irrelevant present but not from task-irrelevant past visual stimuli.

    PubMed

    Moehler, Tobias; Fiehler, Katja

    2017-11-01

    The current study investigated the role of automatic encoding and maintenance of remembered, past, and present visual distractors for reach movement planning. The previous research on eye movements showed that saccades curve away from locations actively kept in working memory and also from task-irrelevant perceptually present visual distractors, but not from task-irrelevant past distractors. Curvature away has been associated with an inhibitory mechanism resolving the competition between multiple active movement plans. Here, we examined whether reach movements underlie a similar inhibitory mechanism and thus show systematic modulation of reach trajectories when the location of a previously presented distractor has to be (a) maintained in working memory or (b) ignored, or (c) when the distractor is perceptually present. Participants performed vertical reach movements on a computer monitor from a home to a target location. Distractors appeared laterally and near or far from the target (equidistant from central fixation). We found that reaches curved away from the distractors located close to the target when the distractor location had to be memorized and when it was perceptually present, but not when the past distractor had to be ignored. Our findings suggest that automatically encoding present distractors and actively maintaining the location of past distractors in working memory evoke a similar response competition resolved by inhibition, as has been previously shown for saccadic eye movements.

  7. Torsional Eye Movements Evoked by Unilateral Labyrinthine Galvanic Polarizations in the Squirrel Monkey

    NASA Technical Reports Server (NTRS)

    Minor, Lloyd B.; Tomko, David L.; Paige, Gary D.

    1995-01-01

    Electrical stimulation of vestibular-nerve afferents innervating the semicircular canals has been used to identify the extraocular muscles receiving activation or inhibition by individual ampullary nerves. This technique was originally developed by Szentagothai (1950) and led to the description of three neuron reflex arcs that connect each semicircular canal through an interneuron traversing in the region of the medial longitudinal fasciculus to one ipsilateral and one contralateral eye muscle. Selective ampullary nerve stimulation was subsequently used by Cohen and colleagues (Cohen and Suzuki, 1963; Cohen et al., 1964; Suzuki et al., 1964; Cohen et al., 1966) to study movements of the eyes and activation of individual extraocular muscles in response to stimulation of combinations of ampullary nerves. This work led to a description of the now familiar relationships between activation of a semicircular canal ampullary nerves and the anticipated movement in each eye. Disconjugacy of eye movements induced by individual vertical canal stimulation and dependence of the pulling direction of vertical recti and oblique muscles on eye position were also defined in these experiments. Subsequent studies have defined the mechanisms by which externally applied galvanic currents result in a change in vestibular-nerve afferent discharge. The currents appear to act at the spike trigger site. Perilymphatic cathodal currents depolarize the trigger site and lead to excitation whereas anodal currents hyperpolarize and result in inhibition. Afferents innervating all five vestibular endorgans appear to be affected equally by the currents (Goldberg et al., 1984). Irregularly discharging afferents are about 5-10 times more sensitive than regularly discharging ones because of the steeper slope of the former's faster postspike recovery of excitability in encoder sensitivity (Smith and Goldberg, 1986). Response adaptation similar to that noted during acceleration steps is apparent for longer periods of current administration. This adaptation is manifested as a perstimulus return toward resting discharge and poststimulus after-response in the opposite direction (Goldberg et al., 1984; Minor and Goldberg, l991). Cathodal currents (with respect to the perilymphatic space of the vestibule) are excitatory whereas anodal currents are inhibitory. Horizontal eye movements evoked by unilateral galvanic polarizations administered through chronically implanted labyrinthine stimulating electrodes have been studied in alert squirrel monkeys (Minor and Goldberg, 1991). We sought to extend this analysis by recording three-dimensional eye movements during galvanic stimulation. As predicted based upon roughly equal stimulation of ampullary nerves innervating the vertical canals, a substantial torsional component to the nystagmus is noted. The trajectory of torsional slow phases and nystagmus profile after the polarization provide insight into the central mechanisms that influence these responses.

  8. Design and fabrication of a freeform phase plate for high-order ocular aberration correction

    NASA Astrophysics Data System (ADS)

    Yi, Allen Y.; Raasch, Thomas W.

    2005-11-01

    In recent years it has become possible to measure and in some instances to correct the high-order aberrations of human eyes. We have investigated the correction of wavefront error of human eyes by using phase plates designed to compensate for that error. The wavefront aberrations of the four eyes of two subjects were experimentally determined, and compensating phase plates were machined with an ultraprecision diamond-turning machine equipped with four independent axes. A slow-tool servo freeform trajectory was developed for the machine tool path. The machined phase-correction plates were measured and compared with the original design values to validate the process. The position of the phase-plate relative to the pupil is discussed. The practical utility of this mode of aberration correction was investigated with visual acuity testing. The results are consistent with the potential benefit of aberration correction but also underscore the critical positioning requirements of this mode of aberration correction. This process is described in detail from optical measurements, through machining process design and development, to final results.

  9. Static postural stability in women with stress urinary incontinence: Effects of vision and bladder filling.

    PubMed

    Chmielewska, Daria; Stania, Magdalena; Słomka, Kajetan; Błaszczak, Edward; Taradaj, Jakub; Dolibog, Patrycja; Juras, Grzegorz

    2017-11-01

    This case-control study was designed to compare static postural stability between women with stress urinary incontinence and continent women and it was hypothesized that women with incontinence aged around 50 years also have balance disorders. Eighteen women with incontinence and twelve women without incontinence aged 50-55 years participated in two 60-s trials of each of four different testing conditions: eyes open/full bladder, eyes open/empty bladder, eyes closed/full bladder, eyes closed/empty bladder. The center of foot pressure (COP): sway range, root mean square, velocity (in the antero-posterior and medio-lateral directions), and COP area were recorded. The stabilograms were decomposed into rambling and trembling components. The groups of women with and without incontinence differed during the full bladder condition in antero-posterior COP sway range, COP area, and rambling trajectory (range in the antero-posterior and medio-lateral directions, root mean square in the antero-posterior and medio-lateral directions and velocity in the antero-posterior direction). The women with incontinence had more difficulty controlling their postural balance than continent women while standing with a full bladder. Therefore, developing therapeutic management focused on strengthening the women's core muscles and improving their postural balance seems advisable. © 2017 Wiley Periodicals, Inc.

  10. Toward a visuospatial developmental account of sequence-space synesthesia

    PubMed Central

    Price, Mark C.; Pearson, David G.

    2013-01-01

    Sequence-space synesthetes experience some sequences (e.g., numbers, calendar units) as arranged in spatial forms, i.e., spatial patterns in their mind's eye or even outside their body. Various explanations have been offered for this phenomenon. Here we argue that these spatial forms are continuous with varieties of non-synesthetic visuospatial imagery and share their central characteristics. This includes their dynamic and elaborative nature, their involuntary feel, and consistency over time. Drawing from literatures on mental imagery and working memory, we suggest how the initial acquisition and subsequent elaboration of spatial forms could be accounted for in terms of the known developmental trajectory of visuospatial representations. This extends from the formation of image-based representations of verbal material in childhood to the later maturation of dynamic control of imagery. Individual differences in the development of visuospatial style also account for variation in the character of spatial forms, e.g., in terms of distinctions such as visual versus spatial imagery, or ego-centric versus object-based transformations. PMID:24187538

  11. Stargazing

    NASA Astrophysics Data System (ADS)

    Moore, Patrick

    2000-10-01

    On a clear night, the vastness and beauty of the star-filled sky is awe inspiring. In Stargazing: Astronomy without a Telescope Patrick Moore, Britain's best known astronomer, tells you all you need to know about the universe visible to the naked eye. With the aid of charts and illustrations, he explains how to "read" the stars, to know which constellations lie overhead, their trajectory throughout the seasons, and the legends ascribed to them. In a month-by-month guide he describes using detailed star maps of the night skies of both the northern and southern hemispheres. He also takes a look at the planets, the Sun and the Moon and their eclipses, comets, meteors, as well as aurorae and other celestial phenomena--all in accessible scientific detail. This captivating book shows how, even with just the naked eye, astronomy can be a fascinating and rewarding hobby--for life.

  12. Spiral trajectory design: a flexible numerical algorithm and base analytical equations.

    PubMed

    Pipe, James G; Zwart, Nicholas R

    2014-01-01

    Spiral-based trajectories for magnetic resonance imaging can be advantageous, but are often cumbersome to design or create. This work presents a flexible numerical algorithm for designing trajectories based on explicit definition of radial undersampling, and also gives several analytical expressions for charactering the base (critically sampled) class of these trajectories. Expressions for the gradient waveform, based on slew and amplitude limits, are developed such that a desired pitch in the spiral k-space trajectory is followed. The source code for this algorithm, written in C, is publicly available. Analytical expressions approximating the spiral trajectory (ignoring the radial component) are given to characterize measurement time, gradient heating, maximum gradient amplitude, and off-resonance phase for slew-limited and gradient amplitude-limited cases. Several numerically calculated trajectories are illustrated, and base Archimedean spirals are compared with analytically obtained results. Several different waveforms illustrate that the desired slew and amplitude limits are reached, as are the desired undersampling patterns, using the numerical method. For base Archimedean spirals, the results of the numerical and analytical approaches are in good agreement. A versatile numerical algorithm was developed, and was written in publicly available code. Approximate analytical formulas are given that help characterize spiral trajectories. Copyright © 2013 Wiley Periodicals, Inc.

  13. Visual guidance of forward flight in hummingbirds reveals control based on image features instead of pattern velocity.

    PubMed

    Dakin, Roslyn; Fellows, Tyee K; Altshuler, Douglas L

    2016-08-02

    Information about self-motion and obstacles in the environment is encoded by optic flow, the movement of images on the eye. Decades of research have revealed that flying insects control speed, altitude, and trajectory by a simple strategy of maintaining or balancing the translational velocity of images on the eyes, known as pattern velocity. It has been proposed that birds may use a similar algorithm but this hypothesis has not been tested directly. We examined the influence of pattern velocity on avian flight by manipulating the motion of patterns on the walls of a tunnel traversed by Anna's hummingbirds. Contrary to prediction, we found that lateral course control is not based on regulating nasal-to-temporal pattern velocity. Instead, birds closely monitored feature height in the vertical axis, and steered away from taller features even in the absence of nasal-to-temporal pattern velocity cues. For vertical course control, we observed that birds adjusted their flight altitude in response to upward motion of the horizontal plane, which simulates vertical descent. Collectively, our results suggest that birds avoid collisions using visual cues in the vertical axis. Specifically, we propose that birds monitor the vertical extent of features in the lateral visual field to assess distances to the side, and vertical pattern velocity to avoid collisions with the ground. These distinct strategies may derive from greater need to avoid collisions in birds, compared with small insects.

  14. Neural integration underlying a time-compensated sun compass in the migratory monarch butterfly

    PubMed Central

    Shlizerman, Eli; Phillips-Portillo, James; Reppert, Steven M.

    2016-01-01

    Migrating Eastern North American monarch butterflies use a time-compensated sun compass to adjust their flight to the southwest direction. While the antennal genetic circadian clock and the azimuth of the sun are instrumental for proper function of the compass, it is unclear how these signals are represented on a neuronal level and how they are integrated to produce flight control. To address these questions, we constructed a receptive field model of the compound eye that encodes the solar azimuth. We then derived a neural circuit model, which integrates azimuthal and circadian signals to correct flight direction. The model demonstrates an integration mechanism, which produces robust trajectories reaching the southwest regardless of the time of day and includes a configuration for remigration. Comparison of model simulations with flight trajectories of butterflies in a flight simulator shows analogous behaviors and affirms the prediction that midday is the optimal time for migratory flight. PMID:27149852

  15. Eye safety analysis for non-uniform retinal scanning laser trajectories

    NASA Astrophysics Data System (ADS)

    Schelinski, Uwe; Dallmann, Hans-Georg; Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Reinig, Peter; Woittennek, Franziska

    2016-03-01

    Scanning the retinae of the human eyes with a laser beam is an approved diagnosis method in ophthalmology; moreover the retinal blood vessels form a biometric modality for identifying persons. Medical applied Scanning Laser Ophthalmoscopes (SLOs) usually contain galvanometric mirror systems to move the laser spot with a defined speed across the retina. Hence, the load of laser radiation is uniformly distributed and eye safety requirements can be easily complied. Micro machined mirrors also known as Micro Electro Mechanical Systems (MEMS) are interesting alternatives for designing retina scanning systems. In particular double-resonant MEMS are well suited for mass fabrication at low cost. However, their Lissajous-shaped scanning figure requires a particular analysis and specific measures to meet the requirements for a Class 1 laser device, i.e. eye-safe operation. The scanning laser spot causes a non-uniform pulsing radiation load hitting the retinal elements within the field of view (FoV). The relevant laser safety standards define a smallest considerable element for eye-related impacts to be a point source that is visible with an angle of maximum 1.5 mrad. For non-uniform pulsing expositions onto retinal elements the standard requires to consider all particular impacts, i.e. single pulses, pulse sequences in certain time intervals and cumulated laser radiation loads. As it may be expected, a Lissajous scanning figure causes the most critical radiation loads at its edges and borders. Depending on the applied power the laser has to be switched off here to avoid any retinal injury.

  16. Interactive orbital proximity operations planning system

    NASA Technical Reports Server (NTRS)

    Grunwald, Arthur J.; Ellis, Stephen R.

    1988-01-01

    An interactive graphical proximity operations planning system was developed, which allows on-site design of efficient, complex, multiburn maneuvers in a dynamic multispacecraft environment. Maneuvering takes place in and out of the orbital plane. The difficulty in planning such missions results from the unusual and counterintuitive character of orbital dynamics and complex time-varying operational constraints. This difficulty is greatly overcome by visualizing the relative trajectories and the relevant constraints in an easily interpretable graphical format, which provides the operator with immediate feedback on design actions. The display shows a perspective bird's-eye view of a Space Station and co-orbiting spacecraft on the background of the Station's orbital plane. The operator has control over the two modes of operation: a viewing system mode, which enables the exporation of the spatial situation about the Space Station and thus the ability to choose and zoom in on areas of interest; and a trajectory design mode, which allows the interactive editing of a series of way points and maneuvering burns to obtain a trajectory that complies with all operational constraints. A first version of this display was completed. An experimental program is planned in which operators will carry out a series of design missions which vary in complexity and constraints.

  17. Does aquatic foraging impact head shape evolution in snakes?

    PubMed Central

    Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-01-01

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. PMID:27581887

  18. Trajectory-Oriented Approach to Managing Traffic Complexity: Trajectory Flexibility Metrics and Algorithms and Preliminary Complexity Impact Assessment

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Vivona, Robert A.; Al-Wakil, Tarek

    2009-01-01

    This document describes exploratory research on a distributed, trajectory oriented approach for traffic complexity management. The approach is to manage traffic complexity based on preserving trajectory flexibility and minimizing constraints. In particular, the document presents metrics for trajectory flexibility; a method for estimating these metrics based on discrete time and degree of freedom assumptions; a planning algorithm using these metrics to preserve flexibility; and preliminary experiments testing the impact of preserving trajectory flexibility on traffic complexity. The document also describes an early demonstration capability of the trajectory flexibility preservation function in the NASA Autonomous Operations Planner (AOP) platform.

  19. Modern Methods for Modeling Change in Obesity Research in Nursing.

    PubMed

    Sereika, Susan M; Zheng, Yaguang; Hu, Lu; Burke, Lora E

    2017-08-01

    Persons receiving treatment for weight loss often demonstrate heterogeneity in lifestyle behaviors and health outcomes over time. Traditional repeated measures approaches focus on the estimation and testing of an average temporal pattern, ignoring the interindividual variability about the trajectory. An alternate person-centered approach, group-based trajectory modeling, can be used to identify distinct latent classes of individuals following similar trajectories of behavior or outcome change as a function of age or time and can be expanded to include time-invariant and time-dependent covariates and outcomes. Another latent class method, growth mixture modeling, builds on group-based trajectory modeling to investigate heterogeneity within the distinct trajectory classes. In this applied methodologic study, group-based trajectory modeling for analyzing changes in behaviors or outcomes is described and contrasted with growth mixture modeling. An illustration of group-based trajectory modeling is provided using calorie intake data from a single-group, single-center prospective study for weight loss in adults who are either overweight or obese.

  20. Design of fast earth-return trajectories from a lunar base

    NASA Astrophysics Data System (ADS)

    Anhorn, Walter

    1991-09-01

    The Apollo Lunar Program utilized efficient transearth trajectories which employed parking orbits in order to minimize energy requirements. This thesis concentrates on a different type of transearth trajectory. These are direct-ascent, hyperbolic trajectories which omit the parking orbits in order to achieve short flight times to and from a future lunar base. The object of the thesis is the development of a three-dimensional transearth trajectory model and associated computer program for exploring trade-offs between flight-time and energy, given various mission constraints. The program also targets the Moon with a hyperbolic trajectory, which can be used for targeting Earth impact points. The first-order model is based on an Earth-centered conic and a massless spherical Moon, using MathCAD version 3.0. This model is intended as the basis for future patched-conic formulations for the design of fast Earth-return trajectories. Applications include placing nuclear deterrent arsenals on the Moon, various space support related activities, and finally protection against Earth-threatening asteroids and comets using lunar bases.

  1. Brain stem omnipause neurons and the control of combined eye-head gaze saccades in the alert cat.

    PubMed

    Paré, M; Guitton, D

    1998-06-01

    When the head is unrestrained, rapid displacements of the visual axis-gaze shifts (eye-re-space)-are made by coordinated movements of the eyes (eye-re-head) and head (head-re-space). To address the problem of the neural control of gaze shifts, we studied and contrasted the discharges of omnipause neurons (OPNs) during a variety of combined eye-head gaze shifts and head-fixed eye saccades executed by alert cats. OPNs discharged tonically during intersaccadic intervals and at a reduced level during slow perisaccadic gaze movements sometimes accompanying saccades. Their activity ceased for the duration of the saccadic gaze shifts the animal executed, either by head-fixed eye saccades alone or by combined eye-head movements. This was true for all types of gaze shifts studied: active movements to visual targets; passive movements induced by whole-body rotation or by head rotation about stationary body; and electrically evoked movements by stimulation of the caudal part of the superior colliculus (SC), a central structure for gaze control. For combined eye-head gaze shifts, the OPN pause was therefore not correlated to the eye-in-head trajectory. For instance, in active gaze movements, the end of the pause was better correlated with the gaze end than with either the eye saccade end or the time of eye counterrotation. The hypothesis that cat OPNs participate in controlling gaze shifts is supported by these results, and also by the observation that the movements of both the eyes and the head were transiently interrupted by stimulation of OPNs during gaze shifts. However, we found that the OPN pause could be dissociated from the gaze-motor-error signal producing the gaze shift. First, OPNs resumed discharging when perturbation of head motion briefly interrupted a gaze shift before its intended amplitude was attained. Second, stimulation of caudal SC sites in head-free cat elicited large head-free gaze shifts consistent with the creation of a large gaze-motor-error signal. However, stimulation of the same sites in head-fixed cat produced small "goal-directed" eye saccades, and OPNs paused only for the duration of the latter; neither a pause nor an eye movement occurred when the same stimulation was applied with the eyes at the goal location. We conclude that OPNs can be controlled by neither a simple eye control system nor an absolute gaze control system. Our data cannot be accounted for by existing models describing the control of combined eye-head gaze shifts and therefore put new constraints on future models, which will have to incorporate all the various signals that act synergistically to control gaze shifts.

  2. On-Line Use of Three-Dimensional Marker Trajectory Estimation From Cone-Beam Computed Tomography Projections for Precise Setup in Radiotherapy for Targets With Respiratory Motion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worm, Esben S., E-mail: esbeworm@rm.dk; Department of Medical Physics, Aarhus University Hospital, Aarhus; Hoyer, Morten

    2012-05-01

    Purpose: To develop and evaluate accurate and objective on-line patient setup based on a novel semiautomatic technique in which three-dimensional marker trajectories were estimated from two-dimensional cone-beam computed tomography (CBCT) projections. Methods and Materials: Seven treatment courses of stereotactic body radiotherapy for liver tumors were delivered in 21 fractions in total to 6 patients by a linear accelerator. Each patient had two to three gold markers implanted close to the tumors. Before treatment, a CBCT scan with approximately 675 two-dimensional projections was acquired during a full gantry rotation. The marker positions were segmented in each projection. From this, the three-dimensionalmore » marker trajectories were estimated using a probability based method. The required couch shifts for patient setup were calculated from the mean marker positions along the trajectories. A motion phantom moving with known tumor trajectories was used to examine the accuracy of the method. Trajectory-based setup was retrospectively used off-line for the first five treatment courses (15 fractions) and on-line for the last two treatment courses (6 fractions). Automatic marker segmentation was compared with manual segmentation. The trajectory-based setup was compared with setup based on conventional CBCT guidance on the markers (first 15 fractions). Results: Phantom measurements showed that trajectory-based estimation of the mean marker position was accurate within 0.3 mm. The on-line trajectory-based patient setup was performed within approximately 5 minutes. The automatic marker segmentation agreed with manual segmentation within 0.36 {+-} 0.50 pixels (mean {+-} SD; pixel size, 0.26 mm in isocenter). The accuracy of conventional volumetric CBCT guidance was compromised by motion smearing ({<=}21 mm) that induced an absolute three-dimensional setup error of 1.6 {+-} 0.9 mm (maximum, 3.2) relative to trajectory-based setup. Conclusions: The first on-line clinical use of trajectory estimation from CBCT projections for precise setup in stereotactic body radiotherapy was demonstrated. Uncertainty in the conventional CBCT-based setup procedure was eliminated with the new method.« less

  3. A fast and flexible panoramic virtual reality system for behavioural and electrophysiological experiments.

    PubMed

    Takalo, Jouni; Piironen, Arto; Honkanen, Anna; Lempeä, Mikko; Aikio, Mika; Tuukkanen, Tuomas; Vähäsöyrinki, Mikko

    2012-01-01

    Ideally, neuronal functions would be studied by performing experiments with unconstrained animals whilst they behave in their natural environment. Although this is not feasible currently for most animal models, one can mimic the natural environment in the laboratory by using a virtual reality (VR) environment. Here we present a novel VR system based upon a spherical projection of computer generated images using a modified commercial data projector with an add-on fish-eye lens. This system provides equidistant visual stimulation with extensive coverage of the visual field, high spatio-temporal resolution and flexible stimulus generation using a standard computer. It also includes a track-ball system for closed-loop behavioural experiments with walking animals. We present a detailed description of the system and characterize it thoroughly. Finally, we demonstrate the VR system's performance whilst operating in closed-loop conditions by showing the movement trajectories of the cockroaches during exploratory behaviour in a VR forest.

  4. Straight Ahead in Microgravity

    NASA Technical Reports Server (NTRS)

    Wood, S. J.; Vanya, R. D.; Clement, G.

    2014-01-01

    This joint ESA-NASA study will address adaptive changes in spatial orientation related to the subjective straight ahead, and the use of a vibrotactile sensory aid to reduce perceptual errors. The study will be conducted before and after long-duration expeditions to the International Space Station (ISS) to examine how spatial processing of target location is altered following exposure to microgravity. This project specifically addresses the sensorimotor research gap "What are the changes in sensorimotor function over the course of a mission?" Six ISS crewmembers will be requested to participate in three preflight sessions (between 120 and 60 days prior to launch) and then three postflight sessions on R+0/1 day, R+4 +/-2 days, and R+8 +/-2 days. The three specific aims include: (a) fixation of actual and imagined target locations at different distances; (b) directed eye and arm movements along different spatial reference frames; and (c) the vestibulo-ocular reflex during translation motion with fixation targets at different distances. These measures will be compared between upright and tilted conditions. Measures will then be compared with and without a vibrotactile sensory aid that indicates how far one has tilted relative to the straight-ahead direction. The flight study was been approved by the medical review boards and will be implemented in the upcoming Informed Crew Briefings to solicit flight subject participation. Preliminary data has been recorded on 6 subjects during parabolic flight to examine the spatial coding of eye movements during roll tilt relative to perceived orientations while free-floating during the microgravity phase of parabolic flight or during head tilt in normal gravity. Binocular videographic recordings obtained in darkness allowed us to quantify the mean deviations in gaze trajectories along both horizontal and vertical coordinates relative to the aircraft and head orientations. During some parabolas, a vibrotactile sensory aid provided feedback of body orientation relative to the plane coordinates. RESULTS Both variability and curvature of gaze trajectories increased during roll tilt compared to the upright position. The saccades were less accurate during parabolic flight compared to measurements obtained in normal gravity. Although subjects were instructed to look off in the distance while performing the eye movements, fixation distance varied with vertical gaze direction independent of whether the saccades were made along perceived aircraft or head orientations. The increased errors in gaze trajectories along both perceived orientations during microgravity can be attributed to the otolith's role in spatial coding of eye movements. A change in an individual's egocentric reference might have negative consequences on evaluating the direction of an approaching object or on the accuracy of reaching movements or locomotion. Consequently, investigating how microgravity affects the target location will have theoretical, operational and even clinical implications for future space exploration missions. The use of vibrotactile feedback as a sensorimotor countermeasure is applicable to balance therapy applications for vestibular loss patients and the elderly to mitigate risks due to loss of orientation.

  5. Pursuit Latency for Chromatic Targets

    NASA Technical Reports Server (NTRS)

    Mulligan, Jeffrey B.; Ellis, Stephen R. (Technical Monitor)

    1998-01-01

    The temporal dynamics of eye movement response to a change in direction of stimulus motion has been used to compare the processing speeds of different types of stimuli (Mulligan, ARVO '97). In this study, the pursuit response to colored targets was measured to test the hypothesis that the slow response of the chromatic system (as measured using traditional temporal sensitivity measures such as contrast sensitivity) results in increased eye movement latencies. Subjects viewed a small (0.4 deg) Gaussian spot which moved downward at a speed of 6.6 deg/sec. At a variable time during the trajectory, the dot's direction of motion changed by 30 degrees, either to the right or left. Subjects were instructed to pursue the spot. Eye movements were measured using a video ophthalmoscope with an angular resolution of approximately 1 arc min and a temporal sampling rate of 60 Hz. Stimuli were modulated in chrominance for a variety of hue directions, combined with a range of small luminance increments and decrements, to insure that some of the stimuli fell in the subjects' equiluminance planes. The smooth portions of the resulting eye movement traces were fit by convolving the stimulus velocity with an exponential having variable onset latency, time constant and amplitude. Smooth eye movements with few saccades were observed for all stimuli. Pursuit responses to stimuli having a significant luminance component are well-fit by exponentials having latencies and time constants on the order of 100 msec. Increases in pursuit response latency on the order of 100-200 msec are observed in response to certain stimuli, which occur in pairs of complementary hues, corresponding to the intersection of the stimulus section with the subjects' equiluminant plane. Smooth eye movements can be made in response to purely chromatic stimuli, but are slower than responses to stimuli with a luminance component.

  6. Quantitative analysis of catch-up saccades during sustained pursuit.

    PubMed

    de Brouwer, Sophie; Missal, Marcus; Barnes, Graham; Lefèvre, Philippe

    2002-04-01

    During visual tracking of a moving stimulus, primates orient their visual axis by combining two very different types of eye movements, smooth pursuit and saccades. The purpose of this paper was to investigate quantitatively the catch-up saccades occurring during sustained pursuit. We used a ramp-step-ramp paradigm to evoke catch-up saccades during sustained pursuit. In general, catch-up saccades followed the unexpected steps in position and velocity of the target. We observed catch-up saccades in the same direction as the smooth eye movement (forward saccades) as well as in the opposite direction (reverse saccades). We made a comparison of the main sequences of forward saccades, reverse saccades, and control saccades made to stationary targets. They were all three significantly different from each other and were fully compatible with the hypothesis that the smooth pursuit component is added to the saccadic component during catch-up saccades. A multiple linear regression analysis was performed on the saccadic component to find the parameters determining the amplitude of catch-up saccades. We found that both position error and retinal slip are taken into account in catch-up saccade programming to predict the future trajectory of the moving target. We also demonstrated that the saccadic system needs a minimum period of approximately 90 ms for taking into account changes in target trajectory. Finally, we reported a saturation (above 15 degrees /s) in the contribution of retinal slip to the amplitude of catch-up saccades.

  7. Following the ontogeny of retinal waves: pan-retinal recordings of population dynamics in the neonatal mouse

    PubMed Central

    Maccione, Alessandro; Hennig, Matthias H; Gandolfo, Mauro; Muthmann, Oliver; van Coppenhagen, James; Eglen, Stephen J; Berdondini, Luca; Sernagor, Evelyne

    2014-01-01

    The immature retina generates spontaneous waves of spiking activity that sweep across the ganglion cell layer during a limited period of development before the onset of visual experience. The spatiotemporal patterns encoded in the waves are believed to be instructive for the wiring of functional connections throughout the visual system. However, the ontogeny of retinal waves is still poorly documented as a result of the relatively low resolution of conventional recording techniques. Here, we characterize the spatiotemporal features of mouse retinal waves from birth until eye opening in unprecedented detail using a large-scale, dense, 4096-channel multielectrode array that allowed us to record from the entire neonatal retina at near cellular resolution. We found that early cholinergic waves propagate with random trajectories over large areas with low ganglion cell recruitment. They become slower, smaller and denser when GABAA signalling matures, as occurs beyond postnatal day (P) 7. Glutamatergic influences dominate from P10, coinciding with profound changes in activity dynamics. At this time, waves cease to be random and begin to show repetitive trajectories confined to a few localized hotspots. These hotspots gradually tile the retina with time, and disappear after eye opening. Our observations demonstrate that retinal waves undergo major spatiotemporal changes during ontogeny. Our results support the hypotheses that cholinergic waves guide the refinement of retinal targets and that glutamatergic waves may also support the wiring of retinal receptive fields. PMID:24366261

  8. Regularity of center-of-pressure trajectories depends on the amount of attention invested in postural control

    PubMed Central

    Donker, Stella F.; Roerdink, Melvyn; Greven, An J.

    2007-01-01

    The influence of attention on the dynamical structure of postural sway was examined in 30 healthy young adults by manipulating the focus of attention. In line with the proposed direct relation between the amount of attention invested in postural control and regularity of center-of-pressure (COP) time series, we hypothesized that: (1) increasing cognitive involvement in postural control (i.e., creating an internal focus by increasing task difficulty through visual deprivation) increases COP regularity, and (2) withdrawing attention from postural control (i.e., creating an external focus by performing a cognitive dual task) decreases COP regularity. We quantified COP dynamics in terms of sample entropy (regularity), standard deviation (variability), sway-path length of the normalized posturogram (curviness), largest Lyapunov exponent (local stability), correlation dimension (dimensionality) and scaling exponent (scaling behavior). Consistent with hypothesis 1, standing with eyes closed significantly increased COP regularity. Furthermore, variability increased and local stability decreased, implying ineffective postural control. Conversely, and in line with hypothesis 2, performing a cognitive dual task while standing with eyes closed led to greater irregularity and smaller variability, suggesting an increase in the “efficiency, or “automaticity” of postural control”. In conclusion, these findings not only indicate that regularity of COP trajectories is positively related to the amount of attention invested in postural control, but also substantiate that in certain situations an increased internal focus may in fact be detrimental to postural control. PMID:17401553

  9. Detecting and Analyzing Multiple Moving Objects in Crowded Environments with Coherent Motion Regions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheriyadat, Anil M.

    Understanding the world around us from large-scale video data requires vision systems that can perform automatic interpretation. While human eyes can unconsciously perceive independent objects in crowded scenes and other challenging operating environments, automated systems have difficulty detecting, counting, and understanding their behavior in similar scenes. Computer scientists at ORNL have a developed a technology termed as "Coherent Motion Region Detection" that invloves identifying multiple indepedent moving objects in crowded scenes by aggregating low-level motion cues extracted from moving objects. Humans and other species exploit such low-level motion cues seamlessely to perform perceptual grouping for visual understanding. The algorithm detectsmore » and tracks feature points on moving objects resulting in partial trajectories that span coherent 3D region in the space-time volume defined by the video. In the case of multi-object motion, many possible coherent motion regions can be constructed around the set of trajectories. The unique approach in the algorithm is to identify all possible coherent motion regions, then extract a subset of motion regions based on an innovative measure to automatically locate moving objects in crowded environments.The software reports snapshot of the object, count, and derived statistics ( count over time) from input video streams. The software can directly process videos streamed over the internet or directly from a hardware device (camera).« less

  10. Kinematics of swimming of the manta ray: three-dimensional analysis of open-water maneuverability.

    PubMed

    Fish, Frank E; Kolpas, Allison; Crossett, Andrew; Dudas, Michael A; Moored, Keith W; Bart-Smith, Hilary

    2018-03-22

    For aquatic animals, turning maneuvers represent a locomotor activity that may not be confined to a single coordinate plane, making analysis difficult, particularly in the field. To measure turning performance in a three-dimensional space for the manta ray ( Mobula birostris ), a large open-water swimmer, scaled stereo video recordings were collected. Movements of the cephalic lobes, eye and tail base were tracked to obtain three-dimensional coordinates. A mathematical analysis was performed on the coordinate data to calculate the turning rate and curvature (1/turning radius) as a function of time by numerically estimating the derivative of manta trajectories through three-dimensional space. Principal component analysis was used to project the three-dimensional trajectory onto the two-dimensional turn. Smoothing splines were applied to these turns. These are flexible models that minimize a cost function with a parameter controlling the balance between data fidelity and regularity of the derivative. Data for 30 sequences of rays performing slow, steady turns showed the highest 20% of values for the turning rate and smallest 20% of turn radii were 42.65±16.66 deg s -1 and 2.05±1.26 m, respectively. Such turning maneuvers fall within the range of performance exhibited by swimmers with rigid bodies. © 2018. Published by The Company of Biologists Ltd.

  11. Correlation of individual cosmic ray nuclei with the observation of light flashes by Apollo astronauts. [nuclear emulsion detector design and operation

    NASA Technical Reports Server (NTRS)

    Pinsky, L. S.; Osborne, W. Z.; Bailey, J. V.

    1975-01-01

    A nuclear emulsion detector known as the Apollo Light Flash Moving Emulsion Detector (ALFMED) was designed: (1) to record tracks of primary cosmic rays; (2) to provide time-of-passage information via a relative plate translation technique; (3) to provide particle trajectory information; and (4) to fit into a masklike device that could be located about the head and eyes of an astronaut. An ALFMED device was worn by an astronaut observing light flashes for 60 minutes on each of the last two Apollo missions. During the Apollo 17 experiment seventeen separate flashes were reported by the observer. With one-third of the total plate area completely analyzed, two definite correlations have been found between Z greater than 8 cosmic ray nuclei traversing an eye and the reports of visual sensations.

  12. Reentry trajectory optimization based on a multistage pseudospectral method.

    PubMed

    Zhao, Jiang; Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization.

  13. Reentry Trajectory Optimization Based on a Multistage Pseudospectral Method

    PubMed Central

    Zhou, Rui; Jin, Xuelian

    2014-01-01

    Of the many direct numerical methods, the pseudospectral method serves as an effective tool to solve the reentry trajectory optimization for hypersonic vehicles. However, the traditional pseudospectral method is time-consuming due to large number of discretization points. For the purpose of autonomous and adaptive reentry guidance, the research herein presents a multistage trajectory control strategy based on the pseudospectral method, capable of dealing with the unexpected situations in reentry flight. The strategy typically includes two subproblems: the trajectory estimation and trajectory refining. In each processing stage, the proposed method generates a specified range of trajectory with the transition of the flight state. The full glide trajectory consists of several optimal trajectory sequences. The newly focused geographic constraints in actual flight are discussed thereafter. Numerical examples of free-space flight, target transition flight, and threat avoidance flight are used to show the feasible application of multistage pseudospectral method in reentry trajectory optimization. PMID:24574929

  14. Referent control and motor equivalence of reaching from standing

    PubMed Central

    Tomita, Yosuke; Feldman, Anatol G.

    2016-01-01

    Motor actions may result from central changes in the referent body configuration, defined as the body posture at which muscles begin to be activated or deactivated. The actual body configuration deviates from the referent configuration, particularly because of body inertia and environmental forces. Within these constraints, the system tends to minimize the difference between these configurations. For pointing movement, this strategy can be expressed as the tendency to minimize the difference between the referent trajectory (RT) and actual trajectory (QT) of the effector (hand). This process may underlie motor equivalent behavior that maintains the pointing trajectory regardless of the number of body segments involved. We tested the hypothesis that the minimization process is used to produce pointing in standing subjects. With eyes closed, 10 subjects reached from a standing position to a remembered target located beyond arm length. In randomly chosen trials, hip flexion was unexpectedly prevented, forcing subjects to take a step during pointing to prevent falling. The task was repeated when subjects were instructed to intentionally take a step during pointing. In most cases, reaching accuracy and trajectory curvature were preserved due to adaptive condition-specific changes in interjoint coordination. Results suggest that referent control and the minimization process associated with it may underlie motor equivalence in pointing. NEW & NOTEWORTHY Motor actions may result from minimization of the deflection of the actual body configuration from the centrally specified referent body configuration, in the limits of neuromuscular and environmental constraints. The minimization process may maintain reaching trajectory and accuracy regardless of the number of body segments involved (motor equivalence), as confirmed in this study of reaching from standing in young healthy individuals. Results suggest that the referent control process may underlie motor equivalence in reaching. PMID:27784802

  15. A 3-DOF parallel robot with spherical motion for the rehabilitation and evaluation of balance performance.

    PubMed

    Patanè, Fabrizio; Cappa, Paolo

    2011-04-01

    In this paper a novel electrically actuated parallel robot with three degrees-of-freedom (3 DOF) for dynamic postural studies is presented. The design has been described, the solution to the inverse kinematics has been found, and a numerical solution for the direct kinematics has been proposed. The workspace of the implemented robot is characterized by an angular range of motion of about ±10° for roll and pitch when yaw is in the range ±15°. The robot was constructed and the orientation accuracy was tested by means of an optoelectronic system and by imposing a sinusoidal input, with a frequency of 1 Hz and amplitude of 10°, along the three axes, in sequence. The collected data indicated a phase delay of 1° and an amplitude error of 0.5%-1.5%; similar values were observed for cross-axis sensitivity errors. We also conducted a clinical application on a group of normal subjects, who were standing in equilibrium on the robot base with eyes open (EO) and eyes closed (EC), which was rotated with a tri-axial sinusoidal trajectory with a frequency of 0.5 Hz and amplitude 5° for roll and pitch and 10° for the yaw. The postural configuration of the subjects was recorded with an optoelectronic system. However, due to the mainly technical nature of this paper, only initial validation outcomes are reported here. The clinical application showed that only the tilt and displacement on the sagittal pane of head, trunk, and pelvis in the trials conducted with eyes closed were affected by drift and that the reduction of the yaw rotation and of the mediolateral translation was not a controlled parameter, as happened, instead, for the other anatomical directions.

  16. Trajectory Browser: An Online Tool for Interplanetary Trajectory Analysis and Visualization

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus James

    2013-01-01

    The trajectory browser is a web-based tool developed at the NASA Ames Research Center for finding preliminary trajectories to planetary bodies and for providing relevant launch date, time-of-flight and (Delta)V requirements. The site hosts a database of transfer trajectories from Earth to planets and small-bodies for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and (Delta)V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies.

  17. Adaptation of catch-up saccades during the initiation of smooth pursuit eye movements.

    PubMed

    Schütz, Alexander C; Souto, David

    2011-04-01

    Reduction of retinal speed and alignment of the line of sight are believed to be the respective primary functions of smooth pursuit and saccadic eye movements. As the eye muscles strength can change in the short-term, continuous adjustments of motor signals are required to achieve constant accuracy. While adaptation of saccade amplitude to systematic position errors has been extensively studied, we know less about the adaptive response to position errors during smooth pursuit initiation, when target motion has to be taken into account to program saccades, and when position errors at the saccade endpoint could also be corrected by increasing pursuit velocity. To study short-term adaptation (250 adaptation trials) of tracking eye movements, we introduced a position error during the first catch-up saccade made during the initiation of smooth pursuit-in a ramp-step-ramp paradigm. The target position was either shifted in the direction of the horizontally moving target (forward step), against it (backward step) or orthogonally to it (vertical step). Results indicate adaptation of catch-up saccade amplitude to back and forward steps. With vertical steps, saccades became oblique, by an inflexion of the early or late saccade trajectory. With a similar time course, post-saccadic pursuit velocity was increased in the step direction, adding further evidence that under some conditions pursuit and saccades can act synergistically to reduce position errors.

  18. Trend-Residual Dual Modeling for Detection of Outliers in Low-Cost GPS Trajectories.

    PubMed

    Chen, Xiaojian; Cui, Tingting; Fu, Jianhong; Peng, Jianwei; Shan, Jie

    2016-12-01

    Low-cost GPS (receiver) has become a ubiquitous and integral part of our daily life. Despite noticeable advantages such as being cheap, small, light, and easy to use, its limited positioning accuracy devalues and hampers its wide applications for reliable mapping and analysis. Two conventional techniques to remove outliers in a GPS trajectory are thresholding and Kalman-based methods, which are difficult in selecting appropriate thresholds and modeling the trajectories. Moreover, they are insensitive to medium and small outliers, especially for low-sample-rate trajectories. This paper proposes a model-based GPS trajectory cleaner. Rather than examining speed and acceleration or assuming a pre-determined trajectory model, we first use cubic smooth spline to adaptively model the trend of the trajectory. The residuals, i.e., the differences between the trend and GPS measurements, are then further modeled by time series method. Outliers are detected by scoring the residuals at every GPS trajectory point. Comparing to the conventional procedures, the trend-residual dual modeling approach has the following features: (a) it is able to model trajectories and detect outliers adaptively; (b) only one critical value for outlier scores needs to be set; (c) it is able to robustly detect unapparent outliers; and (d) it is effective in cleaning outliers for GPS trajectories with low sample rates. Tests are carried out on three real-world GPS trajectories datasets. The evaluation demonstrates an average of 9.27 times better performance in outlier detection for GPS trajectories than thresholding and Kalman-based techniques.

  19. Optic flow cues guide flight in birds.

    PubMed

    Bhagavatula, Partha S; Claudianos, Charles; Ibbotson, Michael R; Srinivasan, Mandyam V

    2011-11-08

    Although considerable effort has been devoted to investigating how birds migrate over large distances, surprisingly little is known about how they tackle so successfully the moment-to-moment challenges of rapid flight through cluttered environments [1]. It has been suggested that birds detect and avoid obstacles [2] and control landing maneuvers [3-5] by using cues derived from the image motion that is generated in the eyes during flight. Here we investigate the ability of budgerigars to fly through narrow passages in a collision-free manner, by filming their trajectories during flight in a corridor where the walls are decorated with various visual patterns. The results demonstrate, unequivocally and for the first time, that birds negotiate narrow gaps safely by balancing the speeds of image motion that are experienced by the two eyes and that the speed of flight is regulated by monitoring the speed of image motion that is experienced by the two eyes. These findings have close parallels with those previously reported for flying insects [6-13], suggesting that some principles of visual guidance may be shared by all diurnal, flying animals. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Social attention in ASD: A review and meta-analysis of eye-tracking studies.

    PubMed

    Chita-Tegmark, Meia

    2016-01-01

    Determining whether social attention is reduced in Autism Spectrum Disorder (ASD) and what factors influence social attention is important to our theoretical understanding of developmental trajectories of ASD and to designing targeted interventions for ASD. This meta-analysis examines data from 38 articles that used eye-tracking methods to compare individuals with ASD and TD controls. In this paper, the impact of eight factors on the size of the effect for the difference in social attention between these two groups are evaluated: age, non-verbal IQ matching, verbal IQ matching, motion, social content, ecological validity, audio input and attention bids. Results show that individuals with ASD spend less time attending to social stimuli than typically developing (TD) controls, with a mean effect size of 0.55. Social attention in ASD was most impacted when stimuli had a high social content (showed more than one person). This meta-analysis provides an opportunity to survey the eye-tracking research on social attention in ASD and to outline potential future research directions, more specifically research of social attention in the context of stimuli with high social content. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Complexity Management Using Metrics for Trajectory Flexibility Preservation and Constraint Minimization

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Shen, Ni; Wing, David J.

    2011-01-01

    The growing demand for air travel is increasing the need for mitigating air traffic congestion and complexity problems, which are already at high levels. At the same time new surveillance, navigation, and communication technologies are enabling major transformations in the air traffic management system, including net-based information sharing and collaboration, performance-based access to airspace resources, and trajectory-based rather than clearance-based operations. The new system will feature different schemes for allocating tasks and responsibilities between the ground and airborne agents and between the human and automation, with potential capacity and cost benefits. Therefore, complexity management requires new metrics and methods that can support these new schemes. This paper presents metrics and methods for preserving trajectory flexibility that have been proposed to support a trajectory-based approach for complexity management by airborne or ground-based systems. It presents extensions to these metrics as well as to the initial research conducted to investigate the hypothesis that using these metrics to guide user and service provider actions will naturally mitigate traffic complexity. The analysis showed promising results in that: (1) Trajectory flexibility preservation mitigated traffic complexity as indicated by inducing self-organization in the traffic patterns and lowering traffic complexity indicators such as dynamic density and traffic entropy. (2)Trajectory flexibility preservation reduced the potential for secondary conflicts in separation assurance. (3) Trajectory flexibility metrics showed potential application to support user and service provider negotiations for minimizing the constraints imposed on trajectories without jeopardizing their objectives.

  2. Didactic trajectory of research in mathematics education using research-based learning

    NASA Astrophysics Data System (ADS)

    Charitas Indra Prahmana, Rully; Kusumah, Yaya S.; Darhim

    2017-10-01

    This study aims to describe the role of research-based learning in design a learning trajectory of research in mathematics education to enhance research and academic writing skills for pre-service mathematics teachers. The method used is a design research with three stages, namely the preliminary design, teaching experiment, and retrospective analysis. The research subjects are pre-service mathematics teacher class of 2012 from one higher education institution in Tangerang - Indonesia. The use of research-based learning in designing learning trajectory of research in mathematics education plays a crucial role as a trigger to enhancing math department preservice teachers research and academic writing skills. Also, this study also describes the design principles and characteristics of the learning trajectory namely didactic trajectory generated by the role of research-based learning syntax.

  3. Ares I-X Best Estimated Trajectory Analysis and Results

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Beck, Roger E.; Starr, Brett R.; Derry, Stephen D.; Brandon, Jay; Olds, Aaron D.

    2011-01-01

    The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air-data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.

  4. Ares I-X Best Estimated Trajectory and Comparison with Pre-Flight Predictions

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Beck, Roger E.; Derry, Stephen D.; Brandon, Jay M.; Starr, Brett R.; Tartabini, Paul V.; Olds, Aaron D.

    2011-01-01

    The Ares I-X trajectory reconstruction produced best estimated trajectories of the flight test vehicle ascent through stage separation, and of the first and upper stage entries after separation. The trajectory reconstruction process combines on-board, ground-based, and atmospheric measurements to produce the trajectory estimates. The Ares I-X vehicle had a number of on-board and ground based sensors that were available, including inertial measurement units, radar, air- data, and weather balloons. However, due to problems with calibrations and/or data, not all of the sensor data were used. The trajectory estimate was generated using an Iterative Extended Kalman Filter algorithm, which is an industry standard processing algorithm for filtering and estimation applications. This paper describes the methodology and results of the trajectory reconstruction process, including flight data preprocessing and input uncertainties, trajectory estimation algorithms, output transformations, and comparisons with preflight predictions.

  5. Challenges in Achieving Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Cate, Karen Tung

    2012-01-01

    In the past few years much of the global ATM research community has proposed advanced systems based on Trajectory-Based Operations (TBO). The concept of TBO uses four-dimensional aircraft trajectories as the base information for managing safety and capacity. Both the US and European advanced ATM programs call for the sharing of trajectory data across different decision support tools for successful operations. However, the actual integration of TBO systems presents many challenges. Trajectory predictors are built to meet the specific needs of a particular system and are not always compatible with others. Two case studies are presented which examine the challenges of introducing a new concept into two legacy systems in regards to their trajectory prediction software. The first case describes the issues with integrating a new decision support tool with a legacy operational system which overlap in domain space. These tools perform similar functions but are driven by different requirements. The difference in the resulting trajectories can lead to conflicting advisories. The second case looks at integrating this same new tool with a legacy system originally developed as an integrated system, but diverged many years ago. Both cases illustrate how the lack of common architecture concepts for the trajectory predictors added cost and complexity to the integration efforts.

  6. Method and Apparatus for Generating Flight-Optimizing Trajectories

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G. (Inventor); Wing, David J. (Inventor)

    2015-01-01

    An apparatus for generating flight-optimizing trajectories for a first aircraft includes a receiver capable of receiving second trajectory information associated with at least one second aircraft. The apparatus also includes a traffic aware planner (TAP) module operably connected to the receiver to receive the second trajectory information. The apparatus also includes at least one internal input device on board the first aircraft to receive first trajectory information associated with the first aircraft and a TAP application capable of calculating an optimal trajectory for the first aircraft based at least on the first trajectory information and the second trajectory information. The optimal trajectory at least avoids conflicts between the first trajectory information and the second trajectory information.

  7. Novel Driving Control of Power Assisted Wheelchair Based on Minimum Jerk Trajectory

    NASA Astrophysics Data System (ADS)

    Seki, Hirokazu; Sugimoto, Takeaki; Tadakuma, Susumu

    This paper describes a novel trajectory control scheme for power assisted wheelchair. Human input torque patterns are always intermittent in power assisted wheelchairs, therefore, the suitable trajectories must be generated also after the human decreases his/her input torque. This paper tries to solve this significant problem based on minimum jerk model minimizing the changing rate of acceleration. The proposed control system based on minimum jerk trajectory is expected to improve the ride quality, stability and safety. Some experiments show the effectiveness of the proposed method.

  8. A Computerized Microelectrode Recording to Magnetic Resonance Imaging Mapping System for Subthalamic Nucleus Deep Brain Stimulation Surgery.

    PubMed

    Dodani, Sunjay S; Lu, Charles W; Aldridge, J Wayne; Chou, Kelvin L; Patil, Parag G

    2018-06-01

    Accurate electrode placement is critical to the success of deep brain stimulation (DBS) surgery. Suboptimal targeting may arise from poor initial target localization, frame-based targeting error, or intraoperative brain shift. These uncertainties can make DBS surgery challenging. To develop a computerized system to guide subthalamic nucleus (STN) DBS electrode localization and to estimate the trajectory of intraoperative microelectrode recording (MER) on magnetic resonance (MR) images algorithmically during DBS surgery. Our method is based upon the relationship between the high-frequency band (HFB; 500-2000 Hz) signal from MER and voxel intensity on MR images. The HFB profile along an MER trajectory recorded during surgery is compared to voxel intensity profiles along many potential trajectories in the region of the surgically planned trajectory. From these comparisons of HFB recordings and potential trajectories, an estimate of the MER trajectory is calculated. This calculated trajectory is then compared to actual trajectory, as estimated by postoperative high-resolution computed tomography. We compared 20 planned, calculated, and actual trajectories in 13 patients who underwent STN DBS surgery. Targeting errors for our calculated trajectories (2.33 mm ± 0.2 mm) were significantly less than errors for surgically planned trajectories (2.83 mm ± 0.2 mm; P = .01), improving targeting prediction in 70% of individual cases (14/20). Moreover, in 4 of 4 initial MER trajectories that missed the STN, our method correctly indicated the required direction of targeting adjustment for the DBS lead to intersect the STN. A computer-based algorithm simultaneously utilizing MER and MR information potentially eases electrode localization during STN DBS surgery.

  9. Trend-Residual Dual Modeling for Detection of Outliers in Low-Cost GPS Trajectories

    PubMed Central

    Chen, Xiaojian; Cui, Tingting; Fu, Jianhong; Peng, Jianwei; Shan, Jie

    2016-01-01

    Low-cost GPS (receiver) has become a ubiquitous and integral part of our daily life. Despite noticeable advantages such as being cheap, small, light, and easy to use, its limited positioning accuracy devalues and hampers its wide applications for reliable mapping and analysis. Two conventional techniques to remove outliers in a GPS trajectory are thresholding and Kalman-based methods, which are difficult in selecting appropriate thresholds and modeling the trajectories. Moreover, they are insensitive to medium and small outliers, especially for low-sample-rate trajectories. This paper proposes a model-based GPS trajectory cleaner. Rather than examining speed and acceleration or assuming a pre-determined trajectory model, we first use cubic smooth spline to adaptively model the trend of the trajectory. The residuals, i.e., the differences between the trend and GPS measurements, are then further modeled by time series method. Outliers are detected by scoring the residuals at every GPS trajectory point. Comparing to the conventional procedures, the trend-residual dual modeling approach has the following features: (a) it is able to model trajectories and detect outliers adaptively; (b) only one critical value for outlier scores needs to be set; (c) it is able to robustly detect unapparent outliers; and (d) it is effective in cleaning outliers for GPS trajectories with low sample rates. Tests are carried out on three real-world GPS trajectories datasets. The evaluation demonstrates an average of 9.27 times better performance in outlier detection for GPS trajectories than thresholding and Kalman-based techniques. PMID:27916944

  10. A Correlation-based Framework for Evaluating Postural Control Stochastic Dynamics

    PubMed Central

    Hernandez, Manuel E.; Snider, Joseph; Stevenson, Cory; Cauwenberghs, Gert; Poizner, Howard

    2016-01-01

    The inability to maintain balance during varying postural control conditions can lead to falls, a significant cause of mortality and serious injury among older adults. However, our understanding of the underlying dynamical and stochastic processes in human postural control have not been fully explored. To further our understanding of the underlying dynamical processes, we examine a novel conceptual framework for studying human postural control using the center of pressure (COP) velocity autocorrelation function (COP-VAF) and compare its results to Stabilogram Diffusion Analysis (SDA). Eleven healthy young participants were studied under quiet unipedal or bipedal standing conditions with eyes either opened or closed. COP trajectories were analyzed using both the traditional posturographic measure SDA and the proposed COP-VAF. It is shown that the COP-VAF leads to repeatable, physiologically meaningful measures that distinguish postural control differences in unipedal versus bipedal stance trials with and without vision in healthy individuals. More specifically, both a unipedal stance and lack of visual feedback increased initial values of the COP-VAF, magnitude of the first minimum, and diffusion coefficient, particularly in contrast to bipedal stance trials with open eyes. Use of a stochastic postural control model, based on an Ornstein-Uhlenbeck process that accounts for natural weight-shifts, suggests an increase in spring constant and decreased damping coefficient when fitted to experimental data. This work suggests that we can further extend our understanding of the underlying mechanisms behind postural control in quiet stance under varying stance conditions using the COP-VAF and provides a tool for quantifying future neurorehabilitative interventions. PMID:26011886

  11. Arm-eye coordination test to objectively quantify motor performance and muscles activation in persons after stroke undergoing robot-aided rehabilitation training: a pilot study.

