Science.gov

Sample records for eyeblink conditioning emg

  1. Cerebellar Secretin Modulates Eyeblink Classical Conditioning

    ERIC Educational Resources Information Center

    Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.; Green, John T.

    2014-01-01

    We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received…

  2. Ontogeny of eyeblink conditioning using a visual conditional stimulus.

    PubMed

    Paczkowski, C; Ivkovich, D; Stanton, M E

    1999-12-01

    The developmental emergence of associative learning in rodents is determined by interactions among sensory, motor, and associative systems that are engaged in a particular experimental preparation (Carter & Stanton, 1996; Hunt & Campbell, 1997; Rudy, 1992). In fear conditioning, chemosensory, auditory, and visual cues emerge successively as effective conditional stimuli (CS) during postnatal ontogeny. In the present study, we begin to examine the generality of this principle of sensory system development for eyeblink conditioning, a form of associative learning that develops substantially later than conditioned fear (Carter & Stanton, 1996). We asked whether the developmental emergence of eyeblink conditioning to a visual CS occurs at an age that is the same or different from conditioning to an auditory CS. In Experiment 1, rat pups were trained on postnatal Day 17 or 24 with experimental parameters (and design) that were identical to our previous studies of eyeblink conditioning except that presentation of a light rather than a tone served as the CS. The outcome was also identical: no eyeblink conditioning on Day 17 and strong conditioning on Day 24. In Experiment 2, conditioning to tone versus light was directly compared by means of a discrimination learning design on postnatal Days 19, 21, 23, and 31. There was no evidence for differential development of auditory versus visual eyeblink conditioning. The difference between this outcome and previous ones involving conditioned fear (Hunt & Campbell, 1997; Rudy, 1992) suggests that principles concerning sensory maturation and learning may be different for early- versus late-developing associative systems.

  3. Parallel Acquisition of Awareness and Differential Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Weidemann, Gabrielle; Antees, Cassandra

    2012-01-01

    There is considerable debate about whether differential delay eyeblink conditioning can be acquired without awareness of the stimulus contingencies. Previous investigations of the relationship between differential-delay eyeblink conditioning and awareness of the stimulus contingencies have assessed awareness after the conditioning session was…

  4. Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Freeman, John H.; Steinmetz, Adam B.

    2011-01-01

    Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…

  5. Ontogeny of septohippocampal modulation of delay eyeblink conditioning.

    PubMed

    Harmon, Thomas C; Freeman, John H

    2015-03-01

    The current study investigated the effects of disrupting the septohippocampal theta system on the developmental emergence of delay eyeblink conditioning. Theta oscillations are defined as electroencephalographic (EEG) waveforms with a frequency between 3-8 Hz. Hippocampal theta oscillations are generated by inputs from the entorhinal cortex and the medial septum. Theta activity has been shown to facilitate learning in a variety of paradigms, including delay eyeblink conditioning. Lesions of the medial septum disrupt theta activity and slow the rate at which delay eyeblink conditioning is learned (Berry & Thompson, [1979] Science 200:1298-1300). The role of the septohippocampal theta system in the ontogeny of eyeblink conditioning has not been examined. In the current study, infant rats received an electrolytic lesion of the medial septum on postnatal day (P) 12. Rats were later given eyeblink conditioning for 6 sessions with an auditory conditioned stimulus on P17-19, P21-23, or P24-26. Lesions impaired eyeblink conditioning on P21-23 and P24-26 but not on P17-19. The results suggest that the septohippocampal system comes online to facilitate acquisition of eyeblink conditioning between P19 and P21. Developmental changes in septohippocampal modulation of the cerebellum may play a significant role in the ontogeny of eyeblink conditioning.

  6. Eyeblink Conditioning in Schizophrenia: A Critical Review

    PubMed Central

    Kent, Jerillyn S.; Bolbecker, Amanda R.; O’Donnell, Brian F.; Hetrick, William P.

    2015-01-01

    There is accruing evidence of cerebellar abnormalities in schizophrenia. The theory of cognitive dysmetria considers cerebellar dysfunction a key component of schizophrenia. Delay eyeblink conditioning (EBC), a cerebellar-dependent translational probe, is a behavioral index of cerebellar integrity. The circuitry underlying EBC has been well characterized by non-human animal research, revealing the cerebellum as the essential circuitry for the associative learning instantiated by this task. However, there have been persistent inconsistencies in EBC findings in schizophrenia. This article thoroughly reviews published studies investigating EBC in schizophrenia, with an emphasis on possible effects of antipsychotic medication and stimulus and analysis parameters on reports of EBC performance in schizophrenia. Results indicate a consistent finding of impaired EBC performance in schizophrenia, as measured by decreased rates of conditioning, and that medication or study design confounds do not account for this impairment. Results are discussed within the context of theoretical and neurochemical models of schizophrenia. PMID:26733890

  7. Cerebellar secretin modulates eyeblink classical conditioning

    PubMed Central

    Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.

    2014-01-01

    We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received intracerebellar infusions of the secretin receptor antagonist 5-27 secretin or vehicle into the lobulus simplex of cerebellar cortex immediately prior to sessions 1–3 of acquisition. Antagonist-infused rats showed a reduction in the percentage of eyeblink CRs compared with vehicle-infused rats. In Experiment 2, rats received intracerebellar infusions of secretin or vehicle immediately prior to sessions 1–2 of extinction. Secretin did not significantly affect extinction performance. In Experiment 3, rats received intracerebellar infusions of 5-27 secretin or vehicle immediately prior to sessions 1–2 of extinction. The secretin antagonist did not significantly affect extinction performance. Together, our current and previous results indicate that both exogenous and endogenous cerebellar secretin modulate acquisition, but not extinction, of EBC. We have previously shown that (1) secretin reduces surface expression of the voltage-gated potassium channel α-subunit Kv1.2 in cerebellar cortex and (2) intracerebellar infusions of a Kv1.2 blocker enhance EBC acquisition, much like secretin. Kv1.2 is almost exclusively expressed in cerebellar cortex at basket cell–Purkinje cell pinceaus and Purkinje cell dendrites; we propose that EBC-induced secretin release from PCs modulates EBC acquisition by reducing surface expression of Kv1.2 at one or both of these sites. PMID:25403455

  8. Central Cannabinoid Receptors Modulate Acquisition of Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Steinmetz, Adam B.; Freeman, John H.

    2010-01-01

    Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex,…

  9. Eyeblink Conditioning: A Non-Invasive Biomarker for Neurodevelopmental Disorders

    ERIC Educational Resources Information Center

    Reeb-Sutherland, Bethany C.; Fox, Nathan A.

    2015-01-01

    Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition,…

  10. Accelerated trace eyeblink conditioning after cortisol IV-infusion.

    PubMed

    Kuehl, Linn K; Lass-Hennemann, Johanna; Richter, Steffen; Blumenthal, Terry D; Oitzl, Melly; Schachinger, Hartmut

    2010-11-01

    Impairing effects of cortisol on learning performance have been shown in human trace eyeblink conditioning. As the effect is observed from 30 min to hours after administration, a genomic action of cortisol is assumed. Here we report rapid cortisol effects that were observed during the first 10 min after cortisol administration in humans. Young healthy males (n=24) received the cortisol synthesis inhibitor metyrapone (1.5 g per os) to avoid interference of the endogenous pulsatile secretion of cortisol. Next, 2mg cortisol or placebo was infused intravenously, immediately before the trace conditioning task. The probability of the conditioned eyeblink responses was assessed electromyographically during the trace eyeblink conditioning task (unconditioned stimulus: corneal air puff, 10 psi, 50 ms; conditioned stimulus: binaural pure tone, 7 dB, 1000 Hz, 400 ms; empty interval between CS and US: 550 ms). Cortisol resulted in a faster increase of conditioning (p=.02), reaching a comparable level to placebo later on. This result extends the well-known effects of stress on the quality and amount of learning by showing that cortisol also affects the speed of learning. We propose that cortisol accelerates trace eyeblink conditioning via a fast, non-genomic mechanism. This fast action of cortisol is part of the adaptive strategy during the early stress response.

  11. Ontogenetic Change in the Auditory Conditioned Stimulus Pathway for Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Freeman, John H.; Campolattaro, Matthew M.

    2008-01-01

    Two experiments examined the neural mechanisms underlying the ontogenetic emergence of auditory eyeblink conditioning. Previous studies found that the medial auditory thalamus is necessary for eyeblink conditioning with an auditory conditioned stimulus (CS) in adult rats. In experiment 1, stimulation of the medial auditory thalamus was used as a…

  12. Inferior Colliculus Lesions Impair Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Freeman, John H.; Halverson, Hunter E.; Hubbard, Erin M.

    2007-01-01

    The neural plasticity necessary for acquisition and retention of eyeblink conditioning has been localized to the cerebellum. However, the sources of sensory input to the cerebellum that are necessary for establishing learning-related plasticity have not been identified completely. The inferior colliculus may be a source of sensory input to the…

  13. Eyeblink Conditioning Deficits Indicate Timing and Cerebellar Abnormalities in Schizophrenia

    ERIC Educational Resources Information Center

    Brown, S.M.; Kieffaber, P.D.; Carroll, C.A.; Vohs, J.L.; Tracy, J.A.; Shekhar, A.; O'Donnell, B.F.; Steinmetz, J.E.; Hetrick, W.P.

    2005-01-01

    Accumulating evidence indicates that individuals with schizophrenia manifest abnormalities in structures (cerebellum and basal ganglia) and neurotransmitter systems (dopamine) linked to internal-timing processes. A single-cue tone delay eyeblink conditioning paradigm comprised of 100 learning and 50 extinction trials was used to examine cerebellar…

  14. Blocking the BK Channel Impedes Acquisition of Trace Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Matthews, Elizabeth A.; Disterhoft, John F.

    2009-01-01

    Big-K[superscript +] conductance (BK)-channel mediated fast afterhyperpolarizations (AHPs) following action potentials are reduced after eyeblink conditioning. Blocking BK channels with paxilline increases evoked firing frequency in vitro and spontaneous pyramidal activity in vivo. To examine how increased excitability after BK-channel blockade…

  15. Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat.

    PubMed

    Hesslow, G

    1994-04-15

    The purpose of the present study was to test the hypothesis that neurones in the anterior interpositus nucleus, under the control of Purkinje cells in the c1 and c3 zones of the cerebellar cortex, exert some control over classically conditioned responses. In particular, the experiments were designed to determine whether the cerebellar control of conditioned and unconditioned responses is different. The experiments were performed on cats decerebrated rostral to the red nucleus under halothane anaesthesia. The cats were conditioned using either a 1000 Hz tone or trains of stimuli through the skin of the proximal forelimb as the conditioned stimulus, and periorbital electrical stimulation as the unconditioned stimulus. A large proportion of the animals acquired conditioned responses at normal rates. It could be shown that these were true conditioned responses and did not result from sensitization or pseudoconditioning. For instance, unpaired presentations of conditioned and unconditioned stimuli caused rapid extinction. Cerebellar areas controlling eyeblink were identified by recording climbing fibre responses in the cerebellar cortex and recording EMG activity in the eyelid evoked by stimulation of the cerebellar cortex. When single shocks of 40-70 microA were applied to these areas during the emission of conditioned eyeblink responses, the latter were strongly inhibited. The inhibition had a latency of about 10 ms and a duration of 25-75 ms. It was shown that this inhibition of the conditioned responses was topographically specific and could only be evoked from cortical sites identified as controlling eyeblink. Stimulation of the periphery of an eyeblink area caused little or no inhibition. The effect of cortical stimulation on unconditioned reflex responses in the orbicularis oculi muscle was also tested. Some inhibition of unconditioned responses was observed, but quantitative analysis showed that this inhibition was considerably weaker than the corresponding

  16. Inhibition of classically conditioned eyeblink responses by stimulation of the cerebellar cortex in the decerebrate cat.

    PubMed Central

    Hesslow, G

    1994-01-01

    The purpose of the present study was to test the hypothesis that neurones in the anterior interpositus nucleus, under the control of Purkinje cells in the c1 and c3 zones of the cerebellar cortex, exert some control over classically conditioned responses. In particular, the experiments were designed to determine whether the cerebellar control of conditioned and unconditioned responses is different. The experiments were performed on cats decerebrated rostral to the red nucleus under halothane anaesthesia. The cats were conditioned using either a 1000 Hz tone or trains of stimuli through the skin of the proximal forelimb as the conditioned stimulus, and periorbital electrical stimulation as the unconditioned stimulus. A large proportion of the animals acquired conditioned responses at normal rates. It could be shown that these were true conditioned responses and did not result from sensitization or pseudoconditioning. For instance, unpaired presentations of conditioned and unconditioned stimuli caused rapid extinction. Cerebellar areas controlling eyeblink were identified by recording climbing fibre responses in the cerebellar cortex and recording EMG activity in the eyelid evoked by stimulation of the cerebellar cortex. When single shocks of 40-70 microA were applied to these areas during the emission of conditioned eyeblink responses, the latter were strongly inhibited. The inhibition had a latency of about 10 ms and a duration of 25-75 ms. It was shown that this inhibition of the conditioned responses was topographically specific and could only be evoked from cortical sites identified as controlling eyeblink. Stimulation of the periphery of an eyeblink area caused little or no inhibition. The effect of cortical stimulation on unconditioned reflex responses in the orbicularis oculi muscle was also tested. Some inhibition of unconditioned responses was observed, but quantitative analysis showed that this inhibition was considerably weaker than the corresponding

  17. Ventral Lateral Geniculate Input to the Medial Pons Is Necessary for Visual Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Freeman, John H.

    2010-01-01

    The conditioned stimulus (CS) pathway that is necessary for visual delay eyeblink conditioning was investigated in the current study. Rats were initially given eyeblink conditioning with stimulation of the ventral nucleus of the lateral geniculate (LGNv) as the CS followed by conditioning with light and tone CSs in separate training phases.…

  18. Contextual Specificity of Extinction of Delay but Not Trace Eyeblink Conditioning in Humans

    ERIC Educational Resources Information Center

    Grillon, Christian; Alvarez, Ruben P.; Johnson, Linda; Chavis, Chanen

    2008-01-01

    Renewal of an extinguished conditioned response has been demonstrated in humans and in animals using various types of procedures, except renewal of motor learning such as eyeblink conditioning. We tested renewal of delay and trace eyeblink conditioning in a virtual environment in an ABA design. Following acquisition in one context (A, e.g., an…

  19. Retention and Extinction of Delay Eyeblink Conditioning Are Modulated by Central Cannabinoids

    ERIC Educational Resources Information Center

    Steinmetz, Adam B.; Freeman, John H.

    2011-01-01

    Rats administered the cannabinoid agonist WIN55,212-2 or the antagonist SR141716A exhibit marked deficits during acquisition of delay eyeblink conditioning, as noted by Steinmetz and Freeman in an earlier study. However, the effects of these drugs on retention and extinction of eyeblink conditioning have not been assessed. The present study…

  20. Extinction, Reacquisition, and Rapid Forgetting of Eyeblink Conditioning in Developing Rats

    ERIC Educational Resources Information Center

    Brown, Kevin L.; Freeman, John H.

    2014-01-01

    Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In…

  1. Medial Auditory Thalamic Stimulation as a Conditioned Stimulus for Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Campolattaro, Matthew M.; Halverson, Hunter E.; Freeman, John H.

    2007-01-01

    The neural pathways that convey conditioned stimulus (CS) information to the cerebellum during eyeblink conditioning have not been fully delineated. It is well established that pontine mossy fiber inputs to the cerebellum convey CS-related stimulation for different sensory modalities (e.g., auditory, visual, tactile). Less is known about the…

  2. Sensory system development influences the ontogeny of eyeblink conditioning.

    PubMed

    Goldsberry, Mary E; Elkin, Magdalyn E; Freeman, John H

    2014-09-01

    A rate-limiting factor in the ontogeny of auditory eyeblink conditioning (EBC) is the development of sensory inputs to the pontine nucleus. One possible way to facilitate the emergence of EBC would be to use a conditioned stimulus (CS) that activates an earlier-developing sensory system. The goal of the current study was to investigate whether using a vibration CS would facilitate the ontogeny of delay EBC relative to an auditory CS. Rat pups received six sessions of delay EBC or unpaired training using either a tone or vibration CS on postnatal day (P)14-15, 17-18, 21-22, or 24-25. Conditioning with a vibration CS resulted in rapid learning as early as P17-18, whereas conditioning with a tone CS did not result in rapid conditioning until after P17-18. Control experiments verified that the differences in EBC were due to CS-specific sensory properties. The results suggest that the ontogeny of EBC depends on sensory system development.

  3. Cerebellar-Dependent Eyeblink Conditioning Deficits in Schizophrenia Spectrum Disorders

    PubMed Central

    Forsyth, Jennifer K.; Bolbecker, Amanda R.; Mehta, Crystal S.; Klaunig, Mallory J.; Steinmetz, Joseph E.; O'Donnell, Brian F.; Hetrick, William P.

    2012-01-01

    Accumulating evidence suggests that abnormalities in neural circuitry and timing associated with the cerebellum may play a role in the pathophysiology of schizophrenia. Schizotypal personality disorder (SPD) may be genetically linked to schizophrenia, but individuals with SPD are freer from potential research confounds and may therefore offer insight into psychophysiological correlates of schizophrenia. The present study employed a delay eyeblink conditioning (EBC) procedure to examine cerebellar-dependent learning in schizophrenia, SPD, and healthy control subjects (n = 18 per group) who were matched for age and gender. The conditioned stimulus was a 400-ms tone that coterminated with a 50 ms unconditioned stimulus air puff. Cognitive performance on the Picture Completion, Digit Symbol Coding, Similarities, and Digit Span subscales of the Wechsler Adult Intelligence Scale—Third Edition was also investigated. The schizophrenia and SPD groups demonstrated robust EBC impairment relative to the control subjects; they had significantly fewer conditioned responses (CRs), as well as smaller CR amplitudes. Schizophrenia subjects showed cognitive impairment across subscales compared with SPD and control subjects; SPD subjects showed intermediate performance to schizophrenia and control subjects and performed significantly worse than controls on Picture Completion. Impaired EBC was significantly related to decreased processing speed in schizophrenia spectrum subjects. These findings support the role of altered cortico-cerebellar-thalamic-cortical circuitry in the pathophysiology of schizophrenia spectrum disorders. PMID:21148238

  4. Eyeblink Classical Conditioning in Alcoholism and Fetal Alcohol Spectrum Disorders

    PubMed Central

    Cheng, Dominic T.; Jacobson, Sandra W.; Jacobson, Joseph L.; Molteno, Christopher D.; Stanton, Mark E.; Desmond, John E.

    2015-01-01

    Alcoholism is a debilitating disorder that can take a significant toll on health and professional and personal relationships. Excessive alcohol consumption can have a serious impact on both drinkers and developing fetuses, leading to long-term learning impairments. Decades of research in laboratory animals and humans have demonstrated the value of eyeblink classical conditioning (EBC) as a well-characterized model system to study the neural mechanisms underlying associative learning. Behavioral EBC studies in adults with alcohol use disorders and in children with fetal alcohol spectrum disorders report a clear learning deficit in these two patient populations, suggesting alcohol-related damage to the cerebellum and associated structures. Insight into the neural mechanisms underlying these learning impairments has largely stemmed from laboratory animal studies. In this mini-review, we present and discuss exemplary animal findings and data from patient and neuroimaging studies. An improved understanding of the neural mechanisms underlying learning deficits in EBC related to alcoholism and prenatal alcohol exposure has the potential to advance the diagnoses, treatment, and prevention of these and other pediatric and adult disorders. PMID:26578987

  5. Discrimination Learning and Reversal of the Conditioned Eyeblink Reflex in a Rodent Model of Autism

    PubMed Central

    Stanton, Mark E.; Peloso, Elizabeth; Brown, Kevin L.; Rodier, Patricia

    2007-01-01

    Offspring of rats exposed to valproic acid (VPA) on Gestational Day (GD) 12 have been advocated as a rodent model of autism because they show neuron loss in brainstem nuclei and the cerebellum resembling that seen in human autistic cases [20, 37]. Studies of autistic children have reported alterations in acquisition of classical eyeblink conditioning [40] and in reversal of instrumental discrimination learning [9]. Acquisition of discriminative eyeblink conditioning depends on known brainstem-cerebellar circuitry whereas reversal depends on interactions of this circuitry with the hippocampus and prefrontal cortex. In order to explore behavioral parallels of the VPA rodent model with human autism, the present study exposed pregnant Long-Evans rats to 600 mg/kg VPA on GD12 [cf. 37] and tested their offspring from PND26-31 on discriminative eyeblink conditioning and reversal. VPA rats showed faster eyeblink conditioning, consistent with studies in autistic children [40]. This suggests that previously reported parallels between human autism and the VPA rodent model with respect to injury to brainstem-cerebellar circuitry [37] are accompanied by behavioral parallels when a conditioning task engaging this circuitry is used. VPA rats also showed impaired reversal learning, but this likely reflected “carry-over” of enhanced conditioning during acquisition rather than a reversal learning deficit like that seen in human autism. Further studies of eyeblink conditioning in human autism and in various animal models may help to identify the etiology of this developmental disorder. PMID:17137645

  6. Cerebellar-Dependent Expression of Motor Learning during Eyeblink Conditioning in Head-Fixed Mice

    PubMed Central

    Heiney, Shane A.; Wohl, Margot P.; Chettih, Selmaan N.; Ruffolo, Luis I.

    2014-01-01

    Eyeblink conditioning in restrained rabbits has served as an excellent model of cerebellar-dependent motor learning for many decades. In mice, the role of the cerebellum in eyeblink conditioning is less clear and remains controversial, partly because learning appears to engage fear-related circuits and lesions of the cerebellum do not abolish the learned behavior completely. Furthermore, experiments in mice are performed using freely moving systems, which lack the stability necessary for mapping out the essential neural circuitry with electrophysiological approaches. We have developed a novel apparatus for eyeblink conditioning in head-fixed mice. Here, we show that the performance of mice in our apparatus is excellent and that the learned behavior displays two hallmark features of cerebellar-dependent eyeblink conditioning in rabbits: (1) gradual acquisition; and (2) adaptive timing of conditioned movements. Furthermore, we use a combination of pharmacological inactivation, electrical stimulation, single-unit recordings, and targeted microlesions to demonstrate that the learned behavior is completely dependent on the cerebellum and to pinpoint the exact location in the deep cerebellar nuclei that is necessary. Our results pave the way for using eyeblink conditioning in head-fixed mice as a platform for applying next-generation genetic tools to address molecular and circuit-level questions about cerebellar function in health and disease. PMID:25378152

  7. Is Perruchet's dissociation between eyeblink conditioned responding and outcome expectancy evidence for two learning systems?

    PubMed

    Weidemann, Gabrielle; Tangen, Jason M; Lovibond, Peter F; Mitchell, Christopher J

    2009-04-01

    P. Perruchet (1985b) showed a double dissociation of conditioned responses (CRs) and expectancy for an airpuff unconditioned stimulus (US) in a 50% partial reinforcement schedule in human eyeblink conditioning. In the Perruchet effect, participants show an increase in CRs and a concurrent decrease in expectancy for the airpuff across runs of reinforced trials; conversely, participants show a decrease in CRs and a concurrent increase in expectancy for the airpuff across runs of nonreinforced trials. Three eyeblink conditioning experiments investigated whether the linear trend in eyeblink CRs in the Perruchet effect is a result of changes in associative strength of the conditioned stimulus (CS), US sensitization, or learning the precise timing of the US. Experiments 1 and 2 demonstrated that the linear trend in eyeblink CRs is not the result of US sensitization. Experiment 3 showed that the linear trend in eyeblink CRs is present with both a fixed and a variable CS-US interval and so is not the result of learning the precise timing of the US. The results are difficult to reconcile with a single learning process model of associative learning in which expectancy mediates CRs.

  8. The Effects of Two Forms of Physical Activity on Eyeblink Classical Conditioning

    PubMed Central

    Green, John T.; Chess, Amy C.; Burns, Montana; Schachinger, Kira M.; Thanellou, Alexandra

    2011-01-01

    Voluntary exercise, in the form of free access to a running wheel in the home cage, has been shown to improve several forms of learning and memory. Acrobatic training, in the form of learning to traverse an elevated obstacle course, has been shown to induce markers of neural plasticity in the cerebellar cortex in rodents. In three experiments, we examined the effects of these two forms of physical activity on delay eyeblink conditioning in rats. In Experiment 1, exercising rats were given 17 days of free access to a running wheel in their home cage prior to 10 days of delay eyeblink conditioning. Rats that exercised conditioned significantly better and showed a larger reflexive eyeblink unconditioned response to the periocular stimulation unconditioned stimulus than rats that did not exercise. In Experiment 2, exercising rats were given 17 days of free access to a running wheel in their home cage prior to 10 days of explicitly unpaired stimulus presentations. Rats that exercised responded the same to tone, light, and periocular stimulation as rats that did not exercise. In Experiment 3, acrobatic training rats were given 15 days of daily training on an elevated obstacle course prior to 10 days of eyeblink conditioning. Activity control rats underwent 15 days of yoked daily running in an open field. Rats that underwent acrobatic training did not differ in eyeblink conditioning from activity control rats. The ability to measure the learned response precisely, and the well-mapped neural circuitry of eyeblink conditioning offer some advantages for the study of exercise effects on learning and memory. PMID:21238502

  9. Eye-Blink Conditioning Is Associated with Changes in Synaptic Ultrastructure in the Rabbit Interpositus Nuclei

    ERIC Educational Resources Information Center

    Weeks, Andrew C. W.; Connor, Steve; Hinchcliff, Richard; LeBoutillier, Janelle C.; Thompson, Richard F.; Petit, Ted L.

    2007-01-01

    Eye-blink conditioning involves the pairing of a conditioned stimulus (usually a tone) to an unconditioned stimulus (air puff), and it is well established that an intact cerebellum and interpositus nucleus, in particular, are required for this form of classical conditioning. Changes in synaptic number or structure have long been proposed as a…

  10. Pontine Stimulation Overcomes Developmental Limitations in the Neural Mechanisms of Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Freeman, John H., Jr; Rabinak, Christine A.; Campolattaro, Matthew M.

    2005-01-01

    Pontine neuronal activation during auditory stimuli increases ontogenetically between postnatal days (P) P17 and P24 in rats. Pontine neurons are an essential component of the conditioned stimulus (CS) pathway for eyeblink conditioning, providing mossy fiber input to the cerebellum. Here we examined whether the developmental limitation in pontine…

  11. Pretrial Hippocampal ?-State Differentiates Single-Unit Response Profiles during Rabbit Trace Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Cicchese, Joseph J.; Darling, Ryan D.; Berry, Stephen D.

    2015-01-01

    Eyeblink conditioning given in the explicit presence of hippocampal ? results in accelerated learning and enhanced multiple-unit responses, with slower learning and suppression of unit activity under non-? conditions. Recordings from putative pyramidal cells during ?-contingent training show that pretrial ?-state is linked to the probability of…

  12. The Role of Contingency Awareness in Single-Cue Human Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Weidemann, Gabrielle; Best, Erin; Lee, Jessica C; Lovibond, Peter F.

    2013-01-01

    Single-cue delay eyeblink conditioning is presented as a prototypical example of automatic, nonsymbolic learning that is carried out by subcortical circuits. However, it has been difficult to assess the role of cognition in single-cue conditioning because participants become aware of the simple stimulus contingency so quickly. In this experiment…

  13. Medial Auditory Thalamus Inactivation Prevents Acquisition and Retention of Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2008-01-01

    The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or…

  14. Associative Plasticity in the Medial Auditory Thalamus and Cerebellar Interpositus Nucleus During Eyeblink Conditioning

    PubMed Central

    Halverson, Hunter E.; Lee, Inah; Freeman, John H.

    2010-01-01

    Eyeblink conditioning, a type of associative motor learning, requires the cerebellum. The medial auditory thalamus is a necessary source of stimulus input to the cerebellum during auditory eyeblink conditioning. Nothing is currently known about interactions between the thalamus and cerebellum during associative learning. In the current study, neuronal activity was recorded in the cerebellar interpositus nucleus and medial auditory thalamus simultaneously from multiple tetrodes during auditory eyeblink conditioning to examine the relative timing of learning-related plasticity within these interconnected areas. Learning-related changes in neuronal activity correlated with the eyeblink conditioned response were evident in the cerebellum before the medial auditory thalamus over the course of training and within conditioning trials, suggesting that thalamic plasticity may be driven by cerebellar feedback. Short-latency plasticity developed in the thalamus during the first conditioning session and may reflect attention to the conditioned stimulus. Extinction training resulted in a decrease in learning-related activity in both structures and an increase in inhibition within the cerebellum. A feedback projection from the cerebellar nuclei to the medial auditory thalamus was identified, which may play a role in learning by facilitating stimulus input to the cerebellum via the thalamo-pontine projection. PMID:20592200

  15. Simultaneous Training on Two Hippocampus-Dependent Tasks Facilitates Acquisition of Trace Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Lee, Grace; Disterhoft, John F.; Kuo, Amy G.

    2006-01-01

    A common cellular alteration, reduced post-burst afterhyperpolarization (AHP) in CA1 neurons, is associated with acquisition of the hippocampus-dependent tasks trace eyeblink conditioning and the Morris water maze. As a similar increase in excitability is correlated with these two learning paradigms, we sought to determine the interactive…

  16. Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning

    ERIC Educational Resources Information Center

    Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria

    2005-01-01

    We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…

  17. Perirhinal and Postrhinal, but Not Lateral Entorhinal, Cortices Are Essential for Acquisition of Trace Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Suter, Eugenie E.; Weiss, Craig; Disterhoft, John F.

    2013-01-01

    The acquisition of temporal associative tasks such as trace eyeblink conditioning is hippocampus-dependent, while consolidated performance is not. The parahippocampal region mediates much of the input and output of the hippocampus, and perirhinal (PER) and entorhinal (EC) cortices support persistent spiking, a possible mediator of temporal…

  18. Pretrial Functional Connectivity Differentiates Behavioral Outcomes during Trace Eyeblink Conditioning in the Rabbit

    ERIC Educational Resources Information Center

    Schroeder, Matthew P.; Weiss, Craig; Procissi, Daniel; Wang, Lei; Disterhoft, John F.

    2016-01-01

    Fluctuations in neural activity can produce states that facilitate and accelerate task-related performance. Acquisition of trace eyeblink conditioning (tEBC) in the rabbit is enhanced when trials are contingent on optimal pretrial activity in the hippocampus. Other regions which are essential for whisker-signaled tEBC, such as the cerebellar…

  19. Purkinje Cell Activity in the Cerebellar Anterior Lobe after Rabbit Eyeblink Conditioning

    ERIC Educational Resources Information Center

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus.…

  20. Trace Eyeblink Conditioning Requires the Hippocampus but Not Autophosphorylation of [alpha]CaMKII in Mice

    ERIC Educational Resources Information Center

    Ohno, Masuo; Tseng, Wilbur; Silva, Alcino J.; Disterhoft, John F.

    2005-01-01

    Little is known about signaling mechanisms underlying temporal associative learning. Here, we show that mice with a targeted point mutation that prevents autophosphorylation of [alpha]CaMKII ([alpha]CaMKII[superscript T286A]) learn trace eyeblink conditioning normally. This forms a sharp contrast to the severely impaired spatial learning in the…

  1. Medial Auditory Thalamus Is Necessary for Acquisition and Retention of Eyeblink Conditioning to Cochlear Nucleus Stimulation

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Poremba, Amy; Freeman, John H.

    2015-01-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…

  2. Spontaneous Recovery But Not Reinstatement of the Extinguished Conditioned Eyeblink Response in the Rat

    PubMed Central

    Thanellou, Alexandra; Green, John T.

    2011-01-01

    Reinstatement, the return of an extinguished conditioned response (CR) after reexposure to the unconditioned stimulus (US), and spontaneous recovery, the return of an extinguished CR with the passage of time, are two of four well-established phenomena which demonstrate that extinction does not erase the conditioned stimulus (CS)-US association. However, reinstatement of extinguished eyeblink CRs has never been demonstrated and spontaneous recovery of extinguished eyeblink CRs has not been systematically demonstrated in rodent eyeblink conditioning. In Experiment 1, US reexposure was administered 24 hours prior to a reinstatement test. In Experiment 2, US reexposure was administered 5 min prior to a reinstatement test. In Experiment 3, a long, discrete cue (a houselight), present in all phases of training and testing, served as a context within which each trial occurred to maximize context processing, which in other preparations has been shown to be required for reinstatement. In Experiment 4, an additional group was included that received footshock exposure, rather than US reexposure, between extinction and test, and contextual freezing was measured prior to test. Spontaneous recovery was robust in Experiments 3 and 4. In Experiment 4, context freezing was strong in a group given footshock exposure but not in a group given eyeshock US reexposure. There was no reinstatement observed in any experiment. With stimulus conditions that produce eyeblink conditioning and research designs that produce reinstatement in other forms of classical conditioning, we observed spontaneous recovery but not reinstatement of extinguished eyeblink CRs. This suggests that reinstatement, but not spontaneous recovery, is a preparation- or substrate-dependent phenomenon. PMID:21517145

  3. Hippocampal and Cerebellar Single-Unit Activity During Delay and Trace Eyeblink Conditioning in the Rat

    PubMed Central

    Green, John T.; Arenos, Jeremy D.

    2007-01-01

    In delay eyeblink conditioning, the CS overlaps with the US and only a brainstem-cerebellar circuit is necessary for learning. In trace eyeblink conditioning, the CS ends before the US is delivered and several forebrain structures, including the hippocampus, are required for learning, in addition to a brainstem-cerebellar circuit. The interstimulus interval (ISI) between CS onset and US onset is perhaps the most important factor in classical conditioning, but studies comparing delay and trace conditioning have typically not matched these procedures in this crucial factor, so it is often difficult to determine whether results are due to differences between delay and trace or to differences in ISI. In the current study, we employed a 580-ms CS-US interval for both delay and trace conditioning and compared hippocampal CA1 activity and cerebellar interpositus nucleus activity in order to determine whether a unique signature of trace conditioning exists in patterns of single-unit activity in either structure. Long-Evans rats were chronically implanted in either CA1 or interpositus with microwire electrodes and underwent either delay eyeblink conditioning, or trace eyeblink conditioning with a 300-ms trace period between CS offset and US onset. On trials with a CR in delay conditioning, CA1 pyramidal cells showed increases in activation (relative to a pre-CS baseline) during the CS-US period in sessions 1-4 that was attenuated by sessions 5-6. In contrast, on trials with a CR in trace conditioning, CA1 pyramidal cells did not show increases in activation during the CS-US period until sessions 5-6. In sessions 5-6, increases in activation were present only to the CS and not during the trace period. For rats with interpositus electrodes, activation of interpositus neurons on CR trials was present in all sessions in both delay and trace conditioning. However, activation was greater in trace compared to delay conditioning in the first half of the CS-US interval (during the

  4. Amygdalar unit activity during three learning tasks: eyeblink classical conditioning, Pavlovian fear conditioning, and signaled avoidance conditioning.

    PubMed

    Rorick-Kehn, Linda M; Steinmetz, Joseph E

    2005-10-01

    Neural activity in central and basolateral amygdala nuclei (CeA and BLA, respectively) was recorded during delay eyeblink conditioning, Pavlovian fear conditioning, and signaled barpress avoidance. During paired training, the CeA exhibited robust learning-related excitatory activity during all 3 tasks. By contrast, the BLA exhibited minimal activity during eyeblink conditioning, while demonstrating pronounced increases in learning-related excitatory responsiveness during fear conditioning and barpress avoidance. In addition, the relative amount of amygdalar activation observed appeared to be related to the relative intensity of the unconditioned stimulus and somatic requirements of the task. Results suggest the CeA mediates the Pavlovian association between sensory stimuli and the BLA mediates the modulation of instrumental responding through the assignment of motivational value to the unconditioned stimulus.

  5. Eye-blink conditioning is associated with changes in synaptic ultrastructure in the rabbit interpositus nuclei

    PubMed Central

    Weeks, Andrew C.W.; Connor, Steve; Hinchcliff, Richard; LeBoutillier, Janelle C.; Thompson, Richard F.; Petit, Ted L.

    2007-01-01

    Eye-blink conditioning involves the pairing of a conditioned stimulus (usually a tone) to an unconditioned stimulus (air puff), and it is well established that an intact cerebellum and interpositus nucleus, in particular, are required for this form of classical conditioning. Changes in synaptic number or structure have long been proposed as a mechanism that may underlie learning and memory, but localizing these changes has been difficult. Thus, the current experiment took advantage of the large amount of research conducted on the neural circuitry that supports eye-blink conditioning by examining synaptic changes in the rabbit interpositus nucleus. Synaptic quantifications included total number of synapses per neuron, numbers of excitatory versus inhibitory synapses, synaptic curvature, synaptic perforations, and the maximum length of the synapses. No overall changes in synaptic number, shape, or perforations were observed. There was, however, a significant increase in the length of excitatory synapses in the conditioned animals. This increase in synaptic length was particularly evident in the concave-shaped synapses. These results, together with previous findings, begin to describe a sequence of synaptic change in the interpositus nuclei following eye-blink conditioning that would appear to begin with structural change and end with an increase in synaptic number. PMID:17551096

  6. Prefrontal Single-Neuron Responses after Changes in Task Contingencies during Trace Eyeblink Conditioning in Rabbits

    PubMed Central

    2016-01-01

    Abstract A number of studies indicate that the medial prefrontal cortex (mPFC) plays a role in mediating the expression of behavioral responses during tasks that require flexible changes in behavior. During trace eyeblink conditioning, evidence suggests that the mPFC provides the cerebellum with a persistent input to bridge the temporal gap between conditioned and unconditioned stimuli. Therefore, the mPFC is in a position to directly mediate the expression of trace conditioned responses. However, it is unknown whether persistent neural responses are associated with the flexible expression of behavior when task contingencies are changed during trace eyeblink conditioning. To investigate this, single-unit activity was recorded in the mPFC of rabbits during extinction and reacquisition of trace eyeblink conditioning, and during training to a different conditional stimulus. Persistent responses remained unchanged after full extinction, and also did not change during reacquisition training. During training to a different tone, however, the generalization of persistent responses to the new stimulus was associated with an animal’s performance—when persistent responses generalized to the new tone, performance was high (>50% response rate). When persistent responses decreased to baseline rates, performance was poor (<50% response rate). The data suggest that persistent mPFC responses do not appear to mediate flexible changes in the expression of the original learning, but do appear to play a role in the generalization of that learning when the task is modified. PMID:27517083

  7. Shortened Conditioned Eyeblink Response Latency in Male but not Female Wistar-Kyoto Hyperactive Rats

    PubMed Central

    Thanellou, Alexandra; Schachinger, Kira M.; Green, John T.

    2014-01-01

    Reductions in the volume of the cerebellum and impairments in cerebellar-dependent eyeblink conditioning have been observed in attention-deficit/hyperactivity disorder (ADHD). Recently, it was reported that subjects with ADHD as well as male spontaneously hypertensive rats (SHR), a strain that is frequently employed as an animal model in the study of ADHD, exhibit a parallel pattern of timing deficits in eyeblink conditioning. One criticism that has been posed regarding the validity of the SHR strain as an animal model for the study of ADHD is that SHRs are not only hyperactive but also hypertensive. It is conceivable that many of the behavioral characteristics seen in SHRs that seem to parallel the behavioral symptoms of ADHD are not solely due to hyperactivity but instead are the net outcome of the interaction between hyperactivity and hypertension. We used Wistar-Kyoto Hyperactive (WKHA) and Wistar-Kyoto Hypertensive (WKHT) rats (males and females), strains generated from recombinant inbreeding of SHRs and their progenitor strain, Wistar-Kyoto (WKY) rats, to compare eyeblink conditioning in strains that are exclusively hyperactive or hypertensive. We used a long-delay eyeblink conditioning task in which a tone conditioned stimulus was paired with a periorbital stimulation unconditioned stimulus (750-ms delay paradigm). Our results showed that WKHA and WKHT rats exhibited similar rates of conditioned response (CR) acquisition. However, WKHA males displayed shortened CR latencies (early onset and peak latency) in comparison to WKHT males. In contrast, female WKHAs and WKHTs did not differ. In subsequent extinction training, WKHA rats extinguished at similar rates in comparison to WKHT rats. The current results support the hypothesis of a relationship between cerebellar abnormalities and ADHD in an animal model of ADHD-like symptoms that does not also exhibit hypertension, and suggest that cerebellar-related timing deficits are specific to males. PMID:19485572

  8. Modeling possible effects of atypical cerebellar processing on eyeblink conditioning in autism.

    PubMed

    Radell, Milen L; Mercado, Eduardo

    2014-09-01

    Autism is unique among other disorders in that acquisition of conditioned eyeblink responses is enhanced in children, occurring in a fraction of the trials required for control participants. The timing of learned responses is, however, atypical. Two animal models of autism display a similar phenotype. Researchers have hypothesized that these differences in conditioning reflect cerebellar abnormalities. The present study used computer simulations of the cerebellar cortex, including inhibition by the molecular layer interneurons, to more closely examine whether atypical cerebellar processing can account for faster conditioning in individuals with autism. In particular, the effects of inhibitory levels on delay eyeblink conditioning were simulated, as were the effects of learning-related synaptic changes at either parallel fibers or ascending branch synapses from granule cells to Purkinje cells. Results from these simulations predict that whether molecular layer inhibition results in an enhancement or an impairment of acquisition, or changes in timing, may depend on (1) the sources of inhibition, (2) the levels of inhibition, and (3) the locations of learning-related changes (parallel vs. ascending branch synapses). Overall, the simulations predict that a disruption in the balance or an overall increase of inhibition within the cerebellar cortex may contribute to atypical eyeblink conditioning in children with autism and in animal models of autism.

  9. I Think, Therefore Eyeblink: The Importance of Contingency Awareness in Conditioning.

    PubMed

    Weidemann, Gabrielle; Satkunarajah, Michelle; Lovibond, Peter F

    2016-04-01

    Can conditioning occur without conscious awareness of the contingency between the stimuli? We trained participants on two separate reaction time tasks that ensured attention to the experimental stimuli. The tasks were then interleaved to create a differential Pavlovian contingency between visual stimuli from one task and an airpuff stimulus from the other. Many participants were unaware of the contingency and failed to show differential eyeblink conditioning, despite attending to a salient stimulus that was contingently and contiguously related to the airpuff stimulus over many trials. Manipulation of awareness by verbal instruction dramatically increased awareness and differential eyeblink responding. These findings cast doubt on dual-system theories, which propose an automatic associative system independent of cognition, and provide strong evidence that cognitive processes associated with awareness play a causal role in learning.

  10. Metabolic mapping of the rat cerebellum during delay and trace eyeblink conditioning

    PubMed Central

    Plakke, Bethany; Freeman, John H.; Poremba, Amy

    2008-01-01

    The essential neural circuitry for delay eyeblink conditioning has been largely identified, whereas much of the neural circuitry for trace conditioning has not been identified. The major difference between delay and trace conditioning is a time gap between the presentation of the conditioned stimulus (CS) and the unconditioned stimulus (US) during trace conditioning. It is this time gap or trace interval which accounts for an additional memory component in trace conditioning. Additional neural structures are also necessary for trace conditioning, including hippocampus and prefrontal cortex. This addition of forebrain structures necessary for trace but not delay conditioning suggests other brain areas become involved when a memory gap is added to the conditioning parameters. A metabolic marker of energy use, radioactively labeled glucose analog, was used to compare differences in glucose analog uptake between delay, trace, and unpaired experimental groups in order to identify new areas of involvement within the cerebellum. Known structures such as the interpositus nucleus and lobule HVI showed increased activation for both delay and trace conditioning compared to unpaired conditioning. However, there was a differential amount of activation between anterior and posterior portions of the interpositus nucleus between delay and trace, respectively. Cerebellar cortical areas including lobules IV and V of anterior lobe, Crus I, Crus II, and paramedian lobule also showed increases in activity for delay conditioning but not for trace conditioning. Delay and trace eyeblink conditioning both resulted in increased metabolic activity within the cerebellum but delay conditioning resulted in more widespread cerebellar cortical activation. PMID:17468019

  11. Purkinje cell activity in the cerebellar anterior lobe after rabbit eyeblink conditioning

    PubMed Central

    Green, John T.; Steinmetz, Joseph E.

    2005-01-01

    The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus. Rabbits were trained in an interstimulus interval discrimination procedure in which one tone signaled a 250-msec conditioned stimulus-unconditioned stimulus (CS-US) interval and a second tone signaled a 750-msec CS-US interval. All rabbits showed conditioned responses to each CS with mean onset and peak latencies that coincided with the CS-US interval. Many anterior lobe Purkinje cells showed significant learning-related activity after eyeblink conditioning to one or both of the CSs. More Purkinje cells responded with inhibition than with excitation to CS presentation. In addition, when the firing patterns of all conditioning-related Purkinje cells were pooled, it appeared that the population showed a pattern of excitation followed by inhibition during the CS-US interval. Using cholera toxin-conjugated horseradish peroxidase, Purkinje cells in recording areas were found to project to the interpositus nucleus. These data support previous studies that have suggested a role for the anterior cerebellar cortex in eyeblink conditioning as well as models of cerebellar-mediated CR timing that postulate that Purkinje cell activity inhibits conditioned response (CR) generation during the early portion of a trial by inhibiting the deep cerebellar nuclei and permits CR generation during the later portion of a trial through disinhibition of the cerebellar nuclei. PMID:15897252

  12. Phase-locked hippocampal theta-band responses are related to discriminative eyeblink conditioned responding.

    PubMed

    Nokia, Miriam S; Wikgren, Jan

    2013-11-01

    Hippocampal electrophysiological oscillatory activity is undoubtedly related to learning and memory. The relative power of spontaneously occurring hippocampal theta (∼4-8 Hz) oscillations predicts how fast and how well an animal will learn: more theta predicts faster acquisition of the conditioned response in eyeblink conditioning in both rats and rabbits. Here, our aim was to study how hippocampal theta-band responses to conditioned stimuli elicited during very-long delay discrimination eyeblink conditioning relate to the accompanying conditioned behavior. We trained adult male New Zealand White rabbits using 1500-ms auditory stimuli as conditioned stimuli and a 100-ms airpuff as an unconditioned stimulus. The reinforced conditioned stimulus overlapped and co-terminated with the unconditioned stimulus whereas the non-reinforced conditioned stimulus was always presented alone. Consistent with previous results, hippocampal theta-band responses to the conditioned stimuli diminished in amplitude across training. Interestingly, hippocampal theta-band responses were most consistently time-locked when a well-trained animal failed to suppress behavioral learned responses to the non-reinforced conditioned stimulus. We suggest that phase-locking of hippocampal theta-band oscillations in response to external stimuli reflects retrieval of the dominant memory trace (adaptive or not) along with initiating the most prominent action scheme related to that memory trace.

  13. Central amygdala lesions inhibit pontine nuclei acoustic reactivity and retard delay eyeblink conditioning acquisition in adult rats.

    PubMed

    Pochiro, Joseph M; Lindquist, Derick H

    2016-06-01

    In delay eyeblink conditioning (EBC) a neutral conditioned stimulus (CS; tone) is repeatedly paired with a mildly aversive unconditioned stimulus (US; periorbital electrical shock). Over training, subjects learn to produce an anticipatory eyeblink conditioned response (CR) during the CS, prior to US onset. While cerebellar synaptic plasticity is necessary for successful EBC, the amygdala is proposed to enhance eyeblink CR acquisition. In the current study, adult Long-Evans rats received bilateral sham or neurotoxic lesions of the central nucleus of the amygdala (CEA) followed by 1 or 4 EBC sessions. Fear-evoked freezing behavior, CS-mediated enhancement of the unconditioned response (UR), and eyeblink CR acquisition were all impaired in the CEA lesion rats relative to sham controls. There were also significantly fewer c-Fos immunoreactive cells in the pontine nuclei (PN)-major relays of acoustic information to the cerebellum-following the first and fourth EBC session in lesion rats. In sham rats, freezing behavior decreased from session 1 to 4, commensurate with nucleus-specific reductions in amygdala Fos+ cell counts. Results suggest delay EBC proceeds through three stages: in stage one the amygdala rapidly excites diffuse fear responses and PN acoustic reactivity, facilitating cerebellar synaptic plasticity and the development of eyeblink CRs in stage two, leading, in stage three, to a diminution or stabilization of conditioned fear responding.

  14. Facilitated acquisition of standard but not long delay classical eyeblink conditioning in behaviorally inhibited adolescents.

    PubMed

    Caulfield, M D; VanMeenen, K M; Servatius, R J

    2015-02-01

    Adolescence is a key age in the development of anxiety disorders. The present study assessed the relationship between behavioral inhibition, a risk factor for anxiety typified by avoidance, and acquisition of the classically conditioned eyeblink response. 168 healthy high school students (mean age 15.7 years, 54% female) were given a battery of self-report measures including the Adult Measure of Behavioural Inhibition (AMBI). The study compared acquisition of three experimental training conditions. Two groups were given paired CS-US training: standard delay of 500-ms or long delay of 1000-ms with CS overlapping and co-terminating with a 50-ms airpuff US. A third group received unpaired training of 1000-ms CS and 50-ms airpuff US. Inhibited individuals showed greater acquisition of the conditioned eyeblink response in the 500-ms CS condition, but not in the paired 1000-ms condition. No differences in spontaneous blinks or reactivity to the stimulus were evident in the 1000-ms unpaired CS condition. Results support a relationship between associative learning and anxiety vulnerability that may be mediated by cerebellar functioning in inhibited individuals.

  15. Hippocampal theta (3-8Hz) activity during classical eyeblink conditioning in rabbits.

    PubMed

    Nokia, Miriam S; Penttonen, Markku; Korhonen, Tapani; Wikgren, Jan

    2008-07-01

    In 1978, Berry and Thompson showed that the amount of theta (3-8Hz) activity in the spontaneous hippocampal EEG predicted learning rate in subsequent eyeblink conditioning in rabbits. More recently, the absence of theta activity during the training trial has been shown to have a detrimental effect on learning rate. Here, we aimed to further explore the relationship between theta activity and classical eyeblink conditioning by determining how the relative power of hippocampal theta activity [theta/(theta+delta) ratio] changes during both unpaired control and paired training phases. We found that animals with a higher hippocampal theta ratio immediately before conditioning learned faster and also that in these animals the theta ratio was higher throughout both experimental phases. In fact, while the hippocampal theta ratio remained stable in the fast learners as a function of training, it decreased in the slow learners already during unpaired training. In addition, the presence of hippocampal theta activity enhanced the hippocampal model of the conditioned response (CR) and seemed to be beneficial for CR performance in terms of peak latency during conditioning, but did not have any effect when the animals showed asymptotic learning. Together with earlier findings, these results imply that the behavioral state in which hippocampal theta activity is absent is detrimental for learning, and that the behavioral state in which hippocampal theta activity dominates is beneficial for learning, at least before a well-learned state is achieved.

  16. Extracellular amino acid levels in the interpositus nucleus during classical eyeblink conditioning in alert cats.

    PubMed

    Jiménez-Díaz, Lydia; Gruart, Agnès; Miñano, Francisco Javier; Delgado-García, José María

    2007-10-01

    The extracellular levels of selected amino acids in the cerebellar posterior interpositus nucleus (PIN) during classical eyeblink conditioning was analyzed in alert cats using a delay paradigm. Animals were prepared for the chronic recording of eyelid movements (with the magnetic search-coil technique) and the electromyographic activity of the orbicularis oculi muscle. With the help of a guide and push-pull cannulae, selected PIN sites were perfused daily during classical eyeblink conditioning. The perfusate was sampled at intervals of 5 min and analyzed with a high-pressure liquid chromatography- electrochemical detection (HPLC-EC) method. The analysis of push-pull perfusate revealed a significant increase in the release of glycine, taurine, and glutamate across the successive conditioning sessions, in parallel with the acquisition of eyelid conditioned responses (CRs). Both CRs and extracellular levels of these three amino acids returned to control values during extinction. Other amino acids (alanine, GABA, glutamine, serine, and threonine) did not undergo modifications in their extracellular concentrations across the training. Results are discussed with regard to the role of PIN in this type of associative learning.

  17. Hippocampal ripple-contingent training accelerates trace eyeblink conditioning and retards extinction in rabbits.

    PubMed

    Nokia, Miriam S; Penttonen, Markku; Wikgren, Jan

    2010-08-25

    There are at least two distinct oscillatory states of the hippocampus that are related to distinct behavioral patterns. Theta (4-12 Hz) oscillation has been suggested to indicate selective attention during which the animal concentrates on some features of the environment while suppressing reactivity to others. In contrast, sharp-wave ripples ( approximately 200 Hz) can be seen in a state in which the hippocampus is at its most responsive to any kind of afferent stimulation. In addition, external stimulation tends to evoke and reset theta oscillation, the phase of which has been shown to modulate synaptic plasticity in the hippocampus. Theoretically, training on a hippocampus-dependent learning task contingent upon ripples could enhance learning rate due to elevated responsiveness and enhanced phase locking of the theta oscillation. We used a brain-computer interface to detect hippocampal ripples in rabbits to deliver trace eyeblink conditioning and extinction trials selectively contingent upon them. A yoked control group was trained regardless of their ongoing neural state. Ripple-contingent training expedited acquisition of the conditioned response early in training and evoked stronger theta-band phase locking to the conditioned stimulus. Surprisingly, ripple-contingent training also resulted in slower extinction in well trained animals. We suggest that the ongoing oscillatory activity in the hippocampus determines the extent to which a stimulus can induce a phase reset of the theta oscillation, which in turn is the determining factor of learning rate in trace eyeblink conditioning.

  18. Medial auditory thalamus is necessary for acquisition and retention of eyeblink conditioning to cochlear nucleus stimulation.

    PubMed

    Halverson, Hunter E; Poremba, Amy; Freeman, John H

    2015-05-01

    Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning. However, the medial auditory thalamic nuclei (MATN), consisting of the medial division of the medial geniculate, suprageniculate, and posterior interlaminar nucleus have also been implicated as a critical auditory relay to the pontine nuclei for cerebellum-dependent motor learning. The MATN also conveys auditory information to the amygdala necessary for avoidance and fear conditioning. The current study used CN stimulation to increase activity in the pontine nuclei, relative to a tone stimulus, and possibly provide sufficient input to the cerebellum for acquisition or retention of eyeblink conditioning during MATN inactivation. Primary and secondary effects of CN stimulation and MATN inactivation were examined using 2-deoxy-glucose autoradiography. Stimulation of CN increased activity in the pontine nuclei, however, this increase was not sufficient for cerebellar learning during MATN inactivation. Results of the current experiment provide additional evidence indicating the MATN may be the critical auditory relay for many associative learning tasks.

  19. Relational and procedural memory systems in the goldfish brain revealed by trace and delay eyeblink-like conditioning.

    PubMed

    Gómez, A; Rodríguez-Expósito, B; Durán, E; Martín-Monzón, I; Broglio, C; Salas, C; Rodríguez, F

    2016-12-01

    The presence of multiple memory systems supported by different neural substrata has been demonstrated in animal and human studies. In mammals, two variants of eyeblink classical conditioning, differing only in the temporal relationships between the conditioned stimulus (CS) and the unconditioned stimulus (US), have been widely used to study the neural substrata of these different memory systems. Delay conditioning, in which both stimuli coincide in time, depends on a non-relational memory system supported by the cerebellum and associated brainstem circuits. In contrast, trace conditioning, in which a stimulus-free time gap separates the CS and the US, requires a declarative or relational memory system, thus depending on forebrain structures in addition to the cerebellum. The distinction between the explicit or relational and the implicit or procedural memory systems that support trace and delay classical conditioning has been extensively studied in mammals, but studies in other vertebrate groups are relatively scarce. In the present experiment we analyzed the differential involvement of the cerebellum and the telencephalon in delay and trace eyeblink-like classical conditioning in goldfish. The results show that whereas the cerebellum lesion prevented the eyeblink-like conditioning in both procedures, the telencephalon ablation impaired exclusively the acquisition of the trace conditioning. These data showing that comparable neural systems support delay and trace eyeblink conditioning in teleost fish and mammals suggest that these separate memory systems and their neural bases could be a shared ancestral brain feature of the vertebrate lineage.

  20. Stimulation of the Lateral Geniculate, Superior Colliculus, or Visual Cortex is Sufficient for Eyeblink Conditioning in Rats

    ERIC Educational Resources Information Center

    Halverson, Hunter E.; Hubbard, Erin M.; Freeman, John H.

    2009-01-01

    The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate…

  1. Dimethoate accelerates the extinction of eyeblink conditioning in mice.

    PubMed

    Valenzuela-Harrington, Mauricio; Castillo, Irene; Díaz, Corín; Alés, Inés; Rodríguez-Moreno, Antonio

    2012-01-01

    In agriculture, organophosphates are frequently used as insecticides and pesticides. These compounds decrease acetylcholine esterase (AChE) activity, thereby provoking an accumulation of the neurotransmitter acetylcholine at synapses and resulting in the over-stimulation of acetylcholine receptors. Using trace paradigms, we investigated the effects of dimethoate, a widely used organophosphate insecticide, on the classical conditioning of eyelid responses, a hippocampal-dependent mouse model of associative learning. Mice were conditioned with a trace shock-SHOCK paradigm having first implanted stimulating electrodes in the supraorbitary nerve and recording electrodes in the ipsilateral orbicularis oculi muscle. When these mice were injected with dimethoate (5, 20, 50mg/kg/day) they were capable of acquiring associative learning, and the latency and amplitude of their unconditioned eyelid responses were unaffected by the administration of the pesticide. However, dimethoate administration led to the rapid extinction of conditioned responses, suggesting that this organophosphate accelerates the extinction of this form of associative learning. Analysis of the motor function of these mice using the rotarod performance test revealed that motor function and performance clearly deteriorated following dimethoate administration, with no improvements over the following 4 days. Together these findings indicate that dimethoate accelerates the extinction of acquired conditioned responses, affecting associative learning and memory, and it impairs motor function and performance in mice.

  2. Prolonging the postcomplex spike pause speeds eyeblink conditioning.

    PubMed

    Maiz, Jaione; Karakossian, Movses H; Pakaprot, Narawut; Robleto, Karla; Thompson, Richard F; Otis, Thomas S

    2012-10-09

    Climbing fiber input to the cerebellum is believed to serve as a teaching signal during associative, cerebellum-dependent forms of motor learning. However, it is not understood how this neural pathway coordinates changes in cerebellar circuitry during learning. Here, we use pharmacological manipulations to prolong the postcomplex spike pause, a component of the climbing fiber signal in Purkinje neurons, and show that these manipulations enhance the rate of learning in classical eyelid conditioning. Our findings elucidate an unappreciated aspect of the climbing fiber teaching signal, and are consistent with a model in which convergent postcomplex spike pauses drive learning-related plasticity in the deep cerebellar nucleus. They also suggest a physiological mechanism that could modulate motor learning rates.

  3. Effects of Paradigm and Inter-Stimulus Interval on Age Differences in Eyeblink Classical Conditioning in Rabbits

    ERIC Educational Resources Information Center

    Woodruff-Pak, Diana S.; Seta, Susan E.; Roker, LaToya A.; Lehr, Melissa A.

    2007-01-01

    The aim of this study was to examine parameters affecting age differences in eyeblink classical conditioning in a large sample of young and middle-aged rabbits. A total of 122 rabbits of mean ages of 4 or 26 mo were tested at inter-stimulus intervals (ISIs) of 600 or 750 msec in the delay or trace paradigms. Paradigm affected both age groups…

  4. Choline supplementation mitigates trace, but not delay, eyeblink conditioning deficits in rats exposed to alcohol during development.

    PubMed

    Thomas, Jennifer D; Tran, Tuan D

    2012-03-01

    Children exposed to alcohol prenatally suffer from a range of physical, neuropathological, and behavioral alterations, referred to as fetal alcohol spectrum disorders (FASD). Both the cerebellum and hippocampus are affected by alcohol exposure during development, which may contribute to behavioral and cognitive deficits observed in children with FASD. Despite the known neuropathology associated with prenatal alcohol exposure, many pregnant women continue to drink (heavy drinkers, in particular), creating a need to identify effective treatments for their children who are adversely affected by alcohol. We previously reported that choline supplementation can mitigate alcohol's effects on cognitive development, specifically on tasks which depend on the functional integrity of the hippocampus. The present study examined whether choline supplementation could differentially mitigate alcohol's effects on trace eyeblink classical conditioning (ECC, a hippocampal-dependent task) and delay ECC (a cerebellar-dependent task). Long-Evans rats were exposed to 5.25 g/kg/day alcohol via gastric intubation from postnatal days (PD) 4-9, a period of brain development equivalent to late gestation in humans. A sham-intubated control group was included. From PD 10-30, subjects received subcutaneous injections of 100 mg/kg choline chloride or vehicle. Beginning on PD 32-34, subjects were trained on either delay or trace eyeblink conditioning. Performance of subjects exposed to alcohol was significantly impaired on both tasks, as indicated by significant reductions in percentage and amplitude of conditioned eyeblink responses, an effect that was attenuated by choline supplementation on the trace, but not delay conditioning task. Indeed, alcohol-exposed subjects treated with choline performed at control levels on the trace eyeblink conditioning task. There were no significant main or interactive effects of sex. These data indicate that choline supplementation can significantly reduce the

  5. Lack of renewal effect in extinction of naturally acquired conditioned eyeblink responses, but possible dependency on physical context.

    PubMed

    Claassen, J; Mazilescu, L; Thieme, A; Bracha, V; Timmann, D

    2016-01-01

    Context dependency of extinction is well known and has extensively been studied in fear conditioning, but has rarely been assessed in eyeblink conditioning. One way to demonstrate context dependency of extinction is the renewal effect. ABA paradigms are most commonly used to show the renewal effect of extinguished learned fear: if acquisition takes place in context A, and extinction takes place in context B (extinction phase), learned responses will recover in subsequent extinction trials presented in context A (renewal phase). The renewal effect of the visual threat eyeblink response (VTER), a conditioned eyeblink response, which is naturally acquired in early infancy, was examined in a total of 48 young and healthy participants with two experiments using an ABA paradigm. Twenty paired trials were performed in context A (baseline trials), followed by 50 extinction trials in context B (extinction phase) and 50 extinction trials in context A (renewal phase). In 24 participants, contexts A and B were two different rooms, and in the other 24 participants, two different background colors (orange and blue) and noises were used. To rule out spontaneous recovery, an AAA design was used for comparison. There were significant effects of extinction in both experiments. No significant renewal effects were observed. In experiment 2, however, extinction was significantly less using orange background during extinction compared to the blue background. The present findings suggest that extinction of conditioned eyeblinks depends on the physical context. Findings add to the animal literature that context can play a role in the acquisition of classically conditioned eyeblink responses. Future studies, however, need to be performed to confirm the present findings. Lack of renewal effect may be explained by the highly overlearned character of the VTER.

  6. Examining the effects of former cannabis use on cerebellum-dependent eyeblink conditioning in humans

    PubMed Central

    Steinmetz, Adam B.; Edwards, Chad R.; Vollmer, Jennifer M.; Erickson, Molly A.; O’Donnell, Brian F.; Hetrick, William P.

    2012-01-01

    Rationale Previous work in humans has shown that chronic cannabis users exhibit disruptions in classical eyeblink conditioning (EBC), a form of associative learning that is known to be dependent on the cerebellum. Based upon previous work in animals, it was hypothesized that these learning deficits were related to cannabinoid receptor (CB1R) downregulation. However, it remains unclear whether there is a recovery of cerebellum-dependent learning after the cessation of cannabis use. Methods Therefore, former cannabis users (n=10), current cannabis users (n=10), and cannabis-naïve controls (n=10), all free of DSM-IV Axis-I or -II disorders, were evaluated. A standard delay EBC procedure was utilized in which paired presentations of a conditioned stimulus (CS; e.g., tone) and a co-terminating unconditioned stimulus (US; e.g., ocular air-puff) were administered, thus eliciting a conditioned eyeblink response (CR). The primary dependent measures were percentage of CRs and CR latency across conditioning blocks. Results Similar to prior studies, current cannabis users exhibited marked impairments in both the acquisition and timing of CRs compared to controls. Although former cannabis users showed intact CR acquisition compared to controls, they exhibited significantly impaired (shorter) CR latencies. In both cannabis groups, UR amplitude did not differ from controls, indicating normal US processing. Conclusions These data suggest that a recovery of function has occurred for the learning of the CS–US association, while the accurate timing of the CR shows lasting impairments. Taken together, these results suggest that heavy cannabis use can disrupt timing-related synaptic plasticity within the cerebellum, even after the cessation of cannabis use. PMID:22134474

  7. Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols.

    PubMed

    Beyer, Linda; Batsikadze, Giorgi; Timmann, Dagmar; Gerwig, Marcus

    2017-01-01

    There is good evidence that the human cerebellum is involved in the acquisition and timing of classically conditioned eyeblink responses (CRs). Animal studies suggest that the cerebellum is also important in CR extinction and savings. Cerebellar transcranial direct current stimulation (tDCS) was reported to modulate CR acquisition and timing in a polarity dependent manner. To extent previous findings three experiments were conducted using standard delay eyeblink conditioning. In a between-group design, effects of tDCS were assessed with stimulation over the right cerebellar hemisphere ipsilaterally to the unconditioned stimulus (US). An extracephalic reference electrode was used in Experiment 1 and a cephalic reference in Experiment 2. In both parts the influence on unconditioned eyeblink responses (UR) was investigated by starting stimulation in the second half of the pseudoconditioning phase lasting throughout the first half of paired trials. In a third experiment, effects of cerebellar tDCS during 40 extinction trials were assessed on extinction and reacquisition on the next day. In each experiment, 30 subjects received anodal, cathodal or sham stimulation in a double-blinded fashion. Using the extracephalic reference electrode, no significant effects on CR incidences comparing stimulation groups were observed. Using the cephalic reference anodal as well as cathodal cerebellar tDCS increased CR acquisition compared to sham only on a trend level. Analysis of timing parameters did not reveal significant effects on CR onset and peaktime latencies nor on UR timing. In the third experiment, cerebellar tDCS during extinction trials had no significant effect on extinction and savings on the next day. The present study did not reveal clear polarity dependent effects of cerebellar tDCS on CR acquisition and timing as previously described. Weaker effects may be explained by start of tDCS before the learning phase i.e., offline, individual thresholds and current flow based

  8. Cerebellar tDCS Effects on Conditioned Eyeblinks using Different Electrode Placements and Stimulation Protocols

    PubMed Central

    Beyer, Linda; Batsikadze, Giorgi; Timmann, Dagmar; Gerwig, Marcus

    2017-01-01

    There is good evidence that the human cerebellum is involved in the acquisition and timing of classically conditioned eyeblink responses (CRs). Animal studies suggest that the cerebellum is also important in CR extinction and savings. Cerebellar transcranial direct current stimulation (tDCS) was reported to modulate CR acquisition and timing in a polarity dependent manner. To extent previous findings three experiments were conducted using standard delay eyeblink conditioning. In a between-group design, effects of tDCS were assessed with stimulation over the right cerebellar hemisphere ipsilaterally to the unconditioned stimulus (US). An extracephalic reference electrode was used in Experiment 1 and a cephalic reference in Experiment 2. In both parts the influence on unconditioned eyeblink responses (UR) was investigated by starting stimulation in the second half of the pseudoconditioning phase lasting throughout the first half of paired trials. In a third experiment, effects of cerebellar tDCS during 40 extinction trials were assessed on extinction and reacquisition on the next day. In each experiment, 30 subjects received anodal, cathodal or sham stimulation in a double-blinded fashion. Using the extracephalic reference electrode, no significant effects on CR incidences comparing stimulation groups were observed. Using the cephalic reference anodal as well as cathodal cerebellar tDCS increased CR acquisition compared to sham only on a trend level. Analysis of timing parameters did not reveal significant effects on CR onset and peaktime latencies nor on UR timing. In the third experiment, cerebellar tDCS during extinction trials had no significant effect on extinction and savings on the next day. The present study did not reveal clear polarity dependent effects of cerebellar tDCS on CR acquisition and timing as previously described. Weaker effects may be explained by start of tDCS before the learning phase i.e., offline, individual thresholds and current flow based

  9. Hippocampal Non-Theta-Contingent Eyeblink Classical Conditioning: A Model System for Neurobiological Dysfunction

    PubMed Central

    Cicchese, Joseph J.; Berry, Stephen D.

    2016-01-01

    Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3–7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain–computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric

  10. Cerebellar cortex and cerebellar nuclei are concomitantly activated during eyeblink conditioning: a 7T fMRI study in humans.

