Affective Modulation of the Startle Eyeblink and Postauricular Reflexes in Autism Spectrum Disorder
ERIC Educational Resources Information Center
Dichter, Gabriel S.; Benning, Stephen D.; Holtzclaw, Tia N.; Bodfish, James W.
2010-01-01
Eyeblink and postauricular reflexes to standardized affective images were examined in individuals without (n = 37) and with (n = 20) autism spectrum disorders (ASDs). Affective reflex modulation in control participants replicated previous findings. The ASD group, however, showed anomalous reflex modulation patterns, despite similar self-report…
Lafo, Jacob A; Mikos, Ania; Mangal, Paul C; Scott, Bonnie M; Trifilio, Erin; Okun, Michael S; Bowers, Dawn
2017-01-01
Essential tremor is a highly prevalent movement disorder characterized by kinetic tremor and mild cognitive-executive changes. These features are commonly attributed to abnormal cerebellar changes, resulting in disruption of cerebellar-thalamo-cortical networks. Less attention has been paid to alterations in basic emotion processing in essential tremor, despite known cerebellar-limbic interconnectivity. In the current study, we tested the hypothesis that a psychophysiologic index of emotional reactivity, the emotion modulated startle reflex, would be muted in individuals with essential tremor relative to controls. Participants included 19 essential tremor patients and 18 controls, who viewed standard sets of unpleasant, pleasant, and neutral pictures for six seconds each. During picture viewing, white noise bursts were binaurally presented to elicit startle eyeblinks measured over the orbicularis oculi. Consistent with past literature, controls' startle eyeblink responses were modulated according to picture valence (unpleasant > neutral > pleasant). In essential tremor participants, startle eyeblinks were not modulated by emotion. This modulation failure was not due to medication effects, nor was it due to abnormal appraisal of emotional picture content. Neuroanatomically, it remains unclear whether diminished startle modulation in essential tremor is secondary to aberrant cerebellar input to the amygdala, which is involved in priming the startle response in emotional contexts, or due to more direct disruption between the cerebellum and brainstem startle circuitry. If the former is correct, these findings may be the first to reveal dysregulation of emotional networks in essential tremor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Herbert, Cornelia; Kissler, Johanna
2010-05-01
Valence-driven modulation of the startle reflex, that is larger eyeblinks during viewing of unpleasant pictures and inhibited blinks while viewing pleasant pictures, is well documented. The current study investigated, whether this motivational priming pattern also occurs during processing of unpleasant and pleasant words, and to what extent it is influenced by shallow vs. deep encoding of verbal stimuli. Emotional and neutral adjectives were presented for 5s, and the acoustically elicited startle eyeblink response was measured while subjects memorized the words by means of shallow or deep processing strategies. Results showed blink potentiation to unpleasant and blink inhibition to pleasant adjectives in subjects using shallow encoding strategies. In subjects using deep-encoding strategies, blinks were larger for pleasant than unpleasant or neutral adjectives. In line with this, free recall of pleasant words was also better in subjects who engaged in deep processing. The results suggest that motivational priming holds as long as processing is perceptual. However, during deep processing the startle reflex appears to represent a measure of "processing interrupt", facilitating blinks to those stimuli that are more deeply encoded. Copyright 2010 Elsevier B.V. All rights reserved.
Additive Effects of Threat-of-Shock and Picture Valence on Startle Reflex Modulation
Bublatzky, Florian; Guerra, Pedro M.; Pastor, M. Carmen; Schupp, Harald T.; Vila, Jaime
2013-01-01
The present study examined the effects of sustained anticipatory anxiety on the affective modulation of the eyeblink startle reflex. Towards this end, pleasant, neutral and unpleasant pictures were presented as a continuous stream during alternating threat-of-shock and safety periods, which were cued by colored picture frames. Orbicularis-EMG to auditory startle probes and electrodermal activity were recorded. Previous findings regarding affective picture valence and threat-of-shock modulation were replicated. Of main interest, anticipating aversive events and viewing affective pictures additively modulated defensive activation. Specifically, despite overall potentiated startle blink magnitude in threat-of-shock conditions, the startle reflex remained sensitive to hedonic picture valence. Finally, skin conductance level revealed sustained sympathetic activation throughout the entire experiment during threat- compared to safety-periods. Overall, defensive activation by physical threat appears to operate independently from reflex modulation by picture media. The present data confirms the importance of simultaneously manipulating phasic-fear and sustained-anxiety in studying both normal and abnormal anxiety. PMID:23342060
De Pascalis, Vilfredo; Russo, Emanuela
2013-01-01
A working model of the neurophysiology of hypnosis suggests that highly hypnotizable individuals (HHs) have more effective frontal attentional systems implementing control, monitoring performance, and inhibiting unwanted stimuli from conscious awareness, than low hypnotizable individuals (LHs). Recent studies, using prepulse inhibition (PPI) of the auditory startle reflex (ASR), suggest that HHs, in the waking condition, may show reduced sensory gating although they may selectively attend and disattend different stimuli. Using a within subject design and a strict subject selection procedure, in waking and hypnosis conditions we tested whether HHs compared to LHs showed a significantly lower inhibition of the ASR and startle-related brain activity in both time and intracerebral source localization domains. HHs, as compared to LH participants, exhibited (a) longer latency of the eyeblink startle reflex, (b) reduced N100 responses to startle stimuli, and (c) higher PPI of eyeblink startle and of the P200 and P300 waves. Hypnosis yielded smaller N100 waves to startle stimuli and greater PPI of this component than in the waking condition. sLORETA analysis revealed that, for the N100 (107 msec) elicited during startle trials, HHs had a smaller activation in the left parietal lobe (BA2/40) than LHs. Auditory pulses of pulse-with prepulse trials in HHs yielded less activity of the P300 (280 msec) wave than LHs, in the cingulate and posterior cingulate gyrus (BA23/31). The present results, on the whole, are in the opposite direction to PPI findings on hypnotizability previously reported in the literature. These results provide support to the neuropsychophysiological model that HHs have more effective sensory integration and gating (or filtering) of irrelevant stimuli than LHs. PMID:24278150
De Pascalis, Vilfredo; Russo, Emanuela
2013-01-01
A working model of the neurophysiology of hypnosis suggests that highly hypnotizable individuals (HHs) have more effective frontal attentional systems implementing control, monitoring performance, and inhibiting unwanted stimuli from conscious awareness, than low hypnotizable individuals (LHs). Recent studies, using prepulse inhibition (PPI) of the auditory startle reflex (ASR), suggest that HHs, in the waking condition, may show reduced sensory gating although they may selectively attend and disattend different stimuli. Using a within subject design and a strict subject selection procedure, in waking and hypnosis conditions we tested whether HHs compared to LHs showed a significantly lower inhibition of the ASR and startle-related brain activity in both time and intracerebral source localization domains. HHs, as compared to LH participants, exhibited (a) longer latency of the eyeblink startle reflex, (b) reduced N100 responses to startle stimuli, and (c) higher PPI of eyeblink startle and of the P200 and P300 waves. Hypnosis yielded smaller N100 waves to startle stimuli and greater PPI of this component than in the waking condition. sLORETA analysis revealed that, for the N100 (107 msec) elicited during startle trials, HHs had a smaller activation in the left parietal lobe (BA2/40) than LHs. Auditory pulses of pulse-with prepulse trials in HHs yielded less activity of the P300 (280 msec) wave than LHs, in the cingulate and posterior cingulate gyrus (BA23/31). The present results, on the whole, are in the opposite direction to PPI findings on hypnotizability previously reported in the literature. These results provide support to the neuropsychophysiological model that HHs have more effective sensory integration and gating (or filtering) of irrelevant stimuli than LHs.
ERIC Educational Resources Information Center
Jurkowski, A.J.; Stepp, E.; Hackley, S.A.
2005-01-01
The effect of a visual warning signal (1.0-6.5s random foreperiod, FP) on the latency of voluntary (hand-grip) and reflexive (startle-eyeblink) reactions was investigated in Parkinson's disease (PD) patients and in young and aged control subjects. Equivalent FP effects on blink were observed across groups. By contrast, FP effects diverged for…
Benke, Christoph; Blumenthal, Terry D; Modeß, Christiane; Hamm, Alfons O; Pané-Farré, Christiane A
2015-09-01
The way in which the tendency to fear somatic arousal sensations (anxiety sensitivity), in interaction with the created expectations regarding arousal induction, might affect defensive responding to a symptom provocation challenge is not yet understood. The present study investigated the effect of anxiety sensitivity on autonomic arousal, startle eyeblink responses, and reported arousal and alertness to expected vs. unexpected caffeine consumption. To create a match/mismatch of expected and experienced arousal, high and low anxiety sensitive participants received caffeine vs. no drug either mixed in coffee (expectation of arousal induction) or in bitter lemon soda (no expectation of arousal induction) on four separate occasions. Autonomic arousal (heart rate, skin conductance level), respiration (end-tidal CO2, minute ventilation), defensive reflex responses (startle eyeblink), and reported arousal and alertness were recorded prior to, immediately and 30 min after beverage ingestion. Caffeine increased ventilation, autonomic arousal, and startle response magnitudes. Both groups showed comparable levels of autonomic and respiratory responses. The startle eyeblink responses were decreased when caffeine-induced arousal occurred unexpectedly, e.g., after administering caffeine in bitter lemon. This effect was more accentuated in high anxiety sensitive persons. Moreover, in high anxiety sensitive persons, the expectation of arousal (coffee consumption) led to higher subjective alertness when administering caffeine and increased arousal even if no drug was consumed. Unexpected symptom provocation leads to increased attention allocation toward feared arousal sensations in high anxiety sensitive persons. This finding broadens our understanding of modulatory mechanisms in defensive responding to bodily symptoms.
The emotional startle effect is disrupted by a concurrent working memory task.
King, Rosemary; Schaefer, Alexandre
2011-02-01
Working memory (WM) processes are often thought to play an important role in the cognitive regulation of negative emotions. However, little is known about how they influence emotional processing. We report two experiments that tested whether a concurrent working memory task could modulate the emotional startle eyeblink effect, a well-known index of emotional processing. In both experiments, emotionally negative and neutral pictures were viewed in two conditions: a "cognitive load" (CL) condition, in which participants had to actively maintain information in working memory (WM) while viewing the pictures, and a control "no load" (NL) condition. Picture-viewing instructions were identical across CL and NL. In both experiments, results showed a significant reduction of the emotional modulation of the startle eyeblink reflex in the CL condition compared to the NL condition. These findings suggest that a concurrent WM task disrupts emotional processing even when participants are directing visual focus on emotionally relevant information. Copyright © 2010 Society for Psychophysiological Research.
The nursing hypothesis: an evolutionary account of emotional modulation of the postauricular reflex.
Johnson, Gabriella M; Valle-Inclán, Fernando; Geary, David C; Hackley, Steven A
2012-02-01
The postauricular reflex (PAR) is anomalous because it seems to be potentiated during positive emotions and inhibited during negative states, unlike eyeblink and other components of the startle reflex. Two evolutionary explanations based on simian facial emotion expressions were tested. Reflexes were elicited while 47 young adult volunteers made lip pursing or grimacing poses and viewed neutral, intimidating, or appetitive photos. The PAR was enhanced during appetitive slides, but only as subjects carried out the lip-pursing maneuver. These results support the nursing hypothesis, which assumes that infant mammals instinctively retract their pinnae while nursing in order to comfortably position the head. Appetitive emotions prime the ear-retraction musculature, even in higher primates whose postauricular muscles are vestigial. Copyright © 2011 Society for Psychophysiological Research.
Asnaani, Anu; Sawyer, Alice T.; Aderka, Idan M.; Hofmann, Stefan G.
2012-01-01
To examine the effects of different emotion regulation strategies on acoustic eye-blink startle, 65 participants viewed positive, neutral, and negative pictures and were instructed to suppress, reappraise, or accept their emotional responses to these pictures using a within-group experimental design with separate blocks of pictures for each strategy. Instructions to suppress the emotional response led to an attenuation of the eye-blink startle magnitude, in comparison with instructions to reappraise or accept. Reappraisal and acceptance instructions did not differ from one another in their effect on startle. These results are discussed within the context of the existing empirical literature on emotion regulation. PMID:24551448
Changes in the magnitude of the eyeblink startle response during habituation of sexual arousal.
Koukounas, E; Over, R
2000-06-01
Modulation of the startle response was used to examine emotional processing of sexual stimulation across trials within a session. Eyeblink startle was elicited by a probe (burst of intense white noise) presented intermittently while men were viewing an erotic film segment. Repeated display of the film segment resulted in a progressive decrease in sexual arousal. Habituation of sexual arousal was accompanied by a reduction over trials in the extent the men felt absorbed when viewing the erotic stimulus and by an increase over trials in the magnitude of the eyeblink startle response. Replacing the familiar stimulus by a novel erotic stimulus increased in sexual arousal and absorption and reduced startle (novelty effect), while dishabituation was evident for all three response measures when the familiar stimulus was reintroduced. This pattern of results indicates that with repeated presentation an erotic stimulus is experienced not only as less sexually arousing but also as less appetitive and absorbing. The question of whether habituation of sexual arousal is mediated by changes in attentional and affective processing over trials is discussed, as are clinical contexts in which eyeblink startle can be used in studying aspects of sexual functioning.
Enhanced startle responsivity 24 hours after acute stress exposure.
Herten, Nadja; Otto, Tobias; Adolph, Dirk; Pause, Bettina M; Kumsta, Robert; Wolf, Oliver T
2016-10-01
Cortisol release in a stressful situation can be beneficial for memory encoding and memory consolidation. Stimuli, such as odors, related to the stressful episode may successfully cue memory contents of the stress experience. The current investigation aimed at testing the potency of stress to influence startle responsivity 24 hr later and to implicitly reactivate emotional memory traces triggered by an odor involved. Participants were assigned to either a stress (Trier Social Stress Test [TSST]) or control (friendly TSST [f-TSST]) condition featuring an ambient odor. On the next day, participants underwent an auditory startle paradigm while their eyeblink reflex was recorded by an electrooculogram. Three different olfactory stimuli were delivered, one being the target odor presented the day before. Additionally, negative, positive, and pictures of the committee members were included for comparing general startle responsivity and fear-potentiated startle. Participants of the stress group demonstrated an enhanced startle response across all stimuli compared to participants of the control group. There were no specific effects with regard to the target odor. The typical fear-potentiated startle response occurred. Stressed participants tended to rate the target odor more aversive than control participants. Odor recognition memory did not differ between the groups, suggesting an implicit effect on odor valence. Our results show that acute stress exposure enhances startle responsivity 24 hr later. This effect might be caused by a shift of amygdala function causing heightened sensitivity, but lower levels of specificity. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Duval, Elizabeth R; Lovelace, Christopher T; Aarant, Justin; Filion, Diane L
2013-12-01
The purpose of this study was to investigate the effects of both facial expression and face gender on startle eyeblink response patterns at varying lead intervals (300, 800, and 3500ms) indicative of attentional and emotional processes. We aimed to determine whether responses to affective faces map onto the Defense Cascade Model (Lang et al., 1997) to better understand the stages of processing during affective face viewing. At 300ms, there was an interaction between face expression and face gender with female happy and neutral faces and male angry faces producing inhibited startle. At 3500ms, there was a trend for facilitated startle during angry compared to neutral faces. These findings suggest that affective expressions are perceived differently in male and female faces, especially at short lead intervals. Future studies investigating face processing should take both face gender and expression into account. © 2013.
Manipulating affective state using extended picture presentations.
Sutton, S K; Davidson, R J; Donzella, B; Irwin, W; Dottl, D A
1997-03-01
Separate, extended series of positive, negative, and neutral pictures were presented to 24 (12 men, 12 women) undergraduates. Each series was presented on a different day, with full counterbalancing of presentation orders. Affective state was measured using (a) orbicularis oculi activity in response to acoustic startle probes during picture presentation, (b) corrugator supercilii activity between and during picture presentation, and (c) changes in self-reports of positive and negative affect. Participants exhibited larger eyeblink reflex magnitudes when viewing negative than when viewing positive pictures. Corrugator activity was also greater during the negative than during the positive picture set, during both picture presentation and the period between pictures. Self-reports of negative affect increased in response to the negative picture set, and self-reports of positive affect were greatest following the positive picture set. These findings suggest that extended picture presentation is an effective method of manipulating affective state and further highlight the utility of startle probe and facial electromyographic measures in providing on-line readouts of affective state.
Blechert, Jens; Naumann, Eva; Schmitz, Julian; Herbert, Beate M; Tuschen-Caffier, Brunna
2014-01-01
Many individuals restrict their food intake to prevent weight gain. This restriction has both homeostatic and hedonic effects but their relative contribution is currently unclear. To isolate hedonic effects of food restriction, we exposed regular chocolate eaters to one week of chocolate deprivation but otherwise regular eating. Before and after this hedonic deprivation, participants viewed images of chocolate and images of high-calorie but non-chocolate containing foods, while experiential, behavioral and eyeblink startle responses were measured. Compared to satiety, hedonic deprivation triggered increased chocolate wanting, liking, and chocolate consumption but also feelings of frustration and startle potentiation during the intertrial intervals. Deprivation was further characterized by startle inhibition during both chocolate and food images relative to the intertrial intervals. Individuals who responded with frustration to the manipulation and those who scored high on a questionnaire of impulsivity showed more relative startle inhibition. The results reveal the profound effects of hedonic deprivation on experiential, behavioral and attentional/appetitive response systems and underscore the role of individual differences and state variables for startle modulation. Implications for dieting research and practice as well as for eating and weight disorders are discussed.
Blechert, Jens; Naumann, Eva; Schmitz, Julian; Herbert, Beate M.; Tuschen-Caffier, Brunna
2014-01-01
Many individuals restrict their food intake to prevent weight gain. This restriction has both homeostatic and hedonic effects but their relative contribution is currently unclear. To isolate hedonic effects of food restriction, we exposed regular chocolate eaters to one week of chocolate deprivation but otherwise regular eating. Before and after this hedonic deprivation, participants viewed images of chocolate and images of high-calorie but non-chocolate containing foods, while experiential, behavioral and eyeblink startle responses were measured. Compared to satiety, hedonic deprivation triggered increased chocolate wanting, liking, and chocolate consumption but also feelings of frustration and startle potentiation during the intertrial intervals. Deprivation was further characterized by startle inhibition during both chocolate and food images relative to the intertrial intervals. Individuals who responded with frustration to the manipulation and those who scored high on a questionnaire of impulsivity showed more relative startle inhibition. The results reveal the profound effects of hedonic deprivation on experiential, behavioral and attentional/appetitive response systems and underscore the role of individual differences and state variables for startle modulation. Implications for dieting research and practice as well as for eating and weight disorders are discussed. PMID:24416437
Modeling startle eyeblink electromyogram to assess fear learning.
Khemka, Saurabh; Tzovara, Athina; Gerster, Samuel; Quednow, Boris B; Bach, Dominik R
2017-02-01
Pavlovian fear conditioning is widely used as a laboratory model of associative learning in human and nonhuman species. In this model, an organism is trained to predict an aversive unconditioned stimulus from initially neutral events (conditioned stimuli, CS). In humans, fear memory is typically measured via conditioned autonomic responses or fear-potentiated startle. For the latter, various analysis approaches have been developed, but a systematic comparison of competing methodologies is lacking. Here, we investigate the suitability of a model-based approach to startle eyeblink analysis for assessment of fear memory, and compare this to extant analysis strategies. First, we build a psychophysiological model (PsPM) on a generic startle response. Then, we optimize and validate this PsPM on three independent fear-conditioning data sets. We demonstrate that our model can robustly distinguish aversive (CS+) from nonaversive stimuli (CS-, i.e., has high predictive validity). Importantly, our model-based approach captures fear-potentiated startle during fear retention as well as fear acquisition. Our results establish a PsPM-based approach to assessment of fear-potentiated startle, and qualify previous peak-scoring methods. Our proposed model represents a generic startle response and can potentially be used beyond fear conditioning, for example, to quantify affective startle modulation or prepulse inhibition of the acoustic startle response. © 2016 The Authors. Psychophysiology published by Wiley Periodicals, Inc. on behalf of Society for Psychophysiological Research.
Aversive imagery in panic disorder: agoraphobia severity, comorbidity, and defensive physiology.
McTeague, Lisa M; Lang, Peter J; Laplante, Marie-Claude; Bradley, Margaret M
2011-09-01
Panic is characterized as a disorder of interoceptive physiologic hyperarousal, secondary to persistent anticipation of panic attacks. The novel aim of this research was to investigate whether severity of agoraphobia within panic disorder covaries with the intensity of physiological reactions to imagery of panic attacks and other aversive scenarios. A community sample of principal panic disorder (n = 112; 41 without agoraphobia, 71 with agoraphobia) and control (n = 76) participants imagined threatening and neutral events while acoustic startle probes were presented and the eye-blink response (orbicularis oculi) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also measured. Overall, panic disorder patients exceeded control participants in startle reflex and heart rate during imagery of standard panic attack scenarios, concordant with more extreme ratings of aversion and emotional arousal. Accounting for the presence of agoraphobia revealed that both panic disorder with and without situational apprehension showed the pronounced heart rate increases during standard panic attack imagery observed for the sample as a whole. In contrast, startle potentiation to aversive imagery was more robust in those without versus with agoraphobia. Reflex diminution was most dramatic in those with the most pervasive agoraphobia, coincident with the most extreme levels of comorbid broad negative affectivity, disorder chronicity, and functional impairment. Principal panic disorder may represent initial, heightened interoceptive fearfulness and concomitant defensive hyperactivity, which through progressive generalization of anticipatory anxiety ultimately transitions to a disorder of pervasive agoraphobic apprehension and avoidance, broad dysphoria, and compromised mobilization for defensive action. Copyright © 2011 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Aversive imagery in panic disorder: Agoraphobia severity, comorbidity and defensive physiology
McTeague, Lisa M.; Lang, Peter J.; Laplante, Marie-Claude; Bradley, Margaret M.
2011-01-01
Background Panic is characterized as a disorder of interoceptive physiological hyperarousal, secondary to persistent anticipation of panic attacks. The novel aim of the present research was to investigate whether severity of agoraphobia within panic disorder covaries with the intensity of physiological reactions to imagery of panic attacks and other aversive scenarios. Methods A community sample of principal panic disorder (n=112; 41 without agoraphobia, 71 with agoraphobia) and control (n=76) participants imagined threatening and neutral events while acoustic startle probes were presented and the eye-blink response (orbicularis oculi) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also measured. Results Overall panic disorder patients exceeded controls in startle reflex and heart rate during imagery of standard panic attack scenarios, concordant with more extreme ratings of aversion and emotional arousal. Accounting for the presence of agoraphobia revealed that both panic disorder with and without situational apprehension showed the pronounced heart rate increases during standard panic attack imagery observed for the sample as a whole. In contrast, startle potentiation to aversive imagery was more robust in those without versus with agoraphobia. Reflex diminution was most dramatic in those with the most pervasive agoraphobia, coincident with the most extreme levels of comorbid broad negative affectivity, disorder chronicity, and functional impairment. Conclusions Principal panic disorder may represent initial, heightened interoceptive fearfulness and concomitant defensive hyperactivity, which through progressive generalization of anticipatory anxiety, ultimately transitions to a disorder of pervasive agoraphobic apprehension and avoidance, broad dysphoria and compromised mobilization for defensive action. PMID:21550590
Defensive Physiological Reactions to Rejection
Gyurak, Anett; Ayduk, Özlem
2014-01-01
We examined the hypothesis that rejection automatically elicits defensive physiological reactions in people with low self-esteem (SE) but that attentional control moderates this effect. Undergraduates (N = 67) completed questionnaire measures of SE and attentional control. Their eye-blink responses to startle probes were measured while they viewed paintings related to rejection and acceptance themes. The stimuli also included positive-, negative-, and neutral-valence control paintings unrelated to rejection. As predicted, compared with people high in SE, those low in SE showed stronger startle eye-blink responses to paintings related to rejection, but not to negative paintings. Paintings related to acceptance did not attenuate their physiological reactivity. Furthermore, attentional control moderated their sensitivity to rejection, such that low SE was related to greater eye-blink responses to rejection only among individuals who were low in attentional control. Implications of the role of attentional control as a top-down process regulating emotional reactivity in people with low SE are discussed. PMID:17894606
Meteran, Hanieh; Vindbjerg, Erik; Uldall, Sigurd Wiingaard; Glenthøj, Birte; Carlsson, Jessica; Oranje, Bob
2018-05-17
Impairments in mechanisms underlying early information processing have been reported in posttraumatic stress disorder (PTSD); however, findings in the existing literature are inconsistent. This current study capitalizes on technological advancements of research on electroencephalographic event-related potential and applies it to a novel PTSD population consisting of trauma-affected refugees. A total of 25 trauma-affected refugees with PTSD and 20 healthy refugee controls matched on age, gender, and country of origin completed the study. In two distinct auditory paradigms sensory gating, indexed as P50 suppression, and sensorimotor gating, indexed as prepulse inhibition (PPI), startle reactivity, and habituation of the eye-blink startle response were examined. Within the P50 paradigm, N100 and P200 amplitudes were also assessed. In addition, correlations between psychophysiological and clinical measures were investigated. PTSD patients demonstrated significantly elevated stimuli responses across the two paradigms, reflected in both increased amplitude of the eye-blink startle response, and increased N100 and P200 amplitudes relative to healthy refugee controls. We found a trend toward reduced habituation in the patients, while the groups did not differ in PPI and P50 suppression. Among correlations, we found that eye-blink startle responses were associated with higher overall illness severity and lower levels of functioning. Fundamental gating mechanisms appeared intact, while the pattern of deficits in trauma-affected refugees with PTSD point toward a different form of sensory overload, an overall neural hypersensitivity and disrupted the ability to down-regulate stimuli responses. This study represents an initial step toward elucidating sensory processing deficits in a PTSD subgroup.
Grashow, Rachel; Miller, Mark W; McKinney, Ann; Nie, Linda H; Sparrow, David; Hu, Howard; Weisskopf, Marc G
2013-01-01
Physiologically-based indicators of neural plasticity in humans could provide mechanistic insights into toxicant actions on learning in the brain, and perhaps prove more objective and sensitive measures of such effects than other methods. We explored the association between lead exposure and classical conditioning of the acoustic startle reflex (ASR)-a simple form of associative learning in the brain-in a population of elderly men. Fifty-one men from the VA Normative Aging Study with cumulative bone lead exposure measurements made with K-X-Ray-Fluorescence participated in a fear-conditioning protocol. The mean age of the men was 75.5years (standard deviation [sd]=5.9) and mean patella lead concentration was 22.7μg/g bone (sd=15.9). Baseline ASR eyeblink response decreased with age, but was not associated with subsequent conditioning. Among 37 men with valid responses at the end of the protocol, higher patella lead was associated with decreased awareness of the conditioning contingency (declarative learning; adjusted odds ratio [OR] per 20μg/g patella lead=0.91, 95% confidence interval [CI]: 0.84, 0.99, p=0.03). Eyeblink conditioning (non-declarative learning) was 0.44sd less (95% CI: -0.91, 0.02; p=0.06) per 20μg/g patella lead after adjustment. Each result was stronger when correcting for the interval between lead measurement and startle testing (awareness: OR=0.88, 95% CI: 0.78, 0.99, p=0.04; conditioning: -0.79sd less, 95% CI: -1.56, 0.03, p=0.04). This initial exploration suggests that lead exposure interferes with specific neural mechanisms of learning and offers the possibility that the ASR may provide a new approach to physiologically explore the effects of neurotoxicant exposures on neural mechanisms of learning in humans with a paradigm that is directly comparable to animal models. Copyright © 2013 Elsevier Inc. All rights reserved.
Schumacher, Sonja; Oe, Misari; Wilhelm, Frank H; Rufer, Michael; Heinrichs, Markus; Weidt, Steffi; Moergeli, Hanspeter; Martin-Soelch, Chantal
2018-01-01
Previous research has demonstrated that the neuropeptide oxytocin modulates social behaviors and reduces anxiety. However, effects of oxytocin on startle reactivity, a well-validated measure of defense system activation related to fear and anxiety, have been inconsistent. Here we investigated the influence of oxytocin on startle reactivity with particular focus on the role of trait anxiety. Forty-four healthy male participants attended two experimental sessions. They received intranasal oxytocin (24 IU) in one session and placebo in the other. Startle probes were presented in combination with pictures of social and non-social content. Eye-blink startle magnitude was measured by electromyography over the musculus orbicularis oculi in response to 95 dB noise bursts. Participants were assigned to groups of high vs. low trait anxiety based on their scores on the trait form of the Spielberger State-Trait Anxiety Inventory (STAI). A significant interaction effect of oxytocin with STAI confirmed that trait anxiety moderated the effect of oxytocin on startle reactivity. Post-hoc tests indicated that for participants with elevated trait anxiety, oxytocin increased startle magnitude, particularly when watching non-social pictures, while this was not the case for participants with low trait anxiety. Results indicate that effects of oxytocin on defense system activation depend on individual differences in trait anxiety. Trait anxiety may be an important moderator variable that should be considered in human studies on oxytocin effects.
Taylor, William; Kalmbach, Brian; Desai, Niraj S.
2015-01-01
Abstract Trace eyeblink conditioning is useful for studying the interaction of multiple brain areas in learning and memory. The goal of the current work was to determine whether trace eyeblink conditioning could be established in a mouse model in the absence of elicited startle responses and the brain circuitry that supports this learning. We show here that mice can acquire trace conditioned responses (tCRs) devoid of startle while head-restrained and permitted to freely run on a wheel. Most mice (75%) could learn with a trace interval of 250 ms. Because tCRs were not contaminated with startle-associated components, we were able to document the development and timing of tCRs in mice, as well as their long-term retention (at 7 and 14 d) and flexible expression (extinction and reacquisition). To identify the circuitry involved, we made restricted lesions of the medial prefrontal cortex (mPFC) and found that learning was prevented. Furthermore, inactivation of the cerebellum with muscimol completely abolished tCRs, demonstrating that learned responses were driven by the cerebellum. Finally, inactivation of the mPFC and amygdala in trained animals nearly abolished tCRs. Anatomical data from these critical regions showed that mPFC and amygdala both project to the rostral basilar pons and overlap with eyelid-associated pontocerebellar neurons. The data provide the first report of trace eyeblink conditioning in mice in which tCRs were driven by the cerebellum and required a localized region of mPFC for acquisition. The data further reveal a specific role for the amygdala as providing a conditioned stimulus-associated input to the cerebellum. PMID:26464998
Tempest, Gavin D; Parfitt, Gaynor
2017-07-01
The interplay between the prefrontal cortex and amygdala is proposed to explain the regulation of affective responses (pleasure/displeasure) during exercise as outlined in the dual-mode model. However, due to methodological limitations the dual-mode model has not been fully tested. In this study, prefrontal oxygenation (using near-infrared spectroscopy) and amygdala activity (reflected by eyeblink amplitude using acoustic startle methodology) were recorded during exercise standardized to metabolic processes: 80% of ventilatory threshold (below VT), at the VT, and at the respiratory compensation point (RCP). Self-reported tolerance of the intensity of exercise was assessed prior to, and affective responses recorded during exercise. The results revealed that, as the intensity of exercise became more challenging (from below VT to RCP), prefrontal oxygenation was larger and eyeblink amplitude and affective responses were reduced. Below VT and at VT, larger prefrontal oxygenation was associated with larger eyeblink amplitude. At the RCP, prefrontal oxygenation was greater in the left than right hemisphere, and eyeblink amplitude explained significant variance in affective responses (with prefrontal oxygenation) and self-reported tolerance. These findings highlight the role of the prefrontal cortex and potentially the amygdala in the regulation of affective (particularly negative) responses during exercise at physiologically challenging intensities (above VT). In addition, a psychophysiological basis of self-reported tolerance is indicated. This study provides some support of the dual-mode model and insight into the neural basis of affective responses during exercise. © 2017 Society for Psychophysiological Research.
Nelson, Brady D; Hajcak, Greg
2017-02-01
There is growing evidence that heightened sensitivity to unpredictability is a core mechanism of anxiety disorders. In adults, multiple anxiety disorders have been associated with a heightened startle reflex in anticipation of unpredictable threat. Child and adolescent anxiety has been linked to an increased startle reflex across baseline, safety, and threat conditions. However, it is unclear whether anxiety in youth is related to the startle reflex as a function of threat predictability. In a sample of 90 8 to 14 year-old girls, the present study examined the association between anxiety symptom dimensions and startle potentiation during a no, predictable, and unpredictable threat task. Depression symptom dimensions were also examined given their high comorbidity with anxiety and mixed relationship with the startle reflex and sensitivity to unpredictability. To assess current symptoms, participants completed the self-report Screen for Child Anxiety Related Emotional Disorders and Children's Depression Inventory. Results indicated that social phobia symptoms were associated with heightened startle potentiation in anticipation of unpredictable threat and attenuated startle potentiation in anticipation of predictable threat. Negative mood and negative self-esteem symptoms were associated with attenuated and heightened startle potentiation in anticipation of unpredictable threat, respectively. All results remained significant after controlling for the other symptom dimensions. The present study provides initial evidence that anxiety and depression symptom dimensions demonstrate unique associations with the startle reflex in anticipation of unpredictable threat in children and adolescents.
Nelson, Brady D.; Hajcak, Greg
2016-01-01
There is growing evidence that heightened sensitivity to unpredictability is a core mechanism of anxiety disorders. In adults, multiple anxiety disorders have been associated with a heightened startle reflex in anticipation of unpredictable threat. Child and adolescent anxiety has been linked to an increased startle reflex across baseline, safety, and threat conditions. However, it is unclear whether anxiety in youth is related to the startle reflex as a function of threat predictability. In a sample of 90 8 to 14 year-old girls, the present study examined the association between anxiety symptom dimensions and startle potentiation during a no, predictable, and unpredictable threat task. Depression symptom dimensions were also examined given their high comorbidity with anxiety and mixed relationship with the startle reflex and sensitivity to unpredictability. To assess current symptoms, participants completed the self-report Screen for Child Anxiety Related Emotional Disorders and Children’s Depression Inventory. Results indicated that social phobia symptoms were associated with heightened startle potentiation in anticipation of unpredictable threat and attenuated startle potentiation in anticipation of predictable threat. Negative mood and negative self-esteem symptoms were associated with attenuated and heightened startle potentiation in anticipation of unpredictable threat, respectively. All results remained significant after controlling for the other symptom dimensions. The present study provides initial evidence that anxiety and depression symptom dimensions demonstrate unique associations with the startle reflex in anticipation of unpredictable threat in children and adolescents. PMID:27224989
Anger and aggression problems in veterans are associated with an increased acoustic startle reflex.
Heesink, Lieke; Kleber, Rolf; Häfner, Michael; van Bedaf, Laury; Eekhout, Iris; Geuze, Elbert
2017-02-01
Anger and aggression are frequent problems in deployed military personnel. A lowered threshold of perceiving and responding to threat can trigger impulsive aggression. This can be indicated by an exaggerated startle response. Fifty-two veterans with anger and aggression problems (Anger group) and 50 control veterans were tested using a startle experiment with 10 startle probes and 10 prepulse trials, presented in a random order and with a random interval between the trials. Predictors (demographics, Trait Anger, State Anger, Harm Avoidance and Anxious Arousal) for the startle response within the Anger group were tested. Increased EMG responses were found to the startle probes in the Anger Group compared to the Control group, but not to the prepulse trials. Furthermore, Harm Avoidance and State Anger predicted the increased startle reflex within the Anger group, whereas Trait Anger was negatively related to the startle reflex. These findings indicate that threat reactivity is increased in anger and aggression problems. These problems are not only caused by an anxious predisposition, the degree of anger also predicts the startle reflex. Copyright © 2016 Elsevier B.V. All rights reserved.
Lass-Hennemann, Johanna; Deuter, Christian E; Kuehl, Linn K; Schulz, Andre; Blumenthal, Terry D; Schachinger, Hartmut
2011-10-01
Cues of kinship are predicted to increase prosocial behavior due to the benefits of inclusive fitness, but to decrease approach motivation due to the potential costs of inbreeding. Previous studies have shown that facial resemblance, a putative cue of kinship, increases prosocial behavior. However, the effects of facial resemblance on mating preferences are equivocal, with some studies finding that facial resemblance decreases sexual attractiveness ratings, while other studies show that individuals choose mates partly on the basis of similarity. To further investigate this issue, a psychophysiological measure of affective processing, the startle response, was used in this study, assuming that differences in approach motivation to erotic pictures will modulate startle. Male volunteers (n = 30) viewed 30 pictures of erotic female nudes while startle eyeblink responses were elicited by acoustic noise probes. The female nude pictures were digitally altered so that the face either resembled the male participant or another participant, or were not altered. Non-nude neutral pictures were also included. Importantly, the digital alteration was undetected by the participants. Erotic pictures were rated as being pleasant and clearly reduced startle eyeblink magnitude as compared to neutral pictures. Participants showed greater startle inhibition to self-resembling than to other-resembling or non-manipulated female nude pictures, but subjective pleasure and arousal ratings did not differ among the three erotic picture categories. Our data suggest that visual facial resemblance of opposite-sex nudes increases approach motivation in men, and that this effect was not due to their conscious evaluation of the erotic stimuli.
Bernard, Florian; Deuter, Christian Eric; Gemmar, Peter; Schachinger, Hartmut
2013-10-01
Using the positions of the eyelids is an effective and contact-free way for the measurement of startle induced eye-blinks, which plays an important role in human psychophysiological research. To the best of our knowledge, no methods for an efficient detection and tracking of the exact eyelid contours in image sequences captured at high-speed exist that are conveniently usable by psychophysiological researchers. In this publication a semi-automatic model-based eyelid contour detection and tracking algorithm for the analysis of high-speed video recordings from an eye tracker is presented. As a large number of images have been acquired prior to method development it was important that our technique is able to deal with images that are recorded without any special parametrisation of the eye tracker. The method entails pupil detection, specular reflection removal and makes use of dynamic model adaption. In a proof-of-concept study we could achieve a correct detection rate of 90.6%. With this approach, we provide a feasible method to accurately assess eye-blinks from high-speed video recordings. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Effects of anticipated emotional category and temporal predictability on the startle reflex.
Parisi, Elizabeth A; Hajcak, Greg; Aneziris, Eleni; Nelson, Brady D
2017-09-01
Anticipated emotional category and temporal predictability are key characteristics that have both been shown to impact psychophysiological indices of defensive motivation (e.g., the startle reflex). To date, research has primarily examined these features in isolation, and it is unclear whether they have additive or interactive effects on defensive motivation. In the present study, the startle reflex was measured in anticipation of low arousal neutral, moderate arousal pleasant, and high arousal unpleasant pictures that were presented with either predictable or unpredictable timing. Linear mixed-effects modeling was conducted to examine startle magnitude across time, and the intercept at the beginning and end of the task. Across the entire task, the anticipation of temporally unpredictable (relative to predictable) pictures and emotional (relative to neutral) pictures potentiated startle magnitude, but there was no interaction between the two features. However, examination of the intercept at the beginning of the task indicated a Predictability by Emotional Category interaction, such that temporal unpredictability enhanced startle potentiation in anticipation of unpleasant pictures only. Examination of the intercept at the end of the task indicated that the effects of predictability and emotional category on startle magnitude were largely diminished. The present study replicates previous reports demonstrating that emotional category and temporal predictability impact the startle reflex, and provides novel evidence suggesting an interactive effect on defensive motivation at the beginning of the task. This study also highlights the importance of examining the time course of the startle reflex. Copyright © 2017 Elsevier B.V. All rights reserved.
Viewing loved faces inhibits defense reactions: a health-promotion mechanism?
Guerra, Pedro; Sánchez-Adam, Alicia; Anllo-Vento, Lourdes; Ramírez, Isabel; Vila, Jaime
2012-01-01
We have known for decades that social support is associated with positive health outcomes. And yet, the neurophysiological mechanisms underlying this association remain poorly understood. The link between social support and positive health outcomes is likely to depend on the neurophysiological regulatory mechanisms underlying reward and defensive reactions. The present study examines the hypothesis that emotional social support (love) provides safety cues that activate the appetitive reward system and simultaneously inhibit defense reactions. Using the startle probe paradigm, 54 undergraduate students (24 men) viewed black and white photographs of loved (romantic partner, father, mother, and best friend), neutral (unknown), and unpleasant (mutilated) faces. Eye-blink startle, zygomatic major activity, heart rate, and skin conductance responses to the faces, together with subjective ratings of valence, arousal, and dominance, were obtained. Viewing loved faces induced a marked inhibition of the eye-blink startle response accompanied by a pattern of zygomatic, heart rate, skin conductance, and subjective changes indicative of an intense positive emotional response. Effects were similar for men and women, but the startle inhibition and the zygomatic response were larger in female participants. A comparison between the faces of the romantic partner and the parent who shares the partner's gender further suggests that this effect is not attributable to familiarity or arousal. We conclude that this inhibitory capacity may contribute to the health benefits associated with social support.
A cost minimisation and Bayesian inference model predicts startle reflex modulation across species.
Bach, Dominik R
2015-04-07
In many species, rapid defensive reflexes are paramount to escaping acute danger. These reflexes are modulated by the state of the environment. This is exemplified in fear-potentiated startle, a more vigorous startle response during conditioned anticipation of an unrelated threatening event. Extant explanations of this phenomenon build on descriptive models of underlying psychological states, or neural processes. Yet, they fail to predict invigorated startle during reward anticipation and instructed attention, and do not explain why startle reflex modulation evolved. Here, we fill this lacuna by developing a normative cost minimisation model based on Bayesian optimality principles. This model predicts the observed pattern of startle modification by rewards, punishments, instructed attention, and several other states. Moreover, the mathematical formalism furnishes predictions that can be tested experimentally. Comparing the model with existing data suggests a specific neural implementation of the underlying computations which yields close approximations to the optimal solution under most circumstances. This analysis puts startle modification into the framework of Bayesian decision theory and predictive coding, and illustrates the importance of an adaptive perspective to interpret defensive behaviour across species. Copyright © 2015 The Author. Published by Elsevier Ltd.. All rights reserved.
Fearful imagery in social phobia: generalization, comorbidity, and physiological reactivity.
McTeague, Lisa M; Lang, Peter J; Laplante, Marie-Claude; Cuthbert, Bruce N; Strauss, Cyd C; Bradley, Margaret M
2009-03-01
Social phobia has been characterized as a disorder of exaggerated fear of social threat and heightened sensitivity to imagery of social failure. To assess the physiological basis of this description, social phobia patients (n=75) and demographically matched control participants (n=75) imagined neutral and fearful events while acoustic startle probes were occasionally presented and eye-blink responses (orbicularis occuli) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also indexed. In addition to comparing control participants and social phobia patients, the influences of diagnostic subtype (circumscribed, generalized), comorbid depression, and chronicity were assessed. Patients exceeded control participants in startle reflex and autonomic responding during imagery of social threat, whereas the groups evinced commensurate reactivity to contents depicting commonly shared fears (survival threat). Individuals with circumscribed performance phobia were similar to control participants, with the exception of more robust reactions to idiographic, performance fear imagery. In contrast, generalized phobic patients were characterized by longer disorder chronicity and demonstrated heightened sensitivity to a broader range of fear contents. Those with generalized phobia plus comorbid depression showed attenuation of fear-potentiated startle and reported the most protracted social anxiety. Subtypes of social phobia can be objectively distinguished in patterns of physiological reactivity. Furthermore, subtypes vary systematically in chronicity and defensive engagement with the shortest disorder duration (circumscribed phobia) associated with the most robust and focal physiological reactivity, followed by broader defensive sensitivity in more chronic generalized phobia, and finally attenuation of the formerly exaggerated fear potentiation in the comorbidly depressed, the most chronic form.
Fearful imagery in social phobia: Generalization, comorbidity, and physiological reactivity
McTeague, Lisa M.; Lang, Peter J.; Laplante, Marie-Claude; Cuthbert, Bruce N.; Strauss, Cyd C.; Bradley, Margaret M.
2009-01-01
Background Social phobia has been characterized as a disorder of exaggerated fear of social threat and heightened sensitivity to imagery of social failure. Methods To assess the physiological basis of this description, social phobia patients (n=75) and demographically-matched controls (n=75) imagined neutral and fearful events while acoustic startle probes were occasionally presented and eye-blink responses (orbicularis occuli) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also indexed. In addition to comparing controls and social phobia patients, the influences of diagnostic subtype (circumscribed, generalized), comorbid depression, and chronicity were assessed. Results Patients exceeded controls in startle reflex and autonomic responding during imagery of social threat whereas the groups evinced commensurate reactivity to contents depicting commonly shared fears (survival threat). Individuals with circumscribed performance phobia were similar to controls, with the exception of more robust reactions to idiographic, performance fear imagery. In contrast, generalized phobic patients were characterized by longer disorder chronicity and demonstrated heightened sensitivity to a broader range of fear contents. Those with generalized phobia plus comorbid depression showed attenuation of fear-potentiated startle and reported the most protracted social anxiety. Conclusions Subtypes of social phobia can be objectively distinguished in patterns of physiological reactivity. Furthermore, subtypes vary systematically in chronicity and defensive engagement with the shortest disorder duration (circumscribed phobia) associated with the most robust and focal physiological reactivity, followed by broader defensive sensitivity in more chronic generalized phobia, and finally attenuation of the formerly exaggerated fear potentiation in the comorbidly depressed—the most chronic form. PMID:18996510
Effect of stress and attention on startle response and prepulse inhibition.
De la Casa, Luis Gonzalo; Mena, Auxiliadora; Ruiz-Salas, Juan Carlos
2016-10-15
The startle reflex magnitude can be modulated when a weak stimulus is presented before the onset of the startle stimulus, a phenomenon termed prepulse inhibition (PPI). Previous research has demonstrated that emotional processes can modulate PPI and startle intensity, but the available evidence is inconclusive. In order to obtain additional evidence in this domain, we conducted two experiments intended to analyze the effect of induced stress and attentional load on PPI and startle magnitude. Specifically, in Experiment 1 we used a between subject strategy to evaluate the effect on startle response and PPI magnitude of performing a difficult task intended to induce stress in the participants, as compared to a group exposed to a control task. In Experiment 2 we evaluated the effect of diverting attention from the acoustic stimulus on startle and PPI intensity. The results seem to indicate that induced stress can reduce PPI, and that startle reflex intensity is reduced when attention is directed away from the auditory stimulus that induces the reflex. Copyright © 2016 Elsevier Inc. All rights reserved.
Classical conditioning of the eyeblink reflex is a relatively simple procedure for studying associative learning that was first developed for use with human subjects more than half a century ago. The use of this procedure in laboratory animals by psychologists and neuro-scientist...
Reflex Augmentation of a Tap-Elicited Eyeblink: The Effects of Tone Frequency and Tap Intensity.
ERIC Educational Resources Information Center
Cohen, Michelle E.; And Others
1986-01-01
Describes two experiments that examined whether the amplitude of the human eyeblink by a mild tap between the eyebrows can be increased if a brief tone is presented simultaneously with the tap and how these effects change from newborn infants to adults. (HOD)
Central Cannabinoid Receptors Modulate Acquisition of Eyeblink Conditioning
ERIC Educational Resources Information Center
Steinmetz, Adam B.; Freeman, John H.
2010-01-01
Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex,…
Extreme startle and photomyoclonic response in severe hypocalcaemia.
Moccia, Marcello; Erro, Roberto; Nicolella, Elvira; Striano, Pasquale; Striano, Salvatore
2014-03-01
We report the case of 62-year-old woman referred to our department because of a clinical suspicion of tonic-clonic seizures. Clinical examination revealed an exaggerated startle reflex, EEG showed a photomyoclonic response, and blood tests indicated severe hypocalcaemia. Additional clinical data, treatment strategies, and long-term follow-up visits were reported. The present report discusses the difficulties in distinguishing between epileptic and non-epileptic startles, and shows, for the first time, exaggerated startle reflex and extreme photomyoclonic response due to severe hypocalcaemia.
GABAergic Neural Activity Involved in Salicylate-Induced Auditory Cortex Gain Enhancement
Lu, Jianzhong; Lobarinas, Edward; Deng, Anchun; Goodey, Ronald; Stolzberg, Daniel; Salvi, Richard J.; Sun, Wei
2011-01-01
Although high doses of sodium salicylate impair cochlear function, it paradoxically enhances sound-evoked activity in the auditory cortex (AC) and augments acoustic startle reflex responses, neural and behavioral metrics associated with hyperexcitability and hyperacusis. To explore the neural mechanisms underlying salicylate-induced hyperexcitability and “increased central gain”, we examined the effects of γ-aminobutyric acid (GABA) receptor agonists and antagonists on salicylate-induced hyperexcitability in the AC and startle reflex responses. Consistent with our previous findings, local or systemic application of salicylate significantly increased the amplitude of sound-evoked AC neural activity, but generally reduced spontaneous activity in the AC. Systemic injection of salicylate also significantly increased the acoustic startle reflex. S-baclofen or R-baclofen, GABA-B agonists, which suppressed sound-evoked AC neural firing rate and local field potentials, also suppressed the salicylate-induced enhancement of the AC field potential and the acoustic startle reflex. Local application of vigabatrin, which enhances GABA concentration in the brain, suppressed the salicylate-induced enhancement of AC firing rate. Systemic injection of vigabatrin also reduced the salicylate-induced enhancement of acoustic startle reflex. Collectively, these results suggest that the sound-evoked behavioral and neural hyperactivity induced by salicylate may arise from a salicylate-induced suppression GABAergic inhibition in the AC. PMID:21664433
Failure to extinguish fear and genetic variability in the human cannabinoid receptor 1.
Heitland, I; Klumpers, F; Oosting, R S; Evers, D J J; Leon Kenemans, J; Baas, J M P
2012-09-25
Failure to extinguish fear can lead to persevering anxiety and has been postulated as an important mechanism in the pathogenesis of human anxiety disorders. In animals, it is well documented that the endogenous cannabinoid system has a pivotal role in the successful extinction of fear, most importantly through the cannabinoid receptor 1. However, no human studies have reported a translation of this preclinical evidence yet. Healthy medication-free human subjects (N=150) underwent a fear conditioning and extinction procedure in a virtual reality environment. Fear potentiation of the eyeblink startle reflex was measured to assess fear-conditioned responding, and subjective fear ratings were collected. Participants were genotyped for two polymorphisms located within the promoter region (rs2180619) and the coding region (rs1049353) of cannabinoid receptor 1. As predicted from the preclinical literature, acquisition and expression of conditioned fear did not differ between genotypes. Crucially, whereas both homozygote (G/G, N=23) and heterozygote (A/G, N=68) G-allele carriers of rs2180619 displayed robust extinction of fear, extinction of fear-potentiated startle was absent in A/A homozygotes (N=51). Additionally, this resistance to extinguish fear left A/A carriers of rs2180619 with significantly higher levels of fear-potentiated startle at the end of the extinction training. No effects of rs1049353 genotype were observed regarding fear acquisition and extinction. These results suggest for the first time involvement of the human endocannabinoid system in fear extinction. Implications are that genetic variability in this system may underlie individual differences in anxiety, rendering cannabinoid receptor 1 a potential target for novel pharmacological treatments of anxiety disorders.
Sexual orientation-related differences in prepulse inhibition of the human startle response.
Rahman, Qazi; Kumari, Veena; Wilson, Glenn D
2003-10-01
Prepulse inhibition (PPI) refers to a reduction in the startle response to a strong sensory stimulus when this stimulus is preceded by a weaker stimulus--the prepulse. PPI reflects a nonlearned sensorimotor gating mechanism and also shows a robust gender difference, with women exhibiting lower PPI than men. The present study examined the eyeblink startle responses to acoustic stimuli of 59 healthy heterosexual and homosexual men and women. Homosexual women showed significantly masculinized PPI compared with heterosexual women, whereas no difference was observed in PPI between homosexual and heterosexual men. These data provide the first evidence for within-gender differences in basic sensorimotor gating mechanisms and implicate the known neural substrates of PPI in human sexual orientation. (c) 2003 APA, all rights reserved
Dissociative identity disorder and prepulse inhibition of the acoustic startle reflex
Dale, Karl Yngvar; Flaten, Magne Arve; Elden, Åke; Holte, Arne
2008-01-01
A group of persons with dissociative identity disorder (DID) was compared with a group of persons with other dissociative disorders, and a group of nondiagnosed controls with regard to prepulse inhibition (PPI) of the acoustic startle reflex. The findings suggest maladaptive attentional processes at a controlled level, but not at a preattentive automatic level, in persons with DID. The prepulse occupied more controlled attentional resources in the DID group compared with the other two groups. Preattentive automatic processing, on the other hand, was normal in the DID group. Moreover, startle reflexes did not habituate in the DID group. In conclusion, increased PPI and delayed habituation is consistent with increased vigilance in individuals with DID. The present findings of reduced habituation of startle reflexes and increased PPI in persons with DID suggest the operation of a voluntary process that directs attention away from unpleasant or threatening stimuli. Aberrant voluntary attentional processes may thus be a defining characteristic in DID. PMID:18830396
Wynn, Jonathan K.; Green, Michael F.; Sprock, Joyce; Light, Gregory A.; Widmark, Clifford; Reist, Christopher; Erhart, Stephen; Marder, Stephen R.; Mintz, Jim; Braff, David L.
2009-01-01
Prepulse inhibition (PPI), whereby the startle eyeblink response is inhibited by a relatively weak non-startling stimulus preceding the powerful startle eliciting stimulus, is a measure of sensorimotor gating and has been shown to be deficient in schizophrenia patients. There is considerable interest in whether conventional and/or atypical antipsychotic medications can “normalize” PPI deficits in schizophrenia patients. 51 schizophrenia patients participated in a randomized, double-blind controlled trial on the effects of three commonly-prescribed antipsychotic medications (risperidone, olanzapine, or haloperidol) on PPI, startle habituation, and startle reactivity. Patients were tested at baseline, Week 4 and Week 8. Mixed model regression analyses revealed that olanzapine significantly improved PPI from Week 4 to Week 8, and that at Week 8 patients receiving olanzapine produced significantly greater PPI than those receiving risperidone, but not haloperidol. There were no effects of medication on startle habituation or startle reactivity. These results support the conclusion that olanzapine effectively increased PPI in schizophrenia patients, but that risperidone and haloperidol had no such effects. The results are discussed in terms of animal models, neural substrates, and treatment implications. PMID:17662577
Emotion regulation of the affect-modulated startle reflex during different picture categories.
Conzelmann, Annette; McGregor, Victoria; Pauli, Paul
2015-09-01
Previous studies on emotion regulation of the startle reflex found an increase in startle amplitude from down-, to non-, to up-regulation for pleasant and unpleasant stimuli. We wanted to clarify whether this regulation effect remains stable for different picture categories within pleasant and unpleasant picture sets. We assessed startle amplitude of 31 participants during down-, non-, or up-regulation of feelings elicited by pleasant erotic and adventure and unpleasant victim and threat pictures. Startle amplitude was smaller during adventure and erotic compared to victim and threat pictures and increased from down-, to non-, to up-regulation independently of the picture category. Results indicate that the motivational priming effect on startle modulation elicited by different picture categories is independent of emotion regulation instructions. In addition, the emotion regulation effect is independent of motivational priming effects. © 2015 Society for Psychophysiological Research.
Cardiac Modulation of Startle: Effects on Eye Blink and Higher Cognitive Processing
ERIC Educational Resources Information Center
Schulz, Andre; Reichert, Carolin F.; Richter, Steffen; Lass-Hennemann, Johanna; Blumenthal, Terry D.; Schachinger, Hartmut
2009-01-01
Cardiac cycle time has been shown to affect pre-attentive brainstem startle processes, such as the magnitude of acoustically evoked reflexive startle eye blinks. These effects were attributed to baro-afferent feedback mechanisms. However, it remains unclear whether cardiac cycle time plays a role in higher startle-related cognitive processes, as…
The Gap-Startle Paradigm for Tinnitus Screening in Animal Models: Limitations and Optimization
Lobarinas, Edward; Hayes, Sarah H.; Allman, Brian L.
2012-01-01
In 2006, Turner and colleagues (Behav Neurosci, 120:188–195) introduced the gap-startle paradigm as a high-throughput method for tinnitus screening in rats. Under this paradigm, gap detection ability was assessed by determining the level of inhibition of the acoustic startle reflex produced by a short silent gap inserted in an otherwise continuous background sound prior to a loud startling stimulus. Animals with tinnitus were expected to show impaired gap detection ability (i.e., lack of inhibition of the acoustic startle reflex) if the background sound containing the gap was qualitatively similar to the tinnitus pitch. Thus, for the gap-startle paradigm to be a valid tool to screen for tinnitus, a robust startle response from which to inhibit must be present. Because recent studies have demonstrated that the acoustic startle reflex could be dramatically reduced following noise exposure, we endeavored to 1) modify the gap-startle paradigm to be more resilient in the presence of hearing loss, and 2) evaluate whether a reduction in startle reactivity could confound the interpretation of gap prepulse inhibition and lead to errors in screening for tinnitus. In the first experiment, the traditional broadband noise (BBN) startle stimulus was replaced by a bandpass noise in which the sound energy was concentrated in the lower frequencies (5–10 kHz) in order to maintain audibility of the startle stimulus after unilateral high frequency noise exposure (16 kHz). However, rats still showed a 57% reduction in startle amplitude to the bandpass noise post-noise exposure. A follow-up experiment on a separate group of rats with transiently-induced conductive hearing loss revealed that startle reactivity was better preserved when the BBN startle stimulus was replaced by a rapid airpuff to the back of the rats neck. Furthermore, it was found that transient unilateral conductive hearing loss, which was not likely to induce tinnitus, caused an impairment in gap prepulse inhibition as assessed with the traditional BBN gap-startle paradigm, resulting in a false-positive screening for tinnitus. Thus, the present study identifies significant caveats of the traditional gap-startle paradigm, and describes experimental parameters using an airpuff startle stimulus which may help to limit the negative consequences of reduced startle reactivity following noise exposure, thereby allowing researchers to better screen for tinnitus in animals with hearing loss. PMID:22728305
Racine, Sarah E; Forbush, Kelsie T; Wildes, Jennifer E; Hagan, Kelsey E; Pollack, Lauren O; May, Casey
2016-06-01
Emotion regulation difficulties are implicated in the development and maintenance of anorexia nervosa (AN). However, research has been limited by an almost exclusive reliance on self-report. This study is the first to use the emotion-modulated startle paradigm (EMSP) to investigate emotional reactivity and voluntary emotion regulation in individuals with AN. Twenty women with AN viewed negative, positive, neutral, and food images and were asked to enhance, suppress, or maintain their emotional responses mid-way through picture presentation. Startle eyeblink magnitudes in response to startle probes administered prior, and subsequent, to regulation instructions indexed emotional reactivity and regulation, respectively. On emotional reactivity trials, startle magnitudes were greater for negative, positive, and food images, compared to neutral images. Participants had difficulty suppressing startle responses to negative and food images, as indicated by non-significant suppress-maintain comparisons. In contrast, startle responses to enhance and suppress cues during presentation of pleasant images were comparable and significantly lower than maintain cues. Findings converge with self-report data to suggest that patients with AN have difficulties with voluntary emotion regulation. The EMSP may be a promising trans-diagnostic method for examining emotion regulation difficulties that underlie risk for eating disorders and other psychiatric conditions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bradford, Daniel E.; Starr, Mark J.; Shackman, Alexander J.
2015-01-01
Abstract Startle potentiation is a well‐validated translational measure of negative affect. Startle potentiation is widely used in clinical and affective science, and there are multiple approaches for its quantification. The three most commonly used approaches quantify startle potentiation as the increase in startle response from a neutral to threat condition based on (1) raw potentiation, (2) standardized potentiation, or (3) percent‐change potentiation. These three quantification approaches may yield qualitatively different conclusions about effects of independent variables (IVs) on affect when within‐ or between‐group differences exist for startle response in the neutral condition. Accordingly, we directly compared these quantification approaches in a shock‐threat task using four IVs known to influence startle response in the no‐threat condition: probe intensity, time (i.e., habituation), alcohol administration, and individual differences in general startle reactivity measured at baseline. We confirmed the expected effects of time, alcohol, and general startle reactivity on affect using self‐reported fear/anxiety as a criterion. The percent‐change approach displayed apparent artifact across all four IVs, which raises substantial concerns about its validity. Both raw and standardized potentiation approaches were stable across probe intensity and time, which supports their validity. However, only raw potentiation displayed effects that were consistent with a priori specifications and/or the self‐report criterion for the effects of alcohol and general startle reactivity. Supplemental analyses of reliability and validity for each approach provided additional evidence in support of raw potentiation. PMID:26372120
Hengesch, Xenia; Larra, Mauro F; Finke, Johannes B; Blumenthal, Terry D; Schächinger, Hartmut
2017-10-01
Adverse childhood experiences (ACE) may influence stress and affective processing in adulthood. Animal and human studies show enhanced startle reflexivity in adult participants with ACE. This study examined the impact of one of the most common ACE, parental divorce, on startle reflexivity in adulthood. Affective modulation of acoustically-elicited startle eye blink was assessed in a group of 23 young adults with self-reported history of parental divorce, compared to an age- and sex-matched control group (n=18). Foreground pictures were either aversive (e.g. mutilation and injury), standard appetitive (e.g. erotic, recreational sport), or nurture pictures (e.g. related to early life, parental care), intermixed with neutral pictures (e.g. household objects), and organized in three valence blocks delivered in a balanced, pseudo-randomized sequence. During picture viewing startle eye blinks were elicited by binaural white noise bursts (50ms, 105 dB) via headphones and recorded at the left orbicularis oculi muscle via EMG. A significant interaction of group×picture valence (p=0.01) was observed. Contrast with controls revealed blunted startle responsiveness of the ACE group during presentation of aversive pictures, but enhanced startle during presentation of nurture-related pictures. No group differences were found during presentation of standard appetitive pictures. ACE participants rated nurture pictures as more arousing (p=0.02) than did control participants. Results suggest that divorce in childhood led to altered affective context information processing in early adulthood. When exposed to unpleasant (vs. neutral) pictures participants with ACE showed less startle potentiation than controls. Nurture context, however, potentiated startle in ACE participants, suggesting visual cuing to activate protective behavioral responses. Copyright © 2017 Elsevier B.V. All rights reserved.
Cardiopulmonary baroreceptors affect reflexive startle eye blink.
Richter, S; Schulz, A; Port, J; Blumenthal, T D; Schächinger, H
2009-12-07
Baroafferent signals originating from the 'high pressure' arterial vascular system are known to impact reflexive startle eye blink responding. However, it is not known whether baroafferent feedback of the 'low pressure' cardiopulmonary system loading status exerts a similar effect. Lower Body Negative Pressure (LBNP) at gradients of 0, -10, -20, and -30mm Hg was applied to unload cardiopulmonary baroreceptors. Acoustic startle noise bursts were delivered 230 and 530ms after spontaneous R-waves, when arterial baroreceptors are either loaded or unloaded. Eye blink responses were measured by EMG, and psychomotor reaction time by button pushes to startle stimuli. The new finding of this study was that unloading of cardiopulmonary baroreceptors increases startle eye blink responsiveness. Furthermore, we replicated the effect of relative loading/unloading of arterial baroreceptors on startle eye blink responsiveness. Effects of either arterial or cardiopulmonary baroreceptor manipulations were not present for psychomotor reaction times. These results demonstrate that the loading status of cardiopulmonary baroreceptors has an impact on brainstem-based CNS processes.
McTeague, Lisa M.; Lang, Peter J.; Wangelin, Bethany C.; Laplante, Marie-Claude; Bradley, Margaret M.
2012-01-01
Background Understanding of exaggerated responsivity in specific phobia—its physiology and neural mediators—has advanced considerably. However, despite strong phenotypic evidence that prominence of specific phobia relative to co-occurring conditions (i.e., principal versus non-principal disorder) is associated with dramatic differences in subjective distress, there is yet no consideration of such comorbidity issues on objective defensive reactivity. Methods A community sample of specific phobia (N=74 principal phobia; N=86 non-principal phobia) and control (n=76) participants imagined threatening and neutral events while acoustic startle probes were presented and eye-blink responses (orbicularis occuli) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also measured. Results Principal specific phobia patients far exceeded controls in startle reflex and autonomic reactivity during imagery of idiographic fear scenes. Distinguishing between single and multiple phobias within principal phobia and comparing these to non-principal phobia revealed a continuum of decreasing defensive mobilization: single phobia patients were strongly reactive, multiple phobia intermediate, and non-principal patients reliably attenuated—the inverse of measures of pervasive anxiety and dysphoria (i.e., negative affectivity). Further, as more disorders supplanted specific phobia from principal disorder, overall defensive mobilization was systematically more impaired. Conclusions The exaggerated responsivity considered characteristic of specific phobia is limited to those patients for whom circumscribed fear is the most impairing condition, and coincident with little additional affective psychopathology. As specific phobia is superseded in severity by broad and chronic negative affectivity, defensive reactivity progressively diminishes. Focal fears may still be clinically-significant, but not reflected in objective measures of defensive mobilization. PMID:22386377
McTeague, Lisa M; Lang, Peter J; Wangelin, Bethany C; Laplante, Marie-Claude; Bradley, Margaret M
2012-07-01
Understanding of exaggerated responsivity in specific phobia-its physiology and neural mediators-has advanced considerably. However, despite strong phenotypic evidence that prominence of specific phobia relative to co-occurring conditions (i.e., principal versus nonprincipal disorder) is associated with dramatic differences in subjective distress, there is yet no consideration of such comorbidity issues on objective defensive reactivity. A community sample of specific phobia (n = 74 principal; n = 86 nonprincipal) and control (n = 76) participants imagined threatening and neutral events while acoustic startle probes were presented and eyeblinks (orbicularis occuli) recorded. Changes in heart rate, skin conductance level, and facial expressivity were also measured. Principal specific phobia patients far exceeded control participants in startle reflex and autonomic reactivity during idiographic fear imagery. Distinguishing between single and multiple phobias within principal phobia and comparing these with nonprincipal phobia revealed a continuum of decreasing defensive mobilization: single patients were strongly reactive, multiple patients were intermediate, and nonprincipal patients were attenuated-the inverse of measures of pervasive anxiety and dysphoria (i.e., negative affectivity). Further, as more disorders supplanted specific phobia from principal disorder, overall defensive mobilization was systematically more impaired. The exaggerated responsivity characteristic of specific phobia is limited to those patients for whom circumscribed fear is the most impairing condition and coincident with little additional affective psychopathology. As specific phobia is superseded in severity by broad and chronic negative affectivity, defensive reactivity progressively diminishes. Focal fears may still be clinically significant but not reflected in objective defensive mobilization. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Trivedi, Mehul A; Coover, Gary D
2006-04-03
Pavlovian delay conditioning, in which a conditioned stimulus (CS) and unconditioned stimulus (US) co-terminate, is thought to reflect non-declarative memory. In contrast, trace conditioning, in which the CS and US are temporally separate, is thought to reflect declarative memory. Hippocampal lesions impair acquisition and expression of trace conditioning measured by the conditioned freezing and eyeblink responses, while having little effect on the acquisition of delay conditioning. Recent evidence suggests that lesions of the ventral hippocampus (VH) impair conditioned fear under conditions in which dorsal hippocampal (DH) lesions have little effect. In the present study, we examined the time-course of fear expression after delay and trace conditioning using the fear-potentiated startle (FPS) reflex, and the effects of pre- and post-training lesions to the VH and DH on trace-conditioned FPS. We found that both delay- and trace-conditioned rats displayed significant FPS near the end of the CS relative to the unpaired control group. In contrast, trace-conditioned rats displayed significant FPS throughout the duration of the trace interval, whereas FPS decayed rapidly to baseline after CS offset in delay-conditioned rats. In experiment 2, both DH and VH lesions were found to significantly reduce the overall magnitude of FPS compared to the control group, however, no differences were found between the DH and VH groups. These findings support a role for both the DH and VH in trace fear conditioning, and suggest that the greater effect of VH lesions on conditioned fear might be specific to certain measures of fear.
Chin, Brian; Nelson, Brady D; Jackson, Felicia; Hajcak, Greg
2016-01-01
Fear conditioning research on threat predictability has primarily examined the impact of temporal (i.e., timing) predictability on the startle reflex. However, there are other key features of threat that can vary in predictability. For example, the reinforcement rate (i.e., frequency) of threat is a crucial factor underlying fear learning. The present study examined the impact of threat reinforcement rate on the startle reflex and self-reported anxiety during a fear conditioning paradigm. Forty-five participants completed a fear learning task in which the conditioned stimulus was reinforced with an electric shock to the forearm on 50% of trials in one block and 75% of trials in a second block, in counter-balanced order. The present study also examined whether intolerance of uncertainty (IU), the tendency to perceive or experience uncertainty as stressful or unpleasant, was associated with the startle reflex during conditions of low (50%) vs. high (75%) reinforcement. Results indicated that, across all participants, startle was greater during the 75% relative to the 50% reinforcement condition. IU was positively correlated with startle potentiation (i.e., increased startle response to the CS+ relative to the CS-) during the 50%, but not the 75%, reinforcement condition. Thus, despite receiving fewer electric shocks during the 50% reinforcement condition, individuals with high IU uniquely demonstrated greater defense system activation when impending threat was more uncertain. The association between IU and startle was independent of state anxiety. The present study adds to a growing literature on threat predictability and aversive responding, and suggests IU is associated with abnormal responding in the context of uncertain threat. Copyright © 2015 Elsevier B.V. All rights reserved.
Addressing variability in the acoustic startle reflex for accurate gap detection assessment.
Longenecker, Ryan J; Kristaponyte, Inga; Nelson, Gregg L; Young, Jesse W; Galazyuk, Alexander V
2018-06-01
The acoustic startle reflex (ASR) is subject to substantial variability. This inherent variability consequently shapes the conclusions drawn from gap-induced prepulse inhibition of the acoustic startle reflex (GPIAS) assessments. Recent studies have cast doubt as to the efficacy of this methodology as it pertains to tinnitus assessment, partially, due to variability in and between data sets. The goal of this study was to examine the variance associated with several common data collection variables and data analyses with the aim to improve GPIAS reliability. To study this the GPIAS tests were conducted in adult male and female CBA/CaJ mice. Factors such as inter-trial interval, circadian rhythm, sex differences, and sensory adaptation were each evaluated. We then examined various data analysis factors which influence GPIAS assessment. Gap-induced facilitation, data processing options, and assessments of tinnitus were studied. We found that the startle reflex is highly variable in CBA/CaJ mice, but this can be minimized by certain data collection factors. We also found that careful consideration of temporal fluctuations of the ASR and controlling for facilitation can lead to more accurate GPIAS results. This study provides a guide for reducing variance in the GPIAS methodology - thereby improving the diagnostic power of the test. Copyright © 2018 Elsevier B.V. All rights reserved.
Control of ethanol withdrawal symptoms in mice by phenytoin.
Sprague, G L; Craigmill, A L
1976-12-01
Mice were made physically dependent upon ethanol using either of two methods which involved ethanol vapor inhalation. Following the cessation of exposure to ethanol, the severity of handling-induced convulsions and changes in the response to an electric foot shock (startle reflex) were recorded. Animals given isotonic saline or propylene glycol:ethanol vehicle during withdrawal exhibited handling-induced convulsions, and ethanol (2.0-4.0 g/kg) or phenytoin (5-20 mg/kg) administration during withdrawal resulted in a reduction in the severity of these convulsions. A reduced startle reflex threshold was also evident during withdrawal in mice given isotonic saline or propylene glycol:ethanol vehicle. Ethanol (0.5-4.0 g/kg) or phenytoin (10-20 mg/kg) administration during withdrawal resulted in a significant elevation of the startle reflex threshold compared to control animals. The results are discussed as they relate to others obtained in experimental and clinical studies.
Subjective and physiological reactivity to chocolate images in high and low chocolate cravers.
Rodríguez, Sonia; Fernández, María Carmen; Cepeda-Benito, Antonio; Vila, Jaime
2005-09-01
Cue-reactivity to chocolate images was assessed using self-report and physiological measures. From a pre-screening sample of 454, young women were selected and assigned to high and low chocolate craving groups (N = 36/group). The experimental procedure consisted in the elicitation and measurement of the cardiac defense and startle reflexes while viewing chocolate and standard affective images selected from the International Affective Picture System. In response to chocolate images, high cravers reported more pleasure and arousal but less control than low cravers. In high cravers, viewing chocolate images inhibited the cardiac defense but potentiated the startle reflex, as compared to low cravers. The results confirmed at the physiological level that the motivational state that underlies the experience of chocolate craving include both appetitive (inhibition of the defense reflex) and aversive (potentiation of the startle response) components. The findings supported a motivational conflict theory of chocolate craving.
Measuring anxious responses to predictable and unpredictable threat in children and adolescents
Schmitz, Anja; Merikangas, Kathleen; Swendsen, Haruka; Cui, Lihong; Heaton, Leanne; Grillon, Christian
2011-01-01
Research has highlighted the need for new methods to assess emotions in children on multiple levels in order to gain better insight into the complex processes of emotional development. The startle reflex is a unique translational tool that has been utilized to study physiological processes during fear and anxiety in rodents and in human subjects. However, it has been challenging to implement developmentally-appropriate startle experiments in children. This paper describes a procedure that uses predictable and unpredictable aversive events to distinguish between phasic fear and sustained anxiety in children and adolescents. We investigated anxious responses, as measured with the startle reflex, in youth (N = 36, mean age[range] = 12.63 [7–17]) across three conditions: no aversive events (N), predictable aversive events (P), and unpredictable aversive events (U). Short-duration cues were presented several times in each condition. Aversive events were signaled by the cues in P, but were presented randomly in U. Participants showed fear-potentiated startle to the threat cue in P. Startle responses were also elevated between cues in U compared to N, suggesting that unpredictable aversive events can evoke a sustained state of anxiety in youth. This latter effect was influenced by sex, being greater in girls compared to boys. These findings indicate the feasibility of this experimental induction of the startle reflex in response to predictable and unpredictable events in children and adolescents, enabling future research on inter-individual differences in fear and anxiety and their development in youth. PMID:21440905
High Trait Anxiety: A Challenge for Disrupting Fear Memory Reconsolidation
Soeter, Marieke; Kindt, Merel
2013-01-01
Disrupting reconsolidation may be promising in the treatment of anxiety disorders but the fear-reducing effects are thus far solely demonstrated in the average organism. A relevant question is whether disrupting fear memory reconsolidation is less effective in individuals who are vulnerable to develop an anxiety disorder. By collapsing data from six previous human fear conditioning studies we tested whether trait anxiety was related to the fear-reducing effects of a pharmacological agent targeting the process of memory reconsolidation - n = 107. Testing included different phases across three consecutive days each separated by 24 h. Fear responding was measured by the eye-blink startle reflex. Disrupting the process of fear memory reconsolidation was manipulated by administering the β-adrenergic receptor antagonist propranolol HCl either before or after memory retrieval. Trait anxiety uniquely predicted the fear-reducing effects of disrupting memory reconsolidation: the higher the trait anxiety, the less fear reduction. Vulnerable individuals with the propensity to develop anxiety disorders may need higher dosages of propranolol HCl or more retrieval trials for targeting and changing fear memory. Our finding clearly demonstrates that we cannot simply translate observations from fundamental research on fear reduction in the average organism to clinical practice. PMID:24260096
High trait anxiety: a challenge for disrupting fear memory reconsolidation.
