Sample records for f states

  1. ATLAS F MISSILE FIELDS IN THE UNITED STATES, ATLAS F ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ATLAS F MISSILE FIELDS IN THE UNITED STATES, ATLAS F- TEXAS RING OF TWELVE - Dyess Air Force Base, Atlas F Missle Site S-8, Approximately 3 miles east of Winters, 500 feet southwest of Highway 177, Winters, Runnels County, TX

  2. The role of the F spin-orbit excited state in the F+H(2) and F+HD reactions

    NASA Astrophysics Data System (ADS)

    Tzeng, Yi-Ren

    In this dissertation we study the role of the F spin-orbit excited state (F*) in the F + H2 and F + HD reactions using quantum mechanical calculations. The calculations involve multiple potential energy surfaces (the Alexander-Stark-Werner, or ASW, PESs), and include an accurate treatment of the couplings (non-adiabatic, spin-orbit, and Coriolis) among all three electronic states. For the F + H2 reaction, we calculate the center-of-mass differential cross sections and laboratory-frame angular distributions at the four different combinations of collision energies and hydrogen isotopomer investigated in the experiments of Neumark et al. [J. Chem. Phys., 82, 3045 (1985)]. Comparisons with the calculations on the Stark-Werner (SW) and Hartke-Stark-Werner (HSW) PESs, which are limited to the lowest electronically adiabatic state, show that non-adiabatic couplings greatly reduce backward scattering. Surprisingly, we find the shapes of both the CM DCSs and LAB ADs are insensitive to the fraction of F* presented in the F beam. For the F + HD reaction, we calculate the excitation functions and product translational energy distribution functions to study the reactivity of F*. Comparisons with the experiment by Liu and co-workers [J. Chem. Phys., 113, 3633 (2000)] confirm the relatively low reactivity of spin-orbit excited state (F*) atoms. Excellent agreement with the experiment is obtained under the assumption that the F*:F concentration ratio equals 0.16:0.84 in the molecular beam, which corresponds to a thermal equilibrium of the two spin-orbit states at the experimental temperature (600K). From the accurate calculation of the F* reactivity and its relatively small contribution to the overall reactivity of the reaction, we attribute discrepancies between calculation and experiment to an inadequacy in the simulation of the reactivity of the F ground state, likely a result of the residual errors in the ground electronic potential energy surface.

  3. NiF2/NaF:CaF2/Ca Solid-State High-Temperature Battery Cells

    NASA Technical Reports Server (NTRS)

    West, William; Whitacre, Jay; DelCastillo, Linda

    2009-01-01

    Experiments and theoretical study have demonstrated the promise of all-solid-state, high-temperature electrochemical battery cells based on NiF2 as the active cathode material, CaF2 doped with NaF as the electrolyte material, and Ca as the active anode material. These and other all-solid-state cells have been investigated in a continuing effort to develop batteries for instruments that must operate in environments much hotter than can be withstood by ordinary commercially available batteries. Batteries of this type are needed for exploration of Venus (where the mean surface temperature is about 450 C), and could be used on Earth for such applications as measuring physical and chemical conditions in geothermal wells and oil wells. All-solid-state high-temperature power cells are sought as alternatives to other high-temperature power cells based, variously, on molten anodes and cathodes or molten eutectic salt electrolytes. Among the all-solid-state predecessors of the present NiF2/NaF:CaF2/Ca cells are those described in "Solid-State High-Temperature Power Cells" (NPO-44396), NASA Tech Briefs, Vol. 32, No. 5 (May 2008), page 40. In those cells, the active cathode material is FeS2, the electrolyte material is a crystalline solid solution of equimolar amounts of Li3PO4 and LiSiO4, and the active anode material is Li contained within an alloy that remains solid in the intended high operational temperature range.

  4. Ab initio investigation of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF

    NASA Astrophysics Data System (ADS)

    Koukounas, Constantine; Kardahakis, Stavros; Mavridis, Aristides

    2004-06-01

    The electronic structure of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF was examined by multireference and coupled cluster methods in conjunction with extended basis sets. For a total of 34 states we report binding energies, spectroscopic constants, dipole moments, separation energies, and charge distributions. In addition, for all states we have constructed full potential curves. The suggested ground state binding energies of TiF(X 4Φ), VF(X 5Π), CrF(X 6Σ+), and MnF(X 7Σ+) are 135, 130, 110, and 108 kcal/mol, respectively, with first excited states A 4Σ-, A 5Δ, A 6Π, and a 5Σ+ about 2, 3, 23, and 19 kcal/mol higher. In essence all our numerical findings are in harmony with experimental results. For all molecules and states studied it is clear that the in situ metal atom (M) shows highly ionic character, therefore the binding is described realistically by M+F-.

  5. Ab initio investigation of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF.

    PubMed

    Koukounas, Constantine; Kardahakis, Stavros; Mavridis, Aristides

    2004-06-22

    The electronic structure of the ground and low-lying states of the diatomic fluorides TiF, VF, CrF, and MnF was examined by multireference and coupled cluster methods in conjunction with extended basis sets. For a total of 34 states we report binding energies, spectroscopic constants, dipole moments, separation energies, and charge distributions. In addition, for all states we have constructed full potential curves. The suggested ground state binding energies of TiF(X (4)Phi), VF(X (5)Pi), CrF(X (6)Sigma(+)), and MnF(X (7)Sigma(+)) are 135, 130, 110, and 108 kcal/mol, respectively, with first excited states A (4)Sigma(-), A (5)Delta, A (6)Pi, and a (5)Sigma(+) about 2, 3, 23, and 19 kcal/mol higher. In essence all our numerical findings are in harmony with experimental results. For all molecules and states studied it is clear that the in situ metal atom (M) shows highly ionic character, therefore the binding is described realistically by M(+)F(-). (c) 2004 American Institute of Physics.

  6. Toward Rotational State-Selective Photoionization of ThF+ Ions

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Ng, Kia Boon; Gresh, Dan; Cairncross, William; Grau, Matt; Ni, Yiqi; Cornell, Eric; Ye, Jun

    2016-06-01

    ThF+ has been chosen to replace HfF+ for a second-generation measurement of the electric dipole moment of the electron (eEDM). Compared to the currently running HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time [1]; (ii) its effective electric field (35 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity [2]; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states [3]. In this talk, we first present our strategy of preparing and utilizing core-nonpenetrating Rydberg states for rotational state-selective ionization. Then, we report spectroscopic data of laser-induced fluorescence of neutral ThF, which provides critical information for multi-photon ionization spectroscopy. [1] D. N. Gresh, K. C. Cossel, Y. Zhou, J. Ye, E. A. Cornell, Journal of Molecular Spectroscopy, 319 (2016), 1-9 [2] M. Denis, M. S. Nørby, H. J. A. Jensen, A. S. P. Gomes, M. K. Nayak, S. Knecht, T. Fleig, New Journal of Physics, 17 (2015) 043005. [3] Z. J. Jakubek, R. W. Field, Journal of Molecular Spectroscopy 205 (2001) 197-220.

  7. Neutron unbound states in 28 Ne and 25 F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith, J. K.; Baumann, T.; Brown, B. A.

    2012-11-01

    Unbound states in Ne-28 and F-25 were populated in the reaction of a 102 MeV/nucleon Na-29 beam on a beryllium target. The measured decay energy of 32(22) keV in the Ne-27+n system corresponds to an unbound excited state in Ne-28 at 3.86(11) MeV. This is the first measured unbound state of Ne-28. The decay energy of the F-24+n system was measured as 300(170) keV. This places the second measured unbound state of F-25 at 4.66(17) MeV.

  8. Potential energy surfaces of the electronic states of Li{sub 2}F and Li{sub 2}F{sup −}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhowmick, Somnath; Hagebaum-Reignier, Denis, E-mail: denis.hagebaum-reignier@univ-amu.fr; Jeung, Gwang-Hi

    2016-07-21

    The potential energy surfaces of the ground and low-lying excited states for the insertion reaction of atomic fluorine (F) and fluoride (F{sup −}) into the dilithium (Li{sub 2}) molecule have been investigated. We have carried out explicitly correlated multi-reference configuration interaction (MRCI-F12) calculations using Dunning’s augmented correlation-consistent basis sets. For the neutral system, the insertion of F into Li{sub 2} proceeds via a harpoon-type mechanism on the ground state surface, involving a covalent state and an ionic state which avoid each other at long distance. A detailed analysis of the changes in the dipole moment along the reaction coordinate revealsmore » multiple avoided crossings among the excited states and shows that the charge-transfer processes play a pivotal role for the stabilization of the low-lying electronic states of Li{sub 2}F. For the anionic system, which is studied for the first time, the insertion of F{sup −} is barrierless for many states and there is a gradual charge transfer from F{sup −} to Li{sub 2} along the reaction path. We also report the optimized parameters and the spectroscopic properties of the five lowest states of the neutral and seven lowest states of the anionic systems, which are strongly stabilized with respect to their respective Li{sub 2} + F/F{sup −} asymptotes. The observed barrierless insertion mechanisms for both systems make them good candidates for investigation under the ultracold regime.« less

  9. On the Ground Electronic States of TiF and TiCl

    NASA Astrophysics Data System (ADS)

    Boldyrev, Alexander I.; Simons, Jack

    1998-04-01

    The low-lying electronic states of TiF and TiCl have been studied using high levelab initiotechniques. Both are found to have two low-lying excited electronic states,4Σ-(0.080 eV (TiF) and 0.236 eV (TiCl)) and2Δ (0.266 eV (TiF) and 0.348 eV (TiCl)), and4Φ ground states at the highest CCSD(T)/6-311++G(2d,2f) level of theory. Our theoretical predictions of4Φ ground electronic states for TiF and TiCl support recent experimental findings by Ram and Bernath, and our calculated bond lengths and vibrational frequencies are in reasonable agreement with their experimental data.

  10. Broadband Electrophysiological Dynamics Contribute to Global Resting-State fMRI Signal.

    PubMed

    Wen, Haiguang; Liu, Zhongming

    2016-06-01

    Spontaneous activity observed with resting-state fMRI is used widely to uncover the brain's intrinsic functional networks in health and disease. Although many networks appear modular and specific, global and nonspecific fMRI fluctuations also exist and both pose a challenge and present an opportunity for characterizing and understanding brain networks. Here, we used a multimodal approach to investigate the neural correlates to the global fMRI signal in the resting state. Like fMRI, resting-state power fluctuations of broadband and arrhythmic, or scale-free, macaque electrocorticography and human magnetoencephalography activity were correlated globally. The power fluctuations of scale-free human electroencephalography (EEG) were coupled with the global component of simultaneously acquired resting-state fMRI, with the global hemodynamic change lagging the broadband spectral change of EEG by ∼5 s. The levels of global and nonspecific fluctuation and synchronization in scale-free population activity also varied across and depended on arousal states. Together, these results suggest that the neural origin of global resting-state fMRI activity is the broadband power fluctuation in scale-free population activity observable with macroscopic electrical or magnetic recordings. Moreover, the global fluctuation in neurophysiological and hemodynamic activity is likely modulated through diffuse neuromodulation pathways that govern arousal states and vigilance levels. This study provides new insights into the neural origin of resting-state fMRI. Results demonstrate that the broadband power fluctuation of scale-free electrophysiology is globally synchronized and directly coupled with the global component of spontaneous fMRI signals, in contrast to modularly synchronized fluctuations in oscillatory neural activity. These findings lead to a new hypothesis that scale-free and oscillatory neural processes account for global and modular patterns of functional connectivity observed

  11. On the Ground Electronic States of TiF and TiCl

    PubMed

    Boldyrev; Simons

    1998-04-01

    The low-lying electronic states of TiF and TiCl have been studied using high level ab initio techniques. Both are found to have two low-lying excited electronic states, 4Sigma- (0.080 eV (TiF) and 0.236 eV (TiCl)) and 2Delta (0.266 eV (TiF) and 0.348 eV (TiCl)), and 4Phi ground states at the highest CCSD(T)/6-311++G(2d,2f) level of theory. Our theoretical predictions of 4Phi ground electronic states for TiF and TiCl support recent experimental findings by Ram and Bernath, and our calculated bond lengths and vibrational frequencies are in reasonable agreement with their experimental data. Copyright 1998 Academic Press.

  12. Line list for the ground state of CaF

    NASA Astrophysics Data System (ADS)

    Hou, Shilin; Bernath, Peter F.

    2018-05-01

    The molecular potential energy function and electronic dipole moment function for the ground state of CaF were studied with MRCI, ACPF, and RCCSD(T) ab initio calculations. The RCCSD(T) potential function reproduces the experimental vibrational intervals to within ∼2 cm-1. The RCCSD(T) dipole moment at the equilibrium internuclear separation agrees well with the experimental value. Over a wide range of internuclear separations, far beyond the range associated with the observed spectra, the ab initio dipole moment functions are similar and highly linear. An extended Morse oscillator (EMO) potential function was also obtained by fitting the observed lines of the laboratory vibration-rotation and pure rotation spectra of the 40CaF X2Σ+ ground state. The fitted potential reproduces the observed transitions (v ≤ 8, N ≤ 121, Δv = 0, 1) within their experimental uncertainties. With this EMO potential and the RCCSD(T) dipole moment function, line lists for 40CaF, 42CaF, 43CaF, 44CaF, 46CaF, and 48CaF were computed for v ≤ 10, N ≤ 121, Δv = 0-10. The calculated emission spectra are in good agreement with an observed laboratory spectrum of CaF at a sample temperature of 1873 K.

  13. Clinical Resting-state fMRI in the Preoperative Setting

    PubMed Central

    Lee, Megan H.; Miller-Thomas, Michelle M.; Benzinger, Tammie L.; Marcus, Daniel S.; Hacker, Carl D.; Leuthardt, Eric C.; Shimony, Joshua S.

    2017-01-01

    The purpose of this manuscript is to provide an introduction to resting-state functional magnetic resonance imaging (RS-fMRI) and to review the current application of this new and powerful technique in the preoperative setting using our institute’s extensive experience. RS-fMRI has provided important insights into brain physiology and is an increasingly important tool in the clinical setting. As opposed to task-based functional MRI wherein the subject performs a task while being scanned, RS-fMRI evaluates low-frequency fluctuations in the blood oxygen level dependent (BOLD) signal while the subject is at rest. Multiple resting state networks (RSNs) have been identified, including the somatosensory, language, and visual networks, which are of primary importance for presurgical planning. Over the past 4 years, we have performed over 300 RS-fMRI examinations in the clinical setting and these have been used to localize eloquent somatosensory and language cortices before brain tumor resection. RS-fMRI is particularly useful in this setting for patients who are unable to cooperate with the task-based paradigm, such as young children or those who are sedated, paretic, or aphasic. Although RS-fMRI is still investigational, our experience indicates that this method is ready for clinical application in the presurgical setting. PMID:26848556

  14. Maintenance and Representation of Mind Wandering during Resting-State fMRI.

    PubMed

    Chou, Ying-Hui; Sundman, Mark; Whitson, Heather E; Gaur, Pooja; Chu, Mei-Lan; Weingarten, Carol P; Madden, David J; Wang, Lihong; Kirste, Imke; Joliot, Marc; Diaz, Michele T; Li, Yi-Ju; Song, Allen W; Chen, Nan-Kuei

    2017-01-12

    Major advances in resting-state functional magnetic resonance imaging (fMRI) techniques in the last two decades have provided a tool to better understand the functional organization of the brain both in health and illness. Despite such developments, characterizing regulation and cerebral representation of mind wandering, which occurs unavoidably during resting-state fMRI scans and may induce variability of the acquired data, remains a work in progress. Here, we demonstrate that a decrease or decoupling in functional connectivity involving the caudate nucleus, insula, medial prefrontal cortex and other domain-specific regions was associated with more sustained mind wandering in particular thought domains during resting-state fMRI. Importantly, our findings suggest that temporal and between-subject variations in functional connectivity of above-mentioned regions might be linked with the continuity of mind wandering. Our study not only provides a preliminary framework for characterizing the maintenance and cerebral representation of different types of mind wandering, but also highlights the importance of taking mind wandering into consideration when studying brain organization with resting-state fMRI in the future.

  15. State-space model with deep learning for functional dynamics estimation in resting-state fMRI.

    PubMed

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2016-04-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. State-space model with deep learning for functional dynamics estimation in resting-state fMRI

    PubMed Central

    Suk, Heung-Il; Wee, Chong-Yaw; Lee, Seong-Whan; Shen, Dinggang

    2017-01-01

    Studies on resting-state functional Magnetic Resonance Imaging (rs-fMRI) have shown that different brain regions still actively interact with each other while a subject is at rest, and such functional interaction is not stationary but changes over time. In terms of a large-scale brain network, in this paper, we focus on time-varying patterns of functional networks, i.e., functional dynamics, inherent in rs-fMRI, which is one of the emerging issues along with the network modelling. Specifically, we propose a novel methodological architecture that combines deep learning and state-space modelling, and apply it to rs-fMRI based Mild Cognitive Impairment (MCI) diagnosis. We first devise a Deep Auto-Encoder (DAE) to discover hierarchical non-linear functional relations among regions, by which we transform the regional features into an embedding space, whose bases are complex functional networks. Given the embedded functional features, we then use a Hidden Markov Model (HMM) to estimate dynamic characteristics of functional networks inherent in rs-fMRI via internal states, which are unobservable but can be inferred from observations statistically. By building a generative model with an HMM, we estimate the likelihood of the input features of rs-fMRI as belonging to the corresponding status, i.e., MCI or normal healthy control, based on which we identify the clinical label of a testing subject. In order to validate the effectiveness of the proposed method, we performed experiments on two different datasets and compared with state-of-the-art methods in the literature. We also analyzed the functional networks learned by DAE, estimated the functional connectivities by decoding hidden states in HMM, and investigated the estimated functional connectivities by means of a graph-theoretic approach. PMID:26774612

  17. Solid-state structure of a Li/F carbenoid: pentafluoroethyllithium.

    PubMed

    Waerder, Benedikt; Steinhauer, Simon; Neumann, Beate; Stammler, Hans-Georg; Mix, Andreas; Vishnevskiy, Yury V; Hoge, Berthold; Mitzel, Norbert W

    2014-10-20

    Lithium carbenoids are versatile compounds for synthesis owing to their intriguing ambiphilic behavior. Although this class of compounds has been known for several years, few solid-state structures exist because of their high reactivity and often low thermal stability. Using cryo X-ray techniques, we were now able to elucidate the first solid-state structure of a Li/F alkyl carbenoid, pentafluoroethyllithium (LiC2F5), finally yielding a prototype for investigating structure-reactivity relationships for this class of molecules. The compound forms a diethyl ether-solvated dimer bridged by a rare C-F-Li link. Complementary NMR spectroscopy studies in solution show dynamic processes and indicate rapid exchange of starting material and product. Theoretical investigations help to understand the formation of the observed unusual structural motif. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Dynamic Filtering Improves Attentional State Prediction with fNIRS

    NASA Technical Reports Server (NTRS)

    Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.

    2016-01-01

    Brain activity can predict a person's level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise - thereby increasing such state prediction accuracy - remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% +/- 6% versus 72% +/- 15%).

  19. A hybrid method for classifying cognitive states from fMRI data.

    PubMed

    Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R

    2015-09-01

    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.

  20. DPARSF: A MATLAB Toolbox for "Pipeline" Data Analysis of Resting-State fMRI.

    PubMed

    Chao-Gan, Yan; Yu-Feng, Zang

    2010-01-01

    Resting-state functional magnetic resonance imaging (fMRI) has attracted more and more attention because of its effectiveness, simplicity and non-invasiveness in exploration of the intrinsic functional architecture of the human brain. However, user-friendly toolbox for "pipeline" data analysis of resting-state fMRI is still lacking. Based on some functions in Statistical Parametric Mapping (SPM) and Resting-State fMRI Data Analysis Toolkit (REST), we have developed a MATLAB toolbox called Data Processing Assistant for Resting-State fMRI (DPARSF) for "pipeline" data analysis of resting-state fMRI. After the user arranges the Digital Imaging and Communications in Medicine (DICOM) files and click a few buttons to set parameters, DPARSF will then give all the preprocessed (slice timing, realign, normalize, smooth) data and results for functional connectivity, regional homogeneity, amplitude of low-frequency fluctuation (ALFF), and fractional ALFF. DPARSF can also create a report for excluding subjects with excessive head motion and generate a set of pictures for easily checking the effect of normalization. In addition, users can also use DPARSF to extract time courses from regions of interest.

  1. Resting-state fMRI and social cognition: An opportunity to connect.

    PubMed

    Doruyter, Alex; Groenewold, Nynke A; Dupont, Patrick; Stein, Dan J; Warwick, James M

    2017-09-01

    Many psychiatric disorders are characterized by altered social cognition. The importance of social cognition has previously been recognized by the National Institute of Mental Health Research Domain Criteria project, in which it features as a core domain. Social task-based functional magnetic resonance imaging (fMRI) currently offers the most direct insight into how the brain processes social information; however, resting-state fMRI may be just as important in understanding the biology and network nature of social processing. Resting-state fMRI allows researchers to investigate the functional relationships between brain regions in a neutral state: so-called resting functional connectivity (RFC). There is evidence that RFC is predictive of how the brain processes information during social tasks. This is important because it shifts the focus from possibly context-dependent aberrations to context-independent aberrations in functional network architecture. Rather than being analysed in isolation, the study of resting-state brain networks shows promise in linking results of task-based fMRI results, structural connectivity, molecular imaging findings, and performance measures of social cognition-which may prove crucial in furthering our understanding of the social brain. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Dynamic filtering improves attentional state prediction with fNIRS

    PubMed Central

    Harrivel, Angela R.; Weissman, Daniel H.; Noll, Douglas C.; Huppert, Theodore; Peltier, Scott J.

    2016-01-01

    Brain activity can predict a person’s level of engagement in an attentional task. However, estimates of brain activity are often confounded by measurement artifacts and systemic physiological noise. The optimal method for filtering this noise – thereby increasing such state prediction accuracy – remains unclear. To investigate this, we asked study participants to perform an attentional task while we monitored their brain activity with functional near infrared spectroscopy (fNIRS). We observed higher state prediction accuracy when noise in the fNIRS hemoglobin [Hb] signals was filtered with a non-stationary (adaptive) model as compared to static regression (84% ± 6% versus 72% ± 15%). PMID:27231602

  3. Investigating the capability of ToF-SIMS to determine the oxidation state of Ce

    NASA Astrophysics Data System (ADS)

    Seed Ahmed, H. A. A.; Swart, H. C.; Kroon, R. E.

    2018-04-01

    The capability of time of flight secondary ion mass spectrometry (ToF-SIMS) to determine the oxidation state of Ce ions doped in a phosphor was investigated. Two samples of SiO2:Ce (4 mol%) with known Ce3+/Ce4+ relative concentrations were subjected to ToF-SIMS measurements. The spectra were very similar and no significant differences in the relative peak intensities were observed that would readily allow one to distinguish Ce3+ from Ce4+. Although ToF-SIMS was therefore not useful to distinguish the charge state of Ce ions doped in this phosphor material, the idea in principle was also tested on two other samples, namely CeF3 and CeF4 These contain Ce as part of the host (i.e. much higher concentration) and are fluorides, which is significant because ToF-SIMS has previously been reported to be able to distinguish Eu2+ from Eu3+ in Eu doped Sr5(PO4)3F phosphor. The spectrum of CeF4 contained a small peak related to Ce4+ which was not observed in the CeF3 spectrum, yet the peak related to the Ce3+ ions was found to be much more intense in the spectrum of CeF4 than CeF3, showing that the ToF-SIMS signals cannot be directly interpreted as retaining the charge state of the ions in the original material. Nevertheless, the significant differences in the Ce-related peaks in the ToF-SIMS spectra from CeF3 and CeF4 show that the charge state of Ce may be distinguished. This study shows that while in principle ToF-SIMS may be used to distinguish the charge state of Ce ions, this depends on the sample and it would not be easy to interpret the spectra without a standard or reference.

  4. The Whole-Brain "Global" Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism.

    PubMed

    Thompson, Garth J; Riedl, Valentin; Grimmer, Timo; Drzezga, Alexander; Herman, Peter; Hyder, Fahmeed

    2016-07-01

    The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI "nuisance signals" were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a "nuisance signal," also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states.

  5. Concurrent tACS-fMRI Reveals Causal Influence of Power Synchronized Neural Activity on Resting State fMRI Connectivity.

    PubMed

    Bächinger, Marc; Zerbi, Valerio; Moisa, Marius; Polania, Rafael; Liu, Quanying; Mantini, Dante; Ruff, Christian; Wenderoth, Nicole

    2017-05-03

    Resting state fMRI (rs-fMRI) is commonly used to study the brain's intrinsic neural coupling, which reveals specific spatiotemporal patterns in the form of resting state networks (RSNs). It has been hypothesized that slow rs-fMRI oscillations (<0.1 Hz) are driven by underlying electrophysiological rhythms that typically occur at much faster timescales (>5 Hz); however, causal evidence for this relationship is currently lacking. Here we measured rs-fMRI in humans while applying transcranial alternating current stimulation (tACS) to entrain brain rhythms in left and right sensorimotor cortices. The two driving tACS signals were tailored to the individual's α rhythm (8-12 Hz) and fluctuated in amplitude according to a 1 Hz power envelope. We entrained the left versus right hemisphere in accordance to two different coupling modes where either α oscillations were synchronized between hemispheres (phase-synchronized tACS) or the slower oscillating power envelopes (power-synchronized tACS). Power-synchronized tACS significantly increased rs-fMRI connectivity within the stimulated RSN compared with phase-synchronized or no tACS. This effect outlasted the stimulation period and tended to be more effective in individuals who exhibited a naturally weak interhemispheric coupling. Using this novel approach, our data provide causal evidence that synchronized power fluctuations contribute to the formation of fMRI-based RSNs. Moreover, our findings demonstrate that the brain's intrinsic coupling at rest can be selectively modulated by choosing appropriate tACS signals, which could lead to new interventions for patients with altered rs-fMRI connectivity. SIGNIFICANCE STATEMENT Resting state fMRI (rs-fMRI) has become an important tool to estimate brain connectivity. However, relatively little is known about how slow hemodynamic oscillations measured with fMRI relate to electrophysiological processes. It was suggested that slowly fluctuating power envelopes of electrophysiological

  6. Connectivity changes after laser ablation: Resting-state fMRI.

    PubMed

    Boerwinkle, Varina L; Vedantam, Aditya; Lam, Sandi; Wilfong, Angus A; Curry, Daniel J

    2018-05-01

    Resting-state functional magnetic resonance imaging (rsfMRI) is emerging as a useful tool in the multimodal assessment of patients with epilepsy. In pediatric patients who cannot perform task-based fMRI, rsfMRI may present an adjunct and alternative. Although changes in brain activation during task-based fMRI have been described after surgery for epilepsy, there is limited data on the role of postoperative rsfMRI. In this short review, we discuss the role of postoperative rsfMRI after laser ablation of seizure foci. By establishing standardized anesthesia protocols and imaging parameters, we have been able to perform serial rsfMRI at postoperative follow-up. The development of in-house software that can merge rsfMRI images to surgical navigation systems has allowed us to enhance the clinical applications of this technique. Resting-state fMRI after laser ablation has the potential to identify changes in connectivity, localize new seizure foci, and guide antiepileptic therapy. In our experience, rsfMRI complements conventional MR imaging and task-based fMRI for the evaluation of patients with seizure recurrence after laser ablation, and represents a potential noninvasive biomarker for functional connectivity. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  7. Large-scale DCMs for resting-state fMRI.

    PubMed

    Razi, Adeel; Seghier, Mohamed L; Zhou, Yuan; McColgan, Peter; Zeidman, Peter; Park, Hae-Jeong; Sporns, Olaf; Rees, Geraint; Friston, Karl J

    2017-01-01

    This paper considers the identification of large directed graphs for resting-state brain networks based on biophysical models of distributed neuronal activity, that is, effective connectivity . This identification can be contrasted with functional connectivity methods based on symmetric correlations that are ubiquitous in resting-state functional MRI (fMRI). We use spectral dynamic causal modeling (DCM) to invert large graphs comprising dozens of nodes or regions. The ensuing graphs are directed and weighted, hence providing a neurobiologically plausible characterization of connectivity in terms of excitatory and inhibitory coupling. Furthermore, we show that the use of to discover the most likely sparse graph (or model) from a parent (e.g., fully connected) graph eschews the arbitrary thresholding often applied to large symmetric (functional connectivity) graphs. Using empirical fMRI data, we show that spectral DCM furnishes connectivity estimates on large graphs that correlate strongly with the estimates provided by stochastic DCM. Furthermore, we increase the efficiency of model inversion using functional connectivity modes to place prior constraints on effective connectivity. In other words, we use a small number of modes to finesse the potentially redundant parameterization of large DCMs. We show that spectral DCM-with functional connectivity priors-is ideally suited for directed graph theoretic analyses of resting-state fMRI. We envision that directed graphs will prove useful in understanding the psychopathology and pathophysiology of neurodegenerative and neurodevelopmental disorders. We will demonstrate the utility of large directed graphs in clinical populations in subsequent reports, using the procedures described in this paper.

  8. Spatially Regularized Machine Learning for Task and Resting-state fMRI

    PubMed Central

    Song, Xiaomu; Panych, Lawrence P.; Chen, Nan-kuei

    2015-01-01

    Background Reliable mapping of brain function across sessions and/or subjects in task- and resting-state has been a critical challenge for quantitative fMRI studies although it has been intensively addressed in the past decades. New Method A spatially regularized support vector machine (SVM) technique was developed for the reliable brain mapping in task- and resting-state. Unlike most existing SVM-based brain mapping techniques, which implement supervised classifications of specific brain functional states or disorders, the proposed method performs a semi-supervised classification for the general brain function mapping where spatial correlation of fMRI is integrated into the SVM learning. The method can adapt to intra- and inter-subject variations induced by fMRI nonstationarity, and identify a true boundary between active and inactive voxels, or between functionally connected and unconnected voxels in a feature space. Results The method was evaluated using synthetic and experimental data at the individual and group level. Multiple features were evaluated in terms of their contributions to the spatially regularized SVM learning. Reliable mapping results in both task- and resting-state were obtained from individual subjects and at the group level. Comparison with Existing Methods A comparison study was performed with independent component analysis, general linear model, and correlation analysis methods. Experimental results indicate that the proposed method can provide a better or comparable mapping performance at the individual and group level. Conclusions The proposed method can provide accurate and reliable mapping of brain function in task- and resting-state, and is applicable to a variety of quantitative fMRI studies. PMID:26470627

  9. A SVM-based quantitative fMRI method for resting-state functional network detection.

    PubMed

    Song, Xiaomu; Chen, Nan-kuei

    2014-09-01

    Resting-state functional magnetic resonance imaging (fMRI) aims to measure baseline neuronal connectivity independent of specific functional tasks and to capture changes in the connectivity due to neurological diseases. Most existing network detection methods rely on a fixed threshold to identify functionally connected voxels under the resting state. Due to fMRI non-stationarity, the threshold cannot adapt to variation of data characteristics across sessions and subjects, and generates unreliable mapping results. In this study, a new method is presented for resting-state fMRI data analysis. Specifically, the resting-state network mapping is formulated as an outlier detection process that is implemented using one-class support vector machine (SVM). The results are refined by using a spatial-feature domain prototype selection method and two-class SVM reclassification. The final decision on each voxel is made by comparing its probabilities of functionally connected and unconnected instead of a threshold. Multiple features for resting-state analysis were extracted and examined using an SVM-based feature selection method, and the most representative features were identified. The proposed method was evaluated using synthetic and experimental fMRI data. A comparison study was also performed with independent component analysis (ICA) and correlation analysis. The experimental results show that the proposed method can provide comparable or better network detection performance than ICA and correlation analysis. The method is potentially applicable to various resting-state quantitative fMRI studies. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Whole-Brain “Global” Signal from Resting State fMRI as a Potential Biomarker of Quantitative State Changes in Glucose Metabolism

    PubMed Central

    Thompson, Garth J.; Grimmer, Timo; Drzezga, Alexander; Herman, Peter

    2016-01-01

    Abstract The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Functional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this was lost if R-fMRI “nuisance signals” were regressed before FCD calculation. Average correlation with the mean R-fMRI signal across the whole brain, generally regarded as a “nuisance signal,” also showed a shift similar to the baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent region-to-region differences overwhelming the differences between normal physiological states. As most previous studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states. PMID:27029438

  11. Cortical connective field estimates from resting state fMRI activity.

    PubMed

    Gravel, Nicolás; Harvey, Ben; Nordhjem, Barbara; Haak, Koen V; Dumoulin, Serge O; Renken, Remco; Curčić-Blake, Branislava; Cornelissen, Frans W

    2014-01-01

    One way to study connectivity in visual cortical areas is by examining spontaneous neural activity. In the absence of visual input, such activity remains shaped by the underlying neural architecture and, presumably, may still reflect visuotopic organization. Here, we applied population connective field (CF) modeling to estimate the spatial profile of functional connectivity in the early visual cortex during resting state functional magnetic resonance imaging (RS-fMRI). This model-based analysis estimates the spatial integration between blood-oxygen level dependent (BOLD) signals in distinct cortical visual field maps using fMRI. Just as population receptive field (pRF) mapping predicts the collective neural activity in a voxel as a function of response selectivity to stimulus position in visual space, CF modeling predicts the activity of voxels in one visual area as a function of the aggregate activity in voxels in another visual area. In combination with pRF mapping, CF locations on the cortical surface can be interpreted in visual space, thus enabling reconstruction of visuotopic maps from resting state data. We demonstrate that V1 ➤ V2 and V1 ➤ V3 CF maps estimated from resting state fMRI data show visuotopic organization. Therefore, we conclude that-despite some variability in CF estimates between RS scans-neural properties such as CF maps and CF size can be derived from resting state data.

  12. Effect on State Authorization of HSWA Section 3006(f): Availability of Information

    EPA Pesticide Factsheets

    This document expands on the discussion of Section 3006(f) in the preamble to the RCRA Codification Rule and explains how EPA intends to determine whether States have satisfied the Section 3006(f) standards.

  13. Estimation of Dynamic Sparse Connectivity Patterns From Resting State fMRI.

    PubMed

    Cai, Biao; Zille, Pascal; Stephen, Julia M; Wilson, Tony W; Calhoun, Vince D; Wang, Yu Ping

    2018-05-01

    Functional connectivity (FC) estimated from functional magnetic resonance imaging (fMRI) time series, especially during resting state periods, provides a powerful tool to assess human brain functional architecture in health, disease, and developmental states. Recently, the focus of connectivity analysis has shifted toward the subnetworks of the brain, which reveals co-activating patterns over time. Most prior works produced a dense set of high-dimensional vectors, which are hard to interpret. In addition, their estimations to a large extent were based on an implicit assumption of spatial and temporal stationarity throughout the fMRI scanning session. In this paper, we propose an approach called dynamic sparse connectivity patterns (dSCPs), which takes advantage of both matrix factorization and time-varying fMRI time series to improve the estimation power of FC. The feasibility of analyzing dynamic FC with our model is first validated through simulated experiments. Then, we use our framework to measure the difference between young adults and children with real fMRI data set from the Philadelphia Neurodevelopmental Cohort (PNC). The results from the PNC data set showed significant FC differences between young adults and children in four different states. For instance, young adults had reduced connectivity between the default mode network and other subnetworks, as well as hyperconnectivity within the visual system in states 1 and 3, and hypoconnectivity in state 2. Meanwhile, they exhibited temporal correlation patterns that changed over time within functional subnetworks. In addition, the dSCPs model indicated that older people tend to spend more time within a relatively connected FC pattern. Overall, the proposed method provides a valid means to assess dynamic FC, which could facilitate the study of brain networks.

  14. Resting-State Seed-Based Analysis: An Alternative to Task-Based Language fMRI and Its Laterality Index.

    PubMed

    Smitha, K A; Arun, K M; Rajesh, P G; Thomas, B; Kesavadas, C

    2017-06-01

    Language is a cardinal function that makes human unique. Preservation of language function poses a great challenge for surgeons during resection. The aim of the study was to assess the efficacy of resting-state fMRI in the lateralization of language function in healthy subjects to permit its further testing in patients who are unable to perform task-based fMRI. Eighteen healthy right-handed volunteers were prospectively evaluated with resting-state fMRI and task-based fMRI to assess language networks. The laterality indices of Broca and Wernicke areas were calculated by using task-based fMRI via a voxel-value approach. We adopted seed-based resting-state fMRI connectivity analysis together with parameters such as amplitude of low-frequency fluctuation and fractional amplitude of low-frequency fluctuation (fALFF). Resting-state fMRI connectivity maps for language networks were obtained from Broca and Wernicke areas in both hemispheres. We performed correlation analysis between the laterality index and the z scores of functional connectivity, amplitude of low-frequency fluctuation, and fALFF. Pearson correlation analysis between signals obtained from the z score of fALFF and the laterality index yielded a correlation coefficient of 0.849 ( P < .05). Regression analysis of the fALFF with the laterality index yielded an R 2 value of 0.721, indicating that 72.1% of the variance in the laterality index of task-based fMRI could be predicted from the fALFF of resting-state fMRI. The present study demonstrates that fALFF can be used as an alternative to task-based fMRI for assessing language laterality. There was a strong positive correlation between the fALFF of the Broca area of resting-state fMRI with the laterality index of task-based fMRI. Furthermore, we demonstrated the efficacy of fALFF for predicting the laterality of task-based fMRI. © 2017 by American Journal of Neuroradiology.