    PubMed

    Thürling, Markus; Kahl, Fabian; Maderwald, Stefan; Stefanescu, Roxana M; Schlamann, Marc; Boele, Henk-Jan; De Zeeuw, Chris I; Diedrichsen, Jörn; Ladd, Mark E; Koekkoek, Sebastiaan K E; Timmann, Dagmar

    2015-01-21

    There are controversies whether learning of conditioned eyeblink responses primarily takes place within the cerebellar cortex, the interposed nuclei, or both. It has also been suggested that the cerebellar cortex may be important during early stages of learning, and that there is a shift to the cerebellar nuclei during later stages. As yet, human studies have provided little to resolve this question. In the present study, we established a setup that allows ultra-high-field 7T functional magnetic resonance imaging (fMRI) of the cerebellar cortex and interposed cerebellar nuclei simultaneously during delay eyeblink conditioning in humans. Event-related fMRI signals increased concomitantly in the cerebellar cortex and nuclei during early acquisition of conditioned eyeblink responses in 20 healthy human subjects. ANOVAs with repeated-measures showed significant effects of time across five blocks of 20 conditioning trials in the cortex and nuclei (p < 0.05, permutation corrected). Activations were most pronounced in, but not limited to, lobules VI and interposed nuclei. Increased activations were most prominent at the first time the maximum number of conditioned responses was achieved. Our data are consistent with a simultaneous and synergistic two-site model of learning during acquisition of classically conditioned eyeblinks. Because increased MRI signal reflects synaptic activity, concomitantly increased signals in the cerebellar nuclei and cortex are consistent with findings of learning related potentiation at the mossy fiber to nuclear cell synapse and mossy fiber to granule cell synapse. Activity related to the expression of conditioned responses, however, cannot be excluded.

  11. Hippocampal theta-band activity and trace eyeblink conditioning in rabbits.

    PubMed

    Nokia, Miriam S; Penttonen, Markku; Korhonen, Tapani; Wikgren, Jan

    2009-06-01

    The authors examined the relationship between hippocampal theta activity and trace eyeblink conditioning. Hippocampal electrophysiological local field potentials were recorded before, during, and after conditioning or explicitly unpaired training sessions in adult male New Zealand White rabbits. As expected, a high relative power of theta activity (theta ratio) in the hippocampus predicted faster acquisition of the conditioned response during trace conditioning but, contrary to previous results obtained using the delay paradigm, only in the initial stage of learning. The presentation of the conditioned stimulus overall elicited an increase in the hippocampal theta ratio. The theta ratio decreased in the unpaired group as a function of training, remained high throughout conditioning in the fast learners, and rapidly increased in the slow learners initially showing a low theta ratio. Our results indicate a reciprocal connection between the hippocampal oscillatory activity and associative learning. The hippocampal theta ratio seems to reflect changes and differences in the subjects' alertness and responsiveness to external stimuli, which affect the rate of learning and are, in turn, affected by both conditioning and unpaired training.

  12. Hippocampal theta activity is selectively associated with contingency detection but not discrimination in rabbit discrimination-reversal eyeblink conditioning.

    PubMed

    Nokia, Miriam S; Wikgren, Jan

    2010-04-01

    The relative power of the hippocampal theta-band ( approximately 6 Hz) activity (theta ratio) is thought to reflect a distinct neural state and has been shown to affect learning rate in classical eyeblink conditioning in rabbits. We sought to determine if the theta ratio is mostly related to the detection of the contingency between the stimuli used in conditioning or also to the learning of more complex inhibitory associations when a highly demanding delay discrimination-reversal eyeblink conditioning paradigm is used. A high hippocampal theta ratio was not only associated with a fast increase in conditioned responding in general but also correlated with slow emergence of discriminative responding due to sustained responding to the conditioned stimulus not paired with an unconditioned stimulus. The results indicate that the neural state reflected by the hippocampal theta ratio is specifically linked to forming associations between stimuli rather than to the learning of inhibitory associations needed for successful discrimination. This is in line with the view that the hippocampus is responsible for contingency detection in the early phase of learning in eyeblink conditioning.

  13. Metabolic Mapping of Rat Forebrain and Midbrain During Delay and Trace Eyeblink Conditioning

    PubMed Central

    Plakke, Bethany; Freeman, John H.; Poremba, Amy

    2012-01-01

    While the essential neural circuitry for delay eyeblink conditioning has been largely identified, much of the neural circuitry for trace conditioning has yet to be determined. The major difference between delay and trace conditioning is a time gap between the presentation of the conditioned stimulus (CS) and the unconditioned stimulus (US) during trace conditioning. It is this time gap, which accounts for the additional memory component and may require extra neural structures, including hippocampus and prefrontal cortex. A metabolic marker of energy use, radioactively labeled glucose analog, was used to compare differences in glucose analog uptake between delay, trace, and unpaired experimental groups (rats, Long-Evans), to identify possible new areas of involvement within forebrain and midbrain. Here, we identify increased 2-DG uptake for the delay group compared to the unpaired group in various areas including: the medial geniculate nuclei (MGN), the amygdala, cingulate cortex, auditory cortex, medial dorsal thalamus, and frontal cortices. For the trace group, compared to the unpaired group, there was an increase in 2-DG uptake for the medial orbital frontal cortex and the medial MGN. The trace group also exhibited more increases lateralized to the right hemisphere, opposite to the side of US delivery, in various areas including: CA1, subiculum, presubiculum, perirhinal cortex, ventral and dorsal MGN, and the basolateral and central amygdala. While some of these areas have been identified as important for delay or trace conditioning, some new structures have been identified such as the orbital frontal cortex for both delay and trace groups. PMID:19376256

  14. Classical and instrumental conditioning of eyeblink responses in Wistar-Kyoto and Sprague-Dawley rats.

    PubMed

    Ricart, Thomas M; Jiao, Xilu; Pang, Kevin C H; Beck, Kevin D; Servatius, Richard J

    2011-01-01

    Wistar-Kyoto (WKY) rats, an animal model of anxiety vulnerability, acquire lever-press avoidance faster than outbred Sprague-Dawley (SD) rats. Faster avoidance acquisition may reflect an inherent ability to acquire cue-outcome associations, response-outcome associations or both. To evaluate cue-outcome learning, acquisition of classically conditioned eyeblink response was compared in SD and WKY rats using a delay-type paradigm (500-ms conditioned stimulus (CS) coterminating with a 10-ms unconditional stimulus (US)). WKY rats demonstrated enhanced classical conditioning, with both faster acquisition and greater asymptotic performance in delay-type training than SD rats. To evaluate response-outcome learning, separate SD and WKY rats were given control over US delivery through imposition of an omission contingency into delay-type training (emitting a conditioned response (CR) prevented delivery of the US). The schedule of US delivery derived by these rats became the training regimen for a separate group of SD and WKY rats, yoked within strain. In SD rats, no differences in acquisition were detected between those given control over US delivery and those trained with the same partial reinforcement schedule. Acquisition rates of those WKY rats with control exceeded those trained with a yoked-schedule of US presentation. Collectively, WKY rats exhibit enhanced classical conditioning and sensitivity to schedules of reinforcement compared to outbred SD rats. Anxiety vulnerability, in particular inhibited temperament, may be traced to active processes in the prediction and control of aversive events.

  15. Eyeblink classical conditioning and post-traumatic stress disorder - a model systems approach.

    PubMed

    Schreurs, Bernard G; Burhans, Lauren B

    2015-01-01

    Not everyone exposed to trauma suffers flashbacks, bad dreams, numbing, fear, anxiety, sleeplessness, hyper-vigilance, hyperarousal, or an inability to cope, but those who do may suffer from post-traumatic stress disorder (PTSD). PTSD is a major physical and mental health problem for military personnel and civilians exposed to trauma. There is still debate about the incidence and prevalence of PTSD especially among the military, but for those who are diagnosed, behavioral therapy and drug treatment strategies have proven to be less than effective. A number of these treatment strategies are based on rodent fear conditioning research and are capable of treating only some of the symptoms because the extinction of fear does not deal with the various forms of hyper-vigilance and hyperarousal experienced by people with PTSD. To help address this problem, we have developed a preclinical eyeblink classical conditioning model of PTSD in which conditioning and hyperarousal can both be extinguished. We review this model and discuss findings showing that unpaired stimulus presentations can be effective in reducing levels of conditioning and hyperarousal even when unconditioned stimulus intensity is reduced to the point where it is barely capable of eliciting a response. These procedures have direct implications for the treatment of PTSD and could be implemented in a virtual reality environment.

  16. Intra-cerebellar infusion of the protein kinase Mzeta (PKMζ) inhibitor ZIP disrupts eyeblink classical conditioning

    PubMed Central

    Chihabi, Kutibh; Morielli, Anthony D.; Green, John T.

    2016-01-01

    PKM-ζ, a constitutively active N-terminal truncated form of PKC-ζ, has long been implicated in a cellular correlate of learning, long-term potentiation (LTP). Inhibition of PKM-ζ with Zeta-inhibitory peptide (ZIP) has been shown in many brain structures to disrupt maintenance of AMPA receptors, irreversibly disrupting numerous forms of learning and memory that have been maintained for weeks. Delay eyeblink conditioning (EBC) is an established model for the assessment of cerebellar learning; here, we show that PKC-ζ and PKM-ζ are highly expressed in the cerebellar cortex, with highest expression found in Purkinje cell (PC) nuclei. Despite being highly expressed in the cerebellar cortex, no studies have examined how regulation of cerebellar PKM-ζ may affect cerebellar-dependent learning and memory. Given its disruption of learning in other brain structures, we hypothesized that ZIP would also disrupt delay EBC. We have shown that infusion of ZIP into the lobulus simplex of the rat cerebellar cortex can indeed significantly disrupt delay EBC. PMID:26949968

  17. Eyeblink Conditioning and Novel Object Recognition in the Rabbit: Behavioral Paradigms for Assaying Psychiatric Diseases

    PubMed Central

    Weiss, Craig; Disterhoft, John F.

    2015-01-01

    Analysis of data collected from behavioral paradigms has provided important information for understanding the etiology and progression of diseases that involve neural regions mediating abnormal behavior. The trace eyeblink conditioning (EBC) paradigm is particularly suited to examine cerebro-cerebellar interactions since the paradigm requires the cerebellum, forebrain, and awareness of the stimulus contingencies. Impairments in acquiring EBC have been noted in several neuropsychiatric conditions, including schizophrenia, Alzheimer’s disease (AD), progressive supranuclear palsy, and post-traumatic stress disorder. Although several species have been used to examine EBC, the rabbit is unique in its tolerance for restraint, which facilitates imaging, its relatively large skull that facilitates chronic neuronal recordings, a genetic sequence for amyloid that is identical to humans which makes it a valuable model to study AD, and in contrast to rodents, it has a striatum that is differentiated into a caudate and a putamen that facilitates analysis of diseases involving the striatum. This review focuses on EBC during schizophrenia and AD since impairments in cerebro-cerebellar connections have been hypothesized to lead to a cognitive dysmetria. We also relate EBC to conditioned avoidance responses that are more often examined for effects of antipsychotic medications, and we propose that an analysis of novel object recognition (NOR) may add to our understanding of how the underlying neural circuitry has changed during disease states. We propose that the EBC and NOR paradigms will help to determine which therapeutics are effective for treating the cognitive aspects of schizophrenia and AD, and that neuroimaging may reveal biomarkers of the diseases and help to evaluate potential therapeutics. The rabbit, thus, provides an important translational system for studying neural mechanisms mediating maladaptive behaviors that underlie some psychiatric diseases, especially

  18. Enhanced Eyeblink Conditioning in Behaviorally Inhibited Individuals is Disrupted by Proactive Interference Following US Alone Pre-exposures.

    PubMed

    Allen, Michael Todd; Miller, Daniel P

    2016-01-01

    Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible

  19. Behaviorally-inhibited temperament is associated with severity of PTSD symptoms and faster eyeblink conditioning in veterans

    PubMed Central

    Myers, Catherine E.; VanMeenen, Kirsten M.; McAuley, J. Devin; Beck, Kevin D.; Pang, Kevin C. H.; Servatius, Richard J.

    2012-01-01

    Prior studies have sometimes demonstrated facilitated acquisition of classically-conditioned responses and/or resistance to extinction in post-traumatic stress disorder (PTSD). However, it is unclear whether these behaviors are acquired as a result of PTSD or exposure to trauma, or reflect pre-existing risk factors that confer vulnerability for PTSD. Here, we examined classical eyeblink conditioning and extinction in veterans self-assessed for current PTSD symptoms, exposure to combat, and the personality trait of behavioral inhibition (BI), a risk factor for PTSD. 128 veterans were recruited (mean age 51.2 years; 13.3% female); 126 completed self-assessment, with 25.4% reporting a history of exposure to combat and 30.9% reporting severe, current PTSD symptoms (PTSS). PTSD symptom severity was correlated with current BI (R2=0.497) and PTSS status could be predicted based on current BI and combat history (80.2% correct classification). A subset of the veterans (n=87) also completed eyeblink conditioning. Among veterans without PTSS, childhood BI was associated with faster acquisition; veterans with PTSS showed delayed extinction, under some conditions. These data demonstrate a relationship between current BI and PTSS, and suggest that the facilitated conditioning sometimes observed in PTSD patients may partially reflect personality traits such as childhood BI that pre-date and contribute to vulnerability for PTSD. PMID:21790343

  20. Acute Stress Facilitates Trace Eyeblink Conditioning in C57BL/6 Male Mice and Increases the Excitability of Their CA1 Pyramidal Neurons

    ERIC Educational Resources Information Center

    Weiss, Craig; Sametsky, Evgeny; Sasse, Astrid; Spiess, Joachim; Disterhoft, John F.

    2005-01-01

    The effects of stress (restraint plus tail shock) on hippocampus-dependent trace eyeblink conditioning and hippocampal excitability were examined in C57BL/6 male mice. The results indicate that the stressor significantly increased the concentration of circulating corticosterone, the amount and rate of learning relative to nonstressed conditioned…

  1. I Think, Therefore Eyeblink

    PubMed Central

    Weidemann, Gabrielle; Satkunarajah, Michelle; Lovibond, Peter F.

    2016-01-01

    Can conditioning occur without conscious awareness of the contingency between the stimuli? We trained participants on two separate reaction time tasks that ensured attention to the experimental stimuli. The tasks were then interleaved to create a differential Pavlovian contingency between visual stimuli from one task and an airpuff stimulus from the other. Many participants were unaware of the contingency and failed to show differential eyeblink conditioning, despite attending to a salient stimulus that was contingently and contiguously related to the airpuff stimulus over many trials. Manipulation of awareness by verbal instruction dramatically increased awareness and differential eyeblink responding. These findings cast doubt on dual-system theories, which propose an automatic associative system independent of cognition, and provide strong evidence that cognitive processes associated with awareness play a causal role in learning. PMID:26905277

  2. Cooling of the cerebellar interpositus nucleus abolishes somatosensory cortical learning-related activity in eyeblink conditioned rabbits.

    PubMed

    Wikgren, Jan; Lavond, David G; Ruusuvirta, Timo; Korhonen, Tapani

    2006-06-03

    Nictitating membrane movement and multiple-unit activity in the somatosensory cortex were recorded from rabbits during paired (N=6) and unpaired (N=5) presentations of a tone conditioned stimulus (CS) and an airpuff unconditioned stimulus (US). A behavioural conditioned response (CR) to the CS and an accompanying neural response in the somatosensory cortex developed only in the paired group. Inactivation of the cerebellar interpositus nucleus abolished both the acquired CR and the accompanying neural response. However, the CS facilitated both behavioural and neural responses to the US during the inactivation. Thus, the absence of the CR could not be accounted for by the general inability of the CS to alter the behaviour constituting the CR or the activity of the somatosensory cortex. These findings suggest that the efferent copy of the signal related to the eyeblink CR is projected from the cerebellum to the cerebral cortical areas of the US modality.

  3. Eyeblink Classical Conditioning and Interpositus Nucleus Activity Are Disrupted in Adult Rats Exposed to Ethanol as Neonates

    PubMed Central

    Green, John T.; Johnson, Timothy B.; Goodlett, Charles R.; Steinmetz, Joseph E.

    2002-01-01

    Neonatal exposure to ethanol in rats, during the period of brain development comparable to that of the human third trimester, produces significant, dose-dependent cell loss in the cerebellum and deficits in coordinated motor performance. These rats are also impaired in eyeblink conditioning as weanlings and as adults. The current study examined single-unit neural activity in the interpositus nucleus of the cerebellum in adults following neonatal binge ethanol exposure. Group Ethanol received alcohol doses of 5.25 g/kg/day on postnatal days 4–9. Group Sham Intubated underwent acute intragastric intubation on postnatal days 4–9 but did not receive any infusions. Group Unintubated Control (from separate litters) did not receive any intubations. When rats were 3–7 mo old, pairs of extracellular microelectrodes were implanted in the region of the interpositus nucleus. Beginning 1 wk later, the rats were given either 100 paired or 190 unpaired trials per day for 10 d followed by 4 d of 100 conditioned stimulus (CS)-alone trials per day. As in our previous study, conditioned response acquisition in Group Ethanol rats was impaired. In addition, by session 5 of paired acquisition, Group Sham Intubated and Group Unintubated Control showed significant increases in interpositus nucleus activity, relative to baseline, in the CS–unconditioned stimulus interval. In contrast, Group Ethanol failed to show significant changes in interpositus nucleus activity until later in training. These results indicate that the disruption in eyeblink conditioning after early exposure to ethanol is reflected in alterations in interpositus nucleus activity. PMID:12359839

  4. Harnessing the power of theta: natural manipulations of cognitive performance during hippocampal theta-contingent eyeblink conditioning

    PubMed Central

    Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.

    2015-01-01

    Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501

  5. Autism and Classical Eyeblink Conditioning: Performance Changes of the Conditioned Response Related to Autism Spectrum Disorder Diagnosis

    PubMed Central

    Welsh, John P.; Oristaglio, Jeffrey T.

    2016-01-01

    Changes in the timing performance of conditioned responses (CRs) acquired during trace and delay eyeblink conditioning (EBC) are presented for diagnostic subgroups of children having autism spectrum disorder (ASD) aged 6–15 years. Children diagnosed with autistic disorder (AD) were analyzed separately from children diagnosed with either Asperger’s syndrome or Pervasive developmental disorder (Asp/PDD) not otherwise specified and compared to an age- and IQ-matched group of children who were typically developing (TD). Within-subject and between-groups contrasts in CR performance on sequential exposure to trace and delay EBC were analyzed to determine whether any differences would expose underlying functional heterogeneities of the cerebral and cerebellar systems, in ASD subgroups. The EBC parameters measured were percentage CRs, CR onset latency, and CR peak latency. Neither AD nor Asp/PDD groups were impaired in CR acquisition during trace or delay EBC. Both AD and Asp/PDD altered CR timing, but not always in the same way. Although the AD group showed normal CR timing during trace EBC, the Asp/PDD group showed a significant 27 and 28 ms increase in CR onset and peak latency, respectively, during trace EBC. In contrast, the direction of the timing change was opposite during delay EBC, during which the Asp/PDD group showed a significant 29 ms decrease in CR onset latency and the AD group showed a larger 77 ms decrease in CR onset latency. Only the AD group showed a decrease in CR peak latency during delay EBC, demonstrating another difference between AD and Asp/PDD. The difference in CR onset latency during delay EBC for both AD and Asp/PDD was due to an abnormal prevalence of early onset CRs that were intermixed with CRs having normal timing, as observed both in CR onset histograms and mean CR waveforms. In conclusion, significant heterogeneity in EBC performance was apparent between diagnostic groups, and this may indicate that EBC performance can report

  6. Deep cerebellar nuclei play an important role in two-tone discrimination on delay eyeblink conditioning in C57BL/6 mice.

    PubMed

    Sakamoto, Toshiro; Endo, Shogo

    2013-01-01

    Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS- (or LCS-) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS- (or LCS-) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS- (or HCS+ and LCS-). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS- (or LCS-) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency.

  7. Reevaluation of the role of parallel fiber synapses in delay eyeblink conditioning in mice using Cbln1 as a tool.

    PubMed

    Emi, Kyoichi; Kakegawa, Wataru; Miura, Eriko; Ito-Ishida, Aya; Kohda, Kazuhisa; Yuzaki, Michisuke

    2013-01-01

    The delay eyeblink conditioning (EBC) is a cerebellum-dependent type of associative motor learning. However, the exact roles played by the various cerebellar synapses, as well as the underlying molecular mechanisms, remain to be determined. It is also unclear whether long-term potentiation (LTP) or long-term depression (LTD) at parallel fiber (PF)-Purkinje cell (PC) synapses is involved in EBC. In this study, to clarify the role of PF synapses in the delay EBC, we used mice in which a gene encoding Cbln1 was disrupted (cbln1(-/-) mice), which display severe reduction of PF-PC synapses. We showed that delay EBC was impaired in cbln1(-/-) mice. Although PF-LTD was impaired, PF-LTP was normally induced in cbln1(-/-) mice. A single recombinant Cbln1 injection to the cerebellar cortex in vivo completely, though transiently, restored the morphology and function of PF-PC synapses and delay EBC in cbln1(-/-) mice. Interestingly, the cbln1(-/-) mice retained the memory for at least 30 days, after the Cbln1 injection's effect on PF synapses had abated. Furthermore, delay EBC memory could be extinguished even after the Cbln1 injection's effect were lost. These results indicate that intact PF-PC synapses and PF-LTD, not PF-LTP, are necessary to acquire delay EBC in mice. In contrast, extracerebellar structures or remaining PF-PC synapses in cbln1(-/-) mice may be sufficient for the expression, maintenance, and extinction of its memory trace.

  8. Eyeblink classical conditioning and BOLD fMRI of anesthesia-induced changes in the developing brain.

    PubMed

    Aksenov, Daniil P; Miller, Michael J; Li, Limin; Wyrwicz, Alice M

    2016-12-01

    Millions of children undergo general anesthesia each year in the USA alone, and a growing body of literature from animals and humans suggests that exposure to anesthesia at an early age can impact neuronal development, leading to learning and memory impairments later in childhood. Although a number of studies have reported behavioral and structural effects of anesthesia exposure during infancy, the functional manifestation of these changes has not been previous examined. In this study we used BOLD fMRI to measure the functional response to stimulation in the whisker barrel cortex of awake rabbits before and after learning a trace eyeblink classical conditioning paradigm. The functional changes, in terms of activated volume and time course, in rabbits exposed to isoflurane anesthesia during infancy was compared to unanesthetized controls when both groups reached young adulthood. Our findings show that whereas both groups exhibited decreased BOLD response duration after learning, the anesthesia-exposed group also showed a decrease in BOLD response volume in the whisker barrel cortex, particularly in the deeper infragranular layer. These results suggest that anesthesia exposure during infancy may affect the intracortical processes that mediate learning-related plasticity.

  9. GABAergic neurons in the medial septum-diagonal band of Broca (MSDB) are important for acquisition of the classically conditioned eyeblink response.

    PubMed

    Roland, J J; Janke, K L; Servatius, R J; Pang, K C H

    2014-07-01

    The medial septum and diagonal band of Broca (MSDB) influence hippocampal function through cholinergic, GABAergic, and glutamatergic septohippocampal neurons. Non-selective damage of the MSDB or intraseptal scopolamine impairs classical conditioning of the eyeblink response (CCER). Scopolamine preferentially inhibits GABAergic MSDB neurons suggesting that these neurons may be an important modulator of delay CCER, a form of CCER not dependent on the hippocampus. The current study directly examined the importance of GABAergic MSDB neurons in acquisition of delay CCER. Adult male Sprague-Dawley rats received either a sham (PBS) or GABAergic MSDB lesion using GAT1-saporin (SAP). Rats were given two consecutive days of delay eyeblink conditioning with 100 conditioned stimulus-unconditioned stimulus paired trials. Intraseptal GAT1-SAP impaired acquisition of CCER. The impairment was observed on the first day with sham and lesion groups reaching similar performance by the end of the second day. Our results provide evidence that GABAergic MSDB neurons are an important modulator of delay CCER. The pathways by which MSDB neurons influence the neural circuits necessary for delay CCER are discussed.

  10. Classical conditioning of the eyeblink reflex in the decerebrate-decerebellate rabbit.

    PubMed

    Kelly, T M; Zuo, C C; Bloedel, J R

    1990-04-16

    The purpose of these experiments was to test the hypothesis that a conditioned nictitating membrane reflex can be acquired in decerebrate rabbits in the absence of the cerebellum. Experiments examining the effects of large cerebellar lesions on the acquisition and performance of the conditioned reflex were performed in acutely prepared decerebrate rabbits. Most lesions encompassed all of the cerebellar nuclear regions ipsilateral to the eye receiving the unconditioned stimulus. In all rabbits included in this study the continuity between the cerebellar nuclei and the brainstem was interrupted, even in those preparations in which small regions of the nuclei were present in the lateral hemisphere. The findings demonstrate that these animals could acquire the conditioned reflex independent of whether conditioning had occurred prior to the cerebellectomy. Strong associativity was found between the latency of the conditioned response and the interstimulus interval between the conditioned and unconditioned stimuli. The behavior of the conditioned reflex observed in the decerebrate-decerebellate animals differed from that reported for awake intact rabbits in two ways. Once the conditioned behavior had been acquired, the percent of trials showing conditioned responses was somewhat less in decerebrate-decerebellate rabbits and was also more variable in these animals. The data demonstrate that the nictitating membrane reflex can be classically conditioned in the absence of the cerebellum, indicating that this structure is neither necessary nor sufficient for the acquisition of this type of conditioned behavior. In addition, an hypothesis is presented which addresses the difference between the data reported here and those previously reported by other laboratories based on observations in awake intact animals.

  11. Children with specific language impairment are not impaired in the acquisition and retention of Pavlovian delay and trace conditioning of the eyeblink response.

    PubMed

    Hardiman, Mervyn J; Hsu, Hsin-jen; Bishop, Dorothy V M

    2013-12-01

    Three converging lines of evidence have suggested that cerebellar abnormality is implicated in developmental language and literacy problems. First, some brain imaging studies have linked abnormalities in cerebellar grey matter to dyslexia and specific language impairment (SLI). Second, theoretical accounts of both dyslexia and SLI have postulated impairments of procedural learning and automatisation of skills, functions that are known to be mediated by the cerebellum. Third, motor learning has been shown to be abnormal in some studies of both disorders. We assessed the integrity of face related regions of the cerebellum using Pavlovian eyeblink conditioning in 7-11year-old children with SLI. We found no relationship between oral language skills or literacy skills with either delay or trace conditioning in the children. We conclude that this elementary form of associative learning is intact in children with impaired language or literacy development.

  12. Dynamic Elbow Flexion Force Estimation Through a Muscle Twitch Model and sEMG in a Fatigue Condition.

    PubMed

    Na, Youngjin; Kim, Jung

    2016-11-14

    We propose a joint force estimation method to compute elbow flexion force using surface electromyogram (sEMG) considering time-varying effects in a fatigue condition. Muscle fatigue is a major cause inducing sEMG changes with respect to time over long periods and repetitive contractions. The proposed method composed the muscle-twitch model representing the force generated by a single spike and the spikes extracted from sEMG. In this study, isometric contractions at six different joint angles (ten subjects) and dynamic contractions with constant velocity (six subjects) were performed under non-fatigue and fatigue conditions. Performance of the proposed method was evaluated and compared with that of previous methods using mean absolute value (MAV). The proposed method achieved average 6.7±2.8 %RMSE for isometric contraction and 15.6±24.7 %RMSE for isokinetic contraction under fatigue condition with more accurate results than the previous methods.

  13. Knee angle-specific MVIC for triceps surae EMG signal normalization in weight and non weight-bearing conditions.

    PubMed

    Hébert-Losier, Kim; Holmberg, Hans-Christer

    2013-08-01

    Varying the degree of weight-bearing (WB) and/or knee flexion (KF) angle during a plantar-flexion maximal voluntary isometric contraction (MVIC) has been proposed to alter soleus and/or gastrocnemius medialis and lateralis activation. This study compared the surface EMG signals from the triceps surae of 27 men and 27 women during WB and non weight bearing (NWB) plantar-flexion MVICs performed at 0° and 45° of KF. The aim was to determine which condition was most effective at eliciting the greatest EMG signals from soleus, gastrocnemius medialis, and gastrocnemius lateralis, respectively, for subsequent use for the normalization of EMG signals. WB was more effective than NWB at eliciting the greatest signals from soleus (p=0.0021), but there was no difference with respect to gastrocnemius medialis and lateralis (p⩾0.2482). Although the greatest EMG signals during MVICs were more frequently elicited at 0° of KF from gastrocnemius medialis and lateralis, and at 45° from soleus (p<0.001); neither angle consistently captured peak gastrocnemius medialis, gastrocnemius lateralis or soleus activity. The present findings encourage more consistent use of WB plantar flexion MVICs for soleus normalization; confirm that both WB and NWB procedures can elicit peak gastrocnemius activity; and emphasize the fact that no single KF angle consistently evokes selective maximal activity of any individual triceps surae muscle.

  14. Probing Prejudice with Startle Eyeblink Modification: A Marker of Attention, Emotion, or Both?

    PubMed Central

    Vanman, Eric J.; Ryan, John P.; Pedersen, William C.; Ito, Tiffany A.

    2015-01-01

    In social neuroscience research, startle eyeblink modification can serve as a marker of emotion, but it is less clear whether it can also serve as a marker of prejudice. In Experiment 1, 30 White students viewed photographs of White and Black targets while the startle eyeblink reflex and facial EMG from the brow and cheek regions were recorded. Prejudice was related to facial EMG activity, but not to startle modification, which instead appeared to index attention to race. To test further whether racial categorizations are associated with differential attention, a dual-task paradigm was used in Experiment 2. Fifty-four White and fifty-five Black participants responded more slowly to a tone presented when viewing a racial outgroup member or a negative stimulus, indicating that both draw more attention than ingroup members or positive stimuli. We conclude that startle modification is useful to index differential attention to groups when intergroup threat is low. PMID:26023325

  15. Detecting deception via eyeblink frequency modulation

    PubMed Central

    2014-01-01

    To assess the efficacy of using eyeblink frequency modulation to detect deception about a third party, 32 participants were sent on a mission to deliver a package to an interviewer. 17 of the participants lied to the interviewer about the details of their mock mission and 15 responded truthfully. During the interview, eyeblink frequency data were collected via electromyography and recorded video. Liars displayed eyeblink frequency suppression while lying, while truth tellers exhibited an increase in eyeblink frequency during the mission relevant questioning period. The compensatory flurry of eyeblinks following deception observed in previous studies was absent in the present study. A discriminant function using eyeblink suppression to predict lying correctly classified 81.3% of cases, with a sensitivity of 88.2% and a specificity of 73.3%. This technique, yielding a reasonable sensitivity, shows promise for future testing as, unlike polygraph, it is compatible with distance technology. PMID:24688844

  16. An Investigative Redesign of the ECG and EMG Signal Conditioning Circuits for Two-fault Tolerance and Circuit Improvement

    NASA Technical Reports Server (NTRS)

    Obrien, Edward M.

    1991-01-01

    An investigation was undertaken to make the elctrocardiography (ECG) and the electromyography (EMG) signal conditioning circuits two-fault tolerant and to update the circuitry. The present signal conditioning circuits provide at least one level of subject protection against electrical shock hazard but at a level of 100 micro-A (for voltages of up to 200 V). However, it is necessary to provide catastrophic fault tolerance protection for the astronauts and to provide protection at a current level of less that 100 micro-A. For this study, protection at the 10 micro-A level was sought. This is the generally accepted value below which no possibility of microshock exists. Only the possibility of macroshock exists in the case of the signal conditioners. However, this extra amount of protection is desirable. The initial part deals with current limiter circuits followed by an investigation into the signal conditioner specifications and circuit design.

  17. Eyeblink entrainment at breakpoints of speech.

    PubMed

    Nakano, Tamami; Kitazawa, Shigeru

    2010-09-01

    The eyes play an essential role in social communication. Eyeblinks, however, have thus far received minor attention. We previously showed that subjects blink in synchrony while viewing the same video stories (Nakano et al. in Proc R Soc B 276:3635-3644, 2009). We therefore hypothesized that eyeblinks are synchronized between listener and speaker in face-to-face conversation. Here, we show that listeners blinked with a delay of 0.25-0.5 s after the speaker blinked when the listeners viewed close-up video clips (with sound) of the speaker's face. Furthermore, this entrainment was selectively triggered by speaker's eyeblinks occurring at the end and during pauses in speech. Eyeblink entrainment was not observed when viewing identical video clips without sound, indicating that blink entrainment was not an automatic imitation. We therefore suggest that eyeblink entrainment reflects smooth communication between interactants.

  18. Neonatal ethanol exposure results in dose-dependent impairments in the acquisition and timing of the conditioned eyeblink response and altered cerebellar interpositus nucleus and hippocampal CA1 unit activity in adult rats.

    PubMed

    Lindquist, Derick H; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E

    2013-09-01

    Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink-conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4-9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 ms) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 ms) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus.

  19. Fear-potentiated startle processing in humans: Parallel fMRI and orbicularis EMG assessment during cue conditioning and extinction.

    PubMed

    Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia

    2015-12-01

    Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research.

  20. The search for the engram in eyeblink conditioning: A synopsis of past and present perspectives on the role of the cerebellum.

    PubMed

    Foy, Michael R; Foy, Judith G

    2016-12-01

    One of the most prolific behavioral neuroscientists of his generation, Richard F. Thompson published more than 450 research articles during his almost 60-year career before his death in 2014. The breadth and reach of his scholarship has extended to a large multidisciplinary audience of scientists. The focal point of this article is arguably his most influential paper on cerebellar classical conditioning entitled "The Neurobiology of Learning and Memory" that appeared in Science in 1986 and has been cited 700 times since its publication. Here, a summary of the initial Thompson laboratory research leading up to an understanding of the cerebellum and its critical role in memory traces will be discussed, along with conclusions from the Science article pertinent to cerebellar classical conditioning. The summary will also discuss how the original 1986 article continues to stimulate and influence new research and provide further insights into the role of the cerebellum in the neurobiology of learning and memory function relevant to studies of mammalian classical conditioning. (PsycINFO Database Record

  1. Lack of eyeblink entrainments in autism spectrum disorders.

    PubMed

    Nakano, Tamami; Kato, Nobumasa; Kitazawa, Shigeru

    2011-07-01

    Interpersonal synchrony is the temporal coordination of movements between individuals during social interactions. For example, it has been shown that listeners synchronize their eyeblinks to a speaker's eyeblinks, especially at breakpoints of speech, when viewing a close-up video clip of the speaker's face. We hypothesized that this interpersonal synchronous behavior would not be observed in individuals with autism spectrum disorders (ASD), which are characterized by impaired social communication. To test this hypothesis, we examined eyeblink entrainments in adults with ASD. As we reported previously, the eyeblinks of adults without ASD were significantly synchronized with the speaker's eyeblinks at pauses in his speech when they viewed the speaker's entire face. However, the significant eyeblink synchronization disappeared when adults without ASD viewed only the speaker's eyes or mouth, suggesting that information from the whole face, including information from both the eyes and the mouth, was necessary for eyeblink entrainment. By contrast, the ASD participants did not show any eyeblink synchronization with the speaker, even when viewing the speaker's eyes and mouth simultaneously. The lack of eyeblink entrainment to the speaker in individuals with ASD suggests that they are not able to temporally attune themselves to others' behaviors. The deficits in temporal coordination may impair effective social communication with others.

  2. H-REFLEX UP-CONDITIONING ENCOURAGES RECOVERY OF EMG ACTIVITY AND H-REFLEXES AFTER SCIATIC NERVE TRANSECTION AND REPAIR IN RATS

    PubMed Central

    Chen, Yi; Wang, Yu; Chen, Lu; Sun, Chenyuo; English, Arthur W.; Wolpaw, Jonathan R.; Chen, Xiang Yang

    2010-01-01

    Operant conditioning of the spinal stretch reflex or its electrical analog, the H-reflex, produces spinal cord plasticity and can thereby affect motoneuron responses to primary afferent input. To explore whether this conditioning can affect the functional outcome after peripheral nerve injury, we assessed the effect of up-conditioning soleus (SOL) H-reflex on SOL and tibialis anterior (TA) function after sciatic nerve transection and repair. Sprague-Dawley rats were implanted with EMG electrodes in SOL and TA and stimulating cuffs on the posterior tibial nerve. After control data collection, the sciatic nerve was transected and repaired and the rat was exposed for 120 days to continued control data collection (TC rats) or SOL H-reflex up-conditioning (TU rats). At the end of data collection, motoneurons that had reinnervated SOL and TA were labeled retrogradely. Putative primary afferent terminals (i.e., terminals containing vesicular glutamate transporter-1 (VGLUT1)) on SOL motoneurons were studied immunohistochemically. SOL (and probably TA) background EMG activity recovered faster in TU rats than in TC rats, and the final recovered SOL H-reflex was significantly larger in TU than in TC rats. TU and TC rats had significantly fewer labeled motoneurons and higher proportions of double-labeled motoneurons than untransected rats. VGLUT1 terminals were significantly more numerous on SOL motoneurons of TU than TC rats. Combined with the larger H-reflexes in TU rats, this anatomical finding supports the hypothesis that SOL H-reflex up-conditioning strengthened primary afferent reinnervation of SOL motoneurons. These results suggest that H-reflex up-conditioning may improve functional recovery after nerve injury and repair. PMID:21123559

  3. H-reflex up-conditioning encourages recovery of EMG activity and H-reflexes after sciatic nerve transection and repair in rats.

    PubMed

    Chen, Yi; Wang, Yu; Chen, Lu; Sun, Chenyou; English, Arthur W; Wolpaw, Jonathan R; Chen, Xiang Yang

    2010-12-01

    Operant conditioning of the spinal stretch reflex or its electrical analog, the H-reflex, produces spinal cord plasticity and can thereby affect motoneuron responses to primary afferent input. To explore whether this conditioning can affect the functional outcome after peripheral nerve injury, we assessed the effect of up-conditioning soleus (SOL) H-reflex on SOL and tibialis anterior (TA) function after sciatic nerve transection and repair. Sprague Dawley rats were implanted with EMG electrodes in SOL and TA and stimulating cuffs on the posterior tibial nerve. After control data collection, the sciatic nerve was transected and repaired and the rat was exposed for 120 d to continued control data collection (TC rats) or SOL H-reflex up-conditioning (TU rats). At the end of data collection, motoneurons that had reinnervated SOL and TA were labeled retrogradely. Putative primary afferent terminals [i.e., terminals containing vesicular glutamate transporter-1 (VGLUT1)] on SOL motoneurons were studied immunohistochemically. SOL (and probably TA) background EMG activity recovered faster in TU rats than in TC rats, and the final recovered SOL H-reflex was significantly larger in TU than in TC rats. TU and TC rats had significantly fewer labeled motoneurons and higher proportions of double-labeled motoneurons than untransected rats. VGLUT1 terminals were significantly more numerous on SOL motoneurons of TU than TC rats. Combined with the larger H-reflexes in TU rats, this anatomical finding supports the hypothesis that SOL H-reflex up-conditioning strengthened primary afferent reinnervation of SOL motoneurons. These results suggest that H-reflex up-conditioning may improve functional recovery after nerve injury and repair.

  4. Eyeblink Synchrony in Multimodal Human-Android Interaction.

    PubMed

    Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro

    2016-12-23

    As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human's attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners' eyeblinks were entrained to android speakers' eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android's hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions.

  5. Eyeblink Synchrony in Multimodal Human-Android Interaction

    PubMed Central

    Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro

    2016-01-01

    As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human’s attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners’ eyeblinks were entrained to android speakers’ eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android’s hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions. PMID:28009014

  6. The effect of visual field condition on kinetic in upper extremities and e.m.g in lower extremities while performing reaching in normal adults

    PubMed Central

    Park, Hyekang; Kang, Youngeun; Yoo, Minah; Lee, Bomjin; Yang, Jeongok; Lee, Joongsook; Han, Dongwook; Oh, Taeyoung

    2017-01-01

    [Purpose] The aims of this study was to investigate mean velocity and angle of shoulder joint, activation of tibialis anterior and gastrocnemius according to both eyes, dominant eye and non-dominant eye condition during reaching task in normal adults. [Subjects and Methods] Our research recruited 24 participants (male 11, female 13) in Silla University. Participants were performed reaching out movement by conditions of both eye, dominants eye, non-dominants eye. The target was placed at 45 degree diagonal direction and distance far away 130% of their arm length. Kinetic analysis of the upper extremities was investigated by QUALISYS 3-dimensional motion analysis system. Muscle activation were measured by EMG during reaching tasks. The collected data were statistically processed using the SPSS for win version 20.0. [Results] There was a significant difference of shoulder joint velocity of flexion, abduction and internal rotation according to visual field condition during reaching tasks. There was no significant difference of shoulder joint angle and muscle activation according to visual field conditions during reaching tasks. [Conclusion] In conclusion, visual field has an influence on shoulder joint velocity. Therefore, the visual field may be to play an important role in reach performance. PMID:28210047

  7. Wideband EMG telemetry system

    NASA Technical Reports Server (NTRS)

    Rosatino, S. A.; Westbrook, R. M.

    1979-01-01

    Miniature, individual crystal-controlled RF transmitters located in EMG pressure sensors simplifies multichannel EMG telemetry for electronic gait monitoring. Transmitters which are assigned operating frequencies within 174 - 216 MHz band have linear frequency response from 20 - 2000 Hz and operate over range of 15 m.

  8. Modeling startle eyeblink electromyogram to assess fear learning.

    PubMed

    Khemka, Saurabh; Tzovara, Athina; Gerster, Samuel; Quednow, Boris B; Bach, Dominik R

    2017-02-01

    Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses or fear-potentiated startle. For the latter, various analysis approaches have been developed, but a systematic comparison of competing methodologies is lacking. Here, we investigate the suitability of a model-based approach to startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three independent fear-conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS+) from nonaversive stimuli (CS-, i.e., has high predictive validity). Importantly, our model-based approach captures fear-potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM-based approach to assessment of fear-potentiated startle, and qualify previous peak-scoring methods. Our proposed model represents a generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle modulation or prepulse inhibition of the acoustic startle response.

  9. Modeling startle eyeblink electromyogram to assess fear learning

    PubMed Central

    Khemka, Saurabh; Tzovara, Athina; Gerster, Samuel; Quednow, Boris B.

    2016-01-01

    Abstract Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses or fear‐potentiated startle. For the latter, various analysis approaches have been developed, but a systematic comparison of competing methodologies is lacking. Here, we investigate the suitability of a model‐based approach to startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three independent fear‐conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS+) from nonaversive stimuli (CS‐, i.e., has high predictive validity). Importantly, our model‐based approach captures fear‐potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM‐based approach to assessment of fear‐potentiated startle, and qualify previous peak‐scoring methods. Our proposed model represents a generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle modulation or prepulse inhibition of the acoustic startle response. PMID:27753123

  10. Helical Emg Effective Resistance

    NASA Astrophysics Data System (ADS)

    Chernyshev, V. K.; Zharinov, E. I.; Busin, V. N.; Grinevich, B. E.; Sokolova, O. V.; Smirnova, G. N.; Klimushkin, K. N.

    2004-11-01

    The efficiency of explosive-magnetic system operation depends on the magnetic flux losses produced under circuit deformation. Losses primarily arise from circuit ohmic resistance and flux pocketing due to the disturbed continuity of helix wires deformation. This is because of technological faults in fabrication and potential electric breakdowns resulting from the voltage overload in the generator circuit. Since it is rather difficult to identify each type of loss mentioned, all soles are expressed as the effective resistance of the circuit, Reff. The EMG-160 multi-sectional helical generator with a 760 mm long helix having an inner diameter of 160 mm is considered as an example. EMG-160 initial conductance was 34 μH and the final inductance was 25 nH. The effective resistance of the circuit was calculated for this experiment. The method of determining the effective resistance allows estimation of EMG efficiency at all stages of generator operation.

  11. Change Mechanisms in EMG Biofeedback Training: Cognitive Changes Underlying Improvements in Tension Headache.

    ERIC Educational Resources Information Center

    Holroyd, Kenneth A.; And Others

    1984-01-01

    Subjects (N=43) suffering from tension headache were assigned to one of four electromyograph (EMG) biofeedback conditions and were led to believe they were achieving high or moderate success in decreasing EMG activity. Regardless of actual EMG changes, subjects receiving high-success feedback showed greater improvement for headaches than…

  12. Reliability of EMG normalisation methods for upper-limb muscles.

    PubMed

    Rota, Samuel; Rogowski, Isabelle; Champely, Stéphane; Hautier, Christophe

    2013-01-01

    The study investigated different electromyographic (EMG) normalisation methods for upper-limb muscles. This assessment aimed at comparing the EMG amplitude and the reliability of EMG values obtained with each method. Eighteen male tennis players completed isometric maximal voluntary contractions and dynamic strength exercises (push-ups and chin-ups) on three separate test sessions over at least 7 days. Surface EMG activity of nine upper body muscles was recorded. For each muscle, an analysis of variance for repeated measures was used to compare maximal EMG amplitudes between test conditions. The intra-class correlation coefficient, the coefficient of variation and the standard error of measurement were calculated to determine the EMG reliability of each condition. On the basis of a compromise between maximal EMG amplitude and high reliability, the chin-ups appeared to be the optimal normalisation method for M. latissimus dorsi, M. posterior deltoid, M. biceps brachii, M. flexor carpi radialis and M. extensor carpi radialis. The push-ups seemed relevant to normalise M. anterior deltoid and M. triceps brachii activity, while isometric maximal voluntary contraction remained the most appropriate method for M. pectoralis major and M. middle deltoid. Thus, original methods are proposed to normalise EMG signal of upper-limb muscles.

  13. Analysis of EMG measurements during bicycle pedalling.

    PubMed

    Jorge, M; Hull, M L

    1986-01-01

    Activity of eight leg muscles has been monitored for six test subjects while pedalling a bicycle on rollers in the laboratory. Each electromyogram (EMG) data channel was digitized at a sampling rate of 2 kHz by a minicomputer. Data analysis entailed generating plots of both EMG activity regions and integrated EMG (IEMG). For each test subject, data were recorded for five cases of pedalling conditions. The different pedalling conditions were defined to explore a variety of research hypotheses. This exploration has led to the following conclusions: Muscular activity levels of the quadriceps are influenced by the type of shoes worn and activity levels increase with soft sole shoes as opposed to cycling shoes with cleats and toeclips. EMG activity patterns are not strongly related to pedalling conditions (i.e. load, seat height and shoe type). The level of muscle activity, however, is significantly affected by pedalling conditions. Muscular activity bears a complex relationship with seat height and quadriceps activity level decreases with greater seat height. Agonist (i.e. hamstrings) and antagonist (i.e. quadriceps) muscles of the hip/knee are active simultaneously during leg extension. Regions of peak activity levels, however, do not overlap. The lack of significant cocontraction of agonist/antagonist muscles enables muscle forces during pedalling action to be computed by solving a series of equilibrium problems over different regions of the crank cycle. Regions are defined and a solution procedure is outlined.

  14. Eye-Blink Behaviors in 71 Species of Primates

    PubMed Central

    Tada, Hideoki; Omori, Yasuko; Hirokawa, Kumi; Ohira, Hideki; Tomonaga, Masaki

    2013-01-01

    The present study was performed to investigate the associations between eye-blink behaviors and various other factors in primates. We video-recorded 141 individuals across 71 primate species and analyzed the blink rate, blink duration, and “isolated” blink ratio (i.e., blinks without eye or head movement) in relation to activity rhythms, habitat types, group size, and body size factors. The results showed close relationships between three types of eye-blink measures and body size factors. All of these measures increased as a function of body weight. In addition, diurnal primates showed more blinks than nocturnal species even after controlling for body size factors. The most important findings were the relationships between eye-blink behaviors and social factors, e.g., group size. Among diurnal primates, only the blink rate was significantly correlated even after controlling for body size factors. The blink rate increased as the group size increased. Enlargement of the neocortex is strongly correlated with group size in primate species and considered strong evidence for the social brain hypothesis. Our results suggest that spontaneous eye-blinks have acquired a role in social communication, similar to grooming, to adapt to complex social living during primate evolution. PMID:23741522

  15. Toward an understanding of the emotion-modulated startle eyeblink reflex: the case of anger.

    PubMed

    Peterson, Carly K; Harmon-Jones, Eddie

    2012-11-01

    Three studies investigated the effect of angering pictures on the startle eyeblink response, based on anger's unique identity as an approach-oriented negative affect. In Study 1, eyeblinks to startling noise probes during angering and neutral pictures did not differ, despite angering pictures being rated higher on arousal and anger and more negative in valence. Study 2 replicated Study 1; also, dysphoric participants exhibited potentiated eyeblinks to probes during angering pictures much like those to probes during fear/disgust stimuli. A follow-up study revealed that dysphoric participants rated angering pictures higher in fear. Study 3 again found that eyeblinks to probes during angering and neutral pictures did not differ. Taken together, these results suggest that probes during angering stimuli elicit eyeblinks much like those during neutral stimuli, perhaps due to the competing influences of arousal, valence, and motivation on the startle eyeblink reflex.

  16. Knowledge of electromyography (EMG) in patients undergoing EMG examinations.

    PubMed

    Mondelli, Mauro; Aretini, Alessandro; Greco, Giuseppe

    2014-01-01

    The aim of this study was to evaluate knowledge of electromyography (EMG) in patients undergoing the procedure. In one year, 1,586 consecutive patients (mean age 56 years; 58.8% women) were admitted to two EMG labs to undergo EMG for the first time. The patients found to be "informed" about the how an EMG examination is performed and about the purpose of EMG numbered 448 (28.2%), while those found to be "informed" only about the manner of its execution or only about its purpose numbered 161 (10.2%) and 151 (9.5%), respectively. The remaining 826 (52.1%) patients had either no information, or the information they had was very poor or incorrect (this was particularly true if they had been consulting websites). Being "informed" was associated with level of education (high), type of referring physician (specialist) and with an appropriate referral diagnosis specified in the EMG request. The quality of patient information on EMG was found to be very poor and could be improved. Physicians referring patients for EMG examinations, especially general practitioners, should assume primary responsibility for patient education and counseling in this field.

  17. Effects of meditation practice on spontaneous eyeblink rate.

    PubMed

    Kruis, Ayla; Slagter, Heleen A; Bachhuber, David R W; Davidson, Richard J; Lutz, Antoine

    2016-05-01

    A rapidly growing body of research suggests that meditation can change brain and cognitive functioning. Yet little is known about the neurochemical mechanisms underlying meditation-related changes in cognition. Here, we investigated the effects of meditation on spontaneous eyeblink rates (sEBR), a noninvasive peripheral correlate of striatal dopamine activity. Previous studies have shown a relationship between sEBR and cognitive functions such as mind wandering, cognitive flexibility, and attention-functions that are also affected by meditation. We therefore expected that long-term meditation practice would alter eyeblink activity. To test this, we recorded baseline sEBR and intereyeblink intervals (IEBI) in long-term meditators (LTM) and meditation-naive participants (MNP). We found that LTM not only blinked less frequently, but also showed a different eyeblink pattern than MNP. This pattern had good to high degree of consistency over three time points. Moreover, we examined the effects of an 8-week course of mindfulness-based stress reduction on sEBR and IEBI, compared to an active control group and a waitlist control group. No effect of short-term meditation practice was found. Finally, we investigated whether different types of meditation differentially alter eyeblink activity by measuring sEBR and IEBI after a full day of two kinds of meditation practices in the LTM. No effect of meditation type was found. Taken together, these findings may suggest either that individual difference in dopaminergic neurotransmission is a self-selection factor for meditation practice, or that long-term, but not short-term meditation practice induces stable changes in baseline striatal dopaminergic functioning.

  18. The role of EMG awareness in EMG biofeedback learning.

    PubMed

    Segreto, J

    1995-06-01

    Underlying most research on biofeedback learning is a theoretical model of the processes involved. The current study tested a prediction from the Awareness Model: High initial EMG awareness should facilitate response control during EMG biofeedback training. Seventy-two undergraduates were assessed for forehead EMG awareness by asking them to produce target responses from 1.0 to 5.0 microV every 15 s for 16 trials. Based on this assessment, two groups (high and low awareness) were trained for 64 trials to produce these target levels with either EMG biofeedback, practice (no feedback), or noncontingent EMG feedback. A transfer task was identical to the initial assessment. During training, the biofeedback group deviated less from target than the practice and noncontingent groups. The biofeedback group was the only group to improve from initial EMG awareness activity. During transfer, only the low awareness biofeedback group remained below initial EMG awareness level. These findings can be interpreted in terms of the Two-Process Model.

  19. Social determinants of eyeblinks in adult male macaques

    PubMed Central

    Ballesta, Sébastien; Mosher, Clayton P.; Szep, Jeno; Fischl, Kate D.; Gothard, Katalin M.

    2016-01-01

    Videos with rich social and emotional content elicit natural social behaviors in primates. Indeed, while watching videos of conspecifics, monkeys engage in eye contact, gaze follow, and reciprocate facial expressions. We hypothesized that the frequency and timing of eyeblinks also depends on the social signals contained in videos. We monitored the eyeblinks of four male adult macaques while they watched videos of conspecifics displaying facial expressions with direct or averted gaze. The instantaneous blink rate of all four animals decreased during videos. The temporal synchrony of blinking, however, increased in response to segments depicting appeasing or aggressive facial expressions directed at the viewer. Two of the four monkeys, who systematically reciprocated the direct gaze of the stimulus monkeys, also showed eyeblink entrainment, a temporal coordination of blinking between social partners engaged in dyadic interactions. Together, our results suggest that in macaques, as in humans, blinking depends not only on the physiological imperative to protect the eyes and spread a film of tears over the cornea, but also on several socio-emotional factors. PMID:27922101

  20. Spontaneous Eye-Blinking and Stereotyped Behavior in Older Persons with Mental Retardation

    ERIC Educational Resources Information Center

    Roebel, Amanda M.; MacLean, William E., Jr.

    2007-01-01

    Previous research indicates that abnormal stereotyped movements are associated with central dopamine dysfunction and that eye-blink rate is a noninvasive, in vivo measure of dopamine function. We measured the spontaneous eye-blinking and stereotyped behavior of older adults with severe/profound mental retardation living in a state mental…

  1. Zebrafish needle EMG: a new tool for high-throughput drug screens

    PubMed Central

    Cho, Sung-Joon; Nam, Tai-Seung; Byun, Donghak; Choi, Seok-Yong; Kim, Myeong-Kyu

    2015-01-01

    Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ∼10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics. PMID:26180124

  2. Zebrafish needle EMG: a new tool for high-throughput drug screens.

    PubMed

    Cho, Sung-Joon; Nam, Tai-Seung; Byun, Donghak; Choi, Seok-Yong; Kim, Myeong-Kyu; Kim, Sohee

    2015-09-01

    Zebrafish models have recently been highlighted as a valuable tool in studying the molecular basis of neuromuscular diseases and developing new pharmacological treatments. Needle electromyography (EMG) is needed not only for validating transgenic zebrafish models with muscular dystrophies (MD), but also for assessing the efficacy of therapeutics. However, performing needle EMG on larval zebrafish has not been feasible due to the lack of proper EMG sensors and systems for such small animals. We introduce a new type of EMG needle electrode to measure intramuscular activities of larval zebrafish, together with a method to hold the animal in position during EMG, without anesthetization. The silicon-based needle electrode was found to be sufficiently strong and sharp to penetrate the skin and muscles of zebrafish larvae, and its shape and performance did not change after multiple insertions. With the use of the proposed needle electrode and measurement system, EMG was successfully performed on zebrafish at 30 days postfertilization (dpf) and at 5 dpf. Burst patterns and spike morphology of the recorded EMG signals were analyzed. The measured single spikes were triphasic with an initial positive deflection, which is typical for motor unit action potentials, with durations of ∼10 ms, whereas the muscle activity was silent during the anesthetized condition. These findings confirmed the capability of this system of detecting EMG signals from very small animals such as 5 dpf zebrafish. The developed EMG sensor and system are expected to become a helpful tool in validating zebrafish MD models and further developing therapeutics.

  3. Infrared photo-interrupter as an eyeblink detector

    NASA Astrophysics Data System (ADS)

    Utsuki, Narisuke; Takeuchi, Yoshinori

    1990-06-01

    An infrared light-emitting diode (IR-LED) and a phototransistor were paired to make an easy-to-use equipment to record eyeblinking. Since reflecting power is different between the eyelid and the cornea, the amount of reflected light cab indicate whether the eyelid is closed or opened. The IR-LED was driven by a 1,200 Hz electric pulse so that the detected infrared light could be amplified as an alternative current, filtered, and recorded on a regular cassette tape recorder. The devices were attached to eyeglasses. The estimated infrared radiation level was 0.5 mW/sq cm on the surface of the cornea. The safety limit of the IR exposure is discussed.

  4. Electrotactile EMG feedback improves the control of prosthesis grasping force

    NASA Astrophysics Data System (ADS)

    Schweisfurth, Meike A.; Markovic, Marko; Dosen, Strahinja; Teich, Florian; Graimann, Bernhard; Farina, Dario

    2016-10-01

    predictive control, as the subjects used the feedback to adjust the desired force even before the prosthesis contacted the object. In conclusion, the online emgFB was superior to the classic forceFB in realistic conditions that included electrotactile stimulation, limited feedback resolution (8 levels), cognitive processing delay, and time constraints (fast grasping).

  5. Characteristics of EMG frequency bands in temporomandibullar disorders patients.

    PubMed

    Politti, Fabiano; Casellato, Claudia; Kalytczak, Marcelo Martins; Garcia, Marilia Barbosa Santos; Biasotto-Gonzalez, Daniela Aparecida

    2016-12-01

    The aim of the present study was to determine whether any specific frequency bands of surface electromyographic (sEMG) signals are more susceptible to alterations in patients with temporomandibular disorders (TMD), when compared with healthy subjects. Twenty-seven healthy adults (19 women and eight men; mean age: 23±6.68years) and 27 TMD patients (20 women and seven men; mean age: 24±5.89years) voluntarily participated in the experiment. sEMG data were recorded from the right and left masseter muscles (RM and LM) and the right and left anterior temporalis muscles (RT and LT) as the participants performed tests of chewing (CHW) and maximal clenching effort (MCE). Frequency domain analysis of the sEMG signal was used to analyze differences between TMD patients and healthy subjects in relation to the Power Spectral Density Function (PSDF). The analysis focused on the median frequency (MDF) of the sEMG signal and PSDF frequency bands after the EMG spectrum was divided into twenty-five frequency band of 20Hz each. The Mann-Whitney test was used to compare MDF between TMD patients and healthy subjects and the frequency bands were analyzed using three-way ANOVA with three factors: frequency band, muscle and group. The results of the analysis confirmed that the median frequency values in TMD patients were significantly higher (p<0.05) than those recorded for healthy subjects in the two experimental conditions (MCE and CHW), for all of the muscles assessed (RM, LM, RT and LT). In addition, frequency content between 20 and 100Hz of the normalized PSDF range was significantly lower (p<0.05) in TMD patients than in healthy. This study contributes to quantitatively identify TMD dysfunctions, by non-invasive sEMGs; this assessment is clinically important and still lacking nowadays.

  6. Power spectrum of the rectified EMG: when and why is rectification beneficial for identifying neural connectivity?

    NASA Astrophysics Data System (ADS)

    Negro, Francesco; Keenan, Kevin; Farina, Dario

    2015-06-01

    Objective. The identification of common oscillatory inputs to motor neurons in the electromyographic (EMG) signal power spectrum is often preceded by EMG rectification for enhancing the low-frequency oscillatory components. However, rectification is a nonlinear operator and its influence on the EMG signal spectrum is not fully understood. In this study, we aim at determining when EMG rectification is beneficial in the study of oscillatory inputs to motor neurons. Approach. We provide a full mathematical description of the power spectrum of the rectified EMG signal and the influence of the average shape of the motor unit action potentials on it. We also provide a validation of these theoretical results with both simulated and experimental EMG signals. Main results. Simulations using an advanced computational model and experimental results demonstrated the accuracy of the theoretical derivations on the effect of rectification on the EMG spectrum. These derivations proved that rectification is beneficial when assessing the strength of low-frequency (delta and alpha bands) common synaptic inputs to the motor neurons, when the duration of the action potentials is short, and when the level of cancellation is relatively low. On the other hand, rectification may distort the estimation of common synaptic inputs when studying higher frequencies (beta and gamma), in a way dependent on the duration of the action potentials, and may introduce peaks in the coherence function that do not correspond to physiological shared inputs. Significance. This study clarifies the conditions when rectifying the surface EMG is appropriate for studying neural connectivity.

  7. Evaluation of jaw and neck muscle activities while chewing using EMG-EMG transfer function and EMG-EMG coherence function analyses in healthy subjects.

    PubMed

    Ishii, Tomohiro; Narita, Noriyuki; Endo, Hiroshi

    2016-06-01

    This study aims to quantitatively clarify the physiological features in rhythmically coordinated jaw and neck muscle EMG activities while chewing gum using EMG-EMG transfer function and EMG-EMG coherence function analyses in 20 healthy subjects. The chewing side masseter muscle EMG signal was used as the reference signal, while the other jaw (non-chewing side masseter muscle, bilateral anterior temporal muscles, and bilateral anterior digastric muscles) and neck muscle (bilateral sternocleidomastoid muscles) EMG signals were used as the examined signals in EMG-EMG transfer function and EMG-EMG coherence function analyses. Chewing-related jaw and neck muscle activities were aggregated in the first peak of the power spectrum in rhythmic chewing. The gain in the peak frequency represented the power relationships between jaw and neck muscle activities during rhythmic chewing. The phase in the peak frequency represented the temporal relationships between the jaw and neck muscle activities, while the non-chewing side neck muscle presented a broad range of distributions across jaw closing and opening phases. Coherence in the peak frequency represented the synergistic features in bilateral jaw closing muscles and chewing side neck muscle activities. The coherence and phase in non-chewing side neck muscle activities exhibited a significant negative correlation. From above, the bilateral coordination between the jaw and neck muscle activities is estimated while chewing when the non-chewing side neck muscle is synchronously activated with the jaw closing muscles, while the unilateral coordination is estimated when the non-chewing side neck muscle is irregularly activated in the jaw opening phase. Thus, the occurrence of bilateral or unilateral coordinated features in the jaw and neck muscle activities may correspond to the phase characteristics in the non-chewing side neck muscle activities during rhythmical chewing. Considering these novel findings in healthy subjects, EMG-EMG

  8. Experimentally induced stress validated by EMG activity.

    PubMed

    Luijcks, Rosan; Hermens, Hermie J; Bodar, Lonneke; Vossen, Catherine J; Van Os, Jim; Lousberg, Richel

    2014-01-01

    Experience of stress may lead to increased electromyography (EMG) activity in specific muscles compared to a non-stressful situation. The main aim of this study was to develop and validate a stress-EMG paradigm in which a single uncontrollable and unpredictable nociceptive stimulus was presented. EMG activity of the trapezius muscles was the response of interest. In addition to linear time effects, non-linear EMG time courses were also examined. Taking into account the hierarchical structure of the dataset, a multilevel random regression model was applied. The stress paradigm, executed in N = 70 subjects, consisted of a 3-minute baseline measurement, a 3-minute pre-stimulus stress period and a 2-minute post-stimulus phase. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. EMG activity during the entire experiment was conform a priori expectations: the pre-stimulus phase showed a significantly higher mean EMG activity level compared to the other two phases, and an immediate EMG response to the stimulus was demonstrated. In addition, the analyses revealed significant non-linear EMG time courses in all three phases. Linear and quadratic EMG time courses were significantly modified by subjective anticipatory stress level, measured just before the start of the stress task. Linking subjective anticipatory stress to EMG stress reactivity revealed that subjects with a high anticipatory stress level responded with more EMG activity during the pre-stimulus stress phase, whereas subjects with a low stress level showed an inverse effect. Results suggest that the stress paradigm presented here is a valid test to quantify individual differences in stress susceptibility. Further studies with this paradigm are required to demonstrate its potential use in mechanistic clinical studies.

  9. EMG patterns during assisted walking in the exoskeleton.

    PubMed

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns.

  10. EMG patterns during assisted walking in the exoskeleton

    PubMed Central

    Sylos-Labini, Francesca; La Scaleia, Valentina; d'Avella, Andrea; Pisotta, Iolanda; Tamburella, Federica; Scivoletto, Giorgio; Molinari, Marco; Wang, Shiqian; Wang, Letian; van Asseldonk, Edwin; van der Kooij, Herman; Hoellinger, Thomas; Cheron, Guy; Thorsteinsson, Freygardur; Ilzkovitz, Michel; Gancet, Jeremi; Hauffe, Ralf; Zanov, Frank; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    Neuroprosthetic technology and robotic exoskeletons are being developed to facilitate stepping, reduce muscle efforts, and promote motor recovery. Nevertheless, the guidance forces of an exoskeleton may influence the sensory inputs, sensorimotor interactions and resulting muscle activity patterns during stepping. The aim of this study was to report the muscle activation patterns in a sample of intact and injured subjects while walking with a robotic exoskeleton and, in particular, to quantify the level of muscle activity during assisted gait. We recorded electromyographic (EMG) activity of different leg and arm muscles during overground walking in an exoskeleton in six healthy individuals and four spinal cord injury (SCI) participants. In SCI patients, EMG activity of the upper limb muscles was augmented while activation of leg muscles was typically small. Contrary to our expectations, however, in neurologically intact subjects, EMG activity of leg muscles was similar or even larger during exoskeleton-assisted walking compared to normal overground walking. In addition, significant variations in the EMG waveforms were found across different walking conditions. The most variable pattern was observed in the hamstring muscles. Overall, the results are consistent with a non-linear reorganization of the locomotor output when using the robotic stepping devices. The findings may contribute to our understanding of human-machine interactions and adaptation of locomotor activity patterns. PMID:24982628

  11. EMG Processing Based Measures of Fatigue Assessment during Manual Lifting

    PubMed Central

    Marhaban, M. H.; Abdullah, A. R.

    2017-01-01

    Manual lifting is one of the common practices used in the industries to transport or move objects to a desired place. Nowadays, even though mechanized equipment is widely available, manual lifting is still considered as an essential way to perform material handling task. Improper lifting strategies may contribute to musculoskeletal disorders (MSDs), where overexertion contributes as the highest factor. To overcome this problem, electromyography (EMG) signal is used to monitor the workers' muscle condition and to find maximum lifting load, lifting height and number of repetitions that the workers are able to handle before experiencing fatigue to avoid overexertion. Past researchers have introduced several EMG processing techniques and different EMG features that represent fatigue indices in time, frequency, and time-frequency domain. The impact of EMG processing based measures in fatigue assessment during manual lifting are reviewed in this paper. It is believed that this paper will greatly benefit researchers who need a bird's eye view of the biosignal processing which are currently available, thus determining the best possible techniques for lifting applications. PMID:28303251

  12. Effects of load on good morning kinematics and EMG activity.

    PubMed

    Vigotsky, Andrew David; Harper, Erin Nicole; Ryan, David Russell; Contreras, Bret

    2015-01-01

    Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG) activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm) were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM) in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises.

  13. Effects of load on good morning kinematics and EMG activity

    PubMed Central

    Harper, Erin Nicole; Ryan, David Russell; Contreras, Bret

    2015-01-01

    Many strength and conditioning coaches utilize the good morning (GM) to strengthen the hamstrings and spinal erectors. However, little research exists on its electromyography (EMG) activity and kinematics, and how these variables change as a function of load. The purpose of this investigation was to examine how estimated hamstring length, integrated EMG (IEMG) activity of the hamstrings and spinal erectors, and kinematics of the lumbar spine, hip, knee, and ankle are affected by changes in load. Fifteen trained male participants (age = 24.6 ± 5.3 years; body mass = 84.7 ± 11.3 kg; height = 180.9 ± 6.8 cm) were recruited for this study. Participants performed five sets of the GM, utilizing 50, 60, 70, 80, and 90% of one-repetition maximum (1RM) in a randomized fashion. IEMG activity of hamstrings and spinal erectors tended to increase with load. Knee flexion increased with load on all trials. Estimated hamstring length decreased with load. However, lumbar flexion, hip flexion, and plantar flexion experienced no remarkable changes between trials. These data provide insight as to how changing the load of the GM affects EMG activity, kinematic variables, and estimated hamstring length. Implications for hamstring injury prevention are discussed. More research is needed for further insight as to how load affects EMG activity and kinematics of other exercises. PMID:25653899

  14. Eliminating ultrasonic interference from respiratory muscle EMG.

    PubMed

    Platt, R S; Kieser, T M; Easton, P A

    1998-05-01

    Fine wire recordings of the respiratory muscle electromyogram are often employed to represent muscle activity, and recently ultrasound-sonomicrometry has become a common method of measuring length of respiratory muscles in both acute and chronic preparations. Although recording both EMG and sonomicrometry simultaneously has become standard practice, there has not been any consideration of the potential confounding influence of ultrasound noise upon the recorded EMG spectrum. Activation of the sonomicrometry-ultrasound tranducer introduces a high frequency, high amplitude voltage pulse plus harmonics, which can contaminate the EMG spectrum directly, as well as through aliasing when EMG is sampled directly digitally. We describe the use of a new, combined, wing stabilized sonomicrometry- and EMG measurement transducer to characterize exactly the influence of ultrasound upon the crural diaphragm EMG spectrum, and the development of digital filtering techniques which effectively eliminate the ultrasound interference. Two alternative methods of avoiding ultrasound-EMG interference are also considered. The isolation and elimination of ultrasound-sonomicrometry signal interference may be important in studies where EMG and length are measured together.