Soeter, Marieke; Kindt, Merel
2013-01-01
Disrupting reconsolidation may be promising in the treatment of anxiety disorders but the fear-reducing effects are thus far solely demonstrated in the average organism. A relevant question is whether disrupting fear memory reconsolidation is less effective in individuals who are vulnerable to develop an anxiety disorder. By collapsing data from six previous human fear conditioning studies we tested whether trait anxiety was related to the fear-reducing effects of a pharmacological agent targeting the process of memory reconsolidation--n = 107. Testing included different phases across three consecutive days each separated by 24 h. Fear responding was measured by the eye-blink startle reflex. Disrupting the process of fear memory reconsolidation was manipulated by administering the β-adrenergic receptor antagonist propranolol HCl either before or after memory retrieval. Trait anxiety uniquely predicted the fear-reducing effects of disrupting memory reconsolidation: the higher the trait anxiety, the less fear reduction. Vulnerable individuals with the propensity to develop anxiety disorders may need higher dosages of propranolol HCl or more retrieval trials for targeting and changing fear memory. Our finding clearly demonstrates that we cannot simply translate observations from fundamental research on fear reduction in the average organism to clinical practice.
Negative Self-Focused Cognitions Mediate the Effect of Trait Social Anxiety on State Anxiety
Schulz, Stefan M.; Alpers, Georg W.; Hofmann, Stefan G.
2008-01-01
The cognitive model of social anxiety predicts that negative self-focused cognitions increase anxiety when anticipating social threat. To test this prediction, 36 individuals were asked to anticipate and perform a public speaking task. During anticipation, negative self-focused cognitions or relaxation were experimentally induced while self-reported anxiety, autonomic arousal (heart rate, heart rate variability, skin conductance level), and acoustic eye-blink startle response were assessed. As predicted, negative self-focused cognitions mediated the effects of trait social anxiety on self-reported anxiety and heart rate variability during negative anticipation. Furthermore, trait social anxiety predicted increased startle amplitudes. These findings support a central assumption of the cognitive model of social anxiety. PMID:18321469
The Separate and Cumulative Effects of TBI and PTSD on Cognitive Function and Emotional Control
2012-04-01
indicate an altered profile of persistent hyper- arousal , exaggerated startle responses (Fani et al., 2012; Pole, 2007), larger eye-blink, eye pupil...were each compared. This separation kept variables such as word frequency, valence, arousal , and other properties as consistent as possible across...number of syllables and frequency. Only high arousal Negative and Positive words were used and arousal and valence ratings for Neutral, Negative and
Vo, Lechi; Drummond, Peter D
2017-06-01
The R3 component of the electrically evoked blink reflex may form part of a startle reaction. Acoustic startle responses are augmented by yohimbine, an α 2 -adrenoceptor antagonist that blocks α 2 -autoreceptors, and are potentiated by opioid receptor blockade. To investigate these influences on electrically evoked startle responses, 16 mg yohimbine, with (16 participants) or without 50 mg naltrexone (23 participants), was administered in separate double-blind placebo-controlled cross-over experiments. In each experiment, R3 (a probable component of the startle response) was examined before and after high-frequency electrical stimulation of the forearm, a procedure that initiates inhibitory pain controls. Anxiety and somatic symptoms were greater after yohimbine than placebo, and were potentiated by naltrexone. Pain ratings for the electrically evoked startle stimuli decreased after high-frequency electrical stimulation in the placebo session but remained stable after drug administration. Yohimbine with naltrexone, but not yohimbine alone, also blocked an inhibitory effect of high-frequency electrical stimulation on electrically evoked sharp sensations and R3. Together, the findings suggest that adding naltrexone to yohimbine potentiated anxiety and blocked inhibitory influences of high-frequency electrical stimulation on electrically evoked sensations and startle responses. Thus, opioid peptides could reduce activity in nociceptive and startle-reflex pathways, or inhibit crosstalk between these pathways. Failure of this inhibitory opioid influence might be important in chronically painful conditions that are aggravated by startle stimuli.
Gender specific gene-environment interactions on laboratory-assessed aggression.
Verona, Edelyn; Joiner, Thomas E; Johnson, Frank; Bender, Theodore W
2006-01-01
We examined gene-environment interactive effects on aggressive behavior among men and women genotyped (short versus long alleles) for the serotonin transporter gene. Aggressive behavior was indexed via a laboratory paradigm that measured the intensity and duration of shocks delivered to a putative "employee". Half of the participants were exposed to a physical stressor during the procedure (stress) and half were not (no-stress). Participants' physiological responses were gauged via acoustic startle eyeblink reactions (startle reactivity). Results were that men with the homozygous short (s/s) genotype showed increased aggression only under stress, whereas women and men carrying the long allele did not show differences in aggression in stress versus no-stress. However, although stress exposure produced increases in startle reactivity, there were no genotype or gender differences in physiology. These results replicate longitudinal research findings confirming the interactive effects of genes and environment on behavioral reactivity and on the development of externalizing psychopathological syndromes, at least in men.
Physiological correlates of emotional reactivity and regulation in early adolescents.
Latham, Melissa D; Cook, Nina; Simmons, Julian G; Byrne, Michelle L; Kettle, Jonathan W L; Schwartz, Orli; Vijayakumar, Nandita; Whittle, Sarah; Allen, Nicholas B
2017-07-01
Few studies have examined physiological correlates of emotional reactivity and regulation in adolescents, despite the occurrence in this group of significant developmental changes in emotional functioning. The current study employed multiple physiological measures (i.e., startle-elicited eyeblink and ERP, skin conductance, facial EMG) to assess the emotional reactivity and regulation of 113 early adolescents in response to valenced images. Reactivity was measured while participants viewed images, and regulation was measured when they were asked to discontinue or maintain their emotional reactions to the images. Adolescent participants did not exhibit fear-potentiated startle blink. However, they did display affect-consistent zygomatic and corrugator activity during reactivity, as well as inhibition of some of these facial patterns during regulation. Skin conductance demonstrated arousal dependent activity during reactivity, and overall decreases during regulation. These findings suggest that early adolescents display reactivity to valenced pictures, but not to startle probes. Psychophysiological patterns during emotion regulation indicate additional effort and/or attention during the regulation process. Copyright © 2017 Elsevier B.V. All rights reserved.
Vaidyanathan, Uma; Hall, Jason R.; Patrick, Christopher J.; Bernat, Edward M.
2010-01-01
Prior research has demonstrated deficits in defensive reactivity (indexed by potentiation of the startle blink reflex) in psychopathic individuals. However, the basis of this association remains unclear, as diagnostic criteria for psychopathy encompass two distinct phenotypic components that may reflect differing neurobiological mechanisms – an affective-interpersonal component, and an antisocial deviance component. Likewise, the role of defensive response deficits in antisocial personality disorder (APD), a related but distinct syndrome, remains to be clarified. The current study examined affective priming deficits in relation to factors of psychopathy and symptoms of APD using startle reflex methods in 108 adult male prisoners. Deficits in blink reflex potentiation during aversive picture viewing were found in relation to the affective-interpersonal (Factor 1) component of psychopathy, and to a lesser extent in relation to the antisocial deviance (Factor 2) component of psychopathy and symptoms of APD—but only as a function of their overlap with affective-interpersonal features of psychopathy. These findings provide clear evidence that deficits in defensive reactivity are linked specifically to the affective-interpersonal features of psychopathy, and not the antisocial deviance features represented most strongly in APD. PMID:20973594
The Influence of Agreeableness and Ego Depletion on Emotional Responding.
Finley, Anna J; Crowell, Adrienne L; Harmon-Jones, Eddie; Schmeichel, Brandon J
2017-10-01
Agreeable individuals report more intense withdrawal-oriented negative emotions across aversive situations. Two studies tested the hypothesis that self-regulatory depletion (i.e., ego depletion) moderates the relationship between trait Agreeableness and negative emotional responding. Ego depletion was manipulated using a writing task. Emotional responding was measured with startle eye-blink responses (Study 1, N = 71) and self-reported valence, arousal, and empathic concern (Study 2, N = 256) during emotional picture viewing. Trait Agreeableness was measured using a questionnaire. In Study 1, Agreeableness predicted especially large startle responses during aversive images and especially small startles during appetitive images. After exercising self-control, the relationship between startle magnitudes and Agreeableness decreased. In Study 2, Agreeableness predicted more empathic concern for aversive images, which in turn predicted heightened self-reported negative emotions. After exercising self-control, the relationship between Agreeableness and empathic concern decreased. Agreeable individuals exhibit heightened negative emotional responding. Ego depletion reduced the link between Agreeableness and negative emotional responding in Study 1 and moderated the indirect effect of Agreeableness on negative emotional responding via empathic concern in Study 2. Empathic concern appears to be a resource-intensive process underlying heightened responding to aversive stimuli among agreeable persons. © 2016 Wiley Periodicals, Inc.
The startle response and toxicology: Methods, use and interpretation.
The startle response (SR) is a sensory-evoked motor reflex that has been used successfully in toxicology for decades. Advantages of this procedure include: rapidly objective measurement of a defined neural circuit, measurement of habituation of the response, and a high potential ...
Stevens, Elizabeth S; Weinberg, Anna; Nelson, Brady D; Meissel, Emily E E; Shankman, Stewart A
2018-03-01
Attention-related abnormalities are key components of the abnormal defensive responding observed in panic disorder (PD). Although behavioral studies have found aberrant attentional biases towards threat in PD, psychophysiological studies have been mixed. Predictability of threat, an important feature of threat processing, may have contributed to these mixed findings. Additionally, anxiety sensitivity, a dimensional trait associated with PD, may yield stronger associations with cognitive processes than categorical diagnoses of PD. In this study, 171 participants with PD and/or depression and healthy controls completed a task that differentiated anticipation of predictable vs. unpredictable shocks, while startle eyeblink and event-related potentials (ERPs [N100, P300]) were recorded. In all participants, relative to the control condition, probe N100 was enhanced to both predictable and unpredictable threat, whereas P300 suppression was unique to predictable threat. Probe N100, but not P300, was associated with startle eyeblink during both threatening conditions, and was strongest for unpredictable threat. PD was not associated with ERPs, but anxiety sensitivity (physical concerns) was positively associated with probe N100 (indicating reduced responding) in the unpredictable condition independent of PD diagnosis. Vulnerability to panic-related psychopathology may be characterized by aberrant early processing of threat, which may be especially evident during anticipation of unpredictable threats. Copyright © 2017 Elsevier Ltd. All rights reserved.
Herbert, Cornelia; Platte, Petra; Wiemer, Julian; Macht, Michael; Blumenthal, Terry D
2014-08-01
People differ in both their sensitivity for bitter taste and their tendency to respond to emotional stimuli with approach or avoidance. The present study investigated the relationship between these sensitivities in an affective picture paradigm with startle responding. Emotion-induced changes in arousal and attention (pupil modulation), priming of approach and avoidance behavior (startle reflex modulation), and subjective evaluations (ratings) were examined. Sensitivity for bitter taste was assessed with the 6-n-propylthiouracil (PROP)-sensitivity test, which discriminated individuals who were highly sensitive to PROP compared to NaCl (PROP-tasters) and those who were less sensitive or insensitive to the bitter taste of PROP. Neither pupil responses nor picture ratings differed between the two taster groups. The startle eye blink response, however, significantly differentiated PROP-tasters from PROP-insensitive subjects. Facilitated response priming to emotional stimuli emerged in PROP-tasters but not in PROP-insensitive subjects at shorter startle lead intervals (200-300ms between picture onset and startle stimulus onset). At longer lead intervals (3-4.5s between picture onset and startle stimulus onset) affective startle modulation did not differ between the two taster groups. This implies that in PROP-sensitive individuals action tendencies of approach or avoidance are primed immediately after emotional stimulus exposure. These results suggest a link between PROP taste perception and biologically relevant patterns of emotional responding. Direct perception-action links have been proposed to underlie motivational priming effects of the startle reflex, and the present results extend these to the sensory dimension of taste. Copyright © 2014 Elsevier Inc. All rights reserved.
Avdesh, Avdesh; Cornelisse, Vincent; Martin-Iverson, Mathew Thomas
2012-03-01
There are inconsistent reports on the effects of cannabinoid agonists on prepulse inhibition of the startle reflex (PPI) with increases, decreases, and no effects. It has been hypothesized that the conflicting observations may be as a result of modulation of the effects of cannabinoid agonists by the regulation of corticosteroid release. The purpose of the present study was to determine the effects of CP55940, a cannabinoid agonist, and metyrapone, a corticosteroid synthesis inhibitor on core temperature, motor activity, the startle reflex, and PPI. Startle responses were measured in 64 male Wistar rats while varying startling stimulus intensities, analogous to dose-response curves. A stimulus potency measure (ES(50)) and a response measure, the maximal achievable response (R (MAX)) were derived from the stimulus-response curves. CP55940 reduced core temperature and motor activity; these effects were potentiated by metyrapone. CP55940 increased R (MAX) of startle in the absence of a prepulse by a corticosteroid-dependent mechanism but decreased it when metyrapone was administered before CP55940, a corticosteroid-independent mechanism. The inverse of stimulus potency (ES(50)) was not affected by either drug alone but was increased by the combined drugs. CP55940 increased the prepulse motor gating effects and decreased the prepulse sensory gating effects of the same prepulses but only when given after metyrapone. The most parsimonious interpretation of these effects is that CP55940 has some effects through corticosteroid-dependent actions and opposite effects by corticosteroid-independent actions. These two putative sites of actions affect stimulus gating opposite to their effects on response gating.
Reactivity to unpredictable threat as a treatment target for fear-based anxiety disorders.
Gorka, S M; Lieberman, L; Klumpp, H; Kinney, K L; Kennedy, A E; Ajilore, O; Francis, J; Duffecy, J; Craske, M G; Nathan, J; Langenecker, S; Shankman, S A; Phan, K L
2017-10-01
Heightened reactivity to unpredictable threat (U-threat) is a core individual difference factor underlying fear-based psychopathology. Little is known, however, about whether reactivity to U-threat is a stable marker of fear-based psychopathology or if it is malleable to treatment. The aim of the current study was to address this question by examining differences in reactivity to U-threat within patients before and after 12-weeks of selective serotonin reuptake inhibitors (SSRIs) or cognitive-behavioral therapy (CBT). Participants included patients with principal fear (n = 22) and distress/misery disorders (n = 29), and a group of healthy controls (n = 21) assessed 12-weeks apart. A well-validated threat-of-shock task was used to probe reactivity to predictable (P-) and U-threat and startle eyeblink magnitude was recorded as an index of defensive responding. Across both assessments, individuals with fear-based disorders displayed greater startle magnitude to U-threat relative to healthy controls and distress/misery patients (who did not differ). From pre- to post-treatment, startle magnitude during U-threat decreased only within the fear patients who received CBT. Moreover, within fear patients, the magnitude of decline in startle to U-threat correlated with the magnitude of decline in fear symptoms. For the healthy controls, startle to U-threat across the two time points was highly reliable and stable. Together, these results indicate that startle to U-threat characterizes fear disorder patients and is malleable to treatment with CBT but not SSRIs within fear patients. Startle to U-threat may therefore reflect an objective, psychophysiological indicator of fear disorder status and CBT treatment response.
Startle Reflex Potentiation During Aversive Picture Viewing as an Indicator of Trait Fear
Vaidyanathan, Uma; Patrick, Christopher J.; Bernat, Edward M.
2009-01-01
Measures of fearfulness and measures of psychopathy show positive and negative associations, respectively, with startle reflex potentiation during unpleasant picture viewing. We tested the hypothesis that a common bipolar trait dimension underlies these differing associations. Blink responses to noise probes were recorded during pleasant, neutral, and unpleasant pictures in 88 undergraduates assessed with a battery of self-report scales indexing fear and psychopathy/fearlessness. A significant positive association was found between an omnibus index of fear, consisting of scores on the first component from a PCA of these various scales, and startle potentiation during aversive picture viewing. This association was most robust, across participants overall and within gender subgroups, for scenes that were most directly threatening. Implications for psychophysiological research on individual differences and psychopathology are discussed. PMID:19055499
Eyeblink conditioning is impaired in subjects with essential tremor.
Kronenbuerger, Martin; Gerwig, Marcus; Brol, Beate; Block, Frank; Timmann, Dagmar
2007-06-01
Several lines of evidence point to an involvement of the olivo-cerebellar system in the pathogenesis of essential tremor (ET), with clinical signs of cerebellar dysfunction being present in some subjects in the advanced stage. Besides motor coordination, the cerebellum is critically involved in motor learning. Evidence of motor learning deficits would strengthen the hypothesis of olivo-cerebellar involvement in ET. Conditioning of the eyeblink reflex is a well-established paradigm to assess motor learning. Twenty-three ET subjects (13 males, 10 females; mean age 44.3 +/- 22.3 years, mean disease duration 17.4 +/- 17.3 years) and 23 age-matched healthy controls were studied on two consecutive days using a standard delay eyeblink conditioning protocol. Six ET subjects exhibited accompanying clinical signs of cerebellar dysfunction. Care was taken to examine subjects without medication affecting central nervous functioning. Seven ET subjects and three controls on low-dose beta-blocker treatments, which had no effect on eyeblink conditioning in animal studies, were allowed into the study. The ability to acquire conditioned eyeblink responses was significantly reduced in ET subjects compared with controls. Impairment of eyeblink conditioning was not due to low-dose beta-blocker medication. Additionally, acquisition of conditioned eyeblink response was reduced in ET subjects regardless of the presence of cerebellar signs in clinical examination. There were no differences in timing or extinction of conditioned responses between groups and conditioning deficits did not correlate with the degree of tremor or ataxia as rated by clinical scores. The findings of disordered eyeblink conditioning support the hypothesis that ET is caused by a functional disturbance of olivo-cerebellar circuits which may cause cerebellar dysfunction. In particular, results point to an involvement of the olivo-cerebellar system in early stages of ET.
Interoceptive threat leads to defensive mobilization in highly anxiety sensitive persons.
Melzig, Christiane A; Holtz, Katharina; Michalowski, Jaroslaw M; Hamm, Alfons O
2011-06-01
To study defensive mobilization elicited by the exposure to interoceptive arousal sensations, we exposed highly anxiety sensitive students to a symptom provocation task. Symptom reports, autonomic arousal, and the startle eyeblink response were monitored during guided hyperventilation and a recovery period in 26 highly anxiety sensitive persons and 22 controls. Normoventilation was used as a non-provocative comparison condition. Hyperventilation led to autonomic arousal and a marked increase in somatic symptoms. While high and low anxiety sensitive persons did not differ in their defensive activation during hyperventilation, group differences were detected during early recovery. Highly anxiety sensitive students exhibited a potentiation of startle response magnitudes and increased autonomic arousal after hyper- as compared to after normoventilation, indicating defensive mobilization evoked by the prolonged presence of feared somatic sensations. Copyright © 2010 Society for Psychophysiological Research.
Anticipation of interoceptive threat in highly anxiety sensitive persons.
Melzig, Christiane A; Michalowski, Jaroslaw M; Holtz, Katharina; Hamm, Alfons O
2008-10-01
Anticipatory anxiety plays a major role in the etiology of panic disorder. Although anticipatory anxiety elicited by expectation of interoceptive cues is specifically relevant for panic patients, it has rarely been studied. Using a population analogue in high fear of such interoceptive arousal sensations (highly anxiety sensitive persons) we evaluated a new experimental paradigm to assess anticipatory anxiety during anticipation of interoceptive (somatic sensations evoked by hyperventilation) and exteroceptive (electric shock) threat. Symptom reports, autonomic arousal, and defensive response mobilization (startle eyeblink response) were monitored during threat and matched safe conditions in 26 highly anxiety sensitive persons and 22 controls. The anticipation of exteroceptive threat led to a defensive and autonomic mobilization as indexed by a potentiation of the startle response and an increase in skin conductance level in both experimental groups. During interoceptive threat, however, only highly anxiety sensitive persons but not the controls exhibited a startle response potentiation as well as autonomic activation. The anticipation of a hyperventilation procedure thus seems a valid paradigm to investigate anticipatory anxiety elicited by interoceptive cues in the clinical context.
Stuttering in adults: the acoustic startle response, temperamental traits, and biological factors.
Alm, Per A; Risberg, Jarl
2007-01-01
The purpose of this study was to investigate the relation between stuttering and a range of variables of possible relevance, with the main focus on neuromuscular reactivity, and anxiety. The explorative analysis also included temperament, biochemical variables, heredity, preonset lesions, and altered auditory feedback (AAF). An increased level of neuromuscular reactivity in stuttering adults has previously been reported by [Guitar, B. (2003). Acoustic startle responses and temperament in individuals who stutter. Journal of Speech Language and Hearing Research, 46, 233-240], also indicating a link to anxiety and temperament. The present study included a large number of variables in order to enable analysis of subgroups and relations between variables. Totally 32 stuttering adults were compared with nonstuttering controls. The acoustic startle eyeblink response was used as a measure of neuromuscular reactivity. No significant group difference was found regarding startle, and startle was not significantly correlated with trait anxiety, stuttering severity, or AAF. Startle was mainly related to calcium and prolactin. The stuttering group had significantly higher scores for anxiety and childhood ADHD. Two subgroups of stuttering were found, with high versus low traits of childhood ADHD, characterized by indications of preonset lesions versus heredity for stuttering. The study does not support the view that excessive reactivity is a typical characteristic of stuttering. The increased anxiety is suggested to mainly be an effect of experiences of stuttering. As a result of reading this article, the reader will be able to: (a) critically discuss the literature regarding stuttering in relation to acoustic startle, anxiety, and temperament; (b) describe the effect of calcium on neuromuscular reactivity; (c) discuss findings supporting the importance of early neurological incidents in some cases of stuttering, and the relation between such incidents and traits of ADHD or ADD; and (d) discuss the role of genetics in stuttering.
Baschnagel, Joseph S; Coffey, Scott F; Hawk, Larry W; Schumacher, Julie A; Holloman, Garland
2013-07-01
This study assessed physiological measures for the study of emotional dysregulation associated with borderline personality disorder (BPD). Two patient groups, the first comprised of individuals with BPD only (n = 16) and the second, individuals with BPD and co-occurring substance-use disorder (SUD; n = 35), and a group of healthy controls (n = 45) were shown standardized pictures of varying valance and arousal levels. Affective modification of startle eye-blink responses, heart rate, facial electromyography (EMG, including corrugator and zygomatic activity), and skin-conductance responses were collected during picture presentation and during a brief recovery period. Startle data during picture presentation indicated a trend toward the expected increase in startle response magnitude to negative stimuli, to be moderated by group status, with patients with BPD-SUD showing a lack of affective modification and the BPD-only group showing similar affective modification to that of controls. Heart-rate data suggested lower reactivity to negative pictures for both patient groups. Differences in facial EMG responses did not provide a clear pattern, and skin-conductance responses were not significantly different between groups. The data did not suggest differences between groups in recovery from exposure to the emotional stimuli. The startle and heart-rate data suggest a possible hyporeactivity to emotional stimuli in BPD.
Effects of stress on human mating preferences: stressed individuals prefer dissimilar mates
Lass-Hennemann, Johanna; Deuter, Christian E.; Kuehl, Linn K.; Schulz, André; Blumenthal, Terry D.; Schachinger, Hartmut
2010-01-01
Although humans usually prefer mates that resemble themselves, mating preferences can vary with context. Stress has been shown to alter mating preferences in animals, but the effects of stress on human mating preferences are unknown. Here, we investigated whether stress alters men's preference for self-resembling mates. Participants first underwent a cold-pressor test (stress induction) or a control procedure. Then, participants viewed either neutral pictures or pictures of erotic female nudes whose facial characteristics were computer-modified to resemble either the participant or another participant, or were not modified, while startle eyeblink responses were elicited by noise probes. Erotic pictures were rated as being pleasant, and reduced startle magnitude compared with neutral pictures. In the control group, startle magnitude was smaller during foreground presentation of photographs of self-resembling female nudes compared with other-resembling female nudes and non-manipulated female nudes, indicating a higher approach motivation to self-resembling mates. In the stress group, startle magnitude was larger during foreground presentation of self-resembling female nudes compared with other-resembling female nudes and non-manipulated female nudes, indicating a higher approach motivation to dissimilar mates. Our findings show that stress affects human mating preferences: unstressed individuals showed the expected preference for similar mates, but stressed individuals seem to prefer dissimilar mates. PMID:20219732
Reichel, Valeska A; Schneider, Nora; Grünewald, Barbara; Kienast, Thorsten; Pfeiffer, Ernst; Lehmkuhl, Ulrike; Korte, Alexander
2014-02-01
In this study, we investigated the emotional processing of extremely emaciated body cues in adolescents and young adults with (n = 36) and without (n = 36) anorexia nervosa (AN), introducing a new picture type, which was taken from websites that promote extreme thinness and is targeted specifically at adolescents interested in extreme thinness. A startle reflex paradigm was used for implicit reactions, while a self-assessment instrument was used for subjective responses. We found a significant group difference with a startle inhibition (appetitive response) among the patients and a startle potentiation (aversive response) among the controls, whereas no such difference for subjective measures was found. The results are in contrast to previous studies, which proposed a general failure to activate the appetitive motivational system in AN, but in keeping with findings from other addictions, where the same response pattern has been found. Implications for prevention and therapy are discussed. Copyright © 2013 Society for Psychophysiological Research.
Åsli, Ole; Flaten, Magne A.
2012-01-01
The latency of startle reflex potentiation may shed light on the aware and unaware processes underlying associative learning, especially associative fear learning. We review research suggesting that single-cue delay classical conditioning is independent of awareness of the contingency between the conditioned stimulus (CS) and the unconditioned stimulus (US). Moreover, we discuss research that argues that conditioning independent of awareness has not been proven. Subsequently, three studies from our lab are presented that have investigated the role of awareness in classical conditioning, by measuring the minimum latency from CS onset to observed changes in reflexive behavior. In sum, research using this method shows that startle is potentiated 30 to 100 ms after CS onset following delay conditioning. Following trace fear conditioning, startle is potentiated 1500 ms after CS presentation. These results indicate that the process underlying delay conditioned responding is independent of awareness, and that trace fear conditioned responding is dependent on awareness. Finally, this method of investigating the role of awareness is discussed and future research possibilities are proposed. PMID:24962686
Cornwell, Brian R; Johnson, Linda; Berardi, Luciano; Grillon, Christian
2006-04-01
Startle reflex modification has become valuable to the study of fear and anxiety, but few studies have explored startle reactivity in socially threatening situations. Healthy participants ranging in trait social anxiety entered virtual reality (VR) that simulates standing center-stage in front of an audience to anticipate giving a speech and count backward. We measured startle and autonomic reactivity during anticipation of both tasks inside VR after a single baseline recording outside VR. Trait social anxiety, but not general trait anxiety, was positively correlated with startle before entering VR and most clearly during speech anticipation inside VR. Speech anticipation inside VR also elicited stronger physiologic responses relative to anticipation of counting. Under social-evaluative threat, startle reactivity showed robust relationships with fear of negative evaluation, a central aspect of social anxiety and clinical social phobia. Context-specific startle modification may be an endophenotype for subtypes of pathological anxiety.
Cornwell, Brian R.; Heller, Randi; Biggs, Arter; Pine, Daniel S.; Grillon, Christian
2012-01-01
Objective A detailed understanding of how individuals diagnosed with social anxiety disorder (SAD) respond physiologically under social-evaluative threat is lacking. We aimed to isolate the specific components of public speaking that trigger fear in vulnerable individuals and best discriminate among SAD and healthy individuals. Method Sixteen individuals diagnosed with SAD and 16 healthy individuals were asked to prepare and deliver a short speech in a virtual reality (VR) environment. The VR environment simulated standing center stage before a live audience and allowed us to gradually introduce social cues during speech anticipation. Startle eye-blink responses were elicited periodically by white noise bursts presented during anticipation, speech delivery, and recovery in VR, as well as outside VR during an initial habituation phase. Results SAD individuals reported greater distress and state anxiety than healthy individuals across the entire procedure (ps < .005). Analyses of startle reactivity revealed a robust group difference during speech anticipation in VR, specifically as audience members directed their eye gaze and turned their attention toward participants (p < .05, Bonferroni corrected). Conclusions The VR environment is sufficiently realistic to provoke fear and anxiety in individuals highly vulnerable to socially threatening situations. SAD individuals showed potentiated startle, indicative of a strong phasic fear response, specifically when they perceived themselves as occupying the focus of others' attention as speech time approached. Potentiated startle under social-evaluative threat indexes SAD-related fear of negative evaluation. PMID:21034683
Franklin, Joseph C; Lee, Kent M; Hanna, Eleanor K; Prinstein, Mitchell J
2013-04-01
Although pain itself induces negative affect, the removal (or offset) of pain induces a powerful state of relief. Despite being implicated in a wide range of psychological and behavioral phenomena, relief remains a poorly understood emotion. In particular, some theorists associate relief with increased positive affect, whereas others associate relief with diminished negative affect. In the present study, we examined the affective nature of relief in a pain-offset paradigm with psychophysiological measures that were specific to negative valence (startle eyeblink reactivity) and positive valence (startle postauricular reactivity). Results revealed that pain offset simultaneously stimulates positive affect and diminishes negative affect for at least several seconds. Results also indicated that pain intensity differentially affects the positive and negative valence aspects of relief. These findings clarify the affective nature of relief and provide insight into why people engage in both normal and abnormal behaviors associated with relief.
Alarm pheromone is detected by the vomeronasal organ in male rats.
Kiyokawa, Yasushi; Kodama, Yuka; Kubota, Takahiro; Takeuchi, Yukari; Mori, Yuji
2013-10-01
It is widely known that a stressed animal releases specific pheromones, possibly for alarming nearby conspecifics. We previously investigated an alarm pheromone in male rats and found that this alarm pheromone evokes several responses, including increases in the defensive and risk assessment behaviors in a modified open-field test, and enhancement of the acoustic startle reflex. However, the role of the vomeronasal organ in these pheromone effects remains unclear. To clarify this point, vomeronasal organ-excising or sham surgeries were performed in male rats for use in 2 experimental models, after which they were exposed to alarm pheromone. We found that the vomeronasal organ-excising surgery blocked the effects of this alarm pheromone in both the modified open-field test and acoustic startle reflex test. In addition, the results of habituation/dishabituation test and soybean agglutinin binding to the accessory olfactory bulb suggested that the vomeronasal organ-excising surgery completely ablated the vomeronasal organ while preserving the functioning of the main olfactory system. From the above results, we showed that the vomeronasal organ plays an important role in alarm pheromone effects in the modified open-field test and acoustic startle reflex test.
Evidence of Fearlessness in Behaviourally Disordered Children: A Study on Startle Reflex Modulation
ERIC Educational Resources Information Center
van Goozen, Stephanie H. M.; Snoek, Heddeke; Matthys, Walter; van Rossum, Inge; van Engeland, Herman
2004-01-01
Background: Patterns of low heart rate, skin conductance and cortisol seem to characterise children with disruptive behaviour disorder (DBD). Until now, the startle paradigm has not been used in DBD children. We investigated whether DBD children, like adult psychopaths, process emotional stimuli in an abnormal way. Method: Twenty-one DBD and 33…
Reagh, Zachariah M; Knight, David C
2013-08-01
The emotional response to a threat is influenced by the valence of other stimuli in the environment. This emotional modulation of the threat-elicited response occurs even when negative valence stimuli are not consciously perceived. Relatively little prior research has investigated whether nonconsciously perceived positive valence stimuli modify the response to a threat, and the work that has been completed is in need of additional rigorous testing of stimulus and valence perception. The current study presented images of negative, neutral, and positive valence (1,000 ms and 17 ms durations), followed by a mask. A startle probe (100 dB whitenoise) was presented during 33% of each trial type while eyeblink electromyography (EMG) and skin conductance response (SCR) were measured. During the study, participants rated the emotional content of each image to assess valence perception. Participants accurately classified the valence of 1,000 ms images, but not 17 ms images. Further, participants performed at chance levels on an independent postexperimental forced-choice perception task using 17 ms masked images, indicating they were unable to perceive the valence and content of these images. Greater EMG and SCR were elicited by the startle probe during perceived and unperceived negative images compared to perceived and unperceived positive and neutral images. In addition, perceived, but not unperceived positive images diminished startle responses. The current findings suggest that images of negative valence potentiate the startle response in the absence of conscious stimulus perception. However, the attenuation of the startle response by positive images appears to require perception of the emotional valence of an image. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Reflex modification (RM) of the startle response is a very useful tool for testing sensory function and the integrity of a well-defined complement of neural circuits. Advantages of this procedure include the ability to rapidly acquire objective measurements and differentiate sen...
Neural Systems Involved in Fear and Anxiety Measured with Fear-Potentiated Startle
ERIC Educational Resources Information Center
Davis, Michael
2006-01-01
A good deal is now known about the neural circuitry involved in how conditioned fear can augment a simple reflex (fear-potentiated startle). This involves visual or auditory as well as shock pathways that project via the thalamus and perirhinal or insular cortex to the basolateral amygdala (BLA). The BLA projects to the central (CeA) and medial…
1996 Toxic Hazards Research Annual Report.
1998-01-01
gasoline , diesel fuel, and jet propulsion (JP) fuel (Staats, 1994). Millions of dollars are spent each year at petroleum contaminated sites for remediation...of locomotor activity and auditory startle reflex tests will be provided in the detailed technical report (in progress). Body Weights and Food...Olfactory Sensitization, Acoustic Startle, Prepulse Inhibition and Habituation, Total Locomotor Activity, Tail Flick Analgesia, and the Treadmill Test of
Scholes, Kirsty E; Martin-Iverson, Mathew T
2010-03-01
Controversy exists as to the cause of disturbed prepulse inhibition (PPI) in patients with schizophrenia. This study aimed to clarify the nature of PPI in schizophrenia using improved methodology. Startle and PPI were measured in 44 patients with schizophrenia and 32 controls across a range of startling stimulus intensities under two conditions, one while participants were attending to the auditory stimuli (ATTEND condition) and one while participants completed a visual task in order to ensure they were ignoring the auditory stimuli (IGNORE condition). Patients showed reduced PPI of R(MAX) (reflex capacity) and increased PPI of Hillslope (reflex efficacy) only under the INGORE condition, and failed to show the same pattern of attentional modulation of the reflex parameters as controls. In conclusion, disturbed PPI in schizophrenia appears to result from deficits in selective attention, rather than from preattentive dysfunction.
Comasco, Erika; Gulinello, Maria; Hellgren, Charlotte; Skalkidou, Alkistis; Sylven, Sara; Sundström-Poromaa, Inger
2016-04-01
The postpartum period is characterized by a post-withdrawal hormonal status, sleep deprivation, and susceptibility to affective disorders. Postpartum mothering involves automatic and attentional processes to screen out new external as well as internal stimuli. The present study investigated sensorimotor gating in relation to sleep duration, depression, as well as catecholaminergic and oxytocinergic genotypes in postpartum women. Prepulse inhibition (PPI) of the startle reflex and startle reactivity were assessed two months postpartum in 141 healthy and 29 depressed women. The catechol-O-methyltransferase (COMT) Val158Met, and oxytocin receptor (OXTR) rs237885 and rs53576 polymorphisms were genotyped, and data on sleep duration were collected. Short sleep duration (less than four hours in the preceding night) and postpartum depression were independently associated with lower PPI. Also, women with postpartum depression had higher startle reactivity in comparison with controls. The OXTR rs237885 genotype was related to PPI in an allele dose-dependent mode, with T/T healthy postpartum women carriers displaying the lowest PPI. Reduced sensorimotor gating was associated with sleep deprivation and depressive symptoms during the postpartum period. Individual neurophysiological vulnerability might be mediated by oxytocinergic genotype which relates to bonding and stress response. These findings implicate the putative relevance of lower PPI of the startle response as an objective physiological correlate of liability to postpartum depression. Copyright © 2016 Elsevier B.V. and ECNP. All rights reserved.
Threatening social context facilitates pain-related fear learning.
Karos, Kai; Meulders, Ann; Vlaeyen, Johan W S
2015-03-01
This study investigated the effects of a threatening and a safe social context on learning pain-related fear, a key factor in the development and maintenance of chronic pain. We measured self-reported pain intensity, pain expectancy, pain-related fear (verbal ratings and eyeblink startle responses), and behavioral measures of avoidance (movement-onset latency and duration) using an established differential voluntary movement fear conditioning paradigm. Participants (N = 42) performed different movements with a joystick: during fear acquisition, movement in one direction (CS+) was followed by a painful stimulus (pain-US) whereas movement in another direction (CS-) was not. For participants in the threat group, an angry face was continuously presented in the background during the task, whereas in the safe group, a happy face was presented. During the extinction phase the pain-US was omitted. As compared to the safe social context, a threatening social context led to increased contextual fear and facilitated differentiation between CS+ and CS- movements regarding self-reported pain expectancy, fear of pain, eyeblink startle responses, and movement-onset latency. In contrast, self-reported pain intensity was not affected by social context. These data support the modulation of pain-related fear by social context. A threatening social context leads to stronger acquisition of (pain-related) fear and simultaneous contextual fear but does not affect pain intensity ratings. This knowledge may aid in the prevention of chronic pain and anxiety disorders and shows that social context might modulate pain-related fear without immediately affecting pain intensity itself. Copyright © 2015 American Pain Society. Published by Elsevier Inc. All rights reserved.
Antonova, Elena; Chadwick, Paul; Kumari, Veena
2015-01-01
Mindfulness as a mode of sustained and receptive attention promotes openness to each incoming stimulus, even if repetitive and/or aversive. Mindful attention has been shown to attenuate sensory habituation in expert meditators; however, others were not able to replicate this effect. The present study used acoustic startle reflex to investigate the effect of mindfulness practice intensity on sensory habituation. Auditory Startle Response (ASR) to 36 startling probes (12 trials x 3 block with 40 ms inter-block intervals), was measured using electromyography (EMG) in three groups of participants (N = 12/group): meditation-naïve, moderate practice, and intensive practice. Intensive practice group showed attenuated startle habituation as evidenced by significantly less habituation over the entire experiment relative to the meditation-naïve and moderate practice groups. Furthermore, there was a significant linear effect showing between-block habituation in meditation-naïve and moderate practice groups, but not in the intensive practice group. However, the Block x Group interaction between the intensive practice and the meditation-naive groups was not significant. Moderate practice group was not significantly different from the meditation-naïve in the overall measure of habituation, but showed significantly stronger habituation than both meditation-naïve and intensive practice groups in Block 1. Greater practice intensity was significantly correlated with slower overall habituation and habituation rate in Blocks 2 and 3 in the intensive, but not in the moderate, practice group. The study provides tentative evidence that intensive mindfulness practice attenuates acoustic startle habituation as measured by EMG, but the effect is modest.Moderate practice, on the other hand, appears to enhance habituation, suggesting the effect of mindfulness practice on startle habituation might be non-linear [corrected] . Better understanding of the effect of mindful attention on startle habituation may shed new light on sensory information processing capacity of the human brain and its potential for de-automatisation of hard-wired processes.
Fox, James H; Hassell, James E; Siebler, Philip H; Arnold, Mathew R; Lamb, Andrew K; Smith, David G; Day, Heidi E W; Smith, Tessa M; Simmerman, Emma M; Outzen, Alexander A; Holmes, Kaley S; Brazell, Christopher J; Lowry, Christopher A
2017-11-01
The hygiene hypothesis or "Old Friends" hypothesis proposes that inflammatory diseases are increasing in modern urban societies, due in part to reduced exposure to microorganisms that drive immunoregulatory circuits, and a failure to terminate inappropriate inflammatory responses. Inappropriate inflammation is also emerging as a risk factor for trauma-related, anxiety, and affective disorders, including posttraumatic stress disorder (PTSD), which is characterized as persistent re-experiencing of the trauma after a traumatic experience. Traumatic experiences can lead to long-lasting fear memories and exaggerated fear potentiation of the acoustic startle reflex. The acoustic startle reflex is an ethologically relevant reflex and can be potentiated in both humans and rats through Pavlovian conditioning. Mycobacterium vaccae NCTC 11659 is a soil-derived bacterium with immunoregulatory and anti-inflammatory properties that has been demonstrated to confer stress resilience in mice. Here we immunized adult male Sprague Dawley rats 3×, once per week, with a heat-killed preparation of M. vaccae NCTC 11659 (0.1mg, s.c., in 100µl borate-buffered saline) or vehicle, and, then, 3weeks following the final immunization, tested them in the fear-potentiated startle paradigm; controls were maintained under home cage control conditions throughout the experiment (n=11-12 per group). Rats were tested on days 1 and 2 for baseline acoustic startle, received fear conditioning on days 3 and 4, and underwent fear extinction training on days 5-10. Rats were euthanized on day 11 and brain tissue was sectioned for analysis of mRNA expression for genes important in control of brain serotonergic signaling, including tph2, htr1a, slc6a4, and slc22a3, throughout the brainstem dorsal and median raphe nuclei. Immunization with M. vaccae had no effect on baseline acoustic startle or fear expression on day 5. However, M. vaccae-immunized rats showed enhanced between-session and within-session extinction on day 6, relative to vehicle-immunized controls. Immunization with M. vaccae and fear-potentiated startle altered serotonergic gene expression in a gene- and subregion-specific manner. These data are consistent with the hypothesis that immunoregulatory strategies, such as preimmunization with M. vaccae, have potential for prevention of stress- and trauma-related psychiatric disorders. Copyright © 2017 Elsevier Inc. All rights reserved.
Sadnicka, A; Teo, J T; Kojovic, M; Pareés, I; Saifee, T A; Kassavetis, P; Schwingenschuh, P; Katschnig-Winter, P; Stamelou, M; Mencacci, N E; Rothwell, J C; Edwards, M J; Bhatia, K P
2015-05-01
Traditionally dystonia has been considered a disorder of basal ganglia dysfunction. However, recent research has advocated a more complex neuroanatomical network. In particular, there is increasing interest in the pathophysiological role of the cerebellum. Patients with cervical and focal hand dystonia have impaired cerebellar associative learning using the paradigm eyeblink conditioning. This is perhaps the most direct evidence to date that the cerebellum is implicated in patients. Eleven patients with DYT1 dystonia and five patients with DYT6 dystonia were examined and rates of eyeblink conditioning were compared with age-matched controls. A marker of brainstem excitability, the blink reflex recovery, was also studied in the same groups. Patients with DYT1 and DYT6 dystonia have a normal ability to acquire conditioned responses. Blink reflex recovery was enhanced in DYT1 but this effect was not seen in DYT6. If the cerebellum is an important driver in DYT1 and DYT6 dystonia our data suggest that there is specific cerebellar dysfunction such that the circuits essential for conditioning function normally. Our data are contrary to observations in focal dystonia and suggest that the cerebellum may have a distinct role in different subsets of dystonia. Evidence of enhanced blink reflex recovery in all patients with dystonia was not found and recent studies calling for the blink recovery reflex to be used as a diagnostic test for dystonic tremor may require further corroboration. © 2014 The Author(s) European Journal of Neurology © 2014 EAN.
Deficient aversive-potentiated startle and the triarchic model of psychopathy: The role of boldness.
Esteller, Àngels; Poy, Rosario; Moltó, Javier
2016-05-01
This study examined the contribution of the phenotypic domains of boldness, meanness, and disinhibition of the triarchic conceptualization of psychopathy (Patrick, Fowles, & Krueger, 2009) to deficient aversive-potentiated startle in a mixed-gender sample of 180 undergraduates. Eyeblink responses to noise probes were recorded during a passive picture-viewing task (erotica, neutral, threat, and mutilation). Deficient threat vs. neutral potentiation was uniquely related to increased boldness scores, thus suggesting that the diminished defensive reaction to aversive stimulation is specifically linked to the charm, social potency and venturesomeness features of psychopathy (boldness), but not to features such as callousness, coldheartedness and cruelty traits (meanness), even though both phenotypes theoretically share the same underlying low-fear disposition. Our findings provide further evidence of the differential association between distinct psychopathy components and deficits in defensive reactivity and strongly support the validity of the triarchic model of psychopathy in disentangling the etiology of this personality disorder. Copyright © 2016 Elsevier B.V. All rights reserved.
Corr, Philip J; Kumari, Veena
2013-01-01
An emerging literature associates increased dopaminergic neurotransmission with altered brain response to aversive stimuli in humans. The direction of the effect of dopamine on aversive motivation, however, remains unclear, with some studies reporting increased and others decreased amygdala activation to aversive stimuli following the administration of dopamine agonists. Potentiation of the startle response by aversive foreground stimuli provides an objective and directional measure of emotional reactivity and is considered useful as an index of the emotional effects of different drugs. We investigated the effects of two doses of D-amphetamine (5 and 10 mg), compared to placebo, for the first time to our knowledge, using the affect-startle paradigm. The study employed a between-subjects, double-blind design, with three conditions: 0 mg (placebo), and 5 and 10 mg D-amphetamine (initially n = 20/group; final sample: n = 18, placebo; n = 18, 5 mg; n = 16, 10 mg). After drug/placebo administration, startle responses (eyeblinks) to intermittent noise probes were measured during viewing of pleasant, neutral and unpleasant images. Participants' general and specific impulsivity and fear-related personality traits were also assessed. The three groups were comparable on personality traits. Only the placebo group showed significant startle potentiation by unpleasant, relative to neutral, images; this effect was absent in both 5- and 10-mg D-amphetamine groups (i.e. the same effect of D-amphetamine observed at different doses in different people). Our findings demonstrate a reduced aversive emotional response under D-amphetamine and may help to account for the known link between the use of psychostimulant drugs and antisocial behaviour.
Generalized versus partial reflex seizures: a review.
Italiano, Domenico; Ferlazzo, Edoardo; Gasparini, Sara; Spina, Edoardo; Mondello, Stefania; Labate, Angelo; Gambardella, Antonio; Aguglia, Umberto
2014-08-01
In this review we assess our currently available knowledge about reflex seizures with special emphasis on the difference between "generalized" reflex seizures induced by visual stimuli, thinking, praxis and language tasks, and "focal" seizures induced by startle, eating, music, hot water, somatosensory stimuli and orgasm. We discuss in particular evidence from animal, clinical, neurophysiological and neuroimaging studies supporting the concept that "generalized" reflex seizures, usually occurring in the setting of IGE, should be considered as focal seizures with quick secondary generalization. We also review recent advances in genetic and therapeutic approach of reflex seizures. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Gender differences in emotional responses: a psychophysiological study.
Bianchin, Marta; Angrilli, Alessandro
2012-02-28
Gender differences in emotional responses have been investigated in two groups of students, 22 males and 21 females. Participants watched a set of sixty emotional standardized slides divided into pleasant, neutral and unpleasant, while Startle reflex, Evoked Potentials, Heart Rate, facial EMG and Skin Conductance were recorded. Startle reflex amplitude, an index modulated by amygdala and orbitofrontal cortex and sensitive to aversive emotional stimuli, was overall larger in women. In addition, startle emotion modulation was greater in women with respect to men. Slow Evoked Potentials (400-800 ms), a measure representing the cognitive component of the emotional response, revealed gender differences in the left prefrontal site, with women showing greater positivity to unpleasant compared with pleasant slides while men had greater positivity to pleasant vs. neutral slides. Women, compared with men, perceived all slides as less pleasant and reported greater arousal to unpleasant condition. Results are in line with known functional brain differences, at level of limbic and paralimbic structures, between men and women, and point to biologically grounded greater sensitivity and vulnerability of women to adverse/stressful events. Copyright © 2011 Elsevier Inc. All rights reserved.
Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in motor learning.
van der Vliet, Rick; Jonker, Zeb D; Louwen, Suzanne C; Heuvelman, Marco; de Vreede, Linda; Ribbers, Gerard M; De Zeeuw, Chris I; Donchin, Opher; Selles, Ruud W; van der Geest, Jos N; Frens, Maarten A
2018-04-11
Cerebellar transcranial direct current stimulation has been reported to enhance motor associative learning and motor adaptation, holding promise for clinical application in patients with movement disorders. However, behavioral benefits from cerebellar tDCS have been inconsistent. Identifying determinants of treatment success is necessary. BDNF Val66Met is a candidate determinant, because the polymorphism is associated with motor skill learning and BDNF is thought to mediate tDCS effects. We undertook two cerebellar tDCS studies in subjects genotyped for BDNF Val66Met. Subjects performed an eyeblink conditioning task and received sham, anodal or cathodal tDCS (N = 117, between-subjects design) or a vestibulo-ocular reflex adaptation task and received sham and anodal tDCS (N = 51 subjects, within-subjects design). Performance was quantified as a learning parameter from 0 to 100%. We investigated (1) the distribution of the learning parameter with mixture modeling presented as the mean (M), standard deviation (S) and proportion (P) of the groups, and (2) the role of BDNF Val66Met and cerebellar tDCS using linear regression presented as the regression coefficients (B) and odds ratios (OR) with equally-tailed intervals (ETIs). For the eyeblink conditioning task, we found distinct groups of learners (M Learner = 67.2%; S Learner = 14.7%; P Learner = 61.6%) and non-learners (M Non-learner = 14.2%; S Non-learner = 8.0%; P Non-learner = 38.4%). Carriers of the BDNF Val66Met polymorphism were more likely to be learners (OR = 2.7 [1.2 6.2]). Within the group of learners, anodal tDCS supported eyeblink conditioning in BDNF Val66Met non-carriers (B = 11.9% 95%ETI = [0.8 23.0]%), but not in carriers (B = 1.0% 95%ETI = [-10.2 12.1]%). For the vestibulo-ocular reflex adaptation task, we found no effect of BDNF Val66Met (B = -2.0% 95%ETI = [-8.7 4.7]%) or anodal tDCS in either carriers (B = 3.4% 95%ETI = [-3.2 9.5]%) or non-carriers (B = 0.6% 95%ETI = [-3.4 4.8]%). Finally, we performed additional saccade and visuomotor adaptation experiments (N = 72) to investigate the general role of BDNF Val66Met in cerebellum-dependent learning and found no difference between carriers and non-carriers for both saccade (B = 1.0% 95%ETI = [-8.6 10.6]%) and visuomotor adaptation (B = 2.7% 95%ETI = [-2.5 7.9]%). The specific role for BDNF Val66Met in eyeblink conditioning, but not vestibulo-ocular reflex adaptation, saccade adaptation or visuomotor adaptation could be related to dominance of the role of simple spike suppression of cerebellar Purkinje cells with a high baseline firing frequency in eyeblink conditioning. Susceptibility of non-carriers to anodal tDCS in eyeblink conditioning might be explained by a relatively larger effect of tDCS-induced subthreshold depolarization in this group, which might increase the spontaneous firing frequency up to the level of that of the carriers. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Cornwell, Brian R; Heller, Randi; Biggs, Arter; Pine, Daniel S; Grillon, Christian
2011-07-01
A detailed understanding of how individuals diagnosed with social anxiety disorder (SAD) respond physiologically under social-evaluative threat is lacking. Our aim was to isolate the specific components of public speaking that trigger fear in vulnerable individuals and best discriminate between SAD and healthy individuals. Sixteen individuals diagnosed with SAD (DSM-IV-TR criteria) and 16 healthy individuals were enrolled in the study from December 2005 to March 2008. Subjects were asked to prepare and deliver a short speech in a virtual reality (VR) environment. The VR environment simulated standing center stage before a live audience and allowed us to gradually introduce social cues during speech anticipation. Startle eye-blink responses were elicited periodically by white noise bursts presented during anticipation, speech delivery, and recovery in VR, as well as outside VR during an initial habituation phase, and startle reactivity was measured by electromyography. Subjects rated their distress at 4 timepoints in VR using a 0-10 scale, with anchors being "not distressed" to "highly distressed." State anxiety was measured before and after VR with the Spielberger State-Trait Anxiety Inventory. Individuals with SAD reported greater distress and state anxiety than healthy individuals across the entire procedure (P values < .005). Analyses of startle reactivity revealed a robust group difference during speech anticipation in VR, specifically as audience members directed their eye gaze and turned their attention toward participants (P < .05, Bonferroni-corrected). The VR environment is sufficiently realistic to provoke fear and anxiety in individuals highly vulnerable to socially threatening situations. Individuals with SAD showed potentiated startle, indicative of a strong phasic fear response, specifically when they perceived themselves as occupying the focus of others' attention as speech time approached. Potentiated startle under social-evaluative threat indexes SAD-related fear of negative evaluation. © Copyright 2011 Physicians Postgraduate Press, Inc.
Impact of aerobic exercise intensity on craving and reactivity to smoking cues.
Janse Van Rensburg, Kate; Elibero, Andrea; Kilpatrick, Marcus; Drobes, David J
2013-06-01
Aerobic exercise can acutely reduce cigarette cravings during periods of nicotine deprivation. The primary aim of this study was to assess the differential effects of light and vigorous intensity aerobic exercise on cigarette cravings, subjective and physiological reactivity to smoking cues, and affect after overnight nicotine deprivation. A secondary aim was to examine cortisol change as a mediator of the effects of exercise on smoking motivation. 162 (55 female, 107 male) overnight nicotine-deprived smokers were randomized to one of three exercise conditions: light intensity, vigorous intensity, or a passive control condition. After each condition, participants engaged in a standardized cue reactivity assessment. Self-reported urges to smoke, affect, and salivary cortisol were assessed at baseline (i.e., before each condition), immediately after each condition, and after the cue reactivity assessment. Light and vigorous exercise significantly decreased urges to smoke and increased positive affect, relative to the control condition. In addition, those in the vigorous exercise condition demonstrated suppressed appetitive reactivity to smoking cues, as indexed by the startle eyeblink reflex. Although exercise intensity was associated with expected changes in cortisol concentration, these effects were not related to changes in craving or cue reactivity. Both light and vigorous exercise can reduce general cravings to smoke, whereas vigorous exercise appears especially well-suited for reducing appetitive reactions to cues that may precede smoking. Results did not support exercise-induced cortisol release as a mechanism for these effects. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Resting heart rate variability and the startle reflex to briefly presented affective pictures.
Ruiz-Padial, Elisabeth; Thayer, Julian F
2014-12-01
We have previously shown that persons with low HRV showed potentiated startle responses to neutral stimuli. In the present study we replicated our prior findings and extended them to examine the effects of HRV on the startle magnitude to pictures that were presented outside of conscious awareness. A total of 85 male and female students were stratified via median split on their resting HRV. They were presented pictures for 6 s or for 30 ms. Results indicated that the high HRV group showed the context appropriate startle magnitude increase to unpleasant foreground. The low HRV group showed startle magnitude increase from pleasant to neutral pictures but no difference between the neutral and unpleasant pictures. This pattern of results was similar for the 30 ms and the 6 s conditions. These results suggest that having high HRV may allow persons to more efficiently process emotional stimuli and to better recognize threat and safety signals. Copyright © 2014 Elsevier B.V. All rights reserved.
Affective and Neuroendocrine Effects of Withdrawal from Chronic, Long-Acting Opiate Administration
Hamilton, Kathryn L.; Harris, Andrew C.; Gewirtz, Jonathan C.
2013-01-01
Although the long-acting opiate methadone is commonly used to treat drug addiction, relatively little is known about effects of withdrawal from this drug in preclinical models. The current study examined affective, neuroendocrine, and somatic signs of withdrawal from the longer-acting methadone derivative l-alpha-acetylmethydol (LAAM) in rats. Anxiety-like behavior during both spontaneous and antagonist-precipitated withdrawal was measured by potentiation of the startle reflex. Withdrawal elevated corticosterone and somatic signs and blunted circadian variations in baseline startle responding. In addition, fear to an explicit, Pavlovian conditioned stimulus (fear-potentiated startle) was enhanced. These data suggest that anxiety-like behavior as measured using potentiated startle responding does not emerge spontaneously during withdrawal from chronic opiate exposure – in contrast to withdrawal from acute drug exposure – but rather is manifested as exaggerated fear in response to explicit threat cues. PMID:24076207
Central cannabinoid receptors modulate acquisition of eyeblink conditioning
Steinmetz, Adam B.; Freeman, John H.
2010-01-01
Delay eyeblink conditioning is established by paired presentations of a conditioned stimulus (CS) such as a tone or light, and an unconditioned stimulus (US) that elicits the blink reflex. Conditioned stimulus information is projected from the basilar pontine nuclei to the cerebellar interpositus nucleus and cortex. The cerebellar cortex, particularly the molecular layer, contains a high density of cannabinoid receptors (CB1R). The CB1Rs are located on the axon terminals of parallel fibers, stellate cells, and basket cells where they inhibit neurotransmitter release. The present study examined the effects of a CB1R agonist WIN55,212-2 and antagonist SR141716A on the acquisition of delay eyeblink conditioning in rats. Rats were given subcutaneous administration of 1, 2, or 3 mg/kg of WIN55,212-2 or 1, 3, or 5 mg/kg of SR141716A before each day of acquisition training (10 sessions). Dose-dependent impairments in acquisition were found for WIN55,212-2 and SR141716A, with no effects on spontaneous or nonassociative blinking. However, the magnitude of impairment was greater for WIN55,212-2 than SR141716A. Dose-dependent impairments in conditioned blink response (CR) amplitude and timing were found with WIN55,212-2 but not with SR141716A. The findings support the hypothesis that CB1Rs in the cerebellar cortex play an important role in plasticity mechanisms underlying eyeblink conditioning. PMID:21030483
Disrupted sensory gating in pathological gambling.
Stojanov, Wendy; Karayanidis, Frini; Johnston, Patrick; Bailey, Andrew; Carr, Vaughan; Schall, Ulrich
2003-08-15
Some neurochemical evidence as well as recent studies on molecular genetics suggest that pathologic gambling may be related to dysregulated dopamine neurotransmission. The current study examined sensory (motor) gating in pathologic gamblers as a putative measure of endogenous brain dopamine activity with prepulse inhibition of the acoustic startle eye-blink response and the auditory P300 event-related potential. Seventeen pathologic gamblers and 21 age- and gender-matched healthy control subjects were assessed. Both prepulse inhibition measures were recorded under passive listening and two-tone prepulse discrimination conditions. Compared to the control group, pathologic gamblers exhibited disrupted sensory (motor) gating on all measures of prepulse inhibition. Sensory motor gating deficits of eye-blink responses were most profound at 120-millisecond prepulse lead intervals in the passive listening task and at 240-millisecond prepulse lead intervals in the two-tone prepulse discrimination task. Sensory gating of P300 was also impaired in pathologic gamblers, particularly at 500-millisecond lead intervals, when performing the discrimination task on the prepulse. In the context of preclinical studies on the disruptive effects of dopamine agonists on prepulse inhibition, our findings suggest increased endogenous brain dopamine activity in pathologic gambling in line with previous neurobiological findings.
Active Inference and Learning in the Cerebellum.
Friston, Karl; Herreros, Ivan
2016-09-01
This letter offers a computational account of Pavlovian conditioning in the cerebellum based on active inference and predictive coding. Using eyeblink conditioning as a canonical paradigm, we formulate a minimal generative model that can account for spontaneous blinking, startle responses, and (delay or trace) conditioning. We then establish the face validity of the model using simulated responses to unconditioned and conditioned stimuli to reproduce the sorts of behavior that are observed empirically. The scheme's anatomical validity is then addressed by associating variables in the predictive coding scheme with nuclei and neuronal populations to match the (extrinsic and intrinsic) connectivity of the cerebellar (eyeblink conditioning) system. Finally, we try to establish predictive validity by reproducing selective failures of delay conditioning, trace conditioning, and extinction using (simulated and reversible) focal lesions. Although rather metaphorical, the ensuing scheme can account for a remarkable range of anatomical and neurophysiological aspects of cerebellar circuitry-and the specificity of lesion-deficit mappings that have been established experimentally. From a computational perspective, this work shows how conditioning or learning can be formulated in terms of minimizing variational free energy (or maximizing Bayesian model evidence) using exactly the same principles that underlie predictive coding in perception.
Weiss, Craig; Disterhoft, John F.
2008-01-01
Many laboratories studying eyeblinks in unanesthetized rodents use a periorbital shock to evoke the blink. The stimulus is typically delivered via a tether and usually obliterates detection of a full unconditioned response with electromyographic (EMG) recording. Here we describe the adapter we have used successfully for several years to deliver puffs of air to the cornea of freely moving rats during our studies of eyeblink conditioning. The stimulus evokes an unconditioned response that can be recorded without affecting the EMG signal. This allows a complete analysis of the unconditioned response which is important for studies examining reflex modification or the effect of drugs, genetic manipulations, or aging on the unconditioned blink reflex. We also describe an infrared reflective sensor that can be added to the tether to minimize the number of wires that need to be implanted around the eye, and which is relatively immune to electrical artifacts associated with a periorbital shock stimulus or other devices powered by alternating current. The responses recorded simultaneously by EMG wires and the optical sensor appear highly correlated and demonstrate that the optical sensor can measure responses that might otherwise be lost due to electrical interference from a shock stimulus. PMID:18598716
Planning of Ballistic Movement following Stroke: Insights from the Startle Reflex
Honeycutt, Claire Fletcher; Perreault, Eric Jon
2012-01-01
Following stroke, reaching movements are slow, segmented, and variable. It is unclear if these deficits result from a poorly constructed movement plan or an inability to voluntarily execute an appropriate plan. The acoustic startle reflex provides a means to initiate a motor plan involuntarily. In the presence of a movement plan, startling acoustic stimulus triggers non-voluntary early execution of planned movement, a phenomenon known as the startReact response. In unimpaired individuals, the startReact response is identical to a voluntarily initiated movement, except that it is elicited 30–40 ms. As the startReact response is thought to be mediated by brainstem pathways, we hypothesized that the startReact response is intact in stroke subjects. If startReact is intact, it may be possible to elicit more task-appropriate patterns of muscle activation than can be elicited voluntarily. We found that startReact responses were intact following stroke. Responses were initiated as rapidly as those in unimpaired subjects, and with muscle coordination patterns resembling those seen during unimpaired volitional movements. Results were striking for elbow flexion movements, which demonstrated no significant differences between the startReact responses elicited in our stroke and unimpaired subject groups. The results during planned extension movements were less straightforward for stroke subjects, since the startReact response exhibited task inappropriate activity in the flexors. This inappropriate activity diminished over time. This adaptation suggests that the inappropriate activity was transient in nature and not related to the underlying movement plan. We hypothesize that the task-inappropriate flexor activity during extension results from an inability to suppress the classic startle reflex, which primarily influences flexor muscles and adapts rapidly with successive stimuli. These results indicate that stroke subjects are capable of planning ballistic elbow movements, and that when these planned movements are involuntarily executed they can be as rapid and appropriate as those in unimpaired individuals. PMID:22952634
[Clinical and genetic analysis of hyperekplexia in a Chinese child and literature review].
Li, H; Yang, Z X; Xue, J; Qian, P; Liu, X Y
2017-02-02
Objective: To investigate the clinical and genetic features of a Chinese child with hyperekplexia and review the related literature. Method: The clinical and genetic data of one patient with hyperekplexia, who had visited the department of Pediatrics, Peking University First Hospital in July 2012, were analyzed. "Hyperekplexia" "startle disease" "GLRB" were used as key words to search at CNKI, Wanfang and PubMed from the database from creation to August 2016. Result: The one-year-old female patient showed exaggerated startle reflexes and generalized stiffness in response to external sudden, unexpected stimuli at 2 hours after birth, which existed every day. Her younger twin sister died of severe apnea due to a continuous generalized stiffness at the age of 7 months. Physical examination exhibited the positive nose-tapping reflex. There were no obvious abnormalities in laboratory tests, electroencephalogram (EEG) and neuroimaging tests. The patient was revealed to have compound heterozygous mutations in GLRB gene, c. 298-1G>A (or IVS4-1G>A) inherited from the father and c. 347T>C (p. L116P) inherited from the mother. The mutation L116P in GLRB gene was not reported before. During the follow-up until 5 years old, the girl's symptoms of startle reflexes and generalized stiffness were controlled with clonazepam treatment. Her mental development was normal, but she walked very carefully as wide-based gait to avoid of external sudden stimuli. Literature retrieval obtained 8 reports (all in English) with 39 GLRB-related cases. Combined analysis of the data of the 39 foreign cases and our case showed that the onset age of all 40 cases was in neonatal or in utero, and all presented exaggerated startle reflexes and generalized stiffness in response to external stimuli. Other symptoms included neonatal apneas (83%, 20/24), falls (56%, 15/27) and squint (42%, 10/24) etc. EEG (13/13) and brain imaging (90%, 28/31) were normal, or unrelated/nonspecific to hyperekplexia. In the total 17 mutations of GLRB gene found in 28 cases, the most frequent mutations were GLRB gene M177R (9 cases) and IVS5+ 5G>A (5 cases). Most cases (82%, 32/39) had received the treatment of clonazepam. The symptoms of hyperekplexia all could be improved in different degree after treatment, and 84% (32/38) of the cases were completely controlled or only existed exaggerated startle reflexes. The psychomotor development could be normal (13 cases) or retarded (25 cases). Conclusion: The patient presented typical clinical manifestations of hyperekplexia and had a good response to clonazepam. The patient carried GLRB gene mutations found by genetic analysis, and was finally diagnosed with hyperekplexia. The younger twin sister died due to lack of timely diagnosis and treatment, suggesting the significance of early detection and proper treatment for this disease.
Methylphenidate and emotional-motivational processing in attention-deficit/hyperactivity disorder.
Conzelmann, Annette; Woidich, Eva; Mucha, Ronald F; Weyers, Peter; Müller, Mathias; Lesch, Klaus-Peter; Jacob, Christian P; Pauli, Paul
2016-08-01
In line with the assumption that emotional-motivational deficits are one core dysfunction in ADHD, in one of our previous studies we observed a reduced reactivity towards pleasant pictures in adult ADHD patients as compared to controls. This was indicated by a lack of attenuation of the startle reflex specifically during pleasant pictures in ADHD patients. The first choice medical agents in ADHD, methylphenidate (MPH), is discussed to normalize these dysfunctions. However, experimental evidence in the sense of double-blind placebo-controlled study designs is lacking. Therefore, we investigated 61 adult ADHD patients twice, one time with placebo and one time with MPH with the same experimental design as in our study previously and assessed emotion processing during the presentation of pleasant, neutral and unpleasant pictures. We obtained startle reflex data as well as valence and arousal ratings in association with the pictures. As previously shown, ADHD patients showed a diminished startle attenuation during pleasant pictures while startle potentiation during unpleasant pictures was normal. Valence and arousal ratings unsuspiciously increased with increasing pleasantness and arousal of the pictures, respectively. There were no significant influences of MPH. The study replicates that ADHD patients show a reduced reactivity towards pleasant stimuli. MPH did not normalize this dysfunction. Possibly, MPH only influences emotions during more complex behavioural tasks that involve executive functions in adults with ADHD. Our results emphasize the importance for the use of double-blind placebo-controlled designs in psychopharmacological research.
An acoustic startle alters knee joint stiffness and neuromuscular control.
DeAngelis, A I; Needle, A R; Kaminski, T W; Royer, T R; Knight, C A; Swanik, C B
2015-08-01
Growing evidence suggests that the nervous system contributes to non-contact knee ligament injury, but limited evidence has measured the effect of extrinsic events on joint stability. Following unanticipated events, the startle reflex leads to universal stiffening of the limbs, but no studies have investigated how an acoustic startle influences knee stiffness and muscle activation during a dynamic knee perturbation. Thirty-six individuals were tested for knee stiffness and muscle activation of the quadriceps and hamstrings. Subjects were seated and instructed to resist a 40-degree knee flexion perturbation from a relaxed state. During some trials, an acoustic startle (50 ms, 1000 Hz, 100 dB) was applied 100 ms prior to the perturbation. Knee stiffness, muscle amplitude, and timing were quantified across time, muscle, and startle conditions. The acoustic startle increased short-range (no startle: 0.044 ± 0.011 N·m/deg/kg; average startle: 0.047 ± 0.01 N·m/deg/kg) and total knee stiffness (no startle: 0.036 ± 0.01 N·m/deg/kg; first startle 0.027 ± 0.02 N·m/deg/kg). Additionally, the startle contributed to decreased [vastus medialis (VM): 13.76 ± 33.6%; vastus lateralis (VL): 6.72 ± 37.4%] but earlier (VM: 0.133 ± 0.17 s; VL: 0.124 ± 0.17 s) activation of the quadriceps muscles. The results of this study indicate that the startle response can significantly disrupt knee stiffness regulation required to maintain joint stability. Further studies should explore the role of unanticipated events on unintentional injury. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Longenecker, R J; Galazyuk, A V
2012-11-16
Recently prepulse inhibition of the acoustic startle reflex (ASR) became a popular technique for tinnitus assessment in laboratory animals. This method confers a significant advantage over the previously used time-consuming behavioral approaches utilizing basic mechanisms of conditioning. Although this technique has been successfully used to assess tinnitus in different laboratory animals, many of the finer details of this methodology have not been described enough to be replicated, but are critical for tinnitus assessment. Here we provide detail description of key procedures and methodological issues that provide guidance for newcomers with the process of learning to correctly apply gap detection techniques for tinnitus assessment in laboratory animals. The major categories of these issues include: refinement of hardware for best performance, optimization of stimulus parameters, behavioral considerations, and identification of optimal strategies for data analysis. This article is part of a Special Issue entitled: Tinnitus Neuroscience. Copyright © 2012. Published by Elsevier B.V.
Reduced Prepulse Inhibition as a Biomarker of Schizophrenia.
Mena, Auxiliadora; Ruiz-Salas, Juan C; Puentes, Andrea; Dorado, Inmaculada; Ruiz-Veguilla, Miguel; De la Casa, Luis G
2016-01-01
The startle response is composed by a set of reflex behaviors intended to prepare the organism to face a potentially relevant stimulus. This response can be modulated by several factors as, for example, repeated presentations of the stimulus (startle habituation), or by previous presentation of a weak stimulus (Prepulse Inhibition [PPI]). Both phenomena appear disrupted in schizophrenia that is thought to reflect an alteration in dopaminergic and glutamatergic neurotransmission. In this paper we analyze whether the reported deficits are indicating a transient effect restricted to the acute phase of the disease, or if it reflects a more general biomarker or endophenotype of the disorder. To this end, we measured startle responses in the same set of thirteen schizophrenia patients with a cross-sectional design at two periods: 5 days after hospital admission and 3 months after discharge. The results showed that both startle habituation and PPI were impaired in the schizophrenia patients at the acute stage as compared to a control group composed by 13 healthy participants, and that PPI but not startle habituation remained disrupted when registered 3 months after the discharge. These data point to the consideration of PPI, but not startle habituation, as a schizophrenia biomarker.
Reduced Prepulse Inhibition as a Biomarker of Schizophrenia
Mena, Auxiliadora; Ruiz-Salas, Juan C.; Puentes, Andrea; Dorado, Inmaculada; Ruiz-Veguilla, Miguel; De la Casa, Luis G.
2016-01-01
The startle response is composed by a set of reflex behaviors intended to prepare the organism to face a potentially relevant stimulus. This response can be modulated by several factors as, for example, repeated presentations of the stimulus (startle habituation), or by previous presentation of a weak stimulus (Prepulse Inhibition [PPI]). Both phenomena appear disrupted in schizophrenia that is thought to reflect an alteration in dopaminergic and glutamatergic neurotransmission. In this paper we analyze whether the reported deficits are indicating a transient effect restricted to the acute phase of the disease, or if it reflects a more general biomarker or endophenotype of the disorder. To this end, we measured startle responses in the same set of thirteen schizophrenia patients with a cross-sectional design at two periods: 5 days after hospital admission and 3 months after discharge. The results showed that both startle habituation and PPI were impaired in the schizophrenia patients at the acute stage as compared to a control group composed by 13 healthy participants, and that PPI but not startle habituation remained disrupted when registered 3 months after the discharge. These data point to the consideration of PPI, but not startle habituation, as a schizophrenia biomarker. PMID:27803654
Electrophysiological responses to threat in youth with and without Posttraumatic Stress Disorder.
Grasso, Damion J; Simons, Robert F
2012-04-01
The current study was designed to examine event-related brain potentials and autonomic responses to pictures indicating threat, relative to non-threat, and acoustic startle reflexes in traumatized youth diagnosed with PTSD, relative to non-exposed children, before and after receiving psychotherapy. Children in the control group were individually yoked and demographically matched to the PTSD group. Both groups displayed enhanced late positive potentials and more prolonged heart rate deceleration to pictures indicating threat, relative to non-threat, and larger skin conductance responses to pictures indicating threat, relative to non-threat, at time one. At time two, controls appeared to habituate, as reflected by an overall attenuated skin conductance response, whereas the PTSD group showed little change. Across time points the PTSD group exhibited greater acoustic startle reflexes than the control group. Psychotherapy and symptom reduction was not associated with electrophysiology. Drawing from the adult literature, this study was an attempt to address the scarcity of research examining electrophysiological irregularities in childhood PTSD. The overall results suggest that children and adolescents allocate more attention to threat-related stimuli regardless of PTSD status, and exaggerated startle and a possible failure to habituate skin conductance responses to threat-related stimuli in youth with versus without PTSD. Copyright © 2012 Elsevier B.V. All rights reserved.
Dong, Xinwen; Li, Yonghui
2014-01-01
Peritraumatic dissociation, a state characterized by alteration in perception and reduced awareness of surroundings, is considered to be a risk factor for the development of post-traumatic stress disorder (PTSD). However, the predictive ability of peritraumatic dissociation is questioned for the inconsistent results in different time points of assessment. The startle reflex is an objective behavioral measurement of defensive response to abrupt and intense sensory stimulus of surroundings, with potential to be used as an assessment on the dissociative status in both humans and rodents. The present study examined the predictive effect of acoustic startle response (ASR) in different time points around the traumatic event in an animal model of PTSD. The PTSD-like symptoms, including hyperarousal, avoidance, and contextual fear, were assessed 2–3 weeks post-trauma. The results showed that (1) the startle amplitude attenuated immediate after intense footshock in almost half of the stress animals, and (2) the attenuated startle responses at 1 h but not 24 h after stress predicted the development of severe PTSD-like symptoms. These data indicate that the startle alteration at the immediate period after trauma, including 1 h, is more important in PTSD prediction than 24 h after trauma. Our study also suggests that the startle attenuation immediate after intense stress may serve as an objective measurement of peritraumatic dissociation in rats. PMID:24478660
Gorka, Stephanie M.; Lieberman, Lynne; Shankman, Stewart A.; Phan, K. Luan
2016-01-01
Heightened reactivity to uncertain threat (U-threat) is an important individual difference factor that may characterize fear-based internalizing psychopathologies (IPs) and distinguish them from distress/misery IPs. To date, however, the majority of existing research examining reactivity to U-threat has been within individuals with panic disorder and major depressive disorder (MDD) and no prior study has directly tested this hypothesis across multiple IPs. The current study therefore explored whether heightened reactivity to U-threat is a psychophysiological indicator of fear-based psychopathology across five groups: current 1) social anxiety disorder (SAD), 2) specific phobia (SP), 3) generalized anxiety disorder (GAD), 4) MDD, and 5) individuals with no history of psychopathology (controls). All 160 adults completed a well-validated threat-of-shock task designed to probe responses to predictable (P-) and U-threat. Startle eyeblink potentiation was recorded as an index of aversive arousal. Results indicated that individuals with SAD and SP evidenced greater startle potentiation to U-threat, but not P-threat, relative to individuals with GAD, MDD and controls (who did not differ). The current findings, along with the prior panic disorder and MDD literature, suggest that heightened reactivity to U-threat is a psychophysiological indicator of fear-based disorders and could represent a neurobiological organizing principle for internalizing psychopathology. The findings also suggest that individuals with fear disorders generally display a hypersensitivity to uncertain aversive events, which could contribute to their psychopathology. PMID:27868423
The CRH1 antagonist GSK561679 increases human fear but not anxiety as assessed by startle.