  15. On consciousness, resting state fMRI, and neurodynamics

    PubMed Central

    2010-01-01

    Background During the last years, functional magnetic resonance imaging (fMRI) of the brain has been introduced as a new tool to measure consciousness, both in a clinical setting and in a basic neurocognitive research. Moreover, advanced mathematical methods and theories have arrived the field of fMRI (e.g. computational neuroimaging), and functional and structural brain connectivity can now be assessed non-invasively. Results The present work deals with a pluralistic approach to "consciousness'', where we connect theory and tools from three quite different disciplines: (1) philosophy of mind (emergentism and global workspace theory), (2) functional neuroimaging acquisitions, and (3) theory of deterministic and statistical neurodynamics – in particular the Wilson-Cowan model and stochastic resonance. Conclusions Based on recent experimental and theoretical work, we believe that the study of large-scale neuronal processes (activity fluctuations, state transitions) that goes on in the living human brain while examined with functional MRI during "resting state", can deepen our understanding of graded consciousness in a clinical setting, and clarify the concept of "consiousness" in neurocognitive and neurophilosophy research. PMID:20522270

  16. 75 FR 8742 - Notice of Inventory Completion: Stephen F. Austin State University, Nacogdoches, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ... repository of the anthropology lab some time after 1975. No known individual was identified. No associated... the repository of the Stephen F. Austin State University anthropology lab. No known individual was.... The human remains are located in the repository of the Stephen F. Austin State University anthropology...

  17. 75 FR 3277 - Notice of Final Federal Agency Actions on State Highway 99 (Segment F-2) in Texas

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-20

    ... on State Highway 99 (Segment F-2) in Texas AGENCY: Federal Highway Administration (FHWA), DOT. ACTION... Highway 99) Segment F-2, from State Highway 249 to Interstate Highway 45 (I-45) in Harris County, Texas... (State Highway 99) Segment F-2 from State Highway 249 to I-45 in Harris County; FHWA Project Reference...

  18. Real-time state estimation in a flight simulator using fNIRS.

    PubMed

    Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic

    2015-01-01

    Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot's instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot's mental state matched significantly better than chance with the pilot's real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development.

  19. Real-Time State Estimation in a Flight Simulator Using fNIRS

    PubMed Central

    Gateau, Thibault; Durantin, Gautier; Lancelot, Francois; Scannella, Sebastien; Dehais, Frederic

    2015-01-01

    Working memory is a key executive function for flying an aircraft. This function is particularly critical when pilots have to recall series of air traffic control instructions. However, working memory limitations may jeopardize flight safety. Since the functional near-infrared spectroscopy (fNIRS) method seems promising for assessing working memory load, our objective is to implement an on-line fNIRS-based inference system that integrates two complementary estimators. The first estimator is a real-time state estimation MACD-based algorithm dedicated to identifying the pilot’s instantaneous mental state (not-on-task vs. on-task). It does not require a calibration process to perform its estimation. The second estimator is an on-line SVM-based classifier that is able to discriminate task difficulty (low working memory load vs. high working memory load). These two estimators were tested with 19 pilots who were placed in a realistic flight simulator and were asked to recall air traffic control instructions. We found that the estimated pilot’s mental state matched significantly better than chance with the pilot’s real state (62% global accuracy, 58% specificity, and 72% sensitivity). The second estimator, dedicated to assessing single trial working memory loads, led to 80% classification accuracy, 72% specificity, and 89% sensitivity. These two estimators establish reusable blocks for further fNIRS-based passive brain computer interface development. PMID:25816347

  20. Visual Learning Induces Changes in Resting-State fMRI Multivariate Pattern of Information.

    PubMed

    Guidotti, Roberto; Del Gratta, Cosimo; Baldassarre, Antonello; Romani, Gian Luca; Corbetta, Maurizio

    2015-07-08

    When measured with functional magnetic resonance imaging (fMRI) in the resting state (R-fMRI), spontaneous activity is correlated between brain regions that are anatomically and functionally related. Learning and/or task performance can induce modulation of the resting synchronization between brain regions. Moreover, at the neuronal level spontaneous brain activity can replay patterns evoked by a previously presented stimulus. Here we test whether visual learning/task performance can induce a change in the patterns of coded information in R-fMRI signals consistent with a role of spontaneous activity in representing task-relevant information. Human subjects underwent R-fMRI before and after perceptual learning on a novel visual shape orientation discrimination task. Task-evoked fMRI patterns to trained versus novel stimuli were recorded after learning was completed, and before the second R-fMRI session. Using multivariate pattern analysis on task-evoked signals, we found patterns in several cortical regions, as follows: visual cortex, V3/V3A/V7; within the default mode network, precuneus, and inferior parietal lobule; and, within the dorsal attention network, intraparietal sulcus, which discriminated between trained and novel visual stimuli. The accuracy of classification was strongly correlated with behavioral performance. Next, we measured multivariate patterns in R-fMRI signals before and after learning. The frequency and similarity of resting states representing the task/visual stimuli states increased post-learning in the same cortical regions recruited by the task. These findings support a representational role of spontaneous brain activity. Copyright © 2015 the authors 0270-6474/15/359786-13$15.00/0.

  1. Potential pitfalls when denoising resting state fMRI data using nuisance regression.

    PubMed

    Bright, Molly G; Tench, Christopher R; Murphy, Kevin

    2017-07-01

    In resting state fMRI, it is necessary to remove signal variance associated with noise sources, leaving cleaned fMRI time-series that more accurately reflect the underlying intrinsic brain fluctuations of interest. This is commonly achieved through nuisance regression, in which the fit is calculated of a noise model of head motion and physiological processes to the fMRI data in a General Linear Model, and the "cleaned" residuals of this fit are used in further analysis. We examine the statistical assumptions and requirements of the General Linear Model, and whether these are met during nuisance regression of resting state fMRI data. Using toy examples and real data we show how pre-whitening, temporal filtering and temporal shifting of regressors impact model fit. Based on our own observations, existing literature, and statistical theory, we make the following recommendations when employing nuisance regression: pre-whitening should be applied to achieve valid statistical inference of the noise model fit parameters; temporal filtering should be incorporated into the noise model to best account for changes in degrees of freedom; temporal shifting of regressors, although merited, should be achieved via optimisation and validation of a single temporal shift. We encourage all readers to make simple, practical changes to their fMRI denoising pipeline, and to regularly assess the appropriateness of the noise model used. By negotiating the potential pitfalls described in this paper, and by clearly reporting the details of nuisance regression in future manuscripts, we hope that the field will achieve more accurate and precise noise models for cleaning the resting state fMRI time-series. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  2. F -state quenching with CH 4 for buffer-gas cooled 171 Y b + frequency standard [Methane (CH4) for quenching the F-state in trapped Yb+ ions].

    DOE PAGES

    Jau, Y. -Y.; Hunker, J. D.; Schwindt, P. D. D.

    2015-11-01

    We report that methane, CH 4, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 ± 0.3) × 10 6 s -1 Torr -1. For applications that use microwave hyperfine transitions of the ground-state 171Y b ions, the CH4 induced frequency shift coefficient and the decoherence rate coefficient are measured as δν/ν = (-3.6 ± 0.1) × 10 -6 Torr -1 and 1/T2 = (1.5 ± 0.2) × 10 5 s -1 Torr -1. In our buffer-gas cooled 171Y b+ microwave clock system, we find that onlymore » ≤10 -8 Torr of CH 4 is required under normal operating conditions to efficiently clear the F-state and maintain ≥85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance.« less

  3. On nodes and modes in resting state fMRI

    PubMed Central

    Friston, Karl J.; Kahan, Joshua; Razi, Adeel; Stephan, Klaas Enno; Sporns, Olaf

    2014-01-01

    This paper examines intrinsic brain networks in light of recent developments in the characterisation of resting state fMRI timeseries — and simulations of neuronal fluctuations based upon the connectome. Its particular focus is on patterns or modes of distributed activity that underlie functional connectivity. We first demonstrate that the eigenmodes of functional connectivity – or covariance among regions or nodes – are the same as the eigenmodes of the underlying effective connectivity, provided we limit ourselves to symmetrical connections. This symmetry constraint is motivated by appealing to proximity graphs based upon multidimensional scaling. Crucially, the principal modes of functional connectivity correspond to the dynamically unstable modes of effective connectivity that decay slowly and show long term memory. Technically, these modes have small negative Lyapunov exponents that approach zero from below. Interestingly, the superposition of modes – whose exponents are sampled from a power law distribution – produces classical 1/f (scale free) spectra. We conjecture that the emergence of dynamical instability – that underlies intrinsic brain networks – is inevitable in any system that is separated from external states by a Markov blanket. This conjecture appeals to a free energy formulation of nonequilibrium steady-state dynamics. The common theme that emerges from these theoretical considerations is that endogenous fluctuations are dominated by a small number of dynamically unstable modes. We use this as the basis of a dynamic causal model (DCM) of resting state fluctuations — as measured in terms of their complex cross spectra. In this model, effective connectivity is parameterised in terms of eigenmodes and their Lyapunov exponents — that can also be interpreted as locations in a multidimensional scaling space. Model inversion provides not only estimates of edges or connectivity but also the topography and dimensionality of the

  4. Review of thalamocortical resting-state fMRI studies in schizophrenia

    PubMed Central

    Giraldo-Chica, Monica; Woodward, Neil D.

    2017-01-01

    Brain circuitry underlying cognition, emotion, and perception is abnormal in schizophrenia. There is considerable evidence that the neuropathology of schizophrenia includes the thalamus, a key hub of cortical-subcortical circuitry and an important regulator of cortical activity. However, the thalamus is a heterogeneous structure composed of several nuclei with distinct inputs and cortical connections. Limitations of conventional neuroimaging methods and conflicting findings from post-mortem investigations have made it difficult to determine if thalamic pathology in schizophrenia is widespread or limited to specific thalamocortical circuits. Resting-state fMRI has proven invaluable for understanding the large-scale functional organization of the brain and investigating neural circuitry relevant to psychiatric disorders. This article summarizes resting-state fMRI investigations of thalamocortical functional connectivity in schizophrenia. Particular attention is paid to the course, diagnostic specificity, and clinical correlates of thalamocortical network dysfunction. PMID:27531067

  5. Thorium-229 solid-state nuclear clock prospects in MgF2 and LiSAF

    NASA Astrophysics Data System (ADS)

    Meyer, Edmund; Barker, Beau; Collins, Lee

    2016-05-01

    The 229 Th isomer is thought to be a good candidate for a nuclear clock based on its relatively low-energy isomer excitation of ~ 7 . 8 eV. We report on the study of Th atoms embedded in two crystals, MgF2 and LiSAF (LiSrAlF6). For MgF2 we perform an oxidation study to find the preferred ionization state of the Th atom in the crystal; Thn+, where n = 2 - 4 . We find that the preferred state is n = 4 which requires two interstitial Fluorine atoms to charge compensate. Using the results of MgF2 we then search within LiSAF for suitable dopant sites (the Sr, Al, or Li can all serve). Employing a standard density functional package using a plane-wave basis and psuedopotentials, we optimize a doped cell of increasing particle number sizes and use this to estimate the dilute doped-limit band-gap of LiSAF. Placement of the dopant on the Sr and Al sites with accompanying double and single F interstitial atom placements is also studied to determine the ground state, and comparisons are made with previous calculations. In both crystal ground states, we find that the band gap is large enough for the observation of the 229 Th nuclear isomer transition; > 9 eV.

  6. 75 FR 8741 - Notice of Intent to Repatriate Cultural Items: Stephen F. Austin State University, Nacogdoches, TX

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-25

    ...: Stephen F. Austin State University, Nacogdoches, TX AGENCY: National Park Service, Interior. ACTION... Act (NAGPRA), 25 U.S.C. 3005, of the intent to repatriate cultural items in the control of Stephen F... of Oklahoma, which was under contract with Stephen F. Austin State University. In 1957, 15 cultural...

  7. Role of mitochondrial calcium uptake homeostasis in resting state fMRI brain networks.

    PubMed

    Kannurpatti, Sridhar S; Sanganahalli, Basavaraju G; Herman, Peter; Hyder, Fahmeed

    2015-11-01

    Mitochondrial Ca(2+) uptake influences both brain energy metabolism and neural signaling. Given that brain mitochondrial organelles are distributed in relation to vascular density, which varies considerably across brain regions, we hypothesized different physiological impacts of mitochondrial Ca(2+) uptake across brain regions. We tested the hypothesis by monitoring brain "intrinsic activity" derived from the resting state functional MRI (fMRI) blood oxygen level dependent (BOLD) fluctuations in different functional networks spanning the somatosensory cortex, caudate putamen, hippocampus and thalamus, in normal and perturbed mitochondrial Ca(2+) uptake states. In anesthetized rats at 11.7 T, mitochondrial Ca(2+) uptake was inhibited or enhanced respectively by treatments with Ru360 or kaempferol. Surprisingly, mitochondrial Ca(2+) uptake inhibition by Ru360 and enhancement by kaempferol led to similar dose-dependent decreases in brain-wide intrinsic activities in both the frequency domain (spectral amplitude) and temporal domain (resting state functional connectivity; RSFC). The fact that there were similar dose-dependent decreases in the frequency and temporal domains of the resting state fMRI-BOLD fluctuations during mitochondrial Ca(2+) uptake inhibition or enhancement indicated that mitochondrial Ca(2+) uptake and its homeostasis may strongly influence the brain's functional organization at rest. Interestingly, the resting state fMRI-derived intrinsic activities in the caudate putamen and thalamic regions saturated much faster with increasing dosage of either drug treatment than the drug-induced trends observed in cortical and hippocampal regions. Regional differences in how the spectral amplitude and RSFC changed with treatment indicate distinct mitochondrion-mediated spontaneous neuronal activity coupling within the various RSFC networks determined by resting state fMRI. Copyright © 2015 John Wiley & Sons, Ltd.

  8. Near-degeneracy in Excited Vibrational States of 207PbF

    NASA Astrophysics Data System (ADS)

    Mawhorter, Richard; Nguyen, Alexander; Kim, Yongrak; Biekert, Andreas; Sears, Trevor; Grabow, Jens-Uwe; Kudashov, A. D.; Skripnikov, L. V.; Titov, A. V.; Petrov, A. N.

    2017-04-01

    High-resolution Fourier transform microwave (FTMW) spectroscopy studies of 207PbF have demonstrated the near-degeneracy of two levels of opposite parity. These have attracted attention for the study of parity violation effects and the variation of fundamental constants using 207PbF. Further theoretical work has improved our detailed understanding of both 207PbF and 208PbF, and furthermore recently indicated that the finely split +/- parity levels grow monotonically closer for higher vibrational states. Our experimental results for v = 0-3 confirm this, and are in excellent agreement with our extended theoretical calculations up to v = 4; both will be presented. TJS acknowledges support from Contract No. DE-SC0012704 with the U.S. Department of Energy, Office of Science, supported by its Division of Chemical Sciences, Geosciences and Biosciences within the Office of Basic Energy Sciences., as do RM, AB, YK, & AN from Pomona College & J-UG from the Deutsche Forschungsgemeinschaft (DFG).

  9. Regional Homogeneity Predicts Creative Insight: A Resting-State fMRI Study.

    PubMed

    Lin, Jiabao; Cui, Xuan; Dai, Xiaoying; Mo, Lei

    2018-01-01

    Creative insight plays an important role in our daily life. Previous studies have investigated the neural correlates of creative insight by functional magnetic resonance imaging (fMRI), however, the intrinsic resting-state brain activity associated with creative insight is still unclear. In the present study, we used regional homogeneity (ReHo) as an index in resting-state fMRI (rs-fMRI) to identify brain regions involved in individual differences in creative insight, which was compued by the response time (RT) of creative Chinese character chunk decomposition. The findings indicated that ReHo in the anterior cingulate cortex (ACC)/caudate nucleus (CN) and angular gyrus (AG)/superior temporal gyrus (STG)/inferior parietal lobe (IPL) negatively predicted creative insight. Furthermore, these findings suggested that spontaneous brain activity in multiple regions related to breaking and establishing mental sets, goal-directed solutions exploring, shifting attention, forming new associations and emotion experience contributes to creative insight. In conclusion, the present study provides new evidence to further understand the cognitive processing and neural correlates of creative insight.

  10. Resting States Are Resting Traits – An fMRI Study of Sex Differences and Menstrual Cycle Effects in Resting State Cognitive Control Networks

    PubMed Central

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain. PMID:25057823

  11. How restful is it with all that noise? Comparison of Interleaved silent steady state (ISSS) and conventional imaging in resting-state fMRI.

    PubMed

    Andoh, J; Ferreira, M; Leppert, I R; Matsushita, R; Pike, B; Zatorre, R J

    2017-02-15

    Resting-state fMRI studies have become very important in cognitive neuroscience because they are able to identify BOLD fluctuations in brain circuits involved in motor, cognitive, or perceptual processes without the use of an explicit task. Such approaches have been fruitful when applied to various disordered populations, or to children or the elderly. However, insufficient attention has been paid to the consequences of the loud acoustic scanner noise associated with conventional fMRI acquisition, which could be an important confounding factor affecting auditory and/or cognitive networks in resting-state fMRI. Several approaches have been developed to mitigate the effects of acoustic noise on fMRI signals, including sparse sampling protocols and interleaved silent steady state (ISSS) acquisition methods, the latter being used only for task-based fMRI. Here, we developed an ISSS protocol for resting-state fMRI (rs-ISSS) consisting of rapid acquisition of a set of echo planar imaging volumes following each silent period, during which the steady state longitudinal magnetization was maintained with a train of relatively silent slice-selective excitation pulses. We evaluated the test-retest reliability of intensity and spatial extent of connectivity networks of fMRI BOLD signal across three different days for rs-ISSS and compared it with a standard resting-state fMRI (rs-STD). We also compared the strength and distribution of connectivity networks between rs-ISSS and rs-STD. We found that both rs-ISSS and rs-STD showed high reproducibility of fMRI signal across days. In addition, rs-ISSS showed a more robust pattern of functional connectivity within the somatosensory and motor networks, as well as an auditory network compared with rs-STD. An increased connectivity between the default mode network and the language network and with the anterior cingulate cortex (ACC) network was also found for rs-ISSS compared with rs-STD. Finally, region of interest analysis showed

  12. Assigning the Cerium Oxidation State for CH2CeF2 and OCeF2 Based on Multireference Wave Function Analysis.

    PubMed

    Mooßen, Oliver; Dolg, Michael

    2016-06-09

    The geometric and electronic structure of the recently experimentally studied molecules ZCeF2 (Z = CH2, O) was investigated by density functional theory (DFT) and wave function-based ab initio methods. Special attention was paid to the Ce-Z metal-ligand bonding, especially to the nature of the interaction between the Ce 4f and the Z 2p orbitals and the possible multiconfigurational character arising from it, as well as to the assignment of an oxidation state of Ce reflecting the electronic structure. Complete active space self-consistent field (CASSCF) calculations were performed, followed by orbital rotations in the active orbital space. The methylene compound CH2CeF2 has an open-shell singlet ground state, which is characterized by a two-configurational wave function in the basis of the strongly mixed natural CASSCF orbitals. The system can also be described in a very compact way by the dominant Ce 4f(1) C 2p(1) configuration, if nearly pure Ce 4f and C 2p orbitals are used. In the basis of these localized orbitals, the molecule is almost monoconfigurational and should be best described as a Ce(III) system. The singlet ground state of the oxygen OCeF2 complex is of closed-shell character when a monoconfigurational wave function with very strongly mixed Ce 4f and O 2p CASSCF natural orbitals is used for the description. The transformation to orbitals localized on the cerium and oxygen atoms leads to a multiconfigurational wave function and reveals characteristics of a mixed valent Ce(IV)/Ce(III) compound. Additionally, the interactions of the localized active orbitals were analyzed by evaluating the expectation values of the charge fluctuation operator and the local spin operator. The Ce 4f and C 2p orbital interaction of the CH2CeF2 compound is weakly covalent and resembles the interaction of the H 1s orbitals in a stretched hydrogen dimer. In contrast, the interaction of the localized active orbitals for OCeF2 shows ionic character. Calculated vibrational Ce

  13. Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis

    DTIC Science & Technology

    2016-10-01

    AWARD NUMBER: W81XWH-15-2-0032 TITLE: Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis PRINCIPAL...4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis 5b...Public Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The subject of the project is FY14 PRMRP Topic Area – Tinnitus . The broad

  14. Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis

    DTIC Science & Technology

    2017-10-13

    AWARD NUMBER: W81XWH-15-2-0032 TITLE: Identifying Subgroups of Tinnitus Using Novel Resting State fMRI Biomarkers and Cluster Analysis...TITLE AND SUBTITLE 5a. CONTRACT NUMBER W81XWH-15-2-0032 5b. GRANT NUMBER Identifying Subgroups of Tinnitus Using Novel Resting State fMRI...Release; Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT The subject of the project is FY14 PRMRP Topic Area – Tinnitus . The broad goal is

  15. Brain correlates of hypnotic paralysis-a resting-state fMRI study.

    PubMed

    Pyka, M; Burgmer, M; Lenzen, T; Pioch, R; Dannlowski, U; Pfleiderer, B; Ewert, A W; Heuft, G; Arolt, V; Konrad, C

    2011-06-15

    Hypnotic paralysis has been used since the times of Charcot to study altered states of consciousness; however, the underlying neurobiological correlates are poorly understood. We investigated human brain function during hypnotic paralysis using resting-state functional magnetic resonance imaging (fMRI), focussing on two core regions of the default mode network and the representation of the paralysed hand in the primary motor cortex. Hypnotic suggestion induced an observable left-hand paralysis in 19 participants. Resting-state fMRI at 3T was performed in pseudo-randomised order awake and in the hypnotic condition. Functional connectivity analyses revealed increased connectivity of the precuneus with the right dorsolateral prefrontal cortex, angular gyrus, and a dorsal part of the precuneus. Functional connectivity of the medial frontal cortex and the primary motor cortex remained unchanged. Our results reveal that the precuneus plays a pivotal role during maintenance of an altered state of consciousness. The increased coupling of selective cortical areas with the precuneus supports the concept that hypnotic paralysis may be mediated by a modified representation of the self which impacts motor abilities. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. High-Speed Real-Time Resting-State fMRI Using Multi-Slab Echo-Volumar Imaging

    PubMed Central

    Posse, Stefan; Ackley, Elena; Mutihac, Radu; Zhang, Tongsheng; Hummatov, Ruslan; Akhtari, Massoud; Chohan, Muhammad; Fisch, Bruce; Yonas, Howard

    2013-01-01

    We recently demonstrated that ultra-high-speed real-time fMRI using multi-slab echo-volumar imaging (MEVI) significantly increases sensitivity for mapping task-related activation and resting-state networks (RSNs) compared to echo-planar imaging (Posse et al., 2012). In the present study we characterize the sensitivity of MEVI for mapping RSN connectivity dynamics, comparing independent component analysis (ICA) and a novel seed-based connectivity analysis (SBCA) that combines sliding-window correlation analysis with meta-statistics. This SBCA approach is shown to minimize the effects of confounds, such as movement, and CSF and white matter signal changes, and enables real-time monitoring of RSN dynamics at time scales of tens of seconds. We demonstrate highly sensitive mapping of eloquent cortex in the vicinity of brain tumors and arterio-venous malformations, and detection of abnormal resting-state connectivity in epilepsy. In patients with motor impairment, resting-state fMRI provided focal localization of sensorimotor cortex compared with more diffuse activation in task-based fMRI. The fast acquisition speed of MEVI enabled segregation of cardiac-related signal pulsation using ICA, which revealed distinct regional differences in pulsation amplitude and waveform, elevated signal pulsation in patients with arterio-venous malformations and a trend toward reduced pulsatility in gray matter of patients compared with healthy controls. Mapping cardiac pulsation in cortical gray matter may carry important functional information that distinguishes healthy from diseased tissue vasculature. This novel fMRI methodology is particularly promising for mapping eloquent cortex in patients with neurological disease, having variable degree of cooperation in task-based fMRI. In conclusion, ultra-high-real-time speed fMRI enhances the sensitivity of mapping the dynamics of resting-state connectivity and cerebro-vascular pulsatility for clinical and neuroscience research applications

  17. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    PubMed

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (f1 (>fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.

  18. Resting-state fMRI study of patients with fragile X syndrome

    NASA Astrophysics Data System (ADS)

    Isanova, E.; Petrovskiy, E.; Savelov, A.; Yudkin, D.; Tulupov, A.

    2017-08-01

    The study aimed to assess the neural activity of different brain regions in patients with fragile X syndrome (FXS) and the healthy volunteers by resting-state functional magnetic resonance imaging (fMRI) on a 1.5 T MRI Achieva scanner (Philips). Results: The fMRI study showed a DMN of brain function in patients with FXS, as well as in the healthy volunteers. Furthermore, it was found that a default mode network of the brain in patients with FXS and healthy volunteers does not have statistically significant differences (p>0.05), which may indicate that the basal activity of neurons in patients with FXS is not reduced. In addition, we have found a significant (p<0.001) increase in the FC within the right inferior parietal and right angular gyrus in the resting state in patients with FXS. Conclusion: New data of functional status of the brain in patients with FXS were received. The significant increase in the resting state functional connectivity within the right inferior parietal and right angular gyrus (p<0.001) in patients with FXS was found.

  19. Ab initio study of the diatomic fluorides FeF, CoF, NiF, and CuF.

    PubMed

    Koukounas, Constantine; Mavridis, Aristides

    2008-11-06

    The late-3d transition-metal diatomic fluorides MF = FeF, CoF, NiF, and CuF have been studied using variational multireference (MRCI) and coupled-cluster [RCCSD(T)] methods, combined with large to very large basis sets. We examined a total of 35 (2S+1)|Lambda| states, constructing as well 29 full potential energy curves through the MRCI method. All examined states are ionic, diabatically correlating to M(+)+F(-)((1)S). Notwithstanding the "eccentric" character of the 3d transition metals and the difficulties to accurately be described with all-electron ab initio methods, our results are, in general, in very good agreement with available experimental numbers.

  20. The electrochemical-proton-gradient-activated states of F0F1 ATPase in plant mitochondria as revealed by detergents.

    PubMed

    Valerio, M; Diolez, P; Haraux, F

    1993-09-01

    ATP hydrolysis, triggered by the addition of polyoxyethylene-9-lauryl ether (Lubrol) or lauryldimethylamine oxide (LDAO) to energized plant mitochondria was studied in some details. The membrane disruption was quasi-instantaneous (2-3 s) with both detergents, as shown by the decrease of turbidity and the stopping of respiration. In pea leaf mitochondria, Lubrol triggered ATP hydrolysis in almost the same way as valinomycin plus nigericin, except that the activity was slightly stimulated and became insensitive to carboxyatractyloside. This allowed investigations of ATP hydrolysis without any interference of the ATP/ADP antiporter or the phosphate carrier. Lubrol did not prevent the ATPase from deactivating in pea leaf mitochondria, and did not trigger any ATP hydrolysis in potato tuber mitochondria. At variance with Lubrol, LDAO changed the properties of the F0F1 ATPase. It made the enzyme oligomycin insensitive and froze it in an activated state. The activity was also 5-8-times stimulated in pea leaf mitochondria. Moreover, LDAO revealed an important ATP hydrolase activity when added to energized potato tuber mitochondria. Despite the specific effect of LDAO, the activity triggered by this detergent strongly depended on the energized state of the organelles before detergent addition. From this study, it is concluded that the electrochemical proton gradient is completely necessary to activate the F0F1-ATPase in intact plant mitochondria, as known in chloroplasts and suggested by some reports in animal mitochondria. Moreover, it is suggested that the main difference between the enzymes of pea leaf and potato tuber mitochondria is their rate of deactivation after the collapse of the transmembrane electrochemical potential difference. Finally, when properly used, detergents appear to be a powerful tool to probe the state of the ATPase in intact mitochondria, and maybe in more integrated systems.

  1. Improving the Test-Retest Reliability of Resting State fMRI by Removing the Impact of Sleep.

    PubMed

    Wang, Jiahui; Han, Junwei; Nguyen, Vinh T; Guo, Lei; Guo, Christine C

    2017-01-01

    Resting state functional magnetic resonance imaging (rs-fMRI) provides a powerful tool to examine large-scale neural networks in the human brain and their disturbances in neuropsychiatric disorders. Thanks to its low demand and high tolerance, resting state paradigms can be easily acquired from clinical population. However, due to the unconstrained nature, resting state paradigm is associated with excessive head movement and proneness to sleep. Consequently, the test-retest reliability of rs-fMRI measures is moderate at best, falling short of widespread use in the clinic. Here, we characterized the effect of sleep on the test-retest reliability of rs-fMRI. Using measures of heart rate variability (HRV) derived from simultaneous electrocardiogram (ECG) recording, we identified portions of fMRI data when subjects were more alert or sleepy, and examined their effects on the test-retest reliability of functional connectivity measures. When volumes of sleep were excluded, the reliability of rs-fMRI is significantly improved, and the improvement appears to be general across brain networks. The amount of improvement is robust with the removal of as much as 60% volumes of sleepiness. Therefore, test-retest reliability of rs-fMRI is affected by sleep and could be improved by excluding volumes of sleepiness as indexed by HRV. Our results suggest a novel and practical method to improve test-retest reliability of rs-fMRI measures.

  2. Influences of Hunger, Satiety and Oral Glucose on Functional Brain Connectivity: A Multimethod Resting-State fMRI Study.

    PubMed

    Al-Zubaidi, Arkan; Heldmann, Marcus; Mertins, Alfred; Jauch-Chara, Kamila; Münte, Thomas F

    2018-07-01

    A major regulatory task of the organism is to keep brain functions relatively constant in spite of metabolic changes (e.g., hunger vs. satiety) or availability of energy (e.g., glucose administration). Resting-state functional magnetic resonance imaging (rs-fMRI) can reveal resulting changes in brain function but previous studies have focused mostly on the hypothalamus. Therefore, we took a whole-brain approach and examined 24 healthy normal-weight men once after 36 h of fasting and once in a satiated state (six meals over the course of 36 h). At the end of each treatment, rs-fMRI was recorded before and after the oral administration of 75 g of glucose. We calculated local connectivity (regional homogeneity [ReHo]), global connectivity (degree of centrality [DC]), and amplitude (fractional amplitude of low-frequency fluctuation [fALFF]) maps from the rs-fMRI data. We found that glucose administration reduced all measures selectively in the left supplementary motor area and increased ReHo and fALFF in the right middle and superior frontal gyri. For fALFF, we observed a significant interaction between metabolic states and glucose in the left thalamus. This interaction was driven by a fALFF increase after glucose treatment in the hunger relative to the satiety condition. Our results indicate that fALFF analysis is the most sensitive measure to detect effects of metabolic states on resting-state brain activity. Moreover, we show that multimethod rs-fMRI provides an unbiased approach to identify spontaneous brain activity associated with changes in homeostasis and caloric intake. Copyright © 2018 IBRO. Published by Elsevier Ltd. All rights reserved.

  3. Identifying patients with Alzheimer's disease using resting-state fMRI and graph theory.

    PubMed

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2015-11-01

    Study of brain network on the basis of resting-state functional magnetic resonance imaging (fMRI) has provided promising results to investigate changes in connectivity among different brain regions because of diseases. Graph theory can efficiently characterize different aspects of the brain network by calculating measures of integration and segregation. In this study, we combine graph theoretical approaches with advanced machine learning methods to study functional brain network alteration in patients with Alzheimer's disease (AD). Support vector machine (SVM) was used to explore the ability of graph measures in diagnosis of AD. We applied our method on the resting-state fMRI data of twenty patients with AD and twenty age and gender matched healthy subjects. The data were preprocessed and each subject's graph was constructed by parcellation of the whole brain into 90 distinct regions using the automated anatomical labeling (AAL) atlas. The graph measures were then calculated and used as the discriminating features. Extracted network-based features were fed to different feature selection algorithms to choose most significant features. In addition to the machine learning approach, statistical analysis was performed on connectivity matrices to find altered connectivity patterns in patients with AD. Using the selected features, we were able to accurately classify patients with AD from healthy subjects with accuracy of 100%. Results of this study show that pattern recognition and graph of brain network, on the basis of the resting state fMRI data, can efficiently assist in the diagnosis of AD. Classification based on the resting-state fMRI can be used as a non-invasive and automatic tool to diagnosis of Alzheimer's disease. Copyright © 2015 International Federation of Clinical Neurophysiology. All rights reserved.

  4. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands.

    PubMed

    Deligianni, Fani; Centeno, Maria; Carmichael, David W; Clayden, Jonathan D

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity.

  5. Relating resting-state fMRI and EEG whole-brain connectomes across frequency bands

    PubMed Central

    Deligianni, Fani; Centeno, Maria; Carmichael, David W.; Clayden, Jonathan D.

    2014-01-01

    Whole brain functional connectomes hold promise for understanding human brain activity across a range of cognitive, developmental and pathological states. So called resting-state (rs) functional MRI studies have contributed to the brain being considered at a macroscopic scale as a set of interacting regions. Interactions are defined as correlation-based signal measurements driven by blood oxygenation level dependent (BOLD) contrast. Understanding the neurophysiological basis of these measurements is important in conveying useful information about brain function. Local coupling between BOLD fMRI and neurophysiological measurements is relatively well defined, with evidence that gamma (range) frequency EEG signals are the closest correlate of BOLD fMRI changes during cognitive processing. However, it is less clear how whole-brain network interactions relate during rest where lower frequency signals have been suggested to play a key role. Simultaneous EEG-fMRI offers the opportunity to observe brain network dynamics with high spatio-temporal resolution. We utilize these measurements to compare the connectomes derived from rs-fMRI and EEG band limited power (BLP). Merging this multi-modal information requires the development of an appropriate statistical framework. We relate the covariance matrices of the Hilbert envelope of the source localized EEG signal across bands to the covariance matrices derived from rs-fMRI with the means of statistical prediction based on sparse Canonical Correlation Analysis (sCCA). Subsequently, we identify the most prominent connections that contribute to this relationship. We compare whole-brain functional connectomes based on their geodesic distance to reliably estimate the performance of the prediction. The performance of predicting fMRI from EEG connectomes is considerably better than predicting EEG from fMRI across all bands, whereas the connectomes derived in low frequency EEG bands resemble best rs-fMRI connectivity. PMID:25221467

  6. Distinctive time-lagged resting-state networks revealed by simultaneous EEG-fMRI.

    PubMed

    Feige, Bernd; Spiegelhalder, Kai; Kiemen, Andrea; Bosch, Oliver G; Tebartz van Elst, Ludger; Hennig, Jürgen; Seifritz, Erich; Riemann, Dieter

    2017-01-15

    Functional activation as evidenced by blood oxygen level-dependent (BOLD) functional MRI changes or event-related EEG is known to closely follow patterns of stimulation or self-paced action. Any lags are compatible with axonal conduction velocities and neural integration times. The important analysis of resting state networks is generally based on the assumption that these principles also hold for spontaneous fluctuations in brain activity. Previous observations using simultaneous EEG and fMRI indicate that slower processes, with delays in the seconds range, determine at least part of the relationship between spontaneous EEG and fMRI. To assess this relationship systematically, we used deconvolution analysis of EEG-fMRI during the resting state, assessing the relationship between EEG frequency bands and fMRI BOLD across the whole brain while allowing for time lags of up to 10.5s. Cluster analysis, identifying similar BOLD time courses in relation to EEG band power peaks, showed a clear segregation of functional subsystems of the brain. Our analysis shows that fMRI BOLD increases commonly precede EEG power increases by seconds. Most zero-lag correlations, on the other hand, were negative. This indicates two main distinct neuromodulatory mechanisms: an "idling" mechanism of simultaneous electric and metabolic network anticorrelation and a "regulatory" mechanism in which metabolic network activity precedes increased EEG power by some seconds. This has to be taken into consideration in further studies which address the causal and functional relationship of metabolic and electric brain activity patterns. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Sparse dictionary learning of resting state fMRI networks.

    PubMed

    Eavani, Harini; Filipovych, Roman; Davatzikos, Christos; Satterthwaite, Theodore D; Gur, Raquel E; Gur, Ruben C

    2012-07-02

    Research in resting state fMRI (rsfMRI) has revealed the presence of stable, anti-correlated functional subnetworks in the brain. Task-positive networks are active during a cognitive process and are anti-correlated with task-negative networks, which are active during rest. In this paper, based on the assumption that the structure of the resting state functional brain connectivity is sparse, we utilize sparse dictionary modeling to identify distinct functional sub-networks. We propose two ways of formulating the sparse functional network learning problem that characterize the underlying functional connectivity from different perspectives. Our results show that the whole-brain functional connectivity can be concisely represented with highly modular, overlapping task-positive/negative pairs of sub-networks.

  8. Spectroscopic investigations of ThF and ThF+.

    PubMed

    Barker, Beau J; Antonov, Ivan O; Heaven, Michael C; Peterson, Kirk A

    2012-03-14

    The electronic spectra of ThF and ThF(+) have been examined using laser induced fluorescence and resonant two-photon ionization techniques. The results from high-level ab initio calculations have been used to guide the assignment of these data. Spectra for ThF show that the molecule has an X (2)Δ(3/2) ground state. The upper spin-orbit component, X (2)Δ(5/2) was found at an energy of 2575(15) cm(-1). The low-lying states of ThF(+) were probed using dispersed fluorescence and pulsed field ionization-zero kinetic energy (PFI-ZEKE) photoelectron spectroscopy. Vibronic progressions belonging to four electronic states were identified. The lowest energy states were clearly (1)Σ(+) and (3)Δ(1). Although the energy ordering could not be rigorously determined, the evidence favors assignment of (1)Σ(+) as the ground state. The (3)Δ(1) state, of interest for investigation of the electron electric dipole moment, is just 315.0(5) cm(-1) above the ground state. The PFI-ZEKE measurements for ThF yielded an ionization energy of 51 581(3) cm(-1). Molecular constants show that the vibrational constant increases and the bond length shortens on ionization. This is consistent with removal of a non-bonding Th-centered 6d or 7s electron. Laser excitation of ThF(+) was used to probe electronically excited states in the range of 19,000-21,500 cm(-1).

  9. A task-related and resting state realistic fMRI simulator for fMRI data validation

    NASA Astrophysics Data System (ADS)

    Hill, Jason E.; Liu, Xiangyu; Nutter, Brian; Mitra, Sunanda

    2017-02-01

    After more than 25 years of published functional magnetic resonance imaging (fMRI) studies, careful scrutiny reveals that most of the reported results lack fully decisive validation. The complex nature of fMRI data generation and acquisition results in unavoidable uncertainties in the true estimation and interpretation of both task-related activation maps and resting state functional connectivity networks, despite the use of various statistical data analysis methodologies. The goal of developing the proposed STANCE (Spontaneous and Task-related Activation of Neuronally Correlated Events) simulator is to generate realistic task-related and/or resting-state 4D blood oxygenation level dependent (BOLD) signals, given the experimental paradigm and scan protocol, by using digital phantoms of twenty normal brains available from BrainWeb (http://brainweb.bic.mni.mcgill.ca/brainweb/). The proposed simulator will include estimated system and modelled physiological noise as well as motion to serve as a reference to measured brain activities. In its current form, STANCE is a MATLAB toolbox with command line functions serving as an open-source add-on to SPM8 (http://www.fil.ion.ucl.ac.uk/spm/software/spm8/). The STANCE simulator has been designed in a modular framework so that the hemodynamic response (HR) and various noise models can be iteratively improved to include evolving knowledge about such models.