    PubMed

    Song, Rong; Tong, Kai-Yu; Hu, Xiaoling; Li, Le; Sun, Rui

    2013-09-01

    This study designed an arm-eye coordination test to investigate the effectiveness of the robot-aided rehabilitation for persons after stroke. Six chronic poststroke subjects were recruited to attend a 20-session robot-aided rehabilitation training of elbow joint. Before and after the training program, subjects were asked to perform voluntary movements of elbow flection and extension by following sinusoidal trajectories at different velocities with visual feedback on their joint positions. The elbow angle and the electromyographic signal of biceps and triceps as well as clinical scores were evaluated together with the parameters. Performance was objectively quantified by root mean square error (RMSE), root mean square jerk (RMSJ), range of motion (ROM), and co-contraction index (CI). After 20 sessions, RMSE and ROM improved significantly in both the affected and the unaffected side based on two-way ANOVA (P < 0.05). There was significant lower RMSJ in the affected side at higher velocities (P < 0.05). There was significant negative correlation between average RMSE with different tracking velocities and Fugl-Meyer shoulder-elbow score (P < 0.05). There was also significant negative correlation between average RMSE and average ROM (P < 0.05), and moderate nonsignificant negative correlation with RMSJ, and CI. The characterization of velocity-dependent deficiencies, monitoring of training-induced improvement, and the correlation between quantitative parameters and clinical scales could enable the exploration of effects of different types of treatment and design progress-based training method to accelerate the processes of recovery.

  12. Does aquatic foraging impact head shape evolution in snakes?

    PubMed

    Segall, Marion; Cornette, Raphaël; Fabre, Anne-Claire; Godoy-Diana, Ramiro; Herrel, Anthony

    2016-08-31

    Evolutionary trajectories are often biased by developmental and historical factors. However, environmental factors can also impose constraints on the evolutionary trajectories of organisms leading to convergence of morphology in similar ecological contexts. The physical properties of water impose strong constraints on aquatic feeding animals by generating pressure waves that can alert prey and potentially push them away from the mouth. These hydrodynamic constraints have resulted in the independent evolution of suction feeding in most groups of secondarily aquatic tetrapods. Despite the fact that snakes cannot use suction, they have invaded the aquatic milieu many times independently. Here, we test whether the aquatic environment has constrained head shape evolution in snakes and whether shape converges on that predicted by biomechanical models. To do so, we used three-dimensional geometric morphometrics and comparative, phylogenetically informed analyses on a large sample of aquatic snake species. Our results show that aquatic snakes partially conform to our predictions and have a narrower anterior part of the head and dorsally positioned eyes and nostrils. This morphology is observed, irrespective of the phylogenetic relationships among species, suggesting that the aquatic environment does indeed drive the evolution of head shape in snakes, thus biasing the evolutionary trajectory of this group of animals. © 2016 The Author(s).

  13. Indoor Trajectory Tracking Scheme Based on Delaunay Triangulation and Heuristic Information in Wireless Sensor Networks.

    PubMed

    Qin, Junping; Sun, Shiwen; Deng, Qingxu; Liu, Limin; Tian, Yonghong

    2017-06-02

    Object tracking and detection is one of the most significant research areas for wireless sensor networks. Existing indoor trajectory tracking schemes in wireless sensor networks are based on continuous localization and moving object data mining. Indoor trajectory tracking based on the received signal strength indicator ( RSSI ) has received increased attention because it has low cost and requires no special infrastructure. However, RSSI tracking introduces uncertainty because of the inaccuracies of measurement instruments and the irregularities (unstable, multipath, diffraction) of wireless signal transmissions in indoor environments. Heuristic information includes some key factors for trajectory tracking procedures. This paper proposes a novel trajectory tracking scheme based on Delaunay triangulation and heuristic information (TTDH). In this scheme, the entire field is divided into a series of triangular regions. The common side of adjacent triangular regions is regarded as a regional boundary. Our scheme detects heuristic information related to a moving object's trajectory, including boundaries and triangular regions. Then, the trajectory is formed by means of a dynamic time-warping position-fingerprint-matching algorithm with heuristic information constraints. Field experiments show that the average error distance of our scheme is less than 1.5 m, and that error does not accumulate among the regions.

  14. A Distributed Trajectory-Oriented Approach to Managing Traffic Complexity

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Wing, David J.; Vivona, Robert; Garcia-Chico, Jose-Luis

    2007-01-01

    In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which ground-based service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. While its architecture becomes more distributed, the goal of the Air Traffic Management (ATM) system remains to achieve objectives such as maintaining safety and efficiency. It is, therefore, critical to design appropriate control elements to ensure that aircraft and groundbased actions result in achieving these objectives without unduly restricting user-preferred trajectories. This paper presents a trajectory-oriented approach containing two such elements. One is a trajectory flexibility preservation function, by which aircraft plan their trajectories to preserve flexibility to accommodate unforeseen events. And the other is a trajectory constraint minimization function by which ground-based agents, in collaboration with air-based agents, impose just-enough restrictions on trajectories to achieve ATM objectives, such as separation assurance and flow management. The underlying hypothesis is that preserving trajectory flexibility of each individual aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by minimizing constraints without jeopardizing the intended ATM objectives. The paper presents conceptually how the two functions operate in a distributed control architecture that includes self separation. The paper illustrates the concept through hypothetical scenarios involving conflict resolution and flow management. It presents a functional analysis of the interaction and information flow between the functions. It also presents an analytical framework for defining metrics and developing methods to preserve trajectory flexibility and minimize its constraints. In this framework flexibility is defined in terms of robustness and adaptability to disturbances and the impact of constraints is illustrated through analysis of a trajectory solution space with limited degrees of freedom and in simple constraint situations involving meeting multiple times of arrival and resolving a conflict.

  15. Shaping low-thrust trajectories with thrust-handling feature

    NASA Astrophysics Data System (ADS)

    Taheri, Ehsan; Kolmanovsky, Ilya; Atkins, Ella

    2018-02-01

    Shape-based methods are becoming popular in low-thrust trajectory optimization due to their fast computation speeds. In existing shape-based methods constraints are treated at the acceleration level but not at the thrust level. These two constraint types are not equivalent since spacecraft mass decreases over time as fuel is expended. This paper develops a shape-based method based on a Fourier series approximation that is capable of representing trajectories defined in spherical coordinates and that enforces thrust constraints. An objective function can be incorporated to minimize overall mission cost, i.e., achieve minimum ΔV . A representative mission from Earth to Mars is studied. The proposed Fourier series technique is demonstrated capable of generating feasible and near-optimal trajectories. These attributes can facilitate future low-thrust mission designs where different trajectory alternatives must be rapidly constructed and evaluated.

  16. A Novel Approach for Enhancement of Automobile Clutch Engagement Quality Using Mechatronics Based Automated Clutch System

    NASA Astrophysics Data System (ADS)

    Tripathi, K.

    2013-01-01

    In automated manual clutch (AMC) a mechatronic system controls clutch force trajectory through an actuator governed by a control system. The present study identifies relevant characteristics of this trajectory and their effects on driveline dynamics and engagement quality. A new type of force trajectory is identified which gives the good engagement quality. However this trajectory is not achievable through conventional clutch control mechanism. But in AMC a mechatronic system based on electro-hydraulic or electro-mechanical elements can make it feasible. A mechatronic system is presented in which a mechatronic add-on system can be used to implement the novel force trajectory, without the requirement of replacing the traditional diaphragm spring based clutch in a vehicle with manual transmission.

  17. Introducing the fit-criteria assessment plot - A visualisation tool to assist class enumeration in group-based trajectory modelling.

    PubMed

    Klijn, Sven L; Weijenberg, Matty P; Lemmens, Paul; van den Brandt, Piet A; Lima Passos, Valéria

    2017-10-01

    Background and objective Group-based trajectory modelling is a model-based clustering technique applied for the identification of latent patterns of temporal changes. Despite its manifold applications in clinical and health sciences, potential problems of the model selection procedure are often overlooked. The choice of the number of latent trajectories (class-enumeration), for instance, is to a large degree based on statistical criteria that are not fail-safe. Moreover, the process as a whole is not transparent. To facilitate class enumeration, we introduce a graphical summary display of several fit and model adequacy criteria, the fit-criteria assessment plot. Methods An R-code that accepts universal data input is presented. The programme condenses relevant group-based trajectory modelling output information of model fit indices in automated graphical displays. Examples based on real and simulated data are provided to illustrate, assess and validate fit-criteria assessment plot's utility. Results Fit-criteria assessment plot provides an overview of fit criteria on a single page, placing users in an informed position to make a decision. Fit-criteria assessment plot does not automatically select the most appropriate model but eases the model assessment procedure. Conclusions Fit-criteria assessment plot is an exploratory, visualisation tool that can be employed to assist decisions in the initial and decisive phase of group-based trajectory modelling analysis. Considering group-based trajectory modelling's widespread resonance in medical and epidemiological sciences, a more comprehensive, easily interpretable and transparent display of the iterative process of class enumeration may foster group-based trajectory modelling's adequate use.

  18. Trajectory Based Behavior Analysis for User Verification

    NASA Astrophysics Data System (ADS)

    Pao, Hsing-Kuo; Lin, Hong-Yi; Chen, Kuan-Ta; Fadlil, Junaidillah

    Many of our activities on computer need a verification step for authorized access. The goal of verification is to tell apart the true account owner from intruders. We propose a general approach for user verification based on user trajectory inputs. The approach is labor-free for users and is likely to avoid the possible copy or simulation from other non-authorized users or even automatic programs like bots. Our study focuses on finding the hidden patterns embedded in the trajectories produced by account users. We employ a Markov chain model with Gaussian distribution in its transitions to describe the behavior in the trajectory. To distinguish between two trajectories, we propose a novel dissimilarity measure combined with a manifold learnt tuning for catching the pairwise relationship. Based on the pairwise relationship, we plug-in any effective classification or clustering methods for the detection of unauthorized access. The method can also be applied for the task of recognition, predicting the trajectory type without pre-defined identity. Given a trajectory input, the results show that the proposed method can accurately verify the user identity, or suggest whom owns the trajectory if the input identity is not provided.

  19. Effects of a prior stretching of the plantarflexor muscles on the capacity to control upright stance maintenance in healthy adults.

    PubMed

    Rougier, Patrice; Burdet, Cyril; Genthon, Nicolas

    2006-10-01

    To assess whether prior stretching of a muscle can induce improved postural control, 15 healthy adults stood still upright with their eyes closed before and after a series of bilateral stretches of the triceps surae muscles. The analysis focused on the center of pressure (CP) and the vertical projection of the center of gravity (CGv) trajectories and their difference (CP - CGv). The prolonged stretching induced a forward shift of the mean position of the CGv. The frequency analysis showed a constancy of the amplitudes of both basic movements whereas an increased mean power frequency was seen for the CP - CGv movements. A fractional Brownian motion modeling of the trajectories indicates shortest time intervals and lower covered distances by the CGv before a change in its control occurs along the antero-posterior axis. This reorganization is thought to be a result of improved body movement detection, which allows postural control over the longest time intervals to be triggered more rapidly.

  20. A Rodent Model of Dynamic Facial Reanimation Using Functional Electrical Stimulation

    PubMed Central

    Attiah, Mark A.; de Vries, Julius; Richardson, Andrew G.; Lucas, Timothy H.

    2017-01-01

    Facial paralysis can be a devastating condition, causing disfiguring facial droop, slurred speech, eye dryness, scarring and blindness. This study investigated the utility of closed-loop functional electric stimulation (FES) for reanimating paralyzed facial muscles in a quantitative rodent model. The right buccal and marginal mandibular branches of the rat facial nerve were transected for selective, unilateral paralysis of whisker muscles. Microwire electrodes were implanted bilaterally into the facial musculature for FES and electromyographic (EMG) recording. With the rats awake and head-fixed, whisker trajectories were tracked bilaterally with optical micrometers. First, the relationship between EMG and volitional whisker movement was quantified on the intact side of the face. Second, the effect of FES on whisker trajectories was quantified on the paralyzed side. Third, closed-loop experiments were performed in which the EMG signal on the intact side triggered FES on the paralyzed side to restore symmetric whisking. The results demonstrate a novel in vivo platform for developing control strategies for neuromuscular facial prostheses. PMID:28424583

  1. Multiple levels of representation of reaching in the parieto-frontal network.

    PubMed

    Battaglia-Mayer, Alexandra; Caminiti, Roberto; Lacquaniti, Francesco; Zago, Myrka

    2003-10-01

    In daily life, hand and eye movements occur in different contexts. Hand movements can be made to a visual target shortly after its presentation, or after a longer delay; alternatively, they can be made to a memorized target location. In both instances, the hand can move in a visually structured scene under normal illumination, which allows visual monitoring of its trajectory, or in darkness. Across these conditions, movement can be directed to points in space already foveated, or to extrafoveal ones, thus requiring different forms of eye-hand coordination. The ability to adapt to these different contexts by providing successful answers to their demands probably resides in the high degree of flexibility of the operations that govern cognitive visuomotor behavior. The neurophysiological substrates of these processes include, among others, the context-dependent nature of neural activity, and a transitory, or task-dependent, affiliation of neurons to the assemblies underlying different forms of sensorimotor behavior. Moreover, the ability to make independent or combined eye and hand movements in the appropriate order and time sequence must reside in a process that encodes retinal-, eye- and hand-related inputs in a spatially congruent fashion. This process, in fact, requires exact knowledge of where the eye and the hand are at any given time, although we have no or little conscious experience of where they stay at any instant. How this information is reflected in the activity of cortical neurons remains a central question to understanding the mechanisms underlying the planning of eye-hand movement in the cerebral cortex. In the last 10 years, psychophysical analyses in humans, as well as neurophysiological studies in monkeys, have provided new insights on the mechanisms of different forms of oculo-manual actions. These studies have also offered preliminary hints as to the cortical substrates of eye-hand coordination. In this review, we will highlight some of the results obtained as well as some of the questions raised, focusing on the role of eye- and hand-tuning signals in cortical neural activity. This choice rests on the crucial role this information exerts in the specification of movement, and coordinate transformation.

  2. Implicit prosody mining based on the human eye image capture technology

    NASA Astrophysics Data System (ADS)

    Gao, Pei-pei; Liu, Feng

    2013-08-01

    The technology of eye tracker has become the main methods of analyzing the recognition issues in human-computer interaction. Human eye image capture is the key problem of the eye tracking. Based on further research, a new human-computer interaction method introduced to enrich the form of speech synthetic. We propose a method of Implicit Prosody mining based on the human eye image capture technology to extract the parameters from the image of human eyes when reading, control and drive prosody generation in speech synthesis, and establish prosodic model with high simulation accuracy. Duration model is key issues for prosody generation. For the duration model, this paper put forward a new idea for obtaining gaze duration of eyes when reading based on the eye image capture technology, and synchronous controlling this duration and pronunciation duration in speech synthesis. The movement of human eyes during reading is a comprehensive multi-factor interactive process, such as gaze, twitching and backsight. Therefore, how to extract the appropriate information from the image of human eyes need to be considered and the gaze regularity of eyes need to be obtained as references of modeling. Based on the analysis of current three kinds of eye movement control model and the characteristics of the Implicit Prosody reading, relative independence between speech processing system of text and eye movement control system was discussed. It was proved that under the same text familiarity condition, gaze duration of eyes when reading and internal voice pronunciation duration are synchronous. The eye gaze duration model based on the Chinese language level prosodic structure was presented to change previous methods of machine learning and probability forecasting, obtain readers' real internal reading rhythm and to synthesize voice with personalized rhythm. This research will enrich human-computer interactive form, and will be practical significance and application prospect in terms of disabled assisted speech interaction. Experiments show that Implicit Prosody mining based on the human eye image capture technology makes the synthesized speech has more flexible expressions.

  3. Predictive encoding of moving target trajectory by neurons in the parabigeminal nucleus

    PubMed Central

    Ma, Rui; Cui, He; Lee, Sang-Hun; Anastasio, Thomas J.

    2013-01-01

    Intercepting momentarily invisible moving objects requires internally generated estimations of target trajectory. We demonstrate here that the parabigeminal nucleus (PBN) encodes such estimations, combining sensory representations of target location, extrapolated positions of briefly obscured targets, and eye position information. Cui and Malpeli (Cui H, Malpeli JG. J Neurophysiol 89: 3128–3142, 2003) reported that PBN activity for continuously visible tracked targets is determined by retinotopic target position. Here we show that when cats tracked moving, blinking targets the relationship between activity and target position was similar for ON and OFF phases (400 ms for each phase). The dynamic range of activity evoked by virtual targets was 94% of that of real targets for the first 200 ms after target offset and 64% for the next 200 ms. Activity peaked at about the same best target position for both real and virtual targets. PBN encoding of target position takes into account changes in eye position resulting from saccades, even without visual feedback. Since PBN response fields are retinotopically organized, our results suggest that activity foci associated with real and virtual targets at a given target position lie in the same physical location in the PBN, i.e., a retinotopic as well as a rate encoding of virtual-target position. We also confirm that PBN activity is specific to the intended target of a saccade and is predictive of which target will be chosen if two are offered. A Bayesian predictor-corrector model is presented that conceptually explains the differences in the dynamic ranges of PBN neuronal activity evoked during tracking of real and virtual targets. PMID:23365185

  4. Contribution of the maculo-ocular reflex to gaze stability in the rabbit.

    PubMed

    Pettorossi, V E; Errico, P; Santarelli, R M

    1991-01-01

    The contribution of the maculo-ocular reflex to gaze stability was studied in 10 pigmented rabbits by rolling the animals at various angles of sagittal inclination of the rotation and/or longitudinal animal axes. At low frequencies (0.005-0.01 Hz) of sinusoidal stimulation the vestibulo-ocular reflex (VOR) was due to macular activation, while at intermediate and high frequencies it was mainly due to ampullar activation. The following results were obtained: 1) maculo-ocular reflex gain decreased as a function of the cosine of the angle between the rotation axis and the earth's horizontal plane. No change in gain was observed when longitudinal animal axis alone was inclined. 2) At 0 degrees of rotation axis and with the animal's longitudinal axis inclination also set at 0 degrees, the maculo-ocular reflex was oriented about 20 degrees forward and upward with respect to the earth's vertical axis. This orientation remained constant with sagittal inclinations of the rotation and/or longitudinal animal axes ranging from approximately 5 degrees upward to 30 degrees downward. When the longitudinal animal axis was inclined beyond these limits, the eye trajectory tended to follow the axis inclination. In the upside down position, the maculo-ocular reflex was anticompensatory, oblique and fixed with respect to orbital coordinates. 3) Ampullo-ocular reflex gain did not change with inclinations of the rotation and/or longitudinal animal axes. The ocular responses were consistently oriented to the stimulus plane. At intermediate frequencies the eye movement trajectory was elliptic because of directional differences between the ampullo- and maculo-ocular reflexes.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Young adults' trajectories of Ecstasy use: a population based study.

    PubMed

    Smirnov, Andrew; Najman, Jake M; Hayatbakhsh, Reza; Plotnikova, Maria; Wells, Helene; Legosz, Margot; Kemp, Robert

    2013-11-01

    Young adults' Ecstasy use trajectories have important implications for individual and population-level consequences of Ecstasy use, but little relevant research has been conducted. This study prospectively examines Ecstasy trajectories in a population-based sample. Data are from the Natural History Study of Drug Use, a retrospective/prospective cohort study conducted in Australia. Population screening identified a probability sample of Ecstasy users aged 19-23 years. Complete data for 30 months of follow-up, comprising 4 time intervals, were available for 297 participants (88.4% of sample). Trajectories were derived using cluster analysis based on recent Ecstasy use at each interval. Trajectory predictors were examined using a generalized ordered logit model and included Ecstasy dependence (World Mental Health Composite International Diagnostic Instrument), psychological distress (Hospital Anxiety Depression Scale), aggression (Young Adult Self Report) and contextual factors (e.g. attendance at electronic/dance music events). Three Ecstasy trajectories were identified (low, intermediate and high use). At its peak, the high-use trajectory involved 1-2 days Ecstasy use per week. Decreasing frequency of use was observed for intermediate and high-use trajectories from 12 months, independently of market factors. Intermediate and high-use trajectory membership was predicted by past Ecstasy consumption (>70 pills) and attendance at electronic/dance music events. High-use trajectory members were unlikely to have used Ecstasy for more than 3 years and tended to report consistently positive subjective effects at baseline. Given the social context and temporal course of Ecstasy use, Ecstasy trajectories might be better understood in terms of instrumental rather than addictive drug use patterns. © 2013 Elsevier Ltd. All rights reserved.

  6. LINEAR LATTICE AND TRAJECTORY RECONSTRUCTION AND CORRECTION AT FAST LINEAR ACCELERATOR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Romanov, A.; Edstrom, D.; Halavanau, A.

    2017-07-16

    The low energy part of the FAST linear accelerator based on 1.3 GHz superconducting RF cavities was successfully commissioned [1]. During commissioning, beam based model dependent methods were used to correct linear lattice and trajectory. Lattice correction algorithm is based on analysis of beam shape from profile monitors and trajectory responses to dipole correctors. Trajectory responses to field gradient variations in quadrupoles and phase variations in superconducting RF cavities were used to correct bunch offsets in quadrupoles and accelerating cavities relative to their magnetic axes. Details of used methods and experimental results are presented.

  7. Characterization of Metering, Merging and Spacing Requirements for Future Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Sally

    2017-01-01

    Trajectory-Based Operations (TBO) is one of the essential paradigm shifts in the NextGen transformation of the National Airspace System. Under TBO, aircraft are managed by 4-dimensional trajectories, and airborne and ground-based metering, merging, and spacing operations are key to managing those trajectories. This paper presents the results of a study of potential metering, merging, and spacing operations within a future TBO environment. A number of operational scenarios for tactical and strategic uses of metering, merging, and spacing are described, and interdependencies between concurrent tactical and strategic operations are identified.

  8. Evidence of Teacher Change after Participating in TRIAD's Learning Trajectories-Based Professional Development and after Implementing Learning Trajectory-Based Mathematics Instruction

    ERIC Educational Resources Information Center

    Sarama, Julie; Clements, Douglas H.; Spitler, Mary Elaine

    2017-01-01

    Increased attention has been given to learning trajectories (LT) as structural frameworks for educational instruction. The purpose of this study was to explore preschool teachers' descriptions of self-change, seven years after the start of their participation in LT-based professional development and instruction. This study was part of a larger…

  9. A Skill Score of Trajectory Model Evaluation Using Reinitialized Series of Normalized Cumulative Lagrangian Separation

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Weisberg, R. H.

    2017-12-01

    The Lagrangian separation distance between the endpoints of simulated and observed drifter trajectories is often used to assess the performance of numerical particle trajectory models. However, the separation distance fails to indicate relative model performance in weak and strong current regions, such as a continental shelf and its adjacent deep ocean. A skill score is proposed based on the cumulative Lagrangian separation distances normalized by the associated cumulative trajectory lengths. The new metrics correctly indicates the relative performance of the Global HYCOM in simulating the strong currents of the Gulf of Mexico Loop Current and the weaker currents of the West Florida Shelf in the eastern Gulf of Mexico. In contrast, the Lagrangian separation distance alone gives a misleading result. Also, the observed drifter position series can be used to reinitialize the trajectory model and evaluate its performance along the observed trajectory, not just at the drifter end position. The proposed dimensionless skill score is particularly useful when the number of drifter trajectories is limited and neither a conventional Eulerian-based velocity nor a Lagrangian-based probability density function may be estimated.

  10. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    PubMed

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  11. Distributed Traffic Complexity Management by Preserving Trajectory Flexibility

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Vivona, Robert A.; Garcia-Chico, Jose-Luis; Wing, David J.

    2007-01-01

    In order to handle the expected increase in air traffic volume, the next generation air transportation system is moving towards a distributed control architecture, in which groundbased service providers such as controllers and traffic managers and air-based users such as pilots share responsibility for aircraft trajectory generation and management. This paper presents preliminary research investigating a distributed trajectory-oriented approach to manage traffic complexity, based on preserving trajectory flexibility. The underlying hypotheses are that preserving trajectory flexibility autonomously by aircraft naturally achieves the aggregate objective of avoiding excessive traffic complexity, and that trajectory flexibility is increased by collaboratively minimizing trajectory constraints without jeopardizing the intended air traffic management objectives. This paper presents an analytical framework in which flexibility is defined in terms of robustness and adaptability to disturbances and preliminary metrics are proposed that can be used to preserve trajectory flexibility. The hypothesized impacts are illustrated through analyzing a trajectory solution space in a simple scenario with only speed as a degree of freedom, and in constraint situations involving meeting multiple times of arrival and resolving conflicts.

  12. [Near infrared spectroscopy based process trajectory technology and its application in monitoring and controlling of traditional Chinese medicine manufacturing process].

    PubMed

    Li, Wen-Long; Qu, Hai-Bin

    2016-10-01

    In this paper, the principle of NIRS (near infrared spectroscopy)-based process trajectory technology was introduced.The main steps of the technique include:① in-line collection of the processes spectra of different technics; ② unfolding of the 3-D process spectra;③ determination of the process trajectories and their normal limits;④ monitoring of the new batches with the established MSPC (multivariate statistical process control) models.Applications of the technology in the chemical and biological medicines were reviewed briefly. By a comprehensive introduction of our feasibility research on the monitoring of traditional Chinese medicine technical process using NIRS-based multivariate process trajectories, several important problems of the practical applications which need urgent solutions are proposed, and also the application prospect of the NIRS-based process trajectory technology is fully discussed and put forward in the end. Copyright© by the Chinese Pharmaceutical Association.

  13. Mixed Pattern Matching-Based Traffic Abnormal Behavior Recognition

    PubMed Central

    Cui, Zhiming; Zhao, Pengpeng

    2014-01-01

    A motion trajectory is an intuitive representation form in time-space domain for a micromotion behavior of moving target. Trajectory analysis is an important approach to recognize abnormal behaviors of moving targets. Against the complexity of vehicle trajectories, this paper first proposed a trajectory pattern learning method based on dynamic time warping (DTW) and spectral clustering. It introduced the DTW distance to measure the distances between vehicle trajectories and determined the number of clusters automatically by a spectral clustering algorithm based on the distance matrix. Then, it clusters sample data points into different clusters. After the spatial patterns and direction patterns learned from the clusters, a recognition method for detecting vehicle abnormal behaviors based on mixed pattern matching was proposed. The experimental results show that the proposed technical scheme can recognize main types of traffic abnormal behaviors effectively and has good robustness. The real-world application verified its feasibility and the validity. PMID:24605045

  14. The Impact of Trajectory Prediction Uncertainty on Air Traffic Controller Performance and Acceptability

    NASA Technical Reports Server (NTRS)

    Mercer, Joey S.; Bienert, Nancy; Gomez, Ashley; Hunt, Sarah; Kraut, Joshua; Martin, Lynne; Morey, Susan; Green, Steven M.; Prevot, Thomas; Wu, Minghong G.

    2013-01-01

    A Human-In-The-Loop air traffic control simulation investigated the impact of uncertainties in trajectory predictions on NextGen Trajectory-Based Operations concepts, seeking to understand when the automation would become unacceptable to controllers or when performance targets could no longer be met. Retired air traffic controllers staffed two en route transition sectors, delivering arrival traffic to the northwest corner-post of Atlanta approach control under time-based metering operations. Using trajectory-based decision-support tools, the participants worked the traffic under varying levels of wind forecast error and aircraft performance model error, impacting the ground automations ability to make accurate predictions. Results suggest that the controllers were able to maintain high levels of performance, despite even the highest levels of trajectory prediction errors.

  15. Complexity Science Applications to Dynamic Trajectory Management: Research Strategies

    NASA Technical Reports Server (NTRS)

    Sawhill, Bruce; Herriot, James; Holmes, Bruce J.; Alexandrov, Natalia

    2009-01-01

    The promise of the Next Generation Air Transportation System (NextGen) is strongly tied to the concept of trajectory-based operations in the national airspace system. Existing efforts to develop trajectory management concepts are largely focused on individual trajectories, optimized independently, then de-conflicted among each other, and individually re-optimized, as possible. The benefits in capacity, fuel, and time are valuable, though perhaps could be greater through alternative strategies. The concept of agent-based trajectories offers a strategy for automation of simultaneous multiple trajectory management. The anticipated result of the strategy would be dynamic management of multiple trajectories with interacting and interdependent outcomes that satisfy multiple, conflicting constraints. These constraints would include the business case for operators, the capacity case for the Air Navigation Service Provider (ANSP), and the environmental case for noise and emissions. The benefits in capacity, fuel, and time might be improved over those possible under individual trajectory management approaches. The proposed approach relies on computational agent-based modeling (ABM), combinatorial mathematics, as well as application of "traffic physics" concepts to the challenge, and modeling and simulation capabilities. The proposed strategy could support transforming air traffic control from managing individual aircraft behaviors to managing systemic behavior of air traffic in the NAS. A system built on the approach could provide the ability to know when regions of airspace approach being "full," that is, having non-viable local solution space for optimizing trajectories in advance.

  16. FVID: Fishing Vessel Type Identification Based on VMS Trajectories

    NASA Astrophysics Data System (ADS)

    Huang, Haiguang; Hong, Feng; Liu, Jing; Liu, Chao; Feng, Yuan; Guo, Zhongwen

    2018-05-01

    Vessel Monitoring System (VMS) provides a new opportunity for quantified fishing research. Many approaches have been proposed to recognize fishing activities with VMS trajectories based on the types of fishing vessels. However, one research problem is still calling for solutions, how to identify the fishing vessel type based on only VMS trajectories. This problem is important because it requires the fishing vessel type as a preliminary to recognize fishing activities from VMS trajectories. This paper proposes fishing vessel type identification scheme (FVID) based only on VMS trajectories. FVID exploits feature engineering and machine learning schemes of XGBoost as its two key blocks and classifies fishing vessels into nine types. The dataset contains all the fishing vessel trajectories in the East China Sea in March 2017, including 10031 pre-registered fishing vessels and 1350 unregistered vessels of unknown types. In order to verify type identification accuracy, we first conduct a 4-fold cross-validation on the trajectories of registered fishing vessels. The classification accuracy is 95.42%. We then apply FVID to the unregistered fishing vessels to identify their types. After classifying the unregistered fishing vessel types, their fishing activities are further recognized based upon their types. At last, we calculate and compare the fishing density distribution in the East China Sea before and after applying the unregistered fishing vessels, confirming the importance of type identification of unregistered fishing vessels.

  17. Fast optimization of glide vehicle reentry trajectory based on genetic algorithm

    NASA Astrophysics Data System (ADS)

    Jia, Jun; Dong, Ruixing; Yuan, Xuejun; Wang, Chuangwei

    2018-02-01

    An optimization method of reentry trajectory based on genetic algorithm is presented to meet the need of reentry trajectory optimization for glide vehicle. The dynamic model for the glide vehicle during reentry period is established. Considering the constraints of heat flux, dynamic pressure, overload etc., the optimization of reentry trajectory is investigated by utilizing genetic algorithm. The simulation shows that the method presented by this paper is effective for the optimization of reentry trajectory of glide vehicle. The efficiency and speed of this method is comparative with the references. Optimization results meet all constraints, and the on-line fast optimization is potential by pre-processing the offline samples.

  18. Geometric Characteristics of Tropical Cyclone Eyes before Landfall in South China based on Ground-Based Radar Observations

    NASA Astrophysics Data System (ADS)

    Zhu, Xiaotong; Li, Qingqing; Yu, Jinhua; Wu, Dan; Yao, Kai

    2018-05-01

    The geometric characteristics of tropical cyclone (TC) eyes before landfall in South China are examined using ground-based radar reflectivity. It is found that the median and mean eye area decrease with TC intensity, except for the severe typhoon category, and the eye size increases with height. The increasing rate of eye size is relatively greater in upper layers. Moreover, the ratio of eye size change in the vertical direction does not correlate with TC intensity. No relationship is presented between the ratio of eye size change in the vertical direction and the vertical wind shear. No relationship between the vertical change in eye size and the eye size at a certain level is found, inconsistent with other studies. No relationship exists between the vertical change in eye size and the intensity tendency. The eye roundness values range mainly from 0.5 to 0.7, and more intense TCs generally have eyes that are more circular.

  19. Trajectory-Based Complexity (TBX): A Modified Aircraft Count to Predict Sector Complexity During Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Prevot, Thomas; Lee, Paul U.

    2011-01-01

    In this paper we introduce a new complexity metric to predict -in real-time- sector complexity for trajectory-based operations (TBO). TBO will be implemented in the Next Generation Air Transportation System (NextGen). Trajectory-Based Complexity (TBX) is a modified aircraft count that can easily be computed and communicated in a TBO environment based upon predictions of aircraft and weather trajectories. TBX is scaled to aircraft count and represents an alternate and additional means to manage air traffic demand and capacity with more consideration of dynamic factors such as weather, aircraft equipage or predicted separation violations, as well as static factors such as sector size. We have developed and evaluated TBX in the Airspace Operations Laboratory (AOL) at the NASA Ames Research Center during human-in-the-loop studies of trajectory-based concepts since 2009. In this paper we will describe the TBX computation in detail and present the underlying algorithm. Next, we will describe the specific TBX used in an experiment at NASA's AOL. We will evaluate the performance of this metric using data collected during a controller-inthe- loop study on trajectory-based operations at different equipage levels. In this study controllers were prompted at regular intervals to rate their current workload on a numeric scale. When comparing this real-time workload rating to the TBX values predicted for these time periods we demonstrate that TBX is a better predictor of workload than aircraft count. Furthermore we demonstrate that TBX is well suited to be used for complexity management in TBO and can easily be adjusted to future operational concepts.

  20. Developmental Trajectories of Childhood Obesity and Risk Behaviors in Adolescence

    ERIC Educational Resources Information Center

    Huang, David Y. C.; Lanza, H. Isabella; Wright-Volel, Kynna; Anglin, M. Douglas

    2013-01-01

    Using group-based trajectory modeling, this study examined 5156 adolescents from the child sample of the 1979 National Longitudinal Survey of Youth to identify developmental trajectories of obesity from ages 6-18 and evaluate associations of such trajectories with risk behaviors and psychosocial health in adolescence. Four distinctive obesity…

  1. The impact of covariance misspecification in group-based trajectory models for longitudinal data with non-stationary covariance structure.

    PubMed

    Davies, Christopher E; Glonek, Gary Fv; Giles, Lynne C

    2017-08-01

    One purpose of a longitudinal study is to gain a better understanding of how an outcome of interest changes among a given population over time. In what follows, a trajectory will be taken to mean the series of measurements of the outcome variable for an individual. Group-based trajectory modelling methods seek to identify subgroups of trajectories within a population, such that trajectories that are grouped together are more similar to each other than to trajectories in distinct groups. Group-based trajectory models generally assume a certain structure in the covariances between measurements, for example conditional independence, homogeneous variance between groups or stationary variance over time. Violations of these assumptions could be expected to result in poor model performance. We used simulation to investigate the effect of covariance misspecification on misclassification of trajectories in commonly used models under a range of scenarios. To do this we defined a measure of performance relative to the ideal Bayesian correct classification rate. We found that the more complex models generally performed better over a range of scenarios. In particular, incorrectly specified covariance matrices could significantly bias the results but using models with a correct but more complicated than necessary covariance matrix incurred little cost.

  2. SELENE Translunar Trajectory Reconfiguration Plan Provided for the Case of Main Engine Anomaly

    NASA Technical Reports Server (NTRS)

    Kawakatsu, Yasuhiro

    2007-01-01

    In this paper, the reconfiguration of translunar trajectory in case of main engine anomaly is investigated. The objectives of the trajectory design are to reduce the excessive velocity at the Lunar encounter as well as to reduce the total required Delta-v to complete the sequence. 3-impulse Hohmann transfer based trajectory is adopted and possible trajectories are categorized under 2-body approximation. The solutions obtained are applied to more sophisticated models (3-body approximation and 4-body) and yields feasible trajectory.

  3. An Efficient Universal Trajectory Language

    NASA Technical Reports Server (NTRS)

    Hagen, George E.; Guerreiro, Nelson M.; Maddalon, Jeffrey M.; Butler, Ricky W.

    2017-01-01

    The Efficient Universal Trajectory Language (EUTL) is a language for specifying and representing trajectories for Air Traffic Management (ATM) concepts such as Trajectory-Based Operations (TBO). In these concepts, the communication of a trajectory between an aircraft and ground automation is fundamental. Historically, this trajectory exchange has not been done, leading to trajectory definitions that have been centered around particular application domains and, therefore, are not well suited for TBO applications. The EUTL trajectory language has been defined in the Prototype Verification System (PVS) formal specification language, which provides an operational semantics for the EUTL language. The hope is that EUTL will provide a foundation for mathematically verified algorithms that manipulate trajectories. Additionally, the EUTL language provides well-defined methods to unambiguously determine position and velocity information between the reported trajectory points. In this paper, we present the EUTL trajectory language in mathematical detail.

  4. Face and Construct Validation of a Virtual Peg Transfer Simulator

    PubMed Central

    Arikatla, Venkata S; Sankaranarayanan, Ganesh; Ahn, Woojin; Chellali, Amine; De, Suvranu; Caroline, GL; Hwabejire, John; DeMoya, Marc; Schwaitzberg, Steven; Jones, Daniel B.

    2013-01-01

    Background The Fundamentals of Laparascopic Surgery (FLS) trainer box is now established as a standard for evaluating minimally invasive surgical skills. A particularly simple task in this trainer box is the peg transfer task which is aimed at testing the surgeon’s bimanual dexterity, hand-eye coordination, speed and precision. The Virtual Basic Laparoscopic Skill Trainer (VBLaST©) is a virtual version of the FLS tasks which allows automatic scoring and real time, subjective quantification of performance without the need of a human proctor. In this paper we report validation studies of the VBLaST© peg transfer (VBLaST-PT©) simulator. Methods Thirty-five subjects with medical background were divided into two groups: experts (PGY 4-5, fellows and practicing surgeons) and novices (PGY 1-3). The subjects were asked to perform the peg transfer task on both the FLS trainer box and the VBLaST-PT© simulator and their performance was evaluated based on established metrics of error and time. A new length of trajectory (LOT) metric has also been introduced for offline analysis. A questionnaire was used to rate the realism of the virtual system on a 5-point Likert scale. Results Preliminary face validation of the VBLaST-PT© with 34 subjects rated on a 5-point Likert scale questionnaire revealed high scores for all aspects of simulation, with 3.53 being the lowest mean score across all questions. A two-tailed Mann-Whitney performed on the total scores showed significant (p=0.001) difference between the groups. A similar test performed on the task time (p=0.002) and the length of trajectory (p=0.004) separately showed statistically significant differences between the experts and novice groups (p<0.05). The experts appear to be traversing shorter overall trajectories in less time than the novices. Conclusion VBLaST-PT© showed both face and construct validity and has promise as a substitute for the FLS to training peg transfer skills. PMID:23263645

  5. Effects of strabismic amblyopia and strabismus without amblyopia on visuomotor behavior: III. Temporal eye-hand coordination during reaching.

    PubMed

    Niechwiej-Szwedo, Ewa; Goltz, Herbert C; Chandrakumar, Manokaraananthan; Wong, Agnes M F

    2014-11-11

    To examine the effects of strabismic amblyopia and strabismus only, without amblyopia, on the temporal patterns of eye-hand coordination during both the planning and execution stages of visually-guided reaching. Forty-six adults (16 with strabismic amblyopia, 14 with strabismus only, and 16 visually normal) executed reach-to-touch movements toward targets presented randomly 5° or 10° to the left or right of central fixation. Viewing conditions were binocular, monocular viewing with the amblyopic eye, and monocular viewing with the fellow eye (dominant and nondominant viewing for participants without amblyopia). Temporal coordination between eye and hand movements was examined during reach planning (interval between the initiation of saccade and reaching, i.e., saccade-to-reach planning interval) and reach execution (interval between the initiation of saccade and reach peak velocity [PV], i.e., saccade-to-reach PV interval). The frequency and dynamics of secondary reach-related saccades were also examined. The temporal patterns of eye-hand coordination prior to reach initiation were comparable among participants with strabismic amblyopia, strabismus only, and visually normal adults. However, the reach acceleration phase of participants with strabismic amblyopia and those with strabismus only were longer following target fixation (saccade-to-reach PV interval) than that of visually normal participants (P < 0.05). This effect was evident under all viewing conditions. The saccade-to-reach planning interval and the saccade-to-reach PV interval were not significantly different among participants with amblyopia with different levels of acuity and stereo acuity loss. Participants with strabismic amblyopia and strabismus only initiated secondary reach-related saccades significantly more frequently than visually normal participants. The amplitude and peak velocity of these saccades were significantly greater during amblyopic eye viewing in participants with amblyopia who also had negative stereopsis. Adults with strabismic amblyopia and strabismus only showed an altered pattern of temporal eye-hand coordination during the reach acceleration phase, which might affect their ability to modify reach trajectory using early online control. Secondary reach-related saccades may provide a compensatory mechanism with which to facilitate the late online control process in order to ensure relatively good reaching performance during binocular and fellow eye viewing. Copyright 2014 The Association for Research in Vision and Ophthalmology, Inc.

  6. Key frame extraction based on spatiotemporal motion trajectory

    NASA Astrophysics Data System (ADS)

    Zhang, Yunzuo; Tao, Ran; Zhang, Feng

    2015-05-01

    Spatiotemporal motion trajectory can accurately reflect the changes of motion state. Motivated by this observation, this letter proposes a method for key frame extraction based on motion trajectory on the spatiotemporal slice. Different from the well-known motion related methods, the proposed method utilizes the inflexions of the motion trajectory on the spatiotemporal slice of all the moving objects. Experimental results show that although a similar performance is achieved in the single-objective screen, by comparing the proposed method to that achieved with the state-of-the-art methods based on motion energy or acceleration, the proposed method shows a better performance in a multiobjective video.

  7. WE-EF-207-05: Monte Carlo Dosimetry for a Dedicated Cone-Beam CT Head Scanner

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sisniega, A; Zbijewski, W; Xu, J

    Purpose: Cone-Beam CT (CBCT) is an attractive platform for point-of-care imaging of traumatic brain injury and intracranial hemorrhage. This work implements and evaluates a fast Monte-Carlo (MC) dose estimation engine for development of a dedicated head CBCT scanner, optimization of acquisition protocols, geometry, bowtie filter designs, and patient-specific dosimetry. Methods: Dose scoring with a GPU-based MC CBCT simulator was validated on an imaging bench using a modified 16 cm CTDI phantom with 7 ion chamber shafts along the central ray for 80–100 kVp (+2 mm Al, +0.2 mm Cu). Dose distributions were computed in a segmented CBCT reconstruction of anmore » anthropomorphic head phantom with 4×10{sup 5} tracked photons per scan (5 min runtime). Circular orbits with angular span ranging from short scan (180° + fan angle) to full rotation (360°) were considered for fixed total mAs per scan. Two aluminum filters were investigated: aggressive bowtie, and moderate bowtie (matched to 16 cm and 32 cm water cylinder, respectively). Results: MC dose estimates showed strong agreement with measurements (RMSE<0.001 mGy/mAs). A moderate (aggressive) bowtie reduced the dose, per total mAs, by 20% (30%) at the center of the head, by 40% (50%) at the eye lens, and by 70% (80%) at the posterior skin entrance. For the no bowtie configuration, a short scan reduced the eye lens dose by 62% (from 0.08 mGy/mAs to 0.03 mGy/mAs) compared to full scan, although the dose to spinal bone marrow increased by 40%. For both bowties, the short scan resulted in a similar 40% increase in bone marrow dose, but the reduction in the eye lens was more pronounced: 70% (90%) for the moderate (aggressive) bowtie. Conclusions: Dose maps obtained with validated MC simulation demonstrated dose reduction in sensitive structures (eye lens and bone marrow) through combination of short-scan trajectories and bowtie filters. Xiaohui Wang and David Foos are employees of Carestream Health.« less

  8. Observations of Leonids 2009 by the Tajikistan Fireball Network

    NASA Technical Reports Server (NTRS)

    Borovicka, J.; Borovicka, J.

    2011-01-01

    The fireball network in Tajikistan has operated since 2009. Five stations of the network covering the territory of near eleven thousands square kilometers are equipped with all-sky cameras with the Zeiss Distagon "fish-eye" objectives and by digital SLR cameras Nikon with the Nikkor "fish-eye" objectives. Observations of the Leonid activity in 2009 were carried out during November 13-21. In this period, 16 Leonid fireballs have been photographed. As a result of astrometric and photometric reductions, the precise data including atmospheric trajectories, velocities, orbits, light curves, photometric masses and densities were determined for 10 fireballs. The radiant positions during the maximum night suggest that the majority of the fireball activity was caused by the annual stream component with only minor contribution from the 1466 trail. According to the PE criterion, the majority of Leonid fireballs belonged to the most fragile and weak fireball group IIIB. However, one detected Leonid belonged to the fireball group I. This is the first detection of an anomalously strong Leonid individual.

  9. Advanced Techniques for Assessment of Postural and Locomotor Ataxia, Spatial Orientation, and Gaze Stability

    NASA Technical Reports Server (NTRS)

    Wall, Conrad., III

    1999-01-01

    In addition to adapting to microgravity, major neurovestibular problems of space flight include postflight difficulties with standing, walking, turning corners, and other activities that require stable upright posture and gaze stability. These difficulties inhibit astronauts' ability to stand or escape from their vehicle during emergencies. The long-ter7n goal of the NSBRI is the development of countermeasures to ameliorate the effects of long duration space flight. These countermeasures must be tested with valid and reliable tools. This project aims to develop quantitative, parametric approaches for assessing gaze stability and spatial orientation during normal gait and when gait is perturbed. Two of this year's most important findings concern head fixation distance and ideal trajectory analysis. During a normal cycle of walking the head moves up and down linearly. A simultaneous angular pitching motion of the head keeps it aligned toward an imaginary point in space at a distance of about one meter in front of a subject and along the line of march. This distance is called the head fixation distance. Head fixation distance provides the fundamental framework necessary for understanding the functional significance of the vestibular reflexes that couple head motion to eye motion. This framework facilitates the intelligent design of counter-measures for the effects of exposure to microgravity upon the vestibular ocular reflexes. Ideal trajectory analysis is a simple candidate countermeasure based upon quantifying body sway during repeated up and down stair stepping. It provides one number that estimates the body sway deviation from an ideal sinusoidal body sway trajectory normalized on the subject's height. This concept has been developed with NSBRI funding in less than one year. These findings are explained in more detail below. Compared to assessments of the vestibuo-ocular reflex, analysis of vestibular effects on locomotor function is relatively less well developed and quantified. We are improving this situation by applying methodologies such as nonlinear orbital stability to quantify responses and by using multivariate statistical approaches to link together the responses across separate tests. In this way we can exploit the information available and increase the ability to discriminate between normal and pathological responses. Measures of stability and orientation are compared to measures such as dynamic visual acuity and with balance function tests. The responses of normal human subjects and of patients having well documented pathophysiologies are being characterized. When these studies are completed, we should have a clearer idea about normal and abnormal patterns of eye, head, and body movements during locomotion and their stability in a wide range of environments. We plan eventually to use this information to validate the efficacy of candidate neurovestibular and neuromuscular rehabilitative techniques. Some representative studies made during this year are summarized.

  10. Influence of the extraocular muscle proprioceptors on the orientation of the vestibulo-ocular reflex.

    PubMed

    Pettorossi, V E; Errico, P; Ferraresi, A; Manni, E

    1996-03-01

    In the intact brain lamb, unilateral electrolytic lesion of the medial dorso-lateral portion of the semilunar ganglion containing the first order neurons of the eye muscle proprioception induced modifications of the horizontal and vertical vestibulo-ocular reflex (HVOR and VVOR) which consisted in marked alterations of the trajectories of the quick phases, while the slow phases were scarcely affected. Similar results were observed after section of the branches described by Winckler in the retrobulbar region along the extraocular muscle proprioceptive information travels. These findings extend those of previous investigations carried out in decorticate animals.

  11. Windfield and trajectory models for tornado-propelled objects. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Redmann, G.H.; Radbill, J.R.; Marte, J.E.

    1983-03-01

    This is the final report of a three-phased research project to develop a six-degree-of-freedom mathematical model to predict the trajectories of tornado-propelled objects. The model is based on the meteorological, aerodynamic, and dynamic processes that govern the trajectories of missiles in a tornadic windfield. The aerodynamic coefficients for the postulated missiles were obtained from full-scale wind tunnel tests on a 12-inch pipe and car and from drop tests. Rocket sled tests were run whereby the 12-inch pipe and car were injected into a worst-case tornado windfield in order to verify the trajectory model. To simplify and facilitate the use ofmore » the trajectory model for design applications without having to run the computer program, this report gives the trajectory data for NRC-postulated missiles in tables based on given variables of initial conditions of injection and tornado windfield. Complete descriptions of the tornado windfield and trajectory models are presented. The trajectory model computer program is also included for those desiring to perform trajectory or sensitivity analyses beyond those included in the report or for those wishing to examine other missiles and use other variables.« less

  12. Quantum dynamics modeled by interacting trajectories

    NASA Astrophysics Data System (ADS)

    Cruz-Rodríguez, L.; Uranga-Piña, L.; Martínez-Mesa, A.; Meier, C.

    2018-03-01

    We present quantum dynamical simulations based on the propagation of interacting trajectories where the effect of the quantum potential is mimicked by effective pseudo-particle interactions. The method is applied to several quantum systems, both for bound and scattering problems. For the bound systems, the quantum ground state density and zero point energy are shown to be perfectly obtained by the interacting trajectories. In the case of time-dependent quantum scattering, the Eckart barrier and uphill ramp are considered, with transmission coefficients in very good agreement with standard quantum calculations. Finally, we show that via wave function synthesis along the trajectories, correlation functions and energy spectra can be obtained based on the dynamics of interacting trajectories.

  13. Adaptive density trajectory cluster based on time and space distance

    NASA Astrophysics Data System (ADS)

    Liu, Fagui; Zhang, Zhijie

    2017-10-01

    There are some hotspot problems remaining in trajectory cluster for discovering mobile behavior regularity, such as the computation of distance between sub trajectories, the setting of parameter values in cluster algorithm and the uncertainty/boundary problem of data set. As a result, based on the time and space, this paper tries to define the calculation method of distance between sub trajectories. The significance of distance calculation for sub trajectories is to clearly reveal the differences in moving trajectories and to promote the accuracy of cluster algorithm. Besides, a novel adaptive density trajectory cluster algorithm is proposed, in which cluster radius is computed through using the density of data distribution. In addition, cluster centers and number are selected by a certain strategy automatically, and uncertainty/boundary problem of data set is solved by designed weighted rough c-means. Experimental results demonstrate that the proposed algorithm can perform the fuzzy trajectory cluster effectively on the basis of the time and space distance, and obtain the optimal cluster centers and rich cluster results information adaptably for excavating the features of mobile behavior in mobile and sociology network.

  14. Developmental trajectories of marital happiness in continuously married individuals: a group-based modeling approach.

    PubMed

    Anderson, Jared R; Van Ryzin, Mark J; Doherty, William J

    2010-10-01

    Most contemporary studies of change in marital quality over time have used growth curve modeling to describe continuously declining mean curves. However, there is some evidence that different trajectories of marital quality exist for different subpopulations. Group-based trajectory modeling provides the opportunity to conduct an empirical investigation of the variance in marital quality trajectories. We applied this method to analyze data from continuously married individuals from the Marital Instability over the Life Course Study (N = 706). Instead of a single continuously declining trajectory of marital happiness, we found 5 distinct trajectories. Nearly two thirds of participants reported high and stable levels of happiness over time, and the other one third showed either a pattern of continuous low happiness, low happiness that subsequently declined, or a curvilinear pattern of high happiness, decline, and recovery. Marital problems, time spent in shared activities, and (to a lesser degree) economic hardship were able to distinguish trajectory group membership. Our results suggest that marital happiness may have multiple distinct trajectories across reasonably diverse populations. Implications for theory, research, and practice are discussed.