Grillon, Christian; Hale, Elizabeth; Lieberman, Lynne; Davis, Andrew; Pine, Daniel S; Ernst, Monique
2015-03-13
Fear to predictable threat and anxiety to unpredictable threat reflect distinct processes mediated by different brain structures, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), respectively. This study tested the hypothesis that the corticotropin-releasing factor (CRF1) antagonist GSK561679 differentially reduces anxiety but increases fear in humans. A total of 31 healthy females received each of four treatments: placebo, 50 mg GSK561679 (low-GSK), 400 mg GSK561679 (high-GSK), and 1 mg alprazolam in a crossover design. Participants were exposed to three conditions during each of the four treatments. The three conditions included one in which predictable aversive shocks were signaled by a cue, a second during which shocks were administered unpredictably, and a third condition without shock. Fear and anxiety were assessed using the acoustic startle reflex. High-GSK had no effect on startle potentiation during unpredictable threat (anxiety) but increased startle potentiation during the predictable condition (fear). Low-GSK did not affect startle potentiation across conditions. Consistent with previous findings, alprazolam reduced startle potentiation during unpredictable threat but not during predictable threat. The increased fear by high-GSK replicates animal findings and suggests a lift of the inhibitory effect of the BNST on the amygdala by the CRF1 antagonist.
Auclair, Agnès L; Galinier, Alexandra; Besnard, Joël; Newman-Tancredi, Adrian; Depoortère, Ronan
2007-07-01
Prepulse inhibition (PPI) of the startle reflex has been extensively studied because it is disrupted in several psychiatric diseases, most notably schizophrenia. In rats, and to a lesser extent, in humans, PPI can be diminished by dopamine (DA) D(2)/D(3) and serotonin 5-HT(1A) receptor agonists. A novel class of potential antipsychotics (SSR181507, bifeprunox, and SLV313) possess partial agonist/antagonist properties at D(2) receptors and various levels of 5-HT(1A) activation. It thus appeared warranted to assess, in Sprague-Dawley rats, the effects of these antipsychotics on basal PPI. SSR181507, sarizotan, and bifeprunox decreased PPI, with a near-complete abolition at 2.5-10 mg/kg; SLV313 had a significant effect at 0.16 mg/kg only. Co-treatment with the 5-HT(1A) receptor antagonist WAY100,635 (0.63 mg/kg) showed that the 5-HT(1A) agonist activity of SSR181507 was responsible for its effect. By contrast, antipsychotics with low affinity and/or efficacy at 5-HT(1A) receptors, such as aripiprazole (another DA D(2)/D(3) and 5-HT(1A) ligand), and established typical and atypical antipsychotics (haloperidol, clozapine, risperidone, olanzapine, quetiapine, and ziprasidone) had no effect on basal PPI (0.01-2.5 to 2.5-40 mg/kg). The present data demonstrate that some putative antipsychotics with pronounced 5-HT(1A) agonist activity, coupled with partial agonist activity at DA D(2) receptors, markedly diminish PPI of the startle reflex in rats. These data raise the issue of the influence of such compounds on sensorimotor gating in humans.
Psychophysiological response patterns and risky sexual behavior in heterosexual and homosexual men.
Janssen, Erick; Goodrich, David; Petrocelli, John V; Bancroft, John
2009-08-01
The past few years have seen an increased awareness of the relevance of studying the role of sexual response, emotion, and traits such as sensation seeking and the propensity for sexual inhibition in risky sexual behavior. The current study examined the association between self-reported sexual risk taking and psychophysiological response patterns in 76 heterosexual and homosexual men. Measures included genital, electrodermal, startle eyeblink, and cardiovascular responses, and stimuli included threatening (depicting coercive sexual interactions) and nonthreatening (depicting consensual sexual interactions) sexual film excerpts. Sexual risk taking was hypothesized to be associated with decreased inhibition of sexual arousal and hyporeactive affective and autonomic responses to threatening sexual stimuli. Controlling for age and number of sexual partners in the past year, sexual risk taking (number of partners during the past 3 years with whom no condoms were used) was found to be associated with stronger genital responses and smaller eyeblink responses to both threatening and nonthreatening sexual stimuli. Correlations between genital and subjective sexual arousal were relatively low. Sexual risk taking was related to sensation seeking but not to the propensity for sexual inhibition. The findings suggest that risky sexual behavior may involve a role for psychophysiological mechanisms that are specific to sex as well as for ones that are associated with more general approach/avoidance response tendencies.
The Onset of Puberty: Effects on the Psychophysiology of Defensive and Appetitive Motivation
Quevedo, Karina; Benning, Stephen D; Gunnar, Megan R; Dahl, Ronald E
2010-01-01
We examined puberty-specific effects on affect-related behavior and on the psychophysiology of defensive and appetitive motivation while controlling for age. Adolescents (N=94, ages=12 and 13 years), viewed 75 pictures (IAPS: pleasant, neutral and aversive) while listening to auditory probes. Startle response and postauricular (PA) reflex were collected as measures of defensive and appetitive motivation respectively. Pubertal status and measures of anxiety/stress reaction and sensation/thrill seeking were obtained. Mid/late pubertal adolescents showed enhanced startle amplitude across all picture valences. A puberty by valence interaction revealed that mid/late pubertal adolescents showed appetitive potentiation of the PA, while pre/early pubertal adolescents showed no modulation of the PA reflex. Mid/late pubertal adolescents also scored significantly higher on measures of sensation/thrill seeking than did their pre/early pubertal peers and puberty moderated the association between psychophysiology and behavioral measures, suggesting that it plays a role in reorganizing defensive and appetitive motivational systems. PMID:19144221
Moral identity and emotion in athletes.
Kavussanu, Maria; Willoughby, Adrian; Ring, Christopher
2012-12-01
The purpose of this study was to investigate the effects of moral identity on physiological responses to affective pictures, namely, the startle blink reflex and pain-related evoked potential. Male (n = 48) and female (n = 46) athletes participating in contact team sports were randomly assigned to either a moral identity group or a non-moral identity group and viewed a series of unpleasant, neutral, and pleasant sport-specific pictures. During picture viewing, a noxious electrocutaneous stimulus was delivered as the startle probe and the startle blink and pain-related evoked potential were measured. Upon completion of physiological measures, participants reviewed the pictures and rated them for valence and arousal. ANOVAs revealed that participants in the moral identity group displayed larger startle blinks and smaller pain-related potentials than did those in the non-moral identity group across all picture valence categories. However, the difference in the magnitude of startle blinks between the moral and non-moral identity groups was larger in response to unpleasant than pleasant and neutral pictures. Our findings suggest that moral identity affects physiological responses to sport-specific affective pictures, thereby providing objective evidence for the link between moral identity and emotion in athletes.
Nelson, Brady D; Hajcak, Greg
2017-08-01
Predictability is an important characteristic of threat that impacts defensive motivation and attentional engagement. Supporting research has primarily focused on actual threat (e.g., shocks), and it is unclear whether the predictability of less intense threat (e.g., unpleasant pictures) similarly affects motivation and attention. The present study utilized a within-subject design and examined defensive motivation (startle reflex and self-reported anxiety) and attention (probe N100 and P300) in anticipation of shocks and unpleasant pictures during a no, predictable, and unpredictable threat task. This study also examined the impact of predictability on the P300 to shocks and late positive potential (LPP) to unpleasant pictures. The startle reflex and self-reported anxiety were increased in anticipation of both types of threat relative to no threat. Furthermore, startle potentiation in anticipation of unpredictable threat was greater for shocks compared to unpleasant pictures, but there was no difference for predictable threat. The probe N100 was enhanced in anticipation of unpredictable threat relative to predictable threat and no threat, and the probe P300 was suppressed in anticipation of predictable and unpredictable threat relative to no threat. These effects did not differ between the shock and unpleasant picture trials. Finally, the P300 and early LPP component were increased in response to unpredictable relative to predictable shocks and unpleasant pictures, respectively. The present study suggests that the unpredictability of unpleasant pictures increases defensive motivation, but to a lesser degree relative to actual threat. Moreover, unpredictability enhances attentional engagement in anticipation of, and in reaction to, both types of threat. © 2017 Society for Psychophysiological Research.
Heekeren, K; Neukirch, A; Daumann, J; Stoll, M; Obradovic, M; Kovar, K-A; Geyer, M A; Gouzoulis-Mayfrank, E
2007-05-01
Patients with schizophrenia exhibit diminished prepulse inhibition (PPI) of the acoustic startle reflex and deficits in the attentional modulation of PPI. Pharmacological challenges with hallucinogens are used as models for psychosis in both humans and animals. Remarkably, in contrast to the findings in schizophrenic patients and in animal hallucinogen models of psychosis, previous studies with healthy volunteers demonstrated increased levels of PPI after administration of low to moderate doses of either the antiglutamatergic hallucinogen ketamine or the serotonergic hallucinogen psilocybin. The aim of the present study was to investigate the influence of moderate and high doses of the serotonergic hallucinogen N,N-dimethyltryptamine (DMT) and the N-methyl-D-aspartate antagonist S-ketamine on PPI and its attentional modulation in humans. Fifteen healthy volunteers were included in a double-blind cross-over study with two doses of DMT and S-ketamine. Effects on PPI and its attentional modulation were investigated. Nine subjects completed both experimental days with the two doses of both drugs. S-ketamine increased PPI in both dosages, whereas DMT had no significant effects on PPI. S-ketamine decreased and DMT tended to decrease startle magnitude. There were no significant effects of either drug on the attentional modulation of PPI. In human experimental hallucinogen psychoses, and even with high, clearly psychotogenic doses of DMT or S-ketamine, healthy subjects failed to exhibit the predicted attenuation of PPI. In contrast, PPI was augmented and the startle magnitude was decreased after S-ketamine. These data point to important differences between human hallucinogen models and both animal hallucinogen models of psychosis and naturally occurring schizophrenia.
The CRH1 Antagonist GSK561679 Increases Human Fear But Not Anxiety as Assessed by Startle
Grillon, Christian; Hale, Elizabeth; Lieberman, Lynne; Davis, Andrew; Pine, Daniel S; Ernst, Monique
2015-01-01
Fear to predictable threat and anxiety to unpredictable threat reflect distinct processes mediated by different brain structures, the central nucleus of the amygdala and the bed nucleus of the stria terminalis (BNST), respectively. This study tested the hypothesis that the corticotropin-releasing factor (CRF1) antagonist GSK561679 differentially reduces anxiety but increases fear in humans. A total of 31 healthy females received each of four treatments: placebo, 50 mg GSK561679 (low-GSK), 400 mg GSK561679 (high-GSK), and 1 mg alprazolam in a crossover design. Participants were exposed to three conditions during each of the four treatments. The three conditions included one in which predictable aversive shocks were signaled by a cue, a second during which shocks were administered unpredictably, and a third condition without shock. Fear and anxiety were assessed using the acoustic startle reflex. High-GSK had no effect on startle potentiation during unpredictable threat (anxiety) but increased startle potentiation during the predictable condition (fear). Low-GSK did not affect startle potentiation across conditions. Consistent with previous findings, alprazolam reduced startle potentiation during unpredictable threat but not during predictable threat. The increased fear by high-GSK replicates animal findings and suggests a lift of the inhibitory effect of the BNST on the amygdala by the CRF1 antagonist. PMID:25430779
Ferrari, A; Sghedoni, A; Alboresi, S; Pedroni, E; Lombardi, F
2014-12-01
Recently authors have begun to emphasize the non-motor aspects of Cerebral Palsy and their influence on motor control and recovery prognosis. Much has been written about single clinical signs (i.e., startle reaction) but so far no definitions of the six perceptual signs presented in this study have appeared in literature. This study defines 6 signs (startle reaction, upper limbs in startle position, frequent eye blinking, posture freezing, averted eye gaze, grimacing) suggestive of perceptual disorders in children with cerebral palsy and measures agreement on sign recognition among independent observers and consistency of opinions over time. Observational study with both cross-sectional and prospective components. Fifty-six videos presented to observers in random order. Videos were taken from 19 children with a bilateral form of cerebral palsy referred to the Children Rehabilitation Unit in Reggio Emilia. Thirty-five rehabilitation professionals from all over Italy: 9 doctors and 26 physiotherapists. Measure of agreement among 35 independent observers was compiled from a sample of 56 videos. Interobserver reliability was determined using the K index of Fleiss and reliability intra-observer was calculated by the Spearman correlation index between ranks (rho - ρ). Percentage of agreement between observers and Gold Standard was used as criterion validity. Interobserver reliability was moderate for startle reaction, upper limb in startle position, adverted eye gaze and eye-blinking and fair for posture freezing and grimacing. Intraobserver reliability remained consistent over time. Criterion validity revealed very high agreement between independent observer evaluation and gold standard. Semiotics of perceptual disorders can be used as a specific and sensitive instrument in order to identify a new class of patients within existing heterogeneous clinical types of bilateral cerebral palsy forms and could help clinicians in identifying functional prognosis. To provide clinicians with a definition of 6 clinical signs found in children with cerebral palsy in routine rehabilitation settings. Future research should explore the link between these signs and motor prognosis (i.e., time to independent walking).
Liska, Grant M; Lee, Jea-Young; Xu, Kaya; Sanberg, Paul R; Borlongan, Cesario V
2018-05-21
An exaggerated acoustic startle reflex (ASR) is a clinical indicator of anxiety disorders, such as post-traumatic stress disorder (PTSD). Given the prevalence of PTSD following traumatic brain injury (TBI), we studied the effects of TBI on ASR. Adult Sprague Dawley rats exposed to moderate controlled cortical impact injury model of TBI displayed suppression of ASR intensity and sensitivity. As patients with PTSD have been shown to display hyperactive startle responses, the present discrepant observation of TBI-induced suppression of ASR has clinical implications, in that the reduced, instead of elevated, startle response in patients with comorbid TBI/PTSD could be owing to a masking effect of TBI.This is an open-access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. http://creativecommons.org/licenses/by-nc-nd/4.0/.
Baas, Johanna M P; Heitland, Ivo
2015-12-01
In everyday life, aversive events are usually associated with certain predictive cues. Normally, the acquisition of these contingencies enables organisms to appropriately respond to threat. Presence of a threat cue clearly signals 'danger', whereas absence of such cues signals a period of 'safety'. Failure to identify threat cues may lead to chronic states of anxious apprehension in the context in which the threat has been imminent, which may be instrumental in the pathogenesis of anxiety disorders. In this study, existing data from 150 healthy volunteers in a cue and context virtual reality fear conditioning paradigm were reanalyzed. The aim was to further characterize the impact of cue acquisition and trait anxiety, and of a single nucleotide polymorphism in the serotonin 1A receptor gene (5-HTR1A, rs6295), on cued fear and contextual anxiety before and after fear contingencies were explicitly introduced. Fear conditioned responding was quantified with fear potentiation of the eyeblink startle reflex and subjective fear ratings. First, we replicated previous findings that the inability to identify danger cues during acquisition leads to heightened anxious apprehension in the threat context. Second, in subjects who did not identify the danger cue initially, contextual fear was associated with trait anxiety after the contingencies were explicitly instructed. Third, genetic variability within 5-HTR1A (rs6295) was associated with contextual fear independent of awareness or trait anxiety. These findings confirm that failure to acquire cue contingencies impacts contextual fear responding, in association with trait anxiety. The observed 5-HTR1A effect is in line with models of anxiety, but needs further replication. Copyright © 2014 Elsevier B.V. All rights reserved.
Mereish, Ethan H; Padovano, Hayley Treloar; Wemm, Stephanie; Miranda, Robert
2018-07-01
Drug-related cues evoke craving and stimulate motivational systems in the brain. The acoustic startle reflex captures activation of these motivational processes and affords a unique measure of reactivity to drug cues. This study examined the effects of cannabis-related cues on subjective and eye blink startle reactivity in the human laboratory and tested whether these effects predicted youth's cue-elicited cannabis craving in the natural environment. Participants were 55 frequent cannabis users, ages 16 to 24 years (M = 19.9, SD = 1.9; 55% male; 56% met criteria for cannabis dependence), who were recruited from a clinical trial to reduce cannabis use. Eye blink electromyographic activity was recorded in response to acoustic probes that elicited startle reactivity while participants viewed pleasant, unpleasant, neutral, and cannabis picture cues. Following the startle assessment, participants completed an ecological momentary assessment protocol that involved repeated assessments of cue-elicited craving in real time in their real-world environments. Multilevel models included the presence or absence of visible cannabis cues in the natural environment, startle magnitude, and the cross-level interaction of cues by startle to test whether cue-modulated startle reactivity in the laboratory was associated with cue-elicited craving in the natural environment. Analyses showed that cannabis-related stimuli evoked an appetitive startle response pattern in the laboratory, and this effect was associated with increased cue-elicited craving in the natural environment, b = - 0.15, p = .022, 95% CI [- 0.28, - 0.02]. Pleasant stimuli also evoked an appetitive response pattern, but in this case, blunted response was associated with increased cue-elicited craving in the natural environment, b = 0.27, p < .001, 95% CI [0.12, 0.43]. Our findings support cue-modulated startle reactivity as an index of the phenotypic expression of cue-elicited cannabis craving.
Gorka, Stephanie M; Lieberman, Lynne; Shankman, Stewart A; Phan, K Luan
2017-01-01
Heightened reactivity to uncertain threat (U-threat) is an important individual difference factor that may characterize fear-based internalizing psychopathologies (IPs) and distinguish them from distress/misery IPs. To date, however, the majority of existing research examining reactivity to U-threat has been within individuals with panic disorder and major depressive disorder (MDD) and no prior study has directly tested this hypothesis across multiple IPs. The current study therefore explored whether heightened reactivity to U-threat is a psychophysiological indicator of fear-based psychopathology across 5 groups: current (a) social anxiety disorder (SAD); (b) specific phobia (SP); (c) generalized anxiety disorder (GAD); (d) MDD; and (c) individuals with no history of psychopathology (controls). All 160 adults completed a well-validated threat-of-shock task designed to probe responses to predictable (P-) and U-threat. Startle eyeblink potentiation was recorded as an index of aversive arousal. Results indicated that individuals with SAD and SP evidenced greater startle potentiation to U-threat, but not P-threat, relative to individuals with GAD, MDD, and controls (who did not differ). The current findings, along with the prior panic disorder and MDD literature, suggest that heightened reactivity to U-threat is a psychophysiological indicator of fear-based disorders and could represent a neurobiological organizing principle for internalizing psychopathology. The findings also suggest that individuals with fear disorders generally display a hypersensitivity to uncertain aversive events, which could contribute to their psychopathology. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Panayiotou, Georgia; Constantinou, Elena
2017-09-01
Alexithymia is associated with deficiencies in recognizing and expressing emotions and impaired emotion regulation, though few studies have verified the latter assertion using objective measures. This study examined startle reflex modulation by fearful imagery and its associations with heart rate variability in alexithymia. Fifty-four adults (27 alexithymic) imagined previously normed fear scripts. Startle responses were assessed during baseline, first exposure, and reexposure. During first exposure, participants, in separate trials, engaged in either shallow or deep emotion processing, giving emphasis on descriptive or affective aspects of imagery, respectively. Resting heart rate variability was assessed during 2 min of rest prior to the experiment, with high alexithymic participants demonstrating significantly higher LF/HF (low frequency/high frequency) ratio than controls. Deep processing was associated with nonsignificantly larger and faster startle responses at first exposure for alexithymic participants. Lower LF/HF ratio, reflecting higher parasympathetic cardiac activity, predicted greater startle amplitude habituation for alexithymia but lower habituation for controls. Results suggest that, when exposed to prolonged threat, alexithymics may adjust poorly, showing a smaller initial defensive response but slower habituation. This pattern seems related to their low emotion regulation ability as indexed by heart rate variability. © 2017 Society for Psychophysiological Research.
Naumenko, Vladimir S; Bazovkina, Daria V; Morozova, Maryana V; Popova, Nina K
2013-08-29
Prepulse inhibition (PPI), the reduction in acoustic startle reflex when it is preceded by weak prepulse stimuli, is a measure of critical to normal brain functioning sensorimotor gating. PPI deficit was shown in a variety of psychiatric disorders including schizophrenia, and in DBA/2J mouse strain. In the current study, we examined the effects of brain-derived (BDNF) and glial cell line-derived (GDNF) neurotrophic factors on acoustic startle response and PPI in DBA/2J mice. It was found that BDNF (300 ng, i.c.v.) significantly increased amplitude of startle response and restored disrupted PPI in 7 days after acute administration. GDNF (800 ng, i.c.v.) did not produce significant alteration neither in amplitude of startle response nor in PPI in DBA/2J mice. The reversal effect of BDNF on PPI deficit was unusually long-lasting: significant increase in PPI was found 1.5 months after single acute BDNF administration. Long-term ameliorative effect BDNF on disrupted PPI suggested the implication of epigenetic mechanism in BDNF action on neurogenesis. BDNF rather than GDNF could be a perspective drug for the treatment of sensorimotor gating impairments. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Matsuo, Junko; Ota, Miho; Hidese, Shinsuke; Teraishi, Toshiya; Hori, Hiroaki; Ishida, Ikki; Hiraishi, Moeko; Kunugi, Hiroshi
2018-01-01
Prepulse inhibition (PPI) of the acoustic startle reflex is an operational measure of sensorimotor gating. The findings on PPI deficits in bipolar disorder (BD) are inconsistent among studies due to various confounding factors such as gender. This study aimed to assess sensorimotor gating deficits in patients with BD stratified by gender and state (depressed/euthymic), and to explore related clinical variables. Subjects were 106 non-manic BD patients (26 BD I and 80 BD II; 63 with depression and 43 euthymic) and 232 age-, gender-, and ethnicity-matched (Japanese) healthy controls. Depression severity was assessed using the Hamilton Depression Rating Scale-21. The electromyographic activity of the orbicularis oculi muscle was measured by a computerized startle reflex test unit. Startle magnitude, habituation, and PPI were compared among the three clinical groups: depressed BD, euthymic BD, and healthy controls. In a second analysis, patients were divided into four groups using the quartile PPI levels of controls of each gender, and a ratio of the low-PPI group (<1st quartile of controls) was compared. Effects of psychosis and medication status were examined by the Mann-Whitney U test. Clinical correlates such as medication dosage and depression severity with startle measurements were examined by Spearman's correlation. Male patients with depression, but not euthymic male patients, showed significantly lower PPI at a prepulse of 86 dB and 120 ms lead interval than did male controls. More than half of the male patients with depression showed low-PPI. In contrast, PPI in female patients did not differ from that in female controls in either the depressed or euthymic state. Female patients with active psychosis showed significantly lower PPI than those without psychosis. Female patients on typical antipsychotics had significantly lower PPI, than those without such medication. PPI showed a significant positive correlation with lamotrigine dosage in male patients and lithium dosage in female patients. These findings suggest that sensorimotor gating is impaired in male BD patients with depression. However, we obtained no evidence for such abnormalities in female BD patients except for those with current psychosis. The observed associations between medication and startle measurements warrant further investigation.
Increased auditory startle reflex in children with functional abdominal pain.
Bakker, Mirte J; Boer, Frits; Benninga, Marc A; Koelman, Johannes H T M; Tijssen, Marina A J
2010-02-01
To test the hypothesis that children with abdominal pain-related functional gastrointestinal disorders have a general hypersensitivity for sensory stimuli. Auditory startle reflexes were assessed in 20 children classified according to Rome III classifications of abdominal pain-related functional gastrointestinal disorders (13 irritable bowel syndrome [IBS], 7 functional abdominal pain syndrome; mean age, 12.4 years; 15 girls) and 23 control subjects (14 girls; mean age, 12.3 years) using a case-control design. The activity of 6 left-sided muscles and the sympathetic skin response were obtained by an electromyogram. We presented sudden loud noises to the subjects through headphones. Both the combined response of 6 muscles and the blink response proved to be significantly increased in patients with abdominal pain compared with control subjects. A significant increase of the sympathetic skin response was not found. Comorbid anxiety disorders (8 patients with abdominal pain) or Rome III subclassification did not significantly affect these results. This study demonstrates an objective hyperresponsivity to nongastrointestinal stimuli. Children with abdominal pain-related functional gastrointestinal disorders may have a generalized hypersensitivity of the central nervous system. Copyright 2010 Mosby, Inc. All rights reserved.
Round window closure affects cochlear responses to suprathreshold stimuli.
Cai, Qunfeng; Whitcomb, Carolyn; Eggleston, Jessica; Sun, Wei; Salvi, Richard; Hu, Bo Hua
2013-12-01
The round window acts as a vent for releasing inner ear pressure and facilitating basilar membrane vibration. Loss of this venting function affects cochlear function, which leads to hearing impairment. In an effort to identify functional changes that might be used in clinical diagnosis of round window atresia, the current investigation was designed to examine how the cochlea responds to suprathreshold stimuli following round window closure. Prospective, controlled, animal study. A rat model of round window occlusion (RWO) was established. With this model, the thresholds of auditory brainstem responses (ABR) and the input/output (IO) functions of distortion product otoacoustic emissions (DPOAEs) and acoustic startle responses were examined. Round window closure caused a mild shift in the thresholds of the auditory brainstem response (13.5 ± 9.1 dB). It also reduced the amplitudes of the distortion product otoacoustic emissions and the slope of the input/output functions. This peripheral change was accompanied by a significant reduction in the amplitude, but not the threshold, of the acoustic startle reflex, a motor response to suprathreshold sounds. In addition to causing mild increase in the threshold of the auditory brainstem response, round window occlusion reduced the slopes of both distortion product otoacoustic emissions and startle reflex input/output functions. These changes differ from those observed for typical conductive or sensory hearing loss, and could be present in patients with round window atresia. However, future clinical observations in patients are needed to confirm these findings. Copyright © 2013 The American Laryngological, Rhinological and Otological Society, Inc.
The startle paradigm in a forensic psychiatric setting: elucidating psychopathy.
Loomans, Max M; Tulen, Joke H M; van Marle, Hjalmar J C
2015-02-01
Most people who meet the diagnostic criteria for anti-social personality disorder (ASPD) do not meet the criteria for psychopathy. A differentiating feature is affective-interpersonal style. Eye blink startle reflex paradigms have been used to study affect. The aim of this study is to explore an eye blink startle paradigm as a means of distinguishing between men with both ASPD and psychopathy, and men with ASPD alone. One hundred and thirty-six men were recruited as follows: 31 patients with ASPD and a Psychopathy Checklist-Revised (PCL-R) score of 26 or more, 22 patients with ASPD and a PCL-R score of 25 or less, 50 forensic hospital employees and 33 general population men, none in the latter two groups having abnormal personality traits. Each was presented with 16 pleasant, 16 unpleasant and 16 neutral pictures. Acoustic probes were presented during each category at 300, 800, 1300 and 3800 milliseconds (ms) after picture onset. Eye blink response was measured by electromyography. Overall, both patient groups showed significantly smaller eye blink responses to the startle stimuli compared with the community controls. Both the latter and the ASPD group showed the expected increase in eye blink response at longer startle latencies to unpleasant pictures than pleasant pictures, but this was not present either in the group with psychopathy or in the forensic hospital employees. With increasing startle latency onset, eye blink amplitude increased significantly in both the healthy comparison groups and the ASPD group, but not in the group with psychopathy. We replicated eye blink startle modulation deficiencies among men with psychopathy. We confirmed that the psychopathy and ASPD groups could be distinguished by startle stimulus onset asynchrony, but this pattern was also seen in one healthy group - the forensic hospital employees. This suggests a case for more research with more diverse comparison groups and more differentiation of personality traits before drawing definitive conclusions about distinctive startle response patterns among men with psychopathy. Copyright © 2014 John Wiley & Sons, Ltd.
Popova, N K; Tibeikina, M A
2010-06-01
Immobility and hyperthermia induced by unavoidable stress imposed by the tail suspension test (TST) and the acoustic startle reaction were assessed in mice of 11 inbred strains and in Tg8 mice, which have genetic knockout of MAO A. Sharp genotypic differences in immobility were seen, while there was no correlation with the hyperthermic response to the TST. A correlation was found between the extent of immobility in the TST and the startle reaction. Studies of 11 strains of mice revealed a positive correlation between the duration of immobility in the TST and the Porsolt "despair test." Genetic knockout of MAO A, one of the key enzymes in catecholamine and serotonin metabolism in the brain, weakened the startle reaction and TST-induced hyperthermia but had no significant effect on the immobility of Tg8 mice, which provides evidence of differences in the neurochemical regulation of these reactions. These data provide grounds for using the TST as a "dry" Porsolt test and identify TST-induced hyperthermia as a model for reactions to unavoidable stress.
The gap-startle paradigm to assess auditory temporal processing: Bridging animal and human research.
Fournier, Philippe; Hébert, Sylvie
2016-05-01
The gap-prepulse inhibition of the acoustic startle (GPIAS) paradigm is the primary test used in animal research to identify gap detection thresholds and impairment. When a silent gap is presented shortly before a loud startling stimulus, the startle reflex is inhibited and the extent of inhibition is assumed to reflect detection. Here, we applied the same paradigm in humans. One hundred and fifty-seven normal-hearing participants were tested using one of five gap durations (5, 25, 50, 100, 200 ms) in one of the following two paradigms-gap-embedded in or gap-following-the continuous background noise. The duration-inhibition relationship was observable for both conditions but followed different patterns. In the gap-embedded paradigm, GPIAS increased significantly with gap duration up to 50 ms and then more slowly up to 200 ms (trend only). In contrast, in the gap-following paradigm, significant inhibition-different from 0--was observable only at gap durations from 50 to 200 ms. The finding that different patterns are found depending on gap position within the background noise is compatible with distinct mechanisms underlying each of the two paradigms. © 2016 Society for Psychophysiological Research.
Measuring Anxious Responses to Predictable and Unpredictable Threat in Children and Adolescents
ERIC Educational Resources Information Center
Schmitz, Anja; Merikangas, Kathleen; Swendsen, Haruka; Cui, Lihong; Heaton, Leann; Grillon, Christian
2011-01-01
Research has highlighted the need for new methods to assess emotions in children on multiple levels to gain better insight into the complex processes of emotional development. The startle reflex is a unique translational tool that has been used to study physiological processes during fear and anxiety in rodents and in human participants. However,…
Interaction of threat and verbal working memory in adolescents.
Patel, Nilam; Vytal, Katherine; Pavletic, Nevia; Stoodley, Catherine; Pine, Daniel S; Grillon, Christian; Ernst, Monique
2016-04-01
Threat induces a state of sustained anxiety that can disrupt cognitive processing, and, reciprocally, cognitive processing can modulate an anxiety response to threat. These effects depend on the level of cognitive engagement, which itself varies as a function of task difficulty. In adults, we recently showed that induced anxiety impaired working memory accuracy at low and medium but not high load. Conversely, increasing the task load reduced the physiological correlates of anxiety (anxiety-potentiated startle). The present work examines such threat-cognition interactions as a function of age. We expected threat to more strongly impact working memory in younger individuals by virtue of putatively restricted cognitive resources and weaker emotion regulation. This was tested by examining the influence of age on the interaction of anxiety and working memory in 25 adolescents (10 to 17 years) and 25 adults (22 to 46 years). Working memory load was manipulated using a verbal n-back task. Anxiety was induced using the threat of an aversive loud scream and measured via eyeblink startle. Findings revealed that, in both age groups, accuracy was lower during threat than safe conditions at low and medium but not high load, and reaction times were faster during threat than safe conditions at high load but did not differ at other loads. Additionally, anxiety-potentiated startle was greater during low and medium than high load. Thus, the interactions of anxiety with working memory appear similar in adolescents and adults. Whether these similarities reflect common neural mechanisms would need to be assessed using functional neuroimaging. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Matsuo, Junko; Ota, Miho; Hori, Hiroaki; Hidese, Shinsuke; Teraishi, Toshiya; Ishida, Ikki; Hiraishi, Moeko; Kunugi, Hiroshi
2016-11-01
Deficits in sensorimotor gating, as measured with prepulse inhibition (PPI), have been considered an endophenotype of schizophrenia. However, the question remains whether these deficits are related to current symptoms. This single site study aimed to explore clinical features related to the modulation of startle reflex in a large sample of Japanese patients with schizophrenia (DSM-IV). The subjects comprised 181 patients and 250 healthy controls matched for age and sex. Schizophrenia symptoms were assessed with the Positive and Negative Syndrome Scale (PANSS). Startle reflex to acoustic stimuli was recorded using a startle stimulus of 115 dB and a prepulse of four different conditions (intensity: 86 dB or 90 dB; lead interval: 60 ms or 120 ms). Patients exhibited significantly reduced startle magnitude (p < 0.001), habituation (p = 0.001), and PPI (90 dB, 60 ms, p = 0.016; 90 dB, 120 ms, p = 0.001) compared with controls. Patients of both sexes exhibited significantly lower habituation and PPI (90 dB, 120 ms) compared with the same sex controls. We could not detect a significant correlation with any clinical variable in the entire patients, however, when men and women were examined separately, there was a negative correlation with the PANSS cognitive domain (ρ = -0.33, p = 0.008) in men, but not in women. Moreover, when patients were subdivided into four clusters, two clusters with high positive symptoms showed significant PPI deficits in men. Our results suggest that sensorimotor gating is impaired in schizophrenia of both sexes, and PPI deficits may be related to thought disturbance and disorganization in male patients with schizophrenia. Copyright © 2016 Elsevier Ltd. All rights reserved.
Food deprivation and emotional reactions to food cues: implications for eating disorders.
Drobes, D J; Miller, E J; Hillman, C H; Bradley, M M; Cuthbert, B N; Lang, P J
2001-01-01
Two studies examined emotional responding to food cues. In experiment 1, normal college students were assigned to 0-, 6- or 24-h of food deprivation prior to presentations of standard emotional and food-related pictures. Food deprivation had no impact on responses elicited by standard emotional pictures. However, subjective and psychophysiological reactions to food pictures were affected significantly by deprivation. Importantly, food-deprived subjects viewing food pictures showed an enhanced startle reflex and increased heart rate. Experiment 2 replicated the food deprivation effects from experiment 1, and examined participants reporting either a habitual pattern of restrained (anorexia-like) or binge (bulimia-like) eating. Food-deprived and binge eater groups showed startle potentiation to food cues, and rated these stimuli as more pleasant, relative to restrained eaters and control subjects. The results are interpreted from the perspective that startle modulation reflects activation of defensive or appetitive motivation. Implications of the data for understanding eating disorders are considered.
Understanding the pathophysiology of reflex epilepsy using simultaneous EEG-fMRI.
Sandhya, Manglore; Bharath, Rose Dawn; Panda, Rajanikant; Chandra, S R; Kumar, Naveen; George, Lija; Thamodharan, A; Gupta, Arun Kumar; Satishchandra, P
2014-03-01
Measuring neuro-haemodynamic correlates in the brain of epilepsy patients using EEG-fMRI has opened new avenues in clinical neuroscience, as these are two complementary methods for understanding brain function. In this study, we investigated three patients with drug-resistant reflex epilepsy using EEG-fMRI. Different types of reflex epilepsy such as eating, startle myoclonus, and hot water epilepsy were included in the study. The analysis of EEG-fMRI data was based on the visual identification of interictal epileptiform discharges on scalp EEG. The convolution of onset time and duration of these epilepsy spikes was estimated, and using these condition-specific effects in a general linear model approach, we evaluated activation of fMRI. Patients with startle myoclonus epilepsy experienced epilepsy in response to sudden sound or touch, in association with increased delta and theta activity with a spike-and-slow-wave pattern of interictal epileptiform discharges on EEG and fronto-parietal network activation pattern on SPECT and EEG-fMRI. Eating epilepsy was triggered by sight or smell of food and fronto-temporal discharges were noted on video-EEG (VEEG). Similarly, fronto-temporo-parietal involvement was noted on SPECT and EEG-fMRI. Hot water epilepsy was triggered by contact with hot water either in the bath or by hand immersion, and VEEG showed fronto-parietal involvement. SPECT and EEG fMRI revealed a similar fronto-parietal-occipital involvement. From these results, we conclude that continuous EEG recording can improve the modelling of BOLD changes related to interictal epileptic activity and this can thus be used to understand the neuro-haemodynamic substrates involved in reflex epilepsy.
Vrana, Scott R; Calhoun, Patrick S; McClernon, F Joseph; Dennis, Michelle F; Lee, Sherman T; Beckham, Jean C
2013-12-01
Cigarette smokers smoke in part because nicotine helps regulate attention. Prepulse inhibition (PPI) of the startle reflex is a measure of early attentional gating that is reduced in abstinent smokers and in groups with attention regulation difficulties. Attention difficulties are found in people with posttraumatic stress disorder (PTSD). The aim of this study is to assess whether smoking and abstinence differentially affect the startle response and PPI in smokers with and without PTSD. Startle response and PPI (prepulses at 60, 120, or 240 ms) were measured in smokers with (N = 39) and without (N = 61) PTSD, while smoking and again while abstinent. Participants with PTSD produced both larger magnitude and faster latency startle responses than controls. Across groups, PPI was greater when smoking than when abstinent. The PTSD and control group exhibited different patterns of PPI across prepulse intervals when smoking and when abstinent. Older age was associated with reduced PPI, but only when abstinent from smoking. The effects of PTSD on startle magnitude and of smoking on PPI replicate earlier studies. The different pattern of PPI exhibited in PTSD and control groups across prepulse intervals, while smoking and abstinent suggests that previous research on smoking and PPI has been limited by not including longer prepulse intervals, and that nicotine may affect the time course as well as increasing the level of PPI. The reduced PPI among older participants during abstinence suggests that nicotine may play a role in maintaining attention in older smokers, which may motivate continued smoking in older individuals.
Weber, Maruschka; Schmitt, Angelika; Wischmeyer, Erhard; Döring, Frank
2008-09-01
The mammalian startle reflex is a fast response to sudden intense sensory stimuli that can be increased by anxiety or decreased by reward. The cellular integration of sensory and modulatory information takes place in giant neurones of the caudal pontine reticular formation (PnC). The startle reflex is known to be enhanced by 5-hydroxytryptamine (5-HT); however, signalling mechanisms that change the excitability of the PnC giant neurones are poorly understood. Possible molecular candidates are two-pore-domain K(+) (K(2)P) channels that generate a variable K(+) background conductance and control neuronal excitability upon activation of G-protein-coupled receptors. We demonstrate by in situ hybridization that the K(2)P channel TASK-3 is substantially expressed in PnC giant neurones. Brain slice recordings revealed a corresponding background K(+) current in these cells that forms about 30% of the outward current at -30 mV. Inactivation of TASK-3 at pH 6.4 and by ruthenium red depolarized the cells by about 7 mV and increased the action potential frequency as well as duration. Specific activation of Galpha(q)-coupled 5-HT(2) receptors with alpha-methyl 5-HT evoked a similar increase of neuronal excitability. Consistently, we measured afferent synaptic inputs from serotonergic raphe neurones and detected 5-HT(2C) receptors in PnC giant neurones by immunohistochemistry. Thus, neuronal excitability of PnC giant neurones in vivo is most likely increased by serotonergic projections via the K(2)P channel TASK-3.
Rosa, M L N M; Silva, R C B; Moura-de-Carvalho, F T; Brandão, M L; Guimarães, F S; Del Bel, E A
2005-11-01
Rats reared under isolation conditions from weaning present a number of behavioral changes compared to animals reared under social conditions (group housing). These changes include deficits in prepulse inhibition (PPI) of the startle reflex to a loud sound. PPI refers to the reduction of the magnitude of the startle reflex when a relatively weak stimulus (the prepulse) precedes by an appropriate time interval the intense startle-elicing stimulus (the pulse). PPI is useful for studying sensorimotor integration. The present study evaluated the effect of handling on the impairment of PPI induced by isolation-rearing. Male Wistar rats (N = 11-15/group) were housed in groups (5 per cage and handled three times a week) or isolated (housed individually) since weaning (21 days) for 10 weeks when they reach approximately 150 g. The isolated rats were divided into "minimally handled" animals (handled once a week for cleaning purposes only) or "handled" animals (handled three times a week). This handling consisted of grasping the rat by the tail and moving it to a clean cage (approximately 5 s). A statistically significant reduction (52%) in the PPI test was found only in the isolated group with minimal handling while no difference was seen between grouped animals and isolated handled animals. These results indicate that isolation rearing causes disruption in the PPI at adult age, which serves as an index of attention deficit. This change in the sensory processing of information induced by post-weaning isolation can be prevented by handling during the development of the animal.
Social stimuli increase physiological reactivity but not defensive responses.
Kosonogov, Vladimir; Sanchez-Navarro, Juan Pedro; Martinez-Selva, Jose Maria; Torrente, Ginesa; Carrillo-Verdejo, Eduvigis
2016-10-01
Emotional reactions are crucial in survival because they provide approach and withdrawal behaviors. However, an unsolved question is whether the social content of the affective stimuli has a specific effect on emotional responses. We studied whether the social content of affective pictures influenced the defensive response and response mobilization. For this purpose, we recorded startle blink reflex (a defensive response) and skin conductance responses (a measure of unspecific physiological reactivity or arousal) in 73 participants while they viewed a series of 81 pictures of varying affective valence and social content. Our results revealed that defense response, as indicated by increases in the magnitude of the startle blink reflex, was mainly dependent on threatening or unpleasant cues, but was unrelated to the social content of the pictures. The social content, however, had an influence on pleasant stimuli, provoking an increase in resource mobilization, as reflected by changes in electrodermal activity. Hence, the social content of the affective stimuli may increase the physiological arousal elicited by pleasant stimuli, and it appears to be unrelated to the defense reactivity provoked by unpleasant stimuli. © 2016 Scandinavian Psychological Associations and John Wiley & Sons Ltd.
Sex differences in learning processes of classical and operant conditioning
Dalla, Christina; Shors, Tracey J.
2009-01-01
Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent on one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them. PMID:19272397
Sex differences in learning processes of classical and operant conditioning.
Dalla, Christina; Shors, Tracey J
2009-05-25
Males and females learn and remember differently at different times in their lives. These differences occur in most species, from invertebrates to humans. We review here sex differences as they occur in laboratory rodent species. We focus on classical and operant conditioning paradigms, including classical eyeblink conditioning, fear-conditioning, active avoidance and conditioned taste aversion. Sex differences have been reported during acquisition, retention and extinction in most of these paradigms. In general, females perform better than males in the classical eyeblink conditioning, in fear-potentiated startle and in most operant conditioning tasks, such as the active avoidance test. However, in the classical fear-conditioning paradigm, in certain lever-pressing paradigms and in the conditioned taste aversion, males outperform females or are more resistant to extinction. Most sex differences in conditioning are dependent on organizational effects of gonadal hormones during early development of the brain, in addition to modulation by activational effects during puberty and adulthood. Critically, sex differences in performance account for some of the reported effects on learning and these are discussed throughout the review. Because so many mental disorders are more prevalent in one sex than the other, it is important to consider sex differences in learning when applying animal models of learning for these disorders. Finally, we discuss how sex differences in learning continue to alter the brain throughout the lifespan. Thus, sex differences in learning are not only mediated by sex differences in the brain, but also contribute to them.
de Oliveira, Rodolpho Pereira; Nagaishi, Karen Yuriko; Barbosa Silva, Regina Cláudia
2017-05-15
Dysfunctions of the serotonergic system have been suggested to be important in the neurobiology of schizophrenia. Patients with schizophrenia exhibit deficits in an operational measure of sensorimotor gating: prepulse inhibition (PPI) of startle. PPI is the normal reduction in the startle response caused by a low intensity non-startling stimulus (prepulse) which is presented shortly before the startle stimulus (pulse). The hallucinogen 2,5-dimethoxy-4-iodoamphetamine (DOI), a 5-hydroxytryptamine(HT) 2 receptor agonist disrupted PPI in rats. The inferior colliculus (IC) is a critical nucleus of the auditory pathway mediating acoustic PPI. The activation of the IC by the acoustic prepulse reduces startle magnitude. The present study investigated the role of serotonergic transmission in the IC on the expression of acoustic PPI. For that we investigated whether 5-HT2A receptor activation or blockade would affect this response. Unilateral microinjection of DOI (10μg/0.3μl) into the IC disrupted PPI, while microinjection of the 5-HT2A receptor antagonist ritanserin (4μg/0.3μl), into this structure did not alter PPI. We also examined the ability of the atypical antipsychotic clozapine (5.0mg/kg; I.P.) to reverse the disruption of PPI produced by unilateral microinjections of DOI into the IC of rats. Pretreatment with clozapine blocked DOI-induced disruption of PPI. Altogether, these results suggest that serotonin-mediated mechanisms of the IC are involved in the expression of PPI in rodents and that this response is sensitive to atypical antipsychotic clozapine. Copyright © 2017 Elsevier B.V. All rights reserved.
Zangrando, Julia; Carvalheira, Renata; Labbate, Giovanna; Medeiros, Priscila; Longo, Beatriz Monteiro; Melo-Thomas, Liana; Silva, Regina Claudia Barbosa
2013-11-15
Patients with schizophrenia exhibit deficits in an operational measure of sensorimotor gating: prepulse inhibition (PPI) of startle. PPI is the normal reduction in the startle response caused by a low intensity non-startling stimulus (prepulse) which is presented shortly before the startle stimulus (pulse). MK-801 is an NMDA receptor-antagonist known to produce hyperactivity, deficits in prepulse inhibition and social withdrawal, behaviors which correlate well with some of the positive, cognitive and negative symptoms of schizophrenia. The inferior colliculus (IC) is a critical part of the auditory pathway mediating acoustic PPI. The activation of the IC by the acoustic prepulse reduces startle magnitude. Thus, the purpose of the present study was to elucidate the role of glutamatergic transmission in the IC on the expression of acoustic PPI. For that we investigated whether NMDA receptor stimulation or blockade would affect this response. Unilateral microinjections of NMDA (30 nmol/0.5 μL) into the IC did not alter PPI while microinjections of MK-801 (30 nmol/0.5 μL) into this structure disrupted PPI. We also examined the ability of the atypical antipsychotic olanzapine (5.0mg/kg; i.p.) to reverse the disruption of pre-pulse inhibition produced by unilateral microinjections of MK-801 into the IC of rats. Pretreatment with olanzapine blocked MK-801-induced disruption of PPI. Altogether, these results suggest that glutamate-mediated mechanisms of the IC are involved in the expression of PPI in rodents and that this response is sensitive to atypical antipsychotic olanzapine. Copyright © 2013 Elsevier B.V. All rights reserved.
An Anatomical Basis for Opponent Process Mechanisms of Opiate Withdrawal
Radke, Anna K.; Rothwell, Patrick E.; Gewirtz, Jonathan C.
2011-01-01
Opponent process theory predicts that the first step in the induction of drug withdrawal is the activation of reward-related circuitry. Using the acoustic startle reflex as a model of anxiety-like behavior in rats, we show the emergence of a negative affective state during withdrawal after direct infusion of morphine into the ventral tegmental area (VTA), the origin of the mesolimbic dopamine system. Potentiation of startle during withdrawal from systemic morphine exposure requires a decrease in opiate receptor stimulation in the VTA and can be relieved by administration of the dopamine receptor agonist apomorphine. Together, our results suggest that the emergence of anxiety during withdrawal from acute opiate exposure begins with activation of VTA mesolimbic dopamine circuitry, providing a mechanism for the opponent process view of withdrawal. PMID:21593338
Brozoski, Thomas J; Bauer, Carol A
2016-08-01
Presented is a thematic review of animal tinnitus models from a functional perspective. Chronic tinnitus is a persistent subjective sound sensation, emergent typically after hearing loss. Although the sensation is experientially simple, it appears to have central a nervous system substrate of unexpected complexity that includes areas outside of those classically defined as auditory. Over the past 27 years animal models have significantly contributed to understanding tinnitus' complex neurophysiology. In that time, a diversity of models have been developed, each with its own strengths and limitations. None has clearly become a standard. Animal models trace their origin to the 1988 experiments of Jastreboff and colleagues. All subsequent models derive some of their features from those experiments. Common features include behavior-dependent psychophysical determination, acoustic conditions that contrast objective sound and silence, and inclusion of at least one normal-hearing control group. In the present review, animal models have been categorized as either interrogative or reflexive. Interrogative models use emitted behavior under voluntary control to indicate hearing. An example would be pressing a lever to obtain food in the presence of a particular sound. In this type of model animals are interrogated about their auditory sensations, analogous to asking a patient, "What do you hear?" These models require at least some training and motivation management, and reflect the perception of tinnitus. Reflexive models, in contrast, employ acoustic modulation of an auditory reflex, such as the acoustic startle response. An unexpected loud sound will elicit a reflexive motor response from many species, including humans. Although involuntary, acoustic startle can be modified by a lower-level preceding event, including a silent sound gap. Sound-gap modulation of acoustic startle appears to discriminate tinnitus in animals as well as humans, and requires no training or motivational manipulation, but its sensitivity, reliability, mechanism, and optimal implementation are incompletely understood. While to date animal models have significantly expanded the neuroscience of tinnitus, they have been limited to examining sensory features. In the human condition, emotional and cognitive factors are also important. It is not clear that the emotional features of tinnitus can be further understood using animal models, but models may be applied to examine cognitive factors. A recently developed model is described that reveals an interaction between tinnitus and auditory attention. This research suggests that effective tinnitus therapy could rely on modifying attention to the sensation rather than modifying the sensation itself. This article is part of a Special Issue entitled
Armbruster, Diana; Grage, Tobias; Kirschbaum, Clemens; Strobel, Alexander
2018-10-01
Emotional reactivity varies across the menstrual cycle although physiological findings are not entirely consistent. We assessed facial EMG and heart rate (HR) changes in healthy free cycling women (N = 45) with an emotional startle paradigm both during the early follicular and the late luteal phase, verified by repeated salivary 17β-estradiol, progesterone and testosterone assessments. Cycle phase impacted startle responses with larger magnitudes during the luteal phase. Notably, this effect was only present when premenstrual symptoms and sequence of lab sessions were included as co-variates. At rest, participants showed a tendency towards higher HR and reduced high frequency (HF) power during the luteal phase indicating reduced parasympathetic tone. HF power was also negatively associated with startle magnitudes. HR changes in response to emotional images differed between the two cycle phases. Initial HR deceleration was more marked during the follicular phase particularly when viewing negative pictures. However, cycle phase did not significantly impact corrugator and zygomaticus activity in response to emotional pictures. Among the three gonadal steroids, correlation patterns were most consistent for testosterone. During the follicular phase, testosterone was associated with zygomaticus activity while viewing neutral or positive pictures and with less pronounced HR deceleration in response to negative images. During the luteal phase, testosterone was negatively associated with fear potentiated startle. The findings underscore the importance of considering menstrual cycle phase when investigating physiological indicators of emotion. However, the modulating effect of premenstrual symptoms also emphasizes potential inter-individual differences. Copyright © 2018 Elsevier B.V. All rights reserved.
Waters, Allison M.; Nazarian, Maria; Mineka, Susan; Zinbarg, Richard E.; Griffith, James W.; Naliboff, Bruce; Ornitz, Edward M.; Craske, Michelle G.
2014-01-01
Anxiety and depression are prevalent, impairing disorders. High comorbidity has raised questions about how to define and classify them. Structural models emphasise distinctions between “fear” and “distress” disorders while other initiatives propose they be defined by neurobiological indicators that cut across disorders. This study examined startle reflex (SR) modulation in adolescents with principal fear disorders (specific phobia; social phobia) (n = 20), distress disorders (unipolar depressive disorders, dysthymia, generalized anxiety disorder; post-traumatic stress disorder) (n = 9), and controls (n = 29) during (a) baseline conditions, (b) threat context conditions (presence of contraction pads over the biceps muscle), and (c) an explicit threat cue paradigm involving phases that signalled safety from aversive stimuli (early and late stages of safe phases; early stages of danger phases) and phases that signalled immediate danger of an aversive stimulus (late stages of danger phases). Adolescents with principal fear disorders showed larger SRs than other groups throughout safe phases and early stages of danger phases. SRs did not differ between groups during late danger phases. Adolescents with principal distress disorders showed attenuated SRs during baseline and context conditions compared to other groups. Preliminary findings support initiatives to redefine emotional disorders based on neurobiological functioning. PMID:24679992
Knudson, Inge M; Melcher, Jennifer R
2016-06-01
Increases in the acoustic startle response (ASR) of animals have been reported following experimental manipulations to induce tinnitus, an auditory disorder defined by phantom perception of sound. The increases in ASR have been proposed to signify the development of hyperacusis, a clinical condition defined by intolerance of normally tolerable sound levels. To test this proposal, the present study compared ASR amplitude to measures of sound-level tolerance (SLT) in humans, the only species in which SLT can be directly assessed. Participants had clinically normal/near-normal hearing thresholds, were free of psychotropic medications, and comprised people with tinnitus and without. ASR was measured as eyeblink-related electromyographic activity in response to a noise pulse presented at a range of levels and in two background conditions (noise and quiet). SLT was measured as loudness discomfort level (LDL), the lowest level of sound deemed uncomfortable, and via a questionnaire on the loudness of sounds in everyday life. Regardless of tinnitus status, ASR amplitude at a given stimulus level increased with decreasing LDL, but showed no relationship to SLT self-reported via the questionnaire. These relationships (or lack thereof) could not be attributed to hearing threshold, age, anxiety, or depression. The results imply that increases in ASR in the animal work signify decreases in LDL specifically and may not correspond to the development of hyperacusis as would be self-reported by a clinic patient.
Silva, R. C. B.; Cruz, A. P. M.; Avanzi, V.; Landeira-Fernandez, J.; Brandão, M. L.
2002-01-01
Ascending 5-HT projections from the median raphe nucleus (MRN), probably to the hippocampus, are implicated in the acquisition of contextual fear (background stimuli), as assessed by freezing behavior. Foreground cues like light, used as a conditioned stimulus (CS) in classical fear conditioning, also cause freezing through thalamic transmission to the amygdala. As the MRN projects to the hippocampus and amygdala, the role of this raphe nucleus in fear conditioning to explicit cues remains to be explained. Here we analyzed the behavior of rats with MRN electrolytic lesions in a contextual conditioning situation and in a fear-potentiated startle procedure. The animals received MRN electrolytic lesions either before or on the day after two consecutive training sessions in which they were submitted to 10 conditioning trials, each in an experimental chamber (same context) where they. received foot-shocks (0.6 mA, 1 sec) paired to a 4-sec light CS. Seven to ten days later, the animals were submitted to testing sessions for assessing conditioned fear when they were placed for five shocks, and the duration of contextual freezing was recorded. The animals were then submitted to a fear-potentiated startle in response to a 4-sec light-CS, followed by white noise (100 dB, 50 ms). Control rats (sham) tested in the same context showed more freezing than did rats with pre- or post-training MRN lesions. Startle was clearly potentiated in the presence of light CS in the sham-lesioned animals. Whereas pretraining lesions reduced both freezing and fear-potentiated startle, the post-training lesions reduced only freezing to context, without changing the fear-potentiated startle. In a second experiment, neurotoxic lesions of the MRN with local injections of N-methyl-D-aspartate or the activation of 5-HT1A somatodendritic auto-receptors of the MRN by microinjections of the 5-HT1A receptor agonist 8-hydroxy- 2-(di-n-propylamino)tetralin (8-OH-DPAT) before the training sessions also reduced the amount of freezing and the fear-potentiated startle. Freezing is a prominent response of contextual fear conditioning, but does not seem to be crucial for the enhancement of the startle reflex by explicit aversive cues. As fear-potentiated startle may be produced in posttraining lesioned rats that are unable to freeze to fear contextual stimuli, dissociable systems seem to be recruited in each condition. Thus, contextual fear and fear-potentiated startle are conveyed by distinct 5-HT-mediated circuits of the MRN. PMID:12959153
1992-09-24
Marquez , Armario , & Gelpi, 1988) consistent with a stress response . Restraint stress has been reported to increase the amplitude of sensory...and NE in the brain (Adell , Garcia- Marquez , Armario , & Gelpi , 1988) consistent with a stress response. Restraint stress has been reported t o...and non- reactive strains. Al coholism. Clinical and Experimental Research, ~(2), 170-174. Adell, A., Garcia - Marquez, C., Armario , A. , & Gelpi , E
THE ANXIETY SPECTRUM AND THE REFLEX PHYSIOLOGY OF DEFENSE: FROM CIRCUMSCRIBED FEAR TO BROAD DISTRESS
McTeague, Lisa M.; Lang, Peter J.
2013-01-01
Guided by the diagnostic nosology, anxiety patients are expected to show defensive hyperarousal during affective challenge, irrespective of the principal phenotype. In the current study, patients representing the whole spectrum of anxiety disorders (i.e., specific phobia, social phobia, panic disorder with or without agoraphobia, obsessive-compulsive disorder, generalized anxiety disorder (GAD), posttraumatic stress disorder(PTSD)), and healthy community control participants, completed an imagery-based fear elicitation paradigm paralleling conventional intervention techniques. Participants imagined threatening and neutral narratives as physiological responses were recorded. Clear evidence emerged for exaggerated reactivity to clinically relevant imagery—most pronounced in startle reflex responding. However, defensive propensity varied across principal anxiety disorders. Disorders characterized by focal fear and impairment (e.g., specific phobia) showed robust fear potentiation. Conversely, for disorders of long-enduring, pervasive apprehension and avoidance with broad anxiety and depression comorbidity (e.g., PTSD secondary to cumulative trauma, GAD), startle responses were paradoxically diminished to all aversive contents. Patients whose expressed symptom profiles were intermediate between focal fearfulness and broad anxious-misery in both severity and chronicity exhibited a still heightened but more generalized physiological propensity to respond defensively. Importantly, this defensive physiological gradient—the inverse of self-reported distress—was evident not only between but also within disorders. These results highlight that fear circuitry could be dysregulated in chronic, pervasive anxiety, and preliminary functional neuroimaging findings suggest that deficient amygdala recruitment could underlie attenuated reflex responding. In summary, adaptive defensive engagement during imagery may be compromised by long-term dysphoria and stress—a phenomenon with implications for prognosis and treatment planning. Depression and Anxiety 29:264–281, 2012. PMID:22511362
Ferguson, Sherry A; Cada, Amy M
2004-01-01
Developmental difluoromethylornithine (DFMO) treatment reduces cerebellar weight [Neuroscience 17 (1986) 399, Neurotoxicol. Teratol. 22 (2000) 415, Behav. Brain Res. 126 (2001) 135], but the functional alterations resulting from this have been little investigated. Here, Sprague-Dawley rats were subcutaneously injected with 500 mg/kg DFMO on postnatal days (PNDs) 5-12 and a comprehensive set of behavioral assessments measured early developmental behaviors (righting reflex, negative geotaxis), motor coordination, acoustic startle, short- and long-term activity, social behaviors, anxiety, and spatial learning and memory. DFMO treatment appeared to cause a decreased latency to perform the negative geotaxis behavior on PNDs 8-10 and increased latency to hang by the forelimbs on PNDs 12-14. Our previous study did not indicate similar effects, but age at testing differed between the two studies. DFMO treatment caused a decreased latency to maximum acoustic startle response in both the acoustic startle paradigm and in the pulse-alone trials of the prepulse inhibition test. This DFMO treatment paradigm induced a 10% decrease in adult cerebellar weight [Behav. Brain Res. 126 (2001) 135], but the results here imply that such developmental stunting has few functional alterations.
Wu, Zhe-Meng; Ding, Yu; Jia, Hong-Xiao; Li, Liang
2016-09-01
Prepulse inhibition (PPI) is suppression of the startle reflex by a weaker sensory stimulus (prepulse) preceding the startling stimulus. In people with schizophrenia, impairment of attentional modulation of PPI, but not impairment of baseline PPI, is correlated with symptom severity. In rats, both fear conditioning of prepulse and perceptually spatial separation between the conditioned prepulse and a noise masker enhance PPI (the paradigms of attentional modulation of PPI). As a neurodevelopmental model of schizophrenia, isolation rearing impairs both baseline PPI and attentional modulations of PPI in rats. This study examined in Sprague-Dawley male rats whether neonatally blocking N-methyl-D-aspartate (NMDA) receptors specifically affects attentional modulations of PPI during adulthood. Both socially reared rats with neonatal exposure to the NMDA receptor antagonist MK-801 and isolation-reared rats exhibited augmented startle responses, but only isolation rearing impaired baseline PPI. Fear conditioning of the prepulse enhanced PPI in socially reared rats, but MK-801-treated rats lost the prepulse feature specificity. Perceptually spatial separation between the conditioned prepulse and a noise masker further enhanced PPI only in normally reared rats. Clozapine administration during adulthood generally weakened startle, enhanced baseline PPI in neonatally interrupted rats, and restored the fear conditioning-induced PPI enhancement in isolation-reared rats with a loss of the prepulse feature specificity. Clozapine administration also abolished both the perceptual separation-induced PPI enhancement in normally reared rats and the fear conditioning-induced PPI enhancement in MK-801-treated rats. Isolation rearing impairs both baseline PPI and attentional modulations of PPI, but neonatally disrupting NMDA receptor-mediated transmissions specifically impair attentional modulations of PPI. Clozapine has limited alleviating effects.
Brooks, Samantha; Prince, Alexis; Stahl, Daniel; Campbell, Iain C; Treasure, Janet
2011-02-01
Maladaptive cognitions about food, weight and shape bias attention, memory and judgment and may be linked to disordered eating behaviour. This paper reviews information processing of food stimuli (words, pictures) in people with eating disorders (ED). PubMed, Ovid, ScienceDirect, PsychInfo, Web of Science, Cochrane Library and Google Scholar were searched to December 2009. 63 studies measured attention, memory and judgment bias towards food stimuli in women with ED. Stroop tasks had sufficient sample size for a meta-analyses and effects ranged from small to medium. Other studies of attention bias had variable effects (e.g. the Dot-Probe task, distracter tasks and Startle Eyeblink Modulation). A meta-analysis of memory bias studies in ED and RE yielded insignificant effect. Effect sizes for judgment bias ranged from negligible to large. People with ED have greater attentional bias to food stimuli than healthy controls (HC). Evidence for a memory and judgment bias in ED is limited. Copyright © 2010 Elsevier Ltd. All rights reserved.
Vytal, Katherine; Cornwell, Brian; Arkin, Nicole; Grillon, Christian
2012-01-01
Anxiety impairs the ability to think and concentrate, suggesting that the interaction between emotion and cognition may elucidate the debilitating nature of pathological anxiety. Using a verbal n-back task that parametrically modulated cognitive load, we explored the effect of experimentally-induced anxiety on task performance and the startle reflex. Findings suggest there is a crucial inflection point between moderate and high cognitive load, where resources shift from anxious apprehension to focus on task demands. Specifically, we demonstrate that anxiety impairs performance under low-load, but is reduced when subjects engage in a difficult task that occupies executive resources. We propose a two-component model of anxiety that describes a cognitive mechanism behind performance impairment and an automatic response that supports sustained anxiety-potentiated startle. Implications for therapeutic interventions and emotional pathology are discussed. PMID:22332819
Klumpers, Floris; Heitland, Ivo; Oosting, Ronald S; Kenemans, J Leon; Baas, Johanna M P
2012-02-01
The serotonin transporter (SERT) plays a crucial role in anxiety. Accordingly, variance in SERT functioning appears to constitute an important pathway to individual differences in anxiety. The current study tested the hypothesis that genetic variation in SERT function is associated with variability in the basic reflex physiology of defense. Healthy subjects (N=82) were presented with clearly instructed cues of shock threat and safety to induce robust anxiety reactions. Subjects carrying at least one short allele for the 5-HTTLPR polymorphism showed stronger fear-potentiated startle compared to long allele homozygotes. However, short allele carriers showed no deficit in the downregulation of fear after the offset of threat. These results suggest that natural variation in SERT function affects the magnitude of defensive reactions while not affecting the capacity for fear regulation. Copyright © 2011 Elsevier B.V. All rights reserved.
Identification of a pheromone that increases anxiety in rats
Inagaki, Hideaki; Kiyokawa, Yasushi; Tamogami, Shigeyuki; Watanabe, Hidenori; Takeuchi, Yukari; Mori, Yuji
2014-01-01
Chemical communication plays an important role in the social lives of various mammalian species. Some of these chemicals are called pheromones. Rats release a specific odor into the air when stressed. This stress-related odor increases the anxiety levels of other rats; therefore, it is possible that the anxiety-causing molecules are present in the stress-related odorants. Here, we have tried to identify the responsible molecules by using the acoustic startle reflex as a bioassay system to detect anxiogenic activity. After successive fractionation of the stress-related odor, we detected 4-methylpentanal and hexanal in the final fraction that still possessed anxiogenic properties. Using synthetic molecules, we found that minute amounts of the binary mixture, but not either molecule separately, increased anxiety in rats. Furthermore, we determined that the mixture increased a specific type of anxiety and evoked anxiety-related behavioral responses in an experimental model that was different from the acoustic startle reflex. Analyses of neural mechanisms proposed that the neural circuit related to anxiety was only activated when the two molecules were simultaneously perceived by two olfactory systems. We concluded that the mixture is a pheromone that increases anxiety in rats. To our knowledge, this is the first study identifying a rat pheromone. Our results could aid further research on rat pheromones, which would enhance our understanding of chemical communication in mammals. PMID:25512532
Zugno, A I; Chipindo, H L; Volpato, A M; Budni, J; Steckert, A V; de Oliveira, M B; Heylmann, A S; da Rosa Silveira, F; Mastella, G A; Maravai, S G; Wessler, P G; Binatti, A R; Panizzutti, B; Schuck, P F; Quevedo, J; Gama, C S
2014-02-14
Supplementation with omega-3 has been identified as an adjunctive alternative for the treatment of psychiatric disorders, in order to minimize symptoms. Considering the lack of understanding concerning the pathophysiology of schizophrenia, the present study hypothesized that omega 3 prevents the onset of symptoms similar to schizophrenia in young Wistar rats submitted to ketamine treatment. Moreover, the role of oxidative stress in this model was assessed. Omega-3 (0.8g/kg) or vehicle was given by orogastric gavage once daily. Both treatments were performed during 21days, starting at the 30th day of life in young rats. After 14days of treatment with omega-3 or vehicle, a concomitant treatment with saline or ketamine (25mg/kg ip daily) was started and maintained until the last day of the experiment. We evaluated the pre-pulse inhibition of the startle reflex, activity of antioxidant systems and damage to proteins and lipids. Our results demonstrate that supplementation of omega-3 prevented: decreased inhibition of startle reflex, damage to lipids in the hippocampus and striatum and damage to proteins in the prefrontal cortex. Furthermore, these changes are associated with decreased GPx in brain tissues evaluated. Together, our results suggest the prophylactic role of omega-3 against the outcome of symptoms associated with schizophrenia. Copyright © 2014. Published by Elsevier Ltd.
Repetitive exposure: Brain and reflex measures of emotion and attention
Ferrari, Vera; Bradley, Margaret M.; Codispoti, Maurizio; Lang, Peter J.
2010-01-01
Effects of massed repetition on the modulation of the late positive potential elicited during affective picture viewing were investigated in two experiments. Despite a difference in the number of repetitions across studies (from 5 to 30), results were quite similar: the late positive potential continued to be enhanced when viewing emotional, compared to neutral, pictures. On the other hand, massed repetition did prompt a reduction in the late positive potential that was most pronounced for emotional pictures. Startle probe P3 amplitude generally increased with repetition, suggesting diminished attention allocation to repeated pictures. The blink reflex, however, continued to be modulated by hedonic valence, despite massive massed repetition. Taken together, the data suggest that the amplitude of the late positive potential during picture viewing reflects both motivational significance and attention allocation. PMID:20701711
Hormigo, Sebastian; López, Dolores E; Cardoso, Antonio; Zapata, Gladys; Sepúlveda, Jacqueline; Castellano, Orlando
2018-07-01
The acoustic startle reflex (ASR) is a short and intense defensive reaction in response to a loud and unexpected acoustic stimulus. In the rat, a primary startle pathway encompasses three serially connected central structures: the cochlear root neurons, the giant neurons of the nucleus reticularis pontis caudalis (PnC), and the spinal motoneurons. As a sensorimotor interface, the PnC has a central role in the ASR circuitry, especially the integration of different sensory stimuli and brain states into initiation of motor responses. Since the basal ganglia circuits control movement and action selection, we hypothesize that their output via the substantia nigra (SN) may interplay with the ASR primary circuit by providing inputs to PnC. Moreover, the pedunculopontine tegmental nucleus (PPTg) has been proposed as a functional and neural extension of the SN, so it is another goal of this study to describe possible anatomical connections from the PPTg to PnC. Here, we made 6-OHDA neurotoxic lesions of the SN pars compacta (SNc) and submitted the rats to a custom-built ASR measurement session to assess amplitude and latency of motor responses. We found that following lesion of the SNc, ASR amplitude decreased and latency increased compared to those values from the sham-surgery and control groups. The number of dopamine neurons remaining in the SNc after lesion was also estimated using a stereological approach, and it correlated with our behavioral results. Moreover, we employed neural tract-tracing techniques to highlight direct projections from the SN to PnC, and indirect projections through the PPTg. Finally, we also measured levels of excitatory amino acid neurotransmitters in the PnC following lesion of the SN, and found that they change following an ipsi/contralateral pattern. Taken together, our results identify nigrofugal efferents onto the primary ASR circuit that may modulate motor responses.
Psychosocial stress alters the strength of reticulospinal input to the human upper trapezius.
Marker, Ryan J; Campeau, Serge; Maluf, Katrina S
2017-01-01
Psychosocial stress has been shown to influence several aspects of human motor control associated with the fight-or-flight response, including augmentation of upper trapezius muscle activity. Given the established role of the reticular formation in arousal, this study investigated the contribution of reticulospinal activation to trapezius muscle activity during exposure to an acute psychosocial stressor. Twenty-five healthy adults were exposed to startling acoustic stimuli (SAS) while performing a motor task during periods of low and high psychosocial stress. Acoustic startle reflexes (ASRs) were recorded in the upper trapezius during low intensity contractions using both surface and intramuscular electromyography. Exposure to the stressor increased subjective and physiological measures of arousal (P < 0.01). The majority of participants demonstrated inhibitory ASRs, whereas a small subgroup with significantly higher trait anxiety (n = 5) demonstrated excitatory ASRs in the low stress condition. Changes in synaptic input for inhibitory ASRs were confirmed by decreases in the discharge rate of single motor units in response to the SAS. ASRs decreased in magnitude for all participants during exposure to the acute psychosocial stressor. These findings suggest that the reticular formation has predominately inhibitory effects on the human upper trapezius during an ongoing motor task and that disinhibition caused by psychosocial stress may contribute to augmentation of trapezius muscle activity. Further research is required to investigate mechanisms underlying the complex ASRs characterized by this study, particularly the phase reversal to excitatory responses observed among more anxious individuals. This study is the first to quantify stress-evoked changes in the acoustic startle reflex in the upper trapezius muscle of humans, and our findings reveal a complex pattern of inhibitory and facilitatory responses consistent with observations in nonhuman primates. We further demonstrate that psychosocial stress consistently reduces the amplitude of these responses. These findings have implications for the control of motor behaviors in response to stress. Copyright © 2017 the American Physiological Society.
Psychosocial stress alters the strength of reticulospinal input to the human upper trapezius
Marker, Ryan J.; Campeau, Serge
2016-01-01
Psychosocial stress has been shown to influence several aspects of human motor control associated with the fight-or-flight response, including augmentation of upper trapezius muscle activity. Given the established role of the reticular formation in arousal, this study investigated the contribution of reticulospinal activation to trapezius muscle activity during exposure to an acute psychosocial stressor. Twenty-five healthy adults were exposed to startling acoustic stimuli (SAS) while performing a motor task during periods of low and high psychosocial stress. Acoustic startle reflexes (ASRs) were recorded in the upper trapezius during low intensity contractions using both surface and intramuscular electromyography. Exposure to the stressor increased subjective and physiological measures of arousal (P < 0.01). The majority of participants demonstrated inhibitory ASRs, whereas a small subgroup with significantly higher trait anxiety (n = 5) demonstrated excitatory ASRs in the low stress condition. Changes in synaptic input for inhibitory ASRs were confirmed by decreases in the discharge rate of single motor units in response to the SAS. ASRs decreased in magnitude for all participants during exposure to the acute psychosocial stressor. These findings suggest that the reticular formation has predominately inhibitory effects on the human upper trapezius during an ongoing motor task and that disinhibition caused by psychosocial stress may contribute to augmentation of trapezius muscle activity. Further research is required to investigate mechanisms underlying the complex ASRs characterized by this study, particularly the phase reversal to excitatory responses observed among more anxious individuals. NEW & NOTEWORTHY This study is the first to quantify stress-evoked changes in the acoustic startle reflex in the upper trapezius muscle of humans, and our findings reveal a complex pattern of inhibitory and facilitatory responses consistent with observations in nonhuman primates. We further demonstrate that psychosocial stress consistently reduces the amplitude of these responses. These findings have implications for the control of motor behaviors in response to stress. PMID:27832595
Racine, Sarah E; Hebert, Karen R; Benning, Stephen D
2018-01-01
Eating disorders are associated with both negative and positive emotional reactions towards food. Individual eating disorder symptoms may relate to distinct emotional responses to food, which could necessitate tailored treatments based on symptom presentation. We examined associations between eating disorder symptoms and psychophysiological responses to food versus neutral images in 87 college students [mean (SD) age = 19.70 (2.09); mean (SD) body mass index = 23.25(2.77)]. Reflexive and facial electromyography measures tapping negative emotional reactivity (startle blink reflex) and appraisal (corrugator muscle response) as well as positive emotional reactivity (postauricular reflex) and appraisal (zygomaticus muscle response) were collected. Eating disorder cognitions correlated with more corrugator activity to food versus neutral images, indicating negative appraisals of food. Binge eating was associated with increased postauricular reflex reactivity to food versus neutral images, suggesting enhanced appetitive motivation to food. The combination of cognitive eating disorder symptoms and binge eating may result in motivational conflict towards food. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association. Copyright © 2017 John Wiley & Sons, Ltd and Eating Disorders Association.
Armbruster, Diana; Kirschbaum, Clemens; Strobel, Alexander
2017-08-01
Combined oral contraceptives (COC) are used by millions of women worldwide. Although findings are not entirely consistent, COC have been found to impact on brain function and, thus, to modulate affective processes. Here, we investigated electro-physiological responses to emotional stimuli in free cycling women in both the early follicular and late luteal phase as well as in COC users. Skin conductance response (SCR), startle reflex, corrugator and zygomaticus activity were assessed. COC users showed reduced overall startle magnitude and SCR amplitude, but heightened overall zygomaticus activity, although effect sizes were small. Thus, COC users displayed reduced physiological reactions indicating negative affect and enhanced physiological responses signifying positive affect. In free cycling women, endogenous 17β-estradiol levels were associated with fear potentiated startle in both cycle phases as well as with SCR and zygomaticus activity during the follicular phase. Testosterone was associated with corrugator and zygomaticus activity during the luteal phase, while progesterone levels correlated with corrugator activity in the follicular phase. To the contrary, in COC users, endogenous hormones were not associated with electro-physiological measures. The results further underscore the importance of considering COC use in psychophysiological studies on emotional processing. Copyright © 2017 Elsevier Inc. All rights reserved.