  10. Correlation between the conformational states of F1-ATPase as determined from its crystal structure and single-molecule rotation

    PubMed Central

    Okuno, Daichi; Fujisawa, Ryo; Iino, Ryota; Hirono-Hara, Yoko; Imamura, Hiromi; Noji, Hiroyuki

    2008-01-01

    F1-ATPase is a rotary molecular motor driven by ATP hydrolysis that rotates the γ-subunit against the α3β3 ring. The crystal structures of F1, which provide the structural basis for the catalysis mechanism, have shown essentially 1 stable conformational state. In contrast, single-molecule studies have revealed that F1 has 2 stable conformational states: ATP-binding dwell state and catalytic dwell state. Although structural and single-molecule studies are crucial for the understanding of the molecular mechanism of F1, it remains unclear as to which catalytic state the crystal structure represents. To address this issue, we introduced cysteine residues at βE391 and γR84 of F1 from thermophilic Bacillus PS3. In the crystal structures of the mitochondrial F1, the corresponding residues in the ADP-bound β (βDP) and γ were in direct contact. The βE190D mutation was additionally introduced into the β to slow ATP hydrolysis. By incorporating a single copy of the mutant β-subunit, the chimera F1, α3β2β(E190D/E391C)γ(R84C), was prepared. In single-molecule rotation assay, chimera F1 showed a catalytic dwell pause in every turn because of the slowed ATP hydrolysis of β(E190D/E391C). When the mutant β and γ were cross-linked through a disulfide bond between βE391C and γR84C, F1 paused the rotation at the catalytic dwell angle of β(E190D/E391C), indicating that the crystal structure represents the catalytic dwell state and that βDP is the catalytically active form. The former point was again confirmed in experiments where F1 rotation was inhibited by adenosine-5′-(β,γ-imino)-triphosphate and/or azide, the most commonly used inhibitors for the crystallization of F1. PMID:19075235

  11. Double temporal sparsity based accelerated reconstruction of compressively sensed resting-state fMRI.

    PubMed

    Aggarwal, Priya; Gupta, Anubha

    2017-12-01

    A number of reconstruction methods have been proposed recently for accelerated functional Magnetic Resonance Imaging (fMRI) data collection. However, existing methods suffer with the challenge of greater artifacts at high acceleration factors. This paper addresses the issue of accelerating fMRI collection via undersampled k-space measurements combined with the proposed method based on l 1 -l 1 norm constraints, wherein we impose first l 1 -norm sparsity on the voxel time series (temporal data) in the transformed domain and the second l 1 -norm sparsity on the successive difference of the same temporal data. Hence, we name the proposed method as Double Temporal Sparsity based Reconstruction (DTSR) method. The robustness of the proposed DTSR method has been thoroughly evaluated both at the subject level and at the group level on real fMRI data. Results are presented at various acceleration factors. Quantitative analysis in terms of Peak Signal-to-Noise Ratio (PSNR) and other metrics, and qualitative analysis in terms of reproducibility of brain Resting State Networks (RSNs) demonstrate that the proposed method is accurate and robust. In addition, the proposed DTSR method preserves brain networks that are important for studying fMRI data. Compared to the existing methods, the DTSR method shows promising potential with an improvement of 10-12 dB in PSNR with acceleration factors upto 3.5 on resting state fMRI data. Simulation results on real data demonstrate that DTSR method can be used to acquire accelerated fMRI with accurate detection of RSNs. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. An Automated Method for Identifying Artifact in Independent Component Analysis of Resting-State fMRI

    PubMed Central

    Bhaganagarapu, Kaushik; Jackson, Graeme D.; Abbott, David F.

    2013-01-01

    An enduring issue with data-driven analysis and filtering methods is the interpretation of results. To assist, we present an automatic method for identification of artifact in independent components (ICs) derived from functional MRI (fMRI). The method was designed with the following features: does not require temporal information about an fMRI paradigm; does not require the user to train the algorithm; requires only the fMRI images (additional acquisition of anatomical imaging not required); is able to identify a high proportion of artifact-related ICs without removing components that are likely to be of neuronal origin; can be applied to resting-state fMRI; is automated, requiring minimal or no human intervention. We applied the method to a MELODIC probabilistic ICA of resting-state functional connectivity data acquired in 50 healthy control subjects, and compared the results to a blinded expert manual classification. The method identified between 26 and 72% of the components as artifact (mean 55%). About 0.3% of components identified as artifact were discordant with the manual classification; retrospective examination of these ICs suggested the automated method had correctly identified these as artifact. We have developed an effective automated method which removes a substantial number of unwanted noisy components in ICA analyses of resting-state fMRI data. Source code of our implementation of the method is available. PMID:23847511

  13. Regional homogeneity changes in prelingually deafened patients: a resting-state fMRI study

    NASA Astrophysics Data System (ADS)

    Li, Wenjing; He, Huiguang; Xian, Junfang; Lv, Bin; Li, Meng; Li, Yong; Liu, Zhaohui; Wang, Zhenchang

    2010-03-01

    Resting-state functional magnetic resonance imaging (fMRI) is a technique that measures the intrinsic function of brain and has some advantages over task-induced fMRI. Regional homogeneity (ReHo) assesses the similarity of the time series of a given voxel with its nearest neighbors on a voxel-by-voxel basis, which reflects the temporal homogeneity of the regional BOLD signal. In the present study, we used the resting state fMRI data to investigate the ReHo changes of the whole brain in the prelingually deafened patients relative to normal controls. 18 deaf patients and 22 healthy subjects were scanned. Kendall's coefficient of concordance (KCC) was calculated to measure the degree of regional coherence of fMRI time courses. We found that regional coherence significantly decreased in the left frontal lobe, bilateral temporal lobes and right thalamus, and increased in the postcentral gyrus, cingulate gyrus, left temporal lobe, left thalamus and cerebellum in deaf patients compared with controls. These results show that the prelingually deafened patients have higher degree of regional coherence in the paleocortex, and lower degree in neocortex. Since neocortex plays an important role in the development of auditory, these evidences may suggest that the deaf persons reorganize the paleocortex to offset the loss of auditory.

  14. Simultaneous tDCS-fMRI Identifies Resting State Networks Correlated with Visual Search Enhancement.

    PubMed

    Callan, Daniel E; Falcone, Brian; Wada, Atsushi; Parasuraman, Raja

    2016-01-01

    This study uses simultaneous transcranial direct current stimulation (tDCS) and functional MRI (fMRI) to investigate tDCS modulation of resting state activity and connectivity that underlies enhancement in behavioral performance. The experiment consisted of three sessions within the fMRI scanner in which participants conducted a visual search task: Session 1: Pre-training (no performance feedback), Session 2: Training (performance feedback given), Session 3: Post-training (no performance feedback). Resting state activity was recorded during the last 5 min of each session. During the 2nd session one group of participants underwent 1 mA tDCS stimulation and another underwent sham stimulation over the right posterior parietal cortex. Resting state spontaneous activity, as measured by fractional amplitude of low frequency fluctuations (fALFF), for session 2 showed significant differences between the tDCS stim and sham groups in the precuneus. Resting state functional connectivity from the precuneus to the substantia nigra, a subcortical dopaminergic region, was found to correlate with future improvement in visual search task performance for the stim over the sham group during active stimulation in session 2. The after-effect of stimulation on resting state functional connectivity was measured following a post-training experimental session (session 3). The left cerebellum Lobule VIIa Crus I showed performance related enhancement in resting state functional connectivity for the tDCS stim over the sham group. The ability to determine the relationship that the relative strength of resting state functional connectivity for an individual undergoing tDCS has on future enhancement in behavioral performance has wide ranging implications for neuroergonomic as well as therapeutic, and rehabilitative applications.

  15. Sparse dictionary learning for resting-state fMRI analysis

    NASA Astrophysics Data System (ADS)

    Lee, Kangjoo; Han, Paul Kyu; Ye, Jong Chul

    2011-09-01

    Recently, there has been increased interest in the usage of neuroimaging techniques to investigate what happens in the brain at rest. Functional imaging studies have revealed that the default-mode network activity is disrupted in Alzheimer's disease (AD). However, there is no consensus, as yet, on the choice of analysis method for the application of resting-state analysis for disease classification. This paper proposes a novel compressed sensing based resting-state fMRI analysis tool called Sparse-SPM. As the brain's functional systems has shown to have features of complex networks according to graph theoretical analysis, we apply a graph model to represent a sparse combination of information flows in complex network perspectives. In particular, a new concept of spatially adaptive design matrix has been proposed by implementing sparse dictionary learning based on sparsity. The proposed approach shows better performance compared to other conventional methods, such as independent component analysis (ICA) and seed-based approach, in classifying the AD patients from normal using resting-state analysis.

  16. Frequency-specific electrophysiologic correlates of resting state fMRI networks

    PubMed Central

    Hacker, Carl D.; Snyder, Abraham Z.; Pahwa, Mrinal; Corbetta, Maurizio; Leuthardt, Eric C.

    2017-01-01

    Resting state functional MRI (R-fMRI) studies have shown that slow (< 0.1 Hz), intrinsic fluctuations of the blood oxygen level dependent (BOLD) signal are temporally correlated within hierarchically organized functional systems known as resting state networks (RSNs) (Doucet et al., 2011). Most broadly, this hierarchy exhibits a dichotomy between two opposed systems (Fox et al., 2005). One system engages with the environment and includes the visual, auditory, and sensorimotor (SMN) networks as well as the dorsal attention network (DAN), which controls spatial attention. The other system includes the default mode network (DMN) and the fronto-parietal control system (FPC), RSNs that instantiate episodic memory and executive control, respectively. Here, we test the hypothesis, based on the spectral specificity of electrophysiologic responses to perceptual vs. memory tasks (Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999), that these two large-scale neural systems also manifest frequency specificity in the resting state. We measured the spatial correspondence between electrocorticographic (ECoG) band-limited power (BLP) and R-fMRI correlation patterns in awake, resting, human subjects. Our results show that, while gamma BLP correspondence was common throughout the brain, theta (4–8 Hz) BLP correspondence was stronger in the DMN and FPC, whereas alpha (8–12 Hz) correspondence was stronger in the SMN and DAN. Thus, the human brain, at rest, exhibits frequency specific electrophysiology, respecting both the spectral structure of task responses and the hierarchical organization of RSNs. PMID:28159686

  17. Recent progress and outstanding issues in motion correction in resting state fMRI

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-01-01

    The purpose of this review is to communicate and synthesize recent findings related to motion artifact in resting state fMRI. In 2011, three groups reported that small head movements produced spurious but structured noise in brain scans, causing distance-dependent changes in signal correlations. This finding has prompted both methods development and the re-examination of prior findings with more stringent motion correction. Since 2011, over a dozen papers have been published specifically on motion artifact in resting state fMRI. We will attempt to distill these papers to their most essential content. We will point out some aspects of motion artifact that are easily or often overlooked. Throughout the review, we will highlight gaps in current knowledge and avenues for future research. PMID:25462692

  18. Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks.

    PubMed

    Dvornek, Nicha C; Ventola, Pamela; Pelphrey, Kevin A; Duncan, James S

    2017-09-01

    Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD.

  19. Identifying Autism from Resting-State fMRI Using Long Short-Term Memory Networks

    PubMed Central

    Dvornek, Nicha C.; Ventola, Pamela; Pelphrey, Kevin A.; Duncan, James S.

    2017-01-01

    Functional magnetic resonance imaging (fMRI) has helped characterize the pathophysiology of autism spectrum disorders (ASD) and carries promise for producing objective biomarkers for ASD. Recent work has focused on deriving ASD biomarkers from resting-state functional connectivity measures. However, current efforts that have identified ASD with high accuracy were limited to homogeneous, small datasets, while classification results for heterogeneous, multi-site data have shown much lower accuracy. In this paper, we propose the use of recurrent neural networks with long short-term memory (LSTMs) for classification of individuals with ASD and typical controls directly from the resting-state fMRI time-series. We used the entire large, multi-site Autism Brain Imaging Data Exchange (ABIDE) I dataset for training and testing the LSTM models. Under a cross-validation framework, we achieved classification accuracy of 68.5%, which is 9% higher than previously reported methods that used fMRI data from the whole ABIDE cohort. Finally, we presented interpretation of the trained LSTM weights, which highlight potential functional networks and regions that are known to be implicated in ASD. PMID:29104967

  20. Functional connectivity analysis in resting state fMRI with echo-state networks and non-metric clustering for network structure recovery

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; DSouza, Adora M.; Abidin, Anas Z.; Wang, Xixi; Hobbs, Susan K.; Nagarajan, Mahesh B.

    2015-03-01

    Echo state networks (ESN) are recurrent neural networks where the hidden layer is replaced with a fixed reservoir of neurons. Unlike feed-forward networks, neuron training in ESN is restricted to the output neurons alone thereby providing a computational advantage. We demonstrate the use of such ESNs in our mutual connectivity analysis (MCA) framework for recovering the primary motor cortex network associated with hand movement from resting state functional MRI (fMRI) data. Such a framework consists of two steps - (1) defining a pair-wise affinity matrix between different pixel time series within the brain to characterize network activity and (2) recovering network components from the affinity matrix with non-metric clustering. Here, ESNs are used to evaluate pair-wise cross-estimation performance between pixel time series to create the affinity matrix, which is subsequently subject to non-metric clustering with the Louvain method. For comparison, the ground truth of the motor cortex network structure is established with a task-based fMRI sequence. Overlap between the primary motor cortex network recovered with our model free MCA approach and the ground truth was measured with the Dice coefficient. Our results show that network recovery with our proposed MCA approach is in close agreement with the ground truth. Such network recovery is achieved without requiring low-pass filtering of the time series ensembles prior to analysis, an fMRI preprocessing step that has courted controversy in recent years. Thus, we conclude our MCA framework can allow recovery and visualization of the underlying functionally connected networks in the brain on resting state fMRI.

  1. Structural investigation of α-LaZr2F11 by coupling X-ray powder diffraction, 19F solid state NMR and DFT calculations

    NASA Astrophysics Data System (ADS)

    Martineau, Charlotte; Legein, Christophe; Body, Monique; Péron, Olivier; Boulard, Brigitte; Fayon, Franck

    2013-03-01

    α-LaZr2F11 has been synthesized by solid state reaction. Its crystal structure has been refined from X-ray powder diffraction data (space group no. 72 Ibam, a=7.785(1) Å, b=10.086(1) Å and c=11.102(1) Å). α-LaZr2F11 contains one La, one Zr and four F inequivalent crystallographic sites. F3 and F4 are shared between one ZrF73- polyhedron and one LaF85- polyhedron, while F1 and F2 bridge two ZrF73- polyhedra. 19F 1D MAS NMR spectra of α-LaZr2F11 are in agreement with the proposed structural model. Assignment of the 19F resonances to the corresponding crystallographic sites has been performed on the basis of both their relative intensities and their correlation patterns in a 19F 2D dipolar-based double-quantum recoupling MAS NMR spectrum. DFT calculations of the 19F chemical shielding tensors have been performed using the GIPAW method implemented in the NMR-CASTEP code, for the experimental structure and two PBE-DFT geometry optimized structures of α-LaZr2F11 (atomic position optimization and full geometry optimization with rescaling of the unit cell volume to the experimental value). Computations were done with and without using a modified La pseudopotential allowing the treatment of the 4f localized empty orbitals of La3+. A relatively nice agreement between the experimental 19F isotropic and anisotropic chemical shifts and the values calculated for the proposed structural model is obtained.

  2. Functional connectivity analysis of resting-state fMRI networks in nicotine dependent patients

    NASA Astrophysics Data System (ADS)

    Smith, Aria; Ehtemami, Anahid; Fratte, Daniel; Meyer-Baese, Anke; Zavala-Romero, Olmo; Goudriaan, Anna E.; Schmaal, Lianne; Schulte, Mieke H. J.

    2016-03-01

    Brain imaging studies identified brain networks that play a key role in nicotine dependence-related behavior. Functional connectivity of the brain is dynamic; it changes over time due to different causes such as learning, or quitting a habit. Functional connectivity analysis is useful in discovering and comparing patterns between functional magnetic resonance imaging (fMRI) scans of patients' brains. In the resting state, the patient is asked to remain calm and not do any task to minimize the contribution of external stimuli. The study of resting-state fMRI networks have shown functionally connected brain regions that have a high level of activity during this state. In this project, we are interested in the relationship between these functionally connected brain regions to identify nicotine dependent patients, who underwent a smoking cessation treatment. Our approach is on the comparison of the set of connections between the fMRI scans before and after treatment. We applied support vector machines, a machine learning technique, to classify patients based on receiving the treatment or the placebo. Using the functional connectivity (CONN) toolbox, we were able to form a correlation matrix based on the functional connectivity between different regions of the brain. The experimental results show that there is inadequate predictive information to classify nicotine dependent patients using the SVM classifier. We propose other classification methods be explored to better classify the nicotine dependent patients.

  3. 366. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    366. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; SAN FRANCISCO CABLE BENT; DRG. NO. 33 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  4. 383. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    383. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; TOWERS; TYPICAL BASE DETAILS; DRG. NO. 29 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  5. 391. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    391. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; EAST BAY CROSSING; PIER E1; GENERAL DETAILS; DRG. NO. 45 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  6. 386. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    386. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; TOWERS; TYPICAL TOP DETAILS; DRG. NO. 31 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  7. Resting-State fMRI Activity Predicts Unsupervised Learning and Memory in an Immersive Virtual Reality Environment

    PubMed Central

    Wong, Chi Wah; Olafsson, Valur; Plank, Markus; Snider, Joseph; Halgren, Eric; Poizner, Howard; Liu, Thomas T.

    2014-01-01

    In the real world, learning often proceeds in an unsupervised manner without explicit instructions or feedback. In this study, we employed an experimental paradigm in which subjects explored an immersive virtual reality environment on each of two days. On day 1, subjects implicitly learned the location of 39 objects in an unsupervised fashion. On day 2, the locations of some of the objects were changed, and object location recall performance was assessed and found to vary across subjects. As prior work had shown that functional magnetic resonance imaging (fMRI) measures of resting-state brain activity can predict various measures of brain performance across individuals, we examined whether resting-state fMRI measures could be used to predict object location recall performance. We found a significant correlation between performance and the variability of the resting-state fMRI signal in the basal ganglia, hippocampus, amygdala, thalamus, insula, and regions in the frontal and temporal lobes, regions important for spatial exploration, learning, memory, and decision making. In addition, performance was significantly correlated with resting-state fMRI connectivity between the left caudate and the right fusiform gyrus, lateral occipital complex, and superior temporal gyrus. Given the basal ganglia's role in exploration, these findings suggest that tighter integration of the brain systems responsible for exploration and visuospatial processing may be critical for learning in a complex environment. PMID:25286145

  8. Recent progress and outstanding issues in motion correction in resting state fMRI.

    PubMed

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2015-01-15

    The purpose of this review is to communicate and synthesize recent findings related to motion artifact in resting state fMRI. In 2011, three groups reported that small head movements produced spurious but structured noise in brain scans, causing distance-dependent changes in signal correlations. This finding has prompted both methods development and the re-examination of prior findings with more stringent motion correction. Since 2011, over a dozen papers have been published specifically on motion artifact in resting state fMRI. We will attempt to distill these papers to their most essential content. We will point out some aspects of motion artifact that are easily or often overlooked. Throughout the review, we will highlight gaps in current knowledge and avenues for future research. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness

    PubMed Central

    Snyder, Abraham Z.; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W.; Shen, Mark D.; Wolff, Jason J.; Botteron, Kelly N.; Dager, Stephen; Estes, Annette M.; Evans, Alan; Gerig, Guido; Hazlett, Heather C.; Paterson, Sarah J.; Schultz, Robert T.; Styner, Martin A.; Zwaigenbaum, Lonnie; Schlaggar, Bradley L.

    2017-01-01

    Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI. PMID:29149191

  10. Resting-state fMRI in sleeping infants more closely resembles adult sleep than adult wakefulness.

    PubMed

    Mitra, Anish; Snyder, Abraham Z; Tagliazucchi, Enzo; Laufs, Helmut; Elison, Jed; Emerson, Robert W; Shen, Mark D; Wolff, Jason J; Botteron, Kelly N; Dager, Stephen; Estes, Annette M; Evans, Alan; Gerig, Guido; Hazlett, Heather C; Paterson, Sarah J; Schultz, Robert T; Styner, Martin A; Zwaigenbaum, Lonnie; Schlaggar, Bradley L; Piven, Joseph; Pruett, John R; Raichle, Marcus

    2017-01-01

    Resting state functional magnetic resonance imaging (rs-fMRI) in infants enables important studies of functional brain organization early in human development. However, rs-fMRI in infants has universally been obtained during sleep to reduce participant motion artifact, raising the question of whether differences in functional organization between awake adults and sleeping infants that are commonly attributed to development may instead derive, at least in part, from sleep. This question is especially important as rs-fMRI differences in adult wake vs. sleep are well documented. To investigate this question, we compared functional connectivity and BOLD signal propagation patterns in 6, 12, and 24 month old sleeping infants with patterns in adult wakefulness and non-REM sleep. We find that important functional connectivity features seen during infant sleep closely resemble those seen during adult sleep, including reduced default mode network functional connectivity. However, we also find differences between infant and adult sleep, especially in thalamic BOLD signal propagation patterns. These findings highlight the importance of considering sleep state when drawing developmental inferences in infant rs-fMRI.

  11. Frequency-specific electrophysiologic correlates of resting state fMRI networks.

    PubMed

    Hacker, Carl D; Snyder, Abraham Z; Pahwa, Mrinal; Corbetta, Maurizio; Leuthardt, Eric C

    2017-04-01

    Resting state functional MRI (R-fMRI) studies have shown that slow (<0.1Hz), intrinsic fluctuations of the blood oxygen level dependent (BOLD) signal are temporally correlated within hierarchically organized functional systems known as resting state networks (RSNs) (Doucet et al., 2011). Most broadly, this hierarchy exhibits a dichotomy between two opposed systems (Fox et al., 2005). One system engages with the environment and includes the visual, auditory, and sensorimotor (SMN) networks as well as the dorsal attention network (DAN), which controls spatial attention. The other system includes the default mode network (DMN) and the fronto-parietal control system (FPC), RSNs that instantiate episodic memory and executive control, respectively. Here, we test the hypothesis, based on the spectral specificity of electrophysiologic responses to perceptual vs. memory tasks (Klimesch, 1999; Pfurtscheller and Lopes da Silva, 1999), that these two large-scale neural systems also manifest frequency specificity in the resting state. We measured the spatial correspondence between electrocorticographic (ECoG) band-limited power (BLP) and R-fMRI correlation patterns in awake, resting, human subjects. Our results show that, while gamma BLP correspondence was common throughout the brain, theta (4-8Hz) BLP correspondence was stronger in the DMN and FPC, whereas alpha (8-12Hz) correspondence was stronger in the SMN and DAN. Thus, the human brain, at rest, exhibits frequency specific electrophysiology, respecting both the spectral structure of task responses and the hierarchical organization of RSNs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. 384. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    384. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; TOWERS; BRACING AND ROCKER BRACKET DETAILS; DRG. NO. 30 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  13. 373. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    373. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; PIER W-4; DETAILS OF A-FRAME; DRG. NO. 19 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  14. 370. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    370. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; PIER W-4; PLANS AND ELEVATIONS; DRG. NO. 17 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  15. Probing the Single-Particle Character of Rotational States in F 19 Using a Short-Lived Isomeric Beam

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Santiago-Gonzalez, D.; Auranen, K.; Avila, M. L.

    2018-03-01

    A beam containing a substantial component of both the J(pi) = 5(+), T-1/2 = 162 ns isomeric state of F-18 and its 1(+), 109.77-min ground state is utilized to study members of the ground-state rotational band in F-19 through the neutron transfer reaction (d,p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13/2(+) band-terminating state. The agreement between shell-model calculations using an interaction constructed within the sd shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.

  16. Multidecadal fCO2 Increase Along the United States Southeast Coastal Margin

    NASA Astrophysics Data System (ADS)

    Reimer, Janet J.; Wang, Hongjie; Vargas, Rodrigo; Cai, Wei-Jun

    2017-12-01

    Coastal margins could be hotspots for acidification due to terrestrial-influenced CO2 sources. Currently there are no long-term (>20 years) records from biologically important coastal environments that could demonstrate sea surface CO2 fugacity (fCO2) and pH trends. Here, multidecadal fCO2 trends are calculated from underway and moored time series observations along the United States southeast coastal margin, also referred to as the South Atlantic Bight (SAB). fCO2 trends across the SAB, derived from ˜26 years of cruises and ˜9.5 years from a moored time series, range from 3.0 to 4.5 µatm yr-1, and are greater than the open ocean increases. The pH decline related to the fCO2 increases could be as much as -0.004 yr-1; a rate greater than that expected from atmospheric-influenced pH alone. We provide evidence that fCO2 increases and pH decreases on an ocean margin can be faster than those predicted for the open ocean from atmospheric influence alone. We conclude that a substantial fCO2 increase across the marginal SAB is due to both increasing temperature on the middle and outer shelves, but to lateral land-ocean interactions in the coastal zone and on inner shelf.

  17. Who gets afraid in the MRI-scanner? Neurogenetics of state-anxiety changes during an fMRI experiment.

    PubMed

    Mutschler, Isabella; Wieckhorst, Birgit; Meyer, Andrea H; Schweizer, Tina; Klarhöfer, Markus; Wilhelm, Frank H; Seifritz, Erich; Ball, Tonio

    2014-11-07

    Experiments using functional magnetic resonance imaging (fMRI) play a fundamental role in affective neuroscience. When placed in an MR scanner, some volunteers feel safe and relaxed in this situation, while others experience uneasiness and fear. Little is known about the basis and consequences of such inter-individually different responses to the general experimental fMRI setting. In this study emotional stimuli were presented during fMRI and subjects' state-anxiety was assessed at the onset and end of the experiment while they were within the scanner. We show that Val/Val but neither Met/Met nor Val/Met carriers of the catechol-O-methyltransferase (COMT) Val(158)Met polymorphism-a prime candidate for anxiety vulnerability-became significantly more anxious during the fMRI experiment (N=97 females: 24 Val/Val, 51 Val/Met, and 22 Met/Met). Met carriers demonstrated brain responses with increased stability over time in the right parietal cortex and significantly better cognitive performances likely mediated by lower levels of anxiety. Val/Val, Val/Met and Met/Met did not significantly differ in state-anxiety at the beginning of the experiment. The exposure of a control group (N=56 females) to the same experiment outside the scanner did not cause a significant increase in state-anxiety, suggesting that the increase we observe in the fMRI experiment may be specific to the fMRI setting. Our findings reveal that genetics may play an important role in shaping inter-individual different emotional, cognitive and neuronal responses during fMRI experiments. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Excited States and Luminescent Properties of UO 2F 2 and Its Solvated Complexes in Aqueous Solution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Su, Jing; Wang, Zheming; Pan, Duoqiang

    2014-07-21

    The electronic absorption and emission spectra of free UO 2F 2 and its water solvated complexes below 32 000 cm –1 are investigated at the levels of ab initio CASPT2 and CCSD(T) with inclusion of scalar relativistic and spin–orbit coupling effects. The influence of the water coordination on the electronic spectra of UO 2F 2 is explored by investigating the excited states of solvated complexes (H 2O) nUO 2F 2 (n = 1–3). In these uranyl complexes, water coordination is found to have appreciable influence on the 3Δ (Ω = 1 g) character of the luminescent state and on themore » electronic spectral shape. The simulated luminescence spectral curves based on the calculated spectral parameters of (H 2O) nUO 2F 2 from CCSD(T) approach agree well with experimental spectra in aqueous solution at both near-liquid-helium temperature and room temperature. The possible luminescence spectra of free UO 2F 2 in gas phase are predicted on the basis of CASPT2 and CCSD(T) results, respectively, by considering three symmetric vibration modes. Finally, the effect of competition between spin–orbit coupling and ligand field repulsion on the luminescent state properties is discussed.« less

  19. Altered functional connectivity in early Alzheimer's disease: a resting-state fMRI study.

    PubMed

    Wang, Kun; Liang, Meng; Wang, Liang; Tian, Lixia; Zhang, Xinqing; Li, Kuncheng; Jiang, Tianzi

    2007-10-01

    Previous studies have led to the proposal that patients with Alzheimer's disease (AD) may have disturbed functional connectivity between different brain regions. Furthermore, recent resting-state functional magnetic resonance imaging (fMRI) studies have also shown that low-frequency (<0.08 Hz) fluctuations (LFF) of the blood oxygenation level-dependent signals were abnormal in several brain areas of AD patients. However, few studies have investigated disturbed LFF connectivity in AD patients. By using resting-state fMRI, this study sought to investigate the abnormal functional connectivities throughout the entire brain of early AD patients, and analyze the global distribution of these abnormalities. For this purpose, the authors divided the whole brain into 116 regions and identified abnormal connectivities by comparing the correlation coefficients of each pair. Compared with healthy controls, AD patients had decreased positive correlations between the prefrontal and parietal lobes, but increased positive correlations within the prefrontal lobe, parietal lobe, and occipital lobe. The AD patients also had decreased negative correlations (closer to zero) between two intrinsically anti-correlated networks that had previously been found in the resting brain. By using resting-state fMRI, our results supported previous studies that have reported an anterior-posterior disconnection phenomenon and increased within-lobe functional connectivity in AD patients. In addition, the results also suggest that AD may disturb the correlation/anti-correlation effect in the two intrinsically anti-correlated networks. Wiley-Liss, Inc.

  20. Equation of state of dark energy in f (R ) gravity

    NASA Astrophysics Data System (ADS)

    Takahashi, Kazufumi; Yokoyama, Jun'ichi

    2015-04-01

    f (R ) gravity is one of the simplest generalizations of general relativity, which may explain the accelerated cosmic expansion without introducing a cosmological constant. Transformed into the Einstein frame, a new scalar degree of freedom appears and it couples with matter fields. In order for f (R ) theories to pass the local tests of general relativity, it has been known that the chameleon mechanism with a so-called thin-shell solution must operate. If the thin-shell constraint is applied to a cosmological situation, it has been claimed that the equation-of-state parameter of dark energy w must be extremely close to -1 . We argue this is due to the incorrect use of the Poisson equation, which is valid only in the static case. By solving the correct Klein-Gordon equation perturbatively, we show that a thin-shell solution exists even if w deviates appreciably from -1 .

  1. Time-frequency dynamics of resting-state brain connectivity measured with fMRI.

    PubMed

    Chang, Catie; Glover, Gary H

    2010-03-01

    Most studies of resting-state functional connectivity using fMRI employ methods that assume temporal stationarity, such as correlation and data-driven decompositions computed across the duration of the scan. However, evidence from both task-based fMRI studies and animal electrophysiology suggests that functional connectivity may exhibit dynamic changes within time scales of seconds to minutes. In the present study, we investigated the dynamic behavior of resting-state connectivity across the course of a single scan, performing a time-frequency coherence analysis based on the wavelet transform. We focused on the connectivity of the posterior cingulate cortex (PCC), a primary node of the default-mode network, examining its relationship with both the "anticorrelated" ("task-positive") network as well as other nodes of the default-mode network. It was observed that coherence and phase between the PCC and the anticorrelated network was variable in time and frequency, and statistical testing based on Monte Carlo simulations revealed the presence of significant scale-dependent temporal variability. In addition, a sliding-window correlation procedure identified other regions across the brain that exhibited variable connectivity with the PCC across the scan, which included areas previously implicated in attention and salience processing. Although it is unclear whether the observed coherence and phase variability can be attributed to residual noise or modulation of cognitive state, the present results illustrate that resting-state functional connectivity is not static, and it may therefore prove valuable to consider measures of variability, in addition to average quantities, when characterizing resting-state networks. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  2. Jahn-Teller effect on the [TiF 4F 4F int] 6-(C 4v) and [NiF 4F 4F int] 7-(C 4v) clusters embedded into SrF 2 crystals

    NASA Astrophysics Data System (ADS)

    Ulanov, V. A.; Zhiteitcev, E. R.; Varlamov, A. G.

    2007-07-01

    By means of EPR method the associative [TiF 4F 4F int] 6-(C 4v) and [NiF 4F 4F int] 7-(C 4v) centers were revealed in the fluorite type SrF 2:Ti and SrF 2:Ni crystals grown by Bridgman method in helium atmosphere containing some amount of a fluorine gas. It was found that at low temperatures the local structures of these associative centers were exposed to a static rhombic distortion. The reasons of such distortions were accounted for by the assumption that the E ⊗ ( b1 + b2) vibronic interaction became effective due to that the ground orbital states of the [TiF 4F 4F int] 6-(C 4v) and [NiF 4F 4F int] 7-(C 4v) centers occurred to be doubly degenerated.

  3. Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease

    PubMed Central

    Manning, Kathryn Y.; Rajakumar, Nagalingam; Gómez, Francisco A.; Soddu, Andrea; Borrie, Michael J.

    2017-01-01

    Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1–42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD. PMID:28582450

  4. Spontaneous low frequency BOLD signal variations from resting-state fMRI are decreased in Alzheimer disease.

    PubMed

    Kazemifar, Samaneh; Manning, Kathryn Y; Rajakumar, Nagalingam; Gómez, Francisco A; Soddu, Andrea; Borrie, Michael J; Menon, Ravi S; Bartha, Robert

    2017-01-01

    Previous studies have demonstrated altered brain activity in Alzheimer's disease using task based functional MRI (fMRI), network based resting-state fMRI, and glucose metabolism from 18F fluorodeoxyglucose-PET (FDG-PET). Our goal was to define a novel indicator of neuronal activity based on a first-order textural feature of the resting state functional MRI (RS-fMRI) signal. Furthermore, we examined the association between this neuronal activity metric and glucose metabolism from 18F FDG-PET. We studied 15 normal elderly controls (NEC) and 15 probable Alzheimer disease (AD) subjects from the AD Neuroimaging Initiative. An independent component analysis was applied to the RS-fMRI, followed by template matching to identify neuronal components (NC). A regional brain activity measurement was constructed based on the variation of the RS-fMRI signal of these NC. The standardized glucose uptake values of several brain regions relative to the cerebellum (SUVR) were measured from partial volume corrected FDG-PET images. Comparing the AD and NEC groups, the mean brain activity metric was significantly lower in the accumbens, while the glucose SUVR was significantly lower in the amygdala and hippocampus. The RS-fMRI brain activity metric was positively correlated with cognitive measures and amyloid β1-42 cerebral spinal fluid levels; however, these did not remain significant following Bonferroni correction. There was a significant linear correlation between the brain activity metric and the glucose SUVR measurements. This proof of concept study demonstrates that this novel and easy to implement RS-fMRI brain activity metric can differentiate a group of healthy elderly controls from a group of people with AD.

  5. A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI.

    PubMed

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2015-10-01

    In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e. , internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature.

  6. A Hybrid of Deep Network and Hidden Markov Model for MCI Identification with Resting-State fMRI

    PubMed Central

    Suk, Heung-Il; Lee, Seong-Whan; Shen, Dinggang

    2015-01-01

    In this paper, we propose a novel method for modelling functional dynamics in resting-state fMRI (rs-fMRI) for Mild Cognitive Impairment (MCI) identification. Specifically, we devise a hybrid architecture by combining Deep Auto-Encoder (DAE) and Hidden Markov Model (HMM). The roles of DAE and HMM are, respectively, to discover hierarchical non-linear relations among features, by which we transform the original features into a lower dimension space, and to model dynamic characteristics inherent in rs-fMRI, i.e., internal state changes. By building a generative model with HMMs for each class individually, we estimate the data likelihood of a test subject as MCI or normal healthy control, based on which we identify the clinical label. In our experiments, we achieved the maximal accuracy of 81.08% with the proposed method, outperforming state-of-the-art methods in the literature. PMID:27054199

  7. Post-transition state dynamics and product energy partitioning following thermal excitation of the F⋯HCH2CN transition state: Disagreement with experiment

    NASA Astrophysics Data System (ADS)

    Pratihar, Subha; Ma, Xinyou; Xie, Jing; Scott, Rebecca; Gao, Eric; Ruscic, Branko; Aquino, Adelia J. A.; Setser, Donald W.; Hase, William L.