  15. NASA Tech Briefs, November 2013

    NASA Technical Reports Server (NTRS)

    2013-01-01

    Topics include: Cryogenic Liquid Sample Acquisition System for Remote Space Applications; 5 Spatial Statistical Data Fusion (SSDF); GPS Estimates of Integrated Precipitable Water Aid Weather Forecasters; Integrating a Microwave Radiometer into Radar Hardware for Simultaneous Data Collection Between the Instruments; Rapid Detection of Herpes Viruses for Clinical Applications; High-Speed Data Recorder for Space, Geodesy, and Other High-Speed Recording Applications; Datacasting V3.0; An All-Solid-State, Room-Temperature, Heterodyne Receiver for Atmospheric Spectroscopy at 1.2 THz; Stacked Transformer for Driver Gain and Receive Signal Splitting; Wireless Integrated Microelectronic Vacuum Sensor System; Fabrication Method for LOBSTER-Eye Optics in <110> Silicon; Compact Focal Plane Assembly for Planetary Science; Fabrication Methods for Adaptive Deformable Mirrors; Visiting Vehicle Ground Trajectory Tool; Workflow-Based Software Development Environment; Mobile Thread Task Manager; A Kinematic Calibration Process for Flight Robotic Arms; Magnetostrictive Alternator; Bulk Metallic Glasses and Composites for Optical and Compliant Mechanisms; Detection of Only Viable Bacterial Spores Using a Live/Dead Indicator in Mixed Populations; and Intravenous Fluid Generation System.

  16. Trajectory control of an articulated robot with a parallel drive arm based on splines under tension

    NASA Astrophysics Data System (ADS)

    Yi, Seung-Jong

    Today's industrial robots controlled by mini/micro computers are basically simple positioning devices. The positioning accuracy depends on the mathematical description of the robot configuration to place the end-effector at the desired position and orientation within the workspace and on following the specified path which requires the trajectory planner. In addition, the consideration of joint velocity, acceleration, and jerk trajectories are essential for trajectory planning of industrial robots to obtain smooth operation. The newly designed 6 DOF articulated robot with a parallel drive arm mechanism which permits the joint actuators to be placed in the same horizontal line to reduce the arm inertia and to increase load capacity and stiffness is selected. First, the forward kinematic and inverse kinematic problems are examined. The forward kinematic equations are successfully derived based on Denavit-Hartenberg notation with independent joint angle constraints. The inverse kinematic problems are solved using the arm-wrist partitioned approach with independent joint angle constraints. Three types of curve fitting methods used in trajectory planning, i.e., certain degree polynomial functions, cubic spline functions, and cubic spline functions under tension, are compared to select the best possible method to satisfy both smooth joint trajectories and positioning accuracy for a robot trajectory planner. Cubic spline functions under tension is the method selected for the new trajectory planner. This method is implemented for a 6 DOF articulated robot with a parallel drive arm mechanism to improve the smoothness of the joint trajectories and the positioning accuracy of the manipulator. Also, this approach is compared with existing trajectory planners, 4-3-4 polynomials and cubic spline functions, via circular arc motion simulations. The new trajectory planner using cubic spline functions under tension is implemented into the microprocessor based robot controller and motors to produce combined arc and straight-line motion. The simulation and experiment show interesting results by demonstrating smooth motion in both acceleration and jerk and significant improvements of positioning accuracy in trajectory planning.

  17. Trajectories of Marijuana Use During the Transition to Adulthood: The Big Picture Based on National Panel Data

    PubMed Central

    Schulenberg, John E.; Merline, Alicia C.; Johnston, Lloyd D.; O'Malley, Patrick M.; Bachman, Jerald G.; Laetz, Virginia B.

    2005-01-01

    The purposes of this study were to: a) identify trajectory groups of frequent marijuana use during emerging adulthood, b) distinguish among trajectory groups according to demographic and lifestyle characteristics, and c) examine how the trajectory groups relate to behavioral, attitudinal, and social-emotional correlates over time. National panel data from the Monitoring the Future study were used: 18 cohorts of high school seniors (classes of 1977-94) were followed biennially through age 24. Frequent marijuana use was defined as 3+ occasions of use in past month and/or 20 to 40+ occasions in past year. Based on four waves of complete longitudinal data (N=19,952), six frequent marijuana use trajectory groups were identified: chronic, decreased, increased, fling, rare, and abstain. Categorical analyses revealed trajectory group differences in demographic and lifestyle characteristics at senior year and age 24. The trajectory groups varied significantly in longitudinal patterns of other substance use, problem behaviors, and well-being. PMID:16534532

  18. Trajectory-Oriented Approach to Managing Traffic Complexity: Operational Concept and Preliminary Metrics Definition

    NASA Technical Reports Server (NTRS)

    Idris, Husni; Vivona, Robert; Garcia-Chico, Jose L.

    2008-01-01

    This document describes preliminary research on a distributed, trajectory-oriented approach for traffic complexity management. The approach is to manage traffic complexity in a distributed control environment, based on preserving trajectory flexibility and minimizing constraints. In particular, the document presents an analytical framework to study trajectory flexibility and the impact of trajectory constraints on it. The document proposes preliminary flexibility metrics that can be interpreted and measured within the framework.

  19. Violating instructed human agency: An fMRI study on ocular tracking of biological and nonbiological motion stimuli.

    PubMed

    Gertz, Hanna; Hilger, Maximilian; Hegele, Mathias; Fiehler, Katja

    2016-09-01

    Previous studies have shown that beliefs about the human origin of a stimulus are capable of modulating the coupling of perception and action. Such beliefs can be based on top-down recognition of the identity of an actor or bottom-up observation of the behavior of the stimulus. Instructed human agency has been shown to lead to superior tracking performance of a moving dot as compared to instructed computer agency, especially when the dot followed a biological velocity profile and thus matched the predicted movement, whereas a violation of instructed human agency by a nonbiological dot motion impaired oculomotor tracking (Zwickel et al., 2012). This suggests that the instructed agency biases the selection of predictive models on the movement trajectory of the dot motion. The aim of the present fMRI study was to examine the neural correlates of top-down and bottom-up modulations of perception-action couplings by manipulating the instructed agency (human action vs. computer-generated action) and the observable behavior of the stimulus (biological vs. nonbiological velocity profile). To this end, participants performed an oculomotor tracking task in an MRI environment. Oculomotor tracking activated areas of the eye movement network. A right-hemisphere occipito-temporal cluster comprising the motion-sensitive area V5 showed a preference for the biological as compared to the nonbiological velocity profile. Importantly, a mismatch between instructed human agency and a nonbiological velocity profile primarily activated medial-frontal areas comprising the frontal pole, the paracingulate gyrus, and the anterior cingulate gyrus, as well as the cerebellum and the supplementary eye field as part of the eye movement network. This mismatch effect was specific to the instructed human agency and did not occur in conditions with a mismatch between instructed computer agency and a biological velocity profile. Our results support the hypothesis that humans activate a specific predictive model for biological movements based on their own motor expertise. A violation of this predictive model causes costs as the movement needs to be corrected in accordance with incoming (nonbiological) sensory information. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. The course of the working alliance during virtual reality and exposure group therapy for social anxiety disorder.

    PubMed

    Ngai, Irene; Tully, Erin C; Anderson, Page L

    2015-03-01

    Psychoanalytic theory and some empirical research suggest the working alliance follows a "rupture and repair" pattern over the course of therapy, but given its emphasis on collaboration, cognitive behavioral therapy may yield a different trajectory. The current study compares the trajectory of the working alliance during two types of cognitive behavioral therapy for social anxiety disorder - virtual reality exposure therapy (VRE) and exposure group therapy (EGT), one of which (VRE) has been proposed to show lower levels of working alliance due to the physical barriers posed by the technology (e.g. no eye contact with therapist during exposure). Following randomization, participants (N = 63) diagnosed with social anxiety disorder received eight sessions of manualized EGT or individual VRE and completed a standardized self-report measure of working alliance after each session. Hierarchical linear modeling showed overall high levels of working alliance that changed in rates of growth over time; that is, increases in working alliance scores were steeper at the beginning of therapy and slowed towards the end of therapy. There were no differences in working alliance between the two treatment groups. Results neither support a rupture/repair pattern nor the idea that the working alliance is lower for VRE participants. Findings are consistent with the idea that different therapeutic approaches may yield different working alliance trajectories.

  1. NextGen Far-Term Concept Exploration for Integrated Gate-to-Gate Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Sally C.; Barmore, Bryan E.

    2016-01-01

    NASA is currently conducting concept exploration studies toward the definition of a far-term, gate-to-gate concept for Trajectory-Based Operations. This paper presents a basic architectural framework for the far-term concept and discusses some observations about implementation of trajectory-based operations in the National Airspace System. Within the concept, operators and service providers collaboratively negotiate aircraft trajectories, providing agile, optimized, aircraft-specific routing to meet service provider gate-to-gate flow-management constraints and increasing capacity by smoothly and effectively combining flight-deck-based and ground-based metering, merging, and spacing in a mixed-equipage environment. The far-term TBO concept is intended to influence the direction of mid-term TBO research and to inform the definition of stable requirements and standards for TBO communications infrastructure and user equipage.

  2. Inferring diagnosis and trajectory of wet age-related macular degeneration from OCT imagery of retina

    NASA Astrophysics Data System (ADS)

    Irvine, John M.; Ghadar, Nastaran; Duncan, Steve; Floyd, David; O'Dowd, David; Lin, Kristie; Chang, Tom

    2017-03-01

    Quantitative biomarkers for assessing the presence, severity, and progression of age-related macular degeneration (AMD) would benefit research, diagnosis, and treatment. This paper explores development of quantitative biomarkers derived from OCT imagery of the retina. OCT images for approximately 75 patients with Wet AMD, Dry AMD, and no AMD (healthy eyes) were analyzed to identify image features indicative of the patients' conditions. OCT image features provide a statistical characterization of the retina. Healthy eyes exhibit a layered structure, whereas chaotic patterns indicate the deterioration associated with AMD. Our approach uses wavelet and Frangi filtering, combined with statistical features that do not rely on image segmentation, to assess patient conditions. Classification analysis indicates clear separability of Wet AMD from other conditions, including Dry AMD and healthy retinas. The probability of correct classification of was 95.7%, as determined from cross validation. Similar classification analysis predicts the response of Wet AMD patients to treatment, as measured by the Best Corrected Visual Acuity (BCVA). A statistical model predicts BCVA from the imagery features with R2 = 0.846. Initial analysis of OCT imagery indicates that imagery-derived features can provide useful biomarkers for characterization and quantification of AMD: Accurate assessment of Wet AMD compared to other conditions; image-based prediction of outcome for Wet AMD treatment; and features derived from the OCT imagery accurately predict BCVA; unlike many methods in the literature, our techniques do not rely on segmentation of the OCT image. Next steps include larger scale testing and validation.

  3. Trajectories of Delinquency among Puerto Rican Children and Adolescents at Two Sites

    ERIC Educational Resources Information Center

    Maldonado-Molina, Mildred M.; Piquero, Alex R.; Jennings, Wesley G.; Bird, Hector; Canino, Glorisa

    2009-01-01

    This study examined the trajectories of delinquency among Puerto Rican children and adolescents in two cultural contexts. Relying on data from the Boricua Youth Study, a longitudinal study of children and youth from Bronx, New York, and San Juan, Puerto Rico, a group-based trajectory procedure estimated the number of delinquency trajectories,…

  4. Point-Mass Aircraft Trajectory Prediction Using a Hierarchical, Highly-Adaptable Software Design

    NASA Technical Reports Server (NTRS)

    Karr, David A.; Vivona, Robert A.; Woods, Sharon E.; Wing, David J.

    2017-01-01

    A highly adaptable and extensible method for predicting four-dimensional trajectories of civil aircraft has been developed. This method, Behavior-Based Trajectory Prediction, is based on taxonomic concepts developed for the description and comparison of trajectory prediction software. A hierarchical approach to the "behavioral" layer of a point-mass model of aircraft flight, a clear separation between the "behavioral" and "mathematical" layers of the model, and an abstraction of the methods of integrating differential equations in the "mathematical" layer have been demonstrated to support aircraft models of different types (in particular, turbojet vs. turboprop aircraft) using performance models at different levels of detail and in different formats, and promise to be easily extensible to other aircraft types and sources of data. The resulting trajectories predict location, altitude, lateral and vertical speeds, and fuel consumption along the flight path of the subject aircraft accurately and quickly, accounting for local conditions of wind and outside air temperature. The Behavior-Based Trajectory Prediction concept was implemented in NASA's Traffic Aware Planner (TAP) flight-optimizing cockpit software application.

  5. Trajectories of Diurnal Cortisol in Mothers of Children with Autism and Other Developmental Disabilities: Relations to Health and Mental Health

    ERIC Educational Resources Information Center

    Dykens, Elisabeth M.; Lambert, Warren

    2013-01-01

    This study used a stress biomarker, diurnal cortisol, to identify how elevated stress in mothers of children and adults with autism and other disabilities relates to their health and mental health. Based on semi-parametric, group-based trajectory analysis of 91 mothers, two distinctive cortisol trajectories emerged: blunted (63%) or steep (37%).…

  6. Part-Task Simulation of Synthetic and Enhanced Vision Concepts for Lunar Landing

    NASA Technical Reports Server (NTRS)

    Arthur, Jarvis J., III; Bailey, Randall E.; Jackson, E. Bruce; Williams, Steven P.; Kramer, Lynda J.; Barnes, James R.

    2010-01-01

    During Apollo, the constraints placed by the design of the Lunar Module (LM) window for crew visibility and landing trajectory were a major problem. Lunar landing trajectories were tailored to provide crew visibility using nearly 70 degrees look-down angle from the canted LM windows. Apollo landings were scheduled only at specific times and locations to provide optimal sunlight on the landing site. The complications of trajectory design and crew visibility are still a problem today. Practical vehicle designs for lunar lander missions using optimal or near-optimal fuel trajectories render the natural vision of the crew from windows inadequate for the approach and landing task. Further, the sun angles for the desirable landing areas in the lunar polar regions create visually powerful, season-long shadow effects. Fortunately, Synthetic and Enhanced Vision (S/EV) technologies, conceived and developed in the aviation domain, may provide solutions to this visibility problem and enable additional benefits for safer, more efficient lunar operations. Piloted simulation evaluations have been conducted to assess the handling qualities of the various lunar landing concepts, including the influence of cockpit displays and the informational data and formats. Evaluation pilots flew various landing scenarios with S/EV displays. For some of the evaluation trials, an eye glasses-mounted, monochrome monocular display, coupled with head tracking, was worn. The head-worn display scene consisted of S/EV fusion concepts. The results of this experiment showed that a head-worn system did not increase the pilot s workload when compared to using just the head-down displays. As expected, the head-worn system did not provide an increase in performance measures. Some pilots commented that the head-worn system provided greater situational awareness compared to just head-down displays.

  7. Part-task simulation of synthetic and enhanced vision concepts for lunar landing

    NASA Astrophysics Data System (ADS)

    Arthur, Jarvis J., III; Bailey, Randall E.; Jackson, E. Bruce; Barnes, James R.; Williams, Steven P.; Kramer, Lynda J.

    2010-04-01

    During Apollo, the constraints placed by the design of the Lunar Module (LM) window for crew visibility and landing trajectory were "a major problem." Lunar landing trajectories were tailored to provide crew visibility using nearly 70 degrees look-down angle from the canted LM windows. Apollo landings were scheduled only at specific times and locations to provide optimal sunlight on the landing site. The complications of trajectory design and crew visibility are still a problem today. Practical vehicle designs for lunar lander missions using optimal or near-optimal fuel trajectories render the natural vision of the crew from windows inadequate for the approach and landing task. Further, the sun angles for the desirable landing areas in the lunar polar regions create visually powerful, season-long shadow effects. Fortunately, Synthetic and Enhanced Vision (S/EV) technologies, conceived and developed in the aviation domain, may provide solutions to this visibility problem and enable additional benefits for safer, more efficient lunar operations. Piloted simulation evaluations have been conducted to assess the handling qualities of the various lunar landing concepts, including the influence of cockpit displays and the informational data and formats. Evaluation pilots flew various landing scenarios with S/EV displays. For some of the evaluation trials, an eye glasses-mounted, monochrome monocular display, coupled with head tracking, was worn. The head-worn display scene consisted of S/EV fusion concepts. The results of this experiment showed that a head-worn system did not increase the pilot's workload when compared to using just the head-down displays. As expected, the head-worn system did not provide an increase in performance measures. Some pilots commented that the head-worn system provided greater situational awareness compared to just head-down displays.

  8. The possibility of evaluating turbo-set bearing misalignment defects on the basis of bearing trajectory features

    NASA Astrophysics Data System (ADS)

    Rybczyński, Józef

    2011-02-01

    This paper presents the results of computer simulation of bearing misalignment defects in a power turbogenerator. This malfunction is typical for great multi-rotor and multi-bearing rotating machines and very common in power turbo-sets. Necessary calculations were carried out by the computer code system MESWIR, developed and used at the IFFM in Gdansk for calculating dynamics of rotors supported on oil bearings. The results are presented in the form of a set of journal and bush trajectories of all turbo-set bearings. Our analysis focuses on the vibrational effects of displacing the two most vulnerable machine bearings in horizontal and vertical directions by the maximum acceptable range calculated with regard to bearing vibration criterion. This assumption required preliminary assessment of the maximum values for the permissible bearing dislocations. We show the relations between the attributes of the particular bearing trajectories and the bearing displacements in relation to their base design position. The shape and dimensions of bearing trajectories are interpreted based on the theory of hydrodynamic lubrication of oil bearings. It was shown that the relative journal trajectories and absolute bush trajectories carry much important information about the dynamic state of the machine, indicating also the way in which bearings are loaded. Therefore, trajectories can be a source of information about the position and direction of bearing misalignments. This article indicates the potential of using trajectory patterns for diagnosing misalignment defects in rotating machines and suggests including sets of trajectory patterns to the knowledge base of a machine diagnostic system.

  9. Optimization design and dynamic analysis on the drive mechanisms of flapping-wing air vehicles based on flapping trajectories

    NASA Astrophysics Data System (ADS)

    Xie, Lingwang; Zhang, Xingwei; Luo, Pan; Huang, Panpan

    2017-10-01

    The optimization designs and dynamic analysis on the driving mechanism of flapping-wing air vehicles on base of flapping trajectory patterns is carried out in this study. Three different driving mechanisms which are spatial double crank-rocker, plane five-bar and gear-double slider, are systematically optimized and analysed by using the Mat lab and Adams software. After a series debugging on the parameter, the comparatively ideal flapping trajectories are obtained by the simulation of Adams. Present results indicate that different drive mechanisms output different flapping trajectories and have their unique characteristic. The spatial double crank-rocker mechanism can only output the arc flapping trajectory and it has the advantages of small volume, high flexibility and efficient space utilization. Both planar five-bar mechanism and gear-double slider mechanism can output the oval, figure of eight and double eight flapping trajectories. Nevertheless, the gear-double slider mechanism has the advantage of convenient parameter setting and better performance in output double eight flapping trajectory. This study can provide theoretical basis and helpful reference for the design of the drive mechanisms of flapping-wing air vehicles with different output flapping trajectories.

  10. Trajectory Browser Website

    NASA Technical Reports Server (NTRS)

    Foster, Cyrus; Jaroux, Belgacem A.

    2012-01-01

    The Trajectory Browser is a web-based tool developed at the NASA Ames Research Center to be used for the preliminary assessment of trajectories to small-bodies and planets and for providing relevant launch date, time-of-flight and V requirements. The site hosts a database of transfer trajectories from Earth to asteroids and planets for various types of missions such as rendezvous, sample return or flybys. A search engine allows the user to find trajectories meeting desired constraints on the launch window, mission duration and delta V capability, while a trajectory viewer tool allows the visualization of the heliocentric trajectory and the detailed mission itinerary. The anticipated user base of this tool consists primarily of scientists and engineers designing interplanetary missions in the context of pre-phase A studies, particularly for performing accessibility surveys to large populations of small-bodies. The educational potential of the website is also recognized for academia and the public with regards to trajectory design, a field that has generally been poorly understood by the public. The website is currently hosted on NASA-internal URL http://trajbrowser.arc.nasa.gov/ with plans for a public release as soon as development is complete.

  11. Catching What We Can't See: Manual Interception of Occluded Fly-Ball Trajectories

    PubMed Central

    Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco

    2012-01-01

    Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories. PMID:23166653

  12. Catching what we can't see: manual interception of occluded fly-ball trajectories.

    PubMed

    Bosco, Gianfranco; Delle Monache, Sergio; Lacquaniti, Francesco

    2012-01-01

    Control of interceptive actions may involve fine interplay between feedback-based and predictive mechanisms. These processes rely heavily on target motion information available when the target is visible. However, short-term visual memory signals as well as implicit knowledge about the environment may also contribute to elaborate a predictive representation of the target trajectory, especially when visual feedback is partially unavailable because other objects occlude the visual target. To determine how different processes and information sources are integrated in the control of the interceptive action, we manipulated a computer-generated visual environment representing a baseball game. Twenty-four subjects intercepted fly-ball trajectories by moving a mouse cursor and by indicating the interception with a button press. In two separate sessions, fly-ball trajectories were either fully visible or occluded for 750, 1000 or 1250 ms before ball landing. Natural ball motion was perturbed during the descending trajectory with effects of either weightlessness (0 g) or increased gravity (2 g) at times such that, for occluded trajectories, 500 ms of perturbed motion were visible before ball disappearance. To examine the contribution of previous visual experience with the perturbed trajectories to the interception of invisible targets, the order of visible and occluded sessions was permuted among subjects. Under these experimental conditions, we showed that, with fully visible targets, subjects combined servo-control and predictive strategies. Instead, when intercepting occluded targets, subjects relied mostly on predictive mechanisms based, however, on different type of information depending on previous visual experience. In fact, subjects without prior experience of the perturbed trajectories showed interceptive errors consistent with predictive estimates of the ball trajectory based on a-priori knowledge of gravity. Conversely, the interceptive responses of subjects previously exposed to fully visible trajectories were compatible with the fact that implicit knowledge of the perturbed motion was also taken into account for the extrapolation of occluded trajectories.

  13. Huygens probe entry, descent, and landing trajectory reconstruction using the Program to Optimize Simulated Trajectories II

    NASA Astrophysics Data System (ADS)

    Striepe, Scott Allen

    The objectives of this research were to develop a reconstruction capability using the Program to Optimize Simulated Trajectories II (POST2), apply this capability to reconstruct the Huygens Titan probe entry, descent, and landing (EDL) trajectory, evaluate the newly developed POST2 reconstruction module, analyze the reconstructed trajectory, and assess the pre-flight simulation models used for Huygens EDL simulation. An extended Kalman filter (EKF) module was developed and integrated into POST2 to enable trajectory reconstruction (especially when using POST2-based mission specific simulations). Several validation cases, ranging from a single, constant parameter estimate to multivariable estimation cases similar to an actual mission flight, were executed to test the POST2 reconstruction module. Trajectory reconstruction of the Huygens entry probe at Titan was accomplished using accelerometer measurements taken during flight to adjust an estimated state (e.g., position, velocity, parachute drag, wind velocity, etc.) in a POST2-based simulation developed to support EDL analyses and design prior to entry. Although the main emphasis of the trajectory reconstruction was to evaluate models used in the NASA pre-entry trajectory simulation, the resulting reconstructed trajectory was also assessed to provide an independent evaluation of the ESA result. Major findings from this analysis include: Altitude profiles from this analysis agree well with other NASA and ESA results but not with Radar data, whereas a scale factor of about 0.93 would bring the radar measurements into compliance with these results; entry capsule aerodynamics predictions (axial component only) were well within 3-sigma bounds established pre-flight for most of the entry when compared to reconstructed values; Main parachute drag of 9% to 19% above ESA model was determined from the reconstructed trajectory; based on the tilt sensor and accelerometer data, the conclusion from this assessment was that the probe was tilted about 10 degrees during the Drogue parachute phase.

  14. Monte Carlo tree search -based non-coplanar trajectory design for station parameter optimized radiation therapy (SPORT).

    PubMed

    Dong, Peng; Liu, Hongcheng; Xing, Lei

    2018-06-04

    An important yet challenging problem in LINAC-based rotational arc radiation therapy is the design of beam trajectory, which requires simultaneous consideration of delivery efficiency and final dose distribution. In this work, we propose a novel trajectory selection strategy by developing a Monte Carlo tree search (MCTS) algorithm during the beam trajectory selection process. Methods: To search through the vast number of possible trajectories, MCTS algorithm was implemented. In this approach, a candidate trajectory is explored by starting from a leaf node and sequentially examining the next level of linked nodes with consideration of geometric and physical constraints. The maximum Upper Confidence Bounds for Trees, which is a function of average objective function value and the number of times the node under testing has been visited, was employed to intelligently select the trajectory. For each candidate trajectory, we run an inverse fluence map optimization with an infinity norm regularization. The ranking of the plan as measured by the corresponding objective function value was then fed back to update the statistics of the nodes on the trajectory. The method was evaluated with a chest wall and a brain case, and the results were compared with the coplanar and noncoplanar 4pi beam configurations. Results: For both clinical cases, the MCTS method found effective and easy-to-deliver trajectories within an hour. As compared with the coplanar plans, it offers much better sparing of the OARs while maintaining the PTV coverage. The quality of the MCTS-generated plan is found to be comparable to the 4pi plans. Conclusion: AI based on MCTS is valuable to facilitate the design of beam trajectory and paves the way for future clinical use of non-coplanar treatment delivery. . © 2018 Institute of Physics and Engineering in Medicine.

  15. Evidence for a retinal velocity memory underlying the direction of anticipatory smooth pursuit eye movements.

    PubMed

    Murdison, T Scott; Paré-Bingley, Chanel A; Blohm, Gunnar

    2013-08-01

    To compute spatially correct smooth pursuit eye movements, the brain uses both retinal motion and extraretinal signals about the eyes and head in space (Blohm and Lefèvre 2010). However, when smooth eye movements rely solely on memorized target velocity, such as during anticipatory pursuit, it is unknown if this velocity memory also accounts for extraretinal information, such as head roll and ocular torsion. To answer this question, we used a novel behavioral updating paradigm in which participants pursued a repetitive, spatially constant fixation-gap-ramp stimulus in series of five trials. During the first four trials, participants' heads were rolled toward one shoulder, inducing ocular counterroll (OCR). With each repetition, participants increased their anticipatory pursuit gain, indicating a robust encoding of velocity memory. On the fifth trial, they rolled their heads to the opposite shoulder before pursuit, also inducing changes in ocular torsion. Consequently, for spatially accurate anticipatory pursuit, the velocity memory had to be updated across changes in head roll and ocular torsion. We tested how the velocity memory accounted for head roll and OCR by observing the effects of changes to these signals on anticipatory trajectories of the memory decoding (fifth) trials. We found that anticipatory pursuit was updated for changes in head roll; however, we observed no evidence of compensation for OCR, representing the absence of ocular torsion signals within the velocity memory. This indicated that the directional component of the memory must be coded retinally and updated to account for changes in head roll, but not OCR.

  16. Eye-Hand Coordination during Visuomotor Adaptation with Different Rotation Angles

    PubMed Central

    Rentsch, Sebastian; Rand, Miya K.

    2014-01-01

    This study examined adaptive changes of eye-hand coordination during a visuomotor rotation task. Young adults made aiming movements to targets on a horizontal plane, while looking at the rotated feedback (cursor) of hand movements on a monitor. To vary the task difficulty, three rotation angles (30°, 75°, and 150°) were tested in three groups. All groups shortened hand movement time and trajectory length with practice. However, control strategies used were different among groups. The 30° group used proportionately more implicit adjustments of hand movements than other groups. The 75° group used more on-line feedback control, whereas the 150° group used explicit strategic adjustments. Regarding eye-hand coordination, timing of gaze shift to the target was gradually changed with practice from the late to early phase of hand movements in all groups, indicating an emerging gaze-anchoring behavior. Gaze locations prior to the gaze anchoring were also modified with practice from the cursor vicinity to an area between the starting position and the target. Reflecting various task difficulties, these changes occurred fastest in the 30° group, followed by the 75° group. The 150° group persisted in gazing at the cursor vicinity. These results suggest that the function of gaze control during visuomotor adaptation changes from a reactive control for exploring the relation between cursor and hand movements to a predictive control for guiding the hand to the task goal. That gaze-anchoring behavior emerged in all groups despite various control strategies indicates a generality of this adaptive pattern for eye-hand coordination in goal-directed actions. PMID:25333942

  17. Straight line foraging in yellow-eyed penguins: new insights into cascading fisheries effects and orientation capabilities of marine predators.

    PubMed

    Mattern, Thomas; Ellenberg, Ursula; Houston, David M; Lamare, Miles; Davis, Lloyd S; van Heezik, Yolanda; Seddon, Philip J

    2013-01-01

    Free-ranging marine predators rarely search for prey along straight lines because dynamic ocean processes usually require complex search strategies. If linear movement patterns occur they are usually associated with travelling events or migratory behaviour. However, recent fine scale tracking of flying seabirds has revealed straight-line movements while birds followed fishing vessels. Unlike flying seabirds, penguins are not known to target and follow fishing vessels. Yet yellow-eyed penguins from New Zealand often exhibit directed movement patterns while searching for prey at the seafloor, a behaviour that seems to contradict common movement ecology theories. While deploying GPS dive loggers on yellow-eyed penguins from the Otago Peninsula we found that the birds frequently followed straight lines for several kilometres with little horizontal deviation. In several cases individuals swam up and down the same line, while some of the lines were followed by more than one individual. Using a remote operated vehicle (ROV) we found a highly visible furrow on the seafloor most likely caused by an otter board of a demersal fish trawl, which ran in a straight line exactly matching the trajectory of a recent line identified from penguin tracks. We noted high abundances of benthic scavengers associated with fisheries-related bottom disturbance. While our data demonstrate the acute way-finding capabilities of benthic foraging yellow-eyed penguins, they also highlight how hidden cascading effects of coastal fisheries may alter behaviour and potentially even population dynamics of marine predators, an often overlooked fact in the examination of fisheries' impacts.

  18. Adaptive surrogate model based multi-objective transfer trajectory optimization between different libration points

    NASA Astrophysics Data System (ADS)

    Peng, Haijun; Wang, Wei

    2016-10-01

    An adaptive surrogate model-based multi-objective optimization strategy that combines the benefits of invariant manifolds and low-thrust control toward developing a low-computational-cost transfer trajectory between libration orbits around the L1 and L2 libration points in the Sun-Earth system has been proposed in this paper. A new structure for a multi-objective transfer trajectory optimization model that divides the transfer trajectory into several segments and gives the dominations for invariant manifolds and low-thrust control in different segments has been established. To reduce the computational cost of multi-objective transfer trajectory optimization, a mixed sampling strategy-based adaptive surrogate model has been proposed. Numerical simulations show that the results obtained from the adaptive surrogate-based multi-objective optimization are in agreement with the results obtained using direct multi-objective optimization methods, and the computational workload of the adaptive surrogate-based multi-objective optimization is only approximately 10% of that of direct multi-objective optimization. Furthermore, the generating efficiency of the Pareto points of the adaptive surrogate-based multi-objective optimization is approximately 8 times that of the direct multi-objective optimization. Therefore, the proposed adaptive surrogate-based multi-objective optimization provides obvious advantages over direct multi-objective optimization methods.

  19. Gradient waveform pre-emphasis based on the gradient system transfer function.

    PubMed

    Stich, Manuel; Wech, Tobias; Slawig, Anne; Ringler, Ralf; Dewdney, Andrew; Greiser, Andreas; Ruyters, Gudrun; Bley, Thorsten A; Köstler, Herbert

    2018-02-25

    The gradient system transfer function (GSTF) has been used to describe the distorted k-space trajectory for image reconstruction. The purpose of this work was to use the GSTF to determine the pre-emphasis for an undistorted gradient output and intended k-space trajectory. The GSTF of the MR system was determined using only standard MR hardware without special equipment such as field probes or a field camera. The GSTF was used for trajectory prediction in image reconstruction and for a gradient waveform pre-emphasis. As test sequences, a gradient-echo sequence with phase-encoding gradient modulation and a gradient-echo sequence with a spiral read-out trajectory were implemented and subsequently applied on a structural phantom and in vivo head measurements. Image artifacts were successfully suppressed by applying the GSTF-based pre-emphasis. Equivalent results are achieved with images acquired using GSTF-based post-correction of the trajectory as a part of image reconstruction. In contrast, the pre-emphasis approach allows reconstruction using the initially intended trajectory. The artifact suppression shown for two sequences demonstrates that the GSTF can serve for a novel pre-emphasis. A pre-emphasis based on the GSTF information can be applied to any arbitrary sequence type. © 2018 International Society for Magnetic Resonance in Medicine.

  20. Pilots' Attention Distributions Between Chasing a Moving Target and a Stationary Target.

    PubMed

    Li, Wen-Chin; Yu, Chung-San; Braithwaite, Graham; Greaves, Matthew

    2016-12-01

    Attention plays a central role in cognitive processing; ineffective attention may induce accidents in flight operations. The objective of the current research was to examine military pilots' attention distributions between chasing a moving target and a stationary target. In the current research, 37 mission-ready F-16 pilots participated. Subjects' eye movements were collected by a portable head-mounted eye-tracker during tactical training in a flight simulator. The scenarios of chasing a moving target (air-to-air) and a stationary target (air-to-surface) consist of three operational phases: searching, aiming, and lock-on to the targets. The findings demonstrated significant differences in pilots' percentage of fixation during the searching phase between air-to-air (M = 37.57, SD = 5.72) and air-to-surface (M = 33.54, SD = 4.68). Fixation duration can indicate pilots' sustained attention to the trajectory of a dynamic target during air combat maneuvers. Aiming at the stationary target resulted in larger pupil size (M = 27,105, SD = 6565), reflecting higher cognitive loading than aiming at the dynamic target (M = 23,864, SD = 8762). Pilots' visual behavior is not only closely related to attention distribution, but also significantly associated with task characteristics. Military pilots demonstrated various visual scan patterns for searching and aiming at different types of targets based on the research settings of a flight simulator. The findings will facilitate system designers' understanding of military pilots' cognitive processes during tactical operations. They will assist human-centered interface design to improve pilots' situational awareness. The application of an eye-tracking device integrated with a flight simulator is a feasible and cost-effective intervention to improve the efficiency and safety of tactical training.Li W-C, Yu C-S, Braithwaite G, Greaves M. Pilots' attention distributions between chasing a moving target and a stationary target. Aerosp Med Hum Perform. 2016; 87(12):989-995.

  1. Stability and change in dietary scores and patterns across six waves of the Longitudinal Study of Australian Children.

    PubMed

    Gasser, Constantine E; Kerr, Jessica A; Mensah, Fiona K; Wake, Melissa

    2017-04-01

    This study aimed to derive and compare longitudinal trajectories of dietary scores and patterns from 2-3 to 10-11 years and from 4-5 to 14-15 years of age. In waves two to six of the Baby (B) Cohort and one to six of the Kindergarten (K) Cohort of the population-based Longitudinal Study of Australian Children, parents or children reported biennially on the study child's consumption of twelve to sixteen healthy and less healthy food or drink items for the previous 24 h. For each wave, we derived a dietary score from 0 to 14, based on the 2013 Australian Dietary Guidelines (higher scores indicating healthier diet). We then used factor analyses to empirically derive dietary patterns for separate waves. Using group-based trajectory modelling, we generated trajectories of dietary scores and empirical patterns in 4504 B and 4640 K Cohort children. Four similar trajectories of dietary scores emerged for the B and K Cohorts, containing comparable proportions of children in each cohort: 'never healthy' (8·8 and 11·9 %, respectively), 'moderately healthy' (24·0 and 20·7 %), 'becoming less healthy' (16·6 and 27·3 %) and 'always healthy' (50·7 and 40·2 %). Deriving trajectories based on dietary patterns, rather than dietary scores, produced similar findings. For 'becoming less healthy' trajectories, dietary quality appeared to worsen from 7 years of age in both cohorts. In conclusion, a brief dietary measure administered repeatedly across childhood generated robust, nuanced dietary trajectories that were replicable across two cohorts and two methodologies. These trajectories appear ideal for future research into dietary determinants and health outcomes.

  2. Curved trajectories of actin-based motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-05-01

    Recent experiments have reported fascinating geometrical trajectories for actin-based motility of bacteria Listeria monocytogenes and functionalized beads. To understand the physical mechanism for these trajectories, we constructed a phenomenological model to study the motion of an actin-propelled disk in two dimensions. In our model, the force and actin density on the surface of the disk are influenced by the translation and rotation of the disk, which in turn is induced by the asymmetric distributions of those densities. We show that this feedback can destabilize a straight trajectory, leading to circular, S-shape and other geometrical trajectories observed in the experiments through bifurcations in the distributions of the force and actin density. The relation between our model and the models for self-propelled deformable particles is emphasized and discussed.

  3. Oceanic Flights and Airspace: Improving Efficiency by Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Fernandes, Alicia Borgman; Rebollo, Juan; Koch, Michael

    2016-01-01

    Oceanic operations suffer from multiple inefficiencies, including pre-departure planning that does not adequately consider uncertainty in the proposed trajectory, restrictions on the routes that a flight operator can choose for an oceanic crossing, time-consuming processes and procedures for amending en route trajectories, and difficulties exchanging data between Flight Information Regions (FIRs). These inefficiencies cause aircraft to fly suboptimal trajectories, burning fuel and time that could be conserved. A concept to support integration of existing and emerging capabilities and concepts is needed to transition to an airspace system that employs Trajectory Based Operations (TBO) to improve efficiency and safety in oceanic operations. This paper describes such a concept and the results of preliminary activities to evaluate the concept, including a stakeholder feedback activity, user needs analysis, and high level benefits analysis.

  4. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Fourth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2013-01-01

    This paper presents an overview of the fourth major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. Revisions to this algorithm were based on a change to the expected operational environment.

  5. Secrets in the eyes of Black Oystercatchers: A new sexing technique

    USGS Publications Warehouse

    Guzzetti, B.M.; Talbot, S.L.; Tessler, D.F.; Gill, V.A.; Murphy, E.C.

    2008-01-01

    Sexing oystercatchers in the field is difficult because males and females have identical plumage and are similar in size. Although Black Oystercatchers (Haematopus bachmani) are sexually dimorphic, using morphology to determine sex requires either capturing both pair members for comparison or using discriminant analyses to assign sex probabilistically based on morphometric traits. All adult Black Oystercatchers have bright yellow eyes, but some of them have dark specks, or eye flecks, in their irides. We hypothesized that this easily observable trait was sex-linked and could be used as a novel diagnostic tool for identifying sex. To test this, we compared data for oystercatchers from genetic molecular markers (CHD-W/CHD-Z and HINT-W/HINT-Z), morphometric analyses, and eye-fleck category (full eye flecks, slight eye flecks, and no eye flecks). Compared to molecular markers, we found that discriminant analyses based on morphological characteristics yielded variable results that were confounded by geographical differences in morphology. However, we found that eye flecks were sex-linked. Using an eye-fleck model where all females have full eye flecks and males have either slight eye flecks or no eye flecks, we correctly assigned the sex of 117 of 125 (94%) oystercatchers. Using discriminant analysis based on morphological characteristics, we correctly assigned the sex of 105 of 119 (88%) birds. Using the eye-fleck technique for sexing Black Oystercatchers may be preferable for some investigators because it is as accurate as discriminant analysis based on morphology and does not require capturing the birds. ??2008 Association of Field Ornithologists.

  6. TH-EF-BRB-10: Dosimetric Validation of a Trajectory Based Cranial SRS Treatment Technique On a Varian TrueBeam Linac

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilson, B; Vancouver Cancer Centre, Vancouver, BC; Gete, E

    2016-06-15

    Purpose: This work investigates the dosimetric accuracy of a trajectory based delivery technique in which an optimized radiation beam is delivered along a Couch-Gantry trajectory that is formed by simultaneous rotation of the linac gantry and the treatment couch. Methods: Nine trajectory based cranial SRS treatment plans were created using in-house optimization software. The plans were calculated for delivery on the TrueBeam STx linac with 6MV photon beam. Dose optimization was performed along a user-defined trajectory using MLC modulation, dose rate modulation and jaw tracking. The pre-defined trajectory chosen for this study is formed by a couch rotation through itsmore » full range of 180 degrees while the gantry makes four partial arc sweeps which are 170 degrees each. For final dose calculation, the trajectory based plans were exported to the Varian Eclipse Treatment Planning System. The plans were calculated on a homogeneous cube phantom measuring 18.2×18.2×18.2 cm3 with the analytical anisotropic algorithm (AAA) using a 1mm3 calculation voxel. The plans were delivered on the TrueBeam linac via the developer’s mode. Point dose measurements were performed on 9 patients with the IBA CC01 mini-chamber with a sensitive volume of 0.01 cc. Gafchromic film measurements along the sagittal and coronal planes were performed on three of the 9 treatment plans. Point dose values were compared with ion chamber measurements. Gamma analysis comparing film measurement and AAA calculations was performed using FilmQA Pro. Results: The AAA calculations and measurements were in good agreement. The point dose difference between AAA and ion chamber measurements were within 2.2%. Gamma analysis test pass rates (2%, 2mm passing criteria) for the Gafchromic film measurements were >95%. Conclusion: We have successfully tested TrueBeam’s ability to deliver accurate trajectory based treatments involving simultaneous gantry and couch rotation with MLC and dose rate modulation along the trajectory.« less

  7. Neck motion, motor control, pain and disability: A longitudinal study of associations in neck pain patients in physiotherapy treatment.

    PubMed

    Meisingset, Ingebrigt; Stensdotter, Ann-Katrin; Woodhouse, Astrid; Vasseljen, Ottar

    2016-04-01

    Neck pain is associated with several alterations in neck motion and motor control, but most of the findings are based on cross-sectional studies. The aim of this study was to investigate associations between changes in neck motion and motor control, and changes in neck pain and disability in physiotherapy patients during a course of treatment. Prospective cohort study. Subjects with non-specific neck pain (n = 71) participated in this study. Neck flexibility, joint position error (JPE), head steadiness, trajectory movement control and postural sway were recorded before commencement of physiotherapy (baseline), at 2 weeks, and at 2 months. Numerical Rating Scale and Neck Disability Index were used to measure neck pain and disability at the day of testing. To analyze within subjects effects in neck motion and motor control, neck pain, and disability over time we used fixed effects linear regression analysis. Changes in neck motion and motor control occurred primarily within 2 weeks. Reduction in neck pain was associated with increased cervical range of motion in flexion-/extension and increased postural sway when standing with eyes open. Decreased neck disability was associated with some variables for neck flexibility and trajectory movement control. Cervical range of motion in flexion-/extension was the only variable associated with changes in both neck pain and neck disability. This study shows that few of the variables for neck motion and motor control were associated with changes neck pain and disability over a course of 2 months with physiotherapy treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing to Include Parallel Runway Operations

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2011-01-01

    This paper presents an overview of an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. This implementation provides the ability to manage spacing against two traffic aircraft, with one of these aircraft operating to a parallel dependent runway. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of-arrival (RTA) operations

  9. Trajectories of health-related quality of life among family caregivers of individuals with dementia: A home-based caregiver-training program matters.

    PubMed

    Kuo, Li-Min; Huang, Huei-Ling; Liang, Jersey; Kwok, Yam-Ting; Hsu, Wen-Chuin; Liu, Chin-Yi; Shyu, Yea-Ing L

    To determine distinct courses of change in health-related quality of life (HRQoL) among family caregivers of individuals with dementia and how participating in a home-based caregiver-training program affects the probability of belonging to each course. Sixty three caregivers were in the intervention group, and 66 caregivers were in the control group of a single-blinded randomized clinical trial. Two distinct trajectories of HRQoL were identified: a well-functioning trajectory and a poor-functioning trajectory. Caregivers who received the training program were more likely than those who did not have a well-functioning trajectory of HRQoL over 18 months. This trajectory included bodily pain (b = 1.02, odds ratio [OR] = 2.76), general health perception (b = 1.28, OR = 3.60), social functioning (b = 1.12, OR = 3.05), vitality (b = 1.51, OR = 4.49), general mental health (b = 1.08, OR = 2.94), and mental component summary (b = 1.27, OR = 3.55). Home-based caregiver training can be considered as part of the protocol for managing patients with dementia and their caregivers. NCT02667951. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Evaluation of altimetry-derived surface current products using Lagrangian drifter trajectories in the eastern Gulf of Mexico

    NASA Astrophysics Data System (ADS)

    Liu, Yonggang; Weisberg, Robert H.; Vignudelli, Stefano; Mitchum, Gary T.

    2014-05-01

    Lagrangian particle trajectory models based on several altimetry-derived surface current products are used to hindcast the drifter trajectories observed in the eastern Gulf of Mexico during May to August 2010 (the Deepwater Horizon oil spill incident). The performances of the trajectory models are gauged in terms of Lagrangian separation distances (d) and a nondimensional skill score (s), respectively. A series of numerical experiments show that these altimetry-based trajectory models have about the same performance, with a certain improvement by adding surface wind Ekman components, especially over the shelf region. However, their hindcast skills are slightly better than those of the data assimilative numerical model output. After 3 days' simulation the altimetry-based trajectory models have mean d values of 75-83 and 34-42 km (s values of 0.49-0.51 and 0.35-0.43) in the Gulf of Mexico deep water area and on the West Florida Continental Shelf, respectively. These satellite altimetry data products are useful for providing essential information on ocean surface currents of use in water property transports, offshore oil and gas operations, hazardous spill mitigation, search and rescue, etc.

  11. Spatiotemporal Interpolation Methods for Solar Event Trajectories

    NASA Astrophysics Data System (ADS)

    Filali Boubrahimi, Soukaina; Aydin, Berkay; Schuh, Michael A.; Kempton, Dustin; Angryk, Rafal A.; Ma, Ruizhe

    2018-05-01

    This paper introduces four spatiotemporal interpolation methods that enrich complex, evolving region trajectories that are reported from a variety of ground-based and space-based solar observatories every day. Our interpolation module takes an existing solar event trajectory as its input and generates an enriched trajectory with any number of additional time–geometry pairs created by the most appropriate method. To this end, we designed four different interpolation techniques: MBR-Interpolation (Minimum Bounding Rectangle Interpolation), CP-Interpolation (Complex Polygon Interpolation), FI-Interpolation (Filament Polygon Interpolation), and Areal-Interpolation, which are presented here in detail. These techniques leverage k-means clustering, centroid shape signature representation, dynamic time warping, linear interpolation, and shape buffering to generate the additional polygons of an enriched trajectory. Using ground-truth objects, interpolation effectiveness is evaluated through a variety of measures based on several important characteristics that include spatial distance, area overlap, and shape (boundary) similarity. To our knowledge, this is the first research effort of this kind that attempts to address the broad problem of spatiotemporal interpolation of solar event trajectories. We conclude with a brief outline of future research directions and opportunities for related work in this area.

  12. Effect of hole size on fluid dynamics of a posterior-chamber phakic intraocular lens with a central perforation by using computational fluid dynamics.

    PubMed

    Kawamorita, Takushi; Shimizu, Kimiya; Shoji, Nobuyuki

    2016-04-01

    A modified implantable collamer lens (ICL) with a central hole with a diameter of 0.36 mm, referred to as a hole-ICL, was created to improve aqueous humour circulation. The aim of this study is to investigate the ideal hole size in a hole-ICL from the standpoint of the fluid dynamic characteristics of the aqueous humour using computational fluid dynamics. Fluid dynamics simulation using an ICL was performed with thermal-hydraulic analysis software FloEFD V 12.2 (Mentor Graphics Corp.). In the simulation, three-dimensional eye models based on a modified Liou-Brennan model eye with a conventional ICL (Model ICM, Staar Surgical) and a hole-ICL were used. The hole-ICL was -9.0 dioptres (D) and 12.0 mm in length, with an optic zone of 5.5 mm. The vaulting was 0.50 mm. The quantity of aqueous humour produced by the ciliary body was set at 2.80 μL/min. Flow distribution between the anterior surface of the crystalline lens and the posterior surface of the ICL was calculated, and trajectory analysis was performed. With an increase in the central hole size, the velocity of the aqueous humour increased, with the peak velocity occurring at a diameter of approximately 0.4 mm. Once the diameter had increased above 0.4 mm, the velocity then decreased. The velocity difference between the cases of a central hole size of 0.1 mm and 0.2 mm was significant. The desirable central hole size was 0.2 mm or larger in terms of flow dynamics. The current model, based on a central hole size of 0.36 mm, was close to ideal. The optimisation of the hole size should be performed based on results from a long-term clinical study so as to analyse the incidence rate of secondary cataract and optical performance.

  13. Improved Propulsion Modeling for Low-Thrust Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Knittel, Jeremy M.; Englander, Jacob A.; Ozimek, Martin T.; Atchison, Justin A.; Gould, Julian J.

    2017-01-01

    Low-thrust trajectory design is tightly coupled with spacecraft systems design. In particular, the propulsion and power characteristics of a low-thrust spacecraft are major drivers in the design of the optimal trajectory. Accurate modeling of the power and propulsion behavior is essential for meaningful low-thrust trajectory optimization. In this work, we discuss new techniques to improve the accuracy of propulsion modeling in low-thrust trajectory optimization while maintaining the smooth derivatives that are necessary for a gradient-based optimizer. The resulting model is significantly more realistic than the industry standard and performs well inside an optimizer. A variety of deep-space trajectory examples are presented.

  14. A Near-Term Concept for Trajectory Based Operations with Air/Ground Data Link Communication

    NASA Technical Reports Server (NTRS)

    McNally, David; Mueller, Eric; Thipphavong, David; Paielli, Russell; Cheng, Jinn-Hwei; Lee, Chuhan; Sahlman, Scott; Walton, Joe

    2010-01-01

    An operating concept and required system components for trajectory-based operations with air/ground data link for today's en route and transition airspace is proposed. Controllers are fully responsible for separation as they are today, and no new aircraft equipage is required. Trajectory automation computes integrated solutions to problems like metering, weather avoidance, traffic conflicts and the desire to find and fly more time/fuel efficient flight trajectories. A common ground-based system supports all levels of aircraft equipage and performance including those equipped and not equipped for data link. User interface functions for the radar controller's display make trajectory-based clearance advisories easy to visualize, modify if necessary, and implement. Laboratory simulations (without human operators) were conducted to test integrated operation of selected system components with uncertainty modeling. Results are based on 102 hours of Fort Worth Center traffic recordings involving over 37,000 individual flights. The presence of uncertainty had a marginal effect (5%) on minimum-delay conflict resolution performance, and windfavorable routes had no effect on detection and resolution metrics. Flight plan amendments and clearances were substantially reduced compared to today s operations. Top-of-descent prediction errors are the largest cause of failure indicating that better descent predictions are needed to reliably achieve fuel-efficient descent profiles in medium to heavy traffic. Improved conflict detections for climbing flights could enable substantially more continuous climbs to cruise altitude. Unlike today s Conflict Alert, tactical automation must alert when an altitude amendment is entered, but before the aircraft starts the maneuver. In every other failure case tactical automation prevented losses of separation. A real-time prototype trajectory trajectory-automation system is running now and could be made ready for operational testing at an en route Center in 1-2 years.

  15. Trajectories of Delinquency and Parenting Styles

    ERIC Educational Resources Information Center

    Hoeve, Machteld; Blokland, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R. M.; van der Laan, Peter H.

    2008-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10-19, we identified five distinct…

  16. Improved dense trajectories for action recognition based on random projection and Fisher vectors

    NASA Astrophysics Data System (ADS)

    Ai, Shihui; Lu, Tongwei; Xiong, Yudian

    2018-03-01

    As an important application of intelligent monitoring system, the action recognition in video has become a very important research area of computer vision. In order to improve the accuracy rate of the action recognition in video with improved dense trajectories, one advanced vector method is introduced. Improved dense trajectories combine Fisher Vector with Random Projection. The method realizes the reduction of the characteristic trajectory though projecting the high-dimensional trajectory descriptor into the low-dimensional subspace based on defining and analyzing Gaussian mixture model by Random Projection. And a GMM-FV hybrid model is introduced to encode the trajectory feature vector and reduce dimension. The computational complexity is reduced by Random Projection which can drop Fisher coding vector. Finally, a Linear SVM is used to classifier to predict labels. We tested the algorithm in UCF101 dataset and KTH dataset. Compared with existed some others algorithm, the result showed that the method not only reduce the computational complexity but also improved the accuracy of action recognition.

  17. Trajectory optimization for lunar rover performing vertical takeoff vertical landing maneuvers in the presence of terrain

    NASA Astrophysics Data System (ADS)

    Ma, Lin; Wang, Kexin; Xu, Zuhua; Shao, Zhijiang; Song, Zhengyu; Biegler, Lorenz T.

    2018-05-01

    This study presents a trajectory optimization framework for lunar rover performing vertical takeoff vertical landing (VTVL) maneuvers in the presence of terrain using variable-thrust propulsion. First, a VTVL trajectory optimization problem with three-dimensional kinematics and dynamics model, boundary conditions, and path constraints is formulated. Then, a finite-element approach transcribes the formulated trajectory optimization problem into a nonlinear programming (NLP) problem solved by a highly efficient NLP solver. A homotopy-based backtracking strategy is applied to enhance the convergence in solving the formulated VTVL trajectory optimization problem. The optimal thrust solution typically has a "bang-bang" profile considering that bounds are imposed on the magnitude of engine thrust. An adaptive mesh refinement strategy based on a constant Hamiltonian profile is designed to address the difficulty in locating the breakpoints in the thrust profile. Four scenarios are simulated. Simulation results indicate that the proposed trajectory optimization framework has sufficient adaptability to handle VTVL missions efficiently.