  15. Clinical relevance of surface EMG of the masticatory muscles. (Part 1): Resting activity, maximal and submaximal voluntary contraction, symmetry of EMG activity.

    PubMed

    Hugger, S; Schindler, H J; Kordass, B; Hugger, A

    2012-01-01

    Based on a comprehensive computerized literature search supplemented by a specific manual search of the literature, the present review article focuses on concrete aspects of the application of surface electromyography (EMG) for evaluation of the masticatory muscles in general and of the masseter and anterior temporal muscles in particular, and presents the current base of knowledge on the clinical relevance of surface EMG in dental applications. In the first stage of the review, publications from the year 2000 or later reporting the results of controlled clinical trials (randomized as far as available) of patients with craniomandibular or temporomandibular disorders (TMD) were analyzed. Data from the selected publications were systematically compiled and divided into subject areas as follows: Resting activity, maximal and sub-maximal voluntary contraction, symmetry of EMG activity, and fatigue effects; EMG activity during mastication, factors (including pain) that affect EMG activity, and the impact of adjusting static and dynamic occlusal relationships; Effects of occlusal splints and other occlusal treatments. Surface electromyography is in principle a suitable tool for neuromuscular function analysis in the field of dentistry. If used according to the specific recommendations and in conjunction with a thorough and conscientious clinical history and physical examination, surface EMG measurements can provide objective, documentable, valid, and reproducible data on the functional condition of the masticatory muscles of an individual patient.

  16. Reflex Augmentation of a Tap-Elicited Eyeblink: The Effects of Tone Frequency and Tap Intensity.

    ERIC Educational Resources Information Center

    Cohen, Michelle E.; And Others

    1986-01-01

    Describes two experiments that examined whether the amplitude of the human eyeblink by a mild tap between the eyebrows can be increased if a brief tone is presented simultaneously with the tap and how these effects change from newborn infants to adults. (HOD)

  17. Affective Modulation of the Startle Eyeblink and Postauricular Reflexes in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Dichter, Gabriel S.; Benning, Stephen D.; Holtzclaw, Tia N.; Bodfish, James W.

    2010-01-01

    Eyeblink and postauricular reflexes to standardized affective images were examined in individuals without (n = 37) and with (n = 20) autism spectrum disorders (ASDs). Affective reflex modulation in control participants replicated previous findings. The ASD group, however, showed anomalous reflex modulation patterns, despite similar self-report…

  18. Emotionally excited eyeblink-rate variability predicts an experience of transportation into the narrative world

    PubMed Central

    Nomura, Ryota; Hino, Kojun; Shimazu, Makoto; Liang, Yingzong; Okada, Takeshi

    2015-01-01

    Collective spectator communications such as oral presentations, movies, and storytelling performances are ubiquitous in human culture. This study investigated the effects of past viewing experiences and differences in expressive performance on an audience’s transportive experience into a created world of a storytelling performance. In the experiment, 60 participants (mean age = 34.12 years, SD = 13.18 years, range 18–63 years) were assigned to watch one of two videotaped performances that were played (1) in an orthodox way for frequent viewers and (2) in a modified way aimed at easier comprehension for first-time viewers. Eyeblink synchronization among participants was quantified by employing distance-based measurements of spike trains, Dspike and Dinterval (Victor and Purpura, 1997). The results indicated that even non-familiar participants’ eyeblinks were synchronized as the story progressed and that the effect of the viewing experience on transportation was weak. Rather, the results of a multiple regression analysis demonstrated that the degrees of transportation could be predicted by a retrospectively reported humor experience and higher real-time variability (i.e., logarithmic transformed SD) of inter blink intervals during a performance viewing. The results are discussed from the viewpoint in which the extent of eyeblink synchronization and eyeblink-rate variability acts as an index of the inner experience of audience members. PMID:26029123

  19. Gesture recognition by instantaneous surface EMG images.

    PubMed

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-11-15

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses.

  20. Gesture recognition by instantaneous surface EMG images

    PubMed Central

    Geng, Weidong; Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Li, Jiajun

    2016-01-01

    Gesture recognition in non-intrusive muscle-computer interfaces is usually based on windowed descriptive and discriminatory surface electromyography (sEMG) features because the recorded amplitude of a myoelectric signal may rapidly fluctuate between voltages above and below zero. Here, we present that the patterns inside the instantaneous values of high-density sEMG enables gesture recognition to be performed merely with sEMG signals at a specific instant. We introduce the concept of an sEMG image spatially composed from high-density sEMG and verify our findings from a computational perspective with experiments on gesture recognition based on sEMG images with a classification scheme of a deep convolutional network. Without any windowed features, the resultant recognition accuracy of an 8-gesture within-subject test reached 89.3% on a single frame of sEMG image and reached 99.0% using simple majority voting over 40 frames with a 1,000 Hz sampling rate. Experiments on the recognition of 52 gestures of NinaPro database and 27 gestures of CSL-HDEMG database also validated that our approach outperforms state-of-the-arts methods. Our findings are a starting point for the development of more fluid and natural muscle-computer interfaces with very little observational latency. For example, active prostheses and exoskeletons based on high-density electrodes could be controlled with instantaneous responses. PMID:27845347

  1. Eyeblink rate watching classical Hollywood and post-classical MTV editing styles, in media and non-media professionals.

    PubMed

    Andreu-Sánchez, Celia; Martín-Pascual, Miguel Ángel; Gruart, Agnès; Delgado-García, José María

    2017-02-21

    While movie edition creates a discontinuity in audio-visual works for narrative and economy-of-storytelling reasons, eyeblink creates a discontinuity in visual perception for protective and cognitive reasons. We were interested in analyzing eyeblink rate linked to cinematographic edition styles. We created three video stimuli with different editing styles and analyzed spontaneous blink rate in participants (N = 40). We were also interested in looking for different perceptive patterns in blink rate related to media professionalization. For that, of our participants, half (n = 20) were media professionals, and the other half were not. According to our results, MTV editing style inhibits eyeblinks more than Hollywood style and one-shot style. More interestingly, we obtained differences in visual perception related to media professionalization: we found that media professionals inhibit eyeblink rate substantially compared with non-media professionals, in any style of audio-visual edition.

  2. Eyeblink rate watching classical Hollywood and post-classical MTV editing styles, in media and non-media professionals

    PubMed Central

    Andreu-Sánchez, Celia; Martín-Pascual, Miguel Ángel; Gruart, Agnès; Delgado-García, José María

    2017-01-01

    While movie edition creates a discontinuity in audio-visual works for narrative and economy-of-storytelling reasons, eyeblink creates a discontinuity in visual perception for protective and cognitive reasons. We were interested in analyzing eyeblink rate linked to cinematographic edition styles. We created three video stimuli with different editing styles and analyzed spontaneous blink rate in participants (N = 40). We were also interested in looking for different perceptive patterns in blink rate related to media professionalization. For that, of our participants, half (n = 20) were media professionals, and the other half were not. According to our results, MTV editing style inhibits eyeblinks more than Hollywood style and one-shot style. More interestingly, we obtained differences in visual perception related to media professionalization: we found that media professionals inhibit eyeblink rate substantially compared with non-media professionals, in any style of audio-visual edition. PMID:28220882

  3. [The effect of EMG level by EMG biofeedback with progressive muscle relaxation training on tension headache].

    PubMed

    Ro, U J; Kim, N C; Kim, H S

    1990-08-01

    The purpose of this study is to assess if EMG biofeedback training with progressive muscle relaxation training is effective in reducing the EMG level in patients with tension headaches. This study which lasted from 23 October to 30 December 1989, was conducted on 10 females who were diagnosed as patients with tension headaches and selected from among volunteers at C. University in Seoul. The process of the study was as follows: First, before the treatment, the baseline was measured for two weeks and the level of EMG was measured five times in five minutes. And then EMG biofeedback training was used for six weeks, 12 sessions in all, and progressive muscle relaxation was done at home by audio tape over eight weeks. Each session was composed of a 5-minute baseline, two 5-minute EMG biofeedback training periods and a 5-minute self-control stage. Each stage was followed by a five minute rest period. So each session took a total of 40 minutes. The EMG level was measured by EMG biofeedback (Autogenic-Cyborg: M 130 EMG module). The results were as follows: 1. The average age of the subjects was 44.1 years and the average history of headache was 10.6 years (range: 6 months-20 years). 2. The level of EMG was lowest between the third and the fourth week of the training except in Cases I and IV. 3. The patients began to show a nonconciliatory attitude at the first session of the fifth week of the training.

  4. Gesture Based Control and EMG Decomposition

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Chang, Mindy H.; Knuth, Kevin H.

    2005-01-01

    This paper presents two probabilistic developments for use with Electromyograms (EMG). First described is a new-electric interface for virtual device control based on gesture recognition. The second development is a Bayesian method for decomposing EMG into individual motor unit action potentials. This more complex technique will then allow for higher resolution in separating muscle groups for gesture recognition. All examples presented rely upon sampling EMG data from a subject's forearm. The gesture based recognition uses pattern recognition software that has been trained to identify gestures from among a given set of gestures. The pattern recognition software consists of hidden Markov models which are used to recognize the gestures as they are being performed in real-time from moving averages of EMG. Two experiments were conducted to examine the feasibility of this interface technology. The first replicated a virtual joystick interface, and the second replicated a keyboard. Moving averages of EMG do not provide easy distinction between fine muscle groups. To better distinguish between different fine motor skill muscle groups we present a Bayesian algorithm to separate surface EMG into representative motor unit action potentials. The algorithm is based upon differential Variable Component Analysis (dVCA) [l], [2] which was originally developed for Electroencephalograms. The algorithm uses a simple forward model representing a mixture of motor unit action potentials as seen across multiple channels. The parameters of this model are iteratively optimized for each component. Results are presented on both synthetic and experimental EMG data. The synthetic case has additive white noise and is compared with known components. The experimental EMG data was obtained using a custom linear electrode array designed for this study.

  5. Objective models of EMG signals for cyclic processes such as a human gait

    NASA Astrophysics Data System (ADS)

    Babska, Luiza; Selegrat, Monika; Dusza, Jacek J.

    2016-09-01

    EMG signals are small potentials appearing at the surface of human skin during muscle work. They arise due to changes in the physiological state of cell membranes in the muscle fibers. They are characterized by a relatively low frequency range (500 Hz) and a low amplitude signal (of the order of μV), making it difficult to record. Raw EMG signal is inherently random shape. However we can distinguish certain features related to the activation of the muscles of a deterministic or quasi-deterministic associated with the movement and its parametric description. Objective models of EMG signals were created on the base of actual data obtained from the VICON system installed at the University of Physical Education in Warsaw. The object of research (healthy woman) moved repeatedly after a fixed track. On her body 35 reflective markers to record the gait kinematics and 8 electrodes to record EMG signals were placed. We obtained research data included more than 1,000 EMG signals synchronized with the phases of gait. Test result of the work is an algorithm for obtaining the average EMG signal received from the multiple registration gait cycles carried out in the same reproducible conditions. The method described in the article is essentially a pre-finding measurement data from the two quasi-synchronous signals at different sampling frequencies for further processing. This signal is characterized by a significant reduction of high frequency noise and emphasis on the specific characteristics of individual records found in muscle activity.

  6. Feature extraction of the first difference of EMG time series for EMG pattern recognition.

    PubMed

    Phinyomark, Angkoon; Quaine, Franck; Charbonnier, Sylvie; Serviere, Christine; Tarpin-Bernard, Franck; Laurillau, Yann

    2014-11-01

    This paper demonstrates the utility of a differencing technique to transform surface EMG signals measured during both static and dynamic contractions such that they become more stationary. The technique was evaluated by three stationarity tests consisting of the variation of two statistical properties, i.e., mean and standard deviation, and the reverse arrangements test. As a result of the proposed technique, the first difference of EMG time series became more stationary compared to the original measured signal. Based on this finding, the performance of time-domain features extracted from raw and transformed EMG was investigated via an EMG classification problem (i.e., eight dynamic motions and four EMG channels) on data from 18 subjects. The results show that the classification accuracies of all features extracted from the transformed signals were higher than features extracted from the original signals for six different classifiers including quadratic discriminant analysis. On average, the proposed differencing technique improved classification accuracies by 2-8%.

  7. Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts.

    PubMed

    Pontifex, Matthew B; Gwizdala, Kathryn L; Parks, Andrew C; Billinger, Martin; Brunner, Clemens

    2017-03-01

    Despite the growing use of independent component analysis (ICA) algorithms for isolating and removing eyeblink-related activity from EEG data, we have limited understanding of how variability associated with ICA uncertainty may be influencing the reconstructed EEG signal after removing the eyeblink artifact components. To characterize the magnitude of this ICA uncertainty and to understand the extent to which it may influence findings within ERP and EEG investigations, ICA decompositions of EEG data from 32 college-aged young adults were repeated 30 times for three popular ICA algorithms. Following each decomposition, eyeblink components were identified and removed. The remaining components were back-projected, and the resulting clean EEG data were further used to analyze ERPs. Findings revealed that ICA uncertainty results in variation in P3 amplitude as well as variation across all EEG sampling points, but differs across ICA algorithms as a function of the spatial location of the EEG channel. This investigation highlights the potential of ICA uncertainty to introduce additional sources of variance when the data are back-projected without artifact components. Careful selection of ICA algorithms and parameters can reduce the extent to which ICA uncertainty may introduce an additional source of variance within ERP/EEG studies.

  8. Low-Amplitude Craniofacial EMG Power Spectral Density and 3D Muscle Reconstruction from MRI

    PubMed Central

    Wiedemann, Lukas; Chaberova, Jana; Edmunds, Kyle; Einarsdóttir, Guðrún; Ramon, Ceon

    2015-01-01

    Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low γ (30-50 Hz) and high γ (50-80 Hz) waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles. PMID:26913150

  9. Acoustic (loudspeaker) facial EMG monitoring: II. Use of evoked EMG activity during acoustic neuroma resection.

    PubMed

    Prass, R L; Kinney, S E; Hardy, R W; Hahn, J F; Lüders, H

    1987-12-01

    Facial electromyographic (EMG) activity was continuously monitored via loudspeaker during eleven translabyrinthine and nine suboccipital consecutive unselected acoustic neuroma resections. Ipsilateral facial EMG activity was synchronously recorded on the audio channels of operative videotapes, which were retrospectively reviewed in order to allow detailed evaluation of the potential benefit of various acoustic EMG patterns in the performance of specific aspects of acoustic neuroma resection. The use of evoked facial EMG activity was classified and described. Direct local mechanical (surgical) stimulation and direct electrical stimulation were of benefit in the localization and/or delineation of the facial nerve contour. Burst and train acoustic patterns of EMG activity appeared to indicate surgical trauma to the facial nerve that would not have been appreciated otherwise. Early results of postoperative facial function of monitored patients are presented, and the possible value of burst and train acoustic EMG activity patterns in the intraoperative assessment of facial nerve function is discussed. Acoustic facial EMG monitoring appears to provide a potentially powerful surgical tool for delineation of the facial nerve contour, the ongoing use of which may lead to continued improvement in facial nerve function preservation through modification of dissection strategy.

  10. An EMG study on TMJ disorders.

    PubMed

    Valentino, B; Aldi, B; Melito, F; Valentino, T

    2002-01-01

    The Authors have described a clinical case involving a patient with a classical TMJ syndrome and a full range of typical symptoms, both dental and non-dental. The patient underwent a set of EMG tests before his occlusal plane was restored using a special material, immediately following reconstruction and, lastly, three months following the application of a prosthesis. The findings of these EMG tests have shown that the complex symptoms reported by the patient could be traced back to his occlusal plane. Once it was reconstructed, all the typical dental and non-dental symptoms of TMJ disorders subsided.

  11. Motor unit size in muscular dystrophy, a macro EMG and scanning EMG study.

    PubMed Central

    Hilton-Brown, P; Stålberg, E

    1983-01-01

    Patients with muscular dystrophy were investigated with Macro EMG to study activity from whole individual motor units, and with Scanning EMG to study the distribution of activity within the motor unit. Macro motor unit potentials were normal or only slightly reduced in amplitude. In Scanning EMG the units had unchanged mean length compared with normal, but an uneven distribution of the activity. This was also seen in severely weak muscles. The findings are interpreted to be the result of degenerative and regenerative processes, giving rise to remodelling of the motor unit. Images PMID:6655485

  12. Effects of subthalamic nucleus stimulation on characteristics of EMG activity underlying reaction time in Parkinson's disease.

    PubMed

    Kumru, Hatice; Summerfield, Christopher; Valldeoriola, Francesc; Valls-Solé, Josep

    2004-01-01

    We examined the effects of high-frequency deep brain stimulation of the subthalamic nucleus (STN-DBS) on characteristics of electromyographic (EMG) activity of the agonist muscle in 8 patients with Parkinson's disease (PD). Patients were examined during STN-DBS (ON), and 30 minutes after switching off both stimulators (OFF). They were asked to make a ballistic movement in paradigms of simple reaction time (SRT) and choice reaction time (CRT) tasks. Onset of movement (MOVonset) was measured as the latency of the initial displacement from baseline of the signal from an accelerometer attached to the dorsum of the hand. In the associated EMG activity, recorded from wrist extensor muscles, we measured onset latency (EMGonset), size of the first EMG burst (EMGsize), and number of EMG bursts (EMGbursts) counted between EMGonset and task execution. MOVonset and EMGonset were significantly shorter in ON than in OFF conditions in CRT. EMGsize was larger, EMGbursts were reduced, and peak of the acceleration profile was larger in ON compared with OFF conditions in both SRT and CRT. Our results indicate that STN-DBS induces a significant improvement in motor performance of reaction time tasks in PD patients. Such improvement is associated with a change in features of the EMG activity suggesting an increase in the excitability of the motor pathways engaged in ballistic movements.

  13. Examination of extrinsic foot muscles during running using mfMRI and EMG.

    PubMed

    O'Connor, Kristian M; Price, Thomas B; Hamill, Joseph

    2006-10-01

    Over-pronation has been cited as a key contributor to many types of running injuries. However, the roles of the extrinsic foot muscles during running have not been adequately identified. The purpose of this study was to examine the muscle functional (mf) MRI and EMG responses to perturbations of the foot by running in varus, neutral and valgus wedged shoes. Ten males ran at 3.6 m/s in specially constructed shoes for 5 min with T2-weighted mfMRI collected before and after each run. The change in T2 from before to after each run characterized the level of metabolic activity in each of muscle. Kinematic and EMG data were also collected while subjects ran on a treadmill. There were no T2 differences across the three shoe conditions. In contrast, there was significantly less EMG activity in the tibialis anterior and soleus while wearing the neutral shoe. Overall, the results did not support the theory that muscle activity would increase as the degree of eversion increased. It also appears that surface EMG was more sensitive to differences between conditions than mfMRI. However, this study illustrated that mfMRI may be a useful tool for quantifying muscle activity in cases where surface EMG is inadequate.

  14. Detection of the onset of gait initiation using kinematic sensors and EMG in transfemoral amputees.

    PubMed

    Wentink, E C; Schut, V G H; Prinsen, E C; Rietman, J S; Veltink, P H

    2014-01-01

    In this study we determined if detection of the onset of gait initiation in transfemoral amputees can be useful for voluntary control of upper leg prostheses. From six transfemoral amputees inertial sensor data and EMG were measured at the prosthetic leg during gait initiation. First, initial movement was detected from the inertial sensor data. Subsequently it was determined whether EMG could predict initial movement before detection based on the inertial sensors with comparable consistency as the inertial sensors. From the inertial sensors the initial movement can be determined. If the prosthetic leg leads, the upper leg accelerometer data was able to detect initial movement best. If the intact leg leads the upper leg gyroscope data performed best. Inertial sensors at the upper leg in general showed detections at the same time or earlier than those at the lower leg. EMG can predict initial movement up to a 138 ms in advance, when the prosthetic leg leads. One subject showed consistent EMG onset up to 248 ms before initial movement in the intact leg leading condition. A new method to detect initial movement from inertial sensors was presented and can be useful for additional prosthetic control. EMG measured at the prosthetic leg can be used for prediction of gait initiation when the prosthetic leg is leading, but for the intact leg leading condition this will not be of additional value.

  15. Cerebral potentials and leg muscle e.m.g. responses associated with stance perturbation.

    PubMed

    Dietz, V; Quintern, J; Berger, W; Schenck, E

    1985-01-01

    In order to investigate the neuronal mechanisms underlying the compensatory movements following stance disturbance, leg muscle e.m.g. responses and cerebral potentials evoked by a treadmill acceleration impulse were analysed. It was found that the displacement was followed by a cerebral potential of a latency of 40-45 ms and EMG responses in the calf muscles at a latency of 65-70 ms. The e.m.g. responses represented specific compensatory reactions to the mode of perturbation (with a gastrocnemius activation following positive acceleration but a tibialis ant. activation following negative acceleration). The cerebral potentials, however, showed a common pattern to both conditions. In addition, the leg muscle e.m.g. reactions were not altered by learning effects and by forewarning of displacement onset, while the amplitude of the cerebral potentials was significantly smaller in these conditions compared to those produced in response to randomly induced perturbations. It was therefore concluded that the leg muscle e.m.g. reactions are mediated by a polysynaptic spinal reflex pathway which depends on a supraspinal control. The cerebral potentials seem to represent afferent signals which can be supposed to be subjected to modification and processing by supraspinal motor centres, according to the actual requirements.

  16. Comparison and reproducibility of sEMG during manual muscle testing on land and in water.

    PubMed

    Silvers, W Matthew; Dolny, Dennis G

    2011-02-01

    The objectives of this study were to: (1) compare the sEMG recordings from maximal voluntary contractions (MVC), and (2) examine the reproducibility of sEMG recordings from MVCs for selected lower extremity muscles derived from manual muscle testing (MMT) on dry land, and in water prior to and following aquatic treadmill running. Twelve healthy recreational male runners participated. The selected muscles were: M. quadriceps-vastus medialis (VM) and rectus femoris (RF), M. biceps femoris (BF), M. tibialis anterior (TA) and the M. gastrocnemius caput mediale (GAS) of the right leg. The MVC testing conditions were: dry land, underwater prior to (Water 1) and following an aquatic exercise trial (Water 2). For each muscle, a one-way analysis of variance with repeated measures was used to compare MVC scores between testing conditions, and the intra-class correlation coefficient (ICC) and typical error (CV%) were calculated to determine the reproducibility and precision of MVC scores, respectively, between conditions. For all muscles, no significant differences were observed between land and water MVC scores (p=0.88-0.97), and high reliability (ICC=0.96-0.98) and precision (CV%=7.4-12.6%) were observed between MVC conditions. Under MMT conditions it appears that comparable MVC sEMG values were achieved on land and in water and the integrity of the EMG recordings were maintained during water immersion. Future studies using sEMG waterproofing procedures should conduct MVC testing in water for data normalization and perform post-exercise verification of sEMG signal integrity.

  17. The Response of Hyperkinesis to EMG Biofeedback.

    ERIC Educational Resources Information Center

    Haight, Maryellen J.; And Others

    A study was conducted involving eight hyperkinetic males (11-15 years old) to determine if Ss receiving electromyography (EMG) biofeedback training would show a reduction in frontalis muscle tension, hyperactivity, and lability, and increases in self-esteem and visual and auditory attention span. Individual 45- and 30-minute relaxation exercises…

  18. EMG and acceleration signal analysis for quantifying the effects of medication in Parkinson's disease.

    PubMed

    Rissanen, Saara M; Kankaanpaa, Markku; Tarvainen, Mika P; Nuutinen, Juho; Airaksinen, Olavi; Karjalainen, Pasi A

    2011-01-01

    Parkinson's disease (PD) is characterized by motor disabilities that can be alleviated reasonably with appropriate medication. However, there is a lack of objective methods for quantifying the efficacy of treatment in PD. We applied here an objective method for quantifying the effects of medication in PD using EMG and acceleration measurements and analysis. In the method, four signal features were calculated from the EMG and acceleration recordings of both sides of the body: the kurtosis and recurrence rate of EMG, and the amplitude and sample entropy of acceleration. Principal component approach was used for reducing the number of variables. EMG and acceleration data measured from nine PD patients were used for analysis. The patients were measured in four different medication conditions: with medication off, and two and three and four hours after taking the medication. The results showed that in eight patients the EMG recordings changed into less spiky and the acceleration recordings into more complex after taking the medication. A reverse phenomenon in the signal characteristics was observed in seven patients 3-4 hours after taking the medication. The results indicate that the presented method is potentially useful for quantifying objectively the effects of medication on the neuromuscular function in PD.

  19. Surface EMG of jaw-elevator muscles and chewing pattern in complete denture wearers.

    PubMed

    Piancino, M G; Farina, D; Talpone, F; Castroflorio, T; Gassino, G; Margarino, V; Bracco, P

    2005-12-01

    The aim of this study was to investigate the adaptation process of masticatory patterns to a new complete denture in edentulous subjects. For this purpose, muscle activity and kinematic parameters of the chewing pattern were simultaneously assessed in seven patients with complete maxillary and mandibular denture. The patients were analysed (i) with the old denture, (ii) with the new denture at the delivery, (iii) after 1 month and (iv) after 3 months from the delivery of the new denture. Surface electromyographic (EMG) signals were recorded from the masseter and temporalis anterior muscles of both sides and jaw movements were tracked measuring the motion of a tiny magnet attached at the lower inter-incisor point. The subjects were asked to chew a bolus on the right and left side. At the delivery of the new denture, peak EMG amplitude of the masseter of the side of the bolus was lower than with the old denture and the masseters of the two sides showed the same intensity of EMG activity, contrary to the case with the old denture. EMG amplitude and asymmetry of the two masseter activities returned as with the old denture in 3 months. The EMG activity in the temporalis anterior was larger with the old denture than in the other conditions. The chewing cycle width and lateral excursion decreased at the delivery of the new denture and recovered after 3 months.

  20. Evaluation of Novel EMG Biofeedback for Postural Correction During Computer Use.

    PubMed

    Gaffney, Brecca M; Maluf, Katrina S; Davidson, Bradley S

    2016-06-01

    Postural correction is an effective rehabilitation technique used to treat chronic neck and shoulder pain, and is aimed toward reducing the load on the surrounding muscles by adopting a neutral posture. The objective of this investigation was to evaluate the effectiveness of real-time high-density surface EMG (HDsEMG) biofeedback for postural correction during typing. Twenty healthy participants performed a typing task with two forms of postural feedback: (1) verbal postural coaching and (2) verbal postural coaching plus HDsEMG biofeedback. The interface used activity from two HDsEMG arrays placed over the trapezius designed to shift trapezius muscle activity inferiorly. The center of gravity across both arrays was used to quantify the spatial distribution of trapezius activity. Planar angles taken from upper extremity reflective markers quantified cervicoscapular posture. During the biofeedback condition, trapezius muscle activity was located 12.74 ± 3.73 mm more inferior, the scapula was 2.58 ± 1.18° more adducted and 0.23 ± 0.24° more depressed in comparison to verbal postural coaching alone. The results demonstrate the short-term effectiveness of a real-time HDsEMG biofeedback intervention to achieve postural correction, and may be more effective at creating an inferior shift in trapezius muscle activity in comparison to verbal postural coaching alone.

  1. Do all neuropathy patients need an EMG at least once?

    PubMed

    Smith, A Gordon

    2014-10-01

    EMG, which consists of nerve conduction studies and needle electromyography, is an essential diagnostic tool in the evaluation of patients with suspected peripheral neuropathy. Many neurologists order an EMG for all patients with suspected peripheral neuropathy. Not surprisingly, evidence now exists that shows EMG is a major driver of health care costs associated with neuropathy diagnoses. As neurologic practice evolves from fee for service to value-based compensation, neurologists will need to justify the diagnostic utility of EMG (outcome) relative to its cost. While carefully performed studies of diagnostic utility in many patient populations are lacking, a robust literature provides guidance regarding the potential role and limitations of EMG in neuropathy diagnosis as well as the pitfalls referring providers and electrodiagnostic consultants must consider. Do all neuropathy patients need an EMG at least once? This article attempts to answer this question using an illustrative case to highlight critical factors every neurologist must consider before ordering an EMG for neuropathy diagnosis.

  2. Error reduction in EMG signal decomposition.

    PubMed

    Kline, Joshua C; De Luca, Carlo J

    2014-12-01

    Decomposition of the electromyographic (EMG) signal into constituent action potentials and the identification of individual firing instances of each motor unit in the presence of ambient noise are inherently probabilistic processes, whether performed manually or with automated algorithms. Consequently, they are subject to errors. We set out to classify and reduce these errors by analyzing 1,061 motor-unit action-potential trains (MUAPTs), obtained by decomposing surface EMG (sEMG) signals recorded during human voluntary contractions. Decomposition errors were classified into two general categories: location errors representing variability in the temporal localization of each motor-unit firing instance and identification errors consisting of falsely detected or missed firing instances. To mitigate these errors, we developed an error-reduction algorithm that combines multiple decomposition estimates to determine a more probable estimate of motor-unit firing instances with fewer errors. The performance of the algorithm is governed by a trade-off between the yield of MUAPTs obtained above a given accuracy level and the time required to perform the decomposition. When applied to a set of sEMG signals synthesized from real MUAPTs, the identification error was reduced by an average of 1.78%, improving the accuracy to 97.0%, and the location error was reduced by an average of 1.66 ms. The error-reduction algorithm in this study is not limited to any specific decomposition strategy. Rather, we propose it be used for other decomposition methods, especially when analyzing precise motor-unit firing instances, as occurs when measuring synchronization.

  3. Intention-based EMG control for powered exoskeletons.

    PubMed

    Lenzi, T; De Rossi, S M M; Vitiello, N; Carrozza, M C

    2012-08-01

    Electromyographical (EMG) signals have been frequently used to estimate human muscular torques. In the field of human-assistive robotics, these methods provide valuable information to provide effectively support to the user. However, their usability is strongly limited by the necessity of complex user-dependent and session-dependent calibration procedures, which confine their use to the laboratory environment. Nonetheless, an accurate estimate of muscle torque could be unnecessary to provide effective movement assistance to users. The natural ability of human central nervous system of adapting to external disturbances could compensate for a lower accuracy of the torque provided by the robot and maintain the movement accuracy unaltered, while the effort is reduced. In order to explore this possibility, in this paper we study the reaction of ten healthy subjects to the assistance provided through a proportional EMG control applied by an elbow powered exoskeleton. This system gives only a rough estimate of the user muscular torque but does not require any specific calibration. Experimental results clearly show that subjects adapt almost instantaneously to the assistance provided by the robot and can reduce their effort while keeping full control of the movement under different dynamic conditions (i.e., no alterations of movement accuracy are observed).

  4. Effect of toe extension on EMG of triceps surae muscles during isometric dorsiflexion.

    PubMed

    Siddiqi, Ariba; Arjunan, Sridhar P; Kumar, Dinesh

    2016-12-01

    The protocol for estimating force of contraction by triceps surae (TS) muscles requires the immobilization of the ankle during dorsiflexion and plantar flexion. However, large variability in the results has been observed. To identify the cause of this variability, experiments were conducted where ankle dorsiflexion force and electromyogram (EMG) of the TS were recorded under two conditions: (i) toes were strapped and (ii) toes were unstrapped, with all other conditions such as immobilization of the ankle remaining unchanged. The root mean square (RMS) of the EMG and the force were analyzed and one-tail Student's t-test was performed for significance between the two conditions. The RMS of the EMG from TS muscles was found to be significantly higher (~55%) during dorsiflexion with toes unstrapped compared with when the toes were strapped. The torque corresponding to dorsiflexion was also higher with toes unstrapped. Our study has shown that it is important to strap the toes when measuring the torque at the ankle and EMG of the TS muscles.

  5. Prefrontal oxygenation and the acoustic startle eyeblink response during exercise: A test of the dual-mode model.

    PubMed

    Tempest, Gavin D; Parfitt, Gaynor

    2017-03-30

    The interplay between the prefrontal cortex and amygdala is proposed to explain the regulation of affective responses (pleasure/displeasure) during exercise as outlined in the dual-mode model. However, due to methodological limitations the dual-mode model has not been fully tested. In this study, prefrontal oxygenation (using near-infrared spectroscopy) and amygdala activity (reflected by eyeblink amplitude using acoustic startle methodology) were recorded during exercise standardized to metabolic processes: 80% of ventilatory threshold (below VT), at the VT, and at the respiratory compensation point (RCP). Self-reported tolerance of the intensity of exercise was assessed prior to, and affective responses recorded during exercise. The results revealed that, as the intensity of exercise became more challenging (from below VT to RCP), prefrontal oxygenation was larger and eyeblink amplitude and affective responses were reduced. Below VT and at VT, larger prefrontal oxygenation was associated with larger eyeblink amplitude. At the RCP, prefrontal oxygenation was greater in the left than right hemisphere, and eyeblink amplitude explained significant variance in affective responses (with prefrontal oxygenation) and self-reported tolerance. These findings highlight the role of the prefrontal cortex and potentially the amygdala in the regulation of affective (particularly negative) responses during exercise at physiologically challenging intensities (above VT). In addition, a psychophysiological basis of self-reported tolerance is indicated. This study provides some support of the dual-mode model and insight into the neural basis of affective responses during exercise.

  6. Both Trace and Delay Conditioning of Evaluative Responses Depend on Contingency Awareness

    ERIC Educational Resources Information Center

    Kattner, Florian; Ellermeier, Wolfgang; Tavakoli, Paniz

    2012-01-01

    Whereas previous evaluative conditioning (EC) studies produced inconsistent results concerning the role of contingency knowledge, there are classical eye-blink conditioning studies suggesting that declarative processes are involved in trace conditioning but not in delay conditioning. In two EC experiments pairing neutral sounds (conditioned…

  7. Training-related changes in the EMG-moment relationship during isometric contractions: Further evidence of improved control of muscle activation in strength-trained men?

    PubMed

    Amarantini, David; Bru, Bertrand

    2015-08-01

    The possibility of using electromyography (EMG) to track muscle activity has raised the question of its relationship with the effort exerted by the muscles around the joints. However, the EMG-moment relationship is yet to be fully defined, and increasing knowledge of this topic could contribute to research in motor control and to the development of EMG-based algorithms and devices. With regards the training-related adaptations at the peripheral and central level, the present study investigated the effect of strength training on EMG-moment relationship. Our aim was to clarify its nature and gain further understanding of how morphological and neural factors may affect its form. The EMG-moment relationship was determined during knee flexion and extension isometric contractions performed by strength-trained male athletes and untrained male participants. The results showed that strength training induced linearity of the EMG-moment relationship concomitantly with enhanced maximum force production capacity and decreased co-activation of knee agonist-antagonist muscle pair. These results clarified discordant results regarding the linear or curved nature of the EMG-moment in isometric conditions and suggested that the remarkable linearity of the EMG-moment found in trained participants could indicate improved control of muscle activation.

  8. Muscle networks: Connectivity analysis of EMG activity during postural control

    NASA Astrophysics Data System (ADS)

    Boonstra, Tjeerd W.; Danna-Dos-Santos, Alessander; Xie, Hong-Bo; Roerdink, Melvyn; Stins, John F.; Breakspear, Michael

    2015-12-01

    Understanding the mechanisms that reduce the many degrees of freedom in the musculoskeletal system remains an outstanding challenge. Muscle synergies reduce the dimensionality and hence simplify the control problem. How this is achieved is not yet known. Here we use network theory to assess the coordination between multiple muscles and to elucidate the neural implementation of muscle synergies. We performed connectivity analysis of surface EMG from ten leg muscles to extract the muscle networks while human participants were standing upright in four different conditions. We observed widespread connectivity between muscles at multiple distinct frequency bands. The network topology differed significantly between frequencies and between conditions. These findings demonstrate how muscle networks can be used to investigate the neural circuitry of motor coordination. The presence of disparate muscle networks across frequencies suggests that the neuromuscular system is organized into a multiplex network allowing for parallel and hierarchical control structures.

  9. Young, Healthy Subjects Can Reduce the Activity of Calf Muscles When Provided with EMG Biofeedback in Upright Stance

    PubMed Central

    Vieira, Taian M.; Baudry, Stéphane; Botter, Alberto

    2016-01-01

    Recent evidence suggests the minimization of muscular effort rather than of the size of bodily sway may be the primary, nervous system goal when regulating the human, standing posture. Different programs have been proposed for balance training; none however has been focused on the activation of postural muscles during standing. In this study we investigated the possibility of minimizing the activation of the calf muscles during standing through biofeedback. By providing subjects with an audio signal that varied in amplitude and frequency with the amplitude of surface electromyograms (EMG) recorded from different regions of the gastrocnemius and soleus muscles, we expected them to be able to minimize the level of muscle activation during standing without increasing the excursion of the center of pressure (CoP). CoP data and surface EMG from gastrocnemii, soleus and tibialis anterior muscles were obtained from 10 healthy participants while standing at ease and while standing with EMG biofeedback. Four sensitivities were used to test subjects' responsiveness to the EMG biofeedback. Compared with standing at ease, the two most sensitive feedback conditions induced a decrease in plantar flexor activity (~15%; P < 0.05) and an increase in tibialis anterior EMG (~10%; P < 0.05). Furthermore, CoP mean position significantly shifted backward (~30 mm). In contrast, the use of less sensitive EMG biofeedback resulted in a significant decrease in EMG activity of ankle plantar flexors with a marginal increase in TA activity compared with standing at ease. These changes were not accompanied by greater CoP displacements or significant changes in mean CoP position. Key results revealed subjects were able to keep standing stability while reducing the activity of gastrocnemius and soleus without loading their tibialis anterior muscle when standing with EMG biofeedback. These results may therefore posit the basis for the development of training protocols aimed at assisting subjects in

  10. Design of microcontroller-based EMG and the analysis of EMG signals.

    PubMed

    Güler, Nihal Fatma; Hardalaç, Firat

    2002-04-01

    In this work, a microcontroller-based EMG designed and tested on 40 patients. When the patients are in rest, the fast Fourier transform (FFT) analysis was applied to EMG signals recorded from right leg peroneal region. The histograms are constructed from the results of the FFT analysis. The analysis results shows that the amplitude of fibrillation potential of the muscle fiber of 30 patients measured from peroneal region is low and the duration is short. This is the reason why the motor nerves degenerated and 10 patients were found to be healthy.

  11. EMG patterns in abnormal involuntary movements induced by neuroleptics.

    PubMed

    Bathien, N; Koutlidis, R M; Rondot, P

    1984-09-01

    Electromyographic (EMG) activity of abnormal involuntary movements and their modifications after Piribedil, a dopaminergic agonist, were analysed in patients presenting with tremor or tardive dyskinesia induced by treatment with neuroleptics. Quantitative analysis of EMG bursts and of their phase relationships with bursts of antagonist muscles revealed differences between tremor and tardive dyskinesia; three separate EMG types of the latter were found. In tremor, EMG activity was coordinated between agonists and antagonists. Length and frequency of bursts are characteristic. In tardive dyskinesia, phase histograms of antagonist muscle bursts showed an absence of reciprocal organisation of EMG activity. This activity was made up of either rhythmical bursts (type I and II according to the frequency) or irregular discharges (type III). Piribedil decreased tremor but facilitated EMG activity in tardive dyskinesia. These results give an objective measurement or classification of tremor and tardive dyskinesia induced by neuroleptics.

  12. Techniques of EMG signal analysis: detection, processing, classification and applications

    PubMed Central

    Hussain, M.S.; Mohd-Yasin, F.

    2006-01-01

    Electromyography (EMG) signals can be used for clinical/biomedical applications, Evolvable Hardware Chip (EHW) development, and modern human computer interaction. EMG signals acquired from muscles require advanced methods for detection, decomposition, processing, and classification. The purpose of this paper is to illustrate the various methodologies and algorithms for EMG signal analysis to provide efficient and effective ways of understanding the signal and its nature. We further point up some of the hardware implementations using EMG focusing on applications related to prosthetic hand control, grasp recognition, and human computer interaction. A comparison study is also given to show performance of various EMG signal analysis methods. This paper provides researchers a good understanding of EMG signal and its analysis procedures. This knowledge will help them develop more powerful, flexible, and efficient applications. PMID:16799694

  13. EMG patterns in abnormal involuntary movements induced by neuroleptics.

    PubMed Central

    Bathien, N; Koutlidis, R M; Rondot, P

    1984-01-01

    Electromyographic (EMG) activity of abnormal involuntary movements and their modifications after Piribedil, a dopaminergic agonist, were analysed in patients presenting with tremor or tardive dyskinesia induced by treatment with neuroleptics. Quantitative analysis of EMG bursts and of their phase relationships with bursts of antagonist muscles revealed differences between tremor and tardive dyskinesia; three separate EMG types of the latter were found. In tremor, EMG activity was coordinated between agonists and antagonists. Length and frequency of bursts are characteristic. In tardive dyskinesia, phase histograms of antagonist muscle bursts showed an absence of reciprocal organisation of EMG activity. This activity was made up of either rhythmical bursts (type I and II according to the frequency) or irregular discharges (type III). Piribedil decreased tremor but facilitated EMG activity in tardive dyskinesia. These results give an objective measurement or classification of tremor and tardive dyskinesia induced by neuroleptics. PMID:6148381

  14. Repeatability of surface EMG during gait in children

    PubMed Central

    Granata, Kevin P.; Padua, Darin A.; Abel, Mark F.

    2006-01-01

    Although mean amplitude and ON–OFF timing of muscle recruitment and electromyography (EMG) activation during gait is achieved by an age of six to eight years in normally developing children, recruitment dynamics illustrated by the shape of the EMG waveform may require continued developmental practice to achieve a stable pattern. Previous analyses have quantified the repeatability of the EMG waveform in adult subjects, but EMG variability for a pediatric population may be significantly different. The goal of this study was to quantify intra-session and inter-session variability in the phasic EMG waveform patterns from the lower limb muscles during self-selected speeds of walking in healthy-normal children for comparison with adult variability in gait EMG. The variance ratio quantifies the repeatability of the integrated EMG waveform shape in a group of normally-developing children. Results reveal that between-session EMG waveform variability were similar in adult and pediatric populations, but within-session variability for the children was approximately twice the published value for adults. Clinical implications of this pediatric EMG variability suggest cautious interpretation of data from limited trial samples or inter-session changes in performance of gait data. PMID:16274917

  15. EMG-torque Relation in Chronic Stroke: A Novel EMG Complexity Representation with A Linear Electrode Array.

    PubMed

    Zhang, Xu; Wang, Dongqing; Yu, Zaiyang; Chen, Xiang; Li, Sheng; Zhou, Ping

    2016-11-08

    This study examines the electromyogram (EMG) - torque relation for chronic stroke survivors using a novel EMG complexity representation. Ten stroke subjects performed a series of submaximal isometric elbow flexion tasks using their affected and contralateral arms, respectively, while a 20-channel linear electrode array was used to record surface EMG from the biceps brachii muscles. The sample entropy (SampEn) of surface EMG signals was calculated with both global and local tolerance schemes. A regression analysis was performed between SampEn of each channel's surface EMG and elbow flexion torque. It was found that a linear regression can be used to well describe the relation between surface EMG SampEn and the torque. Each channel's root mean square (RMS) amplitude of surface EMG signal in the different torque level was computed to determine the channel with the highest EMG amplitude. The slope of the regression (observed from the channel with the highest EMG amplitude) was smaller on the impaired side than on the non-impaired side in 8 of the 10 subjects, regardless of the tolerance scheme (global or local) and the range of torques (full or matched range) used for comparison. The surface EMG signals from the channels above the estimated muscle innervation zones demonstrated significantly lower levels of complexity compared with other channels between innervation zones and muscle tendons. The study provides a novel point of view of the EMG-torque relation in the complexity domain, and reveals its alterations post stroke, which are associated with complex neural and muscular changes post stroke. The slope difference between channels with regard to innervation zones also confirms the relevance of electrode position in surface EMG analysis.

  16. Motor unit size estimation: confrontation of surface EMG with macro EMG.

    PubMed

    Roeleveld, K; Stegeman, D F; Falck, B; Stålberg, E V

    1997-06-01

    Surface EMG (SEMG) is little used for diagnostic purposes in clinical neurophysiology, mainly because it provides little direct information on individual motor units (MUs). One of the techniques to estimate the MU size is intra-muscular Macro EMG. The present study compares SEMG with Macro EMG. Fifty-eight channel SEMG was recorded simultaneously with Macro EMG. Individual MUPs were obtained by single fiber triggered averaging. All recordings were made from the biceps brachii of healthy subjects during voluntary contraction at low force. High positive correlations were found between all Macro and Surface motor unit potential (MUP) parameters: area, peak-to-peak amplitude, negative peak amplitude and positive peak amplitude. The MUPs recorded with SEMG were dependent on the distance between the MU and the skin surface. Normalizing the SEMG parameters for MU location did not improve the correlation coefficient between the parameters of both techniques. The two measurement techniques had almost the same relative range in MUP parameters in any individual subject compared to the others, especially after normalizing the surface MUP parameters for MU location. MUPs recorded with this type of SEMG provide useful information about the MU size.

  17. Automatic identification and classification of muscle spasms in long-term EMG recordings.

    PubMed

    Winslow, Jeffrey; Martinez, Adriana; Thomas, Christine K

    2015-03-01

    Spinal cord injured (SCI) individuals may be afflicted by spasticity, a condition in which involuntary muscle spasms are common. EMG recordings can be analyzed to quantify this symptom of spasticity but manual identification and classification of spasms are time consuming. Here, an algorithm was created to find and classify spasm events automatically within 24-h recordings of EMG. The algorithm used expert rules and time-frequency techniques to classify spasm events as tonic, unit, or clonus spasms. A companion graphical user interface (GUI) program was also built to verify and correct the results of the automatic algorithm or manually defined events. Eight channel EMG recordings were made from seven different SCI subjects. The algorithm was able to correctly identify an average (±SD) of 94.5 ± 3.6% spasm events and correctly classify 91.6 ± 1.9% of spasm events, with an accuracy of 61.7 ± 16.2%. The accuracy improved to 85.5 ± 5.9% and the false positive rate decreased to 7.1 ± 7.3%, respectively, if noise events between spasms were removed. On average, the algorithm was more than 11 times faster than manual analysis. Use of both the algorithm and the GUI program provide a powerful tool for characterizing muscle spasms in 24-h EMG recordings, information which is important for clinical management of spasticity.

  18. EMG responses in leg muscles to postural perturbations in Huntington's disease.

    PubMed Central

    Huttunen, J; Hömberg, V

    1990-01-01

    This paper compares leg muscle electromyogram (EMG) responses to sudden toe-up tilts of a moveable platform in patients with Huntington's disease (HD), clinically normal offspring at risk of developing HD (HD risks) and healthy controls. The EMG pattern in standing subjects and patients consisted of short- and middle-latency responses (SL and ML) in the stretched triceps surae muscles and long-latency responses (LL) in the shortened tibialis anterior muscles. The SL response could be further divided into two distinct subcomponents termed SL1 and SL2. An ML response was identified in only 50% of normal subjects and patients. HD patients differed from normal subjects by showing delayed onset latencies and prolonged durations for the LL response, and smaller amplitudes for the ML response. The subjects at risk also showed diminished ML amplitudes and prolonged LL durations, but normal LL onset latencies. In the sitting condition, the EMG responses of the HD patients and of the HD risks did not differ from those of controls: in all groups SL1 was reduced and delayed, SL2 slightly enhanced, while ML and LL were absent. Because both afferent and efferent conduction times are normal in HD, the delayed LL onset reflects abnormal supraspinal organisation of postural control in HD, and indicates that basal ganglia may have a modulatory effect on the LL responses. The normal EMG responses in the sitting patients suggest appropriate regulation of these responses according to postural set in HD. PMID:2154557

  19. Muscle fatigue evaluation of astronaut upper limb based on sEMG and subjective assessment

    NASA Astrophysics Data System (ADS)

    Zu, Xiaoqi; Zhou, Qianxiang; Li, Yun

    2012-07-01

    All movements are driven by muscle contraction, and it is easy to cause muscle fatigue. Evaluation of muscle fatigue is a hot topic in the area of astronaut life support training and rehabilitation. If muscle gets into fatigue condition, it may reduce work efficiency and has an impact on psychological performance. Therefore it is necessary to develop an accurate and usable method on muscle fatigue evaluation of astronaut upper limb. In this study, we developed a method based on surface electromyography (sEMG) and subjective assessment (Borg scale) to evaluate local muscle fatigue. Fifteen healthy young male subjects participated in the experiment. They performed isometric muscle contractions of the upper limb. sEMG of the biceps brachii were recorded during the entire process of isotonic muscle contraction and Borg scales of muscle fatigue were collected in certain times. sEMG were divided into several parts, and then mean energy of each parts were calculated by the one-twelfth band octave method. Equations were derived based on the relationship between the mean energy of sEMG and Borg scale. The results showed that cubic curve could describe the degree of local muscle fatigue, and could be used to evaluate and monitor local muscle fatigue during the entire process.

  20. Rechargeable wireless EMG sensor for prosthetic control.

    PubMed

    Lichter, P A; Lange, E H; Riehle, T H; Anderson, S M; Hedin, D S

    2010-01-01

    Surface electrodes in modern myoelectric prosthetics are often embedded in the prosthesis socket and make contact with the skin. These electrodes detect and amplify muscle action potentials from voluntary contractions of the muscle in the residual limb and are used to control the prosthetic's movement and function. There are a number of performance-related deficiencies associated with external electrodes including the maintenance of sufficient electromyogram (EMG) signal amplitude, extraneous noise acquisition, and proper electrode interface maintenance that are expected to be improved or eliminated using the proposed implanted sensors. This research seeks to investigate the design components for replacing external electrodes with fully-implantable myoelectric sensors that include a wireless interface to the prosthetic limbs. This implanted technology will allow prosthetic limb manufacturers to provide products with increased performance, capability, and patient-comfort. The EMG signals from the intramuscular recording electrode are amplified and wirelessly transmitted to a receiver in the prosthetic limb. Power to the implant is maintained using a rechargeable battery and an inductive energy transfer link from the prosthetic. A full experimental system was developed to demonstrate that a wireless biopotential sensor can be designed that meets the requirements of size, power, and performance for implantation.

  1. Treatment of Handwriting Problems Utilizing EMG Biofeedback Training.

    ERIC Educational Resources Information Center

    Hughes, Howard; And Others

    1979-01-01

    The effects of electromyogram (EMG) biofeedback training on cursive handwriting were investigated with nine fourth graders. A significant reduction in EMG between the first baseline session and last training session was obtained. Four of five characteristics of handwriting improved significantly. (Author/SBH)

  2. Modulation of eyeblink and postauricular reflexes during the anticipation and viewing of food images.

    PubMed

    Hebert, Karen R; Valle-Inclán, Fernando; Hackley, Steven A

    2015-04-01

    One of the goals of neuroscience research on the reward system is to fractionate its functions into meaningful subcomponents. To this end, the present study examined emotional modulation of the eyeblink and postauricular components of startle in 60 young adults during anticipation and viewing of food images. Appetitive and disgusting photos served as rewards and punishments in a guessing game. Reflexes evoked during anticipation were not influenced by valence, consistent with the prevailing view that startle modulation indexes hedonic impact (liking) rather than incentive salience (wanting). During the slide-viewing period, postauricular reflexes were larger for correct than incorrect feedback, whereas the reverse was true for blink reflexes. Probes were delivered in brief trains, but only the first response exhibited this pattern. The specificity of affective startle modification makes it a valuable tool for studying the reward system.

  3. COMMUNALITIES AND DIFFERENCES IN FEAR POTENTIATION BETWEEN CARDIAC DEFENSE AND EYE-BLINK STARTLE

    PubMed Central

    Sánchez, María B.; Guerra, Pedro; Muñoz, Miguel A.; Mata, José Luís; Bradley, Margaret M.; Lang, Peter J.; Vila, Jaime

    2009-01-01

    This study examines similarities and differences in fear potentiation between two protective reflexes: cardiac defense and eye-blink startle. Women reporting intense fear of animals but low fear of blood or intense fear of blood but low fear of animals viewed pictures depicting blood or the feared animal for 6 s in 2 separate trials in counterbalanced order. An intense burst of white noise, able to elicit both a cardiac defense response and a reflexive startle blink, was presented 3.5 s after picture onset. Both cardiac and blink responses were potentiated when highly fearful individuals viewed fearful pictures. However, differences appeared concerning picture order. This pattern of results indicates communalities and differences among protective reflexes that are relevant for understanding the dynamics of emotional reflex modulation. PMID:19572906

  4. The time course of face processing: startle eyeblink response modulation by face gender and expression.

    PubMed

    Duval, Elizabeth R; Lovelace, Christopher T; Aarant, Justin; Filion, Diane L

    2013-12-01

    The purpose of this study was to investigate the effects of both facial expression and face gender on startle eyeblink response patterns at varying lead intervals (300, 800, and 3500ms) indicative of attentional and emotional processes. We aimed to determine whether responses to affective faces map onto the Defense Cascade Model (Lang et al., 1997) to better understand the stages of processing during affective face viewing. At 300ms, there was an interaction between face expression and face gender with female happy and neutral faces and male angry faces producing inhibited startle. At 3500ms, there was a trend for facilitated startle during angry compared to neutral faces. These findings suggest that affective expressions are perceived differently in male and female faces, especially at short lead intervals. Future studies investigating face processing should take both face gender and expression into account.

  5. Reciprocal EMG controlled FES for pathological tremor suppression of forearm.

    PubMed

    Zhang, Dingguo; Ang, Wei Tech

    2007-01-01

    A novel assistive system is designed to suppress pathological tremor of forearm via functional electrical stimulation (FES). It aims to attenuate the tremor with the minimum effect on the voluntary movement. Surface electromyograph (EMG) is adopted as the sensing feedback information to regulate FES. A two-stage filter is proposed to process the raw EMG signal. The first stage removes the artifacts in the raw EMG signal contaminated by FES. The second stage filter separates the high frequency tremulous EMG from the low frequency voluntary components. The extracted tremor EMG of biceps and triceps will then be used as control input in the FES controller to stimulate the two muscles reciprocally. This paper presents the design and implementation of the first stage of the two-stage filter. Experiments on healthy subjects have shown promising results.

  6. Differential EMG biofeedback for children with ADHD: a control method for neurofeedback training with a case illustration.

    PubMed

    Maurizio, S; Liechti, M D; Brandeis, D; Jäncke, L; Drechsler, R

    2013-06-01

    The objective of the present paper was to develop a differential electromyographic biofeedback (EMG-BF) training for children with attention-deficit/hyperactivity disorder (ADHD) matching multiple neurofeedback training protocols in order to serve as a valid control training. This differential EMG-BF training method feeds back activity from arm muscles involved in fine motor skills such as writing and grip force control. Tonic EMG-BF training (activation and deactivation blocks, involving bimanual motor tasks) matches the training of EEG frequency bands, while phasic EMG-BF training (short activation and deactivation trials) was developed as an equivalent to the training of slow cortical potentials. A case description of a child who learned to improve motor regulation in most task conditions and showed a clinically relevant reduction of behavioral ADHD symptoms illustrates the training course and outcome. Differential EMG-BF training is feasible and provides well-matched control conditions for neurofeedback training in ADHD research. Future studies should investigate its value as a specific intervention for children diagnosed with ADHD and comorbid sensorimotor problems.

  7. Tourette Syndrome: Complementary Insights from Measures of Cognitive Control, Eyeblink Rate, and Pupil Diameter.

    PubMed

    Tharp, Jordan A; Wendelken, Carter; Mathews, Carol A; Marco, Elysa J; Schreier, Herbert; Bunge, Silvia A

    2015-01-01

    Some individuals with Tourette syndrome (TS) have severe motoric and vocal tics that interfere with all aspects of their lives, while others have mild tics that pose few problems. We hypothesize that observed tic severity reflects a combination of factors, including the degree to which dopaminergic (DA) and/or noradrenergic (NE) neurotransmitter systems have been affected by the disorder, and the degree to which the child can exert cognitive control to suppress unwanted tics. To explore these hypotheses, we collected behavioral and eyetracking data from 26 patients with TS and 26 controls between ages 7 and 14, both at rest and while they performed a test of cognitive control. To our knowledge, this is the first study to use eyetracking measures in patients with TS. We measured spontaneous eyeblink rate as well as pupil diameter, which have been linked, respectively, to DA and NE levels in the central nervous system. Here, we report a number of key findings that held when we restricted analyses to unmedicated patients. First, patients' accuracy on our test of cognitive control accounted for fully 50% of the variance in parentally reported tic severity. Second, patients exhibited elevated spontaneous eyeblink rates compared to controls, both during task performance and at rest, consistent with heightened DA transmission. Third, although neither task-evoked pupil dilation nor resting pupil diameter differed between TS patients and controls, pupil diameter was positively related to parentally reported anxiety levels in patients, suggesting heightened NE transmission in patients with comorbid anxiety. Thus, with the behavioral and eyetracking data gathered from a single task, we can gather objective data that are related both to tic severity and anxiety levels in pediatric patients with TS, and that likely reflect patients' underlying neurochemical disturbances.

  8. Effect of isometric horizontal abduction on pectoralis major and serratus anterior EMG activity during three exercises in subjects with scapular winging.

    PubMed

    Park, Kyung-Mi; Cynn, Heon-Seock; Yi, Chung-Hwi; Kwon, Oh-Yun

    2013-04-01

    The aim of this study was to determine the effect of isometric horizontal abduction using Thera-Band during three exercises (forward flexion, scaption, and wall push-up plus) in subjects with scapular winging by investigating the electromyographic (EMG) amplitude of the pectoralis major, serratus anterior and the pectoralis major/serratus anterior activity ratio. Twenty-four males with scapular winging participated in this study. The subjects performed the forward flexion, scaption, and wall push-up plus with and without isometric horizontal abduction using Thera-Band. Surface EMG was used to collect the EMG data of the pectoralis major and serratus anterior during the three exercises. Two-way repeated analyses of variance with two within-subject factors (isometric horizontal abduction condition and exercise type) were used to determine the statistical significance of pectoralis major and serratus anterior EMG activity and the pectoralis major/serratus anterior EMG activity ratio. Pectoralis major EMG activity was significantly lower during forward flexion and wall push-up plus with isometric horizontal abduction, and serratus anterior EMG activity was significantly greater with isometric horizontal abduction. Additionally, the pectoralis major/serratus anterior activity ratio was significantly lower during the forward flexion and wall push-up plus with isometric horizontal abduction. The results of this study suggest that isometric horizontal abduction using Thera-Band can be used as an effective method to facilitate the serratus anterior activity and to reduce excessive pectoralis major activity during exercises for activating serratus anterior.

  9. Galantamine Facilitates Acquisition of a Trace-Conditioned Eyeblink Response in Healthy, Young Rabbits

    ERIC Educational Resources Information Center

    Simon, Barbara B.; Knuckley, Bryan; Powell, Donald A.

    2004-01-01

    Previous work has demonstrated that drugs increasing brain concentrations of acetylcholine can enhance cognition in aging and brain-damaged organisms. The present study assessed whether galantamine (GAL), an allosteric modulator of nicotinic cholinergic receptors and weak acetylcholinesterase inhibitor, could improve acquisition and retention of…

  10. Galantamine Facilitates Acquisition of Hippocampus-Dependent Trace Eyeblink Conditioning in Aged Rabbits

    ERIC Educational Resources Information Center

    Weible, Aldis P.; Oh, M. Matthew; Lee, Grace; Disterhoft, John F.

    2004-01-01

    Cholinergic systems are critical to the neural mechanisms mediating learning. Reduced nicotinic cholinergic receptor (nAChR) binding is a hallmark of normal aging. These reductions are markedly more severe in some dementias, such as Alzheimer's disease. Pharmacological central nervous system therapies are a means to ameliorate the cognitive…

  11. Supplementing biomechanical modeling with EMG analysis

    NASA Technical Reports Server (NTRS)

    Lewandowski, Beth; Jagodnik, Kathleen; Crentsil, Lawton; Humphreys, Bradley; Funk, Justin; Gallo, Christopher; Thompson, William; DeWitt, John; Perusek, Gail

    2016-01-01

    It is well established that astronauts experience musculoskeletal deconditioning when exposed to microgravity environments for long periods of time. Spaceflight exercise is used to counteract these effects, and the Advanced Resistive Exercise Device (ARED) on the International Space Station (ISS) has been effective in minimizing musculoskeletal losses. However, the exercise devices of the new exploration vehicles will have requirements of limited mass, power and volume. Because of these limitations, there is a concern that the exercise devices will not be as effective as ARED in maintaining astronaut performance. Therefore, biomechanical modeling is being performed to provide insight on whether the small Multi-Purpose Crew Vehicle (MPCV) device, which utilizes a single-strap design, will provide sufficient physiological loading to maintain musculoskeletal performance. Electromyography (EMG) data are used to supplement the biomechanical model results and to explore differences in muscle activation patterns during exercises using different loading configurations.

  12. EMG biofeedback of the abductor pollicis brevis in piano performance.

    PubMed

    Montes, R; Bedmar, M; Sol Martin, M

    1993-06-01

    The aim of the present study was to apply EMG biofeedback as an auxiliary to piano teaching techniques. We studied the changes in integrated electromyographic activity, using the abductor pollicis brevis functioning as an agonist during the teaching of identical selective movements of piano playing in two groups, one with EMG biofeedback and the other following traditional method of instruction. The analysis of variance revealed an increase in the peak amplitude and the relaxation rate values for the biofeedback group. These results have implications for the application of piano playing techniques and reveal EMG biofeedback as an aid in the teaching of thumb attack with the abductor pollicis brevis as agonist.

  13. Characterizing EMG data using machine-learning tools.

    PubMed

    Yousefi, Jamileh; Hamilton-Wright, Andrew

    2014-08-01

    Effective electromyographic (EMG) signal characterization is critical in the diagnosis of neuromuscular disorders. Machine-learning based pattern classification algorithms are commonly used to produce such characterizations. Several classifiers have been investigated to develop accurate and computationally efficient strategies for EMG signal characterization. This paper provides a critical review of some of the classification methodologies used in EMG characterization, and presents the state-of-the-art accomplishments in this field, emphasizing neuromuscular pathology. The techniques studied are grouped by their methodology, and a summary of the salient findings associated with each method is presented.

  14. A Spiking Neural Network in sEMG Feature Extraction

    PubMed Central

    Lobov, Sergey; Mironov, Vasiliy; Kastalskiy, Innokentiy; Kazantsev, Victor

    2015-01-01

    We have developed a novel algorithm for sEMG feature extraction and classification. It is based on a hybrid network composed of spiking and artificial neurons. The spiking neuron layer with mutual inhibition was assigned as feature extractor. We demonstrate that the classification accuracy of the proposed model could reach high values comparable with existing sEMG interface systems. Moreover, the algorithm sensibility for different sEMG collecting systems characteristics was estimated. Results showed rather equal accuracy, despite a significant sampling rate difference. The proposed algorithm was successfully tested for mobile robot control. PMID:26540060

  15. Adaptive neuron-to-EMG decoder training for FES neuroprostheses

    NASA Astrophysics Data System (ADS)

    Ethier, Christian; Acuna, Daniel; Solla, Sara A.; Miller, Lee E.

    2016-08-01

    Objective. We have previously demonstrated a brain-machine interface neuroprosthetic system that provided continuous control of functional electrical stimulation (FES) and restoration of grasp in a primate model of spinal cord injury (SCI). Predicting intended EMG directly from cortical recordings provides a flexible high-dimensional control signal for FES. However, no peripheral signal such as force or EMG is available for training EMG decoders in paralyzed individuals. Approach. Here we present a method for training an EMG decoder in the absence of muscle activity recordings; the decoder relies on mapping behaviorally relevant cortical activity to the inferred EMG activity underlying an intended action. Monkeys were trained at a 2D isometric wrist force task to control a computer cursor by applying force in the flexion, extension, ulnar, and radial directions and execute a center-out task. We used a generic muscle force-to-endpoint force model based on muscle pulling directions to relate each target force to an optimal EMG pattern that attained the target force while minimizing overall muscle activity. We trained EMG decoders during the target hold periods using a gradient descent algorithm that compared EMG predictions to optimal EMG patterns. Main results. We tested this method both offline and online. We quantified both the accuracy of offline force predictions and the ability of a monkey to use these real-time force predictions for closed-loop cursor control. We compared both offline and online results to those obtained with several other direct force decoders, including an optimal decoder computed from concurrently measured neural and force signals. Significance. This novel approach to training an adaptive EMG decoder could make a brain-control FES neuroprosthesis an effective tool to restore the hand function of paralyzed individuals. Clinical implementation would make use of individualized EMG-to-force models. Broad generalization could be achieved by

  16. Influence of Fatigue on Hand Muscle Coordination and EMG-EMG Coherence During Three-Digit Grasping

    PubMed Central

    Danna-Dos Santos, Alessander; Poston, Brach; Jesunathadas, Mark; Bobich, Lisa R.; Hamm, Thomas M.

    2010-01-01

    Fingertip force control requires fine coordination of multiple hand muscles within and across the digits. While the modulation of neural drive to hand muscles as a function of force has been extensively studied, much less is known about the effects of fatigue on the coordination of simultaneously active hand muscles. We asked eight subjects to perform a fatiguing contraction by gripping a manipulandum with thumb, index, and middle fingers while matching an isometric target force (40% maximal voluntary force) for as long as possible. The coordination of 12 hand muscles was quantified as electromyographic (EMG) muscle activation pattern (MAP) vector and EMG-EMG coherence. We hypothesized that muscle fatigue would cause uniform changes in EMG amplitude across all muscles and an increase in EMG-EMG coherence in the higher frequency bands but with an invariant heterogeneous distribution across muscles. Muscle fatigue caused a 12.5% drop in the maximum voluntary contraction force (P < 0.05) at task failure and an increase in the SD of force (P < 0.01). Although EMG amplitude of all muscles increased during the fatiguing contraction (P < 0.001), the MAP vector orientation did not change, indicating that a similar muscle coordination pattern was used throughout the fatiguing contraction. Last, EMG-EMG coherence (0–35 Hz) was significantly greater at the end than at the beginning of the fatiguing contraction (P < 0.01) but was heterogeneously distributed across hand muscles. These findings suggest that similar mechanisms are involved for modulating and sustaining digit forces in nonfatiguing and fatiguing contractions, respectively. PMID:20926609

  17. Influence of fatigue on hand muscle coordination and EMG-EMG coherence during three-digit grasping.

    PubMed

    Danna-Dos Santos, Alessander; Poston, Brach; Jesunathadas, Mark; Bobich, Lisa R; Hamm, Thomas M; Santello, Marco

    2010-12-01

    Fingertip force control requires fine coordination of multiple hand muscles within and across the digits. While the modulation of neural drive to hand muscles as a function of force has been extensively studied, much less is known about the effects of fatigue on the coordination of simultaneously active hand muscles. We asked eight subjects to perform a fatiguing contraction by gripping a manipulandum with thumb, index, and middle fingers while matching an isometric target force (40% maximal voluntary force) for as long as possible. The coordination of 12 hand muscles was quantified as electromyographic (EMG) muscle activation pattern (MAP) vector and EMG-EMG coherence. We hypothesized that muscle fatigue would cause uniform changes in EMG amplitude across all muscles and an increase in EMG-EMG coherence in the higher frequency bands but with an invariant heterogeneous distribution across muscles. Muscle fatigue caused a 12.5% drop in the maximum voluntary contraction force (P < 0.05) at task failure and an increase in the SD of force (P < 0.01). Although EMG amplitude of all muscles increased during the fatiguing contraction (P < 0.001), the MAP vector orientation did not change, indicating that a similar muscle coordination pattern was used throughout the fatiguing contraction. Last, EMG-EMG coherence (0-35 Hz) was significantly greater at the end than at the beginning of the fatiguing contraction (P < 0.01) but was heterogeneously distributed across hand muscles. These findings suggest that similar mechanisms are involved for modulating and sustaining digit forces in nonfatiguing and fatiguing contractions, respectively.