    2017-10-01

    Born-Oppenheimer direct dynamics simulations were performed to study atomistic details of the F + CH3CN → HF + CH2CN H-atom abstraction reaction. The simulation trajectories were calculated with a combined M06-2X/MP2 algorithm utilizing the 6-311++G** basis set. The experiments were performed at 300 K, and assuming the accuracy of transition state theory (TST), the trajectories were initiated at the F⋯HCH2CN abstraction TS with a 300 K Boltzmann distribution of energy and directed towards products. Recrossing of the TS was negligible, confirming the accuracy of TST. HF formation was rapid, occurring within 0.014 ps of the trajectory initiation. The intrinsic reaction coordinate (IRC) for reaction involves rotation of HF about CH2CN and then trapping in the CH2CN⋯HF post-reaction potential energy well of ˜10 kcal/mol with respect to the HF + CH2CN products. In contrast to this IRC, five different trajectory types were observed: the majority proceeded by direct H-atom transfer and only 11% approximately following the IRC. The HF vibrational and rotational quantum numbers, n and J, were calculated when HF was initially formed and they increase as potential energy is released in forming the HF + CH2CN products. The population of the HF product vibrational states is only in qualitative agreement with experiment, with the simulations showing depressed and enhanced populations of the n = 1 and 2 states as compared to experiment. Simulations with an anharmonic zero-point energy constraint gave product distributions for relative translation, HF rotation, HF vibration, CH2CN rotation, and CH2CN vibration as 5%, 11%, 60%, 7%, and 16%, respectively. In contrast, the experimental energy partitioning percentages to HF rotation and vibration are 6% and 41%. Comparisons are made between the current simulation and those for other F + H-atom abstraction reactions. The simulation product energy partitioning and HF vibrational population for F + CH3CN → HF + CH2CN

  8. Semi-supervised clustering for parcellating brain regions based on resting state fMRI data

    NASA Astrophysics Data System (ADS)

    Cheng, Hewei; Fan, Yong

    2014-03-01

    Many unsupervised clustering techniques have been adopted for parcellating brain regions of interest into functionally homogeneous subregions based on resting state fMRI data. However, the unsupervised clustering techniques are not able to take advantage of exiting knowledge of the functional neuroanatomy readily available from studies of cytoarchitectonic parcellation or meta-analysis of the literature. In this study, we propose a semi-supervised clustering method for parcellating amygdala into functionally homogeneous subregions based on resting state fMRI data. Particularly, the semi-supervised clustering is implemented under the framework of graph partitioning, and adopts prior information and spatial consistent constraints to obtain a spatially contiguous parcellation result. The graph partitioning problem is solved using an efficient algorithm similar to the well-known weighted kernel k-means algorithm. Our method has been validated for parcellating amygdala into 3 subregions based on resting state fMRI data of 28 subjects. The experiment results have demonstrated that the proposed method is more robust than unsupervised clustering and able to parcellate amygdala into centromedial, laterobasal, and superficial parts with improved functionally homogeneity compared with the cytoarchitectonic parcellation result. The validity of the parcellation results is also supported by distinctive functional and structural connectivity patterns of the subregions and high consistency between coactivation patterns derived from a meta-analysis and functional connectivity patterns of corresponding subregions.

  9. 394. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    394. F.A.N., Delineator Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; EAST BAY CROSSING; PIERS E-2, E-3, E-4, E-5; PLANT LAYOUT AND CAISSON ANCHORAGES; DRG. NO.51 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  10. Effect of Resting-State fNIRS Scanning Duration on Functional Brain Connectivity and Graph Theory Metrics of Brain Network.

    PubMed

    Geng, Shujie; Liu, Xiangyu; Biswal, Bharat B; Niu, Haijing

    2017-01-01

    As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS) has attracted widespread attention for advancing resting-state functional connectivity (FC) and graph theoretical analyses of brain networks. However, it remains largely unknown how the duration of the fNIRS signal scanning is related to stable and reproducible functional brain network features. To answer this question, we collected resting-state fNIRS signals (10-min duration, two runs) from 18 participants and then truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10 min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global efficiency, and clustering coefficient were computed for each subject at each fNIRS signal acquisition duration. Analyses of the stability and between-run reproducibility were performed to identify optimal time length for each measure. We found that the FC, nodal efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS signal acquisition, whereas network clustering coefficient, local and global efficiencies stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only local and global efficiencies. These quantitative results provide direct evidence regarding the choice of the resting-state fNIRS scanning duration for functional brain connectivity and topological metric stability of brain network connectivity.

  11. Correlation between resting state fMRI total neuronal activity and PET metabolism in healthy controls and patients with disorders of consciousness.

    PubMed

    Soddu, Andrea; Gómez, Francisco; Heine, Lizette; Di Perri, Carol; Bahri, Mohamed Ali; Voss, Henning U; Bruno, Marie-Aurélie; Vanhaudenhuyse, Audrey; Phillips, Christophe; Demertzi, Athena; Chatelle, Camille; Schrouff, Jessica; Thibaut, Aurore; Charland-Verville, Vanessa; Noirhomme, Quentin; Salmon, Eric; Tshibanda, Jean-Flory Luaba; Schiff, Nicholas D; Laureys, Steven

    2016-01-01

    The mildly invasive 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a well-established imaging technique to measure 'resting state' cerebral metabolism. This technique made it possible to assess changes in metabolic activity in clinical applications, such as the study of severe brain injury and disorders of consciousness. We assessed the possibility of creating functional MRI activity maps, which could estimate the relative levels of activity in FDG-PET cerebral metabolic maps. If no metabolic absolute measures can be extracted, our approach may still be of clinical use in centers without access to FDG-PET. It also overcomes the problem of recognizing individual networks of independent component selection in functional magnetic resonance imaging (fMRI) resting state analysis. We extracted resting state fMRI functional connectivity maps using independent component analysis and combined only components of neuronal origin. To assess neuronality of components a classification based on support vector machine (SVM) was used. We compared the generated maps with the FDG-PET maps in 16 healthy controls, 11 vegetative state/unresponsive wakefulness syndrome patients and four locked-in patients. The results show a significant similarity with ρ = 0.75 ± 0.05 for healthy controls and ρ = 0.58 ± 0.09 for vegetative state/unresponsive wakefulness syndrome patients between the FDG-PET and the fMRI based maps. FDG-PET, fMRI neuronal maps, and the conjunction analysis show decreases in frontoparietal and medial regions in vegetative patients with respect to controls. Subsequent analysis in locked-in syndrome patients produced also consistent maps with healthy controls. The constructed resting state fMRI functional connectivity map points toward the possibility for fMRI resting state to estimate relative levels of activity in a metabolic map.

  12. Non-quasiparticle states in a half-metallic ferromagnet with antiferromagnetic s-d(f) interaction.

    PubMed

    Irkhin, V Yu

    2015-04-22

    Non-quasiparticle (incoherent) states which play an important role in the electronic structure of half-metallic ferromagnets (HMF) are investigated consistently in the case of antiferromagnetic s-d(f) exchange interaction. Their appropriate description in the limit of strong correlations requires a rearrangement of perturbation series in comparison with the usual Dyson equation. This consideration provides a solution of the Kondo problem in the HMF case and can be important for first-principle HMF calculations performed earlier for ferromagnetic s-d(f) interaction.

  13. Three-particle breakup of the isobaric analog state in 17F

    NASA Astrophysics Data System (ADS)

    Chow, J. C.; Morton, A. C.; Azuma, R. E.; Bateman, N.; Boyd, R. N.; Buchmann, L.; D'auria, J. M.; Davinson, T.; Dombsky, M.; Galster, W.; Gete, E.; Giesen, U.; Iliadis, C.; Jackson, K. P.; King, J. D.; Roy, G.; Shoppa, T.; Shotter, A.

    1998-02-01

    We have studied the β-delayed particle decay of 17Ne to test the feasibility of determining both the E1 and E2 components of the 12C(α,γ)16O cross section at energies relevant to helium burning in stars. In this context we have observed the breakup of the isobaric analog state in 17F at 11.193 MeV into three particles via three channels: proton decay to the 9.59 MeV state in 16O; and α decay to the 2.365 and 3.502/3.547 MeV states in 13N. This is the first reported observation of the decay of the IAS to the 1- state in 16O at 9.59 MeV and the first reported β-delayed proton-α decay. With straightforward improvements to our detection apparatus to improve angular resolution, β suppression, and solid angle coverage, we should be able to proceed to the measurement of the effect of the tail of the subthreshold state at 7.117 MeV in 16O on the α spectrum from the breakup of the 9.59 MeV state.

  14. Identifying Individuals with Antisocial Personality Disorder Using Resting-State fMRI

    PubMed Central

    Tang, Yan; Jiang, Weixiong; Liao, Jian; Wang, Wei; Luo, Aijing

    2013-01-01

    Antisocial personality disorder (ASPD) is closely connected to criminal behavior. A better understanding of functional connectivity in the brains of ASPD patients will help to explain abnormal behavioral syndromes and to perform objective diagnoses of ASPD. In this study we designed an exploratory data-driven classifier based on machine learning to investigate changes in functional connectivity in the brains of patients with ASPD using resting state functional magnetic resonance imaging (fMRI) data in 32 subjects with ASPD and 35 controls. The results showed that the classifier achieved satisfactory performance (86.57% accuracy, 77.14% sensitivity and 96.88% specificity) and could extract stabile information regarding functional connectivity that could be used to discriminate ASPD individuals from normal controls. More importantly, we found that the greatest change in the ASPD subjects was uncoupling between the default mode network and the attention network. Moreover, the precuneus, superior parietal gyrus and cerebellum exhibited high discriminative power in classification. A voxel-based morphometry analysis was performed and showed that the gray matter volumes in the parietal lobule and white matter volumes in the precuneus were abnormal in ASPD compared to controls. To our knowledge, this study was the first to use resting-state fMRI to identify abnormal functional connectivity in ASPD patients. These results not only demonstrated good performance of the proposed classifier, which can be used to improve the diagnosis of ASPD, but also elucidate the pathological mechanism of ASPD from a resting-state functional integration viewpoint. PMID:23593272

  15. Characterization of the Oxidation State of 229 Th Recoils Implanted in MgF2 for the Search of the Low-lying 229 Th Isomeric State

    NASA Astrophysics Data System (ADS)

    Barker, Beau; Meyer, Edmund; Schacht, Mike; Collins, Lee; Wilkerson, Marianne; Zhao, Xinxin

    2016-05-01

    The low-lying (7.8 eV) isomeric state in 229 Th has the potential to become a nuclear frequency standard. 229 Th recoils from 233 U decays have been collected in MgF2 for use in the direct search of the transition. Of interest is the oxidation state of the implanted 229 Th atoms as this can have an influence on the decay mechanisms and photon emission rate. Too determine the oxidation state of the implanted 229 Th recoils we have employed laser induced florescence (LIF), and plan-wave pseudopotential DFT calculations to search for emission from thorium ions in oxidation states less than + 4. Our search focused on detecting emission from Th3+ ions. The DFT calculations predicted the Th3+ state to be the most likely to be present in the crystal after Th4+. We also calculated the band structure for the Th3+ doped MgF2 crystal. For LIF spectra a number of excitation wavelengths were employed, emission spectra in the visible to near-IR were recorded along with time-resolved emission spectra. We have found no evidence for Th3+ in the MgF2 plates. We also analyzed the detection limit of our apprentice and found that the minimum number of Th3+ atoms that we could detect is quite small compared to the number of implanted 229 Th recoils. The number of implanted 229 Th recoils was derived from a γ-ray spectrum by monitoring emission from the daughters of 228 Th. These were present in the MgF2 plates due to a 232 U impurity, which decays to 228 Th, in the source. LA-UR-16-20442.

  16. Reconstruction from scalar-tensor theory and the inhomogeneous equation of state in f( T) gravity

    NASA Astrophysics Data System (ADS)

    Said, Jackson Levi

    2017-12-01

    General relativity (GR) characterizes gravity as a geometric properly exhibited as curvature on spacetime. Teleparallelism describes gravity through torsional properties, and can reproduce GR at the level of equations. Similar to f( R) gravity, on taking a generalization, f( T) gravity can produce various modifications its gravitational mechanism. The resulting field equations are inherently distinct to f( R) gravity in that they are second order. In the present work, f( T) gravity is examined in the cosmological context with a number of solutions reconstructed by means of an auxiliary scalar field. To do this, various forms of the Hubble parameter are considered with an f( T) Lagrangian emerging for each instance. In addition, the inhomogeneous equation of state (EoS) is investigated with a particular Hubble parameter model used to show how this can be used to reconstruct the f( T) Lagrangian. Observationally, the auxiliary scalar field and the exotic terms in the FRW field equations give the same results, meaning that the variation in the Hubble parameter may be interpreted as the need to reformulate gravity in some way, as in f( T) gravity.

  17. Lif Spectroscopy of ThF and the Preparation of ThF^{+} for the Jila eEDM Experiment

    NASA Astrophysics Data System (ADS)

    Ng, Kia Boon; Zhou, Yan; Gresh, Dan; Cairncross, William; Roussy, Tanya; Shagam, Yuval; Cheng, Lan; Ye, Jun; Cornell, Eric

    2017-06-01

    ThF^{+} is a promising candidate for a second-generation molecular ion-based measurement of the permanent electric dipole moment of the electron (eEDM). Compared to the current HfF^{+} eEDM experiment, ThF^{+} has several advantages: (i) the eEDM-sensitive ^{3}Δ_1 electronic state is the ground state, which facilitates a long measurement coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces a greater flexibility for rotational state-selective photoionization via core-nonpenetrating Rydberg states. We use laser-induced fluorescence (LIF) spectroscopy to find suitable intermediate states required for the state selective ionization process. We present the results of our LIF spectroscopy of ThF, and our current progress on efficient ThF ionization and on ThF^{+} dissociation.

  18. Brain-state dependent astrocytic Ca2+ signals are coupled to both positive and negative BOLD-fMRI signals.

    PubMed

    Wang, Maosen; He, Yi; Sejnowski, Terrence J; Yu, Xin

    2018-02-13

    Astrocytic Ca 2+ -mediated gliovascular interactions regulate the neurovascular network in situ and in vivo. However, it is difficult to measure directly both the astrocytic activity and fMRI to relate the various forms of blood-oxygen-level-dependent (BOLD) signaling to brain states under normal and pathological conditions. In this study, fMRI and GCaMP-mediated Ca 2+ optical fiber recordings revealed distinct evoked astrocytic Ca 2+ signals that were coupled with positive BOLD signals and intrinsic astrocytic Ca 2+ signals that were coupled with negative BOLD signals. Both evoked and intrinsic astrocytic calcium signal could occur concurrently or respectively during stimulation. The intrinsic astrocytic calcium signal can be detected globally in multiple cortical sites in contrast to the evoked astrocytic calcium signal only detected at the activated cortical region. Unlike propagating Ca 2+ waves in spreading depolarization/depression, the intrinsic Ca 2+ spikes occurred simultaneously in both hemispheres and were initiated upon the activation of the central thalamus and midbrain reticular formation. The occurrence of the intrinsic astrocytic calcium signal is strongly coincident with an increased EEG power level of the brain resting-state fluctuation. These results demonstrate highly correlated astrocytic Ca 2+ spikes with bidirectional fMRI signals based on the thalamic regulation of cortical states, depicting a brain-state dependency of both astrocytic Ca 2+ and BOLD fMRI signals.

  19. Replicability of time-varying connectivity patterns in large resting state fMRI samples

    PubMed Central

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L.; Stephen, Julia M.; Claus, Eric D.; Mayer, Andrew R.; Calhoun, Vince D.

    2018-01-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain’s inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. PMID:28916181

  20. Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping.

    PubMed

    Wang, Bin; Niu, Yan; Miao, Liwen; Cao, Rui; Yan, Pengfei; Guo, Hao; Li, Dandan; Guo, Yuxiang; Yan, Tianyi; Wu, Jinglong; Xiang, Jie; Zhang, Hui

    2017-01-01

    Alzheimer's disease (AD) is a frequently observed, irreversible brain function disorder among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI) has been introduced as an alternative approach to assessing brain functional abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities in mild cognitive impairment (MCI) and AD patients remain unclear. Here, we described the novel application of permutation entropy (PE) to investigate the abnormal complexity of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls (NCs), 33 early MCI (EMCI), 32 late MCI (LMCI), and 29 AD patients were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database. After preprocessing, whole-brain entropy maps of the four groups were extracted and subjected to Gaussian smoothing. We performed a one-way analysis of variance (ANOVA) on the brain entropy maps of the four groups. The results after adjusting for age and sex differences together revealed that the patients with AD exhibited lower complexity than did the MCI and NC controls. We found five clusters that exhibited significant differences and were distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least complexity. Additionally, the average PE of the five clusters was significantly positively correlated with the Mini-Mental State Examination (MMSE) scores and significantly negatively correlated with Functional Assessment Questionnaire (FAQ) scores and global Clinical Dementia Rating (CDR) scores in the patient groups. Significant correlations were also found between the PE and regional homogeneity (ReHo) in the patient groups. These results indicated that declines in PE might be related to changes in regional functional homogeneity in AD. These findings suggested that complexity analyses using PE in rs-f

  1. Decreased Complexity in Alzheimer's Disease: Resting-State fMRI Evidence of Brain Entropy Mapping

    PubMed Central

    Wang, Bin; Niu, Yan; Miao, Liwen; Cao, Rui; Yan, Pengfei; Guo, Hao; Li, Dandan; Guo, Yuxiang; Yan, Tianyi; Wu, Jinglong; Xiang, Jie; Zhang, Hui

    2017-01-01

    Alzheimer's disease (AD) is a frequently observed, irreversible brain function disorder among elderly individuals. Resting-state functional magnetic resonance imaging (rs-fMRI) has been introduced as an alternative approach to assessing brain functional abnormalities in AD patients. However, alterations in the brain rs-fMRI signal complexities in mild cognitive impairment (MCI) and AD patients remain unclear. Here, we described the novel application of permutation entropy (PE) to investigate the abnormal complexity of rs-fMRI signals in MCI and AD patients. The rs-fMRI signals of 30 normal controls (NCs), 33 early MCI (EMCI), 32 late MCI (LMCI), and 29 AD patients were obtained from the Alzheimer's disease Neuroimaging Initiative (ADNI) database. After preprocessing, whole-brain entropy maps of the four groups were extracted and subjected to Gaussian smoothing. We performed a one-way analysis of variance (ANOVA) on the brain entropy maps of the four groups. The results after adjusting for age and sex differences together revealed that the patients with AD exhibited lower complexity than did the MCI and NC controls. We found five clusters that exhibited significant differences and were distributed primarily in the occipital, frontal, and temporal lobes. The average PE of the five clusters exhibited a decreasing trend from MCI to AD. The AD group exhibited the least complexity. Additionally, the average PE of the five clusters was significantly positively correlated with the Mini-Mental State Examination (MMSE) scores and significantly negatively correlated with Functional Assessment Questionnaire (FAQ) scores and global Clinical Dementia Rating (CDR) scores in the patient groups. Significant correlations were also found between the PE and regional homogeneity (ReHo) in the patient groups. These results indicated that declines in PE might be related to changes in regional functional homogeneity in AD. These findings suggested that complexity analyses using PE in rs-f

  2. Brain functional connectivity network studies of acupuncture: a systematic review on resting-state fMRI.

    PubMed

    Cai, Rong-Lin; Shen, Guo-Ming; Wang, Hao; Guan, Yuan-Yuan

    2018-01-01

    Functional magnetic resonance imaging (fMRI) is a novel method for studying the changes of brain networks due to acupuncture treatment. In recent years, more and more studies have focused on the brain functional connectivity network of acupuncture stimulation. To offer an overview of the different influences of acupuncture on the brain functional connectivity network from studies using resting-state fMRI. The authors performed a systematic search according to PRISMA guidelines. The database PubMed was searched from January 1, 2006 to December 31, 2016 with restriction to human studies in English language. Electronic searches were conducted in PubMed using the keywords "acupuncture" and "neuroimaging" or "resting-state fMRI" or "functional connectivity". Selection of included articles, data extraction and methodological quality assessments were respectively conducted by two review authors. Forty-four resting-state fMRI studies were included in this systematic review according to inclusion criteria. Thirteen studies applied manual acupuncture vs. sham, four studies applied electro-acupuncture vs. sham, two studies also compared transcutaneous electrical acupoint stimulation vs. sham, and nine applied sham acupoint as control. Nineteen studies with a total number of 574 healthy subjects selected to perform fMRI only considered healthy adult volunteers. The brain functional connectivity of the patients had varying degrees of change. Compared with sham acupuncture, verum acupuncture could increase default mode network and sensorimotor network connectivity with pain-, affective- and memory-related brain areas. It has significantly greater connectivity of genuine acupuncture between the periaqueductal gray, anterior cingulate cortex, left posterior cingulate cortex, right anterior insula, limbic/paralimbic and precuneus compared with sham acupuncture. Some research had also shown that acupuncture could adjust the limbic-paralimbic-neocortical network, brainstem

  3. Phase-amplitude coupling and infraslow (<1 Hz) frequencies in the rat brain: relationship to resting state fMRI

    PubMed Central

    Thompson, Garth J.; Pan, Wen-Ju; Billings, Jacob C. W.; Grooms, Joshua K.; Shakil, Sadia; Jaeger, Dieter; Keilholz, Shella D.

    2014-01-01

    Resting state functional magnetic resonance imaging (fMRI) can identify network alterations that occur in complex psychiatric diseases and behaviors, but its interpretation is difficult because the neural basis of the infraslow BOLD fluctuations is poorly understood. Previous results link dynamic activity during the resting state to both infraslow frequencies in local field potentials (LFP) (<1 Hz) and band-limited power in higher frequency LFP (>1 Hz). To investigate the relationship between these frequencies, LFPs were recorded from rats under two anesthetics: isoflurane and dexmedetomidine. Signal phases were calculated from low-frequency LFP and compared to signal amplitudes from high-frequency LFP to determine if modulation existed between the two frequency bands (phase-amplitude coupling). Isoflurane showed significant, consistent phase-amplitude coupling at nearly all pairs of frequencies, likely due to the burst-suppression pattern of activity that it induces. However, no consistent phase-amplitude coupling was observed in rats that were anesthetized with dexmedetomidine. fMRI-LFP correlations under isoflurane using high frequency LFP were reduced when the low frequency LFP's influence was accounted for, but not vice-versa, or in any condition under dexmedetomidine. The lack of consistent phase-amplitude coupling under dexmedetomidine and lack of shared variance between high frequency and low frequency LFP as it relates to fMRI suggests that high and low frequency neural electrical signals may contribute differently, possibly even independently, to resting state fMRI. This finding suggests that researchers take care in interpreting the neural basis of resting state fMRI, as multiple dynamic factors in the underlying electrophysiology could be driving any particular observation. PMID:24904325

  4. [Fractional amplitude of low-frequency fluctuations in childhood and adolescence-onset schizophrenia: a resting state fMRI study].

    PubMed

    Lü, D; Shao, R R; Liang, Y H; Xia, Y H; Guo, S Q

    2016-11-22

    Objective: To explore the whole brain activity features of childhood and adolescence-onset schizophrenia using resting state fMRI. Methods: A total of 63 childhood and adolescence-onset schizophrenia patients (patients group), admitted to the second affiliated hospital of Xinxiang Medical University from October 2013 to October 2015 and fulfilled our inclusion criteria, and 39 healthy controls with age, sex and education matched (control group) were enrolled, then a resting-state fMRI scan was conducted for each participant. Fractional amplitude of low-frequency fluctuations (fALFF) approach was used to explore the differences of resting-state brain function between patients and controls. Results: Compared with the healthy control group, patients group showed significantly decreased fALFF in left superior temporal gyrus and parietal lobe (MNI coordinate: x =-42, -57; y =-3, -21; z =-12, 9; voxels: 22, 32; t =-4.792 3, -5.269 7; Alphasim corrected, corrected P <0.05); patients group showed significantly increased fALFF in left frontal lobe and medial frontal gyrus, right superior frontal gyrus, Postcentral Gyrus, caudate, (MNI coordinate: x =-42, -21, 12, 27, 15; y=54, 39, 48, -18, 15; z =0, 21, 33, 30, 9; voxels: 12, 21, 17, 28, 18; t =4.784 8, 4.90 7, 4.861 5, 5.444 1, 4.270 4; Alphasim corrected, corrected P <0.05). When included age as a covariant, the analysis found that the brain region with significant fALFF change was the left thalamus with decreased fALFF (MNI coordinate: x =-6, y =-12, z=24; voxels: 9; t =-4.268 4; Alphasim corrected, corrected P <0.05) in patients group, while for other brain regions, there was no obvious change in the fALFF, compared with healthy group. Conclusion: Compared with control group, the results indicate that there are intrinsic brain activity abnormalities of some brain regions in childhood and adolescence-onset schizophrenia.

  5. Recidivism Study: Positive Terminations from J. F. Ingram State Technical College, 1976-1986.

    ERIC Educational Resources Information Center

    Cogburn, Helen E.

    In 1988, a study was conducted by the J. F. Ingram State Technical College (ISTC) to determine recidivism rates for incarcerated individuals who earned a diploma and/or a General Educational Development (GED) certificate at ISTC during the years 1976 through 1986. The identification numbers of 2,844 students who had completed programs at ISTC were…

  6. The OsO(3)F(+) and mu-F(OsO(3)F)(2)(+) cations: their syntheses and study by Raman and (19)F NMR spectroscopy and electron structure calculations and X-ray crystal structures of [OsO(3)F][PnF(6)] (Pn = As, Sb), [OsO(3)F][HF](2)[AsF(6)], [OsO(3)F][HF][SbF(6)], and [OsO(3)F][Sb(3)F(16)].

    PubMed

    Gerken, Michael; Dixon, David A; Schrobilgen, Gary J

    2002-01-28

    The fluoride ion donor properties of OsO(3)F(2) have been investigated. The salts [OsO(3)F][AsF(6)], [OsO(3)F][HF](2)[AsF(6)], mu-F(OsO(3)F)(2)[AsF(6)], [OsO(3)F][HF](2)[SbF(6)], and [OsO(3)F][HF][SbF(6)] have been prepared by reaction of OsO(3)F(2) with AsF(5) and SbF(5) in HF solvent and have been characterized in the solid state by Raman spectroscopy. The single-crystal X-ray diffraction studies of [OsO(3)F][AsF(6)] (P2(1)/n, a = 7.0001(11) A, c = 8.8629(13) A, beta = 92.270(7) degrees, Z = 4, and R(1) = 0.0401 at -126 degrees C), [OsO(3)F][SbF(6)] (P2(1)/c, a = 5.4772(14) A, b = 10.115(3) A, c = 12.234(3) A, beta = 99.321(5) degrees, Z = 4, and R(1) = 0.0325 at -173 degrees C), [OsO(3)F][HF](2)[AsF(6)] (P2(1)/n, a = 5.1491(9) A, b = 8.129(2) A, c = 19.636(7) A, beta = 95.099(7) degrees, Z = 4, and R(1) = 0.0348 at -117 degrees C), and [OsO(3)F][HF][SbF(6)] (Pc, a = 5.244(4) A, b = 9.646(6) A, c = 15.269(10) A, beta = 97.154(13) degrees, Z = 4, and R(1) = 0.0558 at -133 degrees C) have shown that the OsO(3)F(+) cations exhibit strong contacts to the anions and HF solvent molecules giving rise to cyclic, dimeric structures in which the osmium atoms have coordination numbers of 6. The reaction of OsO(3)F(2) with neat SbF(5) yielded [OsO(3)F][Sb(3)F(16)], which has been characterized by (19)F NMR spectroscopy in SbF(5) and SO(2)ClF solvents and by Raman spectroscopy and single-crystal X-ray diffraction in the solid state (P4(1)m, a = 10.076(6) A, c = 7.585(8) A, Z = 2, and R(1) = 0.0858 at -113 degrees C). The weak fluoride ion basicity of the Sb(3)F(16)(-) anion resulted in an OsO(3)F(+) cation (C(3)(v) point symmetry) that is well isolated from the anion and in which the osmium is four-coordinate. The geometrical parameters and vibrational frequencies of OsO(3)F(+), ReO(3)F, mu-F(OsO(3)F)(2)(+), (FO(3)Os--FPnF(5))(2), and (FO(3)Os--(HF)(2)--FPnF(5))(2) (Pn = As, Sb) have been calculated using density functional theory methods.

  7. 32 CFR Appendix F to Part 197 - Procedures for Copying of Documents for the Foreign Relations of the United States Series

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Foreign Relations of the United States Series F Appendix F to Part 197 National Defense Department of...—Procedures for Copying of Documents for the Foreign Relations of the United States Series 1. The records will.../declassification and historical research branch staff member must be present at all times. 4. OSD will supply the...

  8. 32 CFR Appendix F to Part 197 - Procedures for Copying of Documents for the Foreign Relations of the United States Series

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Foreign Relations of the United States Series F Appendix F to Part 197 National Defense Department of...—Procedures for Copying of Documents for the Foreign Relations of the United States Series 1. The records will.../declassification and historical research branch staff member must be present at all times. 4. OSD will supply the...

  9. Resting-State fMRI Functional Connectivity Is Associated with Sleepiness, Imagery, and Discontinuity of Mind

    PubMed Central

    Chen, Gang; den Braber, Anouk; van ‘t Ent, Dennis; Boomsma, Dorret I.; Mansvelder, Huibert D.; de Geus, Eco; Van Someren, Eus J. W.; Linkenkaer-Hansen, Klaus

    2015-01-01

    Resting-state functional magnetic resonance imaging (rs-fMRI) is widely used to investigate the functional architecture of the healthy human brain and how it is affected by learning, lifelong development, brain disorders or pharmacological intervention. Non-sensory experiences are prevalent during rest and must arise from ongoing brain activity, yet little is known about this relationship. Here, we used two runs of rs-fMRI both immediately followed by the Amsterdam Resting-State Questionnaire (ARSQ) to investigate the relationship between functional connectivity within ten large-scale functional brain networks and ten dimensions of thoughts and feelings experienced during the scan in 106 healthy participants. We identified 11 positive associations between brain-network functional connectivity and ARSQ dimensions. ‘Sleepiness’ exhibited significant associations with functional connectivity within Visual, Sensorimotor and Default Mode networks. Similar associations were observed for ‘Visual Thought’ and ‘Discontinuity of Mind’, which may relate to variation in imagery and thought control mediated by arousal fluctuations. Our findings show that self-reports of thoughts and feelings experienced during a rs-fMRI scan help understand the functional significance of variations in functional connectivity, which should be of special relevance to clinical studies. PMID:26540239

  10. Quantum 1/f Noise in Solid State Devices in Particular Hg(1-x)Cd(x)Te N(+)-P Diodes

    DTIC Science & Technology

    1989-05-15

    1 / f noise in pentodes. 3. A. van der Ziel, P. H. Handel, X. C. Zhu, and K. H. Duh, "A theory of the Hooge parameters of solid-state...the progress reports 12. P. H. Hardel and A. van der Ziel, "Relativistic correction of the Hooge parameter for Umklapp 1 / f noise ," Physica, vol. 141B... Hooge parameter and of fundamental 1 / f noise sources. As a side result many quantum 1 / f noise formulas are verified

  11. Replicability of time-varying connectivity patterns in large resting state fMRI samples.

    PubMed

    Abrol, Anees; Damaraju, Eswar; Miller, Robyn L; Stephen, Julia M; Claus, Eric D; Mayer, Andrew R; Calhoun, Vince D

    2017-12-01

    The past few years have seen an emergence of approaches that leverage temporal changes in whole-brain patterns of functional connectivity (the chronnectome). In this chronnectome study, we investigate the replicability of the human brain's inter-regional coupling dynamics during rest by evaluating two different dynamic functional network connectivity (dFNC) analysis frameworks using 7 500 functional magnetic resonance imaging (fMRI) datasets. To quantify the extent to which the emergent functional connectivity (FC) patterns are reproducible, we characterize the temporal dynamics by deriving several summary measures across multiple large, independent age-matched samples. Reproducibility was demonstrated through the existence of basic connectivity patterns (FC states) amidst an ensemble of inter-regional connections. Furthermore, application of the methods to conservatively configured (statistically stationary, linear and Gaussian) surrogate datasets revealed that some of the studied state summary measures were indeed statistically significant and also suggested that this class of null model did not explain the fMRI data fully. This extensive testing of reproducibility of similarity statistics also suggests that the estimated FC states are robust against variation in data quality, analysis, grouping, and decomposition methods. We conclude that future investigations probing the functional and neurophysiological relevance of time-varying connectivity assume critical importance. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  12. Dispersed laser-induced fluorescence of molecular ions. Identification of new low-lying electronic states of TiCl + and TiF +

    NASA Astrophysics Data System (ADS)

    Focsa, C.; Pinchemel, B.

    1999-09-01

    The dispersed laser-induced fluorescence technique has been applied for the first time to metallic molecular ions. The TiCl + and TiF + ions were produced by a high-voltage discharge in helium with traces of TiCl 4 or TiF 4. A c.w. dye-laser and a grating plate spectrometer were used to record low-resolution spectra of these species in the visible. This leads to the observation of new low-lying electronic states of these ions: the C 3Π (˜1535 cm -1) state of TiCl +, the B 3Δ (˜2040 cm -1) and C 3Π (˜2200 cm -1) states of TiF +. The identification of these new states contributes to a better characterisation of the first 3000 cm -1 of the energy level diagrams of these molecules. The experimental position of the C 3Π state of TiCl + is in good agreement with theoretical predictions given by a Ligand Field Theory model [C. Focsa, M. Bencheikh, L.G.M. Pettersson, J. Phys. B: At. Mol. Opt. Phys. 31 (1998) 2857]. We have extended these calculations to the TiF + isovalent ion, taking advantage of the new experimental data. Both experimental and theoretical new results presented in this paper are expected to help future investigations on these species.

  13. Decoding human mental states by whole-head EEG+fNIRS during category fluency task performance

    NASA Astrophysics Data System (ADS)

    Omurtag, Ahmet; Aghajani, Haleh; Onur Keles, Hasan

    2017-12-01

    Objective. Concurrent scalp electroencephalography (EEG) and functional near-infrared spectroscopy (fNIRS), which we refer to as EEG+fNIRS, promises greater accuracy than the individual modalities while remaining nearly as convenient as EEG. We sought to quantify the hybrid system’s ability to decode mental states and compare it with its unimodal components. Approach. We recorded from healthy volunteers taking the category fluency test and applied machine learning techniques to the data. Main results. EEG+fNIRS’s decoding accuracy was greater than that of its subsystems, partly due to the new type of neurovascular features made available by hybrid data. Significance. Availability of an accurate and practical decoding method has potential implications for medical diagnosis, brain-computer interface design, and neuroergonomics.

  14. 377. F.A.N. and Q.E.D., Delineators Date Unknown STATE OF CALIFORNIA; ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    377. F.A.N. and Q.E.D., Delineators Date Unknown STATE OF CALIFORNIA; DEPARTMENT OF PUBLIC WORKS; SAN FRANCISCO - OAKLAND BAY BRIDGE; WEST BAY CROSSING; YERBA BUENA CABLE BENT; DRG. NO. 34 - San Francisco Oakland Bay Bridge, Spanning San Francisco Bay, San Francisco, San Francisco County, CA

  15. Comprehensive theoretical studies on the low-lying electronic states of NiF, NiCl, NiBr, and NiI.

    PubMed

    Zou, Wenli; Liu, Wenjian

    2006-04-21

    The low-lying electronic states of the nickel monohalides, i.e., NiF, NiCl, NiBr, and NiI, are investigated by using multireference second-order perturbation theory with relativistic effects taken into account. For the energetically lowest 11 lambda-S states and 26 omega states there into, the potential energy curves and corresponding spectroscopic constants (vertical and adiabatic excitation energies, equilibrium bond lengths, vibrational frequencies, and rotational constants) are reported. The calculated results are grossly in very good agreement with those solid experimental data. In particular, the ground state of NiI is shown to be different from those of NiF, NiCl, and NiBr, being in line with the recent experimental observation. Detailed analyses are provided on those states that either have not been assigned or have been incorrectly assigned by previous experiments.

  16. Classification of fMRI resting-state maps using machine learning techniques: A comparative study

    NASA Astrophysics Data System (ADS)

    Gallos, Ioannis; Siettos, Constantinos

    2017-11-01

    We compare the efficiency of Principal Component Analysis (PCA) and nonlinear learning manifold algorithms (ISOMAP and Diffusion maps) for classifying brain maps between groups of schizophrenia patients and healthy from fMRI scans during a resting-state experiment. After a standard pre-processing pipeline, we applied spatial Independent component analysis (ICA) to reduce (a) noise and (b) spatial-temporal dimensionality of fMRI maps. On the cross-correlation matrix of the ICA components, we applied PCA, ISOMAP and Diffusion Maps to find an embedded low-dimensional space. Finally, support-vector-machines (SVM) and k-NN algorithms were used to evaluate the performance of the algorithms in classifying between the two groups.

  17. Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study.

    PubMed

    Wu, Lei; Eichele, Tom; Calhoun, Vince D

    2010-10-01

    Concurrent EEG-fMRI studies have provided increasing details of the dynamics of intrinsic brain activity during the resting state. Here, we investigate a prominent effect in EEG during relaxed resting, i.e. the increase of the alpha power when the eyes are closed compared to when the eyes are open. This phenomenon is related to changes in thalamo-cortical and cortico-cortical synchronization. In order to investigate possible changes to EEG-fMRI coupling and fMRI functional connectivity during the two states we adopted a data-driven approach that fuses the multimodal data on the basis of parallel ICA decompositions of the fMRI data in the spatial domain and of the EEG data in the spectral domain. The power variation of a posterior alpha component was used as a reference function to deconvolve the hemodynamic responses from occipital, frontal, temporal, and subcortical fMRI components. Additionally, we computed the functional connectivity between these components. The results showed widespread alpha hemodynamic responses and high functional connectivity during eyes-closed (EC) rest, while eyes open (EO) resting abolished many of the hemodynamic responses and markedly decreased functional connectivity. These data suggest that generation of local hemodynamic responses is highly sensitive to state changes that do not involve changes of mental effort or awareness. They also indicate the localized power differences in posterior alpha between EO and EC in resting state data are accompanied by spatially widespread amplitude changes in hemodynamic responses and inter-regional functional connectivity, i.e. low frequency hemodynamic signals display an equivalent of alpha reactivity. Copyright 2010 Elsevier Inc. All rights reserved.

  18. Theoretical Calculations of XeF Ground State Kinetics.

    DTIC Science & Technology

    1988-03-01

    potential parameters for XeF are taken from Tellinghuisen et al. 3 The values of the Lennard - Jones parameters for HeF...parameters for the Morse potential and the Lennard - Jones potentials are listed in Table 1. These parameters for the Lennard - Jones potentials produce the...relaxation and dissociation. 13 ~ o Table 1. Potential Parameters. Morse Function (XeF)3 De = 3.35 kcal/mol ae=1.726 a.u.-1 re =4.367 a.u. Lennard Jones

  19. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data

    PubMed Central

    James, G. Andrew; Hazaroglu, Onder; Bush, Keith A.

    2015-01-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI’s translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants’ functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group’s mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI= 0.72–0.85) than with the Random atlases (JI=0.59–0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal

  20. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.

    PubMed

    James, George Andrew; Hazaroglu, Onder; Bush, Keith A

    2016-02-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during

  1. Line Lists for LiF and LiCl in the X 1Σ+ Ground State

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Bernath, Peter F.