  18. Adaptive control of space-based robot manipulators

    NASA Technical Reports Server (NTRS)

    Walker, Michael W.; Wee, Liang-Boon

    1991-01-01

    A control method is presented that achieves globally stable trajectory tracking in the presence of uncertainties in the inertial parameters of the system. The 15-DOF system dynamics are divided into two components: a 9-DOF invertible portion and 6-DOF noninvertible portion. A controller is then designed to achieve trajectory tracking of the invertible portion of the system, which consists of the manipulator-joint positions and the orientation of the base. The motion of the noninvertible portion is bounded but otherwise unspecified. This portion of the system consists of the position of the robot's base and the position of the reaction wheels. A simulation is presented to demonstrate the effectiveness of the controller. A quadratic polynomial is used to generate the desired trajectory to illustrate the trajectory-tracking capability of the controller.

  19. Accuracy and Reliability of Eye-Based vs Quadrant-Based Diagnosis of Plus Disease in Retinopathy of Prematurity.

    PubMed

    Kim, Sang Jin; Campbell, J Peter; Kalpathy-Cramer, Jayashree; Ostmo, Susan; Jonas, Karyn E; Choi, Dongseok; Chan, R V Paul; Chiang, Michael F

    2018-06-01

    Presence of plus disease in retinopathy of prematurity is the most critical element in identifying treatment-requiring disease. However, there is significant variability in plus disease diagnosis. In particular, plus disease has been defined as 2 or more quadrants of vascular abnormality, and it is not clear whether it is more reliably and accurately diagnosed by eye-based assessment of overall retinal appearance or by quadrant-based assessment combining grades of 4 individual quadrants. To compare eye-based vs quadrant-based diagnosis of plus disease and to provide insight for ophthalmologists about the diagnostic process. In this multicenter cohort study, we developed a database of 197 wide-angle retinal images from 141 preterm infants from neonatal intensive care units at 9 academic institutions (enrolled from July 2011 to December 2016). Each image was assigned a reference standard diagnosis based on consensus image-based and clinical diagnosis. Data analysis was performed from February 2017 to September 2017. Six graders independently diagnosed each of the 4 quadrants (cropped images) of the 197 eyes (quadrant-based diagnosis) as well as the entire image (eye-based diagnosis). Images were displayed individually, in random order. Quadrant-based diagnosis of plus disease was made when 2 or more quadrants were diagnosed as indicating plus disease by combining grades of individual quadrants post hoc. Intragrader and intergrader reliability (absolute agreement and κ statistic) and accuracy compared with the reference standard diagnosis. Of the 141 included preterm infants, 65 (46.1%) were female and 116 (82.3%) white, and the mean (SD) gestational age was 27.0 (2.6) weeks. There was variable agreement between eye-based and quadrant-based diagnosis among the 6 graders (Cohen κ range, 0.32-0.75). Four graders showed underdiagnosis of plus disease with quadrant-based diagnosis compared with eye-based diagnosis (by McNemar test). Intergrader agreement of quadrant-based diagnosis was lower than that of eye-based diagnosis (Fleiss κ, 0.75 [95% CI, 0.71-0.78] vs 0.55 [95% CI, 0.51-0.59]). The accuracy of eye-based diagnosis compared with the reference standard diagnosis was substantial to near-perfect, whereas that of quadrant-based plus disease diagnosis was only moderate to substantial for each grader. Graders had lower reliability and accuracy using quadrant-based diagnosis combining grades of individual quadrants than with eye-based diagnosis, suggesting that eye-based diagnosis has advantages over quadrant-based diagnosis. This has implications for more precise definitions of plus disease regarding the criterion of 2 or more quadrants, clinical care, computer-based image analysis, and education for all ophthalmologists who manage retinopathy of prematurity.

  20. Comparison of kinematic and dynamic leg trajectory optimization techniques for biped robot locomotion

    NASA Astrophysics Data System (ADS)

    Khusainov, R.; Klimchik, A.; Magid, E.

    2017-01-01

    The paper presents comparison analysis of two approaches in defining leg trajectories for biped locomotion. The first one operates only with kinematic limitations of leg joints and finds the maximum possible locomotion speed for given limits. The second approach defines leg trajectories from the dynamic stability point of view and utilizes ZMP criteria. We show that two methods give different trajectories and demonstrate that trajectories based on pure dynamic optimization cannot be realized due to joint limits. Kinematic optimization provides unstable solution which can be balanced by upper body movement.

  1. Comparison of in vitro eye irritation potential by bovine corneal opacity and permeability (BCOP) assay to erythema scores in human eye sting test of surfactant-based formulations.

    PubMed

    Cater, Kathleen C; Harbell, John W

    2008-01-01

    The bovine corneal opacity and permeability (BCOP) assay can be used to predict relative eye irritation potential of surfactant-based personal care formulations relative to a corporate benchmark. The human eye sting test is typically used to evaluate product claims of no tears/no stinging for children's bath products. A preliminary investigation was conducted to test a hypothesis that the BCOP assay could be used as a prediction model for relative ranking of human eye irritation responses under conditions of a standard human eye sting test to surfactant-based formulations. BCOP assays and human eye sting tests were conducted on 4 commercial and 1 prototype body wash (BW) developed specifically for children or as mild bath products. In the human eye sting test, 10 mul of a 10% dosing solution is instilled into one eye of each panelist (n = 20), and the contralateral eye is dosed with sterile water as a control. Bulbar conjunctival erythema responses of each eye are graded at 30 seconds by an ophthalmologist. The BCOP assay permeability values (optical density at 490 nm [OD(490)]) for the 5 BWs ranged from 0.438 to 1.252 (i.e., least to most irritating). By comparison, the number of panelists exhibiting erythema responses (mild to moderately pink) ranged from 3 of 20 panelists for the least irritating BW to 10 of 20 panelists for the most irritating BW tested. The relative ranking of eye irritation potential of the 5 BWs in the BCOP assay compares favorably with the relative ranking of the BWs in the human eye sting test. Based on these findings, the permeability endpoint of the BCOP assay, as described for surfactant-based formulations, showed promise as a prediction model for relative ranking of conjunctival erythema responses in the human eye. Consequently, screening of prototype formulations in the BCOP assay would allow for formula optimization of mild bath products prior to investment in a human eye sting test.

  2. Visual Uav Trajectory Plan System Based on Network Map

    NASA Astrophysics Data System (ADS)

    Li, X. L.; Lin, Z. J.; Su, G. Z.; Wu, B. Y.

    2012-07-01

    The base map of the current software UP-30 using in trajectory plan for Unmanned Aircraft Vehicle is vector diagram. UP-30 draws navigation points manually. But in the field of operation process, the efficiency and the quality of work is influenced because of insufficient information, screen reflection, calculate inconveniently and other factors. If we do this work in indoor, the effect of external factors on the results would be eliminated, the network earth users can browse the free world high definition satellite images through downloading a client software, and can export the high resolution image by standard file format. This brings unprecedented convenient of trajectory plan. But the images must be disposed by coordinate transformation, geometric correction. In addition, according to the requirement of mapping scale ,camera parameters and overlap degree we can calculate exposure hole interval and trajectory distance between the adjacent trajectory automatically . This will improve the degree of automation of data collection. Software will judge the position of next point according to the intersection of the trajectory and the survey area and ensure the position of point according to trajectory distance. We can undertake the points artificially. So the trajectory plan is automatic and flexible. Considering safety, the date can be used in flying after simulating flight. Finally we can export all of the date using a key

  3. Identifying depressive symptom trajectory groups among Korean adults and psychosocial factors as group determinants.

    PubMed

    Kwon, Tae Yeon

    2015-06-01

    Longitudinal research is needed to examine the depressive symptom trajectories of different groups during adulthood and their antecedents and consequences, because depressive symptoms may be changeable and heterogeneous over time. This study examined the number of trajectory groups describing the depressive symptoms of Korean adults, as well as the shape of the trajectories and the association between trajectory group membership and psychosocial factors identified based on the ecosystem model. This study used Nagin's semi-parametric group-based modeling to analyze Year 1 to Year 7 data from Korea Welfare Panel Survey (N = 13,735), a nationally representative sample of community-dwelling adults. Three distinct trajectory groups were identified: a low stable depressive symptoms group, a moderate depressive symptoms group and a high depressive symptoms group. Result from multinominal logit analysis showed that all psychosocial factors except family relationships affected the likelihood of membership in the three depressive symptoms groups. Especially, self-esteem was the psychosocial factor with the largest impact on depressive symptom trajectory group membership. When screening for depressive symptoms, individuals with a low socioeconomic status should be a primary concern and intervention should be made available to them. Prevention or intervention with members of the identified trajectory groups would likely require integrative approaches targeting psychosocial factors across multiple contexts. © The Author(s) 2015.

  4. Visual traffic jam analysis based on trajectory data.

    PubMed

    Wang, Zuchao; Lu, Min; Yuan, Xiaoru; Zhang, Junping; van de Wetering, Huub

    2013-12-01

    In this work, we present an interactive system for visual analysis of urban traffic congestion based on GPS trajectories. For these trajectories we develop strategies to extract and derive traffic jam information. After cleaning the trajectories, they are matched to a road network. Subsequently, traffic speed on each road segment is computed and traffic jam events are automatically detected. Spatially and temporally related events are concatenated in, so-called, traffic jam propagation graphs. These graphs form a high-level description of a traffic jam and its propagation in time and space. Our system provides multiple views for visually exploring and analyzing the traffic condition of a large city as a whole, on the level of propagation graphs, and on road segment level. Case studies with 24 days of taxi GPS trajectories collected in Beijing demonstrate the effectiveness of our system.

  5. Trajectories of diurnal cortisol in mothers of children with autism and other developmental disabilities: Relations to health and mental health

    PubMed Central

    Dykens, Elisabeth M.; Lambert, Warren

    2014-01-01

    This study used a stress biomarker, diurnal cortisol, to identify how elevated stress in mothers of children and adults with autism and other disabilities relates to their health and mental health. Based on semi-parametric, group-based trajectory analysis of 91 mothers, two distinctive cortisol trajectories emerged: blunted (63%) or steep (37%). Mothers in the blunted (versus steep) trajectory had higher stress levels, lower health ratings, and 89% of mothers of children with autism, and 53% with other disabilities, belonged to this trajectory. Atypical cortisol awakening responses and evening rises were differentially associated with anxiety, depression, health problems and employment status. Stress-reducing interventions are needed for parents of children with autism and other disabilities that include biomarkers as indices of risk or treatment outcome. PMID:23468069

  6. Segmentation method of eye region based on fuzzy logic system for classifying open and closed eyes

    NASA Astrophysics Data System (ADS)

    Kim, Ki Wan; Lee, Won Oh; Kim, Yeong Gon; Hong, Hyung Gil; Lee, Eui Chul; Park, Kang Ryoung

    2015-03-01

    The classification of eye openness and closure has been researched in various fields, e.g., driver drowsiness detection, physiological status analysis, and eye fatigue measurement. For a classification with high accuracy, accurate segmentation of the eye region is required. Most previous research used the segmentation method by image binarization on the basis that the eyeball is darker than skin, but the performance of this approach is frequently affected by thick eyelashes or shadows around the eye. Thus, we propose a fuzzy-based method for classifying eye openness and closure. First, the proposed method uses I and K color information from the HSI and CMYK color spaces, respectively, for eye segmentation. Second, the eye region is binarized using the fuzzy logic system based on I and K inputs, which is less affected by eyelashes and shadows around the eye. The combined image of I and K pixels is obtained through the fuzzy logic system. Third, in order to reflect the effect by all the inference values on calculating the output score of the fuzzy system, we use the revised weighted average method, where all the rectangular regions by all the inference values are considered for calculating the output score. Fourth, the classification of eye openness or closure is successfully made by the proposed fuzzy-based method with eye images of low resolution which are captured in the environment of people watching TV at a distance. By using the fuzzy logic system, our method does not require the additional procedure of training irrespective of the chosen database. Experimental results with two databases of eye images show that our method is superior to previous approaches.

  7. Generating and Describing Affective Eye Behaviors

    NASA Astrophysics Data System (ADS)

    Mao, Xia; Li, Zheng

    The manner of a person's eye movement conveys much about nonverbal information and emotional intent beyond speech. This paper describes work on expressing emotion through eye behaviors in virtual agents based on the parameters selected from the AU-Coded facial expression database and real-time eye movement data (pupil size, blink rate and saccade). A rule-based approach to generate primary (joyful, sad, angry, afraid, disgusted and surprise) and intermediate emotions (emotions that can be represented as the mixture of two primary emotions) utilized the MPEG4 FAPs (facial animation parameters) is introduced. Meanwhile, based on our research, a scripting tool, named EEMML (Emotional Eye Movement Markup Language) that enables authors to describe and generate emotional eye movement of virtual agents, is proposed.

  8. Multivariate trajectories across multiple domains of health-related quality of life in children with new-onset epilepsy.

    PubMed

    Sajobi, Tolulope T; Wang, Meng; Ferro, Mark A; Brobbey, Anita; Goodwin, Shane; Speechley, Kathy N; Wiebe, Samuel

    2017-10-01

    The diagnosis of epilepsy in children is known to impact the trajectory of their health-related quality of life (HRQOL) over time. However, there is limited knowledge about variations in longitudinal trajectories across multiple domains of HRQOL. This study aims to characterize the heterogeneity in HRQOL trajectories across multiple HRQOL domains and to evaluate predictors of differences among the identified trajectory groups in children with new-onset epilepsy. Data were obtained from the Health Related Quality of Life in Children with Epilepsy Study (HERQULES), a prospective multi-center study of 373 children newly diagnosed with new-onset epilepsy who were followed up over 2years. Child HRQOL and family factors were reported by parents, and clinical characteristics were reported by neurologists. Group-based multi-trajectory modeling was adopted to characterize longitudinal trajectories of HRQOL as measured by the individual domains of cognitive, emotional, physical, and social functioning in the 55-item Quality of Life in Childhood Epilepsy Questionnaire (QOLCE-55). Multinomial logistic regression was used to assess potential factors that explain differences among the identified latent trajectory groups. Three distinct HRQOL trajectory subgroups were identified in children with new-onset epilepsy based on HRQOL scores: "High" (44.7%), "Intermediate" (37.0%), and "Low" (18.3%). While most trajectory groups exhibited increasing scores over time on physical and social domains, both flat and declining trajectories were noted on emotional and cognitive domains. Less severe epilepsy, an absence of cognitive and behavioral problems, lower parental depression scores, better family functioning, and fewer family demands were associated with a "Higher" or "Intermediate" HRQOL trajectory. The course of HRQOL over time in children with new-onset epilepsy appears to follow one of three different trajectories. Addressing the clinical and psychosocial determinants identified for each pattern can help clinicians provide more targeted care to these children and their families. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Trajectories of Aggressive Behavior and Children's Social-Cognitive Development

    ERIC Educational Resources Information Center

    Averdijk, Margit; Malti, Tina; Ribeaud, Denis; Eisner, Manuel

    2011-01-01

    The current study investigated developmental trajectories of teacher-reported aggressive behavior and whether these trajectories are associated with social-cognitive development (i.e., aggressive problem-solving) across the first three elementary grades in a large sample from Switzerland (N = 1,146). Semiparametric group-based analyses were…

  10. Challenges in Modeling and Measuring Learning Trajectories

    ERIC Educational Resources Information Center

    Confrey, Jere; Jones, R. Seth; Gianopulos, Garron

    2015-01-01

    Briggs and Peck make a compelling case for creating new, more intuitive measures of learning, based on creating vertical scales using learning trajectories (LT) in place of "domain sampling." We believe that the importance of creating measurement scales that coordinate recognizable landmarks in learning trajectories with interval scales…

  11. Introduction to Mobile Trajectory Based Services: A New Direction in Mobile Location Based Services

    NASA Astrophysics Data System (ADS)

    Khokhar, Sarfraz; Nilsson, Arne A.

    The mandate of E911 gave birth to the idea of Location Based Services (LBS) capitalizing on the knowledge of the mobile location. The underlying estimated location is a feasible area. There is yet another class of mobile services that could be based on the mobility profiling of a mobile user. The mobility profile of a mobile user is a set of the routine trajectories of his or her travel paths. We called such services as Mobile Trajectory Based Services (MTBS). This paper introduces MTBS and functional architecture of an MTBS system. Suitability of different location estimation technologies for MTBS has been discussed and supported with simulation results.

  12. Is perception of self-motion speed a necessary condition for intercepting a moving target while walking?

    PubMed

    Morice, Antoine H P; Wallet, Grégory; Montagne, Gilles

    2014-04-30

    While it has been shown that the Global Optic Flow Rate (GOFR) is used in the control of self-motion speed, this study examined its relevance in the control of interceptive actions while walking. We asked participants to intercept approaching targets by adjusting their walking speed in a virtual environment, and predicted that the influence of the GOFR depended on their interception strategy. Indeed, unlike the Constant Bearing Angle (CBA), the Modified Required Velocity (MRV) strategy relies on the perception of self-displacement speed. On the other hand, the CBA strategy involves specific speed adjustments depending on the curvature of the target's trajectory, whereas the MRV does not. We hypothesized that one strategy is selected among the two depending on the informational content of the environment. We thus manipulated the curvature and display of the target's trajectory, and the relationship between physical walking speed and the GOFR (through eye height manipulations). Our results showed that when the target trajectory was not displayed, walking speed profiles were affected by curvature manipulations. Otherwise, walking speed profiles were less affected by curvature manipulations and were affected by the GOFR manipulations. Taken together, these results show that the use of the GOFR for intercepting a moving target while walking depends on the informational content of the environment. Finally we discuss the complementary roles of these two perceptual-motor strategies. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Otolithic and extraocular muscle proprioceptive influences on the spatial organization of the vestibulo- and cervico-ocular quick phases.

    PubMed

    Pettorossi, V E; Manni, E; Errico, P; Ferraresi, A; Bortolami, R

    1997-03-01

    The cervico-ocular reflex (COR) was studied alone or in combination with the vestibulo-ocular reflex (VOR) in the rabbit. Step stimulations of the body with respect to the fixed head induced small slow compensatory responses followed by large compensatory quick phases (QP). These responses remained aligned with the horizon at different head pitch angles. The QP reorientation in space was due to the gravity influence on the otolithic receptors. The vestibular induced QPs exhibit a similar pattern. Because of this reorientation, the reduction of the amplitude of the vestibular induced QPs, due to the addition of the COR, was maintained even at different static head positions. The electrolytic lesion of the ophthalmic branch of the trigeminal nerve deeply affected the space orientation of the COR. In particular, the cervically induced compensatory QPs of the eye ipsilateral to the lesion showed a remarkable variability of their trajectories and they lost space reorientation. These findings suggest that the coordinate system controlling the QPs is influenced by signals originating from both head position in space and eye position in the orbit.

  14. Hi-G electronic gated camera for precision trajectory analysis

    NASA Astrophysics Data System (ADS)

    Snyder, Donald R.; Payne, Scott; Keller, Ed; Longo, Salvatore; Caudle, Dennis E.; Walker, Dennis C.; Sartor, Mark A.; Keeler, Joe E.; Kerr, David A.; Fail, R. Wallace; Gannon, Jim; Carrol, Ernie; Jamison, Todd A.

    1997-12-01

    It is extremely difficult and expensive to determine the flight attitude and aimpoint of small maneuvering miniature air vehicles from ground based fixed or tracking photography. Telemetry alone cannot provide sufficient information bandwidth on 'what' the ground tracking is seeing and consequently 'why' it did or did not function properly. Additionally, it is anticipated that 'smart' and 'brilliant' guided vehicles now in development will require a high resolution imaging support system to determine which target and which part of a ground feature is being used for navigation or targeting. Other requirements include support of sub-component separation from developmental supersonic vehicles, where the clean separation from the container is not determinable from ground based film systems and film cameras do not survive vehicle breakup and impact. Hence, the requirement is to develop and demonstrate an imaging support system for development/testing that can provide the flight vehicle developer/analyst with imagery (combined with miniature telemetry sources) sufficient to recreate the trajectory, terminal navigation, and flight termination events. This project is a development and demonstration of a real-time, launch-rated, shuttered, electronic imager, transmitter, and analysis system. This effort demonstrated boresighted imagery from inside small flight vehicles for post flight analysis of trajectory, and capture of ground imagery during random triggered vehicle functions. The initial studies for this capability have been accomplished by the Experimental Dynamics Section of the Air Force Wright Laboratory, Armament Directorate, Eglin AFB, Florida, and the Telemetry Support Branch of the Army Material Research and Development Center at Picatinny Arsenal, New Jersey. It has been determined that at 1/10,000 of a second exposure time, new ultra-miniature CCD sensors have sufficient sensitivity to image key ground target features without blur, thereby providing data for trajectory, timing, and advanced sensor development. This system will be used for ground tracking data reduction in support of small air vehicle and munition testing. It will provide a means of integrating the imagery and telemetry data from the item with ground based photographic support. The technique we have designed will exploit off-the-shelf software and analysis components. A differential GPS survey instrument will establish a photogrammetric calibration grid throughout the range and reference targets along the flight path. Images from the on-board sensor will be used to calibrate the ortho- rectification model in the analysis software. The projectile images will be transmitted and recorded on several tape recorders to insure complete capture of each video field. The images will be combined with a non-linear video editor into a time-correlated record. Each correlated video field will be written to video disk. The files will be converted to DMA compatible format and then analyzed for determination of the projectile altitude, attitude and position in space. The resulting data file will be used to create a photomosaic of the ground the projectile flew over and the targets it saw. The data will be then transformed to a trajectory file and used to generate a graphic overlay that will merge digital photo data of the range with actual images captured. The plan is to superimpose the flight path of the projectile, the path of the weapons aimpoint, and annotation of each internal sequence event. With tools used to produce state-of-the-art computer graphics, we now think it will be possible to reconstruct the test event from the viewpoint of the warhead, the target, and a 'God's-Eye' view looking over the shoulder of the projectile.

  15. Trajectory-based understanding of the quantum-classical transition for barrier scattering

    NASA Astrophysics Data System (ADS)

    Chou, Chia-Chun

    2018-06-01

    The quantum-classical transition of wave packet barrier scattering is investigated using a hydrodynamic description in the framework of a nonlinear Schrödinger equation. The nonlinear equation provides a continuous description for the quantum-classical transition of physical systems by introducing a degree of quantumness. Based on the transition equation, the transition trajectory formalism is developed to establish the connection between classical and quantum trajectories. The quantum-classical transition is then analyzed for the scattering of a Gaussian wave packet from an Eckart barrier and the decay of a metastable state. Computational results for the evolution of the wave packet and the transmission probabilities indicate that classical results are recovered when the degree of quantumness tends to zero. Classical trajectories are in excellent agreement with the transition trajectories in the classical limit, except in some regions where transition trajectories cannot cross because of the single-valuedness of the transition wave function. As the computational results demonstrate, the process that the Planck constant tends to zero is equivalent to the gradual removal of quantum effects originating from the quantum potential. This study provides an insightful trajectory interpretation for the quantum-classical transition of wave packet barrier scattering.

  16. Trajectories of women's abortion-related care: A conceptual framework.

    PubMed

    Coast, Ernestina; Norris, Alison H; Moore, Ann M; Freeman, Emily

    2018-03-01

    We present a new conceptual framework for studying trajectories to obtaining abortion-related care. It assembles for the first time all of the known factors influencing a trajectory and encourages readers to consider the ways these macro- and micro-level factors operate in multiple and sometimes conflicting ways. Based on presentation to and feedback from abortion experts (researchers, providers, funders, policymakers and advisors, advocates) (n = 325) between 03/06/2014 and 22/08/2015, and a systematic mapping of peer-reviewed literature (n = 424) published between 01/01/2011 and 30/10/2017, our framework synthesises the factors shaping abortion trajectories, grouped into three domains: abortion-specific experiences, individual contexts, and (inter)national and sub-national contexts. Our framework includes time-dependent processes involved in an individual trajectory, starting with timing of pregnancy awareness. This framework can be used to guide testable hypotheses about enabling and inhibiting influences on care-seeking behaviour and consideration about how abortion trajectories might be influenced by policy or practice. Research based on understanding of trajectories has the potential to improve women's experiences and outcomes of abortion-related care. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. Flight Evaluation of Center-TRACON Automation System Trajectory Prediction Process

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1998-01-01

    Two flight experiments (Phase 1 in October 1992 and Phase 2 in September 1994) were conducted to evaluate the accuracy of the Center-TRACON Automation System (CTAS) trajectory prediction process. The Transport Systems Research Vehicle (TSRV) Boeing 737 based at Langley Research Center flew 57 arrival trajectories that included cruise and descent segments; at the same time, descent clearance advisories from CTAS were followed. Actual trajectories of the airplane were compared with the trajectories predicted by the CTAS trajectory synthesis algorithms and airplane Flight Management System (FMS). Trajectory prediction accuracy was evaluated over several levels of cockpit automation that ranged from a conventional cockpit to performance-based FMS vertical navigation (VNAV). Error sources and their magnitudes were identified and measured from the flight data. The major source of error during these tests was found to be the predicted winds aloft used by CTAS. The most significant effect related to flight guidance was the cross-track and turn-overshoot errors associated with conventional VOR guidance. FMS lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and airplane performance model errors.

  18. Developmental Trajectories of Anxiety Symptoms Among Boys Across Early and Middle Childhood

    PubMed Central

    Feng, Xin; Shaw, Daniel S.; Silk, Jennifer S.

    2009-01-01

    This study examined the developmental trajectory of anxiety symptoms among 290 boys and evaluated the association of trajectory groups with child and family risk factors and children’s internalizing disorders. Anxiety symptoms were measured using maternal reports from the Child Behavior Checklist (T. M. Achenbach, 1991, 1992) for boys between the ages of 2 and 10. A group-based trajectory analysis revealed 4 distinct trajectories in the development of anxiety symptoms: low, low increasing, high declining, and high-increasing trajectories. Child shy temperament tended to differentiate between initial high and low groups, whereas maternal negative control and maternal depression were associated with increasing trajectories and elevated anxiety symptoms in middle childhood. Follow-up analyses to diagnoses of preadolescent depression and/or anxiety disorders revealed different patterns on the basis of trajectory group membership. The results are discussed in terms of the mechanisms of risk factors and implications for early identification and prevention. PMID:18266484

  19. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy.

    PubMed

    Wang, Wei; Viswanathan, Akila N; Damato, Antonio L; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T; Dumoulin, Charles L; Schmidt, Ehud J; Cormack, Robert A

    2015-12-01

    In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter's trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter's imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet's orientation deviated from the main magnetic field direction. Fifteen catheters' trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage.

  20. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    PubMed Central

    Wang, Wei; Viswanathan, Akila N.; Damato, Antonio L.; Chen, Yue; Tse, Zion; Pan, Li; Tokuda, Junichi; Seethamraju, Ravi T.; Dumoulin, Charles L.; Schmidt, Ehud J.; Cormack, Robert A.

    2015-01-01

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization using magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter’s imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. Results: The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet’s orientation deviated from the main magnetic field direction. Fifteen catheters’ trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. Conclusions: The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage. PMID:26632065

  1. Evaluation of an active magnetic resonance tracking system for interstitial brachytherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Wei, E-mail: wwang21@partners.org; Viswanathan, Akila N.; Damato, Antonio L.

    2015-12-15

    Purpose: In gynecologic cancers, magnetic resonance (MR) imaging is the modality of choice for visualizing tumors and their surroundings because of superior soft-tissue contrast. Real-time MR guidance of catheter placement in interstitial brachytherapy facilitates target coverage, and would be further improved by providing intraprocedural estimates of dosimetric coverage. A major obstacle to intraprocedural dosimetry is the time needed for catheter trajectory reconstruction. Herein the authors evaluate an active MR tracking (MRTR) system which provides rapid catheter tip localization and trajectory reconstruction. The authors assess the reliability and spatial accuracy of the MRTR system in comparison to standard catheter digitization usingmore » magnetic resonance imaging (MRI) and CT. Methods: The MRTR system includes a stylet with microcoils mounted on its shaft, which can be inserted into brachytherapy catheters and tracked by a dedicated MRTR sequence. Catheter tip localization errors of the MRTR system and their dependence on catheter locations and orientation inside the MR scanner were quantified with a water phantom. The distances between the tracked tip positions of the MRTR stylet and the predefined ground-truth tip positions were calculated for measurements performed at seven locations and with nine orientations. To evaluate catheter trajectory reconstruction, fifteen brachytherapy catheters were placed into a gel phantom with an embedded catheter fixation framework, with parallel or crossed paths. The MRTR stylet was then inserted sequentially into each catheter. During the removal of the MRTR stylet from within each catheter, a MRTR measurement was performed at 40 Hz to acquire the instantaneous stylet tip position, resulting in a series of three-dimensional (3D) positions along the catheter’s trajectory. A 3D polynomial curve was fit to the tracked positions for each catheter, and equally spaced dwell points were then generated along the curve. High-resolution 3D MRI of the phantom was performed followed by catheter digitization based on the catheter’s imaging artifacts. The catheter trajectory error was characterized in terms of the mean distance between corresponding dwell points in MRTR-generated catheter trajectory and MRI-based catheter digitization. The MRTR-based catheter trajectory reconstruction process was also performed on three gynecologic cancer patients, and then compared with catheter digitization based on MRI and CT. Results: The catheter tip localization error increased as the MRTR stylet moved further off-center and as the stylet’s orientation deviated from the main magnetic field direction. Fifteen catheters’ trajectories were reconstructed by MRTR. Compared with MRI-based digitization, the mean 3D error of MRTR-generated trajectories was 1.5 ± 0.5 mm with an in-plane error of 0.7 ± 0.2 mm and a tip error of 1.7 ± 0.5 mm. MRTR resolved ambiguity in catheter assignment due to crossed catheter paths, which is a common problem in image-based catheter digitization. In the patient studies, the MRTR-generated catheter trajectory was consistent with digitization based on both MRI and CT. Conclusions: The MRTR system provides accurate catheter tip localization and trajectory reconstruction in the MR environment. Relative to the image-based methods, it improves the speed, safety, and reliability of the catheter trajectory reconstruction in interstitial brachytherapy. MRTR may enable in-procedural dosimetric evaluation of implant target coverage.« less

  2. Evaluation of a community-based participatory farmworker eye health intervention in the "black dirt" region of New York state.

    PubMed

    Earle-Richardson, Giulia; Wyckoff, Lynae; Carrasquillo, Marilyn; Scribani, Melissa; Jenkins, Paul; May, John

    2014-09-01

    Eye irritation is a constant hazard for migrant and seasonal farmworkers, but there are few studies of the problem or how to address it. Researchers evaluated the effect of a community-based participatory eye health intervention on farmworker eye symptoms in the Hudson Valley, NY. A randomized pre-post intervention with 2, 4-week follow-up periods was implemented with a sample of 97 farmworkers. Five eye symptoms were measured, along with utilization of protective eyewear and eye drops. Leading baseline eye symptoms were redness (49%), blurred vision (43%), itching (43%), and eye pain (29%). Significant reductions in eye pain (P = 0.009), and non-significant reductions in redness were observed for the intervention group while controls experienced increases in both. The intervention was effective in significantly reducing eye pain, and to a lesser extent, redness. Future eyewear promotion programs should offer a range of eye wear, tailor offerings to local climate and tasks, evaluate eyewear durability, and include eye drops. © 2014 Wiley Periodicals, Inc.

  3. New method for finding multiple meaningful trajectories

    NASA Astrophysics Data System (ADS)

    Bao, Zhonghao; Flachs, Gerald M.; Jordan, Jay B.

    1995-07-01

    Mathematical foundations and algorithms for efficiently finding multiple meaningful trajectories (FMMT) in a sequence of digital images are presented. A meaningful trajectory is motion created by a sentient being or by a device under the control of a sentient being. It is smooth and predictable over short time intervals. A meaningful trajectory can suddenly appear or disappear in sequence images. The development of the FMMT is based on these assumptions. A finite state machine in the FMMT is used to model the trajectories under the conditions of occlusions and false targets. Each possible trajectory is associated with an initial state of a finite state machine. When two frames of data are available, a linear predictor is used to predict the locations of all possible trajectories. All trajectories within a certain error bound are moved to a monitoring trajectory state. When trajectories attain three consecutive good predictions, they are moved to a valid trajectory state and considered to be locked into a tracking mode. If an object is occluded while in the valid trajectory state, the predicted position is used to continue to track; however, the confidence in the trajectory is lowered. If the trajectory confidence falls below a lower limit, the trajectory is terminated. Results are presented that illustrate the FMMT applied to track multiple munitions fired from a missile in a sequence of images. Accurate trajectories are determined even in poor images where the probabilities of miss and false alarm are very high.

  4. Video-based eye tracking for neuropsychiatric assessment.

    PubMed

    Adhikari, Sam; Stark, David E

    2017-01-01

    This paper presents a video-based eye-tracking method, ideally deployed via a mobile device or laptop-based webcam, as a tool for measuring brain function. Eye movements and pupillary motility are tightly regulated by brain circuits, are subtly perturbed by many disease states, and are measurable using video-based methods. Quantitative measurement of eye movement by readily available webcams may enable early detection and diagnosis, as well as remote/serial monitoring, of neurological and neuropsychiatric disorders. We successfully extracted computational and semantic features for 14 testing sessions, comprising 42 individual video blocks and approximately 17,000 image frames generated across several days of testing. Here, we demonstrate the feasibility of collecting video-based eye-tracking data from a standard webcam in order to assess psychomotor function. Furthermore, we were able to demonstrate through systematic analysis of this data set that eye-tracking features (in particular, radial and tangential variance on a circular visual-tracking paradigm) predict performance on well-validated psychomotor tests. © 2017 New York Academy of Sciences.

  5. Trajectory Generation and Path Planning for Autonomous Aerobots

    NASA Technical Reports Server (NTRS)

    Sharma, Shivanjli; Kulczycki, Eric A.; Elfes, Alberto

    2007-01-01

    This paper presents global path planning algorithms for the Titan aerobot based on user defined waypoints in 2D and 3D space. The algorithms were implemented using information obtained through a planner user interface. The trajectory planning algorithms were designed to accurately represent the aerobot's characteristics, such as minimum turning radius. Additionally, trajectory planning techniques were implemented to allow for surveying of a planar area based solely on camera fields of view, airship altitude, and the location of the planar area's perimeter. The developed paths allow for planar navigation and three-dimensional path planning. These calculated trajectories are optimized to produce the shortest possible path while still remaining within realistic bounds of airship dynamics.

  6. Robotic excavator trajectory control using an improved GA based PID controller

    NASA Astrophysics Data System (ADS)

    Feng, Hao; Yin, Chen-Bo; Weng, Wen-wen; Ma, Wei; Zhou, Jun-jing; Jia, Wen-hua; Zhang, Zi-li

    2018-05-01

    In order to achieve excellent trajectory tracking performances, an improved genetic algorithm (IGA) is presented to search for the optimal proportional-integral-derivative (PID) controller parameters for the robotic excavator. Firstly, the mathematical model of kinematic and electro-hydraulic proportional control system of the excavator are analyzed based on the mechanism modeling method. On this basis, the actual model of the electro-hydraulic proportional system are established by the identification experiment. Furthermore, the population, the fitness function, the crossover probability and mutation probability of the SGA are improved: the initial PID parameters are calculated by the Ziegler-Nichols (Z-N) tuning method and the initial population is generated near it; the fitness function is transformed to maintain the diversity of the population; the probability of crossover and mutation are adjusted automatically to avoid premature convergence. Moreover, a simulation study is carried out to evaluate the time response performance of the proposed controller, i.e., IGA based PID against the SGA and Z-N based PID controllers with a step signal. It was shown from the simulation study that the proposed controller provides the least rise time and settling time of 1.23 s and 1.81 s, respectively against the other tested controllers. Finally, two types of trajectories are designed to validate the performances of the control algorithms, and experiments are performed on the excavator trajectory control experimental platform. It was demonstrated from the experimental work that the proposed IGA based PID controller improves the trajectory accuracy of the horizontal line and slope line trajectories by 23.98% and 23.64%, respectively in comparison to the SGA tuned PID controller. The results further indicate that the proposed IGA tuning based PID controller is effective for improving the tracking accuracy, which may be employed in the trajectory control of an actual excavator.

  7. Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.

    PubMed

    Chen, Jian; Jia, Bingxi; Zhang, Kaixiang

    2017-11-01

    In this paper, a trifocal tensor-based approach is proposed for the visual trajectory tracking task of a nonholonomic mobile robot equipped with a roughly installed monocular camera. The desired trajectory is expressed by a set of prerecorded images, and the robot is regulated to track the desired trajectory using visual feedback. Trifocal tensor is exploited to obtain the orientation and scaled position information used in the control system, and it works for general scenes owing to the generality of trifocal tensor. In the previous works, the start, current, and final images are required to share enough visual information to estimate the trifocal tensor. However, this requirement can be easily violated for perspective cameras with limited field of view. In this paper, key frame strategy is proposed to loosen this requirement, extending the workspace of the visual servo system. Considering the unknown depth and extrinsic parameters (installing position of the camera), an adaptive controller is developed based on Lyapunov methods. The proposed control strategy works for almost all practical circumstances, including both trajectory tracking and pose regulation tasks. Simulations are made based on the virtual experimentation platform (V-REP) to evaluate the effectiveness of the proposed approach.

  8. Response to ``Comment on `Bohmian mechanics with complex action: A new trajectory-based formulation of quantum mechanics' '' [J. Chem. Phys. 127, 197101 (2007)

    NASA Astrophysics Data System (ADS)

    Goldfarb, Yair; Degani, Ilan; Tannor, David J.

    2007-11-01

    In their comment, Sanz and Miret-Artés (SMA) describe previous trajectory-based formalisms based on the quantum Hamilton-Jacobi (QHJ) formalism. In this reply, we highlight our unique contributions: the identification of the smallness of the quantum force in the complex QHJ and its solution using complex trajectories. SMA also raise the question of how the term locality should be used in quantum mechanics. We suggest that at least certain aspects of nonlocality can depend on the method used to solve the problem.

  9. A Segment-Based Trajectory Similarity Measure in the Urban Transportation Systems.

    PubMed

    Mao, Yingchi; Zhong, Haishi; Xiao, Xianjian; Li, Xiaofang

    2017-03-06

    With the rapid spread of built-in GPS handheld smart devices, the trajectory data from GPS sensors has grown explosively. Trajectory data has spatio-temporal characteristics and rich information. Using trajectory data processing techniques can mine the patterns of human activities and the moving patterns of vehicles in the intelligent transportation systems. A trajectory similarity measure is one of the most important issues in trajectory data mining (clustering, classification, frequent pattern mining, etc.). Unfortunately, the main similarity measure algorithms with the trajectory data have been found to be inaccurate, highly sensitive of sampling methods, and have low robustness for the noise data. To solve the above problems, three distances and their corresponding computation methods are proposed in this paper. The point-segment distance can decrease the sensitivity of the point sampling methods. The prediction distance optimizes the temporal distance with the features of trajectory data. The segment-segment distance introduces the trajectory shape factor into the similarity measurement to improve the accuracy. The three kinds of distance are integrated with the traditional dynamic time warping algorithm (DTW) algorithm to propose a new segment-based dynamic time warping algorithm (SDTW). The experimental results show that the SDTW algorithm can exhibit about 57%, 86%, and 31% better accuracy than the longest common subsequence algorithm (LCSS), and edit distance on real sequence algorithm (EDR) , and DTW, respectively, and that the sensitivity to the noise data is lower than that those algorithms.

  10. Impact of employment contract changes on workers' quality of working life, job insecurity, health and work-related attitudes.

    PubMed

    Wagenaar, Alfred F; Kompier, Michiel A J; Houtman, Irene L D; van den Bossche, Seth N J; Taris, Toon W

    2012-01-01

    Changes in employment contracts may impact the quality of working life, job insecurity, health and work-related attitudes. We examined the validity of two partly competing theoretical approaches. Based upon a segmentation approach, we expected no change in scores among stable trajectories, whereas upward trajectories were expected to be for the better and downward trajectories to be for the worse (Hypothesis 1). As turnover theories suggest that this hypothesis may only apply to workers who do not change employer, we also examined these contract trajectories stratified for a change of employer (Hypothesis 2). Drawing on the 2007 and 2008 waves of the Netherlands Working Conditions Cohort Study (N=9,688), repeated measures analysis of covariance showed little across-time change in the criterion variables, thus largely disconfirming our first hypothesis. These results could (at least partly) be explained by employer change; this was generally associated with improved scores among all contract trajectories (Hypothesis 2). However, workers receiving a less stable contract from the same employer were found to be at risk for health and well-being problems. Segmentation theory-based assumptions on contract trajectories primarily apply to stable and downward contract trajectories at the same employer, whereas assumptions from turnover theories better apply to contract trajectories combined with a change of employer. Future research should focus more closely on factors predicting "involuntary" downward trajectories into precarious temporary employment or unemployment.

  11. Effect of the incidence angle to free space optical communication based on cat-eye modulating retro-reflector

    NASA Astrophysics Data System (ADS)

    Zhang, Lai-xian; Sun, Hua-yan; Zhao, Yan-zhong; Zheng, Yong-hui; Shan, Cong-miao

    2013-08-01

    Based on the cat-eye effect of optical system, free space optical communication based on cat-eye modulating retro-reflector can build communication link rapidly. Compared to classical free space optical communication system, system based on cat-eye modulating retro-reflector has great advantages such as building communication link more rapidly, a passive terminal is smaller, lighter and lower power consuming. The incident angle is an important factor of cat-eye effect, so it will affect the retro-reflecting communication link. In this paper, the principle and work flow of free space optical communication based on cat-eye modulating retro-reflector were introduced. Then, using the theory of geometric optics, the equivalent model of modulating retro-reflector with incidence angle was presented. The analytical solution of active area and retro-reflected light intensity of cat-eye modulating retro-reflector were given. Noise of PIN photodetector was analyzed, based on which, bit error rate of free space optical communication based on cat-eye modulating retro-reflector was presented. Finally, simulations were done to study the effect of incidence angle to the communication. The simulation results show that the incidence angle has little effect on active area and retro-reflected light intensity when the incidence beam is in the active field angle of cat-eye modulating retro-reflector. With certain system and condition, the communication link can rapidly be built when the incidence light beam is in the field angle, and the bit error rate increases greatly with link range. When link range is smaller than 35Km, the bit error rate is less than 10-16.

  12. Hyper-X Post-Flight Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Tartabini, Paul V.; Blanchard, RobertC.; Kirsch, Michael; Toniolo, Matthew D.

    2004-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X{43A/Hyper{X high speed research vehicle, and its implementation for the reconstruction and analysis of ight test data. Extended Kalman ltering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the ltering routines. Additionally, smoothing algorithms have been implemented in which the nal value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from ight data.

  13. Prevalence and Factors Associated with the Use of Eye Care Services in South Korea: Korea National Health and Nutrition Examination Survey 2010-2012.

    PubMed

    Park, Yong Seok; Heo, Hwan; Ye, Byeong Jin; Suh, Young-Woo; Kim, Seung-Hyun; Park, Shin Hae; Lim, Key Hwan; Lee, Sung Jin; Park, Song Hee; Baek, Seung-Hee

    2017-02-01

    To estimate the factors and prevalence of eye care service utilization in the South Korean population. This cross-sectional, population-based study included data from 22,550 Koreans aged ≥5 years who participated in the Korea National Health and Nutrition Examination Survey from 2010 to 2012. For people aged 5 to 11 years (young children), information was based on self-reports of contact with eye care service in the past year; for people aged ≥12 years (older population), the information was based on the self-reported lifetime contact with eye care service. Univariate and multivariate logistic regression analyses of the complex sample survey data were performed. The prevalence of eye care service use in young children during the past year was 61.1% (95% confidence interval, 58.1%-64.1%), while that in the older population during their lifetime was 73.5%. Subjects aged 7 to 11 years were more likely to have had an eye examination in the past year than subjects aged 5 to 6 years (odds ratio, 3.83; 95% confidence interval, 2.37-6.19). Multivariate logistic regression analysis indicated that higher monthly household income, being a National Health Insurance holder, and having private health insurance were related to more frequent use of eye care services in young children. For the older population and women, those living in an urban area and those with a best-corrected visual acuity less than 20 / 40 in the worse-seeing eye were more likely to have had an eye examination during their lifetime. Low education level was associated with low lifetime use of eye care services in the older population. There are sociodemographic disparities with use of eye care services in South Korea. This population-based study provides information that is useful for determining different intervention programs based on sociodemographic disparities to promote eye care service utilization in South Korea.

  14. Who Wants to Play? Sport Motivation Trajectories, Sport Participation, and the Development of Depressive Symptoms.

    PubMed

    Wang, Ming-Te; Chow, Angela; Amemiya, Jamie

    2017-09-01

    Although sport involvement has the potential to enhance psychological wellbeing, studies have suggested that motivation to participate in sports activities declines across childhood and adolescence. This study incorporated expectancy-value theory to model children's sport ability self-concept and subjective task values trajectories from first to twelfth grade. Additionally, it examined if sport motivation trajectories predicted individual and team-based sport participation and whether sport participation in turn reduced the development of depressive symptoms. Data were drawn from the Childhood and Beyond Study, a cross-sequential longitudinal study comprised of three cohorts (N = 1065; 49% male; 92% European American; M ages for youngest, middle, and oldest cohorts at the first wave were 6.42, 7.39, and 9.36 years, respectively). Results revealed four trajectories of students' co-development of sport self-concept and task values: congruent stable high, incongruent stable high, middle school decreasing, and decreasing. Trajectory membership predicted individual and team-based sports participation, but only team-based sport participation predicted faster declines in depressive symptoms. The use of a person-centered approach enabled us to identify heterogeneity in trajectories of sport motivation that can aid in the development of nuanced strategies to increase students' motivation to participate in sports.

  15. Object motion computation for the initiation of smooth pursuit eye movements in humans.

    PubMed

    Wallace, Julian M; Stone, Leland S; Masson, Guillaume S

    2005-04-01

    Pursuing an object with smooth eye movements requires an accurate estimate of its two-dimensional (2D) trajectory. This 2D motion computation requires that different local motion measurements are extracted and combined to recover the global object-motion direction and speed. Several combination rules have been proposed such as vector averaging (VA), intersection of constraints (IOC), or 2D feature tracking (2DFT). To examine this computation, we investigated the time course of smooth pursuit eye movements driven by simple objects of different shapes. For type II diamond (where the direction of true object motion is dramatically different from the vector average of the 1-dimensional edge motions, i.e., VA not equal IOC = 2DFT), the ocular tracking is initiated in the vector average direction. Over a period of less than 300 ms, the eye-tracking direction converges on the true object motion. The reduction of the tracking error starts before the closing of the oculomotor loop. For type I diamonds (where the direction of true object motion is identical to the vector average direction, i.e., VA = IOC = 2DFT), there is no such bias. We quantified this effect by calculating the direction error between responses to types I and II and measuring its maximum value and time constant. At low contrast and high speeds, the initial bias in tracking direction is larger and takes longer to converge onto the actual object-motion direction. This effect is attenuated with the introduction of more 2D information to the extent that it was totally obliterated with a texture-filled type II diamond. These results suggest a flexible 2D computation for motion integration, which combines all available one-dimensional (edge) and 2D (feature) motion information to refine the estimate of object-motion direction over time.

  16. Precisely and Accurately Inferring Single-Molecule Rate Constants

    PubMed Central

    Kinz-Thompson, Colin D.; Bailey, Nevette A.; Gonzalez, Ruben L.

    2017-01-01

    The kinetics of biomolecular systems can be quantified by calculating the stochastic rate constants that govern the biomolecular state versus time trajectories (i.e., state trajectories) of individual biomolecules. To do so, the experimental signal versus time trajectories (i.e., signal trajectories) obtained from observing individual biomolecules are often idealized to generate state trajectories by methods such as thresholding or hidden Markov modeling. Here, we discuss approaches for idealizing signal trajectories and calculating stochastic rate constants from the resulting state trajectories. Importantly, we provide an analysis of how the finite length of signal trajectories restrict the precision of these approaches, and demonstrate how Bayesian inference-based versions of these approaches allow rigorous determination of this precision. Similarly, we provide an analysis of how the finite lengths and limited time resolutions of signal trajectories restrict the accuracy of these approaches, and describe methods that, by accounting for the effects of the finite length and limited time resolution of signal trajectories, substantially improve this accuracy. Collectively, therefore, the methods we consider here enable a rigorous assessment of the precision, and a significant enhancement of the accuracy, with which stochastic rate constants can be calculated from single-molecule signal trajectories. PMID:27793280

  17. Computer-Aided Diagnosis of Anterior Segment Eye Abnormalities using Visible Wavelength Image Analysis Based Machine Learning.

    PubMed

    S V, Mahesh Kumar; R, Gunasundari

    2018-06-02

    Eye disease is a major health problem among the elderly people. Cataract and corneal arcus are the major abnormalities that exist in the anterior segment eye region of aged people. Hence, computer-aided diagnosis of anterior segment eye abnormalities will be helpful for mass screening and grading in ophthalmology. In this paper, we propose a multiclass computer-aided diagnosis (CAD) system using visible wavelength (VW) eye images to diagnose anterior segment eye abnormalities. In the proposed method, the input VW eye images are pre-processed for specular reflection removal and the iris circle region is segmented using a circular Hough Transform (CHT)-based approach. The first-order statistical features and wavelet-based features are extracted from the segmented iris circle and used for classification. The Support Vector Machine (SVM) by Sequential Minimal Optimization (SMO) algorithm was used for the classification. In experiments, we used 228 VW eye images that belong to three different classes of anterior segment eye abnormalities. The proposed method achieved a predictive accuracy of 96.96% with 97% sensitivity and 99% specificity. The experimental results show that the proposed method has significant potential for use in clinical applications.

  18. Maternal caregiving and girls’ depressive symptoms and antisocial behavior trajectories: An examination among high-risk youth

    PubMed Central

    Harold, Gordon T.; Leve, Leslie D.; Kim, Hyoun K.; Mahedy, Liam; Gaysina, Darya; Thapar, Anita; Collishaw, Stephan

    2014-01-01

    Past research has identified parental depression and family-of-origin maltreatment as precursors to adolescent depression and antisocial behavior. Caregiving experiences have also been identified as a factor that may ameliorate or accentuate adolescent psychopathology trajectories. Using the unique attributes of two geographically diverse, yet complementary longitudinal research designs, the present study examined the role of maternal caregiver involvement as a factor that promotes resilience-based trajectories related to depressive symptom and antisocial behaviors among adolescent girls. The first sample comprises a group of US-based adolescent girls in foster care (n = 100; mean age = 11.50 years), all of whom have had a history of childhood maltreatment and removal from the home of their biological parent(s). The second sample comprises a group of UK-based adolescent girls at high familial risk for depression (n = 145; mean age = 11.70 years), with all girls having a biological mother who has experienced recurrent depression. Study analyses examined the role of maternal caregiving on girls’ trajectories of depression and antisocial behavior, while controlling for levels of co-occurring psychopathology at each time point across the study period. Results suggest increasing trajectories of depressive symptoms, controlling for antisocial behavior, for girls at familial risk for depression, but decreasing trajectories for girls in foster care. A similar pattern of results was noted for antisocial behavior trajectories, controlling for depressive symptoms. Maternal caregiver involvement was differentially related to intercept and slope parameters in both samples. Results are discussed with respect to the identification of family level promotive factors aimed at reducing negative developmental trajectories among high-risk youth. PMID:25422973

  19. Multiple Trajectories of Successful Aging of Older and Younger Cohorts

    ERIC Educational Resources Information Center

    Hsu, Hui-Chuan; Jones, Bobby L.

    2012-01-01

    Purpose: The purpose of this study was to apply group-based trajectory analysis to identify multiple successful aging trajectories by multiple indicators and to examine the factors related to successful aging among the elderly population in Taiwan. Design and Methods: Nation-representative longitudinal data collected from 1993 to 2007 and…

  20. Trajectories of Substance Use Disorders in Youth: Identifying and Predicting Group Memberships

    ERIC Educational Resources Information Center

    Lee, Chih-Yuan S.; Winters, Ken C.; Wall, Melanie M.

    2010-01-01

    This study used latent class regression to identify latent trajectory classes based on individuals' diagnostic course of substance use disorders (SUDs) from late adolescence to early adulthood as well as to examine whether several psychosocial risk factors predicted the trajectory class membership. The study sample consisted of 310 individuals…

  1. Predictors of Latent Trajectory Classes of Physical Dating Violence Victimization

    ERIC Educational Resources Information Center

    Brooks-Russell, Ashley; Foshee, Vangie A.; Ennett, Susan T.

    2013-01-01

    This study identified classes of developmental trajectories of physical dating violence victimization from grades 8 to 12 and examined theoretically-based risk factors that distinguished among trajectory classes. Data were from a multi-wave longitudinal study spanning 8th through 12th grade (n = 2,566; 51.9 % female). Growth mixture models were…

  2. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation

    NASA Astrophysics Data System (ADS)

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E.; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-03-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  3. C-arm based cone-beam CT using a two-concentric-arc source trajectory: system evaluation.