  18. Muscle synergy control model-tuned EMG driven torque estimation system with a musculo-skeletal model.

    PubMed

    Min, Kyuengbo; Shin, Duk; Lee, Jongho; Kakei, Shinji

    2013-01-01

    Muscle activity is the final signal for motion control from the brain. Based on this biological characteristic, Electromyogram (EMG) signals have been applied to various systems that interface human with external environments such as external devices. In order to use EMG signals as input control signal for this kind of system, the current EMG driven torque estimation models generally employ the mathematical model that estimates the nonlinear transformation function between the input signal and the output torque. However, these models need to estimate too many parameters and this process cause its estimation versatility in various conditions to be poor. Moreover, as these models are designed to estimate the joint torque, the input EMG signals are tuned out of consideration for the physiological synergetic contributions of multiple muscles for motion control. To overcome these problems of the current models, we proposed a new tuning model based on the synergy control mechanism between multiple muscles in the cortico-spinal tract. With this synergetic tuning model, the estimated contribution of multiple muscles for the motion control is applied to tune the EMG signals. Thus, this cortico-spinal control mechanism-based process improves the precision of torque estimation. This system is basically a forward dynamics model that transforms EMG signals into the joint torque. It should be emphasized that this forward dynamics model uses a musculo-skeletal model as a constraint. The musculo-skeletal model is designed with precise musculo-skeletal data, such as origins and insertions of individual muscles or maximum muscle force. Compared with the mathematical model, the proposed model can be a versatile model for the torque estimation in the various conditions and estimates the torque with improved accuracy. In this paper, we also show some preliminary experimental results for the discussion about the proposed model.

  19. Comparing tomographic EEG neurofeedback and EMG biofeedback in children with attention-deficit/hyperactivity disorder.

    PubMed

    Maurizio, Stefano; Liechti, Martina Daniela; Heinrich, Hartmut; Jäncke, Lutz; Steinhausen, Hans-Christoph; Walitza, Susanne; Brandeis, Daniel; Drechsler, Renate

    2014-01-01

    Two types of biofeedback (BF), tomographic electroencephalogram (EEG) neurofeedback (NF) and electromyographic biofeedback (EMG-BF), both with phasic and tonic protocols, were compared for treatment effects and specificity in attention-deficit/hyperactivity disorder (ADHD). Thirteen children with ADHD trained their brain activity in the anterior cingulate cortex (ACC), and twelve trained activity of arm muscles involved in fine motor skills. In each training session, resting state 24-channel EEG and training performances were recorded. Both groups showed similar behavioral improvements and artifact reduction in selected conditions, with no significant advantages despite medium effect sizes on primary outcomes for NF. Only the EMG-BF group, however, showed clear improvement in training regulation performance, and specific motor coordination effects. The NF group tended to present individual normalization of trained frequency bands in the ACC during rest across training. The results provide evidence for some specific effects in our small sample, albeit only to a small extent.

  20. Homomorphic Deconvolution for MUAP Estimation From Surface EMG Signals.

    PubMed

    Biagetti, Giorgio; Crippa, Paolo; Orcioni, Simone; Turchetti, Claudio

    2017-03-01

    This paper presents a technique for parametric model estimation of the motor unit action potential (MUAP) from the surface electromyography (sEMG) signal by using homomorphic deconvolution. The cepstrum-based deconvolution removes the effect of the stochastic impulse train, which originates the sEMG signal, from the power spectrum of sEMG signal itself. In this way, only information on MUAP shape and amplitude were maintained, and then, used to estimate the parameters of a time-domain model of the MUAP itself. In order to validate the effectiveness of this technique, sEMG signals recorded during several biceps curl exercises have been used for MUAP amplitude and time scale estimation. The parameters so extracted as functions of time were used to evaluate muscle fatigue showing a good agreement with previously published results.

  1. Identification of contaminant type in surface electromyography (EMG) signals.

    PubMed

    McCool, Paul; Fraser, Graham D; Chan, Adrian D C; Petropoulakis, Lykourgos; Soraghan, John J

    2014-07-01

    The ability to recognize various forms of contaminants in surface electromyography (EMG) signals and to ascertain the overall quality of such signals is important in many EMG-enabled rehabilitation systems. In this paper, new methods for the automatic identification of commonly occurring contaminant types in surface EMG signals are presented. Such methods are advantageous because the contaminant type is typically not known in advance. The presented approach uses support vector machines as the main classification system. Both simulated and real EMG signals are used to assess the performance of the methods. The contaminants considered include: 1) electrocardiogram interference; 2) motion artifact; 3) power line interference; 4) amplifier saturation; and 5) additive white Gaussian noise. Results show that the contaminants can readily be distinguished at lower signal to noise ratios, with a growing degree of confusion at higher signal to noise ratios, where their effects on signal quality are less significant.

  2. Temporalis function in anthropoids and strepsirrhines: an EMG study.

    PubMed

    Hylander, William L; Wall, Christine E; Vinyard, Christopher J; Ross, Callum; Ravosa, Mathew R; Williams, Susan H; Johnson, Kirk R

    2005-09-01

    The major purpose of this study is to analyze anterior and posterior temporalis muscle force recruitment and firing patterns in various anthropoid and strepsirrhine primates. There are two specific goals for this project. First, we test the hypothesis that in addition to transversely directed muscle force, the evolution of symphyseal fusion in primates may also be linked to vertically directed balancing-side muscle force during chewing (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). Second, we test the hypothesis of whether strepsirrhines retain the hypothesized primitive mammalian condition for the firing of the anterior temporalis, whereas anthropoids have the derived condition (Weijs [1994] Biomechanics of Feeding in Vertebrates; Berlin: Springer-Verlag, p. 282-320). Electromyographic (EMG) activities of the left and right anterior and posterior temporalis muscles were recorded and analyzed in baboons, macaques, owl monkeys, thick-tailed galagos, and ring-tailed lemurs. In addition, as we used the working-side superficial masseter as a reference muscle, we also recorded and analyzed EMG activity of the left and right superficial masseter in these primates. The data for the anterior temporalis provided no support for the hypothesis that symphyseal fusion in primates is linked to vertically directed jaw muscle forces during mastication. Thus, symphyseal fusion in primates is most likely mainly linked to the timing and recruitment of transversely directed forces from the balancing-side deep masseter (Hylander et al. [2000] Am. J. Phys. Anthropol. 112:469-492). In addition, our data demonstrate that the firing patterns for the working- and balancing-side anterior temporalis muscles are near identical in both strepsirrhines and anthropoids. Their working- and balancing-side anterior temporalis muscles fire asynchronously and reach peak activity during the power stroke. Similarly, their working- and balancing-side posterior temporalis muscles also fire

  3. Spherical classification of wavelet transformed EMG intensity patterns.

    PubMed

    von Tscharner, Vinzenz

    2009-10-01

    Electromyograms of different muscles can be submitted to a wavelet-transform and arranged in a Multi-Muscle Pattern (MMP). The MMP represents the intensity of the EMG signals of a number of muscles simultaneously in time/frequency space. As previously shown, the MMPs can be represented by points in an Euclidian vector space that was called pattern space. The variability of the MMPs is represented by the distribution of the scattered points in pattern space. The purpose of this study was to investigate the distribution of the points and use the properties of the distribution to classify MMPs. The first task was to test whether the points representing a group of MMPs were located between the inner and outer boundary of a sphere-like domain in whitened pattern space as theoretically predicted. The mean of these points and thus of the MMPs is represented by a point at the center of the sphere. The hypothesis was that the spheres representing points of the MMPs of barefoot and shod runners were sufficiently separated and distinguishable in pattern space to allow classification of the runners according to their shod condition. The results confirmed the hypothesis and revealed that the recognition rate was over 80%. One can conclude and generalize that the points representing MMPs recorded for a certain condition reside between the inner and outer boundary of the sphere. The classification based on the spherical feature represents a much better discrimination than one based on the distance from the mean.

  4. 24 DOF EMG controlled hybrid actuated prosthetic hand.

    PubMed

    Atasoy, A; Kaya, E; Toptas, E; Kuchimov, S; Kaplanoglu, E; Ozkan, M

    2016-08-01

    A complete mechanical design concept of an electromyogram (EMG) controlled hybrid prosthetic hand, with 24 degree of freedom (DOF) anthropomorphic structure is presented. Brushless DC motors along with Shape Memory Alloy (SMA) actuators are used to achieve dexterous functionality. An 8 channel EMG is used for detecting 7 basic hand gestures for control purposes. The prosthetic hand will be integrated with the Neural Network (NNE) based controller in the next phase of the study.

  5. Time Course of the Rabbit's Conditioned Nictitating Membrane Movements during Acquisition, Extinction, and Reacquisition

    ERIC Educational Resources Information Center

    Kehoe, E. James; Ludvig, Elliot A.; Sutton, Richard S.

    2014-01-01

    The present experiment tested whether or not the time course of a conditioned eyeblink response, particularly its duration, would expand and contract, as the magnitude of the conditioned response (CR) changed massively during acquisition, extinction, and reacquisition. The CR duration remained largely constant throughout the experiment, while CR…

  6. Analysis of surface EMG signal morphology in Parkinson's disease.

    PubMed

    Rissanen, Saara; Kankaanpää, Markku; Tarvainen, Mika P; Nuutinen, Juho; Tarkka, Ina M; Airaksinen, Olavi; Karjalainen, Pasi A

    2007-12-01

    A novel approach is presented for the analysis of surface electromyogram (EMG) morphology in Parkinson's disease (PD). The method is based on histogram and crossing rate (CR) analysis of the EMG signal. In the method, histograms and CR values are used as high-dimensional feature vectors. The dimensionality of them is then reduced using the Karhunen-Loève transform (KLT). Finally, the discriminant analysis of feature vectors is performed in low-dimensional eigenspace. Histograms and CR values were chosen for analysis, because Parkinsonian EMG signals typically involve patterns of EMG bursts. Traditional methods of EMG amplitude and spectral analysis are not effective in analyzing impulse-like signals. The method, which was tested with EMG signals measured from 25 patients with PD and 22 healthy controls, was promising for discriminating between these two groups of subjects. The ratio of correct discrimination by augmented KLT was 86% for the control group and 72% for the patient group. On the basis of these results, further studies are suggested in order to evaluate the usability of this method in early stage diagnostics of PD.

  7. Muscle motion and EMG activity in vibration treatment.

    PubMed

    Fratini, Antonio; La Gatta, Antonio; Bifulco, Paolo; Romano, Maria; Cesarelli, Mario

    2009-11-01

    The aim of this study is to highlight the relationship between muscle motion, generated by whole body vibration, and the correspondent electromyographic (EMG) activity and to suggest a new method to customize the stimulation frequency. Simultaneous recordings of EMG and tri-axial accelerations of quadriceps rectus femoris from fifteen subjects undergoing vibration treatments were collected. Vibrations were delivered via a sinusoidal oscillating platform at different frequencies (10-45 Hz). Muscle motion was estimated by processing the accelerometer data. Large EMG motion artifacts were removed using sharp notch filters centred at the vibration frequency and its superior harmonics. EMG-RMS values were computed and analyzed before and after artifact suppression to assess muscular activity. Muscles acceleration amplitude increased with frequency. Muscle displacements revealed a mechanical resonant-like behaviour of the muscle. Resonance frequencies and dumping factors depended on subject. Moreover, RMS of artifact-free EMG was found well correlated (R(2)=0.82) to the actual muscle displacement, while the maximum of the EMG response was found related to the mechanical resonance frequency of muscle. Results showed that maximum muscular activity was found in correspondence to the mechanical resonance of the muscle itself. Assuming the hypothesis that muscle activation is proportional to muscle displacement, treatment optimization (i.e. to choose the best stimulation frequency) could be obtained by simply monitoring local acceleration (resonance), leading to a more effective muscle stimulation. Motion artifact produced an overestimation of muscle activity, therefore its removal was essential.

  8. Kinematical and EMG-classifications of a fencing attack.

    PubMed

    Frère, J; Göpfert, B; Nüesch, C; Huber, C; Fischer, M; Wirz, D; Friederich, N F

    2011-01-01

    8 expert fencers were studied with a 3-dimensional motion analysis system. Each subject performed 10 flèche attacks toward a standardized target. Surface electromyography signals (EMG) were recorded of the deltoid pars clavicularis, infraspinatus and triceps brachii caput laterale muscles of the weapon arm. The recorded EMGs were averaged using EMG wavelet-transformation software. 4 phases were defined based on the arm kinematics and used to classify fencers into 2 groups. A first group of 4 fencers showed an early maximal elbow extension (Early MEE) whereas the second group presented a late maximal elbow extension (Late MEE). 2 EMG-classifications were based on this kinematical classification, one in the time-domain and the other in the frequency-domain by using the spherical classification. The time-domain EMG-classification showed a significantly ( P=0.03) higher normalized deltoid intensity for the Early MEE group (91 ± 18%) than the Late MEE group (36 ± 13%) in the attack phase. The spherical classification revealed that the activity of all the muscles was significantly classified (recognition rate 75%, P=0.04) between the 2 groups. This study of EMG and kinematics of the weapon upper limb in fencing proposes several classifications, which implies a relationship between kinematic strategies, muscular activations and fencing success.

  9. Changes in multi-segmented body movements and EMG activity while standing on firm and foam support surfaces.

    PubMed

    Fransson, P A; Gomez, S; Patel, M; Johansson, L

    2007-09-01

    Postural control ensures stability during both static posture and locomotion by initiating corrective adjustments in body movement. This is particularly important when the conditions of the support surface change. We investigated the effects of standing on a compliant foam surface using 12 normal subjects (mean age 26 years) in terms of: linear movements at the head, shoulder, hip and knee; EMG activity of the tibialis anterior and gastrocnemius muscles and torques towards the support surface. As subjects repeated the trials with eyes open or closed, we were also able to determine the effects of vision on multi-segmented body movements during standing upon different support surface conditions. As expected, EMG activity, torque variance values and body movements at all measured positions increased significantly when standing on foam compared with the firm surface. Linear knee and hip movements increased more, relative to shoulder and head movements while standing on foam. Vision stabilized the head and shoulder movements more than hip and knee movements while standing on foam support surface. Moreover, vision significantly reduced the tibialis anterior EMG activity and torque variance during the trials involving foam. In conclusion, the foam support surface increased corrective muscle and torque activity, and changed the firm-surface multi-segmented body movement pattern. Vision improved the ability of postural control to handle compliant surface conditions. Several essential features of postural control have been found from recording movements from multiple points on the body, synchronized with recording torque and EMG.

  10. EMG and peak force responses to PNF stretching and the relationship between stretching-induced force deficits and bilateral deficits

    PubMed Central

    Cengiz, Asim

    2015-01-01

    [Purpose] The aim of the present study was to investigate the possibility of an interaction between stretching induced deficit (SFD) and bilateral deficits (BLD) during maximal voluntary isometric hand flexion under PNF stretch and no-stretch conditions through measurement of EMG and force production. [Subjects and Methods] Ten physically active male Caucasian students (age, 24.1±2.38 years; body mass, 79.48±11.40 kg; height, 174.15±0.8 cm) volunteered to participate in this study. EMG and force measurements of the subjects were recorded during either unilateral or bilateral 3-second maximal voluntary isometric hand flexion (MVC) against a force transducer. The paired sample t-test was used to examine the significance of differences among several conditions. Pearson product-moment correlation was used to evaluate the associations between different parameters. [Results] Stretching-induced deficits correlated with bilateral deficits in both force (r=0.85) and iEMG (r=0.89). PNF stretching caused significant decrements in the bilateral and unilateral conditions for both the right and left sides. [Conclusion] Since both force and iEMG decreases were observed in most measurements; it suggests there is a neural mechanism behinnd both the BLD and the SFD. PMID:25931696

  11. Startling Sweet Temptations: Hedonic Chocolate Deprivation Modulates Experience, Eating Behavior, and Eyeblink Startle

    PubMed Central

    Blechert, Jens; Naumann, Eva; Schmitz, Julian; Herbert, Beate M.; Tuschen-Caffier, Brunna

    2014-01-01

    Many individuals restrict their food intake to prevent weight gain. This restriction has both homeostatic and hedonic effects but their relative contribution is currently unclear. To isolate hedonic effects of food restriction, we exposed regular chocolate eaters to one week of chocolate deprivation but otherwise regular eating. Before and after this hedonic deprivation, participants viewed images of chocolate and images of high-calorie but non-chocolate containing foods, while experiential, behavioral and eyeblink startle responses were measured. Compared to satiety, hedonic deprivation triggered increased chocolate wanting, liking, and chocolate consumption but also feelings of frustration and startle potentiation during the intertrial intervals. Deprivation was further characterized by startle inhibition during both chocolate and food images relative to the intertrial intervals. Individuals who responded with frustration to the manipulation and those who scored high on a questionnaire of impulsivity showed more relative startle inhibition. The results reveal the profound effects of hedonic deprivation on experiential, behavioral and attentional/appetitive response systems and underscore the role of individual differences and state variables for startle modulation. Implications for dieting research and practice as well as for eating and weight disorders are discussed. PMID:24416437

  12. Startling sweet temptations: hedonic chocolate deprivation modulates experience, eating behavior, and eyeblink startle.

    PubMed

    Blechert, Jens; Naumann, Eva; Schmitz, Julian; Herbert, Beate M; Tuschen-Caffier, Brunna

    2014-01-01

    Many individuals restrict their food intake to prevent weight gain. This restriction has both homeostatic and hedonic effects but their relative contribution is currently unclear. To isolate hedonic effects of food restriction, we exposed regular chocolate eaters to one week of chocolate deprivation but otherwise regular eating. Before and after this hedonic deprivation, participants viewed images of chocolate and images of high-calorie but non-chocolate containing foods, while experiential, behavioral and eyeblink startle responses were measured. Compared to satiety, hedonic deprivation triggered increased chocolate wanting, liking, and chocolate consumption but also feelings of frustration and startle potentiation during the intertrial intervals. Deprivation was further characterized by startle inhibition during both chocolate and food images relative to the intertrial intervals. Individuals who responded with frustration to the manipulation and those who scored high on a questionnaire of impulsivity showed more relative startle inhibition. The results reveal the profound effects of hedonic deprivation on experiential, behavioral and attentional/appetitive response systems and underscore the role of individual differences and state variables for startle modulation. Implications for dieting research and practice as well as for eating and weight disorders are discussed.

  13. Eye-blinks in choice response tasks uncover hidden aspects of information processing

    PubMed Central

    Wascher, Edmund; Heppner, Holger; Möckel, Tina; Kobald, Sven Oliver; Getzmann, Stephan

    2015-01-01

    Spontaneous eye-blinks occur much more often than it would be necessary to maintain the tear film on the eyes. Various factors like cognitive demand, task engagement, or fatigue are influencing spontaneous blink rate. During cognitive information processing there is evidence that blinks occur preferably at moments that can be assigned to input stream segmentation. We investigated blinking behavior in three different visual choice response experiments (Experiment 1: spatial Stimulus-Response correspondence, Experiment 2: Change Detection, Experiment 3: Continuous performance Test - AX version). Blinks during the experimental tasks were suppressed when new information was expected, as well as during cognitive processing until the response was executed. Blinks in go trials occurred within a short and relatively constant interval after manual responses. However, blinks were not a side effect of manual behavior, as they occurred in a similar manner in no-go trials in which no manual response was executed. In these trials, blinks were delayed when a prepared response had to be inhibited, compared to trials in which no response was intended. Additionally, time on task effects for no-go blinks mirrored those obtained in go trials. Thus, blinks seem to provide a reliable measure for cognitive processing beyond (or rather additional to) manual responses. PMID:27152110

  14. Re-evaluation of EMG-torque relation in chronic stroke using linear electrode array EMG recordings.

    PubMed

    Bhadane, Minal; Liu, Jie; Rymer, W Zev; Zhou, Ping; Li, Sheng

    2016-06-28

    The objective was to re-evaluate the controversial reports of EMG-torque relation between impaired and non-impaired sides using linear electrode array EMG recordings. Ten subjects with chronic stroke performed a series of submaximal isometric elbow flexion tasks. A 20-channel linear array was used to record surface EMG of the biceps brachii muscles from both impaired and non-impaired sides. M-wave recordings for bilateral biceps brachii muscles were also made. Distribution of the slope of the EMG-torque relations for the individual channels showed a quasi-symmetrical "M" shaped pattern. The lowest value corresponded to the innervation zone (IZ) location. The highest value from the slope curve for each side was selected for comparison to minimize the effect of electrode placement and IZ asymmetry. The slope was greater on the impaired side in 4 of 10 subjects. There were a weak correlation between slope ratio and strength ratio and a moderate to high correlation between slope ratio and M-wave ratio between two sides. These findings suggest that the EMG-torque relations are likely mediated and influenced by multiple factors. Our findings emphasize the importance of electrode placement and suggest the primary role of peripheral adaptive changes in the EMG-torque relations in chronic stroke.

  15. Electromyography (EMG) accuracy compared to muscle biopsy in childhood.

    PubMed

    Rabie, Malcolm; Jossiphov, Joseph; Nevo, Yoram

    2007-07-01

    Reports show wide variability of electromyography (EMG) in detecting pediatric neuromuscular disorders. The study's aim was to determine EMG/nerve conduction study accuracy compared to muscle biopsy and final clinical diagnosis, and sensitivity for myopathic motor unit potential detection in childhood. Of 550 EMG/nerve conduction studies performed by the same examiner from a pediatric neuromuscular service, 27 children (ages 6 days to 16 years [10 boys; M:F, 1:1.7]) with muscle biopsies and final clinical diagnoses were compared retrospectively. Final clinical diagnoses were congenital myopathies (5 of 27,18%), nonspecific myopathies (biopsy myopathic, final diagnosis uncertain; 6 of 27, 22%), congenital myasthenic syndrome (3 of 27, 11%), juvenile myasthenia gravis (1 of 27, 4%), arthrogryposis multiplex congenita (2 of 27, 7%), hereditary motor and sensory neuropathy (1 of 27, 4%), bilateral peroneal neuropathies (1 of 27, 4%), and normal (8 of 27, 30%). There were no muscular dystrophy or spinal muscular atrophy patients. EMG/nerve conduction studies had a 74% agreement with final clinical diagnoses and 100% agreement in neurogenic, neuromuscular junction, and normal categories. Muscle biopsies concurred with final diagnoses in 87%, and 100% in myopathic and normal categories. In congenital myasthenic syndrome, muscle biopsies showed mild variation in fiber size in 2 of 3 children and were normal in 1 of 3. EMG sensitivity for detecting myopathic motor unit potentials in myopathies was 4 of 11 (36%), greater over 2 years of age (3 of 4, 75%), compared to infants less than 2 years (1 of 7, 14%), not statistically significant (P = .0879). EMGs false-negative for myopathy in infants < 2 years of age were frequently neurogenic (3 of 6, 50%). In congenital myopathies EMG detected myopathic motor unit potentials in 40%, with false-negative results neurogenic (20%) or normal (40%). Because our study has no additional tests for active myopathies, for example Duchenne

  16. Relationship between EMG signals and force in human vastus lateralis muscle using multiple bipolar wire electrodes.

    PubMed

    Onishi, H; Yagi, R; Akasaka, K; Momose, K; Ihashi, K; Handa, Y

    2000-02-01

    This paper describes the relationship between knee extension force and EMG signals detected by multiple bipolar wire electrodes inserted into the human vastus lateralis muscle under isometric conditions. Six healthy male volunteers participated in this study. Eight pairs of bipolar wire electrodes were inserted into the right vastus lateralis muscle and the EMG data were simultaneously detected and analyzed. The EMG raw data and individual force-IEMG relations were influenced by the location of the electrode inserted into the muscle. The force and IEMG relationship averaged across subjects detected from the eight electrodes, however, showed almost the same linear correlation in spite of different electrode locations. No linear correlation was observed between MdF and the knee extension force. This result suggests that, if all of the muscle fibers participate in the same action at the same time, the averaged normalized IEMG from any places using wire electrodes could reflect the total activities of that muscle even if the muscle is large.

  17. Virtual biomechanics: a new method for online reconstruction of force from EMG recordings.

    PubMed

    de Rugy, Aymar; Loeb, Gerald E; Carroll, Timothy J

    2012-12-01

    Current methods to reconstruct muscle contributions to joint torque usually combine electromyograms (EMGs) with cadaver-based estimates of biomechanics, but both are imperfect representations of reality. Here, we describe a new method that enables online force reconstruction in which we optimize a "virtual" representation of muscle biomechanics. We first obtain tuning curves for the five major wrist muscles from the mean rectified EMG during the hold phase of an isometric aiming task when a cursor is driven by actual force recordings. We then apply a custom, gradient-descent algorithm to determine the set of "virtual pulling vectors" that best reach the target forces when combined with the observed muscle activity. When these pulling vectors are multiplied by the rectified and low-pass-filtered (1.3 Hz) EMG of the five muscles online, the reconstructed force provides a close spatiotemporal match to the true force exerted at the wrist. In three separate experiments, we demonstrate that the technique works equally well for surface and fine-wire recordings and is sensitive to biomechanical changes elicited by a modification of the forearm posture. In all conditions tested, muscle tuning curves obtained when the task was performed with feedback of reconstructed force were similar to those obtained when the task was performed with real force feedback. This online force reconstruction technique provides new avenues to study the relationship between neural control and limb biomechanics since the "virtual biomechanics" can be systematically altered at will.

  18. Single fiber EMG Fiber density and its relationship to Macro EMG amplitude in reinnervation.

    PubMed

    Sandberg, Arne

    2014-12-01

    The objective was to elucidate the relation between the Macro EMG parameters fiber density (FD) and Macro amplitude in reinnervation in the purpose to use the FD parameter as a surrogate marker for reinnervation instead of the Macro amplitude. Macro EMG with FD was performed in 278 prior polio patients. The Biceps Brachii and the Tibialis anterior muscles were investigated. FD was more sensitive for detection of signs of reinnervation but showed lesser degree of abnormality than the Macro amplitude. FD and Macro MUP amplitude showed a non-linear relation with a great variation in FD for given Macro amplitude level. The relatively smaller increase in FD compared to Macro amplitude in addition to the non-linear relationship between the FD and the Macro amplitude regarding reinnervation in prior polio can be due to technical reasons and muscle fiber hypertrophy. The FD parameter has a relation to Macro MUP amplitude but cannot alone be used as a quantitative marker of the degree of reinnervation.

  19. Reliability of surface EMG during sustained contractions of the quadriceps.

    PubMed

    Mathur, S; Eng, J J; MacIntyre, D L

    2005-02-01

    The purpose of this study was to determine test-retest reliability for median frequency (MDF) and amplitude of surface EMG during sustained fatiguing contractions of the quadriceps. Twenty-two healthy subjects (11 males and 11 females) were tested on two days held one week apart. Surface EMG was recorded from rectus femoris (RF), vastus lateralis (VL) and vastus medialis (VM) during sustained isometric contractions at 80% and 20% of maximal voluntary contraction (MVC) held to exhaustion. Quadriceps fatigue was described using four measures for both MDF and amplitude of EMG: initial, final, normalized final and slope. For both MDF and amplitude, the initial, final and normalized EMG showed moderate to high reliability for all three muscle groups at both contraction levels (ICC=0.59-0.88 for MDF; ICC=0.58-0.99 for amplitude). Slope of MDF and amplitude was associated with a large degree of variability and low ICCs for the 80% but not the 20% MVC. MDF and amplitude of EMG during sustained contractions of the quadriceps are reproducible; normalized final values of MDF and amplitude show better reliability than slope.

  20. Excitatory Cerebellar Nucleocortical Circuit Provides Internal Amplification during Associative Conditioning

    PubMed Central

    Gao, Zhenyu; Proietti-Onori, Martina; Lin, Zhanmin; ten Brinke, Michiel M.; Boele, Henk-Jan; Potters, Jan-Willem; Ruigrok, Tom J.H.; Hoebeek, Freek E.; De Zeeuw, Chris I.

    2016-01-01

    Summary Closed-loop circuitries between cortical and subcortical regions can facilitate precision of output patterns, but the role of such networks in the cerebellum remains to be elucidated. Here, we characterize the role of internal feedback from the cerebellar nuclei to the cerebellar cortex in classical eyeblink conditioning. We find that excitatory output neurons in the interposed nucleus provide efference-copy signals via mossy fibers to the cerebellar cortical zones that belong to the same module, triggering monosynaptic responses in granule and Golgi cells and indirectly inhibiting Purkinje cells. Upon conditioning, the local density of nucleocortical mossy fiber terminals significantly increases. Optogenetic activation and inhibition of nucleocortical fibers in conditioned animals increases and decreases the amplitude of learned eyeblink responses, respectively. Our data show that the excitatory nucleocortical closed-loop circuitry of the cerebellum relays a corollary discharge of premotor signals and suggests an amplifying role of this circuitry in controlling associative motor learning. PMID:26844836

  1. EMG and MMG activities of agonist and antagonist muscles in Parkinson's disease patients during absolute submaximal load holding.

    PubMed

    Marusiak, Jaroslaw; Jaskólska, Anna; Kisiel-Sajewicz, Katarzyna; Yue, Guang H; Jaskólski, Artur

    2009-10-01

    The purpose of the study was (1) to assess changes in electromyographical (EMG) and mechanomyographical (MMG) signals of the biceps and triceps brachii muscles during absolute submaximal load holding in Parkinson's disease patients tested during their medication "ON-phase" and in age-matched controls, and (2) to check whether mechanomyography can be useful in evaluation of neuromuscular system activity in Parkinson's disease patients. The data analysis was performed on nine females with Parkinson's disease and six healthy, age-matched females. The EMG and MMG signals were recorded from the short head of the biceps brachii (BB) and the lateral head of the triceps brachii (TB) muscles. It was concluded that compared to the controls, the Parkinson's disease patients exhibited higher amplitude in the biceps brachii muscle and lower median frequency of the MMG signal in the both tested muscles. However, no differences in the EMG amplitude and an increase of the EMG median frequency in the triceps brachii muscle of the Parkinson's disease group were observed. The MMG was not affected by physiological postural tremor and can depict differences between parkinsonians and controls, which may suggest that it is valuable tool for neuromuscular assessment for this condition.

  2. Archery performance level and repeatability of event-related EMG.

    PubMed

    Soylu, A R; Ertan, H; Korkusuz, F

    2006-12-01

    The purpose of the current study was to compare the repeatability of electromyographic linear envelopes (LE) of archery groups. Surface electromyography (EMG) signals of musculus flexor digitorum superficialis (MFDS) and extensor digitorum (MED) of 23 participants (seven skilled, six beginner archers and ten non-archers) were recorded during archery shooting. Two-second periods (clicker falls at first second) of 12 shots' EMG data were recorded, full-wave rectified and filtered (60 ms moving-average filter) for each participant's drawing arm. Repeatability was investigated by using a statistical criterion, variance ratio (VR). Archers' performances were evaluated in terms of FITA scores. The results showed that FITA scores were significantly correlated to the VRs of MFDS and MED. EMG LEs were more repeatable among archers than non-archers. Therefore, we inferred that VRs of MFDS and MED might be important variables for (a) assessing shooting techniques, (b) evaluation of archers' progress, and (c) selection of talented archers.

  3. Driving Electric Vehicle by EMG Signal Considering Frequency Components

    NASA Astrophysics Data System (ADS)

    Aso, Shinichi; Sasaki, Akinori; Hashimoto, Hiroshi; Ishii, Chiharu

    This paper proposes a useful method driving the electric vehicle by EMG signals (Electromyographic signals) which are filtered on the basis of frequency components which change with muscle contraction. This method estimates strength of muscular tension by a single EMG signal. By our method, user is able to control speed of the electric vehicle by strength of muscular tension. The method of speed control may give user good or bad operation feeling in the meaning of SD (Semantic Differential) method and factor analysis. The operation feeling is evaluated by experiment on EMG interface in cases of using filters or not. As a result, it is shown that operation feeling is influenced by this method.

  4. Frontal midline theta rhythm and eyeblinking activity during a VDT task and a video game: useful tools for psychophysiology in ergonomics.

    PubMed

    Yamada, F

    1998-05-01

    The necessity of psychophysiological research in ergonomics has gradually been recognized in Japan. In this paper, frontal midline theta rhythm (Fm-theta) and eyeblinking are recommended as tools in this field, especially for assessing workers' attention concentration, mental workload, fatigue, and interest during VDT work at the workplace and playing video games at home. In experiment 1, Fm-theta and eyeblink rates were measured in 10 Japanese abacus experts (Group E) and 10 normal students (Group C) during a visual search task with VDT. Memory load affected all measures. The amount of Fm-theta appeared more in Group E than Group C, but blink rate was lower in Group E than in Group C. As abacus experts have such highly developed skills in concentration, the result indicates that the amount of Fm-theta would be a good index of attention concentration in VDT workers. The second experiment was done with 10 school-aged children as subjects during three visual tasks: video game, mental test and animation. Amounts of Fm-theta and the degree of blink inhibition were maximum while playing the video game, which all subjects reported they most preferred, and minimum while watching animation, which eight subjects reported to be most boring. An interesting task would seem to provoke Fm-theta and inhibit eyeblink activity. From these two experiments, Fm-theta and eyeblink rate would appear to be good indices of attention concentration and task pleasantness of a mental task using VDT.

  5. Individual Differences in Cognitive-Flexibility: The Influence of Spontaneous Eyeblink Rate, Trait Psychoticism and Working Memory on Attentional Set-Shifting

    ERIC Educational Resources Information Center

    Tharp, Ian J.; Pickering, Alan D.

    2011-01-01

    Individual differences in psychophysiological function have been shown to influence the balance between flexibility and distractibility during attentional set-shifting [e.g., Dreisbach et al. (2005). Dopamine and cognitive control: The influence of spontaneous eyeblink rate and dopamine gene polymorphisms on perseveration and distractibility.…

  6. Computer algorithms to characterize individual subject EMG profiles during gait.

    PubMed

    Bogey, R A; Barnes, L A; Perry, J

    1992-09-01

    Three methods of precisely determining onset and cessation times of gait EMG were investigated. Subjects were 24 normal adults and 32 individuals with gait pathologies. Soleus muscle EMG during free speed level walking was obtained with fine wires, and was normalized by manual muscle test (%MMT). Linear envelopes were generated from the rectified, integrated EMG at each percent gait cycle (%GC) of each stride in individual gait trials. Three methods were used to generate EMG profiles for each tested subject. The ensemble average (EAV) was determined for each subject from the mean relative intensity of the linear envelopes. Low relative intensity or short duration EMG was removed from the ensemble average to create the intensity filtered average (IFA). The packet analysis method (PAC) created an EMG profile from the linear envelopes in successive strides whose respective centroid %GC locations were within +/- 15%GC of each other. Control values for onset and cessation times of individual gait trials were calculated after spurious outliers were removed. Mean onset and cessation times across subjects for control values and the experimental methods (EAV, IFA, and PAC) were calculated. Dunnett's test (p less than .05) was performed to compare control and experimental groups in patient and normal trials. EAV differed from control values for onsets (p less than .01), cessations (p less than .01), and durations (p less than .01) in both normal and patient trials. IFA and PAC had no significant differences from control value means. IFA was selected for clinical use as automatic analysis could be performed on all trials and a minimum number of decision rules were needed.

  7. Characterization of surface EMG signals using improved approximate entropy*

    PubMed Central

    Chen, Wei-ting; Wang, Zhi-zhong; Ren, Xiao-mei

    2006-01-01

    An improved approximate entropy (ApEn) is presented and applied to characterize surface electromyography (sEMG) signals. In most previous experiments using nonlinear dynamic analysis, this certain processing was often confronted with the problem of insufficient data points and noisy circumstances, which led to unsatisfactory results. Compared with fractal dimension as well as the standard ApEn, the improved ApEn can extract information underlying sEMG signals more efficiently and accurately. The method introduced here can also be applied to other medium-sized and noisy physiological signals. PMID:16972328

  8. Eyelid contour detection and tracking for startle research related eye-blink measurements from high-speed video records.

    PubMed

    Bernard, Florian; Deuter, Christian Eric; Gemmar, Peter; Schachinger, Hartmut

    2013-10-01

    Using the positions of the eyelids is an effective and contact-free way for the measurement of startle induced eye-blinks, which plays an important role in human psychophysiological research. To the best of our knowledge, no methods for an efficient detection and tracking of the exact eyelid contours in image sequences captured at high-speed exist that are conveniently usable by psychophysiological researchers. In this publication a semi-automatic model-based eyelid contour detection and tracking algorithm for the analysis of high-speed video recordings from an eye tracker is presented. As a large number of images have been acquired prior to method development it was important that our technique is able to deal with images that are recorded without any special parametrisation of the eye tracker. The method entails pupil detection, specular reflection removal and makes use of dynamic model adaption. In a proof-of-concept study we could achieve a correct detection rate of 90.6%. With this approach, we provide a feasible method to accurately assess eye-blinks from high-speed video recordings.

  9. Visual and graviceptive influences on lower leg EMG activity in humans during brief falls.

    PubMed

    Wicke, R W; Oman, C M

    1982-01-01

    Human subjects were suspended in a safety harness 28 cm above the floor by a steel cable connected to a computer controlled force generator (electromagnetic brake). After the subjects were unexpectedly released, various controlled patterns of downward acceleration (less than 1 g) could be produced. During the falls, EMG activity was recorded simultaneously from the gastrocnemius, soleus, tibialis anterior, rectus femoris, and biceps femoris, along with knee and ankle joint angle in one leg. Subjects were tested eyes closed and also eyes open, both in darkness and in light using a wide field visual display. The display scene could be moved downwards at exactly the same velocity as the moving subject, left fixed with respect to the laboratory ("normal" visual field), or moved upwards at a speed equal to the subject's falling speed (upward moving visual field). Ten vestibularly normal subjects each underwent a total of 45 drops, experiencing three replications of each vision/motion combination used. Under normal visual field conditions, both short and long latency postural responses were seen, which were dependent on the magnitude of the acceleration stimulus. Several of the visual conditions significantly altered both the short and the long latency responses in most of the muscles tested. Effects were particularly prominent in the gastrocnemius and soleus, and were also more pronounced during slow (0.5 g) falls. The upward moving visual field condition increased the short latency EMG reaction in gastrocnemius and soleus for 0.5 g falls. A preliminary scheme for visual-vestibular interaction in short latency EMG responses is presented. Long latency responses are more variable and not conducive to a simple interpretation.

  10. Analysis of EMG Signals in Aggressive and Normal Activities by Using Higher-Order Spectra

    PubMed Central

    Sezgin, Necmettin

    2012-01-01

    The analysis and classification of electromyography (EMG) signals are very important in order to detect some symptoms of diseases, prosthetic arm/leg control, and so on. In this study, an EMG signal was analyzed using bispectrum, which belongs to a family of higher-order spectra. An EMG signal is the electrical potential difference of muscle cells. The EMG signals used in the present study are aggressive or normal actions. The EMG dataset was obtained from the machine learning repository. First, the aggressive and normal EMG activities were analyzed using bispectrum and the quadratic phase coupling of each EMG episode was determined. Next, the features of the analyzed EMG signals were fed into learning machines to separate the aggressive and normal actions. The best classification result was 99.75%, which is sufficient to significantly classify the aggressive and normal actions. PMID:23193379

  11. Changes in Impedance at the Electrode-Skin Interface of Surface EMG Electrodes During Long-Term EMG Recordings

    DTIC Science & Technology

    2001-10-25

    1Laboratoire de Modélisation et Sûreté des Systèmes, Université de Technologie de Troyes, Troyes, France 2Institut de Myologie , GH Pitié-Salpêtrière...participated gave their written informed consent. B. Electromyography Surface EMG signals were recorded from tibialis anterior on the right leg of each...P. Leffers, and J. Drukker, “Surface EMG of proximal leg muscles in neuromuscular patients and in healthy controls: relations to force and fatigue,” J

  12. The Assessment of Muscular Effort, Fatigue, and Physiological Adaptation Using EMG and Wavelet Analysis

    PubMed Central

    Graham, Ryan B.; Wachowiak, Mark P.; Gurd, Brendon J.

    2015-01-01

    Peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α) is a transcription factor co-activator that helps coordinate mitochondrial biogenesis within skeletal muscle following exercise. While evidence gleaned from submaximal exercise suggests that intracellular pathways associated with the activation of PGC-1α, as well as the expression of PGC-1α itself are activated to a greater extent following higher intensities of exercise, we have recently shown that this effect does not extend to supramaximal exercise, despite corresponding increases in muscle activation amplitude measured with electromyography (EMG). Spectral analyses of EMG data may provide a more in-depth assessment of changes in muscle electrophysiology occurring across different exercise intensities, and therefore the goal of the present study was to apply continuous wavelet transforms (CWTs) to our previous data to comprehensively evaluate: 1) differences in muscle electrophysiological properties at different exercise intensities (i.e. 73%, 100%, and 133% of peak aerobic power), and 2) muscular effort and fatigue across a single interval of exercise at each intensity, in an attempt to shed mechanistic insight into our previous observations that the increase in PGC-1α is dissociated from exercise intensity following supramaximal exercise. In general, the CWTs revealed that localized muscle fatigue was only greater than the 73% condition in the 133% exercise intensity condition, which directly matched the work rate results. Specifically, there were greater drop-offs in frequency, larger changes in burst power, as well as greater changes in burst area under this intensity, which were already observable during the first interval. As a whole, the results from the present study suggest that supramaximal exercise causes extreme localized muscular fatigue, and it is possible that the blunted PGC-1α effects observed in our previous study are the result of fatigue-associated increases in

  13. EOG-sEMG Human Interface for Communication.

    PubMed

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as "dual-modality" for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

  14. EMG Biofeedback Training Versus Systematic Desensitization for Test Anxiety Reduction

    ERIC Educational Resources Information Center

    Romano, John L.; Cabianca, William A.

    1978-01-01

    Biofeedback training to reduce test anxiety among university students was investigated. Biofeedback training with systematic desensitization was compared to an automated systematic desensitization program not using EMG feedback. Biofeedback training is a useful technique for reducing test anxiety, but not necessarily more effective than systematic…

  15. The Recognition System for the Voluntary Wink with EMG

    NASA Astrophysics Data System (ADS)

    Mizutani, Kengi

    There are many reports about the system controlled by the eye movement in the medical instruments and human technology. In this study, we report a new way of recognition for the voluntary wink with EMG, which can use for the controller about some systems with free hand.

  16. MVC techniques to normalize trunk muscle EMG in healthy women.

    PubMed

    Vera-Garcia, Francisco J; Moreside, Janice M; McGill, Stuart M

    2010-02-01

    Normalization of the surface electromyogram (EMG) addresses some of the inherent inter-subject and inter-muscular variability of this signal to enable comparison between muscles and people. The aim of this study was to evaluate the effectiveness of several maximal voluntary isometric contraction (MVC) strategies, and identify maximum electromyographic reference values used for normalizing trunk muscle activity. Eight healthy women performed 11 MVC techniques, including trials in which thorax motion was resisted, trials in which pelvis motion was resisted, shoulder rotation and adduction, and un-resisted MVC maneuvers (maximal abdominal hollowing and maximal abdominal bracing). EMG signals were bilaterally collected from upper and lower rectus abdominis, lateral and medial aspects of external oblique, internal oblique, latissimus dorsi, and erector spinae at T9 and L5. A 0.5s moving average window was used to calculate the maximum EMG amplitude of each muscle for each MVC technique. A great inter-subject variability between participants was observed as to which MVC strategy elicited the greatest muscular activity, especially for the oblique abdominals and latissimus dorsi. Since no single test was superior for obtaining maximum electrical activity, it appears that several upper and lower trunk MVC techniques should be performed for EMG normalization in healthy women.

  17. Design of a robust EMG sensing interface for pattern classification

    NASA Astrophysics Data System (ADS)

    Huang, He; Zhang, Fan; Sun, Yan L.; He, Haibo

    2010-10-01

    Electromyographic (EMG) pattern classification has been widely investigated for neural control of external devices in order to assist with movements of patients with motor deficits. Classification performance deteriorates due to inevitable disturbances to the sensor interface, which significantly challenges the clinical value of this technique. This study aimed to design a sensor fault detection (SFD) module in the sensor interface to provide reliable EMG pattern classification. This module monitored the recorded signals from individual EMG electrodes and performed a self-recovery strategy to recover the classification performance when one or more sensors were disturbed. To evaluate this design, we applied synthetic disturbances to EMG signals collected from leg muscles of able-bodied subjects and a subject with a transfemoral amputation and compared the accuracies for classifying transitions between different locomotion modes with and without the SFD module. The results showed that the SFD module maintained classification performance when one signal was distorted and recovered about 20% of classification accuracy when four signals were distorted simultaneously. The method was simple to implement. Additionally, these outcomes were observed for all subjects, including the leg amputee, which implies the promise of the designed sensor interface for providing a reliable neural-machine interface for artificial legs.

  18. EOG-sEMG Human Interface for Communication

    PubMed Central

    Tamura, Hiroki; Yan, Mingmin; Sakurai, Keiko; Tanno, Koichi

    2016-01-01

    The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as “dual-modality” for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%. PMID:27418924

  19. Generating Control Commands From Gestures Sensed by EMG

    NASA Technical Reports Server (NTRS)

    Wheeler, Kevin R.; Jorgensen, Charles

    2006-01-01

    An effort is under way to develop noninvasive neuro-electric interfaces through which human operators could control systems as diverse as simple mechanical devices, computers, aircraft, and even spacecraft. The basic idea is to use electrodes on the surface of the skin to acquire electromyographic (EMG) signals associated with gestures, digitize and process the EMG signals to recognize the gestures, and generate digital commands to perform the actions signified by the gestures. In an experimental prototype of such an interface, the EMG signals associated with hand gestures are acquired by use of several pairs of electrodes mounted in sleeves on a subject s forearm (see figure). The EMG signals are sampled and digitized. The resulting time-series data are fed as input to pattern-recognition software that has been trained to distinguish gestures from a given gesture set. The software implements, among other things, hidden Markov models, which are used to recognize the gestures as they are being performed in real time. Thus far, two experiments have been performed on the prototype interface to demonstrate feasibility: an experiment in synthesizing the output of a joystick and an experiment in synthesizing the output of a computer or typewriter keyboard. In the joystick experiment, the EMG signals were processed into joystick commands for a realistic flight simulator for an airplane. The acting pilot reached out into the air, grabbed an imaginary joystick, and pretended to manipulate the joystick to achieve left and right banks and up and down pitches of the simulated airplane. In the keyboard experiment, the subject pretended to type on a numerical keypad, and the EMG signals were processed into keystrokes. The results of the experiments demonstrate the basic feasibility of this method while indicating the need for further research to reduce the incidence of errors (including confusion among gestures). Topics that must be addressed include the numbers and arrangements

  20. A Versatile Embedded Platform for EMG Acquisition and Gesture Recognition.

    PubMed

    Benatti, Simone; Casamassima, Filippo; Milosevic, Bojan; Farella, Elisabetta; Schönle, Philipp; Fateh, Schekeb; Burger, Thomas; Huang, Qiuting; Benini, Luca

    2015-10-01

    Wearable devices offer interesting features, such as low cost and user friendliness, but their use for medical applications is an open research topic, given the limited hardware resources they provide. In this paper, we present an embedded solution for real-time EMG-based hand gesture recognition. The work focuses on the multi-level design of the system, integrating the hardware and software components to develop a wearable device capable of acquiring and processing EMG signals for real-time gesture recognition. The system combines the accuracy of a custom analog front end with the flexibility of a low power and high performance microcontroller for on-board processing. Our system achieves the same accuracy of high-end and more expensive active EMG sensors used in applications with strict requirements on signal quality. At the same time, due to its flexible configuration, it can be compared to the few wearable platforms designed for EMG gesture recognition available on market. We demonstrate that we reach similar or better performance while embedding the gesture recognition on board, with the benefit of cost reduction. To validate this approach, we collected a dataset of 7 gestures from 4 users, which were used to evaluate the impact of the number of EMG channels, the number of recognized gestures and the data rate on the recognition accuracy and on the computational demand of the classifier. As a result, we implemented a SVM recognition algorithm capable of real-time performance on the proposed wearable platform, achieving a classification rate of 90%, which is aligned with the state-of-the-art off-line results and a 29.7 mW power consumption, guaranteeing 44 hours of continuous operation with a 400 mAh battery.

  1. Surface EMG-based Sketching Recognition Using Two Analysis Windows and Gene Expression Programming

    PubMed Central

    Yang, Zhongliang; Chen, Yumiao

    2016-01-01

    Sketching is one of the most important processes in the conceptual stage of design. Previous studies have relied largely on the analyses of sketching process and outcomes; whereas surface electromyographic (sEMG) signals associated with sketching have received little attention. In this study, we propose a method in which 11 basic one-stroke sketching shapes are identified from the sEMG signals generated by the forearm and upper arm muscles from 4 subjects. Time domain features such as integrated electromyography, root mean square and mean absolute value were extracted with analysis windows of two length conditions for pattern recognition. After reducing data dimensionality using principal component analysis, the shapes were classified using Gene Expression Programming (GEP). The performance of the GEP classifier was compared to the Back Propagation neural network (BPNN) and the Elman neural network (ENN). Feature extraction with the short analysis window (250 ms with a 250 ms increment) improved the recognition rate by around 6.4% averagely compared with the long analysis window (2500 ms with a 2500 ms increment). The average recognition rate for the eleven basic one-stroke sketching patterns achieved by the GEP classifier was 96.26% in the training set and 95.62% in the test set, which was superior to the performance of the BPNN and ENN classifiers. The results show that the GEP classifier is able to perform well with either length of the analysis window. Thus, the proposed GEP model show promise for recognizing sketching based on sEMG signals. PMID:27790083

  2. Surface EMG-based Sketching Recognition Using Two Analysis Windows and Gene Expression Programming.

    PubMed

    Yang, Zhongliang; Chen, Yumiao

    2016-01-01

    Sketching is one of the most important processes in the conceptual stage of design. Previous studies have relied largely on the analyses of sketching process and outcomes; whereas surface electromyographic (sEMG) signals associated with sketching have received little attention. In this study, we propose a method in which 11 basic one-stroke sketching shapes are identified from the sEMG signals generated by the forearm and upper arm muscles from 4 subjects. Time domain features such as integrated electromyography, root mean square and mean absolute value were extracted with analysis windows of two length conditions for pattern recognition. After reducing data dimensionality using principal component analysis, the shapes were classified using Gene Expression Programming (GEP). The performance of the GEP classifier was compared to the Back Propagation neural network (BPNN) and the Elman neural network (ENN). Feature extraction with the short analysis window (250 ms with a 250 ms increment) improved the recognition rate by around 6.4% averagely compared with the long analysis window (2500 ms with a 2500 ms increment). The average recognition rate for the eleven basic one-stroke sketching patterns achieved by the GEP classifier was 96.26% in the training set and 95.62% in the test set, which was superior to the performance of the BPNN and ENN classifiers. The results show that the GEP classifier is able to perform well with either length of the analysis window. Thus, the proposed GEP model show promise for recognizing sketching based on sEMG signals.

  3. The effect of high pass filtering and non-linear normalization on the EMG-force relationship during sub-maximal finger exertions.

    PubMed

    McDonald, Alison C; Sanei, Kia; Keir, Peter J

    2013-06-01

    Muscle force estimates are important for full understanding of the musculoskeletal system and EMG is a modeling method used to estimate muscle force. The purpose of this investigation was to examine the effect of high pass filtering and non-linear normalization on the EMG-force relationship of sub-maximal finger exertions. Sub-maximal isometric ramp exertions were performed under three conditions (i) extension with restraint at the mid-proximal phalanx, (ii) flexion at the proximal phalanx and (iii) flexion at the distal phalanx. Thirty high pass filter designs were compared to a standardized processing procedure and an exponential fit equation was used for non-linear normalization. High pass filtering significantly reduced the %RMS error and increased the peak cross correlation between EMG and force in the distal flexion condition and in the other two conditions there was a trend towards improving force predictions with high pass filtering. The degree of linearity differed between the three contraction conditions and high pass filtering improved the linearity in all conditions. Non-linear normalization had greater impact on the EMG-force relationship than high pass filtering. The difference in optimal processing parameters suggests that high pass filtering and linearity are dependent on contraction mode as well as the muscle analyzed.

  4. Detection of and Compensation for EMG Disturbances for Powered Lower Limb Prosthesis Control.

    PubMed

    Spanias, John A; Perreault, Eric J; Hargrove, Levi J

    2016-02-01

    Myoelectric pattern recognition algorithms have been proposed for the control of powered lower limb prostheses, but electromyography (EMG) signal disturbances remain an obstacle to clinical implementation. To address this problem, we used a log-likelihood metric to detect simulated EMG disturbances and real disturbances acquired from EMG containing electrode shift. We found that features extracted from disturbed EMG have much lower log likelihoods than those from undisturbed signals and can be detected using a single threshold acquired from the training data. We designed a linear discriminant analysis (LDA) classifier that uses the log likelihood to decide between using a combination of EMG and mechanical sensors and using mechanical sensors only, to predict locomotion modes. When EMG contained disturbances, our classifier detected those disturbances and disregarded EMG data. Our classifier had significantly lower errors than a standard LDA classifier in the presence of EMG disturbances. The log-likelihood classifier had a low false positive threshold, and thus did not perform significantly differently from the standard LDA classifier when EMG did not contain disturbances. The log-likelihood threshold could also be applied to individual EMG channels, enabling specific channels containing EMG disturbances to be appropriately ignored when making locomotion mode predictions.

  5. Application of Wavelet Analysis in EMG Feature Extraction for Pattern Classification

    NASA Astrophysics Data System (ADS)

    Phinyomark, A.; Limsakul, C.; Phukpattaranont, P.

    2011-01-01

    Nowadays, analysis of electromyography (EMG) signal using wavelet transform is one of the most powerful signal processing tools. It is widely used in the EMG recognition system. In this study, we have investigated usefulness of extraction of the EMG features from multiple-level wavelet decomposition of the EMG signal. Different levels of various mother wavelets were used to obtain the useful resolution components from the EMG signal. Optimal EMG resolution component (sub-signal) was selected and then the reconstruction of the useful information signal was done. Noise and unwanted EMG parts were eliminated throughout this process. The estimated EMG signal that is an effective EMG part was extracted with the popular features, i.e. mean absolute value and root mean square, in order to improve quality of class separability. Two criteria used in the evaluation are the ratio of a Euclidean distance to a standard deviation and the scatter graph. The results show that only the EMG features extracted from reconstructed EMG signals of the first-level and the second-level detail coefficients yield the improvement of class separability in feature space. It will ensure that the result of pattern classification accuracy will be as high as possible. Optimal wavelet decomposition is obtained using the seventh order of Daubechies wavelet and the forth-level wavelet decomposition.

  6. EMG and tibial shock upon the first attempt at barefoot running.

    PubMed

    Olin, Evan D; Gutierrez, Gregory M

    2013-04-01

    As a potential means to decrease their risk of injury, many runners are transitioning into barefoot running. Habitually shod runners tend to heel-strike (SHS), landing on their heel first, while barefoot runners tend to mid-foot or toe-strike (BTS), landing flat-footed or on the ball of their foot before bringing down the rest of the foot including the heel. This study compared muscle activity, tibial shock, and knee flexion angle in subjects between shod and barefoot conditions. Eighteen habitually SHS recreational runners ran for 3 separate 7-minute trials, including SHS, barefoot heel-strike (BHS), and BTS conditions. EMG, tibial shock, and knee flexion angle were monitored using bipolar surface electrodes, an accelerometer, and an electrogoniometer, respectively. A one-way MANOVA for repeated measures was conducted and several significant changes were noted between SHS and BTS, including significant increases in average EMG of the medial gastrocnemius (p=.05), average and peak tibial shock (p<.01), and the minimum knee flexion angle (p<.01). Based on our data, the initial change in mechanics may have detrimental effects on the runner. While it has been argued that BTS running may ultimately be less injurious, these data indicate that habitually SHS runners who choose to transition into a BTS technique must undertake the process cautiously.

  7. Occurrence of a rhythmic slower wave in EMG prior to a rapid voluntary movement.

    PubMed

    Tanii, K

    1984-05-01

    The aim of the present study was to investigate whether an EMG slower wave prior to a rapid straightening-up movement is associated with motor preparation to perform the movement. The straightening movement was performed at 6 load intensities and under 3 conditions: without any external load; with an additional load; lifting a load. The subject could freely begin the rapid movement from a moderate forward-bending position whenever he was fully ready for the beginning of the movement after he held the bent posture. Bipolar surface EMGs of the erector spinal muscles at the L1 and L4 level, the gluteus maximus muscle and the semitendinosus muscle were led by a pair of skin electrodes with a time constant of 0.03 sec. The signal from the hip goniometer was measured simultaneously to identify the period of the movement. A distinct relationship between the occurrence of the slower wave and both load intensities and conditions was not found. However, the rhythmic slower wave often occurred in the muscles 200-450 msec before the movement. The occurrence of the wave in the muscles was often simultaneous. The signal from the hip goniometer did not change with the occurrence of the slower wave. The amplitude of the slower wave increased frequently. The present results suggest that the slower wave may reflect a significant change of motoneuronal activity in connection with motor preparation to perform the movement.

  8. An online hybrid BCI system based on SSVEP and EMG

    NASA Astrophysics Data System (ADS)

    Lin, Ke; Cinetto, Andrea; Wang, Yijun; Chen, Xiaogang; Gao, Shangkai; Gao, Xiaorong

    2016-04-01

    Objective. A hybrid brain-computer interface (BCI) is a device combined with at least one other communication system that takes advantage of both parts to build a link between humans and machines. To increase the number of targets and the information transfer rate (ITR), electromyogram (EMG) and steady-state visual evoked potential (SSVEP) were combined to implement a hybrid BCI. A multi-choice selection method based on EMG was developed to enhance the system performance. Approach. A 60-target hybrid BCI speller was built in this study. A single trial was divided into two stages: a stimulation stage and an output selection stage. In the stimulation stage, SSVEP and EMG were used together. Every stimulus flickered at its given frequency to elicit SSVEP. All of the stimuli were divided equally into four sections with the same frequency set. The frequency of each stimulus in a section was different. SSVEPs were used to discriminate targets in the same section. Different sections were classified using EMG signals from the forearm. Subjects were asked to make different number of fists according to the target section. Canonical Correlation Analysis (CCA) and mean filtering was used to classify SSVEP and EMG separately. In the output selection stage, the top two optimal choices were given. The first choice with the highest probability of an accurate classification was the default output of the system. Subjects were required to make a fist to select the second choice only if the second choice was correct. Main results. The online results obtained from ten subjects showed that the mean accurate classification rate and ITR were 81.0% and 83.6 bits min-1 respectively only using the first choice selection. The ITR of the hybrid system was significantly higher than the ITR of any of the two single modalities (EMG: 30.7 bits min-1, SSVEP: 60.2 bits min-1). After the addition of the second choice selection and the correction task, the accurate classification rate and ITR was

  9. Accuracy assessment of CKC high-density surface EMG decomposition in biceps femoris muscle

    NASA Astrophysics Data System (ADS)

    Marateb, H. R.; McGill, K. C.; Holobar, A.; Lateva, Z. C.; Mansourian, M.; Merletti, R.

    2011-10-01

    The aim of this study was to assess the accuracy of the convolution kernel compensation (CKC) method in decomposing high-density surface EMG (HDsEMG) signals from the pennate biceps femoris long-head muscle. Although the CKC method has already been thoroughly assessed in parallel-fibered muscles, there are several factors that could hinder its performance in pennate muscles. Namely, HDsEMG signals from pennate and parallel-fibered muscles differ considerably in terms of the number of detectable motor units (MUs) and the spatial distribution of the motor-unit action potentials (MUAPs). In this study, monopolar surface EMG signals were recorded from five normal subjects during low-force voluntary isometric contractions using a 92-channel electrode grid with 8 mm inter-electrode distances. Intramuscular EMG (iEMG) signals were recorded concurrently using monopolar needles. The HDsEMG and iEMG signals were independently decomposed into MUAP trains, and the iEMG results were verified using a rigorous a posteriori statistical analysis. HDsEMG decomposition identified from 2 to 30 MUAP trains per contraction. 3 ± 2 of these trains were also reliably detected by iEMG decomposition. The measured CKC decomposition accuracy of these common trains over a selected 10 s interval was 91.5 ± 5.8%. The other trains were not assessed. The significant factors that affected CKC decomposition accuracy were the number of HDsEMG channels that were free of technical artifact and the distinguishability of the MUAPs in the HDsEMG signal (P < 0.05). These results show that the CKC method reliably identifies at least a subset of MUAP trains in HDsEMG signals from low force contractions in pennate muscles.

  10. Haptic feedback enhances grip force control of sEMG-controlled prosthetic hands in targeted reinnervation amputees.

    PubMed

    Kim, Keehoon; Colgate, J Edward

    2012-11-01

    In this study, we hypothesized that haptic feedback would enhance grip force control of surface electromyography (sEMG)-controlled prosthetic hands for targeted reinnervation (TR) amputees. A new miniature haptic device, a tactor, that can deliver touch, pressure, shear, and temperature sensation, allows modality-matching haptic feedback. TR surgery that creates sensory regions on the patient's skin that refer to the surface of the missing limb allows somatotopic-matching haptic feedback. This paper evaluates the hypothesis via an sEMG-controlled virtual prosthetic arm operated by TR amputees under diverse haptic feedback conditions. The results indicate that the grip force control is significantly enhanced via the haptic feedback. However, the simultaneous display of two haptic channels (pressure and shear) does not enhance, but instead degrades, grip force control.

  11. Power independent EMG based gesture recognition for robotics.

    PubMed

    Li, Ling; Looney, David; Park, Cheolsoo; Rehman, Naveed U; Mandic, Danilo P

    2011-01-01

    A novel method for detecting muscle contraction is presented. This method is further developed for identifying four different gestures to facilitate a hand gesture controlled robot system. It is achieved based on surface Electromyograph (EMG) measurements of groups of arm muscles. The cross-information is preserved through a simultaneous processing of EMG channels using a recent multivariate extension of Empirical Mode Decomposition (EMD). Next, phase synchrony measures are employed to make the system robust to different power levels due to electrode placements and impedances. The multiple pairwise muscle synchronies are used as features of a discrete gesture space comprising four gestures (flexion, extension, pronation, supination). Simulations on real-time robot control illustrate the enhanced accuracy and robustness of the proposed methodology.

  12. Classification of EMG signals using PCA and FFT.

    PubMed

    Güler, Nihal Fatma; Koçer, Sabri

    2005-06-01

    In this study, the fast Fourier transform (FFT) analysis was applied to EMG signals recorded from ulnar nerves of 59 patients to interpret data. The data of the patients were diagnosed by the neurologists as 19 patients were normal, 20 patients had neuropathy and 20 patients had myopathy. The amount of FFT coefficients had been reduced by using principal components analysis (PCA). This would facilitate calculation and storage of EMG data. PCA coefficients were applied to multilayer perceptron (MLP) and support vector machine (SVM) and both classified systems of performance values were computed. Consequently, the results show that SVM has high anticipation level in the diagnosis of neuromuscular disorders. It is proved that its test performance is high compared with MLP.

  13. EMG signal morphology in essential tremor and Parkinson's disease.

    PubMed

    Ruonala, V; Meigal, A; Rissanen, S M; Airaksinen, O; Kankaanpaa, M; Karjalainen, P A

    2013-01-01

    The aim of this work was to differentiate patients with essential tremor from patients with Parkinson's disease. The electromyographic signal from the biceps brachii muscle was measured during isometric tension from 17 patients with essential tremor, 35 patients with Parkinson's disease, and 40 healthy controls. The EMG signals were high pass filtered and divided to smaller segments from which histograms were calculated using 200 histogram bins. EMG signal histogram shape was analysed with a feature dimension reduction method, the principal component analysis, and the shape parameters were used to differentiate between different patient groups. The height of the histogram and the side difference between left and right hand were the best discriminators between essential tremor and Parkinson's disease groups. With this method, it was possible to discriminate 13/17 patients with essential tremor from 26/35 patients with Parkinson's disease and 14/17 patients with essential tremor from 29/40 healthy controls.

  14. Electromyographic (EMG) neuromonitoring in otolaryngology-head and neck surgery.

    PubMed

    Dillon, Francis X

    2010-09-01

    Intraoperative neuromonitoring (IONM) is a relatively recent advance in electromyography (EMG) applied to otolaryngology-head and neck surgery. Its purpose is to allow real-time identification and functional assessment of vulnerable nerves during surgery. The nerves most often monitored in head and neck surgery are the motor branch of the facial nerve (VII), the recurrent or inferior laryngeal nerves (X), the vagus nerve (X), and the spinal accessory nerve (XI), with other cranial lower nerves monitored less frequently. Morbidity from trauma to these nerves is significant and obvious, such as unilateral facial paresis. Although functional restorative surgery is usually considered to repair the effects of such an insult, the importance of preventing nerve injury in head and neck surgery is obvious. This article focuses on the anesthetic considerations pertinent to IONM of peripheral cranial nerves during otolaryngologic-head and neck surgery. The specific modality of IONM is EMG, both spontaneous and evoked.

  15. Muscular fatigue detection using sEMG in dynamic contractions.

    PubMed

    Bueno, Diana R; Lizano, J M; Montano, L

    2015-08-01

    In this work we have studied different indicators of muscle fatigue from the electrical signal produced by the muscles when contract (sEMG or EMG: surface electromyography): Mean Frequency of the power spectrum (MNF), Median Frequency (Fmed), Dimitrov Spectral Index (FInsm5), Root Mean Square (RMS), and Zerocrossing (ZC). The most reliable features are selected to develop a detection algorithm that estimates muscle fatigue. The approach used in the algorithm is probabilistic and is based on the technique of Gaussian Mixture Model (GMM). The system is divided into two stages: training and validation. During training, the algorithm learns the distribution of data regarding fatigue evolution; after that, the algorithm is validated with data that have not been used to train. Therefore, two experimental sessions have been performed with 6 healthy subjects for biceps.

  16. In vivo EMG biofeedback in violin and viola pedagogy.

    PubMed

    LeVine, W R; Irvine, J K

    1984-06-01

    In vivo EMG biofeedback was found to be an effective pedagogical tool for removing unwanted left-hand tension in nine violin and viola players. Improvement occurred rapidly and persisted throughout a 5-month follow-up period. Further studies will be necessary to assess the effect of biofeedback independent of placebo effects. The brevity of the method and the magnitude of improvement warrant further investigation.

  17. EMG study for perioral facial muscles function during mastication.

    PubMed

    Hanawa, S; Tsuboi, A; Watanabe, M; Sasaki, K

    2008-03-01

    This study aimed to clarify the temporal and quantitative modulation in the orbicularis oris (OO) and buccinator (BUC) muscle activities during mastication. Ten healthy males (26.9 +/- 1.0 years) participated. Electromyograms (EMGs) of the facial muscles were recorded with fine wire electrodes when chewing the chewing gum (one to four sticks) and peanuts (one to five pieces). Surface EMGs of the masseter (MAS) and digastric muscles were recorded simultaneously. EMGs of the OO and BUC showed rhythmic single-peaked bursts corresponding to the jaw-opening phase of chewing cycles. The total cycle lengths were constant regardless of the food amount. Integrated EMGs of the OO changed significantly when the amount of both foods changed (anova: P < 0.05). Those of the BUC changed significantly with the amount of gum changed (P < 0.05), but did not change with the amount of peanuts changed. The burst duration of OO changed significantly when the amount of gum changed during ipsilateral chewing (P < 0.05). When the amount of peanuts changed during ipsilateral chewing, the onset of OO and the peak of BUC based on the onset of MAS activity changed significantly (P < 0.05). However, the onset, peak and offset of the OO and BUC based on the offset of MAS did not change regardless of the amounts chewed. The changes of the OO and BUC activities may derive from chewing-generated sensory inputs in accordance with the physical property of food in part, which would relate to the function of these muscles during mastication.

  18. Evaluation of EMG processing techniques using Information Theory

    PubMed Central

    2010-01-01

    Background Electromyographic signals can be used in biomedical engineering and/or rehabilitation field, as potential sources of control for prosthetics and orthotics. In such applications, digital processing techniques are necessary to follow efficient and effectively the changes in the physiological characteristics produced by a muscular contraction. In this paper, two methods based on information theory are proposed to evaluate the processing techniques. Methods These methods determine the amount of information that a processing technique is able to extract from EMG signals. The processing techniques evaluated with these methods were: absolute mean value (AMV), RMS values, variance values (VAR) and difference absolute mean value (DAMV). EMG signals from the middle deltoid during abduction and adduction movement of the arm in the scapular plane was registered, for static and dynamic contractions. The optimal window length (segmentation), abduction and adduction movements and inter-electrode distance were also analyzed. Results Using the optimal segmentation (200 ms and 300 ms in static and dynamic contractions, respectively) the best processing techniques were: RMS, AMV and VAR in static contractions, and only the RMS in dynamic contractions. Using the RMS of EMG signal, variations in the amount of information between the abduction and adduction movements were observed. Conclusions Although the evaluation methods proposed here were applied to standard processing techniques, these methods can also be considered as alternatives tools to evaluate new processing techniques in different areas of electrophysiology. PMID:21073705

  19. An EMG-Controlled Robotic Hand Exoskeleton for Bilateral Rehabilitation.

    PubMed

    Leonardis, Daniele; Barsotti, Michele; Loconsole, Claudio; Solazzi, Massimiliano; Troncossi, Marco; Mazzotti, Claudio; Castelli, Vincenzo Parenti; Procopio, Caterina; Lamola, Giuseppe; Chisari, Carmelo; Bergamasco, Massimo; Frisoli, Antonio

    2015-01-01

    This paper presents a novel electromyography (EMG)-driven hand exoskeleton for bilateral rehabilitation of grasping in stroke. The developed hand exoskeleton was designed with two distinctive features: (a) kinematics with intrinsic adaptability to patient's hand size, and (b) free-palm and free-fingertip design, preserving the residual sensory perceptual capability of touch during assistance in grasping of real objects. In the envisaged bilateral training strategy, the patient's non paretic hand acted as guidance for the paretic hand in grasping tasks. Grasping force exerted by the non paretic hand was estimated in real-time from EMG signals, and then replicated as robotic assistance for the paretic hand by means of the hand-exoskeleton. Estimation of the grasping force through EMG allowed to perform rehabilitation exercises with any, non sensorized, graspable objects. This paper presents the system design, development, and experimental evaluation. Experiments were performed within a group of six healthy subjects and two chronic stroke patients, executing robotic-assisted grasping tasks. Results related to performance in estimation and modulation of the robotic assistance, and to the outcomes of the pilot rehabilitation sessions with stroke patients, positively support validity of the proposed approach for application in stroke rehabilitation.