    2018-03-01

    Vibration–rotation line lists for 6LiF, 7LiF, 6Li35Cl, 6Li37Cl, 7Li35Cl, and 7Li37Cl in the X 1Σ+ ground states have been prepared. The rovibrational energy levels have been calculated using potential energy surfaces determined by direct potential-fitting employing the rotational and rovibrational transition frequencies of all isotopologues, and required the inclusion of Born–Oppenheimer breakdown terms. Dipole moment functions calculated ab initio at the MRCI/aug-cc-pwCV5Z level have been used for line strength calculations. Partition functions for temperatures up to 5000 K have been calculated. LiF and LiCl are predicted to be present in the atmospheres of hot rocky exoplanets, brown dwarfs, and cool stars.

  2. Enhanced subject-specific resting-state network detection and extraction with fast fMRI.

    PubMed

    Akin, Burak; Lee, Hsu-Lei; Hennig, Jürgen; LeVan, Pierre

    2017-02-01

    Resting-state networks have become an important tool for the study of brain function. An ultra-fast imaging technique that allows to measure brain function, called Magnetic Resonance Encephalography (MREG), achieves an order of magnitude higher temporal resolution than standard echo-planar imaging (EPI). This new sequence helps to correct physiological artifacts and improves the sensitivity of the fMRI analysis. In this study, EPI is compared with MREG in terms of capability to extract resting-state networks. Healthy controls underwent two consecutive resting-state scans, one with EPI and the other with MREG. Subject-level independent component analyses (ICA) were performed separately for each of the two datasets. Using Stanford FIND atlas parcels as network templates, the presence of ICA maps corresponding to each network was quantified in each subject. The number of detected individual networks was significantly higher in the MREG data set than for EPI. Moreover, using short time segments of MREG data, such as 50 seconds, one can still detect and track consistent networks. Fast fMRI thus results in an increased capability to extract distinct functional regions at the individual subject level for the same scan times, and also allow the extraction of consistent networks within shorter time intervals than when using EPI, which is notably relevant for the analysis of dynamic functional connectivity fluctuations. Hum Brain Mapp 38:817-830, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. Graph-theoretical analysis of resting-state fMRI in pediatric obsessive-compulsive disorder

    PubMed Central

    Armstrong, Casey C.; Moody, Teena D.; Feusner, Jamie D.; McCracken, James T.; Chang, Susanna; Levitt, Jennifer G.; Piacentini, John C.; O'Neill, Joseph

    2018-01-01

    Background fMRI graph theory reveals resting-state brain networks, but has never been used in pediatric OCD. Methods Whole-brain resting-state fMRI was acquired at 3 T from 21 children with OCD and 20 age-matched healthy controls. BOLD connectivity was analyzed yielding global and local graph-theory metrics across 100 child-based functional nodes. We also compared local metrics between groups in frontopolar, supplementary motor, and sensorimotor cortices, regions implicated in recent neuroimaging and/or brain stimulation treatment studies in OCD. Results As in adults, the global metric small-worldness was significantly (P<0.05) lower in patients than controls, by 13.5% (%mean difference = 100%×(OCD mean – control mean)/control mean). This suggests less efficient information transfer in patients. In addition, modularity was lower in OCD (15.1%, P<0.01), suggesting less granular-- or differently organized-- functional brain parcellation. Higher clustering coefficients (23.9-32.4%, P<0.05) were observed in patients in frontopolar, supplementary motor, sensorimotor, and cortices with lower betweenness centrality (-63.6%, P<0.01) at one frontopolar site. These findings are consistent with more locally intensive connectivity or less interaction with other brain regions at these sites. Limitations Relatively large node size; relatively small sample size, comorbidities in some patients. Conclusions Pediatric OCD patients demonstrate aberrant global and local resting-state network connectivity topologies compared to healthy children. Local results accord with recent views of OCD as a disorder with sensorimotor component. PMID:26773910

  4. Heritability estimates on resting state fMRI data using ENIGMA analysis pipeline.

    PubMed

    Adhikari, Bhim M; Jahanshad, Neda; Shukla, Dinesh; Glahn, David C; Blangero, John; Reynolds, Richard C; Cox, Robert W; Fieremans, Els; Veraart, Jelle; Novikov, Dmitry S; Nichols, Thomas E; Hong, L Elliot; Thompson, Paul M; Kochunov, Peter

    2018-01-01

    Big data initiatives such as the Enhancing NeuroImaging Genetics through Meta-Analysis consortium (ENIGMA), combine data collected by independent studies worldwide to achieve more generalizable estimates of effect sizes and more reliable and reproducible outcomes. Such efforts require harmonized image analyses protocols to extract phenotypes consistently. This harmonization is particularly challenging for resting state fMRI due to the wide variability of acquisition protocols and scanner platforms; this leads to site-to-site variance in quality, resolution and temporal signal-to-noise ratio (tSNR). An effective harmonization should provide optimal measures for data of different qualities. We developed a multi-site rsfMRI analysis pipeline to allow research groups around the world to process rsfMRI scans in a harmonized way, to extract consistent and quantitative measurements of connectivity and to perform coordinated statistical tests. We used the single-modality ENIGMA rsfMRI preprocessing pipeline based on modelfree Marchenko-Pastur PCA based denoising to verify and replicate resting state network heritability estimates. We analyzed two independent cohorts, GOBS (Genetics of Brain Structure) and HCP (the Human Connectome Project), which collected data using conventional and connectomics oriented fMRI protocols, respectively. We used seed-based connectivity and dual-regression approaches to show that the rsfMRI signal is consistently heritable across twenty major functional network measures. Heritability values of 20-40% were observed across both cohorts.

  5. pH-Dependent spin state population and 19F NMR chemical shift via remote ligand protonation in an iron(ii) complex.

    PubMed

    Gaudette, Alexandra I; Thorarinsdottir, Agnes E; Harris, T David

    2017-11-30

    An Fe II complex that features a pH-dependent spin state population, by virtue of a variable ligand protonation state, is described. This behavior leads to a highly pH-dependent 19 F NMR chemical shift with a sensitivity of 13.9(5) ppm per pH unit at 37 °C, thereby demonstrating the potential utility of the complex as a 19 F chemical shift-based pH sensor.

  6. Restoration of fMRI Decodability Does Not Imply Latent Working Memory States

    PubMed Central

    Schneegans, Sebastian; Bays, Paul M.

    2018-01-01

    Recent imaging studies have challenged the prevailing view that working memory is mediated by sustained neural activity. Using machine learning methods to reconstruct memory content, these studies found that previously diminished representations can be restored by retrospective cueing or other forms of stimulation. These findings have been interpreted as evidence for an activity-silent working memory state that can be reactivated dependent on task demands. Here, we test the validity of this conclusion by formulating a neural process model of working memory based on sustained activity and using this model to emulate a spatial recall task with retrocueing. The simulation reproduces both behavioral and fMRI results previously taken as evidence for latent states, in particular the restoration of spatial reconstruction quality following an informative cue. Our results demonstrate that recovery of the decodability of an imaging signal does not provide compelling evidence for an activity-silent working memory state. PMID:28820674

  7. Reproducibility and Temporal Structure in Weekly Resting-State fMRI over a Period of 3.5 Years

    PubMed Central

    Choe, Ann S.; Jones, Craig K.; Joel, Suresh E.; Muschelli, John; Belegu, Visar; Caffo, Brian S.; Lindquist, Martin A.; van Zijl, Peter C. M.; Pekar, James J.

    2015-01-01

    Resting-state functional MRI (rs-fMRI) permits study of the brain’s functional networks without requiring participants to perform tasks. Robust changes in such resting state networks (RSNs) have been observed in neurologic disorders, and rs-fMRI outcome measures are candidate biomarkers for monitoring clinical trials, including trials of extended therapeutic interventions for rehabilitation of patients with chronic conditions. In this study, we aim to present a unique longitudinal dataset reporting on a healthy adult subject scanned weekly over 3.5 years and identify rs-fMRI outcome measures appropriate for clinical trials. Accordingly, we assessed the reproducibility, and characterized the temporal structure of, rs-fMRI outcome measures derived using independent component analysis (ICA). Data was compared to a 21-person dataset acquired on the same scanner in order to confirm that the values of the single-subject RSN measures were within the expected range as assessed from the multi-participant dataset. Fourteen RSNs were identified, and the inter-session reproducibility of outcome measures—network spatial map, temporal signal fluctuation magnitude, and between-network connectivity (BNC)–was high, with executive RSNs showing the highest reproducibility. Analysis of the weekly outcome measures also showed that many rs-fMRI outcome measures had a significant linear trend, annual periodicity, and persistence. Such temporal structure was most prominent in spatial map similarity, and least prominent in BNC. High reproducibility supports the candidacy of rs-fMRI outcome measures as biomarkers, but the presence of significant temporal structure needs to be taken into account when such outcome measures are considered as biomarkers for rehabilitation-style therapeutic interventions in chronic conditions. PMID:26517540

  8. ^2H(^18F,p)^19F Study at 6 MeV/u

    NASA Astrophysics Data System (ADS)

    Kozub, R. L.; Nesaraja, C. D.; Moazen, B. H.; Scott, J. P.; Bardayan, D. W.; Blackmon, J. C.; Gross, C. J.; Shapira, D.; Smith, M. S.; Batchelder, J. C.; Brune, C. R.; Champagne, A. E.; Sahin, L.; Cizewski, J. A.; Thomas, J. S.; Davinson, T.; Woods, P. J.; Greife, U.; Jewett, C.; Livesay, R. J.; Ma, Z.; Parker, P. D.

    2003-04-01

    The degree to which the (p,α) and (p,γ) reactions destroy ^18F at temperatures ˜1-4 x 10^8 K is important for understanding the synthesis of nuclei in nova explosions and for using ^18F as a monitor of nova mechanisms in gamma ray astronomy. The reactions are dominated by low-lying proton resonances near the ^18F+p threshold (E_x=6.411 MeV excitation energy in ^19Ne). To gain further information about these resonances, we have used the inverse ^18F(d,p)^19F neutron transfer reaction at the Holifield Radioactive Ion Beam Facility to selectively populate corresponding mirror states in ^19F. Proton angular distributions were measured for states in ^19F in the excitation energy range 0-9 MeV. Results and implications for the ^18F+p reactions and nuclear structure will be presented. ^1Supported by DOE. ^2ORNL is managed by UT-Battelle, LLC, for the USDOE.

  9. BPS states in N = 2 supersymmetric G2 and F4 models

    NASA Astrophysics Data System (ADS)

    Ahl Laamara, R.; Mellal, O.; Saidi, E. H.

    2017-07-01

    In BPS quiver theory of N = 2 supersymmetric pure gauge models with gauge invariance G, primitive BPS quivers Q0G are of two types: Q0ADE and Q0BCFG. In this study, we first show that Q0ADE have outer-automorphism symmetries inherited from the outer-automorphisms of the Dynkin diagrams of ADE Lie algebras. Then, we extend the usual folding operation of Dynkin diagrams ADE → BCFG to obtain the two following things: (i) relate Q0BCFG quivers and their mutations to the Q0ADE ones and their mutations; and (ii) link the BPS chambers of the N = 2ADE theories with the corresponding BCFG ones. As an illustration of this construction, we derive the BPS and anti-BPS states of the strong chambers QstgG2 and QstgF4 of the 4d N = 2 pure G2 and F4 gauge models.

  10. Ab initio study of dynamical E × e Jahn-Teller and spin-orbit coupling effects in the transition-metal trifluorides TiF3, CrF3, and NiF3

    NASA Astrophysics Data System (ADS)

    Mondal, Padmabati; Opalka, Daniel; Poluyanov, Leonid V.; Domcke, Wolfgang

    2012-02-01

    Multiconfiguration ab initio methods have been employed to study the effects of Jahn-Teller (JT) and spin-orbit (SO) coupling in the transition-metal trifluorides TiF3, CrF3, and NiF3, which possess spatially doubly degenerate excited states (ME) of even spin multiplicities (M = 2 or 4). The ground states of TiF3, CrF3, and NiF3 are nondegenerate and exhibit minima of D3h symmetry. Potential-energy surfaces of spatially degenerate excited states have been calculated using the state-averaged complete-active-space self-consistent-field method. SO coupling is described by the matrix elements of the Breit-Pauli operator. Linear and higher order JT coupling constants for the JT-active bending and stretching modes as well as SO-coupling constants have been determined. Vibronic spectra of JT-active excited electronic states have been calculated, using JT Hamiltonians for trigonal systems with inclusion of SO coupling. The effect of higher order (up to sixth order) JT couplings on the vibronic spectra has been investigated for selected electronic states and vibrational modes with particularly strong JT couplings. While the weak SO couplings in TiF3 and CrF3 are almost completely quenched by the strong JT couplings, the stronger SO coupling in NiF3 is only partially quenched by JT coupling.

  11. Functional network centrality in obesity: A resting-state and task fMRI study.

    PubMed

    García-García, Isabel; Jurado, María Ángeles; Garolera, Maite; Marqués-Iturria, Idoia; Horstmann, Annette; Segura, Bàrbara; Pueyo, Roser; Sender-Palacios, María José; Vernet-Vernet, Maria; Villringer, Arno; Junqué, Carme; Margulies, Daniel S; Neumann, Jane

    2015-09-30

    Obesity is associated with structural and functional alterations in brain areas that are often functionally distinct and anatomically distant. This suggests that obesity is associated with differences in functional connectivity of regions distributed across the brain. However, studies addressing whole brain functional connectivity in obesity remain scarce. Here, we compared voxel-wise degree centrality and eigenvector centrality between participants with obesity (n=20) and normal-weight controls (n=21). We analyzed resting state and task-related fMRI data acquired from the same individuals. Relative to normal-weight controls, participants with obesity exhibited reduced degree centrality in the right middle frontal gyrus in the resting-state condition. During the task fMRI condition, obese participants exhibited less degree centrality in the left middle frontal gyrus and the lateral occipital cortex along with reduced eigenvector centrality in the lateral occipital cortex and occipital pole. Our results highlight the central role of the middle frontal gyrus in the pathophysiology of obesity, a structure involved in several brain circuits signaling attention, executive functions and motor functions. Additionally, our analysis suggests the existence of task-dependent reduced centrality in occipital areas; regions with a role in perceptual processes and that are profoundly modulated by attention. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Disrupted functional brain connectivity in partial epilepsy: a resting-state fMRI study.

    PubMed

    Luo, Cheng; Qiu, Chuan; Guo, Zhiwei; Fang, Jiajia; Li, Qifu; Lei, Xu; Xia, Yang; Lai, Yongxiu; Gong, Qiyong; Zhou, Dong; Yao, Dezhong

    2011-01-01

    Examining the spontaneous activity to understand the neural mechanism of brain disorder is a focus in recent resting-state fMRI. In the current study, to investigate the alteration of brain functional connectivity in partial epilepsy in a systematical way, two levels of analyses (functional connectivity analysis within resting state networks (RSNs) and functional network connectivity (FNC) analysis) were carried out on resting-state fMRI data acquired from the 30 participants including 14 healthy controls(HC) and 16 partial epilepsy patients. According to the etiology, all patients are subdivided into temporal lobe epilepsy group (TLE, included 7 patients) and mixed partial epilepsy group (MPE, 9 patients). Using group independent component analysis, eight RSNs were identified, and selected to evaluate functional connectivity and FNC between groups. Compared with the controls, decreased functional connectivity within all RSNs was found in both TLE and MPE. However, dissociating patterns were observed within the 8 RSNs between two patient groups, i.e, compared with TLE, we found decreased functional connectivity in 5 RSNs increased functional connectivity in 1 RSN, and no difference in the other 2 RSNs in MPE. Furthermore, the hierarchical disconnections of FNC was found in two patient groups, in which the intra-system connections were preserved for all three subsystems while the lost connections were confined to intersystem connections in patients with partial epilepsy. These findings may suggest that decreased resting state functional connectivity and disconnection of FNC are two remarkable characteristics of partial epilepsy. The selective impairment of FNC implicated that it is unsuitable to understand the partial epilepsy only from global or local perspective. We presumed that studying epilepsy in the multi-perspective based on RSNs may be a valuable means to assess the functional changes corresponding to specific RSN and may contribute to the understanding of

  13. Dehybridization of f and d states in the heavy-fermion system YbRh 2 Si 2

    DOE PAGES

    Leuenberger, D.; Sobota, J. A.; Yang, S. -L.; ...

    2018-04-06

    Here, we report an optically induced reduction of the f-d hybridization in the prototypical heavy-fermion compound YbRh 2Si 2. We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4f and Rh 4d states before the lattice temperature increases after pumping. Overall, the f-d hybridization decreases smoothly with increasing electronic temperature up to ~ 250 K but changes slope at ~ 100 K. This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, wemore » observe a persistent f-d hybridization up to at least ~ 250 K, which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.« less

  14. Dehybridization of f and d states in the heavy-fermion system YbRh 2 Si 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leuenberger, D.; Sobota, J. A.; Yang, S. -L.

    Here, we report an optically induced reduction of the f-d hybridization in the prototypical heavy-fermion compound YbRh 2Si 2. We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4f and Rh 4d states before the lattice temperature increases after pumping. Overall, the f-d hybridization decreases smoothly with increasing electronic temperature up to ~ 250 K but changes slope at ~ 100 K. This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, wemore » observe a persistent f-d hybridization up to at least ~ 250 K, which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.« less

  15. Dehybridization of f and d states in the heavy-fermion system YbRh2Si2

    NASA Astrophysics Data System (ADS)

    Leuenberger, D.; Sobota, J. A.; Yang, S.-L.; Pfau, H.; Kim, D.-J.; Mo, S.-K.; Fisk, Z.; Kirchmann, P. S.; Shen, Z.-X.

    2018-04-01

    We report an optically induced reduction of the f -d hybridization in the prototypical heavy-fermion compound YbRh2Si2 . We use femtosecond time- and angle-resolved photoemission spectroscopy to monitor changes of spectral weight and binding energies of the Yb 4 f and Rh 4 d states before the lattice temperature increases after pumping. Overall, the f -d hybridization decreases smoothly with increasing electronic temperature up to ˜250 K but changes slope at ˜100 K . This temperature scale coincides with the onset of coherent Kondo scattering and with thermally populating the first excited crystal electrical field level. Extending previous photoemission studies, we observe a persistent f -d hybridization up to at least ˜250 K , which is far larger than the coherence temperature defined by transport but in agreement with the temperature dependence of the noninteger Yb valence. Our data underlines the distinction of probes accessing spin and charge degrees of freedom in strongly correlated systems.

  16. Mechanistic insight into formation and changes of nanoparticles in MgF2 sols evidenced by liquid and solid state NMR.

    PubMed

    Karg, M; Scholz, G; König, R; Kemnitz, E

    2012-02-28

    The fluorolytic sol-gel reaction of magnesium methoxide with HF in methanol was studied by (19)F, (1)H and (13)C liquid and solid state NMR. In (19)F NMR five different species were identified, three of which belong to magnesium fluoride nanoparticles, i.e. NMR gave access to local structures of solid particles in suspensions. The long-term evolution of (19)F signals was followed and along with (19)F MAS NMR experiments of sols rotating at 13 kHz mechanistic insights into the ageing processes were obtained.

  17. Correlated Disruption of Resting-State fMRI, LFP, and Spike Connectivity between Area 3b and S2 following Spinal Cord Injury in Monkeys.

    PubMed

    Wu, Ruiqi; Yang, Pai-Feng; Chen, Li Min

    2017-11-15

    This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened

  18. Correlated Disruption of Resting-State fMRI, LFP, and Spike Connectivity between Area 3b and S2 following Spinal Cord Injury in Monkeys

    PubMed Central

    2017-01-01

    This study aims to understand how functional connectivity (FC) between areas 3b and S2 alters following input deprivation and the neuronal basis of disrupted FC of resting-state fMRI signals. We combined submillimeter fMRI with microelectrode recordings to localize the deafferented digit regions in areas 3b and S2 by mapping tactile stimulus-evoked fMRI activations before and after cervical dorsal column lesion in each male monkey. An average afferent disruption of 97% significantly reduced fMRI, local field potential (LFP), and spike responses to stimuli in both areas. Analysis of resting-state fMRI signal correlation, LFP coherence, and spike cross-correlation revealed significantly reduced functional connectivity between deafferented areas 3b and S2. The degrees of reductions in stimulus responsiveness and FC after deafferentation differed across fMRI, LFP, and spiking signals. The reduction of FC was much weaker than that of stimulus-evoked responses. Whereas the largest stimulus-evoked signal drop (∼80%) was observed in LFP signals, the greatest FC reduction was detected in the spiking activity (∼30%). fMRI signals showed mild reductions in stimulus responsiveness (∼25%) and FC (∼20%). The overall deafferentation-induced changes were quite similar in areas 3b and S2 across signals. Here we demonstrated that FC strength between areas 3b and S2 was much weakened by dorsal column lesion, and stimulus response reduction and FC disruption in fMRI covary with those of LFP and spiking signals in deafferented areas 3b and S2. These findings have important implications for fMRI studies aiming to probe FC alterations in pathological conditions involving deafferentation in humans. SIGNIFICANCE STATEMENT By directly comparing fMRI, local field potential, and spike signals in both tactile stimulation and resting states before and after severe disruption of dorsal column afferent, we demonstrated that reduction in fMRI responses to stimuli is accompanied by weakened

  19. pH Dependent Spin State Population and 19F NMR Chemical Shift via Remote Ligand Protonation in an Iron(II) Complex (Postprint)

    DTIC Science & Technology

    2017-12-11

    AFRL-RX-WP-JA-2017-0501 pH- DEPENDENT SPIN STATE POPULATION AND 19F NMR CHEMICAL SHIFT VIA REMOTE LIGAND PROTONATION IN AN IRON(II...From - To) 16 November 2017 Interim 24 January 2014 – 16 October 2017 4. TITLE AND SUBTITLE PH- DEPENDENT SPIN STATE POPULATION AND 19F NMR CHEMICAL...dx.doi.org/10.1039/C7CC08099A 14. ABSTRACT (Maximum 200 words) An FeII complex that features a pH- dependent spin state population, by virtue of a

  20. Test-retest reliability of fMRI-based graph theoretical properties during working memory, emotion processing, and resting state.

    PubMed

    Cao, Hengyi; Plichta, Michael M; Schäfer, Axel; Haddad, Leila; Grimm, Oliver; Schneider, Michael; Esslinger, Christine; Kirsch, Peter; Meyer-Lindenberg, Andreas; Tost, Heike

    2014-01-01

    The investigation of the brain connectome with functional magnetic resonance imaging (fMRI) and graph theory analyses has recently gained much popularity, but little is known about the robustness of these properties, in particular those derived from active fMRI tasks. Here, we studied the test-retest reliability of brain graphs calculated from 26 healthy participants with three established fMRI experiments (n-back working memory, emotional face-matching, resting state) and two parcellation schemes for node definition (AAL atlas, functional atlas proposed by Power et al.). We compared the intra-class correlation coefficients (ICCs) of five different data processing strategies and demonstrated a superior reliability of task-regression methods with condition-specific regressors. The between-task comparison revealed significantly higher ICCs for resting state relative to the active tasks, and a superiority of the n-back task relative to the face-matching task for global and local network properties. While the mean ICCs were typically lower for the active tasks, overall fair to good reliabilities were detected for global and local connectivity properties, and for the n-back task with both atlases, smallworldness. For all three tasks and atlases, low mean ICCs were seen for the local network properties. However, node-specific good reliabilities were detected for node degree in regions known to be critical for the challenged functions (resting-state: default-mode network nodes, n-back: fronto-parietal nodes, face-matching: limbic nodes). Between-atlas comparison demonstrated significantly higher reliabilities for the functional parcellations for global and local network properties. Our findings can inform the choice of processing strategies, brain atlases and outcome properties for fMRI studies using active tasks, graph theory methods, and within-subject designs, in particular future pharmaco-fMRI studies. © 2013 Elsevier Inc. All rights reserved.

  1. Brain entropy and human intelligence: A resting-state fMRI study

    PubMed Central

    Calderone, Daniel; Morales, Leah J.

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns. PMID:29432427

  2. Brain entropy and human intelligence: A resting-state fMRI study.

    PubMed

    Saxe, Glenn N; Calderone, Daniel; Morales, Leah J

    2018-01-01

    Human intelligence comprises comprehension of and reasoning about an infinitely variable external environment. A brain capable of large variability in neural configurations, or states, will more easily understand and predict variable external events. Entropy measures the variety of configurations possible within a system, and recently the concept of brain entropy has been defined as the number of neural states a given brain can access. This study investigates the relationship between human intelligence and brain entropy, to determine whether neural variability as reflected in neuroimaging signals carries information about intellectual ability. We hypothesize that intelligence will be positively associated with entropy in a sample of 892 healthy adults, using resting-state fMRI. Intelligence is measured with the Shipley Vocabulary and WASI Matrix Reasoning tests. Brain entropy was positively associated with intelligence. This relation was most strongly observed in the prefrontal cortex, inferior temporal lobes, and cerebellum. This relationship between high brain entropy and high intelligence indicates an essential role for entropy in brain functioning. It demonstrates that access to variable neural states predicts complex behavioral performance, and specifically shows that entropy derived from neuroimaging signals at rest carries information about intellectual capacity. Future work in this area may elucidate the links between brain entropy in both resting and active states and various forms of intelligence. This insight has the potential to provide predictive information about adaptive behavior and to delineate the subdivisions and nature of intelligence based on entropic patterns.

  3. The effects of detergents DDM and beta-OG on the singlet excited state lifetime of the chlorophyll a in cytochrome b6f complex from spinach chloroplasts.

    PubMed

    Chen, XiaoBo; Zhao, XiaoHui; Zhang, JianPing; Li, LiangBi; Kuang, TingYun

    2007-08-01

    The singlet excited state lifetime of the chlorophyll a (Chl a) in cytochrome b(6)f (Cyt b(6)f) complex was reported to be shorter than that of free Chl a in methanol, but the value was different for Cyt b(6)f complexes from different sources ( approximately 200 and approximately 600 ps are the two measured results). The present study demonstrated that the singlet excited state lifetime is associated with the detergents n-dodecyl-beta-D-maltoside (DDM) and n-octyl-beta-D-glucopyranoside (beta-OG), but has nothing to do with the different sources of Cyt b(6)f complexes. Compared with the Cyt b(6)f dissolved in beta-OG, the Cyt b(6)f in DDM had a lower fluorescence yield, a lower photodegradation rate of Chl a, and a shorter lifetime of Chl a excited state. In short, the singlet excited state lifetime, approximately 200 ps, of the Chl a in Cyt b(6)f complex in DDM is closer to the true in vivo.

  4. Probing the Single-Particle Character of Rotational States in F 19 Using a Short-Lived Isomeric Beam

    NASA Astrophysics Data System (ADS)

    Santiago-Gonzalez, D.; Auranen, K.; Avila, M. L.; Ayangeakaa, A. D.; Back, B. B.; Bottoni, S.; Carpenter, M. P.; Chen, J.; Deibel, C. M.; Hood, A. A.; Hoffman, C. R.; Janssens, R. V. F.; Jiang, C. L.; Kay, B. P.; Kuvin, S. A.; Lauer, A.; Schiffer, J. P.; Sethi, J.; Talwar, R.; Wiedenhöver, I.; Winkelbauer, J.; Zhu, S.

    2018-03-01

    A beam containing a substantial component of both the Jπ=5+ , T1 /2=162 ns isomeric state of F 18 and its 1+, 109.77-min ground state is utilized to study members of the ground-state rotational band in F 19 through the neutron transfer reaction (d ,p ) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the 13 /2+ band-terminating state. The agreement between shell-model calculations using an interaction constructed within the s d shell, and our experimental results reinforces the idea of a single-particle-collective duality in the descriptions of the structure of atomic nuclei.

  5. Principal States of Dynamic Functional Connectivity Reveal the Link Between Resting-State and Task-State Brain: An fMRI Study.

    PubMed

    Cheng, Lin; Zhu, Yang; Sun, Junfeng; Deng, Lifu; He, Naying; Yang, Yang; Ling, Huawei; Ayaz, Hasan; Fu, Yi; Tong, Shanbao

    2018-01-25

    Task-related reorganization of functional connectivity (FC) has been widely investigated. Under classic static FC analysis, brain networks under task and rest have been demonstrated a general similarity. However, brain activity and cognitive process are believed to be dynamic and adaptive. Since static FC inherently ignores the distinct temporal patterns between rest and task, dynamic FC may be more a suitable technique to characterize the brain's dynamic and adaptive activities. In this study, we adopted [Formula: see text]-means clustering to investigate task-related spatiotemporal reorganization of dynamic brain networks and hypothesized that dynamic FC would be able to reveal the link between resting-state and task-state brain organization, including broadly similar spatial patterns but distinct temporal patterns. In order to test this hypothesis, this study examined the dynamic FC in default-mode network (DMN) and motor-related network (MN) using Blood-Oxygenation-Level-Dependent (BOLD)-fMRI data from 26 healthy subjects during rest (REST) and a hand closing-and-opening (HCO) task. Two principal FC states in REST and one principal FC state in HCO were identified. The first principal FC state in REST was found similar to that in HCO, which appeared to represent intrinsic network architecture and validated the broadly similar spatial patterns between REST and HCO. However, the second FC principal state in REST with much shorter "dwell time" implied the transient functional relationship between DMN and MN during REST. In addition, a more frequent shifting between two principal FC states indicated that brain network dynamically maintained a "default mode" in the motor system during REST, whereas the presence of a single principal FC state and reduced FC variability implied a more temporally stable connectivity during HCO, validating the distinct temporal patterns between REST and HCO. Our results further demonstrated that dynamic FC analysis could offer unique

  6. Conformation analysis and molecular mobility of ethylene and tetrafluoroethylene copolymer using solid-state 19F MAS and 1H --> 19F CP/MAS NMR spectroscopy.

    PubMed

    Aimi, Keitaro; Ando, Shinji

    2004-07-01

    The changes in the conformation and molecular mobility accompanied by a phase transition in the crystalline domain were analyzed for ethylene (E) and tetrafluoroethylene (TFE) copolymer, ETFE, using variable-temperature (VT) solid-state 19F magic angle spinning (MAS) and 1H --> 19F cross-polarization (CP)/MAS NMR spectroscopy. The shifts of the signals for fluorines in TFE units to higher frequency and the continuing decrease and increase in the T1rho(F) values suggest that conformational exchange motions exist in the crystalline domain between 42 and 145 degrees C. Quantum chemical calculations of magnetic shielding constants showed that the high-frequency shift of TFE units should be induced by trans to gauche conformational changes at the CH2-CF2 linkage in the E-TFE unit. Although the 19F signals of the crystalline domain are substantially overlapped with those of the amorphous domain at ambient probe temperature (68 degrees C), they were successfully distinguished by using the dipolar filter and spin-lock pulse sequences at 145 degrees C. The dipolar coupling constants for the crystalline domain, which can be estimated by fitting the dipolar oscillation behaviors in the 1H --> 19F CP curve, showed a significant decrease with increasing temperature from 42 to 145 degrees C. This is due to the averaging of 1H-19F dipolar interactions originating from the molecular motion in the crystalline domain. The increase in molecular mobility in the crystalline domain was clearly shown by VT T1rho(F) and 1H --> 19F CP measurements in the phase transition temperature range. Copyright 2004 John Wiley & Sons, Ltd.

  7. Functional connectivity associated with social networks in older adults: A resting-state fMRI study.

    PubMed

    Pillemer, Sarah; Holtzer, Roee; Blumen, Helena M

    2017-06-01

    Poor social networks and decreased levels of social support are associated with worse mood, health, and cognition in younger and older adults. Yet, we know very little about the brain substrates associated with social networks and social support, particularly in older adults. This study examined functional brain substrates associated with social networks using the Social Network Index (SNI) and resting-state functional magnetic resonance imaging (fMRI). Resting-state fMRI data from 28 non-demented older adults were analyzed with independent components analyses. As expected, four established resting-state networks-previously linked to motor, vision, speech, and other language functions-correlated with the quality (SNI-1: total number of high-contact roles of a respondent) and quantity (SNI-2: total number of individuals in a respondent's social network) of social networks: a sensorimotor, a visual, a vestibular/insular, and a left frontoparietal network. Moreover, SNI-1 was associated with greater functional connectivity in the lateral prefrontal regions of the left frontoparietal network, while SNI-2 was associated with greater functional connectivity in the medial prefrontal regions of this network. Thus, lateral prefrontal regions may be particularly linked to the quality of social networks while medial prefrontal regions may be particularly linked to the quantity of social networks.

  8. The neural correlates of risk propensity in males and females using resting-state fMRI

    PubMed Central

    Zhou, Yuan; Li, Shu; Dunn, John; Li, Huandong; Qin, Wen; Zhu, Maohu; Rao, Li-Lin; Song, Ming; Yu, Chunshui; Jiang, Tianzi

    2014-01-01

    Men are more risk prone than women, but the underlying basis remains unclear. To investigate this question, we developed a trait-like measure of risk propensity which we correlated with resting-state functional connectivity to identify sex differences. Specifically, we used short- and long-range functional connectivity densities to identify associated brain regions and examined their functional connectivities in resting-state functional magnetic resonance imaging (fMRI) data collected from a large sample of healthy young volunteers. We found that men had a higher level of general risk propensity (GRP) than women. At the neural level, although they shared a common neural correlate of GRP in a network centered at the right inferior frontal gyrus, men and women differed in a network centered at the right secondary somatosensory cortex, which included the bilateral dorsal anterior/middle insular cortices and the dorsal anterior cingulate cortex. In addition, men and women differed in a local network centered at the left inferior orbitofrontal cortex. Most of the regions identified by this resting-state fMRI study have been previously implicated in risk processing when people make risky decisions. This study provides a new perspective on the brain-behavioral relationships in risky decision making and contributes to our understanding of sex differences in risk propensity. PMID:24478649

  9. Virulence differences in blumeria graminis f. sp. tritici from the central and eastern United States

    USDA-ARS?s Scientific Manuscript database

    Wheat powdery mildew is a disease of international importance that occurs across a wide geographic area in the USA. A virulence survey of Blumeria graminis f. sp. tritici, the causal agent, was conducted by sampling 36 wheat fields in 15 U.S. states in the years 2013 and 2014. Using a hierarchical...

  10. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyttenhove, W.; Baeten, P.; Ban, G.

    The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate on-line reactivity monitoring and subcriticality level determination in Accelerator Driven Systems. Therefore the VENUS reactor at SCK.CEN in Mol (Belgium) was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of the on-linemore » subcriticality monitoring methodology. Moreover a benchmarking tool is required for nuclear data research and code validation. In this paper the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the rod drop technique and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)« less

  11. Experimental results from the VENUS-F critical reference state for the GUINEVERE accelerator driven system project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Uyttenhove, W.; Baeten, P.; Kochetkov, A.

    The GUINEVERE (Generation of Uninterrupted Intense Neutron pulses at the lead Venus Reactor) project was launched in 2006 within the framework of FP6 EUROTRANS in order to validate online reactivity monitoring and subcriticality level determination in accelerator driven systems (ADS). Therefore, the VENUS reactor at SCK.CEN in Mol, Belgium, was modified towards a fast core (VENUS-F) and coupled to the GENEPI-3C accelerator built by CNRS. The accelerator can operate in both continuous and pulsed mode. The VENUS-F core is loaded with enriched Uranium and reflected with solid lead. A well-chosen critical reference state is indispensable for the validation of themore » online subcriticality monitoring methodology. Moreover, a benchmarking tool is required for nuclear data research and code validation. In this paper, the design and the importance of the critical reference state for the GUINEVERE project are motivated. The results of the first experimental phase on the critical core are presented. The control rods worth is determined by the positive period method and the application of the Modified Source Multiplication (MSM) method allows the determination of the worth of the safety rods. The results are implemented in the VENUS-F core certificate for full exploitation of the critical core. (authors)« less

  12. Magnetic ground state of the two isostructual polymeric quantum magnets [ Cu ( HF 2 ) ( pyrazine ) 2 ] SbF 6 and [ Co ( HF 2 ) ( pyrazine ) 2 ] SbF 6 investigated with neutron powder diffraction

    DOE PAGES

    Brambleby, J.; Goddard, P. A.; Johnson, R. D.; ...

    2015-10-07

    The magnetic ground state of two isostructural coordination polymers, (i) the quasi-two-dimensional S=1/2 square-lattice antiferromagnet [Cu(HF 2)(pyrazine) 2]SbF 6 and (ii) a related compound [Co(HF 2)(pyrazine)2]SbF6, was examined with neutron powder diffraction measurements. We find that the ordered moments of the Heisenberg S=1/2 Cu(II) ions in [Cu(HF 2)(pyrazine) 2]SbF 6 are 0.6(1)μ b, while the ordered moments for the Co(II) ions in [Co(HF 2)(pyrazine) 2]SbF 6 are 3.02(6)μ b. For Cu(II), this reduced moment indicates the presence of quantum fluctuations below the ordering temperature. We also show from heat capacity and electron spin resonance measurements that due to the crystalmore » electric field splitting of the S=3/2 Co(II) ions in [Co(HF 2)(pyrazine) 2]SbF 6, this isostructual polymer also behaves as an effective spin-half magnet at low temperatures. Furthermore, the Co moments in [Co(HF 2)(pyrazine) 2]SbF 6 show strong easy-axis anisotropy, neutron diffraction data, which do not support the presence of quantum fluctuations in the ground state, and heat capacity data, which are consistent with 2D or close to 3D spatial exchange anisotropy.« less

  13. Hyperfine induced transition probabilities from 4{f}^{14}5s5p{}^{3}{{\\rm{P}}}_{0,2}^{o} states in Sm-like ions

    NASA Astrophysics Data System (ADS)

    Zhou, Fuyang; Li, Jiguang; Qu, Yizhi; Wang, Jianguo

    2017-11-01

    The hyperfine induced 4{f}145s5p{}3{{{P}}}0,2o-4{f}145{s}2{}1{{{S}}}0 transition probabilities for highly charged Sm-like ions are calculated within the framework of the multiconfiguration Dirac-Hartree-Fock method. Electron correlation, the Breit interaction and quantum electrodynamical effects are taken into account. For ions ranging from Z = 79 to Z=94,4{f}145s5p{}3{{{P}}}0o is the first excited state, and the hyperfine induced transition (HIT) is a dominant decay channel. For the 4{f}145s5p{}3{{{P}}}2o state, the HIT rates of Sm-like ions with Z=82-94 are reported as well as the magnetic dipole (M1) {}3{{{P}}}2o-{}3{{{P}}}1o, the electric quadrupole (E2) {}3{{{P}}}2o-{}3{{{P}}}0,1o, and the magnetic quadrupole (M2) {}3{{{P}}}2o-{}1{{{S}}}0 transition probabilities. It is found that M1 transition from the 4{f}145s5p{}3{{{P}}}2o state is the most important decay channel in this range on Z≥slant 82.