    PubMed

    Zambelli, Joseph; Zhuang, Tingliang; Nett, Brian E; Riddell, Cyril; Belanger, Barry; Chen, Guang-Hong

    2008-01-01

    The current x-ray source trajectory for C-arm based cone-beam CT is a single arc. Reconstruction from data acquired with this trajectory yields cone-beam artifacts for regions other than the central slice. In this work we present the preliminary evaluation of reconstruction from a source trajectory of two concentric arcs using a flat-panel detector equipped C-arm gantry (GE Healthcare Innova 4100 system, Waukesha, Wisconsin). The reconstruction method employed is a summation of FDK-type reconstructions from the two individual arcs. For the angle between arcs studied here, 30°, this method offers a significant reduction in the visibility of cone-beam artifacts, with the additional advantages of simplicity and ease of implementation due to the fact that it is a direct extension of the reconstruction method currently implemented on commercial systems. Reconstructed images from data acquired from the two arc trajectory are compared to those reconstructed from a single arc trajectory and evaluated in terms of spatial resolution, low contrast resolution, noise, and artifact level.

  4. Blast and ballistic trajectories in combat casualties: a preliminary analysis using a cartesian positioning system with MDCT.

    PubMed

    Folio, Les R; Fischer, Tatjana; Shogan, Paul; Frew, Michael; Dwyer, Andrew; Provenzale, James M

    2011-08-01

    The purpose of this study is to determine the agreement with which radiologists identify wound paths in vivo on MDCT and calculate missile trajectories on the basis of Cartesian coordinates using a Cartesian positioning system (CPS). Three radiologists retrospectively identified 25 trajectories on MDCT in 19 casualties who sustained penetrating trauma in Iraq. Trajectories were described qualitatively in terms of directional path descriptors and quantitatively as trajectory vectors. Directional descriptors, trajectory angles, and angles between trajectories were calculated based on Cartesian coordinates of entrance and terminus or exit recorded in x, y image and table space (z) using a Trajectory Calculator created using spreadsheet software. The consistency of qualitative descriptor determinations was assessed in terms of frequency of observer agreement and multirater kappa statistics. Consistency of trajectory vectors was evaluated in terms of distribution of magnitude of the angles between vectors and the differences between their paraaxial and parasagittal angles. In 68% of trajectories, the observers' visual assessment of qualitative descriptors was congruent. Calculated descriptors agreed across observers in 60% of the trajectories. Estimated kappa also showed good agreement (0.65-0.79, p < 0.001); 70% of calculated paraaxial and parasagittal angles were within 20° across observers, and 61.3% of angles between trajectory vectors were within 20° across observers. Results show agreement of visually assessed and calculated qualitative descriptors and trajectory angles among observers. The Trajectory Calculator describes trajectories qualitatively similar to radiologists' visual assessment, showing the potential feasibility of automated trajectory analysis.

  5. Geometry and Gesture-Based Features from Saccadic Eye-Movement as a Biometric in Radiology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Tracy; Tourassi, Georgia; Yoon, Hong-Jun

    In this study, we present a novel application of sketch gesture recognition on eye-movement for biometric identification and estimating task expertise. The study was performed for the task of mammographic screening with simultaneous viewing of four coordinated breast views as typically done in clinical practice. Eye-tracking data and diagnostic decisions collected for 100 mammographic cases (25 normal, 25 benign, 50 malignant) and 10 readers (three board certified radiologists and seven radiology residents), formed the corpus for this study. Sketch gesture recognition techniques were employed to extract geometric and gesture-based features from saccadic eye-movements. Our results show that saccadic eye-movement, characterizedmore » using sketch-based features, result in more accurate models for predicting individual identity and level of expertise than more traditional eye-tracking features.« less

  6. Drinking and smoking patterns during pregnancy: Development of group-based trajectories in the Safe Passage Study.

    PubMed

    Dukes, Kimberly; Tripp, Tara; Willinger, Marian; Odendaal, Hein; Elliott, Amy J; Kinney, Hannah C; Robinson, Fay; Petersen, Julie M; Raffo, Cheryl; Hereld, Dale; Groenewald, Coen; Angal, Jyoti; Hankins, Gary; Burd, Larry; Fifer, William P; Myers, Michael M; Hoffman, Howard J; Sullivan, Lisa

    2017-08-01

    Precise identification of drinking and smoking patterns during pregnancy is crucial to better understand the risk to the fetus. The purpose of this manuscript is to describe the methodological approach used to define prenatal drinking and smoking trajectories from a large prospective pregnancy cohort, and to describe maternal characteristics associated with different exposure patterns. In the Safe Passage Study, detailed information regarding quantity, frequency, and timing of exposure was self-reported up to four times during pregnancy and at 1 month post-delivery. Exposure trajectories were developed using data from 11,692 pregnancies (9912 women) where pregnancy outcome was known. Women were from three diverse populations: white (23%) and American Indian (17%) in the Northern Plains, US, and mixed ancestry (59%) in South Africa (other/not specified [1%]). Group-based trajectory modeling was used to identify 5 unique drinking trajectories (1 none/minimal, 2 quitting groups, 2 continuous groups) and 7 smoking trajectories (1 none/minimal, 2 quitting groups, 4 continuous groups). Women with pregnancies assigned to the low- or high-continuous drinking groups were less likely to have completed high school and were more likely to have enrolled in the study in the third trimester, be of mixed ancestry, or be depressed than those assigned to the none/minimal or quit-drinking groups. Results were similar when comparing continuous smokers to none/minimal and quit-smoking groups. Further, women classified as high- or low-continuous drinkers were more likely to smoke at moderate-, high-, and very high-continuous levels, as compared to women classified as non-drinkers and quitters. This is the first study of this size to utilize group-based trajectory modeling to identify unique prenatal drinking and smoking trajectories. These trajectories will be used in future analyses to determine which specific exposure patterns subsequently manifest as poor peri- and postnatal outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Airborne Tactical Intent-Based Conflict Resolution Capability

    NASA Technical Reports Server (NTRS)

    Wing, David J.; Vivona, Robert A.; Roscoe, David A.

    2009-01-01

    Trajectory-based operations with self-separation involve the aircraft taking the primary role in the management of its own trajectory in the presence of other traffic. In this role, the flight crew assumes the responsibility for ensuring that the aircraft remains separated from all other aircraft by at least a minimum separation standard. These operations are enabled by cooperative airborne surveillance and by airborne automation systems that provide essential monitoring and decision support functions for the flight crew. An airborne automation system developed and used by NASA for research investigations of required functionality is the Autonomous Operations Planner. It supports the flight crew in managing their trajectory when responsible for self-separation by providing monitoring and decision support functions for both strategic and tactical flight modes. The paper focuses on the latter of these modes by describing a capability for tactical intent-based conflict resolution and its role in a comprehensive suite of automation functions supporting trajectory-based operations with self-separation.

  8. A laser-based eye-tracking system.

    PubMed

    Irie, Kenji; Wilson, Bruce A; Jones, Richard D; Bones, Philip J; Anderson, Tim J

    2002-11-01

    This paper reports on the development of a new eye-tracking system for noninvasive recording of eye movements. The eye tracker uses a flying-spot laser to selectively image landmarks on the eye and, subsequently, measure horizontal, vertical, and torsional eye movements. Considerable work was required to overcome the adverse effects of specular reflection of the flying-spot from the surface of the eye onto the sensing elements of the eye tracker. These effects have been largely overcome, and the eye-tracker has been used to document eye movement abnormalities, such as abnormal torsional pulsion of saccades, in the clinical setting.

  9. A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor.

    PubMed

    Kim, Ki Wan; Hong, Hyung Gil; Nam, Gi Pyo; Park, Kang Ryoung

    2017-06-30

    The necessity for the classification of open and closed eyes is increasing in various fields, including analysis of eye fatigue in 3D TVs, analysis of the psychological states of test subjects, and eye status tracking-based driver drowsiness detection. Previous studies have used various methods to distinguish between open and closed eyes, such as classifiers based on the features obtained from image binarization, edge operators, or texture analysis. However, when it comes to eye images with different lighting conditions and resolutions, it can be difficult to find an optimal threshold for image binarization or optimal filters for edge and texture extraction. In order to address this issue, we propose a method to classify open and closed eye images with different conditions, acquired by a visible light camera, using a deep residual convolutional neural network. After conducting performance analysis on both self-collected and open databases, we have determined that the classification accuracy of the proposed method is superior to that of existing methods.

  10. ANALYTiC: An Active Learning System for Trajectory Classification.

    PubMed

    Soares Junior, Amilcar; Renso, Chiara; Matwin, Stan

    2017-01-01

    The increasing availability and use of positioning devices has resulted in large volumes of trajectory data. However, semantic annotations for such data are typically added by domain experts, which is a time-consuming task. Machine-learning algorithms can help infer semantic annotations from trajectory data by learning from sets of labeled data. Specifically, active learning approaches can minimize the set of trajectories to be annotated while preserving good performance measures. The ANALYTiC web-based interactive tool visually guides users through this annotation process.

  11. Design and Development of a Rapid Research, Design, and Development Platform for In-Situ Testing of Tools and Concepts for Trajectory-Based Operations

    NASA Technical Reports Server (NTRS)

    Underwood, Matthew C.

    2017-01-01

    To provide justification for equipping a fleet of aircraft with avionics capable of supporting trajectory-based operations, significant flight testing must be accomplished. However, equipping aircraft with these avionics and enabling technologies to communicate the clearances required for trajectory-based operations is cost-challenging using conventional avionics approaches. This paper describes an approach to minimize the costs and risks of flight testing these technologies in-situ, discusses the test-bed platform developed, and highlights results from a proof-of-concept flight test campaign that demonstrates the feasibility and efficiency of this approach.

  12. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Third Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2012-01-01

    This paper presents an overview of the third major revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 11 (ASTAR11). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required time-of-arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft.

  13. Role of the posterior parietal cortex in updating reaching movements to a visual target.

    PubMed

    Desmurget, M; Epstein, C M; Turner, R S; Prablanc, C; Alexander, G E; Grafton, S T

    1999-06-01

    The exact role of posterior parietal cortex (PPC) in visually directed reaching is unknown. We propose that, by building an internal representation of instantaneous hand location, PPC computes a dynamic motor error used by motor centers to correct the ongoing trajectory. With unseen right hands, five subjects pointed to visual targets that either remained stationary or moved during saccadic eye movements. Transcranial magnetic stimulation (TMS) was applied over the left PPC during target presentation. Stimulation disrupted path corrections that normally occur in response to target jumps, but had no effect on those directed at stationary targets. Furthermore, left-hand movement corrections were not blocked, ruling out visual or oculomotor effects of stimulation.

  14. Holmes Tremor Secondary to a Stabbing Lesion in the Midbrain.

    PubMed

    Cury, Rubens Gisbert; Barbosa, Egberto Reis; Freitas, Christian; de Souza Godoy, Luis Filipe; Paiva, Wellingson Silva

    2017-01-01

    The development of Holmes tremor (HT) after a direct lesion of the midbrain has rarely been reported in the literature, although several etiologies have been linked with HT, such as stroke, brainstem tumors, multiple sclerosis, head trauma, or infections. A 31-year-old male, having been stabbed in the right eye, presented with a rest and action tremor in the left upper limb associated with left hemiparesis with corresponding post-contrast volumetric magnetic resonance imaging T1 with sagittal oblique reformation showing the knife trajectory reaching the right midbrain. Despite the rarity of the etiology of HT in the present case, clinicians working with persons with brain injuries should be aware of this type of situation.

  15. Minimum impulse trajectories for Mars round trip missions

    NASA Technical Reports Server (NTRS)

    Horvat, Glen M.; Alexander, Stephen W.

    1992-01-01

    Data are presented for minimum-impulse earth-Mars round-trip trajectories for the 2010 to 2027 Mars launch opportunities. Round-trip mission times from 120 to 600 days, including a 30-day rendezvous at Mars, for direct trajectories and trajectories utilizing a Venus gravitational assist are considered. Optimal planetary launch and arrival dates and total impulse requirements are based on all maneuvers being performed propulsively with no finite burn or other losses. Direct trajectories have the lowest impulse requirements for shorter mission times and Venus gravitational assist trajectories have the lowest impulse requirements for longer mission times. It is shown that one can depart on trajectories to Mars, beginning with lower energy trajectories to the moon. The fuel savings varies, depending on the final energy level required and on the swingby procedure used. Procedures discussed include single lunar swingbys, double-powered or unpowered lunar swingbys, third lunar flybys a year later, and gravity assists by Venus and earth after the final lunar swingby.

  16. A Robot Trajectory Optimization Approach for Thermal Barrier Coatings Used for Free-Form Components

    NASA Astrophysics Data System (ADS)

    Cai, Zhenhua; Qi, Beichun; Tao, Chongyuan; Luo, Jie; Chen, Yuepeng; Xie, Changjun

    2017-10-01

    This paper is concerned with a robot trajectory optimization approach for thermal barrier coatings. As the requirements of high reproducibility of complex workpieces increase, an optimal thermal spraying trajectory should not only guarantee an accurate control of spray parameters defined by users (e.g., scanning speed, spray distance, scanning step, etc.) to achieve coating thickness homogeneity but also help to homogenize the heat transfer distribution on the coating surface. A mesh-based trajectory generation approach is introduced in this work to generate path curves on a free-form component. Then, two types of meander trajectories are generated by performing a different connection method. Additionally, this paper presents a research approach for introducing the heat transfer analysis into the trajectory planning process. Combining heat transfer analysis with trajectory planning overcomes the defects of traditional trajectory planning methods (e.g., local over-heating), which helps form the uniform temperature field by optimizing the time sequence of path curves. The influence of two different robot trajectories on the process of heat transfer is estimated by coupled FEM models which demonstrates the effectiveness of the presented optimization approach.

  17. Urban Adolescents' Out-of-School Activity Profiles: Associations with Youth, Family, and School Transition Characteristics

    ERIC Educational Resources Information Center

    Pedersen, Sara

    2005-01-01

    This study applied individual growth trajectory analyses and person-oriented analysis to identify common profiles of out-of-school activity engagement trajectories among racially and ethnically diverse inner city teens (N = 1,430). On average, teens exhibited declining trajectories of participation in school-based and team sports activities and…

  18. Substance Use and Abuse Trajectories across Adolescence: A Latent Trajectory Analysis of a Community-Recruited Sample of Girls

    ERIC Educational Resources Information Center

    Marti, C. Nathan; Stice, Eric; Springer, David W.

    2010-01-01

    We used data from a school-based study of 496 adolescent girls to identify qualitatively distinct substance use and substance abuse developmental trajectory groups and tested whether the problematic groups differed from the non-problematic groups on baseline and outcome validation variables. Results identified four substance use groups (late…

  19. Group-Based Modeling of Time Spent in Structured Activity Trajectories from Middle Childhood into Early Adolescence

    ERIC Educational Resources Information Center

    Mata, Andrea D.; van Dulmen, Manfred H. M.

    2012-01-01

    This study investigated trajectories of time spent in structured activities from middle childhood to early adolescence by using data from the National Institute of Child Health & Human Development (NICHD) Study of Early Child Care. We used latent class growth analyses and identified five trajectories (stable low, increasing high, decreasing low,…

  20. Mining moving object trajectories in location-based services for spatio-temporal database update

    NASA Astrophysics Data System (ADS)

    Guo, Danhuai; Cui, Weihong

    2008-10-01

    Advances in wireless transmission and mobile technology applied to LBS (Location-based Services) flood us with amounts of moving objects data. Vast amounts of gathered data from position sensors of mobile phones, PDAs, or vehicles hide interesting and valuable knowledge and describe the behavior of moving objects. The correlation between temporal moving patterns of moving objects and geo-feature spatio-temporal attribute was ignored, and the value of spatio-temporal trajectory data was not fully exploited too. Urban expanding or frequent town plan change bring about a large amount of outdated or imprecise data in spatial database of LBS, and they cannot be updated timely and efficiently by manual processing. In this paper we introduce a data mining approach to movement pattern extraction of moving objects, build a model to describe the relationship between movement patterns of LBS mobile objects and their environment, and put up with a spatio-temporal database update strategy in LBS database based on trajectories spatiotemporal mining. Experimental evaluation reveals excellent performance of the proposed model and strategy. Our original contribution include formulation of model of interaction between trajectory and its environment, design of spatio-temporal database update strategy based on moving objects data mining, and the experimental application of spatio-temporal database update by mining moving objects trajectories.

  1. A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories

    NASA Technical Reports Server (NTRS)

    Narkawicz, Anthony; Munoz, Cesar

    2015-01-01

    In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.

  2. Evaluation of a Web-Based Training in Smoking Cessation Counseling Targeting U.S. Eye-Care Professionals

    ERIC Educational Resources Information Center

    Asfar, Taghrid; Lee, David J.; Lam, Byron L.; Murchison, Ann P.; Mayro, Eileen L.; Owsley, Cynthia; McGwin, Gerald; Gower, Emily W.; Friedman, David S.; Saaddine, Jinan

    2018-01-01

    Background: Smoking causes blindness-related diseases. Eye-care providers are uniquely positioned to help their patients quit smoking. Aims: Using a pre-/postevaluation design, this study evaluated a web-based training in smoking cessation counseling targeting eye-care providers. Method: The training was developed based on the 3A1R protocol:…

  3. A Smoothed Eclipse Model for Solar Electric Propulsion Trajectory Optimization

    NASA Technical Reports Server (NTRS)

    Aziz, Jonathan D.; Scheeres, Daniel J.; Parker, Jeffrey S.; Englander, Jacob A.

    2017-01-01

    Solar electric propulsion (SEP) is the dominant design option for employing low-thrust propulsion on a space mission. Spacecraft solar arrays power the SEP system but are subject to blackout periods during solar eclipse conditions. Discontinuity in power available to the spacecraft must be accounted for in trajectory optimization, but gradient-based methods require a differentiable power model. This work presents a power model that smooths the eclipse transition from total eclipse to total sunlight with a logistic function. Example trajectories are computed with differential dynamic programming, a second-order gradient-based method.

  4. Trajectory-Based Performance Assessment for Aviation Weather Information

    NASA Technical Reports Server (NTRS)

    Vigeant-Langlois, Laurence; Hansman, R. John, Jr.

    2003-01-01

    Based on an analysis of aviation decision-makers' time-related weather information needs, an abstraction of the aviation weather decision task was developed, that involves 4-D intersection testing between aircraft trajectory hypertubes and hazardous weather hypervolumes. The framework builds on the hypothesis that hazardous meteorological fields can be simplified using discrete boundaries of surrogate threat attributes. The abstractions developed in the framework may be useful in studying how to improve the performance of weather forecasts from the trajectory-centric perspective, as well as for developing useful visualization techniques of weather information.

  5. Statistical virtual eye model based on wavefront aberration

    PubMed Central

    Wang, Jie-Mei; Liu, Chun-Ling; Luo, Yi-Ning; Liu, Yi-Guang; Hu, Bing-Jie

    2012-01-01

    Wavefront aberration affects the quality of retinal image directly. This paper reviews the representation and reconstruction of wavefront aberration, as well as the construction of virtual eye model based on Zernike polynomial coefficients. In addition, the promising prospect of virtual eye model is emphasized. PMID:23173112

  6. Survey of eye practitioners' preference of diagnostic tests and treatment modalities for dry eye in Ghana.

    PubMed

    Asiedu, Kofi; Kyei, Samuel; Ayobi, Benedict; Agyemang, Frank Okyere; Ablordeppey, Reynolds Kwame

    2016-12-01

    This study sought to provide an evidence-based profile of the diagnosis, treatment and knowledge or opinions on dry eye among optometrists and ophthalmologists in Ghana. This was a cross-sectional survey RESULTS: The responses of 162 participants are included in the analysis. The most commonly used test to diagnosed dry eye disease was tear break-up time followed by patient history. The most common symptom doctors heard from dry eye patients were burning sensation followed by foreign body sensation. The most often prescribed first- line treatment for dry eye was aqueous-based artificial tears followed by lipid-based artificial tears. Most practitioners considered meibomian gland dysfunction as the most common cause of dry eye followed by pterygium. The most often used test to guide or gauge therapeutic effect is patient history followed closely by tear break-up time. Most practitioners reported that 10%-20% of all their patients they see in a day are diagnosed of dry eye. This study showed tear break up time was the main test majority of practitioners in Ghana used to diagnose dry eye but patient history was the main test used to gauge therapeutic effect over time. Burning sensation was the commonest symptom practitioners heard from dry eye patients whilst artificial tears was their main and first-line treatment for dry eye. Copyright © 2016 British Contact Lens Association. Published by Elsevier Ltd. All rights reserved.

  7. Developmental Trajectories of Physical Activity, Sports, and Television Viewing During Childhood to Young Adulthood: Iowa Bone Development Study.

    PubMed

    Kwon, Soyang; Janz, Kathleen F; Letuchy, Elena M; Burns, Trudy L; Levy, Steven M

    2015-07-01

    The diverse developmental patterns of obesogenic behaviors during childhood and adolescence can be better understood by using new analytic approaches to assess the heterogeneity in variation during growth and development and to map the clustering of behavior patterns. To identify distinct trajectories of daily time spent in moderate- to vigorous-intensity physical activity (MVPA) from ages 5 to 19 years and to examine the associations of MVPA trajectories with sports participation and television viewing trajectories. Cohort members in the prospective population-based Iowa Bone Development Study participated in MVPA assessments via accelerometry from September 16, 1998, to December 9, 2013, at ages 5, 8, 11, 13, 15, 17, and 19 years and completed a questionnaire every 6 months on sports participation and daily time spent in television viewing. Trajectories of MVPA (minutes per day), participation in organized sports (yes or no), and television viewing time (hours per day). Based on the data from 537 participants (50.1% females; 94.6% white), we identified 4 MVPA trajectories: consistently inactive (14.9%), consistently active (18.1%), decreasing moderate physical activity (52.9%), and substantially decreasing high physical activity (14.1%). All participants in the consistently inactive trajectory also followed a trajectory of no participation in sports. The consistently active trajectory was associated with decreasing an already low television viewing trajectory (P < .001). This study provided a nuanced look at the known decrease in MVPA during childhood and adolescence. Sports participation could be a critical way to avoid the consistently inactive pattern. Most important, we identified a subset of participants who maintained a seemingly healthy level of MVPA from childhood to young adulthood. The developmental pathways of physical activity and television viewing behaviors could be related. Additional studies should examine the determinants and health consequences of these specific MVPA trajectories.

  8. Trajectories of Listeria-type motility in two dimensions

    NASA Astrophysics Data System (ADS)

    Wen, Fu-Lai; Leung, Kwan-tai; Chen, Hsuan-Yi

    2012-12-01

    Force generated by actin polymerization is essential in cell motility and the locomotion of organelles or bacteria such as Listeria monocytogenes. Both in vivo and in vitro experiments on actin-based motility have observed geometrical trajectories including straight lines, circles, S-shaped curves, and translating figure eights. This paper reports a phenomenological model of an actin-propelled disk in two dimensions that generates geometrical trajectories. Our model shows that when the evolutions of actin density and force per filament on the disk are strongly coupled to the disk self-rotation, it is possible for a straight trajectory to lose its stability. When the instability is due to a pitchfork bifurcation, the resulting trajectory is a circle; a straight trajectory can also lose stability through a Hopf bifurcation, and the resulting trajectory is an S-shaped curve. We also show that a half-coated disk, which mimics the distribution of functionalized proteins in Listeria, also undergoes similar symmetry-breaking bifurcations when the straight trajectory loses stability. For both a fully coated disk and a half-coated disk, when the trajectory is an S-shaped curve, the angular frequency of the disk self-rotation is different from that of the disk trajectory. However, for circular trajectories, these angular frequencies are different for a fully coated disk but the same for a half-coated disk.

  9. Growth Trajectories of Health Behaviors from Adolescence through Young Adulthood.

    PubMed

    Wiium, Nora; Breivik, Kyrre; Wold, Bente

    2015-10-28

    Based on nine waves of data collected during a period of 17 years (1990-2007), the present study explored different developmental trajectories of the following unhealthy behaviors: regular smoking, lack of regular exercise, lack of daily fruit intake, and drunkenness. A baseline sample of 1195 13-year-old pupils was from 22 randomly selected schools in the Hordaland County in western Norway. Latent class growth analysis revealed three developmental trajectories. The first trajectory was a conventional trajectory, comprising 36.3% of participants, who showed changes in smoking, physical exercise, fruit intake, and drunkenness consistent with the prevailing age specific norms of these behaviors in the Norwegian society at the time. The second trajectory was a passive trajectory, comprising 25.5% of participants, who reported low levels of both healthy and unhealthy behaviors during the 17-year period. The third trajectory was an unhealthy trajectory, comprising 38.2% of participants, who had high levels of unhealthy behaviors over time. Several covariates were examined, but only sex and mother's and father's educational levels were found to be significantly associated with the identified trajectories. While these findings need to be replicated in future studies, the identification of the different trajectories suggests the need to tailor intervention according to specific needs.

  10. The Trajectory and the Related Physical and Social Determinants of Body Mass Index in Elementary School Children: Results from the Child and Adolescent Behaviors in Long-Term Evolution Study

    PubMed Central

    Chang, Hsing-Yi; Luh, Dih-Ling; Hurng, Baai-Shyun; Yen, Lee-Lan

    2014-01-01

    This study explored developmental trajectory patterns of BMI and associated factors. Participants included 1,609 students who were followed from age 7 to 12 years. Data collection involved annual self-administered questionnaires and records of height and weight. An ecological model was used to identify the factors associated with BMI trajectories. Group-based trajectory models and multinomial logit models were used in the statistical analysis. There were gender differences in BMI trajectories. Among boys, four BMI trajectories were normal or slightly underweight, persistently normal weight, overweight becoming obese, and persistently obese. Among girls, four BMI trajectories were persistently slightly underweight, persistently normal weight, persistently overweight, and persistently obese. The mean BMI in each trajectory group demonstrated an upward trend over time. In boys, BMI trajectories were significantly associated with after-school exercise, academic performance, family interactions, overweight parents, and father's education level. In girls, BMI trajectories were significantly associated with television viewing or computer use, family interactions, peer interactions, and overweight parents. Children under age 7 years who are already overweight or obese are an important target for interventions. The different factors associated with BMI trajectories can be used for targeting high risk groups. PMID:25114800

  11. Trajectory optimization for an asymmetric launch vehicle. M.S. Thesis - MIT

    NASA Technical Reports Server (NTRS)

    Sullivan, Jeanne Marie

    1990-01-01

    A numerical optimization technique is used to fully automate the trajectory design process for an symmetric configuration of the proposed Advanced Launch System (ALS). The objective of the ALS trajectory design process is the maximization of the vehicle mass when it reaches the desired orbit. The trajectories used were based on a simple shape that could be described by a small set of parameters. The use of a simple trajectory model can significantly reduce the computation time required for trajectory optimization. A predictive simulation was developed to determine the on-orbit mass given an initial vehicle state, wind information, and a set of trajectory parameters. This simulation utilizes an idealized control system to speed computation by increasing the integration time step. The conjugate gradient method is used for the numerical optimization of on-orbit mass. The method requires only the evaluation of the on-orbit mass function using the predictive simulation, and the gradient of the on-orbit mass function with respect to the trajectory parameters. The gradient is approximated with finite differencing. Prelaunch trajectory designs were carried out using the optimization procedure. The predictive simulation is used in flight to redesign the trajectory to account for trajectory deviations produced by off-nominal conditions, e.g., stronger than expected head winds.

  12. Growth Trajectories of Health Behaviors from Adolescence through Young Adulthood

    PubMed Central

    Wiium, Nora; Breivik, Kyrre; Wold, Bente

    2015-01-01

    Based on nine waves of data collected during a period of 17 years (1990–2007), the present study explored different developmental trajectories of the following unhealthy behaviors: regular smoking, lack of regular exercise, lack of daily fruit intake, and drunkenness. A baseline sample of 1195 13-year-old pupils was from 22 randomly selected schools in the Hordaland County in western Norway. Latent class growth analysis revealed three developmental trajectories. The first trajectory was a conventional trajectory, comprising 36.3% of participants, who showed changes in smoking, physical exercise, fruit intake, and drunkenness consistent with the prevailing age specific norms of these behaviors in the Norwegian society at the time. The second trajectory was a passive trajectory, comprising 25.5% of participants, who reported low levels of both healthy and unhealthy behaviors during the 17-year period. The third trajectory was an unhealthy trajectory, comprising 38.2% of participants, who had high levels of unhealthy behaviors over time. Several covariates were examined, but only sex and mother’s and father’s educational levels were found to be significantly associated with the identified trajectories. While these findings need to be replicated in future studies, the identification of the different trajectories suggests the need to tailor intervention according to specific needs. PMID:26516889

  13. Gaze Dynamics in the Recognition of Facial Expressions of Emotion.

    PubMed

    Barabanschikov, Vladimir A

    2015-01-01

    We studied preferably fixated parts and features of human face in the process of recognition of facial expressions of emotion. Photographs of facial expressions were used. Participants were to categorize these as basic emotions; during this process, eye movements were registered. It was found that variation in the intensity of an expression is mirrored in accuracy of emotion recognition; it was also reflected by several indices of oculomotor function: duration of inspection of certain areas of the face, its upper and bottom or right parts, right and left sides; location, number and duration of fixations, viewing trajectory. In particular, for low-intensity expressions, right side of the face was found to be attended predominantly (right-side dominance); the right-side dominance effect, was, however, absent for expressions of high intensity. For both low- and high-intensity expressions, upper face part was predominantly fixated, though with greater fixation of high-intensity expressions. The majority of trials (70%), in line with findings in previous studies, revealed a V-shaped pattern of inspection trajectory. No relationship, between accuracy of recognition of emotional expressions, was found, though, with either location and duration of fixations or pattern of gaze directedness in the face. © The Author(s) 2015.

  14. ASSESSMENT OF FUNCTIONAL CHANGES TEAR PRODUCTION UNDER THE ACTION OF THE EYE DROPS ON THE BASE OF NATURAL MOLECULE OF ECTOINE AND ARTIFICIAL TEARS IN PATIENTS WITH DRY EYE SYNDROME ON THE BACKGROUND OF ENDOCRINE OPHTHALMOPATHY.

    PubMed

    Veselovskaya, N N; Zherebko, I B

    Conducted a comparative analysis of functional changes in tear production in patients with dry eye syndrome and endocrine ophthalmopathy in the conditions of the long-term acting of preservative free medications based on natural substances. A total of 30 people, aged 35 to 53 years old with clinical manifestations of DES on the background of EO were divided on two groups. In I group eye drops of ectoine and in II - artificial tears were administered. The examination included general and specific methods. The term of follow up - 30 days. It was found that long-term use of preservative free eye drops based on ectoine leads to more expressive positive changes in the condition of the anterior surface of the eye and the secretion and quality of the tear.

  15. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Sixth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the sixth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  16. Development towards compact nitrocellulose interferometric biochips for dry eye diagnosis based on MMP9, S100A6 and CST4 biomarkers using a Point-of-Care device

    NASA Astrophysics Data System (ADS)

    Santamaría, Beatriz; Laguna, María. Fe; López-Romero, David; López-Hernandez, A.; Sanza, F. J.; Lavín, A.; Casquel, R.; Maigler, M.; Holgado, M.

    2018-02-01

    A novel compact optical biochip based on a thin layer-sensing BICELL surface of nitrocellulose is used for in-situ labelfree detection of dry eye disease (DED). In this work the development of a compact biosensor that allows obtaining quantitative diagnosis with a limited volume of sample is reported. The designed sensors can be analyzed with an optical integrated Point-of-Care read-out system based on the "Increase Relative Optical Power" principle which enhances the performance and Limit of Detection. Several proteins involved with dry eye dysfunction have been validated as biomarkers. Presented biochip analyzes three of those biomarkers: MMP9, S100A6 and CST4. BICELLs based on nitrocellulose permit to immobilize antibodies for each biomarker recognition. The optical response obtained from the biosensor through the readout platform is capable to recognize specifically the desired proteins in the concentrations range for control eye (CE) and dry eye syndrome (DES). Preliminary results obtained will allow the development of a dry eye detection device useful in the area of ophthalmology and applicable to other possible diseases related to the eye dysfunction.

  17. Ascent trajectory dispersion analysis for WTR heads-up space shuttle trajectory

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The results of a Space Transportation System ascent trajectory dispersion analysis are discussed. The purpose is to provide critical trajectory parameter values for assessing the Space Shuttle in a heads-up configuration launched from the Western Test Range (STR). This analysis was conducted using a trajectory profile based on a launch from the WTR in December. The analysis consisted of the following steps: (1) nominal trajectories were simulated under the conditions as specified by baseline reference mission guidelines; (2) dispersion trajectories were simulated using predetermined parametric variations; (3) requirements for a system-related composite trajectory were determined by a root-sum-square (RSS) analysis of the positive deviations between values of the aerodynamic heating indicator (AHI) generated by the dispersion and nominal trajectories; (4) using the RSS assessment as a guideline, the system related composite trajectory was simulated by combinations of dispersion parameters which represented major contributors; (5) an assessment of environmental perturbations via a RSS analysis was made by the combination of plus or minus 2 sigma atmospheric density variation and 95% directional design wind dispersions; (6) maximum aerodynamic heating trajectories were simulated by variation of dispersion parameters which would emulate the summation of the system-related RSS and environmental RSS values of AHI. The maximum aerodynamic heating trajectories were simulated consistent with the directional winds used in the environmental analysis.

  18. Electrooculography-based continuous eye-writing recognition system for efficient assistive communication systems

    PubMed Central

    Shinozaki, Takahiro

    2018-01-01

    Human-computer interface systems whose input is based on eye movements can serve as a means of communication for patients with locked-in syndrome. Eye-writing is one such system; users can input characters by moving their eyes to follow the lines of the strokes corresponding to characters. Although this input method makes it easy for patients to get started because of their familiarity with handwriting, existing eye-writing systems suffer from slow input rates because they require a pause between input characters to simplify the automatic recognition process. In this paper, we propose a continuous eye-writing recognition system that achieves a rapid input rate because it accepts characters eye-written continuously, with no pauses. For recognition purposes, the proposed system first detects eye movements using electrooculography (EOG), and then a hidden Markov model (HMM) is applied to model the EOG signals and recognize the eye-written characters. Additionally, this paper investigates an EOG adaptation that uses a deep neural network (DNN)-based HMM. Experiments with six participants showed an average input speed of 27.9 character/min using Japanese Katakana as the input target characters. A Katakana character-recognition error rate of only 5.0% was achieved using 13.8 minutes of adaptation data. PMID:29425248

  19. Eye Health and Safety Among Latino Farmworkers

    PubMed Central

    Verma, Amit; Schulz, Mark R.; Quandt, Sara A.; Robinson, Erin N.; Grzywacz, Joseph G.; Chen, Haiying; Arcury, Thomas A.

    2011-01-01

    Farmworkers face a variety of risk factors for eye injuries. Measures of eye protection use and of eye safety knowledge and beliefs are based on a survey of 300 Latino farmworkers in North Carolina. Few farmworkers report using eye protection (8.3%); most (92.3%) report that employers do not provide eye protection. Approximately 70% report that they are not trained in preventing eye injuries; 81% believe that their chances of getting an eye injury are low. Many farmworkers choose to take risks in order to save time. Interventions are needed that target farmworker knowledge and beliefs about eye safety. PMID:21462026

  20. Space shuttle engineering and operations support. ALT separation reference trajectories for tailcone on orbiter forward and aft CG configurations. Mission planning, mission analysis and software formulation

    NASA Technical Reports Server (NTRS)

    Glenn, G. M.

    1977-01-01

    A preflight analysis of the ALT separation reference trajectories for the tailcone on, forward, and aft cg orbiter configurations is documented. The ALT separation reference trajectories encompass the time from physical separation of the orbiter from the carrier to orbiter attainment of the maximum ALT interface airspeed. The trajectories include post separation roll maneuvers by both vehicles and are generated using the final preflight data base. The trajectories so generated satisfy all known separation design criteria and violate no known constraints. The requirement for this analysis is given along with the specifications, assumptions, and analytical approach used to generate the separation trajectories. The results of the analytical approach are evaluated, and conclusions and recommendations are summarized.

  1. The power of a single trajectory

    NASA Astrophysics Data System (ADS)

    Schnellbächer, Nikolas D.; Schwarz, Ulrich S.

    2018-03-01

    Random walks are often evaluated in terms of their mean squared displacements, either for a large number of trajectories or for one very long trajectory. An alternative evaluation is based on the power spectral density, but here it is less clear which information can be extracted from a single trajectory. For continuous-time Brownian motion, Krapf et al now have mathematically proven that the one property that can be reliably extracted from a single trajectory is the frequency dependence of the ensemble-averaged power spectral density (Krapf et al 2018 New J. Phys. 20 023029). Their mathematical analysis also identifies the appropriate frequency window for this procedure and shows that the diffusion coefficient can be extracted by averaging over a small number of trajectories. The authors have verified their analytical results both by computer simulations and experiments.

  2. Intraocular lens based on double-liquid variable-focus lens.

    PubMed

    Peng, Runling; Li, Yifan; Hu, Shuilan; Wei, Maowei; Chen, Jiabi

    2014-01-10

    In this work, the crystalline lens in the Gullstrand-Le Grand human eye model is replaced by a double-liquid variable-focus lens, the structure data of which are based on theoretical analysis and experimental results. When the pseudoaphakic eye is built in Zemax, aspherical surfaces are introduced to the double-liquid variable-focus lens to reduce the axial spherical aberration existent in the system. After optimization, the zoom range of the pseudoaphakic eye greatly exceeds that of normal human eyes, and the spot size on an image plane basically reaches the normal human eye's limit of resolution.

  3. Efference Copy Failure during Smooth Pursuit Eye Movements in Schizophrenia

    PubMed Central

    Dias, Elisa C.; Sanchez, Jamie L.; Schütz, Alexander C.; Javitt, Daniel C.

    2013-01-01

    Abnormal smooth pursuit eye movements in patients with schizophrenia are often considered a consequence of impaired motion perception. Here we used a novel motion prediction task to assess the effects of abnormal pursuit on perception in human patients. Schizophrenia patients (n = 15) and healthy controls (n = 16) judged whether a briefly presented moving target (“ball”) would hit/miss a stationary vertical line segment (“goal”). To relate prediction performance and pursuit directly, we manipulated eye movements: in half of the trials, observers smoothly tracked the ball; in the other half, they fixated on the goal. Strict quality criteria ensured that pursuit was initiated and that fixation was maintained. Controls were significantly better in trajectory prediction during pursuit than during fixation, their performance increased with presentation duration, and their pursuit gain and perceptual judgments were correlated. Such perceptual benefits during pursuit may be due to the use of extraretinal motion information estimated from an efference copy signal. With an overall lower performance in pursuit and perception, patients showed no such pursuit advantage and no correlation between pursuit gain and perception. Although patients' pursuit showed normal improvement with longer duration, their prediction performance failed to benefit from duration increases. This dissociation indicates relatively intact early visual motion processing, but a failure to use efference copy information. Impaired efference function in the sensory system may represent a general deficit in schizophrenia and thus contribute to symptoms and functional outcome impairments associated with the disorder. PMID:23864667

  4. Efference copy failure during smooth pursuit eye movements in schizophrenia.

    PubMed

    Spering, Miriam; Dias, Elisa C; Sanchez, Jamie L; Schütz, Alexander C; Javitt, Daniel C

    2013-07-17

    Abnormal smooth pursuit eye movements in patients with schizophrenia are often considered a consequence of impaired motion perception. Here we used a novel motion prediction task to assess the effects of abnormal pursuit on perception in human patients. Schizophrenia patients (n = 15) and healthy controls (n = 16) judged whether a briefly presented moving target ("ball") would hit/miss a stationary vertical line segment ("goal"). To relate prediction performance and pursuit directly, we manipulated eye movements: in half of the trials, observers smoothly tracked the ball; in the other half, they fixated on the goal. Strict quality criteria ensured that pursuit was initiated and that fixation was maintained. Controls were significantly better in trajectory prediction during pursuit than during fixation, their performance increased with presentation duration, and their pursuit gain and perceptual judgments were correlated. Such perceptual benefits during pursuit may be due to the use of extraretinal motion information estimated from an efference copy signal. With an overall lower performance in pursuit and perception, patients showed no such pursuit advantage and no correlation between pursuit gain and perception. Although patients' pursuit showed normal improvement with longer duration, their prediction performance failed to benefit from duration increases. This dissociation indicates relatively intact early visual motion processing, but a failure to use efference copy information. Impaired efference function in the sensory system may represent a general deficit in schizophrenia and thus contribute to symptoms and functional outcome impairments associated with the disorder.

  5. Efficient Trajectory Options Allocation for the Collaborative Trajectory Options Program

    NASA Technical Reports Server (NTRS)

    Rodionova, Olga; Arneson, Heather; Sridhar, Banavar; Evans, Antony

    2017-01-01

    The Collaborative Trajectory Options Program (CTOP) is a Traffic Management Initiative (TMI) intended to control the air traffic flow rates at multiple specified Flow Constrained Areas (FCAs), where demand exceeds capacity. CTOP allows flight operators to submit the desired Trajectory Options Set (TOS) for each affected flight with associated Relative Trajectory Cost (RTC) for each option. CTOP then creates a feasible schedule that complies with capacity constraints by assigning affected flights with routes and departure delays in such a way as to minimize the total cost while maintaining equity across flight operators. The current version of CTOP implements a Ration-by-Schedule (RBS) scheme, which assigns the best available options to flights based on a First-Scheduled-First-Served heuristic. In the present study, an alternative flight scheduling approach is developed based on linear optimization. Results suggest that such an approach can significantly reduce flight delays, in the deterministic case, while maintaining equity as defined using a Max-Min fairness scheme.

  6. Hyper-X Mach 10 Trajectory Reconstruction

    NASA Technical Reports Server (NTRS)

    Karlgaard, Christopher D.; Martin, John G.; Tartabini, Paul V.; Thornblom, Mark N.

    2005-01-01

    This paper discusses the formulation and development of a trajectory reconstruction tool for the NASA X-43A/Hyper-X high speed research vehicle, and its implementation for the reconstruction and analysis of flight test data. Extended Kalman filtering techniques are employed to reconstruct the trajectory of the vehicle, based upon numerical integration of inertial measurement data along with redundant measurements of the vehicle state. The equations of motion are formulated in order to include the effects of several systematic error sources, whose values may also be estimated by the filtering routines. Additionally, smoothing algorithms have been implemented in which the final value of the state (or an augmented state that includes other systematic error parameters to be estimated) and covariance are propagated back to the initial time to generate the best-estimated trajectory, based upon all available data. The methods are applied to the problem of reconstructing the trajectory of the Hyper-X vehicle from data obtained during the Mach 10 test flight, which occurred on November 16th 2004.

  7. Comparison of Two Alternative Methods for Tracking Toe Trajectory

    NASA Technical Reports Server (NTRS)

    Miller, Chris; Peters, Brian; Brady, Rachel; Mulavara, Ajitkumar; Warren, Liz; Feiveson, Al; Bloomberg, Jacob

    2007-01-01

    Toe trajectory during the swing phase of locomotion has been identified as a precise motor control task (Karst, et al., 1999). The standard method for tracking toe trajectory is to place a marker on the superior aspect of the distal end of the 2nd toe itself (Karst, et al., 1999; Winter, 1992). However, others have based their toe trajectory results either on a marker positioned on the lateral aspect of the 5th metatarsal head (Dingwell, et al., 1999; Osaki, et al., 2007), or on a virtual toe marker computed at the anterior tip of the second toe based on the positions of other real foot markers (Miller, et al., 2006). While these methods for tracking the toe may seem similar, their results may not be directly comparable. The purpose of this study was to compute toe trajectory parameters using a 5th metatarsal marker and a virtual toe marker, and compare their results with those of the standard toe marker.

  8. Development of a new integrated local trajectory planning and tracking control framework for autonomous ground vehicles

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Sun, Zhenping; Cao, Dongpu; Liu, Daxue; He, Hangen

    2017-03-01

    This study proposes a novel integrated local trajectory planning and tracking control (ILTPTC) framework for autonomous vehicles driving along a reference path with obstacles avoidance. For this ILTPTC framework, an efficient state-space sampling-based trajectory planning scheme is employed to smoothly follow the reference path. A model-based predictive path generation algorithm is applied to produce a set of smooth and kinematically-feasible paths connecting the initial state with the sampling terminal states. A velocity control law is then designed to assign a speed value at each of the points along the generated paths. An objective function considering both safety and comfort performance is carefully formulated for assessing the generated trajectories and selecting the optimal one. For accurately tracking the optimal trajectory while overcoming external disturbances and model uncertainties, a combined feedforward and feedback controller is developed. Both simulation analyses and vehicle testing are performed to verify the effectiveness of the proposed ILTPTC framework, and future research is also briefly discussed.

  9. Trajectory-based heating analysis for the European Space Agency/Rosetta Earth Return Vehicle

    NASA Technical Reports Server (NTRS)

    Henline, William D.; Tauber, Michael E.

    1994-01-01

    A coupled, trajectory-based flowfield and material thermal-response analysis is presented for the European Space Agency proposed Rosetta comet nucleus sample return vehicle. The probe returns to earth along a hyperbolic trajectory with an entry velocity of 16.5 km/s and requires an ablative heat shield on the forebody. Combined radiative and convective ablating flowfield analyses were performed for the significant heating portion of the shallow ballistic entry trajectory. Both quasisteady ablation and fully transient analyses were performed for a heat shield composed of carbon-phenolic ablative material. Quasisteady analysis was performed using the two-dimensional axisymmetric codes RASLE and BLIMPK. Transient computational results were obtained from the one-dimensional ablation/conduction code CMA. Results are presented for heating, temperature, and ablation rate distributions over the probe forebody for various trajectory points. Comparison of transient and quasisteady results indicates that, for the heating pulse encountered by this probe, the quasisteady approach is conservative from the standpoint of predicted surface recession.

  10. Rotational symmetric HMD with eye-tracking capability

    NASA Astrophysics Data System (ADS)

    Liu, Fangfang; Cheng, Dewen; Wang, Qiwei; Wang, Yongtian

    2016-10-01

    As an important auxiliary function of head-mounted displays (HMDs), eye tracking has an important role in the field of intelligent human-machine interaction. In this paper, an eye-tracking HMD system (ET-HMD) is designed based on the rotational symmetric system. The tracking principle in this paper is based on pupil-corneal reflection. The ET-HMD system comprises three optical paths for virtual display, infrared illumination, and eye tracking. The display optics is shared by three optical paths and consists of four spherical lenses. For the eye-tracking path, an extra imaging lens is added to match the image sensor and achieve eye tracking. The display optics provides users a 40° diagonal FOV with a ״ 0.61 OLED, the 19 mm eye clearance, and 10 mm exit pupil diameter. The eye-tracking path can capture 15 mm × 15 mm of the users' eyes. The average MTF is above 0.1 at 26 lp/mm for the display path, and exceeds 0.2 at 46 lp/mm for the eye-tracking path. Eye illumination is simulated using LightTools with an eye model and an 850 nm near-infrared LED (NIR-LED). The results of the simulation show that the illumination of the NIR-LED can cover the area of the eye model with the display optics that is sufficient for eye tracking. The integrated optical system HMDs with eye-tracking feature can help improve the HMD experience of users.

  11. iTemplate: A template-based eye movement data analysis approach.

    PubMed

    Xiao, Naiqi G; Lee, Kang

    2018-02-08

    Current eye movement data analysis methods rely on defining areas of interest (AOIs). Due to the fact that AOIs are created and modified manually, variances in their size, shape, and location are unavoidable. These variances affect not only the consistency of the AOI definitions, but also the validity of the eye movement analyses based on the AOIs. To reduce the variances in AOI creation and modification and achieve a procedure to process eye movement data with high precision and efficiency, we propose a template-based eye movement data analysis method. Using a linear transformation algorithm, this method registers the eye movement data from each individual stimulus to a template. Thus, users only need to create one set of AOIs for the template in order to analyze eye movement data, rather than creating a unique set of AOIs for all individual stimuli. This change greatly reduces the error caused by the variance from manually created AOIs and boosts the efficiency of the data analysis. Furthermore, this method can help researchers prepare eye movement data for some advanced analysis approaches, such as iMap. We have developed software (iTemplate) with a graphic user interface to make this analysis method available to researchers.

  12. A open loop guidance architecture for navigationally robust on-orbit docking

    NASA Technical Reports Server (NTRS)

    Chern, Hung-Sheng

    1995-01-01

    The development of an open-hop guidance architecture is outlined for autonomous rendezvous and docking (AR&D) missions to determine whether the Global Positioning System (GPS) can be used in place of optical sensors for relative initial position determination of the chase vehicle. Feasible command trajectories for one, two, and three impulse AR&D maneuvers are determined using constrained trajectory optimization. Early AR&D command trajectory results suggest that docking accuracies are most sensitive to vertical position errors at the initial conduction of the chase vehicle. Thus, a feasible command trajectory is based on maximizing the size of the locus of initial vertical positions for which a fixed sequence of impulses will translate the chase vehicle into the target while satisfying docking accuracy requirements. Documented accuracies are used to determine whether relative GPS can achieve the vertical position error requirements of the impulsive command trajectories. Preliminary development of a thruster management system for the Cargo Transfer Vehicle (CTV) based on optimal throttle settings is presented to complete the guidance architecture. Results show that a guidance architecture based on a two impulse maneuvers generated the best performance in terms of initial position error and total velocity change for the chase vehicle.

  13. An Extended Trajectory Mechanics Approach for Calculating the Path of a Pressure Transient: Derivation and Illustration

    NASA Astrophysics Data System (ADS)

    Vasco, D. W.

    2018-04-01

    Following an approach used in quantum dynamics, an exponential representation of the hydraulic head transforms the diffusion equation governing pressure propagation into an equivalent set of ordinary differential equations. Using a reservoir simulator to determine one set of dependent variables leaves a reduced set of equations for the path of a pressure transient. Unlike the current approach for computing the path of a transient, based on a high-frequency asymptotic solution, the trajectories resulting from this new formulation are valid for arbitrary spatial variations in aquifer properties. For a medium containing interfaces and layers with sharp boundaries, the trajectory mechanics approach produces paths that are compatible with travel time fields produced by a numerical simulator, while the asymptotic solution produces paths that bend too strongly into high permeability regions. The breakdown of the conventional asymptotic solution, due to the presence of sharp boundaries, has implications for model parameter sensitivity calculations and the solution of the inverse problem. For example, near an abrupt boundary, trajectories based on the asymptotic approach deviate significantly from regions of high sensitivity observed in numerical computations. In contrast, paths based on the new trajectory mechanics approach coincide with regions of maximum sensitivity to permeability changes.

  14. Analysis of several Boolean operation based trajectory generation strategies for automotive spray applications

    NASA Astrophysics Data System (ADS)

    Gao, Guoyou; Jiang, Chunsheng; Chen, Tao; Hui, Chun

    2018-05-01

    Industrial robots are widely used in various processes of surface manufacturing, such as thermal spraying. The established robot programming methods are highly time-consuming and not accurate enough to fulfil the demands of the actual market. There are many off-line programming methods developed to reduce the robot programming effort. This work introduces the principle of several based robot trajectory generation strategy on planar surface and curved surface. Since the off-line programming software is widely used and thus facilitates the robot programming efforts and improves the accuracy of robot trajectory, the analysis of this work is based on the second development of off-line programming software Robot studio™. To meet the requirements of automotive paint industry, this kind of software extension helps provide special functions according to the users defined operation parameters. The presented planning strategy generates the robot trajectory by moving an orthogonal surface according to the information of coating surface, a series of intersection curves are then employed to generate the trajectory points. The simulation results show that the path curve created with this method is successive and smooth, which corresponds to the requirements of automotive spray industrial applications.

  15. Trajectory data privacy protection based on differential privacy mechanism

    NASA Astrophysics Data System (ADS)

    Gu, Ke; Yang, Lihao; Liu, Yongzhi; Liao, Niandong

    2018-05-01

    In this paper, we propose a trajectory data privacy protection scheme based on differential privacy mechanism. In the proposed scheme, the algorithm first selects the protected points from the user’s trajectory data; secondly, the algorithm forms the polygon according to the protected points and the adjacent and high frequent accessed points that are selected from the accessing point database, then the algorithm calculates the polygon centroids; finally, the noises are added to the polygon centroids by the differential privacy method, and the polygon centroids replace the protected points, and then the algorithm constructs and issues the new trajectory data. The experiments show that the running time of the proposed algorithms is fast, the privacy protection of the scheme is effective and the data usability of the scheme is higher.

  16. Optimal Output Trajectory Redesign for Invertible Systems

    NASA Technical Reports Server (NTRS)

    Devasia, S.

    1996-01-01

    Given a desired output trajectory, inversion-based techniques find input-state trajectories required to exactly track the output. These inversion-based techniques have been successfully applied to the endpoint tracking control of multijoint flexible manipulators and to aircraft control. The specified output trajectory uniquely determines the required input and state trajectories that are found through inversion. These input-state trajectories exactly track the desired output; however, they might not meet acceptable performance requirements. For example, during slewing maneuvers of flexible structures, the structural deformations, which depend on the required state trajectories, may be unacceptably large. Further, the required inputs might cause actuator saturation during an exact tracking maneuver, for example, in the flight control of conventional takeoff and landing aircraft. In such situations, a compromise is desired between the tracking requirement and other goals such as reduction of internal vibrations and prevention of actuator saturation; the desired output trajectory needs to redesigned. Here, we pose the trajectory redesign problem as an optimization of a general quadratic cost function and solve it in the context of linear systems. The solution is obtained as an off-line prefilter of the desired output trajectory. An advantage of our technique is that the prefilter is independent of the particular trajectory. The prefilter can therefore be precomputed, which is a major advantage over other optimization approaches. Previous works have addressed the issue of preshaping inputs to minimize residual and in-maneuver vibrations for flexible structures; Since the command preshaping is computed off-line. Further minimization of optimal quadratic cost functions has also been previously use to preshape command inputs for disturbance rejection. All of these approaches are applicable when the inputs to the system are known a priori. Typically, outputs (not inputs) are specified in tracking problems, and hence the input trajectories have to be computed. The inputs to the system are however, difficult to determine for non-minimum phase systems like flexible structures. One approach to solve this problem is to (1) choose a tracking controller (the desired output trajectory is now an input to the closed-loop system and (2) redesign this input to the closed-loop system. Thus we effectively perform output redesign. These redesigns are however, dependent on the choice of the tracking controllers. Thus the controller optimization and trajectory redesign problems become coupled; this coupled optimization is still an open problem. In contrast, we decouple the trajectory redesign problem from the choice of feedback-based tracking controller. It is noted that our approach remains valid when a particular tracking controller is chosen. In addition, the formulation of our problem not only allows for the minimization of residual vibration as in available techniques but also allows for the optimal reduction fo vibrations during the maneuver, e.g., the altitude control of flexible spacecraft. We begin by formulating the optimal output trajectory redesign problem and then solve it in the context of general linear systems. This theory is then applied to an example flexible structure, and simulation results are provided.