Understanding Cervicogenic Headache
Chua, Nicholas H L; Suijlekom, Hans V; Wilder-Smith, Oliver H; Vissers, Kris C P
2012-01-01
The purported mechanism underlying the development and progression of cervicogenic headache (CEH) is the convergence of sensory inputs at the trigeminocervical nucleus. This mechanism explains the radiation of pain from the neck or the occipitonuchal area and its spread to the oculo-fronto-temporal region; it also explains the recurrent headaches caused by improper neck postures or external pressure to the structures in the neck and the occipital region. These neural connectivity mechanisms involving the trigeminal nucleus are also evident from the eyeblink reflex and findings of quantitative sensory testing (QST). Understanding the mechanisms underlying the development of CEH is important because it will not only provide a better treatment outcome but will also allow practitioners to appreciate the variability of symptomatic presentations in these patients. PMID:24223325
Semenova, Svetlana; Hoyer, Daniel; Geyer, Mark A.; Markou, Athina
2011-01-01
Somatostatins have been shown to be involved in the pathophysiology of motor and affective disorders, as well as psychiatry disorders, including schizophrenia. We hypothesized that in addition to motor function, somatostatin may be involved in somatosensory gating and reward processes that have been shown to be dysregulated in schizophrenia. Accordingly, we evaluated the effects of intracerebroventricular administration of somatostatin-28 on spontaneous locomotor and exploratory behavior measured in a behavioral pattern monitor, sensorimotor gating, prepulse inhibition (PPI) of the acoustic startle reflex, and brain reward function (measured in a discrete trial intracranial self-stimulation procedure) in rats. Somatostatin-28 decreased spontaneous locomotor activity during the first 10 min of a 60 min testing session with no apparent changes in the exploratory activity of rats. The highest somatostatin-28 dose (10 μg/5 μl/side) induced PPI deficits with no effect on the acoustic startle response or startle response habituation. The somatostatin-induced PPI deficit was partially reversed by administration of SRA-880, a selective somatostatin 1 (sst1) receptor antagonist. Somatostatin-28 also induced elevations in brain reward thresholds, reflecting an anhedonic-like state. SRA-880 had no effect on brain reward function under baseline conditions. Altogether these findings suggest that somatostatin-28 modulates PPI and brain reward function but does not have a robust effect on spontaneous exploratory activity. Thus, increases in somatostatin transmission may represent one of the neurochemical mechanisms underlying anhedonia, one of the negative symptoms of schizophrenia, and sensorimotor gating deficits associated with cognitive impairments in schizophrenia patients. PMID:20537385
Eyeblink Synchrony in Multimodal Human-Android Interaction.
Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro
2016-12-23
As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human's attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners' eyeblinks were entrained to android speakers' eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android's hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions.
Effects of perinatal asphyxia on the neurobehavioral and retinal development of newborn rats.
Kiss, Peter; Szogyi, Donat; Reglodi, Dora; Horvath, Gabor; Farkas, Jozsef; Lubics, Andrea; Tamas, Andrea; Atlasz, Tamas; Szabadfi, Krisztina; Babai, Norbert; Gabriel, Robert; Koppan, Miklos
2009-02-19
Perinatal asphyxia during delivery produces long-term deficits and represents a major problem in both neonatal and pediatric care. Several morphological, biochemical and behavioral changes have been described in rats exposed to perinatal asphyxia. The aim of the present study was to evaluate how perinatal asphyxia affects the complex early neurobehavioral development and retinal structure of newborn rats. Asphyxia was induced in ready-to-deliver mothers by removing the pups by cesarian section after 15 min of asphyxia. Somatic and neurobehavioral development was tested daily during the first 3 weeks, and motor coordination tests were performed on postnatal weeks 3-5. After completion of the testing procedure, retinas were removed for histological analysis. We found that in spite of the fast catch-up-growth of asphyctic pups, nearly all examined reflexes were delayed by 1-4 days: negative geotaxis, sensory reflexes, righting reflexes, development of fore- and hindlimb grasp and placing, gait and auditory startle reflexes. Time to perform negative geotaxis, surface righting and gait reflexes was significantly longer during the first few weeks in asphyctic pups. Among the motor coordination tests, a markedly weaker performance was observed in the grid walking and footfault test and in the walk initiation test. Retinal structure showed severe degeneration in the layer of the photoreceptor and bipolar cell bodies. In summary, our present study provided a detailed description of reflex and motor development following perinatal asphyxia, showing that asphyxia led to a marked delay in neurobehavioral development and a severe retinal degeneration.
Burhans, Lauren B; Smith-Bell, Carrie A; Schreurs, Bernard G
2017-10-01
Glutamatergic dysfunction is implicated in many neuropsychiatric conditions, including post-traumatic stress disorder (PTSD). Glutamate antagonists have shown some utility in treating PTSD symptoms, whereas glutamate agonists may facilitate cognitive behavioral therapy outcomes. We have developed an animal model of PTSD, based on conditioning of the rabbit's eyeblink response, that addresses two key features: conditioned responses (CRs) to cues associated with an aversive event and a form of conditioned hyperarousal referred to as conditioning-specific reflex modification (CRM). The optimal treatment to reduce both CRs and CRM is unpaired extinction. The goals of the study were to examine whether treatment with the N-methyl-D-aspartate glutamate receptor antagonist ketamine could reduce CRs and CRM, and whether the N-methyl-D-aspartate agonist D-cycloserine combined with unpaired extinction treatment could enhance the extinction of both. Administration of a single dose of subanesthetic ketamine had no significant immediate or delayed effect on CRs or CRM. Combining D-cycloserine with a single day of unpaired extinction facilitated extinction of CRs in the short term while having no impact on CRM. These results caution that treatments may improve one aspect of the PTSD symptomology while having no significant effects on other symptoms, stressing the importance of a multiple-treatment approach to PTSD and of animal models that address multiple symptoms.
Eyeblink Synchrony in Multimodal Human-Android Interaction
Tatsukawa, Kyohei; Nakano, Tamami; Ishiguro, Hiroshi; Yoshikawa, Yuichiro
2016-01-01
As the result of recent progress in technology of communication robot, robots are becoming an important social partner for humans. Behavioral synchrony is understood as an important factor in establishing good human-robot relationships. In this study, we hypothesized that biasing a human’s attitude toward a robot changes the degree of synchrony between human and robot. We first examined whether eyeblinks were synchronized between a human and an android in face-to-face interaction and found that human listeners’ eyeblinks were entrained to android speakers’ eyeblinks. This eyeblink synchrony disappeared when the android speaker spoke while looking away from the human listeners but was enhanced when the human participants listened to the speaking android while touching the android’s hand. These results suggest that eyeblink synchrony reflects a qualitative state in human-robot interactions. PMID:28009014
Naase, Taher; Doughty, Michael J; Button, Norman F
2005-04-01
To determine whether there is a change in the pattern of human eyeblink events under topical ocular anaesthesia. Forty male subjects, aged between 19 and 52 years and with no significant ocular surface disease, were recruited. Their spontaneous eyeblink activity, in primary eye gaze position and in silence, was recorded for 5-min periods, before and after instillation of benoxinate 0.4% eyedrops. The surface anaesthesia was confirmed by aesthesiometry. The spontaneous eyeblink rate (SEBR) decreased from 9.1+/-4.0 blinks/min to an average of 5.7+/-3.3 blinks/min, with 37 subjects showing a decreased eyeblink rate under anaesthesia. Three blink patterns were observed before anaesthesia (symmetrical, J-type and I-type) and these were essentially unchanged under anaesthesia. These studies confirm that the SEBR is usually reduced under surface anaesthesia (so is sensitive to exogenous control) but the pattern of the eyeblink activity is unchanged (so is less sensitive to exogenous control). The removal of exogenous stimuli by anaesthesia does not shift the eyeblink pattern to a single type, so indicates endogenous control.
Habituation in acoustic startle reflex: individual differences in personality.
Blanch, Angel; Balada, Ferran; Aluja, Anton
2014-03-01
This study analyzed the relationship of individual differences in personality with habituation in the acoustic startle response (ASR). Data from nine trials in ASR to white noise bursts and a personality questionnaire based on the alternative big five personality approach were modelled with a latent growth curve (LCM) including intercept and slope habituation growth factors. There was a negative correlation between the intercept and slope, indicating that individuals with higher initial ASR levels had also a more pronounced and faster decrease in the ASR. Contrary to expectations, Extraversion and Sensation Seeking did not relate with habituation in ASR. Neuroticism and Aggressiveness related asymmetrically with the habituation rate in ASR. Higher levels of Neuroticism were related with faster habituation, whereas higher levels of Aggressiveness were related with slower habituation. Further studies with the LCM should be undertaken to clarify in a greater extent the association of personality with habituation in ASR. Copyright © 2014 Elsevier B.V. All rights reserved.
Emotion processing deficits in alexithymia and response to a depth of processing intervention.
Constantinou, Elena; Panayiotou, Georgia; Theodorou, Marios
2014-12-01
Findings on alexithymic emotion difficulties have been inconsistent. We examined potential differences between alexithymic and control participants in general arousal, reactivity, facial and subjective expression, emotion labeling, and covariation between emotion response systems. A depth of processing intervention was introduced. Fifty-four participants (27 alexithymic), selected using the Toronto Alexithymia Scale-20, completed an imagery experiment (imagining joy, fear and neutral scripts), under instructions for shallow or deep emotion processing. Heart rate, skin conductance, facial electromyography and startle reflex were recorded along with subjective ratings. Results indicated hypo-reactivity to emotion among high alexithymic individuals, smaller and slower startle responses, and low covariation between physiology and self-report. No deficits in facial expression, labeling and emotion ratings were identified. Deep processing was associated with increased physiological reactivity and lower perceived dominance and arousal in high alexithymia. Findings suggest a tendency for avoidance of intense, unpleasant emotions and less defensive action preparation in alexithymia. Copyright © 2014 Elsevier B.V. All rights reserved.
Eyeblink conditioning in the developing rabbit
Brown, Kevin L.; Woodruff-Pak, Diana S.
2011-01-01
Eyeblink classical conditioning in pre-weanling rabbits was examined in the present study. Using a custom lightweight headpiece and restrainer, New Zealand white littermates were trained once daily in 400 ms delay eyeblink classical conditioning from postnatal days (PD) 17–21 or PD 24–28. These ages were chosen because eyeblink conditioning emerges gradually over PD 17–24 in rats (Stanton, Freeman, & Skelton, 1992), another altricial species with neurodevelopmental features similar to those of rabbits. Consistent with well-established findings in rats, rabbits trained from PD 24–28 showed greater conditioning relative to littermates trained from PD 17–21. Both age groups displayed poor retention of eyeblink conditioning at retraining one month after acquisition. These findings are the first to demonstrate eyeblink conditioning in the developing rabbit. With further characterization of optimal conditioning parameters, this preparation may have applications to neurodevelopmental disease models as well as research exploring the ontogeny of memory. PMID:21953433
Cerebellar learning mechanisms
Freeman, John H.
2014-01-01
The mechanisms underlying cerebellar learning are reviewed with an emphasis on old arguments and new perspectives on eyeblink conditioning. Eyeblink conditioning has been used for decades a model system for elucidating cerebellar learning mechanisms. The standard model of the mechanisms underlying eyeblink conditioning is that there two synaptic plasticity processes within the cerebellum that are necessary for acquisition of the conditioned response: 1) long-term depression (LTD) at parallel fiber-Purkinje cell synapses and 2) long-term potentiation (LTP) at mossy fiber-interpositus nucleus synapses. Additional Purkinje cell plasticity mechanisms may also contribute to eyeblink conditioning including LTP, excitability, and entrainment of deep nucleus activity. Recent analyses of the sensory input pathways necessary for eyeblink conditioning indicate that the cerebellum regulates its inputs to facilitate learning and maintain plasticity. Cerebellar learning during eyeblink conditioning is therefore a dynamic interactive process which maximizes responding to significant stimuli and suppresses responding to irrelevant or redundant stimuli. PMID:25289586
Yavuz, D; Gündüz, A; Ertan, S; Apaydın, H; Şifoğlu, A; Kiziltan, G; Kiziltan, M E
2015-05-01
We aimed to analyze functional changes at brainstem and spinal levels in essential tremor (ET), Parkinson's disease (PD) and coexisting essential tremor and Parkinson's disease (ET-PD). Age- and gender-matched patients with tremor (15 ET, 7 ET with resting tremor, 25 ET-PD and 10 PD) and 12 healthy subjects were enrolled in the study. Diagnosis was established according to standardized clinical criteria. Electrophysiological studies included blink reflex (BR), auditory startle reaction (ASR) and long latency reflex (LLR). Blink reflex was normal and similar in all groups. Probability of ASR was significantly lower in ET-PD group whereas it was similar to healthy subjects in ET and PD (P<0.001). LLR was recorded during voluntary activity in all three groups. LLR II was more common in ET, PD and ET-PD groups. LLR III was far more common in the PD group (n=3, 13.6% in ET; n=4, 16.0% in ET-PD and n=7, 46.7% in PD; p=0.037). Despite the integrity of BR pathways, ASR and LLR show distinctive abnormalities in ET-PD. In our opinion, our electrophysiological findings support the hypothesis that ET-PD is a distinct entity. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
The neural basis of visual behaviors in the larval zebrafish
Portugues, Ruben; Engert, Florian
2015-01-01
We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. PMID:19896836
Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS.
Swerdlow, Neal R; Light, Gregory A; Sprock, Joyce; Calkins, Monica E; Green, Michael F; Greenwood, Tiffany A; Gur, Raquel E; Gur, Ruben C; Lazzeroni, Laura C; Nuechterlein, Keith H; Radant, Allen D; Ray, Amrita; Seidman, Larry J; Siever, Larry J; Silverman, Jeremy M; Stone, William S; Sugar, Catherine A; Tsuang, Debby W; Tsuang, Ming T; Turetsky, Bruce I; Braff, David L
2014-02-01
Startle inhibition by weak prepulses (PPI) is studied to understand the biology of information processing in schizophrenia patients and healthy comparison subjects (HCS). The Consortium on the Genetics of Schizophrenia (COGS) identified associations between PPI and single nucleotide polymorphisms in schizophrenia probands and unaffected relatives, and linkage analyses extended evidence for the genetics of PPI deficits in schizophrenia in the COGS-1 family study. These findings are being extended in a 5-site "COGS-2" study of 1800 patients and 1200 unrelated HCS to facilitate genetic analyses. We describe a planned interim analysis of COGS-2 PPI data. Eyeblink startle was measured in carefully screened HCS and schizophrenia patients (n=1402). Planned analyses of PPI (60 ms intervals) assessed effects of diagnosis, sex and test site, PPI-modifying effects of medications and smoking, and relationships between PPI and neurocognitive measures. 884 subjects met strict inclusion criteria. ANOVA of PPI revealed significant effects of diagnosis (p=0.0005) and sex (p<0.002), and a significant diagnosis×test site interaction. HCS>schizophrenia PPI differences were greatest among patients not taking 2nd generation antipsychotics, and were independent of smoking status. Modest but significant relationships were detected between PPI and performance in specific neurocognitive measures. The COGS-2 multi-site study detects schizophrenia-related PPI deficits reported in single-site studies, including patterns related to diagnosis, prepulse interval, sex, medication and other neurocognitive measures. Site differences were detected and explored. The target COGS-2 schizophrenia "endophenotype" of reduced PPI should prove valuable for identifying and confirming schizophrenia risk genes in future analyses. Copyright © 2013 Elsevier B.V. All rights reserved.
Deficient prepulse inhibition in schizophrenia detected by the multi-site COGS
Swerdlow, Neal R.; Light, Gregory A.; Sprock, Joyce; Calkins, Monica E.; Green, Michael F.; Greenwood, Tiffany A.; Gur, Raquel E.; Gur, Ruben C.; Lazzeroni, Laura C.; Nuechterlein, Keith H.; Radant, Allen D.; Ray, Amrita; Seidman, Larry J.; Siever, Larry J.; Silverman, Jeremy M.; Stone, William S.; Sugar, Catherine A.; Tsuang, Debby W.; Tsuang, Ming T.; Turetsky, Bruce I.; Braff, David L.
2014-01-01
Background Startle inhibition by weak prepulses (PPI) is studied to understand the biology of information processing in schizophrenia patients and healthy comparison subjects (HCS). The Consortium on the Genetics of Schizophrenia (COGS) identified associations between PPI and single nucleotide polymorphisms in schizophrenia probands and unaffected relatives, and linkage analyses extended evidence for the genetics of PPI deficits in schizophrenia in the COGS-1 family study. These findings are being extended in a 5-site “COGS-2” study of 1800 patients and 1200 unrelated HCS to facilitate genetic analyses. We describe a planned interim analysis of COGS-2 PPI data. Methods Eyeblink startle was measured in carefully screened HCS and schizophrenia patients (n=1402). Planned analyses of PPI (60 ms intervals) assessed effects of diagnosis, sex and test site, PPI-modifying effects of medications and smoking, and relationships between PPI and neurocognitive measures. Results 884 subjects met strict inclusion criteria. ANOVA of PPI revealed significant effects of diagnosis (p=0.0005) and sex (p<0.002), and a significant diagnosis × test site interaction. HCS > schizophrenia PPI differences were greatest among patients not taking 2nd generation antipsychotics, and were independent of smoking status. Modest but significant relationships were detected between PPI and performance in specific neurocognitive measures. Discussion The COGS-2 multi-site study detects schizophrenia-related PPI deficits reported in single-site studies, including patterns related to diagnosis, prepulse interval, sex, medication and other neurocognitive measures. Site differences were detected and explored. The target COGS-2 schizophrenia “endophenotype” of reduced PPI should prove valuable for identifying and confirming schizophrenia risk genes in future analyses. PMID:24405980
Cosme, Danielle; Wiens, Stefan
2015-01-01
As a form of attention, mindfulness is qualitatively receptive and non-reactive, and is thought to facilitate adaptive emotional responding. One suggested mechanism is that mindfulness facilitates disengagement from an affective stimulus and thereby decreases affective reactivity. However, mindfulness has been conceptualized as a state, intervention, and trait. Because evidence is mixed as to whether self-reported trait mindfulness decreases affective reactivity, we used a multi-method approach to study the relationship between individual differences in self-reported trait mindfulness and electrocortical, electrodermal, electromyographic, and self-reported responses to emotional pictures. Specifically, while participants (N = 51) passively viewed pleasant, neutral, and unpleasant IAPS pictures, we recorded high-density (128 channels) electrocortical, electrodermal, and electromyographic data to the pictures as well as to acoustic startle probes presented during the pictures. Afterwards, participants rated their subjective valence and arousal while viewing the pictures again. If trait mindfulness spontaneously reduces general emotional reactivity, then for individuals reporting high rather than low mindfulness, response differences between emotional and neutral pictures would show relatively decreased early posterior negativity (EPN) and late positive potential (LPP) amplitudes, decreased skin conductance responses, and decreased subjective ratings for valence and arousal. High mindfulness would also be associated with decreased emotional modulation of startle eyeblink and P3 amplitudes. Although results showed clear effects of emotion on the dependent measures, in general, mindfulness did not moderate these effects. For most measures, effect sizes were small with rather narrow confidence intervals. These data do not support the hypothesis that individual differences in self-reported trait mindfulness are related to spontaneous emotional responses during picture viewing. PMID:25749431
Salloum, R H; Sandridge, S; Patton, D J; Stillitano, G; Dawson, G; Niforatos, J; Santiago, L; Kaltenbach, J A
2016-01-01
In recent years, there has been increasing use of the gap detection reflex test to demonstrate induction of tinnitus in animals. Animals with tinnitus show weakened gap detection ability for background noise that matches the pitch of the tinnitus. The usual explanation is that the tinnitus 'fills in the gap'. It has recently been shown, however, that tinnitus is commonly associated with hyperacusis-like enhancements of the acoustic startle response, a change which might potentially alter responses in the gap detection test. We hypothesized that such enhancements could lead to an apparent reduction of gap suppression, resembling that caused by tinnitus, by altering responses to the startle stimulus or the background noise. To test this hypothesis, we compared gap detection abilities in 3 subsets of noise-exposed animals with those in unexposed controls. The results showed that exposed animals demonstrated altered gap detection abilities, but these alterations were sometimes explained as consequences of hyper-responsiveness to either the startle stimulus or to the background noise. Two of the three subsets of animals studied, however, displayed weakened gap detection abilities that could not be explained by enhanced responses to these stimuli or by reduced sound sensitivity or a reduction of temporal processing speed, consistent with the induction of tinnitus. These results demonstrate that not only hearing loss but also changes in sensitivity to background noise or to startle stimuli are potential confounds that, when present, can underlie changes in gap detection irrespective of tinnitus. We discuss how such confounds can be recognized and how they can be avoided. Copyright © 2015 Elsevier B.V. All rights reserved.
Bijlsma, Elisabeth Y; Hendriksen, Hendrikus; Baas, Johanna M P; Millan, Mark J; Groenink, Lucianne
2015-10-01
The inability to associate aversive events with relevant cues (i.e. fear learning) may lead to maladaptive anxiety. To further study the role of the serotonin transporter (SERT) in fear learning, classical fear conditioning was studied in SERT knockout rats (SERT(-/-)) using fear potentiation of the startle reflex. Next, fear acquisition and concomitant development of contextual conditioned fear were monitored during training. To differentiate between developmental and direct effects of reduced SERT functioning, effects of acute and chronic SSRI treatment were studied in adult rats. Considering the known interactions between serotonin and corticotropin-releasing factor (CRF), we studied the effect of the CRFR1 antagonist CP154,526 on behavioral changes observed and determined CRF1 receptor levels in SERT(-/-) rats. SERT(-/-) showed blunted fear potentiation and enhanced contextual fear, which resulted from a deficit in fear acquisition. Paroxetine treatment did not affect acquisition or expression of fear-potentiated startle, suggesting that disturbed fear learning in SERT(-/-) results from developmental changes and not from reduced SERT functioning. Although CRF1 receptor levels did not differ significantly between genotypes, CP154,526 treatment normalized both cue- and contextual fear in SERT(-/-) during acquisition, but not expression of fear-potentiated startle. The disrupted fear acquisition and concomitant increase in contextual conditioned fear-potentiated startle fear in SERT(-/-) resembles the associative learning deficit seen in patients with panic disorder and suggests that normal SERT functioning is crucial for the development of an adequate fear neuro-circuitry. Moreover, the normalization of fear acquisition by CP154,526 suggests a role for central CRF signaling in the generalization of fear. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.
Direct effects of diazepam on emotional processing in healthy volunteers
Murphy, S. E.; Downham, C.; Cowen, P. J.
2008-01-01
Rationale Pharmacological agents used in the treatment of anxiety have been reported to decrease threat relevant processing in patients and healthy controls, suggesting a potentially relevant mechanism of action. However, the effects of the anxiolytic diazepam have typically been examined at sedative doses, which do not allow the direct actions on emotional processing to be fully separated from global effects of the drug on cognition and alertness. Objectives The aim of this study was to investigate the effect of a lower, but still clinically effective, dose of diazepam on emotional processing in healthy volunteers. Materials and methods Twenty-four participants were randomised to receive a single dose of diazepam (5 mg) or placebo. Sixty minutes later, participants completed a battery of psychological tests, including measures of non-emotional cognitive performance (reaction time and sustained attention) and emotional processing (affective modulation of the startle reflex, attentional dot probe, facial expression recognition, and emotional memory). Mood and subjective experience were also measured. Results Diazepam significantly modulated attentional vigilance to masked emotional faces and significantly decreased overall startle reactivity. Diazepam did not significantly affect mood, alertness, response times, facial expression recognition, or sustained attention. Conclusions At non-sedating doses, diazepam produces effects on attentional vigilance and startle responsivity that are consistent with its anxiolytic action. This may be an underlying mechanism through which benzodiazepines exert their therapeutic effects in clinical anxiety. PMID:18581100
Bertelsen, Birgitte; Oranje, Bob; Melchior, Linea; Fagerlund, Birgitte; Werge, Thomas M; Mikkelsen, Jens D; Tümer, Zeynep; Glenthøj, Birte Y
2015-12-01
Schizophrenia is a severe psychiatric disorder with a core component of impaired cognitive function still remaining as one of the greatest challenges in the pharmacological treatment of the disorder. The CHRNA7 gene, encoding the subunit of the human α7 nicotinic acetylcholine receptor (α7nAChR), is suggested as a susceptibility factor for schizophrenia. CHRNA7 has also been genetically linked to the P50 auditory evoked potential deficit, a candidate endophenotype of schizophrenia, but not to prepulse inhibition of the startle reflex (PPI). In this study, 95 antipsychotic-naïve schizophrenic patients and 450 unaffected controls were screened for CHRNA7 promoter variants to investigate the association with schizophrenia, P50 suppression and PPI. We found that the promoter variant -194C (rs28531779) was significantly associated with schizophrenia, but did not find any association of this variant with P50 suppression or PPI. In addition, individuals with CHRNA7 promoter variants had elevated startle magnitude in pulse-alone trials compared to individuals without a variant. The present findings provide further support for a role of the α7nAChR in schizophrenia and show a genetic link between CHRNA7 and startle magnitude, indicating that cholinergic neurotransmission involving the α7nAChR could be involved in sensory registration processes.
Parallel Acquisition of Awareness and Differential Delay Eyeblink Conditioning
ERIC Educational Resources Information Center
Weidemann, Gabrielle; Antees, Cassandra
2012-01-01
There is considerable debate about whether differential delay eyeblink conditioning can be acquired without awareness of the stimulus contingencies. Previous investigations of the relationship between differential-delay eyeblink conditioning and awareness of the stimulus contingencies have assessed awareness after the conditioning session was…
The effects of Eph-ephrin mutations on pre-pulse inhibition in mice.
Liuzzo, Andrea; Gray, Lincoln; Wallace, Matthew; Gabriele, Mark
2014-08-01
Eph-ephrin signaling is known to be important in directing topographic projections in the afferent auditory pathway, including connections to various subdivisions of the inferior colliculus (IC). The acoustic startle-response (ASR) is a reliable reflexive behavioral response in mammals elicited by an unexpected intense acoustic startle-eliciting stimulus (ES). It is mediated by a sub-cortical pathway that includes the IC. The ASR amplitude can be measured with an accelerometer under the subject and can be decreased in amplitude by presenting a less intense, non-startling stimulus 5-300ms before the ES. This reflexive decrement in ASR is called pre-pulse inhibition (PPI) and indicates that the relatively soft pre-pulse was heard. PPI is a general trait among mammals. Mice have been used recently to study this response and to reveal how genetic mutations affect neural circuits and hence the ASR and PPI. In this experiment, we measured the effect of Eph-ephrin mutations using control mice (C57BL/6J), mice with compromised EphA4 signaling (EphA4(lacZ/+), EphA4(lacZ/lacZ)), and knockout ephrin-B3 mice (ephrin-B3 (+/-, -/-)). Control and EphA4(lacZ/+s)trains showed robust PPI (up to 75% decrement in ASR) to an offset of a 70dB SPL background noise at 50ms before the ES. Ephrin-B3 knockout mice and EphA4 homozygous mutants were only marginally significant in PPI (<25% decrement and <33% decrement, respectively) to the same conditions. This decrement in PPI highlights the importance of ephrin-B3 and EphA4 interactions in ordering auditory behavioral circuits. Thus, different mutations in certain members of the signaling family produce a full range of changes in PPI, from minimal to nearly maximal. This technique can be easily adapted to study other aspects of hearing in a wider range of mutations. Along with ongoing neuroanatomical studies, this allows careful quantification of how the auditory anatomical, physiological and now behavioral phenotype is affected by changes in Eph-ephrin expression and functionality. Copyright © 2014 Elsevier Inc. All rights reserved.
Iron Deficiency with or without Anemia Impairs Prepulse Inhibition of the Startle Reflex
Pisansky, Marc T.; Wickham, Robert J.; Su, Jianjun; Fretham, Stephanie; Yuan, Li-Lian; Sun, Mu; Gewirtz, Jonathan C.; Georgieff, Michael K.
2013-01-01
Iron deficiency (ID) during early life causes long-lasting detrimental cognitive sequelae, many of which are linked to alterations in hippocampus function, dopamine synthesis, and the modulation of dopaminergic circuitry by the hippocampus. These same features have been implicated in the origins of schizophrenia, a neuropsychiatric disorder with significant cognitive impairments. Deficits in sensorimotor gating represent a reliable endophenotype of schizophrenia that can be measured by prepulse inhibition (PPI) of the acoustic startle reflex. Using two rodent model systems, we investigated the influence of early-life ID on PPI in adulthood. To isolate the role of hippocampal iron in PPI, our mouse model utilized a timed (embryonic day 18.5), hippocampus-specific knockout of Slc11a2, a gene coding an important regulator of cellular iron uptake, the divalent metal transport type 1 protein (DMT-1). Our second model used a classic rat dietary-based global ID during gestation, a condition that closely mimics human gestational ID anemia (IDA). Both models exhibited impaired PPI in adulthood. Furthermore, our DMT-1 knockout model displayed reduced long-term potentiation (LTP) and elevated paired pulse facilitation (PPF), electrophysiological results consistent with previous findings in the IDA rat model. These results, in combination with previous findings demonstrating impaired hippocampus functioning and altered dopaminergic and glutamatergic neurotransmission, suggest that iron availability within the hippocampus is critical for the neurodevelopmental processes underlying sensorimotor gating. Ultimately, evidence of reduced PPI in both of our models may offer insights into the roles of fetal ID and the hippocampus in the pathophysiology of schizophrenia. PMID:23733517
Extinction, Reacquisition, and Rapid Forgetting of Eyeblink Conditioning in Developing Rats
ERIC Educational Resources Information Center
Brown, Kevin L.; Freeman, John H.
2014-01-01
Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In…
Neural Circuitry and Plasticity Mechanisms Underlying Delay Eyeblink Conditioning
ERIC Educational Resources Information Center
Freeman, John H.; Steinmetz, Adam B.
2011-01-01
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of…
Knuttinen, M-G; Parrish, T B; Weiss, C; LaBar, K S; Gitelman, D R; Power, J M; Mesulam, M-M; Disterhoft, J F
2002-10-01
This study was designed to develop a suitable method of recording eyeblink responses while conducting functional magnetic resonance imaging (fMRI). Given the complexity of this behavioral setup outside of the magnet, this study sought to adapt and further optimize an approach to eyeblink conditioning that would be suitable for conducting event-related fMRI experiments. This method involved the acquisition of electromyographic (EMG) signals from the orbicularis oculi of the right eye, which were subsequently amplified and converted into an optical signal outside of the head coil. This optical signal was converted back into an electrical signal once outside the magnet room. Electromyography (EMG)-detected eyeblinks were used to measure responses in a delay eyeblink conditioning paradigm. Our results indicate that: (1) electromyography is a sensitive method for the detection of eyeblinks during fMRI; (2) minimal interactions or artifacts of the EMG signal were created from the magnetic resonance pulse sequence; and (3) no electromyography-related artifacts were detected in the magnetic resonance images. Furthermore, an analysis of the functional data showed areas of activation that have previously been shown in positron emission tomography studies of human eyeblink conditioning. Our results support the strength of this behavioral setup as a suitable method to be used in association with fMRI.
Spontaneous Eye-Blinking and Stereotyped Behavior in Older Persons with Mental Retardation
ERIC Educational Resources Information Center
Roebel, Amanda M.; MacLean, William E., Jr.
2007-01-01
Previous research indicates that abnormal stereotyped movements are associated with central dopamine dysfunction and that eye-blink rate is a noninvasive, in vivo measure of dopamine function. We measured the spontaneous eye-blinking and stereotyped behavior of older adults with severe/profound mental retardation living in a state mental…
Neural circuitry and plasticity mechanisms underlying delay eyeblink conditioning
Freeman, John H.; Steinmetz, Adam B.
2011-01-01
Pavlovian eyeblink conditioning has been used extensively as a model system for examining the neural mechanisms underlying associative learning. Delay eyeblink conditioning depends on the intermediate cerebellum ipsilateral to the conditioned eye. Evidence favors a two-site plasticity model within the cerebellum with long-term depression of parallel fiber synapses on Purkinje cells and long-term potentiation of mossy fiber synapses on neurons in the anterior interpositus nucleus. Conditioned stimulus and unconditioned stimulus inputs arise from the pontine nuclei and inferior olive, respectively, converging in the cerebellar cortex and deep nuclei. Projections from subcortical sensory nuclei to the pontine nuclei that are necessary for eyeblink conditioning are beginning to be identified, and recent studies indicate that there are dynamic interactions between sensory thalamic nuclei and the cerebellum during eyeblink conditioning. Cerebellar output is projected to the magnocellular red nucleus and then to the motor nuclei that generate the blink response(s). Tremendous progress has been made toward determining the neural mechanisms of delay eyeblink conditioning but there are still significant gaps in our understanding of the necessary neural circuitry and plasticity mechanisms underlying cerebellar learning. PMID:21969489
Steinmetz, Adam B; Ng, Ka H; Freeman, John H
2017-06-01
Amygdala lesions impair, but do not prevent, acquisition of cerebellum-dependent eyeblink conditioning suggesting that the amygdala modulates cerebellar learning. Two-factor theories of eyeblink conditioning posit that a fast-developing memory within the amygdala facilitates slower-developing memory within the cerebellum. The current study tested this hypothesis by impairing memory consolidation within the amygdala with inhibition of protein synthesis, transcription, and NMDA receptors in rats. Rats given infusions of anisomycin or DRB into the central amygdala (CeA) immediately after each eyeblink conditioning session were severely impaired in contextual and cued fear conditioning, but were completely unimpaired in eyeblink conditioning. Rats given the NMDA antagonist ifenprodil into the CeA before each eyeblink conditioning session also showed impaired fear conditioning, but no deficit in eyeblink conditioning. The results indicate that memory formation within the CeA is not necessary for its modulation of cerebellar learning mechanisms. The CeA may modulate cerebellar learning and retention through an attentional mechanism that develops within the training sessions. © 2017 Steinmetz et al.; Published by Cold Spring Harbor Laboratory Press.
The Moro reaction: More than a reflex, a ritualized behavior of nonverbal communication.
Rousseau, Pierre V; Matton, Florence; Lecuyer, Renaud; Lahaye, Willy
2017-02-01
To propose a phylogenetic significance to the Moro reflex which remains unexplained since its publication in 1918 because both hands are free at the end of the gesture. Among the 75 videos of healthy term newborns we have filmed in a research project on antenatal education to parenthood, we describe a sequence that clearly showed the successive movements of the Moro reflex and we report the occurrence of this reflex in the videos that were recorded from Time 0 of birth defined as the moment that lies between the birth of the thorax and the pelvis of the infant. The selected sequence showed the following succession of the newborn's actions: quick extension-adduction of both arms, the orientation of the body, head and eyes towards a human person, and full extension-abduction of both arms with spreading of the fingers, crying and a distressed face. There were 13 Moro reflexes between 2 and 14s from Time 0 of birth. We found a significant association between the occurrence of the Moro reflex and the placement of the newborn at birth in supine position on the mother's abdomen (p=0.002). The quick extension-adduction of both arms which started the sequence may be considered as a startle reflex controlled by the neural fear system and the arm extension-adduction which followed as a Moro reflex. The characteristics of all Moro reflexes were those of ritualization: amplitude, duration, stereotype of the gestures. This evolutionary process turns a physiological behavior, grasping in this case, to a non-verbal communicative behavior whose meaning is a request to be picked up in the arms. The gestures associated with the Moro reflex: crying and orientation of the body, head, and eyes towards a human person, are gestures of intention to communicate which support our hypothesis. The neural mechanism of the Moro reaction probably involves both the fear and the separation-distress systems. This paper proposes for the first time a phylogenetic significance to the Moro reflex: a ritualized behavior of nonverbal communication. Professionals should avoid stimulating the newborns' fear system by unnecessarily triggering Moro reflexes. Antenatal education should teach parents to respond to the Moro reflexes of their newborn infant by picking her up in their arms with mother talk. Copyright © 2017 Elsevier Inc. All rights reserved.
The neural basis of visual behaviors in the larval zebrafish.
Portugues, Ruben; Engert, Florian
2009-12-01
We review visually guided behaviors in larval zebrafish and summarise what is known about the neural processing that results in these behaviors, paying particular attention to the progress made in the last 2 years. Using the examples of the optokinetic reflex, the optomotor response, prey tracking and the visual startle response, we illustrate how the larval zebrafish presents us with a very promising model vertebrate system that allows neurocientists to integrate functional and behavioral studies and from which we can expect illuminating insights in the near future. Copyright 2009 Elsevier Ltd. All rights reserved.
Kuznetsova, E G; Amstislavskaia, T G; Bulygina, V V; Il'nitskaia, S I; Tibeĭkina, M A; Skrinskaia, Iu A
2006-06-01
DBA/2 male mice were treated with monosodium glutamate (MSG) in a dose of 4 mg/g on 1, 3, 5, 7, 9 days after birth. Saline treated and intact males were used as control groups. MSG treated males displayed decreased number of crossed squares, rearings, entries in the centre and time in the centre of open field in comparison with saline-treated but not intact animals. Time in the light compartment of the light-dark box was increased in MSG-treated mice versus both saline treated and intact animals. MSG administration reduced acoustic startle response but did not affect the magnitude of prepulse inhibition of the startle reflex. Sexual motivation in male mice was reduced by MSG, the same trend was observed after saline treatment. MSG administration increased corticosterone basal level 4-fold while saline treatment did not affect it. These data suggest that neonatal administration of MSG decreases locomotion, exploratory activity, anxiety in male mice, while corticosterone level is increased. Saline treatment increases these parameters (except sexual motivation), and this augmentation is not connected to changes in corticosterone basal level.
Models and mechanisms of anxiety: evidence from startle studies
Grillon, Christian
2009-01-01
Rationale Preclinical data indicates that threat stimuli elicit two classes of defensive behaviors, those that are associated with imminent danger and are characterized by avoidance or fight (fear), and those that are associated with temporally uncertain danger and are characterized by sustained apprehension and hypervigilance (anxiety). Objective To 1) review evidence for a distinction between fear and anxiety in animal and human experimental models using the startle reflex as an operational measure of aversive states, 2) describe experimental models of anxiety, as opposed to fear, in humans, 3) examine the relevance of these models to clinical anxiety. Results The distinction between phasic fear to imminent threat and sustained anxiety to temporally uncertain danger is suggested by psychopharmacological and behavioral evidence from ethological studies and can be traced back to distinct neuroanatomical systems, the amygdala and the bed nucleus of the stria terminalis. Experimental models of anxiety, not fear, are relevant to non-phobic anxiety disorders. Conclusions Progress in our understanding of normal and abnormal anxiety is critically dependent on our ability to model sustained aversive states to temporally uncertain threat. PMID:18058089
Contextual Specificity of Extinction of Delay but Not Trace Eyeblink Conditioning in Humans
ERIC Educational Resources Information Center
Grillon, Christian; Alvarez, Ruben P.; Johnson, Linda; Chavis, Chanen
2008-01-01
Renewal of an extinguished conditioned response has been demonstrated in humans and in animals using various types of procedures, except renewal of motor learning such as eyeblink conditioning. We tested renewal of delay and trace eyeblink conditioning in a virtual environment in an ABA design. Following acquisition in one context (A, e.g., an…
Retention and Extinction of Delay Eyeblink Conditioning Are Modulated by Central Cannabinoids
ERIC Educational Resources Information Center
Steinmetz, Adam B.; Freeman, John H.
2011-01-01
Rats administered the cannabinoid agonist WIN55,212-2 or the antagonist SR141716A exhibit marked deficits during acquisition of delay eyeblink conditioning, as noted by Steinmetz and Freeman in an earlier study. However, the effects of these drugs on retention and extinction of eyeblink conditioning have not been assessed. The present study…
Andreu-Sánchez, Celia; Martín-Pascual, Miguel Ángel; Gruart, Agnès; Delgado-García, José María
2017-01-01
While movie edition creates a discontinuity in audio-visual works for narrative and economy-of-storytelling reasons, eyeblink creates a discontinuity in visual perception for protective and cognitive reasons. We were interested in analyzing eyeblink rate linked to cinematographic edition styles. We created three video stimuli with different editing styles and analyzed spontaneous blink rate in participants (N = 40). We were also interested in looking for different perceptive patterns in blink rate related to media professionalization. For that, of our participants, half (n = 20) were media professionals, and the other half were not. According to our results, MTV editing style inhibits eyeblinks more than Hollywood style and one-shot style. More interestingly, we obtained differences in visual perception related to media professionalization: we found that media professionals inhibit eyeblink rate substantially compared with non-media professionals, in any style of audio-visual edition. PMID:28220882
Andreu-Sánchez, Celia; Martín-Pascual, Miguel Ángel; Gruart, Agnès; Delgado-García, José María
2017-02-21
While movie edition creates a discontinuity in audio-visual works for narrative and economy-of-storytelling reasons, eyeblink creates a discontinuity in visual perception for protective and cognitive reasons. We were interested in analyzing eyeblink rate linked to cinematographic edition styles. We created three video stimuli with different editing styles and analyzed spontaneous blink rate in participants (N = 40). We were also interested in looking for different perceptive patterns in blink rate related to media professionalization. For that, of our participants, half (n = 20) were media professionals, and the other half were not. According to our results, MTV editing style inhibits eyeblinks more than Hollywood style and one-shot style. More interestingly, we obtained differences in visual perception related to media professionalization: we found that media professionals inhibit eyeblink rate substantially compared with non-media professionals, in any style of audio-visual edition.
Rao, Raghavendra; Ennis, Kathleen; Mitchell, Eugena P.; Tran, Phu V.; Gewirtz, Jonathan C.
2016-01-01
Recurrent hypoglycemia is common in infants and children. In developing rat models, recurrent moderate hypoglycemia leads to neuronal injury in the medial prefrontal cortex. To understand the effects beyond neuronal injury, three-week-old male rats were subjected to five episodes of moderate hypoglycemia (blood glucose concentration, approximately 30 mg/dl for 90 min) once daily from postnatal day 24 to 28. Neuronal injury was determined using Fluoro-jade B histochemistry on postnatal day 29. The effects on brain-derived neurotrophic factor (BDNF) and its cognate receptor, tyrosine kinase B (TrkB) expression, which is critical for prefrontal cortex development, were determined on postnatal day 29 and at adulthood. The effects on prefrontal cortex-mediated function were determined by assessing prepulse inhibition of the acoustic startle reflex on postnatal day 29 and two weeks later, and by testing for fear-potentiated startle at adulthood. Recurrent hypoglycemia led to neuronal injury confined primarily to the medial prefrontal cortex. BDNF and TrkB expression in the prefrontal cortex was suppressed on postnatal day 29 and was accompanied by lower prepulse inhibition, suggesting impaired sensorimotor gating. Following the cessation of recurrent hypoglycemia, prepulse inhibition had recovered at two weeks. BDNF/TrkB expression in the prefrontal cortex had normalized and fear-potentiated startle was intact at adulthood. Recurrent moderate hypoglycemia during development has significant adverse effects on the prefrontal cortex in the post-hypoglycemia period. PMID:26820887
ERIC Educational Resources Information Center
Halverson, Hunter E.; Freeman, John H.
2010-01-01
The conditioned stimulus (CS) pathway that is necessary for visual delay eyeblink conditioning was investigated in the current study. Rats were initially given eyeblink conditioning with stimulation of the ventral nucleus of the lateral geniculate (LGNv) as the CS followed by conditioning with light and tone CSs in separate training phases.…
Weidemann, Gabrielle; Tangen, Jason M; Lovibond, Peter F; Mitchell, Christopher J
2009-04-01
P. Perruchet (1985b) showed a double dissociation of conditioned responses (CRs) and expectancy for an airpuff unconditioned stimulus (US) in a 50% partial reinforcement schedule in human eyeblink conditioning. In the Perruchet effect, participants show an increase in CRs and a concurrent decrease in expectancy for the airpuff across runs of reinforced trials; conversely, participants show a decrease in CRs and a concurrent increase in expectancy for the airpuff across runs of nonreinforced trials. Three eyeblink conditioning experiments investigated whether the linear trend in eyeblink CRs in the Perruchet effect is a result of changes in associative strength of the conditioned stimulus (CS), US sensitization, or learning the precise timing of the US. Experiments 1 and 2 demonstrated that the linear trend in eyeblink CRs is not the result of US sensitization. Experiment 3 showed that the linear trend in eyeblink CRs is present with both a fixed and a variable CS-US interval and so is not the result of learning the precise timing of the US. The results are difficult to reconcile with a single learning process model of associative learning in which expectancy mediates CRs. Copyright (c) 2009 APA, all rights reserved.
Gómez-Nieto, Ricardo; Horta-Júnior, José de Anchieta C.; Castellano, Orlando; Millian-Morell, Lymarie; Rubio, Maria E.; López, Dolores E.
2014-01-01
The acoustic startle reflex (ASR) is a survival mechanism of alarm, which rapidly alerts the organism to a sudden loud auditory stimulus. In rats, the primary ASR circuit encompasses three serially connected structures: cochlear root neurons (CRNs), neurons in the caudal pontine reticular nucleus (PnC), and motoneurons in the medulla and spinal cord. It is well-established that both CRNs and PnC neurons receive short-latency auditory inputs to mediate the ASR. Here, we investigated the anatomical origin and functional role of these inputs using a multidisciplinary approach that combines morphological, electrophysiological and behavioral techniques. Anterograde tracer injections into the cochlea suggest that CRNs somata and dendrites receive inputs depending, respectively, on their basal or apical cochlear origin. Confocal colocalization experiments demonstrated that these cochlear inputs are immunopositive for the vesicular glutamate transporter 1 (VGLUT1). Using extracellular recordings in vivo followed by subsequent tracer injections, we investigated the response of PnC neurons after contra-, ipsi-, and bilateral acoustic stimulation and identified the source of their auditory afferents. Our results showed that the binaural firing rate of PnC neurons was higher than the monaural, exhibiting higher spike discharges with contralateral than ipsilateral acoustic stimulations. Our histological analysis confirmed the CRNs as the principal source of short-latency acoustic inputs, and indicated that other areas of the cochlear nucleus complex are not likely to innervate PnC. Behaviorally, we observed a strong reduction of ASR amplitude in monaural earplugged rats that corresponds with the binaural summation process shown in our electrophysiological findings. Our study contributes to understand better the role of neuronal mechanisms in auditory alerting behaviors and provides strong evidence that the CRNs-PnC pathway mediates fast neurotransmission and binaural summation of the ASR. PMID:25120419
Reflex reticular myoclonus: relationship to some brainstem pathophysiological mechanisms.
Rektor, I; Kadanka, Z; Bednarik, J
1991-04-01
Two patients with reflex reticular myoclonus [RRM] were tested electrophysiologically and pharmacologically. In one of the cases the underlying disease was chronic Lyme borreliosis. In the other, the RRM attacks may have been associated with procarbazine therapy applied for Hodgkin's disease. No cortical lesion could be demonstrated either clinically or electrophysiologically [EEG, averaged EEg preceeding the jerks, SSEP]. An EMG analysis of the jerks revealed the shortest latency in the muscles innervated by the accessory nerve. The latencies became longer in a more rostral muscle [masseter], as well as in a more caudal one, the muscles innervated by the facial nerve were spared. it is presumed that the complete movement pattern of the myoclonus residues in the jerk generating structure. RRM in the described cases differs from the startle by sparing the facial nerve and from the Papio papio baboon non-epileptic myoclonus by the activating effect of physostigmine. A partial therapeutic effect was achieved with a serotonine precursor, but a GABAergic therapy proved to be the most effective.
Conditioned social dominance threat: observation of others' social dominance biases threat learning.
Haaker, Jan; Molapour, Tanaz; Olsson, Andreas
2016-10-01
Social groups are organized along dominance hierarchies, which determine how we respond to threats posed by dominant and subordinate others. The persuasive impact of these dominance threats on mental and physical well-being has been well described but it is unknown how dominance rank of others bias our experience and learning in the first place. We introduce a model of conditioned social dominance threat in humans, where the presence of a dominant other is paired with an aversive event. Participants first learned about the dominance rank of others by observing their dyadic confrontations. During subsequent fear learning, the dominant and subordinate others were equally predictive of an aversive consequence (mild electric shock) to the participant. In three separate experiments, we show that participants' eye-blink startle responses and amygdala reactivity adaptively tracked dominance of others during observation of confrontation. Importantly, during fear learning dominant vs subordinate others elicited stronger and more persistent learned threat responses as measured by physiological arousal and amygdala activity. Our results characterize the neural basis of learning through observing conflicts between others, and how this affects subsequent learning through direct, personal experiences. © The Author (2016). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Conditioned social dominance threat: observation of others’ social dominance biases threat learning
Molapour, Tanaz; Olsson, Andreas
2016-01-01
Social groups are organized along dominance hierarchies, which determine how we respond to threats posed by dominant and subordinate others. The persuasive impact of these dominance threats on mental and physical well-being has been well described but it is unknown how dominance rank of others bias our experience and learning in the first place. We introduce a model of conditioned social dominance threat in humans, where the presence of a dominant other is paired with an aversive event. Participants first learned about the dominance rank of others by observing their dyadic confrontations. During subsequent fear learning, the dominant and subordinate others were equally predictive of an aversive consequence (mild electric shock) to the participant. In three separate experiments, we show that participants’ eye-blink startle responses and amygdala reactivity adaptively tracked dominance of others during observation of confrontation. Importantly, during fear learning dominant vs subordinate others elicited stronger and more persistent learned threat responses as measured by physiological arousal and amygdala activity. Our results characterize the neural basis of learning through observing conflicts between others, and how this affects subsequent learning through direct, personal experiences. PMID:27217107
Massa, Nick M; Duncan, Erica; Jovanovic, Tanja; Kerley, Kimberly; Weng, Lei; Gensler, Lauren; Lee, Samuel S; Norrholm, Seth; Powers, Abigail; Almli, Lynn M; Gillespie, Charles F; Ressler, Kerry; Pearce, Bradley D
2017-03-01
Toxoplasma gondii (TOXO) is a neuroinvasive protozoan parasite that induces the formation of persistent cysts in mammalian brains. It infects approximately 1.1million people in the United States annually. Latent TOXO infection is implicated in the etiology of psychiatric disorders, especially schizophrenia (SCZ), and has been correlated with modestly impaired cognition. The acoustic startle response (ASR) is a reflex seen in all mammals. It is mediated by a simple subcortical circuit, and provides an indicator of neural function. We previously reported the association of TOXO with slowed acoustic startle latency, an index of neural processing speed, in a sample of schizophrenia and healthy control subjects. The alterations in neurobiology with TOXO latent infection may not be specific to schizophrenia. Therefore we examined TOXO in relation to acoustic startle in an urban, predominately African American, population with mixed psychiatric diagnoses, and healthy controls. Physiological and diagnostic data along with blood samples were collected from 364 outpatients treated at an inner-city hospital. TOXO status was determined with an ELISA assay for TOXO-specific IgG. A discrete titer was calculated based on standard cut-points as an indicator of seropositivity, and the TOXO-specific IgG concentration served as serointensity. A series of linear regression models were used to assess the association of TOXO seropositivity and serointensity with ASR magnitude and latency in models adjusting for demographics and psychiatric diagnoses (PTSD, major depression, schizophrenia, psychosis, substance abuse). ASR magnitude was 11.5% higher in TOXO seropositive subjects compared to seronegative individuals (p=0.01). This effect was more pronounced in models with TOXO serointensity that adjusted for sociodemographic covariates (F=7.41, p=0.0068; F=10.05, p=0.0017), and remained significant when psychiatric diagnoses were stepped into the models. TOXO showed no association with startle latency (t=0.49, p=0.63) in an unadjusted model, nor was TOXO associated with latency in models that included demographic factors. After stepping in individual psychiatric disorders, we found a significant association of latency with a diagnosis of PTSD (F=5.15, p=0.024), but no other psychiatric diagnoses, such that subjects with PTSD had longer startle latency. The mechanism by which TOXO infection is associated with high startle magnitude is not known, but possible mechanisms include TOXO cyst burden in the brain, parasite recrudescence, or molecular mimicry of a host epitope by TOXO. Future studies will focus on the neurobiology underlying the effects of latent TOXO infection as a potential inroad to the development of novel treatment targets for psychiatric disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Impaired eye blink classical conditioning distinguishes dystonic patients with and without tremor.
Antelmi, E; Di Stasio, F; Rocchi, L; Erro, R; Liguori, R; Ganos, C; Brugger, F; Teo, J; Berardelli, A; Rothwell, J; Bhatia, K P
2016-10-01
Tremor is frequently associated with dystonia, but its pathophysiology is still unclear. Dysfunctions of cerebellar circuits are known to play a role in the pathophysiology of action-induced tremors, and cerebellar impairment has frequently been associated to dystonia. However, a link between dystonic tremor and cerebellar abnormalities has not been demonstrated so far. Twenty-five patients with idiopathic isolated cervical dystonia, with and without tremor, were enrolled. We studied the excitability of inhibitory circuits in the brainstem by measuring the R2 blink reflex recovery cycle (BRC) and implicit learning mediated by the cerebellum by means of eyeblink classical conditioning (EBCC). Results were compared with those obtained in a group of age-matched healthy subjects (HS). Statistical analysis did not disclose any significant clinical differences among dystonic patients with and without tremor. Patients with dystonia (regardless of the presence of tremor) showed decreased inhibition of R2 blink reflex by conditioning pulses compared with HS. Patients with dystonic tremor showed a decreased number of conditioned responses in the EBCC paradigm compared to HS and dystonic patients without tremor. The present data show that cerebellar impairment segregates with the presence of tremor in patients with dystonia, suggesting that the cerebellum might have a role in the occurrence of dystonic tremor. Copyright © 2016 Elsevier Ltd. All rights reserved.
Lock-and-key mechanisms of cerebellar memory recall based on rebound currents.
Wetmore, Daniel Z; Mukamel, Eran A; Schnitzer, Mark J
2008-10-01
A basic question for theories of learning and memory is whether neuronal plasticity suffices to guide proper memory recall. Alternatively, information processing that is additional to readout of stored memories might occur during recall. We formulate a "lock-and-key" hypothesis regarding cerebellum-dependent motor memory in which successful learning shapes neural activity to match a temporal filter that prevents expression of stored but inappropriate motor responses. Thus, neuronal plasticity by itself is necessary but not sufficient to modify motor behavior. We explored this idea through computational studies of two cerebellar behaviors and examined whether deep cerebellar and vestibular nuclei neurons can filter signals from Purkinje cells that would otherwise drive inappropriate motor responses. In eyeblink conditioning, reflex acquisition requires the conditioned stimulus (CS) to precede the unconditioned stimulus (US) by >100 ms. In our biophysical models of cerebellar nuclei neurons this requirement arises through the phenomenon of postinhibitory rebound depolarization and matches longstanding behavioral data on conditioned reflex timing and reliability. Although CS-US intervals<100 ms may induce Purkinje cell plasticity, cerebellar nuclei neurons drive conditioned responses only if the CS-US training interval was >100 ms. This bound reflects the minimum time for deinactivation of rebound currents such as T-type Ca2+. In vestibulo-ocular reflex adaptation, hyperpolarization-activated currents in vestibular nuclei neurons may underlie analogous dependence of adaptation magnitude on the timing of visual and vestibular stimuli. Thus, the proposed lock-and-key mechanisms link channel kinetics to recall performance and yield specific predictions of how perturbations to rebound depolarization affect motor expression.
Sensorimotor Gating in Neurotensin-1 Receptor Null Mice
Feifel, D.; Pang, Z.; Shilling, P.D.; Melendez, G.; Schreiber, R.; Button, D.
2009-01-01
BACKGROUND Converging evidence has implicated endogenous neurotensin (NT) in the pathophysiology of brain processes relevant to schizophrenia. Prepulse inhibition of the startle reflex (PPI) is a measure of sensorimotor gating and considered to be of strong relevance to neuropsychiatric disorders associated with psychosis and cognitive dysfunction. Mice genetically engineered to not express NT display deficits in PPI that model the PPI deficits seen in schizophrenia patients. NT1 receptors have been most strongly implicated in mediating the psychosis relevant effects of NT such as attenuating PPI deficits. To investigate the role of NT1 receptors in the regulation of PPI, we measured baseline PPI in wildtype (WT) and NT1 knockout (KO) mice. We also tested the effects of amphetamine and dizocilpine, a dopamine agonist and NMDA antagonist, respectively, that reduce PPI as well as the NT1 selective receptor agonist, PD149163, known to increase PPI in rats. METHODS Baseline PPI and acoustic startle response were measured in WT and NT1 knockout KO mice. After baseline testing, mice were tested again after receiving intraperatoneal (IP) saline or one of three doses of amphetamine (1.0, 3.0 and 10.0 mg/kg), dizocilpine (0.3, 1.0 and 3.0 mg/kg) and PD149163 (0.5, 2.0 and 6.0 mg/kg) on separate test days. RESULTS Baseline PPI and acoustic startle response in NT1 KO mice were not significantly different from NT1 WT mice. WT and KO mice exhibited similar responses to the PPI-disrupting effects of dizocilpine and amphetamine. PD149163 significantly facilitated PPI (P < 0.004) and decreased the acoustic startle response (P < 0.001) in WT but not NT1 KO mice. CONCLUSIONS The data does not support the regulation of baseline PPI or the PPI disruptive effects of amphetamine or dizocilpine by endogenous NT acting at the NT1 receptor, although they support the antipsychotic potential of pharmacological activation of NT1 receptors by NT1 agonists. PMID:19596359
Richter, Jan; Hamm, Alfons O; Pané-Farré, Christiane A; Gerlach, Alexander L; Gloster, Andrew T; Wittchen, Hans-Ulrich; Lang, Thomas; Alpers, Georg W; Helbig-Lang, Sylvia; Deckert, Jürgen; Fydrich, Thomas; Fehm, Lydia; Ströhle, Andreas; Kircher, Tilo; Arolt, Volker
2012-09-15
The learning perspective of panic disorder distinguishes between acute panic and anxious apprehension as distinct emotional states. Following animal models, these clinical entities reflect different stages of defensive reactivity depending upon the imminence of interoceptive or exteroceptive threat cues. The current study tested this model by investigating the dynamics of defensive reactivity in a large group of patients with panic disorder and agoraphobia (PD/AG). Three hundred forty-five PD/AG patients participated in a standardized behavioral avoidance test (being entrapped in a small, dark chamber for 10 minutes). Defense reactivity was assessed measuring avoidance and escape behavior, self-reports of anxiety and panic symptoms, autonomic arousal (heart rate and skin conductance), and potentiation of the startle reflex before and during exposure of the behavioral avoidance test. Panic disorder and agoraphobia patients differed substantially in their defensive reactivity. While 31.6% of the patients showed strong anxious apprehension during this task (as indexed by increased reports of anxiety, elevated physiological arousal, and startle potentiation), 20.9% of the patients escaped from the test chamber. Active escape was initiated at the peak of the autonomic surge accompanied by an inhibition of the startle response as predicted by the animal model. These physiological responses resembled the pattern observed during the 34 reported panic attacks. We found evidence that defensive reactivity in PD/AG patients is dynamically organized ranging from anxious apprehension to panic with increasing proximity of interoceptive threat. These data support the learning perspective of panic disorder. Copyright © 2012 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Lo, Sharon L; Schroder, Hans S; Moran, Tim P; Durbin, C Emily; Moser, Jason S
2015-10-01
Interactions between cognitive control and affective processes, such as defensive reactivity, are intimately involved in healthy and unhealthy human development. However, cognitive control and defensive reactivity processes are often studied in isolation and rarely examined in early childhood. To address these gaps, we examined the relationships between multiple neurophysiological measures of cognitive control and defensive reactivity in young children. Specifically, we assessed two event-related potentials thought to index cognitive control processes--the error-related negativity (ERN) and error positivity (Pe)--measured across two tasks, and two markers of defensive reactivity processes--startle reflex and resting parietal asymmetry--in a sample of 3- to 7-year old children. Results revealed that measures of cognitive control and defensive reactivity were related such that evidence of poor cognitive control (smaller ERN) was associated with high defensive reactivity (larger startle and greater right relative to left parietal activity). The strength of associations between the ERN and measures of defensive reactivity did not vary by age, providing evidence that poor cognitive control relates to greater defensive reactivity across early childhood years. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Neural, Hormonal, and Cognitive Correlates of Metabolic Dysfunction and Emotional Reactivity.
Wolf, Tovah; Tsenkova, Vera; Ryff, Carol D; Davidson, Richard J; Willette, Auriel A
2018-06-01
Prediabetes and type 2 diabetes (i.e., hyperglycemia) are characterized by insulin resistance. These problems with energy metabolism may exacerbate emotional reactivity to negatively valenced stimuli and related phenomena such as predisposition toward negative affect, as well as cognitive deficits. Higher emotional reactivity is seen with hyperglycemia and insulin resistance. However, it is largely unknown how metabolic dysfunction correlates with related neural, hormonal, and cognitive outcomes. Among 331 adults from the Midlife in the United States study, eye-blink response (EBR) we cross sectionally examined to gauge reactivity to negative, positive, or neutrally valenced pictures from international affect picture system stimuli proximal to an acoustic startle probe. Increased EBR to negative stimuli was considered an index of stress reactivity. Frontal alpha asymmetry, a biomarker of negative affect predisposition, was determined using resting electroencephalography. Baseline urinary cortisol output was collected. Cognitive performance was gauged using the Brief Test of Adult Cognition by telephone. Fasting glucose and insulin characterized hyperglycemia or the homeostatic model assessment of insulin resistance. Higher homeostatic model assessment of insulin resistance corresponded to an increased startle response, measured by EBR magnitude, for negative versus positive stimuli (R = 0.218, F(1,457) = 5.48, p = .020, euglycemia: M(SD) = .092(.776), hyperglycemia: M(SD) = .120(.881)). Participants with hyperglycemia versus euglycemia showed greater right frontal alpha asymmetry (F(1,307) = 6.62, p = .011, euglycemia: M(SD) = .018(.167), hyperglycemia: M(SD) = -.029(.160)), and worse Brief Test of Adult Cognition by telephone arithmetic performance (F(1,284) = 4.25, p = .040, euglycemia: M(SD) = 2.390(1.526), hyperglycemia: M(SD) = 1.920(1.462)). Baseline urinary cortisol (log10 μg/12 hours) was also dysregulated in individuals with hyperglycemia (F(1,324) = 5.09, p = .025, euglycemia: M(SD) = 1.052 ± .332, hyperglycemia: M(SD) = .961 (.362)). These results suggest that dysmetabolism is associated with increased emotional reactivity, predisposition toward negative affect, and specific cognitive deficits.
Eye-blink behaviors in 71 species of primates.
Tada, Hideoki; Omori, Yasuko; Hirokawa, Kumi; Ohira, Hideki; Tomonaga, Masaki
2013-01-01
The present study was performed to investigate the associations between eye-blink behaviors and various other factors in primates. We video-recorded 141 individuals across 71 primate species and analyzed the blink rate, blink duration, and "isolated" blink ratio (i.e., blinks without eye or head movement) in relation to activity rhythms, habitat types, group size, and body size factors. The results showed close relationships between three types of eye-blink measures and body size factors. All of these measures increased as a function of body weight. In addition, diurnal primates showed more blinks than nocturnal species even after controlling for body size factors. The most important findings were the relationships between eye-blink behaviors and social factors, e.g., group size. Among diurnal primates, only the blink rate was significantly correlated even after controlling for body size factors. The blink rate increased as the group size increased. Enlargement of the neocortex is strongly correlated with group size in primate species and considered strong evidence for the social brain hypothesis. Our results suggest that spontaneous eye-blinks have acquired a role in social communication, similar to grooming, to adapt to complex social living during primate evolution.
Eye-Blink Behaviors in 71 Species of Primates
Tada, Hideoki; Omori, Yasuko; Hirokawa, Kumi; Ohira, Hideki; Tomonaga, Masaki
2013-01-01
The present study was performed to investigate the associations between eye-blink behaviors and various other factors in primates. We video-recorded 141 individuals across 71 primate species and analyzed the blink rate, blink duration, and “isolated” blink ratio (i.e., blinks without eye or head movement) in relation to activity rhythms, habitat types, group size, and body size factors. The results showed close relationships between three types of eye-blink measures and body size factors. All of these measures increased as a function of body weight. In addition, diurnal primates showed more blinks than nocturnal species even after controlling for body size factors. The most important findings were the relationships between eye-blink behaviors and social factors, e.g., group size. Among diurnal primates, only the blink rate was significantly correlated even after controlling for body size factors. The blink rate increased as the group size increased. Enlargement of the neocortex is strongly correlated with group size in primate species and considered strong evidence for the social brain hypothesis. Our results suggest that spontaneous eye-blinks have acquired a role in social communication, similar to grooming, to adapt to complex social living during primate evolution. PMID:23741522
Sun, Wei; Doolittle, Lauren; Flowers, Elizabeth; Zhang, Chao; Wang, Qiuju
2014-01-01
Prepulse inhibition of acoustic startle reflex (PPI), a well-established method for evaluating sensorimotor gating function, has been used to detect tinnitus in animal models. Reduced gap induced PPI (gap-PPI) was considered as a sign of tinnitus. The silent gap used in the test contains both onset and offset signals. Tinnitus may affect these cues differently. In this experiment, we studied the effects of a high dose of salicylate (250 mg/kg, i.p.), an inducer of reversible tinnitus and sensorineural hearing loss, on gap-PPI induced by three different gaps: an onset-gap with 0.1 ms onset and 25 ms offset time, an offset-gap with 25 ms onset and 0.1 ms offset time, and an onset-offset-gap with 0.1 ms onset and offset time. We found that the onset-gaps induced smaller inhibitions than the offset-gaps before salicylate treatment. The offset-gap induced PPI was significantly reduced 1-3h after salicylate treatment. However, the onset-gap caused a facilitation of startle response. These results suggest that salicylate induced reduction of gap-PPI was not only caused by the decrease of offset-gap induced PPI, but also by the facilitation induced by the onset-gap. Since the onset-gap induced PPI is caused by neural offset response, our results suggest that salicylate may cause a facilitation of neural response to an offset acoustical signal. Treatment of vigabatrin (60 mg/kg/day, 14 days), which elevates the GABA level in the brain, blocked the offset-gap induced PPI and onset-gap induced facilitation caused by salicylate. These results suggest that enhancing GABAergic activities can alleviate salicylate induced tinnitus. Published by Elsevier B.V.
Thanellou, Alexandra; Green, John T.
2011-01-01
Reinstatement, the return of an extinguished conditioned response (CR) after reexposure to the unconditioned stimulus (US), and spontaneous recovery, the return of an extinguished CR with the passage of time, are two of four well-established phenomena which demonstrate that extinction does not erase the conditioned stimulus (CS)-US association. However, reinstatement of extinguished eyeblink CRs has never been demonstrated and spontaneous recovery of extinguished eyeblink CRs has not been systematically demonstrated in rodent eyeblink conditioning. In Experiment 1, US reexposure was administered 24 hours prior to a reinstatement test. In Experiment 2, US reexposure was administered 5 min prior to a reinstatement test. In Experiment 3, a long, discrete cue (a houselight), present in all phases of training and testing, served as a context within which each trial occurred to maximize context processing, which in other preparations has been shown to be required for reinstatement. In Experiment 4, an additional group was included that received footshock exposure, rather than US reexposure, between extinction and test, and contextual freezing was measured prior to test. Spontaneous recovery was robust in Experiments 3 and 4. In Experiment 4, context freezing was strong in a group given footshock exposure but not in a group given eyeshock US reexposure. There was no reinstatement observed in any experiment. With stimulus conditions that produce eyeblink conditioning and research designs that produce reinstatement in other forms of classical conditioning, we observed spontaneous recovery but not reinstatement of extinguished eyeblink CRs. This suggests that reinstatement, but not spontaneous recovery, is a preparation- or substrate-dependent phenomenon. PMID:21517145
Nomura, Ryota; Hino, Kojun; Shimazu, Makoto; Liang, Yingzong; Okada, Takeshi
2015-01-01
Collective spectator communications such as oral presentations, movies, and storytelling performances are ubiquitous in human culture. This study investigated the effects of past viewing experiences and differences in expressive performance on an audience’s transportive experience into a created world of a storytelling performance. In the experiment, 60 participants (mean age = 34.12 years, SD = 13.18 years, range 18–63 years) were assigned to watch one of two videotaped performances that were played (1) in an orthodox way for frequent viewers and (2) in a modified way aimed at easier comprehension for first-time viewers. Eyeblink synchronization among participants was quantified by employing distance-based measurements of spike trains, Dspike and Dinterval (Victor and Purpura, 1997). The results indicated that even non-familiar participants’ eyeblinks were synchronized as the story progressed and that the effect of the viewing experience on transportation was weak. Rather, the results of a multiple regression analysis demonstrated that the degrees of transportation could be predicted by a retrospectively reported humor experience and higher real-time variability (i.e., logarithmic transformed SD) of inter blink intervals during a performance viewing. The results are discussed from the viewpoint in which the extent of eyeblink synchronization and eyeblink-rate variability acts as an index of the inner experience of audience members. PMID:26029123
Both trace and delay conditioned eyeblink responding can be dissociated from outcome expectancy.
Weidemann, Gabrielle; Broderick, Joshua; Lovibond, Peter F; Mitchell, Christopher J
2012-01-01
Squire and colleagues have proposed that trace and delay eyeblink conditioning are fundamentally different kinds of learning: trace conditioning requires acquisition of a conscious declarative memory for the stimulus contingencies whereas delay conditioning does not. Declarative memory in trace conditioning is thought to generate conditioned responding through the activation of a conscious expectancy for when the unconditioned stimulus (US) is going to occur. Perruchet (1985) has previously shown that in a 50% partial reinforcement design it is possible to dissociate single cue delay eyeblink conditioning from conscious expectancy for the US by examining performance over runs of reinforced and nonreinforced trials. Clark, Manns, and Squire (2001) claim that this dissociation does not occur in trace eyeblink conditioning. In the present experiment we examined the Perruchet effect for short, moderate, and long trace intervals (600, 1000, and 1400 ms) and for the equivalent interstimulus intervals (ISIs) in a delay conditioning procedure. We found evidence for a dissociation of eyeblink CRs and US expectancy over runs regardless of whether there was a delay or a trace arrangement of cues. The reasons for the Perruchet effect are still unclear, but the present data suggest that it does not depend on a separate nondeclarative system of the type proposed by Squire and colleagues. (c) 2012 APA, all rights reserved.
Iso, Hiroyuki; Simoda, Shigero; Matsuyama, Tomohiro
2007-04-16
Four groups of male C57BL/6 mice were reared differing combinations of the two environments from 3 to 11 weeks after birth. At 12 and 13 weeks they were assessed by measures of behaviour and learning: open-field activity, auditory startle reflex and prepulse inhibition, water maze learning, and passive avoidance. Another four groups of mice reared under these varying conditions were examined for generation of neurons in hippocampus and cerebral cortex using bromodeoxyuridine (BrdU) at 12 weeks. Enriched (EE) and impoverished (PP) groups were housed in their respective environment for 8 weeks, enriched-impoverished (EP) and impoverished-enriched (PE) mice respectively were reared for 6 weeks in the first-mentioned environment and then for 2 weeks in the second. PP and EP mice showed hyperactivity, greater startle amplitude and significantly slower learning in a water maze than EE or PE animals, and also showed a memory deficit in a probe test, avoidance performance did not differ. Neural generation was greater in the EE and PE than PP and EP groups, especially in the hippocampus. These results suggest that environmental change critically affects behavioural and anatomic brain development, even if brief. In these mice, the effect of unfavourable early experience could be reversed by a later short of favourable experience.
Claassen, J; Mazilescu, L; Thieme, A; Bracha, V; Timmann, D
2016-01-01
Context dependency of extinction is well known and has extensively been studied in fear conditioning, but has rarely been assessed in eyeblink conditioning. One way to demonstrate context dependency of extinction is the renewal effect. ABA paradigms are most commonly used to show the renewal effect of extinguished learned fear: if acquisition takes place in context A, and extinction takes place in context B (extinction phase), learned responses will recover in subsequent extinction trials presented in context A (renewal phase). The renewal effect of the visual threat eyeblink response (VTER), a conditioned eyeblink response, which is naturally acquired in early infancy, was examined in a total of 48 young and healthy participants with two experiments using an ABA paradigm. Twenty paired trials were performed in context A (baseline trials), followed by 50 extinction trials in context B (extinction phase) and 50 extinction trials in context A (renewal phase). In 24 participants, contexts A and B were two different rooms, and in the other 24 participants, two different background colors (orange and blue) and noises were used. To rule out spontaneous recovery, an AAA design was used for comparison. There were significant effects of extinction in both experiments. No significant renewal effects were observed. In experiment 2, however, extinction was significantly less using orange background during extinction compared to the blue background. The present findings suggest that extinction of conditioned eyeblinks depends on the physical context. Findings add to the animal literature that context can play a role in the acquisition of classically conditioned eyeblink responses. Future studies, however, need to be performed to confirm the present findings. Lack of renewal effect may be explained by the highly overlearned character of the VTER.
Eyeblink Conditioning Deficits Indicate Timing and Cerebellar Abnormalities in Schizophrenia
ERIC Educational Resources Information Center
Brown, S.M.; Kieffaber, P.D.; Carroll, C.A.; Vohs, J.L.; Tracy, J.A.; Shekhar, A.; O'Donnell, B.F.; Steinmetz, J.E.; Hetrick, W.P.
2005-01-01
Accumulating evidence indicates that individuals with schizophrenia manifest abnormalities in structures (cerebellum and basal ganglia) and neurotransmitter systems (dopamine) linked to internal-timing processes. A single-cue tone delay eyeblink conditioning paradigm comprised of 100 learning and 50 extinction trials was used to examine cerebellar…
Blocking the BK Channel Impedes Acquisition of Trace Eyeblink Conditioning
ERIC Educational Resources Information Center
Matthews, Elizabeth A.; Disterhoft, John F.
2009-01-01
Big-K[superscript +] conductance (BK)-channel mediated fast afterhyperpolarizations (AHPs) following action potentials are reduced after eyeblink conditioning. Blocking BK channels with paxilline increases evoked firing frequency in vitro and spontaneous pyramidal activity in vivo. To examine how increased excitability after BK-channel blockade…
Eyeblink Conditioning in Healthy Adults: A Positron Emission Tomography Study
Andreasen, Nancy C.; Liu, Dawei; Freeman, John H.; Boles Ponto, Laura L.; O’Leary, Daniel S.
2013-01-01
Eyeblink conditioning is a paradigm commonly used to investigate the neural mechanisms underlying motor learning. It involves the paired presentation of a toneconditioning stimulus which precedes and co-terminates with an airpuff unconditioned stimulus. Following repeated paired presentations a conditioned eyeblink develops which precedes the airpuff. This type of learning has been intensively studied and the cerebellum is known to be essential in both humans and animals. The study presented here was designed to investigate the role of the cerebellum during eyeblink conditioning in humans using positron emission tomography (PET). The sample includes 20 subjects (10 male and 10 female) with an average age of 29.2 years. PET imaging was used to measure regional cerebral blood flow (rCBF) changes occurring during the first, second, and third blocks of conditioning. In addition, stimuli-specific rCBF to unpaired tones and airpuffs (“pseudoconditioning”) was used as a baseline level that was subtracted from each block. Conditioning was performed using three, 15-trial blocks of classical eyeblink conditioning with the last five trials in each block imaged. As expected, subjects quickly acquired conditioned responses. A comparison between the conditioning tasks and the baseline task revealed that during learning there was activation of the cerebellum and recruitment of several higher cortical regions. Specifically, large peaks were noted in cerebellar lobules IV/V, the frontal lobes, and cingulate gyri. PMID:22430943
Medial Auditory Thalamus Inactivation Prevents Acquisition and Retention of Eyeblink Conditioning
ERIC Educational Resources Information Center
Halverson, Hunter E.; Poremba, Amy; Freeman, John H.
2008-01-01
The auditory conditioned stimulus (CS) pathway that is necessary for delay eyeblink conditioning was investigated using reversible inactivation of the medial auditory thalamic nuclei (MATN) consisting of the medial division of the medial geniculate (MGm), suprageniculate (SG), and posterior intralaminar nucleus (PIN). Rats were given saline or…
Inferior Colliculus Lesions Impair Eyeblink Conditioning in Rats
ERIC Educational Resources Information Center
Freeman, John H.; Halverson, Hunter E.; Hubbard, Erin M.
2007-01-01
The neural plasticity necessary for acquisition and retention of eyeblink conditioning has been localized to the cerebellum. However, the sources of sensory input to the cerebellum that are necessary for establishing learning-related plasticity have not been identified completely. The inferior colliculus may be a source of sensory input to the…
Cerebellar Secretin Modulates Eyeblink Classical Conditioning
ERIC Educational Resources Information Center
Fuchs, Jason R.; Robinson, Gain M.; Dean, Aaron M.; Schoenberg, Heidi E.; Williams, Michael R.; Morielli, Anthony D.; Green, John T.