  14. Regional homogeneity changes between heroin relapse and non-relapse patients under methadone maintenance treatment: a resting-state fMRI study.

    PubMed

    Chang, Haifeng; Li, Wei; Li, Qiang; Chen, Jiajie; Zhu, Jia; Ye, Jianjun; Liu, Jierong; Li, Zhe; Li, Yongbin; Shi, Ming; Wang, Yarong; Wang, Wei

    2016-08-18

    Methadone maintenance treatment (MMT) is recognized as one of the most effective treatments for heroin addiction but its effect is dimmed by the high incidence of heroin relapse. However, underlying neurobiology mechanism of heroin relapse under MMT is still largely unknown. Here, we took advantage of a resting-state fMRI technique by analysis of regional homogeneity (ReHo), and tried to explore the difference of brain function between heroin relapsers and non-relapsers in MMT. Forty MMT patients were included and received a 12-month follow-up. All patients were given baseline resting-state fMRI scans by using a 3.0 T GE Signa Excite HD whole-body MRI system. Monthly self-report and urine test were used to assess heroin relapse or non-relapse. Subjective craving was measured with visual analog scale. The correlation between ReHo and the degree of heroin relapse was analyzed. Compared with the non-relapsers, ReHo values were increased in the bilateral medial orbitofrontal cortex, right caudate, and right cerebellum of the heroin relapsers while those in the left parahippocampal gyrus, left middle temporal gyrus, right lingual gyrus, and precuneus were decreased in heroin relapsers. Importantly, altered ReHo in the right caudate were positively correlated with heroin relapse rates or subjective craving response. Using the resting-state fMRI technique by analysis of ReHo, we provided the first resting-state fMRI evidence that right caudate may serve as a potential biomarker for heroin relapse prediction and also as a promising target for reducing relapse risk.

  15. Quantum corral effects on competing orders and electronic states in chiral d + id or f-wave superconductors.

    PubMed

    Zuo, Xian-Jun

    2018-03-07

    Self-consistent calculations are performed to characterize the quantum corral effects on the electronic states of chiral d + id or f-wave superconductors in this paper. A variety of spatial structures of competing orders are revealed in the presence of ferromagnetic nano-corrals, and superconducting islands are found to be absent in the case of small corrals while being seen for large corrals. Compared with the local suppression of superconductivity by a magnetic impurity inside the corral, surprisingly, an additional remarkable feature, i.e., obvious oscillations or enhancement of superconductivity around a non-magnetic impurity, is observed inside the magnetic corral. This is important in view of applications, especially in view of the demand for devices to locally produce strong superconductivity. Meanwhile, the charge density displays obvious modulations due to quantum confinement but in contrast, the spin density pattern exhibits its robustness against the corral effect. Furthermore, we explore the local density of states so as to be directly checked by experiments. We demonstrate that a magnetic corral can suppress the formation of quasi-particle bound states induced by an impurity inside the corral in the chiral d + id state while the f-wave case shows different behaviors. These results also propose a new route to make a distinction between the two competing pairing states in triangular-lattice superconductors.

  16. Spontaneous eyelid closures link vigilance fluctuation with fMRI dynamic connectivity states

    PubMed Central

    Wang, Chenhao; Ong, Ju Lynn; Patanaik, Amiya; Chee, Michael W. L.

    2016-01-01

    Fluctuations in resting-state functional connectivity occur but their behavioral significance remains unclear, largely because correlating behavioral state with dynamic functional connectivity states (DCS) engages probes that disrupt the very behavioral state we seek to observe. Observing spontaneous eyelid closures following sleep deprivation permits nonintrusive arousal monitoring. During periods of low arousal dominated by eyelid closures, sliding-window correlation analysis uncovered a DCS associated with reduced within-network functional connectivity of default mode and dorsal/ventral attention networks, as well as reduced anticorrelation between these networks. Conversely, during periods when participants’ eyelids were wide open, a second DCS was associated with less decoupling between the visual network and higher-order cognitive networks that included dorsal/ventral attention and default mode networks. In subcortical structures, eyelid closures were associated with increased connectivity between the striatum and thalamus with the ventral attention network, and greater anticorrelation with the dorsal attention network. When applied to task-based fMRI data, these two DCS predicted interindividual differences in frequency of behavioral lapsing and intraindividual temporal fluctuations in response speed. These findings with participants who underwent a night of total sleep deprivation were replicated in an independent dataset involving partially sleep-deprived participants. Fluctuations in functional connectivity thus appear to be clearly associated with changes in arousal. PMID:27512040

  17. Altered fractional amplitude of low frequency fluctuation in premenstrual syndrome: A resting state fMRI study.

    PubMed

    Liao, Hai; Duan, Gaoxiong; Liu, Peng; Liu, Yanfei; Pang, Yong; Liu, Huimei; Tang, Lijun; Tao, Jien; Wen, Danhong; Li, Shasha; Liang, Lingyan; Deng, Demao

    2017-08-15

    Premenstrual syndrome (PMS) is becoming highly prevalent among female and is characterized by emotional, physical and behavior symptoms. Previous evidence suggested functional dysregulation of female brain was expected to be involved in the etiology of PMS. The aim of present study was to evaluate the alterations of spontaneous brain activity in PMS patients based on functional magnetic resonance imaging (fMRI). 20 PMS patients and 21 healthy controls underwent resting-state fMRI scanning during luteal phase. All participants were asked to complete a prospective daily record of severity of problems (DRSP) questionnaire. Compared with healthy controls, the results showed that PMS patients had increased fALFF in bilateral precuneus, left hippocampus and left inferior temporal cortex, and decreased fALFF in bilateral anterior cingulate cortex (ACC) and cerebellum at luteal phase. Moreover, the DRSP scores of PMS patients were negatively correlated with the mean fALFF in ACC and positively correlated with the fALFF in precuneus. (1) the study did not investigate whether or not abnormal brain activity differences between groups in mid-follicular phase, and within-group changes. between phases.(2) it was relatively limited sample size and the participants were young; (3) fALFF could not provide us with more holistic information of brain network;(4) the comparisons of PMS and premenstrual dysphoric disorder (PMDD) were not involved in the study. The present study shows abnormal spontaneous brain activity in PMS patients revealed by fALFF, which could provide neuroimaging evidence to further improve our understanding of the underlying neural mechanism of PMS. Copyright © 2017. Published by Elsevier B.V.

  18. Patterns of resting state connectivity in human primary visual cortical areas: a 7T fMRI study.

    PubMed

    Raemaekers, Mathijs; Schellekens, Wouter; van Wezel, Richard J A; Petridou, Natalia; Kristo, Gert; Ramsey, Nick F

    2014-01-01

    The nature and origin of fMRI resting state fluctuations and connectivity are still not fully known. More detailed knowledge on the relationship between resting state patterns and brain function may help to elucidate this matter. We therefore performed an in depth study of how resting state fluctuations map to the well known architecture of the visual system. We investigated resting state connectivity at both a fine and large scale within and across visual areas V1, V2 and V3 in ten human subjects using a 7Tesla scanner. We found evidence for several coexisting and overlapping connectivity structures at different spatial scales. At the fine-scale level we found enhanced connectivity between the same topographic locations in the fieldmaps of V1, V2 and V3, enhanced connectivity to the contralateral functional homologue, and to a lesser extent enhanced connectivity between iso-eccentric locations within the same visual area. However, by far the largest proportion of the resting state fluctuations occurred within large-scale bilateral networks. These large-scale networks mapped to some extent onto the architecture of the visual system and could thereby obscure fine-scale connectivity. In fact, most of the fine-scale connectivity only became apparent after the large-scale network fluctuations were filtered from the timeseries. We conclude that fMRI resting state fluctuations in the visual cortex may in fact be a composite signal of different overlapping sources. Isolating the different sources could enhance correlations between BOLD and electrophysiological correlates of resting state activity. © 2013 Elsevier Inc. All rights reserved.

  19. Probing 5 f -state configurations in URu 2 Si 2 with U L III -edge resonant x-ray emission spectroscopy

    DOE PAGES

    Booth, Corwin H.; Medling, S. A.; Tobin, J. G.; ...

    2016-07-15

    Resonant x-ray emission spectroscopy (RXES) was employed at the U LIII absorption edge and the L α1 emission line to explore the 5f occupancy, nf, and the degree of 5f-orbital delocalization in the hidden-order compound URu 2Si 2. By comparing to suitable reference materials such as UF 4, UCd 11, and α-U, we conclude that the 5f orbital in URu 2Si 2 is at least partially delocalized with n f=2.87±0.08, and does not change with temperature down to 10 K within the estimated error. These results place further constraints on theoretical explanations of the hidden order, especially those requiring amore » localized f 2 ground state.« less

  20. 32 CFR Appendix F to Part 197 - Procedures for Copying of Documents for the Foreign Relations of the United States Series

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 2 2014-07-01 2014-07-01 false Procedures for Copying of Documents for the Foreign Relations of the United States Series F Appendix F to Part 197 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS HISTORICAL RESEARCH IN...

  1. 32 CFR Appendix F to Part 197 - Procedures for Copying of Documents for the Foreign Relations of the United States Series

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 2 2013-07-01 2013-07-01 false Procedures for Copying of Documents for the Foreign Relations of the United States Series F Appendix F to Part 197 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS HISTORICAL RESEARCH IN...

  2. 32 CFR Appendix F to Part 197 - Procedures for Copying of Documents for the Foreign Relations of the United States Series

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 2 2012-07-01 2012-07-01 false Procedures for Copying of Documents for the Foreign Relations of the United States Series F Appendix F to Part 197 National Defense Department of Defense (Continued) OFFICE OF THE SECRETARY OF DEFENSE (CONTINUED) MISCELLANEOUS HISTORICAL RESEARCH IN...

  3. Semiconductor CdF2:Ga and CdF2:In Crystals as Media for Real-Time Holography

    PubMed Central

    Ryskin, Alexander I.; Shcheulin, Alexander S.; Angervaks, Alexander E.

    2012-01-01

    Monocrystalline cadmium fluoride is a dielectric solid that can be converted into a semiconductor by doping with donor impurities and subsequent heating in the reduction atmosphere. For two donor elements, Ga and In, the donor (“shallow”) state is a metastable one separated from the ground (“deep”) state by a barrier. Photoinduced deep-to-shallow state transition underlies the photochromism of CdF2:Ga and CdF2:In. Real-time phase holograms are recorded in these crystals capable of following up optical processes in a wide frequency range. The features of photochromic transformations in CdF2:Ga and CdF2:In crystals as well as holographic characteristics of these media are discussed. Exemplary applications of CdF2-based holographic elements are given. PMID:28817009

  4. 17 CFR 200.80f - Appendix F-Records control schedule.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ORGANIZATION; CONDUCT AND ETHICS; AND INFORMATION AND REQUESTS Information and Requests § 200.80f Appendix F... in purchasing new issues of securities from underwriters 6 years. 821- Reports by registered small... state or federal laws in the purchase and sale of securities Until date of last reported action plus 10...

  5. Identification of a dynamic temperature threshold for soil moisture freeze/thaw (F/T) state classification using soil real dielectric constant derivatives.

    NASA Astrophysics Data System (ADS)

    Pardo, R.; Berg, A. A.; Warland, J. S.

    2017-12-01

    The use of microwave remote sensing for surface ground ice detection has been well documented using both active and passive systems. Typical validation of these remotely sensed F/T state products relies on in-situ air or soil temperature measurements and a threshold of 0°C to identify frozen soil. However, in soil pores, the effects of capillary and adsorptive forces combine with the presence of dissolved salts to depress the freezing point. This is further confounded by the fact that water over this temperature range releases/absorbs latent heat of freezing/fusion. Indeed, recent results from SLAPEx2015, a campaign conducted to evaluate the ability to detect F/T state and examine the controls on F/T detection at multiple resolutions, suggest that using a soil temperature of 0°C as a threshold for freezing may not be appropriate. Coaxial impedance sensors, like Steven's HydraProbeII (HP), are the most widely used soil sensor in water supply forecast and climatological networks. These soil moisture probes have recently been used to validate remote sensing F/T products. This kind of validation is still relatively uncommon and dependent on categorical techniques based on seasonal reference states of frozen and non-frozen soil conditions. An experiment was conducted to identify the correlation between the phase state of the soil moisture and the probe measurements. Eight soil cores were subjected to F/T transitions in an environmental chamber. For each core, at a depth of 2.5 cm, the temperature and real dielectric constant (rdc) were measured every five minutes using HPs while two heat pulse probes captured the apparent heat capacity 24 minutes apart. Preliminary results show the phase transition of water is bounded by inflection points in the soil temperature, attributed to latent heat. The rdc, however, appears to be highly sensitive to changes in the water preceding the phase change. This opens the possibility of estimating a dynamic temperature threshold for

  6. Spectroscopic and theoretical investigation of the electronic states of layered perovskite oxyfluoride S r2Ru O3F2 thin films

    NASA Astrophysics Data System (ADS)

    Chikamatsu, Akira; Kurauchi, Yuji; Kawahara, Keisuke; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2018-06-01

    We investigated the electronic structure of a layered perovskite oxyfluoride S r2Ru O3F2 thin film by hard x-ray photoemission spectroscopy (HAXPES) and soft x-ray absorption spectroscopy (XAS) as well as density functional theory (DFT)-based calculations. The core-level HAXPES spectra suggested that S r2Ru O3F2 is a Mott insulator. The DFT calculations described the total and site-projected density of states and the band dispersion for the optimized crystal structure of S r2Ru O3F2 , predicting that R u4 + takes a high-spin configuration of (xy ) ↑(yz ,z x ) ↑↑(3z2-r2 ) ↑ and that S r2Ru O3F2 has an indirect band gap of 0.7 eV with minima at the M ,A and X ,R points. HAXPES spectra near the Fermi level and the angular-dependent O 1 s XAS spectra of the S r2Ru O3F2 thin film, corresponding to the valence band and conduction band density of states, respectively, were drastically different compared to those of the S r2Ru O4 film, suggesting that the changes in the electronic states were mainly driven by the substitution of an oxygen atom coordinated to Ru by fluorine and subsequent modification of the crystal field.

  7. F-state quenching with CH{sub 4} for buffer-gas cooled {sup 171}Y b{sup +} frequency standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jau, Y.-Y., E-mail: yjau@sandia.gov; Hunker, J. D.; Schwindt, P. D. D.

    2015-11-15

    We report that methane, CH{sub 4}, can be used as an efficient F-state quenching gas for trapped ytterbium ions. The quenching rate coefficient is measured to be (2.8 ± 0.3) × 10{sup 6} s{sup −1} Torr{sup −1}. For applications that use microwave hyperfine transitions of the ground-state {sup 171}Y b ions, the CH{sub 4} induced frequency shift coefficient and the decoherence rate coefficient are measured as δν/ν = (−3.6 ± 0.1) × 10{sup −6} Torr{sup −1} and 1/T{sub 2} = (1.5 ± 0.2) × 10{sup 5} s{sup −1} Torr{sup −1}. In our buffer-gas cooled {sup 171}Y b{sup +} microwave clockmore » system, we find that only ≤10{sup −8} Torr of CH{sub 4} is required under normal operating conditions to efficiently clear the F-state and maintain ≥85% of trapped ions in the ground state with insignificant pressure shift and collisional decoherence of the clock resonance.« less

  8. Side-chain conformation of the M2 transmembrane peptide proton channel of influenza a virus from 19F solid-state NMR.

    PubMed

    Luo, Wenbin; Mani, Rajeswari; Hong, Mei

    2007-09-13

    The M2 transmembrane peptide (M2TMP) of the influenza A virus forms a tetrameric helical bundle that acts as a proton-selective channel important in the viral life cycle. The side-chain conformation of the peptide is largely unknown and is important for elucidating the proton-conducting mechanism and the channel stability. Using a 19F spin diffusion NMR technique called CODEX, we have measured the oligomeric states and interhelical side chain-side chain 19F-19F distances at several residues using singly fluorinated M2TMP bound to DMPC bilayers. 19F CODEX data at a key residue of the proton channel, Trp41, confirm the tetrameric state of the peptide and yield a nearest-neighbor interhelical distance of approximately 11 A under both neutral and acidic pH. Since the helix orientation is precisely known from previous 15N NMR experiments and the backbone channel diameter has a narrow allowed range, this 19F distance constrains the Trp41 side-chain conformation to t90 (chi1 approximately 180 degrees , chi2 approximately 90 degrees ). This Trp41 rotamer, combined with a previously measured 15N-13C distance between His37 and Trp411, suggests that the His37 rotamer is t-160. The implication of the proposed (His37, Trp41) rotamers to the gating mechanism of the M2 proton channel is discussed. Binding of the antiviral drug amantadine to the peptide does not affect the F-F distance at Trp41. Interhelical 19F-19F distances are also measured at residues 27 and 38, each mutated to 4-19F-Phe. For V27F-M2TMP, the 19F-19F distances suggest a mixture of dimers and tetramers, whereas the L38F-M2TMP data indicate two tetramers of different sizes, suggesting side chain conformational heterogeneity at this lipid-facing residue. This work shows that 19F spin diffusion NMR is a valuable tool for determining long-range intermolecular distances that shed light on the mechanism of action and conformational heterogeneity of membrane protein oligomers.

  9. Intrinsic Brain Connectivity in Chronic Pain: A Resting-State fMRI Study in Patients with Rheumatoid Arthritis

    PubMed Central

    Flodin, Pär; Martinsen, Sofia; Altawil, Reem; Waldheim, Eva; Lampa, Jon; Kosek, Eva; Fransson, Peter

    2016-01-01

    Background: Rheumatoid arthritis (RA) is commonly accompanied by pain that is discordant with the degree of peripheral pathology. Very little is known about the cerebral processes involved in pain processing in RA. Here we investigated resting-state brain connectivity associated with prolonged pain in RA. Methods: 24 RA subjects and 19 matched controls were compared with regard to both behavioral measures of pain perception and resting-resting state fMRI data acquired subsequently to fMRI sessions involving pain stimuli. The resting-state fMRI brain connectivity was investigated using 159 seed regions located in cardinal pain processing brain regions. Additional principal component based multivariate pattern analysis of the whole brain connectivity pattern was carried out in a data driven analysis to localize group differences in functional connectivity. Results: When RA patients were compared to controls, we observed significantly lower pain resilience for pressure on the affected finger joints (i.e., P50-joint) and an overall heightened level of perceived global pain in RA patients. Relative to controls, RA patients displayed increased brain connectivity predominately for the supplementary motor areas, mid-cingulate cortex, and the primary sensorimotor cortex. Additionally, we observed an increase in brain connectivity between the insula and prefrontal cortex as well as between anterior cingulate cortex and occipital areas for RA patients. None of the group differences in brain connectivity were significantly correlated with behavioral parameters. Conclusion: Our study provides experimental evidence of increased connectivity between frontal midline regions that are implicated in affective pain processing and bilateral sensorimotor regions in RA patients. PMID:27014038

  10. Insulin Resistance-Associated Interhemispheric Functional Connectivity Alterations in T2DM: A Resting-State fMRI Study

    PubMed Central

    Xia, Wenqing; Wang, Shaohua; Spaeth, Andrea M.; Rao, Hengyi; Wang, Pin; Yang, Yue; Huang, Rong; Cai, Rongrong; Sun, Haixia

    2015-01-01

    We aim to investigate whether decreased interhemispheric functional connectivity exists in patients with type 2 diabetes mellitus (T2DM) by using resting-state functional magnetic resonance imaging (rs-fMRI). In addition, we sought to determine whether interhemispheric functional connectivity deficits associated with cognition and insulin resistance (IR) among T2DM patients. We compared the interhemispheric resting state functional connectivity of 32 T2DM patients and 30 healthy controls using rs-fMRI. Partial correlation coefficients were used to detect the relationship between rs-fMRI information and cognitive or clinical data. Compared with healthy controls, T2DM patients showed bidirectional alteration of functional connectivity in several brain regions. Functional connectivity values in the middle temporal gyrus (MTG) and in the superior frontal gyrus were inversely correlated with Trail Making Test-B score of patients. Notably, insulin resistance (log homeostasis model assessment-IR) negatively correlated with functional connectivity in the MTG of patients. In conclusion, T2DM patients exhibit abnormal interhemispheric functional connectivity in several default mode network regions, particularly in the MTG, and such alteration is associated with IR. Alterations in interhemispheric functional connectivity might contribute to cognitive dysfunction in T2DM patients. PMID:26064945

  11. Fluorine Kα X-Ray Emission Spectra of MgF2, CaF2, SrF2 and BaF2

    NASA Astrophysics Data System (ADS)

    Sugiura, Chikara; Konishi, Wataru; Shoji, Shizuko; Kojima, Shinjiro

    1990-11-01

    The fluorine Kα emission spectra in fluorescence from a series of alkaline-earth fluorides MF2 (M=Mg, Ca, Sr and Ba) are measured with a high-resolution two-crystal vacuum spectrometer. An anomalously low intensity of the K1L1 satellite peak arising from 1s-1(2s2p)-1 initial states is observed for SrF2. The measured emission spectra are presented along with the UPS spectra of the F- 2p valence bands obtained by Poole et al. and the fluorine K absorption-edge spectra by Oizumi et al. By using these spectra, the first peak or shoulder in the fluorine K absorption-edge spectra is identified as being due to a core exciton which is formed below the bottom of the conduction band. The binding energy of the exciton is estimated to be 1.3(± 0.3), 1.1(± 0.2), 1.0(± 0.2) and 1.7(± 0.2) eV for MgF2, CaF2, SrF2 and BaF2, respectively.

  12. Resting State fMRI in the moving fetus: a robust framework for motion, bias field and spin history correction.

    PubMed

    Ferrazzi, Giulio; Kuklisova Murgasova, Maria; Arichi, Tomoki; Malamateniou, Christina; Fox, Matthew J; Makropoulos, Antonios; Allsop, Joanna; Rutherford, Mary; Malik, Shaihan; Aljabar, Paul; Hajnal, Joseph V

    2014-11-01

    There is growing interest in exploring fetal functional brain development, particularly with Resting State fMRI. However, during a typical fMRI acquisition, the womb moves due to maternal respiration and the fetus may perform large-scale and unpredictable movements. Conventional fMRI processing pipelines, which assume that brain movements are infrequent or at least small, are not suitable. Previous published studies have tackled this problem by adopting conventional methods and discarding as much as 40% or more of the acquired data. In this work, we developed and tested a processing framework for fetal Resting State fMRI, capable of correcting gross motion. The method comprises bias field and spin history corrections in the scanner frame of reference, combined with slice to volume registration and scattered data interpolation to place all data into a consistent anatomical space. The aim is to recover an ordered set of samples suitable for further analysis using standard tools such as Group Independent Component Analysis (Group ICA). We have tested the approach using simulations and in vivo data acquired at 1.5 T. After full motion correction, Group ICA performed on a population of 8 fetuses extracted 20 networks, 6 of which were identified as matching those previously observed in preterm babies. Copyright © 2014 Elsevier Inc. All rights reserved.

  13. ICA-based artefact and accelerated fMRI acquisition for improved Resting State Network imaging

    PubMed Central

    Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F.; Auerbach, Edward J.; Douaud, Gwenaëlle; Sexton, Claire E.; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E.; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L.; Smith, Stephen M.

    2014-01-01

    The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB’s ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures were assessed using timeseries (amplitude and spectra), network matrix and spatial map analyses. For timeseries and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition

  14. Test-Retest Reliability of Graph Metrics in Functional Brain Networks: A Resting-State fNIRS Study

    PubMed Central

    Niu, Haijing; Li, Zhen; Liao, Xuhong; Wang, Jinhui; Zhao, Tengda; Shu, Ni; Zhao, Xiaohu; He, Yong

    2013-01-01

    Recent research has demonstrated the feasibility of combining functional near-infrared spectroscopy (fNIRS) and graph theory approaches to explore the topological attributes of human brain networks. However, the test-retest (TRT) reliability of the application of graph metrics to these networks remains to be elucidated. Here, we used resting-state fNIRS and a graph-theoretical approach to systematically address TRT reliability as it applies to various features of human brain networks, including functional connectivity, global network metrics and regional nodal centrality metrics. Eighteen subjects participated in two resting-state fNIRS scan sessions held ∼20 min apart. Functional brain networks were constructed for each subject by computing temporal correlations on three types of hemoglobin concentration information (HbO, HbR, and HbT). This was followed by a graph-theoretical analysis, and then an intraclass correlation coefficient (ICC) was further applied to quantify the TRT reliability of each network metric. We observed that a large proportion of resting-state functional connections (∼90%) exhibited good reliability (0.6< ICC <0.74). For global and nodal measures, reliability was generally threshold-sensitive and varied among both network metrics and hemoglobin concentration signals. Specifically, the majority of global metrics exhibited fair to excellent reliability, with notably higher ICC values for the clustering coefficient (HbO: 0.76; HbR: 0.78; HbT: 0.53) and global efficiency (HbO: 0.76; HbR: 0.70; HbT: 0.78). Similarly, both nodal degree and efficiency measures also showed fair to excellent reliability across nodes (degree: 0.52∼0.84; efficiency: 0.50∼0.84); reliability was concordant across HbO, HbR and HbT and was significantly higher than that of nodal betweenness (0.28∼0.68). Together, our results suggest that most graph-theoretical network metrics derived from fNIRS are TRT reliable and can be used effectively for brain network

  15. Findings in resting-state fMRI by differences from K-means clustering.

    PubMed

    Chyzhyk, Darya; Graña, Manuel

    2014-01-01

    Resting state fMRI has growing number of studies with diverse aims, always centered on some kind of functional connectivity biomarker obtained from correlation regarding seed regions, or by analytical decomposition of the signal towards the localization of the spatial distribution of functional connectivity patterns. In general, studies are computationally costly and very sensitive to noise and preprocessing of data. In this paper we consider clustering by K-means as a exploratory procedure which can provide some results with little computational effort, due to efficient implementations that are readily available. We demonstrate the approach on a dataset of schizophrenia patients, finding differences between patients with and without auditory hallucinations.

  16. Co-activation patterns in resting-state fMRI signals.

    PubMed

    Liu, Xiao; Zhang, Nanyin; Chang, Catie; Duyn, Jeff H

    2018-02-08

    The brain is a complex system that integrates and processes information across multiple time scales by dynamically coordinating activities over brain regions and circuits. Correlations in resting-state functional magnetic resonance imaging (rsfMRI) signals have been widely used to infer functional connectivity of the brain, providing a metric of functional associations that reflects a temporal average over an entire scan (typically several minutes or longer). Not until recently was the study of dynamic brain interactions at much shorter time scales (seconds to minutes) considered for inference of functional connectivity. One method proposed for this objective seeks to identify and extract recurring co-activation patterns (CAPs) that represent instantaneous brain configurations at single time points. Here, we review the development and recent advancement of CAP methodology and other closely related approaches, as well as their applications and associated findings. We also discuss the potential neural origins and behavioral relevance of CAPs, along with methodological issues and future research directions in the analysis of fMRI co-activation patterns. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Resting-state fMRI data reflects default network activity rather than null data: A defense of commonly employed methods to correct for multiple comparisons.

    PubMed

    Slotnick, Scott D

    2017-07-01

    Analysis of functional magnetic resonance imaging (fMRI) data typically involves over one hundred thousand independent statistical tests; therefore, it is necessary to correct for multiple comparisons to control familywise error. In a recent paper, Eklund, Nichols, and Knutsson used resting-state fMRI data to evaluate commonly employed methods to correct for multiple comparisons and reported unacceptable rates of familywise error. Eklund et al.'s analysis was based on the assumption that resting-state fMRI data reflect null data; however, their 'null data' actually reflected default network activity that inflated familywise error. As such, Eklund et al.'s results provide no basis to question the validity of the thousands of published fMRI studies that have corrected for multiple comparisons or the commonly employed methods to correct for multiple comparisons.

  18. Trait or state? A longitudinal neuropsychological evaluation and fMRI study in schizoaffective disorder.

    PubMed

    Madre, Merce; Radua, Joaquim; Landin-Romero, Ramon; Alonso-Lana, Silvia; Salvador, Raimond; Panicali, Francesco; Pomarol-Clotet, Edith; Amann, Benedikt L

    2014-11-01

    Schizoaffective patients can have neurocognitive deficits and default mode network dysfunction while being acutely ill. It remains unclear to what extent these abnormalities persist when they go into clinical remission. Memory and executive function were tested in 22 acutely ill schizoaffective patients; they also underwent fMRI scanning during performance of the n-back working memory test. The same measures were obtained after they had been in remission for ≥ 2 months. Twenty-two matched healthy individuals were also examined. In clinical remission, schizomanic patients showed an improvement of memory but not of executive function, while schizodepressive patients did not change in either domain. All schizoaffective patients in clinical remission showed memory and executive impairment compared to the controls. On fMRI, acutely ill schizomanic patients had reversible frontal hypo-activation when compared to clinical remission, while activation patterns in ill and remitted schizodepressive patients were similar. The whole group of schizoaffective patients in clinical remission showed a failure of de-activation in the medial frontal gyrus compared to the healthy controls. There was evidence for memory improvement and state dependent changes in activation in schizomanic patients across relapse and remission. Medial frontal failure of de-activation in remitted schizoaffective patients, which probably reflects default mode network dysfunction, appears to be a state independent feature of the illness. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Frequency distribution of causal connectivity in rat sensorimotor network: resting-state fMRI analyses.

    PubMed

    Shim, Woo H; Baek, Kwangyeol; Kim, Jeong Kon; Chae, Yongwook; Suh, Ji-Yeon; Rosen, Bruce R; Jeong, Jaeseung; Kim, Young R

    2013-01-01

    Resting-state functional MRI (fMRI) has emerged as an important method for assessing neural networks, enabling extensive connectivity analyses between multiple brain regions. Among the analysis techniques proposed, partial directed coherence (PDC) provides a promising tool to unveil causal connectivity networks in the frequency domain. Using the MRI time series obtained from the rat sensorimotor system, we applied PDC analysis to determine the frequency-dependent causality networks. In particular, we compared in vivo and postmortem conditions to establish the statistical significance of directional PDC values. Our results demonstrate that two distinctive frequency populations drive the causality networks in rat; significant, high-frequency causal connections clustered in the range of 0.2-0.4 Hz, and the frequently documented low-frequency connections <0.15 Hz. Frequency-dependence and directionality of the causal connection are characteristic between sensorimotor regions, implying the functional role of frequency bands to transport specific resting-state signals. In particular, whereas both intra- and interhemispheric causal connections between heterologous sensorimotor regions are robust over all frequency levels, the bilaterally homologous regions are interhemispherically linked mostly via low-frequency components. We also discovered a significant, frequency-independent, unidirectional connection from motor cortex to thalamus, indicating dominant cortical inputs to the thalamus in the absence of external stimuli. Additionally, to address factors underlying the measurement error, we performed signal simulations and revealed that the interactive MRI system noise alone is a likely source of the inaccurate PDC values. This work demonstrates technical basis for the PDC analysis of resting-state fMRI time series and the presence of frequency-dependent causality networks in the sensorimotor system.

  20. Equations of state of anhydrous AlF3 and AlI3: Modeling of extreme condition halide chemistry

    NASA Astrophysics Data System (ADS)

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; Crowhurst, Jonathan C.; Goncharov, Alexander F.; Radousky, Harry B.; Armstrong, Michael R.; Roberts, Sarah K.; Plaue, Jonathan W.

    2015-06-01

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF3) and separately, aluminum triiodide (AlI3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF3 and AlI3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: applied stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.

  1. Conformational Plasticity of the Cell-Penetrating Peptide SAP As Revealed by Solid-State 19F-NMR and Circular Dichroism Spectroscopies.

    PubMed

    Afonin, Sergii; Kubyshkin, Vladimir; Mykhailiuk, Pavel K; Komarov, Igor V; Ulrich, Anne S

    2017-07-13

    The cell-penetrating peptide SAP, which was designed as an amphipathic poly-l-proline helix II (PPII), was suggested to self-assemble into regular fibrils that are relevant for its internalization. Herein we have analyzed the structure of SAP in the membrane-bound state by solid-state 19 F-NMR, which revealed other structural states, in addition to the expected surface-aligned PPII. Trifluoromethyl-bicyclopentyl-glycine (CF 3 -Bpg) and two rigid isomers of trifluoromethyl-4,5-methanoprolines (CF 3 -MePro) were used as labels for 19 F-NMR analysis. The equilibria between different conformations of SAP were studied and were found to be shifted by the substituents at Pro-11. Synchrotron-CD results suggested that substituting Pro-11 by CF 3 -MePro governed the coil-to-PPII equilibrium in solution and in the presence of a lipid bilayer. Using CD and 19 F-NMR, we examined the slow kinetics of the association of SAP with membranes and the dependence of the SAP conformational dynamics on the lipid composition. The peptide did not bind to lipids in the solid ordered phase and aggregated only in the liquid ordered "raft"-like bilayers. Self-association could not be detected in solution or in the presence of liquid disordered membranes. Surface-bound amphipathic SAP in a nonaggregated state was structured as a mixture of nonideal extended conformations reflecting the equilibrium already present in solution, i.e., before binding to the membrane.

  2. The mental simulation of state/psychological verbs in the adolescent brain: An fMRI study.

    PubMed

    Tomasino, Barbara; Nobile, Maria; Re, Marta; Bellina, Monica; Garzitto, Marco; Arrigoni, Filippo; Molteni, Massimo; Fabbro, Franco; Brambilla, Paolo

    2018-06-01

    This fMRI study investigated mental simulation of state/psychological and action verbs during adolescence. Sixteen healthy subjects silently read verbs describing a motor scene or not (STIMULUS: motor, state/psychological verbs) and they were explicitly asked to imagine the situation or they performed letter detection preventing them from using simulation (TASK: imagery vs. letter detection). A significant task by stimuli interaction showed that imagery of state/psychological verbs, as compared to action stimuli (controlled by the letter detection) selectively increased activation in the right supramarginal gyrus/rolandic operculum and in the right insula, and decreased activation in the right intraparietal sulcus. We compared these data to those from a group of older participants (Tomasino et al. 2014a). Activation in the left supramarginal gyrus decreased for the latter group (as compared to the present group) for imagery of state/psychological verbs. By contrast, activation in the right superior frontal gyrus decreased for the former group (as compared to the older group) for imagery of state/psychological verbs. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. Laser-induced fluorescence studies of excited Sr reactions: II. Sr(3P1)+CH3F, C2H5F, C2H4F2

    NASA Astrophysics Data System (ADS)

    Teule, J. M.; Janssen, M. H. M.; Bulthuis, J.; Stolte, S.

    1999-06-01

    The vibrational and rotational energy distributions of ground state SrF(X 2Σ) formed in the reactions of electronically excited Sr(3P1) with methylfluoride, ethylfluoride, and 1,1-difluoroethane have been studied by laser-induced fluorescence. Although the reactions of ground state Sr with these reactants are exothermic, no SrF products are observed for those reactions in this study. The fraction of available energy disposed into the sum of rotational and vibrational energy of the SrF(X 2Σ) product is approximately the same for all three reactions, i.e., 40%. The reaction of Sr(3P1) with CH3F results in very low vibrational excitation in the SrF reaction product. The product vibration increases in going to C2H5F and C2H4F2. It is concluded that the alkyl group influences the energy disposal mechanism in these reactions, and some suggestions are given for a partial explanation of the observations.

  4. Correcting for Blood Arrival Time in Global Mean Regression Enhances Functional Connectivity Analysis of Resting State fMRI-BOLD Signals.

    PubMed

    Erdoğan, Sinem B; Tong, Yunjie; Hocke, Lia M; Lindsey, Kimberly P; deB Frederick, Blaise

    2016-01-01

    Resting state functional connectivity analysis is a widely used method for mapping intrinsic functional organization of the brain. Global signal regression (GSR) is commonly employed for removing systemic global variance from resting state BOLD-fMRI data; however, recent studies have demonstrated that GSR may introduce spurious negative correlations within and between functional networks, calling into question the meaning of anticorrelations reported between some networks. In the present study, we propose that global signal from resting state fMRI is composed primarily of systemic low frequency oscillations (sLFOs) that propagate with cerebral blood circulation throughout the brain. We introduce a novel systemic noise removal strategy for resting state fMRI data, "dynamic global signal regression" (dGSR), which applies a voxel-specific optimal time delay to the global signal prior to regression from voxel-wise time series. We test our hypothesis on two functional systems that are suggested to be intrinsically organized into anticorrelated networks: the default mode network (DMN) and task positive network (TPN). We evaluate the efficacy of dGSR and compare its performance with the conventional "static" global regression (sGSR) method in terms of (i) explaining systemic variance in the data and (ii) enhancing specificity and sensitivity of functional connectivity measures. dGSR increases the amount of BOLD signal variance being modeled and removed relative to sGSR while reducing spurious negative correlations introduced in reference regions by sGSR, and attenuating inflated positive connectivity measures. We conclude that incorporating time delay information for sLFOs into global noise removal strategies is of crucial importance for optimal noise removal from resting state functional connectivity maps.