  17. Full 3-D OCT-based pseudophakic custom computer eye model

    PubMed Central

    Sun, M.; Pérez-Merino, P.; Martinez-Enriquez, E.; Velasco-Ocana, M.; Marcos, S.

    2016-01-01

    We compared measured wave aberrations in pseudophakic eyes implanted with aspheric intraocular lenses (IOLs) with simulated aberrations from numerical ray tracing on customized computer eye models, built using quantitative 3-D OCT-based patient-specific ocular geometry. Experimental and simulated aberrations show high correlation (R = 0.93; p<0.0001) and similarity (RMS for high order aberrations discrepancies within 23.58%). This study shows that full OCT-based pseudophakic custom computer eye models allow understanding the relative contribution of optical geometrical and surgically-related factors to image quality, and are an excellent tool for characterizing and improving cataract surgery. PMID:27231608

  18. Trajectories of Sexual Risk from Middle Adolescence to Early Adulthood

    ERIC Educational Resources Information Center

    Moilanen, Kristin L.; Crockett, Lisa J.; Raffaelli, Marcela; Jones, Bobby L.

    2010-01-01

    Developmental trajectories of risky sexual behavior were identified in a multiethnic sample of 1,121 youth drawn from the Children of the National Longitudinal Survey of Youth data set (NLSY79). Group-based trajectory modeling of a composite index of sexual risk taking revealed four sexual risk groups from ages 16 to 22: low risk, decreasing risk,…

  19. Promoting Effective Teacher-Feedback: From Theory to Practice through a Multiple Component Trajectory for Professional Development

    ERIC Educational Resources Information Center

    Voerman, Lia; Meijer, Paulien C.; Korthagen, Fred; Simons, Robert Jan

    2015-01-01

    This study describes an evaluation of a theory-based trajectory for professional development called FeTiP (Feedback-Theory into Practice) that aims to have an observable effect on teacher classroom behavior. FeTiP is a multicomponent trajectory for professional development and combines several types of interventions. Its goal is to help teachers…

  20. The Perfect Eye A Novel Model for Teaching the Theory of Refraction.

    ERIC Educational Resources Information Center

    Kurtz, Daniel

    1999-01-01

    The Perfect Eye model simplifies solutions to a wide variety of optometry instructional problems by facilitating student understanding of the interaction among lenses, objects, accommodation, and ametropia. The model is based on the premise that inside every eye is a perfect (emmetropic) eye, and that the physiological eye is a combination of the…

  1. Radiofrequency pulse design using nonlinear gradient magnetic fields.

    PubMed

    Kopanoglu, Emre; Constable, R Todd

    2015-09-01

    An iterative k-space trajectory and radiofrequency (RF) pulse design method is proposed for excitation using nonlinear gradient magnetic fields. The spatial encoding functions (SEFs) generated by nonlinear gradient fields are linearly dependent in Cartesian coordinates. Left uncorrected, this may lead to flip angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a matching pursuit algorithm, and the RF pulse is designed using a conjugate gradient algorithm. Three variants of the proposed approach are given: the full algorithm, a computationally cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. The method is compared with other iterative (matching pursuit and conjugate gradient) and noniterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity. An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. © 2014 Wiley Periodicals, Inc.

  2. A Study of Deep CNN-Based Classification of Open and Closed Eyes Using a Visible Light Camera Sensor

    PubMed Central

    Kim, Ki Wan; Hong, Hyung Gil; Nam, Gi Pyo; Park, Kang Ryoung

    2017-01-01

    The necessity for the classification of open and closed eyes is increasing in various fields, including analysis of eye fatigue in 3D TVs, analysis of the psychological states of test subjects, and eye status tracking-based driver drowsiness detection. Previous studies have used various methods to distinguish between open and closed eyes, such as classifiers based on the features obtained from image binarization, edge operators, or texture analysis. However, when it comes to eye images with different lighting conditions and resolutions, it can be difficult to find an optimal threshold for image binarization or optimal filters for edge and texture extraction. In order to address this issue, we propose a method to classify open and closed eye images with different conditions, acquired by a visible light camera, using a deep residual convolutional neural network. After conducting performance analysis on both self-collected and open databases, we have determined that the classification accuracy of the proposed method is superior to that of existing methods. PMID:28665361

  3. Assessment of Eye Fatigue Caused by 3D Displays Based on Multimodal Measurements

    PubMed Central

    Bang, Jae Won; Heo, Hwan; Choi, Jong-Suk; Park, Kang Ryoung

    2014-01-01

    With the development of 3D displays, user's eye fatigue has been an important issue when viewing these displays. There have been previous studies conducted on eye fatigue related to 3D display use, however, most of these have employed a limited number of modalities for measurements, such as electroencephalograms (EEGs), biomedical signals, and eye responses. In this paper, we propose a new assessment of eye fatigue related to 3D display use based on multimodal measurements. compared to previous works Our research is novel in the following four ways: first, to enhance the accuracy of assessment of eye fatigue, we measure EEG signals, eye blinking rate (BR), facial temperature (FT), and a subjective evaluation (SE) score before and after a user watches a 3D display; second, in order to accurately measure BR in a manner that is convenient for the user, we implement a remote gaze-tracking system using a high speed (mega-pixel) camera that measures eye blinks of both eyes; thirdly, changes in the FT are measured using a remote thermal camera, which can enhance the measurement of eye fatigue, and fourth, we perform various statistical analyses to evaluate the correlation between the EEG signal, eye BR, FT, and the SE score based on the T-test, correlation matrix, and effect size. Results show that the correlation of the SE with other data (FT, BR, and EEG) is the highest, while those of the FT, BR, and EEG with other data are second, third, and fourth highest, respectively. PMID:25192315

  4. On the direct acquisition of beam’s-eye-view images in MRI for integration with external beam radiotherapy

    NASA Astrophysics Data System (ADS)

    Wachowicz, K.; Murray, B.; Fallone, B. G.

    2018-06-01

    The recent interest in the integration of external beam radiotherapy with a magnetic resonance (MR) imaging unit offers the potential for real-time adaptive tumour tracking during radiation treatment. The tracking of large tumours which follow a rapid trajectory may best be served by the generation of a projection image from the perspective of the beam source, or ‘beam’s eye view’ (BEV). This type of image projection represents the path of the radiation beam, thus enabling rapid compensations for target translations, rotations and deformations, as well time-dependent critical structure avoidance. MR units have been traditionally incapable of this type of imaging except through lengthy 3D acquisitions and ray tracing procedures. This work investigates some changes to the traditional MR scanner architecture that would permit the direct acquisition of a BEV image suitable for integration with external beam radiotherapy. Based on the theory presented in this work, a phantom was imaged with nonlinear encoding-gradient field patterns to demonstrate the technique. The phantom was constructed with agarose gel tubes spaced two cm apart at their base and oriented to converge towards an imaginary beam source 100 cm away. A corresponding virtual phantom was also created and subjected to the same encoding technique as in the physical demonstration, allowing the method to be tested without hardware limitations. The experimentally acquired and simulated images indicate the feasibility of the technique, showing a substantial amount of blur reduction in a diverging phantom compared to the conventional imaging geometry, particularly with the nonlinear gradients ideally implemented. The theory is developed to demonstrate that the method can be adapted in a number of different configurations to accommodate all proposed integration schemes for MR units and radiotherapy sources. Depending on the configuration, the implementation of this technique will require between two and four additional nonlinear encoding coils.

  5. A Study of Shuttlecock's Trajectory in Badminton.

    PubMed

    Chen, Lung-Ming; Pan, Yi-Hsiang; Chen, Yung-Jen

    2009-01-01

    The main purpose of this study was to construct and validate a motion equation for the flight of the badminton and to find the relationship between the air resistance force and a shuttlecock's speed. This research method was based on motion laws of aerodynamics. It applied aerodynamic theories to construct motion equation of a shuttlecock's flying trajectory under the effects of gravitational force and air resistance force. The result showed that the motion equation of a shuttlecock's flight trajectory could be constructed by determining the terminal velocity. The predicted shuttlecock trajectory fitted the measured data fairly well. The results also revealed that the drag force was proportional to the square of a shuttlecock velocity. Furthermore, the angle and strength of a stroke could influence trajectory. Finally, this study suggested that we could use a scientific approach to measure a shuttlecock's velocity objectively when testing the quality of shuttlecocks. And could be used to replace the traditional subjective method of the Badminton World Federation based on players' striking shuttlecocks, as well as applying research findings to improve professional knowledge of badminton player training. Key pointsThe motion equation of a shuttlecock's flying trajectory could be constructed by determining the terminal velocity in aerodynamics.Air drag force is proportional to the square of a shuttlecock velocity. Furthermore, the angle and strength of a stroke could influence trajectory.

  6. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach

    PubMed Central

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-01-01

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks. PMID:26729123

  7. Spatio-Temporal Constrained Human Trajectory Generation from the PIR Motion Detector Sensor Network Data: A Geometric Algebra Approach.

    PubMed

    Yu, Zhaoyuan; Yuan, Linwang; Luo, Wen; Feng, Linyao; Lv, Guonian

    2015-12-30

    Passive infrared (PIR) motion detectors, which can support long-term continuous observation, are widely used for human motion analysis. Extracting all possible trajectories from the PIR sensor networks is important. Because the PIR sensor does not log location and individual information, none of the existing methods can generate all possible human motion trajectories that satisfy various spatio-temporal constraints from the sensor activation log data. In this paper, a geometric algebra (GA)-based approach is developed to generate all possible human trajectories from the PIR sensor network data. Firstly, the representation of the geographical network, sensor activation response sequences and the human motion are represented as algebraic elements using GA. The human motion status of each sensor activation are labeled using the GA-based trajectory tracking. Then, a matrix multiplication approach is developed to dynamically generate the human trajectories according to the sensor activation log and the spatio-temporal constraints. The method is tested with the MERL motion database. Experiments show that our method can flexibly extract the major statistical pattern of the human motion. Compared with direct statistical analysis and tracklet graph method, our method can effectively extract all possible trajectories of the human motion, which makes it more accurate. Our method is also likely to provides a new way to filter other passive sensor log data in sensor networks.

  8. Optimizations and Applications in Head-Mounted Video-Based Eye Tracking

    ERIC Educational Resources Information Center

    Li, Feng

    2011-01-01

    Video-based eye tracking techniques have become increasingly attractive in many research fields, such as visual perception and human-computer interface design. The technique primarily relies on the positional difference between the center of the eye's pupil and the first-surface reflection at the cornea, the corneal reflection (CR). This…

  9. System for assisted mobility using eye movements based on electrooculography.

    PubMed

    Barea, Rafael; Boquete, Luciano; Mazo, Manuel; López, Elena

    2002-12-01

    This paper describes an eye-control method based on electrooculography (EOG) to develop a system for assisted mobility. One of its most important features is its modularity, making it adaptable to the particular needs of each user according to the type and degree of handicap involved. An eye model based on electroculographic signal is proposed and its validity is studied. Several human-machine interfaces (HMI) based on EOG are commented, focusing our study on guiding and controlling a wheelchair for disabled people, where the control is actually effected by eye movements within the socket. Different techniques and guidance strategies are then shown with comments on the advantages and disadvantages of each one. The system consists of a standard electric wheelchair with an on-board computer, sensors and a graphic user interface run by the computer. On the other hand, this eye-control method can be applied to handle graphical interfaces, where the eye is used as a mouse computer. Results obtained show that this control technique could be useful in multiple applications, such as mobility and communication aid for handicapped persons.

  10. Preparation and evaluation of HPMC-based pirfenidone solution in vivo.

    PubMed

    Yang, Mei; Yang, Yang-Fan; Lei, Ming; Ye, Cheng-Tian; Zhao, Chun-Shun; Xu, Jian-Gang; Wu, Kai-Li; Yu, Min-Bin

    2017-01-01

    Pirfenidone (PFD) has exhibited therapeutic potential in the treatment of cell proliferative disorders. The previously developed 0.5% water-based PFD eye drops by our team exhibited antiscarring effectiveness and ocular safety but with a limit of short half-life and poor bioavailability. To increase bioavailability of the water-based PFD eye drops, we prepared a viscous solution by adding hydroxypropyl methylcellulose (HPMC, F4M), which acted as a viscosity-enhancer. Subsequently, we compared the HPMC-based PFD solution with the water-based PFD eye drops. PFD solution with 1% HPMC (w/v) was prepared, and the viscosities at different shear rates were measured to investigate its rheology. PFD concentrations in the tear, aqueous humor, conjunctiva, cornea, and sclerae of New Zealand rabbits were detected at different time points with high-performance liquid chromatography (HPLC) following single instillation of the 0.5% PFD (w/v) water-based eye drops or HPMC-based solution. Compared with the 0.5% water-based PFD eye drops, the HPMC-based solution increased the PFD levels in tears and prolonged the residence time from 10 to more than 20 min (p < .01). Consequently, the concentrations of PFD in aqueous humor, conjunctiva, cornea, and sclera were elevated to varying degrees until 90 min after topical administration. The developed formulation possesses a same readily administration and simple preparation as the PFD eye drops; however, the HPMC-based solution exhibited the higher bioavailability.

  11. Identifying longitudinal trajectories of emotional distress symptoms 5 years after traumatic brain injury.

    PubMed

    Sigurdardottir, S; Andelic, N; Roe, C; Schanke, A K

    2014-01-01

    To evaluate longitudinal trajectories of emotional distress symptoms after traumatic brain injury (TBI). Longitudinal study. Patients with mild-to-severe TBI, 118 patients participated at 3 months, 109 attended at 1-year and 89 attended the 5-year follow-up. Emotional distress was measured with the Impact of Event Scale-Revised. Patients were also assessed for coping style, anxiety, depression, substance abuse and trauma severity. Based on growth mixture modelling, four trajectories of emotional distress symptoms were identified: 73.5% of patients were characterized by a pattern of resilience, 6.8% by a pattern of delayed distress, 14.6% by recovery and 5.1% by chronic distress. Relative to the resilience trajectory, avoidant-coping style and psychiatric problems were related to recovery and chronic trajectories. The delayed trajectory was similar to the resilience trajectory, except for elevated depressive and anxiety symptoms at 1- and 5-years. Demographics and injury-related variables were not significantly associated with emotional distress trajectories. Resilience was the most common trajectory following TBI. Patients characterized by recovery and chronic trajectories required attention and long-term clinical monitoring of their symptoms. Future research would benefit from longitudinal studies to analyse emotional distress symptoms and the strength of resilience over time.

  12. Measuring eye movements during locomotion: filtering techniques for obtaining velocity signals from a video-based eye monitor

    NASA Technical Reports Server (NTRS)

    Das, V. E.; Thomas, C. W.; Zivotofsky, A. Z.; Leigh, R. J.

    1996-01-01

    Video-based eye-tracking systems are especially suited to studying eye movements during naturally occurring activities such as locomotion, but eye velocity records suffer from broad band noise that is not amenable to conventional filtering methods. We evaluated the effectiveness of combined median and moving-average filters by comparing prefiltered and postfiltered records made synchronously with a video eye-tracker and the magnetic search coil technique, which is relatively noise free. Root-mean-square noise was reduced by half, without distorting the eye velocity signal. To illustrate the practical use of this technique, we studied normal subjects and patients with deficient labyrinthine function and compared their ability to hold gaze on a visual target that moved with their heads (cancellation of the vestibulo-ocular reflex). Patients and normal subjects performed similarly during active head rotation but, during locomotion, patients held their eyes more steadily on the visual target than did subjects.

  13. Changing trends in the treatment of dry-eye disease.

    PubMed

    Dogru, Murat; Nakamura, Masatsugu; Shimazaki, Jun; Tsubota, Kazuo

    2013-12-01

    Dry eye is a visually disabling disease encountered in many countries with a wide variation of treatment practices all over the world. On that front, the 2007 Report of the International Dry Eye WorkShop (DEWS) reviewed the current knowledge on all aspects of dry-eye disease (DED), in an evidence-based manner, and outlined the trends and recommendations in the treatment of DED on the basis of disease severity. This review mainly focuses on treatments for DED based on severity as recommended in the DEWS report, particularly artificial eye drops, hyaluronate sodium eye drops, autologous serum, anti-inflammatory eye drops including cyclosporine and steroids, and mucin secretagogues. New dry-eye treatment modalities in current trials outlined on the clinicaltrial.gov site are also outlined. Further investigations into the mechanism of action of the new mucin and tear secretagogues which have been suggested to have anti-inflammatory properties will enrich our understanding in relation to relevant ocular surface responses after treatment with these new agents.

  14. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Seventh Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the seventh revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm adds the state-based capability in support of evolving industry standards relating to airborne self-spacing.

  15. Association between mild cognitive impairment and trajectory-based spatial parameters during timed up and go test using a laser range sensor.

    PubMed

    Nishiguchi, Shu; Yorozu, Ayanori; Adachi, Daiki; Takahashi, Masaki; Aoyama, Tomoki

    2017-08-08

    The Timed Up and Go (TUG) test may be a useful tool to detect not only mobility impairment but also possible cognitive impairment. In this cross-sectional study, we used the TUG test to investigate the associations between trajectory-based spatial parameters measured by laser range sensor (LRS) and cognitive impairment in community-dwelling older adults. The participants were 63 community-dwelling older adults (mean age, 73.0 ± 6.3 years). The trajectory-based spatial parameters during the TUG test were measured using an LRS. In each forward and backward phase, we calculated the minimum distance from the marker, the maximum distance from the x-axis (center line), the length of the trajectories, and the area of region surrounded by the trajectory of the center of gravity and the x-axis (center line). We measured mild cognitive impairment using the Mini-Mental State Examination score (26/27 was the cut-off score for defining mild cognitive impairment). Compared with participants with normal cognitive function, those with mild cognitive impairment exhibited the following trajectory-based spatial parameters: short minimum distance from the marker (p = 0.044), narrow area of center of gravity in the forward phase (p = 0.012), and a large forward/whole phase ratio of the area of the center of gravity (p = 0.026) during the TUG test. In multivariate logistic regression analyses, a short minimum distance from the marker (odds ratio [OR]: 0.82, 95% confidence interval [CI]: 0.69-0.98), narrow area of the center of gravity in the forward phase (OR: 0.01, 95% CI: 0.00-0.36), and large forward/whole phase ratio of the area of the center of gravity (OR: 0.94, 95% CI: 0.88-0.99) were independently associated with mild cognitive impairment. In conclusion, our results indicate that some of the trajectory-based spatial parameters measured by LRS during the TUG test were independently associated with cognitive impairment in older adults. In particular, older adults with cognitive impairment exhibit shorter minimum distances from the marker and asymmetrical trajectories during the TUG test.

  16. On Biometrics With Eye Movements.

    PubMed

    Zhang, Youming; Juhola, Martti

    2017-09-01

    Eye movements are a relatively novel data source for biometric identification. When video cameras applied to eye tracking become smaller and more efficient, this data source could offer interesting opportunities for the development of eye movement biometrics. In this paper, we study primarily biometric identification as seen as a classification task of multiple classes, and secondarily biometric verification considered as binary classification. Our research is based on the saccadic eye movement signal measurements from 109 young subjects. In order to test the data measured, we use a procedure of biometric identification according to the one-versus-one (subject) principle. In a development from our previous research, which also involved biometric verification based on saccadic eye movements, we now apply another eye movement tracker device with a higher sampling frequency of 250 Hz. The results obtained are good, with correct identification rates at 80-90% at their best.

  17. Eye movement identification based on accumulated time feature

    NASA Astrophysics Data System (ADS)

    Guo, Baobao; Wu, Qiang; Sun, Jiande; Yan, Hua

    2017-06-01

    Eye movement is a new kind of feature for biometrical recognition, it has many advantages compared with other features such as fingerprint, face, and iris. It is not only a sort of static characteristics, but also a combination of brain activity and muscle behavior, which makes it effective to prevent spoofing attack. In addition, eye movements can be incorporated with faces, iris and other features recorded from the face region into multimode systems. In this paper, we do an exploring study on eye movement identification based on the eye movement datasets provided by Komogortsev et al. in 2011 with different classification methods. The time of saccade and fixation are extracted from the eye movement data as the eye movement features. Furthermore, the performance analysis was conducted on different classification methods such as the BP, RBF, ELMAN and SVM in order to provide a reference to the future research in this field.

  18. Prosocial Behavior: Long-Term Trajectories and Psychosocial Outcomes.

    PubMed

    Flynn, Elinor; Ehrenreich, Samuel E; Beron, Kurt J; Underwood, Marion K

    2015-08-01

    This study investigated developmental trajectories for prosocial behavior for a sample followed from age 10 - 18 and examined possible adjustment outcomes associated with membership in different trajectory groups. Participants were 136 boys and 148 girls, their teachers, and their parents (19.4% African American, 2.4% Asian, 51.9% Caucasian, 19.5% Hispanic, and 5.8% other). Teachers rated children's prosocial behavior yearly in grades 4 - 12. At the end of the 12 th grade year, teachers, parents, and participants reported externalizing behaviors and participants reported internalizing symptoms, narcissism, and features of borderline personality disorder. Results suggested that prosocial behavior remained stable from middle childhood through late adolescence. Group-based mixture modeling revealed three prosocial trajectory groups: low (18.7%), medium (52.8%), and high (29.6%). Membership in the high prosocial trajectory group predicted lower levels of externalizing behavior as compared to the low prosocial trajectory group, and for girls, lower levels of internalizing symptoms. Membership in the medium prosocial trajectory group also predicted being lower on externalizing behaviors. Membership in the high prosocial trajectory group predicted lower levels of borderline personality features for girls only.

  19. Interaction trajectory of solitons in nonlinear media with an arbitrary degree of nonlocality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dai, Zhiping; Yang, Zhenjun, E-mail: zjyang@vip.163.com; Ling, Xiaohui

    2016-03-15

    The interaction trajectory of solitons in nonlocal nonlinear media is investigated. A simple differential equation describing the interaction trajectories is derived based on the light ray equation. Numerical calculations are carried out to illustrate the interaction trajectories with different parameters. The results show that the degree of nonlocality greatly affects the interaction of solitons. For a strongly nonlocal case, the interaction trajectory can be described by a cosine function. Analytical expressions describing the trajectory and the oscillation period are obtained. For generally and weakly nonlocal cases, the interaction trajectories still oscillate periodically, however it is no longer sinusoidal and themore » oscillation period increases with the nonlocal degree decreasing. In addition, the trajectory of two solitons launched with a relative angle at the entrance plane is investigated. It is found that there exists a critical angle. When the initial relative angle is larger than the critical angle, the two solitons do not collide on propagation. The influence of the degree of nonlocality on the critical angle is also discussed.« less

  20. Optimal helicopter trajectory planning for terrain following flight

    NASA Technical Reports Server (NTRS)

    Menon, P. K. A.

    1990-01-01

    Helicopters operating in high threat areas have to fly close to the earth surface to minimize the risk of being detected by the adversaries. Techniques are presented for low altitude helicopter trajectory planning. These methods are based on optimal control theory and appear to be implementable onboard in realtime. Second order necessary conditions are obtained to provide a criterion for finding the optimal trajectory when more than one extremal passes through a given point. A second trajectory planning method incorporating a quadratic performance index is also discussed. Trajectory planning problem is formulated as a differential game. The objective is to synthesize optimal trajectories in the presence of an actively maneuvering adversary. Numerical methods for obtaining solutions to these problems are outlined. As an alternative to numerical method, feedback linearizing transformations are combined with the linear quadratic game results to synthesize explicit nonlinear feedback strategies for helicopter pursuit-evasion. Some of the trajectories generated from this research are evaluated on a six-degree-of-freedom helicopter simulation incorporating an advanced autopilot. The optimal trajectory planning methods presented are also useful for autonomous land vehicle guidance.

  1. Eye gazing direction inspection based on image processing technique

    NASA Astrophysics Data System (ADS)

    Hao, Qun; Song, Yong

    2005-02-01

    According to the research result in neural biology, human eyes can obtain high resolution only at the center of view of field. In the research of Virtual Reality helmet, we design to detect the gazing direction of human eyes in real time and feed it back to the control system to improve the resolution of the graph at the center of field of view. In the case of current display instruments, this method can both give attention to the view field of virtual scene and resolution, and improve the immersion of virtual system greatly. Therefore, detecting the gazing direction of human eyes rapidly and exactly is the basis of realizing the design scheme of this novel VR helmet. In this paper, the conventional method of gazing direction detection that based on Purklinje spot is introduced firstly. In order to overcome the disadvantage of the method based on Purklinje spot, this paper proposed a method based on image processing to realize the detection and determination of the gazing direction. The locations of pupils and shapes of eye sockets change with the gazing directions. With the aid of these changes, analyzing the images of eyes captured by the cameras, gazing direction of human eyes can be determined finally. In this paper, experiments have been done to validate the efficiency of this method by analyzing the images. The algorithm can carry out the detection of gazing direction base on normal eye image directly, and it eliminates the need of special hardware. Experiment results show that the method is easy to implement and have high precision.

  2. Computer aiding for low-altitude helicopter flight

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.

    1991-01-01

    A computer-aiding concept for low-altitude helicopter flight was developed and evaluated in a real-time piloted simulation. The concept included an optimal control trajectory-generated algorithm based on dynamic programming, and a head-up display (HUD) presentation of a pathway-in-the-sky, a phantom aircraft, and flight-path vector/predictor symbol. The trajectory-generation algorithm uses knowledge of the global mission requirements, a digital terrain map, aircraft performance capabilities, and advanced navigation information to determine a trajectory between mission waypoints that minimizes threat exposure by seeking valleys. The pilot evaluation was conducted at NASA Ames Research Center's Sim Lab facility in both the fixed-base Interchangeable Cab (ICAB) simulator and the moving-base Vertical Motion Simulator (VMS) by pilots representing NASA, the U.S. Army, and the U.S. Air Force. The pilots manually tracked the trajectory generated by the algorithm utilizing the HUD symbology. They were able to satisfactorily perform the tracking tasks while maintaining a high degree of awareness of the outside world.

  3. Robust model predictive control for constrained continuous-time nonlinear systems

    NASA Astrophysics Data System (ADS)

    Sun, Tairen; Pan, Yongping; Zhang, Jun; Yu, Haoyong

    2018-02-01

    In this paper, a robust model predictive control (MPC) is designed for a class of constrained continuous-time nonlinear systems with bounded additive disturbances. The robust MPC consists of a nonlinear feedback control and a continuous-time model-based dual-mode MPC. The nonlinear feedback control guarantees the actual trajectory being contained in a tube centred at the nominal trajectory. The dual-mode MPC is designed to ensure asymptotic convergence of the nominal trajectory to zero. This paper extends current results on discrete-time model-based tube MPC and linear system model-based tube MPC to continuous-time nonlinear model-based tube MPC. The feasibility and robustness of the proposed robust MPC have been demonstrated by theoretical analysis and applications to a cart-damper springer system and a one-link robot manipulator.

  4. Extracting hurricane eye morphology from spaceborne SAR images using morphological analysis

    NASA Astrophysics Data System (ADS)

    Lee, Isabella K.; Shamsoddini, Ali; Li, Xiaofeng; Trinder, John C.; Li, Zeyu

    2016-07-01

    Hurricanes are among the most destructive global natural disasters. Thus recognizing and extracting their morphology is important for understanding their dynamics. Conventional optical sensors, due to cloud cover associated with hurricanes, cannot reveal the intense air-sea interaction occurring at the sea surface. In contrast, the unique capabilities of spaceborne synthetic aperture radar (SAR) data for cloud penetration, and its backscattering signal characteristics enable the extraction of the sea surface roughness. Therefore, SAR images enable the measurement of the size and shape of hurricane eyes, which reveal their evolution and strength. In this study, using six SAR hurricane images, we have developed a mathematical morphology method for automatically extracting the hurricane eyes from C-band SAR data. Skeleton pruning based on discrete skeleton evolution (DSE) was used to ensure global and local preservation of the hurricane eye shape. This distance weighted algorithm applied in a hierarchical structure for extraction of the edges of the hurricane eyes, can effectively avoid segmentation errors by reducing redundant skeletons attributed to speckle noise along the edges of the hurricane eye. As a consequence, the skeleton pruning has been accomplished without deficiencies in the key hurricane eye skeletons. A morphology-based analyses of the subsequent reconstructions of the hurricane eyes shows a high degree of agreement with the hurricane eye areas derived from reference data based on NOAA manual work.

  5. Estimation of Center of Mass Trajectory using Wearable Sensors during Golf Swing.

    PubMed

    Najafi, Bijan; Lee-Eng, Jacqueline; Wrobel, James S; Goebel, Ruben

    2015-06-01

    This study suggests a wearable sensor technology to estimate center of mass (CoM) trajectory during a golf swing. Groups of 3, 4, and 18 participants were recruited, respectively, for the purpose of three validation studies. Study 1 examined the accuracy of the system to estimate a 3D body segment angle compared to a camera-based motion analyzer (Vicon®). Study 2 assessed the accuracy of three simplified CoM trajectory models. Finally, Study 3 assessed the accuracy of the proposed CoM model during multiple golf swings. A relatively high agreement was observed between wearable sensors and the reference (Vicon®) for angle measurement (r > 0.99, random error <1.2° (1.5%) for anterior-posterior; <0.9° (2%) for medial-lateral; and <3.6° (2.5%) for internal-external direction). The two-link model yielded a better agreement with the reference system compared to one-link model (r > 0.93 v. r = 0.52, respectively). On the same note, the proposed two-link model estimated CoM trajectory during golf swing with relatively good accuracy (r > 0.9, A-P random error <1cm (7.7%) and <2cm (10.4%) for M-L). The proposed system appears to accurately quantify the kinematics of CoM trajectory as a surrogate of dynamic postural control during an athlete's movement and its portability, makes it feasible to fit the competitive environment without restricting surface type. Key pointsThis study demonstrates that wearable technology based on inertial sensors are accurate to estimate center of mass trajectory in complex athletic task (e.g., golf swing)This study suggests that two-link model of human body provides optimum tradeoff between accuracy and minimum number of sensor module for estimation of center of mass trajectory in particular during fast movements.Wearable technologies based on inertial sensors are viable option for assessing dynamic postural control in complex task outside of gait laboratory and constraints of cameras, surface, and base of support.

  6. Who Were the Early Adopters of Dabigatran? An Application of Group-Based Trajectory Models

    PubMed Central

    Lo-Ciganic, Wei-Hsuan; Gellad, Walid F.; Huskamp, Haiden A.; Choudhry, Niteesh K.; Chang, Chung-Chou H.; Zhang, Ruoxin; Jones, Bobby L.; Guclu, Hasan; Richards-Shubik, Seth; Donohue, Julie M.

    2016-01-01

    BACKGROUND Variation in physician adoption of new medications is poorly understood. Traditional approaches (e.g., measuring time to first prescription) may mask substantial heterogeneity in technology adoption. OBJECTIVE Apply group-based trajectory models to examine the physician adoption of dabigratran, a novel anticoagulant. METHODS A retrospective cohort study using prescribing data from IMS Xponent™ on all Pennsylvania physicians regularly prescribing anticoagulants (n=3,911) and data on their characteristics from the American Medical Association Masterfile. We examined time to first dabigatran prescription as well as group-based trajectory models to identify adoption trajectories in the first 15 months. Factors associated with rapid adoption were examined using multivariate logistic regressions. OUTCOMES Trajectories of monthly share of oral anticoagulant prescriptions for dabigatran RESULTS We identified five distinct adoption trajectories: 3.7% rapidly and extensively adopted dabigatran (adopting in ≤3 months with 45% of prescriptions) and 13.4% were rapid and moderate adopters (≤3 months with 20% share). Two groups accounting for 21.6% and 16.1% of physicians, respectively, were slower to adopt (6 to 10 months post-introduction) and dabigatran accounted for <10% share. Nearly half (45.2%) of anticoagulant prescribers did not adopt dabigatran. Cardiologists were much more likely than primary care physicians to rapidly adopt (odds ratio [OR] 12.2, 95%CI: 9.27–16.1) as were younger prescribers (age 36–45 years: OR 1.49, 95%CI: 1.13–1.95, age 46–55: OR 1.34, 95%CI 1.07–1.69 vs. >55 years). CONCLUSIONS Trajectories of physician adoption of dabigatran were highly variable with significant differences across specialties. Heterogeneity in physician adoption has potential implications for the cost and effectiveness of treatment. PMID:27116109

  7. Design of a Gaze-Sensitive Virtual Social Interactive System for Children With Autism

    PubMed Central

    Lahiri, Uttama; Warren, Zachary; Sarkar, Nilanjan

    2013-01-01

    Impairments in social communication skills are thought to be core deficits in children with autism spectrum disorder (ASD). In recent years, several assistive technologies, particularly Virtual Reality (VR), have been investigated to promote social interactions in this population. It is well known that children with ASD demonstrate atypical viewing patterns during social interactions and thus monitoring eye-gaze can be valuable to design intervention strategies. While several studies have used eye-tracking technology to monitor eye-gaze for offline analysis, there exists no real-time system that can monitor eye-gaze dynamically and provide individualized feedback. Given the promise of VR-based social interaction and the usefulness of monitoring eye-gaze in real-time, a novel VR-based dynamic eye-tracking system is developed in this work. This system, called Virtual Interactive system with Gaze-sensitive Adaptive Response Technology (VIGART), is capable of delivering individualized feedback based on a child’s dynamic gaze patterns during VR-based interaction. Results from a usability study with six adolescents with ASD are presented that examines the acceptability and usefulness of VIGART. The results in terms of improvement in behavioral viewing and changes in relevant eye physiological indexes of participants while interacting with VIGART indicate the potential of this novel technology. PMID:21609889

  8. Design of a gaze-sensitive virtual social interactive system for children with autism.

    PubMed

    Lahiri, Uttama; Warren, Zachary; Sarkar, Nilanjan

    2011-08-01

    Impairments in social communication skills are thought to be core deficits in children with autism spectrum disorder (ASD). In recent years, several assistive technologies, particularly Virtual Reality (VR), have been investigated to promote social interactions in this population. It is well known that children with ASD demonstrate atypical viewing patterns during social interactions and thus monitoring eye-gaze can be valuable to design intervention strategies. While several studies have used eye-tracking technology to monitor eye-gaze for offline analysis, there exists no real-time system that can monitor eye-gaze dynamically and provide individualized feedback. Given the promise of VR-based social interaction and the usefulness of monitoring eye-gaze in real-time, a novel VR-based dynamic eye-tracking system is developed in this work. This system, called Virtual Interactive system with Gaze-sensitive Adaptive Response Technology (VIGART), is capable of delivering individualized feedback based on a child's dynamic gaze patterns during VR-based interaction. Results from a usability study with six adolescents with ASD are presented that examines the acceptability and usefulness of VIGART. The results in terms of improvement in behavioral viewing and changes in relevant eye physiological indexes of participants while interacting with VIGART indicate the potential of this novel technology. © 2011 IEEE

  9. Vision-based method for detecting driver drowsiness and distraction in driver monitoring system

    NASA Astrophysics Data System (ADS)

    Jo, Jaeik; Lee, Sung Joo; Jung, Ho Gi; Park, Kang Ryoung; Kim, Jaihie

    2011-12-01

    Most driver-monitoring systems have attempted to detect either driver drowsiness or distraction, although both factors should be considered for accident prevention. Therefore, we propose a new driver-monitoring method considering both factors. We make the following contributions. First, if the driver is looking ahead, drowsiness detection is performed; otherwise, distraction detection is performed. Thus, the computational cost and eye-detection error can be reduced. Second, we propose a new eye-detection algorithm that combines adaptive boosting, adaptive template matching, and blob detection with eye validation, thereby reducing the eye-detection error and processing time significantly, which is hardly achievable using a single method. Third, to enhance eye-detection accuracy, eye validation is applied after initial eye detection, using a support vector machine based on appearance features obtained by principal component analysis (PCA) and linear discriminant analysis (LDA). Fourth, we propose a novel eye state-detection algorithm that combines appearance features obtained using PCA and LDA, with statistical features such as the sparseness and kurtosis of the histogram from the horizontal edge image of the eye. Experimental results showed that the detection accuracies of the eye region and eye states were 99 and 97%, respectively. Both driver drowsiness and distraction were detected with a success rate of 98%.

  10. An Energy-Aware Trajectory Optimization Layer for sUAS

    NASA Astrophysics Data System (ADS)

    Silva, William A.

    The focus of this work is the implementation of an energy-aware trajectory optimization algorithm that enables small unmanned aircraft systems (sUAS) to operate in unknown, dynamic severe weather environments. The software is designed as a component of an Energy-Aware Dynamic Data Driven Application System (EA-DDDAS) for sUAS. This work addresses the challenges of integrating and executing an online trajectory optimization algorithm during mission operations in the field. Using simplified aircraft kinematics, the energy-aware algorithm enables extraction of kinetic energy from measured winds to optimize thrust use and endurance during flight. The optimization layer, based upon a nonlinear program formulation, extracts energy by exploiting strong wind velocity gradients in the wind field, a process known as dynamic soaring. The trajectory optimization layer extends the energy-aware path planner developed by Wenceslao Shaw-Cortez te{Shaw-cortez2013} to include additional mission configurations, simulations with a 6-DOF model, and validation of the system with flight testing in June 2015 in Lubbock, Texas. The trajectory optimization layer interfaces with several components within the EA-DDDAS to provide an sUAS with optimal flight trajectories in real-time during severe weather. As a result, execution timing, data transfer, and scalability are considered in the design of the software. Severe weather also poses a measure of unpredictability to the system with respect to communication between systems and available data resources during mission operations. A heuristic mission tree with different cost functions and constraints is implemented to provide a level of adaptability to the optimization layer. Simulations and flight experiments are performed to assess the efficacy of the trajectory optimization layer. The results are used to assess the feasibility of flying dynamic soaring trajectories with existing controllers as well as to verify the interconnections between EA-DDDAS components. Results also demonstrate the usage of the trajectory optimization layer in conjunction with a lattice-based path planner as a method of guiding the optimization layer and stitching together subsequent trajectories.

  11. Trajectories of Perinatal Depressive and Anxiety Symptoms in a Community Cohort.

    PubMed

    Bayrampour, Hamideh; Tomfohr, Lianne; Tough, Suzanne

    2016-11-01

    The evidence on trajectories of perinatal depression is mostly based on studies composed of women at high risk for poor mental health. Research on maternal anxiety trajectories is also scarce. Using a large community cohort, the All Our Babies study, in Alberta, Canada, we examined trajectories of perinatal depressive and anxiety symptoms and compared characteristics of women across trajectories. Anxiety and depressive symptoms were measured at the second and third trimesters and at 4 and 12 months postpartum among 1,445 women recruited between May 2008 and December 2010. The state subscale of the Spielberger State-Trait Anxiety Inventory was used to measure anxiety symptoms, and depressive symptoms were measured with the Edinburgh Postnatal Depression Scale. Semiparametric group-based mixed modeling was performed to identify the optimal trajectory shape, number of groups, and proportion of the sample belonging to each trajectory. Model fit was evaluated using the Bayesian information criterion. Multinomial logistic regression analysis was conducted to compare characteristics across the trajectories. Five distinct trajectory groups with constant and variable patterns were identified for both depressive and anxiety symptoms: minimal, mild, antepartum, postpartum, and chronic. Common risk factors of depression and anxiety across groups with elevated symptoms were history of mental health issues (odds ratios [ORs] varied from 1.83 to 7.64), history of abuse/neglect (ORs varied from 1.67 to 8.97), and low social support (ORs varied from 1.64 to 11.37). The magnitude of the influence of the psychosocial risk factors was greater in the chronic group compared to others, suggesting a dose-related relationship. Heterogeneity of anxiety and depressive symptoms highlights the importance of multiple mental health assessments during the perinatal period. The patterns and intensity of postpartum depression differed between community and high-risk samples, underlining the significance of defining suitable cutoffs. Research to examine the impact of these trajectories on child outcomes is needed. © Copyright 2016 Physicians Postgraduate Press, Inc.

  12. Reliability-based trajectory optimization using nonintrusive polynomial chaos for Mars entry mission

    NASA Astrophysics Data System (ADS)

    Huang, Yuechen; Li, Haiyang

    2018-06-01

    This paper presents the reliability-based sequential optimization (RBSO) method to settle the trajectory optimization problem with parametric uncertainties in entry dynamics for Mars entry mission. First, the deterministic entry trajectory optimization model is reviewed, and then the reliability-based optimization model is formulated. In addition, the modified sequential optimization method, in which the nonintrusive polynomial chaos expansion (PCE) method and the most probable point (MPP) searching method are employed, is proposed to solve the reliability-based optimization problem efficiently. The nonintrusive PCE method contributes to the transformation between the stochastic optimization (SO) and the deterministic optimization (DO) and to the approximation of trajectory solution efficiently. The MPP method, which is used for assessing the reliability of constraints satisfaction only up to the necessary level, is employed to further improve the computational efficiency. The cycle including SO, reliability assessment and constraints update is repeated in the RBSO until the reliability requirements of constraints satisfaction are satisfied. Finally, the RBSO is compared with the traditional DO and the traditional sequential optimization based on Monte Carlo (MC) simulation in a specific Mars entry mission to demonstrate the effectiveness and the efficiency of the proposed method.

  13. Semantic-based surveillance video retrieval.

    PubMed

    Hu, Weiming; Xie, Dan; Fu, Zhouyu; Zeng, Wenrong; Maybank, Steve

    2007-04-01

    Visual surveillance produces large amounts of video data. Effective indexing and retrieval from surveillance video databases are very important. Although there are many ways to represent the content of video clips in current video retrieval algorithms, there still exists a semantic gap between users and retrieval systems. Visual surveillance systems supply a platform for investigating semantic-based video retrieval. In this paper, a semantic-based video retrieval framework for visual surveillance is proposed. A cluster-based tracking algorithm is developed to acquire motion trajectories. The trajectories are then clustered hierarchically using the spatial and temporal information, to learn activity models. A hierarchical structure of semantic indexing and retrieval of object activities, where each individual activity automatically inherits all the semantic descriptions of the activity model to which it belongs, is proposed for accessing video clips and individual objects at the semantic level. The proposed retrieval framework supports various queries including queries by keywords, multiple object queries, and queries by sketch. For multiple object queries, succession and simultaneity restrictions, together with depth and breadth first orders, are considered. For sketch-based queries, a method for matching trajectories drawn by users to spatial trajectories is proposed. The effectiveness and efficiency of our framework are tested in a crowded traffic scene.

  14. Trajectories and Risk Factors for Post-Traumatic Stress Symptoms following Pediatric Concussion.

    PubMed

    Truss, Katherine; Godfrey, Celia; Takagi, Michael; Babl, Franz E; Bressan, Silvia; Hearps, Stephen; Clarke, Cathriona; Dunne, Kevin; Anderson, Vicki

    2017-07-15

    A substantial minority of children experience post-traumatic stress symptoms (PTSS) following injury. Research indicates variation in the trajectory of PTSS following pediatric injury, but investigation of PTSS following concussion has assumed homogeneity. This study aimed to identify differential trajectories of PTSS following pediatric concussion and to investigate risk factors, including acute post-concussive symptoms (PCS), associated with these trajectories. A total of 120 children ages 8-18 years reported PTSS for 3 months following concussion diagnosis using the Child PTSD Symptom Scale, with a score of 16 or above indicating probable post-traumatic stress disorder diagnosis. Age, gender, injury mechanism, loss of consciousness, previous concussions, prior hospitalization, prior diagnosis of depression or anxiety, and acute PCS were assessed as risk factors. Data were analyzed using group-based trajectory modeling. Results revealed 16% of children had clinically significant PTSS 2 weeks post-concussion, declining to 10% at 1 month and 6% at 3 months post-injury. Group-based trajectory modeling identified three trajectories of PTSS post-concussion: "resilient" (70%); "recovering" (25%), in which children experienced elevated acute symptoms that declined over time; and "chronic symptomatology" (5%). Due to small size, the chronic group should be interpreted with caution. Higher acute PCS and prior diagnosis of depression or anxiety both significantly increased predicted probability of recovering trajectory group membership. These findings establish that most children are resilient to PTSS following concussion, but that PTSS do occur acutely in a substantial minority of children. The study indicates mental health factors, particularly PTSS, depression, and anxiety, should be considered integral to models of concussion management and treatment.

  15. From medico-administrative databases analysis to care trajectories analytics: an example with the French SNDS.

    PubMed

    Drezen, Erwan; Guyet, Thomas; Happe, André

    2018-02-01

    Medico-administrative data like SNDS (Système National de Données de Santé) are not collected initially for epidemiological purposes. Moreover, the data model and the tools proposed to SNDS users make their in-depth exploitation difficult. We propose a data model, called the ePEPS model, based on healthcare trajectories to provide a medical view of raw data. A data abstraction process enables the clinician to have an intuitive medical view of raw data and to design a study-specific view. This view is based on a generic model of care trajectory, that is a sequence of time stamped medical events for a given patient. This model is combined with tools to manipulate care trajectories efficiently. © 2017 Société Française de Pharmacologie et de Thérapeutique.

  16. Microsaccades and interest areas during free-viewing sport task.

    PubMed

    Piras, Alessandro; Raffi, Milena; Perazzolo, Monica; Malagoli Lanzoni, Ivan; Squatrito, Salvatore

    2017-09-18

    Microsaccades are important fixation eye movements for visual scene perception. Compared to novices, athletes make fewer fixations of longer duration toward limited interest areas crucial for action prediction. Thus, our aim was to study the microsaccade features during those fixations. Gaze behaviour of expert and novice table tennis players was recorder during a task in which subjects were instructed to predict the direction of the ball after the opponent's throw. Three interest areas from the opponent's body and one from the ball trajectory were identified. We analysed correctness of predictions, fixations, microsaccades and saccades to estimate the relationship between eye movements toward interest areas and success in the task. Compared to novices, experts fixated more on hand-racket during forehand and on trunk during backhand drive technique. Longer fixations on hand-racket and trunk were associated with higher microsaccade rate with a narrower directional distribution of them. It probably means that athletes focused their gaze on these small areas, suggesting enhanced attention mainly to them, and fewer consideration for the surrounding regions. We can assume that microsaccade rate and average direction could be related to the salience of interest areas during performance.

  17. Saccadic eye movements as an index of perceptual decision-making.

    PubMed

    McSorley, Eugene; McCloy, Rachel

    2009-10-01

    One of the most common decisions we make is the one about where to move our eyes next. Here we examine the impact that processing the evidence supporting competing options has on saccade programming. Participants were asked to saccade to one of two possible visual targets indicated by a cloud of moving dots. We varied the evidence which supported saccade target choice by manipulating the proportion of dots moving towards one target or the other. The task was found to become easier as the evidence supporting target choice increased. This was reflected in an increase in percent correct and a decrease in saccade latency. The trajectory and landing position of saccades were found to deviate away from the non-selected target reflecting the choice of the target and the inhibition of the non-target. The extent of the deviation was found to increase with amount of sensory evidence supporting target choice. This shows that decision-making processes involved in saccade target choice have an impact on the spatial control of a saccade. This would seem to extend the notion of the processes involved in the control of saccade metrics beyond a competition between visual stimuli to one also reflecting a competition between options.

  18. Optimal bipedal interactions with dynamic terrain: synthesis and analysis via nonlinear programming

    NASA Astrophysics Data System (ADS)

    Hubicki, Christian; Goldman, Daniel; Ames, Aaron

    In terrestrial locomotion, gait dynamics and motor control behaviors are tuned to interact efficiently and stably with the dynamics of the terrain (i.e. terradynamics). This controlled interaction must be particularly thoughtful in bipeds, as their reduced contact points render them highly susceptible to falls. While bipedalism under rigid terrain assumptions is well-studied, insights for two-legged locomotion on soft terrain, such as sand and dirt, are comparatively sparse. We seek an understanding of how biological bipeds stably and economically negotiate granular media, with an eye toward imbuing those abilities in bipedal robots. We present a trajectory optimization method for controlled systems subject to granular intrusion. By formulating a large-scale nonlinear program (NLP) with reduced-order resistive force theory (RFT) models and jamming cone dynamics, the optimized motions are informed and shaped by the dynamics of the terrain. Using a variant of direct collocation methods, we can express all optimization objectives and constraints in closed-form, resulting in rapid solving by standard NLP solvers, such as IPOPT. We employ this tool to analyze emergent features of bipedal locomotion in granular media, with an eye toward robotic implementation.

  19. Trajectories of Depressive Symptoms Among a Population of HIV-Infected Men and Women in Routine HIV Care in the United States.

    PubMed

    Bengtson, Angela M; Pence, Brian W; Powers, Kimberly A; Weaver, Mark A; Mimiaga, Matthew J; Gaynes, Bradley N; O'Cleirigh, Conall; Christopoulos, Katerina; Christopher Mathews, W; Crane, Heidi; Mugavero, Michael

    2018-04-06

    Depressive symptoms vary in severity and chronicity. We used group-based trajectory models to describe trajectories of depressive symptoms (measured using the Patient Health Questionnaire-9) and predictors of trajectory group membership among 1493 HIV-infected men (84%) and 292 HIV-infected women (16%). At baseline, 29% of women and 26% of men had depressive symptoms. Over a median of 30 months of follow-up, we identified four depressive symptom trajectories for women (labeled "low" [experienced by 56% of women], "mild/moderate" [24%], "improving" [14%], and "severe" [6%]) and five for men ("low" [61%], "mild/moderate" [14%], "rebounding" [5%], "improving" [13%], and "severe" [7%]). Baseline antidepressant prescription, panic symptoms, and prior mental health diagnoses were associated with more severe or dynamic depressive symptom trajectories. Nearly a quarter of participants experienced some depressive symptoms, highlighting the need for improved depression management. Addressing more severe or dynamic depressive symptom trajectories may require interventions that additionally address mental health comorbidities.

  20. UAV-based mapping, back analysis and trajectory modeling of a coseismic rockfall in Lefkada island, Greece

    NASA Astrophysics Data System (ADS)

    Saroglou, Charalampos; Asteriou, Pavlos; Zekkos, Dimitrios; Tsiambaos, George; Clark, Marin; Manousakis, John

    2018-01-01

    We present field evidence and a kinematic study of a rock block mobilized in the Ponti area by a Mw = 6.5 earthquake near the island of Lefkada on 17 November 2015. A detailed survey was conducted using an unmanned aerial vehicle (UAV) with an ultrahigh definition (UHD) camera, which produced a high-resolution orthophoto and a digital terrain model (DTM). The sequence of impact marks from the rock trajectory on the ground surface was identified from the orthophoto and field verified. Earthquake characteristics were used to estimate the acceleration of the rock slope and the initial condition of the detached block. Using the impact points from the measured rockfall trajectory, an analytical reconstruction of the trajectory was undertaken, which led to insights on the coefficients of restitution (CORs). The measured trajectory was compared with modeled rockfall trajectories using recommended parameters. However, the actual trajectory could not be accurately predicted, revealing limitations of existing rockfall analysis software used in engineering practice.

  1. Trajectory Planning by Preserving Flexibility: Metrics and Analysis

    NASA Technical Reports Server (NTRS)

    Idris, Husni R.; El-Wakil, Tarek; Wing, David J.

    2008-01-01

    In order to support traffic management functions, such as mitigating traffic complexity, ground and airborne systems may benefit from preserving or optimizing trajectory flexibility. To help support this hypothesis trajectory flexibility metrics have been defined in previous work to represent the trajectory robustness and adaptability to the risk of violating safety and traffic management constraints. In this paper these metrics are instantiated in the case of planning a trajectory with the heading degree of freedom. A metric estimation method is presented based on simplifying assumptions, namely discrete time and heading maneuvers. A case is analyzed to demonstrate the estimation method and its use in trajectory planning in a situation involving meeting a time constraint and avoiding loss of separation with nearby traffic. The case involves comparing path-stretch trajectories, in terms of adaptability and robustness along each, deduced from a map of estimated flexibility metrics over the solution space. The case demonstrated anecdotally that preserving flexibility may result in enhancing certain factors that contribute to traffic complexity, namely reducing proximity and confrontation.

  2. Potential sources of precipitation in Lake Baikal basin

    NASA Astrophysics Data System (ADS)

    Shukurov, K. A.; Mokhov, I. I.