2014-01-01
We have previously shown that intracerebellar infusion of the neuropeptide secretin enhances the acquisition phase of eyeblink conditioning (EBC). Here, we sought to test whether endogenous secretin also regulates EBC and to test whether the effect of exogenous and endogenous secretin is specific to acquisition. In Experiment 1, rats received…
Caro-Martín, C Rocío; Leal-Campanario, Rocío; Sánchez-Campusano, Raudel; Delgado-García, José M; Gruart, Agnès
2015-11-04
We were interested in determining whether rostral medial prefrontal cortex (rmPFC) neurons participate in the measurement of conditioned stimulus-unconditioned stimulus (CS-US) time intervals during classical eyeblink conditioning. Rabbits were conditioned with a delay paradigm consisting of a tone as CS. The CS started 50, 250, 500, 1000, or 2000 ms before and coterminated with an air puff (100 ms) directed at the cornea as the US. Eyelid movements were recorded with the magnetic search coil technique and the EMG activity of the orbicularis oculi muscle. Firing activities of rmPFC neurons were recorded across conditioning sessions. Reflex and conditioned eyelid responses presented a dominant oscillatory frequency of ≈12 Hz. The firing rate of each recorded neuron presented a single peak of activity with a frequency dependent on the CS-US interval (i.e., ≈12 Hz for 250 ms, ≈6 Hz for 500 ms, and≈3 Hz for 1000 ms). Interestingly, rmPFC neurons presented their dominant firing peaks at three precise times evenly distributed with respect to CS start and also depending on the duration of the CS-US interval (only for intervals of 250, 500, and 1000 ms). No significant neural responses were recorded at very short (50 ms) or long (2000 ms) CS-US intervals. rmPFC neurons seem not to encode the oscillatory properties characterizing conditioned eyelid responses in rabbits, but are probably involved in the determination of CS-US intervals of an intermediate range (250-1000 ms). We propose that a variable oscillator underlies the generation of working memories in rabbits. The way in which brains generate working memories (those used for the transient processing and storage of newly acquired information) is still an intriguing question. Here, we report that the firing activities of neurons located in the rostromedial prefrontal cortex recorded in alert behaving rabbits are controlled by a dynamic oscillator. This oscillator generated firing frequencies in a variable band of 3-12 Hz depending on the conditioned stimulus-unconditioned stimulus intervals (1 s, 500 ms, 250 ms) selected for classical eyeblink conditioning of behaving rabbits. Shorter (50 ms) and longer (2 s) intervals failed to activate the oscillator and prevented the acquisition of conditioned eyelid responses. This is an unexpected mechanism to generate sustained firing activities in neural circuits generating working memories. Copyright © 2015 the authors 0270-6474/15/3514809-13$15.00/0.
The Role of Contingency Awareness in Single-Cue Human Eyeblink Conditioning
ERIC Educational Resources Information Center
Weidemann, Gabrielle; Best, Erin; Lee, Jessica C; Lovibond, Peter F.
2013-01-01
Single-cue delay eyeblink conditioning is presented as a prototypical example of automatic, nonsymbolic learning that is carried out by subcortical circuits. However, it has been difficult to assess the role of cognition in single-cue conditioning because participants become aware of the simple stimulus contingency so quickly. In this experiment…
ERIC Educational Resources Information Center
Suter, Eugenie E.; Weiss, Craig; Disterhoft, John F.
2013-01-01
The acquisition of temporal associative tasks such as trace eyeblink conditioning is hippocampus-dependent, while consolidated performance is not. The parahippocampal region mediates much of the input and output of the hippocampus, and perirhinal (PER) and entorhinal (EC) cortices support persistent spiking, a possible mediator of temporal…
Medial Auditory Thalamic Stimulation as a Conditioned Stimulus for Eyeblink Conditioning in Rats
ERIC Educational Resources Information Center
Campolattaro, Matthew M.; Halverson, Hunter E.; Freeman, John H.
2007-01-01
The neural pathways that convey conditioned stimulus (CS) information to the cerebellum during eyeblink conditioning have not been fully delineated. It is well established that pontine mossy fiber inputs to the cerebellum convey CS-related stimulation for different sensory modalities (e.g., auditory, visual, tactile). Less is known about the…
ERIC Educational Resources Information Center
Steinmetz, Adam B.; Ng, Ka H.; Freeman, John H.
2017-01-01
Amygdala lesions impair, but do not prevent, acquisition of cerebellum-dependent eyeblink conditioning suggesting that the amygdala modulates cerebellar learning. Two-factor theories of eyeblink conditioning posit that a fast-developing memory within the amygdala facilitates slower-developing memory within the cerebellum. The current study tested…
ERIC Educational Resources Information Center
Cicchese, Joseph J.; Darling, Ryan D.; Berry, Stephen D.
2015-01-01
Eyeblink conditioning given in the explicit presence of hippocampal ? results in accelerated learning and enhanced multiple-unit responses, with slower learning and suppression of unit activity under non-? conditions. Recordings from putative pyramidal cells during ?-contingent training show that pretrial ?-state is linked to the probability of…
Effects of oxytocin on background anxiety in rats with high or low baseline startle
Ayers, Luke; Agostini, Andrew; Schulkin, Jay; Rosen, Jeffrey B.
2016-01-01
Rationale Oxytocin has antianxiety properties in humans and rodents. However, the antianxiety effects have been variable. Objectives To reduce variability and strengthen to the antianxiety effect of oxytocin in fear-potentiated startle, two experiments were performed. First, different amounts of light-shock pairings were given to determine the optimal levels of cue-specific fear conditioning and non-predictable startle (background anxiety). Second, the antianxiety effects of oxytocin were examined in rats with high and low pre-fear conditioning baseline startle to determine if oxytocin differentially affects high and low trait anxiety rats. Methods Baseline pre-fear conditioning startle responses were first measured. Rats then received 1, 5 or 10 light-shock pairings. Fear-potentiated startle was then tested with two trial types: light-cued startle and non-cued startle trials. In the second experiment, rats fear conditioned with 10 light-shock pairings were administered either saline or oxytocin before a fear-potentiated startle test. Rats were categorized as low or high startlers by their pre-fear conditioning startle amplitude. Results Ten shock-pairings produced the largest non-cued startle responses (background anxiety), without increasing cue-specific fear-potentiated startle compared to 1 and 5 light-shock pairings. Cue-specific fear-potentiated startle was unaffected by oxytocin. Oxytocin reduced background anxiety only in rats with low pre-fear startle responses. Conclusions Oxytocin has population selective antianxiety effects on non-cued unpredictable threat, but only in rats with low pre-fear baseline startle responses. The low startle responses are reminiscent of humans with low startle responses and high trait anxiety. PMID:27004789
Löw, Andreas; Lang, Peter J.; Smith, J. Carson; Bradley, Margaret M.
2013-01-01
This research examined the psychophysiology of emotional arousal anticipatory to potentially aversive and highly pleasant outcomes. Human brain reactions (event-related potentials) and body reactions (heart rate, skin conductance, the probe startle reflex) were assessed along motivational gradients determined by apparent distance from sites of potential punishment or reward. A predator-prey survival context was simulated using cues that signaled possible money rewards or possible losses; the cues appeared to loom progressively closer to the viewer, until a final step when a rapid key response could ensure reward or avoid a punishing loss. The observed anticipatory response patterns of heightened vigilance and physiological mobilization are consistent with the view that the physiology of emotion is founded on action dispositions that evolved in mammals to facilitate survival by dealing with threats or capturing life-sustaining rewards. PMID:18947351
Hoeger, Harald; Bubna-Littitz, Herrmann; Engelmann, Mario; Schwerdtner, Ingrid; Schmid, Diethard; Lahoda, Robert; Seidl, Rainer; Lubec, Gert; Lubec, Barbara
2003-07-01
In a recent publication, we described neurodegeneration along with neurotransmitter deficits and impaired differentiation in the guinea pig 3 months following severe perinatal asphyxia (PA). We were therefore interested in the clinical features in terms of neurology, cognitive functions, and behavior. We tested the long-term effects of PA in an animal model, which in the rat are well documented and resemble the clinical situation. Examinations consisted of an observational battery for motor and reflex functions and the acoustic startle response setting. We tested cognitive functions in the multiple T-maze and evaluated behavior using the elevated plus maze and open field studies. No neurologic deficits were observed in the observational battery, including the acoustic startle response. Cognitive functions of memory and learning were not impaired in the multiple T-maze. In the open field and in the elevated plus maze, the system to test anxiety-related behavior, guinea pigs performed well. Our findings of patent neurology, cognitive functions, and behavior do not reflect the prominent morphologic findings of neurodegeneration. This is in agreement with corresponding studies on PA in the rat at the identical time point. We learned from this study that both test systems, although representing the standard in neuroscience, are either not sensitive enough or central nervous system lesions are clinically fully compensated.
Exposure to Bisphenol A Exacerbates Migraine-Like Behaviors in a Multibehavior Model of Rat Migraine
Berman, Nancy E. J.
2014-01-01
Migraine is a common and debilitating neurological disorder suffered worldwide. Women experience this condition 3 times more frequently than men, with estrogen strongly implicated to play a role. Bisphenol A (BPA), a highly prevalent xenoestrogen, is known to have estrogenic activity and may have an effect in migraine onset, intensity, and duration through estrogen receptor signaling. It was hypothesized that BPA exposure exacerbates migraine symptoms through estrogen signaling and downstream activation of nociception related pathways. Utilizing a multibehavior model of migraine in ovariectomized female rats, changes in locomotion, light and sound sensitivity, grooming, and acoustic startle were examined. Furthermore, changes in the expression of genes related to estrogen (ERα, GPR30), and nociception (extracellular signal regulated kinase, ERK, sodium gated channel, Nav1.8, and fatty acid amide hydrolase, FAAH) were studied following behavioral experiments. The following results were obtained: BPA treatment significantly exacerbated migraine-like behaviors in rats. Rats exposed to BPA demonstrated decreased locomotion, exacerbated light and sound aversion, altered grooming habits, and enhanced startle reflexes. Furthermore, BPA exposure increased mRNA expression of estrogen receptors, total ERK mRNA and ERK activation, as well as Nav1.8, and FAAH mRNA, indicative of altered estrogen signaling and altered nociception. These results show that BPA, an environmentally pervasive xenoestrogen, exacerbates migraine-like behavior in a rat model and alters expression of estrogen and nociception-related genes. PMID:24189132
Kuznetsova, E G; Amstislavskaya, T G; Bulygina, V V; Il'nitskaya, S I; Tibeikina, M A; Skrinskaya, Yu A
2007-10-01
Treatment of male DBA/2 mice with sodium glutamate (4 mg/g) on postnatal days 1, 3, 5, 7, and 9 induced reductions in the numbers of square crossings, vertical rearings, excursions to the center, and the time spent in the center in adulthood, as compared with a group of males given physiological saline at the same times. These measures showed no change as compared with intact animals. In the light-dark test, the time spent by mice in the light sector was greater after administration of sodium glutamate than after administration of physiological saline but did not differ from that in intact animals. In the acoustic startle reflex test, sodium glutamate decreased startle amplitude but had no effect on the magnitude of prestimulus inhibition. Sexual motivation in males decreased after sodium glutamate, physiological saline producing a tendency to decreased sexual motivation. Neonatal administration of sodium glutamate increased basal blood corticosterone in adult males by a factor of 4, while physiological saline had no effect on this measure. These results lead to the conclusion that neonatal administration of sodium glutamate decreases motor and investigative activity, anxiety, and sexual motivation in adult male mice and increases basal corticosterone. Physiological saline increased all these parameters apart from sexual motivation, though this was not associated with changes in basal corticosterone.
Craske, Michelle G.; Wolitzky–Taylor, Kate B.; Mineka, Susan; Zinbarg, Richard; Waters, Allison M.; Vrshek–Schallhorn, Suzanne; Epstein, Alyssa; Naliboff, Bruce; Ornitz, Edward
2013-01-01
The current study evaluated the degree to which startle reflexes (SRs) in safe conditions versus danger conditions were predictive of the onset of anxiety disorders. Specificity of these effects to anxiety disorders was evaluated in comparison to unipolar depressive disorders and with consideration of level of neuroticism. A startle paradigm was administered at baseline to 132 nondisordered adolescents as part of a longitudinal study examining risk factors for emotional disorders. Participants underwent a repetition of eight safe-danger sequences and were told that delivery of an aversive stimulus leading to a muscle contraction of the arm would occur only in the late part of danger conditions. One aversive stimulus occurred midway in the safe-danger sequences. Participants were assessed for the onset of anxiety and unipolar depressive disorders annually over the next 3 to 4 years. Larger SR magnitude during safe conditions following delivery of the aversive stimulus predicted the subsequent first onset of anxiety disorders. Moreover, prediction of the onset of anxiety disorders remained significant above and beyond the effects of comorbid unipolar depression, neuroticism, and subjective ratings of intensity of the aversive stimulus. In sum, elevated responding to safe conditions following an aversive stimulus appears to be a specific, prospective risk factor for the first onset of anxiety disorders. PMID:21988452
ERIC Educational Resources Information Center
Schroeder, Matthew P.; Weiss, Craig; Procissi, Daniel; Wang, Lei; Disterhoft, John F.
2016-01-01
Fluctuations in neural activity can produce states that facilitate and accelerate task-related performance. Acquisition of trace eyeblink conditioning (tEBC) in the rabbit is enhanced when trials are contingent on optimal pretrial activity in the hippocampus. Other regions which are essential for whisker-signaled tEBC, such as the cerebellar…
Eyeblink Conditioning: A Non-Invasive Biomarker for Neurodevelopmental Disorders
ERIC Educational Resources Information Center
Reeb-Sutherland, Bethany C.; Fox, Nathan A.
2015-01-01
Eyeblink conditioning (EBC) is a classical conditioning paradigm typically used to study the underlying neural processes of learning and memory. EBC has a well-defined neural circuitry, is non-invasive, and can be employed in human infants shortly after birth making it an ideal tool to use in both developing and special populations. In addition,…
ERIC Educational Resources Information Center
Tharp, Ian J.; Pickering, Alan D.
2011-01-01
Individual differences in psychophysiological function have been shown to influence the balance between flexibility and distractibility during attentional set-shifting [e.g., Dreisbach et al. (2005). Dopamine and cognitive control: The influence of spontaneous eyeblink rate and dopamine gene polymorphisms on perseveration and distractibility.…
Purkinje Cell Activity in the Cerebellar Anterior Lobe after Rabbit Eyeblink Conditioning
ERIC Educational Resources Information Center
Green, John T.; Steinmetz, Joseph E.
2005-01-01
The cerebellar anterior lobe may play a critical role in the execution and proper timing of learned responses. The current study was designed to monitor Purkinje cell activity in the rabbit cerebellar anterior lobe after eyeblink conditioning, and to assess whether Purkinje cells in recording locations may project to the interpositus nucleus.…
Cholinergic Septo-Hippocampal Innervation Is Required for Trace Eyeblink Classical Conditioning
ERIC Educational Resources Information Center
Fontan-Lozano, Angela; Troncoso, Julieta; Munera, Alejandro; Carrion, Angel Manuel; Delgado-Garcia, Jose Maria
2005-01-01
We studied the effects of a selective lesion in rats, with 192-IgG-saporin, of the cholinergic neurons located in the medial septum/diagonal band (MSDB) complex on the acquisition of classical and instrumental conditioning paradigms. The MSDB lesion induced a marked deficit in the acquisition, but not in the retrieval, of eyeblink classical…
ERIC Educational Resources Information Center
Halverson, Hunter E.; Poremba, Amy; Freeman, John H.
2015-01-01
Associative learning tasks commonly involve an auditory stimulus, which must be projected through the auditory system to the sites of memory induction for learning to occur. The cochlear nucleus (CN) projection to the pontine nuclei has been posited as the necessary auditory pathway for cerebellar learning, including eyeblink conditioning.…
Berger, Joel I; Owen, William; Wilson, Caroline A; Hockley, Adam; Coomber, Ben; Palmer, Alan R; Wallace, Mark N
2018-01-15
Animal models of tinnitus are essential for determining the underlying mechanisms and testing pharmacotherapies. However, there is doubt over the validity of current behavioural methods for detecting tinnitus. Here, we applied a stimulus paradigm widely used in a behavioural test (gap-induced inhibition of the acoustic startle reflex GPIAS) whilst recording from the auditory cortex, and showed neural response changes that mirror those found in the behavioural tests. We implanted guinea pigs (GPs) with electrocorticographic (ECoG) arrays and recorded baseline auditory cortical responses to a startling stimulus. When a gap was inserted in otherwise continuous background noise prior to the startling stimulus, there was a clear reduction in the subsequent evoked response (termed gap-induced reductions in evoked potentials; GIREP), suggestive of a neural analogue of the GPIAS test. We then unilaterally exposed guinea pigs to narrowband noise (left ear; 8-10 kHz; 1 h) at one of two different sound levels - either 105 dB SPL or 120 dB SPL - and recorded the same responses seven-to-ten weeks following the noise exposure. Significant deficits in GIREP were observed for all areas of the auditory cortex (AC) in the 120 dB-exposed GPs, but not in the 105 dB-exposed GPs. These deficits could not simply be accounted for by changes in response amplitudes. Furthermore, in the contralateral (right) caudal AC we observed a significant increase in evoked potential amplitudes across narrowband background frequencies in both 105 dB and 120 dB-exposed GPs. Taken in the context of the large body of literature that has used the behavioural test as a demonstration of the presence of tinnitus, these results are suggestive of objective neural correlates of the presence of noise-induced tinnitus and hyperacusis. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Yao, Juan; Wu, Guang-Yan; Liu, Guo-Long; Liu, Shu-Lei; Yang, Yi; Wu, Bing; Li, Xuan; Feng, Hua; Sui, Jian-Feng
2014-11-01
Learning with a stimulus from one sensory modality can facilitate subsequent learning with a new stimulus from a different sensory modality. To date, the characteristics and mechanism of this phenomenon named transfer effect still remain ambiguous. Our previous work showed that electrical stimulation of medial prefrontal cortex (mPFC) as a conditioned stimulus (CS) could successfully establish classical eyeblink conditioning (EBC). The present study aimed to (1) observe whether transfer of EBC learning would occur when CSs shift between central (mPFC electrical stimulation as a CS, mPFC-CS) and peripheral (tone as a CS, tone CS); (2) compare the difference in transfer effect between the two paradigms, delay EBC (DEBC) and trace EBC (TEBC). A total of 8 groups of guinea pigs were tested in the study, including 4 experimental groups and 4 control groups. Firstly, the experimental groups accepted central (or peripheral) CS paired with corneal airpuff unconditioned stimulus (US); then, CS shifted to the peripheral (or central) and paired with US. The control groups accepted corresponding central (or peripheral) CS and pseudo-paired with US, and then shifted CS from central (or peripheral) to peripheral (or central) and paired with US. The results showed that the acquisition rates of EBC were higher in experimental groups than in control groups after CS switching from central to peripheral or vice versa, and the CR acquisition rate was remarkably higher in DEBC than in TEBC in both transfer ways. The results indicate that EBC transfer can occur between learning established with mPFC-CS and tone CS. Memory of CS-US association for delay paradigm was less disturbed by the sudden switch of CS than for trace paradigm. This study provides new insight into neural mechanisms underlying conditioned reflex as well as the role of mPFC. Copyright © 2014 Elsevier B.V. All rights reserved.
Kishimoto, Yasushi; Yamamoto, Shigeyuki; Suzuki, Kazutaka; Toyoda, Haruyoshi; Kano, Masanobu; Tsukada, Hideo; Kirino, Yutaka
2015-01-01
Delay eyeblink conditioning, a cerebellum-dependent learning paradigm, has been applied to various mammalian species but not yet to monkeys. We therefore developed an accurate measuring system that we believe is the first system suitable for delay eyeblink conditioning in a monkey species (Macaca mulatta). Monkey eyeblinking was simultaneously monitored by orbicularis oculi electromyographic (OO-EMG) measurements and a high-speed camera-based tracking system built around a 1-kHz CMOS image sensor. A 1-kHz tone was the conditioned stimulus (CS), while an air puff (0.02 MPa) was the unconditioned stimulus. EMG analysis showed that the monkeys exhibited a conditioned response (CR) incidence of more than 60% of trials during the 5-day acquisition phase and an extinguished CR during the 2-day extinction phase. The camera system yielded similar results. Hence, we conclude that both methods are effective in evaluating monkey eyeblink conditioning. This system incorporating two different measuring principles enabled us to elucidate the relationship between the actual presence of eyelid closure and OO-EMG activity. An interesting finding permitted by the new system was that the monkeys frequently exhibited obvious CRs even when they produced visible facial signs of drowsiness or microsleep. Indeed, the probability of observing a CR in a given trial was not influenced by whether the monkeys closed their eyelids just before CS onset, suggesting that this memory could be expressed independently of wakefulness. This work presents a novel system for cognitive assessment in monkeys that will be useful for elucidating the neural mechanisms of implicit learning in nonhuman primates.
Sakamoto, Toshiro; Endo, Shogo
2013-01-01
Previous studies have shown that deep cerebellar nuclei (DCN)-lesioned mice develop conditioned responses (CR) on delay eyeblink conditioning when a salient tone conditioned stimulus (CS) is used, which suggests that the cerebellum potentially plays a role in more complicated cognitive functions. In the present study, we examined the role of DCN in tone frequency discrimination in the delay eyeblink-conditioning paradigm. In the first experiment, DCN-lesioned and sham-operated mice were subjected to standard simple eyeblink conditioning under low-frequency tone CS (LCS: 1 kHz, 80 dB) or high-frequency tone CS (HCS: 10 kHz, 70 dB) conditions. DCN-lesioned mice developed CR in both CS conditions as well as sham-operated mice. In the second experiment, DCN-lesioned and sham-operated mice were subjected to two-tone discrimination tasks, with LCS+ (or HCS+) paired with unconditioned stimulus (US), and HCS− (or LCS−) without US. CR% in sham-operated mice increased in LCS+ (or HCS+) trials, regardless of tone frequency of CS, but not in HCS− (or LCS−) trials. The results indicate that sham-operated mice can discriminate between LCS+ and HCS− (or HCS+ and LCS−). In contrast, DCN-lesioned mice showed high CR% in not only LCS+ (or HCS+) trials but also HCS− (or LCS−) trials. The results indicate that DCN lesions impair the discrimination between tone frequency in eyeblink conditioning. Our results suggest that the cerebellum plays a pivotal role in the discrimination of tone frequency. PMID:23555821
Effects of meditation practice on spontaneous eyeblink rate.
Kruis, Ayla; Slagter, Heleen A; Bachhuber, David R W; Davidson, Richard J; Lutz, Antoine
2016-05-01
A rapidly growing body of research suggests that meditation can change brain and cognitive functioning. Yet little is known about the neurochemical mechanisms underlying meditation-related changes in cognition. Here, we investigated the effects of meditation on spontaneous eyeblink rates (sEBR), a noninvasive peripheral correlate of striatal dopamine activity. Previous studies have shown a relationship between sEBR and cognitive functions such as mind wandering, cognitive flexibility, and attention-functions that are also affected by meditation. We therefore expected that long-term meditation practice would alter eyeblink activity. To test this, we recorded baseline sEBR and intereyeblink intervals (IEBI) in long-term meditators (LTM) and meditation-naive participants (MNP). We found that LTM not only blinked less frequently, but also showed a different eyeblink pattern than MNP. This pattern had good to high degree of consistency over three time points. Moreover, we examined the effects of an 8-week course of mindfulness-based stress reduction on sEBR and IEBI, compared to an active control group and a waitlist control group. No effect of short-term meditation practice was found. Finally, we investigated whether different types of meditation differentially alter eyeblink activity by measuring sEBR and IEBI after a full day of two kinds of meditation practices in the LTM. No effect of meditation type was found. Taken together, these findings may suggest either that individual difference in dopaminergic neurotransmission is a self-selection factor for meditation practice, or that long-term, but not short-term meditation practice induces stable changes in baseline striatal dopaminergic functioning. © 2016 Society for Psychophysiological Research.
ERIC Educational Resources Information Center
Halverson, Hunter E.; Hubbard, Erin M.; Freeman, John H.
2009-01-01
The role of the cerebellum in eyeblink conditioning is well established. Less work has been done to identify the necessary conditioned stimulus (CS) pathways that project sensory information to the cerebellum. A possible visual CS pathway has been hypothesized that consists of parallel inputs to the pontine nuclei from the lateral geniculate…
ERIC Educational Resources Information Center
Weeks, Andrew C. W.; Connor, Steve; Hinchcliff, Richard; LeBoutillier, Janelle C.; Thompson, Richard F.; Petit, Ted L.
2007-01-01
Eye-blink conditioning involves the pairing of a conditioned stimulus (usually a tone) to an unconditioned stimulus (air puff), and it is well established that an intact cerebellum and interpositus nucleus, in particular, are required for this form of classical conditioning. Changes in synaptic number or structure have long been proposed as a…
Nokia, Miriam S; Wikgren, Jan
2010-04-01
The relative power of the hippocampal theta-band ( approximately 6 Hz) activity (theta ratio) is thought to reflect a distinct neural state and has been shown to affect learning rate in classical eyeblink conditioning in rabbits. We sought to determine if the theta ratio is mostly related to the detection of the contingency between the stimuli used in conditioning or also to the learning of more complex inhibitory associations when a highly demanding delay discrimination-reversal eyeblink conditioning paradigm is used. A high hippocampal theta ratio was not only associated with a fast increase in conditioned responding in general but also correlated with slow emergence of discriminative responding due to sustained responding to the conditioned stimulus not paired with an unconditioned stimulus. The results indicate that the neural state reflected by the hippocampal theta ratio is specifically linked to forming associations between stimuli rather than to the learning of inhibitory associations needed for successful discrimination. This is in line with the view that the hippocampus is responsible for contingency detection in the early phase of learning in eyeblink conditioning. (c) 2009 Wiley-Liss, Inc.
Bakker, Mirte J.; Tijssen, Marina A.J.; van der Meer, Johan N.; Koelman, Johannes H.T.M.; Boer, Frits
2009-01-01
Background Young patients with anxiety disorders are thought to have a hypersensitive fear system, including alterations of the early sensorimotor processing of threatening information. However, there is equivocal support in auditory blink response studies for an enlarged auditory startle reflex (ASR) in such patients. We sought to investigate the ASR measured over multiple muscles (whole-body) in children and adolescents with anxiety disorders. Methods Between August and December 2006, we assessed ASRs (elicited by 8 consecutive tones of 104 dB, interstimulus interval of about 2 min) in 25 patients and 25 matched controls using a case–control design and in 9 nonaffected siblings. We recorded the electromyographic activity of 6 muscles and the sympathetic skin response. We investigated response occurrence (probability %) and response magnitude (area under the curve in μV × ms) of the combined response of 6 muscles and of the single blink response. Results In patients (17 girls, mean age 12 years; 13 social phobia, 9 generalized anxiety, 3 other), the combined response probability (p = 0.027) of all muscles, the combined area under the curve of all muscles (p = 0.011) and the sympathetic skin response (p = 0.006) were enlarged compared with matched controls. The response probability (p = 0.48) and area under the curve (p = 0.07) of the blink response were normal in patients compared with controls. The ASR pattern was normal with normal latencies in patients compared with controls. In nonaffected siblings, the sympathetic skin response (p = 0.038), but not the combined response probability of all muscles (p = 0.15), was enlarged compared with controls. Limitations Limitations are the sample size and restricted comparison to the psychophysiological ASR paradigm. Conclusion The results point toward a hypersensitive central nervous system (fear system), including early sensorimotor processing alterations and autonomic hyperreactivity. The multiple muscle (whole-body) ASR is suggested to be a better tool to detect ASR abnormalities in patients with anxiety disorders than the blink response alone. Abnormalities in ASR serve as a candidate endophenotype of anxiety disorders. PMID:19568483
Weidemann, Gabrielle; Satkunarajah, Michelle; Lovibond, Peter F.
2016-01-01
Can conditioning occur without conscious awareness of the contingency between the stimuli? We trained participants on two separate reaction time tasks that ensured attention to the experimental stimuli. The tasks were then interleaved to create a differential Pavlovian contingency between visual stimuli from one task and an airpuff stimulus from the other. Many participants were unaware of the contingency and failed to show differential eyeblink conditioning, despite attending to a salient stimulus that was contingently and contiguously related to the airpuff stimulus over many trials. Manipulation of awareness by verbal instruction dramatically increased awareness and differential eyeblink responding. These findings cast doubt on dual-system theories, which propose an automatic associative system independent of cognition, and provide strong evidence that cognitive processes associated with awareness play a causal role in learning. PMID:26905277
Tracy, Jo Anne; Thompson, Judith K; Krupa, David J; Thompson, Richard F
2013-10-01
Electrical stimulation thresholds required to elicit eyeblinks with either pontine or cerebellar interpositus stimulation were measured before and after classical eyeblink conditioning with paired pontine stimulation (conditioned stimulus, CS) and corneal airpuff (unconditioned stimulus, US). Pontine stimulation thresholds dropped dramatically after training and returned to baseline levels following extinction, whereas interpositus thresholds and input-output functions remained stable across training sessions. Learning rate, magnitude of threshold change, and electrode placements were correlated. Pontine projection patterns to the cerebellum were confirmed with retrograde labeling techniques. These results add to the body of literature suggesting that the pons relays CS information to the cerebellum and provide further evidence of synaptic plasticity in the cerebellar network. 2013 APA, all rights reserved
Leal-Campanario, Rocío; Fairén, Alfonso; Delgado-García, José M.; Gruart, Agnès
2007-01-01
We have studied the role of rostral medial prefrontal cortex (mPFC) on reflexively evoked blinks and on classically conditioned eyelid responses in alert-behaving rabbits. The rostral mPFC was identified by its afferent projections from the medial half of the thalamic mediodorsal nuclear complex. Classical conditioning consisted of a delay paradigm using a 370-ms tone as the conditioned stimulus (CS) and a 100-ms air puff directed at the left cornea as the unconditioned stimulus (US). The CS coterminated with the US. Electrical train stimulation of the contralateral rostral mPFC produced a significant inhibition of air-puff-evoked blinks. The same train stimulation of the rostral mPFC presented during the CS–US interval for 10 successive conditioning sessions significantly reduced the generation of conditioned responses (CRs) as compared with values reached by control animals. Interestingly, the percentage of CRs almost reached control values when train stimulation of the rostral mPFC was removed from the fifth conditioning session on. The electrical stimulation of the rostral mPFC in well conditioned animals produced a significant decrease in the percentage of CRs. Moreover, the stimulation of the rostral mPFC was also able to modify the kinematics (latency, amplitude, and velocity) of evoked CRs. These results suggest that the rostral mPFC is a potent inhibitor of reflexively evoked and classically conditioned eyeblinks but that activation prevents only the expression of CRs, not their latent acquisition. Functional and behavioral implications of this inhibitory role of the rostral mPFC are discussed. PMID:17592148
ERIC Educational Resources Information Center
Weiss, Craig; Sametsky, Evgeny; Sasse, Astrid; Spiess, Joachim; Disterhoft, John F.
2005-01-01
The effects of stress (restraint plus tail shock) on hippocampus-dependent trace eyeblink conditioning and hippocampal excitability were examined in C57BL/6 male mice. The results indicate that the stressor significantly increased the concentration of circulating corticosterone, the amount and rate of learning relative to nonstressed conditioned…
Differential Effects of the Cannabinoid Agonist WIN55,212-2 on Delay and Trace Eyeblink Conditioning
Steinmetz, Adam B.; Freeman, John H.
2014-01-01
Central cannabinoid-1 receptors (CB1R) play a role in the acquisition of delay eyeblink conditioning but not trace eyeblink conditioning in humans and animals. However, it is not clear why trace conditioning is immune to the effects of cannabinoid receptor compounds. The current study examined the effects of variants of delay and trace conditioning procedures to elucidate the factors that determine the effects of CB1R agonists on eyeblink conditioning. In Experiment 1 rats were administered the cannabinoid agonist WIN55,212-2 during delay, long delay, or trace conditioning. Rats were impaired during delay and long delay but not trace conditioning; the impairment was greater for long delay than delay conditioning. Trace conditioning was further examined in Experiment 2 by manipulating the trace interval and keeping constant the conditioned stimulus (CS) duration. It was found that when the trace interval was 300 ms or less WIN55,212-2 administration impaired the rate of learning. Experiment 3 tested whether the trace interval duration or the relative durations of the CS and trace interval were critical parameters influencing the effects of WIN55,212-2 on eyeblink conditioning. Rats were not impaired with a 100 ms CS, 200 ms trace paradigm but were impaired with a 1000 ms CS, 500 ms trace paradigm, indicating that the duration of the trace interval does not matter but the proportion of the interstimulus interval occupied by the CS relative to the trace period is critical. Taken together the results indicate that cannabinoid agonists affect cerebellar learning the CS is longer than the trace interval. PMID:24128358
Chau, Lily S.; Prakapenka, Alesia V.; Zendeli, Liridon; Davis, Ashley S.; Galvez, Roberto
2014-01-01
Studies utilizing general learning and memory tasks have suggested the importance of neocortical structural plasticity for memory consolidation. However, these learning tasks typically result in learning of multiple different tasks over several days of training, making it difficult to determine the synaptic time course mediating each learning event. The current study used trace-eyeblink conditioning to determine the time course for neocortical spine modification during learning. With eyeblink conditioning, subjects are presented with a neutral, conditioned stimulus (CS) paired with a salient, unconditioned stimulus (US) to elicit an unconditioned response (UR). With multiple CS-US pairings, subjects learn to associate the CS with the US and exhibit a conditioned response (CR) when presented with the CS. Trace conditioning is when there is a stimulus free interval between the CS and the US. Utilizing trace-eyeblink conditioning with whisker stimulation as the CS (whisker-trace-eyeblink: WTEB), previous findings have shown that primary somatosensory (barrel) cortex is required for both acquisition and retention of the trace-association. Additionally, prior findings demonstrated that WTEB acquisition results in an expansion of the cytochrome oxidase whisker representation and synaptic modification in layer IV of barrel cortex. To further explore these findings and determine the time course for neocortical learning-induced spine modification, the present study utilized WTEB conditioning to examine Golgi-Cox stained neurons in layer IV of barrel cortex. Findings from this study demonstrated a training-dependent spine proliferation in layer IV of barrel cortex during trace associative learning. Furthermore, findings from this study showing that filopodia-like spines exhibited a similar pattern to the overall spine density further suggests that reorganization of synaptic contacts set the foundation for learning-induced neocortical modifications through the different neocortical layers. PMID:24760074
Classical eyeblink conditioning in Parkinson's disease.
Daum, I; Schugens, M M; Breitenstein, C; Topka, H; Spieker, S
1996-11-01
Patients with Parkinson's disease (PD) show impairments of a range of motor learning tasks, including tracking or serial reaction time task learning. Our study investigated whether such deficits would also be seen on a simple type of motor learning, classic conditioning of the eyeblink response. Medicated and unmediated patients with PD showed intact unconditioned eyeblink responses and significant learning across acquisition; the learning rates did not differ from those of healthy control subjects. The overall frequency of conditioned responses was significantly higher in the medicated patients with PD relative to control subjects, and there was also some evidence of facilitation in the unmedicated patients with PD. Conditioning of electrodermal and electrocortical responses was comparable in all groups. The findings are discussed in terms of enhanced excitability of brainstem pathways in PD and of the involvement of different neuronal circuits in different types of motor learning.
ERIC Educational Resources Information Center
Woodruff-Pak, Diana S.; Seta, Susan E.; Roker, LaToya A.; Lehr, Melissa A.
2007-01-01
The aim of this study was to examine parameters affecting age differences in eyeblink classical conditioning in a large sample of young and middle-aged rabbits. A total of 122 rabbits of mean ages of 4 or 26 mo were tested at inter-stimulus intervals (ISIs) of 600 or 750 msec in the delay or trace paradigms. Paradigm affected both age groups…
Variability of ICA decomposition may impact EEG signals when used to remove eyeblink artifacts
PONTIFEX, MATTHEW B.; GWIZDALA, KATHRYN L.; PARKS, ANDREW C.; BILLINGER, MARTIN; BRUNNER, CLEMENS
2017-01-01
Despite the growing use of independent component analysis (ICA) algorithms for isolating and removing eyeblink-related activity from EEG data, we have limited understanding of how variability associated with ICA uncertainty may be influencing the reconstructed EEG signal after removing the eyeblink artifact components. To characterize the magnitude of this ICA uncertainty and to understand the extent to which it may influence findings within ERP and EEG investigations, ICA decompositions of EEG data from 32 college-aged young adults were repeated 30 times for three popular ICA algorithms. Following each decomposition, eyeblink components were identified and removed. The remaining components were back-projected, and the resulting clean EEG data were further used to analyze ERPs. Findings revealed that ICA uncertainty results in variation in P3 amplitude as well as variation across all EEG sampling points, but differs across ICA algorithms as a function of the spatial location of the EEG channel. This investigation highlights the potential of ICA uncertainty to introduce additional sources of variance when the data are back-projected without artifact components. Careful selection of ICA algorithms and parameters can reduce the extent to which ICA uncertainty may introduce an additional source of variance within ERP/EEG studies. PMID:28026876
Recovery of motor performance following startle.
DOT National Transportation Integrated Search
1969-10-01
Sudden, high-intensity sounds, such as those produced by sonic booms, can be quite startling. Although many studies have investigated physiological response to startle, much less is known concerning the effects of startle on performance. The present ...
Walla, Peter; Brenner, Gerhard; Koller, Monika
2011-01-01
With this study we wanted to test the hypothesis that individual like and dislike as occurring in relation to brand attitude can be objectively assessed. First, individuals rated common brands with respect to subjective preference. Then, they volunteered in an experiment during which their most liked and disliked brand names were visually presented while three different objective measures were taken. Participant's eye blinks as responses to acoustic startle probes were registered with electromyography (EMG) (i) and their skin conductance (ii) and their heart rate (iii) were recorded. We found significantly reduced eye blink amplitudes related to liked brand names compared to disliked brand names. This finding suggests that visual perception of liked brand names elicits higher degrees of pleasantness, more positive emotion and approach-oriented motivation than visual perception of disliked brand names. Also, skin conductance and heart rate were both reduced in case of liked versus disliked brand names. We conclude that all our physiological measures highlight emotion-related differences depending on the like and dislike toward individual brands. We suggest that objective measures should be used more frequently to quantify emotion-related aspects of brand attitude. In particular, there might be potential interest to introduce startle reflex modulation to measure emotion-related impact during product development, product design and various further fields relevant to marketing. Our findings are discussed in relation to the idea that self reported measures are most often cognitively polluted. PMID:22073192
Affective picture modulation: valence, arousal, attention allocation and motivational significance.
Leite, Jorge; Carvalho, Sandra; Galdo-Alvarez, Santiago; Alves, Jorge; Sampaio, Adriana; Gonçalves, Oscar F
2012-03-01
The present study analyses the modulatory effects of affective pictures in the early posterior negativity (EPN), the late positive potential (LPP) and the human startle response on both the peripheral (eye blink EMG) and central neurophysiological levels (Probe P3), during passive affective pictures viewing. The affective pictures categories were balanced in terms of valence (pleasant; unpleasant) and arousal (high; low). The data shows that EPN may be sensitive to specific stimulus characteristics (affective relevant pictures versus neutral pictures) associated with early stages of attentional processing. In later stages, the heightened attentional resource allocation as well as the motivated significance of the affective stimuli was found to elicit enhanced amplitudes of slow wave processes thought to be related to enhanced encoding, namely LPP,. Although pleasant low arousing pictures were effective in engaging the resources involved in the slow wave processes, the highly arousing affective stimuli (pleasant and unpleasant) were found to produce the largest enhancement of the LPP, suggesting that high arousing stimuli may are associated with increased motivational significance. Additionally the response to high arousing stimuli may be suggestive of increased motivational attention, given the heightened attentional allocation, as expressed in the P3 probe, especially for the pleasant pictures. The hedonic valence may then serve as a mediator of the attentional inhibition to the affective priming, potentiating or inhibiting a shift towards defensive activation, as measured by the startle reflex. Copyright © 2011 Elsevier B.V. All rights reserved.
Walla, Peter; Brenner, Gerhard; Koller, Monika
2011-01-01
With this study we wanted to test the hypothesis that individual like and dislike as occurring in relation to brand attitude can be objectively assessed. First, individuals rated common brands with respect to subjective preference. Then, they volunteered in an experiment during which their most liked and disliked brand names were visually presented while three different objective measures were taken. Participant's eye blinks as responses to acoustic startle probes were registered with electromyography (EMG) (i) and their skin conductance (ii) and their heart rate (iii) were recorded. We found significantly reduced eye blink amplitudes related to liked brand names compared to disliked brand names. This finding suggests that visual perception of liked brand names elicits higher degrees of pleasantness, more positive emotion and approach-oriented motivation than visual perception of disliked brand names. Also, skin conductance and heart rate were both reduced in case of liked versus disliked brand names. We conclude that all our physiological measures highlight emotion-related differences depending on the like and dislike toward individual brands. We suggest that objective measures should be used more frequently to quantify emotion-related aspects of brand attitude. In particular, there might be potential interest to introduce startle reflex modulation to measure emotion-related impact during product development, product design and various further fields relevant to marketing. Our findings are discussed in relation to the idea that self reported measures are most often cognitively polluted.
Xue, Angli; Wang, Hongcheng; Zhu, Jun
2017-09-28
Startle behavior is important for survival, and abnormal startle responses are related to several neurological diseases. Drosophila melanogaster provides a powerful system to investigate the genetic underpinnings of variation in startle behavior. Since mechanically induced, startle responses and environmental conditions can be readily quantified and precisely controlled. The 156 wild-derived fully sequenced lines of the Drosophila Genetic Reference Panel (DGRP) were used to identify SNPs and transcripts associated with variation in startle behavior. The results validated highly significant effects of 33 quantitative trait SNPs (QTSs) and 81 quantitative trait transcripts (QTTs) directly associated with phenotypic variation of startle response. We also detected QTT variation controlled by 20 QTSs (tQTSs) and 73 transcripts (tQTTs). Association mapping based on genomic and transcriptomic data enabled us to construct a complex genetic network that underlies variation in startle behavior. Based on principles of evolutionary conservation, human orthologous genes could be superimposed on this network. This study provided both genetic and biological insights into the variation of startle response behavior of Drosophila melanogaster, and highlighted the importance of genetic network to understand the genetic architecture of complex traits.
ERIC Educational Resources Information Center
Takehara-Nishiuchi, Kaori; Kawahara, Shigenori; Kirino, Yutaka
2005-01-01
Permanent lesions in the medial prefrontal cortex (mPFC) affect acquisition of conditioned responses (CRs) during trace eyeblink conditioning and retention of remotely acquired CRs. To clarify further roles of the mPFC in this type of learning, we investigated the participation of the mPFC in mnemonic processes both during and after daily…
Impaired delay eyeblink conditioning in amnesic Korsakoff's patients and recovered alcoholics.
McGlinchey-Berroth, R; Cermak, L S; Carrillo, M C; Armfield, S; Gabrieli, J D; Disterhoft, J F
1995-10-01
The performance of amnesic Korsakoff patients in delay eyeblink classical conditioning was compared with that of recovered chronic alcoholic subjects and healthy normal control subjects. Normal control subjects exhibited acquisition of conditioned responses (CRs) to a previously neutral, conditioned tone stimulus (CS) following repeated pairings with an unconditioned air-puff stimulus, and demonstrated extinction of CRs when the CS was subsequently presented alone. Both amnesic Korsakoff patients and recovered chronic alcoholic subjects demonstrated an impairment in their ability to acquire CRs. These results indicate that the preservation of delay eyeblink conditioning in amnesia must depend on the underlying neuropathology of the amnesic syndrome. It is known that patients with amnesia caused by medial temporal lobe pathology have preserved conditioning. We have now demonstrated that patients with amnesia caused by Korsakoff's syndrome, as well as recovered chronic alcoholic subjects, have impaired conditioning. This impairment is most likely caused by cerebellar deterioration resulting from years of alcohol abuse.
Impaired eye-blink conditioning in waggler, a mutant mouse with cerebellar BDNF deficiency.
Bao, S; Chen, L; Qiao, X; Knusel, B; Thompson, R F
1998-01-01
In addition to their trophic functions, neurotrophins are also implicated in synaptic modulation and learning and memory. Although gene knockout techniques have been used widely in studying the roles of neurotrophins at molecular and cellular levels, behavioral studies using neurotrophin knockouts are limited by the early-onset lethality and various sensory deficits associated with the gene knockout mice. In the present study, we found that in a spontaneous mutant mouse, waggler, the expression of brain-derived neurotrophic factor (BDNF) was selectively absent in the cerebellar granule cells. The cytoarchitecture of the waggler cerebellum appeared to be normal at the light microscope level. The mutant mice exhibited no sensory deficits to auditory stimuli or heat-induced pain. However, they were massively impaired in classic eye-blink conditioning. These results suggest that BDNF may have a role in normal cerebellar neuronal function, which, in turn, is essential for classic eye-blink conditioning.
Parker, Karen J.; Hyde, Shellie A.; Buckmaster, Christine L.; Tanaka, Serena M.; Brewster, Katharine K.; Schatzberg, Alan F.; Lyons, David M.; Woodward, Steven H.
2010-01-01
SUMMARY The startle response, a simple defensive response to a sudden stimulus signaling proximal threat, has been well studied in rodents and humans, but has been rarely examined in monkeys. The first goal of the present studies was to develop a minimally immobilizing startle measurement paradigm and validate its usefulness by testing two core features of the startle response (habituation and graded responsivity) in squirrel monkey subjects. Two different types of startle stimuli were used: standard broad-band noise bursts, and species-specific alarm vocalizations (“yaps”) which are elicited in response to threat in both wild and captive animals. The second goal of the present studies was to test whether yaps produce enhanced startle responsivity due to their increased biological salience compared to simple, non-biologically relevant noise bursts. The third goal of the present studies was to evaluate the hypothalamic pituitary-adrenal (HPA) axis response to startle stimuli, as little is known about the stress-activating role of startle stimuli in any species. These experiments determined that the whole-body startle response in relatively unrestrained squirrel monkeys habituates across repeated stimulus presentations and is proportional to stimulus intensity. In addition, differential habituation was observed across biologically salient vs. standard acoustic startle stimuli. Responses to “yaps” were larger initially but attenuated more rapidly over trials. Responses to “yaps” were also larger in the early subepochs of the response window but then achieved a lower level than responses to noise bursts in the later subepochs. Finally, adrenocorticotropic hormone and cortisol concentrations were significantly elevated above baseline after startle stimuli presentation, though monkeys did not exhibit differential HPA axis responses to the two types of startle stimuli. The development of monkey startle methodology may further enhance the utility of this paradigm in translational studies of human stress-related psychiatric disorders. PMID:20869176
Adamec, R; Muir, C; Grimes, M; Pearcey, K
2007-05-16
The roles of beta-NER (beta-noradrenergic receptor), GR (glucocorticoid) and mineral corticoid receptors (MR) in the consolidation of anxiogenic effects of predator stress were studied. One minute after predator stress, different groups of rats were injected (ip) with vehicle, propranolol (beta-NER blocker, 5 and 10 mg/kg), mifepristone (RU486, GR blocker, 20 mg/kg), spironolactone (MR blocker, 50 mg/kg), propranolol (5 mg/kg) plus RU486 (20 mg/kg) or the anxiolytic, chloradiazepoxide (CPZ, 10 mg/kg). One week later, rodent anxiety was assessed in elevated plus maze, hole board, light/dark box, social interaction and acoustic startle. Considering all tests except startle, propranolol dose dependently blocked consolidation of lasting anxiogenic effects of predator stress in all tests. GR receptor block alone was ineffective. However, GR block in combination with an ineffective dose of propranolol did blocked consolidation of predator stress effects in all tests, suggesting a synergism between beta-NER and GR. Surprisingly, MR block prevented consolidation of anxiogenic effects in all tests except the light/dark box. CPZ post stress was ineffective against the anxiogenic impact of predator stress. Study of startle was complicated by the fact that anxiogenic effects of stress on startle amplitude manifested as both an increase and a decrease in startle amplitude. Suppression of startle occurred in stressed plus vehicle injected groups handled three times prior to predator stress. In contrast, stressed plus vehicle rats handled five times prior to predator stress showed increases in startle, as did all predator stressed only groups. Mechanisms of consolidation of the different startle responses appear to differ. CPZ post stress blocked startle suppression but not enhancement of startle. Propranolol post stress had no effect on either suppression or enhancement of startle. GR block alone post stress prevented suppression of startle, but not enhancement. In contrast blocking GR and beta-NER together prevented startle enhancement. MR block also prevented startle enhancement. Effects of MR block on startle suppression were not tested. Delay of habituation to startle was found in all stressed rats. Consolidation of delay of habituation was blocked or attenuated by post stress MR block, GR plus beta-NER block and CPZ but not by post stress GR or beta-NER block alone. Taken together, present findings suggest consolidation of lasting anxiogenic effects of predator stress may share some of the same neurochemical mechanisms implicated in some forms of fear memory consolidation. Implications of these findings for the study of stress-induced changes in affect including posttraumatic stress disorder (PTSD) are discussed.
Noise and stress: a comprehensive approach.
Westman, J C; Walters, J R
1981-01-01
The fundamental purposes of hearing are to alert and to warn. As a result sound directly evokes emotions and actions. The processing of sound by the brain is outlined to provide a biological and psychological basis for understanding the way in which sound can become a human stressor. The auditory orienting response, startle reflex and defensive response translate sound stimuli into action and sometimes into stress induced bodily changes through "fight or flight" neural mechanisms. The literature on the health and mental health effects of noise then is reviewed in the context of an integrated model that offers a holistic approach to noise research and public policy formulation. The thesis of this paper is that research upon, and efforts to prevent or minimize the harmful effects of noise have suffered from the lack of a full appreciation of the ways in which humans process and react to sound. PMID:7333243
NASA Technical Reports Server (NTRS)
Cela, Carlos J.; Loizos, Kyle; Lazzi, Gianluca; Hamilton, Douglas; Lee, Raphael C.
2011-01-01
Recent research has shown that space explorers engaged in Extra Vehicular Activities (EVAs) may be exposed, under certain conditions, to undesired electrical currents. This work focuses on determining whether these undesired induced electrical currents could be responsible for involuntary neuromuscular activity in the subjects, possibly caused by either large diameter peripheral nerve activation or reflex activity from cutaneous afferent stimulation. An efficient multiresolution variant of the admittance method along with a millimeter-resolution model of a male human body were used to calculate induced electric fields, resistance between contact electrodes used to simulate the potential exposure condition, and currents induced in the human body model. Results show that, under realistic exposure conditions using a 15V source, current density magnitudes and total current injected are well above previously reported startle reaction thresholds. This indicates that, under the considered conditions, the subjects could experience involuntary motor response.
Shortened Conditioned Eyeblink Response Latency in Male but not Female Wistar-Kyoto Hyperactive Rats
Thanellou, Alexandra; Schachinger, Kira M.; Green, John T.
2014-01-01
Reductions in the volume of the cerebellum and impairments in cerebellar-dependent eyeblink conditioning have been observed in attention-deficit/hyperactivity disorder (ADHD). Recently, it was reported that subjects with ADHD as well as male spontaneously hypertensive rats (SHR), a strain that is frequently employed as an animal model in the study of ADHD, exhibit a parallel pattern of timing deficits in eyeblink conditioning. One criticism that has been posed regarding the validity of the SHR strain as an animal model for the study of ADHD is that SHRs are not only hyperactive but also hypertensive. It is conceivable that many of the behavioral characteristics seen in SHRs that seem to parallel the behavioral symptoms of ADHD are not solely due to hyperactivity but instead are the net outcome of the interaction between hyperactivity and hypertension. We used Wistar-Kyoto Hyperactive (WKHA) and Wistar-Kyoto Hypertensive (WKHT) rats (males and females), strains generated from recombinant inbreeding of SHRs and their progenitor strain, Wistar-Kyoto (WKY) rats, to compare eyeblink conditioning in strains that are exclusively hyperactive or hypertensive. We used a long-delay eyeblink conditioning task in which a tone conditioned stimulus was paired with a periorbital stimulation unconditioned stimulus (750-ms delay paradigm). Our results showed that WKHA and WKHT rats exhibited similar rates of conditioned response (CR) acquisition. However, WKHA males displayed shortened CR latencies (early onset and peak latency) in comparison to WKHT males. In contrast, female WKHAs and WKHTs did not differ. In subsequent extinction training, WKHA rats extinguished at similar rates in comparison to WKHT rats. The current results support the hypothesis of a relationship between cerebellar abnormalities and ADHD in an animal model of ADHD-like symptoms that does not also exhibit hypertension, and suggest that cerebellar-related timing deficits are specific to males. PMID:19485572
Allen, Michael Todd; Miller, Daniel P
2016-01-01
Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible learned helplessness. Applications of these findings of enhanced proactive interference in BI individuals to pre-exposure therapies to reduce anxiety disorders such as posttraumatic stress disorder (PTSD) will be discussed.
Allen, Michael Todd; Miller, Daniel P.
2016-01-01
Anxiety vulnerable individuals exhibit enhanced acquisition of conditioned eyeblinks as well as enhanced proactive interference from conditioned stimulus (CS) or unconditioned stimulus (US) alone pre-exposures (Holloway et al., 2012). US alone pre-exposures disrupt subsequent conditioned response (CR) acquisition to CS-US paired trials as compared to context pre-exposure controls. While Holloway et al. (2012) reported enhanced acquisition in high trait anxiety individuals in the context condition, anxiety vulnerability effects were not reported for the US alone pre-exposure group. It appears from the published data that there were no differences between high and low anxiety individuals in the US alone condition. In the work reported here, we sought to extend the findings of enhanced proactive interference with US alone pre-exposures to determine if the enhanced conditioning was disrupted by proactive interference procedures. We also were interested in the spontaneous eyeblinks during the pre-exposure phase of training. We categorized individuals as anxiety vulnerability or non-vulnerable individuals based scores on the Adult Measure of Behavioral Inhibition (AMBI). Sixty-six participants received 60 trials consisting of 30 US alone or context alone pre-exposures followed by 30 CS-US trials. US alone pre-exposures not only disrupted CR acquisition overall, but behaviorally inhibited (BI) individuals exhibited enhanced proactive interference as compared to non-inhibited (NI) individuals. In addition, US alone pre-exposures disrupted the enhanced acquisition observed in BI individuals as compared to NI individuals following context alone pre-exposures. Differences were also found in rates of spontaneous eyeblinks between BI and NI individuals during context pre-exposure. Our findings will be discussed in the light of the neural substrates of eyeblink conditioning as well as possible factors such as hypervigilance in the amygdala and hippocampal systems, and possible learned helplessness. Applications of these findings of enhanced proactive interference in BI individuals to pre-exposure therapies to reduce anxiety disorders such as posttraumatic stress disorder (PTSD) will be discussed. PMID:27014001
VAIDYANATHAN, UMA; MALONE, STEPHEN M.; MILLER, MICHAEL B.; McGUE, MATT; IACONO, WILLIAM G.
2014-01-01
Acoustic startle responses have been studied extensively in relation to individual differences and psychopathology. We examined three indices of the blink response in a picture-viewing paradigm—overall startle magnitude across all picture types, and aversive and pleasant modulation scores—in 3,323 twins and parents. Biometric models and molecular genetic analyses showed that half the variance in overall startle was due to additive genetic effects. No single nucleotide polymorphism was genome-wide significant, but GRIK3 did produce a significant effect when examined as part of a candidate gene set. In contrast, emotion modulation scores showed little evidence of heritability in either biometric or molecular genetic analyses. However, in a genome-wide scan, PARP14 did produce a significant effect for aversive modulation. We conclude that, although overall startle retains potential as an endophenotype, emotion-modulated startle does not. PMID:25387708
Anders, Silke; Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk
2009-11-01
Affective neuroscience has been strongly influenced by the view that a 'feeling' is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients' response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients' phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity.
Eippert, Falk; Wiens, Stefan; Birbaumer, Niels; Lotze, Martin; Wildgruber, Dirk
2009-01-01
Affective neuroscience has been strongly influenced by the view that a ‘feeling’ is the perception of somatic changes and has consequently often neglected the neural mechanisms that underlie the integration of somatic and other information in affective experience. Here, we investigate affective processing by means of functional magnetic resonance imaging in nine cortically blind patients. In these patients, unilateral postgeniculate lesions prevent primary cortical visual processing in part of the visual field which, as a result, becomes subjectively blind. Residual subcortical processing of visual information, however, is assumed to occur in the entire visual field. As we have reported earlier, these patients show significant startle reflex potentiation when a threat-related visual stimulus is shown in their blind visual field. Critically, this was associated with an increase of brain activity in somatosensory-related areas, and an increase in experienced negative affect. Here, we investigated the patients’ response when the visual stimulus was shown in the sighted visual field, that is, when it was visible and cortically processed. Despite the fact that startle reflex potentiation was similar in the blind and sighted visual field, patients reported significantly less negative affect during stimulation of the sighted visual field. In other words, when the visual stimulus was visible and received full cortical processing, the patients’ phenomenal experience of affect did not closely reflect somatic changes. This decoupling of phenomenal affective experience and somatic changes was associated with an increase of activity in the left ventrolateral prefrontal cortex and a decrease of affect-related somatosensory activity. Moreover, patients who showed stronger left ventrolateral prefrontal cortex activity tended to show a stronger decrease of affect-related somatosensory activity. Our findings show that similar affective somatic changes can be associated with different phenomenal experiences of affect, depending on the depth of cortical processing. They are in line with a model in which the left ventrolateral prefrontal cortex is a relay station that integrates information about subcortically triggered somatic responses and information resulting from in-depth cortical stimulus processing. Tentatively, we suggest that the observed decoupling of somatic responses and experienced affect, and the reduction of negative phenomenal experience, can be explained by a left ventrolateral prefrontal cortex-mediated inhibition of affect-related somatosensory activity. PMID:19767414
Automatic removal of eye-movement and blink artifacts from EEG signals.
Gao, Jun Feng; Yang, Yong; Lin, Pan; Wang, Pei; Zheng, Chong Xun
2010-03-01
Frequent occurrence of electrooculography (EOG) artifacts leads to serious problems in interpreting and analyzing the electroencephalogram (EEG). In this paper, a robust method is presented to automatically eliminate eye-movement and eye-blink artifacts from EEG signals. Independent Component Analysis (ICA) is used to decompose EEG signals into independent components. Moreover, the features of topographies and power spectral densities of those components are extracted to identify eye-movement artifact components, and a support vector machine (SVM) classifier is adopted because it has higher performance than several other classifiers. The classification results show that feature-extraction methods are unsuitable for identifying eye-blink artifact components, and then a novel peak detection algorithm of independent component (PDAIC) is proposed to identify eye-blink artifact components. Finally, the artifact removal method proposed here is evaluated by the comparisons of EEG data before and after artifact removal. The results indicate that the method proposed could remove EOG artifacts effectively from EEG signals with little distortion of the underlying brain signals.
Nguyen, Robin; Morrissey, Mark D.; Mahadevan, Vivek; Cajanding, Janine D.; Woodin, Melanie A.; Yeomans, John S.; Takehara-Nishiuchi, Kaori
2014-01-01
Hyperactivity within the ventral hippocampus (vHPC) has been linked to both psychosis in humans and behavioral deficits in animal models of schizophrenia. A local decrease in GABA-mediated inhibition, particularly involving parvalbumin (PV)-expressing GABA neurons, has been proposed as a key mechanism underlying this hyperactive state. However, direct evidence is lacking for a causal role of vHPC GABA neurons in behaviors associated with schizophrenia. Here, we probed the behavioral function of two different but overlapping populations of vHPC GABA neurons that express either PV or GAD65 by selectively inhibiting these neurons with the pharmacogenetic neuromodulator hM4D. We show that acute inhibition of vHPC GABA neurons in adult mice results in behavioral changes relevant to schizophrenia. Inhibiting either PV or GAD65 neurons produced distinct behavioral deficits. Inhibition of PV neurons, affecting ∼80% of the PV neuron population, robustly impaired prepulse inhibition of the acoustic startle reflex (PPI), startle reactivity, and spontaneous alternation, but did not affect locomotor activity. In contrast, inhibiting a heterogeneous population of GAD65 neurons, affecting ∼40% of PV neurons and 65% of cholecystokinin neurons, increased spontaneous and amphetamine-induced locomotor activity and reduced spontaneous alternation, but did not alter PPI. Inhibition of PV or GAD65 neurons also produced distinct changes in network oscillatory activity in the vHPC in vivo. Together, these findings establish a causal role for vHPC GABA neurons in controlling behaviors relevant to schizophrenia and suggest a functional dissociation between the GABAergic mechanisms involved in hippocampal modulation of sensorimotor processes. PMID:25378161
Pereira-Figueiredo, Inês; Sancho, Consuelo; Carro, Juan; Castellano, Orlando; López, Dolores E.
2014-01-01
Sertraline (SERT) is a clinically effective Selective Serotonin Reuptake Inhibitor (SSRI) known to increase and stabilize serotonin levels. This neurotransmitter plays an important role in adolescent brain development in both rodents and humans, and its dysregulation has been correlated with deficits in behavior and emotional regulation. Since prenatal stress may disturb serotoninergic homeostasis, the aim of this study was to examine the long-lasting effects of exposure to SERT throughout adolescence on behavioral and physiological developmental parameters in prenatally stressed Wistar rats. SERT was administered (5 mg/kg/day p.o.) from the age of 1–3 months to half of the progeny, of both sexes, of gestating dams stressed by use of a restraint (PS) or not stressed. Our data reveal that long-term SERT treatment slightly reduced weight gain in both sexes, but reversed the developmental disturbed “catch-up” growth found in PS females. Neither prenatal stress nor SERT treatment induced remarkable alterations in behavior and had no effects on mean startle reflex values. However, a sex-dependent effects of PS was found: in males the PS paradigm slightly increased anxiety-like behavior in the open field, while in females, it impaired startle habituation. In both cases, SERT treatment reversed the phenomena. Additionally, the PS animals exhibited a disturbed leukocyte profile in both sexes, which was reversed by SERT. The present findings are evidence that continuous SERT administration from adolescence through adulthood is safe in rodents and lessens the impact of prenatal stress in rats. PMID:25147514
Startle reveals an absence of advance motor programming in a Go/No-go task.
Carlsen, Anthony N; Chua, Romeo; Dakin, Chris J; Sanderson, David J; Inglis, J Timothy; Franks, Ian M
2008-03-21
Presenting a startling stimulus in a simple reaction time (RT) task, can involuntarily trigger the pre-programmed response. However, this effect is not seen when the response is programmed following the imperative stimulus (IS) providing evidence that a startle can only trigger pre-programmed responses. In a "Go/No-go" (GNG) RT task the response may be programmed in advance of the IS because there exists only a single predetermined response. The purpose of the current investigation was to examine if startle could elicit a response in a GNG task. Participants completed a wrist extension task in response to a visual stimulus. A startling acoustic stimulus (124dB) was presented in both Go and No-go trials with Go probability manipulated between groups. The inclusion of a startle did not significantly speed RT and led to more response errors. This result is similar to that observed in a startled choice RT task, indicating that in a GNG task participants waited until the IS complete motor programming.
Ayers, Luke W; Missig, Galen; Schulkin, Jay; Rosen, Jeffrey B
2011-01-01
Oxytocin is known to have anti-anxiety and anti-stress effects. Using a fear-potentiated startle paradigm in rats, we previously demonstrated that subcutaneously administered oxytocin suppressed acoustic startle following fear conditioning compared with startle before fear conditioning (termed background anxiety), but did not have an effect on cue-specific fear-potentiated startle. The findings suggest oxytocin reduces background anxiety, an anxious state not directly related to cue-specific fear, but sustained beyond the immediate threat. The goal of the present study was to compare the effects of centrally and peripherally administered oxytocin on background anxiety and cue-specific fear. Male rats were given oxytocin either subcutaneously (SC) or intracerebroventricularly (ICV) into the lateral ventricles before fear-potentiated startle testing. Oxytocin doses of 0.01 and 0.1 μg/kg SC reduced background anxiety. ICV administration of oxytocin at doses from 0.002 to 20 μg oxytocin had no effect on background anxiety or cue-specific fear-potentiated startle. The 20 μg ICV dose of oxytocin did reduce acoustic startle in non-fear conditioned rats. These studies indicate that oxytocin is potent and effective in reducing background anxiety when delivered peripherally, but not when delivered into the cerebroventricular system. Oxytocin given systemically may have anti-anxiety properties that are particularly germane to the hypervigilance and exaggerated startle typically seen in many anxiety and mental health disorder patients. PMID:21796104
Ballard, Elizabeth D; Ionescu, Dawn F; Vande Voort, Jennifer L; Slonena, Elizabeth E; Franco-Chaves, Jose A; Zarate, Carlos A; Grillon, Christian
2014-06-01
Suicide is a common reason for psychiatric emergency and morbidity, with few effective treatments. Anxiety symptoms have emerged as potential modifiable risk factors in the time before a suicide attempt, but few studies have been conducted using laboratory measures of fear and anxiety. We operationally defined fear and anxiety as increased startle reactivity during anticipation of predictable (fear-potentiated startle) and unpredictable (anxiety-potentiated startle) shock. We hypothesized that a lifetime history of suicide attempt (as compared to history of no suicide attempt) would be associated with increased fear-potentiated startle. A post-hoc analysis of fear- and anxiety-potentiated startle was conducted in 28 medication-free patients with Major Depressive Disorder (MDD) divided according to suicide attempt history. The magnitude of fear-potentiated startle was increased in depressed patients with lifetime suicide attempts compared to those without a lifetime history of suicide attempt (F(1,26)=5.629, p=.025). There was no difference in anxiety-potentiated startle by suicide attempt history. This is a post-hoc analysis of previously analyzed patient data from a study of depressed inpatients. Further replication of the finding with a larger patient sample is indicated. Increased fear-potentiated startle in suicide attempters suggests the role of amygdala in depressed patients with a suicide attempt history. Findings highlight the importance of anxiety symptoms in the treatment of patients at increased suicide risk. Published by Elsevier B.V.
Zaman, Jonas; Madden, Victoria J; Iven, Julie; Wiech, Katja; Weltens, Nathalie; Ly, Huynh Giao; Vlaeyen, Johan W S; Van Oudenhove, Lukas; Van Diest, Ilse
2017-10-01
A growing body of research has identified fear of visceral sensations as a potential mechanism in the development and maintenance of visceral pain disorders. However, the extent to which such learned fear affects visceroception remains unclear. To address this question, we used a differential fear conditioning paradigm with nonpainful esophageal balloon distensions of 2 different intensities as conditioning stimuli (CSs). The experiment comprised of preacquisition, acquisition, and postacquisition phases during which participants categorized the CSs with respect to their intensity. The CS+ was always followed by a painful electrical stimulus (unconditioned stimulus) during the acquisition phase and in 60% of the trials during postacquisition. The second stimulus (CS-) was never associated with pain. Analyses of galvanic skin and startle eyeblink responses as physiological markers of successful conditioning showed increased fear responses to the CS+ compared with the CS-, but only in the group with the low-intensity stimulus as CS+. Computational modeling of response times and response accuracies revealed that differential fear learning affected perceptual decision-making about the intensities of visceral sensations such that sensations were more likely to be categorized as more intense. These results suggest that associative learning might indeed contribute to visceral hypersensitivity in functional gastrointestinal disorders. This study shows that associative fear learning biases intensity judgements of visceral sensations toward perceiving such sensations as more intense. Learning-induced alterations in visceroception might therefore contribute to the development or maintenance of visceral pain. Copyright © 2017 American Pain Society. Published by Elsevier Inc. All rights reserved.
Generalization of Pain-Related Fear Based on Conceptual Knowledge.
Meulders, Ann; Vandael, Kristof; Vlaeyen, Johan W S
2017-05-01
Increasing evidence suggests that pain-related fear is key to the transition from acute to chronic pain. Previous research has shown that perceptual similarity with a pain-associated movement fosters the generalization of fear to novel movements. Perceptual generalization of pain-related fear is adaptive as it enables individuals to extrapolate the threat value of one movement to another without the necessity to learn anew. However, excessive spreading of fear to safe movements may become maladaptive and may lead to sustained anxiety, dysfunctional avoidance behaviors, and severe disability. A hallmark of human cognition is the ability to extract conceptual knowledge from a learning episode as well. Although this conceptual pathway may be important to understand fear generalization in chronic pain, research on this topic is lacking. We investigated acquisition and generalization of concept-based pain-related fear. During acquisition, unique exemplars of one action category (CS+; e.g., opening boxes) were followed by pain, whereas exemplars of another action category (CS-; e.g., closing boxes) were not. Subsequently, spreading of pain-related fear to novel exemplars of both action categories was tested. Participants learned to expect the pain to occur and reported more pain-related fear to the exemplars of the CS+ category compared with those of the CS- category. During generalization, fear and expectancy generalized to novel exemplars of the CS+ category, but not to the CS- category. This pattern was not corroborated in the eyeblink startle measures. This is the first study that demonstrates that pain-related fear can be acquired and generalized based on conceptual knowledge. Copyright © 2016. Published by Elsevier Ltd.
Haerich, Paul; Eggers, Cara; Pecaut, Michael J
2012-05-01
With the increased international emphasis on manned space exploration, there is a growing need to understand the impact of the spaceflight environment on health and behavior. One particularly important aspect of this environment is low-dose radiation. In the present studies, we first characterized the γ- and proton-irradiation dose effect on acoustic startle and pre-pulse inhibition behaviors in mice exposed to 0-5 Gy brain-localized irradiation, and assessed these effects 2 days later. Subsequently, we used 2 Gy to assess the time course of γ- and proton-radiation effects on startle reactivity 0-8 days after exposure. Exposures targeted the brain to minimize the impact of peripheral inflammation-induced sickness behavior. The effects of radiation on startle were subtle and acute. Radiation reduced the startle response at 2 and 5 Gy. Following a 2-Gy exposure, the response reached a minimum at the 2-day point. Proton and γ-ray exposures did not differ in their impact on startle. We found there were no effects of radiation on pre-pulse inhibition of the startle response.
Cousens, Graham A; Skrobacz, Cheryl G; Blumenthal, Anna
2011-01-20
Although the nucleus accumbens (NAc) typically is not considered a primary component of the circuitry underlying either the acquisition or retrieval of conditioned fear, evidence suggests that this region may play some role in modulating fear-related behaviors. The goal of the present study was to explore a potential role for NAc cholinergic receptors in the expression of fear-potentiated startle (FPS) and baseline startle reactivity. Intra-NAc infusion of the broad-acting cholinergic receptor agonist, carbachol, suppressed FPS elicited by re-exposure to both a discrete odor previously paired with footshock and the conditioning context. Although carbachol elevated spontaneous motor activity, activity bouts did not account for startle suppression in carbachol-treated Ss. In addition, intra-NAc carbachol suppressed baseline startle over a range of acoustic pulse intensities in the absence of explicit fear conditioning. Collectively, these findings suggest that NAc cholinergic receptors play a role in the modulation of baseline startle reactivity, rather than in the retrieval of learned fear, and that this role is independent of overt motor activity. Copyright © 2010 Elsevier B.V. All rights reserved.
In the face of fear: Anxiety sensitizes defensive responses to fearful faces
Grillon, Christian; Charney, Danielle R.
2011-01-01
Fearful faces readily activate the amygdala. Yet, whether fearful faces evoke fear is unclear. Startle studies show no potentiation of startle by fearful faces, suggesting that such stimuli do not activate defense mechanisms. However, the response to biologically relevant stimuli may be sensitized by anxiety. The present study tested the hypothesis that startle would not be potentiated by fearful faces in a safe context, but that startle would be larger during fearful faces compared to neutral faces in a threat-of-shock context. Subjects viewed fearful and neutral faces in alternating periods of safety and threat of shock. Acoustic startle stimuli were presented in the presence and absence of the faces. Startle was transiently potentiated by fearful faces compared to neutral faces in the threat periods. This suggests that although fearful faces do not prompt behavioral mobilization in an innocuous context, they can do so in an anxiogenic one. PMID:21824155
Startle reduces recall of a recently learned internal model.
Wright, Zachary; Patton, James L; Ravichandran, Venn
2011-01-01
Recent work has shown that preplanned motor programs are released early from subcortical areas by the using a startling acoustic stimulus (SAS). Our question is whether this response might also contain a recently learned internal model, which draws on experience to predict and compensate for expected perturbations in a feedforward manner. Studies of adaptation to robotic forces have shown some evidence of this, but were potentially confounded by cocontraction caused by startle. We performed a new adaptation experiment using a visually distorted field that could not be confounded by cocontraction. We found that in all subjects that exhibited startle, the startle stimulus (1) reduced performance of the recently learned task (2) reduced after-effect magnitudes. Because startle reduced but did not eliminate the recall of learned control, we suggest that multiple neural centers (cortical and subcortical) are involved in such learning and adaptation, which can impact training areas such as piloting, teleoperation, sports, and rehabilitation. © 2011 IEEE
Madroñal, Noelia; Gruart, Agnès; Sacktor, Todd C.; Delgado-García, José M.
2010-01-01
A leading candidate in the process of memory formation is hippocampal long-term potentiation (LTP), a persistent enhancement in synaptic strength evoked by the repetitive activation of excitatory synapses, either by experimental high-frequency stimulation (HFS) or, as recently shown, during actual learning. But are the molecular mechanisms for maintaining synaptic potentiation induced by HFS and by experience the same? Protein kinase Mzeta (PKMζ), an autonomously active atypical protein kinase C isoform, plays a key role in the maintenance of LTP induced by tetanic stimulation and the storage of long-term memory. To test whether the persistent action of PKMζ is necessary for the maintenance of synaptic potentiation induced after learning, the effects of ZIP (zeta inhibitory peptide), a PKMζ inhibitor, on eyeblink-conditioned mice were studied. PKMζ inhibition in the hippocampus disrupted both the correct retrieval of conditioned responses (CRs) and the experience-dependent persistent increase in synaptic strength observed at CA3-CA1 synapses. In addition, the effects of ZIP on the same associative test were examined when tetanic LTP was induced at the hippocampal CA3-CA1 synapse before conditioning. In this case, PKMζ inhibition both reversed tetanic LTP and prevented the expected LTP-mediated deleterious effects on eyeblink conditioning. Thus, PKMζ inhibition in the CA1 area is able to reverse both the expression of trace eyeblink conditioned memories and the underlying changes in CA3-CA1 synaptic strength, as well as the anterograde effects of LTP on associative learning. PMID:20454458
Startle modulation and explicit valence evaluations dissociate during backward fear conditioning.
Luck, Camilla C; Lipp, Ottmar V
2017-05-01
Blink startle magnitude is linearly modulated by affect such that, relative to neutral stimuli, startle magnitude is inhibited during pleasant stimuli and potentiated during unpleasant stimuli. Andreatta, Mühlberger, Yarali, Gerber, and Pauli (2010), however, report a dissociation between startle modulation and explicit valence evaluations during backward conditioning, a procedure in which the unconditional stimulus precedes the conditional stimulus (CS). Relative to controls, startles elicited during the CS were inhibited, suggesting that the CS had acquired positive valence, but participants still evaluated the CS as unpleasant after the experiment. In Experiment 1, we aimed to replicate this dissociation using a trial-by-trial measure of CS valence to measure startle modulation and CS valence simultaneously during forward and backward differential fear conditioning. In Experiment 2, we examined whether early and late portions of the CS could acquire differential valence by presenting startle probes at early and late probe positions during the CS. In both experiments, the dissociation between startle modulation and explicit valence evaluations in backward conditioning replicated, with CS+ evaluated as less pleasant than CS-, but startles elicited during CS+ inhibited relative to CS-. In Experiment 2, we provide preliminary evidence that this inhibition was present early, but not late, during the CS+. The results replicate the dissociation between implicit and explicit CS valence reported by Andreatta et al. (2010) using a trial-by-trial measure of valence. We also provide preliminary evidence that this dissociation may occur because the implicit and explicit measures are recorded at different times during the CS presentation. © 2017 Society for Psychophysiological Research.