  5. Multimodal description of whole brain connectivity: A comparison of resting state MEG, fMRI, and DWI.

    PubMed

    Garcés, Pilar; Pereda, Ernesto; Hernández-Tamames, Juan A; Del-Pozo, Francisco; Maestú, Fernando; Pineda-Pardo, José Ángel

    2016-01-01

    Structural and functional connectivity (SC and FC) have received much attention over the last decade, as they offer unique insight into the coordination of brain functioning. They are often assessed independently with three imaging modalities: SC using diffusion-weighted imaging (DWI), FC using functional magnetic resonance imaging (fMRI), and magnetoencephalography/electroencephalography (MEG/EEG). DWI provides information about white matter organization, allowing the reconstruction of fiber bundles. fMRI uses blood-oxygenation level-dependent (BOLD) contrast to indirectly map neuronal activation. MEG and EEG are direct measures of neuronal activity, as they are sensitive to the synchronous inputs in pyramidal neurons. Seminal studies have targeted either the electrophysiological substrate of BOLD or the anatomical basis of FC. However, multimodal comparisons have been scarcely performed, and the relation between SC, fMRI-FC, and MEG-FC is still unclear. Here we present a systematic comparison of SC, resting state fMRI-FC, and MEG-FC between cortical regions, by evaluating their similarities at three different scales: global network, node, and hub distribution. We obtained strong similarities between the three modalities, especially for the following pairwise combinations: SC and fMRI-FC; SC and MEG-FC at theta, alpha, beta and gamma bands; and fMRI-FC and MEG-FC in alpha and beta. Furthermore, highest node similarity was found for regions of the default mode network and primary motor cortex, which also presented the highest hubness score. Distance was partially responsible for these similarities since it biased all three connectivity estimates, but not the unique contributor, since similarities remained after controlling for distance. © 2015 Wiley Periodicals, Inc.

  6. Isoscalar π π , K K ¯ , η η scattering and the σ , f0, f2 mesons from QCD

    NASA Astrophysics Data System (ADS)

    Briceño, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; Wilson, David J.; Hadron Spectrum Collaboration

    2018-03-01

    We present the first lattice QCD study of coupled isoscalar π π ,K K ¯ ,η η S - and D -wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the light quark mass corresponding to mπ˜391 MeV . In the JP=0+ sector we find analogues of the experimental σ and f0(980 ) states, where the σ appears as a stable bound-state below π π threshold, and, similar to what is seen in experiment, the f0(980 ) manifests itself as a dip in the π π cross section in the vicinity of the K K ¯ threshold. For JP=2+ we find two states resembling the f2(1270 ) and f2'(1525 ), observed as narrow peaks, with the lighter state dominantly decaying to π π and the heavier state to K K ¯. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles.

  7. Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry

    DOE PAGES

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin; ...

    2015-06-04

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less

  8. Equations of state of anhydrous AlF 3 and AlI 3 : Modeling of extreme condition halide chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrou, Elissaios; Zaug, Joseph M.; Bastea, Sorin

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF 3) and separately, aluminum triiodide (AlI 3) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF 3 and AlI 3 were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. In conclusion, results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less

  9. Excited-state absorption and fluorescence dynamics of Er3+:KY3F10

    NASA Astrophysics Data System (ADS)

    Labbé, C.; Doualan, J. L.; Moncorgé, R.; Braud, A.; Camy, P.

    2018-05-01

    We report here on a complete investigation of the excited-state absorption and fluorescence dynamics of Er3+ doped KY3F10 single crystals versus dopant concentrations and optical excitation conditions. Radiative and effective (including non-radiative relaxations) emission lifetimes and branching ratios are determined from a Judd-Ofelt analysis of the absorption spectra and via specific fluorescence experiments using wavelength selective laser excitations. Excited-state absorption and emission spectra are registered within seven spectral domains, i.e. 560 nm, 650 nm, 710 nm, 810 nm, 970 nm, 1550 nm and 2750 nm. A maximum gain cross-section of 0.93 × 10-21 cm2 is determined at the potential laser wavelength of 2.801 μm for a population ratio of 0.48. Saturation of fluorescence intensities and variations of population ratios versus pumping rates are registered and confronted with a rate equation model to derive the rates of the most important up-conversion and cross-relaxation energy transfers occurring at high dopant concentrations.

  10. The Osmium(VIII) Oxofluoro Cations OsO(2)F(3)(+) and F(cis-OsO(2)F(3))(2)(+): Syntheses, Characterization by (19)F NMR Spectroscopy and Raman Spectroscopy, X-ray Crystal Structure of F(cis-OsO(2)F(3))(2)(+)Sb(2)F(11)(-), and Density Functional Theory Calculations of OsO(2)F(3)(+), ReO(2)F(3), and F(cis-OsO(2)F(3))(2)(+).

    PubMed

    Casteel, William J.; Dixon, David A.; Mercier, Hélène P. A.; Schrobilgen, Gary J.

    1996-07-17

    Osmium dioxide tetrafluoride, cis-OsO(2)F(4), reacts with the strong fluoride ion acceptors AsF(5) and SbF(5) in anhydrous HF and SbF(5) solutions to form orange salts. Raman spectra are consistent with the formation of the fluorine-bridged diosmium cation F(cis-OsO(2)F(3))(2)(+), as the AsF(6)(-) and Sb(2)F(11)(-) salts, respectively. The (19)F NMR spectra of the salts in HF solution are exchange-averaged singlets occurring at higher frequency than those of the fluorine environments of cis-OsO(2)F(4). The F(cis-OsO(2)F(3))(2)(+)Sb(2)F(11)(-) salt crystallizes in the orthorhombic space group Imma. At -107 degrees C, a = 12.838(3) Å, b = 10.667(2) Å, c = 11.323(2) Å, V = 1550.7(8) Å(3), and Z = 4. Refinement converged with R = 0.0469 [R(w) = 0.0500]. The crystal structure consists of discrete fluorine-bridged F(cis-OsO(2)F(3))(2)(+) and Sb(2)F(11)(-) ions in which the fluorine bridge of the F(cis-OsO(2)F(3))(2)(+) cation is trans to an oxygen atom (Os-O 1.676 Å) of each OsO(2)F(3) group. The angle at the bridge is 155.2(8) degrees with a bridging Os---F(b) distance of 2.086(3) Å. Two terminal fluorine atoms (Os-F 1.821 Å) are cis to the two oxygen atoms (Os-O 1.750 Å), and two terminal fluorine atoms of the OsO(2)F(3) group are trans to one another (1.813 Å). The OsO(2)F(3)(+) cation was characterized by (19)F NMR and by Raman spectroscopy in neat SbF(5) solution but was not isolable in the solid state. The NMR and Raman spectroscopic findings are consistent with a trigonal bipyramidal cation in which the oxygen atoms and a fluorine atom occupy the equatorial plane and two fluorine atoms are in axial positions. Density functional theory calculations show that the crystallographic structure of F(cis-OsO(2)F(3))(2)(+) is the energy-minimized structure and the energy-minimized structures of the OsO(2)F(3)(+) cation and ReO(2)F(3) are trigonal bipyramidal having C(2)(v)() point symmetry. Attempts to prepare the OsOF(5)(+) cation by oxidative fluorination of cis

  11. Three-Component Soliton States in Spinor F =1 Bose-Einstein Condensates

    NASA Astrophysics Data System (ADS)

    Bersano, T. M.; Gokhroo, V.; Khamehchi, M. A.; D'Ambroise, J.; Frantzeskakis, D. J.; Engels, P.; Kevrekidis, P. G.

    2018-02-01

    Dilute-gas Bose-Einstein condensates are an exceptionally versatile test bed for the investigation of novel solitonic structures. While matter-wave solitons in one- and two-component systems have been the focus of intense research efforts, an extension to three components has never been attempted in experiments. Here, we experimentally demonstrate the existence of robust dark-bright-bright (DBB) and dark-dark-bright solitons in a multicomponent F =1 condensate. We observe lifetimes on the order of hundreds of milliseconds for these structures. Our theoretical analysis, based on a multiscale expansion method, shows that small-amplitude solitons of these types obey universal long-short wave resonant interaction models, namely, Yajima-Oikawa systems. Our experimental and analytical findings are corroborated by direct numerical simulations highlighting the persistence of, e.g., the DBB soliton states, as well as their robust oscillations in the trap.

  12. Three-Component Soliton States in Spinor F=1 Bose-Einstein Condensates.

    PubMed

    Bersano, T M; Gokhroo, V; Khamehchi, M A; D'Ambroise, J; Frantzeskakis, D J; Engels, P; Kevrekidis, P G

    2018-02-09

    Dilute-gas Bose-Einstein condensates are an exceptionally versatile test bed for the investigation of novel solitonic structures. While matter-wave solitons in one- and two-component systems have been the focus of intense research efforts, an extension to three components has never been attempted in experiments. Here, we experimentally demonstrate the existence of robust dark-bright-bright (DBB) and dark-dark-bright solitons in a multicomponent F=1 condensate. We observe lifetimes on the order of hundreds of milliseconds for these structures. Our theoretical analysis, based on a multiscale expansion method, shows that small-amplitude solitons of these types obey universal long-short wave resonant interaction models, namely, Yajima-Oikawa systems. Our experimental and analytical findings are corroborated by direct numerical simulations highlighting the persistence of, e.g., the DBB soliton states, as well as their robust oscillations in the trap.

  13. Theoretical and experimental studies of the Nd3+ 4f3<-->4f25d transitions in monoclinic Nd:BaY2F8 crystal

    NASA Astrophysics Data System (ADS)

    Collombet, Annabelle; Guyot, Yannick; Joubert, Marie-France; Margerie, Jean; Moncorgé, Richard; Tkachuk, Alexandra

    2004-11-01

    Experimental spectroscopic results related to Nd3+-doped BaY2F8, are presented that include vacuum-ultraviolet ground-state absorption and excitation spectra as well as polarized emission and excited-state absorption spectra recorded in the near-ultraviolet spectral range at room and low temperatures. Calculations were performed to determine the positions of the 4f25d sublevels and the intensities and polarizations of the 4f3<-->4f25d optical transitions of the Nd3+ ions in the C2 symmetry sites of the biaxial host crystal. The simulated spectra agree well with the experimental spectra; in particular, the model that was used successfully reproduced the differences between the polarized spectra on one hand and between the spectra recorded at low and room temperatures on the other hand.

  14. The Holographic F Theorem

    NASA Astrophysics Data System (ADS)

    Taylor, Marika; Woodhead, William

    2017-12-01

    The F theorem states that, for a unitary three dimensional quantum field theory, the F quantity defined in terms of the partition function on a three sphere is positive, stationary at fixed point and decreases monotonically along a renormalization group flow. We construct holographic renormalization group flows corresponding to relevant deformations of three-dimensional conformal field theories on spheres, working to quadratic order in the source. For these renormalization group flows, the F quantity at the IR fixed point is always less than F at the UV fixed point, but F increases along the RG flow for deformations by operators of dimension between 3/2 and 5/2. Therefore the strongest version of the F theorem is in general violated.

  15. Multimodal analysis of cortical chemoarchitecture and macroscale fMRI resting‐state functional connectivity

    PubMed Central

    Scholtens, Lianne H.; Turk, Elise; Mantini, Dante; Vanduffel, Wim; Feldman Barrett, Lisa

    2016-01-01

    Abstract The cerebral cortex is well known to display a large variation in excitatory and inhibitory chemoarchitecture, but the effect of this variation on global scale functional neural communication and synchronization patterns remains less well understood. Here, we provide evidence of the chemoarchitecture of cortical regions to be associated with large‐scale region‐to‐region resting‐state functional connectivity. We assessed the excitatory versus inhibitory chemoarchitecture of cortical areas as an ExIn ratio between receptor density mappings of excitatory (AMPA, M1) and inhibitory (GABAA, M2) receptors, computed on the basis of data collated from pioneering studies of autoradiography mappings as present in literature of the human (2 datasets) and macaque (1 dataset) cortex. Cortical variation in ExIn ratio significantly correlated with total level of functional connectivity as derived from resting‐state functional connectivity recordings of cortical areas across all three datasets (human I: P = 0.0004; human II: P = 0.0008; macaque: P = 0.0007), suggesting cortical areas with an overall more excitatory character to show higher levels of intrinsic functional connectivity during resting‐state. Our findings are indicative of the microscale chemoarchitecture of cortical regions to be related to resting‐state fMRI connectivity patterns at the global system's level of connectome organization. Hum Brain Mapp 37:3103–3113, 2016. © 2016 Wiley Periodicals, Inc. PMID:27207489

  16. 'Boomerang'-like insertion of a fusogenic peptide in a lipid membrane revealed by solid-state 19F NMR.

    PubMed

    Afonin, Sergii; Dürr, Ulrich H N; Glaser, Ralf W; Ulrich, Anne S

    2004-02-01

    Solid state (19)F NMR revealed the conformation and alignment of the fusogenic peptide sequence B18 from the sea urchin fertilization protein bindin embedded in flat phospholipid bilayers. Single (19)F labels were introduced into nine distinct positions along the wild-type sequence by substituting each hydrophobic amino acid, one by one, with L-4-fluorophenylglycine. Their anisotropic chemical shifts were measured in uniaxially oriented membrane samples and used as orientational constraints to model the peptide structure in the membrane-bound state. Previous (1)H NMR studies of B18 in 30% TFE and in detergent micelles had shown that the peptide structure consists of two alpha-helical segments that are connected by a flexible hinge. This helix-break-helix motif was confirmed here by the solid-state (19)F NMR data, while no other secondary structure (beta-sheet, 3(10)-helix) was compatible with the set of orientational constraints. For both alpha-helical segments we found that the helical conformation extends all the way to the respective N- and C-termini of the peptide. Analysis of the corresponding tilt and azimuthal rotation angles showed that the N-terminal helix of B18 is immersed obliquely into the bilayer (at a tilt angle tau approximately 54 degrees), whereas the C-terminus is peripherally aligned (tau approximately 91 degrees). The azimuthal orientation of the two segments is consistent with the amphiphilic distribution of side-chains. The observed 'boomerang'-like mode of insertion into the membrane may thus explain how peptide binding leads to lipid dehydration and acyl chain perturbation as a prerequisite for bilayer fusion to occur. Copyright 2004 John Wiley & Sons, Ltd.

  17. Isoscalar π π , K K ¯ , η η scattering and the σ , f 0 , f 2 mesons from QCD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Briceno, Raul A.; Dudek, Jozef J.; Edwards, Robert G.

    We present the first lattice QCD study of coupled isoscalarmore » $$\\pi\\pi,K\\overline{K},\\eta\\eta$$ $S$- and $D$-wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the quark mass corresponding to $$m_\\pi\\sim391$$ MeV. In the $J^P=0^+$ sector we find analogues of the experimental $$\\sigma$$ and $$f_0(980)$$ states, where the $$\\sigma$$ appears as a stable bound-state below $$\\pi\\pi$$ threshold, and, similar to what is seen in experiment, the $$f_0(980)$$ manifests itself as a dip in the $$\\pi\\pi$$ cross section in the vicinity of the $$K\\overline{K}$$ threshold. For $J^P=2^+$ we find two states resembling the $$f_2(1270)$$ and $$f_2'(1525)$$, observed as narrow peaks, with the lighter state dominantly decaying to $$\\pi\\pi$$ and the heavier state to $$K\\overline{K}$$. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles.« less

  18. Isoscalar π π , K K ¯ , η η scattering and the σ , f 0 , f 2 mesons from QCD

    DOE PAGES

    Briceno, Raul A.; Dudek, Jozef J.; Edwards, Robert G.; ...

    2018-03-23

    We present the first lattice QCD study of coupled isoscalarmore » $$\\pi\\pi,K\\overline{K},\\eta\\eta$$ $S$- and $D$-wave scattering extracted from discrete finite-volume spectra computed on lattices which have a value of the quark mass corresponding to $$m_\\pi\\sim391$$ MeV. In the $J^P=0^+$ sector we find analogues of the experimental $$\\sigma$$ and $$f_0(980)$$ states, where the $$\\sigma$$ appears as a stable bound-state below $$\\pi\\pi$$ threshold, and, similar to what is seen in experiment, the $$f_0(980)$$ manifests itself as a dip in the $$\\pi\\pi$$ cross section in the vicinity of the $$K\\overline{K}$$ threshold. For $J^P=2^+$ we find two states resembling the $$f_2(1270)$$ and $$f_2'(1525)$$, observed as narrow peaks, with the lighter state dominantly decaying to $$\\pi\\pi$$ and the heavier state to $$K\\overline{K}$$. The presence of all these states is determined rigorously by finding the pole singularity content of scattering amplitudes, and their couplings to decay channels are established using the residues of the poles.« less

  19. Proximity of f0(1500 ) and f0(1710 ) to the scalar glueball

    NASA Astrophysics Data System (ADS)

    Fariborz, Amir H.; Azizi, Azizollah; Asrar, Abdorreza

    2015-12-01

    Within a nonlinear chiral Lagrangian framework, the underlying mixings among quark-antiquark, four-quark and glue components of f0(1500 ) and f0(1710 ) are studied in a global picture that includes all isosinglet scalar mesons below 2 GeV. The quark components are introduced in the Lagrangian in terms of two separate nonets (a quark-antiquark nonet and a four-quark nonet) which can mix with each other and with a scalar glueball. An iterative Monte Carlo simulation is developed to study the 14 free parameters of the Lagrangian by a simultaneous fit to more than 20 experimental data and constraints on the mass spectrum, decay widths, and decay ratios of the isosinglet scalars below 2 GeV. Moreover, constraints on the mass spectrum and decay widths of isodoublet and isovector scalars below 2 GeV as well as pion-pion scattering amplitude are also taken into account. In the leading order of the model and within the overall experimental uncertainties, the ranges of variation of the model parameters are determined. This leads to a set of points in the 14-dimensional parameter space at which the overall disagreement with experiment is no larger than the overall experimental uncertainties. The insights gained in this global picture, due to the complexities of the mixings as well as the experimental uncertainties, are mainly qualitative but are relatively robust, and reveal that the lowest scalar glueball hides between f0(1500 ) and f0(1710 ) , resulting in a considerable mixing with various quark components of these two states. The overall current experimental and theoretical uncertainties do not allow us to pin down the exact glue components of isosinglet states; nevertheless it is shown that the f0(1500 ) and f0(1710 ) have the highest glue component. While this global study does not allow precision predictions for each individual state, it provides useful "family" correlations among the isosinglet states that are found insightful in probing the substructure of scalars

  20. Electron Attachment to Radicals and Highly-Excited States in Laser-Irradiated CCl_2F_2*

    NASA Astrophysics Data System (ADS)

    Pinnaduwage, Lal; Datskos, Panos

    1997-10-01

    We have measured electron attachment rate constants for two species produced via ArF-excimer- laser irradiated CF_2Cl_2, i.e., the CF_2Cl radical and the highly-excited electronically-excited states of CF_2Cl_2. These measurements show that while electron attachment to the fragment radical has a rate constants about an order of magnitude higher compared to the ground states of CF_2Cl_2, electron attachment to the highly- excited states have many orders of magnitude larger rate constants. To our knowledge, only one other electron attachment measurement has been conducted on molecular fragments up to now. Implications of these measurements for plasma processing discharges will be discussed. Research supported by the National Science Foundation under contract No. ECS-9626217 with the University of Tennessee, Knoxville. The Oak Ridge National Laboratory is managed by Lockheed Martin Energy Research Corp. for the U. S. DOE under contract No. DE-AC05- 96OR22464.

  1. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin.

    PubMed

    Carhart-Harris, Robin L; Erritzoe, David; Williams, Tim; Stone, James M; Reed, Laurence J; Colasanti, Alessandro; Tyacke, Robin J; Leech, Robert; Malizia, Andrea L; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G; Nutt, David J

    2012-02-07

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition.

  2. Neural correlates of the psychedelic state as determined by fMRI studies with psilocybin

    PubMed Central

    Carhart-Harris, Robin L.; Erritzoe, David; Williams, Tim; Stone, James M.; Reed, Laurence J.; Colasanti, Alessandro; Tyacke, Robin J.; Leech, Robert; Malizia, Andrea L.; Murphy, Kevin; Hobden, Peter; Evans, John; Feilding, Amanda; Wise, Richard G.; Nutt, David J.

    2012-01-01

    Psychedelic drugs have a long history of use in healing ceremonies, but despite renewed interest in their therapeutic potential, we continue to know very little about how they work in the brain. Here we used psilocybin, a classic psychedelic found in magic mushrooms, and a task-free functional MRI (fMRI) protocol designed to capture the transition from normal waking consciousness to the psychedelic state. Arterial spin labeling perfusion and blood-oxygen level-dependent (BOLD) fMRI were used to map cerebral blood flow and changes in venous oxygenation before and after intravenous infusions of placebo and psilocybin. Fifteen healthy volunteers were scanned with arterial spin labeling and a separate 15 with BOLD. As predicted, profound changes in consciousness were observed after psilocybin, but surprisingly, only decreases in cerebral blood flow and BOLD signal were seen, and these were maximal in hub regions, such as the thalamus and anterior and posterior cingulate cortex (ACC and PCC). Decreased activity in the ACC/medial prefrontal cortex (mPFC) was a consistent finding and the magnitude of this decrease predicted the intensity of the subjective effects. Based on these results, a seed-based pharmaco-physiological interaction/functional connectivity analysis was performed using a medial prefrontal seed. Psilocybin caused a significant decrease in the positive coupling between the mPFC and PCC. These results strongly imply that the subjective effects of psychedelic drugs are caused by decreased activity and connectivity in the brain's key connector hubs, enabling a state of unconstrained cognition. PMID:22308440

  3. Predicting conversion from MCI to AD using resting-state fMRI, graph theoretical approach and SVM.

    PubMed

    Hojjati, Seyed Hani; Ebrahimzadeh, Ata; Khazaee, Ali; Babajani-Feremi, Abbas

    2017-04-15

    We investigated identifying patients with mild cognitive impairment (MCI) who progress to Alzheimer's disease (AD), MCI converter (MCI-C), from those with MCI who do not progress to AD, MCI non-converter (MCI-NC), based on resting-state fMRI (rs-fMRI). Graph theory and machine learning approach were utilized to predict progress of patients with MCI to AD using rs-fMRI. Eighteen MCI converts (average age 73.6 years; 11 male) and 62 age-matched MCI non-converters (average age 73.0 years, 28 male) were included in this study. We trained and tested a support vector machine (SVM) to classify MCI-C from MCI-NC using features constructed based on the local and global graph measures. A novel feature selection algorithm was developed and utilized to select an optimal subset of features. Using subset of optimal features in SVM, we classified MCI-C from MCI-NC with an accuracy, sensitivity, specificity, and the area under the receiver operating characteristic (ROC) curve of 91.4%, 83.24%, 90.1%, and 0.95, respectively. Furthermore, results of our statistical analyses were used to identify the affected brain regions in AD. To the best of our knowledge, this is the first study that combines the graph measures (constructed based on rs-fMRI) with machine learning approach and accurately classify MCI-C from MCI-NC. Results of this study demonstrate potential of the proposed approach for early AD diagnosis and demonstrate capability of rs-fMRI to predict conversion from MCI to AD by identifying affected brain regions underlying this conversion. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Predicting Long-Term Cognitive Outcome Following Breast Cancer with Pre-Treatment Resting State fMRI and Random Forest Machine Learning.

    PubMed

    Kesler, Shelli R; Rao, Arvind; Blayney, Douglas W; Oakley-Girvan, Ingrid A; Karuturi, Meghan; Palesh, Oxana

    2017-01-01

    We aimed to determine if resting state functional magnetic resonance imaging (fMRI) acquired at pre-treatment baseline could accurately predict breast cancer-related cognitive impairment at long-term follow-up. We evaluated 31 patients with breast cancer (age 34-65) prior to any treatment, post-chemotherapy and 1 year later. Cognitive testing scores were normalized based on data obtained from 43 healthy female controls and then used to categorize patients as impaired or not based on longitudinal changes. We measured clustering coefficient, a measure of local connectivity, by applying graph theory to baseline resting state fMRI and entered these metrics along with relevant patient-related and medical variables into random forest classification. Incidence of cognitive impairment at 1 year follow-up was 55% and was predicted by classification algorithms with up to 100% accuracy ( p < 0.0001). The neuroimaging-based model was significantly more accurate than a model involving patient-related and medical variables ( p = 0.005). Hub regions belonging to several distinct functional networks were the most important predictors of cognitive outcome. Characteristics of these hubs indicated potential spread of brain injury from default mode to other networks over time. These findings suggest that resting state fMRI is a promising tool for predicting future cognitive impairment associated with breast cancer. This information could inform treatment decision making by identifying patients at highest risk for long-term cognitive impairment.

  5. Predicting Long-Term Cognitive Outcome Following Breast Cancer with Pre-Treatment Resting State fMRI and Random Forest Machine Learning

    PubMed Central

    Kesler, Shelli R.; Rao, Arvind; Blayney, Douglas W.; Oakley-Girvan, Ingrid A.; Karuturi, Meghan; Palesh, Oxana

    2017-01-01

    We aimed to determine if resting state functional magnetic resonance imaging (fMRI) acquired at pre-treatment baseline could accurately predict breast cancer-related cognitive impairment at long-term follow-up. We evaluated 31 patients with breast cancer (age 34–65) prior to any treatment, post-chemotherapy and 1 year later. Cognitive testing scores were normalized based on data obtained from 43 healthy female controls and then used to categorize patients as impaired or not based on longitudinal changes. We measured clustering coefficient, a measure of local connectivity, by applying graph theory to baseline resting state fMRI and entered these metrics along with relevant patient-related and medical variables into random forest classification. Incidence of cognitive impairment at 1 year follow-up was 55% and was predicted by classification algorithms with up to 100% accuracy (p < 0.0001). The neuroimaging-based model was significantly more accurate than a model involving patient-related and medical variables (p = 0.005). Hub regions belonging to several distinct functional networks were the most important predictors of cognitive outcome. Characteristics of these hubs indicated potential spread of brain injury from default mode to other networks over time. These findings suggest that resting state fMRI is a promising tool for predicting future cognitive impairment associated with breast cancer. This information could inform treatment decision making by identifying patients at highest risk for long-term cognitive impairment. PMID:29187817

  6. 76 FR 69719 - Gregory R. Swecker and Beverly F. Swecker v. Midland Power Cooperative and State of Iowa; Notice...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-09

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. EL11-39-001] Gregory R. Swecker and Beverly F. Swecker v. Midland Power Cooperative and State of Iowa; Notice of Filing Take... of disconnection of back-up power to Complainant's QF and residence by Midland Power Cooperative...

  7. Simultaneous EEG/fMRI analysis of the resonance phenomena in steady-state visual evoked responses.

    PubMed

    Bayram, Ali; Bayraktaroglu, Zubeyir; Karahan, Esin; Erdogan, Basri; Bilgic, Basar; Ozker, Muge; Kasikci, Itir; Duru, Adil D; Ademoglu, Ahmet; Oztürk, Cengizhan; Arikan, Kemal; Tarhan, Nevzat; Demiralp, Tamer

    2011-04-01

    The stability of the steady-state visual evoked potentials (SSVEPs) across trials and subjects makes them a suitable tool for the investigation of the visual system. The reproducible pattern of the frequency characteristics of SSVEPs shows a global amplitude maximum around 10 Hz and additional local maxima around 20 and 40 Hz, which have been argued to represent resonant behavior of damped neuronal oscillators. Simultaneous electroencephalogram/functional magnetic resonance imaging (EEG/fMRI) measurement allows testing of the resonance hypothesis about the frequency-selective increases in SSVEP amplitudes in human subjects, because the total synaptic activity that is represented in the fMRI-Blood Oxygen Level Dependent (fMRI-BOLD) response would not increase but get synchronized at the resonance frequency. For this purpose, 40 healthy volunteers were visually stimulated with flickering light at systematically varying frequencies between 6 and 46 Hz, and the correlations between SSVEP amplitudes and the BOLD responses were computed. The SSVEP frequency characteristics of all subjects showed 3 frequency ranges with an amplitude maximum in each of them, which roughly correspond to alpha, beta and gamma bands of the EEG. The correlation maps between BOLD responses and SSVEP amplitude changes across the different stimulation frequencies within each frequency band showed no significant correlation in the alpha range, while significant correlations were obtained in the primary visual area for the beta and gamma bands. This non-linear relationship between the surface recorded SSVEP amplitudes and the BOLD responses of the visual cortex at stimulation frequencies around the alpha band supports the view that a resonance at the tuning frequency of the thalamo-cortical alpha oscillator in the visual system is responsible for the global amplitude maximum of the SSVEP around 10 Hz. Information gained from the SSVEP/fMRI analyses in the present study might be extrapolated to the

  8. Reward for food odors: an fMRI study of liking and wanting as a function of metabolic state and BMI

    PubMed Central

    Jiang, Tao; Soussignan, Robert; Schaal, Benoist

    2015-01-01

    Brain reward systems mediate liking and wanting for food reward. Here, we explore the differential involvement of the following structures for these two components: the ventral and dorsal striatopallidal area, orbitofrontal cortex (OFC), anterior insula and anterior cingulate. Twelve healthy female participants were asked to rate pleasantness (liking of food and non-food odors) and the desire to eat (wanting of odor-evoked food) during event-related functional magnetic resonance imaging (fMRI). The subjective ratings and fMRI were performed in hunger and satiety states. Activations of regions of interest were compared as a function of task (liking vs wanting), odor category (food vs non-food) and metabolic state (hunger vs satiety). We found that the nucleus accumbens and ventral pallidum were differentially involved in liking or wanting during the hunger state, which suggests a reciprocal inhibitory influence between these structures. Neural activation of OFC subregions was correlated with either liking or wanting ratings, suggesting an OFC role in reward processing magnitude. Finally, during the hunger state, participants with a high body mass index exhibited less activation in neural structures underlying food reward processing. Our results suggest that food liking and wanting are two separable psychological constructs and may be functionally segregated within the cortico-striatopallidal circuit. PMID:24948157

  9. Comparative virulence and molecular diversity of stripe rust (Puccinia striiformis f. sp. tritici) collections from Pakistan and United States

    USDA-ARS?s Scientific Manuscript database

    Information on virulence and molecular diversity of Puccinia striiformis f. sp. tritici (Pst) is a pre-requisite for mitigating the substantial yield losses caused by the stripe rust pathogen in Pakistan, the United States and other countries of the world. This study was undertaken to analyze both v...

  10. ICA-based artefact removal and accelerated fMRI acquisition for improved resting state network imaging.

    PubMed

    Griffanti, Ludovica; Salimi-Khorshidi, Gholamreza; Beckmann, Christian F; Auerbach, Edward J; Douaud, Gwenaëlle; Sexton, Claire E; Zsoldos, Enikő; Ebmeier, Klaus P; Filippini, Nicola; Mackay, Clare E; Moeller, Steen; Xu, Junqian; Yacoub, Essa; Baselli, Giuseppe; Ugurbil, Kamil; Miller, Karla L; Smith, Stephen M

    2014-07-15

    The identification of resting state networks (RSNs) and the quantification of their functional connectivity in resting-state fMRI (rfMRI) are seriously hindered by the presence of artefacts, many of which overlap spatially or spectrally with RSNs. Moreover, recent developments in fMRI acquisition yield data with higher spatial and temporal resolutions, but may increase artefacts both spatially and/or temporally. Hence the correct identification and removal of non-neural fluctuations is crucial, especially in accelerated acquisitions. In this paper we investigate the effectiveness of three data-driven cleaning procedures, compare standard against higher (spatial and temporal) resolution accelerated fMRI acquisitions, and investigate the combined effect of different acquisitions and different cleanup approaches. We applied single-subject independent component analysis (ICA), followed by automatic component classification with FMRIB's ICA-based X-noiseifier (FIX) to identify artefactual components. We then compared two first-level (within-subject) cleaning approaches for removing those artefacts and motion-related fluctuations from the data. The effectiveness of the cleaning procedures was assessed using time series (amplitude and spectra), network matrix and spatial map analyses. For time series and network analyses we also tested the effect of a second-level cleaning (informed by group-level analysis). Comparing these approaches, the preferable balance between noise removal and signal loss was achieved by regressing out of the data the full space of motion-related fluctuations and only the unique variance of the artefactual ICA components. Using similar analyses, we also investigated the effects of different cleaning approaches on data from different acquisition sequences. With the optimal cleaning procedures, functional connectivity results from accelerated data were statistically comparable or significantly better than the standard (unaccelerated) acquisition, and

  11. (2 + 1) resonant enhanced multiphoton ionization of H2 via the E,F 1Sigma(+)g state

    NASA Technical Reports Server (NTRS)

    Rudolph, H.; Lynch, D. L.; Dixit, S. N.; Mckoy, V.; Huo, Winifred M.

    1987-01-01

    In this paper, the results of ab initio calculations of photoelectron angular distributions and vibrational branching ratios for the (2 + 1) resonant enhanced multiphoton ionization (REMPI) of H2 via the E,F 1Sigma(+)g state are reported, and these are compared with the experimental data of Anderson et al. (1984). These results show that the observed non-Franck-Condon behavior is predominantly due to the R dependence of the transition matrix elements, and to a lesser degree to the energy dependence. This work presents the first molecular REMPI study employing a correlated wave function to describe the Rydberg-valence mixing in the resonant intermediate state.

  12. Theoretical investigation of the reactivity in the C-F bond activation of CH 3F by Lu + in the gas phase

    NASA Astrophysics Data System (ADS)

    Liu, Ze-Yu; Wang, Yong-Cheng; Geng, Zhi-Yuan; Yang, Xiao-Yan; Wang, Han-Qing

    2006-11-01

    The reaction of Lu + with CH 3F, which was selected as a representative system of the activation of C-F bond in fluorohydrocarbons by late lanthanide cations, has been examined using density functional theory (DFT). The potential energy surfaces (PESs) of [Lu, C, H 3, F] + were explored in detail in both singlet and triplet electronic states. The electron-transfer reactivity of the reaction was analyzed using the two-state model, and a strongly avoided crossing behaviour on the transition state (TS) area was shown. The theoretical results can act as a guide to further theoretical and experimental researches.

  13. fMRI Validation of fNIRS Measurements During a Naturalistic Task

    PubMed Central

    Noah, J. Adam; Ono, Yumie; Nomoto, Yasunori; Shimada, Sotaro; Tachibana, Atsumichi; Zhang, Xian; Bronner, Shaw; Hirsch, Joy

    2015-01-01

    We present a method to compare brain activity recorded with near-infrared spectroscopy (fNIRS) in a dance video game task to that recorded in a reduced version of the task using fMRI (functional magnetic resonance imaging). Recently, it has been shown that fNIRS can accurately record functional brain activities equivalent to those concurrently recorded with functional magnetic resonance imaging for classic psychophysical tasks and simple finger tapping paradigms. However, an often quoted benefit of fNIRS is that the technique allows for studying neural mechanisms of complex, naturalistic behaviors that are not possible using the constrained environment of fMRI. Our goal was to extend the findings of previous studies that have shown high correlation between concurrently recorded fNIRS and fMRI signals to compare neural recordings obtained in fMRI procedures to those separately obtained in naturalistic fNIRS experiments. Specifically, we developed a modified version of the dance video game Dance Dance Revolution (DDR) to be compatible with both fMRI and fNIRS imaging procedures. In this methodology we explain the modifications to the software and hardware for compatibility with each technique as well as the scanning and calibration procedures used to obtain representative results. The results of the study show a task-related increase in oxyhemoglobin in both modalities and demonstrate that it is possible to replicate the findings of fMRI using fNIRS in a naturalistic task. This technique represents a methodology to compare fMRI imaging paradigms which utilize a reduced-world environment to fNIRS in closer approximation to naturalistic, full-body activities and behaviors. Further development of this technique may apply to neurodegenerative diseases, such as Parkinson’s disease, late states of dementia, or those with magnetic susceptibility which are contraindicated for fMRI scanning. PMID:26132365

  14. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series

    PubMed Central

    Patel, Ameera X.; Kundu, Prantik; Rubinov, Mikail; Jones, P. Simon; Vértes, Petra E.; Ersche, Karen D.; Suckling, John; Bullmore, Edward T.

    2014-01-01

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N = 22) and a new dataset on adults with stimulant drug dependence (N = 40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www

  15. Directional connectivity of resting state human fMRI data using cascaded ICA-PDC analysis.

    PubMed

    Silfverhuth, Minna J; Remes, Jukka; Starck, Tuomo; Nikkinen, Juha; Veijola, Juha; Tervonen, Osmo; Kiviniemi, Vesa

    2011-11-01

    Directional connectivity measures, such as partial directed coherence (PDC), give us means to explore effective connectivity in the human brain. By utilizing independent component analysis (ICA), the original data-set reduction was performed for further PDC analysis. To test this cascaded ICA-PDC approach in causality studies of human functional magnetic resonance imaging (fMRI) data. Resting state group data was imaged from 55 subjects using a 1.5 T scanner (TR 1800 ms, 250 volumes). Temporal concatenation group ICA in a probabilistic ICA and further repeatability runs (n = 200) were overtaken. The reduced data-set included the time series presentation of the following nine ICA components: secondary somatosensory cortex, inferior temporal gyrus, intracalcarine cortex, primary auditory cortex, amygdala, putamen and the frontal medial cortex, posterior cingulate cortex and precuneus, comprising the default mode network components. Re-normalized PDC (rPDC) values were computed to determine directional connectivity at the group level at each frequency. The integrative role was suggested for precuneus while the role of major divergence region may be proposed to primary auditory cortex and amygdala. This study demonstrates the potential of the cascaded ICA-PDC approach in directional connectivity studies of human fMRI.

  16. Increased interhemispheric resting-state functional connectivity after sleep deprivation: a resting-state fMRI study.

    PubMed

    Zhu, Yuanqiang; Feng, Zhiyan; Xu, Junling; Fu, Chang; Sun, Jinbo; Yang, Xuejuan; Shi, Dapeng; Qin, Wei

    2016-09-01

    Several functional imaging studies have investigated the regional effects of sleep deprivation (SD) on impaired brain function; however, potential changes in the functional interactions between the cerebral hemispheres after SD are not well understood. In this study, we used a recently validated approach, voxel-mirrored homotopic connectivity (VMHC), to directly examine the changes in interhemispheric homotopic resting-state functional connectivity (RSFC) after SD. Resting-state functional MRI (fMRI) was performed in 28 participants both after rest wakefulness (RW) and a total night of SD. An interhemispheric RSFC map was obtained by calculating the Pearson correlation (Fisher Z transformed) between each pair of homotopic voxel time series for each subject in each condition. The between-condition differences in interhemispheric RSFC were then examined at global and voxelwise levels separately. Significantly increased global VMHC was found after sleep deprivation; specifically, a significant increase in VMHC was found in specific brain regions, including the thalamus, paracentral lobule, supplementary motor area, postcentral gyrus and lingual gyrus. No regions showed significantly reduced VMHC after sleep deprivation. Further analysis indicates that these findings did not depend on the various sizes of smoothing kernels that were adopted in the preprocessing steps and that the differences in these regions were still significant with or without global signal regression. Our data suggest that the increased VMHC might reflect the compensatory involvement of bilateral brain areas, especially the bilateral thalamus, to prevent cognitive performance deterioration when sleep pressure is elevated after sleep deprivation. Our findings provide preliminary evidence of interhemispheric correlation changes after SD and contribute to a better understanding of the neural mechanisms of SD.