    2017-11-01

    Based on the data of long-term measurements at 23 meteorological stations in the Russian part of the Lake Baikal basin the probabilities of daily precipitation with different intensity and their contribution to the total precipitation are estimated. Using the trajectory model HYSPLIT_4 for each meteorological station for the period 1948-2016 the 10-day backward trajectories of air parcels, the height of these trajectories and distribution of specific humidity along the trajectories are calculated. The average field of power of potential sources of daily precipitation (less than 10 mm) for all meteorological stations in the Russian part of the Lake Baikal basin was obtained using the CWT (concentration weighted trajectory) method. The areas have been identified from which within 10 days water vapor can be transported to the Lake Baikal basin, as well as regions of the most and least powerful potential sources. The fields of the mean height of air parcels trajectories and the mean specific humidity along the trajectories are compared with the field of mean power of potential sources.

  3. A Field Test of Web-Based Screening for Dry Eye Disease to Enhance Awareness of Eye Problems Among General Internet Users: A Latent Strategy to Promote Health

    PubMed Central

    Uchino, Miki; Kawazoe, Takashi; Kamiyashiki, Masaaki; Sano, Kokoro; Tsubota, Kazuo

    2013-01-01

    Background A Web-based self-check system including a brief questionnaire would seem to be a suitable tool for rapid disease screening. Objective The purpose of this preliminary study was to test a Web-based self-screening questionnaire for drawing attention to dry eye disease among general Internet users and identifying those with a higher risk of developing the condition. Methods A survey website was launched and used to recruit participants from general Internet users. In the first phase, volunteers were asked to complete a Web-based self-screening questionnaire containing 12 questions on dry eye symptoms. The second phase focused on the respondents who reported five or more dry eye symptoms and expressed their intention to seek medical attention. These participants performed the Schirmer test, for evaluating tear production, and completed a paper-based lifestyle questionnaire to provide relevant background data. Results Of the 1689 visitors to the website, 980 (58.0%) volunteers completed the Web-based self-screening questionnaire. Among these, 355 (36.2%) respondents reported five or more dry eye symptoms. Then, 99 (27.9%) of the symptomatic participants performed the Schirmer test and completed the paper-based lifestyle questionnaire. Out of these, 32 (32.2%) had abnormal tear production (≤5 mm). Conclusions The proposed Web-based self-screening questionnaire seems to be a promising tool for raising awareness of dry eye disease among general Internet users and identifying those with a higher risk of developing the condition, although further research is needed to validate its effectiveness. PMID:24072379

  4. Intraocular lens design for treating high myopia based on individual eye model

    NASA Astrophysics Data System (ADS)

    Wang, Yang; Wang, Zhaoqi; Wang, Yan; Zuo, Tong

    2007-02-01

    In this research, we firstly design the phakic intraocular lens (PIOL) based on individual eye model with optical design software ZEMAX. The individual PIOL is designed to correct the defocus and astigmatism, and then we compare the PIOL power calculated from the individual eye model with that from the experiential formula. Close values of PIOL power are obtained between the individual eye model and the formula, but the suggested method has more accuracy with more functions. The impact of PIOL decentration on human eye is evaluated, including rotation decentration, flat axis decentration, steep axis decentration and axial movement of PIOL, which is impossible with traditional method. To control the PIOL decentration errors, we give the limit values of PIOL decentration for the specific eye in this study.

  5. Effects of saccadic bilateral eye movements on episodic and semantic autobiographical memory fluency.

    PubMed

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2013-01-01

    Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance.

  6. Effects of Saccadic Bilateral Eye Movements on Episodic and Semantic Autobiographical Memory Fluency

    PubMed Central

    Parker, Andrew; Parkin, Adam; Dagnall, Neil

    2013-01-01

    Performing a sequence of fast saccadic horizontal eye movements has been shown to facilitate performance on a range of cognitive tasks, including the retrieval of episodic memories. One explanation for these effects is based on the hypothesis that saccadic eye movements increase hemispheric interaction, and that such interactions are important for particular types of memory. The aim of the current research was to assess the effect of horizontal saccadic eye movements on the retrieval of both episodic autobiographical memory (event/incident based memory) and semantic autobiographical memory (fact based memory) over recent and more distant time periods. It was found that saccadic eye movements facilitated the retrieval of episodic autobiographical memories (over all time periods) but not semantic autobiographical memories. In addition, eye movements did not enhance the retrieval of non-autobiographical semantic memory. This finding illustrates a dissociation between the episodic and semantic characteristics of personal memory and is considered within the context of hemispheric contributions to episodic memory performance. PMID:24133435

  7. Interacting with mobile devices by fusion eye and hand gestures recognition systems based on decision tree approach

    NASA Astrophysics Data System (ADS)

    Elleuch, Hanene; Wali, Ali; Samet, Anis; Alimi, Adel M.

    2017-03-01

    Two systems of eyes and hand gestures recognition are used to control mobile devices. Based on a real-time video streaming captured from the device's camera, the first system recognizes the motion of user's eyes and the second one detects the static hand gestures. To avoid any confusion between natural and intentional movements we developed a system to fuse the decision coming from eyes and hands gesture recognition systems. The phase of fusion was based on decision tree approach. We conducted a study on 5 volunteers and the results that our system is robust and competitive.

  8. Postoperative refraction in the second eye having cataract surgery.

    PubMed

    Leffler, Christopher T; Wilkes, Martin; Reeves, Juliana; Mahmood, Muneera A

    2011-01-01

    Introduction. Previous cataract surgery studies assumed that first-eye predicted and observed postoperative refractions are equally important for predicting second-eye postoperative refraction. Methods. In a retrospective analysis of 173 patients having bilateral sequential phacoemulsification, multivariable linear regression was used to predict the second-eye postoperative refraction based on refractions predicted by the SRK-T formula for both eyes, the first-eye postoperative refraction, and the difference in IOL selected between eyes. Results. The first-eye observed postoperative refraction was an independent predictor of the second eye postoperative refraction (P < 0.001) and was weighted more heavily than the first-eye predicted refraction. Compared with the SRK-T formula, this model reduced the root-mean-squared (RMS) error of the predicted refraction by 11.3%. Conclusions. The first-eye postoperative refraction is an independent predictor of the second-eye postoperative refraction. The first-eye predicted refraction is less important. These findings may be due to interocular symmetry.

  9. Proposed new classification scheme for chemical injury to the human eye.

    PubMed

    Bagley, Daniel M; Casterton, Phillip L; Dressler, William E; Edelhauser, Henry F; Kruszewski, Francis H; McCulley, James P; Nussenblatt, Robert B; Osborne, Rosemarie; Rothenstein, Arthur; Stitzel, Katherine A; Thomas, Karluss; Ward, Sherry L

    2006-07-01

    Various ocular alkali burn classification schemes have been published and used to grade human chemical eye injuries for the purpose of identifying treatments and forecasting outcomes. The ILSI chemical eye injury classification scheme was developed for the additional purpose of collecting detailed human eye injury data to provide information on the mechanisms associated with chemical eye injuries. This information will have clinical application, as well as use in the development and validation of new methods to assess ocular toxicity. A panel of ophthalmic researchers proposed the new classification scheme based upon current knowledge of the mechanisms of eye injury, and their collective clinical and research experience. Additional ophthalmologists and researchers were surveyed to critique the scheme. The draft scheme was revised, and the proposed scheme represents the best consensus from at least 23 physicians and scientists. The new scheme classifies chemical eye injury into five categories based on clinical signs, symptoms, and expected outcomes. Diagnostic classification is based primarily on two clinical endpoints: (1) the extent (area) of injury at the limbus, and (2) the degree of injury (area and depth) to the cornea. The new classification scheme provides a uniform system for scoring eye injury across chemical classes, and provides enough detail for the clinician to collect data that will be relevant to identifying the mechanisms of ocular injury.

  10. Image-based computer-assisted diagnosis system for benign paroxysmal positional vertigo

    NASA Astrophysics Data System (ADS)

    Kohigashi, Satoru; Nakamae, Koji; Fujioka, Hiromu

    2005-04-01

    We develop the image based computer assisted diagnosis system for benign paroxysmal positional vertigo (BPPV) that consists of the balance control system simulator, the 3D eye movement simulator, and the extraction method of nystagmus response directly from an eye movement image sequence. In the system, the causes and conditions of BPPV are estimated by searching the database for record matching with the nystagmus response for the observed eye image sequence of the patient with BPPV. The database includes the nystagmus responses for simulated eye movement sequences. The eye movement velocity is obtained by using the balance control system simulator that allows us to simulate BPPV under various conditions such as canalithiasis, cupulolithiasis, number of otoconia, otoconium size, and so on. Then the eye movement image sequence is displayed on the CRT by the 3D eye movement simulator. The nystagmus responses are extracted from the image sequence by the proposed method and are stored in the database. In order to enhance the diagnosis accuracy, the nystagmus response for a newly simulated sequence is matched with that for the observed sequence. From the matched simulation conditions, the causes and conditions of BPPV are estimated. We apply our image based computer assisted diagnosis system to two real eye movement image sequences for patients with BPPV to show its validity.

  11. Eye vs. Text Movement: Which Technique Leads to Faster Reading Comprehension?

    ERIC Educational Resources Information Center

    Abdellah, Antar Solhy

    2009-01-01

    Eye fixation is a frequent problem that faces foreign language learners and hinders the flow of their reading comprehension. Although students are usually advised to read fast/skim to overcome this problem, eye fixation persists. The present study investigates the effect of using a paper-based program as compared to a computer-based software in…

  12. Balance failure in single limb stance due to ankle sprain injury: an analysis of center of pressure using the fractal dimension method.

    PubMed

    Doherty, Cailbhe; Bleakley, Chris; Hertel, Jay; Caulfield, Brian; Ryan, John; Delahunt, Eamonn

    2014-01-01

    Instrumented postural control analysis plays an important role in evaluating the effects of injury on dynamic stability during balance tasks, and is often conveyed with measures based on the displacement of the center-of-pressure (COP) assessed with a force platform. However, the desired outcome of the task is frequently characterized by a loss of dynamic stability, secondary to injury. Typically, these failed trials are discarded during research investigations, with the potential loss of informative data pertaining to task success. The novelty of the present study is that COP characteristics of failed trials in injured participants are compared to successful trial data in another injured group, and a control group of participants, using the fractal dimension (FD) method. Three groups of participants attempted a task of eyes closed single limb stance (SLS): twenty-nine participants with acute ankle sprain successfully completed the task on their non-injured limb (successful injury group); twenty eight participants with acute ankle sprain failed their attempt on their injured limb (failed injury group); sixteen participants with no current injury successfully completed the task on their non-dominant limb (successful non-injured group). Between trial analyses of these groups revealed significant differences in COP trajectory FD (successful injury group: 1.58±0.06; failed injury group: 1.54±0.07; successful non-injured group: 1.64±0.06) with a large effect size (0.27). These findings demonstrate that successful eyes-closed SLS is characterized by a larger FD of the COP path when compared to failed trials, and that injury causes a decrease in COP path FD. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Survey of Ophthalmologists Regarding Practice Patterns for Dry Eye and Sjogren Syndrome.

    PubMed

    Bunya, Vatinee Y; Fernandez, Karen B; Ying, Gui-Shuang; Massaro-Giordano, Mina; Macchi, Ilaria; Sulewski, Michael E; Hammersmith, Kristin M; Nagra, Parveen K; Rapuano, Christopher J; Orlin, Stephen E

    2018-01-15

    To survey ophthalmologists about current practice patterns regarding the evaluation of dry eye patients and referrals for a Sjogren syndrome (SS) workup. An online survey was sent to ophthalmologists affiliated with the Scheie Eye Institute or Wills Eye Hospital using REDCap in August 2015. Descriptive statistics were used to summarize the data. Four hundred seventy-four survey invitations were sent out and 101 (21%) ophthalmologists completed the survey. The common traditional dry eye test performed was corneal fluorescein staining (62%) and the most common newer dry eye test performed was tear osmolarity (18%). Half of respondents (51%) refer fewer than 5% of their dry eye patients for SS workups, with 18% reporting that they never refer any patients. The most common reasons for referrals included positive review of systems (60%), severe dry eye symptoms (51%) or ocular signs (47%), or dry eye that is refractory to treatment (42%). The majority (83%) felt that there is a need for an evidence-based standardized screening tool for dry eye patients to decide who should be referred for evaluation for SS. Ophthalmologists continue to prefer the use of traditional dry eye tests in practice, with the most common test being corneal fluorescein staining. There is an underreferral of dry eye patients for SS workups, which is contributing to the continued underdiagnosis of the disease. Most respondents felt that there was a need for an evidence-based standardized screening tool to decide which dry eye patients should be referred for SS evaluations.

  14. Evaluation of balloon trajectory forecast routines for GAINS

    NASA Astrophysics Data System (ADS)

    Collander, R.; Girz, C.

    The Global Air-ocean IN-situ System (GAINS) is a global observing system designed to augment current environmental observing and monitoring networks. GAINS is a network of long-duration, stratospheric platforms that carry onboard sensors and hundreds of dropsondes to acquire meteorological, air chemistry, and climate data over oceans and in remote land regions of the globe. Although GAINS platforms will include balloons and Remotely Operated Aircraft (ROA), the scope of this paper is limited to balloon-based platforms. A primary goal of GAINS balloon test flights is post-flight recovery of the balloon shell and payload, which requires information on the expected flight path and landing site prior to launch. Software has been developed for the prediction of the balloon trajectory and landing site, with separate versions written to generate predictions based upon rawinsonde data and model output. Balloon positions are calculated in 1-min increments based on wind data from the closest rawinsonde site or model grid point, given a known launch point, ascent and descent rate and flight duration. For short flights (< 6h), rawinsonde winds interpolated to 10-mb levels are used for trajectory calculations. Predictions for flight durations of 6 to 48h are based upon the initialization and 3 h forecast wind fields from NOAA's global aviation- (AVN) and Rapid Update Cycle (RUC) models. Given a limited number of actual balloon launches, trajectories computed from a chronological series of hourly RUC initializations are used as the baseline for comparison purposes. These baseline trajectories are compared to trajectory predictions from the rawinsonde and model-based versions on a monthly and seasonal basis over a 1-year period (January 1 - December 31, 2001) for flight durations of 3h, 6h and 48h. Predicted trajectories diverge from the baseline path, with the divergence increasing with increasing time. We examine the zonal, meridional and net magnitudes of these deviations, and attempt to determine directional biases in the predictions. This paper gives an overview of the software, including methods employed, physical considerations and limitations, and discusses results of this evaluation.

  15. A single-center, pilot study evaluating a novel TriHex peptide- and botanical-containing eye treatment compared to baseline.

    PubMed

    Reivitis, Alex; Karimi, Kian; Griffiths, Chester; Banayan, Ashley

    2018-04-16

    Topical treatments containing tripeptide and hexapeptide (TriHex technology) have been proven to contribute to youthful skin by clearing the extracellular matrix and stimulating collagen and elastin production. Evaluate the efficacy of a novel eye treatment containing TriHex peptides and other synergistic ingredients for the daily treatment of fine lines/crow's feet around the eyes, under eye hollowing, under eye bags, and dark circles. In this study, 10 subjects (9 female and 1 male) aged 30-60 of Fitzpatrick skin type I, II, or III were selected to use an eye treatment containing TriHex peptides and active botanicals (Alastin Restorative Eye Treatment with TriHex Technology™, ALASTIN Skincare, Inc., Carlsbad, CA) twice daily for 12 weeks. Subjects were photographed and evaluated at baseline, week 4, week 8, and week 12 by a board-certified facial plastic surgeon. Using an adjusted Griffiths scale (0 = none, best possible condition and 9 = severe, worst possible condition), subjects were evaluated on severity of fine lines/crow's feet, under eye hollowing, under eye bags, and dark circles at each visit. Subjects completed a "Subject Questionnaire" at week 4, week 8, and week 12 pertaining to the subject's observations and perceived improvement of these measures. Based on the investigator's assessments, overall improvement in periocular skin was noted for all 10 subjects. Over the course of 12 weeks, raw scores significantly decreased indicating reduction of lines/crow's feet (41% improvement), under eye hollowing (29% improvement), under eye bags (48% improvement), and dark circles (39% improvement). Based on the "Subject Questionnaire," all subjects noted overall improvement of the appearance of skin around the eyes. Based on the findings of this study, this eye treatment containing TriHex peptides and active botanicals is an effective stand-alone treatment for the rejuvenation of periocular skin. When used twice daily, this product can reduce the appearance of lines/crow's feet, under eye hollowing, under eye bags, and dark circles. © 2018 Wiley Periodicals, Inc.

  16. A Method of Trajectory Design for Manned Asteroids Exploration

    NASA Astrophysics Data System (ADS)

    Gan, Q. B.; Zhang, Y.; Zhu, Z. F.; Han, W. H.; Dong, X.

    2014-11-01

    A trajectory optimization method of the nuclear propulsion manned asteroids exploration is presented. In the case of launching between 2035 and 2065, based on the Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory in the feasible regions is selected by pruning the flight sequences. Setting the nuclear propulsion flight plan as propel-coast-propel, and taking the minimal mass of aircraft departure as the index, the nuclear propulsion flight trajectory is separately optimized using a hybrid method. With the initial value of the optimized local parameters of each three phases, the global parameters are jointedly optimized. At last, the minimal departure mass trajectory design result is given.

  17. Probabilistic Modeling of Aircraft Trajectories for Dynamic Separation Volumes

    NASA Technical Reports Server (NTRS)

    Lewis, Timothy A.

    2016-01-01

    With a proliferation of new and unconventional vehicles and operations expected in the future, the ab initio airspace design will require new approaches to trajectory prediction for separation assurance and other air traffic management functions. This paper presents an approach to probabilistic modeling of the trajectory of an aircraft when its intent is unknown. The approach uses a set of feature functions to constrain a maximum entropy probability distribution based on a set of observed aircraft trajectories. This model can be used to sample new aircraft trajectories to form an ensemble reflecting the variability in an aircraft's intent. The model learning process ensures that the variability in this ensemble reflects the behavior observed in the original data set. Computational examples are presented.

  18. EDITORIAL: The Eye and The Chip 2008 The Eye and The Chip 2008

    NASA Astrophysics Data System (ADS)

    Rizzo, Joseph F.; O'Malley, Edward R.; Hessburg, Philip C.

    2009-06-01

    Over the course of the past decade, The Eye and The Chip world congress on visual neuro-prosthetic devices has become a premier meeting for those who believe that 'artificial' vision will one day be used to improve the quality of life of visually impaired patients. Although substantial progress has been made, there are numerous unresolved issues, like the preferred methods for wireless communication, placement of devices, and materials and design among others. The Eye and The Chip meeting of 2008, held in Detroit on 12-14 June 2008, provided important new information about these and other important topics, and thus served to advance this field of scientific research. From a research seedling a decade ago to the crowd of superb presentations in Detroit last June, a very real sense of justifiable optimism has developed. The prospects of artificial vision are no longer remote. Many of the researchers expressed confidence that implantable devices will provide the hoped-for level of vision to justify their widespread use in the future. The often dramatic successes of cochlear implants continues to provide credence that artificial stimulation of nerve tissue is a plausible strategy to restore vision. The Eye and The Chip 2008 attracted researchers from four continents (North America, Europe, Asia and Australia). The meeting also benefited from the attendance and presentations by representatives of the FDA, who have been present for all The Eye and The Chip meetings. The 2008 meeting was also enhanced by the inclusion of a new and related scientific field that shares the goal of restoring vision to the blind—the field of molecular restoration of retinal function by insertion of channelrhodopsin. Just as the field of ophthalmology went from Ridley's primitive intraocular lens replacement to implants useful in virtually every cataract patient in one surgeon's clinical lifetime, the field of retinal prostheses seems to be following a very similar trajectory. Likewise, the field of visual prosthetics continues to amass evidence that suggests that its long-term future is promising. We are grateful to the scientists who made the congress a success, to the Journal of Neural Engineering for organizing this special issue, to the financial supporters who made the congress possible and to the Detroit Institute of Ophthalmology staff who worked tirelessly and without complaint to bring home a superb congress. We invite you to attend the next The Eye and The Chip meeting, which will be held in 2011.

  19. Optimization of Insertion Cost for Transfer Trajectories to Libration Point Orbits

    NASA Technical Reports Server (NTRS)

    Howell, K. C.; Wilson, R. S.; Lo, M. W.

    1999-01-01

    The objective of this work is the development of efficient techniques to optimize the cost associated with transfer trajectories to libration point orbits in the Sun-Earth-Moon four body problem, that may include lunar gravity assists. Initially, dynamical systems theory is used to determine invariant manifolds associated with the desired libration point orbit. These manifolds are employed to produce an initial approximation to the transfer trajectory. Specific trajectory requirements such as, transfer injection constraints, inclusion of phasing loops, and targeting of a specified state on the manifold are then incorporated into the design of the transfer trajectory. A two level differential corrections process is used to produce a fully continuous trajectory that satisfies the design constraints, and includes appropriate lunar and solar gravitational models. Based on this methodology, and using the manifold structure from dynamical systems theory, a technique is presented to optimize the cost associated with insertion onto a specified libration point orbit.

  20. Trajectories of delinquency and parenting styles.

    PubMed

    Hoeve, Machteld; Blokland, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R M; van der Laan, Peter H

    2008-02-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10-19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persisting, and serious desisting trajectory. More serious delinquents tended to more frequently engage in delinquency, and to report a higher proportion of theft. Proportionally, serious persistent delinquents were the most violent of all trajectory groups. Using cluster analysis we identified three parenting styles: authoritative, authoritarian (moderately supportive), and neglectful (punishing). Controlling for demographic characteristics and childhood delinquency, neglectful parenting was more frequent in moderate desisters, serious persisters, and serious desisters, suggesting that parenting styles differentiate non- or minor delinquents from more serious delinquents.

  1. Design and interpretation of cell trajectory assays

    PubMed Central

    Bowden, Lucie G.; Simpson, Matthew J.; Baker, Ruth E.

    2013-01-01

    Cell trajectory data are often reported in the experimental cell biology literature to distinguish between different types of cell migration. Unfortunately, there is no accepted protocol for designing or interpreting such experiments and this makes it difficult to quantitatively compare different published datasets and to understand how changes in experimental design influence our ability to interpret different experiments. Here, we use an individual-based mathematical model to simulate the key features of a cell trajectory experiment. This shows that our ability to correctly interpret trajectory data is extremely sensitive to the geometry and timing of the experiment, the degree of motility bias and the number of experimental replicates. We show that cell trajectory experiments produce data that are most reliable when the experiment is performed in a quasi-one-dimensional geometry with a large number of identically prepared experiments conducted over a relatively short time-interval rather than a few trajectories recorded over particularly long time-intervals. PMID:23985736

  2. Trajectories of Delinquency and Parenting Styles

    PubMed Central

    Blokland, Arjan; Dubas, Judith Semon; Loeber, Rolf; Gerris, Jan R. M.; van der Laan, Peter H.

    2007-01-01

    We investigated trajectories of adolescent delinquent development using data from the Pittsburgh Youth Study and examined the extent to which these different trajectories are differentially predicted by childhood parenting styles. Based on self-reported and official delinquency seriousness, covering ages 10–19, we identified five distinct delinquency trajectories differing in both level and change in seriousness over time: a nondelinquent, minor persisting, moderate desisting, serious persisting, and serious desisting trajectory. More serious delinquents tended to more frequently engage in delinquency, and to report a higher proportion of theft. Proportionally, serious persistent delinquents were the most violent of all trajectory groups. Using cluster analysis we identified three parenting styles: authoritative, authoritarian (moderately supportive), and neglectful (punishing). Controlling for demographic characteristics and childhood delinquency, neglectful parenting was more frequent in moderate desisters, serious persisters, and serious desisters, suggesting that parenting styles differentiate non- or minor delinquents from more serious delinquents. PMID:17786548

  3. Trajectory control method of stratospheric airship based on the sliding mode control and prediction in wind field

    NASA Astrophysics Data System (ADS)

    Zhang, Jia-shi; Yang, Xi-xiang

    2017-11-01

    The stratospheric airship has the characteristics of large inertia, long time delay and large disturbance of wind field , so the trajectory control is very difficult .Build the lateral three degrees of freedom dynamic model which consider the wind interference , the dynamics equation is linearized by the small perturbation theory, propose a trajectory control method Combine with the sliding mode control and prediction, design the trajectory controller , takes the HAA airship as the reference to carry out simulation analysis. Results show that the improved sliding mode control with front-feedback method not only can solve well control problems of airship trajectory in wind field, but also can effectively improve the control accuracy of the traditional sliding mode control method, solved problems that using the traditional sliding mode control to control. It provides a useful reference for dynamic modeling and trajectory control of stratospheric airship.

  4. Low-energy Lunar Trajectories with Lunar Flybys

    NASA Astrophysics Data System (ADS)

    Wei, B. W.; Li, Y. S.

    2017-09-01

    The low-energy lunar trajectories with lunar flybys are investigated in the Sun-Earth-Moon bicircular problem (BCP). Accordingly, the characteristics of the distribution of trajectories in the phase space are summarized. To begin with, by using invariant manifolds of the BCP system, the low-energy lunar trajectories with lunar flybys are sought based on the BCP model. Secondly, through the treating time as an augmented dimension in the phase space of nonautonomous system, the state space map that reveals the distribution of these lunar trajectories in the phase space is given. As a result, it is become clear that low-energy lunar trajectories exist in families, and every moment of a Sun-Earth-Moon synodic period can be the departure date. Finally, the changing rule of departure impulse, midcourse impulse at Poincaré section, transfer duration, and system energy of different families are analyzed. Consequently, the impulse optimal family and transfer duration optimal family are obtained respectively.

  5. Surface modifications with Lissajous trajectories using atomic force microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cai, Wei; Yao, Nan, E-mail: nyao@princeton.edu

    2015-09-14

    In this paper, we report a method for atomic force microscopy surface modifications with single-tone and multiple-resolution Lissajous trajectories. The tip mechanical scratching experiments with two series of Lissajous trajectories were carried out on monolayer films. The scratching processes with two scan methods have been illustrated. As an application, the tip-based triboelectrification phenomenon on the silicon dioxide surface with Lissajous trajectories was investigated. The triboelectric charges generated within the tip rubbed area on the surface were characterized in-situ by scanning Kelvin force microscopy. This method would provide a promising and cost-effective approach for surface modifications and nanofabrication.

  6. A trajectory generation framework for modeling spacecraft entry in MDAO

    NASA Astrophysics Data System (ADS)

    D`Souza, Sarah N.; Sarigul-Klijn, Nesrin

    2016-04-01

    In this paper a novel trajectory generation framework was developed that optimizes trajectory event conditions for use in a Generalized Entry Guidance algorithm. The framework was developed to be adaptable via the use of high fidelity equations of motion and drag based analytical bank profiles. Within this framework, a novel technique was implemented that resolved the sensitivity of the bank profile to atmospheric non-linearities. The framework's adaptability was established by running two different entry bank conditions. Each case yielded a reference trajectory and set of transition event conditions that are flight feasible and implementable in a Generalized Entry Guidance algorithm.

  7. Fractional dynamics using an ensemble of classical trajectories

    NASA Astrophysics Data System (ADS)

    Sun, Zhaopeng; Dong, Hao; Zheng, Yujun

    2018-01-01

    A trajectory-based formulation for fractional dynamics is presented and the trajectories are generated deterministically. In this theoretical framework, we derive a new class of estimators in terms of confluent hypergeometric function (F11) to represent the Riesz fractional derivative. Using this method, the simulation of free and confined Lévy flight are in excellent agreement with the exact numerical and analytical results. In addition, the barrier crossing in a bistable potential driven by Lévy noise of index α is investigated. In phase space, the behavior of trajectories reveal the feature of Lévy flight in a better perspective.

  8. A Cosmic Dust Sensor Based on an Array of Grid Electrodes

    NASA Astrophysics Data System (ADS)

    Li, Y. W.; Bugiel, S.; Strack, H.; Srama, R.

    2014-04-01

    We described a low mass and high sensitivity cosmic dust trajectory sensor using a array of grid segments[1]. the sensor determines the particle velocity vector and the particle mass. An impact target is used for the detection of the impact plasma of high speed particles like interplanetary dust grains or high speed ejecta. Slower particles are measured by three planes of grid electrodes using charge induction. In contrast to conventional Dust Trajectory Sensor based on wire electrodes, grid electrodes a robust and sensitive design with a trajectory resolution of a few degree. Coulomb simulation and laboratory tests were performed in order to verify the instrument design. The signal shapes are used to derive the particle plane intersection points and to derive the exact particle trajectory. The accuracy of the instrument for the incident angle depends on the particle charge, the position of the intersection point and the signal-to-noise of the charge sensitive amplifier (CSA). There are some advantages of this grid-electrodes based design with respect to conventional trajectory sensor using individual wire electrodes: the grid segment electrodes show higher amplitudes (close to 100%induced charge) and the overall number of measurement channels can be reduced. This allows a compact instrument with low power and mass requirements.

  9. Holmes Tremor Secondary to a Stabbing Lesion in the Midbrain

    PubMed Central

    Cury, Rubens Gisbert; Barbosa, Egberto Reis; Freitas, Christian; de Souza Godoy, Luis Filipe; Paiva, Wellingson Silva

    2017-01-01

    Background The development of Holmes tremor (HT) after a direct lesion of the midbrain has rarely been reported in the literature, although several etiologies have been linked with HT, such as stroke, brainstem tumors, multiple sclerosis, head trauma, or infections. Phenomenology Shown A 31-year-old male, having been stabbed in the right eye, presented with a rest and action tremor in the left upper limb associated with left hemiparesis with corresponding post-contrast volumetric magnetic resonance imaging T1 with sagittal oblique reformation showing the knife trajectory reaching the right midbrain. Educational Value Despite the rarity of the etiology of HT in the present case, clinicians working with persons with brain injuries should be aware of this type of situation. PMID:29226021

  10. RF Pulse Design using Nonlinear Gradient Magnetic Fields

    PubMed Central

    Kopanoglu, Emre; Constable, R. Todd

    2014-01-01

    Purpose An iterative k-space trajectory and radio-frequency (RF) pulse design method is proposed for Excitation using Nonlinear Gradient Magnetic fields (ENiGMa). Theory and Methods The spatial encoding functions (SEFs) generated by nonlinear gradient fields (NLGFs) are linearly dependent in Cartesian-coordinates. Left uncorrected, this may lead to flip-angle variations in excitation profiles. In the proposed method, SEFs (k-space samples) are selected using a Matching-Pursuit algorithm, and the RF pulse is designed using a Conjugate-Gradient algorithm. Three variants of the proposed approach are given: the full-algorithm, a computationally-cheaper version, and a third version for designing spoke-based trajectories. The method is demonstrated for various target excitation profiles using simulations and phantom experiments. Results The method is compared to other iterative (Matching-Pursuit and Conjugate Gradient) and non-iterative (coordinate-transformation and Jacobian-based) pulse design methods as well as uniform density spiral and EPI trajectories. The results show that the proposed method can increase excitation fidelity significantly. Conclusion An iterative method for designing k-space trajectories and RF pulses using nonlinear gradient fields is proposed. The method can either be used for selecting the SEFs individually to guide trajectory design, or can be adapted to design and optimize specific trajectories of interest. PMID:25203286

  11. Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet

    PubMed Central

    Zhu, Yaguang; Jin, Bo; Wu, Yongsheng; Guo, Tong; Zhao, Xiangmo

    2016-01-01

    Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system. PMID:27589766

  12. A stereoscopic imaging system for laser back scatter based trajectory measurement in ballistics: part 2

    NASA Astrophysics Data System (ADS)

    Chalupka, Uwe; Rothe, Hendrik

    2012-03-01

    The progress on a laser- and stereo-camera-based trajectory measurement system that we already proposed and described in recent publications is given. The system design was extended from one to two more powerful, DSP-controllable LASER systems. Experimental results of the extended system using different projectile-/weapon combinations will be shown and discussed. Automatic processing of acquired images using common 3DIP techniques was realized. Processing steps to extract trajectory segments from images as representative for the current application will be presented. Used algorithms for backward-calculation of the projectile trajectory will be shown. Verification of produced results is done against simulated trajectories, once in terms of detection robustness and once in terms of detection accuracy. Fields of use for the current system are within the ballistic domain. The first purpose is for trajectory measurement of small and middle caliber projectiles on a shooting range. Extension to big caliber projectiles as well as an application for sniper detection is imaginable, but would require further work. Beside classical RADAR, acoustic and optical projectile detection methods, the current system represents a further projectile location method under the new class of electro-optical methods that have been evolved in recent decades and that uses 3D imaging acquisition and processing techniques.

  13. Trajectory Recognition as the Basis for Object Individuation: A Functional Model of Object File Instantiation and Object-Token Encoding

    PubMed Central

    Fields, Chris

    2011-01-01

    The perception of persisting visual objects is mediated by transient intermediate representations, object files, that are instantiated in response to some, but not all, visual trajectories. The standard object file concept does not, however, provide a mechanism sufficient to account for all experimental data on visual object persistence, object tracking, and the ability to perceive spatially disconnected stimuli as continuously existing objects. Based on relevant anatomical, functional, and developmental data, a functional model is constructed that bases visual object individuation on the recognition of temporal sequences of apparent center-of-mass positions that are specifically identified as trajectories by dedicated “trajectory recognition networks” downstream of the medial–temporal motion-detection area. This model is shown to account for a wide range of data, and to generate a variety of testable predictions. Individual differences in the recognition, abstraction, and encoding of trajectory information are expected to generate distinct object persistence judgments and object recognition abilities. Dominance of trajectory information over feature information in stored object tokens during early infancy, in particular, is expected to disrupt the ability to re-identify human and other individuals across perceptual episodes, and lead to developmental outcomes with characteristics of autism spectrum disorders. PMID:21716599

  14. Synthesis of asymmetric movement trajectories in timed rhythmic behaviour by means of frequency modulation.

    PubMed

    Waadeland, Carl Haakon

    2017-01-01

    Results from different empirical investigations on gestural aspects of timed rhythmic movements indicate that the production of asymmetric movement trajectories is a feature that seems to be a common characteristic of various performances of repetitive rhythmic patterns. The behavioural or neural origin of these asymmetrical trajectories is, however, not identified. In the present study we outline a theoretical model that is capable of producing syntheses of asymmetric movement trajectories documented in empirical investigations by Balasubramaniam et al. (2004). Characteristic qualities of the extension/flexion profiles in the observed asymmetric trajectories are reproduced, and we conduct an experiment similar to Balasubramaniam et al. (2004) to show that the empirically documented movement trajectories and our modelled approximations share the same spectral components. The model is based on an application of frequency modulated movements, and a theoretical interpretation offered by the model is to view paced rhythmic movements as a result of an unpaced movement being "stretched" and "compressed", caused by the presence of a metronome. We discuss our model construction within the framework of event-based and emergent timing, and argue that a change between these timing modes might be reflected by the strength of the modulation in our model. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Logarithmic spiral trajectories generated by Solar sails

    NASA Astrophysics Data System (ADS)

    Bassetto, Marco; Niccolai, Lorenzo; Quarta, Alessandro A.; Mengali, Giovanni

    2018-02-01

    Analytic solutions to continuous thrust-propelled trajectories are available in a few cases only. An interesting case is offered by the logarithmic spiral, that is, a trajectory characterized by a constant flight path angle and a fixed thrust vector direction in an orbital reference frame. The logarithmic spiral is important from a practical point of view, because it may be passively maintained by a Solar sail-based spacecraft. The aim of this paper is to provide a systematic study concerning the possibility of inserting a Solar sail-based spacecraft into a heliocentric logarithmic spiral trajectory without using any impulsive maneuver. The required conditions to be met by the sail in terms of attitude angle, propulsive performance, parking orbit characteristics, and initial position are thoroughly investigated. The closed-form variations of the osculating orbital parameters are analyzed, and the obtained analytical results are used for investigating the phasing maneuver of a Solar sail along an elliptic heliocentric orbit. In this mission scenario, the phasing orbit is composed of two symmetric logarithmic spiral trajectories connected with a coasting arc.

  16. Development of quadruped walking locomotion gait generator using a hybrid method

    NASA Astrophysics Data System (ADS)

    Jasni, F.; Shafie, A. A.

    2013-12-01

    The earth, in many areas is hardly reachable by the wheeled or tracked locomotion system. Thus, walking locomotion system is becoming a favourite option for mobile robot these days. This is because of the ability of walking locomotion to move on the rugged and unlevel terrains. However, to develop a walking locomotion gait for a robot is not a simple task. Central Pattern Generator (CPGs) method is a biological inspired method that is introduced as a method to develop the gait for the walking robot recently to tackle the issue faced by the conventional method of pre-designed trajectory based method. However, research shows that even the CPG method do have some limitations. Thus, in this paper, a hybrid method that combines CPG and the pre-designed trajectory based method is introduced to develop a walking gait for quadruped walking robot. The 3-D foot trajectories and the joint angle trajectories developed using the proposed method are compared with the data obtained via the conventional method of pre-designed trajectory to confirm the performance.

  17. Clustering molecular dynamics trajectories for optimizing docking experiments.

    PubMed

    De Paris, Renata; Quevedo, Christian V; Ruiz, Duncan D; Norberto de Souza, Osmar; Barros, Rodrigo C

    2015-01-01

    Molecular dynamics simulations of protein receptors have become an attractive tool for rational drug discovery. However, the high computational cost of employing molecular dynamics trajectories in virtual screening of large repositories threats the feasibility of this task. Computational intelligence techniques have been applied in this context, with the ultimate goal of reducing the overall computational cost so the task can become feasible. Particularly, clustering algorithms have been widely used as a means to reduce the dimensionality of molecular dynamics trajectories. In this paper, we develop a novel methodology for clustering entire trajectories using structural features from the substrate-binding cavity of the receptor in order to optimize docking experiments on a cloud-based environment. The resulting partition was selected based on three clustering validity criteria, and it was further validated by analyzing the interactions between 20 ligands and a fully flexible receptor (FFR) model containing a 20 ns molecular dynamics simulation trajectory. Our proposed methodology shows that taking into account features of the substrate-binding cavity as input for the k-means algorithm is a promising technique for accurately selecting ensembles of representative structures tailored to a specific ligand.

  18. Discovering shared segments on the migration route of the bar-headed goose by time-based plane-sweeping trajectory clustering

    USGS Publications Warehouse

    Luo, Ze; Baoping, Yan; Takekawa, John Y.; Prosser, Diann J.

    2012-01-01

    We propose a new method to help ornithologists and ecologists discover shared segments on the migratory pathway of the bar-headed geese by time-based plane-sweeping trajectory clustering. We present a density-based time parameterized line segment clustering algorithm, which extends traditional comparable clustering algorithms from temporal and spatial dimensions. We present a time-based plane-sweeping trajectory clustering algorithm to reveal the dynamic evolution of spatial-temporal object clusters and discover common motion patterns of bar-headed geese in the process of migration. Experiments are performed on GPS-based satellite telemetry data from bar-headed geese and results demonstrate our algorithms can correctly discover shared segments of the bar-headed geese migratory pathway. We also present findings on the migratory behavior of bar-headed geese determined from this new analytical approach.

  19. Emergency eye care in rural Australia: role of internet.

    PubMed

    Kumar, S; Yogesan, K; Hudson, B; Tay-Kearney, M-L; Constable, I J

    2006-12-01

    Significant differences exist in the utilization of emergency eye care services in rural and urban Australia. Meanwhile, influence of internet-based technology in emergency eye care service utilization has not been established. This study aims to demonstrate, from a health provider perspective, an internet-based service's impact on emergency eye care in rural Australia. The teleophthalmology service was initiated in the Carnarvon Regional Hospital (CRH) of the Gascoyne region in Western Australia. A digital, slit lamp and fundus camera were used for the service. Economic data was gathered from the Department of Health of Western Australia (DOHWA), the CRH and the Lions Eye Institute. During the study period (January-December, 2003) 118 persons took part in teleophthalmology consultations. Emergency cases constituted 3% of these consultations. Previous year, there were seven eye-related emergency evacuations (inter-hospital air transfers) from the Gascoyne region to City of Perth. Analysis demonstrates implementation of internet-based health services has a marked impact on rural emergency eye care delivery. Internet is well suited to ophthalmology for the diagnosis and management of acute conditions in remote areas. Integration of such services to mainstream health care is recommended.

  20. Magnetic eye tracking in mice

    PubMed Central

    Payne, Hannah L

    2017-01-01

    Eye movements provide insights about a wide range of brain functions, from sensorimotor integration to cognition; hence, the measurement of eye movements is an important tool in neuroscience research. We describe a method, based on magnetic sensing, for measuring eye movements in head-fixed and freely moving mice. A small magnet was surgically implanted on the eye, and changes in the magnet angle as the eye rotated were detected by a magnetic field sensor. Systematic testing demonstrated high resolution measurements of eye position of <0.1°. Magnetic eye tracking offers several advantages over the well-established eye coil and video-oculography methods. Most notably, it provides the first method for reliable, high-resolution measurement of eye movements in freely moving mice, revealing increased eye movements and altered binocular coordination compared to head-fixed mice. Overall, magnetic eye tracking provides a lightweight, inexpensive, easily implemented, and high-resolution method suitable for a wide range of applications. PMID:28872455

  1. Two-year trajectory of fall risk in people with Parkinson’s disease: a latent class analysis

    PubMed Central

    Paul, Serene S; Thackeray, Anne; Duncan, Ryan P; Cavanaugh, James T; Ellis, Theresa D; Earhart, Gammon M; Ford, Matthew P; Foreman, K Bo; Dibble, Leland E

    2015-01-01

    Objective To examine fall risk trajectories occurring naturally in a sample of individuals with early to middle stage Parkinson’s disease (PD). Design Latent class analysis, specifically growth mixture modeling (GMM) of longitudinal fall risk trajectories. Setting Not applicable. Participants 230 community-dwelling PD participants of a longitudinal cohort study who attended at least two of five assessments over a two year period. Interventions Not applicable. Main Outcome Measures Fall risk trajectory (low, medium or high risk) and stability of fall risk trajectory (stable or fluctuating). Fall risk was determined at 6-monthly intervals using a simple clinical tool based on fall history, freezing of gait, and gait speed. Results The GMM optimally grouped participants into three fall risk trajectories that closely mirrored baseline fall risk status (p=.001). The high fall risk trajectory was most common (42.6%) and included participants with longer and more severe disease and with higher postural instability and gait disability (PIGD) scores than the low and medium risk trajectories (p<.001). Fluctuating fall risk (posterior probability <0.8 of belonging to any trajectory) was found in only 22.6% of the sample, most commonly among individuals who were transitioning to PIGD predominance. Conclusions Regardless of their baseline characteristics, most participants had clear and stable fall risk trajectories over two years. Further investigation is required to determine whether interventions to improve gait and balance may improve fall risk trajectories in people with PD. PMID:26606871

  2. Trajectories of depressive symptoms over two years postpartum among overweight or obese women

    PubMed Central

    Lee, Chien-Ti; Stroo, Marissa; Fuemmeler, Bernard; Malhotra, Rahul; Østbye, Truls

    2014-01-01

    Background Although depressive symptoms are common postpartum, few studies have followed women beyond 12 months postpartum to investigate changes in the number and severity of these symptoms over time, especially in overweight and obese women. Using two complementary analytical methods, this study aims to identify trajectories of depressive symptoms over two years postpartum among overweight or obese mothers, and assess the demographic, socio-economic , and health covariates for these trajectories. Methods Using longitudinal data from two behavioral intervention studies (KAN-DO and AMP; N = 844), we used latent growth modeling to identify the overall trajectory of depressive symptoms and how it was related to key covariates. Next, we used latent class growth analysis to assess the heterogeneity in the depressive symptom trajectories over time, and thereby, identify subgroups of women with distinct trajectories. Findings The overall trajectory of depressive symptoms over two years postpartum was relatively stable in our sample. However, the presence of three distinct latent class trajectories [stable-low (82.5%), decreasing symptoms (7.3%) and increasing symptoms (10.2%)], identified based on trajectory shape and mean depressive symptom score, supported heterogeneity in depressive symptom trajectories over time. Lower maternal education was related to a higher symptom score, and poorer subjective health status at baseline predicted inclusion in the increasing symptoms trajectory. Conclusions In some overweight or obese mothers postpartum depressive symptoms do not resolve quickly. Practitioners should be aware of this phenomenon and continue to screen for depression for longer periods of time postpartum. PMID:25213748

  3. Towards a Formal Semantics of Flight Plans and Trajectories

    NASA Technical Reports Server (NTRS)

    Hagen, George E.; Butler, Ricky W.

    2014-01-01

    In the National Airspace System, ight plans are often used only as a planning tool by air trac controllers and aircraft operators. These plans are implicitly translated into trajectories by the pilot or by the ight management system, and subsequently own by the aircraft. This translation process inevitably introduces di erences between the plan and the trajectory. However, given the current intended usage, exact correspondence between the plan and the trajectory is not needed. To achieve greater capacity and eciency, future air trac management concepts are being designed around the use of trajectories where predictability is extremely important. In this paper, a mathematical relationship between ight plans and trajectories is explored with the goal of making feasible, highly accurate predictions of future positions and velocities of aircraft. The goal here is to describe, in mathematically precise detail, a formal language of trajectories, whereby all receivers of the trajectory information will be able to arrive at precisely the same trajectory predication and to do this without having aircraft broadcast a large amount of data. Although even a four-dimensional ight plan is simple in structure, this paper will show that it is inherently ambiguous and will explore these issues in detail. In e ect, we propose that a rigorous semantics for ight plans can be developed and this will serve as an important stepping stone towards trajectory-based operations in the National Airspace System.

  4. [Sensitivity and specificity of optical coherence tomography in diagnosing polypoidal choroidal vasculopathy].

    PubMed

    Zhang, Yi; Yao, Jing; Wang, Xiao-Hua; Zhao, Lin; Wang, Li-Jun; Wang, Jian-Ming; Zhou, Ai-Yi

    2016-02-20

    To establish the diagnostic criteria for polypoidal choroidal vasculopathy (PCV) based on spectral-domain optical coherence tomography (SD OCT) by evaluating the sensitivity and specificity of SD OCT in differentiating PCV from wet age-related macular degeneration (wAMD). The clinical data were reviewed for 62 patients (63 eyes) with the initial diagnosis of PCV or wAMD between August, 2012 and June, 2016. Twenty-four patients (25 eyes) were diagnosed to have PCV and 38 (38 eyes) had wAMD based on findings by fundus photography, fluorescein angiography (FFA) and indocyanine green angiography (ICGA). Among the 6 features of SD OCT, namely a sharp RPED peak, double-layer sign, multiple RPED, an RPED notch, a hyporeflective lumen representing polyps, and hyperreflective intraretinal hard exudates, findings of the first two features and at least one of the other features sufficed the diagnosis of PCV; in the absence of the first two features, the diagnosis of PCV was also made when at least 3 of the other features were present simultaneously. The sensitivity and specificity of SD OCT-based diagnosis were estimated by comparison with the gold standard ICGA-based diagnosis. In the 25 eyes with an established diagnosis of PCV, 23 eyes (92.0%) met the diagnostic criteria based on SD OCT findings; in the 38 eyes with the diagnosis of wAMD, only 4 eyes (10.5%) met the criteria. The sensitivity and specificity of SD OCT-based diagnosis of PCV was 92.0% and 89.5%, respectively. s We established the diagnostic criteria for PCV based on SD OCT findings with a high sensitivity and specificity. SD OCT shows a strong capacity for differentiating PCV from wAMD.

  5. Development of a hybrid mental speller combining EEG-based brain-computer interface and webcam-based eye-tracking.

    PubMed

    Lee, Jun-Hak; Lim, Jeong-Hwan; Hwang, Han-Jeong; Im, Chang-Hwan

    2013-01-01

    The main goal of this study was to develop a hybrid mental spelling system combining a steady-state visual evoked potential (SSVEP)-based brain-computer interface (BCI) technology and a webcam-based eye-tracker, which utilizes information from the brain electrical activity and eye gaze direction at the same time. In the hybrid mental spelling system, a character decoded using SSVEP was not typed if the position of the selected character was not matched with the eye direction information ('left' or 'right') obtained from the eye-tracker. Thus, the users did not need to correct a misspelled character using a 'BACKSPACE' key. To verify the feasibility of the developed hybrid mental spelling system, we conducted online experiments with ten healthy participants. Each participant was asked to type 15 English words consisting of 68 characters. As a result, 16.6 typing errors could be prevented on average, demonstrating that the implemented hybrid mental spelling system could enhance the practicality of our mental spelling system.

  6. Effects of Bilateral Eye Movements on Gist Based False Recognition in the DRM Paradigm

    ERIC Educational Resources Information Center

    Parker, Andrew; Dagnall, Neil

    2007-01-01

    The effects of saccadic bilateral (horizontal) eye movements on gist based false recognition was investigated. Following exposure to lists of words related to a critical but non-studied word participants were asked to engage in 30s of bilateral vs. vertical vs. no eye movements. Subsequent testing of recognition memory revealed that those who…

  7. Instructional Suggestions Supporting Science Learning in Digital Environments Based on a Review of Eye-Tracking Studies

    ERIC Educational Resources Information Center

    Yang, Fang-Ying; Tsai, Meng-Jung; Chiou, Guo-Li; Lee, Silvia Wen-Yu; Chang, Cheng-Chieh; Chen, Li-Ling

    2018-01-01

    The main purpose of this study was to provide instructional suggestions for supporting science learning in digital environments based on a review of eye tracking studies in e-learning related areas. Thirty-three eye-tracking studies from 2005 to 2014 were selected from the Social Science Citation Index (SSCI) database for review. Through a…

  8. Computational Model-Based Prediction of Human Episodic Memory Performance Based on Eye Movements

    NASA Astrophysics Data System (ADS)

    Sato, Naoyuki; Yamaguchi, Yoko

    Subjects' episodic memory performance is not simply reflected by eye movements. We use a ‘theta phase coding’ model of the hippocampus to predict subjects' memory performance from their eye movements. Results demonstrate the ability of the model to predict subjects' memory performance. These studies provide a novel approach to computational modeling in the human-machine interface.

  9. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Eighth Revision

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.; Swieringa, Kurt S.

    2017-01-01

    This paper presents an overview of the eighth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This paper supersedes the previous documentation and presents a modification to the algorithm referred to as the Airborne Spacing for Terminal Arrival Routes version 13 (ASTAR13). This airborne self-spacing concept contains both trajectory-based and state-based mechanisms for calculating the speeds required to achieve or maintain a precise spacing interval with another aircraft. The trajectory-based capability allows for spacing operations prior to the aircraft being on a common path. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm supports the evolving industry standards relating to airborne self-spacing.

  10. Evaluation of Eye Metrics as a Detector of Fatigue

    DTIC Science & Technology

    2010-03-01

    eyeglass frames . The cameras are angled upward toward the eyes and extract real-time pupil diameter, eye-lid movement, and eye-ball movement. The...because the cameras were mounted on eyeglass -like frames , the system was able to continuously monitor the eye throughout all sessions. Overall, the...of “ fitness for duty” testing and “real-time monitoring” of operator performance has been slow (Institute of Medicine, 2004). Oculometric-based

  11. Driver fatigue detection based on eye state.

    PubMed

    Lin, Lizong; Huang, Chao; Ni, Xiaopeng; Wang, Jiawen; Zhang, Hao; Li, Xiao; Qian, Zhiqin

    2015-01-01

    Nowadays, more and more traffic accidents occur because of driver fatigue. In order to reduce and prevent it, in this study, a calculation method using PERCLOS (percentage of eye closure time) parameter characteristics based on machine vision was developed. It determined whether a driver's eyes were in a fatigue state according to the PERCLOS value. The overall workflow solutions included face detection and tracking, detection and location of the human eye, human eye tracking, eye state recognition, and driver fatigue testing. The key aspects of the detection system incorporated the detection and location of human eyes and driver fatigue testing. The simplified method of measuring the PERCLOS value of the driver was to calculate the ratio of the eyes being open and closed with the total number of frames for a given period. If the eyes were closed more than the set threshold in the total number of frames, the system would alert the driver. Through many experiments, it was shown that besides the simple detection algorithm, the rapid computing speed, and the high detection and recognition accuracies of the system, the system was demonstrated to be in accord with the real-time requirements of a driver fatigue detection system.

  12. NEIBank: Genomics and bioinformatics resources for vision research

    PubMed Central

    Peterson, Katherine; Gao, James; Buchoff, Patee; Jaworski, Cynthia; Bowes-Rickman, Catherine; Ebright, Jessica N.; Hauser, Michael A.; Hoover, David

    2008-01-01

    NEIBank is an integrated resource for genomics and bioinformatics in vision research. It includes expressed sequence tag (EST) data and sequence-verified cDNA clones for multiple eye tissues of several species, web-based access to human eye-specific SAGE data through EyeSAGE, and comprehensive, annotated databases of known human eye disease genes and candidate disease gene loci. All expression- and disease-related data are integrated in EyeBrowse, an eye-centric genome browser. NEIBank provides a comprehensive overview of current knowledge of the transcriptional repertoires of eye tissues and their relation to pathology. PMID:18648525

  13. Development of a Mars Airplane Entry, Descent, and Flight Trajectory

    NASA Technical Reports Server (NTRS)

    Murray, James E.; Tartabini, Paul V.

    2001-01-01

    An entry, descent, and flight (EDF) trajectory profile for a Mars airplane mission is defined as consisting of the following elements: ballistic entry of an aeroshell; supersonic deployment of a decelerator parachute; subsonic release of a heat shield; release, unfolding, and orientation of an airplane to flight attitude; and execution of a pull up maneuver to achieve trimmed, horizontal flight. Using the Program to Optimize Simulated Trajectories (POST) a trajectory optimization problem was formulated. Model data representative of a specific Mars airplane configuration, current models of the Mars surface topography and atmosphere, and current estimates of the interplanetary trajectory, were incorporated into the analysis. The goal is to develop an EDF trajectory to maximize the surface-relative altitude of the airplane at the end of a pull up maneuver, while subject to the mission design constraints. The trajectory performance was evaluated for three potential mission sites and was found to be site-sensitive. The trajectory performance, examined for sensitivity to a number of design and constraint variables, was found to be most sensitive to airplane mass, aerodynamic performance characteristics, and the pull up Mach constraint. Based on the results of this sensitivity study, an airplane-drag optimized trajectory was developed that showed a significant performance improvement.