DOT National Transportation Integrated Search
1983-09-01
The present study employed auditory startle to simulate the principal components (unexpectedness, fear, and physiological arousal) that are common to many types of sudden emergencies and compared performance recovery following startle with recovery f...
Vaidyanathan, Uma; Patrick, Christopher J.; Cuthbert, Bruce N.
2009-01-01
Integrative hierarchical models have sought to account for the extensive comorbidity between various internalizing disorders in terms of broad individual difference factors these disorders share. However, such models have been developed largely on the basis of self-report and diagnostic symptom data. Toward the goal of linking such models to neurobiological systems, we review studies that have employed variants of the affect-modulated startle paradigm to investigate emotional processing in internalizing disorders as well as personality constructs known to be associated with these disorders. Specifically, we focus on four parameters of startle reactivity: fear-potentiated startle, inhibition of startle in the context of pleasant stimuli, context-potentiated startle, and general startle reactivity. On the basis of available data, we argue that these varying effects index differing neurobiological processes related to mood and anxiety disorders that are interpretable from the standpoint of dimensional models of the internalizing spectrum. Further, we contend that these empirical findings can feed back into and help reshape conceptualizations of internalizing disorders in ways that make them more amenable to neurobiological analysis. PMID:19883142
Between Site Reliability of Startle Prepulse Inhibition Across Two Early Psychosis Consortia
Addington, Jean; Cannon, Tyrone D.; Cornblatt, Barbara A.; de la Fuente-Sandoval, Camilo; Mathalon, Dan H.; Perkins, Diana O.; Seidman, Larry J.; Tsuang, Ming; Walker, Elaine F.; Woods, Scott W.; Bachman, Peter; Belger, Ayse; Carrión, Ricardo E.; Donkers, Franc C.L.; Duncan, Erica; Johannesen, Jason; León-Ortiz, Pablo; Light, Gregory; Mondragón, Alejandra; Niznikiewicz, Margaret; Nunag, Jason; Roach, Brian J.; Solís-Vivanco, Rodolfo
2014-01-01
Prepulse inhibition (PPI) and reactivity of the acoustic startle response are widely used biobehavioral markers in psychopathology research. Previous studies have demonstrated that PPI and startle reactivity exhibit substantial within-site stability; between-site stability, however, has not been established. In two separate consortia investigating biomarkers of early psychosis, traveling subjects studies were performed as part of quality assurance procedures in order to assess the fidelity of data across sites. In the North American Prodromal Longitudinal Studies (NAPLS) Consortium, 8 normal subjects traveled to each of the 8 NAPLS sites and were tested twice at each site on the startle PPI paradigm. In preparation for a binational study, 10 healthy subjects were assessed twice in both San Diego and Mexico City. Intraclass correlations between and within sites were significant for PPI and startle response parameters, confirming the reliability of startle measures across sites in both consortia. There were between site differences in startle magnitude in the NAPLS study that did not appear to be related to methods or equipment. In planning multi-site studies, it is essential to institute quality assurance procedures early and establish between site reliability to assure comparable data across sites. PMID:23799460
2009-09-01
startle amplitude. They then received Pavlovian fear conditioning of five pairings of a 3 s light co-terminating with a 500 ms, 0.6mA footshock. Four...Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats PRINCIPAL INVESTIGATOR: Jeffrey B. Rosen, Ph.D...NUMBER Oxytocin and Social Support as Synergistic Inhibitors of Aversive Fear Conditioning and Fear-Potentiated Startle in Male Rats 5b. GRANT
Cerebral Developmental Abnormalities in a Mouse with Systemic Pyruvate Dehydrogenase Deficiency
Pliss, Lioudmila; Hausknecht, Kathryn A.; Stachowiak, Michal K.; Dlugos, Cynthia A.; Richards, Jerry B.; Patel, Mulchand S.
2013-01-01
Pyruvate dehydrogenase (PDH) complex (PDC) deficiency is an inborn error of pyruvate metabolism causing a variety of neurologic manifestations. Systematic analyses of development of affected brain structures and the cellular processes responsible for their impairment have not been performed due to the lack of an animal model for PDC deficiency. METHODS: In the present study we investigated a murine model of systemic PDC deficiency by interrupting the X-linked Pdha1 gene encoding the α subunit of PDH to study its role on brain development and behavioral studies. RESULTS: Male embryos died prenatally but heterozygous females were born. PDC activity was reduced in the brain and other tissues in female progeny compared to age-matched control females. Immunohistochemical analysis of several brain regions showed that approximately 40% of cells were PDH−. The oxidation of glucose to CO2 and incorporation of glucose-carbon into fatty acids were reduced in brain slices from 15 day-old PDC-deficient females. Histological analyses showed alterations in several structures in white and gray matters in 35 day-old PDC-deficient females. Reduction in total cell number and reduced dendritic arbors in Purkinje neurons were observed in PDC-deficient females. Furthermore, cell proliferation, migration and differentiation into neurons by newly generated cells were reduced in the affected females during pre- and postnatal periods. PDC-deficient mice had normal locomotor activity in a novel environment but displayed decreased startle responses to loud noises and there was evidence of abnormal pre-pulse inhibition of the startle reflex. CONCLUSIONS: The results show that a reduction in glucose metabolism resulting in deficit in energy production and fatty acid biosynthesis impairs cellular differentiation and brain development in PDC-deficient mice. PMID:23840713
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lock, S.; Dalbey, W.; Schmoyer, R.
1984-12-01
Inhalation exposures were performed twice per week, for 13 weeks, to determine whether there was any potential toxicity to rats of comparatively low concentrations of a condensation aerosol from diesel fuel. Changes in breathing frequency and the response of animals to a loud sharp sound (startle response) were measured in selected animals prior to the start of the exposures, at various time points during the thirteen week exposure period, and at monthly intervals during the recovery period. Assays were performed on selected animals at the end of the exposure period, and again after the two month recovery period. Endpoints includedmore » pulmonary function tests, numbers of alveolar free cells, clinical chemistry, hematology, organ weights and histopathology. No mortalities were recorded during the exposure or recovery periods. Slight toxicity occurred at these low aerosol concentrations with the loss in body weight of all treated animals during the exposure period. During the exposure period there were also some slight changes in startle reflex, however, these were apparently acute effects, and there appeared to be no permanent CNS involvement as measured by this endpoint. Immediately post-exposure, the numbers of lavaged alveolar macrophages were slightly elevated in all aerosol exposed animals. Pulmonary function tests, pulmonary gas exchange and dynamic lung tests were all apparently unaffected by these low diesel fuel aerosol exposures. Changes in tissue weights in aerosol exposed animals were minor and the few histopathological lesions were randomly scattered amongst all groups included in this study and were more attributable to the age of the animals than any specific treatment group. No significant cumulative toxicity may be attributed to these diesel fuel aerosol exposures. 14 references, 1 figure, 42 tables.« less
Roussos, Panos; Giakoumaki, Stella G; Adamaki, Eva; Anastasios, Georgakopoulos; Nikos, Robakis K; Bitsios, Panos
2011-01-01
There is evidence supporting a role for the -amino acid oxidase (DAO) locus in schizophrenia. This study aimed to determine the relationship of five single-nucleotide polymorphisms (SNPs) within the DAO gene identified as promising schizophrenia risk genes (rs4623951, rs2111902, rs3918346, rs3741775, and rs3825251) to acoustic startle, prepulse inhibition (PPI), working memory, and personality dimensions. A highly homogeneous study entry cohort (n=530) of healthy, young male army conscripts (n=703) originating from the Greek LOGOS project (Learning On Genetics Of Schizophrenia Spectrum) underwent PPI of the acoustic startle reflex, working memory, and personality assessment. The QTPHASE from the UNPHASED package was used for the association analysis of each SNP or haplotype data, with p-values corrected for multiple testing by running 10 000 permutations of the data. The rs4623951_T-rs3741775_G and rs4623951_T-rs2111902_T diplotypes were associated with reduced PPI and worse performance in working memory tasks and a personality pattern characterized by attenuated anxiety. Median stratification analysis of the risk diplotype group (ie, those individuals homozygous for the T and G alleles (TG+)) showed reduced PPI and working memory performance only in TG+ individuals with high trait anxiety. The rs4623951_T allele, which is the DAO polymorphism most strongly associated with schizophrenia, might tag a haplotype that affects PPI, cognition, and personality traits in general population. Our findings suggest an influence of the gene in the neural substrate mediating sensorimotor gating and working memory, especially when combined with high anxiety and further validate DAO as a candidate gene for schizophrenia and spectrum disorders. PMID:21471957
Role of dopamine receptors in the ventral tegmental area in conditioned fear.
de Oliveira, Amanda Ribeiro; Reimer, Adriano Edgar; Brandão, Marcus Lira
2009-05-16
The increased startle reflex in the presence of a stimulus that has been previously paired with footshock has been termed fear-potentiated startle (FPS) and is considered a reliable index of anxiety. Some studies have suggested an association between stressful situations and alterations in dopaminergic (DA) transmission. Many studies converge on the hypothesis that the mesocorticolimbic pathway, originating from DA neurons in the ventral tegmental area (VTA), is particularly sensitive to fear-arousing stimuli. The present study explored the involvement of VTA DA receptors in the acquisition and expression of conditioned fear to a light conditioned stimulus (CS). We evaluated the effects of intra-VTA administration of SKF 38393 (D(1) agonist), SCH 23390 (D(1) antagonist), quinpirole (D(2) agonist), and sulpiride (D(2) antagonist) on FPS. All drugs were administered bilaterally into the VTA (1.0 microg/0.2 microl/site). Locomotor activity/exploration and motor coordination were evaluated in the open-field and rotarod tests. None of the drugs produced significant effects on FPS when injected before conditioning, indicating that VTA DA receptors are not involved in the acquisition of conditioned fear to a light-CS. In contrast, when injected before the test session, quinpirole significantly reduced FPS, whereas the other drugs had no effect. Quinpirole's ability to decrease FPS may be the result of an action on VTA D(2) presynaptic autoreceptors that decrease dopamine levels in terminal fields of the mesocorticolimbic pathway. Altogether, the present results suggest the importance of VTA DA neurons in the fear-activating effects of Pavlovian conditioning. In addition to demonstrating the importance of dopaminergic mechanisms in the motivational consequences of footshock, the present findings also indicate that these neural circuits are mainly involved in the expression, rather than acquisition, of conditioned fear.
Pontine hyperperfusion in sporadic hyperekplexia
Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Nave, Riccardo Della; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale
2007-01-01
Objective To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Methods Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H‐MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Results Both patients showed excessively large and non‐habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H‐MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. Conclusions In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals. PMID:17702784
Pontine hyperperfusion in sporadic hyperekplexia.
Vetrugno, Roberto; Mascalchi, Mario; Vella, Alessandra; Della Nave, Riccardo; Guerrini, Laura; Vattimo, Angelo; del Giudice, Emanuele Miraglia; Plazzi, Giuseppe; D'Angelo, Roberto; Greco, Giovanni; Montagna, Pasquale
2007-09-01
To explore with neuroimaging techniques the anatomical and functional correlates of sporadic hyperekplexia. Two elderly women with sporadic hyperekplexia underwent neurophysiological assessment, MRI of the brain and proton magnetic resonance spectroscopy (1H-MRS) of the brainstem and frontal lobes. Regional cerebral blood flow was investigated with single photon emission tomography (SPECT) during evoked startles and at rest. Both patients showed excessively large and non-habituating startle responses. In both patients, MRI showed impingement of the brainstem by the vertebrobasilar artery, lack of frontal or brainstem abnormalities on 1H-MRS and hyperperfusion in the dorsal pons and cingulate cortex, and superior frontal gyrus at SPECT during evoked startles. In our patients with hyperekplexia, the vertebrobasilar arteries were found to impinge on the brainstem. Neurophysiological findings and neurofunctional imaging of evoked startles indicated a pontine origin of the movement disorder modulated by activation in cortical, especially frontal, areas. The neurofunctional correlates of evoked startles in human sporadic hyperekplexia are similar to those observed for the startle circuit in animals.
Campbell, Miranda L; Gorka, Stephanie M; McGowan, Sarah K; Nelson, Brady D; Sarapas, Casey; Katz, Andrea C; Robison-Andrew, E Jenna; Shankman, Stewart A
2014-01-01
Individuals with anxiety disorders have previously demonstrated abnormal habituation to aversiveness over time. As anxiety sensitivity (AS), or an individuals' propensity to fear of anxiety-related sensations, has been shown to be a risk factor for anxiety disorders (particularly panic disorder), the present study examined whether AS was also associated with abnormal habituation. This association was examined in two independent samples of undergraduates (Ntotal=178). Habituation was operationalised as the reduction in startle response to multiple startle probes presented over 2.5 minutes and three definitions of this reduction were employed. Results indicated that individuals with higher levels of AS evidenced deficits in startle habituation, but the strength of this relationship was somewhat dependent on the definition of startle habituation, with the most robust definition being an analysis of participants' individual slopes across all nine blinks. The present findings suggest that startle habituation is a key mechanism underlying AS, and may help elucidate the role this risk factor plays in the pathogenesis of anxiety disorders.
Whiplash evokes descending muscle recruitment and sympathetic responses characteristic of startle
Mang, Daniel WH; Siegmund, Gunter P; Blouin, Jean-Sébastien
2014-01-01
Whiplash injuries are the most common injuries following rear-end collisions. During a rear-end collision, the human muscle response consists of both a postural and a startle response that may exacerbate injury. However, most previous studies only assessed the presence of startle using data collected from the neck muscles and head/neck kinematics. The startle response also evokes a descending pattern of muscle recruitment and changes in autonomic activity. Here we examined the recruitment of axial and appendicular muscles along with autonomic responses to confirm whether these other features of a startle response were present during the first exposure to a whiplash perturbation. Ten subjects experienced a single whiplash perturbation while recording electromyography, electrocardiogram, and electrodermal responses. All subjects exhibited a descending pattern of muscle recruitment, and increasing heart rate and electrodermal responses following the collision. Our results provide further support that the startle response is a component of the response to whiplash collisions. PMID:24932015
Degraded expression of learned feedforward control in movements released by startle.
Wright, Zachary A; Carlsen, Anthony N; MacKinnon, Colum D; Patton, James L
2015-08-01
Recent work has shown that preplanned motor programs can be rapidly released via fast conducting pathways using a startling acoustic stimulus. Our question was whether the startle-elicited response might also release a recently learned internal model, which draws on experience to predict and compensate for expected perturbations in a feedforward manner. Our initial investigation using adaptation to robotically produced forces showed some evidence of this, but the results were potentially confounded by co-contraction caused by startle. In this study, we eliminated this confound by asking subjects to make reaching movements in the presence of a visual distortion. Results show that a startle stimulus (1) decreased performance of the recently learned task and (2) reduced after-effect magnitude. Since the recall of learned control was reduced, but not eliminated during startle trials, we suggest that multiple neural centers (cortical and subcortical) are involved in such learning and adaptation. These findings have implications for motor training in areas such as piloting, teleoperation, sports, and rehabilitation.
Schmitz, Anja; Grillon, Christian
2012-01-01
The threat of predictable and unpredictable aversive events was developed to assess short-duration (fear) and long-duration (anxiety) aversive states in humans. A typical experiment consists of three conditions: a safe condition (neutral (N)), during which participants are safe from aversive stimuli, and two threat conditions—one in which aversive events are administered predictably (P) (i.e., signaled by a threat cue), and one in which aversive stimuli are administered unpredictably (U). During the so-called NPU -threat test, ongoing change in aversive states is measured with the startle reflex. The NPU -threat test has been validated in pharmacological and clinical studies and can be implemented in children and adults. Similar procedures have been applied in animal models, making the NPU -threat test an ideal tool for translational research. The procedure is relatively short (35 min), simple to implement and generates consistent results with large effect sizes. PMID:22362158
Psychophysiological Response Patterns to Affective Film Stimuli
Bos, Marieke G. N.; Jentgens, Pia; Beckers, Tom; Kindt, Merel
2013-01-01
Psychophysiological research on emotion utilizes various physiological response measures to index activation of the defense system. Here we tested 1) whether acoustic startle reflex (ASR), skin conductance response (SCR) and heart rate (HR) elicited by highly arousing stimuli specifically reflect a defensive state and 2) the relation between resting heart rate variability (HRV) and affective responding. In a within-subject design, participants viewed film clips with a positive, negative and neutral content. In contrast to SCR and HR, we show that ASR differentiated between negative, neutral and positive states and can therefore be considered as a reliable index of activation of the defense system. Furthermore, resting HRV was associated with affect-modulated characteristics of ASR, but not with SCR or HR. Interestingly, individuals with low-HRV showed less differentiation in ASR between affective states. We discuss the important value of ASR in psychophysiological research on emotion and speculate on HRV as a potential biological marker for demarcating adaptive from maladaptive responding. PMID:23646134
Spiga, Ilaria; Aldred, Nicholas; Caldwell, Gary S
2017-09-15
Anthropogenic noise is a significant pollutant of the world's oceans, affecting behavioural and physiological traits in a range of species, including anti-predator behaviours. Using the open field test, we investigated the effects of recordings of piling and drilling noise on the anti-predator behaviour of captive juvenile European seabass in response to a visual stimulus (a predatory mimic). The impulsive nature of piling noise triggered a reflexive startle response, which contrasted the behaviour elicited by the continuous drilling noise. When presented with the predatory mimic, fish exposed to both piling and drilling noise explored the experimental arena more extensively than control fish exposed to ambient noise. Fish under drilling and piling conditions also exhibited reduced predator inspection behaviour. Piling and drilling noise induced stress as measured by ventilation rate. This study provides further evidence that the behaviour and physiology of European seabass is significantly affected by exposure to elevated noise levels. Copyright © 2017. Published by Elsevier Ltd.
Kaye, Jesse T.; Bradford, Daniel E.; Curtin, John J.
2016-01-01
The current study provides a comprehensive evaluation of critical psychometric properties of commonly used psychophysiology laboratory tasks/measures within the NIMH RDoC. Participants (N = 128) completed the No Shock, Predictable Shock, Unpredictable Shock (NPU) task, Affective Picture Viewing task, and Resting State task at two study visits separated by one week. We examined potentiation/modulation scores in NPU (predictable or unpredictable shock vs. no shock) and Affective Picture Viewing tasks (pleasant or unpleasant vs. neutral pictures) for startle and corrugator responses with two commonly used quantification methods. We quantified startle potentiation/modulation scores with raw and standardized responses. We quantified corrugator potentiation/modulation in the time and frequency domains. We quantified general startle reactivity in the Resting State Task as the mean raw startle response during the task. For these three tasks, two measures, and two quantification methods we evaluated effect size robustness and stability, internal consistency (i.e., split-half reliability), and one-week temporal stability. The psychometric properties of startle potentiation in the NPU task were good but concerns were noted for corrugator potentiation in this task. Some concerns also were noted for the psychometric properties of both startle and corrugator modulation in the Affective Picture Viewing task, in particular for pleasant picture modulation. Psychometric properties of general startle reactivity in the Resting State task were good. Some salient differences in the psychometric properties of the NPU and Affective Picture Viewing tasks were observed within and across quantification methods. PMID:27167717
Genetics of reflex seizures and epilepsies in humans and animals.
Italiano, Domenico; Striano, Pasquale; Russo, Emilio; Leo, Antonio; Spina, Edoardo; Zara, Federico; Striano, Salvatore; Gambardella, Antonio; Labate, Angelo; Gasparini, Sara; Lamberti, Marco; De Sarro, Giovambattista; Aguglia, Umberto; Ferlazzo, Edoardo
2016-03-01
Reflex seizures are epileptic events triggered by specific motor, sensory or cognitive stimulation. This comprehensive narrative review focuses on the role of genetic determinants in humans and animal models of reflex seizures and epilepsies. References were mainly identified through MEDLINE searches until August 2015 and backtracking of references in pertinent studies. Autosomal dominant inheritance with reduced penetrance was proven in several families with photosensitivity. Molecular genetic studies on EEG photoparoxysmal response identified putative loci on chromosomes 6, 7, 13 and 16 that seem to correlate with peculiar seizure phenotype. No specific mutation has been found in Papio papio baboon, although a genetic etiology is likely. Mutation in synaptic vesicle glycoprotein 2A was found in another animal model of photosensitivity (Fayoumi chickens). Autosomal dominant inheritance with incomplete penetrance overlapping with a genetic background for IGE was proposed for some families with primary reading epilepsy. Musicogenic seizures usually occur in patients with focal symptomatic or cryptogenic epilepsies, but they have been reported in rare genetic epilepsies such as Dravet syndrome. A single LGI1 mutation has been described in a girl with seizures evoked by auditory stimuli. Interestingly, heterozygous knockout (Lgi1(+/-)) mice show susceptibility to sound-triggered seizures. Moreover, in Frings and Black Swiss mice, the spontaneous mutations of MASS1 and JAMS1 genes, respectively, have been linked to audiogenic seizures. Eating seizures usually occur in symptomatic epilepsies but evidences for a genetic susceptibility were mainly provided by family report from Sri Lanka. Eating seizures were also reported in rare patients with MECP2 duplication or mutation. Hot water seizures are genetically heterogeneous but two loci at chromosomes 4 and 10 were identified in families with likely autosomal dominant inheritance. Startle-induced seizures usually occur in patients with symptomatic epilepsies but have also been reported in the setting chromosomal disorders or genetically inherited lysosomal storage diseases. The genetic background of reflex seizures and epilepsies is heterogeneous and mostly unknown with no major gene identified in humans. The benefits offered by next-generation sequencing technologies should be merged with increasing information on animal models that represent an useful tool to study the mechanism underlying epileptogenesis. Finally, we expect that genetic studies will lead to a better understanding of the multiple factors involved in the pathophysiology of reflex seizures, and eventually to develop preventive strategies focused on seizure control and therapy optimization. Copyright © 2016 Elsevier B.V. All rights reserved.
DOT National Transportation Integrated Search
1988-08-01
This paper deals with the use of response/recovery rate to auditory startle as a laboratory technique for simulating some of the principal aspects of the initial shock phase of sudden emergency situations. It is submitted that auditory startle, with ...
Depressed mood enhances anxiety to unpredictable threat
Robinson, OJ; Overstreet, C; Letkiewicz, A; Grillon, C
2011-01-01
Background Depression and anxiety disorders (AD) are highly comorbid, but the reason for this comorbidity is unclear. One possibility is that they predispose one another. An informative way to examine interactions between disorders without the confounds present in patient populations is to manipulate the psychological processes thought to underlie the pathological states in healthy individuals. In this paper we therefore asked whether a model of the sad mood in depression can enhance psychophysiological responses (startle) to a model of the anxiety in AD. We predicted that sad mood would increase anxious anxiety-potentiated startle responses. Methods In a between-subjects design, participants (N=36) completed either a sad mood induction procedure (N=18) or neutral mood induction procedure (N=18). Startle responses were assessed during short duration predictable electric shock conditions (fear-potentiated startle) or long-duration unpredictable threat of shock conditions (anxiety-potentiated startle). Results Induced sadness enhanced anxiety-, but not fear- potentiated startle. Conclusions This study provides support for the hypothesis that sadness can increase anxious responding measured by the affective startle response. This, taken together with prior evidence that AD can contribute to depression, provides initial experimental support for the proposition that AD and depression are frequently comorbid because they may be mutually reinforcing. PMID:22088577
Broderick, Patricia A.; Rosenbaum, Taylor
2013-01-01
Cocaine is a psychostimulant in the pharmacological class of drugs called Local Anesthetics. Interestingly, cocaine is the only drug in this class that has a chemical formula comprised of a tropane ring and is, moreover, addictive. The correlation between tropane and addiction is well-studied. Another well-studied correlation is that between psychosis induced by cocaine and that psychosis endogenously present in the schizophrenic patient. Indeed, both of these psychoses exhibit much the same behavioral as well as neurochemical properties across species. Therefore, in order to study the link between schizophrenia and cocaine addiction, we used a behavioral paradigm called Acoustic Startle. We used this acoustic startle paradigm in female versus male Sprague-Dawley animals to discriminate possible sex differences in responses to startle. The startle method operates through auditory pathways in brain via a network of sensorimotor gating processes within auditory cortex, cochlear nuclei, inferior and superior colliculi, pontine reticular nuclei, in addition to mesocorticolimbic brain reward and nigrostriatal motor circuitries. This paper is the first to report sex differences to acoustic stimuli in Sprague-Dawley animals (Rattus norvegicus) although such gender responses to acoustic startle have been reported in humans (Swerdlow et al. 1997 [1]). The startle method monitors pre-pulse inhibition (PPI) as a measure of the loss of sensorimotor gating in the brain's neuronal auditory network; auditory deficiencies can lead to sensory overload and subsequently cognitive dysfunction. Cocaine addicts and schizophrenic patients as well as cocaine treated animals are reported to exhibit symptoms of defective PPI (Geyer et al., 2001 [2]). Key findings are: (a) Cocaine significantly reduced PPI in both sexes. (b) Females were significantly more sensitive than males; reduced PPI was greater in females than in males. (c) Physiological saline had no effect on startle in either sex. Thus, the data elucidate gender-specificity to the startle response in animals. Finally, preliminary studies show the effect of cocaine on acoustic startle in tandem with effects on estrous cycle. The data further suggest that hormones may play a role in these sex differences to acoustic startle reported herein. PMID:24961412
Lindner, Katja; Neubert, Jörg; Pfannmöller, Jörg; Lotze, Martin; Hamm, Alfons O; Wendt, Julia
2015-12-01
Studying neural networks and behavioral indices such as potentiated startle responses during fear conditioning has a long tradition in both animal and human research. However, most of the studies in humans do not link startle potentiation and neural activity during fear acquisition and extinction. Therefore, we examined startle blink responses measured with electromyography (EMG) and brain activity measured with functional MRI simultaneously during differential conditioning. Furthermore, we combined these behavioral fear indices with brain network activity by analyzing the brain activity evoked by the startle probe stimulus presented during conditioned visual threat and safety cues as well as in the absence of visual stimulation. In line with previous research, we found a fear-induced potentiation of the startle blink responses when elicited during a conditioned threat stimulus and a rapid decline of amygdala activity after an initial differentiation of threat and safety cues in early acquisition trials. Increased activation during processing of threat cues was also found in the anterior insula, the anterior cingulate cortex (ACC), and the periaqueductal gray (PAG). More importantly, our results depict an increase of brain activity to probes presented during threatening in comparison to safety cues indicating an involvement of the anterior insula, the ACC, the thalamus, and the PAG in fear-potentiated startle processing during early extinction trials. Our study underlines that parallel assessment of fear-potentiated startle in fMRI paradigms can provide a helpful method to investigate common and distinct processing pathways in humans and animals and, thus, contributes to translational research. Copyright © 2015 Elsevier B.V. All rights reserved.
Nelson, Brady D; Bishop, Jeffrey R; Sarapas, Casey; Kittles, Rick A; Shankman, Stewart A
2014-06-01
Research has indicated that individuals of Asian descent, relative to other racial groups, demonstrate reduced emotional responding and lower prevalence rates of several anxiety disorders. It is unclear though whether these group differences extend to biomarkers of anxiety disorders and whether genetic differences play a role. This study compared self-identified Caucasian, Latino, and Asian persons (total N = 174) on startle response during a baseline period and while anticipating unpredictable threat-a putative biomarker for certain anxiety disorders--as well as predictable threat. In addition, the association between genetic ancestry and startle response was examined within each racial group to determine potential genetic influences on responding. For the baseline period, Asian participants exhibited a smaller startle response relative to Caucasian and Latino participants, who did not differ. Within each racial group, genetic ancestry was associated with baseline startle. Furthermore, genetic ancestry mediated racial group differences in baseline startle. For the threat conditions, a Race × Condition interaction indicated that Asian participants exhibited reduced startle potentiation to unpredictable, but not predicable, threat relative to Caucasian and Latino participants, who did not differ. However, genetic ancestry was not associated with threat-potentiated startle in any racial group. This study adds to the growing literature on racial differences in emotional responding and provides preliminary evidence suggesting that genetic ancestry may play an important role. Moreover, reduced sensitivity to unpredictable threat may reflect a mechanism for why individuals of Asian descent are at less risk for particular anxiety disorders relative to other racial groups.
Nelson, Brady D.; Bishop, Jeffrey R.; Sarapas, Casey; Kittles, Rick A.; Shankman, Stewart A.
2014-01-01
Research has indicated that individuals of Asian descent, relative to other racial groups, demonstrate reduced emotional responding and lower prevalence rates of several anxiety disorders. It is unclear though whether these group differences extend to biomarkers of anxiety disorders and whether genetic differences play a role. The present study compared self-identified Caucasians, Latinos, and Asians (total N = 174) on startle response during a baseline period and while anticipating unpredictable threat–a putative biomarker for certain anxiety disorders–as well as predictable threat. In addition, the association between genetic ancestry and startle response was examined within each racial group to determine potential genetic influences on responding. For the baseline period, Asian participants exhibited a smaller startle response relative to Caucasian and Latino participants, who did not differ. Within each racial group, genetic ancestry was associated with baseline startle. Furthermore, genetic ancestry mediated racial group differences in baseline startle. For the threat conditions, a Race × Condition interaction indicated that Asian participants exhibited reduced startle potentiation to unpredictable, but not predicable, threat relative to Caucasian and Latino participants, who did not differ. However, genetic ancestry was not associated with threat-potentiated startle in any racial group. The present study adds to the growing literature on racial differences in emotional responding and provides preliminary evidence suggesting that genetic ancestry may play an important role. Moreover, reduced sensitivity to unpredictable threat may reflect a mechanism for why individuals of Asian descent are at less risk for particular anxiety disorders relative to other racial groups. PMID:24708496
Ravaja, Niklas; Kallinen, Kari
2004-07-01
We examined the moderating influence of dispositional behavioral inhibition system (BIS) and behavioral activation system (BAS) sensitivities on the relationship of startling background music with emotion-related subjective and physiological responses elicited during reading news reports, and with memory performance among 26 adult men and women. Physiological parameters measured were respiratory sinus arrhythmia (RSA), electrodermal activity (EDA), and facial electromyography (EMG). The results showed that, among high BAS individuals, news stories with startling background music were rated as more interesting and elicited higher zygomatic EMG activity and RSA than news stories with non-startling music. Among low BAS individuals, news stories with startling background music were rated as less pleasant and more arousing and prompted higher EDA. No BIS-related effects or effects on memory were found. Startling background music may have adverse (e.g., negative arousal) or beneficial effects (e.g., a positive emotional state and stronger positive engagement) depending on dispositional BAS sensitivity of an individual. Actual or potential applications of this research include the personalization of media presentations when using modern media and communications technologies.
Thermal Imaging of the Periorbital Regions during the Presentation of an Auditory Startle Stimulus
Gane, Luke; Power, Sarah; Kushki, Azadeh; Chau, Tom
2011-01-01
Infrared thermal imaging of the inner canthi of the periorbital regions of the face can potentially serve as an input signal modality for an alternative access system for individuals with conditions that preclude speech or voluntary movement, such as total locked-in syndrome. However, it is unknown if the temperature of these regions is affected by the human startle response, as changes in the facial temperature of the periorbital regions manifested during the startle response could generate false positives in a thermography-based access system. This study presents an examination of the temperature characteristics of the periorbital regions of 11 able-bodied adult participants before and after a 102 dB auditory startle stimulus. The results indicate that the startle response has no substantial effect on the mean temperature of the periorbital regions. This indicates that thermography-based access solutions would be insensitive to startle reactions in their user, an important advantage over other modalities being considered in the context of access solutions for individuals with a severe motor disability. PMID:22073302
Does intolerance of uncertainty predict anticipatory startle responses to uncertain threat?
Nelson, Brady D; Shankman, Stewart A
2011-08-01
Intolerance of uncertainty (IU) has been proposed to be an important maintaining factor in several anxiety disorders, including generalized anxiety disorder, obsessive-compulsive disorder, and social phobia. While IU has been shown to predict subjective ratings and decision-making during uncertain/ambiguous situations, few studies have examined whether IU also predicts emotional responding to uncertain threat. The present study examined whether IU predicted aversive responding (startle and subjective ratings) during the anticipation of temporally uncertain shocks. Sixty-nine participants completed three experimental conditions during which they received: no shocks, temporally certain/predictable shocks, and temporally uncertain shocks. Results indicated that IU was negatively associated with startle during the uncertain threat condition in that those with higher IU had a smaller startle response. IU was also only related to startle during the uncertain (and not the certain/predictable) threat condition, suggesting that it was not predictive of general aversive responding, but specific to responses to uncertain aversiveness. Perceived control over anxiety-related events mediated the relation between IU and startle to uncertain threat, such that high IU led to lowered perceived control, which in turn led to a smaller startle response. We discuss several potential explanations for these findings, including the inhibitory qualities of IU. Overall, our results suggest that IU is associated with attenuated aversive responding to uncertain threat. Copyright © 2011 Elsevier B.V. All rights reserved.
Differential pathologies resulting from sound exposure: Tinnitus vs hearing loss
NASA Astrophysics Data System (ADS)
Longenecker, Ryan James
The first step in identifying the mechanism(s) responsible for tinnitus development would be to discover a neural correlate that is differentially expressed in tinnitus-positive compared to tinnitus negative animals. Previous research has identified several neural correlates of tinnitus in animals that have tested positive for tinnitus. However it is unknown whether all or some of these correlates are linked to tinnitus or if they are a byproduct of hearing loss, a common outcome of tinnitus induction. Abnormally high spontaneous activity has frequently been linked to tinnitus. However, while some studies demonstrate that hyperactivity positively correlates with behavioral evidence of tinnitus, others show that when all animals develop hyperactivity to sound exposure, not all exposed animals show evidence of tinnitus. My working hypothesis is that certain aspects of hyperactivity are linked to tinnitus while other aspects are linked to hearing loss. The first specific aim utilized the gap induced prepulse inhibition of the acoustic startle reflex (GIPAS) to monitor the development of tinnitus in CBA/CaJ mice during one year following sound exposure. Immediately after sound exposure, GIPAS testing revealed widespread gap detection deficits across all frequencies, which was likely due to temporary threshold shifts. However, three months after sound exposure these deficits were limited to a narrow frequency band and were consistently detected up to one year after exposure. This suggests the development of chronic tinnitus is a long lasting and highly dynamic process. The second specific aim assessed hearing loss in sound exposed mice using several techniques. Acoustic brainstem responses recorded initially after sound exposure reveal large magnitude deficits in all exposed mice. However, at the three month period, thresholds return to control levels in all mice suggesting that ABRs are not a reliable tool for assessing permanent hearing loss. Input/output functions of the acoustic startle reflex show that after sound exposure the magnitude of startle responses decrease in most mice, to varying degrees. Lastly, PPI audiometry was able to detect specific behavioral threshold deficits for each mouse after sound exposure. These deficits persist past initial threshold shifts and are able to detect frequency specific permanent threshold shifts. The third specific aim examined hyperactivity and increased bursting activity in the inferior colliculus after sound exposure in relation to tinnitus and hearing loss. Spontaneous firing rates were increased in all mice after sound exposure regardless of behavioral evidence of tinnitus. However, abnormal increased bursting activity was not found in the animals identified with tinnitus but was exhibited in a mouse with broad-band severe threshold deficits. CBA/CaJ mice are a good model for both tinnitus development and noise-induced hearing loss studies. Hyperactivity which was evident in all exposed animals does not seem to be well correlated with behavioral evidence of tinnitus but more likely to be a general result of acoustic over exposure. Data from one animal strongly suggest that wide-spread severe threshold deficits are linked to an elevation of bursting activity predominantly ipsilateral to the side of sound exposure. This result is intriguing and should be followed up in further studies. Data obtained in this study provide new insights into underlying neural pathologies following sound exposure and have possible clinical applications for development of effective treatments and diagnostic tools for tinnitus and hearing loss.
Grillon, Christian; Heller, Randi; Hirschhorn, Elizabeth; Kling, Mitchel A.; Pine, Daniel S.; Schulkin, Jay; Vythilingam, Meena
2011-01-01
Background The debilitating effects of chronic glucocorticoids excess are well-known, but comparatively little is understood about the role of acute cortisol. Indirect evidence in rodents suggests that acute cortisone could selectively increase some forms of long-duration aversive states, such as “anxiety,” but not relatively similar, briefer aversive states, such as “fear.” However, no prior experimental studies in humans consider the unique effects of cortisol on anxiety and fear, using well-validated methods for eliciting these two similar but dissociable aversive states. The current study examines these effects, as instantiated with short- and long-duration threats. Methods Healthy volunteers (n = 18) received placebo or a low (20 mg) or a high (60 mg) dose of hydrocortisone in a double-blind crossover design. Subjects were exposed repeatedly to three 150-sec duration conditions: no shock; predictable shocks, in which shocks were signaled by a short-duration threat cue; and unpredictable shocks. Aversive states were indexed by acoustic startle. Fear was operationally defined as the increase in startle reactivity during the threat cue in the predictable condition (fear-potentiated startle). Anxiety was operationally defined as the increase in baseline startle from the no shock to the two threat conditions (anxiety-potentiated startle). Results Hydrocortisone affected neither baseline nor short-duration, fear-potentiated startle but increased long-duration anxiety-potentiated startle. Conclusions These results suggest that hydrocortisone administration in humans selectively increases anxiety but not fear. Possible mechanisms implicated are discussed in light of prior data in rodents. Specifically, hydrocortisone might increase anxiety via sensitization of corticotrophin-releasing hormones in the bed nucleus of the stria terminalis. PMID:21277566
Park, Paula E; Vendruscolo, Leandro F; Schlosburg, Joel E; Edwards, Scott; Schulteis, Gery; Koob, George F
2013-09-01
Anxiety is one of the early symptoms of opioid withdrawal and contributes to continued drug use and relapse. The acoustic startle response (ASR) is a component of anxiety that has been shown to increase during opioid withdrawal in both humans and animals. We investigated the role of corticotropin-releasing factor (CRF) and norepinephrine (NE), two key mediators of the brain stress system, on acute heroin withdrawal-potentiated ASR. Rats injected with heroin (2 mg/kg s.c.) displayed an increased ASR when tested 4 h after heroin treatment. A similar increase in ASR was found in rats 10-20 h into withdrawal from extended access (12 h) to i.v. heroin self-administration, a model that captures several aspects of heroin addiction in humans. Both the α 2 adrenergic receptor agonist clonidine (10 μg/kg s.c.) and CRF1 receptor antagonist N,N-bis(2-methoxyethyl)-3-(4-methoxy-2-methylphenyl)-2,5-dimethyl-pyrazolo[1,5-a] pyrimidin-7-amine (MPZP; 20 mg/kg s.c.) blocked heroin withdrawal-potentiated startle. To investigate the relationship between CRF1 and α 2 adrenergic receptors in the potentiation of the ASR, we tested the effect of MPZP on yohimbine (1.25 mg/kg s.c.)-potentiated startle and clonidine on CRF (2 μg i.c.v.)-potentiated startle. Clonidine blocked CRF-potentiated startle, whereas MPZP partially attenuated but did not reverse yohimbine-potentiated startle, suggesting that CRF may drive NE release to potentiate startle. These results suggest that CRF1 and α 2 receptors play an important role in the heightened anxiety-like behaviour observed during acute withdrawal from heroin, possibly via CRF inducing the release of NE in stress-related brain regions.
Hantsoo, Liisa; Golden, Carla E M; Kornfield, Sara; Grillon, Christian; Epperson, C Neill
2018-05-18
Neuroactive steroid hormones, such as estradiol and progesterone, likely play a role in the pathophysiology of female-specific psychiatric disorders such as premenstrual dysphoric disorder (PMDD) and postpartum depression and may contribute to the marked sex differences observed in the incidence and presentation of affective disorders. However, few tools are available to study the precise contributions of these neuroactive steroids (NSs). In this review, we propose that the acoustic startle response (ASR), an objective measure of an organism's response to an emotional context or stressor, is sensitive to NSs. As such, the ASR represents a unique translational tool that may help to elucidate the contribution of NSs to sex differences in psychiatric disorders. Findings suggest that anxiety-potentiated startle (APS) and prepulse inhibition of startle (PPI) are the most robust ASR paradigms for assessing contribution of NSs to affective disorders, while affective startle response modulation (ASRM) appears less diagnostic of sex or menstrual cycle (MC) effects. However, few studies have appropriately used ASR to test a priori hypotheses about sex or MC differences. We recommend that ASR studies account for sex as a biological variable (SABV) and hormonal status to further knowledge of NS contribution to affective disorders.
Lang, Peter J.; McTeague, Lisa M.; Bradley, Margaret M.
2015-01-01
Evidence is presented supporting a dimension of defensive reactivity that varies across the anxiety disorder spectrum and is defined by physiological responses during threat-imagery challenges that covary with objective measures of psychopathology. Previous imagery studies of anxiety disorders are reviewed, highlighting that, regardless of contemporary diagnostic convention, reliable psychophysiological patterns emerge for patients diagnosed with circumscribed fear compared to those diagnosed with pervasive anxious-misery disorders. Based on the heuristic outlined by the Research Domain Criteria (RDoC) initiative, an exploratory transdiagnostic analysis is presented, based on a sample of 425 treatment-seeking patients from across the spectrum of DSM-IV anxiety diagnoses. Using a composite index of startle reflex and heart rate reactivity during idiographic-fear imagery for each patient, a defensive dimension was defined by ranking patients from most defensively reactive to least reactive and then creating five groups of equivalent size (quintile; N = 85). Subsequent analyses showed significant, parallel trends of diminishing reactivity in both electrodermal and facial EMG reactions across this defensive dimension. Negative affectivity, defined by questionnaire, and extent of functional interference, however, showed consistent, inverse trends with defensive reactivity -- as reports of distress increased, defensive reactivity was increasingly attenuated. Notably, representatives of each principal diagnosis appeared in each quintile, underscoring the reality of pronounced within-diagnosis heterogeneity in defensive reactivity. In concluding, we describe our new RDoC research project, focusing on the assessment of brain circuit function as it determines hypo/hyper reactivity to challenge—somatic and autonomic—and may relate to patients’ stress history and genetic inheritance. PMID:26877123
Altman, Sarah E; Campbell, Miranda L; Nelson, Brady D; Faust, Julianne P; Shankman, Stewart A
2013-11-01
Bulimia nervosa (BN) and obsessive-compulsive disorder (OCD) co-occur at greater rates than chance and may have shared mechanisms of dysfunction. One of these proposed mechanisms is a hyper-responsive aversive system as indicated by heightened startle response to aversive stimuli. The present study examined this hypothesis using 2 types of aversive stimuli: disorder specific (e.g., high-caloric food pictures for BN, contamination pictures for OCD) and nondisorder specific (e.g., knife). Temporal parameters of aversive responding were also examined by assessing startle response in anticipation of and following picture presentation. The sample consisted of 114 undergraduate women selected to have a broad range of BN and/or OCD symptomatology. OCD symptoms were associated with increased startle potentiation during the anticipation and presentation of contamination pictures, and BN symptoms were associated with increased startle potentiation during disorder-related contamination pictures (e.g., sink, toilet). BN symptoms were also associated with increased startle potentiation during and following the presentation of food pictures (though the former effect was only a trend). Additionally, the interaction of BN and OCD symptoms was associated with elevated startle responding during the presentation of contamination and threat stimuli. Overall, the present study provides evidence that BN and OCD symptoms are associated with heightened aversive responding to disorder-specific stimuli, and comorbid BN and OCD symptoms are associated with heightened aversive responding across disorder-specific and nonspecific aversive stimuli. Clinical and theoretical implications are discussed. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Geis, Hans-Ruediger; Schmid, Susanne
2011-10-01
The mammalian startle response is controlled by glycine inhibition in the spinal cord. Evidence for additional glycine inhibition on the level of the brainstem, namely in the caudal pontine reticular nucleus (PnC), is controversial. Startle mediating PnC neurons receive fast input from sensory pathways and project to cranial and spinal motoneurons. Synaptic depression in the sensory synapses in the PnC has been indicated as underlying mechanism of short-term habituation of startle. We here performed patch-clamp recordings of PnC giant neurons in rat brain slices to test the hypothesis that the activation of glycine receptors inhibits PnC neurons and that this inhibition is involved in synaptic depression in the PnC. Glycine strongly inhibited PnC neuron activity and synaptic signalling, indicating that functional glycine receptors mediate a powerful inhibition of PnC neurons over a wide range of glycine concentrations. Strychnine reversed all glycine effects, but had no effect on PnC neurons itself. Thus, we found no evidence for a tonic glycine inhibition or for glycine activation within the primary startle pathway indicating that baseline startle reactions are unlikely to be controlled by glycine in the PnC. Most importantly, synaptic depression underlying short-term habituation was not affected by glycine or strychnine. Copyright © 2011 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.
Eye-blink conditioning deficits indicate temporal processing abnormalities in schizophrenia.
Bolbecker, Amanda R; Mehta, Crystal S; Edwards, Chad R; Steinmetz, Joseph E; O'Donnell, Brian F; Hetrick, William P
2009-06-01
Theoretical models suggest that symptoms of schizophrenia may be due to a dysfunctional modulatory system associated with the cerebellum. Although it has long been known that the cerebellum plays a critical role in associative learning and motor timing, recent evidence suggests that it also plays a role in nonmotor psychological processes. Indeed, cerebellar anomalies in schizophrenia have been linked to cognitive dysfunction and poor long-term outcome. To test the hypothesis that schizophrenia is associated with cerebellar dysfunction, cerebellar-dependent, delay eye-blink conditioning was examined in 62 individuals with schizophrenia and 62 age-matched non-psychiatric comparison subjects. The conditioned stimulus was a 400 ms tone, which co-terminated with a 50 ms unconditioned stimulus air puff. A subset of participants (25 with schizophrenia and 29 controls) also completed the Wechsler Abbreviated Scale of Intelligence. Participants with schizophrenia exhibited lower rates of eye-blink conditioning, including earlier (less adaptively timed) conditioned response latencies. Cognitive functioning was correlated with the rate of conditioned responsing in the non-psychiatric comparison subjects but not among those with schizophrenia, and the magnitude of these correlations significantly differed between groups. These findings are consistent with models of schizophrenia in which disruptions within the cortico-cerebellar-thalamic-cortical (CCTC) brain circuit are postulated to underlie the cognitive fragmentation that characterizes the disorder.
Eye-Blink Conditioning Deficits Indicate Temporal Processing Abnormalities in Schizophrenia
Bolbecker, Amanda R.; Mehta, Crystal; Edwards, Chad R.; Steinmetz, Joseph E.; O’Donnell, Brian F.; Hetrick, William P.
2009-01-01
Theoretical models suggest that symptoms of schizophrenia may be due to a dysfunctional modulatory system associated with the cerebellum. Although it has long been known that the cerebellum plays a critical role in associative learning and motor timing, recent evidence suggests that it also plays a role in nonmotor psychological processes. Indeed, cerebellar anomalies in schizophrenia have been linked to cognitive dysfunction and poor long-term outcome. To test the hypothesis that schizophrenia is associated with cerebellar dysfunction, cerebellar-dependent, delay eye-blink conditioning was examined in 62 individuals with schizophrenia and 62 age-matched non-psychiatric comparison subjects. The conditioned stimulus was a 400 ms tone, which co-terminated with a 50 ms unconditioned stimulus air puff. A subset of participants (25 with schizophrenia and 29 controls) also completed the Wechsler Abbreviated Scale of Intelligence. Participants with schizophrenia exhibited lower rates of eye-blink conditioning, including earlier (less adaptively timed) conditioned response latencies. Cognitive functioning was correlated with the rate of conditioned responsing in the non-psychiatric comparison subjects but not among those with schizophrenia, and the magnitude of these correlations significantly differed between groups. These findings are consistent with models of schizophrenia in which disruptions within the cortico-cerebellar-thalamic-cortical (CCTC) brain circuit are postulated to underlie the cognitive fragmentation that characterizes the disorder. PMID:19351577
Deficits in hippocampus-mediated Pavlovian conditioning in endogenous hypercortisolism.
Grillon, Christian; Smith, Kathryn; Haynos, Ann; Nieman, Lynnette K
2004-12-01
Elevated endogenous levels of corticosteroids cause neural dysfunction and loss, especially within the hippocampus, as well as cognitive impairment in hippocampus-mediated tasks. Because Cushing's syndrome patients suffer from hypercortisolism, they represent a unique opportunity to study the impact of elevated glucocorticoids on cognitive functions. The aim of this study was to examine the performance of Cushing's syndrome patients on trace eyeblink conditioning, a cross-species, hippocampal-mediated test of learning and memory. Eleven Cushing's syndrome patients and 11 healthy control subjects participated in an eyeblink trace conditioning test (1000-msec trace) and a task of declarative memory for words. Salivary cortisol was collected in both the patients and the control subjects, and urinary free cortisol was collected in the patients only. The patients exhibited fewer conditional responses and remembered fewer words, compared with the control subjects. Cortisol levels correlated with immediate and delayed declarative memory only. Conditional response correlated with delayed recall after controlling for the magnitude of unconditional response. The integrity of the hippocampus seems to be compromised in Cushing's syndrome patients. Trace eyeblink conditioning might be useful both as a clinical tool to examine changes in hippocampus function in Cushing's disease patients and as a translational tool of research on the impact of chronic exposure of glucocorticoids.
Interactions among Collective Spectators Facilitate Eyeblink Synchronization
Nomura, Ryota; Liang, Yingzong; Okada, Takeshi
2015-01-01
Whereas the entrainment of movements and aspirations among audience members has been known as a basis of collective excitement in the theater, the role of the entrainment of cognitive processes among audience members is still unclear. In the current study, temporal patterns of the audience’s attention were observed using eyeblink responses. To determine the effect of interactions among audience members on cognitive entrainment, as well as its direction (attractive or repulsive), the eyeblink synchronization of the following two groups were compared: (1) the experimental condition, where the audience members (seven frequent viewers and seven first-time viewers) viewed live performances in situ, and (2) the control condition, where the audience members (15 frequent viewers and 15 first-time viewers) viewed videotaped performances in individual experimental settings (results reported in previous study.) The results of this study demonstrated that the mean values of a measure of asynchrony (i.e., D interval) were much lower for the experimental condition than for the control condition. Frequent viewers had a moderate attractive effect that increased as the story progressed, while a strong attractive effect was observed throughout the story for first-time viewers. The attractive effect of interactions among a group of spectators was discussed from the viewpoint of cognitive and somatic entrainment in live performances. PMID:26479405
NASA Astrophysics Data System (ADS)
Coleman, Seth W.
2008-10-01
Distinct acoustic whistles are associated with the wing-beats of many doves, and are especially noticeable when doves ascend from the ground when startled. I thus hypothesized that these sounds may be used by flock-mates as cues of potential danger. To test this hypothesis, I compared the responses of mourning doves ( Zenaida macroura), northern cardinals ( Cardinalis cardinalis), and house sparrows ( Passer domesticus) to audio playbacks of dove ‘startle wing-whistles’, cardinal alarm calls, dove ‘nonstartle wing-whistles’, and sparrow ‘social chatter’. Following playbacks of startle wing-whistles and alarm calls, conspecifics and heterospecifics startled and increased vigilance more than after playbacks of other sounds. Also, the latency to return to feeding was greater following playbacks of startle wing-whistles and alarm calls than following playbacks of other sounds. These results suggest that both conspecifics and heterospecifics may attend to dove wing-whistles in decisions related to antipredator behaviors. Whether the sounds of dove wing-whistles are intentionally produced signals warrants further testing.
Rudin, Fabian S; Briffa, Mark
2012-05-22
Contest theory predicts the evolution of a stable mixture of different strategies for fighting. Here, we investigate the possibility that stable between-individual differences in startle-response durations influence fighting ability or 'resource-holding potential' (RHP) in the beadlet sea anemone, Actinia equina. Both winners and losers showed significant repeatability of pre-fight startle-response durations but mean pre-fight startle-response durations were greater for eventual losers than for eventual winners, indicating that RHP varies with boldness. In particular, individuals with short startle responses inflicted more attacks on their opponent. Both repeatability and mean-level responses were changed by the experience of fighting, and these changes varied with outcome. In losers, repeatability was disrupted to a greater extent and the mean startle-response durations were subject to a greater increase than in winners. Thus, following a fight, this behavioural correlate of RHP behaves in a way similar to post-fight changes in physiological status, which can also vary between winners and losers. Understanding the links between aggression and boldness therefore has the potential to enhance our understanding of both the evolution of animal personality and the 'winner and loser effects' of post-fight changes in RHP.
Rohleder, Cathrin; Wiedermann, Dirk; Neumaier, Bernd; Drzezga, Alexander; Timmermann, Lars; Graf, Rudolf; Leweke, F Markus; Endepols, Heike
2016-01-01
Prepulse inhibition (PPI) is a neuropsychological process during which a weak sensory stimulus ("prepulse") attenuates the motor response ("startle reaction") to a subsequent strong startling stimulus. It is measured as a surrogate marker of sensorimotor gating in patients suffering from neuropsychological diseases such as schizophrenia, as well as in corresponding animal models. A variety of studies has shown that PPI of the acoustical startle reaction comprises three brain circuitries for: (i) startle mediation, (ii) PPI mediation, and (iii) modulation of PPI mediation. While anatomical connections and information flow in the startle and PPI mediation pathways are well known, spatial and temporal interactions of the numerous regions involved in PPI modulation are incompletely understood. We therefore combined [(18)F]fluoro-2-deoxyglucose positron-emission-tomography (FDG-PET) with PPI and resting state control paradigms in awake rats. A battery of subtractive, correlative as well as seed-based functional connectivity analyses revealed a default mode-like network (DMN) active during resting state only. Furthermore, two functional networks were observed during PPI: Metabolic activity in the lateral circuitry was positively correlated with PPI effectiveness and involved the auditory system and emotional regions. The medial network was negatively correlated with PPI effectiveness, i.e., associated with startle, and recruited a spatial/cognitive network. Our study provides evidence for two distinct neuronal networks, whose continuous interplay determines PPI effectiveness in rats, probably by either protecting the prepulse or facilitating startle processing. Discovering similar networks affected in neuropsychological disorders may help to better understand mechanisms of sensorimotor gating deficits and provide new perspectives for therapeutic strategies.
Toth, Mate; Gresack, Jodi E; Bangasser, Debra A; Plona, Zach; Valentino, Rita J; Flandreau, Elizabeth I; Mansuy, Isabelle M; Merlo-Pich, Emilio; Geyer, Mark A; Risbrough, Victoria B
2014-05-01
Corticotropin releasing factor (CRF) regulates physiological and behavioral responses to stress. Trauma in early life or adulthood is associated with increased CRF in the cerebrospinal fluid and heightened anxiety. Genetic variance in CRF receptors is linked to altered risk for stress disorders. Thus, both heritable differences and environmentally induced changes in CRF neurotransmission across the lifespan may modulate anxiety traits. To test the hypothesis that CRF hypersignaling is sufficient to modify anxiety-related phenotypes (avoidance, startle, and conditioned fear), we induced transient forebrain-specific overexpression of CRF (CRFOE) in mice (1) during development to model early-life stress, (2) in adulthood to model adult-onset stress, or (3) across the entire postnatal lifespan to model heritable increases in CRF signaling. The consequences of these manipulations on CRF peptide levels and behavioral responses were examined in adulthood. We found that transient CRFOE during development decreased startle habituation and prepulse inhibition, and increased avoidance (particularly in females) recapitulating the behavioral effects of lifetime CRFOE despite lower CRF peptide levels at testing. In contrast, CRFOE limited to adulthood reduced contextual fear learning in females and increased startle reactivity in males but did not change avoidance or startle plasticity. These findings suggest that forebrain CRFOE limited to development is sufficient to induce enduring alterations in startle plasticity and anxiety, while forebrain CRFOE during adulthood results in a different phenotype profile. These findings suggest that startle circuits are particularly sensitive to forebrain CRFOE, and that the impact of CRFOE may be dependent on the time of exposure.
Markowski, Vincent P.; Reeve, Elizabeth A.; Onos, Kristen; Assadollahzadeh, Mina; McKay, Naomi
2012-01-01
Consumption of arsenic-contaminated drinking water is associated with numerous cancers and dermal and vascular diseases. Arsenic is also a potent nervous system toxicant and epidemiological studies indicate that intellectual functions in children are compromised following early developmental exposure. This study was designed to examine the effects of arsenic on a broad range of age-specific behaviors including basic sensory-motor responses in neonates, locomotor activity and grip strength in juveniles, and operant measures of learning and attention in adults. Pregnant C57BL6/J mice consumed drinking water containing 0, 8, 25, or 80 ppm sodium arsenite from the fourth day of gestation until birth. Arsenic produced a range of behavioral impairments in male and female offspring at each of the test ages. The most striking effects of arsenic were on the development of gait and other motor responses including acoustic startle, righting reflexes, and forelimb grip. These results suggest that developmental arsenic exposure can produce other behavioral impairments in children in addition to cognitive impairment. PMID:22266078
Paradox lost. The latah problem revisited.
Kenny, M G
1983-03-01
This paper examines the validity of Dr. R. C. Simons' resolution (Simons, R. C. The resolution of the latah paradox. J. Nerv. Ment. Dis., 168: 195-206, 1980) of the so-called latah paradox. Latah, a Malay condition precipitated by sudden fright and involving compulsive obscenity and mimesis, was found to be closely related to local cultural values; yet a paradox seems to arise from the fact that analogous conditions are reported from unrelated cultures. Simons accounts for this by proposing that latah and its kindred states are based on the universal human startle reflex and that latah is merely a culture-specific exploitation of a neurophysiological potential shared by humans and other animals. It is here argued that the evidence does not support such a view and that latah-like conditions are best considered in terms of their local meaning within their societies of origin; ethnographic material from Siberia is examined as a case in point. It is concluded that the "latah paradox" is illusory and that biomedical approaches to the question have seriously misread the nature of the phenomenon and potentially distort clinical practice in relation to it.
Automated Operant Conditioning in the Mouse Home Cage.
Francis, Nikolas A; Kanold, Patrick O
2017-01-01
Recent advances in neuroimaging and genetics have made mice an advantageous animal model for studying the neurophysiology of sensation, cognition, and locomotion. A key benefit of mice is that they provide a large population of test subjects for behavioral screening. Reflex-based assays of hearing in mice, such as the widely used acoustic startle response, are less accurate than operant conditioning in measuring auditory processing. To date, however, there are few cost-effective options for scalable operant conditioning systems. Here, we describe a new system for automated operant conditioning, the Psibox. It is assembled from low cost parts, designed to fit within typical commercial wire-top cages, and allows large numbers of mice to train independently in their home cages on positive reinforcement tasks. We found that groups of mice trained together learned to accurately detect sounds within 2 weeks of training. In addition, individual mice isolated from groups also showed good task performance. The Psibox facilitates high-throughput testing of sensory, motor, and cognitive skills in mice, and provides a readily available animal population for studies ranging from experience-dependent neural plasticity to rodent models of mental disorders.
Role of Corticotropin Releasing Factor in Anxiety Disorders: A Translational Research Perspective
Risbrough, Victoria B.; Stein, Murray B.
2007-01-01
Anxiety disorders are a group of mental disorders that include generalized anxiety disorder (GAD), panic disorder, phobic disorders (e.g., specific phobias, agoraphobia, social phobia) and posttraumatic stress disorder (PTSD). Anxiety disorders are among the most common of all mental disorders and, when coupled with an awareness of the disability and reduced quality of life they convey, they must be recognized as a serious public health problem. Over 20 years of preclinical studies point to a role for the CRF system in anxiety and stress responses. Clinical studies have supported a model of CRF dysfunction in depression and more recently a potential contribution to specific anxiety disorders (i.e., panic disorder and PTSD). Much work remains in both the clinical and preclinical fields to inform models of CRF function and its contribution to anxiety. First, we will review the current findings of CRF and HPA axis abnormalities in anxiety disorders. Second, we will discuss startle reflex measures as a tool for translational research to determine the role of the CRF system in development and maintenance of clinical anxiety. PMID:16870185
Combinatorial treatments enhance recovery following facial nerve crush.
Sharma, Nijee; Moeller, Carl W; Marzo, Sam J; Jones, Kathryn J; Foecking, Eileen M
2010-08-01
To investigate the effects of various combinatorial treatments, consisting of a tapering dose of prednisone (P), a brief period of nerve electrical stimulation (ES), and systemic testosterone propionate (TP) on improving functional recovery following an intratemporal facial nerve crush injury. Prospective, controlled animal study. After a right intratemporal facial nerve crush, adult male Sprague-Dawley rats were divided into the following eight treatment groups: 1) no treatment, 2) P only, 3) ES only, 4) ES + P, 5) TP only, 6) TP + P, 7) ES + TP, and 8) ES + TP + P. For each group n = 4-8. Recovery of the eyeblink reflex and vibrissae orientation and movement were assessed. Changes in peak amplitude and latency of evoked response, in response to facial nerve stimulation, was also recorded weekly. : Brief ES of the proximal nerve stump most effectively accelerated the initiation of functional recovery. Also, ES or TP treatments enhanced recovery of some functional parameters more than P treatment. When administered alone, none of the three treatments improved recovery of complete facial function. Only the combinatorial treatment of ES + TP, regardless of the presence of P, accelerated complete functional recovery and return of normal motor nerve conduction. Our findings suggest that a combinatorial treatment strategy of using brief ES and TP together promises to be an effective therapeutic intervention for promoting regeneration following facial nerve injury. Administration of P neither augments nor hinders recovery.
Effects of VX on Acoustic Startle Response and Acquisition of Operant Behavior in Rats
2008-02-01
spontaneous motor activity , fore- and hind-limb grip strength, thermal sensitivity (paw-lick latency), rectal temperature, acoustic startle response, and...whereas spontaneous motor activity and avoidance responding were affected at doses at or above 123 µg/kg, and acoustic startle response was affected...The 60- and 70-dB stimuli were stimulus control conditions presented to ensure that there was not significant activity within the recording chamber
1996-06-07
the auditory nerve, the ventral cochlear nucleus , nuclei of the lateral lemniscus, nucleus reticularis pontis caudalis, spinal neuron, and lower... nucleus , nuclei of the lateral lemniscus, nucleus reticularis pontis caudalis, hippocampus, and striatum (Davis, et al., 1982; Swerdlow, et aI, 1992...Davis, M. (1985) Cocaine effects on acoustic startle and startle elicited electrically from cochlear nucleus . P§ychQpharmacology, 87, 396-399 James
Mol, N.; Kenemans, J. L.; Prinssen, E. P.; Niklson, I.; Xia-Chen, C.; Broeyer, F.; van Gerven, J.
2009-01-01
Background Fear-potentiated startle has been suggested as a translational model for evaluating efficacy of anxiolytic compounds in humans. Several known anxiolytic compounds have been tested as well as several putative anxiolytics. Because results of these studies have been equivocal, the aim of the present study was to examine another pharmacological permutation of the human potentiated startle model by comparing two anxiolytic agents to a non-anxiolytic sedative and placebo. Methods Twenty healthy volunteers participated in a double-blind, placebo-controlled, cross-over study with four sessions in which they received single doses of the anxiolytics alprazolam (1 mg) and pregabalin (200 mg), as well as diphenhydramine (50 mg) as a non-anxiolytic sedative control and placebo. The design included a cued shock condition that presumably evokes fear and an unpredictable shock context condition presumably evoking anxiety. Results None of the treatments reliably reduced either fear- or anxiety-potentiated startle. Alprazolam and diphenhydramine reduced overall baseline startle. Alprazolam was found to only affect contextual anxiety in a statistical significant way after two subjects who failed to show a contextual anxiety effect in the placebo condition were excluded from the analysis. Pregabalin did not significantly affect any of the physiological measures. Discussion The negative findings from this study are discussed in terms of methodological differences between designs and in variability of startle both between and within study participants. Conclusion Even though fear-potentiated startle may be used to translate preclinical evidence to human populations, methodological issues still hamper the application of this model to early screening of putative anxiolytic drugs. PMID:19415242
van den Buuse, Maarten
2003-04-01
1. Prepulse inhibition of acoustic startle has been suggested as a model of sensorimotor gating and central sensory information processing. Prepulse inhibition is impaired in patients with schizophrenia and responses can be restored by antipsychotic drug treatment. In the present study, startle and prepulse inhibition of startle were compared in different rat strains. 2. Sprague-Dawley rats showed robust inhibition of startle responses by increasing intensities of prepulse delivered just before the startle stimulus. In contrast, at both 4 and 10 weeks of age, rats of the Hooded-Wistar line had markedly reduced prepulse inhibition, although startle responses were not different. 3. Treatment with the dopamine receptor agonist apomorphine (0.1 mg/kg) or the N-methyl-d-aspartate (NMDA) receptor antagonist MK-801 (0.1 mg/kg) caused disruption of prepulse inhibition in Sprague-Dawley rats. In Hooded-Wistar rats, apomorphine further reduced the already low level of prepulse inhibition, but MK-801 treatment had no significant effect. This suggests that the impaired prepulse inhibition in Hooded-Wistar rats could be caused by changes in glutamatergic activity and/or NMDA receptors in these rats. 4. In photocell cages, spontaneous exploratory activity and inner zone activity were significantly lower in Hooded-Wistar rats than in Sprague-Dawley rats. Similarly, on the elevated plus-maze, Hooded-Wistar rats showed a lower propensity to visit the open arms. In contrast, amphetamine (0.5 mg/kg)-induced locomotor hyperactivity, an animal model of psychosis, was enhanced in Hooded-Wistar rats. 5. These data suggest that the Hooded-Wistar line could be a useful genetic animal model to study the interaction of glutamatergic and dopaminergic mechanisms in anxiety and schizophrenia.
2011-05-01
uring fear extinction in PTSD : an fMRI Study . CNS Neurosci Ther, print copy in press (originally published online 16 April 2010, at http://www3...alleviate one or more physiopathologies of PTSD . The effect of oxytocin on background anxiety in our fear- potentiated startle studies in rats is also...benefits for patients with PTSD . fear; anxiety; PTSD ; startle; social isolation 60 jrosen@udel.edu Table of Contents
Alternative forms of axial startle behaviors in fishes.
Liu, Yen-Chyi; Hale, Melina E
2014-02-01
For most aquatic vertebrates, axial movements play key roles in the performance of startle responses. In fishes, these axis-based startle behaviors fall into three distinct categories - the C-start, withdrawal, and S-start - defined by patterns of body bending and underlying motor control. Startle behaviors have been widely studied due to their importance for predator evasion. In addition, the neural circuits that control startles are relatively accessible, compared to other vertebrate circuits, and have provided opportunities to understand basic nervous system function. The C-start neural circuit has long been a model in systems neuroscience and considerable work on neural control of withdrawal response has been conducted in the larval lamprey. The S-start response has only recently been explored from a physiological perspective and we focus here on reviewing S-start motor control and movement in the context of the other two responses. Axial elongation has previously been associated with startle behavior in comparisons of C-starts and withdrawal, with extremely elongate animals performing withdrawals. We suggest that the S-start tends to occur with moderate body elongation, complementing the C-start in animals with this body form. As many larval fishes are moderately elongate, we suggest that the S-start may be common in larvae but may be secondarily lost with body shape change through development. Copyright © 2013 Elsevier GmbH. All rights reserved.
Meditation and the Startle Response: A Case Study
Levenson, Robert W.; Ekman, Paul; Ricard, Matthieu
2013-01-01
The effects of two kinds of meditation (open presence and focused) on the facial and physiological aspects of the defensive response to an aversive startle stimulus were studied in a Buddhist monk with approximately 40 years of meditation experience. The participant was exposed to a 115 db, 100 ms acoustic startle stimulus under the two meditation conditions, a distraction condition (to control for cognitive and attentional load) and an unanticipated condition (startle presented without warning or instruction). A completely counterbalanced 24-trial single-subject design was used, with each condition repeated six times. Most aspects of the participant’s responses in the unanticipated condition did not differ from those of a comparison group of 12 age-matched male controls. Both kinds of meditation produced physiological and facial responses to the startle that were smaller than in the distraction condition. Within meditation conditions, open presence meditation produced smaller physiological and facial responses than focused meditation. These results from a single highly expert meditator indicate that these two kinds of meditation can differentially alter the magnitude of a primitive defensive response. PMID:22506498
Anxiogenic-like effect of chronic corticosterone in the light-dark emergence task in mice.
Ardayfio, Paul; Kim, Kwang-Soo
2006-04-01
Chronic hypercortisolemia is a hallmark of neuroendocrine and psychiatric disorders, such as Cushing's disease and depression. Whether cortisol directly contributes to the altered mood and anxiety symptoms seen in these diseases remains unclear. To address this, the authors have modeled hypercortisolemia by administering corticosterone in the drinking water of female Swiss Webster mice for 17 or 18 days (13 mg/kg). Light-dark emergence, startle habituation, and startle reactivity were measured. Chronic but not acute treatment with corticosterone increased the latency to emerge into the light compartment, an anxiogenic-like effect. Chronic corticosterone treatment did not affect startle habituation, but did reduce startle reactivity. This study suggests that chronic hypercortisolemia may contribute to anxiety-related behavior in patients with Cushing's disease and depression. ((c) 2006 APA, all rights reserved).
Cross-modal Savings in the Contralateral Eyelid Conditioned Response
Campolattaro, Matthew M.; Buss, Eric W.; Freeman, John H.
2015-01-01
The present experiment monitored bilateral eyelid responses during eyeblink conditioning in rats trained with a unilateral unconditioned stimulus (US). Three groups of rats were used to determine if cross-modal savings occurs when the location of the US is switched from one eye to the other. Rats in each group first received paired or unpaired eyeblink conditioning with a conditioned stimulus (tone or light; CS) and a unilateral periorbital electrical stimulation US. All rats were subsequently given paired training, but with the US location (Group 1), CS modality (Group 2), or US location and CS modality (Group 3) changed. Changing the location of the US alone resulted in an immediate transfer of responding in both eyelids (Group 1) in rats that received paired training prior to the transfer session. Rats in groups 2 and 3 that initially received paired training showed facilitated learning to the new CS modality during the transfer sessions, indicating that cross-modal savings occurs whether or not the location of the US is changed. All rats that were initially given unpaired training acquired conditioned eyeblink responses similar to de novo acquisition rate during the transfer sessions. Savings of CR incidence was more robust than savings of CR amplitude when the US switched sides, a finding that has implications for elucidating the neural mechanisms of cross-modal savings. PMID:26501170
Myers, Catherine E.; VanMeenen, Kirsten M.; McAuley, J. Devin; Beck, Kevin D.; Pang, Kevin C. H.; Servatius, Richard J.
2012-01-01
Prior studies have sometimes demonstrated facilitated acquisition of classically-conditioned responses and/or resistance to extinction in post-traumatic stress disorder (PTSD). However, it is unclear whether these behaviors are acquired as a result of PTSD or exposure to trauma, or reflect pre-existing risk factors that confer vulnerability for PTSD. Here, we examined classical eyeblink conditioning and extinction in veterans self-assessed for current PTSD symptoms, exposure to combat, and the personality trait of behavioral inhibition (BI), a risk factor for PTSD. 128 veterans were recruited (mean age 51.2 years; 13.3% female); 126 completed self-assessment, with 25.4% reporting a history of exposure to combat and 30.9% reporting severe, current PTSD symptoms (PTSS). PTSD symptom severity was correlated with current BI (R2=0.497) and PTSS status could be predicted based on current BI and combat history (80.2% correct classification). A subset of the veterans (n=87) also completed eyeblink conditioning. Among veterans without PTSS, childhood BI was associated with faster acquisition; veterans with PTSS showed delayed extinction, under some conditions. These data demonstrate a relationship between current BI and PTSS, and suggest that the facilitated conditioning sometimes observed in PTSD patients may partially reflect personality traits such as childhood BI that pre-date and contribute to vulnerability for PTSD. PMID:21790343
Oristaglio, Jeff; West, Susan Hyman; Ghaffari, Manely; Lech, Melissa S.; Verma, Beeta R.; Harvey, John A.; Welsh, John P.; Malone, Richard P.
2013-01-01
Children with autism spectrum disorder (ASD) and age-matched typically-developing (TD) peers were tested on two forms of eyeblink conditioning (EBC), a Pavlovian associative learning paradigm where subjects learn to execute an appropriately-timed eyeblink in response to a previously neutral conditioning stimulus (CS). One version of the task, trace EBC, interposes a stimulus-free interval between the presentation of the CS and the unconditioned stimulus (US), a puff of air to the eye which causes subjects to blink. In delay EBC, the CS overlaps in time with the delivery of the US, usually with both stimuli terminating simultaneously. ASD children performed normally during trace EBC, exhibiting no differences from typically-developing (TD) subjects with regard to learning rate or the timing of the CR. However, when subsequently tested on delay EBC, subjects with ASD displayed abnormally-timed conditioned eye blinks that began earlier and peaked sooner than those of TD subjects, consistent with previous findings. The results suggest an impaired ability of children with ASD to properly time conditioned eye blinks which appears to be specific to delay EBC. We suggest that this deficit may reflect a dysfunction of cerebellar cortex in which increases in the intensity or duration of sensory input can temporarily disrupt the accuracy of motor timing over short temporal intervals. PMID:23769889
Krupa, D J; Thompson, R F
1995-05-23
The localization of sites of memory formation within the mammalian brain has proven to be a formidable task even for simple forms of learning and memory. Recent studies have demonstrated that reversibly inactivating a localized region of cerebellum, including the dorsal anterior interpositus nucleus, completely prevents acquisition of the conditioned eye-blink response with no effect upon subsequent learning without inactivation. This result indicates that the memory trace for this type of learning is located either (i) within this inactivated region of cerebellum or (ii) within some structure(s) efferent from the cerebellum to which output from the interpositus nucleus ultimately projects. To distinguish between these possibilities, two groups of rabbits were conditioned (by using two conditioning stimuli) while the output fibers of the interpositus (the superior cerebellar peduncle) were reversibly blocked with microinjections of the sodium channel blocker tetrodotoxin. Rabbits performed no conditioned responses during this inactivation training. However, training after inactivation revealed that the rabbits (trained with either conditioned stimulus) had fully learned the response during the previous inactivation training. Cerebellar output, therefore, does not appear to be essential for acquisition of the learned response. This result, coupled with the fact that inactivation of the appropriate region of cerebellum completely prevents learning, provides compelling evidence supporting the hypothesis that the essential memory trace for the classically conditioned eye-blink response is localized within the cerebellum.
Glycine Receptors Containing α2 or α3 Subunits Regulate Specific Ethanol-Mediated Behaviors
Blednov, Yuri A.; Benavidez, Jillian M.; Black, Mendy; Leiter, Courtney R.; Osterndorff-Kahanek, Elizabeth
2015-01-01
Glycine receptors (GlyRs) are broadly expressed in the central nervous system. Ethanol enhances the function of brain GlyRs, and the GlyRα1 subunit is associated with some of the behavioral actions of ethanol, such as loss of righting reflex. The in vivo role of GlyRα2 and α3 subunits in alcohol responses has not been characterized despite high expression levels in the nucleus accumbens and amygdala, areas that are important for the rewarding properties of drugs of abuse. We used an extensive panel of behavioral tests to examine ethanol actions in mice lacking Glra2 (the gene encoding the glycine receptor alpha 2 subunit) or Glra3 (the gene encoding the glycine receptor alpha 3 subunit). Deletion of Glra2 or Glra3 alters specific ethanol-induced behaviors. Glra2 knockout mice demonstrate reduced ethanol intake and preference in the 24-hour two-bottle choice test and increased initial aversive responses to ethanol and lithium chloride. In contrast, Glra3 knockout mice show increased ethanol intake and preference in the 24-hour intermittent access test and increased development of conditioned taste aversion to ethanol. Mutants and wild-type mice consumed similar amounts of ethanol in the limited access drinking in the dark test. Other ethanol effects, such as anxiolysis, motor incoordination, loss of righting reflex, and acoustic startle response, were not altered in the mutants. The behavioral changes in mice lacking GlyRα2 or α3 subunits were distinct from effects previously observed in mice with knock-in mutations in the α1 subunit. We provide evidence that GlyRα2 and α3 subunits may regulate ethanol consumption and the aversive response to ethanol. PMID:25678534
Recording Field Potentials From Zebrafish Larvae During Escape Responses
Monesson-Olson, Bryan D.; Troconis, Eileen L.; Trapani, Josef G.