  20. Multidimensional EMG-based assessment of walking dynamics.

    PubMed

    Jansen, Ben H; Miller, Vonda H; Mavrofrides, Demetrios C; Stegink Jansen, Caroline W

    2003-09-01

    The electromyogram (EMG) provides a measure of a muscle's involvement in the execution of a motor task. Successful completion of an activity, such as walking, depends on the efficient motor control of a group of muscles. In this paper, we present a method to quantify the intricate phasing and activation levels of a group of muscles during gait. At the core of our method is a multidimensional representation of the EMG activity observed during a single stride. This representation is referred to as a "trajectory." A hierarchical clustering procedure is used to identify representative classes of muscle activity patterns. The relative frequencies with which these motor patterns occur during a session (i.e., a series of consecutive strides) are expressed as histograms. Changes in walking strategy will be reflected as changes in the relative frequency with which specific gait patterns occur. This method was evaluated using EMG data obtained during walking on a level and a moderately-inclined treadmill. It was found that the histogram changes due to artificially altered gait are significantly larger than the changes due to normal day-to-day variability.

  1. The extraction of neural strategies from the surface EMG: an update.

    PubMed

    Farina, Dario; Merletti, Roberto; Enoka, Roger M

    2014-12-01

    A surface EMG signal represents the linear transformation of motor neuron discharge times by the compound action potentials of the innervated muscle fibers and is often used as a source of information about neural activation of muscle. However, retrieving the embedded neural code from a surface EMG signal is extremely challenging. Most studies use indirect approaches in which selected features of the signal are interpreted as indicating certain characteristics of the neural code. These indirect associations are constrained by limitations that have been detailed previously (Farina D, Merletti R, Enoka RM. J Appl Physiol 96: 1486-1495, 2004) and are generally difficult to overcome. In an update on these issues, the current review extends the discussion to EMG-based coherence methods for assessing neural connectivity. We focus first on EMG amplitude cancellation, which intrinsically limits the association between EMG amplitude and the intensity of the neural activation and then discuss the limitations of coherence methods (EEG-EMG, EMG-EMG) as a way to assess the strength of the transmission of synaptic inputs into trains of motor unit action potentials. The debated influence of rectification on EMG spectral analysis and coherence measures is also discussed. Alternatively, there have been a number of attempts to identify the neural information directly by decomposing surface EMG signals into the discharge times of motor unit action potentials. The application of this approach is extremely powerful, but validation remains a central issue.

  2. Effects of innovative virtual reality game and EMG biofeedback on neuromotor control in cerebral palsy.

    PubMed

    Yoo, Ji Won; Lee, Dong Ryul; Sim, Yon Ju; You, Joshua H; Kim, Cheol J

    2014-01-01

    Sensorimotor control dysfunction or dyskinesia is a hallmark of neuromuscular impairment in children with cerebral palsy (CP), and is often implicated in reaching and grasping deficiencies due to a neuromuscular imbalance between the triceps and biceps. To mitigate such muscle imbalances, an innovative electromyography (EMG)-virtual reality (VR) biofeedback system were designed to provide accurate information about muscle activation and motivation. However, the clinical efficacy of this approach has not yet been determined in children with CP. The purpose of this study was to investigate the effectiveness of a combined EMG biofeedback and VR (EMG-VR biofeedback) intervention system to improve muscle imbalance between triceps and biceps during reaching movements in children with spastic CP. Raw EMG signals were recorded at a sampling rate of 1,000 Hz, band-pass filtered between 20-450 Hz, and notch-filtered at 60 Hz during elbow flexion and extension movements. EMG data were then processed using MyoResearch Master Edition 1.08 XP software. All participants underwent both interventions consisting of the EMG-VR biofeedback combination and EMG biofeedback alone. EMG analysis resulted in improved muscle activation in the underactive triceps while decreasing overactive or hypertonic biceps in the EMG-VR biofeedback compared with EMG biofeedback. The muscle imbalance ratio between the triceps and biceps was consistently improved. The present study is the first clinical trial to provide evidence for the additive benefits of VR intervention for enhancing the upper limb function of children with spastic CP.

  3. A preliminary investigation of reproducibility of EMG signals during daytime masticatory muscle activity using a portable EMG logging device.

    PubMed

    Omoto, Katsuhiro; Shigemoto, Shuji; Suzuki, Yoshitaka; Nakamura, Mayumi; Okura, Kazuo; Nishigawa, Keisuke; Goto, Nami; Rodis, Omar Marianito Maningo; Matsuka, Yoshizo

    2015-08-01

    Continuous parafunctional masseter muscle activities (MMA) that are associated with daytime bruxism have been suspected to be one of the main pathoetiology for orofacial pain. The purpose of this study was to examine the long-term stability and reliability of daytime EMG measurement of MMA using a portable device (Actiwave; CamNtech Ltd). Daytime masseter muscle EMG of five subjects were recorded for four days in their normal living environment. There was no significant time dependent effect on EMG amplitude during recording period. A total of 4923 MMA events were detected in all analysis periods (129.4h) and classified into phasic type (1209 events, 24.6%), tonic type (1759 events, 37.0%), and mixed type (1377 events, 28.0%). There was no significant difference in the number of occurrence among three MMA types. With respect to the duration and peak MMA, there were significant differences among three MMA types. The result of this study indicated that Actiwave can be used to measure MMA events during daytime with high stability and reliability under the normal living environment and it was suspected that parafunctional habits may be associated with the occurrence patterns of MMA during daytime.

  4. Increasing Elbow Torque Output of Stroke Patients by EMG-Controlled External Torque

    DTIC Science & Technology

    2007-11-02

    Abstract- A control algorithm for using homogenic EMG to control external assisting torque is developed for improving the elbow capability of...sacrificing performance. Keywords - Elbow , EMG, assisting torque, stroke I. INTRODUCTION Hemiparesis, which means partial loss of muscle strength...system to increase the total torque capability of the elbow for this class of patients. The system was controlled by surface EMG of biceps and

  5. Effect of Selective Muscle Training Using Visual EMG Biofeedback on Infraspinatus and Posterior Deltoid

    PubMed Central

    Lim, One-bin; Kim, Jeong-ah; Song, Si-jeong; Cynn, Heon-seock; Yi, Chung-hwi

    2014-01-01

    We investigated the effects of visual electromyography (EMG) biofeedback during side-lying shoulder external rotation exercise on the EMG amplitude for the posterior deltoid, infraspinatus, and infraspinatus/posterior deltoid EMG activity ratio. Thirty-one asymptomatic subjects were included. Subjects performed side-lying shoulder external rotation exercise with and without visual EMG biofeedback. Surface EMG was used to collect data from the posterior deltoid and infraspinatus muscles. The visual EMG biofeedback applied the pre-established threshold to prevent excessive posterior deltoid muscle contraction. A paired t-test was used to determine the significance of the measurements between without vs. with visual EMG biofeedback. Posterior deltoid activity significantly decreased while infraspinatus activity and the infraspinatus/posterior activity ratio significantly increased during side-lying shoulder external rotation exercise with visual EMG biofeedback. This suggests that using visual EMG biofeedback during shoulder external rotation exercise is a clinically effective training method for reducing posterior deltoid activity and increasing infraspinatus activity. PMID:25713668

  6. Word length effects on EMG/vowel duration relationships in apraxic speakers.

    PubMed

    Strauss, M; Klich, R J

    2001-01-01

    The effects of word length on the timing of lip electromyographic (EMG) activity for production of the vowel /u/ and the relationship of this activity to vowel duration were examined in matched male and female pairs of normal and apraxic speakers. Both apraxic speakers had suffered left cerebrovascular accidents, which resulted in apraxia of speech as the primary communication deficit. For all participants, the interval of time in which lip muscle activity was present prior to the onset of voicing for the /u/ (EMG onset interval) in each word systematically decreased as word length increased. However, EMG activity offset intervals, which were measured from the onset of voicing for /u/ to the onset of the reduction of EMG activity during the vowel (EMG termination interval), decreased as word length increased only for the normal speakers. Relative onset of EMG activity was not significantly related to relative offset of EMG activity or relative vowel duration. However, the relative EMG onset interval was correlated with the duration of an entire word. Findings for the relative EMG termination interval were variable and are discussed relative to the severity of apraxia of speech.

  7. [The usage of E.M.G. in the dental research and the clinical practice].

    PubMed

    Droukas, B; Antoniou, D

    1989-01-01

    The first part of this review, refers to the use of electromyography (EMG) in studying the stomatognathic system. EMG is used for the study of function and fatigue of the masticatory muscles, the recording of centric relation etc. The behavior of the masticatory muscles (especially of the masseter and the temporalis) in the cases of TMJ dysfunction are also reviewed. In the second part, there is a description of the use of EMG biofeedback in the treatment of TMJ dysfunction, myofacial pain and bruxism. Finally, there is reference to the portable modular EMG biofeedback units.

  8. Blind separation of convolutive sEMG mixtures based on independent vector analysis

    NASA Astrophysics Data System (ADS)

    Wang, Xiaomei; Guo, Yina; Tian, Wenyan

    2015-12-01

    An independent vector analysis (IVA) method base on variable-step gradient algorithm is proposed in this paper. According to the sEMG physiological properties, the IVA model is applied to the frequency-domain separation of convolutive sEMG mixtures to extract motor unit action potentials information of sEMG signals. The decomposition capability of proposed method is compared to the one of independent component analysis (ICA), and experimental results show the variable-step gradient IVA method outperforms ICA in blind separation of convolutive sEMG mixtures.

  9. Changes in jaw muscle EMG activity and pain after third molar surgery.

    PubMed

    Ernberg, M; Schopka, J H; Fougeront, N; Svensson, P

    2007-01-01

    Limited jaw-opening capacity is frequently encountered following third molar surgery and may impair function. The aim of this study was to investigate the electromyographic (EMG) activity in jaw muscles after third molar surgery to obtain more insight into the mechanisms of restrictions in jaw opening. Twenty subjects were examined before, 24 h and 1 week after surgery. Ten healthy controls were subjected to the same examination at two different occasions for intersession variability. The EMG activity of the masseter and anterior digastricus muscles was recorded at different jaw positions and during maximum voluntary clenching. Pain intensity was assessed at rest and during movements. The EMG activity in the jaw muscles increased with opening level (P < 0.01), but did not change after surgery. In contrast, the EMG activity during clenching was decreased in all muscles after surgery (P < 0.05). The pain intensity after surgery increased with jaw opening level (P < 0.001), but was in general not correlated to EMG level. Pain intensity during clenching was increased after surgery (P < 0.001), but not correlated to EMG level. The EMG activity did not change between visits in the control group. In conclusion, the results indicate that third molar surgery does not influence the EMG activity in the masseter and anterior digastricus muscles during various levels of static jaw opening, but decreases the EMG activity during clenching. However, these changes are not influenced by pain intensity. The results have implications for the understanding of the phenomenon of trismus.

  10. Quadratus femoris: An EMG investigation during walking and running.

    PubMed

    Semciw, Adam I; Freeman, Michael; Kunstler, Breanne E; Mendis, M Dilani; Pizzari, Tania

    2015-09-18

    Dysfunction of hip stabilizing muscles such as quadratus femoris (QF) is identified as a potential source of lower extremity injury during functional tasks like running. Despite these assumptions, there are currently no electromyography (EMG) data that establish the burst activity profile of QF during any functional task like walking or running. The objectives of this study were to characterize and compare the EMG activity profile of QF while walking and running (primary aim) and describe the direction specific action of QF (secondary aim). A bipolar fine-wire intramuscular electrode was inserted via ultrasound guidance into the QF of 10 healthy participants (4 females). Ensemble curves were generated from four walking and running trials, and normalized to maximum voluntary isometric contractions (MVICs). Paired t-tests compared the temporal and amplitude EMG variables. The relative activity of QF in the MVICs was calculated. The QF displayed moderate to high amplitude activity in the stance phase of walking and very high activity during stance in running. During swing, there was minimal QF activity recorded during walking and high amplitudes were present while running (run vs walk effect size=4.23, P<0.001). For the MVICs, external rotation and clam produced the greatest QF activity, with the hip in the anatomical position. This study provides an understanding of the activity demands placed on QF while walking and running. The high activity in late swing during running may signify a synergistic role with other posterior thigh muscles to control deceleration of the limb in preparation for stance.

  11. Subauditory Speech Recognition based on EMG/EPG Signals

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Lee, Diana Dee; Agabon, Shane; Lau, Sonie (Technical Monitor)

    2003-01-01

    Sub-vocal electromyogram/electro palatogram (EMG/EPG) signal classification is demonstrated as a method for silent speech recognition. Recorded electrode signals from the larynx and sublingual areas below the jaw are noise filtered and transformed into features using complex dual quad tree wavelet transforms. Feature sets for six sub-vocally pronounced words are trained using a trust region scaled conjugate gradient neural network. Real time signals for previously unseen patterns are classified into categories suitable for primitive control of graphic objects. Feature construction, recognition accuracy and an approach for extension of the technique to a variety of real world application areas are presented.

  12. Further observations on the relationship of EMG and muscle force

    NASA Technical Reports Server (NTRS)

    Agarwal, G. C.; Cecchini, L. R.; Gottlieb, G. L.

    1972-01-01

    Human skeletal muscle may be regarded as an electro-mechanical transducer. Its physiological input is a neural signal originating at the alpha motoneurons in the spinal cord and its output is force and muscle contraction, these both being dependent on the external load. Some experimental data taken during voluntary efforts around the ankle joint and by direct electrical stimulation of the nerve are described. Some of these experiments are simulated by an analog model, the input of which is recorded physiological soleus muscle EMG. The output is simulated foot torque. Limitations of a linear model and effect of some nonlinearities are discussed.

  13. Cerebellar Norepinephrine Modulates Learning of Delay Classical Eyeblink Conditioning: Evidence for Post-Synaptic Signaling via PKA

    ERIC Educational Resources Information Center

    Fister, Mathew; Bickford, Paula C.; Cartford, M. Claire; Samec, Amy

    2004-01-01

    The neurotransmitter norepinephrine (NE) has been shown to modulate cerebellar-dependent learning and memory. Lesions of the nucleus locus coeruleus or systemic blockade of noradrenergic receptors has been shown to delay the acquisition of several cerebellar-dependent learning tasks. To date, no studies have shown a direct involvement of…

  14. Acute Exposure to Stress Improves Performance in Trace Eyeblink Conditioning and Spatial Learning Tasks in Healthy Men

    ERIC Educational Resources Information Center

    Duncko, Roman; Cornwell, Brian; Cui, Lihong; Merikangas, Kathleen R.; Grillon, Christian

    2007-01-01

    The present study investigated the effects of acute stress exposure on learning performance in humans using analogs of two paradigms frequently used in animals. Healthy male participants were exposed to the cold pressor test (CPT) procedure, i.e., insertion of the dominant hand into ice water for 60 sec. Following the CPT or the control procedure,…

  15. Neuroscience and Learning: Lessons from Studying the Involvement of a Region of Cerebellar Cortex in Eyeblink Classical Conditioning

    ERIC Educational Resources Information Center

    Villarreal, Ronald P.; Steinmetz, Joseph E.

    2005-01-01

    How the nervous system encodes learning and memory processes has interested researchers for 100 years. Over this span of time, a number of basic neuroscience methods has been developed to explore the relationship between learning and the brain, including brain lesion, stimulation, pharmacology, anatomy, imaging, and recording techniques. In this…

  16. Application of singular spectrum-based change-point analysis to EMG-onset detection.

    PubMed

    Vaisman, Lev; Zariffa, José; Popovic, Milos R

    2010-08-01

    While many approaches have been proposed to identify the signal onset in EMG recordings, there is no standardized method for performing this task. Here, we propose to use a change-point detection procedure based on singular spectrum analysis to determine the onset of EMG signals. This method is suitable for automated real-time implementation, can be applied directly to the raw signal, and does not require any prior knowledge of the EMG signal's properties. The algorithm proposed by Moskvina and Zhigljavsky (2003) was applied to EMG segments recorded from wrist and trunk muscles. Wrist EMG data was collected from 9 Parkinson's disease patients with and without tremor, while trunk EMG data was collected from 13 healthy able-bodied individuals. Along with the change-point detection analysis, two threshold-based onset detection methods were applied, as well as visual estimates of the EMG onset by trained practitioners. In the case of wrist EMG data without tremor, the change-point analysis showed comparable or superior frequency and quality of detection results, as compared to other automatic detection methods. In the case of wrist EMG data with tremor and trunk EMG data, performance suffered because other changes occurring in these signals caused larger changes in the detection statistic than the changes caused by the initial muscle activation, suggesting that additional criteria are needed to identify the onset from the detection statistic other than its magnitude alone. Once this issue is resolved, change-point detection should provide an effective EMG-onset detection method suitable for automated real-time implementation.

  17. The Movement- and Load-Dependent Differences in the EMG Patterns of the Human Arm Muscles during Two-Joint Movements (A Preliminary Study).

    PubMed

    Tomiak, Tomasz; Abramovych, Tetiana I; Gorkovenko, Andriy V; Vereshchaka, Inna V; Mishchenko, Viktor S; Dornowski, Marcin; Kostyukov, Alexander I

    2016-01-01

    Slow circular movements of the hand with a fixed wrist joint that were produced in a horizontal plane under visual guidance during conditions of action of the elastic load directed tangentially to the movement trajectory were studied. The positional dependencies of the averaged surface EMGs in the muscles of the elbow and shoulder joints were compared for four possible combinations in the directions of load and movements. The EMG intensities were largely correlated with the waves of the force moment computed for a corresponding joint in the framework of a simple geometrical model of the system: arm - experimental setup. At the same time, in some cases the averaged EMGs exit from the segments of the trajectory restricted by the force moment singular points (FMSPs), in which the moments exhibited altered signs. The EMG activities display clear differences for the eccentric and concentric zones of contraction that are separated by the joint angle singular points (JASPs), which present extreme at the joint angle traces. We assumed that the modeled patterns of FMSPs and JASPs may be applied for an analysis of the synergic interaction between the motor commands arriving at different muscles in arbitrary two-joint movements.

  18. Locomotor adaptation to a soleus EMG-controlled antagonistic exoskeleton.

    PubMed

    Gordon, Keith E; Kinnaird, Catherine R; Ferris, Daniel P

    2013-04-01

    Locomotor adaptation in humans is not well understood. To provide insight into the neural reorganization that occurs following a significant disruption to one's learned neuromuscular map relating a given motor command to its resulting muscular action, we tied the mechanical action of a robotic exoskeleton to the electromyography (EMG) profile of the soleus muscle during walking. The powered exoskeleton produced an ankle dorsiflexion torque proportional to soleus muscle recruitment thus limiting the soleus' plantar flexion torque capability. We hypothesized that neurologically intact subjects would alter muscle activation patterns in response to the antagonistic exoskeleton by decreasing soleus recruitment. Subjects practiced walking with the exoskeleton for two 30-min sessions. The initial response to the perturbation was to "fight" the resistive exoskeleton by increasing soleus activation. By the end of training, subjects had significantly reduced soleus recruitment resulting in a gait pattern with almost no ankle push-off. In addition, there was a trend for subjects to reduce gastrocnemius recruitment in proportion to the soleus even though only the soleus EMG was used to control the exoskeleton. The results from this study demonstrate the ability of the nervous system to recalibrate locomotor output in response to substantial changes in the mechanical output of the soleus muscle and associated sensory feedback. This study provides further evidence that the human locomotor system of intact individuals is highly flexible and able to adapt to achieve effective locomotion in response to a broad range of neuromuscular perturbations.

  19. Intelligent analysis of EMG data for improving lifestyle.

    PubMed

    Donnelly, Mark; Davies, Richard; Nugent, Chris

    2005-01-01

    In the tragic situation when a person loses his or her hand, they are usually faced with only one option if they wish to regain a good level of mobility; learn to control an artificial hand. It has been suggested that our brain stores a "body map" of the different parts in our body. Thus, if a person loses a hand, their "body map" remains intact and produces phantom sensations that permit the person to feel like they still have their hand. Some discomfort is felt during these sensations; nevertheless, there is a positive side to them as they enable patients to control prosthetic replacements. Sensations experienced can be measured using a method known as Electromyography (EMG) and can be acquired and processed to control an artificial hand. This research involved the acquisition, analysis and classification of EMG signals through construction of a recording device and the development of classification models based on heuristic approaches and Artificial Intelligence classifiers based on Neural Networks to control artificial hands.

  20. Embodying approach motivation: body posture influences startle eyeblink and event-related potential responses to appetitive stimuli.

    PubMed

    Price, Tom F; Dieckman, Laurtiz W; Harmon-Jones, Eddie

    2012-07-01

    Past research suggested that the motivational significance of images influences reflexive and electrocortical responses to those images (Briggs and Martin, 2009; Gard et al., 2007; Schupp et al., 2004), with erotica often exerting the largest effects for appetitive pictures (Grillon and Baas, 2003; Weinberg and Hajcak, 2010). This research paradigm, however, compares responses to different types of images (e.g., erotica vs. exciting sports scenes). This past motivational interpretation, therefore, would be further supported by experiments wherein appetitive picture content is held constant and motivational states are manipulated with a different method. In the present experiment, we tested the hypothesis that changes in physical postures associated with approach motivation influences reflexive and electrocortical responses to appetitive stimuli. Past research has suggested that bodily manipulations (e.g., facial expressions) play a role in emotion- and motivation-related physiology (Ekman and Davidson, 1993; Levenson et al., 1990). Extending these results, leaning forward (associated with a heightened urge to approach stimuli) relative to reclining (associated with less of an urge to approach stimuli) caused participants to have smaller startle eyeblink responses during appetitive, but not neutral, picture viewing. Leaning relative to reclining also caused participants to have larger LPPs to appetitive but not neutral pictures, and influenced ERPs as early as 100ms into stimulus viewing. This evidence suggests that body postures associated with approach motivation causally influence basic reflexive and electrocortical reactions to appetitive emotive stimuli.

  1. Spatial variation and inconsistency between estimates of onset of muscle activation from EMG and ultrasound

    PubMed Central

    Dieterich, Angela V.; Botter, Alberto; Vieira, Taian Martins; Peolsson, Anneli; Petzke, Frank; Davey, Paul; Falla, Deborah

    2017-01-01

    Delayed onset of muscle activation can be a descriptor of impaired motor control. Activation onset can be estimated from electromyography (EMG)-registered muscle excitation and from ultrasound-registered muscle motion, which enables non-invasive measurements in deep muscles. However, in voluntary activation, EMG- and ultrasound-detected activation onsets may not correspond. To evaluate this, ten healthy men performed isometric elbow flexion at 20% to 70% of their maximal force. Utilising a multi-channel electrode transparent to ultrasound, EMG and M(otion)-mode ultrasound were recorded simultaneously over the biceps brachii muscle. The time intervals between automated and visually estimated activation onsets were correlated with the regional variation of EMG and muscle motion onset, contraction level and speed. Automated and visual onsets indicated variable time intervals between EMG- and motion onset, median (interquartile range) 96 (121) ms and 48 (72) ms, respectively. In 17% (computed analysis) or 23% (visual analysis) of trials, motion onset was detected before local EMG onset. Multi-channel EMG and M-mode ultrasound revealed regional differences in activation onset, which decreased with higher contraction speed (Spearman ρ ≥ 0.45, P < 0.001). In voluntary activation the heterogeneous motor unit recruitment together with immediate motion transmission may explain the high variation of the time intervals between local EMG- and ultrasound-detected activation onset. PMID:28176821

  2. An open and configurable embedded system for EMG pattern recognition implementation for artificial arms.

    PubMed

    Jun Liu; Fan Zhang; Huang, He Helen

    2014-01-01

    Pattern recognition (PR) based on electromyographic (EMG) signals has been developed for multifunctional artificial arms for decades. However, assessment of EMG PR control for daily prosthesis use is still limited. One of the major barriers is the lack of a portable and configurable embedded system to implement the EMG PR control. This paper aimed to design an open and configurable embedded system for EMG PR implementation so that researchers can easily modify and optimize the control algorithms upon our designed platform and test the EMG PR control outside of the lab environments. The open platform was built on an open source embedded Linux Operating System running a high-performance Gumstix board. Both the hardware and software system framework were openly designed. The system was highly flexible in terms of number of inputs/outputs and calibration interfaces used. Such flexibility enabled easy integration of our embedded system with different types of commercialized or prototypic artificial arms. Thus far, our system was portable for take-home use. Additionally, compared with previously reported embedded systems for EMG PR implementation, our system demonstrated improved processing efficiency and high system precision. Our long-term goals are (1) to develop a wearable and practical EMG PR-based control for multifunctional artificial arms, and (2) to quantify the benefits of EMG PR-based control over conventional myoelectric prosthesis control in a home setting.

  3. Preliminary Investigation of EMG Biofeedback Induced Relaxation with a Preschool Aged Stutterer.

    ERIC Educational Resources Information Center

    St. Louis, Kenneth O.; And Others

    1982-01-01

    Using comparative speech tasks and EMG recordings to assess the potential of EMG biofeedback-assisted relaxation to reduce stuttering, a preschool child was able to reduce larynegeal tension but not without some difficulty. The small effect of the training was in the direction of less stuttering. (Author/CM)

  4. Agonist and Antagonist Muscle EMG Activity Pattern Changes with Skill Acquisition.

    ERIC Educational Resources Information Center

    Engelhorn, Richard

    1983-01-01

    Using electromyography (EMG), researchers studied changes in the control of biceps and triceps brachii muscles that occurred as women college students learned two elbow flexion tasks. Data on EMG activity, angular kinematics, training, and angular displacement were analyzed. (Author/PP)

  5. Surface Laplacian of scalp electrical signals and independent component analysis resolve EMG contamination of electroencephalogram.

    PubMed

    Fitzgibbon, S P; DeLosAngeles, D; Lewis, T W; Powers, D M W; Whitham, E M; Willoughby, J O; Pope, K J

    2015-09-01

    The serious impact of electromyogram (EMG) contamination of electroencephalogram (EEG) is well recognised. The objective of this research is to demonstrate that combining independent component analysis with the surface Laplacian can eliminate EMG contamination of the EEG, and to validate that this processing does not degrade expected neurogenic signals. The method involves sequential application of ICA, using a manual procedure to identify and discard EMG components, followed by the surface Laplacian. The extent of decontamination is quantified by comparing processed EEG with EMG-free data that was recorded during pharmacologically induced neuromuscular paralysis. The combination of the ICA procedure and the surface Laplacian, with a flexible spherical spline, results in a strong suppression of EMG contamination at all scalp sites and frequencies. Furthermore, the ICA and surface Laplacian procedure does not impair the detection of well-known, cerebral responses; alpha activity with eyes-closed; ERP components (N1, P2) in response to an auditory oddball task; and steady state responses to photic and auditory stimulation. Finally, more flexible spherical splines increase the suppression of EMG by the surface Laplacian. We postulate this is due to ICA enabling the removal of local muscle sources of EMG contamination and the Laplacian transform being insensitive to distant (postural) muscle EMG contamination.

  6. Long-term surface EMG monitoring using K-means clustering and compressive sensing

    NASA Astrophysics Data System (ADS)

    Balouchestani, Mohammadreza; Krishnan, Sridhar

    2015-05-01

    In this work, we present an advanced K-means clustering algorithm based on Compressed Sensing theory (CS) in combination with the K-Singular Value Decomposition (K-SVD) method for Clustering of long-term recording of surface Electromyography (sEMG) signals. The long-term monitoring of sEMG signals aims at recording of the electrical activity produced by muscles which are very useful procedure for treatment and diagnostic purposes as well as for detection of various pathologies. The proposed algorithm is examined for three scenarios of sEMG signals including healthy person (sEMG-Healthy), a patient with myopathy (sEMG-Myopathy), and a patient with neuropathy (sEMG-Neuropathr), respectively. The proposed algorithm can easily scan large sEMG datasets of long-term sEMG recording. We test the proposed algorithm with Principal Component Analysis (PCA) and Linear Correlation Coefficient (LCC) dimensionality reduction methods. Then, the output of the proposed algorithm is fed to K-Nearest Neighbours (K-NN) and Probabilistic Neural Network (PNN) classifiers in order to calclute the clustering performance. The proposed algorithm achieves a classification accuracy of 99.22%. This ability allows reducing 17% of Average Classification Error (ACE), 9% of Training Error (TE), and 18% of Root Mean Square Error (RMSE). The proposed algorithm also reduces 14% clustering energy consumption compared to the existing K-Means clustering algorithm.

  7. Effect of Vibration Training on Anaerobic Power and Quardroceps Surface EMG in Long Jumpers

    ERIC Educational Resources Information Center

    Liu, Bin; Luo, Jiong

    2015-01-01

    Objective: To explore the anaerobic power and surface EMG (sEMG) of quardrocep muscle in lower extremities after single vibration training intervention. Methods: 8 excellent male long jumpers voluntarily participated in this study. Four intervention modes were devised, including high frequency high amplitude (HFHA,30Hz,6mm), low frequency low…

  8. Can standard surface EMG processing parameters be used to estimate motor unit global firing rate?

    NASA Astrophysics Data System (ADS)

    Zhou, Ping; Zev Rymer, William

    2004-06-01

    The relations between motor unit global firing rates and established quantitative measures for processing the surface electromyogram (EMG) signals were explored using a simulation approach. Surface EMG signals were simulated using the reported properties of the first dorsal interosseous muscle in man, and the models were varied systematically, using several hypothetical relations between motor unit electrical and force output, and also using different motor unit firing rate strategies. The utility of using different EMG processing parameters to help estimate global motor unit firing rate was evaluated based on their relations to the number of motor unit action potentials (MUAPs) in the simulated surface EMG signals. Our results indicate that the relation between motor unit electrical and mechanical properties, and the motor unit firing rate scheme are all important factors determining the form of the relation between surface EMG amplitude and motor unit global firing rate. Conversely, these factors have less impact on the relations between turn or zero-crossing point counts and the number of MUAPs in surface EMG. We observed that the number of turn or zero-crossing points tends to saturate with the increase in the MUAP number in surface EMG, limiting the utility of these measures as estimates of MUAP number. The simulation results also indicate that the mean or median frequency of the surface EMG power spectrum is a poor indicator of the global motor unit firing rate.

  9. Basic reporting and interpretation of surface EMG amplitude and mean power frequency: a reply to Vitgotsky, Ogborn, and Phillips.

    PubMed

    Jenkins, Nathaniel D M; Housh, Terry J; Bergstrom, Haley C; Cochrane, Kristen C; Hill, Ethan C; Smith, Cory M; Johnson, Glen O; Schmidt, Richard J; Cramer, Joel T

    2016-03-01

    In this response, we addressed the specific issues raised by Vigotsky et al. and clarified (1) our methods and adherence to electromyographic signal reporting standards, (2) our interpretation of EMG amplitude, and (3) our interpretation of EMG mean power frequency.

  10. Short latency hand movement classification based on surface EMG spectrogram with PCA.

    PubMed

    Xiaolong Zhai; Jelfs, Beth; Chan, Rosa H M; Chung Tin

    2016-08-01

    Hand gesture recognition from forearm surface electromyography (sEMG) is an active research field in the development of motor prosthesis. Studies have shown that classification accuracy and efficiency is highly dependent on the features extracted from the EMG. In this paper, we show that EMG spectrograms are a particularly effective feature for discriminating multiple classes of hand gesture when subjected to principal component analysis for dimensionality reduction. We tested our method on the Ninapro database which includes sEMG data (12 channels) of 40 subjects performing 50 different hand movements. Our results demonstrate improved classification accuracy (by ~10%) over purely time domain features for 50 different hand movements, including small finger movements and different levels of force exertion. Our method has also reduced the error rate (by ~12%) at the transition phase of gestures which could improve robustness of gesture recognition when continuous classification from sEMG is required.

  11. EMGs Analysis of Lumbar, Pelvic and Leg Muscles in Leg Length Discrepancy Adolescents

    NASA Astrophysics Data System (ADS)

    Sotelo-Barroso, Fernando; Márquez-Gamiño, Sergio; Caudillo-Cisneros, Cipriana

    2004-09-01

    To evaluate differences in surface electromyography (EMGs) activity of lumbar, pelvic and leg muscles in adolescents with and without LLD. EMGs activity records were taken during rest and maximal isometric voluntary contractions (MIVC). Peak to peak amplitude (PPA), mean rectified voltage (MRV) and root mean square (RMS), were analyzed. Statistical differences between short and large sides of LLD adolescents, were found (p<0.05). Higher values occurred in shorter limb muscles. No significative differences were found between left and right legs of the control subjects. When EMGs values were compared between short and large sides of LLD subjects with ipsilateral sides of controls, selective, statistically different EMGs values were exhibited. It is suggested that adaptative behavior to secondary biomechanical and/or neural changes occurred, even when none clinical symptoms were reported. The observations were remarked by the absence of EMGs differences between right and left sides of control subjects.

  12. Hardware System for Real-Time EMG Signal Acquisition and Separation Processing during Electrical Stimulation.

    PubMed

    Hsueh, Ya-Hsin; Yin, Chieh; Chen, Yan-Hong

    2015-09-01

    The study aimed to develop a real-time electromyography (EMG) signal acquiring and processing device that can acquire signal during electrical stimulation. Since electrical stimulation output can affect EMG signal acquisition, to integrate the two elements into one system, EMG signal transmitting and processing method has to be modified. The whole system was designed in a user-friendly and flexible manner. For EMG signal processing, the system applied Altera Field Programmable Gate Array (FPGA) as the core to instantly process real-time hybrid EMG signal and output the isolated signal in a highly efficient way. The system used the power spectral density to evaluate the accuracy of signal processing, and the cross correlation showed that the delay of real-time processing was only 250 μs.

  13. The Effects of Relaxation Instructions and EMG Biofeedback of Test Anxiety, General Anxiety, and Locus of Control.

    ERIC Educational Resources Information Center

    Reed, Michael; Saslow, Carol

    1980-01-01

    Brief relaxation instruction alone and instructions plus electromyographic (EMG) feedback produced significant decreases in general and test-specific anxiety. EMG feedback added little to the effectiveness of relaxation instructions and practice. Relaxation instruction without EMG biofeedback shifted subjects toward a more internal locus of…

  14. To What Extent Is Mean EMG Frequency during Gait a Reflection of Functional Muscle Strength in Children with Cerebral Palsy?

    ERIC Educational Resources Information Center

    Van Gestel, L.; Wambacq, H.; Aertbelien, E.; Meyns, P.; Bruyninckx, H.; Bar-On, L.; Molenaers, G.; De Cock, P.; Desloovere, K.

    2012-01-01

    The aim of the current paper was to analyze the potential of the mean EMG frequency, recorded during 3D gait analysis (3DGA), for the evaluation of functional muscle strength in children with cerebral palsy (CP). As walking velocity is known to also influence EMG frequency, it was investigated to which extent the mean EMG frequency is a reflection…

  15. Using State-Space Model with Regime Switching to Represent the Dynamics of Facial Electromyography (EMG) Data

    ERIC Educational Resources Information Center

    Yang, Manshu; Chow, Sy-Miin

    2010-01-01

    Facial electromyography (EMG) is a useful physiological measure for detecting subtle affective changes in real time. A time series of EMG data contains bursts of electrical activity that increase in magnitude when the pertinent facial muscles are activated. Whereas previous methods for detecting EMG activation are often based on deterministic or…

  16. A novel biometric authentication approach using ECG and EMG signals.

    PubMed

    Belgacem, Noureddine; Fournier, Régis; Nait-Ali, Amine; Bereksi-Reguig, Fethi

    2015-05-01

    Security biometrics is a secure alternative to traditional methods of identity verification of individuals, such as authentication systems based on user name and password. Recently, it has been found that the electrocardiogram (ECG) signal formed by five successive waves (P, Q, R, S and T) is unique to each individual. In fact, better than any other biometrics' measures, it delivers proof of subject's being alive as extra information which other biometrics cannot deliver. The main purpose of this work is to present a low-cost method for online acquisition and processing of ECG signals for person authentication and to study the possibility of providing additional information and retrieve personal data from an electrocardiogram signal to yield a reliable decision. This study explores the effectiveness of a novel biometric system resulting from the fusion of information and knowledge provided by ECG and EMG (Electromyogram) physiological recordings. It is shown that biometrics based on these ECG/EMG signals offers a novel way to robustly authenticate subjects. Five ECG databases (MIT-BIH, ST-T, NSR, PTB and ECG-ID) and several ECG signals collected in-house from volunteers were exploited. A palm-based ECG biometric system was developed where the signals are collected from the palm of the subject through a minimally intrusive one-lead ECG set-up. A total of 3750 ECG beats were used in this work. Feature extraction was performed on ECG signals using Fourier descriptors (spectral coefficients). Optimum-Path Forest classifier was used to calculate the degree of similarity between individuals. The obtained results from the proposed approach look promising for individuals' authentication.

  17. Cerebellar vermis contributes to the extinction of conditioned fear.

    PubMed

    Utz, A; Thürling, M; Ernst, T M; Hermann, A; Stark, R; Wolf, O T; Timmann, D; Merz, C J

    2015-09-14

    The cerebellum is known to contribute to the acquisition and retention of conditioned motor and emotional responses. Eyeblink conditioning and fear conditioning have been studied in greatest detail. Whereas a considerable number of studies have shown that the cerebellum is also involved in extinction of conditioned eyeblink responses, the likely contribution of the cerebellum to extinction of conditioned fear responses has largely been ignored. In the present study, we analyzed functional brain imaging data (fMRI) of previous work investigating extinction of conditioned fear in 32 young and healthy men, in which event-related fMRI analysis did not include the cerebellum. This dataset was analyzed using a spatial normalization method optimized for the cerebellum. During fear acquisition, an unpleasant electric shock (unconditioned stimulus; US) was paired with one of two pictures of geometrical figures (conditioned stimulus; CS+), while the other picture (CS-) was never paired with the US. During extinction, CS+ and CS- were presented without the US. During the acquisition phase, the fMRI signal related to the CS+ was significantly higher in hemispheric lobule VI in early compared to late acquisition (p<.05, permutation corrected). During the extinction phase, the fMRI signal related to the contrast CS+>CS- was significantly higher within the anterior vermis in early compared to late extinction (p<.05, permutation corrected). The present data show that the cerebellum is not only associated with the acquisition but also with the extinction of conditioned fear.

  18. The EEG correlates of the TMS-induced EMG silent period in humans.

    PubMed

    Farzan, Faranak; Barr, Mera S; Hoppenbrouwers, Sylco S; Fitzgerald, Paul B; Chen, Robert; Pascual-Leone, Alvaro; Daskalakis, Zafiris J

    2013-12-01

    Application of magnetic or electrical stimulation to the motor cortex can result in a period of electromyography (EMG) silence in a tonically active peripheral muscle. This period of EMG silence is referred to as the silent period (SP). The duration of SP shows intersubject variability and reflects the integrity of cortical and corticospinal pathways. A non-invasive technique for assessing the duration of SP is the combination of Transcranial Magnetic Stimulation (TMS) with EMG. Utilizing TMS-EMG, several studies have reported on the shortening or lengthening of SP in neuropsychiatric disorders such as schizophrenia, bipolar disorder, depression, obsessive compulsive disorder, epilepsy, Parkinson's disease, and stroke. However, cortical, corticospinal and peripheral components are difficult to disentangle from EMG alone. Here, we use the multimodal neuroimaging technique of TMS-EMG combined with concurrent electroencephalography (EEG) recording to further examine the cortical origin of SP and the cortical oscillatory activity that underlies SP genesis. We demonstrate that the duration of SP is related to the temporal characteristics of the cortical reactivity and the power of delta to alpha oscillations in both local and remote areas ipsilateral and contralateral to the stimulation site, and beta oscillations locally. We illustrate that, compared to EMG, the EEG indices of the SP provide additional information about the brain dynamics and propose that the EEG measures of SP may be used in future clinical and research investigations to more precisely delineate the mechanisms underlying inhibitory impairments.

  19. An EMG-CT method using multiple surface electrodes in the forearm.

    PubMed

    Nakajima, Yasuhiro; Keeratihattayakorn, Saran; Yoshinari, Satoshi; Tadano, Shigeru

    2014-12-01

    Electromyography computed tomography (EMG-CT) method is proposed for visualizing the individual muscle activities in the human forearm. An EMG conduction model was formulated for reverse-estimation of muscle activities using EMG signals obtained with multi surface electrodes. The optimization process was calculated using sequential quadratic programming by comparing the estimated EMG values from the model with the measured values. The individual muscle activities in the deep region were estimated and used to produce an EMG tomographic image. For validation of the method, isometric contractions of finger muscles were examined for three subjects, applying a flexion load (4.9, 7.4 and 9.8 N) to the proximal interphalangeal joint of the middle finger. EMG signals in the forearm were recorded during the tasks using multiple surface electrodes, which were bound around the subject's forearm. The EMG-CT method illustrates the distribution of muscle activities within the forearm. The change in amplitude and area of activated muscles can be observed. The normalized muscle activities of all three subjects appear to increase monotonically with increases in the load. Kinesiologically, this method was able to estimate individual muscle activation values and could provide a novel tool for studying hand function and development of an examination for evaluating rehabilitation.

  20. On the usability of intramuscular EMG for prosthetic control: a Fitts' Law approach.

    PubMed

    Kamavuako, Ernest N; Scheme, Erik J; Englehart, Kevin B

    2014-10-01

    Previous studies on intramuscular EMG based control used offline data analysis. The current study investigates the usability of intramuscular EMG in two degree-of-freedom using a Fitts' Law approach by combining classification and proportional control to perform a task, with real time feedback of user performance. Nine able-bodied subjects participated in the study. Intramuscular and surface EMG signals were recorded concurrently from the right forearm. Five performance metrics (Throughput,Path efficiency, Average Speed, Overshoot and Completion Rate) were used for quantification of usability. Intramuscular EMG based control performed significantly better than surface EMG for Path Efficiency (80.5±2.4% vs. 71.5±3.8%, P=0.004) and Overshoot (22.0±3.0% vs. 45.1±6.6%, P=0.01). No difference was found between Throughput and Completion Rate. However the Average Speed was significantly higher for surface (51.8±5.5%) than for intramuscular EMG (35.7±2.7%). The results obtained in this study imply that intramuscular EMG has great potential as control source for advanced myoelectric prosthetic devices.

  1. Knee joint angle affects EMG-force relationship in the vastus intermedius muscle.

    PubMed

    Saito, Akira; Akima, Hiroshi

    2013-12-01

    It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG-force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20-100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG-force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles.

  2. Parkinson's disease rigidity: EMG in a small hand muscle at "rest".

    PubMed

    Cantello, R; Gianelli, M; Civardi, C; Mutani, R

    1995-10-01

    The presence of excessive EMG at "rest" might be an important factor in the genesis of Parkinson's disease (PD) rigidity, and we studied it in the first dorsal interosseous muscle (FDI) of 8 idiopathic PD patients. We had 8 age- and sex-matched normal controls. In the PD group, the average area of the surface EMG at "rest" correlated significantly with the clinical evaluation of rigidity and remained abnormally enhanced for 10-15 min after a command to "relax." Later, it tended to decline, but its entity was still much greater than in controls. The EMG "at rest" consisted of unwilled motor unit (MU) firing. A larger MU number was recruited in patients than in controls at "rest." MU rate coding was similar in both groups. Eventually, patients could get periods of EMG silence which, however, were interrupted by short EMG bursts, even if there was no muscle stretch. These bursts were interpreted as residual fragments of the original excessive EMG at "rest." MUs first recruited during such bursts showed high, but not total, overlapping with those first recruited by a gentle voluntary contraction or by a weak transcranial magnetic stimulus to motor cortex. We conclude that EMG activity at "rest" was made up of the discharge of low-threshold MUs, with a recruitment order similar to that resulting from descending cortico-spinal volleys. However, we cannot exclude other possible input sources to the alpha-motoneurones at "rest."

  3. EMG feedback tasks reduce reflexive stiffness during force and position perturbations.

    PubMed

    Forbes, Patrick A; Happee, Riender; van der Helm, Frans C T; Schouten, Alfred C

    2011-08-01

    Force and position perturbations are widely applied to identify muscular and reflexive contributions to posture maintenance of the arm. Both task instruction (force vs. position) and the inherently linked perturbation type (i.e., force perturbations-position task and position perturbations-force tasks) affect these contributions and their mutual balance. The goal of this study is to explore the modulation of muscular and reflexive contributions in shoulder muscles using EMG biofeedback. The EMG biofeedback provides a harmonized task instruction to facilitate the investigation of perturbation type effects irrespective of task instruction. External continuous force and position perturbations with a bandwidth of 0.5-20 Hz were applied at the hand while subjects maintained prescribed constant levels of muscular co-activation using visual feedback of an EMG biofeedback signal. Joint admittance and reflexive impedance were identified in the frequency domain, and parametric identification separated intrinsic muscular and reflexive feedback properties. In tests with EMG biofeedback, perturbation type (position and force) had no effect on joint admittance and reflexive impedance, indicating task as the dominant factor. A reduction in muscular and reflexive stiffness was observed when performing the EMG biofeedback task relative to the position task. Reflexive position feedback was effectively suppressed during the equivalent EMG biofeedback task, while velocity and acceleration feedback were both decreased by approximately 37%. This indicates that force perturbations with position tasks are a more effective paradigm to investigate complete dynamic motor control of the arm, while EMG tasks tend to reduce the reflexive contribution.

  4. [sEMG Time-frequency analysis techniques for evaluation of muscle fatigue and it's application in ergonomic studies].

    PubMed

    Wang, Du-ming; Wang, Jian; Ge, Lie-zhong

    2003-10-01

    As a non-invasive on-line measurement, sEMG can reflect the status of muscle activity and muscle function accurately and objectively. Some sEMG Time-frequency analysis techniques, especially the JASA (joint analysis of EMG spectrum and amplitude) analysis, for evaluation of muscle fatigue in ergonomics and occupational field studies are introduced and evaluated in this paper. The sEMG signal analysis and the necessity for developing sEMG analysis techniques for field use in ergonomics are also briefly discussed.

  5. Spatial variability of muscle activity during human walking: the effects of different EMG normalization approaches.

    PubMed

    Cronin, N J; Kumpulainen, S; Joutjärvi, T; Finni, T; Piitulainen, H

    2015-08-06

    Human leg muscles are often activated inhomogeneously, e.g. in standing. This may also occur in complex tasks like walking. Thus, bipolar surface electromyography (sEMG) may not accurately represent whole muscle activity. This study used 64-electrode high-density sEMG (HD-sEMG) to examine spatial variability of lateral gastrocnemius (LG) muscle activity during the stance phase of walking, maximal voluntary contractions (MVCs) and maximal M-waves, and determined the effects of different normalization approaches on spatial and inter-participant variability. Plantar flexion MVC, maximal electrically elicited M-waves and walking at self-selected speed were recorded in eight healthy males aged 24-34. sEMG signals were assessed in four ways: unnormalized, and normalized to MVC, M-wave or peak sEMG during the stance phase of walking. During walking, LG activity varied spatially, and was largest in the distal and lateral regions. Spatial variability fluctuated throughout the stance phase. Normalizing walking EMG signals to the peak value during stance reduced spatial variability within LG on average by 70%, and inter-participant variability by 67%. Normalizing to MVC reduced spatial variability by 17% but increased inter-participant variability by 230%. Normalizing to M-wave produced the greatest spatial variability (45% greater than unnormalized EMG) and increased inter-participant variability by 70%. Unnormalized bipolar LG sEMG may provide misleading results about representative muscle activity in walking due to spatial variability. For the peak value and MVC approaches, different electrode locations likely have minor effects on normalized results, whereas electrode location should be carefully considered when normalizing walking sEMG data to maximal M-waves.

  6. Masticatory Muscle Sleep Background EMG Activity is Elevated in Myofascial TMD Patients

    PubMed Central

    Raphael, Karen G.; Janal, Malvin N.; Sirois, David A.; Dubrovsky, Boris; Wigren, Pia E.; Klausner, Jack J.; Krieger, Ana C.; Lavigne, Gilles J.

    2013-01-01

    Despite theoretical speculation and strong clinical belief, recent research using laboratory polysomnographic (PSG) recording has provided new evidence that frequency of sleep bruxism (SB) masseter muscle events, including grinding or clenching of the teeth during sleep, is not increased for women with chronic myofascial temporomandibular disorder (TMD). The current case-control study compares a large sample of women suffering from chronic myofascial TMD (n=124) with a demographically matched control group without TMD (n=46) on sleep background electromyography (EMG) during a laboratory PSG study. Background EMG activity was measured as EMG root mean square (RMS) from the right masseter muscle after lights out. Sleep background EMG activity was defined as EMG RMS remaining after activity attributable to SB, other orofacial activity, other oromotor activity and movement artifacts were removed. Results indicated that median background EMG during these non SB-event periods was significantly higher (p<.01) for women with myofascial TMD (median=3.31 μV and mean=4.98 μV) than for control women (median=2.83 μV and mean=3.88 μV) with median activity in 72% of cases exceeding control activity. Moreover, for TMD cases, background EMG was positively associated and SB event-related EMG was negatively associated with pain intensity ratings (0–10 numerical scale) on post sleep waking. These data provide the foundation for a new focus on small, but persistent, elevations in sleep EMG activity over the course of the night as a mechanism of pain induction or maintenance. PMID:24237356

  7. Comparison of sEMG processing methods during whole-body vibration exercise.

    PubMed

    Lienhard, Karin; Cabasson, Aline; Meste, Olivier; Colson, Serge S

    2015-12-01

    The objective was to investigate the influence of surface electromyography (sEMG) processing methods on the quantification of muscle activity during whole-body vibration (WBV) exercises. sEMG activity was recorded while the participants performed squats on the platform with and without WBV. The spikes observed in the sEMG spectrum at the vibration frequency and its harmonics were deleted using state-of-the-art methods, i.e. (1) a band-stop filter, (2) a band-pass filter, and (3) spectral linear interpolation. The same filtering methods were applied on the sEMG during the no-vibration trial. The linear interpolation method showed the highest intraclass correlation coefficients (no vibration: 0.999, WBV: 0.757-0.979) with the comparison measure (unfiltered sEMG during the no-vibration trial), followed by the band-stop filter (no vibration: 0.929-0.975, WBV: 0.661-0.938). While both methods introduced a systematic bias (P < 0.001), the error increased with increasing mean values to a higher degree for the band-stop filter. After adjusting the sEMG(RMS) during WBV for the bias, the performance of the interpolation method and the band-stop filter was comparable. The band-pass filter was in poor agreement with the other methods (ICC: 0.207-0.697), unless the sEMG(RMS) was corrected for the bias (ICC ⩾ 0.931, %LOA ⩽ 32.3). In conclusion, spectral linear interpolation or a band-stop filter centered at the vibration frequency and its multiple harmonics should be applied to delete the artifacts in the sEMG signals during WBV. With the use of a band-stop filter it is recommended to correct the sEMG(RMS) for the bias as this procedure improved its performance.

  8. Continuous monitoring of electromyography (EMG), mechanomyography (MMG), sonomyography (SMG) and torque output during ramp and step isometric contractions.

    PubMed

    Guo, Jing-Yi; Zheng, Yong-Ping; Xie, Hong-Bo; Chen, Xin

    2010-11-01

    In this study we simultaneously collected ultrasound images, EMG, MMG from the rectus femoris (RF) muscle and torque signal from the leg extensor muscle group of nine male subjects (mean±SD, age=30.7±.4.9 years; body weight=67.0±8.4kg; height=170.4±6.9cm) during step, ramp increasing, and decreasing at three different rates (50%, 25% and 17% MVC/s). The muscle architectural parameters extracted from ultrasound imaging, which reflect muscle contractions, were defined as sonomyography (SMG) in this study. The cross-sectional area (CSA) and aspect ratio between muscle width and thickness (width/thickness) were extracted from ultrasound images. The results showed that the CSA of RF muscles decreased by 7.25±4.07% when muscle torque output changed from 0% to 90% MVC, and the aspect ratio decreased by 41.66±7.96%. The muscle contraction level and SMG data were strongly correlated (R(2)=0.961, P=0.003, for CSA and R(2)=0.999, P<0.001, for width/thickness ratio). The data indicated a significant difference (P<0.05) in percentage changes for CSA and aspect ratio among step, ramp increasing, and decreasing contractions. The normalized EMG RMS in ramp increasing was 8.25±4.00% higher than step (P=0.002). The normalized MMG RMS of step contraction was significantly lower than ramp increasing and decreasing, with averaged differences of 12.22±3.37% (P=0.001) and 12.06±3.37% (P=0.001), respectively. The results of this study demonstrated that the CSA and aspect ratio, i.e., SMG signals, can provide useful information about muscle contractions. They may therefore complement EMG and MMG for studying muscle activation strategies under different conditions.

  9. Endovascular coil detachment causing EMG artefact in BIS: a mechanistic exploration.

    PubMed

    Chakrabarti, Dhritiman; Ramesh, Venkatapura J; Pendharkar, Hima

    2016-04-01

    Deployment of endovascular coils used in interventional neuroradiology commonly involves electrolytic detachment of the coil from the pusher catheter. This report describes a case of artefactual increase in electromyography (EMG) values of bispectral index (BIS) monitor during coil detachment. An explanation of this event is provided connecting mechanism of coil detachment and derivation of EMG values in a BIS monitor. While rising EMG values are thought to arise from frontalis contraction, they may as well be an unrecognized electrical artefact, especially in context of undistorted electroencephalography waveform.

  10. Effect of vibrotactile feedback on an EMG-based proportional cursor control system.

    PubMed

    Li, Shunchong; Chen, Xingyu; Zhang, Dingguo; Sheng, Xinjun; Zhu, Xiangyang

    2013-01-01

    Surface electromyography (sEMG) has been introduced into the bio-mechatronics systems, however, most of them are lack of the sensory feedback. In this paper, the effect of vibrotactile feedback for a myoelectric cursor control system is investigated quantitatively. Simultaneous and proportional control signals are extracted from EMG using a muscle synergy model. Different types of feedback including vibrotactile feedback and visual feedback are added, assessed and compared with each other. The results show that vibrotactile feedback is capable of improving the performance of EMG-based human machine interface.

  11. A comparison of the muscular relaxation effect of TENS and EMG-biofeedback in patients with bruxism.

    PubMed

    Wieselmann-Penkner, K; Janda, M; Lorenzoni, M; Polansky, R

    2001-09-01

    This study investigated effects of electromyographic (EMG) biofeedback (BFB) and transcutaneous electrical neuromuscular stimulation (TENS) on the EMG activity of the masticatory muscles and skin conductance level (SCL) of patients, suffering from myofacial pain syndrome. In the course of the investigation, EMG activity as well as the SCL was measured after a 20 min BFB or, respectively, after a myomonitor session in 20 patients and pre- and post-treatment values were compared. Results showed tendencies of decreased mean-EMG levels for both groups after the treatment sessions, with higher EMG values for the myomonitor group. There was no indication of a significant decrease in mean EMG levels over the sessions. Furthermore, an increase of the SCL during the period of treatment was observed for both groups in session I and II, while session III produced nearly stable values. No existing correlations for changes in SCL and EMG-activity could be established.

  12. Dopamine, Depressive Symptoms and Decision-Making: The Relationship between Spontaneous Eyeblink Rate and Depressive Symptoms Predicts Iowa Gambling Task Performance

    PubMed Central

    Byrne, Kaileigh A.; Norris, Dominique D.; Worthy, Darrell A.

    2016-01-01

    Depressive symptomatology has been associated with alterations in decision-making, although conclusions have been mixed with depressed individuals showing impairments in some contexts, but advantages in others. The dopaminergic system may link depressive symptoms with decision-making performance. We assessed the role of striatal dopamine D2 receptor density, using spontaneous eyeblink rate, in moderating the relationship between depressive symptoms and decision-making performance in a large undergraduate sample that had not been screened for mental illness (N=104). Regression results revealed that eyeblink rate moderated the relationship between depressive symptoms and advantageous decisions on the IGT in which individuals with more depressive symptomatology and high blink rates (higher striatal dopamine D2 receptor density) performed better on the task. Computational modeling results demonstrated that depressive symptoms alone were associated with enhanced loss aversive behavior, while individuals with high blink rates and elevated depressive symptoms tended to persevere in selecting options that led to net gains (avoiding options with net losses). These findings suggest that variation in striatal dopamine D2 receptor availability in individuals with depressive symptoms may contribute to differences in decision-making behavior. PMID:26383904

  13. Interpretation of EMG changes with fatigue: facts, pitfalls, and fallacies.

    PubMed

    Dimitrova, N A; Dimitrov, G V

    2003-02-01

    Failure to maintain the required or expected force, defined as muscle fatigue, is accompanied by changes in muscle electrical activity. Although studied for a long time, reasons for EMG changes in time and frequency domain have not been clear until now. Many authors considered that theory predicted linear relation between the characteristic frequencies and muscle fibre propagation velocity (MFPV), irrespective of the fact that spectral characteristics can drop even without any changes in MFPV, or in proportion exceeding the MFPV changes. The amplitude changes seem to be more complicated and contradictory since data on increased, almost unchanged, and decreased amplitude characteristics of the EMG, M-wave or motor unit potential (MUP) during fatigue can be found in literature. Moreover, simultaneous decrease and increase in amplitude of MUP and M-wave, detected with indwelling and surface electrodes, were referred to as paradoxical. In spite of this, EMG amplitude characteristics are predominantly used when causes for fatigue are analysed. We aimed to demonstrate theoretical grounds for pitfalls and fallacies in analysis of experimental results if changes in intracellular action potential (IAP), i.e. in peripheral factors of muscle fatigue, were not taken into consideration. We based on convolution model of potentials produced by a motor unit and detected by a point or rectangular plate electrode in a homogeneous anisotropic infinite volume conductor. Presentation of MUP in the convolution form gave us a chance to consider power spectrum (PS) of MUP as a product of two terms. The first one, PS of the input signal, represented PS of the first temporal derivative of intracellular action potential (IAP). The second term, PS of the impulse response, took into account MFPV, differences in instants of activation of each fibre, MU anatomy, and MU position in the volume conductor in respect to the detecting electrode. PS presentation through product means that not only

  14. Use of surface electromyography (EMG) in the diagnosis of childhood hypertonia: a pilot study.

    PubMed

    Sanger, Terence D

    2008-06-01

    In children, increased tone in a joint can be caused by spasticity, dystonia, rigidity, or mechanical limitations such as contracture. Determination of the cause of hypertonia is important for selection of appropriate therapy, but distinction between the types of hypertonia is difficult in a clinical setting. We present results of a pilot test of the use of a portable surface electromyography (EMG) device for the evaluation of hypertonia. Seven children 5-17 years of age with hypertonia due to cerebral palsy were each examined by 6 clinicians, both with and without the use of surface EMG. The use of surface EMG resulted in an increase in interrater agreement as well as an increase in the self-reported confidence of the clinicians in their assessment. These results support the importance of further testing of surface EMG as an adjunct to the clinical examination of childhood hypertonia.

  15. [The nonlinear parameters of interference EMG of two day old human newborns].

    PubMed

    Voroshilov, A S; Meĭgal, A Iu

    2011-01-01

    Temporal structure of interference electromyogram (iEMG) was studied in healthy two days old human newborns (n = 76) using the non-linear parameters (correlation dimension, fractal dimension, correlation entropy). It has been found that the non-linear parameters of iEMG were time-dependent because they were decreasing within the first two days of life. Also, these parameters were sensitive to muscle function, because correlation dimension, fractal dimension, and correlation entropy of iEMG in gastrocnemius muscle differed from the other muscles. The non-linear parameters were proven to be independent of the iEMG amplitude. That model of early ontogenesis may be of potential use for investigation of anti-gravitation activity.

  16. Novel Methods for Surface EMG Analysis and Exploration Based on Multi-Modal Gaussian Mixture Models

    PubMed Central

    Vögele, Anna Magdalena; Zsoldos, Rebeka R.; Krüger, Björn; Licka, Theresia

    2016-01-01

    This paper introduces a new method for data analysis of animal muscle activation during locomotion. It is based on fitting Gaussian mixture models (GMMs) to surface EMG data (sEMG). This approach enables researchers/users to isolate parts of the overall muscle activation within locomotion EMG data. Furthermore, it provides new opportunities for analysis and exploration of sEMG data by using the resulting Gaussian modes as atomic building blocks for a hierarchical clustering. In our experiments, composite peak models representing the general activation pattern per sensor location (one sensor on the long back muscle, three sensors on the gluteus muscle on each body side) were identified per individual for all 14 horses during walk and trot in the present study. Hereby we show the applicability of the method to identify composite peak models, which describe activation of different muscles throughout cycles of locomotion. PMID:27362752

  17. Tremor Frequency Assessment by iPhone® Applications: Correlation with EMG Analysis.

    PubMed

    Araújo, Rui; Tábuas-Pereira, Miguel; Almendra, Luciano; Ribeiro, Joana; Arenga, Marta; Negrão, Luis; Matos, Anabela; Morgadinho, Ana; Januário, Cristina

    2016-10-19

    Tremor frequency analysis is usually performed by EMG studies but accelerometers are progressively being more used. The iPhone® contains an accelerometer and many applications claim to be capable of measuring tremor frequency. We tested three applications in twenty-two patients with a diagnosis of PD, ET and Holmes' tremor. EMG needle assessment as well as accelerometry was performed at the same time. There was very strong correlation (Pearson >0.8, p < 0.001) between the three applications, the EMG needle and the accelerometry. Our data suggests the apps LiftPulse®, iSeismometer® and Studymytremor® are a reliable alternative to the EMG for tremor frequency assessment.

  18. Steering a Tractor by Means of an EMG-Based Human-Machine Interface

    PubMed Central

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver’s scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering. PMID:22164006

  19. Analysis of using EMG and mechanical sensors to enhance intent recognition in powered lower limb prostheses

    NASA Astrophysics Data System (ADS)

    Young, A. J.; Kuiken, T. A.; Hargrove, L. J.

    2014-10-01

    Objective. The purpose of this study was to determine the contribution of electromyography (EMG) data, in combination with a diverse array of mechanical sensors, to locomotion mode intent recognition in transfemoral amputees using powered prostheses. Additionally, we determined the effect of adding time history information using a dynamic Bayesian network (DBN) for both the mechanical and EMG sensors. Approach. EMG signals from the residual limbs of amputees have been proposed to enhance pattern recognition-based intent recognition systems for powered lower limb prostheses, but mechanical sensors on the prosthesis—such as inertial measurement units, position and velocity sensors, and load cells—may be just as useful. EMG and mechanical sensor data were collected from 8 transfemoral amputees using a powered knee/ankle prosthesis over basic locomotion modes such as walking, slopes and stairs. An offline study was conducted to determine the benefit of different sensor sets for predicting intent. Main results. EMG information was not as accurate alone as mechanical sensor information (p < 0.05) for any classification strategy. However, EMG in combination with the mechanical sensor data did significantly reduce intent recognition errors (p < 0.05) both for transitions between locomotion modes and steady-state locomotion. The sensor time history (DBN) classifier significantly reduced error rates compared to a linear discriminant classifier for steady-state steps, without increasing the transitional error, for both EMG and mechanical sensors. Combining EMG and mechanical sensor data with sensor time history reduced the average transitional error from 18.4% to 12.2% and the average steady-state error from 3.8% to 1.0% when classifying level-ground walking, ramps, and stairs in eight transfemoral amputee subjects. Significance. These results suggest that a neural interface in combination with time history methods for locomotion mode classification can enhance intent

  20. Wrist torque estimation during simultaneous and continuously changing movements: surface vs. untargeted intramuscular EMG.

    PubMed

    Kamavuako, Ernest N; Scheme, Erik J; Englehart, Kevin B

    2013-06-01

    In this paper, the predictive capability of surface and untargeted intramuscular electromyography (EMG) was compared with respect to wrist-joint torque to quantify which type of measurement better represents joint torque during multiple degrees-of-freedom (DoF) movements for possible application in prosthetic control. Ten able-bodied subjects participated in the study. Surface and intramuscular EMG was recorded concurrently from the right forearm. The subjects were instructed to track continuous contraction profiles using single and combined DoF in two trials. The association between torque and EMG was assessed using an artificial neural network. Results showed a significant difference between the two types of EMG (P < 0.007) for all performance metrics: coefficient of determination (R(2)), Pearson correlation coefficient (PCC), and root mean square error (RMSE). The performance of surface EMG (R(2) = 0.93 ± 0.03; PCC = 0.98 ± 0.01; RMSE = 8.7 ± 2.1%) was found to be superior compared with intramuscular EMG (R(2) = 0.80 ± 0.07; PCC = 0.93 ± 0.03; RMSE = 14.5 ± 2.9%). The higher values of PCC compared with R(2) indicate that both methods are able to track the torque profile well but have some trouble (particularly intramuscular EMG) in estimating the exact amplitude. The possible cause for the difference, thus the low performance of intramuscular EMG, may be attributed to the very high selectivity of the recordings used in this study.

  1. Steering a tractor by means of an EMG-based human-machine interface.

    PubMed

    Gomez-Gil, Jaime; San-Jose-Gonzalez, Israel; Nicolas-Alonso, Luis Fernando; Alonso-Garcia, Sergio

    2011-01-01

    An electromiographic (EMG)-based human-machine interface (HMI) is a communication pathway between a human and a machine that operates by means of the acquisition and processing of EMG signals. This article explores the use of EMG-based HMIs in the steering of farm tractors. An EPOC, a low-cost human-computer interface (HCI) from the Emotiv Company, was employed. This device, by means of 14 saline sensors, measures and processes EMG and electroencephalographic (EEG) signals from the scalp of the driver. In our tests, the HMI took into account only the detection of four trained muscular events on the driver's scalp: eyes looking to the right and jaw opened, eyes looking to the right and jaw closed, eyes looking to the left and jaw opened, and eyes looking to the left and jaw closed. The EMG-based HMI guidance was compared with manual guidance and with autonomous GPS guidance. A driver tested these three guidance systems along three different trajectories: a straight line, a step, and a circumference. The accuracy of the EMG-based HMI guidance was lower than the accuracy obtained by manual guidance, which was lower in turn than the accuracy obtained by the autonomous GPS guidance; the computed standard deviations of error to the desired trajectory in the straight line were 16 cm, 9 cm, and 4 cm, respectively. Since the standard deviation between the manual guidance and the EMG-based HMI guidance differed only 7 cm, and this difference is not relevant in agricultural steering, it can be concluded that it is possible to steer a tractor by an EMG-based HMI with almost the same accuracy as with manual steering.

  2. Quantification the relationship between FITA scores and EMG skill indexes in archery.

    PubMed

    Ertan, H; Soylu, A R; Korkusuz, F

    2005-04-01

    Forearm electromyographic (EMG) data are assumed to be an effective method in estimating performance level in archery. The aim of the current study was to establish archery skill indexes based on EMG data. Elite (n=7, FITA score=1303.4+/-26.2), beginner (n=6, FITA score=1152+/-9.0) and non-archers (n=10, assumed FITA score=250+/-0), were involved in the study. EMG activity of Muscle flexor digitorum superficialis and Muscle extensor digitorum were quantified. Two-second periods--1 s before and 1 s after the fall of the clicker--were used to obtain averaged and rectified EMG data. The averaged and rectified EMG data were filtered by averaging finite impulse response filter with 40 ms time window and then normalized with respect to maximum voluntary contraction. To estimate FITA scores from EMG data, the following skill indexes that based on mean area under some parts of processed EMG waveforms was offered for archery. These were the pre-clicker archery skill index (PreCASI), post-clicker archery skill index (PostCASI), archery skill index (ASI) and post-clicker archery skill index 2 (PostCASI2). The correlations between rank of FITA scores and natural logarithms of archery skill indexes were significant for log(PreCASI): r=-0.66, p<0.0008; for log(PostCASI): r=-0.70, p<0.0003; for log(ASI): r=-0.74, p<0.0001; log(PostCASI2): r=-0.63, p<0.002. It is concluded that EMG skill indexes may be useful for: (a) assessing shooting techniques, (b) evaluation of archers' progress and (c) selection of talented archers.