  14. [Electronic Device for Retinal and Iris Imaging].

    PubMed

    Drahanský, M; Kolář, R; Mňuk, T

    This paper describes design and construction of a new device for automatic capturing of eye retina and iris. This device has two possible ways of utilization - either for biometric purposes (persons recognition on the base of their eye characteristics) or for medical purposes as supporting diagnostic device. eye retina, eye iris, device, acquisition, image.

  15. POLYANA-A tool for the calculation of molecular radial distribution functions based on Molecular Dynamics trajectories

    NASA Astrophysics Data System (ADS)

    Dimitroulis, Christos; Raptis, Theophanes; Raptis, Vasilios

    2015-12-01

    We present an application for the calculation of radial distribution functions for molecular centres of mass, based on trajectories generated by molecular simulation methods (Molecular Dynamics, Monte Carlo). When designing this application, the emphasis was placed on ease of use as well as ease of further development. In its current version, the program can read trajectories generated by the well-known DL_POLY package, but it can be easily extended to handle other formats. It is also very easy to 'hack' the program so it can compute intermolecular radial distribution functions for groups of interaction sites rather than whole molecules.

  16. Emulation of rocket trajectory based on a six degree of freedom model

    NASA Astrophysics Data System (ADS)

    Zhang, Wenpeng; Li, Fan; Wu, Zhong; Li, Rong

    2008-10-01

    In this paper, a 6-DOF motion mathematical model is discussed. It is consisted of body dynamics and kinematics block, aero dynamics block and atmosphere block. Based on Simulink, the whole rocket trajectory mathematical model is developed. In this model, dynamic system simulation becomes easy and visual. The method of modularization design gives more convenience to transplant. At last, relevant data is given to be validated by Monte Carlo means. Simulation results show that the flight trajectory of the rocket can be simulated preferably by means of this model, and it also supplies a necessary simulating tool for the development of control system.

  17. Trajectory planning and control of a 6 DOF manipulator with Stewart platform-based mechanism

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Antrazi, Sami

    1990-01-01

    The trajectory planning and control was studied of a robot manipulator that has 6 degrees of freedom and was designed based on the mechanism of the Stewart Platform. First the main components of the manipulator is described along with its operation. The solutions are briefly prescribed for the forward and inverse kinematics of the manipulator. After that, two trajectory planning schemes are developed using the manipulator inverse kinematics to track straight lines and circular paths. Finally experiments conducted to study the performance of the developed planning schemes in tracking a straight line and a circle are presented and discussed.

  18. Analysis of Video-Based Microscopic Particle Trajectories Using Kalman Filtering

    PubMed Central

    Wu, Pei-Hsun; Agarwal, Ashutosh; Hess, Henry; Khargonekar, Pramod P.; Tseng, Yiider

    2010-01-01

    Abstract The fidelity of the trajectories obtained from video-based particle tracking determines the success of a variety of biophysical techniques, including in situ single cell particle tracking and in vitro motility assays. However, the image acquisition process is complicated by system noise, which causes positioning error in the trajectories derived from image analysis. Here, we explore the possibility of reducing the positioning error by the application of a Kalman filter, a powerful algorithm to estimate the state of a linear dynamic system from noisy measurements. We show that the optimal Kalman filter parameters can be determined in an appropriate experimental setting, and that the Kalman filter can markedly reduce the positioning error while retaining the intrinsic fluctuations of the dynamic process. We believe the Kalman filter can potentially serve as a powerful tool to infer a trajectory of ultra-high fidelity from noisy images, revealing the details of dynamic cellular processes. PMID:20550894

  19. Gesture Recognition Based on the Probability Distribution of Arm Trajectories

    NASA Astrophysics Data System (ADS)

    Wan, Khairunizam; Sawada, Hideyuki

    The use of human motions for the interaction between humans and computers is becoming an attractive alternative to verbal media, especially through the visual interpretation of the human body motion. In particular, hand gestures are used as non-verbal media for the humans to communicate with machines that pertain to the use of the human gestures to interact with them. This paper introduces a 3D motion measurement of the human upper body for the purpose of the gesture recognition, which is based on the probability distribution of arm trajectories. In this study, by examining the characteristics of the arm trajectories given by a signer, motion features are selected and classified by using a fuzzy technique. Experimental results show that the use of the features extracted from arm trajectories effectively works on the recognition of dynamic gestures of a human, and gives a good performance to classify various gesture patterns.

  20. Depth-estimation-enabled compound eyes

    NASA Astrophysics Data System (ADS)

    Lee, Woong-Bi; Lee, Heung-No

    2018-04-01

    Most animals that have compound eyes determine object distances by using monocular cues, especially motion parallax. In artificial compound eye imaging systems inspired by natural compound eyes, object depths are typically estimated by measuring optic flow; however, this requires mechanical movement of the compound eyes or additional acquisition time. In this paper, we propose a method for estimating object depths in a monocular compound eye imaging system based on the computational compound eye (COMPU-EYE) framework. In the COMPU-EYE system, acceptance angles are considerably larger than interommatidial angles, causing overlap between the ommatidial receptive fields. In the proposed depth estimation technique, the disparities between these receptive fields are used to determine object distances. We demonstrate that the proposed depth estimation technique can estimate the distances of multiple objects.

  1. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Via, Riccardo, E-mail: riccardo.via@polimi.it; Fassi, Aurora; Fattori, Giovanni

    Purpose: External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Methods: Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by twomore » calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Results: Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. Conclusions: A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.« less

  2. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.

    PubMed

    Via, Riccardo; Fassi, Aurora; Fattori, Giovanni; Fontana, Giulia; Pella, Andrea; Tagaste, Barbara; Riboldi, Marco; Ciocca, Mario; Orecchia, Roberto; Baroni, Guido

    2015-05-01

    External beam radiotherapy currently represents an important therapeutic strategy for the treatment of intraocular tumors. Accurate target localization and efficient compensation of involuntary eye movements are crucial to avoid deviations in dose distribution with respect to the treatment plan. This paper describes an eye tracking system (ETS) based on noninvasive infrared video imaging. The system was designed for capturing the tridimensional (3D) ocular motion and provides an on-line estimation of intraocular lesions position based on a priori knowledge coming from volumetric imaging. Eye tracking is performed by localizing cornea and pupil centers on stereo images captured by two calibrated video cameras, exploiting eye reflections produced by infrared illumination. Additionally, torsional eye movements are detected by template matching in the iris region of eye images. This information allows estimating the 3D position and orientation of the eye by means of an eye local reference system. By combining ETS measurements with volumetric imaging for treatment planning [computed tomography (CT) and magnetic resonance (MR)], one is able to map the position of the lesion to be treated in local eye coordinates, thus enabling real-time tumor referencing during treatment setup and irradiation. Experimental tests on an eye phantom and seven healthy subjects were performed to assess ETS tracking accuracy. Measurements on phantom showed an overall median accuracy within 0.16 mm and 0.40° for translations and rotations, respectively. Torsional movements were affected by 0.28° median uncertainty. On healthy subjects, the gaze direction error ranged between 0.19° and 0.82° at a median working distance of 29 cm. The median processing time of the eye tracking algorithm was 18.60 ms, thus allowing eye monitoring up to 50 Hz. A noninvasive ETS prototype was designed to perform real-time target localization and eye movement monitoring during ocular radiotherapy treatments. The device aims at improving state-of-the-art invasive procedures based on surgical implantation of radiopaque clips and repeated acquisition of X-ray images, with expected positive effects on treatment quality and patient outcome.

  3. Group-based developmental BMI trajectories, polycystic ovary syndrome, and gestational diabetes: a community-based longitudinal study.

    PubMed

    Kakoly, Nadira Sultana; Earnest, Arul; Moran, Lisa J; Teede, Helena J; Joham, Anju E

    2017-11-06

    Obesity is common in young women, increasing insulin resistance (IR) and worsening pregnancy complications, including gestational diabetes (GDM). Women with polycystic ovary syndrome (PCOS) are commonly obese, which aggravates the severity of PCOS clinical expression. Relationships between these common insulin-resistant conditions, however, remain unclear. We conducted a secondary analysis of the Australian Longitudinal Study on Women's Health (ALSWH) database, including data from 8009 women aged 18-36 years across six surveys. We used latent-curve growth modelling to identify distinct body mass index (BMI) trajectories and multinomial logistic regression to explore sociodemographic and health variables characterizing BMI group membership. Logistic regression was used to assess independent risk of GDM. A total of 662 women (8.29%, 95% CI 7.68-8.89) reported PCOS. Three distinct BMI trajectories emerged, namely low stable (LSG) (63.8%), defined as an average trajectory remaining at ~25 kg/m 2 ; moderately rising (MRG) (28.8%), a curvilinear trajectory commencing in a healthy BMI and terminating in the overweight range; and high-rising (HRG) (7.4%), a curvilinear trajectory starting and terminating in the obese range. A high BMI in early reproductive life predicted membership in higher trajectories. The HRG BMI trajectory was independently associated with GDM (OR 2.50, 95% CI 1.80-3.48) and was a stronger correlate than PCOS (OR 1.89, 95% CI 1.41-2.54), maternal age, socioeconomic status, or parity. Our results suggest heterogeneity in BMI change among Australian women of reproductive age, with and without PCOS. Reducing early adult life weight represents an ideal opportunity to intervene at an early stage of reproductive life and decreases the risk of long-term metabolic complications such as GDM.

  4. Exploring the complexity of quantum control optimization trajectories.

    PubMed

    Nanduri, Arun; Shir, Ofer M; Donovan, Ashley; Ho, Tak-San; Rabitz, Herschel

    2015-01-07

    The control of quantum system dynamics is generally performed by seeking a suitable applied field. The physical objective as a functional of the field forms the quantum control landscape, whose topology, under certain conditions, has been shown to contain no critical point suboptimal traps, thereby enabling effective searches for fields that give the global maximum of the objective. This paper addresses the structure of the landscape as a complement to topological critical point features. Recent work showed that landscape structure is highly favorable for optimization of state-to-state transition probabilities, in that gradient-based control trajectories to the global maximum value are nearly straight paths. The landscape structure is codified in the metric R ≥ 1.0, defined as the ratio of the length of the control trajectory to the Euclidean distance between the initial and optimal controls. A value of R = 1 would indicate an exactly straight trajectory to the optimal observable value. This paper extends the state-to-state transition probability results to the quantum ensemble and unitary transformation control landscapes. Again, nearly straight trajectories predominate, and we demonstrate that R can take values approaching 1.0 with high precision. However, the interplay of optimization trajectories with critical saddle submanifolds is found to influence landscape structure. A fundamental relationship necessary for perfectly straight gradient-based control trajectories is derived, wherein the gradient on the quantum control landscape must be an eigenfunction of the Hessian. This relation is an indicator of landscape structure and may provide a means to identify physical conditions when control trajectories can achieve perfect linearity. The collective favorable landscape topology and structure provide a foundation to understand why optimal quantum control can be readily achieved.

  5. Prosocial Behavior: Long-Term Trajectories and Psychosocial Outcomes

    PubMed Central

    Flynn, Elinor; Ehrenreich, Samuel E.; Beron, Kurt J.; Underwood, Marion K.

    2015-01-01

    This study investigated developmental trajectories for prosocial behavior for a sample followed from age 10 – 18 and examined possible adjustment outcomes associated with membership in different trajectory groups. Participants were 136 boys and 148 girls, their teachers, and their parents (19.4% African American, 2.4% Asian, 51.9% Caucasian, 19.5% Hispanic, and 5.8% other). Teachers rated children’s prosocial behavior yearly in grades 4 – 12. At the end of the 12th grade year, teachers, parents, and participants reported externalizing behaviors and participants reported internalizing symptoms, narcissism, and features of borderline personality disorder. Results suggested that prosocial behavior remained stable from middle childhood through late adolescence. Group-based mixture modeling revealed three prosocial trajectory groups: low (18.7%), medium (52.8%), and high (29.6%). Membership in the high prosocial trajectory group predicted lower levels of externalizing behavior as compared to the low prosocial trajectory group, and for girls, lower levels of internalizing symptoms. Membership in the medium prosocial trajectory group also predicted being lower on externalizing behaviors. Membership in the high prosocial trajectory group predicted lower levels of borderline personality features for girls only. PMID:26236108

  6. Optimal short-range trajectories for helicopters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Slater, G.L.; Erzberger, H.

    1982-12-01

    An optimal flight path algorithm using a simplified altitude state model and a priori climb cruise descent flight profile was developed and applied to determine minimum fuel and minimum cost trajectories for a helicopter flying a fixed range trajectory. In addition, a method was developed for obtaining a performance model in simplified form which is based on standard flight manual data and which is applicable to the computation of optimal trajectories. The entire performance optimization algorithm is simple enough that on line trajectory optimization is feasible with a relatively small computer. The helicopter model used is the Silorsky S-61N. Themore » results show that for this vehicle the optimal flight path and optimal cruise altitude can represent a 10% fuel saving on a minimum fuel trajectory. The optimal trajectories show considerable variability because of helicopter weight, ambient winds, and the relative cost trade off between time and fuel. In general, reasonable variations from the optimal velocities and cruise altitudes do not significantly degrade the optimal cost. For fuel optimal trajectories, the optimum cruise altitude varies from the maximum (12,000 ft) to the minimum (0 ft) depending on helicopter weight.« less

  7. A geometric method for computing ocular kinematics and classifying gaze events using monocular remote eye tracking in a robotic environment.

    PubMed

    Singh, Tarkeshwar; Perry, Christopher M; Herter, Troy M

    2016-01-26

    Robotic and virtual-reality systems offer tremendous potential for improving assessment and rehabilitation of neurological disorders affecting the upper extremity. A key feature of these systems is that visual stimuli are often presented within the same workspace as the hands (i.e., peripersonal space). Integrating video-based remote eye tracking with robotic and virtual-reality systems can provide an additional tool for investigating how cognitive processes influence visuomotor learning and rehabilitation of the upper extremity. However, remote eye tracking systems typically compute ocular kinematics by assuming eye movements are made in a plane with constant depth (e.g. frontal plane). When visual stimuli are presented at variable depths (e.g. transverse plane), eye movements have a vergence component that may influence reliable detection of gaze events (fixations, smooth pursuits and saccades). To our knowledge, there are no available methods to classify gaze events in the transverse plane for monocular remote eye tracking systems. Here we present a geometrical method to compute ocular kinematics from a monocular remote eye tracking system when visual stimuli are presented in the transverse plane. We then use the obtained kinematics to compute velocity-based thresholds that allow us to accurately identify onsets and offsets of fixations, saccades and smooth pursuits. Finally, we validate our algorithm by comparing the gaze events computed by the algorithm with those obtained from the eye-tracking software and manual digitization. Within the transverse plane, our algorithm reliably differentiates saccades from fixations (static visual stimuli) and smooth pursuits from saccades and fixations when visual stimuli are dynamic. The proposed methods provide advancements for examining eye movements in robotic and virtual-reality systems. Our methods can also be used with other video-based or tablet-based systems in which eye movements are performed in a peripersonal plane with variable depth.

  8. The Role of Institutional, Family and Peer-Based Discourses and Practices in the Construction of Students' Socio-Academic Trajectories

    ERIC Educational Resources Information Center

    Poveda, David; Jociles, Maria Isabel; Franze, Adela; Moscoso, Maria Fernanda; Calvo, Albano

    2012-01-01

    In this article, we discuss findings from multi-level ethnography conducted in a secondary school located in Madrid (Spain). The study focuses on the variety of institutional, family and peer-based factors that contribute to the construction of students' socio-academic trajectories. In particular, we attempt to understand the role these social…

  9. Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation

    NASA Astrophysics Data System (ADS)

    Tsai, Hung-Ming; Poirier, Bill

    2016-03-01

    In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.

  10. Postoperative Refraction in the Second Eye Having Cataract Surgery

    PubMed Central

    Leffler, Christopher T.; Wilkes, Martin; Reeves, Juliana; Mahmood, Muneera A.

    2011-01-01

    Introduction. Previous cataract surgery studies assumed that first-eye predicted and observed postoperative refractions are equally important for predicting second-eye postoperative refraction. Methods. In a retrospective analysis of 173 patients having bilateral sequential phacoemulsification, multivariable linear regression was used to predict the second-eye postoperative refraction based on refractions predicted by the SRK-T formula for both eyes, the first-eye postoperative refraction, and the difference in IOL selected between eyes. Results. The first-eye observed postoperative refraction was an independent predictor of the second eye postoperative refraction (P < 0.001) and was weighted more heavily than the first-eye predicted refraction. Compared with the SRK-T formula, this model reduced the root-mean-squared (RMS) error of the predicted refraction by 11.3%. Conclusions. The first-eye postoperative refraction is an independent predictor of the second-eye postoperative refraction. The first-eye predicted refraction is less important. These findings may be due to interocular symmetry. PMID:24533181

  11. Early maternal depressive symptom trajectories: Associations with 7-year maternal depressive symptoms and child behavior.

    PubMed

    Buckingham-Howes, Stacy; Oberlander, Sarah E; Wang, Yan; Black, Maureen M

    2017-06-01

    This study examines potential mechanisms linking maternal depressive symptoms over 2 years postpartum with child behavior problems at school-age in a sample of adolescent mothers and their first-born child. Potential mechanisms include: mother-reported caregiving engagement at 6 months; observed parental nurturance and control, and child competence and affect at 24 months; and mother-reported resilience at 7 years based on achievement of adult developmental tasks. One hundred eighteen low-income African American adolescent mothers were recruited at delivery and followed through child age 7 years. Maternal depressive symptom trajectories over 24 months were estimated (low, medium, and high) based on mother-reported depressive symptoms. Direct and indirect associations between depressive symptom trajectories with 7-year maternal depressive symptoms and child behavior problems were examined. The high maternal depressive symptom trajectory was associated with 7-year maternal depressive symptoms (b = 5.52, SE = 1.65, p < .01) and child internalizing problems (b = 7.60, SE = 3.12, p = .02) and externalizing problems (b = 6.23, SE = 3.22, p = .05). Caregiving engagement among high depressive symptom trajectory mothers was significantly associated with observed child affect (b = -0.21, SE = 0.11, p = 0.05). Parental nurturance in toddlerhood mediated the association between high maternal depressive symptom trajectory and child internalizing problems at 7 years (indirect effect b = 2.33, 95% CI: 0.32-5.88). Findings suggest that family based interventions to promote parenting and adolescent resiliency strengthening may be beneficial in this population. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  12. Parallel Aircraft Trajectory Optimization with Analytic Derivatives

    NASA Technical Reports Server (NTRS)

    Falck, Robert D.; Gray, Justin S.; Naylor, Bret

    2016-01-01

    Trajectory optimization is an integral component for the design of aerospace vehicles, but emerging aircraft technologies have introduced new demands on trajectory analysis that current tools are not well suited to address. Designing aircraft with technologies such as hybrid electric propulsion and morphing wings requires consideration of the operational behavior as well as the physical design characteristics of the aircraft. The addition of operational variables can dramatically increase the number of design variables which motivates the use of gradient based optimization with analytic derivatives to solve the larger optimization problems. In this work we develop an aircraft trajectory analysis tool using a Legendre-Gauss-Lobatto based collocation scheme, providing analytic derivatives via the OpenMDAO multidisciplinary optimization framework. This collocation method uses an implicit time integration scheme that provides a high degree of sparsity and thus several potential options for parallelization. The performance of the new implementation was investigated via a series of single and multi-trajectory optimizations using a combination of parallel computing and constraint aggregation. The computational performance results show that in order to take full advantage of the sparsity in the problem it is vital to parallelize both the non-linear analysis evaluations and the derivative computations themselves. The constraint aggregation results showed a significant numerical challenge due to difficulty in achieving tight convergence tolerances. Overall, the results demonstrate the value of applying analytic derivatives to trajectory optimization problems and lay the foundation for future application of this collocation based method to the design of aircraft with where operational scheduling of technologies is key to achieving good performance.

  13. Management by Trajectory

    NASA Image and Video Library

    2018-05-05

    This video provides an overview of the Management by Trajectory (MBT) concept of operations developed as part on a NASA Research Announcement (NRA) sponsored by NASA’s Aviation Operations and Safety Program (AOSP). Possible changes in roles and responsibilities among various agents in the air traffic system are identified, and the concept’s potential impact on system safety in a way that brings the National Airspace System (NAS) closer to a full Trajectory-Based Operations (TBO) environment is described.

  14. Optimal control and optimal trajectories of regional macroeconomic dynamics based on the Pontryagin maximum principle

    NASA Astrophysics Data System (ADS)

    Bulgakov, V. K.; Strigunov, V. V.

    2009-05-01

    The Pontryagin maximum principle is used to prove a theorem concerning optimal control in regional macroeconomics. A boundary value problem for optimal trajectories of the state and adjoint variables is formulated, and optimal curves are analyzed. An algorithm is proposed for solving the boundary value problem of optimal control. The performance of the algorithm is demonstrated by computing an optimal control and the corresponding optimal trajectories.

  15. Axial to transverse energy mixing dynamics in octupole-based magnetostatic antihydrogen traps

    NASA Astrophysics Data System (ADS)

    Zhong, M.; Fajans, J.; Zukor, A. F.

    2018-05-01

    The nature of the trajectories of antihydrogen atoms confined in an octupole minimum-B trap is of great importance for upcoming spectroscopy, cooling, and gravity experiments. Of particular interest is the mixing time between the axial and transverse energies for the antiatoms. Here, using computer simulations, we establish that almost all trajectories are chaotic, and then quantify the characteristic mixing time between the axial and transverse energies. We find that there are two classes of trajectories: for trajectories whose axial energy is higher than about 20% of the total energy, the axial energy substantially mixes within about 10 s, whereas for trajectories whose axial energy is lower than about 10% of the total energy, the axial energy remains nearly constant for 1000 s or longer.

  16. Objective Methods to Test Visual Dysfunction in the Presence of Cognitive Impairment

    DTIC Science & Technology

    2015-12-01

    the eye and 3) purposeful eye movements to track targets that are resolved. Major Findings: Three major objective tests of vision were successfully...developed and optimized to detect disease. These were 1) the pupil light reflex (either comparing the two eyes or independently evaluating each eye ...separately for retina or optic nerve damage, 2) eye movement based analysis of target acquisition, fixation, and eccentric viewing as a means of

  17. How proprioceptive impairments affect quiet standing in patients with multiple sclerosis.

    PubMed

    Rougier, P; Faucher, M; Cantalloube, S; Lamotte, D; Vinti, M; Thoumie, P

    2007-01-01

    To assess if multiple sclerosis patients with proprioceptive impairment are specifically affected during quiet standing with eyes open and how they can develop motor compensatory processes, 56 patients, classified from sensory clinical tests as ataxo-spastic (MS-AS) or only having spasticity (MS-S), were compared to 23 healthy adults matched for age. The postural strategies were assessed from the centre-of-pressure trajectories (CP), measured from a force platform in the eyes open standing condition for a single trial lasting 51.2 s. The vertical projection of the centre of gravity (CGv) and its vertical difference from the CP (CP-CGv) were then estimated through a biomechanical relationship. These two movements permit the characterization of the postural performance and the horizontal acceleration communicated to the CG and from that, the global energy expenditure, respectively. Both MS-AS and MS-S groups demonstrate larger CGv and CP-CGv movements than healthy individuals of the same age. Whilst similar CGv values are noticed in both MS subgroups, suggesting similar postural performances, statistically significant differences are observed for the CP-CGv component. Biomechanically, this feature expresses the necessity for the MS-AS group to develop augmented neuro-muscular means to control their body movements, as compared to the MS-S group. By demonstrating for both groups of patients similar postural performance accompanied by a varying degree of energy expenditure to maintain undisturbed upright stance, this study reveals that MS-AS patients which are affected by proprioceptive loss can compensate for this deficit with more efficient control strategies, when standing still with their eyes open.

  18. Swing-leg trajectory of running guinea fowl suggests task-level priority of force regulation rather than disturbance rejection.

    PubMed

    Blum, Yvonne; Vejdani, Hamid R; Birn-Jeffery, Aleksandra V; Hubicki, Christian M; Hurst, Jonathan W; Daley, Monica A

    2014-01-01

    To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain.

  19. Trajectories of maternal weight from before pregnancy through postpartum and associations with childhood obesity.

    PubMed

    Leonard, Stephanie A; Rasmussen, Kathleen M; King, Janet C; Abrams, Barbara

    2017-11-01

    Background: Prepregnancy body mass index [BMI (in kg/m 2 )], gestational weight gain, and postpartum weight retention may have distinct effects on the development of child obesity, but their combined effect is currently unknown. Objective: We described longitudinal trajectories of maternal weight from before pregnancy through the postpartum period and assessed the relations between maternal weight trajectories and offspring obesity in childhood. Design: We analyzed data from 4436 pairs of mothers and their children in the National Longitudinal Survey of Youth 1979 (1981-2014). We used latent-class growth modeling in addition to national recommendations for prepregnancy BMI, gestational weight gain, and postpartum weight retention to create maternal weight trajectory groups. We used modified Poisson regression models to assess the associations between maternal weight trajectory group and offspring obesity at 3 age periods (2-5, 6-11, and 12-19 y). Results: Our analysis using maternal weight trajectories based on either latent-class results or recommendations showed that the risk of child obesity was lowest in the lowest maternal weight trajectory group. The differences in obesity risk were largest after 5 y of age and persisted into adolescence. In the latent-class analysis, the highest-order maternal weight trajectory group consisted almost entirely of women who were obese before pregnancy and was associated with a >2-fold increase in the risk of offspring obesity at ages 6-11 y (adjusted RR: 2.39; 95% CI: 1.97, 2.89) and 12-19 y (adjusted RR: 2.74; 95% CI: 2.13, 3.52). In the analysis with maternal weight trajectory groups based on recommendations, the risk of child obesity was consistently highest for women who were overweight or obese at the beginning of pregnancy. Conclusion: These findings suggest that high maternal weight across the childbearing period increases the risk of obesity in offspring during childhood, but high prepregnancy BMI has a stronger influence than either gestational weight gain or postpartum weight retention. © 2017 American Society for Nutrition.

  20. Swing-Leg Trajectory of Running Guinea Fowl Suggests Task-Level Priority of Force Regulation Rather than Disturbance Rejection

    PubMed Central

    Blum, Yvonne; Vejdani, Hamid R.; Birn-Jeffery, Aleksandra V.; Hubicki, Christian M.; Hurst, Jonathan W.; Daley, Monica A.

    2014-01-01

    To achieve robust and stable legged locomotion in uneven terrain, animals must effectively coordinate limb swing and stance phases, which involve distinct yet coupled dynamics. Recent theoretical studies have highlighted the critical influence of swing-leg trajectory on stability, disturbance rejection, leg loading and economy of walking and running. Yet, simulations suggest that not all these factors can be simultaneously optimized. A potential trade-off arises between the optimal swing-leg trajectory for disturbance rejection (to maintain steady gait) versus regulation of leg loading (for injury avoidance and economy). Here we investigate how running guinea fowl manage this potential trade-off by comparing experimental data to predictions of hypothesis-based simulations of running over a terrain drop perturbation. We use a simple model to predict swing-leg trajectory and running dynamics. In simulations, we generate optimized swing-leg trajectories based upon specific hypotheses for task-level control priorities. We optimized swing trajectories to achieve i) constant peak force, ii) constant axial impulse, or iii) perfect disturbance rejection (steady gait) in the stance following a terrain drop. We compare simulation predictions to experimental data on guinea fowl running over a visible step down. Swing and stance dynamics of running guinea fowl closely match simulations optimized to regulate leg loading (priorities i and ii), and do not match the simulations optimized for disturbance rejection (priority iii). The simulations reinforce previous findings that swing-leg trajectory targeting disturbance rejection demands large increases in stance leg force following a terrain drop. Guinea fowl negotiate a downward step using unsteady dynamics with forward acceleration, and recover to steady gait in subsequent steps. Our results suggest that guinea fowl use swing-leg trajectory consistent with priority for load regulation, and not for steadiness of gait. Swing-leg trajectory optimized for load regulation may facilitate economy and injury avoidance in uneven terrain. PMID:24979750

  1. Design of integrated eye tracker-display device for head mounted systems

    NASA Astrophysics Data System (ADS)

    David, Y.; Apter, B.; Thirer, N.; Baal-Zedaka, I.; Efron, U.

    2009-08-01

    We propose an Eye Tracker/Display system, based on a novel, dual function device termed ETD, which allows sharing the optical paths of the Eye tracker and the display and on-chip processing. The proposed ETD design is based on a CMOS chip combining a Liquid-Crystal-on-Silicon (LCoS) micro-display technology with near infrared (NIR) Active Pixel Sensor imager. The ET operation allows capturing the Near IR (NIR) light, back-reflected from the eye's retina. The retinal image is then used for the detection of the current direction of eye's gaze. The design of the eye tracking imager is based on the "deep p-well" pixel technology, providing low crosstalk while shielding the active pixel circuitry, which serves the imaging and the display drivers, from the photo charges generated in the substrate. The use of the ETD in the HMD Design enables a very compact design suitable for Smart Goggle applications. A preliminary optical, electronic and digital design of the goggle and its associated ETD chip and digital control, are presented.

  2. Fast Beam-Based BPM Calibration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertsche, K.; Loos, H.; Nuhn, H.-D.

    2012-10-15

    The Alignment Diagnostic System (ADS) of the LCLS undulator system indicates that the 33 undulator quadrupoles have extremely high position stability over many weeks. However, beam trajectory straightness and lasing efficiency degrade more quickly than this. A lengthy Beam Based Alignment (BBA) procedure must be executed every two to four weeks to re-optimize the X-ray beam parameters. The undulator system includes RF cavity Beam Position Monitors (RFBPMs), several of which are utilized by an automatic feedback system to align the incoming electron-beam trajectory to the undulator axis. The beam trajectory straightness degradation has been traced to electronic drifts of themore » gain and offset of the BPMs used in the beam feedback system. To quickly recover the trajectory straightness, we have developed a fast beam-based procedure to recalibrate the BPMs. This procedure takes advantage of the high-precision monitoring capability of the ADS, which allows highly repeatable positioning of undulator quadrupoles. This report describes the ADS, the position stability of the LCLS undulator quadrupoles, and some results of the new recovery procedure.« less

  3. [Investigation of color vision in acute unilateral optic neuritis using a web-based color vision test].

    PubMed

    Kuchenbecker, J; Blum, M; Paul, F

    2016-03-01

    In acute unilateral optic neuritis (ON) color vision defects combined with a decrease in visual acuity and contrast sensitivity frequently occur. This study investigated whether a web-based color vision test is a reliable detector of acquired color vision defects in ON and, if so, which charts are particularly suitable. In 12 patients with acute unilateral ON, a web-based color vision test ( www.farbsehtest.de ) with 25 color plates (16 Velhagen/Broschmann and 9 Ishihara color plates) was performed. For each patient the affected eye was tested first and then the unaffected eye. The mean best-corrected distance visual acuity (BCDVA) in the ON eye was 0.36 ± 0.20 and 1.0 ± 0.1 in the contralateral eye. The number of incorrectly read plates correlated with the visual acuity. For the ON eye a total of 134 plates were correctly identified and 166 plates were incorrectly identified, while for the disease-free fellow eye, 276 plates were correctly identified and 24 plates were incorrectly identified. Both of the blue/yellow plates were identified correctly 14 times and incorrectly 10 times using the ON eye and exclusively correctly (24 times) using the fellow eye. The Velhagen/Broschmann plates were incorrectly identified significantly more frequently in comparison with the Ishihara plates. In 4 out of 16 Velhagen/Broschmann plates and 5 out of 9 Ishihara plates, no statistically significant differences between the ON eye and the fellow eye could be detected. The number of incorrectly identified plates correlated with a decrease in visual acuity. Red/green and blue/yellow plates were incorrectly identified significantly more frequently with the ON eye, while the Velhagen/Broschmann color plates were incorrectly identified significantly more frequently than the Ishihara color plates. Thus, under defined test conditions the web-based color vision test can also be used to detect acquired color vision defects, such as those caused by ON. Optimization of the test by altering the combination of plates may be a useful next step.

  4. Keratomalacia

    MedlinePlus

    ... affected, resulting in an inadequate tear film and dry eyes. People with extreme eye dryness can develop foamy ... keratomalacia is based on the presence of a dry or ulcerated cornea in an undernourished person. ... eye drops or ointments Treatment of vitamin A deficiency ...

  5. Involuntary eye motion correction in retinal optical coherence tomography: Hardware or software solution?

    PubMed

    Baghaie, Ahmadreza; Yu, Zeyun; D'Souza, Roshan M

    2017-04-01

    In this paper, we review state-of-the-art techniques to correct eye motion artifacts in Optical Coherence Tomography (OCT) imaging. The methods for eye motion artifact reduction can be categorized into two major classes: (1) hardware-based techniques and (2) software-based techniques. In the first class, additional hardware is mounted onto the OCT scanner to gather information about the eye motion patterns during OCT data acquisition. This information is later processed and applied to the OCT data for creating an anatomically correct representation of the retina, either in an offline or online manner. In software based techniques, the motion patterns are approximated either by comparing the acquired data to a reference image, or by considering some prior assumptions about the nature of the eye motion. Careful investigations done on the most common methods in the field provides invaluable insight regarding future directions of the research in this area. The challenge in hardware-based techniques lies in the implementation aspects of particular devices. However, the results of these techniques are superior to those obtained from software-based techniques because they are capable of capturing secondary data related to eye motion during OCT acquisition. Software-based techniques on the other hand, achieve moderate success and their performance is highly dependent on the quality of the OCT data in terms of the amount of motion artifacts contained in them. However, they are still relevant to the field since they are the sole class of techniques with the ability to be applied to legacy data acquired using systems that do not have extra hardware to track eye motion. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Non-gaussian signatures of general inflationary trajectories

    NASA Astrophysics Data System (ADS)

    Horner, Jonathan S.; Contaldi, Carlo R.

    2014-09-01

    We carry out a numerical calculation of the bispectrum in generalised trajectories of canonical, single-field inflation. The trajectories are generated in the Hamilton-Jacobi (HJ) formalism based on Hubble Slow Roll (HSR) parameters. The calculation allows generally shape and scale dependent bispectra, or dimensionless fNL, in the out-of-slow-roll regime. The distributions of fNL for various shapes and HSR proposals are shown as an example of how this procedure can be used within the context of Monte Carlo exploration of inflationary trajectories. We also show how allowing out-of-slow-roll behaviour can lead to a bispectrum that is relatively large for equilateral shapes.

  7. Trajectory Design to Mitigate Risk on the Transiting Exoplanet Survey Satellite (TESS) Mission

    NASA Technical Reports Server (NTRS)

    Dichmann, Donald

    2016-01-01

    The Transiting Exoplanet Survey Satellite (TESS) will employ a highly eccentric Earth orbit, in 2:1 lunar resonance, reached with a lunar flyby preceded by 3.5 phasing loops. The TESS mission has limited propellant and several orbit constraints. Based on analysis and simulation, we have designed the phasing loops to reduce delta-V and to mitigate risk due to maneuver execution errors. We have automated the trajectory design process and use distributed processing to generate and to optimize nominal trajectories, check constraint satisfaction, and finally model the effects of maneuver errors to identify trajectories that best meet the mission requirements.

  8. Interplanetary Trajectory Design for the Asteroid Robotic Redirect Mission Alternate Approach Trade Study

    NASA Technical Reports Server (NTRS)

    Merrill, Raymond Gabriel; Qu, Min; Vavrina, Matthew A.; Englander, Jacob A.; Jones, Christopher A.

    2014-01-01

    This paper presents mission performance analysis methods and results for the Asteroid Robotic Redirect Mission (ARRM) option to capture a free standing boulder on the surface of a 100 m or larger NEA. It details the optimization and design of heliocentric low-thrust trajectories to asteroid targets for the ARRM solar electric propulsion spacecraft. Extensive searches were conducted to determine asteroid targets with large pick-up mass potential and potential observation opportunities. Interplanetary trajectory approximations were developed in method based tools for Itokawa, Bennu, 1999 JU3, and 2008 EV5 and were validated by end-to-end integrated trajectories.

  9. Real-time evaluation of a noninvasive neuroprosthetic interface for control of reach.

    PubMed

    Corbett, Elaine A; Körding, Konrad P; Perreault, Eric J

    2013-07-01

    Injuries of the cervical spinal cord can interrupt the neural pathways controlling the muscles of the arm, resulting in complete or partial paralysis. For individuals unable to reach due to high-level injuries, neuroprostheses can restore some of the lost function. Natural, multidimensional control of neuroprosthetic devices for reaching remains a challenge. Electromyograms (EMGs) from muscles that remain under voluntary control can be used to communicate intended reach trajectories, but when the number of available muscles is limited control can be difficult and unintuitive. We combined shoulder EMGs with target estimates obtained from gaze. Natural gaze data were integrated with EMG during closed-loop robotic control of the arm, using a probabilistic mixture model. We tested the approach with two different sets of EMGs, as might be available to subjects with C4- and C5-level spinal cord injuries. Incorporating gaze greatly improved control of reaching, particularly when there were few EMG signals. We found that subjects naturally adapted their eye-movement precision as we varied the set of available EMGs, attaining accurate performance in both tested conditions. The system performs a near-optimal combination of both physiological signals, making control more intuitive and allowing a natural trajectory that reduces the burden on the user.

  10. Can representational trajectory reveal the nature of an internal model of gravity?

    PubMed

    De Sá Teixeira, Nuno; Hecht, Heiko

    2014-05-01

    The memory for the vanishing location of a horizontally moving target is usually displaced forward in the direction of motion (representational momentum) and downward in the direction of gravity (representational gravity). Moreover, this downward displacement has been shown to increase with time (representational trajectory). However, the degree to which different kinematic events change the temporal profile of these displacements remains to be determined. The present article attempts to fill this gap. In the first experiment, we replicate the finding that representational momentum for downward-moving targets is bigger than for upward motions, showing, moreover, that it increases rapidly during the first 300 ms, stabilizing afterward. This temporal profile, but not the increased error for descending targets, is shown to be disrupted when eye movements are not allowed. In the second experiment, we show that the downward drift with time emerges even for static targets. Finally, in the third experiment, we report an increased error for upward-moving targets, as compared with downward movements, when the display is compatible with a downward ego-motion by including vection cues. Thus, the errors in the direction of gravity are compatible with the perceived event and do not merely reflect a retinotopic bias. Overall, these results provide further evidence for an internal model of gravity in the visual representational system.

  11. Influence of air parcel trajectories on CO2 and CH4 concentrations in the northern plateau of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Pérez, Isidro A.; Sánchez, M. Luisa; García, M. Ángeles; Pardo, Nuria

    2018-01-01

    This study presents a simpler procedure for grouping air parcel back trajectories than others previously applied. Two-day air parcel back trajectories reaching an unpolluted site in the centre of the northern plateau of the Iberian Peninsula were calculated over a three-year period using the METEX model. A procedure based on the kernel density calculation was applied to the direction of each trajectory centroid to determine groups of trajectories. This method is much faster than the cluster procedure when it comes to retaining the directional details of groups. Seasonal analysis of six groups of trajectories revealed that the Atlantic origin prevailed against displacement from northern Europe. Moreover, Mediterranean and particularly African trajectories were infrequent, probably due to the rough peninsular orography in these directions. The location of air trajectories reaching the study site was described using a surface classification below the air parcels with improved spatial resolution compared to previous analyses. Local contribution was very marked, particularly in summer. Mean trajectories were calculated for each group together with meteorological features and CO2 and CH4 concentrations. Groups may be identified by their mean temperature, wind speed, elevation and distance values. However, only two groups should be considered when analysing the two trace gases, one for trajectories from the Atlantic Ocean and the second for trajectories from the continent. Contrasts of about 4 ppm for CO2 in summer and 0.023 ppm for CH4 in winter were observed, revealing that air trajectories from the Atlantic Ocean were cleaner than those arriving from the continent. These differences were attributed to higher air stagnation over land.

  12. Two-Year Trajectory of Fall Risk in People With Parkinson Disease: A Latent Class Analysis.

    PubMed

    Paul, Serene S; Thackeray, Anne; Duncan, Ryan P; Cavanaugh, James T; Ellis, Theresa D; Earhart, Gammon M; Ford, Matthew P; Foreman, K Bo; Dibble, Leland E

    2016-03-01

    To examine fall risk trajectories occurring naturally in a sample of individuals with early to middle stage Parkinson disease (PD). Latent class analysis, specifically growth mixture modeling (GMM), of longitudinal fall risk trajectories. Assessments were conducted at 1 of 4 universities. Community-dwelling participants with PD of a longitudinal cohort study who attended at least 2 of 5 assessments over a 2-year follow-up period (N=230). Not applicable. Fall risk trajectory (low, medium, or high risk) and stability of fall risk trajectory (stable or fluctuating). Fall risk was determined at 6 monthly intervals using a simple clinical tool based on fall history, freezing of gait, and gait speed. The GMM optimally grouped participants into 3 fall risk trajectories that closely mirrored baseline fall risk status (P=.001). The high fall risk trajectory was most common (42.6%) and included participants with longer and more severe disease and with higher postural instability and gait disability (PIGD) scores than the low and medium fall risk trajectories (P<.001). Fluctuating fall risk (posterior probability <0.8 of belonging to any trajectory) was found in only 22.6% of the sample, most commonly among individuals who were transitioning to PIGD predominance. Regardless of their baseline characteristics, most participants had clear and stable fall risk trajectories over 2 years. Further investigation is required to determine whether interventions to improve gait and balance may improve fall risk trajectories in people with PD. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  13. A Novel Hybrid Mental Spelling Application Based on Eye Tracking and SSVEP-Based BCI

    PubMed Central

    Stawicki, Piotr; Gembler, Felix; Rezeika, Aya; Volosyak, Ivan

    2017-01-01

    Steady state visual evoked potentials (SSVEPs)-based Brain-Computer interfaces (BCIs), as well as eyetracking devices, provide a pathway for re-establishing communication for people with severe disabilities. We fused these control techniques into a novel eyetracking/SSVEP hybrid system, which utilizes eye tracking for initial rough selection and the SSVEP technology for fine target activation. Based on our previous studies, only four stimuli were used for the SSVEP aspect, granting sufficient control for most BCI users. As Eye tracking data is not used for activation of letters, false positives due to inappropriate dwell times are avoided. This novel approach combines the high speed of eye tracking systems and the high classification accuracies of low target SSVEP-based BCIs, leading to an optimal combination of both methods. We evaluated accuracy and speed of the proposed hybrid system with a 30-target spelling application implementing all three control approaches (pure eye tracking, SSVEP and the hybrid system) with 32 participants. Although the highest information transfer rates (ITRs) were achieved with pure eye tracking, a considerable amount of subjects was not able to gain sufficient control over the stand-alone eye-tracking device or the pure SSVEP system (78.13% and 75% of the participants reached reliable control, respectively). In this respect, the proposed hybrid was most universal (over 90% of users achieved reliable control), and outperformed the pure SSVEP system in terms of speed and user friendliness. The presented hybrid system might offer communication to a wider range of users in comparison to the standard techniques. PMID:28379187

  14. Solar Electric Propulsion Triple-Satellite-Aided Capture With Mars Flyby

    NASA Astrophysics Data System (ADS)

    Patrick, Sean

    Triple-Satellite-aided-capture sequences use gravity-assists at three of Jupiter's four massive Galilean moons to reduce the DeltaV required to enter into Jupiter orbit. A triple-satellite-aided capture at Callisto, Ganymede, and Io is proposed to capture a SEP spacecraft into Jupiter orbit from an interplanetary Earth-Jupiter trajectory that employs low-thrust maneuvers. The principal advantage of this method is that it combines the ISP efficiency of ion propulsion with nearly impulsive but propellant-free gravity assists. For this thesis, two main chapters are devoted to the exploration of low-thrust triple-flyby capture trajectories. Specifically, the design and optimization of these trajectories are explored heavily. The first chapter explores the design of two solar electric propulsion (SEP), low-thrust trajectories developed using the JPL's MALTO software. The two trajectories combined represent a full Earth to Jupiter capture split into a heliocentric Earth to Jupiter Sphere of Influence (SOI) trajectory and a Joviocentric capture trajectory. The Joviocentric trajectory makes use of gravity assist flybys of Callisto, Ganymede, and Io to capture into Jupiter orbit with a period of 106.3 days. Following this, in chapter two, three more SEP low-thrust trajectories were developed based upon those in chapter one. These trajectories, devised using the high-fidelity Mystic software, also developed by JPL, improve upon the original trajectories developed in chapter one. Here, the developed trajectories are each three separate, full Earth to Jupiter capture orbits. As in chapter one, a Mars gravity assist is used to augment the heliocentric trajectories. Gravity-assist flybys of Callisto, Ganymede, and Io or Europa are used to capture into Jupiter Orbit. With between 89.8 and 137.2-day periods, the orbits developed in chapters one and two are shorter than most Jupiter capture orbits achieved using low-thrust propulsion techniques. Finally, chapter 3 presents an original trajectory design for a Very-Long-Baseline Interferometry (VLBI) satellite constellation. The design was created for the 8th Global Trajectory Optimization Competition (GTOC8) in which participants are tasked with creating and optimizing low-thrust trajectories to place a series of three space craft into formation to map given radio sources.

  15. Eye gaze tracking for endoscopic camera positioning: an application of a hardware/software interface developed to automate Aesop.

    PubMed

    Ali, S M; Reisner, L A; King, B; Cao, A; Auner, G; Klein, M; Pandya, A K

    2008-01-01

    A redesigned motion control system for the medical robot Aesop allows automating and programming its movements. An IR eye tracking system has been integrated with this control interface to implement an intelligent, autonomous eye gaze-based laparoscopic positioning system. A laparoscopic camera held by Aesop can be moved based on the data from the eye tracking interface to keep the user's gaze point region at the center of a video feedback monitor. This system setup provides autonomous camera control that works around the surgeon, providing an optimal robotic camera platform.

  16. SU-F-BRB-16: A Spreadsheet Based Automatic Trajectory GEnerator (SAGE): An Open Source Tool for Automatic Creation of TrueBeam Developer Mode Robotic Trajectories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Etmektzoglou, A; Mishra, P; Svatos, M

    Purpose: To automate creation and delivery of robotic linac trajectories with TrueBeam Developer Mode, an open source spreadsheet-based trajectory generation tool has been developed, tested and made freely available. The computing power inherent in a spreadsheet environment plus additional functions programmed into the tool insulate users from the underlying schema tedium and allow easy calculation, parameterization, graphical visualization, validation and finally automatic generation of Developer Mode XML scripts which are directly loadable on a TrueBeam linac. Methods: The robotic control system platform that allows total coordination of potentially all linac moving axes with beam (continuous, step-and-shoot, or combination thereof) becomesmore » available in TrueBeam Developer Mode. Many complex trajectories are either geometric or can be described in analytical form, making the computational power, graphing and programmability available in a spreadsheet environment an easy and ideal vehicle for automatic trajectory generation. The spreadsheet environment allows also for parameterization of trajectories thus enabling the creation of entire families of trajectories using only a few variables. Standard spreadsheet functionality has been extended for powerful movie-like dynamic graphic visualization of the gantry, table, MLC, room, lasers, 3D observer placement and beam centerline all as a function of MU or time, for analysis of the motions before requiring actual linac time. Results: We used the tool to generate and deliver extended SAD “virtual isocenter” trajectories of various shapes such as parameterized circles and ellipses. We also demonstrated use of the tool in generating linac couch motions that simulate respiratory motion using analytical parameterized functions. Conclusion: The SAGE tool is a valuable resource to experiment with families of complex geometric trajectories for a TrueBeam Linac. It makes Developer Mode more accessible as a vehicle to quickly translate research ideas into machine readable scripts without programming knowledge. As an open source initiative, it also enables researcher collaboration on future developments. I am a full time employee at Varian Medical Systems, Palo Alto, California.« less

  17. Residual translation compensations in radar target narrowband imaging based on trajectory information

    NASA Astrophysics Data System (ADS)

    Yue, Wenjue; Peng, Bo; Wei, Xizhang; Li, Xiang; Liao, Dongping

    2018-05-01

    High velocity translation will result in defocusing scattering centers in radar imaging. In this paper, we propose a Residual Translation Compensations (RTC) method based on target trajectory information to eliminate the translation effects in radar imaging. Translation could not be simply regarded as a uniformly accelerated motion in reality. So the prior knowledge of the target trajectory is introduced to enhance compensation precision. First we use the two-body orbit model to figure out the radial distance. Then, stepwise compensations are applied to eliminate residual propagation delay based on conjugate multiplication method. Finally, tomography is used to confirm the validity of the method. Compare with translation parameters estimation method based on the spectral peak of the conjugate multiplied signal, RTC method in this paper enjoys a better tomography result. When the Signal Noise Ratio (SNR) of the radar echo signal is 4dB, the scattering centers can also be extracted clearly.

  18. An Overview of a Trajectory-Based Solution for En Route and Terminal Area Self-Spacing: Fifth Edition

    NASA Technical Reports Server (NTRS)

    Abbott, Terence S.

    2015-01-01

    This paper presents an overview of the fifth revision to an algorithm specifically designed to support NASA's Airborne Precision Spacing concept. This algorithm is referred to as the Airborne Spacing for Terminal Arrival Routes version 12 (ASTAR12). This airborne self-spacing concept is trajectory-based, allowing for spacing operations prior to the aircraft being on a common path. Because this algorithm is trajectory-based, it also has the inherent ability to support required-time-of- arrival (RTA) operations. This algorithm was also designed specifically to support a standalone, non-integrated implementation in the spacing aircraft. This current revision to the algorithm includes a ground speed feedback term to compensate for slower than expected traffic aircraft speeds based on the accepted air traffic control tendency to slow aircraft below the nominal arrival speeds when they are farther from the airport.

  19. Mixed membership trajectory models of cognitive impairment in the multicenter AIDS cohort study.

    PubMed

    Molsberry, Samantha A; Lecci, Fabrizio; Kingsley, Lawrence; Junker, Brian; Reynolds, Sandra; Goodkin, Karl; Levine, Andrew J; Martin, Eileen; Miller, Eric N; Munro, Cynthia A; Ragin, Ann; Sacktor, Ned; Becker, James T

    2015-03-27

    The longitudinal trajectories that individuals may take from a state of normal cognition to HIV-associated dementia are unknown. We applied a novel statistical methodology to identify trajectories to cognitive impairment, and factors that affected the 'closeness' of an individual to one of the canonical trajectories. The Multicenter AIDS Cohort Study (MACS) is a four-site longitudinal study of the natural and treated history of HIV disease among gay and bisexual men. Using data from 3892 men (both HIV-infected and HIV-uninfected) enrolled in the neuropsychology substudy of the MACS, a Mixed Membership Trajectory Model (MMTM) was applied to capture the pathways from normal cognitive function to mild impairment to severe impairment. MMTMs allow the data to identify canonical pathways and to model the effects of risk factors on an individual's 'closeness' to these trajectories. First, we identified three distinct trajectories to cognitive impairment: 'normal aging' (low probability of mild impairment until age 60); 'premature aging' (mild impairment starting at age 45-50); and 'unhealthy' (mild impairment in 20s and 30s) profiles. Second, clinically defined AIDS, and not simply HIV disease, was associated with closeness to the premature aging trajectory, and, third, hepatitis-C infection, depression, race, recruitment cohort and confounding conditions all affected individual's closeness to these trajectories. These results provide new insight into the natural history of cognitive dysfunction in HIV disease and provide evidence for a potential difference in the pathophysiology of the development of cognitive impairment based on trajectories to impairment.

  20. Trajectories of Depressive Symptoms Throughout the Peri- and Postpartum Period: Results from the First Baby Study.

    PubMed

    McCall-Hosenfeld, Jennifer S; Phiri, Kristen; Schaefer, Eric; Zhu, Junjia; Kjerulff, Kristen

    2016-11-01

    Postpartum depression (PPD) is a common complication of childbearing, but the course of PPD is not well understood. We analyze trajectories of depression and key risk factors associated with these trajectories in the peripartum and postpartum period. Women in The First Baby Study, a cohort of 3006 women pregnant with their first baby, completed telephone surveys measuring depression during the mother's third trimester, and at 1, 6, and 12 months postpartum. Depression was assessed using the Edinburgh Postnatal Depression Scale. A semiparametric mixture model was used to estimate distinct group-based developmental trajectories of depression and determine whether trajectory group membership varied according to maternal characteristics. A total of 2802 (93%) of mothers completed interviews through 12 months. The mixture model indicated six distinct depression trajectories. A history of anxiety or depression, unattached marital status, and inadequate social support were significantly associated with higher odds of belonging to trajectory groups with greater depression. Most of the depression trajectories were stable or slightly decreased over time, but one depression trajectory, encompassing 1.7% of the mothers, showed women who were nondepressed at the third trimester, but became depressed at 6 months postpartum and were increasingly depressed at 12 months after birth. This trajectory study indicates that women who are depressed during pregnancy tend to remain depressed during the first year postpartum or improve slightly, but an important minority of women become newly and increasingly depressed over the course of the first year after first childbirth.

Top