2014-01-01
Among vertebrates, startle responses are a ubiquitous method for alerting, and avoiding or escaping from alarming or dangerous stimuli. In zebrafish larvae, fast escape behavior is easily evoked through either acoustic or tactile stimuli. For example, a light touch to the head will excite trigeminal neurons that in turn excite a large reticulospinal neuron in the hindbrain called the Mauthner cell (M-cell). The M-cell action potential then travels down the contralateral trunk of the larva exciting motoneurons, which subsequently excite the entire axial musculature, producing a large amplitude body bend away from the source of the stimulus. This body conformation is known as the “C-bend” due to the shape of the larva during the behavior. As a result of the semi-synchronized activation of the M-cell, the population of motor neurons, and the axial trunk muscles, a large field potential is generated and can be recorded from free-swimming or fixed-position larvae. Undergraduate laboratories that record field potentials during escape responses in larval zebrafish are relatively simple to setup and allow students to observe and study the escape reflex circuit. Furthermore, by testing hypotheses, analyzing data and writing journal-style laboratory reports, students have multiple opportunities to learn about many neuroscience topics including vertebrate reflexes; sensory transduction; synaptic-, neuro-, and muscle-physiology; the M-cell mediated escape response; and the zebrafish as a model organism. Here, we detail the equipment, software, and recording setup necessary to observe field potentials in an undergraduate teaching lab. Additionally, we discuss potential advanced laboratory exercises and pedagogical outcomes. Finally, we note possible low-cost alternatives for recording field potentials. PMID:25565920
Blink and you’ll miss it: the role of blinking in the perception of magic tricks
Nakano, Tamami
2016-01-01
Magicians use several techniques to deceive their audiences, including, for example, the misdirection of attention and verbal suggestion. We explored another potential stratagem, namely the relaxation of attention. Participants watched a video of a highly skilled magician whilst having their eye-blinks recorded. The timing of spontaneous eye-blinks was highly synchronized across participants. In addition, the synchronized blinks frequency occurred immediately after a seemingly impossible feat, and often coincided with actions that the magician wanted to conceal from the audience. Given that blinking is associated with the relaxation of attention, these findings suggest that blinking plays an important role in the perception of magic, and that magicians may utilize blinking and the relaxation of attention to hide certain secret actions. PMID:27069808
Blink and you'll miss it: the role of blinking in the perception of magic tricks.
Wiseman, Richard J; Nakano, Tamami
2016-01-01
Magicians use several techniques to deceive their audiences, including, for example, the misdirection of attention and verbal suggestion. We explored another potential stratagem, namely the relaxation of attention. Participants watched a video of a highly skilled magician whilst having their eye-blinks recorded. The timing of spontaneous eye-blinks was highly synchronized across participants. In addition, the synchronized blinks frequency occurred immediately after a seemingly impossible feat, and often coincided with actions that the magician wanted to conceal from the audience. Given that blinking is associated with the relaxation of attention, these findings suggest that blinking plays an important role in the perception of magic, and that magicians may utilize blinking and the relaxation of attention to hide certain secret actions.
Rudd, Kristen L; Alkon, Abbey; Yates, Tuppett M
2017-10-15
This study examined children's parasympathetic nervous system (PNS) regulation, which was indexed by respiratory sinus arrhythmia (RSA) during rest, reactivity, and recovery episodes, and sex as moderators of predicted relations between observed intrusive parenting and later observer-rated child behavior problems. Child-caregiver dyads (N=250; 50% girls; 46% Latino/a) completed a series of laboratory assessments yielding independent measures of intrusive parenting at age 4, PNS regulation at age 6, and child behavior problems at age 8. Results indicated that intrusive parenting was related to more internalizing problems among boys who showed low RSA reactivity (i.e., PNS withdrawal from pre-startle to startle challenge), but RSA reactivity did not moderate this relation among girls. Interestingly, RSA recovery (i.e., PNS activation from startle challenge to post-startle) moderated these relations differently for boys and girls. For girls with relatively low RSA post-startle (i.e., less recovery), intrusive parenting was positively related to both internalizing and externalizing problems. However, the reverse was true for boys, such that there was a significant positive relation between intrusive parenting and later externalizing problems among boys who evidenced relatively high RSA post-startle (i.e., more recovery). Findings provide evidence for the moderation of intrusive caregiving effects by children's PNS regulation while highlighting the differential patterning of these relations across distinct phases of the regulatory response and as a function of child sex. Copyright © 2017 Elsevier Inc. All rights reserved.
Harris, Andrew C; Rothwell, Patrick E; Gewirtz, Jonathan C
2008-03-01
While the N-methyl-D: -aspartate (NMDA) glutamate receptor has been strongly implicated in chronic opiate dependence, relatively few studies have examined the effects of NMDA receptor antagonists on withdrawal from acute opiate exposure. The current study examined the effects of memantine, a well-tolerated NMDA receptor antagonist, on acute opiate dependence as assessed by elevations in rodent startle responding (i.e., "withdrawal-potentiated startle") and increased pain sensitivity (i.e., hyperalgesia). Administration of memantine either attenuated (5 mg/kg) or blocked (10 mg/kg) the expression of withdrawal-potentiated startle during naloxone (2.5 mg/kg)-precipitated withdrawal from a single dose of morphine sulfate (10 mg/kg). Pre-treatment with the NMDA receptor antagonist also inhibited the exacerbation of withdrawal-potentiated startle across repeated acute opiate exposures. Memantine blocked the expression of acute dependence, but was less effective in inhibiting its escalation, when hyperalgesia was used as a measure of withdrawal. These doses of memantine did not affect startle responding or nociception in otherwise drug-free animals. Data from additional control groups indicated that the effects of memantine on the expression of withdrawal were not influenced by nonspecific interactions between the NMDA antagonist and either morphine or naloxone. These findings suggest that the NMDA receptor may play a key role in the earliest stages of opiate dependence and provide further evidence that memantine may be useful for the treatment of opiate withdrawal.
Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise.
Landman, Annemarie; Groen, Eric L; van Paassen, M M René; Bronkhorst, Adelbert W; Mulder, Max
2017-12-01
A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Today's debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots' ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a "startle factor" that may significantly impair performance. Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Pilot perception and actions are conceptualized as being guided by "frames," or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one's frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods.
Larra, Mauro F.; Merz, Martina U.; Schächinger, Hartmut
2017-01-01
Facial self-resemblance has been associated with positive emotional evaluations, but this effect may be biased by self-face familiarity. Here we report two experiments utilizing startle modulation to investigate how the processing of facial expressions of emotion is affected by subtle resemblance to the self as well as to familiar faces. Participants of the first experiment (I) (N = 39) were presented with morphed faces showing happy, neutral, and fearful expressions which were manipulated to resemble either their own or unknown faces. At SOAs of either 300 ms or 3500–4500 ms after picture onset, startle responses were elicited by binaural bursts of white noise (50 ms, 105 dB), and recorded at the orbicularis oculi via EMG. Manual reaction time was measured in a simple emotion discrimination paradigm. Pictures preceding noise bursts by short SOA inhibited startle (prepulse inhibition, PPI). Both affective modulation and PPI of startle in response to emotional faces was altered by physical similarity to the self. As indexed both by relative facilitation of startle and faster manual responses, self-resemblance apparently induced deeper processing of facial affect, particularly in happy faces. Experiment II (N = 54) produced similar findings using morphs of famous faces, yet showed no impact of mere familiarity on PPI effects (or response time, either). The results are discussed with respect to differential (presumably pre-attentive) effects of self-specific vs. familiar information in face processing. PMID:29216226
Tamburro, Gabriella; Fiedler, Patrique; Stone, David; Haueisen, Jens; Comani, Silvia
2018-01-01
EEG may be affected by artefacts hindering the analysis of brain signals. Data-driven methods like independent component analysis (ICA) are successful approaches to remove artefacts from the EEG. However, the ICA-based methods developed so far are often affected by limitations, such as: the need for visual inspection of the separated independent components (subjectivity problem) and, in some cases, for the independent and simultaneous recording of the inspected artefacts to identify the artefactual independent components; a potentially heavy manipulation of the EEG signals; the use of linear classification methods; the use of simulated artefacts to validate the methods; no testing in dry electrode or high-density EEG datasets; applications limited to specific conditions and electrode layouts. Our fingerprint method automatically identifies EEG ICs containing eyeblinks, eye movements, myogenic artefacts and cardiac interference by evaluating 14 temporal, spatial, spectral, and statistical features composing the IC fingerprint. Sixty-two real EEG datasets containing cued artefacts are recorded with wet and dry electrodes (128 wet and 97 dry channels). For each artefact, 10 nonlinear SVM classifiers are trained on fingerprints of expert-classified ICs. Training groups include randomly chosen wet and dry datasets decomposed in 80 ICs. The classifiers are tested on the IC-fingerprints of different datasets decomposed into 20, 50, or 80 ICs. The SVM performance is assessed in terms of accuracy, False Omission Rate (FOR), Hit Rate (HR), False Alarm Rate (FAR), and sensitivity ( p ). For each artefact, the quality of the artefact-free EEG reconstructed using the classification of the best SVM is assessed by visual inspection and SNR. The best SVM classifier for each artefact type achieved average accuracy of 1 (eyeblink), 0.98 (cardiac interference), and 0.97 (eye movement and myogenic artefact). Average classification sensitivity (p) was 1 (eyeblink), 0.997 (myogenic artefact), 0.98 (eye movement), and 0.48 (cardiac interference). Average artefact reduction ranged from a maximum of 82% for eyeblinks to a minimum of 33% for cardiac interference, depending on the effectiveness of the proposed method and the amplitude of the removed artefact. The performance of the SVM classifiers did not depend on the electrode type, whereas it was better for lower decomposition levels (50 and 20 ICs). Apart from cardiac interference, SVM performance and average artefact reduction indicate that the fingerprint method has an excellent overall performance in the automatic detection of eyeblinks, eye movements and myogenic artefacts, which is comparable to that of existing methods. Being also independent from simultaneous artefact recording, electrode number, type and layout, and decomposition level, the proposed fingerprint method can have useful applications in clinical and experimental EEG settings.
Tamburro, Gabriella; Fiedler, Patrique; Stone, David; Haueisen, Jens
2018-01-01
Background EEG may be affected by artefacts hindering the analysis of brain signals. Data-driven methods like independent component analysis (ICA) are successful approaches to remove artefacts from the EEG. However, the ICA-based methods developed so far are often affected by limitations, such as: the need for visual inspection of the separated independent components (subjectivity problem) and, in some cases, for the independent and simultaneous recording of the inspected artefacts to identify the artefactual independent components; a potentially heavy manipulation of the EEG signals; the use of linear classification methods; the use of simulated artefacts to validate the methods; no testing in dry electrode or high-density EEG datasets; applications limited to specific conditions and electrode layouts. Methods Our fingerprint method automatically identifies EEG ICs containing eyeblinks, eye movements, myogenic artefacts and cardiac interference by evaluating 14 temporal, spatial, spectral, and statistical features composing the IC fingerprint. Sixty-two real EEG datasets containing cued artefacts are recorded with wet and dry electrodes (128 wet and 97 dry channels). For each artefact, 10 nonlinear SVM classifiers are trained on fingerprints of expert-classified ICs. Training groups include randomly chosen wet and dry datasets decomposed in 80 ICs. The classifiers are tested on the IC-fingerprints of different datasets decomposed into 20, 50, or 80 ICs. The SVM performance is assessed in terms of accuracy, False Omission Rate (FOR), Hit Rate (HR), False Alarm Rate (FAR), and sensitivity (p). For each artefact, the quality of the artefact-free EEG reconstructed using the classification of the best SVM is assessed by visual inspection and SNR. Results The best SVM classifier for each artefact type achieved average accuracy of 1 (eyeblink), 0.98 (cardiac interference), and 0.97 (eye movement and myogenic artefact). Average classification sensitivity (p) was 1 (eyeblink), 0.997 (myogenic artefact), 0.98 (eye movement), and 0.48 (cardiac interference). Average artefact reduction ranged from a maximum of 82% for eyeblinks to a minimum of 33% for cardiac interference, depending on the effectiveness of the proposed method and the amplitude of the removed artefact. The performance of the SVM classifiers did not depend on the electrode type, whereas it was better for lower decomposition levels (50 and 20 ICs). Discussion Apart from cardiac interference, SVM performance and average artefact reduction indicate that the fingerprint method has an excellent overall performance in the automatic detection of eyeblinks, eye movements and myogenic artefacts, which is comparable to that of existing methods. Being also independent from simultaneous artefact recording, electrode number, type and layout, and decomposition level, the proposed fingerprint method can have useful applications in clinical and experimental EEG settings. PMID:29492336
Barker, Tyson V; Reeb-Sutherland, Bethany; Degnan, Kathryn A; Walker, Olga L; Chronis-Tuscano, Andrea; Henderson, Heather A; Pine, Daniel S; Fox, Nathan A
2015-11-01
Behavioral inhibition (BI), a temperament characterized in early childhood by wariness and avoidance of novelty, is a risk factor for anxiety disorders. An enhanced startle response has been observed in adolescents characterized with BI in childhood, particularly when they also manifest concurrent symptoms of anxiety. However, no prior study has examined relations among BI, startle responsivity, and anxiety in a prospective manner. Data for the present study were from a longitudinal study of infant temperament. Maternal reports and observations of BI were assessed at ages 2 and 3. At age 7, participants completed a startle procedure, while electromyography was collected, where participants viewed different colors on a screen that were associated with either the delivery of an aversive stimulus (i.e., puff of air to the larynx; threat cue) or the absence of the aversive stimulus (i.e., safety cue). Parental reports of child anxiety were collected when children were 7 and 9 years of age. Results revealed that startle responses at age 7 moderated the relation between early BI and 9-year anxiety. These findings provide insight into one potential mechanism that may place behaviorally inhibited children at risk for anxiety. © 2015 Society for Psychophysiological Research.
In Your Face: Startle to Emotional Facial Expressions Depends on Face Direction.
Åsli, Ole; Michalsen, Henriette; Øvervoll, Morten
2017-01-01
Although faces are often included in the broad category of emotional visual stimuli, the affective impact of different facial expressions is not well documented. The present experiment investigated startle electromyographic responses to pictures of neutral, happy, angry, and fearful facial expressions, with a frontal face direction (directed) and at a 45° angle to the left (averted). Results showed that emotional facial expressions interact with face direction to produce startle potentiation: Greater responses were found for angry expressions, compared with fear and neutrality, with directed faces. When faces were averted, fear and neutrality produced larger responses compared with anger and happiness. These results are in line with the notion that startle is potentiated to stimuli signaling threat. That is, a forward directed angry face may signal a threat toward the observer, and a fearful face directed to the side may signal a possible threat in the environment.
Dealing With Unexpected Events on the Flight Deck: A Conceptual Model of Startle and Surprise
Landman, Annemarie; Groen, Eric L.; van Paassen, M. M. (René); Bronkhorst, Adelbert W.; Mulder, Max
2017-01-01
Objective: A conceptual model is proposed in order to explain pilot performance in surprising and startling situations. Background: Today’s debate around loss of control following in-flight events and the implementation of upset prevention and recovery training has highlighted the importance of pilots’ ability to deal with unexpected events. Unexpected events, such as technical malfunctions or automation surprises, potentially induce a “startle factor” that may significantly impair performance. Method: Literature on surprise, startle, resilience, and decision making is reviewed, and findings are combined into a conceptual model. A number of recent flight incident and accident cases are then used to illustrate elements of the model. Results: Pilot perception and actions are conceptualized as being guided by “frames,” or mental knowledge structures that were previously learned. Performance issues in unexpected situations can often be traced back to insufficient adaptation of one’s frame to the situation. It is argued that such sensemaking or reframing processes are especially vulnerable to issues caused by startle or acute stress. Conclusion: Interventions should focus on (a) increasing the supply and quality of pilot frames (e.g., though practicing a variety of situations), (b) increasing pilot reframing skills (e.g., through the use of unpredictability in training scenarios), and (c) improving pilot metacognitive skills, so that inappropriate automatic responses to startle and surprise can be avoided. Application: The model can be used to explain pilot behavior in accident cases, to design experiments and training simulations, to teach pilots metacognitive skills, and to identify intervention methods. PMID:28777917
Repeated low-dose exposures to sarin, soman, or VX affect acoustic startle in guinea pigs.
Smith, C D; Lee, R B; Moran, A V; Sipos, M L
2016-01-01
Chemical warfare nerve agents (CWNAs) are known to cause behavioral abnormalities in cases of human exposures and in animal models. The behavioral consequences of single exposures to CWNAs that cause observable toxic signs are particularly well characterized in animals; however, less is known regarding repeated smaller exposures that may or may not cause observable toxic signs. In the current study, guinea pigs were exposed to fractions (0.1, 0.2, or 0.4) of a medial lethal dose (LD50) of sarin, soman, or VX for two weeks. On each exposure day, and for a post-exposure period, acoustic startle response (ASR) was measured in each animal. Although relatively few studies use guinea pigs to measure behavior, this species is ideal for CWNA-related experiments because their levels of carboxylesterases closely mimic those of humans, unlike rats or mice. Results showed that the 0.4 LD50 doses of soman and VX transiently increased peak startle amplitude by the second week of injections, with amplitude returning to baseline by the second week post-exposure. Sarin also increased peak startle amplitude independent of week. Latencies to peak startle and PPI were affected by agent exposure but not consistently among the three agents. Most of the changes in startle responses returned to baseline following the cessation of exposures. These data suggest that doses of CWNAs not known to produce observable toxic signs in guinea pigs can affect behavior in the ASR paradigm. Further, these deficits are transient and usually return to baseline shortly after the end of a two-week exposure period. Published by Elsevier Inc.
Robinson, Oliver J; Overstreet, Cassie; Allen, Phillip S; Pine, Daniel S; Grillon, Christian
2012-01-01
Serotonin is strongly implicated in the mammalian stress response, but surprisingly little is known about its mode of action. Recent data suggest that serotonin can inhibit aversive responding in humans, but this remains underspecified. In particular, data in rodents suggest that global serotonin depletion may specifically increase long-duration bed nucleus of the stria terminalis (BNST)-mediated aversive responses (ie, anxiety), but not short-duration BNST-independent responses (ie, fear). Here, we extend these findings to humans. In a balanced, placebo-controlled crossover design, healthy volunteers (n=20) received a controlled diet with and without the serotonin precursor tryptophan (acute tryptophan depletion; ATD). Aversive states were indexed by translational acoustic startle measures. Fear and anxiety were operationally defined as the increase in startle reactivity during short- and long-duration threat periods evoked by predictable shock (fear-potentiated startle) and by the context in which the shocks were administered (anxiety-potentiated startle), respectively. ATD significantly increased long-duration anxiety-potentiated startle but had no effect on short-duration fear-potentiated startle. These results suggest that serotonin depletion in humans selectively increases anxiety but not fear. Current translational frameworks support the proposition that ATD thus disinhibits dorsal raphé-originating serotonergic control of corticotropin-releasing hormone-mediated excitation of the BNST. This generates a candidate neuropharmacological mechanism by which depleted serotonin may increase response to sustained threats, alongside clear implications for our understanding of the manifestation and treatment of mood and anxiety disorders. PMID:22491355
Effects of inferior olive lesion on fear-conditioned bradycardia
Kotajima, Hiroko; Sakai, Kazuhisa; Hashikawa, Tsutomu
2014-01-01
The inferior olive (IO) sends excitatory inputs to the cerebellar cortex and cerebellar nuclei through the climbing fibers. In eyeblink conditioning, a model of motor learning, the inactivation of or a lesion in the IO impairs the acquisition or expression of conditioned eyeblink responses. Additionally, climbing fibers originating from the IO are believed to transmit the unconditioned stimulus to the cerebellum in eyeblink conditioning. Studies using fear-conditioned bradycardia showed that the cerebellum is associated with adaptive control of heart rate. However, the role of inputs from the IO to the cerebellum in fear-conditioned bradycardia has not yet been investigated. To examine this possible role, we tested fear-conditioned bradycardia in mice by selective disruption of the IO using 3-acetylpyridine. In a rotarod test, mice with an IO lesion were unable to remain on the rod. The number of neurons of IO nuclei in these mice was decreased to ∼40% compared with control mice. Mice with an IO lesion did not show changes in the mean heart rate or in heart rate responses to a conditioned stimulus, or in their responses to a painful stimulus in a tail-flick test. However, they did show impairment of the acquisition/expression of conditioned bradycardia and attenuation of heart rate responses to a pain stimulus used as an unconditioned stimulus. These results indicate that the IO inputs to the cerebellum play a key role in the acquisition/expression of conditioned bradycardia. PMID:24784584
Stevens, Andreas; Schwarz, Jürgen; Schwarz, Benedikt; Ruf, Ilona; Kolter, Thomas; Czekalla, Joerg
2002-03-01
Novel and classic neuroleptics differ in their effects on limbic striatal/nucleus accumbens (NA) and prefrontal cortex (PFC) dopamine turnover, suggesting differential effects on implicit and explicit learning as well as on anhedonia. The present study investigates whether such differences can be demonstrated in a naturalistic sample of schizophrenic patients. Twenty-five inpatients diagnosed with DSM-IV schizophrenic psychosis and treated for at least 14 days with the novel neuroleptic olanzapine were compared with 25 schizophrenics taking classic neuroleptics and with 25 healthy controls, matched by age and education level. PFC/NA-dependent implicit learning was assessed by a serial reaction time task (SRTT) and compared with cerebellum-mediated classical eye-blink conditioning and explicit visuospatial memory. Anhedonia was measured with the Snaith-Hamilton-Pleasure Scale (SHAPS). Implicit (SRTT) and psychomotor speed, but not explicit (visuospatial) learning were superior in the olanzapine-treated group as compared to the patients on classic neuroleptics. Compared to healthy controls, olanzapine-treated schizophrenics showed similar implicit learning, but reduced explicit (visuospatial) memory performance. Acquisition of eyeblink conditioning was not different between the three groups. There was no difference with regard to anhedonia and SANS scores between the patients. Olanzapine seems to interfere less with unattended learning and motor speed than classical neuroleptics. In daily life, this may translate into better adaptation to a rapidly changing environment. The effects seem specific, as in explicit learning and eyeblink conditioning no difference to classic NL was found.
Myer, Catherine E; Bryant, Deborah; DeLuca, John; Gluck, Mark A
2002-01-01
In humans, anterograde amnesia can result from damage to the medial temporal (MT) lobes (including hippocampus), as well as to other brain areas such as basal forebrain. Results from animal classical conditioning studies suggest that there may be qualitative differences in the memory impairment following MT vs. basal forebrain damage. Specifically, delay eyeblink conditioning is spared after MT damage in animals and humans, but impaired in animals with basal forebrain damage. Recently, we have likewise shown delay eyeblink conditioning impairment in humans with amnesia following anterior communicating artery (ACoA) aneurysm rupture, which damages the basal forebrain. Another associative learning task, a computer-based concurrent visual discrimination, also appears to be spared in MT amnesia while ACoA amnesics are slower to learn the discriminations. Conversely, animal and computational models suggest that, even though MT amnesics may learn quickly, they may learn qualitatively differently from controls, and these differences may result in impaired transfer when familiar information is presented in novel combinations. Our initial data suggests such a two-phase learning and transfer task may provide a double dissociation between MT amnesics (spared initial learning but impaired transfer) and ACoA amnesics (slow initial learning but spared transfer). Together, these emerging data suggest that there are subtle but dissociable differences in the amnesic syndrome following damage to the MT lobes vs. basal forebrain, and that these differences may be most visible in non-declarative tasks such as eyeblink classical conditioning and simple associative learning.
Lam, Cho Y; Robinson, Jason D; Versace, Francesco; Minnix, Jennifer A; Cui, Yong; Carter, Brian L; Wetter, David W; Cinciripini, Paul M
2012-04-01
Much effort has been devoted to examining the differences in postcessation affective experience between smoking abstainers and relapsers. However, little attention has been given to the affective changes of smokers who, despite their motivation to quit, fail to achieve even a brief period of abstinence. Using affect-modulated startle response and self-report questionnaires, we measured the postcessation affective changes of 115 smokers (60 men, 55 women) who participated in a laboratory investigation of affective reactivity during smoking cessation. Among our participants, 34 were abstainers (16 men, 18 women), 16 were never-quitters (8 men, 8 women), 19 were relapsers (8 men, 11 women), and 46 were controls (28 men, 18 women). We found a significant Stimulus Valence × Session × Group interaction effect on startle responses, which suggested that while abstainers, relapsers, and control exhibited the prototypical affect-modulated startle response across postcessation sessions, never-quitters displayed an atypical response pattern in which emotional pictures no longer modulated the startle response. Never-quitters also reported increasingly higher negative and lower positive affect across postcessation sessions. Using affect-modulated startle response and self-report questionnaires, this study found a significant difference in the affective reactivity between smokers who could and smokers who could not establish an initial abstinence of 24 hours.
Kalinichev, Mikhail; Easterling, Keith W; Plotsky, Paul M; Holtzman, Stephen G
2002-08-01
Early neonatal environmental factors appear to have powerful and long-lasting influences on an organism's physiology and behavior. Long-Evans male rats separated from their dam for 3 h daily over the first 2 weeks of life (maternally separated, MS rats) when tested as adults exhibit exaggerated behavioral and neuroendocrine responses to stress compared to 15-min separated (handled, H) animals. The purpose of this study was to compare male and female adult rats that were MS, H or were undisturbed (nonhandled, NH) as neonates in anxiety-like behaviors, in the elevated plus-maze, and in response to startle-inducing auditory stimuli. We confirmed that MS males oversecrete corticosterone (CORT; 2.5-5 times) in response to mild handling stress. MS males and females were less likely to explore open arms of the plus-maze. MS males exhibited 35% higher startle amplitudes compared to controls. Furthermore, MS males were more likely to emit ultrasonic vocalizations in response to startle than were H controls. However, MS and control females did not differ in auditory startle response or in startle-induced ultrasonic vocalizations. Therefore, experiencing maternal separation results in a long-lasting increase in anxiety-like behaviors that occurs in a sex-dependent manner.
Emotion-modulated startle in psychopathy: Clarifying familiar effects
Baskin-Sommers, Arielle R.; Curtin, John J.; Newman, Joseph P.
2012-01-01
The behavior of psychopathic individuals is thought to reflect a core fear deficit that prevents these individuals from appreciating the consequences of their choices and actions. However, growing evidence suggests that psychopathy-related emotion deficits are moderated by attention and, thus, may not reflect a reduced capacity for emotion responding. The present study attempts to reconcile this attention perspective with one of the most cited findings in psychopathy, which reports emotion-modulated startle deficits among psychopathic individuals during picture viewing. In this study, we evaluate the potential effects of a putative attention bottleneck on the emotion processing of psychopathic offenders during picture viewing by manipulating picture familiarity and examining emotion-modulated startle and late positive potential (LPP). As predicted, psychopathic individuals displayed the classic deficit in emotion-modulated startle during novel pictures, but they showed no deficit in emotion-modulated startle during familiar pictures. Conversely, results for LPP responses revealed psychopathy-related differences during familiar pictures and no psychopathy-related differences during novel pictures. Important differences related to the two Factors of psychopathy are also discussed. Overall, the results of this study not only highlight the differential importance of perceptual load on emotion processing in psychopathy, but also raise interesting questions about the varied effects of attention on psychopathy-related emotion deficits. PMID:23356218
The cerebellum: a new key structure in the navigation system
Rochefort, Christelle; Lefort, Julie M.; Rondi-Reig, Laure
2013-01-01
Early investigations of cerebellar function focused on motor learning, in particular on eyeblink conditioning and adaptation of the vestibulo-ocular reflex, and led to the general view that cerebellar long-term depression (LTD) at parallel fiber (PF)–Purkinje cell (PC) synapses is the neural correlate of cerebellar motor learning. Thereafter, while the full complexity of cerebellar plasticities was being unraveled, cerebellar involvement in more cognitive tasks—including spatial navigation—was further investigated. However, cerebellar implication in spatial navigation remains a matter of debate because motor deficits frequently associated with cerebellar damage often prevent the dissociation between its role in spatial cognition from its implication in motor function. Here, we review recent findings from behavioral and electrophysiological analyses of cerebellar mutant mouse models, which show that the cerebellum might participate in the construction of hippocampal spatial representation map (i.e., place cells) and thereby in goal-directed navigation. These recent advances in cerebellar research point toward a model in which computation from the cerebellum could be required for spatial representation and would involve the integration of multi-source self-motion information to: (1) transform the reference frame of vestibular signals and (2) distinguish between self- and externally-generated vestibular signals. We eventually present herein anatomical and functional connectivity data supporting a cerebello-hippocampal interaction. Whilst a direct cerebello-hippocampal projection has been suggested, recent investigations rather favor a multi-synaptic pathway involving posterior parietal and retrosplenial cortices, two regions critically involved in spatial navigation. PMID:23493515
Toward a Neural Chronometry for the Aesthetic Experience of Music
Brattico, Elvira; Bogert, Brigitte; Jacobsen, Thomas
2013-01-01
Music is often studied as a cognitive domain alongside language. The emotional aspects of music have also been shown to be important, but views on their nature diverge. For instance, the specific emotions that music induces and how they relate to emotional expression are still under debate. Here we propose a mental and neural chronometry of the aesthetic experience of music initiated and mediated by external and internal contexts such as intentionality, background mood, attention, and expertise. The initial stages necessary for an aesthetic experience of music are feature analysis, integration across modalities, and cognitive processing on the basis of long-term knowledge. These stages are common to individuals belonging to the same musical culture. The initial emotional reactions to music include the startle reflex, core “liking,” and arousal. Subsequently, discrete emotions are perceived and induced. Presumably somatomotor processes synchronizing the body with the music also come into play here. The subsequent stages, in which cognitive, affective, and decisional processes intermingle, require controlled cross-modal neural processes to result in aesthetic emotions, aesthetic judgments, and conscious liking. These latter aesthetic stages often require attention, intentionality, and expertise for their full actualization. PMID:23641223
One-trial overshadowing: Evidence for fast specific fear learning in humans.
Haesen, Kim; Beckers, Tom; Baeyens, Frank; Vervliet, Bram
2017-03-01
Adaptive defensive actions necessitate a fear learning system that is both fast and specific. Fast learning serves to minimize the number of threat confrontations, while specific learning ensures that the acquired fears are tied to threat-relevant cues only. In Pavlovian fear conditioning, fear acquisition is typically studied via repetitive pairings of a single cue with an aversive experience, which is not optimal for the examination of fast specific fear learning. In this study, we adopted the one-trial overshadowing procedure from basic learning research, in which a combination of two visual cues is presented once and paired with an aversive electrical stimulation. Using on-line shock expectancy ratings, skin conductance reactivity and startle reflex modulation as indices of fear learning, we found evidence of strong fear after a single conditioning trial (fast learning) as well as attenuated fear responding when only half of the trained stimulus combination was presented (specific learning). Moreover, specificity of fear responding tended to correlate with levels of state and trait anxiety. These results suggest that one-trial overshadowing can be used as a model to study fast specific fear learning in humans and individual differences therein. Copyright © 2016 Elsevier Ltd. All rights reserved.
Domschke, Katharina; Klauke, Benedikt; Winter, Bernward; Gajewska, Agnes; Herrmann, Martin J; Warrings, Bodo; Mühlberger, Andreas; Wosnitza, Katherina; Dlugos, Andrea; Naunin, Swantje; Nienhaus, Kathrin; Fobker, Manfred; Jacob, Christian; Arolt, Volker; Pauli, Paul; Reif, Andreas; Zwanzger, Peter; Deckert, Jürgen
2012-08-01
Both the neuropeptide S (NPS) system and antagonism at the adenosine A2A receptor (e.g., by caffeine) were found to play a crucial role in the mediation of arousal and anxiety/panic in animal and human studies. Furthermore, a complex interaction of the neuropeptide S and the adenosinergic system has been suggested with administration of the adenosine A2A receptor antagonist caffeine downregulating NPS levels (Lage et al., 2006) and attenuating the stimulatory effects of NPS in rodents (Boeck et al., 2010). Thus, in the present study, the impact of the functional neuropeptide S receptor (NPSR) A/T (Asn(107)Ile; rs324981) variant on affect-modulated (neutral, unpleasant, and pleasant IAPS pictures) startle response depending on the administration of 300 mg caffeine citrate was investigated in a sample of 124 (m = 58, f = 66) healthy probands using a double-blind, placebo-controlled design. ANOVA revealed a significant interaction between NPSR genotype, challenge condition, and picture valence. Comparing startle magnitudes upon stimulation with neutral or emotional pictures between the placebo and caffeine condition, in AA/AT non-risk genotype carriers no significant difference was discerned, while TT risk genotype carriers showed a significantly increased startle magnitude in response to neutral stimuli (p = .02) and a significantly decreased startle magnitude in response to unpleasant stimuli (p = .02) in the caffeine condition as compared to the placebo condition. In summary, the present findings - extending previous evidence from rodent studies - for the first time provide support for a complex, non-linear interaction of the neuropeptide S and adenosinergic systems affecting the affect-modulated startle response as an intermediate phenotype of anxiety in humans.
Evolution of behavior and neural control of the fast-start escape response.
Hale, Melina E; Long, John H; McHenry, Matthew J; Westneat, Mark W
2002-05-01
The fast-start startle behavior is the primary mechanism of rapid escape in fishes and is a model system for examining neural circuit design and musculoskeletal function. To develop a dataset for evolutionary analysis of the startle response, the kinematics and muscle activity patterns of the fast-start were analyzed for four fish species at key branches in the phylogeny of vertebrates. Three of these species (Polypterus palmas, Lepisosteus osseus, and Amia calva) represent the base of the actinopterygian radiation. A fourth species (Oncorhynchus mykiss) provided data for a species in the central region of the teleost phylogeny. Using these data, we explored the evolution of this behavior within the phylogeny of vertebrates. To test the hypothesis that startle features are evolutionarily conservative, the variability of motor patterns and kinematics in fast-starts was described. Results show that the evolution of the startle behavior in fishes, and more broadly among vertebrates, is not conservative. The fast-start has undergone substantial change in suites of kinematics and electromyogram features, including the presence of either a one- or a two-stage kinematic response and change in the extent of bilateral muscle activity. Comparative methods were used to test the evolutionary hypothesis that changes in motor control are correlated with key differences in the kinematics and behavior of the fast-start. Significant evolutionary correlations were found between several motor pattern and behavioral characters. These results suggest that the startle neural circuit itself is not conservative. By tracing the evolution of motor pattern and kinematics on a phylogeny, it is shown that major changes in the neural circuit of the startle behavior occur at several levels in the phylogeny of vertebrates.
Bhandiwad, Ashwin A.; Zeddies, David G.; Raible, David W.; Rubel, Edwin W.; Sisneros, Joseph A.
2013-01-01
SUMMARY Zebrafish (Danio rerio) have become a valuable model for investigating the molecular genetics and development of the inner ear in vertebrates. In this study, we employed a prepulse inhibition (PPI) paradigm to assess hearing in larval wild-type (AB) zebrafish during early development at 5–6 days post-fertilization (d.p.f.). We measured the PPI of the acoustic startle response in zebrafish using a 1-dimensional shaker that simulated the particle motion component of sound along the fish's dorsoventral axis. The thresholds to startle-inducing stimuli were determined in 5–6 d.p.f. zebrafish, and their hearing sensitivity was then characterized using the thresholds of prepulse tone stimuli (90–1200 Hz) that inhibited the acoustic startle response to a reliable startle stimulus (820 Hz at 20 dB re. 1 m s−2). Hearing thresholds were defined as the minimum prepulse tone level required to significantly reduce the startle response probability compared with the baseline (no-prepulse) condition. Larval zebrafish showed greatest auditory sensitivity from 90 to 310 Hz with corresponding mean thresholds of −19 to −10 dB re. 1 m s−2, respectively. Hearing thresholds of prepulse tones were considerably lower than previously predicted by startle response assays. The PPI assay was also used to investigate the relative contribution of the lateral line to the detection of acoustic stimuli. After aminoglycoside-induced neuromast hair-cell ablation, we found no difference in PPI thresholds between treated and control fish. We propose that this PPI assay can be used to screen for novel zebrafish hearing mutants and to investigate the ontogeny of hearing in zebrafish and other fishes. PMID:23966590
Preller, Katrin H; Ingold, Nina; Hulka, Lea M; Vonmoos, Matthias; Jenni, Daniela; Baumgartner, Markus R; Vollenweider, Franz X; Quednow, Boris B
2013-02-01
Cocaine dependence has been associated with blunted dopamine and norepinephrine signaling, but it is unknown if recreational cocaine use is also associated with alterations of catecholamine systems. Prepulse inhibition (PPI) of the acoustic startle response-a measure of sensorimotor gating-is highly sensitive for manipulations of the catecholamine system. Therefore, we investigated whether relatively pure recreational users (RCU) and dependent cocaine users (DCU) display alterations of PPI, startle reactivity, and habituation. Moreover, the influences of methylenedioxymethamphetamine and cannabis co-use, craving, and attention-deficit/hyperactivity disorder (ADHD) symptoms on startle measures were examined. In 64 RCU, 29 DCU, and 66 stimulant-naïve control subjects, PPI of acoustic startle response, startle reactivity, habituation, ADHD symptoms, and cocaine craving were assessed. Drug use of all participants was controlled by hair and urine toxicologies. Both RCU and DCU showed increased PPI in comparison with control participants (Cohen's d=.38 and d=.67, respectively), while RCU and DCU did not differ in PPI measures (d=.12). No significant group differences were found in startle reactivity or habituation measures. In cocaine users, PPI was positively correlated with cumulative cocaine dose used, craving for cocaine, and ADHD symptoms. Users with a diagnosis of ADHD and strong craving symptoms displayed the highest PPI levels compared with control subjects (d=.78). The augmented PPI in RCU and DCU suggests that recreational use of cocaine is associated with altered catecholamine signaling, in particular if ADHD or craving symptoms are present. Finally, ADHD might be a critical risk factor for cocaine-induced changes of the catecholamine system. Copyright © 2013 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Starosciak, A K; Kalola, R P; Perkins, K P; Riley, J A; Saidel, W M
2008-01-01
The startle response of Pantodon buchholzi, the African butterfly fish, is a complete or incomplete ballistic jump resulting from abduction of the pectoral fins. This study analyzed the neuromuscular basis for such a jump by recording in vivo electromyograms (emgs) from the muscles of abduction, the muscularis abductor superficialis (MAS) and the muscularis abductor profundus (MAP). The motor neurons innervating the MAS muscle were localized by retrograde transport of biocytin. The latency between stimulus and the evoked emg in the MAS was less than 5 ms; the latency of the MAP was about 6.5 ms. A single emg was recorded per jump. High speed video demonstrated that onset of a startle movement began within 10 ms of the onset of fin abduction. The emg associated with this movement is short (<2 ms) and followed by a variably-shaped, slower and smaller potential of 10-30 ms duration. The brief period between stimulus and startle response of Pantodon suggests a Mauthner neuron-related response, only with the behavior occurring in the vertical plane. The MAS may act only in a startle response, whereas the MAP might have a role in other behaviors. Elicited jumping habituates after a single trial. Electrophysiological evidence is presented indicating that the innervating motor neurons are suppressed for seconds following a stimulus. The neurons innervating the MAS are located at the medullary-spinal cord junction and possess an average radius of approximately 17.9 mum. These fish have been historically described as 'fresh water' flying fish. As a single emg occurs per startle response, repetitive pectoral activity generating flying cannot be supported. Pantodon 'flight' is ballistic. Copyright 2007 S. Karger AG, Basel.
Do infants find snakes aversive? Infants' physiological responses to "fear-relevant" stimuli.
Thrasher, Cat; LoBue, Vanessa
2016-02-01
In the current research, we sought to measure infants' physiological responses to snakes-one of the world's most widely feared stimuli-to examine whether they find snakes aversive or merely attention grabbing. Using a similar method to DeLoache and LoBue (Developmental Science, 2009, Vol. 12, pp. 201-207), 6- to 9-month-olds watched a series of multimodal (both auditory and visual) stimuli: a video of a snake (fear-relevant) or an elephant (non-fear-relevant) paired with either a fearful or happy auditory track. We measured physiological responses to the pairs of stimuli, including startle magnitude, latency to startle, and heart rate. Results suggest that snakes capture infants' attention; infants showed the fastest startle responses and lowest average heart rate to the snakes, especially when paired with a fearful voice. Unexpectedly, they also showed significantly reduced startle magnitude during this same snake video plus fearful voice combination. The results are discussed with respect to theoretical perspectives on fear acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.
A Cyfip2-Dependent Excitatory Interneuron Pathway Establishes the Innate Startle Threshold.
Marsden, Kurt C; Jain, Roshan A; Wolman, Marc A; Echeverry, Fabio A; Nelson, Jessica C; Hayer, Katharina E; Miltenberg, Ben; Pereda, Alberto E; Granato, Michael
2018-04-17
Sensory experiences dynamically modify whether animals respond to a given stimulus, but it is unclear how innate behavioral thresholds are established. Here, we identify molecular and circuit-level mechanisms underlying the innate threshold of the zebrafish startle response. From a forward genetic screen, we isolated five mutant lines with reduced innate startle thresholds. Using whole-genome sequencing, we identify the causative mutation for one line to be in the fragile X mental retardation protein (FMRP)-interacting protein cyfip2. We show that cyfip2 acts independently of FMRP and that reactivation of cyfip2 restores the baseline threshold after phenotype onset. Finally, we show that cyfip2 regulates the innate startle threshold by reducing neural activity in a small group of excitatory hindbrain interneurons. Thus, we identify a selective set of genes critical to establishing an innate behavioral threshold and uncover a circuit-level role for cyfip2 in this process. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Biobehavioral Markers of Adverse Effect in Fetal Alcohol Spectrum Disorders
Jacobson, Sandra W.; Jacobson, Joseph L.; Stanton, Mark E.; Meintjes, Ernesta M.; Molteno, Christopher D.
2011-01-01
Identification of children with fetal alcohol spectrum disorders (FASD) is difficult because information regarding prenatal exposure is often lacking, a large proportion of affected children do not exhibit facial anomalies, and no distinctive behavioral phenotype has been identified. Castellanos and Tannock have advocated going beyond descriptive symptom-based approaches to diagnosis to identify biomarkers derived from cognitive neuroscience. Classical eyeblink conditioning and magnitude comparison are particularly promising biobehavioral markers of FASD—eyeblink conditioning because a deficit in this elemental form of learning characterizes a very large proportion of alcohol-exposed children; magnitude comparison because it is a domain of higher order cognitive function that is among the most sensitive to fetal alcohol exposure. Because the neural circuitry mediating both these biobehavioral markers is well understood, they have considerable potential for advancing understanding of the pathophysiology of FASD, which can contribute to development of treatments targeted to the specific deficits that characterize this disorder. PMID:21541763
Locomotor activity modulates associative learning in mouse cerebellum.
Albergaria, Catarina; Silva, N Tatiana; Pritchett, Dominique L; Carey, Megan R
2018-05-01
Changes in behavioral state can profoundly influence brain function. Here we show that behavioral state modulates performance in delay eyeblink conditioning, a cerebellum-dependent form of associative learning. Increased locomotor speed in head-fixed mice drove earlier onset of learning and trial-by-trial enhancement of learned responses that were dissociable from changes in arousal and independent of sensory modality. Eyelid responses evoked by optogenetic stimulation of mossy fiber inputs to the cerebellum, but not at sites downstream, were positively modulated by ongoing locomotion. Substituting prolonged, low-intensity optogenetic mossy fiber stimulation for locomotion was sufficient to enhance conditioned responses. Our results suggest that locomotor activity modulates delay eyeblink conditioning through increased activation of the mossy fiber pathway within the cerebellum. Taken together, these results provide evidence for a novel role for behavioral state modulation in associative learning and suggest a potential mechanism through which engaging in movement can improve an individual's ability to learn.
TRIMETHYLTIN DISRUPTS ACOUSTIC STARTLE RESPONDING IN ADULT RATS
Trimethyltin (TMT) is a limbic-system toxicant which also produces sensory dysfunction in adult animals. In the present experiment, the authors examined the effects of TMT on the acoustic startle response. Adult male, Long-Evans rats (N=12/dose) received a single i.p. injection o...
ACUTE EFFECTS OF AMITRAZ ON THE ACOUSTIC STARTLE RESPONSE AND MOTOR ACTIVITY
To characterize further the behavioral toxicity of amitraz, comparisons were made between the effects of amitraz on motor activity, the acoustic startle response, body temperature, and body weight in male Long-Evans rats. cute dosage-effect and time-course determinations of motor...
2014-01-01
Persistent spiking in response to a discrete stimulus is considered to reflect the active maintenance of a memory for that stimulus until a behavioral response is made. This response pattern has been reported in learning paradigms that impose a temporal gap between stimulus presentation and behavioral response, including trace eyeblink conditioning. However, it is unknown whether persistent responses are acquired as a function of learning or simply represent an already existing category of response type. This fundamental question was addressed by recording single-unit activity in the medial prefrontal cortex (mPFC) of rabbits during the initial learning phase of trace eyeblink conditioning. Persistent responses to the tone conditioned stimulus were observed in the mPFC during the very first training sessions. Further analysis revealed that most cells with persistent responses showed this pattern during the very first training trial, before animals had experienced paired training. However, persistent cells showed reliable decreases in response magnitude over the first training session, which were not observed on the second day of training or for sessions in which learning criterion was met. This modification of response magnitude was specific to persistent responses and was not observed for cells showing phasic tone-evoked responses. The data suggest that persistent responses to discrete stimuli do not require learning but that the ongoing robustness of such responses over the course of training is modified as a result of experience. Putative mechanisms for this modification are discussed, including changes in cellular or network properties, neuromodulatory tone, and/or the synaptic efficacy of tone-associated inputs. PMID:25080570
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Kwan Chan, Pak; Tin, Chung
2018-02-01
Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Allen, M T; Myers, C E; Servatius, R J
2016-05-01
Recent work has found that behaviorally inhibited (BI) individuals exhibit enhanced eyeblink conditioning in omission and yoked training as well as with schedules of partial reinforcement. We hypothesized that spacing CS-US paired trials over a longer period of time by extending and varying the inter-trial interval (ITI) would facilitate learning. All participants completed the Adult Measure of Behavioural Inhibition (AMBI) and were grouped as behaviorally inhibited (BI) and non-behaviorally inhibited (NI) based on a median split score of 15.5. All participants received 3 US alone trials and 30CS-US paired trials for acquisition training and 20CS alone trials for extinction training in one session. Conditioning stimuli were a 500 ms tone conditioned stimulus (CS) and a 50-ms air puff unconditional stimulus (US). Participants were randomly assigned to receive a short ITI (mean=30+/- 5s), a long ITI (mean=57+/- 5s) or a variable long ITI (mean=57 s, range 25-123 s). No significant ITI effects were observed for acquisition or extinction. Overall, anxiety vulnerable individuals exhibited enhanced conditioned eyeblink responses as compared to non-vulnerable individuals. This enhanced acquisition of CRs was significant in spaced training with a variable long ITI, but not the short or long ITI. There were no significant effects of ITI or BI on extinction. These findings are interpreted based on the idea that uncertainty plays a role in anxiety and can enhance associative learning in anxiety vulnerable individuals. Copyright © 2016 Elsevier B.V. All rights reserved.
Effects of Meditation Practice on Spontaneous Eye Blink Rate
Kruis, Ayla; Slagter, Heleen A.; Bachhuber, David R.W.; Davidson, Richard J.; Lutz, Antoine
2016-01-01
A rapidly growing body of research suggests that meditation can change brain and cognitive functioning. Yet little is known about the neurochemical mechanisms underlying meditation-related changes in cognition. Here we investigated the effects of meditation on spontaneous Eye Blink Rates (sEBR), a non-invasive peripheral correlate of striatal dopamine activity. Previous studies have shown a relationship between sEBR and cognitive functions such as mind-wandering, cognitive flexibility, and attention–functions that are also affected by meditation. We therefore expected that long-term meditation practice would alter eye-blink activity. To test this, we recorded baseline sEBR and Inter Eye-Blink Intervals (IEBI) in long-term meditators (LTM) and meditation naive participants (MNP). We found that LTM not only blinked less frequently, but also showed a different eye-blink pattern than MNP. This pattern had good to high degree of consistency over three time points. Moreover, we examined the effects of an 8 week-course of Mindfulness Based Stress Reduction (MBSR) on sEBR and IEBI, compared to an active control group and a waitlist-control group. No effect of short-term meditation practice was found. Finally, we investigated whether different types of meditation differentially alter eye blink activity by measuring sEBR and IEBI after a full day of two kinds of meditation practices in the LTM. No effect of meditation type was found. Taken together, these findings may suggest either that individual difference in dopaminergic neurotransmission is a self-selection factor for meditation practice, or that long-term, but not short-term meditation practice induces stable changes in baseline striatal dopaminergic functioning. PMID:26871460
The Influence of Stuttering Severity on Acoustic Startle Responses
ERIC Educational Resources Information Center
Ellis, John B.; Finan, Donald S.; Ramig, Peter R.
2008-01-01
Purpose: This study examined the potential impact of stuttering severity, as measured by the Perceptions of Stuttering Inventory (Woolf, 1967) on acoustic startle responses. Method: Three groups, consisting of 10 nonstuttering adults, 9 mild stutterering adults, and 11 moderate/severe stutterering adults, were presented with identical 95-dB…
To better characterize the behavioral toxicity of pyrethroid insecticides, comparisons were made of the effects of cismethrin and deltamethrin exposure on motor activity and the acoustic startle response in male Long-Evans rats. Acute dose-effect, acute time course, and 30-day re...
The purpose of the study was to characterize the ontogeny of the acoustic startle response (ASR), and response sensitization to background noise, in preweanling rats. With constant low-level (45 dB) background noise, response latency decreased steadily with age, whereas, both res...
2011-04-01
increase PPI, but dopamine agonists can have the opposite effect by reducing PPI. Fortunately, caffeine appears to have no significant effect on PPI...violent behavior, and sexual risk behavior. Landis, C., & Hunt, W.A. (1939). The Startle Pattern. New York: Farrar. An example of early research on
POSSIBLE ROLE OF THE BRAINSTEM IN THE MEDIATION OF PREPULSE INHIBITION IN THE RAT (JOURNAL VERSION)
Bilateral stimulation of electrodes aimed at the cuneiform nucleus produced significant inhibition of the startle response produced by presentation of an 8 KHz, 110 dB tone. Stimulation of electrodes aimed at the deep mesencephalic nucleus also reduced the magnitude of the startl...
ERIC Educational Resources Information Center
Lipschitz, Deborah S.; Mayes, Linda M.; Rasmusson, Ann M.; Anyan, Walter; Billingslea, Eileen; Gueorguieva, Ralitza; Southwick, Steven M.
2005-01-01
Objective: To assess baseline and modulated acoustic startle responses in adolescent girls with posttraumatic stress disorder (PTSD). Method: Twenty-eight adolescent girls with PTSD and 23 healthy control girls were recruited for participation in the study. Acoustic stimuli were bursts of white noise of 104 dB presented biaurally through…
Pittman, Julian T; Lott, Chad S
2014-01-17
Zebrafish (Danio rerio) are rapidly becoming a popular animal model for neurobehavioral and psychopharmacological research. While startle testing is a well-established assay to investigate anxiety-like behaviors in different species, screening of the startle response and its habituation in zebrafish is a new direction of translational biomedical research. This study focuses on a novel behavioral protocol to assess a tapping-induced startle response and its habituation in adult zebrafish that have been pharmacologically-induced to exhibit anxiety/depression-like behaviors. We demonstrated that zebrafish exhibit robust learning performance in a task adapted from the mammalian literature, a modified plus maze, and showed that ethanol and fluoxetine impair memory performance in this maze when administered after training at a dose that does not impair motor function, however, leads to significant upregulation of hippocampal serotoninergic neurons. These results suggest that the maze associative learning paradigm has face and construct validity and that zebrafish may become a translationally relevant study species for the analysis of the mechanisms of learning and memory changes associated with psychopharmacological treatment of anxiety/depression. © 2013.
Ultrasonic vocalizations, predictability and sensorimotor gating in the rat
Webber, Emily S.; Mankin, David E.; McGraw, Justin J.; Beckwith, Travis J.; Cromwell, Howard C.
2013-01-01
Prepulse inhibition (PPI) is a measure of sensorimotor gating in diverse groups of animals including humans. Emotional states can influence PPI in humans both in typical subjects and in individuals with mental illness. Little is known about emotional regulation during PPI in rodents. We used ultrasonic vocalization recording to monitor emotional states in rats during PPI testing. We altered the predictability of the PPI trials to examine any alterations in gating and emotional regulation. We also examined PPI in animals selectively bred for high or low levels of 50 kHz USV emission. Rats emitted high levels of 22 kHz calls consistently throughout the PPI session. USVs were sensitive to prepulses during the PPI session similar to startle. USV rate was sensitive to predictability among the different levels tested and across repeated experiences. Startle and inhibition of startle were not affected by predictability in a similar manner. No significant differences for PPI or startle were found related the different levels of predictability; however, there was a reduction in USV signals and an enhancement of PPI after repeated exposure. Animals selectively bred to emit high levels of USVs emitted significantly higher levels of USVs during the PPI session and a reduced ASR compared to the low and random selective lines. Overall, the results support the idea that PPI tests in rodents induce high levels of negative affect and that manipulating emotional styles of the animals alters the negative impact of the gating session as well as the intensity of the startle response. PMID:23850353
Greba, Q; Gifkins, A; Kokkinidis, L
2001-04-27
Considerable advances have been made in understanding the neurocircuitry underlying the acquisition and expression of Pavlovian conditioned fear responses. Within the complex cellular and molecular processes mediating fearfulness, amygdaloid dopamine (DA), originating from cells in the ventral tegmental area (VTA) of the midbrain, is thought to contribute to fear-motivated responding. Considering that blockade of DA D(2) receptors is a common mechanism of action for antipsychotic agents, we hypothesized that inhibition of D(2) receptors in the amygdala may be involved in the antiparanoid effects of these drugs. To assess the role of amygdaloid DA D(2) receptors in aversive emotionality, the D(2) receptor antagonist raclopride was infused into the amygdala prior to Pavlovian fear conditioning. Potentiated startle was used as a behavioral indicator of fear and anxiety. Classical fear conditioning and acoustic startle testing were conducted in a single session allowing for the concomitant assessment of shock reactivity with startle enhancement. Depending on dose, the results found conditioned fear acquisition and retention to be impaired following administration of raclopride into the amygdala. Additionally, the learning deficit was dissociated from shock detection and from fear expression assessed with the shock sensitization of acoustic startle. These findings further refine the known neural mechanisms of amygdala-based emotional learning and memory and were interpreted to suggest that, along with D(1) receptors, D(2) receptors in the amygdala may mediate the formation and the retention of newly-acquired fear associations.
Dehmel, Susanne; Eisinger, Daniel; Shore, Susan E.
2012-01-01
Tinnitus or ringing of the ears is a subjective phantom sensation necessitating behavioral models that objectively demonstrate the existence and quality of the tinnitus sensation. The gap detection test uses the acoustic startle response elicited by loud noise pulses and its gating or suppression by preceding sub-startling prepulses. Gaps in noise bands serve as prepulses, assuming that ongoing tinnitus masks the gap and results in impaired gap detection. This test has shown its reliability in rats, mice, and gerbils. No data exists for the guinea pig so far, although gap detection is similar across mammals and the acoustic startle response is a well-established tool in guinea pig studies of psychiatric disorders and in pharmacological studies. Here we investigated the startle behavior and prepulse inhibition (PPI) of the guinea pig and showed that guinea pigs have a reliable startle response that can be suppressed by 15 ms gaps embedded in narrow noise bands preceding the startle noise pulse. After recovery of auditory brainstem response (ABR) thresholds from a unilateral noise over-exposure centered at 7 kHz, guinea pigs showed diminished gap-induced reduction of the startle response in frequency bands between 8 and 18 kHz. This suggests the development of tinnitus in frequency regions that showed a temporary threshold shift (TTS) after noise over-exposure. Changes in discharge rate and synchrony, two neuronal correlates of tinnitus, should be reflected in altered ABR waveforms, which would be useful to objectively detect tinnitus and its localization to auditory brainstem structures. Therefore, we analyzed latencies and amplitudes of the first five ABR waves at suprathreshold sound intensities and correlated ABR abnormalities with the results of the behavioral tinnitus testing. Early ABR wave amplitudes up to N3 were increased for animals with tinnitus possibly stemming from hyperactivity and hypersynchrony underlying the tinnitus percept. Animals that did not develop tinnitus after noise exposure showed the opposite effect, a decrease in wave amplitudes for the later waves P4–P5. Changes in latencies were only observed in tinnitus animals, which showed increased latencies. Thus, tinnitus-induced changes in the discharge activity of the auditory nerve and central auditory nuclei are represented in the ABR. PMID:22666193
NASA Astrophysics Data System (ADS)
Xu, Tao; Xiao, Na; Zhai, Xiaolong; Chan, Pak Kwan; Tin, Chung
2018-02-01
Objective. Damage to the brain, as a result of various medical conditions, impacts the everyday life of patients and there is still no complete cure to neurological disorders. Neuroprostheses that can functionally replace the damaged neural circuit have recently emerged as a possible solution to these problems. Here we describe the development of a real-time cerebellar neuroprosthetic system to substitute neural function in cerebellar circuitry for learning delay eyeblink conditioning (DEC). Approach. The system was empowered by a biologically realistic spiking neural network (SNN) model of the cerebellar neural circuit, which considers the neuronal population and anatomical connectivity of the network. The model simulated synaptic plasticity critical for learning DEC. This SNN model was carefully implemented on a field programmable gate array (FPGA) platform for real-time simulation. This hardware system was interfaced in in vivo experiments with anesthetized rats and it used neural spikes recorded online from the animal to learn and trigger conditioned eyeblink in the animal during training. Main results. This rat-FPGA hybrid system was able to process neuronal spikes in real-time with an embedded cerebellum model of ~10 000 neurons and reproduce learning of DEC with different inter-stimulus intervals. Our results validated that the system performance is physiologically relevant at both the neural (firing pattern) and behavioral (eyeblink pattern) levels. Significance. This integrated system provides the sufficient computation power for mimicking the cerebellar circuit in real-time. The system interacts with the biological system naturally at the spike level and can be generalized for including other neural components (neuron types and plasticity) and neural functions for potential neuroprosthetic applications.
Transcriptional profiling reveals regulated genes in the hippocampus during memory formation
NASA Technical Reports Server (NTRS)
Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.
2002-01-01
Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.
Ernst, Thomas M; Thürling, Markus; Müller, Sarah; Kahl, Fabian; Maderwald, Stefan; Schlamann, Marc; Boele, Henk-Jan; Koekkoek, Sebastiaan K E; Diedrichsen, Jörn; De Zeeuw, Chris I; Ladd, Mark E; Timmann, Dagmar
2017-08-01
Classical delay eyeblink conditioning is likely the most commonly used paradigm to study cerebellar learning. As yet, few studies have focused on extinction and savings of conditioned eyeblink responses (CRs). Saving effects, which are reflected in a reacquisition after extinction that is faster than the initial acquisition, suggest that learned associations are at least partly preserved during extinction. In this study, we tested the hypothesis that acquisition-related plasticity is nihilated during extinction in the cerebellar cortex, but retained in the cerebellar nuclei, allowing for faster reacquisition. Changes of 7 T functional magnetic resonance imaging (fMRI) signals were investigated in the cerebellar cortex and nuclei of young and healthy human subjects. Main effects of acquisition, extinction, and reacquisition against rest were calculated in conditioned stimulus-only trials. First-level β values were determined for a spherical region of interest (ROI) around the acquisition peak voxel in lobule VI, and dentate and interposed nuclei ipsilateral to the unconditioned stimulus. In the cerebellar cortex and nuclei, fMRI signals were significantly lower in extinction compared to acquisition and reacquisition, but not significantly different between acquisition and reacquisition. These findings are consistent with the theory of bidirectional learning in both the cerebellar cortex and nuclei. It cannot explain, however, why conditioned responses reappear almost immediately in reacquisition following extinction. Although the present data do not exclude that part of the initial memory remains in the cerebellum in extinction, future studies should also explore changes in extracerebellar regions as a potential substrate of saving effects. Hum Brain Mapp 38:3957-3974, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Romano, Anthony G; Quinn, Jennifer L; Li, Luchuan; Dave, Kuldip D; Schindler, Emmanuelle A; Aloyo, Vincent J; Harvey, John A
2010-10-01
Parenteral injections of d-lysergic acid diethylamide (LSD), a serotonin 5-HT(2A) receptor agonist, enhance eyeblink conditioning. Another hallucinogen, (±)-1(2, 5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI), was shown to elicit a 5-HT(2A)-mediated behavior (head bobs) after injection into the hippocampus, a structure known to mediate trace eyeblink conditioning. This study aims to determine if parenteral injections of the hallucinogens LSD, d,l-2,5-dimethoxy-4-methylamphetamine, and 5-methoxy-dimethyltryptamine elicit the 5-HT(2A)-mediated behavior of head bobs and whether intrahippocampal injections of LSD would produce head bobs and enhance trace eyeblink conditioning. LSD was infused into the dorsal hippocampus just prior to each of eight conditioning sessions. One day after the last infusion of LSD, DOI was infused into the hippocampus to determine whether there had been a desensitization of the 5-HT(2A) receptor as measured by a decrease in DOI-elicited head bobs. Acute parenteral or intrahippocampal LSD elicited a 5-HT(2A) but not a 5-HT(2C)-mediated behavior, and chronic administration enhanced conditioned responding relative to vehicle controls. Rabbits that had been chronically infused with 3 or 10 nmol per side of LSD during Pavlovian conditioning and then infused with DOI demonstrated a smaller increase in head bobs relative to controls. LSD produced its enhancement of Pavlovian conditioning through an effect on 5-HT(2A) receptors located in the dorsal hippocampus. The slight, short-lived enhancement of learning produced by LSD appears to be due to the development of desensitization of the 5-HT(2A) receptor within the hippocampus as a result of repeated administration of its agonist (LSD).
Baijot, Simon; Slama, Hichem; Söderlund, Göran; Dan, Bernard; Deltenre, Paul; Colin, Cécile; Deconinck, Nicolas
2016-03-15
Optimal stimulation theory and moderate brain arousal (MBA) model hypothesize that extra-task stimulation (e.g. white noise) could improve cognitive functions of children with attention-deficit/hyperactivity disorder (ADHD). We investigate benefits of white noise on attention and inhibition in children with and without ADHD (7-12 years old), both at behavioral and at neurophysiological levels. Thirty children with and without ADHD performed a visual cued Go/Nogo task in two conditions (white noise or no-noise exposure), in which behavioral and P300 (mean amplitudes) data were analyzed. Spontaneous eye-blink rates were also recorded and participants went through neuropsychological assessment. Two separate analyses were conducted with each child separately assigned into two groups (1) ADHD or typically developing children (TDC), and (2) noise beneficiaries or non-beneficiaries according to the observed performance during the experiment. This latest categorization, based on a new index we called "Noise Benefits Index" (NBI), was proposed to determine a neuropsychological profile positively sensitive to noise. Noise exposure reduced omission rate in children with ADHD, who were no longer different from TDC. Eye-blink rate was higher in children with ADHD but was not modulated by white noise. NBI indicated a significant relationship between ADHD and noise benefit. Strong correlations were observed between noise benefit and neuropsychological weaknesses in vigilance and inhibition. Participants who benefited from noise had an increased Go P300 in the noise condition. The improvement of children with ADHD with white noise supports both optimal stimulation theory and MBA model. However, eye-blink rate results question the dopaminergic hypothesis in the latter. The NBI evidenced a profile positively sensitive to noise, related with ADHD, and associated with weaker cognitive control.
Extinction, reacquisition, and rapid forgetting of eyeblink conditioning in developing rats
Freeman, John H.
2014-01-01
Eyeblink conditioning is a well-established model for studying the developmental neurobiology of associative learning and memory. However, age differences in extinction and subsequent reacquisition have yet to be studied using this model. The present study examined extinction and reacquisition of eyeblink conditioning in developing rats. In Experiment 1, post-natal day (P) 17 and 24 rats were trained to a criterion of 80% conditioned responses (CRs) using stimulation of the middle cerebellar peduncle (MCP) as a conditioned stimulus (CS). Stimulation CS-alone extinction training commenced 24 h later, followed by reacquisition training after the fourth extinction session. Contrary to expected results, rats trained starting on P17 showed significantly fewer CRs to stimulation CS-alone presentations relative to P24s, including fewer CRs as early as the first block of extinction session 1. Furthermore, the P17 group was slower to reacquire following extinction. Experiment 2 was run to determine the extent to which the low CR percentage observed in P17s early in extinction reflected rapid forgetting versus rapid extinction. Twenty-four hours after reaching criterion, subjects were trained in a session split into 50 stimulation CS-unconditioned stimulus paired trials followed immediately by 50 stimulation CS-alone trials. With this “immediate” extinction protocol, CR percentages during the first block of stimulation CS-alone presentations were equivalent to terminal acquisition levels at both ages but extinction was more rapid in the P17 group. These findings indicate that forgetting is observed in P17 relative to P24 rats 24 h following acquisition. The forgetting in P17 rats has important implications for the neurobiological mechanisms of memory in the developing cerebellum. PMID:25403458
Allen, M T; Handy, J D; Blankenship, M R; Servatius, R J
2018-06-01
Recent work has focused on a learning diathesis model in which specific personality factors such as behavioral inhibition (BI) may influence associative learning and in turn increase risk for the development of anxiety disorders. We have found in a series of studies that individuals self-reporting high levels of BI exhibit enhanced acquisition of conditioned eyeblinks. In the study reported here, hypotheses were extended to include distressed (Type D) personality which has been found to be related to BI. Type D personality is measured with the DS-14 scale which includes two subscales measuring negative affectivity (NA) and social inhibition (SI). We hypothesized that SI, which is similar to BI, would result in enhanced acquisition while the effect of NA is unclear. Eighty nine participants completed personality inventories including the Adult Measure of Behavioral Inhibition (AMBI) and DS-14. All participants received 60 acquisition trials with a 500 ms, 1000 Hz, tone CS and a co-terminating 50 ms, 5 psi corneal airpuff US. Participants received either 100% CS-US paired trials or a schedule of partial reinforcement where 50% US alone trials were intermixed into CS-US training. Acquisition of CRs did not differ between the two training protocols. Whereas BI was significantly related to Type D, SI, and NA, only BI and SI individuals exhibited enhanced acquisition of conditioned eyeblinks as compared to non-inhibited individuals. Personality factors now including social inhibition can be used to identify individuals who express enhanced associative learning which lends further support to a learning diathesis model of anxiety disorders. Copyright © 2018 Elsevier B.V. All rights reserved.
Lindquist, Derick H
2013-04-01
Binge-like postnatal ethanol exposure produces significant damage throughout the brain in rats, including the cerebellum and hippocampus. In the current study, cue- and context-mediated Pavlovian conditioning were assessed in adult rats exposed to moderately low (3E; 3g/kg/day) or high (5E; 5g/kg/day) doses of ethanol across postnatal days 4-9. Ethanol-exposed and control groups were presented with 8 sessions of trace eyeblink conditioning followed by another 8 sessions of delay eyeblink conditioning, with an altered context presented over the last two sessions. Both forms of conditioning rely on the brainstem and cerebellum, while the more difficult trace conditioning also requires the hippocampus. The hippocampus is also needed to gate or modulate expression of the eyeblink conditioned response (CR) based on contextual cues. Results indicate that the ethanol-exposed rats were not significantly impaired in trace EBC relative to control subjects. In terms of CR topography, peak amplitude was significantly reduced by both doses of alcohol, whereas onset latency but not peak latency was significantly lengthened in the 5E rats across the latter half of delay EBC in the original training context. Neither dosage resulted in significant impairment in the contextual gating of the behavioral response, as revealed by similar decreases in CR production across all four treatment groups following introduction of the novel context. Results suggest ethanol-induced brainstem-cerebellar damage can account for the present results, independent of the putative disruption in hippocampal development and function proposed to occur following postnatal ethanol exposure. Copyright © 2013 Elsevier B.V. All rights reserved.
Hoffmann, Loren C.; Cicchese, Joseph J.; Berry, Stephen D.
2015-01-01
Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3–12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3–7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning. PMID:25918501
Rahman, Md. Ashrafur; Tanaka, Norifumi; Usui, Koji; Kawahara, Shigenori
2016-01-01
We investigated the role of muscarinic acetylcholine receptors (mAChRs) in eyeblink serial feature-positive discrimination learning in mice using the mAChR antagonist. A 2-s light cue was delivered 5 or 6 s before the presentation of a 350-ms tone paired with a 100-ms periorbital electrical shock (cued trial) but not before the tone-alone presentation (non-cued trial). Mice received 30 cued and 30 non-cued trials each day in a random order. We found that saline-injected control mice were successfully discriminating between cued and non-cued trials within a few days of conditioning. The mice responded more frequently to the tone in cued trials than in non-cued trials. Analysis of conditioned response (CR) dynamics revealed that the CR onset latency was shorter in cued trials than in non-cued trials, despite the CR peak amplitude not differing significantly between the two conditions. In contrast, scopolamine-injected mice developed an equal number of CRs with similar temporal patterns irrespective of the presence of the cue during the 7 days of conditioning, indicating in a failure to acquire conditional discrimination. In addition, the scopolamine administration to the control mice after they had successfully acquired discrimination did not impair the conditional discrimination and expression of pre-acquired CR. These results suggest that mAChRs may play a pivotal role in memory formation in the conditional brain state associated with the feature cue; however they are unlikely to be involved in the development of discrimination after conditional memory had formed in the serial feature-positive discrimination task during eyeblink conditioning. PMID:26808980
Cicchese, Joseph J.; Berry, Stephen D.
2016-01-01
Typical information processing is thought to depend on the integrity of neurobiological oscillations that may underlie coordination and timing of cells and assemblies within and between structures. The 3–7 Hz bandwidth of hippocampal theta rhythm is associated with cognitive processes essential to learning and depends on the integrity of cholinergic, GABAergic, and glutamatergic forebrain systems. Since several significant psychiatric disorders appear to result from dysfunction of medial temporal lobe (MTL) neurochemical systems, preclinical studies on animal models may be an important step in defining and treating such syndromes. Many studies have shown that the amount of hippocampal theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning and attainment of asymptotic performance. Our lab has developed a brain–computer interface that makes eyeblink training trials contingent upon the explicit presence or absence of hippocampal theta. The behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to fourfold increase in learning speed over non-theta states. The non-theta behavioral impairment is accompanied by disruption of the amplitude and synchrony of hippocampal local field potentials, multiple-unit excitation, and single-unit response patterns dependent on theta state. Our findings indicate a significant electrophysiological and behavioral impact of the pretrial state of the hippocampus that suggests an important role for this MTL system in associative learning and a significant deleterious impact in the absence of theta. Here, we focus on the impairments in the non-theta state, integrate them into current models of psychiatric disorders, and suggest how improvement in our understanding of neurobiological oscillations is critical for theories and treatment of psychiatric pathology. PMID:26903886
Hoffmann, Loren C; Cicchese, Joseph J; Berry, Stephen D
2015-01-01
Neurobiological oscillations are regarded as essential to normal information processing, including coordination and timing of cells and assemblies within structures as well as in long feedback loops of distributed neural systems. The hippocampal theta rhythm is a 3-12 Hz oscillatory potential observed during cognitive processes ranging from spatial navigation to associative learning. The lower range, 3-7 Hz, can occur during immobility and depends upon the integrity of cholinergic forebrain systems. Several studies have shown that the amount of pre-training theta in the rabbit strongly predicts the acquisition rate of classical eyeblink conditioning and that impairment of this system substantially slows the rate of learning. Our lab has used a brain-computer interface (BCI) that delivers eyeblink conditioning trials contingent upon the explicit presence or absence of hippocampal theta. A behavioral benefit of theta-contingent training has been demonstrated in both delay and trace forms of the paradigm with a two- to four-fold increase in learning speed. This behavioral effect is accompanied by enhanced amplitude and synchrony of hippocampal local field potential (LFP)s, multi-unit excitation, and single-unit response patterns that depend on theta state. Additionally, training in the presence of hippocampal theta has led to increases in the salience of tone-induced unit firing patterns in the medial prefrontal cortex, followed by persistent multi-unit activity during the trace interval. In cerebellum, rhythmicity and precise synchrony of stimulus time-locked LFPs with those of hippocampus occur preferentially under the theta condition. Here we review these findings, integrate them into current models of hippocampal-dependent learning and suggest how improvement in our understanding of neurobiological oscillations is critical for theories of medial temporal lobe processes underlying intact and pathological learning.
Two behavioral tests, locomotor activity and the acoustic startle response (ASR), were utilized to test for dose-addition of cismethrin, a Type I, or deltamethrin, a Type II pyrethroid, with compounds active to the gamma-aminobutryic acid (GABA) receptor complex (picrotoxin, musc...
DOT National Transportation Integrated Search
1974-09-01
Two separate studies are reported. The first attempted to determine a sonic boom exposure level below which startle reactions would not occur. Subjects were exposed indoors to six simulated sonic booms having various outside overpressures. In the sec...
ERIC Educational Resources Information Center
Takahashi, Hidetoshi; Nakahachi, Takayuki; Stickley, Andrew; Ishitobi, Makoto; Kamio, Yoko
2018-01-01
The objective of this study was to investigate relationships between caregiver-reported sensory processing abnormalities, and the physiological index of auditory over-responsiveness evaluated using acoustic startle response measures, in children with autism spectrum disorders and typical development. Mean acoustic startle response magnitudes in…
Guerra-Narbona, R; Delgado-García, J M; López-Ramos, J C
2013-06-15
The aim of this work was to reveal a hypothetical improvement of cognitive abilities in animals acclimatized to altitude and performing under ground level conditions, when looking at submaximal performance, once seen that it was not possible when looking at maximal scores. We modified contrasted cognitive tasks (object recognition, operant conditioning, eight-arm radial maze, and classical conditioning of the eyeblink reflex), increasing their complexity in an attempt to find performance differences in acclimatized animals vs. untrained controls. In addition, we studied, through immunohistochemical quantification, the expression of choline acetyltransferase and acetyl cholinesterase, enzymes involved in the synthesis and degradation of acetylcholine, in the septal area, piriform and visual cortexes, and the hippocampal CA1 area of animals submitted to acute hypobaric hypoxia, or acclimatized to this simulated altitude, to find a relationship between the cholinergic system and a cognitive improvement due to altitude acclimatization. Results showed subtle improvements of the cognitive capabilities of acclimatized animals in all of the tasks when performed under ground-level conditions (although not before 24 h), in the three tasks used to test explicit memory (object recognition, operant conditioning in the Skinner box, and eight-arm radial maze) and (from the first conditioning session) in the classical conditioning task used to evaluate implicit memory. An imbalance of choline acetyltransferase/acetyl cholinesterase expression was found in acclimatized animals, mainly 24 h after the acclimatization period. In conclusion, altitude acclimatization improves cognitive capabilities, in a process parallel to an imbalance of the cholinergic system.