  3. Nonlinear parameters of surface EMG in schizophrenia patients depend on kind of antipsychotic therapy

    PubMed Central

    Meigal, Alexander Yu.; Miroshnichenko, German G.; Kuzmina, Anna P.; Rissanen, Saara M.; Georgiadis, Stefanos D.; Karjalainen, Pasi A.

    2015-01-01

    We compared a set of surface EMG (sEMG) parameters in several groups of schizophrenia (SZ, n = 74) patients and healthy controls (n = 11) and coupled them with the clinical data. sEMG records were quantified with spectral, mutual information (MI) based and recurrence quantification analysis (RQA) parameters, and with approximate and sample entropies (ApEn and SampEn). Psychotic deterioration was estimated with Positive and Negative Syndrome Scale (PANSS) and with the positive subscale of PANSS. Neuroleptic-induced parkinsonism (NIP) motor symptoms were estimated with Simpson-Angus Scale (SAS). Dyskinesia was measured with Abnormal Involuntary Movement Scale (AIMS). We found that there was no difference in values of sEMG parameters between healthy controls and drug-naïve SZ patients. The most specific group was formed of SZ patients who were administered both typical and atypical antipsychotics (AP). Their sEMG parameters were significantly different from those of SZ patients taking either typical or atypical AP or taking no AP. This may represent a kind of synergistic effect of these two classes of AP. For the clinical data we found that PANSS, SAS, and AIMS were not correlated to any of the sEMG parameters. Conclusion: with nonlinear parameters of sEMG it is possible to reveal NIP in SZ patients, and it may help to discriminate between different clinical groups of SZ patients. Combined typical and atypical AP therapy has stronger effect on sEMG than a therapy with AP of only one class. PMID:26217236

  4. Spontaneous blinks of Parkinson's disease patients evaluated by EMG and EOG.

    PubMed

    Kaneko, K; Sakamoto, K

    2001-03-01

    In a study of spontaneous blinks, both electromyographic (EMG) activities from m. orbicularis oculi which is responsible for initiating closure of the eyelid and electro-oculogram (EOG) of vertical direction to the movement of the eyelid were measured in ten patients with Parkinson's disease and in thirty normal subjects. The aim of this study was to evaluate the generative mechanism of the spontaneous blinks by comparison of both the EMG and the EOG waveforms in the patients with Parkinson's disease and those in the normal subjects. The mean duration and the amplitude of both the EMG and the EOG were evaluated by the averaging of ten waveforms for the spontaneous blinks. The time lag between the onset of the generation of the EMG and the onset of the EOG signal was analyzed. The mean duration of the EMG and the mean amplitude of both the EMG and the EOG in the patients with Parkinson's disease were shorter and smaller than those in the normal subjects by the significant level of 1%, respectively. There was no difference of the time lag between the subject groups. These results suggest that the function of m. orbicularis oculi for the spontaneous blinks is reduced in patients with Parkinson's disease, because the motoneurones of the facial nucleus innervating the m. orbicularis oculi becomes hypoactive due to abnormal output of basal ganglia.

  5. Learning an EMG Controlled Game: Task-Specific Adaptations and Transfer

    PubMed Central

    van Dijk, Ludger; van der Sluis, Corry K.; van Dijk, Hylke W.; Bongers, Raoul M.

    2016-01-01

    Video games that aim to improve myoelectric control (myogames) are gaining popularity and are often part of the rehabilitation process following an upper limb amputation. However, direct evidence for their effect on prosthetic skill is limited. This study aimed to determine whether and how myogaming improves EMG control and whether performance improvements transfer to a prosthesis-simulator task. Able-bodied right-handed participants (N = 28) were randomly assigned to 1 of 2 groups. The intervention group was trained to control a video game (Breakout-EMG) using the myosignals of wrist flexors and extensors. Controls played a regular Mario computer game. Both groups trained 20 minutes a day for 4 consecutive days. Before and after training, two tests were conducted: one level of the Breakout-EMG game, and grasping objects with a prosthesis-simulator. Results showed a larger increase of in-game accuracy for the Breakout-EMG group than for controls. The Breakout-EMG group moreover showed increased adaptation of the EMG signal to the game. No differences were found in using a prosthesis-simulator. This study demonstrated that myogames lead to task-specific myocontrol skills. Transfer to a prosthesis task is therefore far from easy. We discuss several implications for future myogame designs. PMID:27556154

  6. Human joint motion estimation for electromyography (EMG)-based dynamic motion control.

    PubMed

    Zhang, Qin; Hosoda, Ryo; Venture, Gentiane

    2013-01-01

    This study aims to investigate a joint motion estimation method from Electromyography (EMG) signals during dynamic movement. In most EMG-based humanoid or prosthetics control systems, EMG features were directly or indirectly used to trigger intended motions. However, both physiological and nonphysiological factors can influence EMG characteristics during dynamic movements, resulting in subject-specific, non-stationary and crosstalk problems. Particularly, when motion velocity and/or joint torque are not constrained, joint motion estimation from EMG signals are more challenging. In this paper, we propose a joint motion estimation method based on muscle activation recorded from a pair of agonist and antagonist muscles of the joint. A linear state-space model with multi input single output is proposed to map the muscle activity to joint motion. An adaptive estimation method is proposed to train the model. The estimation performance is evaluated in performing a single elbow flexion-extension movement in two subjects. All the results in two subjects at two load levels indicate the feasibility and suitability of the proposed method in joint motion estimation. The estimation root-mean-square error is within 8.3% ∼ 10.6%, which is lower than that being reported in several previous studies. Moreover, this method is able to overcome subject-specific problem and compensate non-stationary EMG properties.

  7. Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation.

    PubMed

    Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Geng, Weidong

    2017-02-24

    High-density surface electromyography (HD-sEMG) is to record muscles' electrical activity from a restricted area of the skin by using two dimensional arrays of closely spaced electrodes. This technique allows the analysis and modelling of sEMG signals in both the temporal and spatial domains, leading to new possibilities for studying next-generation muscle-computer interfaces (MCIs). sEMG-based gesture recognition has usually been investigated in an intra-session scenario, and the absence of a standard benchmark database limits the use of HD-sEMG in real-world MCI. To address these problems, we present a benchmark database of HD-sEMG recordings of hand gestures performed by 23 participants, based on an 8 × 16 electrode array, and propose a deep-learning-based domain adaptation framework to enhance sEMG-based inter-session gesture recognition. Experiments on NinaPro, CSL-HDEMG and our CapgMyo dataset validate that our approach outperforms state-of-the-arts methods on intra-session and effectively improved inter-session gesture recognition.

  8. Nonnegative matrix factorization for the identification of EMG finger movements: evaluation using matrix analysis.

    PubMed

    Naik, Ganesh R; Nguyen, Hung T

    2015-03-01

    Surface electromyography (sEMG) is widely used in evaluating the functional status of the hand to assist in hand gesture recognition, prosthetics and rehabilitation applications. The sEMG is a noninvasive, easy to record signal of superficial muscles from the skin surface. Considering the nonstationary characteristics of sEMG, recent feature selection of hand gesture recognition using sEMG signals necessitate designers to use nonnegative matrix factorization (NMF)-based methods. This method exploits both the additive and sparse nature of signals by extracting accurate and reliable measurements of sEMG features using a minimum number of sensors. The testing has been conducted for simple and complex finger flexions using several experiments with artificial neural network classification scheme. It is shown, both by simulation and experimental studies, that the proposed algorithm is able to classify ten finger flexions (five simple and five complex finger flexions) recorded from two sEMG sensors up to 92% (95% for simple and 87% for complex flexions) accuracy. The recognition performances of simple and complex finger flexions are also validated with NMF permutation matrix analysis.

  9. EMG prediction from motor cortical recordings via a nonnegative point-process filter.

    PubMed

    Nazarpour, Kianoush; Ethier, Christian; Paninski, Liam; Rebesco, James M; Miall, R Chris; Miller, Lee E

    2012-07-01

    A constrained point-process filtering mechanism for prediction of electromyogram (EMG) signals from multichannel neural spike recordings is proposed here. Filters from the Kalman family are inherently suboptimal in dealing with non-Gaussian observations, or a state evolution that deviates from the Gaussianity assumption. To address these limitations, we modeled the non-Gaussian neural spike train observations by using a generalized linear model that encapsulates covariates of neural activity, including the neurons' own spiking history, concurrent ensemble activity, and extrinsic covariates (EMG signals). In order to predict the envelopes of EMGs, we reformulated the Kalman filter in an optimization framework and utilized a nonnegativity constraint. This structure characterizes the nonlinear correspondence between neural activity and EMG signals reasonably. The EMGs were recorded from 12 forearm and hand muscles of a behaving monkey during a grip-force task. In the case of limited training data, the constrained point-process filter improved the prediction accuracy when compared to a conventional Wiener cascade filter (a linear causal filter followed by a static nonlinearity) for different bin sizes and delays between input spikes and EMG output. For longer training datasets, results of the proposed filter and that of the Wiener cascade filter were comparable.

  10. Analysis of surface EMG baseline for detection of hidden muscle activity

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Zhou, Ping

    2014-02-01

    Objective. This study explored the feasibility of detecting hidden muscle activity in surface electromyogram (EMG) baseline. Approach. Power spectral density (PSD) analysis and multi-scale entropy (MSE) analysis were used. Both analyses were applied to computer simulations of surface EMG baseline with the presence (representing activity data) or absence (representing reference data) of hidden muscle activity, as well as surface electrode array EMG baseline recordings of healthy control and amyotrophic lateral sclerosis (ALS) subjects. Main results. Although the simulated reference data and the activity data yielded no distinguishable difference in the time domain, they demonstrated a significant difference in the frequency and signal complexity domains with the PSD and MSE analyses. For a comparison using pooled data, such a difference was also observed when the PSD and MSE analyses were applied to surface electrode array EMG baseline recordings of healthy control and ALS subjects, which demonstrated no distinguishable difference in the time domain. Compared with the PSD analysis, the MSE analysis appeared to be more sensitive for detecting the difference in surface EMG baselines between the two groups. Significance. The findings implied the presence of a hidden muscle activity in surface EMG baseline recordings from the ALS subjects. To promote the presented analysis as a useful diagnostic or investigatory tool, future studies are necessary to assess the pathophysiological nature or origins of the hidden muscle activity, as well as the baseline difference at the individual subject level.

  11. Influence on muscle oxygenation to EMG parameters at different skeletal muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Song, Gaoqing

    2010-02-01

    The purpose of this study is to investigate the influence of muscle oxygenation on EMG parameters during isometric and incremental exercises and to observe the relationship between EMG parameters and muscle oxygenation. Twelve rowers took part in the tests. Near infrared spectrometer was utilized for measurements of muscle oxygenation on lateral quadriceps. sEMG measurement is performed for EMG parameters during isometric and incremental exercises. Results indicated that Oxy-Hb decrease significantly correlated with IEMG, E/T ratio and frequency of impulse signal during 1/3 MVC and 2/3 MVC isometric exercise, and it is also correlated with IEMG, E/T ratio and frequency of impulse signal. Increase of IEMG occurred at the time after Oxy-Hb decrease during incremental exercise and highly correlated with BLa. It is concluded that no matter how heavy the intensity is, Oxy-Hb dissociation may play an important role in affecting EMG parameters of muscle fatigue during isometric exercise. 2) EMG parameters may be influenced by Oxy-Hb dissociation and blood lactate concentration during dynamic exercise.

  12. Influence on muscle oxygenation to EMG parameters at different skeletal muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Song, Gaoqing

    2009-10-01

    The purpose of this study is to investigate the influence of muscle oxygenation on EMG parameters during isometric and incremental exercises and to observe the relationship between EMG parameters and muscle oxygenation. Twelve rowers took part in the tests. Near infrared spectrometer was utilized for measurements of muscle oxygenation on lateral quadriceps. sEMG measurement is performed for EMG parameters during isometric and incremental exercises. Results indicated that Oxy-Hb decrease significantly correlated with IEMG, E/T ratio and frequency of impulse signal during 1/3 MVC and 2/3 MVC isometric exercise, and it is also correlated with IEMG, E/T ratio and frequency of impulse signal. Increase of IEMG occurred at the time after Oxy-Hb decrease during incremental exercise and highly correlated with BLa. It is concluded that no matter how heavy the intensity is, Oxy-Hb dissociation may play an important role in affecting EMG parameters of muscle fatigue during isometric exercise. 2) EMG parameters may be influenced by Oxy-Hb dissociation and blood lactate concentration during dynamic exercise.

  13. Surface EMG-Based Inter-Session Gesture Recognition Enhanced by Deep Domain Adaptation

    PubMed Central

    Du, Yu; Jin, Wenguang; Wei, Wentao; Hu, Yu; Geng, Weidong

    2017-01-01

    High-density surface electromyography (HD-sEMG) is to record muscles’ electrical activity from a restricted area of the skin by using two dimensional arrays of closely spaced electrodes. This technique allows the analysis and modelling of sEMG signals in both the temporal and spatial domains, leading to new possibilities for studying next-generation muscle-computer interfaces (MCIs). sEMG-based gesture recognition has usually been investigated in an intra-session scenario, and the absence of a standard benchmark database limits the use of HD-sEMG in real-world MCI. To address these problems, we present a benchmark database of HD-sEMG recordings of hand gestures performed by 23 participants, based on an 8 × 16 electrode array, and propose a deep-learning-based domain adaptation framework to enhance sEMG-based inter-session gesture recognition. Experiments on NinaPro, CSL-HDEMG and our CapgMyo dataset validate that our approach outperforms state-of-the-arts methods on intra-session and effectively improved inter-session gesture recognition. PMID:28245586

  14. Changes of forearm EMG and cerebral evoked potentials following sudden muscle stretch during isometric contractions in patients with Parkinson's disease.

    PubMed

    Aminoff, M J; Siedenberg, R; Goodin, D S

    1997-05-23

    Various investigators have reported that the late reflex EMG activity following muscle stretch is increased in patients with Parkinson's disease. To explore the basis of this increased activity, we have now recorded the late EMG responses together with associated cerebral responses following muscle stretch in parkinsonian patients. Nine patients and eight controls participated in two sets of experiments in which they grasped a handle attached to a torque motor and maintained the wrist isometrically against a constant flexor force. The force was changed unpredictably (first set) or predictably (second set of experiments), causing a stretch of wrist extensors or flexors. Cerebral responses and muscle responses from the forearm were recorded and averaged separately depending upon condition. The late muscle responses to unpredictable muscle stretch were enhanced in parkinsonian patients while the cerebral responses were attenuated when compared to controls. The alteration of the electrocerebral response began approx. 25 ms prior to the late M2 muscle response. Both controls and patients showed a markedly attenuated cerebral response when the muscle stretch was predictable. These results indicate that the electrocerebral response to muscle stretch is altered prior to the onset of M2 in patients with Parkinson's disease, and suggest that these cerebral events reflect components of a long-latency transcerebral reflex pathway that is affected in this disorder.

  15. Kinematic and EMG Responses to Pelvis and Leg Assistance Force during Treadmill Walking in Children with Cerebral Palsy

    PubMed Central

    Kim, Janis; Arora, Pooja; Zhang, Yunhui

    2016-01-01

    Treadmill training has been used for improving locomotor function in children with cerebral palsy (CP), but the functional gains are relatively small, suggesting a need to improve current paradigms. The understanding of the kinematic and EMG responses to forces applied to the body of subjects during treadmill walking is crucial for improving current paradigms. The objective of this study was to determine the kinematics and EMG responses to the pelvis and/or leg assistance force. Ten children with spastic CP were recruited to participate in this study. A controlled assistance force was applied to the pelvis and/or legs during stance and swing phase of gait through a custom designed robotic system during walking. Muscle activities and spatial-temporal gait parameters were measured at different loading conditions during walking. In addition, the spatial-temporal gait parameters during overground walking before and after treadmill training were also collected. Applying pelvis assistance improved step height and applying leg assistance improved step length during walking, but applying leg assistance also reduced muscle activation of ankle flexor during the swing phase of gait. In addition, step length and self-selected walking speed significantly improved after one session of treadmill training with combined pelvis and leg assistance. PMID:27651955

  16. Intramuscular EMG from the hip flexor muscles during human locomotion.

    PubMed

    Andersson, E A; Nilsson, J; Thorstensson, A

    1997-11-01

    The purpose was to investigate the activation pattern of five major hip flexor muscles and its adaptation to changing speed and mode of progression. A total of 11 healthy subjects performed walking and running on a motor-driven treadmill at speeds ranging from 1.0 to 6.0 m s-1. Intramuscular fine-wire electrodes were used to record myoelectric signals from the iliacus, psoas, sartorius, rectus femoris and tensor fascia latae muscles. The basic pattern, with respect to number of activation periods, remained the same irrespective of speed and mode of progression. However, differences in the relative duration and timing of onset of activation occurred between individual muscles. Over the speed range in walking, a progressively earlier onset was generally seen for the activation period related to hip flexion. Changes in EMG amplitude were measured in the iliacus and psoas muscles and showed a marked increase and difference between walking and running at speeds above 2.0 m s-1. Thus, the alternating flexion-extension movements at the hip during locomotion appear to be governed by a rather fixed 'neural program' which normally only needs minor modulations to accomplish the adjustments accompanying an increase in speed of progression as well as a change from walking to running.

  17. Surface EMG pattern recognition for real-time control of a wrist exoskeleton

    PubMed Central

    2010-01-01

    Background Surface electromyography (sEMG) signals have been used in numerous studies for the classification of hand gestures and movements and successfully implemented in the position control of different prosthetic hands for amputees. sEMG could also potentially be used for controlling wearable devices which could assist persons with reduced muscle mass, such as those suffering from sarcopenia. While using sEMG for position control, estimation of the intended torque of the user could also provide sufficient information for an effective force control of the hand prosthesis or assistive device. This paper presents the use of pattern recognition to estimate the torque applied by a human wrist and its real-time implementation to control a novel two degree of freedom wrist exoskeleton prototype (WEP), which was specifically developed for this work. Methods Both sEMG data from four muscles of the forearm and wrist torque were collected from eight volunteers by using a custom-made testing rig. The features that were extracted from the sEMG signals included root mean square (rms) EMG amplitude, autoregressive (AR) model coefficients and waveform length. Support Vector Machines (SVM) was employed to extract classes of different force intensity from the sEMG signals. After assessing the off-line performance of the used classification technique, the WEP was used to validate in real-time the proposed classification scheme. Results The data gathered from the volunteers were divided into two sets, one with nineteen classes and the second with thirteen classes. Each set of data was further divided into training and testing data. It was observed that the average testing accuracy in the case of nineteen classes was about 88% whereas the average accuracy in the case of thirteen classes reached about 96%. Classification and control algorithm implemented in the WEP was executed in less than 125 ms. Conclusions The results of this study showed that classification of EMG signals by

  18. Forelimb EMG-based trigger to control an electronic spinal bridge to enable hindlimb stepping after a complete spinal cord lesion in rats

    PubMed Central

    2012-01-01

    Background A complete spinal cord transection results in loss of all supraspinal motor control below the level of the injury. The neural circuitry in the lumbosacral spinal cord, however, can generate locomotor patterns in the hindlimbs of rats and cats with the aid of motor training, epidural stimulation and/or administration of monoaminergic agonists. We hypothesized that there are patterns of EMG signals from the forelimbs during quadrupedal locomotion that uniquely represent a signal for the “intent” to step with the hindlimbs. These observations led us to determine whether this type of “indirect” volitional control of stepping can be achieved after a complete spinal cord injury. The objective of this study was to develop an electronic bridge across the lesion of the spinal cord to facilitate hindlimb stepping after a complete mid-thoracic spinal cord injury in adult rats. Methods We developed an electronic spinal bridge that can detect specific patterns of EMG activity from the forelimb muscles to initiate electrical-enabling motor control (eEmc) of the lumbosacral spinal cord to enable quadrupedal stepping after a complete spinal cord transection in rats. A moving window detection algorithm was implemented in a small microprocessor to detect biceps brachii EMG activity bilaterally that then was used to initiate and terminate epidural stimulation in the lumbosacral spinal cord. We found dominant frequencies of 180–220 Hz in the EMG of the forelimb muscles during active periods, whereas these frequencies were between 0–10 Hz when the muscles were inactive. Results and conclusions Once the algorithm was validated to represent kinematically appropriate quadrupedal stepping, we observed that the algorithm could reliably detect, initiate, and facilitate stepping under different pharmacological conditions and at various treadmill speeds. PMID:22691460

  19. Mental stress and trapezius muscle activation under psychomotor challenge: a focus on EMG gaps during computer work.

    PubMed

    Schleifer, Lawrence M; Spalding, Thomas W; Kerick, Scott E; Cram, Jeffrey R; Ley, Ronald; Hatfield, Bradley D

    2008-05-01

    Momentary reductions in the electrical activity of working muscles (EMG gaps) contribute to the explanation for the relationship between psychosocial stress and musculoskeletal problems in computer work. EMG activity and gaps in the left and right trapezii were monitored in 23 participants under low and high mental workload (LMW and HMW) demands during computer data entry. Increases in EMG activity and decreases in EMG-gap frequencies in both left and right trapezius muscles were greater during HMW than LMW. In addition, heart period and end-tidal CO2 were lower during HMW, whereas self-reported mood states were higher during HMW. The correspondence between lower end-tidal CO2 and lower EMG-gap frequencies suggests that hyperventilation (overbreathing) may mediate trapezius muscle activation. The reduction of EMG gaps suggests that the salutary benefits of momentary rest from musculoskeletal work are diminished during mental stress.

  20. An initial investigation into the real-time conversion of facial surface EMG signals to audible speech.

    PubMed

    Diener, Lorenz; Herff, Christian; Janke, Matthias; Schultz, Tanja

    2016-08-01

    This paper presents early-stage results of our investigations into the direct conversion of facial surface electromyographic (EMG) signals into audible speech in a real-time setting, enabling novel avenues for research and system improvement through real-time feedback. The system uses a pipeline approach to enable online acquisition of EMG data, extraction of EMG features, mapping of EMG features to audio features, synthesis of audio waveforms from audio features and output of the audio waveforms via speakers or headphones. Our system allows for performing EMG-to-Speech conversion with low latency and on a continuous stream of EMG data, enabling near instantaneous audio output during audible as well as silent speech production. In this paper, we present an analysis of our systems components for latency incurred, as well as the tradeoffs between conversion quality, latency and training duration required.

  1. Simultaneous EMG-fMRI during startle inhibition in monosymptomatic enuresis--an exploratory study.

    PubMed

    Schulz-Juergensen, Sebastian; Wunberg, David; Wolff, Stephan; Eggert, Paul; Siniatchkin, Michael

    2013-01-01

    Evidence is growing that monosymptomatic enuresis (ME) is a maturational disorder of the central nervous system with a lack of arousal and lacking inhibition of the micturition reflex. Previous studies have shown a significant reduction of prepulse inhibition (PPI) of startle in children with enuresis. However, it is still unclear whether the abnormal PPI in enuresis is based on an inhibitory deficit at brainstem or cortical level. Nine children with ME and ten healthy children were investigated using simultaneous recording of EMG from the M. orbicularis oculi and functional MRI. The experimental paradigm consisted of acoustic startle stimulation, with startle-alone stimuli and prepulse-startle combinations. Functional MRI data were processed using multiple regression and parametric modulation with startle amplitudes as a parameter. Neither patients with enuresis nor healthy children revealed measurable PPI in the MRI scanner. Startle stimuli caused equal hemodynamic changes in the acoustic cortex, medial prefrontal and orbitofrontal cortex in both groups. The amplitude of startle correlated with more prominent BOLD signal changes in the anterior cingulate cortex in healthy subjects than in patients with ME. This pronounced frontal activation in healthy controls was related to the PPI condition, indicating that the prefrontal cortex of healthy children was activated more strongly to inhibit startle than in patients with ME. In conclusion, apart from the possibility that recordings of PPI inside the MRI scanner may be compromised by methodological problems, the results of this study suggest that high cortical control mechanisms at the prefrontal level are relevant for the pathogenesis of ME.

  2. An EMG-based system for continuous monitoring of clinical efficacy of Parkinson's disease treatments.

    PubMed

    Askari, Sina; Zhang, Mo; Won, Deborah S

    2010-01-01

    Current methods for assessing the efficacy of treatments for Parkinson's disease (PD) rely on physician rated scores. These methods pose three major shortcomings: 1) the subjectivity of the assessments, 2) the lack of precision on the rating scale (6 discrete levels), and 3) the inability to assess symptoms except under very specific conditions and/or for very specific tasks. To address these shortcomings, a portable system was developed to continuously monitor Parkinsonian symptoms with quantitative measures based on electrical signals from muscle activity (EMG). Here, we present the system design and the implementation of methods for system validation. This system was designed to provide continuous measures of tremor, rigidity, and bradykinesia which are related to the neurophysiological source without the need for multiple bulky experimental apparatuses, thus allowing more precise, quantitative indicators of the symptoms which can be measured during practical daily living tasks. This measurement system has the potential to improve the diagnosis of PD as well as the evaluation of PD treatments, which is an important step in the path to improving PD treatments.

  3. Static optimization of muscle forces during gait in comparison to EMG-to-force processing approach.

    PubMed

    Heintz, Sofia; Gutierrez-Farewik, Elena M

    2007-07-01

    Individual muscle forces evaluated from experimental motion analysis may be useful in mathematical simulation, but require additional musculoskeletal and mathematical modelling. A numerical method of static optimization was used in this study to evaluate muscular forces during gait. The numerical algorithm used was built on the basis of traditional optimization techniques, i.e., constrained minimization technique using the Lagrange multiplier method to solve for constraints. Measuring exact muscle forces during gait analysis is not currently possible. The developed optimization method calculates optimal forces during gait, given a specific performance criterion, using kinematics and kinetics from gait analysis together with muscle architectural data. Experimental methods to validate mathematical methods to calculate forces are limited. Electromyography (EMG) is frequently used as a tool to determine muscle activation in experimental studies on human motion. A method of estimating force from the EMG signal, the EMG-to-force approach, was recently developed by Bogey et al. [Bogey RA, Perry J, Gitter AJ. An EMG-to-force processing approach for determining ankle muscle forcs during normal human gait. IEEE Trans Neural Syst Rehabil Eng 2005;13:302-10] and is based on normalization of activation during a maximum voluntary contraction to documented maximal muscle strength. This method was adapted in this study as a tool with which to compare static optimization during a gait cycle. Muscle forces from static optimization and from EMG-to-force muscle forces show reasonably good correlation in the plantarflexor and dorsiflexor muscles, but less correlation in the knee flexor and extensor muscles. Additional comparison of the mathematical muscle forces from static optimization to documented averaged EMG data reveals good overall correlation to patterns of evaluated muscular activation. This indicates that on an individual level, muscular force patterns from mathematical

  4. Motor modules of human locomotion: influence of EMG averaging, concatenation, and number of step cycles

    PubMed Central

    Oliveira, Anderson S.; Gizzi, Leonardo; Farina, Dario; Kersting, Uwe G.

    2014-01-01

    Locomotion can be investigated by factorization of electromyographic (EMG) signals, e.g., with non-negative matrix factorization (NMF). This approach is a convenient concise representation of muscle activities as distributed in motor modules, activated in specific gait phases. For applying NMF, the EMG signals are analyzed either as single trials, or as averaged EMG, or as concatenated EMG (data structure). The aim of this study is to investigate the influence of the data structure on the extracted motor modules. Twelve healthy men walked at their preferred speed on a treadmill while surface EMG signals were recorded for 60s from 10 lower limb muscles. Motor modules representing relative weightings of synergistic muscle activations were extracted by NMF from 40 step cycles separately (EMGSNG), from averaging 2, 3, 5, 10, 20, and 40 consecutive cycles (EMGAVR), and from the concatenation of the same sets of consecutive cycles (EMGCNC). Five motor modules were sufficient to reconstruct the original EMG datasets (reconstruction quality >90%), regardless of the type of data structure used. However, EMGCNC was associated with a slightly reduced reconstruction quality with respect to EMGAVR. Most motor modules were similar when extracted from different data structures (similarity >0.85). However, the quality of the reconstructed 40-step EMGCNC datasets when using the muscle weightings from EMGAVR was low (reconstruction quality ~40%). On the other hand, the use of weightings from EMGCNC for reconstructing this long period of locomotion provided higher quality, especially using 20 concatenated steps (reconstruction quality ~80%). Although EMGSNG and EMGAVR showed a higher reconstruction quality for short signal intervals, these data structures did not account for step-to-step variability. The results of this study provide practical guidelines on the methodological aspects of synergistic muscle activation extraction from EMG during locomotion. PMID:24904375

  5. Normative EMG Values during REM Sleep for the Diagnosis of REM Sleep Behavior Disorder

    PubMed Central

    Frauscher, Birgit; Iranzo, Alex; Gaig, Carles; Gschliesser, Viola; Guaita, Marc; Raffelseder, Verena; Ehrmann, Laura; Sola, Nuria; Salamero, Manel; Tolosa, Eduardo; Poewe, Werner; Santamaria, Joan; Högl, Birgit

    2012-01-01

    Background: Correct diagnosis of rapid eye movement sleep behavior disorder (RBD) is important because it can be the first manifestation of a neurodegenerative disease, it may lead to serious injury, and it is a well-treatable disorder. We evaluated the electromyographic (EMG) activity in the Sleep Innsbruck Barcelona (SINBAR) montage (mentalis, flexor digitorum superficialis, extensor digitorum brevis) and other muscles to obtain normative values for the correct diagnosis of RBD for clinical practice. Setting: Two university hospital sleep disorder centers. Participants: Thirty RBD patients (15 idiopathic [iRBD], 15 with Parkinson disease [PD]) and 30 matched controls recruited from patients with effectively treated sleep related breathing disorders. Interventions: Not applicable. Methods and Results: Participants underwent video-polysomnography, including registration of 11 body muscles. Tonic, phasic, and “any” (any type of EMG activity, irrespective of whether it consisted of tonic, phasic or a combination of both) EMG activity was blindly quantified for each muscle. When choosing a specificity of 100%, the 3-sec miniepoch cutoff for a diagnosis of RBD was 18% for “any” EMG activity in the mentalis muscle (area under the curve [AUC] 0.990). Discriminative power was higher in upper limb (100% specificity, AUC 0.987–9.997) than in lower limb muscles (100% specificity, AUC 0.813–0.852). The combination of “any” EMG activity in the mentalis muscle with both phasic flexor digitorum superficialis muscles yielded a cutoff of 32% (AUC 0.998) for patients with iRBD and with PD-RBD. Conclusion: For the diagnosis of iRBD and RBD associated with PD, we recommend a polysomnographic montage quantifying “any” (any type of EMG activity, irrespective of whether it consisted of tonic, phasic or a combination of both) EMG activity in the mentalis muscle and phasic EMG activity in the right and left flexor digitorum superficialis muscles in the upper limbs with

  6. Effect of hypnosis on masseter EMG recorded during the 'resting' and a slightly open jaw posture.

    PubMed

    Al-Enaizan, N; Davey, K J; Lyons, M F; Cadden, S W

    2015-11-01

    The aim of this experimental study was to determine whether minimal levels of electromyographic activity in the masseter muscle are altered when individuals are in a verified hypnotic state. Experiments were performed on 17 volunteer subjects (8 male, 9 female) all of whom gave informed consent. The subjects were dentate and had no symptoms of pain or masticatory dysfunction. Surface electromyograms (EMGs) were made from the masseter muscles and quantified by integration following full-wave rectification and averaging. The EMGs were obtained (i) with the mandible in 'resting' posture; (ii) with the mandible voluntarily lowered (but with the lips closed); (iii) during maximum voluntary clenching (MVC). The first two recordings were made before, during and after the subjects were in a hypnotic state. Susceptibility to hypnosis was assessed with Spiegel's eye-roll test, and the existence of the hypnotic state was verified by changes in ventilatory pattern. On average, EMG levels expressed as percentages of MVC were less: (i) when the jaw was deliberately lowered as opposed to being in the postural position: (ii) during hypnosis compared with during the pre- and post-hypnotic periods. However, analysis of variance followed by post hoc tests with multiple comparison corrections (Bonferroni) revealed that only the differences between the level during hypnosis and those before and after hypnosis were statistically significant (P < 0·05). As the level of masseter EMG when the mandible was in 'resting' posture was reduced by hypnosis, it appears that part of that EMG is of biological origin.

  7. Lip EMG activity during vowel production in apraxia of speech: phrase context and word length effects.

    PubMed

    Hough, M S; Klich, R J

    1998-08-01

    This investigation examined the timing relationships of EMG activity underlying vowel production in 2 normal individuals and in 2 individuals with marked-to-severe apraxia of speech of approximately two-and-one-half years duration. The timing of lip muscle activity was investigated in monosyllabic words embedded in phrases and in syllable word stems as a function of changes in word length. Specifically, the onset and offset of EMG activity of lip muscles used for production of /u/ in the monosyllables and word stems were examined. The results revealed that the relative amounts of time devoted to onset and offset of EMG activity for lip rounding are disorganized in apraxia of speech. Word length appeared to affect the timing of the onset of muscle activity for both the normal speakers and the speakers with apraxia of speech. Word length also influenced the offset of muscle activity, but its effect was less systematic for the speakers with apraxia of speech. The findings suggest that termination of EMG activity may be at least as disturbed as the initiation of EMG activity in apraxia of speech.

  8. Evaluation of sonomyography (SMG) for control compared with electromyography (EMG) in a discrete target tracking task.

    PubMed

    Guo, Jing-Yi; Zheng, Yong-Ping; Kenney, Laurence P; Xie, Hong-Bo

    2009-01-01

    Most of the commercial upper-limb externally powered prosthetic devices are controlled by electromyography (EMG) signals. We previously proposed using the real-time change of muscle thickness detected using ultrasound, namely sonomyography (SMG), for the control of prostheses. In this study, we compared the performance of subjects using 1-D SMG signal and surface EMG signal, using a discrete target tracking protocol involving a series of letter cancellation tasks. Each task involved using grip force, EMG or SMG from a wrist extensor muscle to move a cursor to one of 5 locations on a computer screen, at the first four of which were located a letter and last of which was a word of "NEXT". The target was defined by the location showing the letter "E" and, once the subject reached this target, they were instructed to "cancel" the E from the screen, using a button operated by the contralateral hand. A paired t-test revealed that the percentage of letters correctly cancelled with force/angle and SMG signal in isometric force control, and with SMG in wrist extension were significantly higher than with EMG (P<0.05) for both isometric control and wrist extension. The results suggest that SMG signal has great potential as an alternative to EMG for prosthetic control.

  9. Analysis of scapular muscle EMG activity in patients with idiopathic neck pain: a systematic review.

    PubMed

    Castelein, Birgit; Cools, Ann; Bostyn, Emma; Delemarre, Jolien; Lemahieu, Trees; Cagnie, Barbara

    2015-04-01

    It is proposed that altered scapular muscle function can contribute to abnormal loading of the cervical spine. However, it is not clear if patients with idiopathic neck pain show altered activity of the scapular muscles. The aim of this paper was to systematically review the literature regarding the differences or similarities in scapular muscle activity, measured by electromyography ( = EMG), between patients with chronic idiopathic neck pain compared to pain-free controls. Case-control (neck pain/healthy) studies investigating scapular muscle EMG activity (amplitude, timing and fatigue parameters) were searched in Pubmed and Web of Science. 25 articles were included in the systematic review. During rest and activities below shoulder height, no clear differences in mean Upper Trapezius ( = UT) EMG activity exist between patients with idiopathic neck pain and a healthy control group. During overhead activities, no conclusion for scapular EMG amplitude can be drawn as a large variation of results were reported. Adaptation strategies during overhead tasks are not the same between studies. Only one study investigated timing of the scapular muscles and found a delayed onset and shorter duration of the SA during elevation in patients with idiopathic neck pain. For scapular muscle fatigue, no definite conclusions can be made as a wide variation and conflicting results are reported. Further high quality EMG research on scapular muscles (broader than the UT) is necessary to understand/draw conclusions on how scapular muscles react in the presence of idiopathic neck pain.

  10. Features extraction of EMG signal using time domain analysis for arm rehabilitation device

    NASA Astrophysics Data System (ADS)

    Jali, Mohd Hafiz; Ibrahim, Iffah Masturah; Sulaima, Mohamad Fani; Bukhari, W. M.; Izzuddin, Tarmizi Ahmad; Nasir, Mohamad Na'im

    2015-05-01

    Rehabilitation device is used as an exoskeleton for people who had failure of their limb. Arm rehabilitation device may help the rehab program whom suffers from arm disability. The device that is used to facilitate the tasks of the program should improve the electrical activity in the motor unit and minimize the mental effort of the user. Electromyography (EMG) is the techniques to analyze the presence of electrical activity in musculoskeletal systems. The electrical activity in muscles of disable person is failed to contract the muscle for movements. In order to prevent the muscles from paralysis becomes spasticity, the force of movements should minimize the mental efforts. Therefore, the rehabilitation device should analyze the surface EMG signal of normal people that can be implemented to the device. The signal is collected according to procedure of surface electromyography for non-invasive assessment of muscles (SENIAM). The EMG signal is implemented to set the movements' pattern of the arm rehabilitation device. The filtered EMG signal was extracted for features of Standard Deviation (STD), Mean Absolute Value (MAV) and Root Mean Square (RMS) in time-domain. The extraction of EMG data is important to have the reduced vector in the signal features with less of error. In order to determine the best features for any movements, several trials of extraction methods are used by determining the features with less of errors. The accurate features can be use for future works of rehabilitation control in real-time.

  11. Finite State Machine with Adaptive Electromyogram (EMG) Feature Extraction to Drive Meal Assistance Robot

    NASA Astrophysics Data System (ADS)

    Zhang, Xiu; Wang, Xingyu; Wang, Bei; Sugi, Takenao; Nakamura, Masatoshi

    Surface electromyogram (EMG) from elbow, wrist and hand has been widely used as an input of multifunction prostheses for many years. However, for patients with high-level limb deficiencies, muscle activities in upper-limbs are not strong enough to be used as control signals. In this paper, EMG from lower-limbs is acquired and applied to drive a meal assistance robot. An onset detection method with adaptive threshold based on EMG power is proposed to recognize different muscle contractions. Predefined control commands are output by finite state machine (FSM), and applied to operate the robot. The performance of EMG control is compared with joystick control by both objective and subjective indices. The results show that FSM provides the user with an easy-performing control strategy, which successfully operates robots with complicated control commands by limited muscle motions. The high accuracy and comfortableness of the EMG-control meal assistance robot make it feasible for users with upper limbs motor disabilities.

  12. An Analysis of Intrinsic and Extrinsic Hand Muscle EMG for Improved Pattern Recognition Control.

    PubMed

    Adewuyi, Adenike A; Hargrove, Levi J; Kuiken, Todd A

    2016-04-01

    Pattern recognition control combined with surface electromyography (EMG) from the extrinsic hand muscles has shown great promise for control of multiple prosthetic functions for transradial amputees. There is, however, a need to adapt this control method when implemented for partial-hand amputees, who possess both a functional wrist and information-rich residual intrinsic hand muscles. We demonstrate that combining EMG data from both intrinsic and extrinsic hand muscles to classify hand grasps and finger motions allows up to 19 classes of hand grasps and individual finger motions to be decoded, with an accuracy of 96% for non-amputees and 85% for partial-hand amputees. We evaluated real-time pattern recognition control of three hand motions in seven different wrist positions. We found that a system trained with both intrinsic and extrinsic muscle EMG data, collected while statically and dynamically varying wrist position increased completion rates from 73% to 96% for partial-hand amputees and from 88% to 100% for non-amputees when compared to a system trained with only extrinsic muscle EMG data collected in a neutral wrist position. Our study shows that incorporating intrinsic muscle EMG data and wrist motion can significantly improve the robustness of pattern recognition control for application to partial-hand prosthetic control.

  13. A Combined sEMG and Accelerometer System for Monitoring Functional Activity in Stroke

    PubMed Central

    Roy, Serge H.; Cheng, M. Samuel; Chang, Shey-Sheen; Moore, John; De Luca, Gianluca; Nawab, S. Hamid; De Luca, Carlo J.

    2010-01-01

    Remote monitoring of physical activity using body-worn sensors provides an alternative to assessment of functional independence by subjective, paper-based questionnaires. This study investigated the classification accuracy of a combined surface electromyographic (sEMG) and accelerometer (ACC) sensor system for monitoring activities of daily living in patients with stroke. sEMG and ACC data (eight channels each) were recorded from 10 hemiparetic patients while they carried out a sequence of 11 activities of daily living (identification tasks), and 10 activities used to evaluate misclassification errors (nonidentification tasks). The sEMG and ACC sensor data were analyzed using a multilayered neural network and an adaptive neuro-fuzzy inference system to identify the minimal sensor configuration needed to accurately classify the identification tasks, with a minimal number of misclassifications from the nonidentification tasks. The results demonstrated that the highest sensitivity and specificity for the identification tasks was achieved using a subset of four ACC sensors and adjacent sEMG sensors located on both upper arms, one forearm, and one thigh, respectively. This configuration resulted in a mean sensitivity of 95.0%, and a mean specificity of 99.7% for the identification tasks, and a mean misclassification error of <10% for the nonidentification tasks. The findings support the feasibility of a hybrid sEMG and ACC wearable sensor system for automatic recognition of motor tasks used to assess functional independence in patients with stroke. PMID:20051332

  14. Autism and motor acts: experimental analysison mylohyoid muscle emg recordingsduring grasping-to-eat action - biomed 2010.

    PubMed

    Pascolo, Paolo B; Ragogna, Paolo; Cremaschi, Silvana; Mondani, Massimo; Carniel, Roberto; Corubolo, Mario; Budai, Riccardo

    2010-01-01

    Most neuroscience studies do not pay enough attention to bio-mechanical related problems, such as the kinematic aspects of movements, that pose important boundary conditions, but are in general not sufficiently taken into consideration. In this work, using an experimental protocol based on measurements of mylohyoid (MH) muscle activity during grasping-to-eat actions, we debate the existence of impairments of action chains in children with autism spectrum disorders (ASD). We re-examine the results of an electromyographic (EMG) experiment on MH muscle presented in a previous study; and we compare them to the results of a new, similar experiment in order to study the electromyographic activity of MH in typically developing (TD) children and in children with ASD executing grasping-to-eat actions. Our results are remarkably different from the original work and seem to indicate that there is no clear experimental evidence of different action organization in children with ASD.

  15. Low-Power Polling Mode of the Next-Generation IMES2 Implantable Wireless EMG Sensor

    PubMed Central

    DeMichele, Glenn A.; Hu, Zhe; Troyk, Philip R.; Chen, Hongnan; Weir, Richard F. ff.

    2015-01-01

    The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee’s voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a lowpower polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control. PMID:25570642

  16. Low-cost assistive device for hand gesture recognition using sEMG

    NASA Astrophysics Data System (ADS)

    Kainz, Ondrej; Cymbalák, Dávid; Kardoš, Slavomír.; Fecil'ak, Peter; Jakab, František

    2016-07-01

    In this paper a low-cost solution for surface EMG (sEMG) signal retrieval is presented. The principal goal is to enable reading the temporal parameters of muscles activity by a computer device, with its further processing. Paper integrates design and deployment of surface electrodes and amplifier following the prior researches. Bearing in mind the goal of creating low-cost solution, the Arduino micro-controller was utilized for analog-to-digital conversion and communication. The software part of the system employs support vector machine (SVM) to classify the EMG signal, as acquired from sensors. Accuracy of the proposed solution achieves over 90 percent for six hand movements. Proposed solution is to be tested as an assistive device for several cases, involving people with motor disabilities and amputees.

  17. EMG assisted optimization: a hybrid approach for estimating muscle forces in an indeterminate biomechanical model.

    PubMed

    Cholewicki, J; McGill, S M

    1994-10-01

    There are two basic approaches to estimate individual muscle forces acting on a joint, given the indeterminacy of moment balance equations: optimization and electromyography (EMG) assisted. Each approach is characterized by unique advantages and liabilities. With this in mind, a new hybrid method which combines the advantages of both of these traditional approaches, termed 'EMG assisted optimization' (EMGAO), was described. In this method, minimal adjustments are applied to the individual muscle forces estimated from EMG, so that all moment equilibrium equations are satisfied in three dimensions. The result is the best possible match between physiologically observed muscle activation patterns and the predicted forces, while satisfying the moment constraints about all three joint axes. Several forms of the objective function are discussed and their effect on individual muscle adjustments is illustrated in a simple two-dimensional example.

  18. Achieving professional success in US government, academia, and industry: an EMGS commentary.

    PubMed

    Poirier, Miriam C; Schwartz, Jeffrey L; Aardema, Marilyn J

    2014-08-01

    One of the goals of the EMGS is to help members achieve professional success in the fields they have trained in. Today, there is greater competition for jobs in genetic toxicology, genomics, and basic research than ever before. In addition, job security and the ability to advance in one's career is challenging, regardless of whether one works in a regulatory, academic, or industry environment. At the EMGS Annual Meeting in Monterey, CA (September, 2013), the Women in EMGS Special Interest Group held a workshop to discuss strategies for achieving professional success. Presentations were given by three speakers, each representing a different employment environment: Government (Miriam C. Poirier), Academia (Jeffrey L. Schwartz), and Industry (Marilyn J. Aardema). Although some differences in factors or traits affecting success in the three employment sectors were noted by each of the speakers, common factors considered important for advancement included networking, seeking out mentors, and developing exceptional communication skills.

  19. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2010-10-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  20. EMG parameters and EEG α Index change at fatigue period during different types of muscle contraction

    NASA Astrophysics Data System (ADS)

    Zhang, Li; Zhou, Bin; Song, Gaoqing

    2011-03-01

    The purpose of this study is to measure and analyze the characteristics in change of EMG and EEG parameters at muscle fatigue period in participants with different exercise capacity. Twenty participants took part in the tests. They were divided into two groups, Group A (constant exerciser) and Group B (seldom-exerciser). MVC dynamic and 1/3 isometric exercises were performed; EMG and EEG signals were recorded synchronously during different type of muscle contraction. Results indicated that values of MVC, RMS and IEMG in Group A were greater than Group B, but isometric exercise time was shorter than the time of dynamic exercise although its intensity was light. Turning point of IEMG and α Index occurred synchronously during constant muscle contraction of isometric or dynamic exercise. It is concluded that IEMG turning point may be an indication to justify muscle fatigue. Synchronization of EEG and EMG reflects its common characteristics on its bio-electric change.

  1. Low-power polling mode of the next-generation IMES2 implantable wireless EMG sensor.

    PubMed

    DeMichele, Glenn A; Hu, Zhe; Troyk, Philip R; Chen, Hongnan; Weir, Richard F ff

    2014-01-01

    The IMES1 Implantable MyoElectric Sensor device is currently in human clinical trials led by the Alfred Mann Foundation. The IMES is implanted in a residual limb and is powered wirelessly using a magnetic field. EMG signals resulting from the amputee's voluntary movement are amplified and transmitted wirelessly by the IMES to an external controller which controls movement of an external motorized prosthesis. Development of the IMES technology is on-going, producing the next-generation IMES2. Among various improvements, a new feature of the IMES2 is a low-power polling mode. In this low-power mode, the IMES2 power consumption can be dramatically reduced when the limb is inactive through the use of a polled sampling. With the onset of EMG activity, the IMES2 system can switch to the normal higher sample rate to allow the acquisition of high-fidelity EMG data for prosthesis control.

  2. Muscle force estimation with surface EMG during dynamic muscle contractions: a wavelet and ANN based approach.

    PubMed

    Bai, Fengjun; Chew, Chee-Meng

    2013-01-01

    Human muscle force estimation is important in biomechanics studies, sports and assistive devices fields. Therefore, it is essential to develop an efficient algorithm to estimate force exerted by muscles. The purpose of this study is to predict force/torque exerted by muscles under dynamic muscle contractions based on continuous wavelet transform (CWT) and artificial neural networks (ANN) approaches. Mean frequency (MF) of the surface electromyography (EMG) signals power spectrum was calculated from CWT. ANN models were trained to derive the MF-force relationships from the subset of EMG signals and the measured forces. Then we use the networks to predict the individual muscle forces for different muscle groups. Fourteen healthy subjects (10 males and 4 females) were voluntarily recruited in this study. EMG signals were collected from the biceps brachii, triceps, hamstring and quadriceps femoris muscles to evaluate the proposed method. Root mean square errors (RMSE) and correlation coefficients between the predicted forces and measured actual forces were calculated.

  3. The conditional emotional response as a model of Pavlovian conditioning.

    PubMed

    Hall, J F

    1986-01-01

    Many investigators have assumed that the conditional emotional response (CER) with its attendant response measure, response suppression, can be used as a model for Pavlovian conditioning; that is, that the experimental results obtained with the CER will yield findings similar to those obtained with the direct conditional stimulus (CS)-conditional response (CR) paradigm, e.g., conditioning of the eyeblink, electrodermal (EDR), finger withdrawal, etc. Several problems, however, have emerged with this assumption. The first is a methodologic-statistical one. Measurement of response suppression using the familiar ratio measure assumes that different base rates of responding should play no role in determining the size of the suppression ratio, and operant responding from one pre-CS period to another will remain stable. These assumptions have been found to be in error. In addition, the statistical assumptions of normally distributed data and homogeneous variances of the experimental and control groups also have been called to question. Some experimenters, however, have taken the position that if CER and direct CS-CR experimental findings are in general agreement when a particular conditioning variable has been manipulated, the methodologic-statistical problems that we have identified can be ignored. The experimental evidence suggests that although such comparisons frequently indicate an identity of findings, there are sufficient exceptions in which caution is urged in assuming that the two paradigms are measuring the same learning correlate.

  4. Agreement between clinical and portable EMG/ECG diagnosis of sleep bruxism.

    PubMed

    Castroflorio, T; Bargellini, A; Rossini, G; Cugliari, G; Deregibus, A; Manfredini, D

    2015-10-01

    The aim of this study was to compare clinical sleep bruxism (SB) diagnosis with an instrumental diagnosis obtained with a device providing electromyography/electrocardiography (EMG/ECG) recordings. Forty-five (N = 45) subjects (19 males and 26 females, mean age 28 ± 11 years) were selected among patients referring to the Gnathology Unit of the Dental School of the University of Torino. An expert clinician assessed the presence of SB based on the presence of one or more signs/symptoms (i.e., transient jaw muscle pain in the morning, muscle fatigue at awakening, presence of tooth wear, masseter hypertrophy). Furthermore, all participants underwent an instrumental recording at home with a portable device (Bruxoff; OT Bioelettronica, Torino, Italy) allowing a simultaneous recording of EMG signals from both the masseter muscles as well as heart frequency. Statistical procedures were performed with the software Statistical Package for the Social Science v. 20.0 (SPSS 20.0; IBM, Milan, Italy). Based on the EMG/ECG analysis, 26 subjects (11 males, 15 females, mean age 28 ± 10 years) were diagnosed as sleep bruxers, whilst 19 subjects (7 males, 12 females, mean age 30 ± 10 years) were diagnosed as non-bruxers. The correlation between the clinical and EMG/ECG SB diagnoses was low (ϕ value = 0.250), with a 62.2% agreement (28/45 subjects) between the two approaches (kappa = 0.248). Assuming instrumental EMG/ECG diagnosis as the standard of reference for definite SB diagnosis in this investigation, the false-positive and false-negative rates were unacceptable for all clinical signs/symptoms. In conclusion, findings from clinical assessment are not related with SB diagnosis performed with a portable EMG/ECG recorder.

  5. Long-term recording of external urethral sphincter EMG activity in unanesthetized, unrestrained rats

    PubMed Central

    LaPallo, Brandon K.; Wolpaw, Jonathan R.; Chen, Xiang Yang

    2014-01-01

    The external urethral sphincter muscle (EUS) plays an important role in urinary function and often contributes to urinary dysfunction. EUS study would benefit from methodology for longitudinal recording of electromyographic activity (EMG) in unanesthetized animals, but this muscle is a poor substrate for chronic intramuscular electrodes, and thus the required methodology has not been available. We describe a method for long-term recording of EUS EMG by implantation of fine wires adjacent to the EUS that are secured to the pubic bone. Wires pass subcutaneously to a skull-mounted plug and connect to the recording apparatus by a flexible cable attached to a commutator. A force transducer-mounted cup under a metabolic cage collected urine, allowing recording of EUS EMG and voided urine weight without anesthesia or restraint. Implant durability permitted EUS EMG recording during repeated (up to 3 times weekly) 24-h sessions for more than 8 wk. EMG and voiding properties were stable over weeks 2–8. The degree of EUS phasic activity (bursting) during voiding was highly variable, with an average of 25% of voids not exhibiting bursting. Electrode implantation adjacent to the EUS yielded stable EMG recordings over extended periods and eliminated the confounding effects of anesthesia, physical restraint, and the potential for dislodgment of the chronically implanted intramuscular electrodes. These results show that micturition in unanesthetized, unrestrained rats is usually, but not always, associated with EUS bursting. This methodology is applicable to studying EUS behavior during progression of gradually evolving disease and injury models and in response to therapeutic interventions. PMID:24990895

  6. Subspace based adaptive denoising of surface EMG from neurological injury patients

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Ying, Dongwen; Zev Rymer, William; Zhou, Ping

    2014-10-01

    Objective: After neurological injuries such as spinal cord injury, voluntary surface electromyogram (EMG) signals recorded from affected muscles are often corrupted by interferences, such as spurious involuntary spikes and background noises produced by physiological and extrinsic/accidental origins, imposing difficulties for signal processing. Conventional methods did not well address the problem caused by interferences. It is difficult to mitigate such interferences using conventional methods. The aim of this study was to develop a subspace-based denoising method to suppress involuntary background spikes contaminating voluntary surface EMG recordings. Approach: The Karhunen-Loeve transform was utilized to decompose a noisy signal into a signal subspace and a noise subspace. An optimal estimate of EMG signal is derived from the signal subspace and the noise power. Specifically, this estimator is capable of making a tradeoff between interference reduction and signal distortion. Since the estimator partially relies on the estimate of noise power, an adaptive method was presented to sequentially track the variation of interference power. The proposed method was evaluated using both semi-synthetic and real surface EMG signals. Main results: The experiments confirmed that the proposed method can effectively suppress interferences while keep the distortion of voluntary EMG signal in a low level. The proposed method can greatly facilitate further signal processing, such as onset detection of voluntary muscle activity. Significance: The proposed method can provide a powerful tool for suppressing background spikes and noise contaminating voluntary surface EMG signals of paretic muscles after neurological injuries, which is of great importance for their multi-purpose applications.

  7. Long-term recording of external urethral sphincter EMG activity in unanesthetized, unrestrained rats.

    PubMed

    LaPallo, Brandon K; Wolpaw, Jonathan R; Chen, Xiang Yang; Carp, Jonathan S

    2014-08-15

    The external urethral sphincter muscle (EUS) plays an important role in urinary function and often contributes to urinary dysfunction. EUS study would benefit from methodology for longitudinal recording of electromyographic activity (EMG) in unanesthetized animals, but this muscle is a poor substrate for chronic intramuscular electrodes, and thus the required methodology has not been available. We describe a method for long-term recording of EUS EMG by implantation of fine wires adjacent to the EUS that are secured to the pubic bone. Wires pass subcutaneously to a skull-mounted plug and connect to the recording apparatus by a flexible cable attached to a commutator. A force transducer-mounted cup under a metabolic cage collected urine, allowing recording of EUS EMG and voided urine weight without anesthesia or restraint. Implant durability permitted EUS EMG recording during repeated (up to 3 times weekly) 24-h sessions for more than 8 wk. EMG and voiding properties were stable over weeks 2-8. The degree of EUS phasic activity (bursting) during voiding was highly variable, with an average of 25% of voids not exhibiting bursting. Electrode implantation adjacent to the EUS yielded stable EMG recordings over extended periods and eliminated the confounding effects of anesthesia, physical restraint, and the potential for dislodgment of the chronically implanted intramuscular electrodes. These results show that micturition in unanesthetized, unrestrained rats is usually, but not always, associated with EUS bursting. This methodology is applicable to studying EUS behavior during progression of gradually evolving disease and injury models and in response to therapeutic interventions.

  8. Age Related Differences in the Surface EMG Signals on Adolescent's Muscle during Contraction

    NASA Astrophysics Data System (ADS)

    Uddin Ahamed, Nizam; Taha, Zahari; Alqahtani, Mahdi; Altwijri, Omar; Rahman, Matiur; Deboucha, Abdelhakim

    2016-02-01

    The aim of this study was to investigate whether there are differences in the amplitude of the EMG signal among five different age groups of adolescent's muscle. Fifteen healthy adolescents participated in this study and they were divided into five age groups (13, 14, 15, 16 and 17 years). Subjects were performed dynamic contraction during lifting a standard weight (3-kg dumbbell) and EMG signals were recorded from their Biceps Brachii (BB) muscle. Two common EMG analysis techniques namely root mean square (RMS) and mean absolute values (MAV) were used to find the differences. The statistical analysis was included: linear regression to examine the relationships between EMG amplitude and age, repeated measures ANOVA to assess differences among the variables, and finally Coefficient of Variation (CoV) for signal steadiness among the groups of subjects during contraction. The result from RMS and MAV analysis shows that the 17-years age groups exhibited higher activity (0.28 and 0.19 mV respectively) compare to other groups (13-Years: 0.26 and 0.17 mV, 14-years: 0.25 and 0.23 mV, 15-Years: 0.23 and 0.16 mV, 16-years: 0.23 and 0.16 mV respectively). Also, this study shows modest correlation between age and signal activities among all age group's muscle. The experiential results can play a pivotal role for developing EMG prosthetic hand controller, neuromuscular system, EMG based rehabilitation aid and movement biomechanics, which may help to separate age groups among the adolescents.

  9. Intramuscular pressure: A better tool than EMG to optimize exercise for long-duration space flight

    NASA Technical Reports Server (NTRS)

    Hargens, A. R.; Ballard, R. E.; Aratow, M.; Crenshaw, A.; Styf, J.; Kahan, N.; Watenpaugh, D. E.

    1992-01-01

    A serious problem experienced by astronauts during long-duration space flight is muscle atrophy. In order to develop countermeasures for this problem, a simple method for monitoring in vivo function of specific muscles is needed. Previous studies document that both intramuscular pressure (IMP) and electromyography (EMG) provide quantitative indices of muscle contraction force during isometric exercise. However, at present there are no data available concerning the usefulness of IMP versus EMG during dynamic exercise. Methods: IMP (Myopress catheter) and surface EMG activity were measured continuously and simultaneously in the tibalis anterior (TA) and soleus (SOL) muscles of 9 normal male volunteers (28-54 years). These parameters were recorded during both concentric and eccentric exercises which consisted of plantarflexon and dorsiflexon of the ankle joint. A Lido Active Isokinetic Dynamometer concurrently recorded ankle joint torque and position. Results: Intramuscular pressure correlated linearly with contraction force for both SOL (r exp 2 = 0.037) and TA (R exp 2 = 0.716 and r exp 2 = 0.802, respectively). During eccentric exercises, SOL and TA IMP also correlated linearly with contraction force (r(exp 2) = 0.883 and r(exp 2) = 0.904 respectively), but SOL and TA EMG correlated poorly with force (r(exp 2) = 0.489 and r(exp 2) = 0.702 respectively). Conclusion: IMP measurement provides a better index of muscle contraction force than EMG during concentric and eccentric exercise. IMP reflects intrinsic mechanical properties of individual muscles, such as length tension relationships. Although invasive, IMP provides a more powerful tool and EMG for developing exercise hardware and protocols for astronauts exposed to long-duration space flight.

  10. Usefulness of electromyography of the cavernous corpora (CC EMG) in the diagnosis of arterial erectile dysfunction.

    PubMed

    Virseda-Chamorro, M; Lopez-Garcia-Moreno, A M; Salinas-Casado, J; Esteban-Fuertes, M

    2012-01-01

    Electromyography (EMG) of the corpora cavernosa (CC-EMG) is able to record the activity of the erectile tissue during erection, and thus has been used as a diagnostic technique in patients with erectile dysfunction (ED). The present study examines the usefulness of the technique in the diagnosis of arterial ED. A cross-sectional study was made of 35 males with a mean age of 48.5 years (s.d. 11.34), referred to our center with ED for >1 year. The patients were subjected to CC-EMG and a penile Doppler ultrasound study following the injection of 20 μg of prostaglandin E1 (PGE1). The patients were divided into three groups according to their response to the intracavernous injection of PGE1: Group 1 (adequate erection and reduction/suppression of EMG activity); Group 2 (insufficient erection and persistence of EMG activity); and Group 3 (insufficient erection and reduction/suppression of EMG activity). Patient classification according to response to the intracavernous injection of PGE1 was as follows: Group 1: six patients (17%), Group 2: 18 patients (51%), and Group 3: 11 patients (31%). Patients diagnosed with arterial insufficiency according to Doppler ultrasound (systolic arterial peak velocity <30 mm s(-1) in both arteries) were significantly older than those without such damage (54.5 versus 41.8 years, respectively; s.d. 11.12). The patients in Group 3 showed a significantly lower maximum systolic velocity in both arteries than the subjects belonging to Group 2. Likewise, a statistically significant relationship was observed between the diagnosis of arterial insufficiency and patient classification in Group 3. The confirmation of insufficient erection associated with reduction/suppression of EMG activity showed a sensitivity of 66.7% (confidence interval between 50 and 84%) and a specificity of 92.9% (confidence interval between 84 and 100%) in the diagnosis of arterial ED. Owing to the high specificity of CC-EMG response to the injection of PGE1, this test is

  11. Discrimination of Combined Motions for Prosthetic Hands Using Surface EMG Signals

    NASA Astrophysics Data System (ADS)

    Ibe, Ayuko; Gouko, Manabu; Ito, Koji

    The present paper proposes a multiple step discrimination method to determine single and combined movements intended by an amputee from surface electromyogram (EMG) signals. Most previous approaches to the discrimination of movement using EMG signals have been restricted to single joint movements. Our approach enables the amputee's intended movement to be determined from among four single and two combined limb functions using an initial rise zone 125 msec long. Experiments with ten subjects and four electrodes demonstrated that our proposal determines six forearm movements at a discrimination rate exceeding than 90%.

  12. The presence of spontaneous EMG activity in sternocleidomastoid is associated with ventilatory dysfunction in ALS.

    PubMed

    Zhang, Huagang; Zhang, Shuo; Zhang, Nan; Fan, Dongsheng

    2016-04-01

    We investigated electromyography (EMG) of the sternocleidomastoid (SCM) in 128 patients with amyotrophic lateral sclerosis (ALS) including correlation with forced vital capacity (FVC) and ALS Functional Rating Scale scores. The presence of fibrillation potentials and positive sharp waves in the SCM was significantly more frequently observed in patients with an FVC <80% (31/49, 63%) than in patients with an FVC≥80% (34/79, 43%). This study suggests that the SCM could be concomitantly involved with primary respiratory muscles in ALS. This is of value since needle EMG is a less invasive procedure in SCM than in the diaphragm or intercostal muscles.

  13. Assessment of the paraspinal muscles of subjects presenting an idiopathic scoliosis: an EMG pilot study

    PubMed Central

    Gaudreault, Nathaly; Arsenault, A Bertrand; Larivière, Christian; DeSerres, Sophie J; Rivard, Charles-Hilaire

    2005-01-01

    Background It is known that the back muscles of scoliotic subjects present abnormalities in their fiber type composition. Some researchers have hypothesized that abnormal fiber composition can lead to paraspinal muscle dysfunction such as poor neuromuscular efficiency and muscle fatigue. EMG parameters were used to evaluate these impairments. The purpose of the present study was to examine the clinical potential of different EMG parameters such as amplitude (RMS) and median frequency (MF) of the power spectrum in order to assess the back muscles of patients presenting idiopathic scoliosis in terms of their neuromuscular efficiency and their muscular fatigue. Methods L5/S1 moments during isometric efforts in extension were measured in six subjects with idiopathic scoliosis and ten healthy controls. The subjects performed three 7 s ramp contractions ranging from 0 to 100% maximum voluntary contraction (MVC) and one 30 s sustained contraction at 75% MVC. Surface EMG activity was recorded bilaterally from the paraspinal muscles at L5, L3, L1 and T10. The slope of the EMG RMS/force (neuromuscular efficiency) and MF/force (muscle composition) relationships were computed during the ramp contractions while the slope of the EMG RMS/time and MF/time relationships (muscle fatigue) were computed during the sustained contraction. Comparisons were performed between the two groups and between the left and right sides for the EMG parameters. Results No significant group or side differences between the slopes of the different measures used were found at the level of the apex (around T10) of the major curve of the spine. However, a significant side difference was seen at a lower level (L3, p = 0.01) for the MF/time parameter. Conclusion The EMG parameters used in this study could not discriminate between the back muscles of scoliotic subjects and those of control subject regarding fiber type composition, neuromuscular efficiency and muscle fatigue at the level of the apex. The

  14. Surface EMG system for use in long-term vigorous activities

    NASA Astrophysics Data System (ADS)

    de Luca, G.; Bergman, P.; de Luca, C.

    The purpose of the project was to develop an advanced surface electromyographic (EMG) system that is portable, un-tethered, and able to detect high-fidelity EMG signals from multiple channels. The innovation was specifically designed to extend NASA's capability to perform neurological status monitoring for long-term, vigorous activities. These features are a necessary requirement of ground-based and in-flight studies planned for the International Space Station and human expeditions to Mars. The project consisted of developing 1) a portable EMG digital data logger using a handheld PC for acquiring the signal and storing the data from as many as 8 channels, and 2) an EMG electrode/skin interface to improve signal fidelity and skin adhesion in the presence of sweat and mechanical disturbances encountered during vigorous activities. The system, referred to as a MyoMonitor, was configured with a communication port for downloading the data from the data logger to the PC computer workstation. Software specifications were developed and implemented for programming of acquisition protocols, power management, and transferring data to the PC for processing and graphical display. The prototype MyoMonitor was implemented using a handheld PC that features a color LCD screen, enhanced keyboard, extended Lithium Ion battery and recharger, and 128 Mbytes of F ash Memory. The system was designed to be belt-worn,l thereby allowing its use under vigorous activities. The Monitor utilizes up to 8 differential surface EMG sensors. The prototype allowed greater than 2 hours of continuous 8-channel EMG data to be collected, or 17.2 hours of continuous single channel EMG data. Standardized tests in human subjects were conducted to develop the mechanical and electrical properties of the prototype electrode/interface system. Tests conducted during treadmill running and repetitive lifting demonstrated that the prototype interface significantly reduced the detrimental effects of sweat

  15. EMG Feature Assessment for Myoelectric Pattern Recognition and Channel Selection: A Study with Incomplete Spinal Cord Injury

    PubMed Central

    Liu, Jie; Li, Xiaoyan; Li, Guanglin; Zhou, Ping

    2014-01-01

    Myoelectric pattern recognition with a large number of electromyogram (EMG) channels provides an approach to assessing motor control information available from the recorded muscles. In order to develop a practical myoelectric control system, a feature dependent channel reduction method was developed in this study to determine a small number of EMG channels for myoelectric pattern recognition analysis. The method selects appropriate raw EMG features for classification of different movements, using the minimum Redundancy Maximum Relevance (mRMR) and the Markov random field (MRF) methods to rank a large number of EMG features, respectively. A k-nearest neighbor (KNN) classifier was used to evaluate the performance of the selected features in terms of classification accuracy. The method was tested using 57 channels’ surface EMG signals recorded from forearm and hand muscles of individuals with incomplete spinal cord injury (SCI). Our results demonstrate that appropriate selection of a small number of raw EMG features from different recording channels resulted in similar high classification accuracies as achieved by using all the EMG channels or features. Compared with the conventional sequential forward selection (SFS) method, the feature dependent method does not require repeated classifier implementation. It can effectively reduce redundant information not only cross different channels, but also cross different features in the same channel. Such hybrid feature-channel selection from a large number of EMG recording channels can reduce computational cost for implementation of a myoelectric pattern recognition based control system. PMID:24844608

  16. Influence of Joint Angle on EMG-Torque Model During Constant-Posture, Torque-Varying Contractions.

    PubMed

    Liu, Pu; Liu, Lukai; Clancy, Edward A

    2015-11-01

    Relating the electromyogram (EMG) to joint torque is useful in various application areas, including prosthesis control, ergonomics and clinical biomechanics. Limited study has related EMG to torque across varied joint angles, particularly when subjects performed force-varying contractions or when optimized modeling methods were utilized. We related the biceps-triceps surface EMG of 22 subjects to elbow torque at six joint angles (spanning 60° to 135°) during constant-posture, torque-varying contractions. Three nonlinear EMG σ -torque models, advanced EMG amplitude (EMG σ ) estimation processors (i.e., whitened, multiple-channel) and the duration of data used to train models were investigated. When EMG-torque models were formed separately for each of the six distinct joint angles, a minimum "gold standard" error of 4.01±1.2% MVC(F90) resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so achieved a statistically equivalent error of 4.06±1.2% MVC(F90). Results demonstrated that advanced EMG σ processors lead to improved joint torque estimation as do longer model training durations.

  17. EMG feature assessment for myoelectric pattern recognition and channel selection: a study with incomplete spinal cord injury.

    PubMed

    Liu, Jie; Li, Xiaoyan; Li, Guanglin; Zhou, Ping

    2014-07-01

    Myoelectric pattern recognition with a large number of electromyogram (EMG) channels provides an approach to assessing motor control information available from the recorded muscles. In order to develop a practical myoelectric control system, a feature dependent channel reduction method was developed in this study to determine a small number of EMG channels for myoelectric pattern recognition analysis. The method selects appropriate raw EMG features for classification of different movements, using the minimum Redundancy Maximum Relevance (mRMR) and the Markov random field (MRF) methods to rank a large number of EMG features, respectively. A k-nearest neighbor (KNN) classifier was used to evaluate the performance of the selected features in terms of classification accuracy. The method was tested using 57 channels' surface EMG signals recorded from forearm and hand muscles of individuals with incomplete spinal cord injury (SCI). Our results demonstrate that appropriate selection of a small number of raw EMG features from different recording channels resulted in similar high classification accuracies as achieved by using all the EMG channels or features. Compared with the conventional sequential forward selection (SFS) method, the feature dependent method does not require repeated classifier implementation. It can effectively reduce redundant information not only cross different channels, but also cross different features in the same channel. Such hybrid feature-channel selection from a large number of EMG recording channels can reduce computational cost for implementation of a myoelectric pattern recognition based control system.

  18. Comparison of EMG during passive stretching and shortening phases of each muscle for the investigation of parkinsonian rigidity.

    PubMed

    Kwon, Yuri; Kim, Ji-Won; Kim, Ji-Sun; Koh, Seong-Beom; Eom, Gwang-Moon; Lim, Tae-Hong

    2015-01-01

    The aim of this study was to test the hypothesis in the literature that torque resistance of parkinsonian rigidity is the difference between the independent contributions of stretched and shortened muscles. The hypothesis was tested using muscle-specific stretch-shortening (MSSS) EMG ratio in this study. Nineteen patients with idiopathic Parkinson's disease (PD) and 18 healthy subjects (the mean age comparable to that of patients) participated in this study. The EMG activity was measured in the four muscles involved in wrist joint movement, i.e. flexor carpi radialis, flexor carpi ulnaris, extensor carpi radialis and extensor carpi ulnaris. The passive flexion-extension movement with a range of ±30∘ was applied at wrist joint. Root mean squared (RMS) mean was calculated from the envelope of the EMG for each of stretching and shortening phases. MSSS EMG ratio was defined as the ratio of RMS EMG of stretching phase and RMS EMG of shortening phase of a single muscle, and it was calculated for each muscle. MSSS EMG ratios were smaller than one in all muscles. These results indicate that all wrist muscles generate greater mean EMG during shortening than during stretching. Therefore, the torque resistance of parkinsonian rigidity cannot be explained as the simple summation of independent antagonistic torque pair.

  19. Development of new muscle contraction sensor to replace sEMG for using in muscles analysis fields.

    PubMed

    Zhang, D; Matsuoka, Y; Kong, W; Imtiaz, U; Bartolomeo, L; Cosentino, S; Zecca, M; Sessa, S; Ishii, H; Takanishi, A

    2014-01-01

    Nowadays, the technologies for detecting, processing and interpreting bioelectrical signals have improved tremendously. In particular, surface electromyography (sEMG) has gained momentum in a wide range of applications in various fields. However, sEMG sensing has several shortcomings, the most important being: measurements are heavily sensible to individual differences, sensors are difficult to position and very expensive. In this paper, the authors will present an innovative muscle contraction sensing device (MC sensor), aiming to replace sEMG sensing in the field of muscle movement analysis. Compared with sEMG, this sensor is easier to position, setup and use, less dependent from individual differences, and less expensive. Preliminary experiments, described in this paper, confirm that MC sensing is suitable for muscle contraction analysis, and compare the results of sEMG and MC sensor for the measurement of forearm muscle contraction.

  20. Classification of Phantom Finger, Hand, Wrist, and Elbow Voluntary Gestures in Transhumeral Amputees With sEMG.

    PubMed

    Jarrasse, Nathanael; Nicol, Caroline; Touillet, Amelie; Richer, Florian; Martinet, Noel; Paysant, Jean; de Graaf, Jozina Bernardina

    2017-01-01

    Decoding finger and hand movements from sEMG electrodes placed on the forearm of transradial amputees has been commonly studied by many research groups. A few recent studies have shown an interesting phenomenon: simple correlations between distal phantom finger, hand and wrist voluntary movements and muscle activity in the residual upper arm in transhumeral amputees, i.e., of muscle groups that, prior to amputation, had no physical effect on the concerned hand and wrist joints. In this study, we are going further into the exploration of this phenomenon by setting up an evaluation study of phantom finger, hand, wrist and elbow (if present) movement classification based on the analysis of surface electromyographic (sEMG) signals measured by multiple electrodes placed on the residual upper arm of five transhumeral amputees with a controllable phantom limb who did not undergo any reinnervation surgery. We showed that with a state-of-the-art classification architecture, it is possible to correctly classify phantom limb activity (up to 14 movements) with a rather important average success (over 80% if considering basic sets of six hand, wrist and elbow movements) and to use this pattern recognition output to give online control of a device (here a graphical interface) to these transhumeral amputees. Beyond changing the way the phantom limb condition is apprehended by both patients and clinicians, such results could pave the road towards a new control approach for transhumeral amputated patients with a voluntary controllable phantom limb. This could ease and extend their control abilities of functional upper limb prosthetics with multiple active joints without undergoing muscular reinnervation surgery.

  1. The effect of patellar taping on EMG activity of vasti muscles during squatting in individuals with patellofemoral pain syndrome.

    PubMed

    Mostamand, Javid; Bader, Dan L; Hudson, Zöe

    2011-01-01

    Although patellar taping has been shown to reduce pain in participants with patellofemoral pain syndrome, the mechanisms of pain reduction have not completely been established following its application. The purpose of this study was to evaluate EMG activity of vastus medialis and vastus lateralis following the application of patellar taping during a functional single leg squat. Both vastus medialis obliquus-vastus lateralis onset and vastus medialis obliquus/vastus lateralis amplitude of 18 participants with patellofemoral pain syndrome and 18 healthy participants as controls were measured using an EMG unit. This procedure was performed on the affected knee of participants with patellofemoral pain syndrome, before, during, and after patellar taping during unilateral squatting. The same procedure was also performed on the unaffected knees of both groups. The mean values of vastus medialis obliquus-vastus lateralis onset prior to taping (2.54 ms, s = 4.35) were decreased significantly following an immediate application of tape (-3.22 ms, s = 3.45) and after a prolonged period of taping (-6.00 ms, s = 3.40 s) (P < 0.05). There was also a significant difference between the mean values of vastus medialis obliquus-vastus lateralis onset among controls (-2.03 ms, s = 6.04) and participants with patellofemoral pain syndrome prior to taping (P < 0.05). However, there were no significant difference between the ranked values of vastus medialis obliquus/vastus lateralis amplitude of the affected and unaffected knees of participants with patellofemoral pain syndrome and controls during different conditions of taping (P > 0.05). Decreased values of vastus medialis obliquus-vastus lateralis onset may contribute to patellar realignment and explain the mechanism of pain reduction following patellar taping in participants with patellofemoral pain syndrome.

  2. Effects of footwear condition on maximal jumping performance.

    PubMed

    Harry, John R; Paquette, Max R; Caia, Johnpaul; Townsend, Robert J; Weiss, Lawrence W; Schilling, Brian K

    2015-06-01

    The purpose of this investigation was to examine the effects of footwear on kinetics and lower extremity electromyographic (EMG) activity during the vertical jump (VJ) and standing long jump. Fifteen men performed the 2 jump types in 3 footwear conditions: barefoot, minimal shoes, and cross-training shoes. Jump displacement and kinetic data were collected, along with EMG activity of the biceps femoris, medial gastrocnemius, peroneus longus, semitendinosus/semimembranosus, soleus (SOL), tibialis anterior, vastus lateralis, and vastus medialis. Subjective footwear performance and comfort were also assessed with a custom survey. No differences were found in jump displacement, peak ground reaction forces (GRF), countermovement and propulsive phase durations, vertical impulse, peak countermovement, or average propulsive EMG activity. Significant differences in peak propulsive root mean square EMG were found between barefoot and minimal shoes (p = 0.030) and minimal shoes and shod (p = 0.031) conditions for the SOL during the VJ, and for average countermovement EMG of the semitendinosus/semimembranosus during the VJ between barefoot and shod (p = 0.039). Moderate-to-large effect sizes (>0.59) were found between conditions for horizontal GRF, propulsive phase duration, average EMG amplitude, and duration of EMG activity during the countermovement. Participants reported higher comfort ratings when shod compared with barefoot and minimal shoes for both jumps. Participants also perceived better performance when shod compared with barefoot and minimal shoes for the VJ only. No acute differences in displacement were observed between barefoot, minimal shoes, and cross-trainer shoes during vertical and horizontal jumps. Some differences in muscle activation and timing seem to be present, and thus, training effects between footwear conditions should be examined. Footwear familiarization may prove beneficial, as acute increases in comfort seem unrelated to performance improvements.

  3. Behaviorally inhibited individuals demonstrate significantly enhanced conditioned response acquisition under non-optimal learning conditions.

    PubMed

    Holloway, J L; Allen, M T; Myers, C E; Servatius, R J

    2014-03-15

    Behavioral inhibition (BI) is an anxiety vulnerability factor associated with hypervigilance to novel stimuli, threat, and ambiguous cues. The progression from anxiety risk to a clinical disorder is unknown, although the acquisition of defensive learning and avoidance may be a critical feature. As the expression of avoidance is also central to anxiety development, the present study examined avoidance acquisition as a function of inhibited temperament using classical eyeblink conditioning. Individuals were classified as behaviorally inhibited (BI) or non-inhibited (NI) based on combined scores from the Adult and Retrospective Measures of Behavioural Inhibition (AMBI and RMBI, respectively). Acquisition was assessed using delay, omission, or yoked conditioning schedules of reinforcement. Omission training was identical to delay, except that the emission of an eyeblink conditioned response (CR) resulted in omission of the unconditioned airpuff stimulus (US) on that trial. Each subject in the yoked group was matched on total BI score to a subject in the omission group, and received the same schedule of CS and US delivery, resulting in a partial reinforcement training schedule. Delay conditioning elicited significantly more CRs compared to the omission and yoked contingencies, the latter two of which did not differ from each other. Thus, acquisition of an avoidance response was not apparent. BI individuals demonstrated enhanced acquisition overall, while partial reinforcement training significantly distinguished between BI and NI groups. Enhanced learning in BI may be a function of an increased defensive learning capacity, or sensitivity to uncertainty. Further work examining the influence of BI on learning acquisition is important for understanding individual differences in disorder etiology in anxiety vulnerable cohorts.

  4. Effects of self-hypnosis training and EMG biofeedback relaxation training on chronic pain in persons with spinal-cord injury.

    PubMed

    Jensen, Mark P; Barber, Joseph; Romano, Joan M; Hanley, Marisol A; Raichle, Katherine A; Molton, Ivan R; Engel, Joyce M; Osborne, Travis L; Stoelb, Brenda L; Cardenas, Diana D; Patterson, David R

    2009-07-01

    Thirty-seven adults with spinal-cord injury and chronic pain were randomly assigned to receive 10 sessions of self-hypnosis (HYP) or EMG biofeedback relaxation (BIO) training for pain management. Participants in both treatment conditions reported substantial, but similar, decreases in pain intensity from before to after the treatment sessions. However, participants in the HYP condition, but not the BIO condition, reported statistically significant decreases in daily average pain pre- to posttreatment. These pre- to posttreatment decreases in pain reported by the HYP participants were maintained at 3-month follow-up. Participants in the HYP condition, but not the BIO condition, also reported significant pre- to posttreatment increases in perceived control over pain, but this change was not maintained at the 3-month follow-up.

  5. Biomathematical pattern of EMG signal propagation in smooth muscle of the non-pregnant porcine uterus

    PubMed Central

    Domino, Malgorzata; Pawlinski, Bartosz; Gajewski, Zdzislaw

    2017-01-01

    Uterine contractions are generated by myometrial smooth muscle cells (SMCs) that comprise most of the myometrial layer of the uterine wall. Aberrant uterine motility (i.e., hypo- or hyper-contractility or asynchronous contractions) has been implicated in the pathogenesis of infertility due to the failure of implantation, endometriosis and abnormal estrous cycles. The mechanism whereby the non-pregnant uterus initiates spontaneous contractions remains poorly understood. The aim of the present study was to employ linear synchronization measures for analyzing the pattern of EMG signal propagation (direction and speed) in smooth muscles of the non-pregnant porcine uterus in vivo using telemetry recording system. It has been revealed that the EMG signal conduction in the uterine wall of the non-pregnant sow does not occur at random but it rather exhibits specific directions and speed. All detectable EMG signals moved along the uterine horn in both cervico-tubal and tubo-cervical directions. The signal migration speed could be divided into the three main types or categories: i. slow basic migration rhythm (SBMR); ii. rapid basic migration rhythm (RBMR); and iii. rapid accessory migration rhythm (RAMR). In conclusion, the EMG signal propagation in smooth muscles of the porcine uterus in vivo can be assessed using a linear synchronization model. Physiological pattern of the uterine contractile activity determined in this study provides a basis for future investigations of normal and pathologicall myogenic function of the uterus. PMID:28282410

  6. Control of Leg Movements Driven by EMG Activity of Shoulder Muscles

    PubMed Central

    La Scaleia, Valentina; Sylos-Labini, Francesca; Hoellinger, Thomas; Wang, Letian; Cheron, Guy; Lacquaniti, Francesco; Ivanenko, Yuri P.

    2014-01-01

    During human walking, there exists a functional neural coupling between arms and legs, and between cervical and lumbosacral pattern generators. Here, we present a novel approach for associating the electromyographic (EMG) activity from upper limb muscles with leg kinematics. Our methodology takes advantage of the high involvement of shoulder muscles in most locomotor-related movements and of the natural co-ordination between arms and legs. Nine healthy subjects were asked to walk at different constant and variable speeds (3–5 km/h), while EMG activity of shoulder (deltoid) muscles and the kinematics of walking were recorded. To ensure a high level of EMG activity in deltoid, the subjects performed slightly larger arm swinging than they usually do. The temporal structure of the burst-like EMG activity was used to predict the spatiotemporal kinematic pattern of the forthcoming step. A comparison of actual and predicted stride leg kinematics showed a high degree of correspondence (r > 0.9). This algorithm has been also implemented in pilot experiments for controlling avatar walking in a virtual reality setup and an exoskeleton during over-ground stepping. The proposed approach may have important implications for the design of human–machine interfaces and neuroprosthetic technologies such as those of assistive lower limb exoskeletons. PMID:25368569

  7. Surface EMG-recordings using a miniaturised matrix electrode: a new technique for small animals.

    PubMed

    Biedermann, F; Schumann, N P; Fischer, M S; Scholle, H C

    2000-04-01

    A new method for multichannel surface-EMG measurements in small animals is presented. The underlying scientific aim is the characterisation of the spreading and the co-ordination of skeletal muscle activation between different muscles or muscle parts, depending on various motor tasks. The myoelectrical signals were recorded monopolarly by a 16-channel matrix electrode on the muscle surface directly under the skin on the fascia of the investigated muscle, without damaging the muscle. Surface-EMG's were recorded for at least 5 days after surgery without electrical interferences. During defined motor tasks, the projection of the myoelectrical activation of the different parts of the M. triceps brachii of rats (Rattus norvegicus), pikas (Ochotona rufescens) and cuis (Galea musteloides) or the M. anconeus of toads (Bufo marinus) on the muscle surface was mapped. The locomotion of the investigated animals was monitored by a three-dimensional kinematic analysis (video and/or high-speed cineradiography). There was no perceptible influence from application of EMG matrix electrode. The miniaturised matrix electrode seemed practicable in gaining insight into changes in myoelectrical activation patterns (EMG mapping). This allows a characterisation of the intramuscular co-ordination processes corresponding to the actual morphofunctional state of the investigated animals.

  8. Dynamic tension EMG to characterize the effects of DBS treatment of advanced Parkinson's disease.

    PubMed

    Ruonala, V; Pekkonen, E; Rissanen, S; Airaksinen, O; Miroshnichenko, G; Kankaanpää, M; Karjalainen, P

    2014-01-01

    Deep brain stimulation (DBS) is an effective treatment method for motor symptoms of advanced Parkinson's disease. DBS-electrode is implanted to subthalamic nucleus to give precisely allocated electrical stimuli to brain. The optimal stimulus type has to be adjusted individually. Disease severity, main symptoms and biological factors play a role in correctly setting up the device. Currently there are no objective methods to assess the efficacy of DBS, hence the adjustment is based solely on clinical assessment. In optimal case an objectively measurable feature would point the right settings of DBS. Surface electromyographic and kinematic measurements have been used in Parkinson's disease research. As Parkinson's disease symptoms are known to change the EMG signal properties, these methods could be helpful aid in the clinical adjustment of DBS. In this study, 13 patients with advanced Parkinson's disease who received DBS treatment were measured. The patients were measured with seven different settings of the DBS in clinical range including changes in stimulation amplitude, frequency and pulse width. The EMG analysis was based on parameters that characterize EMG signal morphology. Correlation dimension and recurrence rate made the most significant difference in relation to optimal settings. In conclusion, EMG analysis is able to detect differences between the DBS setups, and can help in finding the correct parameters.

  9. EMG amplitude of the biceps femoris during jumping compared to landing movements.

    PubMed

    Padulo, Johnny; Tiloca, Alessandra; Powell, Douglas; Granatelli, Giampietro; Bianco, Antonino; Paoli, Antonio

    2013-01-01

    Hamstrings injury is a common occurrence in athletic performance. These injuries tend to occur during a deceleration or landing task suggesting the negative work may be a key component in hamstrings injury. The purpose of this study was to investigate the muscular activity (EMG) of the biceps femoris (BF) in different phases (concentric vs. eccentric) of a Counter Movement Jump (CMJ), Squat Jump (SJ) and the Braking Phase (BP) of a landing task. Twelve female volleyball players performed 5 CMJs, SJs and BPs while surface EMG was recorded using a MuscleLab (BoscoSystem(TM), Norway). EMG values were normalized to an maximal voluntary contraction. A repeated measures analysis of variance (ANOVA) was used to compare mean normalized EMG values of the concentric and eccentric portions of the CMJ with the BP and SJ. The ANOVA revealed significantly lower BF activation in the concentric and eccentric portions of the CMJ compared to the BP (64%, p < 0.001) and SJ (7%, p = 0.02), respectively. These findings suggest that the CMJ relies on a greater contribution of elastic tissues during the concentric and eccentric portions of the movement and thus requires less muscle activation of the BF.

  10. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolás; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2016-06-01

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  11. Analysis and Simple Circuit Design of Double Differential EMG Active Electrode.

    PubMed

    Guerrero, Federico Nicolas; Spinelli, Enrique Mario; Haberman, Marcelo Alejandro

    2015-12-22

    In this paper we present an analysis of the voltage amplifier needed for double differential (DD) sEMG measurements and a novel, very simple circuit for implementing DD active electrodes. The three-input amplifier that standalone DD active electrodes require is inherently different from a differential amplifier, and general knowledge about its design is scarce in the literature. First, the figures of merit of the amplifier are defined through a decomposition of its input signal into three orthogonal modes. This analysis reveals a mode containing EMG crosstalk components that the DD electrode should reject. Then, the effect of finite input impedance is analyzed. Because there are three terminals, minimum bounds for interference rejection ratios due to electrode and input impedance unbalances with two degrees of freedom are obtained. Finally, a novel circuit design is presented, including only a quadruple operational amplifier and a few passive components. This design is nearly as simple as the branched electrode and much simpler than the three instrumentation amplifier design, while providing robust EMG crosstalk rejection and better input impedance using unity gain buffers for each electrode input. The interference rejection limits of this input stage are analyzed. An easily replicable implementation of the proposed circuit is described, together with a parameter design guideline to adjust it to specific needs. The electrode is compared with the established alternatives, and sample sEMG signals are obtained, acquired on different body locations with dry contacts, successfully rejecting interference sources.

  12. Surface EMG Recording of the Perioral Reflexes: Preliminary Observations on Stutterers and Nonstutterers.

    ERIC Educational Resources Information Center

    McClean, Michael D.

    1987-01-01

    Surface electrodes were used to describe the perioral reflexes in seven stutterers and five nonstutterers and electromyographic (EMG) recordings were obtained at electrode sites associated with the orbicularis oris inferior muscle and the depressor labia inferior muscle. A difference was noted in the pattern of reflex response between the two…

  13. Absolute and relative intrasession reliability of surface EMG variables for voluntary precise forearm movements.

    PubMed

    Carius, Daniel; Kugler, Patrick; Kuhwald, Hans-Marten; Wollny, Rainer

    2015-12-01

    The reliability of surface electromyography (EMG) derived parameters is of high importance, but there is distinct lack of studies concerning the reliability during dynamic contractions. Especially Amplitude, Fourier and Wavelet parameter in conjunction have not been tested so far. The interpretation of the EMG variables might be difficult because the movement itself introduces additional factors that affect its characteristics. The aim of this study was to determine the relative and absolute intrasession reliability of electromyographic (EMG) variables of selected arm muscles during concurrent precise elbow extension/flexion movements at different force levels and movement speed. Participants (all-male: n = 17, range 20-32 years) were asked to adapt to a gross-motor visuomotor tracking task (elbow extension/flexion movement) using a custom-built lever arm apparatus. After sufficient adaptation surface electromyography was used to record the electrical activity of mm. biceps brachii, brachioradialis and triceps brachii, and the signal amplitude (RMS [μV]) and the mean frequency of the power spectrum (MNF [Hz]) were computed. Additionally Wavelet analysis was used. Relative reproducibility (intraclass correlation) for signal amplitude, mean frequency of the power spectrum and Wavelet intensity during dynamic contractions was fair to good, independent of force level and movement speed (ICC = 0.71-0.98). The amount of absolute intrasession reliability (coefficient of variation) of EMG variables depends on muscle and force level.

  14. Stress Management and Anxiety Reduction Through EMG Biofeedback/Relaxation Training upon Junior High School Students.

    ERIC Educational Resources Information Center

    Lang, Darrel

    The effectiveness of electromyographic (EMG) biofeedback/relaxation training on the stress management and anxiety levels of 18 eighth-grade students was tested. Chapter I serves as an introduction and presents information on the need for the study, hypotheses, limitations, and definition of terms. Chapter II contains a review of related…

  15. EMG Biofeedback Training of Type A and Type B Behavior Pattern Subjects.

    ERIC Educational Resources Information Center

    Prior, Daniel W.; And Others

    1983-01-01

    Assessed the relative efficacy of EMG biofeedback training to reduce tension levels in students (N=55) characterized by the presence or absence of coronary-prone behavior pattern (Type A or Type B). Results showed biofeedback students attained and maintained greater relaxation during training than did controls, regardless of A/B status. (WAS)

  16. Three-Dimensional Innervation Zone Imaging from Multi-Channel Surface EMG Recordings.

    PubMed

    Liu, Yang; Ning, Yong; Li, Sheng; Zhou, Ping; Rymer, William Z; Zhang, Yingchun

    2015-09-01

    There is an unmet need to accurately identify the locations of innervation zones (IZs) of spastic muscles, so as to guide botulinum toxin (BTX) injections for the best clinical outcome. A novel 3D IZ imaging (3DIZI) approach was developed by combining the bioelectrical source imaging and surface electromyogram (EMG) decomposition methods to image the 3D distribution of IZs in the target muscles. Surface IZ locations of motor units (MUs), identified from the bipolar map of their MU action potentials (MUAPs) were employed as a prior knowledge in the 3DIZI approach to improve its imaging accuracy. The performance of the 3DIZI approach was first optimized and evaluated via a series of designed computer simulations, and then validated with the intramuscular EMG data, together with simultaneously recorded 128-channel surface EMG data from the biceps of two subjects. Both simulation and experimental validation results demonstrate the high performance of the 3DIZI approach in accurately reconstructing the distributions of IZs and the dynamic propagation of internal muscle activities in the biceps from high-density surface EMG recordings.

  17. A Review of Classification Techniques of EMG Signals during Isotonic and Isometric Contractions

    PubMed Central

    Nazmi, Nurhazimah; Abdul Rahman, Mohd Azizi; Yamamoto, Shin-Ichiroh; Ahmad, Siti Anom; Zamzuri, Hairi; Mazlan, Saiful Amri

    2016-01-01

    In recent years, there has been major interest in the exposure to physical therapy during rehabilitation. Several publications have demonstrated its usefulness in clinical/medical and human machine interface (HMI) applications. An automated system will guide the user to perform the training during rehabilitation independently. Advances in engineering have extended electromyography (EMG) beyond the traditional diagnostic applications to also include applications in diverse areas such as movement analysis. This paper gives an overview of the numerous methods available to recognize motion patterns of EMG signals for both isotonic and isometric contractions. Various signal analysis methods are compared by illustrating their applicability in real-time settings. This paper will be of interest to researchers who would like to select the most appropriate methodology in classifying motion patterns, especially during different types of contractions. For feature extraction, the probability density function (PDF) of EMG signals will be the main interest of this study. Following that, a brief explanation of the different methods for pre-processing, feature extraction and classifying EMG signals will be compared in terms of their performance. The crux of this paper is to review the most recent developments and research studies related to the issues mentioned above. PMID:27548165

  18. Non-Linear EMG Parameters for Differential and Early Diagnostics of Parkinson's Disease.

    PubMed

    Meigal, Alexander Y; Rissanen, Saara M; Tarvainen, Mika P; Airaksinen, Olavi; Kankaanpää, Markku; Karjalainen, Pasi A

    2013-01-01

    The pre-clinical diagnostics is essential for management of Parkinson's disease (PD). Although PD has been studied intensively in the last decades, the pre-clinical indicators of that motor disorder have yet to be established. Several approaches were proposed but the definitive method is still lacking. Here we report on the non-linear characteristics of surface electromyogram (sEMG) and tremor acceleration as a possible diagnostic tool, and, in prospective, as a predictor for PD. Following this approach we calculated such non-linear parameters of sEMG and accelerometer signal as correlation dimension, entropy, and determinism. We found that the non-linear parameters allowed discriminating some 85% of healthy controls from PD patients. Thus, this approach offers considerable potential for developing sEMG-based method for pre-clinical diagnostics of PD. However, non-linear parameters proved to be more reliable for the shaking form of PD, while diagnostics of the rigid form of PD using EMG remains an open question.

  19. Convolutive blind source separation of surface EMG measurements of the respiratory muscles.

    PubMed

    Petersen, Eike; Buchner, Herbert; Eger, Marcus; Rostalski, Philipp

    2017-01-11

    Electromyography (EMG) has long been used for the assessment of muscle function and activity and has recently been applied to the control of medical ventilation. For this application, the EMG signal is usually recorded invasively by means of electrodes on a nasogastric tube which is placed inside the esophagus in order to minimize noise and crosstalk from other muscles. Replacing these invasive measurements with an EMG signal obtained non-invasively on the body surface is difficult and requires techniques for signal separation in order to reconstruct the contributions of the individual respiratory muscles. In the case of muscles with small cross-sectional areas, or with muscles at large distances from the recording site, solutions to this problem have been proposed previously. The respiratory muscles, however, are large and distributed widely over the upper body volume. In this article, we describe an algorithm for convolutive blind source separation (BSS) that performs well even for large, distributed muscles such as the respiratory muscles, while using only a small number of electrodes. The algorithm is derived as a special case of the TRINICON general framework for BSS. To provide evidence that it shows potential for separating inspiratory, expiratory, and cardiac activities in practical applications, a joint numerical simulation of EMG and ECG activities was performed, and separation success was evaluated in a variety of noise settings. The results are promising.

  20. Effect of sex on torque, recovery, EMG, and MMG responses to fatigue

    PubMed Central

    Hill, E.C.; Housh, T.J.; Smith, C.M.; Cochrane, K.C.; Jenkins, N.D.M.; Cramer, J.T.; Schmidt, R.J.; Johnson, G.O.

    2016-01-01

    Objective: The purpose of the present investigation was to examine the effect of sex on maximal voluntary isometric contraction (MVIC) torque and the EMG and MMG responses as a result of fatiguing, intermittent, submaximal (65% of MVIC), isometric elbow flexion muscle contractions. Methods: Eighteen men and women performed MVIC trials before (pretest), after (posttest), and 5-min after (5-min recovery) performing 50 intermittent, submaximal isometric muscle contractions. Surface electromyographic (EMG) and mechanomyographic (MMG) signals were simultaneously recorded from the biceps brachii muscle. Results: As a result of the fatiguing workbout torque decreased similarly from pretest to posttest for both the men (24.0%) and women (23.3%). After 5-min of recovery, torque had partially recovered for the men, while torque had returned to pretest levels for the women. For both sexes, from pretest to posttest EMG mean power frequency and MMG amplitude decreased, but returned to pretest levels after 5-min of recovery. Conclusions: In the present study, there were sex-related differences in muscle fatigue that were not associated with the EMG or MMG responses. PMID:27973383

  1. Electromyogram (EMG) recordings from the subscapularis muscle: description of a technique.

    PubMed

    Németh, G; Kronberg, M; Broström, L A

    1990-01-01

    Operative treatments for recurrent dislocation of the shoulder usually focus on the subscapularis muscle because it is supposed to contribute to the joint stability. It is of clinical interest to record the EMG from the subscapularis muscle in order to interpret its function. The purpose of the present study was to describe a safe and reliable route to reach the muscle, deeply located between the scapula and the thoracic cage, with fine-wire EMG electrodes. Twenty-four shoulders were investigated in 12 volunteers. A hypodermic needle containing bipolar fine-wire electrodes was inserted in the posterior axillary line with the subjects in the supine position, and the arm held in an abducted and externally rotated position. Three criteria confirmed the location of the electrodes: experience of periosteal pain when the needle reached the costal surface of the scapula, drawing-in of the wires 3-4 cm when the subject adducted his arm, thereby rotating his scapula downward, and raw EMG recorded during typical movements. Additionally, in four shoulders, the electrode location was checked with computed tomography. There were no complications from this technique, and the subjects felt no pain from the fine-wire electrodes during arm movements. We conclude that the described technique is a safe and reliable method of reaching the subscapularis muscle with EMG electrodes.

  2. Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders.

    PubMed

    Subasi, Abdulhamit

    2013-06-01

    Support vector machine (SVM) is an extensively used machine learning method with many biomedical signal classification applications. In this study, a novel PSO-SVM model has been proposed that hybridized the particle swarm optimization (PSO) and SVM to improve the EMG signal classification accuracy. This optimization mechanism involves kernel parameter setting in the SVM training procedure, which significantly influences the classification accuracy. The experiments were conducted on the basis of EMG signal to classify into normal, neurogenic or myopathic. In the proposed method the EMG signals were decomposed into the frequency sub-bands using discrete wavelet transform (DWT) and a set of statistical features were extracted from these sub-bands to represent the distribution of wavelet coefficients. The obtained results obviously validate the superiority of the SVM method compared to conventional machine learning methods, and suggest that further significant enhancements in terms of classification accuracy can be achieved by the proposed PSO-SVM classification system. The PSO-SVM yielded an overall accuracy of 97.41% on 1200 EMG signals selected from 27 subject records against 96.75%, 95.17% and 94.08% for the SVM, the k-NN and the RBF classifiers, respectively. PSO-SVM is developed as an efficient tool so that various SVMs can be used conveniently as the core of PSO-SVM for diagnosis of neuromuscular disorders.

  3. The Averaged EMGs Recorded from the Arm Muscles During Bimanual “Rowing” Movements

    PubMed Central

    Tomiak, Tomasz; Gorkovenko, Andriy V.; Tal'nov, Arkadii N.; Abramovych, Tetyana I.; Mishchenko, Viktor S.; Vereshchaka, Inna V.; Kostyukov, Alexander I.

    2015-01-01

    The main purpose was to analyze quantitatively the the average surface EMGs of the muscles that function around the elbow and shoulder joints of both arms in bimanual “rowing” movements, which were produced under identical elastic loads applied to the levers (“oars”). The muscles of PM group (“pulling” muscles: elbow flexors, shoulder extensors) generated noticeable velocity-dependent dynamic EMG components during the pulling and returning phases of movement and supported a steady-state activity during the hold phase. The muscles of RM group (“returning” muscles: elbow extensors, shoulder flexors) co-contracted with PM group during the movement phases and decreased activity during the hold phase. The dynamic components of the EMGs strongly depended on the velocity factor in both muscle groups, whereas the side and load factors and combinations of various factors acted only in PM group. Various subjects demonstrated diverse patterns of activity redistribution among muscles. We assume that central commands to the same muscles in two arms may be essentially different during execution of similar movement programs. Extent of the diversity in the EMG patterns of such muscles may reflect the subject's skilling in motor performance; on the other hand, the diversity can be connected with redistribution of activity between synergic muscles, thus providing a mechanism directed against development of the muscle fatigue. PMID:26640440

  4. The effects of EMG feedback training on state anxiety in introverts and extraverts.

    PubMed

    Leboeuf, A

    1977-01-01

    The effect of EMG feedback on state anxiety was investigated in anxious introverts and extraverts. Although both groups learned to relax their muscles adequately, only the introverts reported a significant decrement in anxiety. Some extraverts reacted adversely to the technique, which suggests that other methods to inhibit anxiety may be necessary for this group.

  5. Uterine EMG spectral analysis and relationship to mechanical activity in pregnant monkeys.

    PubMed

    Mansour, S; Devedeux, D; Germain, G; Marque, C; Duchêne, J

    1996-03-01

    The objective is to analyse internal and external recordings of uterine EMG in order to reveal common features and to assess the relationship between electrical activity and intra-uterine pressure modification. Three monkeys participated in the study, one as a reference and the others for data. EMGs are recorded simultaneously, internally by unipolar wire electrodes and externally by bipolar Ag/AgCl electrodes. Intra-uterine pressure is recorded as a mechanical index. Except for delay measurements, parameters are derived from spectral analysis and relationships between recordings are assessed by studying the coherence. Spectral analysis exhibits two basic activities in the analysed frequency band, and frequency limits are defined as relevant parameters for electrical activity description. Parameter values do not depend on the internal electrode location. Internal and external EMGs present a similar spectral shape, despite differences in electrode configuration and tissue filtering. It is deduced that external uterine EMG is a good image of the genuine uterine electrical activity. To some extent, it can be related to an average cellular electrical activity.

  6. Predicting Differential Response to EMG Biofeedback and Relaxation Training: The Role of Cognitive Structure.

    ERIC Educational Resources Information Center

    Hart, James D.

    1984-01-01

    Analyzed treatment outcome data for 102 headache patients who had been assigned randomly to receive either EMG biofeedback (N=70) or relaxation training (N=32). Analysis demonstrated that relaxation training was significantly more effective than biofeedback and that mixed headache patients improved significantly less than either migraine or…

  7. Reliability of EMG activity versus bite-force from human masticatory muscles

    PubMed Central

    Gonzalez, Y.; Iwasaki, L.R.; McCall, W.D.; Ohrbach, R.; Lozier, E.; Nickel, J.C.

    2011-01-01

    The reproducibility of electromyographic (EMG) activity in relation to static bite-force from masticatory muscles for a given biting situation is largely unknown. Our aim was to evaluate the reliability of EMG activity in relation to static bite-force in humans. Eighty-four subjects produced 5 unilateral static bites of different forces at different biting positions on molars and incisors, at two separate sessions, while surface EMG activities were recorded from temporalis, masseter, and suprahyoid muscles bilaterally. Intraclass Correlation Coefficients (ICCs) were used, where an ICC of ≥ 0.60 indicated good reliability of these slopes. ICCs for jaw closing muscles during molar biting were: temporalis ipsilateral 0.58 to 0.93 and contralateral 0.88 to 0.91, masseter ipsilateral 0.75 to 0.86 and contralateral 0.69 to 0.88; while during incisor biting were: temporalis ipsilateral 0.56 to 0.81 and contralateral 0.34 to 0.86, masseter ipsilateral 0.65 to 0.78 and contralateral 0.59 to 0.80. For the suprahyoid muscles the confidence intervals were mostly wide and most included zero. Slopes of the EMG activity versus bite-force for a given biting situation were reliable for temporalis and masseter muscles. These results support the use of these outcome measurements for the estimation and validation of mechanical models of the masticatory system. PMID:21564316

  8. Impact of early life adversity on EMG stress reactivity of the trapezius muscle

    PubMed Central

    Luijcks, Rosan; Vossen, Catherine J.; Roggeveen, Suzanne; van Os, Jim; Hermens, Hermie J.; Lousberg, Richel

    2016-01-01

    Abstract Human and animal research indicates that exposure to early life adversity increases stress sensitivity later in life. While behavioral markers of adversity-induced stress sensitivity have been suggested, physiological markers remain to be elucidated. It is known that trapezius muscle activity increases during stressful situations. The present study examined to what degree early life adverse events experienced during early childhood (0–11 years) and adolescence (12–17 years) moderate experimentally induced electromyographic (EMG) stress activity of the trapezius muscles, in an experimental setting. In a general population sample (n = 115), an anticipatory stress effect was generated by presenting a single unpredictable and uncontrollable electrical painful stimulus at t = 3 minutes. Subjects were unaware of the precise moment of stimulus delivery and its intensity level. Linear and nonlinear time courses in EMG activity were modeled using multilevel analysis. The study protocol included 2 experimental sessions (t = 0 and t = 6 months) allowing for examination of reliability. Results show that EMG stress reactivity during the stress paradigm was consistently stronger in people with higher levels of early life adverse events; early childhood adversity had a stronger moderating effect than adolescent adversity. The impact of early life adversity on EMG stress reactivity may represent a reliable facet that can be used in both clinical and nonclinical studies. PMID:27684800

  9. Quantitative evaluation of muscle relaxation induced by Kundalini yoga with the help of EMG integrator.

    PubMed

    Narayan, R; Kamat, A; Khanolkar, M; Kamat, S; Desai, S R; Dhume, R A

    1990-10-01

    The present work is aimed to quantify the degree of relaxation of muscle under the effects of Kundalini Yoga with the help of EMG integrator. The data collected from 8 individuals (4 males 4 females) on the degree of muscle relaxation at the end of meditation revealed a significantly decreased muscle activity amounting to 58% of the basal level in both the sexes.

  10. Circadian force and EMG activity in hindlimb muscles of rhesus monkeys

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Wichayanuparp, S.; Recktenwald, M. R.; Roy, R. R.; McCall, G.; Day, M. K.; Washburn, D.; Fanton, J. W.; Kozlovskaya, I.; Edgerton, V. R.; Rumbaugh, D. M. (Principal Investigator)

    2001-01-01

    Continuous intramuscular electromyograms (EMGs) were recorded from the soleus (Sol), medial gastrocnemius (MG), tibialis anterior (TA), and vastus lateralis (VL) muscles of Rhesus during normal cage activity throughout 24-h periods and also during treadmill locomotion. Daily levels of MG tendon force and EMG activity were obtained from five monkeys with partial datasets from three other animals. Activity levels correlated with the light-dark cycle with peak activities in most muscles occurring between 08:00 and 10:00. The lowest levels of activity generally occurred between 22:00 and 02:00. Daily EMG integrals ranged from 19 mV/s in one TA muscle to 3339 mV/s in one Sol muscle: average values were 1245 (Sol), 90 (MG), 65 (TA), and 209 (VL) mV/s. The average Sol EMG amplitude per 24-h period was 14 microV, compared with 246 microV for a short burst of locomotion. Mean EMG amplitudes for the Sol, MG, TA, and VL during active periods were 102, 18, 20, and 33 microV, respectively. EMG amplitudes that approximated recruitment of all fibers within a muscle occurred for 5-40 s/day in all muscles. The duration of daily activation was greatest in the Sol [151 +/- 45 (SE) min] and shortest in the TA (61 +/- 19 min). The results show that even a "postural" muscle such as the Sol was active for only approximately 9% of the day, whereas less active muscles were active for approximately 4% of the day. MG tendon forces were generally very low, consistent with the MG EMG data but occasionally reached levels close to estimates of the maximum force generating potential of the muscle. The Sol and TA activities were mutually exclusive, except at very low levels, suggesting very little coactivation of these antagonistic muscles. In contrast, the MG activity usually accompanied Sol activity suggesting that the MG was rarely used in the absence of Sol activation. The results clearly demonstrate a wide range of activation levels among muscles of the same animal as well as among different

  11. Determination of an Optimal Threshold Value for Muscle Activity Detection in EMG Analysis

    PubMed Central

    Özgünen, Kerem Tuncay; Çelik, Umut; Kurdak, Sanlı Sadi

    2010-01-01

    It is commonly agreed that one needs to use a threshold value in the detection of muscle activity timing in electromyographic (EMG) signal analysis. However, the algorithm for threshold determination lacks an agreement between the investigators. In this study we aimed to determine a proper threshold value in an incremental cycling exercise for accurate EMG signal analysis. Nine healthy recreationally active male subjects cycled until exhaustion. EMG recordings were performed on four low extremity muscle groups; gastrocnemius lateralis (GL), gastrocnemius medialis (GM), soleus (SOL) and vastus medialis (VM). We have analyzed our data using three different threshold levels: 25%, 35% and 45% of the mean RMS EMG value. We compared the appropriateness of these threshold values using two criteria: (1) significant correlation between the actual and estimated number of bursts and (2) proximity of the regression line of the actual and estimated number of bursts to the line of identity. It had been possible to find a significant correlation between the actual and estimated number of bursts with the 25, 35 and 45% threshold values for the GL muscle. Correlation analyses for the VM muscle had shown that the number of bursts estimated with the 35% threshold value was found to be significantly correlated with the actual number of bursts. For the GM muscle, it had been possible to predict the burst number by using either the 35% or 45% threshold value and for the SOL muscle the 25% threshold value was found as the best predictor for actual number of burst estimation. Detailed analyses of the actual and estimated number of bursts had shown that success of threshold estimation may differ among muscle groups. Evaluation of our data had clearly shown that it is important to select proper threshold values for correct EMG signal analyses. Using a single threshold value for different exercise intensities and different muscle groups may cause misleading results. Key points α priori

  12. Real-time simultaneous and proportional myoelectric control using intramuscular EMG

    NASA Astrophysics Data System (ADS)

    Smith, Lauren H.; Kuiken, Todd A.; Hargrove, Levi J.

    2014-12-01

    Objective. Myoelectric prostheses use electromyographic (EMG) signals to control movement of prosthetic joints. Clinically available myoelectric control strategies do not allow simultaneous movement of multiple degrees of freedom (DOFs); however, the use of implantable devices that record intramuscular EMG signals could overcome this constraint. The objective of this study was to evaluate the real-time simultaneous control of three DOFs (wrist rotation, wrist flexion/extension, and hand open/close) using intramuscular EMG. Approach. We evaluated task performance of five able-bodied subjects in a virtual environment using two control strategies with fine-wire EMG: (i) parallel dual-site differential control, which enabled simultaneous control of three DOFs and (ii) pattern recognition control, which required sequential control of DOFs. Main results. Over the course of the experiment, subjects using parallel dual-site control demonstrated increased use of simultaneous control and improved performance in a Fitts’ Law test. By the end of the experiment, performance using parallel dual-site control was significantly better (up to a 25% increase in throughput) than when using sequential pattern recognition control for tasks requiring multiple DOFs. The learning trends with parallel dual-site control suggested that further improvements in performance metrics were possible. Subjects occasionally experienced difficulty in performing isolated single-DOF movements with parallel dual-site control but were able to accomplish related Fitts’ Law tasks with high levels of path efficiency. Significance. These results suggest that intramuscular EMG, used in a parallel dual-site configuration, can provide simultaneous control of a multi-DOF prosthetic wrist and hand and may outperform current methods that enforce sequential control.

  13. Contributions to muscle force and EMG by combined neural excitation and electrical stimulation

    NASA Astrophysics Data System (ADS)

    Crago, Patrick E.; Makowski, Nathaniel S.; Cole, Natalie M.

    2014-10-01

    Objective. Stimulation of muscle for research or clinical interventions is often superimposed on ongoing physiological activity without a quantitative understanding of the impact of the stimulation on the net muscle activity and the physiological response. Experimental studies show that total force during stimulation is less than the sum of the isolated voluntary and stimulated forces, but the occlusion mechanism is not understood. Approach. We develop a model of efferent motor activity elicited by superimposing stimulation during a physiologically activated contraction. The model combines action potential interactions due to collision block, source resetting, and refractory periods with previously published models of physiological motor unit recruitment, rate modulation, force production, and EMG generation in human first dorsal interosseous muscle to investigate the mechanisms and effectiveness of stimulation on the net muscle force and EMG. Main results. Stimulation during a physiological contraction demonstrates partial occlusion of force and the neural component of the EMG, due to action potential interactions in motor units activated by both sources. Depending on neural and stimulation firing rates as well as on force-frequency properties, individual motor unit forces can be greater, smaller, or unchanged by the stimulation. In contrast, voluntary motor unit EMG potentials in simultaneously stimulated motor units show progressive occlusion with increasing stimulus rate. The simulations predict that occlusion would be decreased by a reverse stimulation recruitment order. Significance. The results are consistent with and provide a mechanistic interpretation of previously published experimental evidence of force occlusion. The models also predict two effects that have not been reported previously—voluntary EMG occlusion and the advantages of a proximal stimulation site. This study provides a basis for the rational design of both future experiments and clinical

  14. S-EMG signal compression based on domain transformation and spectral shape dynamic bit allocation

    PubMed Central

    2014-01-01

    Background Surface electromyographic (S-EMG) signal processing has been emerging in the past few years due to its non-invasive assessment of muscle function and structure and because of the fast growing rate of digital technology which brings about new solutions and applications. Factors such as sampling rate, quantization word length, number of channels and experiment duration can lead to a potentially large volume of data. Efficient transmission and/or storage of S-EMG signals are actually a research issue. That is the aim of this work. Methods This paper presents an algorithm for the data compression of surface electromyographic (S-EMG) signals recorded during isometric contractions protocol and during dynamic experimental protocols such as the cycling activity. The proposed algorithm is based on discrete wavelet transform to proceed spectral decomposition and de-correlation, on a dynamic bit allocation procedure to code the wavelets transformed coefficients, and on an entropy coding to minimize the remaining redundancy and to pack all data. The bit allocation scheme is based on mathematical decreasing spectral shape models, which indicates a shorter digital word length to code high frequency wavelets transformed coefficients. Four bit allocation spectral shape methods were implemented and compared: decreasing exponential spectral shape, decreasing linear spectral shape, decreasing square-root spectral shape and rotated hyperbolic tangent spectral shape. Results The proposed method is demonstrated and evaluated for an isometric protocol and for a dynamic protocol using a real S-EMG signal data bank. Objective performance evaluations metrics are presented. In addition, comparisons with other encoders proposed in scientific literature are shown. Conclusions The decreasing bit allocation shape applied to the quantized wavelet coefficients combined with arithmetic coding results is an efficient procedure. The performance comparisons of the proposed S-EMG data

  15. History dependence of the electromyogram: Implications for isometric steady-state EMG parameters following a lengthening or shortening contraction.

    PubMed

    Jones, Alexis A; Power, Geoffrey A; Herzog, Walter

    2016-04-01

    Residual force enhancement (RFE) and force depression (FD) refer to an increased or decreased force following an active lengthening or shortening contraction, respectively, relative to the isometric force produced at the same activation level and muscle length. Our intent was to determine if EMG characteristics differed in the RFE or FD states compared with a purely isometric reference contraction for maximal and submaximal voluntary activation of the adductor pollicis muscle. Quantifying these alterations to EMG in history-dependent states allows for more accurate modeling approaches for movement control in the future. For maximal voluntary contractions (MVC), RFE was 6-15% (P<0.001) and FD was 12-19% (P<0.001). The median frequency of the EMG was not different between RFE, FD and isometric reference contractions for the 100% and 40% MVC intensities (P>0.05). However, root mean square EMG (EMGRMS) amplitude for the submaximal contractions was higher in the FD and lower in the RFE state, respectively (P<0.05). For maximal contractions, EMGRMS was lower for the FD state but was the same for the RFE state compared to the isometric reference contractions (P>0.05). Neuromuscular efficiency (NME; force/EMG) was lower in the force depressed state and higher in the force enhanced state (P<0.05) compared to the isometric reference contractions. EMG spectral properties were not altered between the force-enhanced and depressed states relative to the isometric reference contractions, while EMG amplitude measures were.

  16. Statistical Parametric Mapping (SPM) for alpha-based statistical analyses of multi-muscle EMG time-series.

    PubMed

    Robinson, Mark A; Vanrenterghem, Jos; Pataky, Todd C

    2015-02-01

    Multi-muscle EMG time-series are highly correlated and time dependent yet traditional statistical analysis of scalars from an EMG time-series fails to account for such dependencies. This paper promotes the use of SPM vector-field analysis for the generalised analysis of EMG time-series. We reanalysed a publicly available dataset of Young versus Adult EMG gait data to contrast scalar and SPM vector-field analysis. Independent scalar analyses of EMG data between 35% and 45% stance phase showed no statistical differences between the Young and Adult groups. SPM vector-field analysis did however identify statistical differences within this time period. As scalar analysis failed to consider the multi-muscle and time dependence of the EMG time-series it exhibited Type II error. SPM vector-field analysis on the other hand accounts for both dependencies whilst tightly controlling for Type I and Type II error making it highly applicable to EMG data analysis. Additionally SPM vector-field analysis is generalizable to linear and non-linear parametric and non-parametric statistical models, allowing its use under constraints that are common to electromyography and kinesiology.

  17. EMG versus torque control of human-machine systems: equalizing control signal variability does not equalize error or uncertainty.

    PubMed

    Johnson, Reva E; Koerding, Konrad P; Hargrove, Levi J; Sensinger, Jonathon W

    2016-08-25

    In this paper we asked the question: if we artificially raise the variability of torque control signals to match that of EMG, do subjects make similar errors and have similar uncertainty about their movements? We answered this question using two experiments in which subjects used three different control signals: torque, torque+noise, and EMG. First, we measured error on a simple target-hitting task in which subjects received visual feedback only at the end of their movements. We found that even when the signal-to-noise ratio was equal across EMG and torque+noise control signals, EMG resulted in larger errors. Second, we quantified uncertainty by measuring the just-noticeable difference of a visual perturbation. We found that for equal errors, EMG resulted in higher movement uncertainty than both torque and torque+noise. The differences suggest that performance and confidence are influenced by more than just the noisiness of the control signal, and suggest that other factors, such as the user's ability to incorporate feedback and develop accurate internal models, also have significant impacts on the performance and confidence of a person's actions. We theorize that users have difficulty distinguishing between random and systematic errors for EMG control, and future work should examine in more detail the types of errors made with EMG control.

  18. To what extent is mean EMG frequency during gait a reflection of functional muscle strength in children with cerebral palsy?

    PubMed

    Van Gestel, L; Wambacq, H; Aertbeliën, E; Meyns, P; Bruyninckx, H; Bar-On, L; Molenaers, G; De Cock, P; Desloovere, K

    2012-01-01

    The aim of the current paper was to analyze the potential of the mean EMG frequency, recorded during 3D gait analysis (3DGA), for the evaluation of functional muscle strength in children with cerebral palsy (CP). As walking velocity is known to also influence EMG frequency, it was investigated to which extent the mean EMG frequency is a reflection of underlying muscle strength and/or the applied walking velocity. Surface EMG data of the lateral gastrocnemius (LGAS) and medial hamstrings (MEH) were collected during 3DGA. For each muscle, 20 CP children characterized by a weak and 20 characterized by a strong muscle (LGAS or MEH) were selected. A weak muscle was defined as a manual muscle testing score <3; a strong muscle was defined as a manual muscle testing score ≥4. Patient selection was based on the following inclusion criteria: (a) predominantly spastic type of CP (3-15 years old), (b) either (near) normal muscle strength or muscle weakness in at least one of the studied lower limb muscles, (c) no lower limb Botulinum Toxin-A treatment within 6 months prior to the 3DGA, (d) no history of lower limb surgery, and (e) high-quality noise-free EMG-data. For each muscle, twenty age-related typically developing (TD) children were included as controls. In both muscles a consistent pattern of increasing mean EMG frequency with decreasing muscle strength was observed. This was significant in the LGAS (TD versus weak CP). Walking velocity also had a significant effect on mean EMG frequency in the LGAS. Furthermore, based on R(2) and partial correlations, it could be concluded that both walking velocity and muscle strength have an impact on EMG, but the contribution of muscle strength was always higher. These findings underscore the potential of the mean EMG frequency recorded during 3DGA, for the evaluation of functional muscle strength in children with CP.

  19. Physiologically adaptive changes of the L5 afferent neurogram and of the rat soleus EMG activity during 14 days of hindlimb unloading and recovery.

    PubMed

    De-Doncker, L; Kasri, M; Picquet, F; Falempin, M

    2005-12-01

    The hindlimb unloading rat model (HU, Morey's model) is usually used to mimic and study neuromuscular changes that develop during spaceflights. This Earth-based model of microgravity induces a muscular atrophy of the slow postural muscle of hindlimbs, such as the soleus, a loss of strength, modifications of contraction kinetics, changes in histochemical and electrophoretical profiles and modifications of the tonic EMG activity. It has been suggested in the literature that some of these neuromuscular effects were due to a reduction of afferent feedback during HU. However, no direct data have confirmed this hypothesis. The aim of this study was to clearly establish if changes of the L5 afferent neurogram are closely related to the soleus EMG activity during and after 14 days of HU. Immediately after HU, the EMG activity of the soleus muscle disappeared and was associated with a decrease in the afferent neurogram. The soleus electromyographic and afferent activities remained lower than the pre-suspension levels until the sixth day of HU and were recovered between the sixth and the ninth day. On the twelfth and fourteenth days, they were increased beyond the pre-suspension levels. During the first recovery day, these activities were significantly higher than those on the fourteenth HU day and returned to the pre-suspension levels between the third and sixth recovery days. To conclude, our study directly demonstrates that the HU conditions cannot be considered as a functional deafferentation, as suggested in the literature, but only as a reduction of afferent information at the beginning of the HU period.

  20. EMG Activity of Selected Trunk and Hip Muscles During a Squat Lift: Effect of Varying the Lumbar Posture

    DTIC Science & Technology

    1990-01-01

    DIXC hLE O.. 1990 Thesis/i " EMG Activity of Selected Trunk and Hip Muscles During a Squat Lift: Effect of Varying the Lumbar Posture N Jim Vakos...1990 01-1’ ABSTRACT OF THESIS EMG ACTIVITY OF SELECTED TRUNK AND HIP MUSCLES DURING A SQUAT LIFT: EFFECT OF VARYING THE LUMBAR POSTURE - The...electromyographic ( EMG ) activity of selected hip and trunk muscles was recorded during a squat lift and the effects of two different lumbar spine postures were

  1. Surface EMG of the masticatory muscles (part 2): fatigue testing, mastication analysis and influence of different factors.

    PubMed

    Hugger, S; Schindler, H J; Kordass, B; Hugger, A

    2013-01-01

    The second part of this review of the literature on the clinical significance of surface electromyography (EMG) of the masticatory muscles systematically examines the results of clinical studies in patients with temporomandibular disorders (TMD), preferably randomized controlled trials, investigating relevant aspects of EMG activity during prolonged chewing activity (fatigue effects), during the mastication process, and under the influence of different factors. Studies on the influence of factors such as gender, age, tooth status, orofacial morphology and (acute) pain, the significance of different occlusal relationships during static and dynamic occlusion, and the impact of changes in static occlusion on EMG activity of the masticatory muscles were included in the review.

  2. Evidence that Illness-Compatible Cues Are Rewarding in Women Recovered from Anorexia Nervosa: A Study of the Effects of Dopamine Depletion on Eye-Blink Startle Responses

    PubMed Central

    O’Hara, Caitlin B.; Keyes, Alexandra; Renwick, Bethany; Giel, Katrin E.; Campbell, Iain C.; Schmidt, Ulrike

    2016-01-01

    In anorexia nervosa (AN), motivational salience is attributed to illness-compatible cues (e.g., underweight and active female bodies) and this is hypothesised to involve dopaminergic reward circuitry. We investigated the effects of reducing dopamine (DA) transmission on the motivational processing of AN-compatible cues in women recovered from AN (AN REC, n = 17) and healthy controls (HC, n = 15). This involved the acute phenylalanine and tyrosine depletion (APTD) procedure and a startle eye-blink modulation (SEM) task. In a balanced amino acid state, AN REC showed an increased appetitive response (decreased startle potentiation) to illness-compatible cues (underweight and active female body pictures (relative to neutral and non-active cues, respectively)). The HC had an aversive response (increased startle potentiation) to the same illness-compatible stimuli (relative to neutral cues). Importantly, these effects, which may be taken to resemble symptoms observed in the acute stage of illness and healthy behaviour respectively, were not present when DA was depleted. Thus, AN REC implicitly appraised underweight and exercise cues as more rewarding than did HC and the process may, in part, be DA-dependent. It is proposed that the positive motivational salience attributed to cues of emaciation and physical activity is, in part, mediated by dopaminergic reward processes and this contributes to illness pathology. These observations are consistent with the proposal that, in AN, aberrant reward-based learning contributes to the development of habituation of AN-compatible behaviours. PMID:27764214

  3. A hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movements

    NASA Astrophysics Data System (ADS)

    Kawase, Toshihiro; Sakurada, Takeshi; Koike, Yasuharu; Kansaku, Kenji

    2017-02-01

    Objective. Brain-machine interface (BMI) technologies have succeeded in controlling robotic exoskeletons, enabling some paralyzed people to control their own arms and hands. We have developed an exoskeleton asynchronously controlled by EEG signals. In this study, to enable real-time control of the exoskeleton for paresis, we developed a hybrid system with EEG and EMG signals, and the EMG signals were used to estimate its joint angles. Approach. Eleven able-bodied subjects and two patients with upper cervical spinal cord injuries (SCIs) performed hand and arm movements, and the angles of the metacarpophalangeal (MP) joint of the index finger, wrist, and elbow were estimated from EMG signals using a formula that we derived to calculate joint angles from EMG signals, based on a musculoskeletal model. The formula was exploited to control the elbow of the exoskeleton after automatic adjustments. Four able-bodied subjects and a patient with upper cervical SCI wore an exoskeleton controlled using EMG signals and were required to perform hand and arm movements to carry and release a ball. Main results. Estimated angles of the MP joints of index fingers, wrists, and elbows were correlated well with the measured angles in 11 able-bodied subjects (correlation coefficients were 0.81  ±  0.09, 0.85  ±  0.09, and 0.76  ±  0.13, respectively) and the patients (e.g. 0.91  ±  0.01 in the elbow of a patient). Four able-bodied subjects successfully positioned their arms to adequate angles by extending their elbows and a joint of the exoskeleton, with root-mean-square errors  <6°. An upper cervical SCI patient, empowered by the exoskeleton, successfully carried a ball to a goal in all 10 trials. Significance. A BMI-based exoskeleton for paralyzed arms and hands using real-time control was realized by designing a new method to estimate joint angles based on EMG signals, and these may be useful for practical rehabilitation and the support of

  4. Characteristics of power spectrum density function of EMG during muscle contraction below 30%MVC.

    PubMed

    Roman-Liu, Danuta; Konarska, Maria

    2009-10-01

    The aim of the study was to quantify changes in PSDF frequency bands of the EMG signal and EMG parameters such as MF, MPF and zero crossing, with an increase in the level of muscle contractions in the range from 0.5% to 30% RMS(max) and to determine the frequency bands with the lowest dependency on RMS level so that this could be used in investigating muscle fatigue. Sixteen men, aged from 23 to 33 years old (mean 26.1), who participated in the study performed two force exertion tests. Fragments of EMG which corresponded to the levels of muscle contraction of 0.5%, 1%, 2.5%, 5%, 10%, 15%, 20%, 25%, 30% RMS(max) registered from left and right trapezius pars descendents (TP) and left and right extensor digitorum superficialis (ED) muscles were selected for analysis. The analysis included changes in standard parameters of the EMG signal and changes in PSDF frequency bands, which occurred across muscle contraction levels. To analyze changes in PSDF across the level of muscle contraction, the spectrum was divided into six frequency bandwidths. The analysis of parameters focused on the differences in those parameters between the analyzed muscles, at different levels of muscle contraction. The study revealed that, at muscle contraction levels below 5% RMSmax, contraction level influences standard parameters of the EMG signal and that at such levels of muscle contraction every change in muscle contraction level (recruitment of additional MUs) is reflected in PSDF. The frequency band with the lowest dependency on contraction level was 76-140 Hz for which in both muscles no contraction level effect was detected for contraction levels above 5% RMS(max). The reproducibility of the results was very high, since the observations in of the left and right muscles were almost equal. The other factor, which strongly influences PSDF of the EMG signal, is probably the examined muscle structure (muscle morphology, size, function, subcutaneous layer, cross talk). It seems that low

  5. A mechatronics platform to study prosthetic hand control using EMG signals.

    PubMed

    Geethanjali, P

    2016-09-01

    In this paper, a low-cost mechatronics platform for the design and development of robotic hands as well as a surface electromyogram (EMG) pattern recognition system is proposed. This paper also explores various EMG classification techniques using a low-cost electronics system in prosthetic hand applications. The proposed platform involves the development of a four channel EMG signal acquisition system; pattern recognition of acquired EMG signals; and development of a digital controller for a robotic hand. Four-channel surface EMG signals, acquired from ten healthy subjects for six different movements of the hand, were used to analyse pattern recognition in prosthetic hand control. Various time domain features were extracted and grouped into five ensembles to compare the influence of features in feature-selective classifiers (SLR) with widely considered non-feature-selective classifiers, such as neural networks (NN), linear discriminant analysis (LDA) and support vector machines (SVM) applied with different kernels. The results divulged that the average classification accuracy of the SVM, with a linear kernel function, outperforms other classifiers with feature ensembles, Hudgin's feature set and auto regression (AR) coefficients. However, the slight improvement in classification accuracy of SVM incurs more processing time and memory space in the low-level controller. The Kruskal-Wallis (KW) test also shows that there is no significant difference in the classification performance of SLR with Hudgin's feature set to that of SVM with Hudgin's features along with AR coefficients. In addition, the KW test shows that SLR was found to be better in respect to computation time and memory space, which is vital in a low-level controller. Similar to SVM, with a linear kernel function, other non-feature selective LDA and NN classifiers also show a slight improvement in performance using twice the features but with the drawback of increased memory space requirement and time

  6. Relative effectiveness of electrically- vs mechanically-elicited EMGs in detecting pedicle wall perforation and surgically-induced nerve root damage.

    PubMed

    Kobara, N; Owen, J H; Kostuik, J; Huckell, C; Tooke, S M

    2000-02-01

    Electrical stimulation of a pedicle hole and screw with recording EMGs from the lower extremities has been used as an indicator in detecting perforations of the pedicle. Mechanically-elicited EMGs are reported to be sensitive to mechanical irritation of nerve roots. This study analyzed the sensitivity of the data elicited by two EMG monitoring methods in the presence of a neurologic deficit caused by a malpositioned screw to determine the relative effectiveness of electrically- vs mechanically-elicited EMGs in detecting pedicle wall perforations and nerve root damage in patients undergoing spinal surgery utilizing transpedicular instrumentation. One hundred and four surgeries were monitored using the two EMG methods. Six hundred and fifty-four pedicle holes were prepared and 650 placed pedicle screws were electrically tested. Mechanically-elicited EMGs were monitored from a total of 618 muscles. Electrically-elicited EMGs showed a 62% true-positive rate and a 0.2% false-negative rate in detecting pedicle wall perforations. None of the patients who initially demonstrated abnormal electrically-elicited EMGs demonstrated any post-operative neurologic problems due to an incorrect screw placement. Only one patient who had abnormal mechanically-elicited EMGs during the procedures related to instrumentation developed new L4 radiculopathy immediately post-operatively which was consistent with the level of mechanically-elicited EMGs. Mechanically-elicited EMGs showed a 100% true-positive rate for nerve root irritation and a 3.5% false-negative rate in detecting pedicle wall perforations by malpositioned screw. In conclusion, although mechanically-elicited EMGs were an insensitive technique in detecting a perforation of the pedicle, mechanically-elicited EMGs were more beneficial than electrically-elicited EMGs in detecting the risk of nerve root irritation.

  7. A novel approach for removing ECG interferences from surface EMG signals using a combined ANFIS and wavelet.

    PubMed

    Abbaspour, Sara; Fallah, Ali; Lindén, Maria; Gholamhosseini, Hamid

    2016-02-01

    In recent years, the removal of electrocardiogram (ECG) interferences from electromyogram (EMG) signals has been given large consideration. Where the quality of EMG signal is of interest, it is important to remove ECG interferences from EMG signals. In this paper, an efficient method based on a combination of adaptive neuro-fuzzy inference system (ANFIS) and wavelet transform is proposed to effectively eliminate ECG interferences from surface EMG signals. The proposed approach is compared with other common methods such as high-pass filter, artificial neural network, adaptive noise canceller, wavelet transform, subtraction method and ANFIS. It is found that the performance of the proposed ANFIS-wavelet method is superior to the other methods with the signal to noise ratio and relative error of 14.97dB and 0.02 respectively and a significantly higher correlation coefficient (p<0.05).

  8. EMG burst presence probability: a joint time-frequency representation of muscle activity and its application to onset detection.

    PubMed

    Liu, Jie; Ying, Dongwen; Rymer, William Zev

    2015-04-13

    The purpose of this study was to quantify muscle activity in the time-frequency domain, therefore providing an alternative tool to measure muscle activity. This paper presents a novel method to measure muscle activity by utilizing EMG burst presence probability (EBPP) in the time-frequency domain. The EMG signal is grouped into several Mel-scale subbands, and the logarithmic power sequence is extracted from each subband. Each log-power sequence can be regarded as a dynamic process that transits between the states of EMG burst and non-burst. The hidden Markov model (HMM) was employed to elaborate this dynamic process since HMM is intrinsically advantageous in modeling the temporal correlation of EMG burst/non-burst presence. The EBPP was eventually yielded by HMM based on the criterion of maximum likelihood. Our approach achieved comparable performance with the Bonato method.

  9. Comparison of EMG activity between maximal manual muscle testing and cybex maximal isometric testing of the quadriceps femoris.

    PubMed

    Lin, Hui-Ting; Hsu, Ar-Tyan; Chang, Jia-Hao; Chien, Chi-Sheng; Chang, Guan-Liang

    2008-02-01

    Two methods have been used to produce a maximal voluntary isometric contraction (MVIC) of the superficial quadriceps femoris muscles for normalization of electromyographic (EMG) data. The purposes of this study were to compare the myoelectic activity of MVIC of manual muscle testing (MMT) versus Cybex maximal isometric testing. Eighteen normal subjects were recruited. MMT and Cybex testing for MVIC of the dominant leg were performed. EMG activities of the vastus medialis, vastus lateralis and rectus femoris were recorded during MMT and Cybex trials. EMG amplitude and median frequency obtained from the two methods (MMT and Cybex testing) were used for statistical analysis of these three muscles. Statistically, the difference in the mean of the EMG signal amplitude and median frequency between MMT and Cybex testing were not significant. Considering cost and time, MMT for MVIC technique appears to be reliable and highly valuable.

  10. Pattern recognition of surface EMG biological signals by means of Hilbert spectrum and fuzzy clustering.

    PubMed

    Pinzon-Morales, Ruben-Dario; Baquero-Duarte, Katherine-Andrea; Orozco-Gutierrez, Alvaro-Angel; Grisales-Palacio, Victor-Hugo

    2011-01-01

    A novel method for hand movement pattern recognition from electromyography (EMG) biological signals is proposed. These signals are recorded by a three-channel data acquisition system using surface electrodes placed over the forearm, and then processed to recognize five hand movements: opening, closing, supination, flexion, and extension. Such method combines the Hilbert-Huang analysis with a fuzzy clustering classifier. A set of metrics, calculated from the time contour of the Hilbert Spectrum, is used to compute a discriminating three-dimensional feature space. The classification task in this feature-space is accomplished by a two-stage procedure where training cases are initially clustered with a fuzzy algorithm, and test cases are then classified applying a nearest-prototype rule. Empirical analysis of the proposed method reveals an average accuracy rate of 96% in the recognition of surface EMG signals.