Hardiman, Mervyn J.; Hsu, Hsin-jen; Bishop, Dorothy V.M.
2013-01-01
Three converging lines of evidence have suggested that cerebellar abnormality is implicated in developmental language and literacy problems. First, some brain imaging studies have linked abnormalities in cerebellar grey matter to dyslexia and specific language impairment (SLI). Second, theoretical accounts of both dyslexia and SLI have postulated impairments of procedural learning and automatisation of skills, functions that are known to be mediated by the cerebellum. Third, motor learning has been shown to be abnormal in some studies of both disorders. We assessed the integrity of face related regions of the cerebellum using Pavlovian eyeblink conditioning in 7–11 year-old children with SLI. We found no relationship between oral language skills or literacy skills with either delay or trace conditioning in the children. We conclude that this elementary form of associative learning is intact in children with impaired language or literacy development. PMID:24139661
Peckham, Andrew D.; Johnson, Sheri L.
2015-01-01
Extensive research supports the role of striatal dopamine in pursuing and responding to reward, and that eye-blink rate is a valid indicator of striatal dopamine. This study tested whether phasic changes in blink rate could provide an index of reward pursuit. This hypothesis was tested in people with bipolar I disorder (BD; a population with aberrations in reward responsivity), and in those without BD. Thirty-one adults with BD and 28 control participants completed a laboratory task involving effort towards monetary reward. Blink rate was recorded using eye-tracking at baseline, reward anticipation, and post-reward. Those in the BD group completed self-report measures relating to reward and ambition. Results showed that across all participants, blink rates increased from reward anticipation to post-reward. In the BD group, reward-relevant measures were strongly correlated with variation in blink rate. These findings provide validation for phasic changes in blink rate as an index of reward response. PMID:27274949
Gao, Zhenyu; Proietti-Onori, Martina; Lin, Zhanmin; Ten Brinke, Michiel M; Boele, Henk-Jan; Potters, Jan-Willem; Ruigrok, Tom J H; Hoebeek, Freek E; De Zeeuw, Chris I
2016-02-03
Closed-loop circuitries between cortical and subcortical regions can facilitate precision of output patterns, but the role of such networks in the cerebellum remains to be elucidated. Here, we characterize the role of internal feedback from the cerebellar nuclei to the cerebellar cortex in classical eyeblink conditioning. We find that excitatory output neurons in the interposed nucleus provide efference-copy signals via mossy fibers to the cerebellar cortical zones that belong to the same module, triggering monosynaptic responses in granule and Golgi cells and indirectly inhibiting Purkinje cells. Upon conditioning, the local density of nucleocortical mossy fiber terminals significantly increases. Optogenetic activation and inhibition of nucleocortical fibers in conditioned animals increases and decreases the amplitude of learned eyeblink responses, respectively. Our data show that the excitatory nucleocortical closed-loop circuitry of the cerebellum relays a corollary discharge of premotor signals and suggests an amplifying role of this circuitry in controlling associative motor learning. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Multi-channel orbicularis oculi stimulation to restore eye-blink function in facial paralysis.
Somia, N N; Zonnevijlle, E D; Stremel, R W; Maldonado, C; Gossman, M D; Barker, J H
2001-01-01
Facial paralysis due to facial nerve injury results in the loss of function of the muscles of the hemiface. The most serious complication in extreme cases is the loss of vision. In this study, we compared the effectiveness of single- and multiple-channel electrical stimulation to restore a complete and cosmetically acceptable eye blink. We established bilateral orbicularis oculi muscle (OOM) paralysis in eight dogs; the OOM of one side was directly stimulated using single-channel electrical stimulation and the opposite side was stimulated using multi-channel electrical stimulation. The changes in the palpebral fissure and complete palpebral closure were measured. The difference in current intensities between the multi-channel and single-channel simulation groups was significant, while only multi-channel stimulation produced complete eyelid closure. The latest electronic stimulation circuitry with high-quality implantable electrodes will make it possible to regulate precisely OOM contractions and thus generate complete and cosmetically acceptable eye-blink motion in patients with facial paralysis. Copyright 2001 Wiley-Liss, Inc.
Lee, Mei-Hua; Bodfish, James W; Lewis, Mark H; Newell, Karl M
2010-01-01
This study investigated the mean rate and time-dependent sequential organization of spontaneous eye blinks in adults with intellectual and developmental disability (IDD) and individuals from this group who were additionally categorized with stereotypic movement disorder (IDD+SMD). The mean blink rate was lower in the IDD+SMD group than the IDD group and both of these groups had a lower blink rate than a contrast group of healthy adults. In the IDD group the n to n+1 sequential organization over time of the eye-blink durations showed a stronger compensatory organization than the contrast group suggesting decreased complexity/dimensionality of eye-blink behavior. Very low blink rate (and thus insufficient time series data) precluded analysis of time-dependent sequential properties in the IDD+SMD group. These findings support the hypothesis that both IDD and SMD are associated with a reduction in the dimension and adaptability of movement behavior and that this may serve as a risk factor for the expression of abnormal movements.
Ultrasonic vocalizations, predictability and sensorimotor gating in the rat.
Webber, Emily S; Mankin, David E; McGraw, Justin J; Beckwith, Travis J; Cromwell, Howard C
2013-09-15
Prepulse inhibition (PPI) is a measure of sensorimotor gating in diverse groups of animals including humans. Emotional states can influence PPI in humans both in typical subjects and in individuals with mental illness. Little is known about emotional regulation during PPI in rodents. We used ultrasonic vocalization recording to monitor emotional states in rats during PPI testing. We altered the predictability of the PPI trials to examine any alterations in gating and emotional regulation. We also examined PPI in animals selectively bred for high or low levels of 50kHz USV emission. Rats emitted high levels of 22kHz calls consistently throughout the PPI session. USVs were sensitive to prepulses during the PPI session similar to startle. USV rate was sensitive to predictability among the different levels tested and across repeated experiences. Startle and inhibition of startle were not affected by predictability in a similar manner. No significant differences for PPI or startle were found related to the different levels of predictability; however, there was a reduction in USV signals and an enhancement of PPI after repeated exposure. Animals selectively bred to emit high levels of USVs emitted significantly higher levels of USVs during the PPI session and a reduced ASR compared to the low and random selective lines. Overall, the results support the idea that PPI tests in rodents induce high levels of negative affect and that manipulating emotional styles of the animals alters the negative impact of the gating session as well as the intensity of the startle response. Copyright © 2013 Elsevier B.V. All rights reserved.
Kaye, Jesse T.; Bradford, Daniel E.; Magruder, Katherine P.; Curtin, John J.
2017-01-01
Stressors clearly contribute to addiction etiology and relapse in humans, but our understanding of specific mechanisms remains limited. Rodent models of addiction offer the power, flexibility, and precision necessary to delineate the causal role and specific mechanisms through which stressors influence alcohol and other drug use. This review describes a program of research using startle potentiation to unpredictable stressors that is well positioned to translate between animal models and clinical research with humans on stress neuroadaptations in addiction. This research rests on a solid foundation provided by three separate pillars of evidence from (a) rodent behavioral neuroscience on stress neuroadaptations in addiction, (b) rodent affective neuroscience on startle potentiation, and (c) human addiction and affective science with startle potentiation. Rodent stress neuroadaptation models implicate adaptations in corticotropin-releasing factor and norepinephrine circuits within the central extended amygdala following chronic alcohol and other drug use that mediate anxious behaviors and stress-induced reinstatement among drug-dependent rodents. Basic affective neuroscience indicates that these same neural mechanisms are involved in startle potentiation to unpredictable stressors in particular (vs. predictable stressors). We believe that synthesis of these evidence bases should focus us on the role of unpredictable stressors in addiction etiology and relapse. Startle potentiation in unpredictable stressor tasks is proposed to provide an attractive and flexible test bed to encourage tight translation and reverse translation between animal models and human clinical research on stress neuroadaptations. Experimental therapeutics approaches focused on unpredictable stressors hold high promise to identify, repurpose, or refine pharmacological and psychosocial interventions for addiction. PMID:28499100
Camfield, David A.; Mills, Jessica; Kornfeld, Emma J.; Croft, Rodney J.
2016-01-01
Recent studies have suggested that classical conditioning may be capable of modulating early sensory processing in the human brain, and that there may be differences in the magnitude of the conditioned changes for individuals with major depressive disorder. The effect of conditioning on the N170 event-related potential was investigated using neutral faces as conditioned stimuli (CS+) and emotional imagery and acoustic startle as unconditioned stimuli (UCS). In the first experiment, electroencephalogram was recorded from 24 undergraduate students (M = 21.07 years, SD = 3.38 years) under the following conditions: (i) CS+/aversive imagery, (ii) CS+/aversive imagery and acoustic startle, (iii) CS+/acoustic startle, and (iv) CS+/pleasant imagery. The amplitude of the N170 was enhanced following conditioning with aversive imagery as well as acoustic startle. In the second experiment, 26 healthy control participants were tested (17 females and 9 males, age M = 25.97 years, SD = 9.42) together with 18 depressed participants (13 females and 5 males, age M = 23.26 years, SD = 4.01) and three conditions were used: CS+/aversive imagery, CS+/pleasant imagery, and CS-. N170 amplitude at P7 was increased for the CS+/aversive condition in comparison to CS- in the conditioning blocks versus baseline. No differences between depressed and healthy participants were found. Across both experiments, evaluative conditioning was absent. It was concluded that aversive UCS are capable of modulating early sensory processing of faces, although further research is also warranted in regards to positive UCS. PMID:27445773
Kaye, Jesse T; Bradford, Daniel E; Magruder, Katherine P; Curtin, John J
2017-05-01
Stressors clearly contribute to addiction etiology and relapse in humans, but our understanding of specific mechanisms remains limited. Rodent models of addiction offer the power, flexibility, and precision necessary to delineate the causal role and specific mechanisms through which stressors influence alcohol and other drug use. This review describes a program of research using startle potentiation to unpredictable stressors that is well positioned to translate between animal models and clinical research with humans on stress neuroadaptations in addiction. This research rests on a solid foundation provided by three separate pillars of evidence from (a) rodent behavioral neuroscience on stress neuroadaptations in addiction, (b) rodent affective neuroscience on startle potentiation, and (c) human addiction and affective science with startle potentiation. Rodent stress neuroadaptation models implicate adaptations in corticotropin-releasing factor and norepinephrine circuits within the central extended amygdala following chronic alcohol and other drug use that mediate anxious behaviors and stress-induced reinstatement among drug-dependent rodents. Basic affective neuroscience indicates that these same neural mechanisms are involved in startle potentiation to unpredictable stressors in particular (vs. predictable stressors). We believe that synthesis of these evidence bases should focus us on the role of unpredictable stressors in addiction etiology and relapse. Startle potentiation in unpredictable stressor tasks is proposed to provide an attractive and flexible test bed to encourage tight translation and reverse translation between animal models and human clinical research on stress neuroadaptations. Experimental therapeutics approaches focused on unpredictable stressors hold high promise to identify, repurpose, or refine pharmacological and psychosocial interventions for addiction.
Leppanen, Jenni; Ng, Kah Wee; Kim, Youl-Ri; Tchanturia, Kate; Treasure, Janet
2018-01-01
Heightened threat sensitivity is a transdiagnostic feature in several psychiatric disorders. The neuropeptide oxytocin has been shown to reduce fear related behaviours and facilitated fear extinction in animals. These findings have led to increasing interest to explore the effects of intranasal oxytocin on threat processing in humans. The review included 26 studies (N = 1173), nine of which included clinical populations (N = 234). The clinical groups included were people with borderline personality disorder (BPD), anorexia nervosa, bulimia nervosa, depression, anxiety, and alcohol dependence disorder. We examined the effects of a single dose of intranasal oxytocin on startle response, attentional responses, and behavioural responses to threat. A single dose of intranasal oxytocin significantly increased the physiological startle response to threat in healthy people with a small effect size. However, oxytocin did not have significant effects on attentional bias towards social or disorder-specific threat, fixation towards threatening stimuli among healthy or clinical populations, or on threat related behavioural approach or avoidance responses. No studies investigated the effects of oxytocin on the startle response to threat among clinical populations. Additionally, only one of the reviewed studies had sufficient power to detect at least a moderate effect of oxytocin according to our criterion. The synthesis of literature suggest that oxytocin may influence the salience of threatening stimuli among healthy individuals, increasing the startle response to threat. It would be of interest to investigate the effects of oxytocin on the startle response to threat among clinical populations. Copyright © 2017 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Alvarez, Ruben P.; Johnson, Linda; Grillon, Christian
2007-01-01
A recent fear-potentiated startle study in rodents suggested that extinction was not context dependent when extinction was conducted after a short delay following acquisition, suggesting that extinction can lead to erasure of fear learning in some circumstances. The main objective of this study was to attempt to replicate these findings in humans…
Pathological anxiety and function/dysfunction in the brain's fear/defense circuitry.
Lang, Peter J; McTeague, Lisa M; Bradley, Margaret M
2014-01-01
Research from the University of Florida Center for the Study of Emotion and Attention aims to develop neurobiological measures that objectively discriminate among symptom patterns in patients with anxiety disorders. From this perspective, anxiety and mood pathologies are considered to be brain disorders, resulting from dysfunction and maladaptive plasticity in the neural circuits that determine fearful/defensive and appetitive/reward behavior (Insel et al., 2010). We review recent studies indicating that an enhanced probe startle reflex during the processing of fear memory cues (mediated by cortico-limbic circuitry and thus indicative of plastic brain changes), varies systematically in strength over a spectrum-wide dimension of anxiety pathology-across and within diagnoses-extending from strong focal fear reactions to a consistently blunted reaction in patients with more generalized anxiety and comorbid mood disorders. Preliminary studies with functional magnetic resonance imaging (fMRI) encourage the hypothesis that fear/defense circuit dysfunction covaries with this same dimension of psychopathology. Plans are described for an extended study of the brain's motivation circuitry in anxiety spectrum patients, with the aim of defining the specifics of circuit dysfunction in severe disorders. A sub-project explores the use of real-time fMRI feedback in circuit analysis and as a modality to up-regulate circuit function in the context of blunted affect.
Ouyang, Jessica; Pace, Edward; Lepczyk, Laura; Kaufman, Michael; Zhang, Jessica; Perrine, Shane A; Zhang, Jinsheng
2017-07-07
Blast-induced tinitus is the number one service-connected disability that currently affects military personnel and veterans. To elucidate its underlying mechanisms, we subjected 13 Sprague Dawley adult rats to unilateral 14 psi blast exposure to induce tinnitus and measured auditory and limbic brain activity using manganese-enhanced MRI (MEMRI). Tinnitus was evaluated with a gap detection acoustic startle reflex paradigm, while hearing status was assessed with prepulse inhibition (PPI) and auditory brainstem responses (ABRs). Both anxiety and cognitive functioning were assessed using elevated plus maze and Morris water maze, respectively. Five weeks after blast exposure, 8 of the 13 blasted rats exhibited chronic tinnitus. While acoustic PPI remained intact and ABR thresholds recovered, the ABR wave P1-N1 amplitude reduction persisted in all blast-exposed rats. No differences in spatial cognition were observed, but blasted rats as a whole exhibited increased anxiety. MEMRI data revealed a bilateral increase in activity along the auditory pathway and in certain limbic regions of rats with tinnitus compared to age-matched controls. Taken together, our data suggest that while blast-induced tinnitus may play a role in auditory and limbic hyperactivity, the non-auditory effects of blast and potential traumatic brain injury may also exert an effect.
Involvement of posterior cingulate cortex in ketamine-induced psychosis relevant behaviors in rats.
Ma, Jingyi; Leung, L Stan
2018-02-15
The involvement of posterior cingulate cortex (PCC) on ketamine-induced psychosis relevant behaviors was investigated in rats. Bilateral infusion of muscimol, a GABA A receptor agonist, into the PCC significantly antagonized ketamine-induced deficit in prepulse inhibition of a startle reflex (PPI), deficit in gating of hippocampal auditory evoked potentials, and behavioral hyperlocomotion in a dose dependent manner. Local infusion of ketamine directly into the PCC also induced a PPI deficit. Systemic injection of ketamine (3mg/kg,s.c.) induced an increase in power of electrographic activity in the gamma band (30-100Hz) in both the PCC and the hippocampus; peak theta (4-10Hz) power was not significantly altered, but peak theta frequency was increased by ketamine. In order to exclude volume conduction from the hippocampus to PCC, inactivation of the hippocampus was made by local infusion of muscimol into the hippocampus prior to ketamine administration. Muscimol in the hippocampus effectively blocked ketamine-induced increase of gamma power in the hippocampus but not in the PCC, suggesting independent generation of gamma waves in PCC and hippocampus. It is suggested that the PCC is part of the brain network mediating ketamine-induced psychosis related behaviors. Copyright © 2017 Elsevier B.V. All rights reserved.
Phasic vs Sustained Fear in Rats and Humans: Role of the Extended Amygdala in Fear vs Anxiety
Davis, Michael; Walker, David L; Miles, Leigh; Grillon, Christian
2010-01-01
Data will be reviewed using the acoustic startle reflex in rats and humans based on our attempts to operationally define fear vs anxiety. Although the symptoms of fear and anxiety are very similar, they also differ. Fear is a generally adaptive state of apprehension that begins rapidly and dissipates quickly once the threat is removed (phasic fear). Anxiety is elicited by less specific and less predictable threats, or by those that are physically or psychologically more distant. Thus, anxiety is a more long-lasting state of apprehension (sustained fear). Rodent studies suggest that phasic fear is mediated by the amygdala, which sends outputs to the hypothalamus and brainstem to produce symptoms of fear. Sustained fear is also mediated by the amygdala, which releases corticotropin-releasing factor, a stress hormone that acts on receptors in the bed nucleus of the stria terminalis (BNST), a part of the so-called ‘extended amygdala.' The amygdala and BNST send outputs to the same hypothalamic and brainstem targets to produce phasic and sustained fear, respectively. In rats, sustained fear is more sensitive to anxiolytic drugs. In humans, symptoms of clinical anxiety are better detected in sustained rather than phasic fear paradigms. PMID:19693004
Effects of the beta-blocker propranolol on cued and contextual fear conditioning in humans.
Grillon, Christian; Cordova, Jeremy; Morgan, Charles Andrew; Charney, Dennis S; Davis, Michael
2004-09-01
Beta-adrenergic receptors are involved in the consolidation of emotional memories. Yet, a number of studies using Pavlovian cued fear conditioning have been unable to demonstrate an effect of beta-adrenergic blockade on acquisition or retention of fear conditioning. Evidence for the involvement of beta-adrenergic receptors in emotional memories comes mostly from studies using fear inhibitory avoidance in rodents. It is possible that fear inhibitory avoidance is more akin to contextual conditioning than to cued fear conditioning, suggesting that context conditioning may be disrupted by beta-adrenergic blockade. This study investigated the effects of the beta-adrenergic blocker propranolol on cued and contextual fear conditioning in humans. Subjects were given either placebo (n=15) or 40 mg propranolol (n=15) prior to differential cued conditioning. A week later, they were tested for retention of context and cued fear conditioning using physiological (startle reflex and electrodermal activity) and subjective measures of emotional arousal. The results were consistent with the hypothesis. The skin conductance level (SCL) and the subjective measure of arousal suggested reduced emotional arousal upon returning to the conditioning context in the propranolol group, compared to the placebo group. The acquisition and retention of cued fear conditioning were not affected by propranolol. These results suggest that beta-adrenergic receptors are involved in contextual fear conditioning.
Behavioural effects of prenatal exposure to carbon disulphide and to aromatol in rats.
Lehotzky, K; Szeberényi, J M; Ungváry, G; Kiss, A
1985-01-01
The neurotoxic effects of prenatal organosolvent inhalation were studied in rats, because of the expectation that a developing organism may be more sensitive than the adult to the induction of functional deficits. The aim was to determine whether prenatal exposure to the new organosolvent mixture, Aromatol, and the well known neurotoxic carbon disulphide, would impair reflex ontogeny or produce neurobehavioural dysfunctions in the offspring. Development of gait, motor coordination, and activity, avoidance learning and swimming were tested in the offspring of CFY rat mothers, exposed to CS2 inhalation (0, less than 10, 700 and 2000 mg/m3) and to Aromatol (0, 600, 1000 and 2000 mg/m3) on days 7-15 gestation. Prenatal CS2 inhalation induced dose related perinatal mortality of pups. Eye opening and the auditory startle were retarded. There were immature gait, motor incoordination, diminished open field activity and altered behavioural patterns on day 21 and 36 but they were nearly age-appropriate on day 90. As signs of disturbed learning ability, there were diminished performance and lengthened latency of the conditioned avoidance response, related to the concentrations administered. Contrary to expectations, prenatal Aromatol inhalation had no effect on maturation of gait, behaviour patterns, or learning ability.
Mizoguchi, Hiroyuki; Yamada, Kiyofumi
2011-01-01
Methamphetamine (METH) is a highly addictive drug, and addiction to METH has increased to epidemic proportions worldwide. Chronic use of METH causes psychiatric symptoms, such as hallucinations and delusions, and long-term cognitive deficits, which are indistinguishable from paranoid schizophrenia. The GABA receptor system is known to play a significant role in modulating the dopaminergic neuronal system, which is related to behavioral changes induced by drug abuse. However, few studies have investigated the effects of GABA receptor agonists on cognitive deficits induced by METH. In the present review, we show that baclofen, a GABA receptor agonist, is effective in treating METH-induced impairment of object recognition memory and prepulse inhibition (PPI) of the startle reflex, a measure of sensorimotor gating in mice. Acute and repeated treatment with METH induced a significant impairment of PPI. Furthermore, repeated but not acute treatment of METH resulted in a long-lasting deficit of object recognition memory. Baclofen, a GABAB receptor agonist, dose-dependently ameliorated the METH-induced PPI deficits and object recognition memory impairment in mice. On the other hand, THIP, a GABAA receptor agonist, had no effect on METH-induced cognitive deficits. These results suggest that GABAB receptors may constitute a putative new target in treating cognitive deficits in chronic METH users. PMID:21886573
Wannemüller, André; Sartory, Gudrun; Elsesser, Karin; Lohrmann, Thomas; Jöhren, Hans P.
2015-01-01
The acoustic startle response (SR) has consistently been shown to be enhanced by fear-arousing cross-modal background stimuli in phobics. Intra-modal fear-potentiation of acoustic SR was rarely investigated and generated inconsistent results. The present study compared the acoustic SR to phobia-related sounds with that to phobia-related pictures in 104 dental phobic patients and 22 controls. Acoustic background stimuli were dental treatment noises and birdsong and visual stimuli were dental treatment and neutral control pictures. Background stimuli were presented for 4 s, randomly followed by the administration of the startle stimulus. In addition to SR, heart-rate (HR) was recorded throughout the trials. Irrespective of their content, background pictures elicited greater SR than noises in both groups with a trend for phobic participants to show startle potentiation to phobia-related pictures but not noises. Unlike controls, phobics showed HR acceleration to both dental pictures and noises. HR acceleration of the phobia group was significantly positively correlated with SR in the noise condition only. The acoustic SR to phobia-related noises is likely to be inhibited by prolonged sensorimotor gating. PMID:25774142
Startle Auditory Stimuli Enhance the Performance of Fast Dynamic Contractions
Fernandez-Del-Olmo, Miguel; Río-Rodríguez, Dan; Iglesias-Soler, Eliseo; Acero, Rafael M.
2014-01-01
Fast reaction times and the ability to develop a high rate of force development (RFD) are crucial for sports performance. However, little is known regarding the relationship between these parameters. The aim of this study was to investigate the effects of auditory stimuli of different intensities on the performance of a concentric bench-press exercise. Concentric bench-presses were performed by thirteen trained subjects in response to three different conditions: a visual stimulus (VS); a visual stimulus accompanied by a non-startle auditory stimulus (AS); and a visual stimulus accompanied by a startle auditory stimulus (SS). Peak RFD, peak velocity, onset movement, movement duration and electromyography from pectoralis and tricep muscles were recorded. The SS condition induced an increase in the RFD and peak velocity and a reduction in the movement onset and duration, in comparison with the VS and AS condition. The onset activation of the pectoralis and tricep muscles was shorter for the SS than for the VS and AS conditions. These findings point out to specific enhancement effects of loud auditory stimulation on the rate of force development. This is of relevance since startle stimuli could be used to explore neural adaptations to resistance training. PMID:24489967
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cada, G.F.
2003-08-25
Fish that pass through a hydroelectric turbine may not be killed directly, but may nonetheless experience sublethal stresses that will increase their susceptibility to predators (indirect mortality). There is a need to develop reliable tests for indirect mortality so that the full consequences of passage through turbines (and other routes around a hydroelectric dam) can be assessed. We evaluated a new technique for assessing indirect mortality, based on a behavioral response to a startling stimulus (akin to perceiving an approaching predator). We compare this technique to the standard predator preference test. The behavioral response is a rapid movement commonly referredmore » to as a startle response, escape response, or C-shape, based on the characteristic body position assumed by the fish. When viewed from above, a startled fish bends into a C-shape, then springs back and swims away in a direction different from its original orientation. This predator avoidance (escape) behavior can be compromised by sublethal stresses that temporarily stun or disorient the fish. We subjected striped shiners and fathead minnows to varying intensities of either turbulence (10-, 20- or 30-min) or 2-min exposures to a fish anesthetic (100 or 200 mg/L of tricaine methanesulfonate), and evaluated their subsequent behavior. Individual fish were given a startle stimulus and filmed with a high-speed video camera. Each fish was startled and filmed twice before being stressed, and then at 1-, 5-, 15-, and 30-min post-exposure. The resulting image files were analyzed for a variety of behavioral measures including: presence of a response, time to first reaction, duration of reaction, time to formation of maximum C-shape, time to completion of C-shape, and completeness of C-shape. The most immediate measure of potential changes in fish behavior was whether stressed fish exhibited a startle response. For striped shiners, the number of fish not responding to the stimulus was significantly different from controls at 1-min post-exposure and for fathead minnows at 1- and 5-min post-exposure. The greatest effects occurred with exposure to the fish anesthetic; in fathead minnows all of the recorded measures were significantly different from controls at 1-min and 5-min post-exposure at the 100 mg/L dose. For striped shiners all recorded behavioral measures were significantly different from controls at 1-min at the 200 and 100 mg/L doses and for selected behavioral measures at 5-min. Turbulence also had significant effects on striped shiner startle responses following 20- and 30-min exposures for all behavioral measures at 1-min. The patterns suggest that any effects on startle response due to turbulence or low doses of anesthetic are short-lived, but can be evaluated using the escape behavior technique. The most useful indication of changes in escape behavior in these tests was the simple reaction/no reaction to the startle stimulus. The startle response occurred reliably among unstressed fish, and was frequently reduced or eliminated in fish exposed to turbulence or anesthesia. The other behavioral parameters observed were often altered by the sublethal stresses as well. A standard predator preference test was also conducted with largemouth bass as the predators and fathead minnows as prey. In this test design, groups of 10 unstressed fish (controls) and 10 stressed fish were put in a tank with a predator. The stressed fathead minnows were exposed to turbulence or fish anesthetic. The predator was allowed to eat half of the prey, and the data were evaluated to determine whether predators consumed greater proportions of stressed minnows than control minnows. The predation test indicated that exposure to MS-222 resulted in significant predation in fathead minnows, but exposure to turbulence did not. This pattern was the same as seen in fathead minnows using the startle response (escape behavior) test. For the sublethal stresses we applied, evaluation of changes in fish escape behavior yielded results comparable to traditional predator preference tests. Because this fish behavior test is simpler and quicker to conduct than predator preference tests, it shows promise as a useful technique for assessing indirect mortality resulting from sublethal stresses.« less
Psychopathy, startle blink modulation, and electrodermal reactivity in twin men
BENNING, STEPHEN D.; PATRICK, CHRISTOPHER J.; IACONO, WILLIAM G.
2008-01-01
Psychopathy is a personality disorder with interpersonal–emotional and antisocial deviance facets. This study investigated these facets of psychopathy prospectively using normal-range personality traits in a community sample of young adult men who completed a picture-viewing task that included startle blink and skin conductance measures, like tasks used to study psychopathy in incarcerated men. Consistent with prior research, scores on the interpersonal–emotional facet of psychopathy (“fearless dominance”) were associated with deficient fear-potentiated startle. Conversely, scores on the social deviance facet of psychopathy (“impulsive antisociality”) were associated with smaller overall skin conductance magnitudes. Participants high in fearless dominance also exhibited deficient skin conductance magnitudes specifically to aversive pictures. Findings encourage further investigation of psychopathy and its etiology in community samples. PMID:16364071
NASA Astrophysics Data System (ADS)
Gillen, Michael William
Recent airline accidents point to a crew's failure to make correct and timely decisions following a sudden and unusual event that startled the crew. This study sought to determine if targeted training could augment decision making during a startle event. Following a startle event cognitive function is impaired for a short duration of time (30-90 seconds). In aviation, critical decisions are often required to be made during this brief, but critical, time frame. A total of 40 volunteer crews (80 individual pilots) were solicited from a global U.S. passenger airline. Crews were briefed that they would fly a profile in the simulator but were not made aware of what the profile would entail. The study participants were asked to complete a survey on their background and flying preferences. Every other crew received training on how to handle a startle event. The training consisted of a briefing and simulator practice. Crew members (subjects) were either presented a low altitude or high altitude scenario to fly in a full-flight simulator. The maneuver scenarios were analyzed using a series of one-way ANOVAs, t-tests and regression for the main effect of training on crew performance. The data indicated that the trained crews flew the maneuver profiles significantly better than the untrained crews and significantly better than the Federal Aviation Administration (FAA) Airline Transport Pilot (ATP) standards. Each scenario's sub factors were analyzed using regression to examine for specific predictors of performance. The results indicate that in the case of the high altitude profile, problem diagnosis was a significant factor, in the low altitude profile, time management was also a significant factor. These predicators can be useful in further targeting training. The study's findings suggest that targeted training can help crews manage a startle event, leading to a potential reduction of inflight loss of control accidents. The training was broad and intended to cover an overall aircraft handling approach rather than being aircraft specific. Inclusion of this type of training by airlines has the potential to better aid crews in handling sudden and unusual events.
Both Trace and Delay Conditioning of Evaluative Responses Depend on Contingency Awareness
ERIC Educational Resources Information Center
Kattner, Florian; Ellermeier, Wolfgang; Tavakoli, Paniz
2012-01-01
Whereas previous evaluative conditioning (EC) studies produced inconsistent results concerning the role of contingency knowledge, there are classical eye-blink conditioning studies suggesting that declarative processes are involved in trace conditioning but not in delay conditioning. In two EC experiments pairing neutral sounds (conditioned…
ERIC Educational Resources Information Center
Simon, Barbara B.; Knuckley, Bryan; Powell, Donald A.
2004-01-01
Previous work has demonstrated that drugs increasing brain concentrations of acetylcholine can enhance cognition in aging and brain-damaged organisms. The present study assessed whether galantamine (GAL), an allosteric modulator of nicotinic cholinergic receptors and weak acetylcholinesterase inhibitor, could improve acquisition and retention of…
Chicoli, Amanda; Paley, Derek A.
2016-01-01
Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion. PMID:27907996
NASA Astrophysics Data System (ADS)
Chicoli, Amanda; Paley, Derek A.
2016-11-01
Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.
Chicoli, Amanda; Paley, Derek A
2016-11-01
Individuals in a group may obtain information from other group members about the environment, including the location of a food source or the presence of a predator. Here, we model how information spreads in a group using a susceptible-infected-removed epidemic model. We apply this model to a simulated shoal of fish using the motion dynamics of a coupled oscillator model, in order to test the biological hypothesis that polarized or aligned shoaling leads to faster and more accurate escape responses. The contributions of this study are the (i) application of a probabilistic model of epidemics to the study of collective animal behavior; (ii) testing the biological hypothesis that group cohesion improves predator escape; (iii) quantification of the effect of social cues on startle propagation; and (iv) investigation of the variation in response based on network connectivity. We find that when perfectly aligned individuals in a group are startled, there is a rapid escape by individuals that directly detect the threat, as well as by individuals responding to their neighbors. However, individuals that are not startled do not head away from the threat. In startled groups that are randomly oriented, there is a rapid, accurate response by individuals that directly detect the threat, followed by less accurate responses by individuals responding to neighbor cues. Over the simulation duration, however, even unstartled individuals head away from the threat. This study illustrates a potential speed-accuracy trade-off in the startle response of animal groups, in agreement with several previous experimental studies. Additionally, the model can be applied to a variety of group decision-making processes, including those involving higher-dimensional motion.
Jumping Frenchmen, Miryachit, and Latah: Culture-Specific Hyperstartle-Plus Syndromes.
Lanska, Douglas J
2018-01-01
In the late 19th century, jumping (French Canadians in Maine, USA), miryachit (Siberia), and latah (Southeast Asia) were among a group of similar disorders described around the world, each of which manifests as an exaggerated startle response with additional late-response features that were felt by some to overlap with hysteria or tics. The later features following the exaggerated startle reaction variably include mimesis (e.g., echopraxia, echolalia) and automatic obedience. These reaction patterns tended to persist indefinitely in affected individuals. Because of their dramatic stimulus-driven behaviors, affected individuals were prone to be teased and tormented by being repeatedly and intentionally startled. Despite clinical overlap between jumping and Tourette syndrome, these entities are now recognized as distinct: in jumping, the key feature is an abnormal startle response, the abnormal reaction is always provoked, and tics are absent, whereas in Tourette syndrome, the key feature is spontaneous motor and vocal tics, although patients with Tourette syndrome may occasionally also have an exaggerated startle response. These disorders have been conceptualized from anthropological, psychodynamic, and neurobiologic perspectives, with no complete resolution to date. Attempts at treatment have been generally unsuccessful, including attempts with bromization and hypnosis, although anecdotal reports of successful deconditioning have been published. In population groups affected, these disorders are usually considered as behavioral peculiarities and not as diseases per se, and there is no apparent tendency to develop disabling mental illness or neurodegenerative disorders. The genesis of these disorders, their cultural and social components, and their interactions with the presumed underlying physiological substrate need further study. Careful descriptive and analytic epidemiological studies are also lacking for all of these disorders. © 2018 S. Karger AG, Basel.
Adamec, Robert; Fougere, Dennis; Risbrough, Victoria
2010-07-01
Post traumatic stress disorder (PTSD) is a chronic anxiety disorder initiated by an intensely threatening, traumatic event. There is a great need for more efficacious pharmacotherapy and preventive treatments for PTSD. In animals, corticotropin-releasing factor (CRF) and the CRF1 receptor play a critical role in behavioural and neuroendocrine responses to stress. We tested the hypothesis that CRF1 activation is required for initiation and consolidation of long-term effects of trauma on anxiety-like behaviour in the predator exposure (predator stress) model of PTSD. Male C57BL6 mice were treated with the selective CRF1 antagonist CRA0450 (2, 20 mg/kg) 30 min before or just after predator stress. Long-term effects of stress on rodent anxiety were measured 7 d later using acoustic startle, elevated plus maze (EPM), light/dark box, and hole-board tests. Predator stress increased startle amplitude and delayed startle habituation, increased time in and decreased exits from the dark chamber in the light/dark box test, and decreased risk assessment in the EPM. CRF1 antagonism had limited effects on these behaviours in non-stressed controls, with the high dose decreasing risk assessment in the EPM. However, in stressed animals CRF1 antagonism blocked initiation and consolidation of stressor effects on startle, and returned risk assessment to baseline levels in predator-stressed mice. These findings implicate CRF1 activation in initiation and post-trauma consolidation of predator stress effects on anxiety-like behaviour, specifically on increased arousal as measured by exaggerated startle behaviours. These data support further research of CRF1 antagonists as potential prophylactic treatments for PTSD.
ERIC Educational Resources Information Center
Sink, Kelly S.; Davis, Michael; Walker, David L.
2013-01-01
Calcitonin gene-related peptide (CGRP) infusions into the bed nucleus of the stria terminalis (BNST) evoke increases in startle amplitude and increases in anxiety-like behavior in the plus maze. Conversely, intra-BNST infusions of the CGRP antagonist CGRP[subscript 8-37] block unconditioned startle increases produced by fox odor. Here we evaluate…
ERIC Educational Resources Information Center
Weible, Aldis P.; Oh, M. Matthew; Lee, Grace; Disterhoft, John F.
2004-01-01
Cholinergic systems are critical to the neural mechanisms mediating learning. Reduced nicotinic cholinergic receptor (nAChR) binding is a hallmark of normal aging. These reductions are markedly more severe in some dementias, such as Alzheimer's disease. Pharmacological central nervous system therapies are a means to ameliorate the cognitive…
What Does Eye-Blink Rate Variability Dynamics Tell Us About Cognitive Performance?
Paprocki, Rafal; Lenskiy, Artem
2017-01-01
Cognitive performance is defined as the ability to utilize knowledge, attention, memory, and working memory. In this study, we briefly discuss various markers that have been proposed to predict cognitive performance. Next, we develop a novel approach to characterize cognitive performance by analyzing eye-blink rate variability dynamics. Our findings are based on a sample of 24 subjects. The subjects were given a 5-min resting period prior to a 10-min IQ test. During both stages, eye blinks were recorded from Fp1 and Fp2 electrodes. We found that scale exponents estimated for blink rate variability during rest were correlated with subjects' performance on the subsequent IQ test. This surprising phenomenon could be explained by the person to person variation in concentrations of dopamine in PFC and accumulation of GABA in the visual cortex, as both neurotransmitters play a key role in cognitive processes and affect blinking. This study demonstrates the possibility that blink rate variability dynamics at rest carry information about cognitive performance and can be employed in the assessment of cognitive abilities without taking a test. PMID:29311876
Voluntary eyeblinks disrupt iconic memory.
Thomas, Laura E; Irwin, David E
2006-04-01
In the present research, we investigated whether eyeblinks interfere with cognitive processing. In Experiment 1, the participants performed a partial-report iconic memory task in which a letter array was presented for 106 msec, followed 50, 150, or 750 msec later by a tone that cued recall of onerow of the array. At a cue delay of 50 msec between array offset and cue onset, letter report accuracy was lower when the participants blinked following array presentation than under no-blink conditions; the participants made more mislocation errors under blink conditions. This result suggests that blinking interferes with the binding of object identity and object position in iconic memory. Experiment 2 demonstrated that interference due to blinks was not due merely to changes in light intensity. Experiments 3 and 4 demonstrated that other motor responses did not interfere with iconic memory. We propose a new phenomenon, cognitive blink suppression, in which blinking inhibits cognitive processing. This phenomenon may be due to neural interference. Blinks reduce activation in area V1, which may interfere with the representation of information in iconic memory.
Magnetic Resonance and Spectroscopy of the Human Brain in Gulf War Illness
2005-08-01
relationship between GWI and stress . Acoustic startle is a hallmark feature of PTSD . Past studies have shown that PTSD subjects have an increased startle...brain, neuro- psychological testing, audio vestibular testing, PTSD 16. SECURITY CLASSIFICATION OF: 17. LIMITATION 18. NUMBER 19a. NAME OF...such as PTSD , depression, or alcohol abuse. 2) Reduced NAA in the basal ganglia and pons correlates with central nervous system signs and symptoms of
Axonal conduction block as a novel mechanism of prepulse inhibition
Lee, A. H.; Megalou, E. V.; Wang, J.; Frost, W.N.
2012-01-01
In prepulse inhibition (PPI), the startle response to a strong, unexpected stimulus is diminished if shortly preceded by the onset of a different stimulus. Because deficits in this inhibitory gating process are a hallmark feature of schizophrenia and certain other psychiatric disorders, the mechanisms underlying PPI are of significant interest. We previously used the invertebrate model system Tritonia diomedea to identify the first cellular mechanism for PPI–presynaptic inhibition of transmitter release from the afferent neurons (S-cells) mediating the startle response. Here we report the involvement of a second, more powerful PPI mechanism in Tritonia: prepulse-elicited conduction block of action potentials traveling in the startle pathway caused by identified inhibitory interneurons activated by the prepulse. This example of axo-axonic conduction block–neurons in one pathway inhibiting the propagation of action potentials in another–represents a novel and potent mechanism of sensory gating in prepulse inhibition. PMID:23115164
Steube, Natalie; Nowotny, Manuela; Pilz, Peter K. D.; Gaese, Bernhard H.
2016-01-01
The acoustic startle response (ASR) and its modulation by non-startling prepulses, presented shortly before the startle-eliciting stimulus, is a broadly applied test paradigm to determine changes in neural processing related to auditory or psychiatric disorders. Modulation by a gap in background noise as a prepulse is especially used for tinnitus assessment. However, the timing and frequency-related aspects of prepulses are not fully understood. The present study aims to investigate temporal and spectral characteristics of acoustic stimuli that modulate the ASR in rats and gerbils. For noise-burst prepulses, inhibition was frequency-independent in gerbils in the test range between 4 and 18 kHz. Prepulse inhibition (PPI) by noise-bursts in rats was constant in a comparable range (8–22 kHz), but lower outside this range. Purely temporal aspects of prepulse–startle-interactions were investigated for gap-prepulses focusing mainly on gap duration. While very short gaps had no (rats) or slightly facilitatory (gerbils) influence on the ASR, longer gaps always had a strong inhibitory effect. Inhibition increased with durations up to 75 ms and remained at a high level of inhibition for durations up to 1000 ms for both, rats and gerbils. Determining spectral influences on gap-prepulse inhibition (gap-PPI) revealed that gerbils were unaffected in the limited frequency range tested (4–18 kHz). The more detailed analysis in rats revealed a variety of frequency-dependent effects. Gaps in pure-tone background elicited constant and high inhibition (around 75%) over a broad frequency range (4–32 kHz). For gaps in noise-bands, on the other hand, a clear frequency-dependency was found: inhibition was around 50% at lower frequencies (6–14 kHz) and around 70% at high frequencies (16–20 kHz). This pattern of frequency-dependency in rats was specifically resulting from the inhibitory effect by the gaps, as revealed by detailed analysis of the underlying startle amplitudes. An interaction of temporal and spectral influences, finally, resulted in higher inhibition for 500 ms gaps than for 75 ms gaps at all frequencies tested. Improved prepulse paradigms based on these results are well suited to quantify the consequences of central processing disorders. PMID:27445728
SALICYLATE INCREASES THE GAIN OF THE CENTRAL AUDITORY SYSTEM
Sun, W.; Lu, J.; Stolzberg, D.; Gray, L.; Deng, A.; Lobarinas, E.; Salvi, R. J.
2009-01-01
High doses of salicylate, the anti-inflammatory component of aspirin, induce transient tinnitus and hearing loss. Systemic injection of 250 mg/kg of salicylate, a dose that reliably induces tinnitus in rats, significantly reduced the sound evoked output of the rat cochlea. Paradoxically, salicylate significantly increased the amplitude of the sound-evoked field potential from the auditory cortex (AC) of conscious rats, but not the inferior colliculus (IC). When rats were anesthetized with isoflurane, which increases GABA-mediated inhibition, the salicylate-induced AC amplitude enhancement was abolished, whereas ketamine, which blocks N-methyl-d-aspartate receptors, further increased the salicylate-induced AC amplitude enhancement. Direct application of salicylate to the cochlea, however, reduced the response amplitude of the cochlea, IC and AC, suggesting the AC amplitude enhancement induced by systemic injection of salicylate does not originate from the cochlea. To identify a behavioral correlate of the salicylate-induced AC enhancement, the acoustic startle response was measured before and after salicylate treatment. Salicylate significantly increased the amplitude of the startle response. Collectively, these results suggest that high doses of salicylate increase the gain of the central auditory system, presumably by down-regulating GABA-mediated inhibition, leading to an exaggerated acoustic startle response. The enhanced startle response may be the behavioral correlate of hyperacusis that often accompanies tinnitus and hearing loss. Published by Elsevier Ltd on behalf of IBRO. PMID:19154777
Grillon, Christian; Franco-Chaves, Jose A.; Mateus, Camilo F.; Ionescu, Dawn F.; Zarate, Carlos A.
2013-01-01
According to the emotion-context insensitivity (ECI) hypothesis, major depressive disorder (MDD) is associated with a diminished ability to react emotionally to positive stimuli and with blunting of defensive responses to threat. That defensive responses are blunted in MDD seems inconsistent with the conceptualization and diagnostic nosology of MDD. The present study tested the ECI hypothesis in MDD using a threat of shock paradigm. Twenty-eight patients with MDD (35.5±10.4 years) were compared with 28 controls (35.1±7.4 years). Participants were exposed to three conditions: no shock, predictable shock, and unpredictable shock. Startle magnitude was used to assess defensive responses. Inconsistent with the ECI hypothesis, startle potentiation to predictable and unpredictable shock was not reduced in the MDD group. Rather, MDD patients showed elevated startle throughout testing as well as increased contextual anxiety during the placement of the shock electrodes and in the predictable condition. A regression analysis indicated that illness duration and Beck depression inventory scores explained 37% (p<.005) of the variance in patients’ startle reactivity. MDD is not associated with emotional blunting but rather enhanced defensive reactivity during anticipation of harm. These results do not support a strong version of the ECI hypothesis. Understanding the nature of stimuli or situations that lead to blunted or enhanced defensive reactivity will provide better insight into dysfunctional emotional experience in MDD. PMID:23951057
Alvarez, Ruben P.; Johnson, Linda; Grillon, Christian
2007-01-01
A recent fear-potentiated startle study in rodents suggested that extinction was not context dependent when extinction was conducted after a short delay following acquisition, suggesting that extinction can lead to erasure of fear learning in some circumstances. The main objective of this study was to attempt to replicate these findings in humans by examining the context specificity of short-delay extinction in an ABA renewal procedure using virtual reality environments. A second objective was to examine whether renewal, if any, would be influenced by context conditioning. Subjects underwent differential aversive conditioning in virtual context A, which was immediately followed by extinction in virtual context B. Extinction was followed by tests of renewal in context A and B, with the order counterbalanced across subjects. Results showed that extinction was context dependent. Evidence for renewal was established using fear-potentiated startle as well as skin conductance and fear ratings. In addition, although contextual anxiety was greater in the acquisition context than in the extinction context during renewal, as assessed with startle, context conditioning did not influence the renewal effect. These data do not support the view that extinction conducted shortly after acquisition is context independent. Hence, they do not provide evidence that extinction can lead to erasure of a fear memory established via Pavlovian conditioning. PMID:17412963
ERIC Educational Resources Information Center
Nokia, Miriam S.; Waselius, Tomi; Mikkonen, Jarno E.; Wikgren, Jan; Penttonen, Markku
2015-01-01
Hippocampal ? (3-12 Hz) oscillations are implicated in learning and memory, but their functional role remains unclear. We studied the effect of the phase of local ? oscillation on hippocampal responses to a neutral conditioned stimulus (CS) and subsequent learning of classical trace eyeblink conditioning in adult rabbits. High-amplitude, regular…
ERIC Educational Resources Information Center
Fister, Mathew; Bickford, Paula C.; Cartford, M. Claire; Samec, Amy
2004-01-01
The neurotransmitter norepinephrine (NE) has been shown to modulate cerebellar-dependent learning and memory. Lesions of the nucleus locus coeruleus or systemic blockade of noradrenergic receptors has been shown to delay the acquisition of several cerebellar-dependent learning tasks. To date, no studies have shown a direct involvement of…
ERIC Educational Resources Information Center
Kehoe, E. James; Ludvig, Elliot A.; Sutton, Richard S.
2014-01-01
The present experiment tested whether or not the time course of a conditioned eyeblink response, particularly its duration, would expand and contract, as the magnitude of the conditioned response (CR) changed massively during acquisition, extinction, and reacquisition. The CR duration remained largely constant throughout the experiment, while CR…
Goepfrich, Anja A; Friemel, Chris M; Pauen, Sabina; Schneider, Miriam
2017-06-01
Adolescence and puberty are highly susceptible developmental periods during which the neuronal organization and maturation of the brain is completed. The endocannabinoid (eCB) system, which is well known to modulate cognitive processing, undergoes profound and transient developmental changes during adolescence. With the present study we were aiming to examine the ontogeny of cognitive skills throughout adolescence in male rats and clarify the potential modulatory role of CB1 receptor signalling. Cognitive skills were assessed repeatedly every 10th day in rats throughout adolescence. All animals were tested for object recognition memory and prepulse inhibition of the acoustic startle reflex. Although cognitive performance in short-term memory as well as sensorimotor gating abilities were decreased during puberty compared to adulthood, both tasks were found to show different developmental trajectories throughout adolescence. A low dose of the CB1 receptor antagonist/inverse agonist SR141716 was found to improve recognition memory specifically in pubertal animals while not affecting behavioral performance at other ages tested. The present findings demonstrate that the developmental trajectory of cognitive abilities does not occur linearly for all cognitive processes and is strongly influenced by pubertal maturation. Developmental alterations within the eCB system at puberty onset may be involved in these changes in cognitive processing. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Methadone patients exhibit increased startle and cortisol response after intravenous yohimbine.
Stine, S M; Grillon, C G; Morgan, C A; Kosten, T R; Charney, D S; Krystal, J H
2001-03-01
Brain noradrenergic systems have been shown to be altered in opioid dependence and to mediate aspects of opioid withdrawal. Pre-clinical and clinical studies by others have shown that yohimbine, which increases noradrenergic activity, also increases both baseline and fear enhancement of the magnitude of the acoustic startle response (ASR). In a separate report from this experiment, it was shown that yohimbine produced opioid withdrawal-like symptoms, including anxiety, in clinically stable methadone-maintained patients and also produced elevations in the norepinepherine (NE) metabolite, 3-methoxy-4 hydroxyphenethyleneglycol (MHPG), and cortisol serum levels. The current study reports the effects of intravenous yohimbine hydrochloride, 0.4 mg/kg versus saline (double-blind), on ASR magnitude, plasma MHPG, and cortisol levels in eight methadone-maintained patients and 13 healthy subjects in a double-blind fashion. Yohimbine increased startle magnitude in both groups. There was no basal (placebo day) difference between the startle response of the two groups, but methadone patients had a larger startle magnitude increase in response to yohimbine than healthy controls. Methadone-maintained patients had lower baseline plasma levels of MHPG and similar baseline plasma cortisol levels compared with normal subjects. Yohimbine caused significant elevation in cortisol and MHPG in both groups. Methadone-maintained subjects had higher elevations in cortisol levels and MHPG (methadone main effect) levels in response to yohimbine. However, when MHPG levels were corrected for baseline differences by analysis of covariance (ANCOVA), the yohimbine effect, but not the methadone effect remained statistically significant. These results are consistent with the previous report and support the hypothesis that abnormalities of the hypothalamic-pituitary-adrenal (HPA) axis and of noradrenergic mechanisms of stress response persist in opioid-agonist maintenance. The ASR effect extends the previous report and provides an additional objective measure for perturbation of noradrenergic and stress responses in these patients.
Příplatová, Lenka; Sebánková, Blanka; Flegr, Jaroslav
2014-01-01
About 30% of people on Earth have latent toxoplasmosis. Infected subjects do not express any clinical symptoms, however, they carry dormant stages of parasite Toxoplasma for the rest of their life. This form of toxoplasmosis is mostly considered harmless, however, recent studies showed its specific effects on physiology, behaviour and its associations with various diseases, including psychiatric disorders such as schizophrenia. Individuals who suffer from schizophrenia have about 2.7 times higher prevalence of Toxoplasma-seropositivity than controls, which suggests that some traits characteristic of schizophrenic patients, including the sex difference in schizophrenia onset, decrease of grey matter density in specific brain areas and modification of prepulse inhibition of startle reaction could in fact be caused by toxoplasmosis for those patients who are Toxoplasma-seropositive. We measured the effect of prepulse inhibition/facilitation of the startle reaction on reaction times. The students, 170 women and 66 men, were asked to react as quickly as possible to a startling acoustic signal by pressing a computer mouse button. Some of the startling signals were without the prepulse, some were 20 msec. preceded by a short (20 msec.) prepulse signal of lower intensity. Toxoplasma-seropositive subjects had longer reaction times than the controls. Acoustic prepulse shorted the reaction times in all subjects. This effect of prepulse on reaction times was stronger in male subjects and increased with the duration of infection, suggesting that it represented a cumulative effect of latent toxoplasmosis, rather than a fading out after effect of past acute toxoplasmosis. Different sensitivity of Toxoplasma-seropositive and Toxoplasma-seronegative subjects on effect of prepulses on reaction times (the toxoplasmosis-prepulse interaction) suggested, but of course did not prove, that the alternations of prepulse inhibition of startle reaction observed in schizophrenia patients probably joined the list of schizophrenia symptoms that are in fact caused by latent toxoplasmosis.
Harris, A C; Atkinson, D M; Aase, D M; Gewirtz, J C
2006-01-01
The basolateral amygdala and portions of the "extended" amygdala (i.e. central nucleus of the amygdala, bed nucleus of the stria terminalis and shell of the nucleus accumbens) have been implicated in the aversive aspects of withdrawal from chronic opiate administration. Given that similar withdrawal signs are observed following a single opiate exposure, these structures may also play a role in "acute opiate dependence." In the current study, drug-naïve rats underwent naloxone-precipitated withdrawal from acute morphine (10 mg/kg) exposure on two successive days. On either the first or second day of testing, the basolateral amygdala, central nucleus of the amygdala, bed nucleus of the stria terminalis, or nucleus accumbens was temporarily inactivated immediately prior to naloxone injection by microinfusion of the glutamatergic alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid receptor antagonist 1,2,3,4-tetrahydro-6-nitro-2,3-dioxo-benzo(f)quinoxaline-7-sulfonamide (3 microg/0.5 microl). On the first day, inactivation of the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis, but not the nucleus accumbens blocked withdrawal-potentiated startle, a behavioral measure of the anxiogenic effects of withdrawal. On the second day, inactivation of the nucleus accumbens, but not the basolateral amygdala, central nucleus of the amygdala, or bed nucleus of the stria terminalis disrupted the withdrawal effect. Effects of structural inactivations on withdrawal-potentiated startle were not influenced by differences in withdrawal severity on the two days of testing. A fear-potentiated startle procedure provided functional confirmation of correct cannulae placement in basolateral amygdale- and central nucleus of the amygdala-implanted animals. Our findings indicate a double dissociation in the neural substrates of withdrawal-potentiated startle following a first versus second morphine exposure, and may reflect a reorganization of the neural circuitry underlying the expression of withdrawal-induced negative affect during the earliest stages of opiate dependence.
2010-09-01
physiopathologies of PTSD . The effect of oxytocin on background anxiety in our fear- potentiated startle studies in rats is also reminiscent of the findings... fMRI Study . CNS Neurosci Ther, print copy in press (originally published online 16 April 2010, at http://www3. interscience.wiley.com/journal...specific fear, but are sustained beyond the immediate threat. Oxytocin might be promising as a drug with novel benefits for patients with PTSD . 15
Fear-Potential Startle as a Model System for Analyzing Learning and Memory
1988-09-21
connection between the central nucleus of the amygdala and the nucleus reticularis pontis caudalis, an obligatory part of the startle pathway. Because we...Miserendino, M and Davis, M. A direct pathway from the central nucleus of the amygdala to the region of the nucleus reticularis pontis caudalis critical for...blocked by drugs that decrease anxiety in humans as well as by lesions of the central nucleus of the amygdala, an area of the brain known to be critical for
Modification of medullary respiratory-related discharge patterns by behaviors and states of arousal.
Chang, F C
1992-02-07
The modulatory influences of behaviors and states of arousal on bulbar respiratory-related unit (RRU) discharge patterns were studied in an unanesthetized, freely behaving guinea pig respiratory model system. When fully instrumented, this model system permits concurrent monitoring and recording of (i) single units from either Bötzinger complex or nucleus para-ambiguus; (ii) electrocorticogram; and, (iii) diaphragmatic EMG. In addition to being used in surveys of RRU discharge patterns in freely behaving states, the model system also offered a unique opportunity in investigating the effects of pentobarbital on RRU discharge patterns before, throughout the course of, and during recovery from anesthesia. In anesthetized preparations, a particular RRU discharge pattern (such as tonic, incrementing or decrementing) typically displayed little, if any notable variation. The most striking development following pentobarbital was a state of progressive bradypnea attributable to a significantly augmented RRU cycle duration, burst duration and an increase in the RRU spike frequencies during anesthesia. In freely behaving states, medullary RRU activities rarely adhered to a fixed, immutable discharge pattern. More specifically, the temporal organization (such as burst duration, cycle duration, and the extent of modulation of within-burst spike frequencies) of RRU discharge patterns regularly showed complex and striking variations, not only with states of arousal (sleep/wakefulness, anesthesia) but also with discrete alterations in electrocorticogram (ECoG) activities and a multitude of on-going behavioral repertoires such as volitional movement, postural modification, phonation, mastication, deglutition, sniffing/exploratory behavior, alerting/startle reflexes. Only during sleep, and on occasions when the animal assumed a motionless, resting posture, could burst patterns of relatively invariable periodicity and uniform temporal attributes be observed. RRU activities during sniffing reflex is worthy of further note in that, based on power spectrum analyses of concurrently recorded ECoG activities, this particular discharge pattern was clearly associated with the activation of a 6-10 Hz theta rhythm. These findings indicated that bulbar RRU activity patterns are subject to change by not only behaviors and sleep/wakefulness cycles, but also a variety of modulatory influences and feedback/feedforward biases from other central and peripheral physiological control mechanisms.
Fear inhibition in high trait anxiety.
Kindt, Merel; Soeter, Marieke
2014-01-01
Trait anxiety is recognized as an individual risk factor for the development of anxiety disorders but the neurobiological mechanisms remain unknown. Here we test whether trait anxiety is associated with impaired fear inhibition utilizing the AX+/BX- conditional discrimination procedure that allows for the independent evaluation of startle fear potentiation and inhibition of fear. Sixty undergraduate students participated in the study--High Trait Anxious: n = 28 and Low Trait Anxious: n = 32. We replicated earlier findings that a transfer of conditioned inhibition for startle responses requires contingency awareness. However, contrary to the fear inhibition hypothesis, our data suggest that high trait anxious individuals show a normal fear inhibition of conditioned startle responding. Only at the cognitive level the high trait anxious individuals showed evidence for impaired inhibitory learning of the threat cue. Together with other findings where impaired fear inhibition was only observed in those PTSD patients who were either high on hyperarousal symptoms or with current anxiety symptoms, we question whether impaired fear inhibition is a biomarker for the development of anxiety disorders.
Moberg, Christine A.; Bradford, Daniel E.; Kaye, Jesse T.; Curtin, John J.
2017-01-01
Stress plays a key role in addiction etiology and relapse. Rodent models posit that following repeated periods of alcohol and other drug intoxication, compensatory allostatic changes occur in the central nervous system (CNS) circuits involved in behavioral and emotional response to stressors. We examine a predicted manifestation of this neuroadaptation in recently abstinent alcohol dependent humans. Participants completed a translational laboratory task that uses startle potentiation to unpredictable (vs. predictable) stressors implicated in the putative CNS mechanisms that mediate this neuroadaptation. Alcohol dependent participants displayed significantly greater startle potentiation to unpredictable than predictable stressors relative to non-alcoholic controls. The size of this effect covaried with alcohol-related problems and degree of withdrawal syndrome. This supports the rodent model thesis of a sensitized stress response in abstinent alcoholics. However, this effect could also represent pre-morbid risk or mark more severe and/or comorbid psychopathology. Regardless, pharmacotherapy and psychological interventions may target unpredictable stressor response to reduce stress-induced relapse. PMID:28394145
Exercise is associated with reduction in the anxiogenic effect of mCPP on acoustic startle.
Fox, James H; Hammack, Sayamwong E; Falls, William A
2008-08-01
Voluntary exercise has been associated with reduced anxiety across several animal models. Manipulation of central 5-HT can alter anxiety-like behaviors and administration of the 5-HT agonist metachlorophenylpiperazine (mCPP) increases anxiety in rodents and humans. To examine whether the anxiolytic effect of exercise is associated with an alteration in 5-HT systems, we examined the anxiogenic effect of mCPP in exercising and nonexercising mice. C57BL/6J mice were given 2 weeks of free access to either a functioning or nonfunctioning running wheel. Mice were then tested for acoustic startle following systemic injection of either 0, 0.1, 0.3, or 1 mg/kg of mCPP. Consistent with its anxiogenic properties, mCPP produced a dose-dependent increase in acoustic startle in nonexercising mice. However, this anxiogenic effect was blunted in exercising mice. These findings suggest that exercise may help to reduce anxiety by altering 5-HT systems, perhaps by down-regulating postsynaptic 5HT 2B/2C receptors.
The effect of choice on the physiology of emotion: An affective startle modulation study
Genevsky, Alexander; Gard, David E.
2014-01-01
The affective startle modulation task has been an important measure in understanding physiological aspects of emotion and motivational responses. Research utilizing this method has relied primarily on a ‘passive’ viewing paradigm, which stands in contrast to everyday life where much of emotion and motivation involves some active choice or agency. The present study investigated the role of choice on the physiology of emotion. Eighty-four participants were randomized into ‘choice’ (n=44) or ‘no-choice’ (n=40) groups distinguished by the ability to choose between stimuli. EMG eye blink responses were recorded in both anticipation and stimulus viewing. Results indicated a significant attenuation of the startle magnitude in choice condition trials (relative to no-choice) across all picture categories and probe times. We interpret these findings as an indication that the act of choice may decrease one’s defensive response, or conversely, lacking choice may heighten the defensive response. Implications for future research are discussed. PMID:22285891
The effect of choice on the physiology of emotion: an affective startle modulation study.
Genevsky, Alexander; Gard, David E
2012-04-01
The affective startle modulation task has been an important measure in understanding physiological aspects of emotion and motivational responses. Research utilizing this method has relied primarily on a 'passive' viewing paradigm, which stands in contrast to everyday life where much of emotion and motivation involves some active choice or agency. The present study investigated the role of choice on the physiology of emotion. Eighty-four participants were randomized into 'choice' (n=44) or 'no-choice' (n=40) groups distinguished by the ability to choose between stimuli. EMG eye blink responses were recorded in both anticipation and stimulus viewing. Results indicated a significant attenuation of the startle magnitude in choice condition trials (relative to no-choice) across all picture categories and probe times. We interpret these findings as an indication that the act of choice may decrease one's defensive response, or conversely, lacking choice may heighten the defensive response. Implications for future research are discussed. Copyright © 2012 Elsevier B.V. All rights reserved.
HEFNER, KATHRYN R.; VERONA, EDELYN; CURTIN, JOHN. J.
2017-01-01
Improved understanding of fear inhibition processes can inform the etiology and treatment of anxiety disorders. Safety signals can reduce fear to threat, but precise mechanisms remain unclear. Safety signals may acquire attentional salience and affective properties (e.g., relief) independent of the threat; alternatively, safety signals may only hold affective value in the presence of simultaneous threat. To clarify such mechanisms, an experimental paradigm assessed independent processing of threat and safety cues. Participants viewed a series of red and green words from two semantic categories. Shocks were administered following red words (cue+). No shocks followed green words (cue−). Words from one category were defined as safety signals (SS); no shocks were administered on cue+ trials. Words from the other (control) category did not provide information regarding shock administration. Threat (cue+ vs. cue−) and safety (SS+ vs. SS−) were fully crossed. Startle response and ERPs were recorded. Startle response was increased during cue+ versus cue−. Safety signals reduced startle response during cue+, but had no effect on startle response during cue−. ERP analyses (PD130 and P3) suggested that participants parsed threat and safety signal information in parallel. Motivated attention was not associated with safety signals in the absence of threat. Overall, these results confirm that fear can be reduced by safety signals. Furthermore, safety signals do not appear to hold inherent hedonic salience independent of their effect during threat. Instead, safety signals appear to enable participants to engage in effective top-down emotion regulatory processes. PMID:27088643
Blaszczyk, Janusz W; Lapo, Iwona B; Werka, Tomasz; Sadowski, Bogdan
2010-01-01
The acoustic startle response (ASR) elicited by 110 dB 10-ms pulses was studied in relation to pain sensitivity in mouse lines selectively bred for high (HA) and for low (LA) swim analgesia. The magnitudes of ASR, similarly as hot-plate latencies, differed between the lines in the rank order HA is greater than unselected controls (C) greater than LA. The animals' nociception did not change after the ASR session consisting of a sequence of 20 acoustic stimuli. Morphine hydrochloride (5 and 10 mg per kg i.p.) increased hot-plate latencies in the order of HA greater than C greater than LA, and was not effective on ASR magnitude in HA as well as in C mice. In the LA line, 10 mg per kg of morphine slightly attenuated ASR, but caused only a little analgesia. We conclude that (1) the difference in ASR between the selected lines is inversely correlated with the difference in pain sensitivity; (2) the magnitude of ASR is not altered by morphine analgesia; (3) the procedure of ASR using brief acoustic pulses is not stressful enough to elicit a form of stress analgesia. The lack of a direct relationship between the readiness to startle and pain sensation may be beneficial for an animal's survival in dangerous situations. It is beneficial when the startle to a warning signal precedes defensive behaviors and it often must be effectuated in a state of decreased nociception.
ERIC Educational Resources Information Center
Villarreal, Ronald P.; Steinmetz, Joseph E.
2005-01-01
How the nervous system encodes learning and memory processes has interested researchers for 100 years. Over this span of time, a number of basic neuroscience methods has been developed to explore the relationship between learning and the brain, including brain lesion, stimulation, pharmacology, anatomy, imaging, and recording techniques. In this…
Antonietti, Alberto; Casellato, Claudia; D'Angelo, Egidio; Pedrocchi, Alessandra
The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.The cerebellum plays a critical role in sensorimotor control. However, how the specific circuits and plastic mechanisms of the cerebellum are engaged in closed-loop processing is still unclear. We developed an artificial sensorimotor control system embedding a detailed spiking cerebellar microcircuit with three bidirectional plasticity sites. This proved able to reproduce a cerebellar-driven associative paradigm, the eyeblink classical conditioning (EBCC), in which a precise time relationship between an unconditioned stimulus (US) and a conditioned stimulus (CS) is established. We challenged the spiking model to fit an experimental data set from human subjects. Two subsequent sessions of EBCC acquisition and extinction were recorded and transcranial magnetic stimulation (TMS) was applied on the cerebellum to alter circuit function and plasticity. Evolutionary algorithms were used to find the near-optimal model parameters to reproduce the behaviors of subjects in the different sessions of the protocol. The main finding is that the optimized cerebellar model was able to learn to anticipate (predict) conditioned responses with accurate timing and success rate, demonstrating fast acquisition, memory stabilization, rapid extinction, and faster reacquisition as in EBCC in humans. The firing of Purkinje cells (PCs) and deep cerebellar nuclei (DCN) changed during learning under the control of synaptic plasticity, which evolved at different rates, with a faster acquisition in the cerebellar cortex than in DCN synapses. Eventually, a reduced PC activity released DCN discharge just after the CS, precisely anticipating the US and causing the eyeblink. Moreover, a specific alteration in cortical plasticity explained the EBCC changes induced by cerebellar TMS in humans. In this paper, for the first time, it is shown how closed-loop simulations, using detailed cerebellar microcircuit models, can be successfully used to fit real experimental data sets. Thus, the changes of the model parameters in the different sessions of the protocol unveil how implicit microcircuit mechanisms can generate normal and altered associative behaviors.
... infants; Tonic neck reflex; Galant reflex; Truncal incurvation; Rooting reflex; Parachute reflex; Grasp reflex ... up if both hands are grasping your fingers. ROOTING REFLEX This reflex occurs when the baby's cheek ...
ERIC Educational Resources Information Center
Duncko, Roman; Cornwell, Brian; Cui, Lihong; Merikangas, Kathleen R.; Grillon, Christian
2007-01-01
The present study investigated the effects of acute stress exposure on learning performance in humans using analogs of two paradigms frequently used in animals. Healthy male participants were exposed to the cold pressor test (CPT) procedure, i.e., insertion of the dominant hand into ice water for 60 sec. Following the CPT or the control procedure,…
Lindquist, Derick H; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E
2013-09-01
Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink-conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4-9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 ms) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 ms) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus. Published by Elsevier Inc.
Lindquist, Derick H.; Sokoloff, Greta; Milner, Eric; Steinmetz, Joseph E.
2013-01-01
Exposure to ethanol in neonatal rats results in reduced neuronal numbers in the cerebellar cortex and deep nuclei of juvenile and adult animals. This reduction in cell numbers is correlated with impaired delay eyeblink conditioning (EBC), a simple motor learning task in which a neutral conditioned stimulus (CS; tone) is repeatedly paired with a co-terminating unconditioned stimulus (US; periorbital shock). Across training, cell populations in the interpositus (IP) nucleus model the temporal form of the eyeblink conditioned response (CR). The hippocampus, though not required for delay EBC, also shows learning-dependent increases in CA1 and CA3 unit activity. In the present study, rat pups were exposed to 0, 3, 4, or 5 mg/kg/day of ethanol during postnatal days (PD) 4–9. As adults, CR acquisition and timing were assessed during 6 training sessions of delay EBC with a short (280 msec) interstimulus interval (ISI; time from CS onset to US onset) followed by another 6 sessions with a long (880 msec) ISI. Neuronal activity was recorded in the IP and area CA1 during all 12 sessions. The high-dose rats learned the most slowly and, with the moderate-dose rats, produced the longest CR peak latencies over training to the short ISI. The low dose of alcohol impaired CR performance to the long ISI only. The 3E (3 mg/kg/day of ethanol) and 5E (5 mg/kg/day of ethanol) rats also showed slower-than-normal increases in learning-dependent excitatory unit activity in the IP and CA1. The 4E (4 mg/kg/day of ethanol) rats showed a higher rate of CR production to the long ISI and enhanced IP and CA1 activation when compared to the 3E and 5E rats. The results indicate that binge-like ethanol exposure in neonatal rats induces long-lasting, dose-dependent deficits in CR acquisition and timing and diminishes conditioning-related neuronal excitation in both the cerebellum and hippocampus. PMID:23871534
Impaired delay and trace eyeblink conditioning in school-age children with fetal alcohol syndrome.
Jacobson, Sandra W; Stanton, Mark E; Dodge, Neil C; Pienaar, Mariska; Fuller, Douglas S; Molteno, Christopher D; Meintjes, Ernesta M; Hoyme, H Eugene; Robinson, Luther K; Khaole, Nathaniel; Jacobson, Joseph L
2011-02-01
Classical eyeblink conditioning (EBC) involves contingent temporal pairing of a conditioned stimulus (e.g., tone) with an unconditioned stimulus (e.g., air puff). Impairment of EBC has been demonstrated in studies of alcohol-exposed animals and in children exposed prenatally at heavy levels. Fetal alcohol syndrome (FAS) was diagnosed by expert dysmorphologists in a large sample of Cape Coloured, South African children. Delay EBC was examined in a new sample of 63 children at 11.3 years, and trace conditioning in 32 of the same children at 12.8 years. At each age, 2 sessions of 50 trials each were administered on the same day; 2 more sessions the next day, for children not meeting criterion for conditioning. Six of 34 (17.6%) children born to heavy drinkers were diagnosed with FAS, 28 were heavily exposed nonsyndromal (HE), and 29 were nonexposed controls. Only 33.3% with FAS and 42.9% of HE met criterion for delay conditioning, compared with 79.3% of controls. The more difficult trace conditioning task was also highly sensitive to fetal alcohol exposure. Only 16.7% of the FAS and 21.4% of HE met criterion for trace conditioning, compared with 66.7% of controls. The magnitude of the effect of diagnostic group on trace conditioning was not greater than the effect on short delay conditioning, findings consistent with recent rat studies. Longer latency to onset and peak eyeblink CR in exposed children indicated poor timing and failure to blink in anticipation of the puff. Extended training resulted in some but not all of the children reaching criterion. These data showing alcohol-related delay and trace conditioning deficits extend our earlier findings of impaired EBC in 5-year-olds to school-age. Alcohol-related impairment in the cerebellar circuitry required for both forms of conditioning may be sufficient to account for the deficit in both tasks. Extended training was beneficial for some exposed children. EBC provides a well-characterized model system for assessment of degree of cerebellar-related learning and memory dysfunction in fetal alcohol exposed children. Copyright © 2010 by the Research Society on Alcoholism.
Impaired delay and trace eyeblink conditioning in school-age children with fetal alcohol syndrome
Jacobson, Sandra W.; Stanton, Mark E.; Dodge, Neil C.; Pienaar, Mariska; Fuller, Douglas S.; Molteno, Christopher D.; Meintjes, Ernesta M.; Hoyme, H. Eugene; Robinson, Luther K.; Khaole, Nathaniel; Jacobson, Joseph L.
2013-01-01
Background Classical eyeblink conditioning (EBC) involves contingent temporal pairing of a conditioned stimulus (e.g., tone) with an unconditioned stimulus (e.g., air puff). Impairment of EBC has been demonstrated in studies of alcohol-exposed animals and in children exposed prenatally at heavy levels. Methods Fetal alcohol syndrome (FAS) was diagnosed by expert dysmorphologists in a large sample of Cape Coloured, South African children. Delay EBC was examined in a new sample of 63 children at 11.3 years, and trace conditioning in 32 of the same children at 12.8 years. At each age, two sessions of 50 trials each were administered on the same day; two more sessions the next day, for children not meeting criterion for conditioning. Results 6 of 34 (17.6%) children born to heavy drinkers were diagnosed with FAS, 28 were heavily exposed nonsyndromal (HE), and 29 were non-exposed controls. Only 33.3% with FAS and 42.9% of HE met criterion for delay conditioning, compared with 79.3% of controls. The more difficult trace conditioning task was also highly sensitive to fetal alcohol exposure. Only 16.7% of the FAS and 21.4% of HE met criterion for trace conditioning, compared with 66.7% of controls. The magnitude of the effect of diagnostic group on trace conditioning was not greater than the effect on short delay conditioning, findings consistent with recent rat studies. Longer latency to onset and peak eyeblink CR in exposed children indicated poor timing and failure to blink in anticipation of the puff. Extended training resulted in some but not all of the children reaching criterion. Conclusions These data showing alcohol-related delay and trace conditioning deficits extend our earlier findings of impaired EBC in 5-year-olds to school-age. Alcohol-related impairment in the cerebellar circuitry required for both forms of conditioning may be sufficient to account for the deficit in both tasks. Extended training was beneficial for some exposed children. EBC provides a well-characterized model system for assessment of degree of cerebellar-related learning and memory dysfunction in fetal alcohol exposed children. PMID:21073484
Histamine-dependent behavioral response to methamphetamine in 12-month-old male mice
Acevedo, Summer F.; Raber, Jacob
2011-01-01
Methamphetamine (MA) use is a growing problem across the United States. Effects of MA include hyperactivity and increased anxiety. Using a mouse model system, we examined behavioral performance in the open field and elevated zero maze and shock-startle response of 12-month-old wild-type mice injected with MA once (1mg/kg) 30 min prior to behavioral testing. MA treatment resulted in behavioral sensitization in the open field, consistent with studies in younger mice. There was an increased activity in the elevated zero maze and an increased shock-startle response 30 and 60 min post-injection. Since histamine mediates some effects of MA in the brain, we assessed whether 12-month-old mice lacking histidine decarboxylase (Hdc−/−), the enzyme required to synthesize histamine, respond differently to MA than wild-type (Hdc+/+) mice. Compared to saline treatment, acute and repeated MA administration increased activity in the open field and measures of anxiety, though more so in Hdc−/− than Hdc+/+ mice. In the elevated zero maze, opposite effects of MA on activity and measures of anxiety were seen in Hdc+/+ mice. In contrast, MA similarly increased the shock-startle response in Hdc−/− and Hdc+/+ mice, compared to saline-treated genotype-matched mice. These results are similar to those in younger mice suggesting that the effects are not age-dependent. Overall, single or repeated MA treatment causes histamine-dependent changes in 12-month-old mice in the open field and elevated zero-maze, but not in the shock-startle response. PMID:21466792