  11. High-density EMG E-textile systems for the control of active prostheses.

    PubMed

    Farina, Dario; Lorrain, Thomas; Negro, Francesco; Jiang, Ning

    2010-01-01

    Myoelectric control of active prostheses requires electrode systems that are easy to apply for daily repositioning of the electrodes by the user. In this study we propose the use of Smart Fabric and Interactive Textile (SFIT) systems as an alternative solution for recording high-density EMG signals for myoelectric control. A sleeve covering the upper and lower arm, which contains 100 electrodes arranged in four grids of 5 × 5 electrodes, was used to record EMG signals in 3 subjects during the execution of 9 tasks of the wrist and hand. The signals were analyzed by extracting wavelet coefficients which were classified with linear discriminant analysis. The average classification accuracy for the nine tasks was 89.1 ± 1.9 %. These results show that SFIT systems can be used as an effective way for muscle-machine interfacing.

  12. Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke.

    PubMed

    Hu, X L; Tong, K Y; Wei, X J; Rong, W; Susanto, E A; Ho, S K

    2013-01-01

    An electromyography (EMG)-driven hand robot had been developed for post-stroke rehabilitation training. The effectiveness of the hand robot assisted whole upper limb training on muscular coordination was investigated on persons with chronic stroke (n=10) in this work. All subjects attended a 20-session training (3-5 times/week) by using the hand robot to practice object grasp/release and arm transportation tasks. Improvements were found in the muscle co-ordination between the antagonist muscle pair (flexor digitorum and extensor digitorum) as measured by muscle co-contractions in EMG signals; and also in the reduction of excessive muscle activities in the biceps brachii. Reduced spasticity in the fingers was also observed as measured by the Modified Ashworth Score.

  13. Surface EMG of the masticatory muscles (Part 3): Impact of changes to the dynamic occlusion.

    PubMed

    Hugger, S; Schindler, H J; Kordass, B; Hugger, A

    2013-01-01

    The third part of this literature review on the clinical relevance of surface electromyography (EMG) of the masticatory muscles summarizes the results of clinical studies in patients with temporomandibular disorders (TMD), preferably randomized controlled trials, examining the impact of changes to the dynamic occlusion. Clenching in left and right laterotrusive positions results in decrease in EMG activity of masseter and temporalis muscles on both working and non-working side. Masseter muscle exhibits largely uniform bilateral activity in laterotrusive positions, independent of canine guidance or group function with and without non-working side contacts. There is a dominance of temporalis muscle activity on the working side and, in case of posterior contacts and balancing contacts, temporalis muscle activity increases and changes from an unilateral to a symmetrical pattern.

  14. Robotic leg control with EMG decoding in an amputee with nerve transfers.

    PubMed

    Hargrove, Levi J; Simon, Ann M; Young, Aaron J; Lipschutz, Robert D; Finucane, Suzanne B; Smith, Douglas G; Kuiken, Todd A

    2013-09-26

    The clinical application of robotic technology to powered prosthetic knees and ankles is limited by the lack of a robust control strategy. We found that the use of electromyographic (EMG) signals from natively innervated and surgically reinnervated residual thigh muscles in a patient who had undergone knee amputation improved control of a robotic leg prosthesis. EMG signals were decoded with a pattern-recognition algorithm and combined with data from sensors on the prosthesis to interpret the patient's intended movements. This provided robust and intuitive control of ambulation--with seamless transitions between walking on level ground, stairs, and ramps--and of the ability to reposition the leg while the patient was seated.

  15. Rhesus leg muscle EMG activity during a foot pedal pressing task on Bion 11

    NASA Technical Reports Server (NTRS)

    Hodgson, J. A.; Riazansky, S. N.; Goulet, C.; Badakva, A. M.; Kozlovskaya, I. B.; Recktenwald, M. R.; McCall, G.; Roy, R. R.; Fanton, J. W.; Edgerton, V. R.

    2000-01-01

    Rhesus monkeys (Macaca mulatta) were trained to perform a foot lever pressing task for a food reward. EMG activity was recorded from selected lower limb muscles of 2 animals before, during, and after a 14-day spaceflight and from 3 animals during a ground-based simulation of the flight. Integrated EMG activity was calculated for each muscle during the 20-min test. Comparisons were made between data recorded before any experimental manipulations and during flight or flight simulation. Spaceflight reduced soleus (Sol) activity to 25% of preflight levels, whereas it was reduced to 50% of control in the flight simulation. During flight, medial gastrocnemius (MG) activity was reduced to 25% of preflight activity, whereas the simulation group showed normal activity levels throughout all tests. The change in MG activity was apparent in the first inflight recording, suggesting that some effect of microgravity on MG activity was immediate.

  16. The role of masseter muscle EMG during DISE to predict the effectiveness of MAD: preliminary results.

    PubMed

    Marchese, M R; Scarano, E; Rizzotto, G; Grippaudo, C; Paludetti, G

    2016-12-01

    The use of a mandibular advancement device (MAD) increases the activity of the temporo-mandibular (TM) complex and masseter (MM) muscles with the risk of reducing treatment compliance. Predictors of treatment outcome are of importance in selecting patients who might benefit from MAD without side effects. The role of mandibular advancement (MA) during drug-induced sleep endoscopy (DISE) is controversial. In three cases (BMI < 30) affected by non-severe OSAS (AHI < 30 e/h), we recorded the surface EMG signal of MM activity during DISE. At follow-up all cases improved the AHI, two cases that showed transient increase of MM activity did not suffer from changes of overjet and did not complain of discomfort with the use of MAD. The case that showed a continuing increase of MM activity reported TM discomfort without changes of dental occlusion. EMG of MM during DISE may contribute to ameliorate the selection of cases amenable to treatment with MAD.

  17. Frenulectomy of the tongue and the influence of rehabilitation exercises on the sEMG activity of masticatory muscles.

    PubMed

    Tecco, Simona; Baldini, Aberto; Mummolo, Stefano; Marchetti, Enrico; Giuca, Maria Rita; Marzo, Giuseppe; Gherlone, Enrico Felice

    2015-08-01

    This study aimed to assess by surface electromyography (sEMG) the changes in sub-mental, orbicularis oris, and masticatory muscle activity after a lingual frenulectomy. Rehabilitation exercises in subjects with ankyloglossia, characterized by Class I malocclusion, were assessed as well. A total of 24 subjects were selected. Thirteen subjects (mean age 7±2.5years) with Class I malocclusion and ankyloglossia were treated with lingual frenulectomy and rehabilitation exercises, while 11 subjects (mean age 7±0.8years) with normal occlusion and normal lingual frenulum were used as controls. The inclusion criteria for both groups were the presence of mixed dentition and no previous orthodontic treatment. The sEMG recordings were taken at the time of the first visit (T0), and after 1 (T1) and 6months (T2) for the treated group. Recordings were taken at the same time for the control group. Due to the noise inherent with the sEMG recording, special attention was paid to obtain reproducible and standardized recordings. The tested muscles were the masseter, anterior temporalis, upper and lower orbicularis oris, and sub-mental muscles. The sEMG recordings were performed at rest, while kissing, swallowing, opening the mouth, clenching the teeth and during protrusion of the mandible. These recordings were made by placing electrodes in the area of muscle contraction. At T0, the treated group showed different sEMG activity of the muscles with respect to the control group, with significant differences at rest and during some test tasks (p<0.05). In the treated group, an increase in sEMG potentials was observed for the masseter muscle, from T0 to T2, during maximal voluntary clenching. During swallowing and kissing, the masseter and sub-mental muscles showed a significant increase in their sEMG potentials from T0 to T2. During the protrusion of the mandible, the masseter and anterior temporalis significantly decreased their sEMG activity, while the sub-mental area increased

  18. Power optimization in body sensor networks: the case of an autonomous wireless EMG sensor powered by PV-cells.

    PubMed

    Penders, J; Pop, V; Caballero, L; van de Molengraft, J; van Schaijk, R; Vullers, R; Van Hoof, C

    2010-01-01

    Recent advances in ultra-low-power circuits and energy harvesters are making self-powered body sensor nodes a reality. Power optimization at the system and application level is crucial in achieving ultra-low-power consumption for the entire system. This paper reviews system-level power optimization techniques, and illustrates their impact on the case of autonomous wireless EMG monitoring. The resulting prototype, an Autonomous wireless EMG sensor power by PV-cells, is presented.

  19. A Disk EMG System for Driving Impacting Liners to 20 km/s

    DTIC Science & Technology

    2011-06-01

    disk explosive magnetic flux compression generators (DEMG) with electrically exploded fuse opening switches (FOS), similar to the systems used in the... explosive , “old” [1,2] and “new” [3,4,6], were performed using the 1D( MHD )n code [7] developed based on the UP-OK technique [8]. In this code, all...parameters on disk EMG performance // Pres. at Int. Conf. MG-12, Novosibirsk, 2008. [7] A.M.Buyko. Disk explosive magnetic generator and

  20. Anatomic basis for individuated surface EMG and homogeneous electrostimulation with neuroprostheses of the extensor digitorum communis.

    PubMed

    Leijnse, J N A L; Carter, S; Gupta, A; McCabe, S

    2008-07-01

    The extensor digitorum communis (ED) is generally regarded as a fairly undiversified muscle that gives extensor tendons to all fingers. Some fine wire electromyographic (EMG) investigations have been carried out to study individuation of the muscle parts to the different fingers. However, individuated surface EMG of the ED has not been investigated. This study analyses the anatomy of the ED muscle parts to the different fingers in detail and proposes optimal locations for surface or indwelling electrodes for individuated EMG and for electrostimulation with neuroprostheses. The dissections show that the ED arises from extensive origin tendons (OT), which originate at the lateral epicondyle and reach far in the forearm. The ED OT is V-shaped with shorter central tendon fibers but with a long radial and an even longer ulnar slip. The ED parts to the individual fingers consistently arise from distinct OT locations: the ED3 (medius) arises proximally, the ED2 (index) from the radial slip distal to ED3, the ED4 (ring finger) from the ulnar slip distal to ED3, and the ED5 (to ring/little finger) from the ulnar slip distal to ED4. This lengthwise widely spaced arrangement of ED parts compensates to some degree for the narrow ED width and suggests that ED parts should be individually assessable by indwelling and even by surface EMG electrodes, albeit in the latter case with variable mutual cross-talk. Conversely, the anatomic spacing of ED parts warrants that electromyographic stimulation with neuroprostheses by a single implanted electrode cannot likely homogeneously activate all ED parts.

  1. Processing mossbauer spectra with an EMG-666 microcomputer and an NTA-1024 multichannel analyzer

    SciTech Connect

    Zakhar'in, D.S.; Chibinova, F.K.; Reiman, S.I.

    1986-01-01

    A program is presented for processing Mossbauer spectra containing less than or equal to 19 peaks for an EMG-666 microcomputer in conjunction with an NTA-1024 multichannel analyzer. Spectrum parameters are selected by their step-by-step variation. Processing of spectra containing seven or eight peaks requires about 1-2 h. The program allows the NTA-1024 display to be used for comparison of the measured and calculated spectra and preliminary estimation of the spectrum parameters.

  2. Anterior temporalis and suprahyoid EMG activity during jaw clenching and tooth grinding.

    PubMed

    Aldana, Karina; Miralles, Rodolfo; Fuentes, Aler; Valenzuela, Saúl; Fresno, María Javiera; Santander, Hugo; Gutiérrez, Mario Felipe

    2011-10-01

    The aim of this study was to evaluate the anterior temporalis and suprahyoid electromyographic (EMG) activity during jaw clenching and tooth grinding at different jaw posture tasks. The study included 30 healthy subjects with natural dentition and bilateral molar support, incisive protrusive guidance and bilateral laterotrusive canine guidance. Bipolar surface electrodes were located on the right anterior temporalis and suprahyoid muscles. Three EMG recordings in the standing position were performed in the following tasks: C. clenching in the intercuspal position (IP); P1. eccentric grinding from IP to protrusive edge-to-edge contact position; P2. clenching in protrusive edge-to-edge contact position; P3. concentric grinding from protrusive edge-to-edge contact position to IP; L1. eccentric grinding from IP to laterotrusive edge-to-edge contact position; L2. clenching in laterotrusive edge-to-edge contact position; L3. concentric grinding from laterotrusive edge-to-edge contact position to IP. EMG activity during protrusive and laterotrusive tasks was lower than intercuspal position in the anterior temporalis, whereas an opposite EMG pattern was observed in the suprahyoid muscles activity, excepting recorded activity in L2 (mixed model with unstructured covariance matrix). Anterior temporalis activity was higher during P3 than P1 and P2 tasks and during L3 than L1 and L2 tasks, whereas in the suprahyoid muscles, activity was higher during P1 than P2 tasks and during L1 than L2 and L3 tasks. These results could support the idea of a differential modulation of the motor neuron pools of anterior temporalis and suprahyoid muscles of peripheral and/or central origin.

  3. Influence of jaw clenching and tooth grinding on bilateral sternocleidomastoid EMG activity.

    PubMed

    Rodríguez, Karen; Miralles, Rodolfo; Gutiérrez, Mario Felipe; Santander, Hugo; Fuentes, Aler; Fresno, Maria Javiera; Valenzuela, Saúl

    2011-01-01

    This study compares the effect of tooth clenching and grinding on sternocleidomastoid electromyographic (EMG) activity during different laterotrusive jaw posture tasks. The study included 28 healthy subjects with natural dentition and bilateral molar support, 14 with bilateral canine guidance and 14 with bilateral group function. Bipolar surface electrodes were located on the left and right sternocleidomastoid muscles. EMG activity was recorded during the following tasks: (A) eccentric grinding from intercuspal position to the right lateral edge-to-edge contact position; (B) clenching in right edge-to-edge lateral contact position; (C) concentric grinding from right lateral edge-to-edge contact position to intercuspal position. On the working side, activity in the task C was significantly higher than in tasks A and B in subjects with canine guidance, whereas no significant differences were observed between tasks in subjects with group function. On the nonworking side, activity was significantly lower during task A than in tasks B and C, in both occlusal schemes (mixed model with unstructured covariance matrix). When comparing by side, EMG activity was significantly lower during task B on the working side than on the nonworking side. However, there were no significant differences during tasks A and C. The EMG activity was significantly lower with canine guidance than group function on the working side during tasks A, B, and C, and on the nonworking side during tasks B and C. These results could explain muscular symptoms in the sternocleidomastoid muscles if the subject is experiencing parafunctional habits while awake and/or during sleep that exceed the individual's adaptation capability.

  4. Tension-type headache: pain, fatigue, tension, and EMG responses to mental activation.

    PubMed

    Bansevicius, D; Westgaard, R H; Sjaastad, O M

    1999-06-01

    Twenty patients with tension-type headache (14 chronic and 6 episodic) and 20 group-matched controls were selected for this study. They participated in a 1-hour, complex, two-choice, reaction-time test, as well as 5-minute pretest and 20-minute posttest periods. Subjects reported any pain in the forehead, temples, neck, and shoulders, as well as any feelings of fatigue and tension during the pretest, and every 10 minutes during the test and posttest by visual analog scales. Superficial electromyography was recorded simultaneously from positions representing the frontal and temporal muscles, neck (mostly splenius), and trapezius muscles. The location of pain corresponded to the position of the electrodes, but extended over a larger area. The test provoked pain in the forehead, neck, and shoulders of patients, i.e., pain scores from these regions increased significantly during the test. The pain scores continued to increase posttest. In patients, the EMG response of the trapezius (first 10 minutes of the test) was elevated relative to pretest. In controls, only the frontal muscles showed an EMG test response. Patients showed significantly higher EMG responses than controls in the neck (whole test period) and trapezius (first 10 minutes of the test period). There were significant differences in pain and fatigue scoring between patients and controls in all three periods and in tension scoring posttest. Fatigue correlated with pain, with increasing significance for all locations examined, while tension was mainly associated with the neck pain. The meaning of the variables "tension" and "fatigue" in headache, and their association with recorded muscle activity in various regions is discussed. The EMG response of the trapezius muscle to the test is discussed in comparison with similar responses observed in patients with other pain syndromes.

  5. Utilization of paraspinal muscles for triggered EMG during thoracic pedicle screw placement.

    PubMed

    Silverstein, Justin W; Mermelstein, Laurence E

    2010-03-01

    A novel intraoperative neurophysiological technique for testing the integrity of the pedicle during screw fixation for spinal deformity surgery is presented. The thoracic paraspinal muscles at the appropriate level are used as the electromyogram (EMG) pick-up for direct current stimulation of the thoracic pedicle screw at that level. This technique is shown to give reliable and reproducible results. This technique is found to produce more reliable data than the methods most commonly used at this time.

  6. EMG-Torque correction on Human Upper extremity using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    JL, Veronica; Parasuraman, S.; Khan, M. K. A. Ahamed; Jeba DSingh, Kingsly

    2016-09-01

    There have been many studies indicating that control system of rehabilitative robot plays an important role in determining the outcome of the therapy process. Existing works have done the prediction of feedback signal in the controller based on the kinematics parameters and EMG readings of upper limb's skeletal system. Kinematics and kinetics based control signal system is developed by reading the output of the sensors such as position sensor, orientation sensor and F/T (Force/Torque) sensor and there readings are to be compared with the preceding measurement to decide on the amount of assistive force. There are also other works that incorporated the kinematics parameters to calculate the kinetics parameters via formulation and pre-defined assumptions. Nevertheless, these types of control signals analyze the movement of the upper limb only based on the movement of the upper joints. They do not anticipate the possibility of muscle plasticity. The focus of the paper is to make use of the kinematics parameters and EMG readings of skeletal system to predict the individual torque of upper extremity's joints. The surface EMG signals are fed into different mathematical models so that these data can be trained through Genetic Algorithm (GA) to find the best correlation between EMG signals and torques acting on the upper limb's joints. The estimated torque attained from the mathematical models is called simulated output. The simulated output will then be compared with the actual individual joint which is calculated based on the real time kinematics parameters of the upper movement of the skeleton when the muscle cells are activated. The findings from this contribution are extended into the development of the active control signal based controller for rehabilitation robot.

  7. Dorsal hippocampus involvement in trace fear conditioning with long, but not short, trace intervals in mice.

    PubMed

    Chowdhury, Najwa; Quinn, Jennifer J; Fanselow, Michael S

    2005-10-01

    Placing a "trace" interval between a warning signal and an aversive shock makes consolidation of the memory for trace conditioning hippocampus dependent. To determine the trace at which memory consolidation requires the hippocampus, mice were trained with 0-s, 1-s, 3-s, or 20-s trace intervals and tested for freezing to context and tone. Posttraining dorsal hippocampus (DH) lesions decreased context conditioning regardless of trace interval. However, DH lesions attenuated only the 20-s trace tone freezing. Like eyeblink conditioning, the DH is necessary for trace fear conditioning only at long trace intervals, but the time scale for the effective interval in fear conditioning is about 40 times longer. Manipulations that alter trace fear conditioning with short trace intervals probably do not reflect altered DH function. Given this difference in time scale along with the use of posttraining DH lesions, hippocampus dependency of trace conditioning is not related to a bridging function or response timing.

  8. Mechanics, impact loads and EMG on the space shuttle treadmill

    NASA Technical Reports Server (NTRS)

    Squires, William G.

    1990-01-01

    The ability of astronauts to egress the Shuttle, particularly during emergency conditions, is likely to be reduced following physiological adaptation in space. It is well established that effective application of exercise counter measures requires the exercise to be applied specifically. The problem is that objective scientific evidence is not available to validate the Space Shuttle treadmill with respect to in its role in diminishing the deleterious effects of a prolonged exposure to the microgravity environment.

  9. Analysis of the EMG Signal During Cyclic Movements Using Multicomponent AM-FM Decomposition.

    PubMed

    Biagetti, Giorgio; Crippa, Paolo; Curzi, Alessandro; Orcioni, Simone; Turchetti, Claudio

    2015-09-01

    Sport, fitness, as well as rehabilitation activities, often require the accomplishment of repetitive movements. The correctness of the exercises is often related to the capability of maintaining the required cadence and muscular force. Failure to maintain the required force, also known as muscle fatigue, is accompanied by a shift in the spectral content of the surface electromyography (EMG) signal toward lower frequencies. This paper presents a novel approach for simultaneously obtaining exercise repetition frequency and evaluating muscular fatigue, as functions of time, by only using the EMG signal. The mean frequency of the amplitude spectrum (MFA) of the EMG signal, considered as a function of time, is directly related to the dynamics of the movement performed and to the fatigue of the involved muscles. If the movement is cyclic, MFA will display the same pattern and its average will tend to decrease. These two effects have been simultaneously modeled by a two-component AM-FM model based on the Hilbert transform. The method was tested on signals recorded using a wireless system applied to healthy subjects performing dumbbell biceps curls, dumbbell lateral rises, and bodyweight squats. Experimental results show the excellent performance of the proposed technique.

  10. A sparse Bayesian learning based scheme for multi-movement recognition using sEMG.

    PubMed

    Ding, Shuai; Wang, Liang

    2016-03-01

    This paper proposed a feature extraction scheme based on sparse representation considering the non-stationary property of surface electromyography (sEMG). Sparse Bayesian learning was introduced to extract the feature with optimal class separability to improve recognition accuracy of multi-movement patterns. The extracted feature, sparse representation coefficients (SRC), represented time-varying characteristics of sEMG effectively because of the compressibility (or weak sparsity) of the signal in some transformed domains. We investigated the effect of the proposed feature by comparing with other fourteen individual features in offline recognition. The results demonstrated the proposed feature revealed important dynamic information in the sEMG signals. The multi-feature sets formed by the SRC and other single feature yielded more superior performance on recognition accuracy, compared with the single features. The best average recognition accuracy of 94.33% was gained by using SVM classifier with the multi-feature set combining the feature SRC, Williston amplitude (WAMP), wavelength (WL) and the coefficients of the fourth order autoregressive model (ARC4) via multiple kernel learning framework. The proposed feature extraction scheme (known as SRC + WAMP + WL + ARC4) is a promising method for multi-movement recognition with high accuracy.

  11. Super wavelet for sEMG signal extraction during dynamic fatiguing contractions.

    PubMed

    Al-Mulla, Mohamed R; Sepulveda, Francisco

    2015-01-01

    In this research an algorithm was developed to classify muscle fatigue content from dynamic contractions, by using a genetic algorithm (GA) and a pseudo-wavelet function. Fatiguing dynamic contractions of the biceps brachii were recorded using Surface Electromyography (sEMG) from thirteen subjects. Labelling the signal into two classes (Fatigue and Non-Fatigue) aided in the training and testing phase. The genetic algorithm was used to develop a pseudo-wavelet function that can optimally decompose the sEMG signal and classify the fatigue content of the signal. The evolved pseudo wavelet was tuned using the decomposition of 70% of the sEMG trials. 28 independent pseudo-wavelet evolution were run, after which the best run was selected and then tested on the remaining 30% of the trials to measure the classification performance. Results show that the evolved pseudo-wavelet improved the classification rate of muscle fatigue by 4.45 percentage points to 14.95 percentage points when compared to other standard wavelet functions (p<0.05), giving an average correct classification of 87.90%.

  12. Computational Intelligence Based Data Fusion Algorithm for Dynamic sEMG and Skeletal Muscle Force Modelling

    SciTech Connect

    Chandrasekhar Potluri,; Madhavi Anugolu; Marco P. Schoen; D. Subbaram Naidu

    2013-08-01

    In this work, an array of three surface Electrography (sEMG) sensors are used to acquired muscle extension and contraction signals for 18 healthy test subjects. The skeletal muscle force is estimated using the acquired sEMG signals and a Non-linear Wiener Hammerstein model, relating the two signals in a dynamic fashion. The model is obtained from using System Identification (SI) algorithm. The obtained force models for each sensor are fused using a proposed fuzzy logic concept with the intent to improve the force estimation accuracy and resilience to sensor failure or misalignment. For the fuzzy logic inference system, the sEMG entropy, the relative error, and the correlation of the force signals are considered for defining the membership functions. The proposed fusion algorithm yields an average of 92.49% correlation between the actual force and the overall estimated force output. In addition, the proposed fusionbased approach is implemented on a test platform. Experiments indicate an improvement in finger/hand force estimation.

  13. Neuromuscular interfacing: a novel approach to EMG-driven multiple DOF physiological models.

    PubMed

    Pau, James W L; Xie, Shane S Q; Xu, W L

    2013-01-01

    This paper presents a novel approach that involves first identifying and verifying the available superficial muscles that can be recorded by surface electromyography (EMG) signals, and then developing a musculoskeletal model based on these findings, which have specifically independent DOFs for movement. Such independently controlled multiple DOF EMG-driven models have not been previously developed and a two DOF model for the masticatory system was achieved by implementing independent antagonist muscle combinations for vertical and lateral movements of the jaw. The model has six channels of EMG signals from the bilateral temporalis, masseter and digastric muscles to predict the motion of the mandible. This can be used in a neuromuscular interface to manipulate a jaw exoskeleton for rehabilitation. For a range of different complexities of jaw movements, the presented model is able to consistently identify movements with 0.28 - 0.46 average normalized RMSE. The results demonstrate the feasibility of the approach at determining complex multiple DOF movements and its applicability to any joint system.

  14. The effect of 630-nm light stimulation on the sEMG signal of forearm muscle

    NASA Astrophysics Data System (ADS)

    Yang, Dan D.; Hou, W. Sheng; Wu, Xiao Y.; Zheng, Xiao L.; Zheng, Jun; Jiang, Ying T.

    2010-11-01

    This study aimed to explore if the red light irradiation can affect the electrophysiology performance of flexor digitorum superficialis (FDS) and fatigue recovery. Four healthy volunteers were randomly divided into two groups. In the designed force-tracking tasks, all subjects performed the four fingertip isometric force production except thumb with a load of 30% of the maximum voluntary contraction (MVC) force until exhaustion. Subsequently, for the red light group, red light irradiation (640 nm wavelength, 0.23J/cm2, 20 min) was used on the right forearm; for the control group, the subjects relaxed without red light irradiation. Then subjects were required to perform fatigue trail again, and sEMG signal was collected simultaneously from FDS during finger force production. Average rectified value (ARV) and median frequency (MF) of sEMG were calculated. Compared to the control group, the red light irradiation induced more smoother value of ARV between 30% and 40%, and the value of MF was obviously large and smooth. The above electrophysiological markers indicated that recovery from muscle fatigue may be positively affected by the red light irradiation, suggesting that sEMG would become a power tool for exploring the effect of red light irradiation on local muscle fatigue.

  15. The effects of frontal EMG biofeedback and progressive relaxation upon hyperactivity and its behavioral concomitants.

    PubMed

    Braud, L W

    1978-03-01

    Hyperactive children (N = 15) and nonhyperactive children (N = 15) were compared. Hyperactive children were found to possess significantly higher (p less than .002) muscular tension levels and, in addition, presented more behavioral problems and had lower test scores. Both electromyographic (EMG) biofeedback and progressive relaxation exercises were successful in the significant reduction of muscular tension, hyperactivity, distractability, irritability, impulsivity, explosiveness, aggressivity, and emotionality in hyperactive children. The greatest improvement was seen in the area of "emotionality-aggression" (irritability, explosiveness, impulsivity, low frustration tolerance, aggresion). No differences were seen in the EMG improvement of drug and nondrug hyperactive children; both made progress under these self-control techniques. However, nondrug children made greater improvements in the behavioral area. Both EMG biofeedback and progressive relaxation resulted in improvements on the test scores of hyperactive subjects (Bender-Gestalt, Visual Sequential Memory, Digit Span, Coding). The therapy would appear to be improved by the inclusion of mental relaxation, concentration, meditation, and mind-blanking exercises for mental control.

  16. Prosthetic EMG control enhancement through the application of man-machine principles

    NASA Technical Reports Server (NTRS)

    Simcox, W. A.

    1977-01-01

    An area in medicine that appears suitable to man-machine principles is rehabilitation research, particularly when the motor aspects of the body are involved. If one considers the limb, whether functional or not, as the machine, the brain as the controller and the neuromuscular system as the man-machine interface, the human body is reduced to a man-machine system that can benefit from the principles behind such systems. The area of rehabilitation that this paper deals with is that of an arm amputee and his prosthetic device. Reducing this area to its man-machine basics, the problem becomes one of attaining natural multiaxis prosthetic control using Electromyographic activity (EMG) as the means of communication between man and prothesis. In order to use EMG as the communication channel it must be amplified and processed to yield a high information signal suitable for control. The most common processing scheme employed is termed Mean Value Processing. This technique for extracting the useful EMG signal consists of a differential to single ended conversion to the surface activity followed by a rectification and smoothing.

  17. Examination of Hand Muscle Activation and Motor Unit Indices Derived from Surface EMG in Chronic Stroke

    PubMed Central

    Li, Xiaoyan; Liu, Jie; Li, Sheng; Wang, Ying-Chih

    2014-01-01

    In this study, we used muscle and motor unit indices, derived from convenient surface electromyography (EMG) measurements, for examination of paretic muscle changes post stroke. For 12 stroke subjects, compound muscle action potential and voluntary surface EMG signals were recorded from paretic and contralateral first dorsal interosseous, abductor pollicis brevis, and abductor digiti minimi muscles. Muscle activation index (AI), motor unit number index (MUNIX), and motor unit size index (MUSIX) were then calculated for each muscle. There was a significant AI reduction for all the three muscles in paretic side compared with contralateral side, providing an evidence of muscle activation deficiency after stroke. The hand MUNIX (defined by summing the values from the three muscles) was significantly reduced in paretic side compared with contralateral side, whereas the hand MUSIX was not significantly different. Furthermore, diverse changes in MUNIX and MUSIX were observed from the three muscles. A major feature of the present examinations is the primary reliance on surface EMG, which offers practical benefits because it is noninvasive, induces minimal discomfort and can be performed quickly. PMID:24967982

  18. Evaluation of the EMG-force relationship of trunk muscles during whole body tilt.

    PubMed

    Anders, Christoph; Brose, Gunther; Hofmann, Gunther O; Scholle, Hans-Christoph

    2008-01-01

    The study was aimed at the identification of the electromyography (EMG)-force relationship of five different trunk muscles. EMG-force relationships differ depending on changes in firing rate and the concurrent recruitment of motor units, which are linear and S-shaped, respectively. Trunk muscles are viewed as belonging to either the local or global muscle systems. Based on such assumptions, it would be expected that these functionally assigned muscles use different activation strategies. Thirty-one healthy volunteers (16 women, 15 men) were investigated. Forces on the trunk were applied with the use of a device that gradually tilts the body to horizontal position. Rotation capability enabled investigation of forward and backward as well as right and left sideward tilt directions. Surface EMG (SEMG) of five trunk muscles was taken. Root mean square (rms) values were computed and relative amplitudes, according to the measured maximum amplitudes, were calculated individually. Back muscles were characterized by a linear SEMG-force relationship during forward tilt. Abdominal muscles showed an S-shaped polynomial SEMG-force relationship for backward tilt direction. Sideward tilt directions evoked lesser SEMG levels with polynomial curve characteristics for all investigated muscles. Therefore, the SEMG-force relationship possibly is also subject to force vector in relation to fiber direction.

  19. From EMG to formant patterns of vowels: the implication of vowel spaces.

    PubMed

    Maeda, S; Honda, K

    1994-01-01

    With a few exceptions, EMG data are interpreted with reference to the intended output, such as the phonetic description of utterances spoken by speakers. For a more rigorous interpretation, the data should also be analysed in terms of the displacement of the articulators and the acoustic patterns. In this paper, we describe our attempts to calculate the formant patterns from EMG activity patterns via an articulatory model. The value of the model parameters, such as the tongue body position or tongue body shape, is derived from the EMG activities of the specific pairs of antagonistic tongue muscles. The model-calculated F1-F2 patterns for 11 American English vowels correspond rather well with those measured from the acoustic signals. What strikes us is the simplicity of the mappings from the muscle activities to vocal-tract configurations and to the formant patterns. We speculate that the brain optimally exploits the morphology of the vocal tract and the kinematic functions of the tongue muscles so that the mappings from the muscle activities (production) to the acoustic patterns (perception) are simple and robust.

  20. Using EMG data to constrain optimization procedure improves finger tendon tension estimations during static fingertip force production.

    PubMed

    Vigouroux, Laurent; Quaine, Franck; Labarre-Vila, Annick; Amarantini, David; Moutet, François

    2007-01-01

    Determining tendon tensions of the finger muscles is crucial for the understanding and the rehabilitation of hand pathologies. Since no direct measurement is possible for a large number of finger muscle tendons, biomechanical modelling presents an alternative solution to indirectly evaluate these forces. However, the main problem is that the number of muscles spanning a joint exceeds the number of degrees of freedom of the joint resulting in mathematical under-determinate problems. In the current study, a method using both numerical optimization and the intra-muscular electromyography (EMG) data was developed to estimate the middle finger tendon tensions during static fingertip force production. The method used a numerical optimization procedure with the muscle stress squared criterion to determine a solution while the EMG data of three extrinsic hand muscles serve to enforce additional inequality constraints. The results were compared with those obtained with a classical numerical optimization and a method based on EMG only. The proposed method provides satisfactory results since the tendon tension estimations respected the mechanical equilibrium of the musculoskeletal system and were concordant with the EMG distribution pattern of the subjects. These results were not observed neither with the classical numerical optimization nor with the EMG-based method. This study demonstrates that including the EMG data of the three extrinsic muscles of the middle finger as inequality constraints in an optimization process can yield relevant tendon tensions with regard to individual muscle activation patterns, particularly concerning the antagonist muscles.

  1. Wiener filtering of surface EMG with a priori SNR estimation toward myoelectric control for neurological injury patients.

    PubMed

    Liu, Jie; Ying, Dongwen; Zhou, Ping

    2014-12-01

    Voluntary surface electromyogram (EMG) signals from neurological injury patients are often corrupted by involuntary background interference or spikes, imposing difficulties for myoelectric control. We present a novel framework to suppress involuntary background spikes during voluntary surface EMG recordings. The framework applies a Wiener filter to restore voluntary surface EMG signals based on tracking a priori signal to noise ratio (SNR) by using the decision-directed method. Semi-synthetic surface EMG signals contaminated by different levels of involuntary background spikes were constructed from a database of surface EMG recordings in a group of spinal cord injury subjects. After the processing, the onset detection of voluntary muscle activity was significantly improved against involuntary background spikes. The magnitude of voluntary surface EMG signals can also be reliably estimated for myoelectric control purpose. Compared with the previous sample entropy analysis for suppressing involuntary background spikes, the proposed framework is characterized by quick and simple implementation, making it more suitable for application in a myoelectric control system toward neurological injury rehabilitation.

  2. Effect of elbow joint angle on force-EMG relationships in human elbow flexor and extensor muscles.

    PubMed

    Doheny, Emer P; Lowery, Madeleine M; Fitzpatrick, David P; O'Malley, Mark J

    2008-10-01

    The purpose of this study was to examine the effect of joint angle on the relationship between force and electromyogram (EMG) amplitude and median frequency, in the biceps, brachioradialis and triceps muscles. Surface EMG were measured at eight elbow angles, during isometric flexion and extension at force levels from 10% to 100% of maximum voluntary contraction (MVC). Joint angle had a significant effect on MVC force, but not on MVC EMG amplitude in all of the muscles examined. The median frequency of the biceps and triceps EMG decreased with increasing muscle length, possibly due to relative changes in electrode position or a decrease in muscle fibre diameter. The relationship between EMG amplitude and force, normalised with respect to its maximum force at each angle, did not vary with joint angle in the biceps or brachioradialis muscles over all angles, or in the triceps between 45 degrees and 120 degrees of flexion. These results suggest that the neural excitation level to each muscle is determined by the required percentage of available force rather than the absolute force required. It is, therefore, recommended that when using surface EMG to estimate muscle excitation, force should be normalised with respect to its maximum value at each angle.

  3. The immediate effect of changing mandibular position on the EMG activity of the masseter, temporalis, sternocleidomastoid, and trapezius muscles.

    PubMed

    Ceneviz, Caroline; Mehta, Noshir R; Forgione, Albert; Sands, M J; Abdallah, Emad F; Lobo Lobo, Silvia; Mavroudi, Sofia

    2006-10-01

    This study investigated the immediate effect of changing mandibular position on the electromyographic (EMG) activity of the masseter (MS), temporalis (TM), sternocleidomastoid (SCM) and trapezius (TR) muscles. Thirty-three (33) asymptomatic subjects (16 males and 17 females), ages 23 to 52 were selected. Surface EMG recordings were obtained for all muscles bilaterally with the mandible in a relaxed open position (relaxed) and during maximal voluntary clenching (fullbite) for the following: a non-repositioning appliance (NONREPOS) and repositioning appliance (REPOS). REPOS significantly reduced EMG activity of all muscles bilaterally during fullbite. During relaxation, reduction in EMG activity was only found for TR bilaterally. NONREPOS decreased the EMG activity bilaterally for TM and TR and unilaterally (left) for MS and SCM during fullbite. During relaxation, NONREPOS decreased muscle activity bilaterally for TR and SCM. A unilateral reduction was found for TM (right). These findings suggest that immediate alterations in mandibular position affect the cranio-cervical system. Both mandibular positions tested lowered the EMG activity of masticatory and cervical muscles in the relaxed and fullbite positions. The trapezius muscle was the most responsive to alterations in mandibular position.

  4. EMG activity and neuronal activity in the internal globus pallidus (GPi) and their interaction are different between hemiballismus and apomorphine induced dyskinesias of Parkinson's disease (AID).

    PubMed

    Zhao, L; Verhagen-Metman, L; Kim, J H; Liu, C C; Lenz, F A

    2015-04-07

    The nature of electromyogram (EMG) activity and its relationship to neuronal activity in the internal globus pallidus (GPi) have not previously been studied in hyperkinetic movement disorders. We now test the hypothesis that GPi spike trains are cross-correlated with EMG activity during apomorphine-induced dyskinesias of Parkinson's disease (AID), and Hemiballism. We have recorded these two signals during awake stereotactic pallidal surgeries and analyzed them by cross-correlation of the raw signals and of peaks of activity occurring in those signals. EMG signals in Hemiballism usually consist of 'sharp' activity characterized by peaks of activity with low levels of activity between peaks, and by co-contraction between antagonistic muscles. Less commonly, EMG in Hemiballism shows 'non-sharp' EMG activity with substantial EMG activity between peaks; 'non-sharp' EMG activity is more common in AID. Therefore, these hyperkinetic disorders show substantial differences in peripheral (EMG) activity, although both kinds of activity can occur in both disorders. Since GPi spike×EMG spectral and time domain functions demonstrated inconsistent cross-correlation in both disorders, we studied peaks of activity in GPi neuronal and in EMG signals. The peaks of GPi activity commonly show prolonged cross-correlation with peaks of EMG activity, which suggests that GPi peaks are related to the occurrence of EMG peaks, perhaps by transmission of GPi activity to the periphery. In Hemiballism, the presence of direct GPi peak×EMG peak cross-correlations at the site where lesions relieve these disorders is evidence that gradual changes in peak GPi neuronal activity are directly involved in Hemiballism.

  5. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger

    PubMed Central

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human’s ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  6. An EMG Interface for the Control of Motion and Compliance of a Supernumerary Robotic Finger.

    PubMed

    Hussain, Irfan; Spagnoletti, Giovanni; Salvietti, Gionata; Prattichizzo, Domenico

    2016-01-01

    In this paper, we propose a novel electromyographic (EMG) control interface to control motion and joints compliance of a supernumerary robotic finger. The supernumerary robotic fingers are a recently introduced class of wearable robotics that provides users additional robotic limbs in order to compensate or augment the existing abilities of natural limbs without substituting them. Since supernumerary robotic fingers are supposed to closely interact and perform actions in synergy with the human limbs, the control principles of extra finger should have similar behavior as human's ones including the ability of regulating the compliance. So that, it is important to propose a control interface and to consider the actuators and sensing capabilities of the robotic extra finger compatible to implement stiffness regulation control techniques. We propose EMG interface and a control approach to regulate the compliance of the device through servo actuators. In particular, we use a commercial EMG armband for gesture recognition to be associated with the motion control of the robotic device and surface one channel EMG electrodes interface to regulate the compliance of the robotic device. We also present an updated version of a robotic extra finger where the adduction/abduction motion is realized through ball bearing and spur gears mechanism. We have validated the proposed interface with two sets of experiments related to compensation and augmentation. In the first set of experiments, different bimanual tasks have been performed with the help of the robotic device and simulating a paretic hand since this novel wearable system can be used to compensate the missing grasping abilities in chronic stroke patients. In the second set, the robotic extra finger is used to enlarge the workspace and manipulation capability of healthy hands. In both sets, the same EMG control interface has been used. The obtained results demonstrate that the proposed control interface is intuitive and can

  7. Evaluation of EMG, force and joystick as control interfaces for active arm supports

    PubMed Central

    2014-01-01

    Background The performance capabilities and limitations of control interfaces for the operation of active movement-assistive devices remain unclear. Selecting an optimal interface for an application requires a thorough understanding of the performance of multiple control interfaces. Methods In this study the performance of EMG-, force- and joystick-based control interfaces were assessed in healthy volunteers with a screen-based one-dimensional position-tracking task. The participants had to track a target that was moving according to a multisine signal with a bandwidth of 3 Hz. The velocity of the cursor was proportional to the interface signal. The performance of the control interfaces were evaluated in terms of tracking error, gain margin crossover frequency, information transmission rate and effort. Results None of the evaluated interfaces was superior in all four performance descriptors. The EMG-based interface was superior in tracking error and gain margin crossover frequency compared to the force- and the joystick-based interfaces. The force-based interface provided higher information transmission rate and lower effort than the EMG-based interface. The joystick-based interface did not present any significant difference with the force-based interface for any of the four performance descriptors. We found that significant differences in terms of tracking error and information transmission rate were present beyond 0.9 and 1.4 Hz respectively. Conclusions Despite the fact that the EMG-based interface is far from the natural way of interacting with the environment, while the force-based interface is closer, the EMG-based interface presented very similar and for some descriptors even a better performance than the force-based interface for frequencies below 1.4 Hz. The classical joystick presented a similar performance to the force-based interface and holds the advantage of being a well established interface for the control of many assistive devices. From these

  8. Force-EMG changes during sustained contractions of a human upper airway muscle.

    PubMed

    Schmitt, Kori; DelloRusso, Christiana; Fregosi, Ralph F

    2009-02-01

    Human upper airway and facial muscles support breathing, swallowing, speech, mastication, and facial expression, but their endurance performance in sustained contractions is poorly understood. The muscular fatigue typically associated with task failure during sustained contractions has both central and intramuscular causes, with the contribution of each believed to be task dependent. Previously we failed to show central fatigue in the nasal dilator muscles of subjects that performed intermittent maximal voluntary contractions (MVCs). Here we test the hypothesis that central mechanisms contribute to the fatigue of submaximal, sustained contractions in nasal dilator muscles. Nasal dilator muscle force and EMG activities were recorded in 11 subjects that performed submaximal contractions (20, 35, and 65% MVC) until force dropped to or=3 s, which we defined as task failure. MVC and twitch forces (the latter obtained by applying supramaximal shocks to the facial nerve) were recorded before the trial and at several time points over the first 10 min of recovery. The time to task failure was inversely related to contraction intensity. MVC force was depressed by roughly 30% at task failure in all three trials, but recovered within 2 min. Twitch force fell by 30-44% depending on contraction intensity and remained depressed after 10 min of recovery, consistent with low-frequency fatigue. Average EMG activity increased with time, but never exceeded 75% of the maximal, pretrial level despite task failure. EMG mean power frequency declined by 20-25% in all trials, suggesting reduced action potential conduction velocity at task failure. In contrast, the maximal evoked potential did not change significantly in any of the tasks, indicating that the EMG deficit at task failure was due largely to mechanisms proximal to the neuromuscular junction. Additional experiments using the interpolated twitch technique suggest that subjects can produce about 92

  9. Keep your opponents close: social context affects EEG and fEMG linkage in a turn-based computer game.

    PubMed

    Spapé, Michiel M; Kivikangas, J Matias; Järvelä, Simo; Kosunen, Ilkka; Jacucci, Giulio; Ravaja, Niklas

    2013-01-01

    In daily life, we often copy the gestures and expressions of those we communicate with, but recent evidence shows that such mimicry has a physiological counterpart: interaction elicits linkage, which is a concordance between the biological signals of those involved. To find out how the type of social interaction affects linkage, pairs of participants played a turn-based computer game in which the level of competition was systematically varied between cooperation and competition. Linkage in the beta and gamma frequency bands was observed in the EEG, especially when the participants played directly against each other. Emotional expression, measured using facial EMG, reflected this pattern, with the most competitive condition showing enhanced linkage over the facial muscle-regions involved in smiling. These effects were found to be related to self-reported social presence: linkage in positive emotional expression was associated with self-reported shared negative feelings. The observed effects confirmed the hypothesis that the social context affected the degree to which participants had similar reactions to their environment and consequently showed similar patterns of brain activity. We discuss the functional resemblance between linkage, as an indicator of a shared physiology and affect, and the well-known mirror neuron system, and how they relate to social functions like empathy.

  10. Anthropometric and quantitative EMG status of femoral quadriceps before and after conventional kinesitherapy with and without magnetotherapy.

    PubMed

    Graberski Matasović, M; Matasović, T; Markovac, Z

    1997-06-01

    The frequency of femoral quadriceps muscle hypotrophy has become a significant therapeutic problem. Efforts are being made to improve the standard scheme of kinesitherapeutic treatment by using additional more effective therapeutic methods. Beside kinesitherapy, the authors have used magnetotherapy in 30 of the 60 patients. The total of 60 patients, both sexes, similar age groups and intensity of hypotrophy, were included in the study. They were divided into groups A and B, the experimental and the control one (30 patients each). The treatment was scheduled for the usual 5-6 weeks. Electromyographic quantitative analysis was used to check-up the treatment results achieved after 5 and 6 weeks of treatment period. Analysis of results has confirmed the assumption that magnetotherapy may yield better and faster treatment results, disappearance of pain and decreased risk of complications. The same results were obtained in the experimental group, only one week earlier than in the control group. The EMG quantitative analysis has not proved sufficiently reliable and objective method in the assessment of real condition of the muscle and effects of treatment.

  11. The Effectiveness of FES-Evoked EMG Potentials to Assess Muscle Force and Fatigue in Individuals with Spinal Cord Injury

    PubMed Central

    Ibitoye, Morufu Olusola; Estigoni, Eduardo H.; Hamzaid, Nur Azah; Wahab, Ahmad Khairi Abdul; Davis, Glen M.

    2014-01-01

    The evoked electromyographic signal (eEMG) potential is the standard index used to monitor both electrical changes within the motor unit during muscular activity and the electrical patterns during evoked contraction. However, technical and physiological limitations often preclude the acquisition and analysis of the signal especially during functional electrical stimulation (FES)-evoked contractions. Hence, an accurate quantification of the relationship between the eEMG potential and FES-evoked muscle response remains elusive and continues to attract the attention of researchers due to its potential application in the fields of biomechanics, muscle physiology, and rehabilitation science. We conducted a systematic review to examine the effectiveness of eEMG potentials to assess muscle force and fatigue, particularly as a biofeedback descriptor of FES-evoked contractions in individuals with spinal cord injury. At the outset, 2867 citations were identified and, finally, fifty-nine trials met the inclusion criteria. Four hypotheses were proposed and evaluated to inform this review. The results showed that eEMG is effective at quantifying muscle force and fatigue during isometric contraction, but may not be effective during dynamic contractions including cycling and stepping. Positive correlation of up to r = 0.90 (p < 0.05) between the decline in the peak-to-peak amplitude of the eEMG and the decline in the force output during fatiguing isometric contractions has been reported. In the available prediction models, the performance index of the eEMG signal to estimate the generated muscle force ranged from 3.8% to 34% for 18 s to 70 s ahead of the actual muscle force generation. The strength and inherent limitations of the eEMG signal to assess muscle force and fatigue were evident from our findings with implications in clinical management of spinal cord injury (SCI) population. PMID:25025551

  12. The effect of single-pulse transcranial magnetic stimulation and peripheral nerve stimulation on complexity of EMG signal: fractal analysis.

    PubMed

    Cukic, M; Oommen, J; Mutavdzic, D; Jorgovanovic, N; Ljubisavljevic, M

    2013-07-01

    The aim of this study was to examine whether single-pulse transcranial magnetic stimulation (spTMS) affects the pattern of corticospinal activity once voluntary drive has been restored after spTMS-induced EMG silence. We used fractal dimension (FD) to explore the 'complexity' of the electromyography (EMG) signal, and median frequency of the spectra (MDF) to examine changes in EMG spectral characteristics. FD and MDF of the raw EMG epochs immediately before were compared with those obtained from epochs after the EMG silence. Changes in FD and MDF after spTMS were examined with three levels of muscle contraction corresponding to weak (20-40%), moderate (40-60%) and strong (60-80% of maximal voluntary contraction) and three intensities of stimulation set at 10, 20 and 30% above the resting motor threshold. FD was calculated using the Higuchi fractal dimension algorithm. Finally, to discern the origin of FD changes between the CNS and muscle, we compared the effects of spTMS with the effects of peripheral nerve stimulation (PNS) on FD and MDF. The results show that spTMS induced significant decrease in both FD and MDF of EMG signal after stimulation. PNS did not have any significant effects on FD nor MDF. Changes in TMS intensity did not have any significant effect on FD or MDF after stimulation nor had the strength of muscle contraction. However, increase in contraction strength decreased FD before stimulation but only between weak and moderate contraction. The results suggest that the effects of spTMS on corticospinal activity, underlying voluntary motor output, outlast the TMS stimulus. It appears that the complexity of the EMG signal is reduced after spTMS, suggesting that TMS alters the dynamics of the ongoing corticospinal activity most likely temporarily synchronizing the neural network activity. Further studies are needed to confirm whether observed changes after TMS occur at the cortical level.

  13. Progressive FastICA Peel-Off and Convolution Kernel Compensation Demonstrate High Agreement for High Density Surface EMG Decomposition

    PubMed Central

    Chen, Maoqi

    2016-01-01

    Decomposition of electromyograms (EMG) is a key approach to investigating motor unit plasticity. Various signal processing techniques have been developed for high density surface EMG decomposition, among which the convolution kernel compensation (CKC) has achieved high decomposition yield with extensive validation. Very recently, a progressive FastICA peel-off (PFP) framework has also been developed for high density surface EMG decomposition. In this study, the CKC and PFP methods were independently applied to decompose the same sets of high density surface EMG signals. Across 91 trials of 64-channel surface EMG signals recorded from the first dorsal interosseous (FDI) muscle of 9 neurologically intact subjects, there were a total of 1477 motor units identified from the two methods, including 969 common motor units. On average, 10.6 ± 4.3 common motor units were identified from each trial, which showed a very high matching rate of 97.85 ± 1.85% in their discharge instants. The high degree of agreement of common motor units from the CKC and the PFP processing provides supportive evidence of the decomposition accuracy for both methods. The different motor units obtained from each method also suggest that combination of the two methods may have the potential to further increase the decomposition yield. PMID:27642525

  14. Modulation of ankle EMG in spinally contused rats through application of neuromuscular electrical stimulation timed to robotic treadmill training.

    PubMed

    Askari, Sina; Kamgar, Parisa; Chao, TeKang; Diaz, Eric; de Leon, Ray D; Won, Deborah S

    2012-01-01

    While neuromuscular electrical stimulation (NMES) has enabled patients of neuromotor dysfunction to effectively regain some functions, analysis of neuromuscular changes underlying these functional improvements is lacking. We have developed an NMES system for a rodent model of SCI with the long term goal of creating a therapy which restores control over stepping back to the spinal circuitry. NMES was applied to the tibialis anterior (TA) and timed to the afferent feedback generated during robotic treadmill training (RTT). The effect of NMES+RTT on modifications in EMG was compared with that of RTT alone. A longitudinal study with a crossover design was conducted in which group 1 (n=7) received 2 weeks of RTT only followed by 2 weeks of NMES+RTT; group 2 (n=7) received 2 weeks of NMES+RTT followed by RTT only. On average, both types of training helped to modulate TA EMG activity over a gait cycle, resulting in EMG profiles across steps with peaks occurring just before or at the beginning of the swing phase, when ankle flexion is most needed. However, NMES+RTT resulted in concentration of EMG activation during the initial swing phase more than RTT only. In conjunction with these improvements in EMG activation presented here, a more complete analyses comparing changes after NMES+RTT vs. RTT is expected to further support the notion that NMES timed appropriately to hindlimb stepping could help to reinforce the motor learning that is induced by afferent activity generated by treadmill training.

  15. User adaptation in long-term, open-loop myoelectric training: implications for EMG pattern recognition in prosthesis control

    NASA Astrophysics Data System (ADS)

    He, Jiayuan; Zhang, Dingguo; Jiang, Ning; Sheng, Xinjun; Farina, Dario; Zhu, Xiangyang

    2015-08-01

    Objective. Recent studies have reported that the classification performance of electromyographic (EMG) signals degrades over time without proper classification retraining. This problem is relevant for the applications of EMG pattern recognition in the control of active prostheses. Approach. In this study we investigated the changes in EMG classification performance over 11 consecutive days in eight able-bodied subjects and two amputees. Main results. It was observed that, when the classifier was trained on data from one day and tested on data from the following day, the classification error decreased exponentially but plateaued after four days for able-bodied subjects and six to nine days for amputees. The between-day performance became gradually closer to the corresponding within-day performance. Significance. These results indicate that the relative changes in EMG signal features over time become progressively smaller when the number of days during which the subjects perform the pre-defined motions are increased. The performance of the motor tasks is thus more consistent over time, resulting in more repeatable EMG patterns, even if the subjects do not have any external feedback on their performance. The learning curves for both able-bodied subjects and subjects with limb deficiencies could be modeled as an exponential function. These results provide important insights into the user adaptation characteristics during practical long-term myoelectric control applications, with implications for the design of an adaptive pattern recognition system.

  16. Influence of joint angle on EMG-torque model during constant-posture, quasi-constant-torque contractions.

    PubMed

    Liu, Pu; Liu, Lukai; Martel, Francois; Rancourt, Denis; Clancy, Edward A

    2013-10-01

    Electromyogram (EMG)-torque modeling is of value to many different application areas, including ergonomics, clinical biomechanics and prosthesis control. One important aspect of EMG-torque modeling is the ability to account for the joint angle influence. This manuscript describes an experimental study which relates the biceps/triceps surface EMG of 12 subjects to elbow torque at seven joint angles (spanning 45-135°) during constant-posture, quasi-constant-torque contractions. Advanced EMG amplitude (EMGσ) estimation processors (i.e., whitened, multiple-channel) were investigated and three non-linear EMGσ-torque models were evaluated. When EMG-torque models were formed separately for each of the seven distinct joint angles, a minimum "gold standard" error of 4.23±2.2% MVCF90 resulted (i.e., error relative to maximum voluntary contraction at 90° flexion). This model structure, however, did not directly facilitate interpolation across angles. The best model which did so (i.e., parameterized the angle dependence), achieved an error of 4.17±1.7% MVCF90. Results demonstrated that advanced EMGσ processors lead to improved joint torque estimation. We also contrasted models that did vs. did not account for antagonist muscle co-contraction. Models that accounted for co-contraction estimated individual flexion muscle torques that were ∼29% higher and individual extension muscle torques that were ∼68% higher.

  17. A comparative study of efficacy of emg bio-feedback and progressive muscular relaxation in tension headache.

    PubMed

    Gada, M T

    1984-04-01

    The aim of the present study was to find out efficacy of frontalis EMG Biofeedback therapy, deep muscular relaxation therapy and compare the efficacy of both in cases of tension headache. During two week basal-data recording period all patients were taught deep muscular relaxation by Jacobson's technique. Simultaneously patients were instructed to keep headache diary. Headache diary yielded three different parameters a) number of headache-free days per week, b) peak headache intensity (or each week and c) average daily headache activity score per week. These parameters were used to find out therapeutic efficacy of each treatment. Patients were randomly divided in two groups. EMG Biofeedback group was given frontalis EMG feedback through EMG J 33 muscle trainer of Cyborg Corporation (U.S.A.). Patients in each group were given 20 sessions (two sessions per week); each session lasting 30 minutes. Patients were instructed to practice at least one 30 minute session of relaxation at home. The data were subjected to statistical calculation. The results indicate that frontalis EMG Biofeedback therapy and deep muscle relaxation therapy are significantly effective in cases of tension headache. Both treatments are equally effective. The findings are discussed in relation to Indian situation.

  18. Transradial Amputee Gesture Classification Using an Optimal Number of sEMG Sensors: An Approach Using ICA Clustering.

    PubMed

    Naik, Ganesh R; Al-Timemy, Ali H; Nguyen, Hung T

    2016-08-01

    Surface electromyography (sEMG)-based pattern recognition studies have been widely used to improve the classification accuracy of upper limb gestures. Information extracted from multiple sensors of the sEMG recording sites can be used as inputs to control powered upper limb prostheses. However, usage of multiple EMG sensors on the prosthetic hand is not practical and makes it difficult for amputees due to electrode shift/movement, and often amputees feel discomfort in wearing sEMG sensor array. Instead, using fewer numbers of sensors would greatly improve the controllability of prosthetic devices and it would add dexterity and flexibility in their operation. In this paper, we propose a novel myoelectric control technique for identification of various gestures using the minimum number of sensors based on independent component analysis (ICA) and Icasso clustering. The proposed method is a model-based approach where a combination of source separation and Icasso clustering was utilized to improve the classification performance of independent finger movements for transradial amputee subjects. Two sEMG sensor combinations were investigated based on the muscle morphology and Icasso clustering and compared to Sequential Forward Selection (SFS) and greedy search algorithm. The performance of the proposed method has been validated with five transradial amputees, which reports a higher classification accuracy ( > 95%). The outcome of this study encourages possible extension of the proposed approach to real time prosthetic applications.

  19. Linear methods for reducing EMG contamination in peripheral nerve motor decodes.

    PubMed

    Kagan, Zachary B; Wendelken, Suzanne; Page, David M; Davis, Tyler; Hutchinson, Douglas T; Clark, Gregory A; Warren, David J

    2016-08-01

    Signals recorded from the peripheral nervous system (PNS) with high channel count penetrating microelectrode arrays, such as the Utah Slanted Electrode Array (USEA), often have electromyographic (EMG) signals contaminating the neural signal. This common-mode signal source may prevent single neural units from successfully being detected, thus hindering motor decode algorithms. Reducing this EMG contamination may lead to more accurate motor decode performance. A virtual reference (VR), created by a weighted linear combination of signals from a subset of all available channels, can be used to reduce this EMG contamination. Four methods of determining individual channel weights and six different methods of selecting subsets of channels were investigated (24 different VR types in total). The methods of determining individual channel weights were equal weighting, regression-based weighting, and two different proximity-based weightings. The subsets of channels were selected by a radius-based criteria, such that a channel was included if it was within a particular radius of inclusion from the target channel. These six radii of inclusion were 1.5, 2.9, 3.2, 5, 8.4, and 12.8 electrode-distances; the 12.8 electrode radius includes all USEA electrodes. We found that application of a VR improves the detectability of neural events via increasing the SNR, but we found no statistically meaningful difference amongst the VR types we examined. The computational complexity of implementation varies with respect to the method of determining channel weights and the number of channels in a subset, but does not correlate with VR performance. Hence, we examined the computational costs of calculating and applying the VR and based on these criteria, we recommend an equal weighting method of assigning weights with a 3.2 electrode-distance radius of inclusion. Further, we found empirically that application of the recommended VR will require less than 1 ms for 33.3 ms of data from one USEA.

  20. A Wireless sEMG-Based Body-Machine Interface for Assistive Technology Devices.

    PubMed

    Fall, Cheikh Latyr; Gagnon-Turcotte, Gabriel; Dube, J F; Gagne, Jean Simon; Delisle, Yanick; Campeau-Lecours, Alexandre; Gosselin, Clement; Gosselin, Benoit

    2016-12-21

    Assistive Technology (AT) tools and appliances are being more and more widely used and developed worldwide to improve the autonomy of people living with disabilities and ease the interaction with their environments. This paper describes an intuitive and wireless surface electromyography (sEMG) based body-machine interface for AT tools. Spinal cord injuries (SCIs) at C5-C8 levels affect patients' arms, forearms, hands and fingers control. Thus, using classical AT control interfaces (keypads, joysticks, etc.) is often difficult or impossible. The proposed system reads the AT users' Residual Functional Capacities (RFCs) through their sEMG activity, and converts them into appropriate commands using a threshold-based control algorithm. It has proven to be suitable as a control alternative for assistive devices and has been tested with the JACO arm, an articulated assistive device of which the vocation is to help people living with upper-body disabilities in their daily life activities. The wireless prototype, the architecture of which is based on a 3-channel sEMG measurement system and a 915-MHz wireless transceiver built around a low-power microcontroller, uses low-cost off-the-shelf commercial components. The embedded controller is compared with JACO's regular joystick-based interface, using combinations of forearm, pectoral, masseter and trapeze muscles. The measured index of performance values are 0.88, 0.51 and 0.41 bits/s respectively, for correlation coefficients with the Fitt's model of 0.75, 0.85 and 0.67. These results demonstrate that the proposed controller offers an attractive alternative to conventional interfaces, such as joystick devices, for upper-body disabled people using assistive technologies such as JACO.

  1. The influence of wrist posture on the time and frequency EMG signal measures of forearm muscles.

    PubMed

    Roman-Liu, Danuta; Bartuzi, Paweł

    2013-03-01

    This study investigates how altering wrist posture influences the relationship between the time and frequency measures of the electromyography (EMG) signal of extensor digitorum communis (EDC) and flexor carpi ulnaris (FCU). Thirteen participants exerted handgrip force related to maximum voluntary contraction (MVC) in four tests: 20%MVC and 50%MVC in neutral wrist posture and 20%MVC in full wrist flexion and extension. EMG measurements from EDC and FCU were used to calculate normalized values of amplitude (nRMS) and mean and median frequency of the power spectrum (nMPF, nMF). During muscle shortening (wrist flexion for FCU and wrist extension for EDC) nRMS was approximately twofold higher than in neutral posture for FCU and fourfold for EDC. All measures obtained at 20%MVC in neutral posture were significantly different from 20%MVC in wrist flexion for FCU and 20%MVC in wrist extension for EDC (p<0.05). Differences between 50%MVC and 20%MVC at neutral posture (nRMS) were significant for both muscles, although in nMPF and nMF for EDC only. Muscle shortening changed the pattern of statistical significance when the time and frequency domain measures were compared, whereas muscle lengthening did not. It can be concluded that muscle shortening caused by altering wrist posture influences the relationship between the time and frequency measures in both muscles. This suggests that in studies using EMG in different wrist postures, changes in the relationship between the time and the frequency measures should be considered.

  2. Coherent oscillations in monkey motor cortex and hand muscle EMG show task-dependent modulation.

    PubMed Central

    Baker, S N; Olivier, E; Lemon, R N

    1997-01-01

    1. Recordings were made of local field potential (slow waves) and pyramidal tract neurone (PTN) discharge from pairs of sites separated by a horizontal distance of up to 1.5 mm in the primary motor cortex of two conscious macaque monkeys performing a precision grip task. 2. In both monkeys, the slow wave recordings showed bursts of oscillations in the 20-30 Hz range. Spectral analysis revealed that the oscillations were coherent between the two simultaneously recorded cortical sites. In the monkey from which most data were recorded, the mean frequency of peak coherence was 23.4 Hz. 3. Coherence in this frequency range was also seen between cortical slow wave recordings and rectified EMG of hand and forearm muscles active during the task, and between pairs of rectified EMGs. 4. The dynamics of the coherence were investigated by analysing short, quasi-stationary data segments aligned relative to task performance. This revealed that the 20-30 Hz coherent oscillations were present mainly during the hold phase of the precision grip task. 5. The spikes of identified PTNs were used to compile spike-triggered averages of the slow wave recordings. Oscillations were seen in 11/17 averages of the slow wave recorded on the same electrode as the triggering spike, and 11/17 averages of the slow wave recorded on the distant electrode. The mean period of these oscillations was 45.8 ms. 6. It is concluded that oscillations in the range 20-30 Hz are present in monkey motor cortex, are coherent between spatially separated cortical sites, and encompass the pyramidal tract output neurones. They are discernable in the EMG of active muscles, and show a consistent task-dependent modulation. Images Figure 3 Figure 6 Figure 7 PMID:9175005

  3. Surface EMG and intra-socket force measurement to control a prosthetic device

    NASA Astrophysics Data System (ADS)

    Sanford, Joe; Patterson, Rita; Popa, Dan

    2015-06-01

    Surface electromyography (SEMG) has been shown to be a robust and reliable interaction method allowing for basic control of powered prosthetic devices. Research has shown a marked decrease in EMG-classification efficiency throughout activities of daily life due to socket shift and movement and fatigue as well as changes in degree of fit of the socket throughout the subject's lifetime. Users with the most severe levels of amputation require the most complex devices with the greatest number of degrees of freedom. Controlling complex dexterous devices with limited available inputs requires the addition of sensing and interaction modalities. However, the larger the amputation severity, the fewer viable SEMG sites are available as control inputs. Previous work reported the use of intra-socket pressure, as measured during wrist flexion and extension, and has shown that it is possible to control a powered prosthetic device with pressure sensors. In this paper, we present data correlations of SEMG data with intra-socket pressure data. Surface EMG sensors and force sensors were housed within a simulated prosthetic cuff fit to a healthy-limbed subject. EMG and intra-socket force data was collected from inside the cuff as a subject performed pre-defined grip motions with their dominant hand. Data fusion algorithms were explored and allowed a subject to use both intra-socket pressure and SEMG data as control inputs for a powered prosthetic device. This additional input modality allows for an improvement in input classification as well as information regarding socket fit through out activities of daily life.

  4. Gluteus minimus: an intramuscular EMG investigation of anterior and posterior segments during gait.

    PubMed

    Semciw, Adam I; Green, Rodney A; Murley, George S; Pizzari, Tania

    2014-02-01

    Gluteus minimus is believed to consist of two structurally and functionally unique segments (anterior and posterior); however there is a lack of electromyography (EMG) research that attempts to verify current theoretical knowledge of this muscle. The purpose of this study was therefore to evaluate the function of gluteus minimus during gait, and to determine whether anterior and posterior segments are functionally independent. Bipolar fine wire intramuscular EMG electrodes were inserted into anterior and posterior gluteus minimus segments of fifteen healthy volunteers (9 males) according to previously verified guidelines. Participants completed a series of four walking trials, followed by maximum voluntary isometric contractions in five different positions. Temporal and amplitude variables for each segment were compared across the gait cycle with independent t-tests. The relative contribution of each segment to the maximum resisted trials was compared with Mann-Whitney U tests (α = 0.05). Anterior and posterior segments were contracting at different relative intensities for three of the five maximum resisted trials (effect size = 0.39 to 0.62, P < 0.037). The posterior segment was larger in EMG amplitude (peak and average) during the first 20% of the gait cycle (effect size = 0.96 to 1.03, P < 0.02), while the anterior segment peaked later in the stance phase (effect size = 0.83, P = 0.034). Gluteus minimus is therefore composed of functionally independent segments. These results build on contemporary theoretical knowledge and may signify hip stabilising roles for each segment across different phases of the gait cycle.

  5. Is interindividual variability of EMG patterns in trained cyclists related to different muscle synergies?

    PubMed

    Hug, François; Turpin, Nicolas A; Guével, Arnaud; Dorel, Sylvain

    2010-06-01

    Our aim was to determine whether muscle synergies are similar across trained cyclists (and thus whether the same locomotor strategies for pedaling are used), despite interindividual variability of individual EMG patterns. Nine trained cyclists were tested during a constant-load pedaling exercise performed at 80% of maximal power. Surface EMG signals were measured in 10 lower limb muscles. A decomposition algorithm (nonnegative matrix factorization) was applied to a set of 40 consecutive pedaling cycles to differentiate muscle synergies. We selected the least number of synergies that provided 90% of the variance accounted for VAF. Using this criterion, three synergies were identified for all of the subjects, accounting for 93.5+/-2.0% of total VAF, with VAF for individual muscles ranging from 89.9+/-8.2% to 96.6+/-1.3%. Each of these synergies was quite similar across all subjects, with a high mean correlation coefficient for synergy activation coefficients (0.927+/-0.070, 0.930+/-0.052, and 0.877+/-0.110 for synergies 1-3, respectively) and muscle synergy vectors (0.873+/-0.120, 0.948+/-0.274, and 0.885+/-0.129 for synergies 1-3, respectively). Despite a large consistency across subjects in the weighting of several monoarticular muscles into muscle synergy vectors, we found larger interindividual variability for another monoarticular muscle (soleus) and for biarticular muscles (rectus femoris, gastrocnemius lateralis, biceps femoris, and semimembranosus). This study demonstrated that pedaling is accomplished by the combination of the similar three muscle synergies among trained cyclists. The interindividual variability of EMG patterns observed during pedaling does not represent differences in the locomotor strategy for pedaling.

  6. Changes in EMG coherence between long and short thumb abductor muscles during human development.

    PubMed

    Farmer, Simon F; Gibbs, John; Halliday, David M; Harrison, Linda M; James, Leon M; Mayston, Margaret J; Stephens, John A

    2007-03-01

    In adults, motoneurone pools of synergistic muscles that act around a common joint share a common presynaptic