  17. Evaluating Dynamic Bivariate Correlations in Resting-state fMRI: A comparison study and a new approach

    PubMed Central

    Lindquist, Martin A.; Xu, Yuting; Nebel, Mary Beth; Caffo, Brain S.

    2014-01-01

    To date, most functional Magnetic Resonance Imaging (fMRI) studies have assumed that the functional connectivity (FC) between time series from distinct brain regions is constant across time. However, recently, there has been increased interest in quantifying possible dynamic changes in FC during fMRI experiments, as it is thought this may provide insight into the fundamental workings of brain networks. In this work we focus on the specific problem of estimating the dynamic behavior of pair-wise correlations between time courses extracted from two different regions of the brain. We critique the commonly used sliding-windows technique, and discuss some alternative methods used to model volatility in the finance literature that could also prove useful in the neuroimaging setting. In particular, we focus on the Dynamic Conditional Correlation (DCC) model, which provides a model-based approach towards estimating dynamic correlations. We investigate the properties of several techniques in a series of simulation studies and find that DCC achieves the best overall balance between sensitivity and specificity in detecting dynamic changes in correlations. We also investigate its scalability beyond the bivariate case to demonstrate its utility for studying dynamic correlations between more than two brain regions. Finally, we illustrate its performance in an application to test-retest resting state fMRI data. PMID:24993894

  18. 133Cs-NMR Study on the Ground State of the Equilateral Triangular Spin Tube CsCrF4

    NASA Astrophysics Data System (ADS)

    Matsui, K.; Goto, T.; Manaka, H.; Miura, Y.

    2018-03-01

    We have investigated the hyperfine coupling between Cs and Cr on the S = 3/2 equilateral triangular spin tube CsCrF4, utilizing 133Cs-NMR. At paramagnetic state above 80 K, we have obtained spectra containing a single peak, which reflects the single crystallographic Cs site. From the temperature dependence of the peak shift and peak width, we evaluated effective values of the isotropic and the anisotropic part of hyperfine coupling. The latter was compared with the calculated dipole contribution. Using obtained parameters with assumed spin structure, we tried to reproduce the broadened spectrum in the ordered state at 2.0 K. The preliminary analysis shows the 120-degree structure does not accord with the observed spectra at the ordered state.

  19. The ATS-F interferometer - A precision wide field-of-view attitude sensor. [solid state system design

    NASA Technical Reports Server (NTRS)

    Teichman, M. A.; Marek, F. L.; Browning, J. J.; Parr, A. K.

    1974-01-01

    An RF phase interferometer has been integrated into the ATS-F spacecraft attitude control system. Laboratory measurements indicate that the interferometer is capable of determining spacecraft attitude in pitch and roll to an accuracy of 0.18 deg over a field-of-view of plus or minus 12.5 deg about the spacecraft normal axis with an angular resolution of 0.004 deg. The system is completely solid state, weighs 17 pounds, and consumes 12.5 W of DC power.

  20. Mutual information identifies spurious Hurst phenomena in resting state EEG and fMRI data

    NASA Astrophysics Data System (ADS)

    von Wegner, Frederic; Laufs, Helmut; Tagliazucchi, Enzo

    2018-02-01

    Long-range memory in time series is often quantified by the Hurst exponent H , a measure of the signal's variance across several time scales. We analyze neurophysiological time series from electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) resting state experiments with two standard Hurst exponent estimators and with the time-lagged mutual information function applied to discretized versions of the signals. A confidence interval for the mutual information function is obtained from surrogate Markov processes with equilibrium distribution and transition matrix identical to the underlying signal. For EEG signals, we construct an additional mutual information confidence interval from a short-range correlated, tenth-order autoregressive model. We reproduce the previously described Hurst phenomenon (H >0.5 ) in the analytical amplitude of alpha frequency band oscillations, in EEG microstate sequences, and in fMRI signals, but we show that the Hurst phenomenon occurs without long-range memory in the information-theoretical sense. We find that the mutual information function of neurophysiological data behaves differently from fractional Gaussian noise (fGn), for which the Hurst phenomenon is a sufficient condition to prove long-range memory. Two other well-characterized, short-range correlated stochastic processes (Ornstein-Uhlenbeck, Cox-Ingersoll-Ross) also yield H >0.5 , whereas their mutual information functions lie within the Markovian confidence intervals, similar to neural signals. In these processes, which do not have long-range memory by construction, a spurious Hurst phenomenon occurs due to slow relaxation times and heteroscedasticity (time-varying conditional variance). In summary, we find that mutual information correctly distinguishes long-range from short-range dependence in the theoretical and experimental cases discussed. Our results also suggest that the stationary fGn process is not sufficient to describe neural data, which

  1. Divalent europium doped CaF 2 and BaF 2 nanocrystals from ionic liquids

    DOE PAGES

    Anghel, Sergiu; Golbert, Sebastian; Meijerink, Andries; ...

    2016-10-11

    A new, facile and quick synthesis method for Eu 2+ doped the alkaline earth fluorides was developed using ionic liquids as solvent, precursor and capping agent. Reductive atmosphere and very high temperatures were avoided, while still attaining the desired structure, small particle sizes and divalent oxidation state of the lanthanide. Here, this opens the door for the development of new Ln 2+ doped nanomaterials. Here, the successful Eu 2+ incorporation was proven by optical spectroscopic measurements which showed the spin and parity allowed f-d transitions of Eu 2+ in CaF 2:Eu 2+/BaF 2:Eu 2+. 4f 7-4f 7 transitions could bemore » observed at low temperatures (7 K).« less

  2. Effect of defect state on photon synergistic process in KLu2F7:Yb3+, Er3+ nanoparticles

    NASA Astrophysics Data System (ADS)

    Bian, Wenjuan; Lu, Wei; Qi, Yushuang; Yu, Xue; Zhou, Dacheng; Yang, Yong; Qiu, Jianbei; Xu, Xuhui

    2016-10-01

    The synergistic effect appeared due to the cooperative dual-wavelength excitation by near-infrared (NIR) and ultraviolet (UV) light in rare-earth doped nano-particles (NPs) is very important to improve solar cell efficiency. Herein, we studied the synergistic effect combined with the energy levels of Er3+ ions and the defect states in KLu2F7 NPs. The introduction of Ce3+ ions in KLu2F7:16%Yb3+, 2%Er3+ NPs results in significant improvement of synergistic effect by producing more vacancy defects (VK‧) which serves as shallow traps. We verify unambiguously that the control of the defects distribution exerts a facile approach to promote the synergistic effect with the assistance of Ce3+ ions doping.

  3. Investigation on the interfacial chemical state and band alignment for the sputtering-deposited CaF2/p-GaN heterojunction by angle-resolved X-ray photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Kexiong; Liao, Meiyong; Sumiya, Masatomo; Koide, Yasuo; Sang, Liwen

    2016-11-01

    The interfacial chemical state and the band alignment of the sputtering-deposited CaF2/p-GaN hetero-structure were investigated by angle-resolved X-ray photoelectron spectroscopy. The dependence of Ga 3p core-level positions on the collection angles proves that the downward band bending of p-GaN is reduced from 1.51 to 0.85 eV after the deposition of CaF2, which may be due to the reduction of Mg-Ga-O-related interface states by the oxygen-free deposition of CaF2. The band gap of sputtering-deposited CaF2 is estimated to be about 7.97 eV with a potential gradient of 0.48 eV obtained by the variation of the Ca 2p3/2 position on different collection angles. By taking into account the p-GaN surface band bending and potential gradient in the CaF2 layer, large valence and conduction band offsets of 2.66 ± 0.20 and 1.92 ± 0.20 eV between CaF2 and p-GaN are obtained. These results indicate that CaF2 is a promising gate dielectric layer on the p-GaN for the application of metal-insulator-semiconductor devices.

  4. Short-Term fo F2 Forecast: Present Day State of Art

    NASA Astrophysics Data System (ADS)

    Mikhailov, A. V.; Depuev, V. H.; Depueva, A. H.

    An analysis of the F2-layer short-term forecast problem has been done. Both objective and methodological problems prevent us from a deliberate F2-layer forecast issuing at present. An empirical approach based on statistical methods may be recommended for practical use. A forecast method based on a new aeronomic index (a proxy) AI has been proposed and tested over selected 64 severe storm events. The method provides an acceptable prediction accuracy both for strongly disturbed and quiet conditions. The problems with the prediction of the F2-layer quiet-time disturbances as well as some other unsolved problems are discussed

  5. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI

    PubMed Central

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg). Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency. PMID:29497372

  6. The Influence of Preprocessing Steps on Graph Theory Measures Derived from Resting State fMRI.

    PubMed

    Gargouri, Fatma; Kallel, Fathi; Delphine, Sebastien; Ben Hamida, Ahmed; Lehéricy, Stéphane; Valabregue, Romain

    2018-01-01

    Resting state functional MRI (rs-fMRI) is an imaging technique that allows the spontaneous activity of the brain to be measured. Measures of functional connectivity highly depend on the quality of the BOLD signal data processing. In this study, our aim was to study the influence of preprocessing steps and their order of application on small-world topology and their efficiency in resting state fMRI data analysis using graph theory. We applied the most standard preprocessing steps: slice-timing, realign, smoothing, filtering, and the tCompCor method. In particular, we were interested in how preprocessing can retain the small-world economic properties and how to maximize the local and global efficiency of a network while minimizing the cost. Tests that we conducted in 54 healthy subjects showed that the choice and ordering of preprocessing steps impacted the graph measures. We found that the csr (where we applied realignment, smoothing, and tCompCor as a final step) and the scr (where we applied realignment, tCompCor and smoothing as a final step) strategies had the highest mean values of global efficiency (eg) . Furthermore, we found that the fscr strategy (where we applied realignment, tCompCor, smoothing, and filtering as a final step), had the highest mean local efficiency (el) values. These results confirm that the graph theory measures of functional connectivity depend on the ordering of the processing steps, with the best results being obtained using smoothing and tCompCor as the final steps for global efficiency with additional filtering for local efficiency.

  7. Reward for food odors: an fMRI study of liking and wanting as a function of metabolic state and BMI.

    PubMed

    Jiang, Tao; Soussignan, Robert; Schaal, Benoist; Royet, Jean-Pierre

    2015-04-01

    Brain reward systems mediate liking and wanting for food reward. Here, we explore the differential involvement of the following structures for these two components: the ventral and dorsal striatopallidal area, orbitofrontal cortex (OFC), anterior insula and anterior cingulate. Twelve healthy female participants were asked to rate pleasantness (liking of food and non-food odors) and the desire to eat (wanting of odor-evoked food) during event-related functional magnetic resonance imaging (fMRI). The subjective ratings and fMRI were performed in hunger and satiety states. Activations of regions of interest were compared as a function of task (liking vs wanting), odor category (food vs non-food) and metabolic state (hunger vs satiety). We found that the nucleus accumbens and ventral pallidum were differentially involved in liking or wanting during the hunger state, which suggests a reciprocal inhibitory influence between these structures. Neural activation of OFC subregions was correlated with either liking or wanting ratings, suggesting an OFC role in reward processing magnitude. Finally, during the hunger state, participants with a high body mass index exhibited less activation in neural structures underlying food reward processing. Our results suggest that food liking and wanting are two separable psychological constructs and may be functionally segregated within the cortico-striatopallidal circuit. © The Author (2014). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  8. Improved sensitivity and specificity for resting state and task fMRI with multiband multi-echo EPI compared to multi-echo EPI at 7 T.

    PubMed

    Boyacioğlu, Rasim; Schulz, Jenni; Koopmans, Peter J; Barth, Markus; Norris, David G

    2015-10-01

    A multiband multi-echo (MBME) sequence is implemented and compared to a matched standard multi-echo (ME) protocol to investigate the potential improvement in sensitivity and spatial specificity at 7 T for resting state and task fMRI. ME acquisition is attractive because BOLD sensitivity is less affected by variation in T2*, and because of the potential for separating BOLD and non-BOLD signal components. MBME further reduces TR thus increasing the potential reduction in physiological noise. In this study we used FSL-FIX to clean ME and MBME resting state and task fMRI data (both 3.5mm isotropic). After noise correction, the detection of resting state networks improves with more non-artifactual independent components being observed. Additional activation clusters for task data are discovered for MBME data (increased sensitivity) whereas existing clusters become more localized for resting state (improved spatial specificity). The results obtained indicate that MBME is superior to ME at high field strengths. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Equations of state of anhydrous AlF{sub 3} and AlI{sub 3}: Modeling of extreme condition halide chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stavrou, Elissaios, E-mail: stavrou1@llnl.gov; Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, P.O. Box 808 L-350, Livermore, California 94550; Zaug, Joseph M., E-mail: zaug1@llnl.gov

    Pressure dependent angle-dispersive x-ray powder diffraction measurements of alpha-phase aluminum trifluoride (α-AlF{sub 3}) and separately, aluminum triiodide (AlI{sub 3}) were conducted using a diamond-anvil cell. Results at 295 K extend to 50 GPa. The equations of state of AlF{sub 3} and AlI{sub 3} were determined through refinements of collected x-ray diffraction patterns. The respective bulk moduli and corresponding pressure derivatives are reported for multiple orders of the Birch-Murnaghan (B-M), finite-strain (F-f), and higher pressure finite-strain (G-g) EOS analysis models. Aluminum trifluoride exhibits an apparent isostructural phase transition at approximately 12 GPa. Aluminum triiodide also undergoes a second-order atomic rearrangement: appliedmore » stress transformed a monoclinically distorted face centered cubic (fcc) structure into a standard fcc structural arrangement of iodine atoms. Results from semi-empirical thermochemical computations of energetic materials formulated with fluorine containing reactants were obtained with the aim of predicting the yield of halogenated products.« less

  10. The Nuisance of Nuisance Regression: Spectral Misspecification in a Common Approach to Resting-State fMRI Preprocessing Reintroduces Noise and Obscures Functional Connectivity

    PubMed Central

    Hallquist, Michael N.; Hwang, Kai; Luna, Beatriz

    2013-01-01

    Recent resting-state functional connectivity fMRI (RS-fcMRI) research has demonstrated that head motion during fMRI acquisition systematically influences connectivity estimates despite bandpass filtering and nuisance regression, which are intended to reduce such nuisance variability. We provide evidence that the effects of head motion and other nuisance signals are poorly controlled when the fMRI time series are bandpass-filtered but the regressors are unfiltered, resulting in the inadvertent reintroduction of nuisance-related variation into frequencies previously suppressed by the bandpass filter, as well as suboptimal correction for noise signals in the frequencies of interest. This is important because many RS-fcMRI studies, including some focusing on motion-related artifacts, have applied this approach. In two cohorts of individuals (n = 117 and 22) who completed resting-state fMRI scans, we found that the bandpass-regress approach consistently overestimated functional connectivity across the brain, typically on the order of r = .10 – .35, relative to a simultaneous bandpass filtering and nuisance regression approach. Inflated correlations under the bandpass-regress approach were associated with head motion and cardiac artifacts. Furthermore, distance-related differences in the association of head motion and connectivity estimates were much weaker for the simultaneous filtering approach. We recommend that future RS-fcMRI studies ensure that the frequencies of nuisance regressors and fMRI data match prior to nuisance regression, and we advocate a simultaneous bandpass filtering and nuisance regression strategy that better controls nuisance-related variability. PMID:23747457

  11. Absolute efficiency calibration of 6LiF-based solid state thermal neutron detectors

    NASA Astrophysics Data System (ADS)

    Finocchiaro, Paolo; Cosentino, Luigi; Lo Meo, Sergio; Nolte, Ralf; Radeck, Desiree

    2018-03-01

    The demand for new thermal neutron detectors as an alternative to 3He tubes in research, industrial, safety and homeland security applications, is growing. These needs have triggered research and development activities about new generations of thermal neutron detectors, characterized by reasonable efficiency and gamma rejection comparable to 3He tubes. In this paper we show the state of the art of a promising low-cost technique, based on commercial solid state silicon detectors coupled with thin neutron converter layers of 6LiF deposited onto carbon fiber substrates. A few configurations were studied with the GEANT4 simulation code, and the intrinsic efficiency of the corresponding detectors was calibrated at the PTB Thermal Neutron Calibration Facility. The results show that the measured intrinsic detection efficiency is well reproduced by the simulations, therefore validating the simulation tool in view of new designs. These neutron detectors have also been tested at neutron beam facilities like ISIS (Rutherford Appleton Laboratory, UK) and n_TOF (CERN) where a few samples are already in operation for beam flux and 2D profile measurements. Forthcoming applications are foreseen for the online monitoring of spent nuclear fuel casks in interim storage sites.

  12. Thermostatted delta f

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krommes, J.A.

    2000-01-18

    The delta f simulation method is revisited. Statistical coarse-graining is used to rigorously derive the equation for the fluctuation delta f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance of the particle weights w grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or W-stat may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales in velocity space. The simplestmore » W-stat can be implemented as a self-consistently determined, time-dependent damping applied to w. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics (NEMD) is pointed out, and the justification of W-stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short W-statted runs with large effective collisionality, and a numerical demonstration is given.« less

  13. Propofol attenuates low-frequency fluctuations of resting-state fMRI BOLD signal in the anterior frontal cortex upon loss of consciousness

    PubMed Central

    Liu, Xiaolin; Lauer, Kathryn K.; Ward, B. Douglas; Roberts, Christopher; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Chen, Guangyu; Xu, Zhan; Binder, Jeffrey R.; Li, Shi-Jiang; Hudetz, Anthony G.

    2017-01-01

    Recent studies indicate that spontaneous low-frequency fluctuations (LFFs) of resting-state functional magnetic resonance imaging (rs-fMRI) blood oxygen level-dependent (BOLD) signals are driven by the slow (<0.1 Hz) modulation of ongoing neuronal activity synchronized locally and across remote brain regions. How regional LFFs of the BOLD fMRI signal are altered during anesthetic-induced alteration of consciousness is not well understood. Using rs-fMRI in 15 healthy participants, we show that during administration of propofol to achieve loss of behavioral responsiveness indexing unconsciousness, the fractional amplitude of LFF (fALFF index) was reduced in comparison to wakeful baseline in the anterior frontal regions, temporal pole, hippocampus, parahippocampal gyrus, and amygdala. Such changes were absent in large areas of the motor, parietal, and sensory cortices. During light sedation characterized by the preservation of overt responsiveness and therefore consciousness, fALFF was reduced in the subcortical areas, temporal pole, medial orbital frontal cortex, cingulate cortex, and cerebellum. Between light sedation and deep sedation, fALFF was reduced primarily in the medial and dorsolateral frontal areas. The preferential reduction of LFFs in the anterior frontal regions is consistent with frontal to sensory-motor cortical disconnection and may contribute to the suppression of consciousness during general anesthesia. PMID:27993673

  14. Hurst Exponent Analysis of Resting-State fMRI Signal Complexity across the Adult Lifespan

    PubMed Central

    Dong, Jianxin; Jing, Bin; Ma, Xiangyu; Liu, Han; Mo, Xiao; Li, Haiyun

    2018-01-01

    Exploring functional information among various brain regions across time enables understanding of healthy aging process and holds great promise for age-related brain disease diagnosis. This paper proposed a method to explore fractal complexity of the resting-state functional magnetic resonance imaging (rs-fMRI) signal in the human brain across the adult lifespan using Hurst exponent (HE). We took advantage of the examined rs-fMRI data from 116 adults 19 to 85 years of age (44.3 ± 19.4 years, 49 females) from NKI/Rockland sample. Region-wise and voxel-wise analyses were performed to investigate the effects of age, gender, and their interaction on complexity. In region-wise analysis, we found that the healthy aging is accompanied by a loss of complexity in frontal and parietal lobe and increased complexity in insula, limbic, and temporal lobe. Meanwhile, differences in HE between genders were found to be significant in parietal lobe (p = 0.04, corrected). However, there was no interaction between gender and age. In voxel-wise analysis, the significant complexity decrease with aging was found in frontal and parietal lobe, and complexity increase was found in insula, limbic lobe, occipital lobe, and temporal lobe with aging. Meanwhile, differences in HE between genders were found to be significant in frontal, parietal, and limbic lobe. Furthermore, we found age and sex interaction in right parahippocampal gyrus (p = 0.04, corrected). Our findings reveal HE variations of the rs-fMRI signal across the human adult lifespan and show that HE may serve as a new parameter to assess healthy aging process. PMID:29456489

  15. Generation of Individual Whole-Brain Atlases With Resting-State fMRI Data Using Simultaneous Graph Computation and Parcellation.

    PubMed

    Wang, J; Hao, Z; Wang, H

    2018-01-01

    The human brain can be characterized as functional networks. Therefore, it is important to subdivide the brain appropriately in order to construct reliable networks. Resting-state functional connectivity-based parcellation is a commonly used technique to fulfill this goal. Here we propose a novel individual subject-level parcellation approach based on whole-brain resting-state functional magnetic resonance imaging (fMRI) data. We first used a supervoxel method known as simple linear iterative clustering directly on resting-state fMRI time series to generate supervoxels, and then combined similar supervoxels to generate clusters using a clustering method known as graph-without-cut (GWC). The GWC approach incorporates spatial information and multiple features of the supervoxels by energy minimization, simultaneously yielding an optimal graph and brain parcellation. Meanwhile, it theoretically guarantees that the actual cluster number is exactly equal to the initialized cluster number. By comparing the results of the GWC approach and those of the random GWC approach, we demonstrated that GWC does not rely heavily on spatial structures, thus avoiding the challenges encountered in some previous whole-brain parcellation approaches. In addition, by comparing the GWC approach to two competing approaches, we showed that GWC achieved better parcellation performances in terms of different evaluation metrics. The proposed approach can be used to generate individualized brain atlases for applications related to cognition, development, aging, disease, personalized medicine, etc. The major source codes of this study have been made publicly available at https://github.com/yuzhounh/GWC.

  16. 13C and 19F solid-state NMR and X-ray crystallographic study of halogen-bonded frameworks featuring nitrogen-containing heterocycles.

    PubMed

    Szell, Patrick M J; Gabriel, Shaina A; Gill, Russell D D; Wan, Shirley Y H; Gabidullin, Bulat; Bryce, David L

    2017-03-01

    Halogen bonding is a noncovalent interaction between the electrophilic region of a halogen (σ-hole) and an electron donor. We report a crystallographic and structural analysis of halogen-bonded compounds by applying a combined X-ray diffraction (XRD) and solid-state nuclear magnetic resonance (SSNMR) approach. Single-crystal XRD was first used to characterize the halogen-bonded cocrystals formed between two fluorinated halogen-bond donors (1,4-diiodotetrafluorobenzene and 1,3,5-trifluoro-2,4,6-triiodobenzene) and several nitrogen-containing heterocycles (acridine, 1,10-phenanthroline, 2,3,5,6-tetramethylpyrazine, and hexamethylenetetramine). New structures are reported for the following three cocrystals, all in the P2 1 /c space group: acridine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 13 H 9 N, 1,10-phenanthroline-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 12 H 8 N 2 , and 2,3,5,6-tetramethylpyrazine-1,3,5-trifluoro-2,4,6-triiodobenzene (1/1), C 6 F 3 I 3 ·C 8 H 12 N 2 . 13 C and 19 F solid-state magic-angle spinning (MAS) NMR is shown to be a convenient method to characterize the structural features of the halogen-bond donor and acceptor, with chemical shifts attributable to cocrystal formation observed in the spectra of both nuclides. Cross polarization (CP) from 19 F to 13 C results in improved spectral sensitivity in characterizing the perfluorinated halogen-bond donor when compared to conventional 1 H CP. Gauge-including projector-augmented wave density functional theory (GIPAW DFT) calculations of magnetic shielding constants, along with optimization of the XRD structures, provide a final set of structures in best agreement with the experimental 13 C and 19 F chemical shifts. Data for carbons bonded to iodine remain outliers due to well-known relativistic effects.

  17. Encoding the local connectivity patterns of fMRI for cognitive task and state classification.

    PubMed

    Onal Ertugrul, Itir; Ozay, Mete; Yarman Vural, Fatos T

    2018-06-15

    In this work, we propose a novel framework to encode the local connectivity patterns of brain, using Fisher vectors (FV), vector of locally aggregated descriptors (VLAD) and bag-of-words (BoW) methods. We first obtain local descriptors, called mesh arc descriptors (MADs) from fMRI data, by forming local meshes around anatomical regions, and estimating their relationship within a neighborhood. Then, we extract a dictionary of relationships, called brain connectivity dictionary by fitting a generative Gaussian mixture model (GMM) to a set of MADs, and selecting codewords at the mean of each component of the mixture. Codewords represent connectivity patterns among anatomical regions. We also encode MADs by VLAD and BoW methods using k-Means clustering. We classify cognitive tasks using the Human Connectome Project (HCP) task fMRI dataset and cognitive states using the Emotional Memory Retrieval (EMR). We train support vector machines (SVMs) using the encoded MADs. Results demonstrate that, FV encoding of MADs can be successfully employed for classification of cognitive tasks, and outperform VLAD and BoW representations. Moreover, we identify the significant Gaussians in mixture models by computing energy of their corresponding FV parts, and analyze their effect on classification accuracy. Finally, we suggest a new method to visualize the codewords of the learned brain connectivity dictionary.

  18. A wavelet method for modeling and despiking motion artifacts from resting-state fMRI time series.

    PubMed

    Patel, Ameera X; Kundu, Prantik; Rubinov, Mikail; Jones, P Simon; Vértes, Petra E; Ersche, Karen D; Suckling, John; Bullmore, Edward T

    2014-07-15

    The impact of in-scanner head movement on functional magnetic resonance imaging (fMRI) signals has long been established as undesirable. These effects have been traditionally corrected by methods such as linear regression of head movement parameters. However, a number of recent independent studies have demonstrated that these techniques are insufficient to remove motion confounds, and that even small movements can spuriously bias estimates of functional connectivity. Here we propose a new data-driven, spatially-adaptive, wavelet-based method for identifying, modeling, and removing non-stationary events in fMRI time series, caused by head movement, without the need for data scrubbing. This method involves the addition of just one extra step, the Wavelet Despike, in standard pre-processing pipelines. With this method, we demonstrate robust removal of a range of different motion artifacts and motion-related biases including distance-dependent connectivity artifacts, at a group and single-subject level, using a range of previously published and new diagnostic measures. The Wavelet Despike is able to accommodate the substantial spatial and temporal heterogeneity of motion artifacts and can consequently remove a range of high and low frequency artifacts from fMRI time series, that may be linearly or non-linearly related to physical movements. Our methods are demonstrated by the analysis of three cohorts of resting-state fMRI data, including two high-motion datasets: a previously published dataset on children (N=22) and a new dataset on adults with stimulant drug dependence (N=40). We conclude that there is a real risk of motion-related bias in connectivity analysis of fMRI data, but that this risk is generally manageable, by effective time series denoising strategies designed to attenuate synchronized signal transients induced by abrupt head movements. The Wavelet Despiking software described in this article is freely available for download at www

  19. A computational study of whole-brain connectivity in resting state and task fMRI

    PubMed Central

    Goparaju, Balaji; Rana, Kunjan D.; Calabro, Finnegan J.; Vaina, Lucia Maria

    2014-01-01

    Background We compared the functional brain connectivity produced during resting-state in which subjects were not actively engaged in a task with that produced while they actively performed a visual motion task (task-state). Material/Methods In this paper we employed graph-theoretical measures and network statistics in novel ways to compare, in the same group of human subjects, functional brain connectivity during resting-state fMRI with brain connectivity during performance of a high level visual task. We performed a whole-brain connectivity analysis to compare network statistics in resting and task states among anatomically defined Brodmann areas to investigate how brain networks spanning the cortex changed when subjects were engaged in task performance. Results In the resting state, we found strong connectivity among the posterior cingulate cortex (PCC), precuneus, medial prefrontal cortex (MPFC), lateral parietal cortex, and hippocampal formation, consistent with previous reports of the default mode network (DMN). The connections among these areas were strengthened while subjects actively performed an event-related visual motion task, indicating a continued and strong engagement of the DMN during task processing. Regional measures such as degree (number of connections) and betweenness centrality (number of shortest paths), showed that task performance induces stronger inter-regional connections, leading to a denser processing network, but that this does not imply a more efficient system as shown by the integration measures such as path length and global efficiency, and from global measures such as small-worldness. Conclusions In spite of the maintenance of connectivity and the “hub-like” behavior of areas, our results suggest that the network paths may be rerouted when performing the task condition. PMID:24947491

  20. Propofol attenuates low-frequency fluctuations of resting-state fMRI BOLD signal in the anterior frontal cortex upon loss of consciousness.

    PubMed

    Liu, Xiaolin; Lauer, Kathryn K; Douglas Ward, B; Roberts, Christopher; Liu, Suyan; Gollapudy, Suneeta; Rohloff, Robert; Gross, William; Chen, Guangyu; Xu, Zhan; Binder, Jeffrey R; Li, Shi-Jiang; Hudetz, Anthony G

    2017-02-15

    Recent studies indicate that spontaneous low-frequency fluctuations (LFFs) of resting-state functional magnetic resonance imaging (rs-fMRI) blood oxygen level-dependent (BOLD) signals are driven by the slow (<0.1Hz) modulation of ongoing neuronal activity synchronized locally and across remote brain regions. How regional LFFs of the BOLD fMRI signal are altered during anesthetic-induced alteration of consciousness is not well understood. Using rs-fMRI in 15 healthy participants, we show that during administration of propofol to achieve loss of behavioral responsiveness indexing unconsciousness, the fractional amplitude of LFF (fALFF index) was reduced in comparison to wakeful baseline in the anterior frontal regions, temporal pole, hippocampus, parahippocampal gyrus, and amygdala. Such changes were absent in large areas of the motor, parietal, and sensory cortices. During light sedation characterized by the preservation of overt responsiveness and therefore consciousness, fALFF was reduced in the subcortical areas, temporal pole, medial orbital frontal cortex, cingulate cortex, and cerebellum. Between light sedation and deep sedation, fALFF was reduced primarily in the medial and dorsolateral frontal areas. The preferential reduction of LFFs in the anterior frontal regions is consistent with frontal to sensory-motor cortical disconnection and may contribute to the suppression of consciousness during general anesthesia. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. C_7F_16/He rf plasma CVD of a-C:F films

    NASA Astrophysics Data System (ADS)

    Hokoi, Kohji; Akazawa, Masamichi; Sugawara, Hirotake; Sakai, Yosuke

    2000-10-01

    Fluorinated carbon is one of the most promissing materials with low dielectric constant ɛr and high dielectric strength V_b. We have deposited a-C:F films by rf (13.56 MHz) plasma enhanced CVD method using the following liquid materials; C_7F_16, (C_3F_7)_3N/(C_4F_9)_3N and C_8F_18/C_8F_16O.(C. P. Lungu et al.), Jpn. J. Appl. Phys. 38, L1544--6 (1999) The films showed ɛr values in a range of 1.9--3.0 and V_b>2 MV/cm. In this work, we added He (3 Pa) to C_7F_16 (60 Pa) plasmas, expecting that He atoms in the metastable excited state (He*, 19.8 eV) would promote C_7F_16 decomposition in gas phase or activation of the film surface during deposition. The films with the thickness up to 2300 nm were deposited on unheated Si substrate with an rf power of 100 W. The deposition rate derived from the film thickness measurement by SEM and ellipsometry was about 230 nm/min. This value is roughly two times as large as that of the films deposited by C_7F_16 (60 Pa) plasmas without He. We discuss the mechanism that leads to such a significant increase in the deposition rate.

  2. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study.

    PubMed

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2017-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won't significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated.

  3. Spontaneous Brain Activity Did Not Show the Effect of Violent Video Games on Aggression: A Resting-State fMRI Study

    PubMed Central

    Pan, Wei; Gao, Xuemei; Shi, Shuo; Liu, Fuqu; Li, Chao

    2018-01-01

    A great many of empirical researches have proved that longtime exposure to violent video game can lead to a series of negative effects. Although research has focused on the neural basis of the correlation between violent video game and aggression, little is known whether the spontaneous brain activity is associated with violent video game exposure. To address this question, we measured the spontaneous brain activity using resting-state functional magnetic resonance imaging (fMRI). We used the amplitude of low-frequency fluctuations (ALFF) and fractional ALFF (fALFF) to quantify spontaneous brain activity. The results showed there is no significant difference in ALFF, or fALFF, between violent video game group and the control part, indicating that long time exposure to violent video games won’t significantly influence spontaneous brain activity, especially the core brain regions such as execution control, moral judgment and short-term memory. This implies the adverse impact of violent video games is exaggerated. PMID:29375416

  4. Asynchronous steady-state visual evoked potential based BCI control of a 2-DoF artificial upper limb.

    PubMed

    Horki, Petar; Neuper, Christa; Pfurtscheller, Gert; Müller-Putz, Gernot

    2010-12-01

    A brain-computer interface (BCI) provides a direct connection between the human brain and a computer. One type of BCI can be realized using steady-state visual evoked potentials (SSVEPs), resulting from repetitive stimulation. The aim of this study was the realization of an asynchronous SSVEP-BCI, based on canonical correlation analysis, suitable for the control of a 2-degrees of freedom (DoF) hand and elbow neuroprosthesis. To determine whether this BCI is suitable for the control of 2-DoF neuroprosthetic devices, online experiments with a virtual and a robotic limb feedback were conducted with eight healthy subjects and one tetraplegic patient. All participants were able to control the artificial limbs with the BCI. In the online experiments, the positive predictive value (PPV) varied between 69% and 83% and the false negative rate (FNR) varied between 1% and 17%. The spinal cord injured patient achieved PPV and FNR values within one standard deviation of the mean for all healthy subjects.

  5. Thermostatted {delta}f

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krommes, J.A.

    1999-05-01

    The {delta}f simulation method is revisited. Statistical coarse graining is used to rigorously derive the equation for the fluctuation {delta}f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance {ital W} of the particle weights {ital w} grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or {open_quotes}{ital W} stat{close_quotes} may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales inmore » velocity space. The simplest {ital W} stat can be implemented as a self-consistently determined, time-dependent damping applied to {ital w}. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics is pointed out, and the justification of {ital W} stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short {ital W}-statted runs with large effective collisionality, and a numerical demonstration is given. {copyright} {ital 1999 American Institute of Physics.}« less

  6. Characterizing and differentiating task-based and resting state fMRI signals via two-stage sparse representations.

    PubMed

    Zhang, Shu; Li, Xiang; Lv, Jinglei; Jiang, Xi; Guo, Lei; Liu, Tianming

    2016-03-01

    A relatively underexplored question in fMRI is whether there are intrinsic differences in terms of signal composition patterns that can effectively characterize and differentiate task-based or resting state fMRI (tfMRI or rsfMRI) signals. In this paper, we propose a novel two-stage sparse representation framework to examine the fundamental difference between tfMRI and rsfMRI signals. Specifically, in the first stage, the whole-brain tfMRI or rsfMRI signals of each subject were composed into a big data matrix, which was then factorized into a subject-specific dictionary matrix and a weight coefficient matrix for sparse representation. In the second stage, all of the dictionary matrices from both tfMRI/rsfMRI data across multiple subjects were composed into another big data-matrix, which was further sparsely represented by a cross-subjects common dictionary and a weight matrix. This framework has been applied on the recently publicly released Human Connectome Project (HCP) fMRI data and experimental results revealed that there are distinctive and descriptive atoms in the cross-subjects common dictionary that can effectively characterize and differentiate tfMRI and rsfMRI signals, achieving 100% classification accuracy. Moreover, our methods and results can be meaningfully interpreted, e.g., the well-known default mode network (DMN) activities can be recovered from the very noisy and heterogeneous aggregated big-data of tfMRI and rsfMRI signals across all subjects in HCP Q1 release.

  7. Disrupted functional connectivity of the hippocampus in patients with hyperthyroidism: evidence from resting-state fMRI.

    PubMed

    Zhang, Wei; Liu, Xianjun; Zhang, Yi; Song, Lingheng; Hou, Jingming; Chen, Bing; He, Mei; Cai, Ping; Lii, Haitao

    2014-10-01

    The hippocampus expresses high levels of thyroid hormone receptors, suggesting that hippocampal functions, including cognition and regulation of mood, can be disrupted by thyroid pathology. Indeed, structural and functional alterations within the hippocampus have been observed in hyperthyroid patients. In addition to internal circuitry, hippocampal processing is dependent on extensive connections with other limbic and neocortical structures, but the effects of hyperthyroidism on functional connectivity (FC) with these areas have not been studied. The purpose of this study was to investigate possible abnormalities in the FC between the hippocampus and other neural structures in hyperthyroid patients using resting-state fMRI. Seed-based correlation analysis was performed on resting-state fMRI data to reveal possible differences in hippocampal FC between hyperthyroid patients and healthy controls. Correlation analysis was used to investigate the relationships between the strength of FC in regions showing significant group differences and clinical variables. Compared to controls, hyperthyroid patients showed weaker FC between the bilateral hippocampus and both the bilateral anterior cingulate cortex (ACC) and bilateral posterior cingulate cortex (PCC), as well as between the right hippocampus and right medial orbitofrontal cortex (mOFC). Disease duration was negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC and PCC. Levels of depression and anxiety were negatively correlated with FC strength between the bilateral hippocampus and bilateral ACC. Decreased functional connectivity between the hippocampus and bilateral ACC, PCC, and right mOFC may contribute to the emotional and cognitive dysfunction associated with hyperthyroidism. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Spectroscopy and heats of formation of CXI (X = Br, Cl, F) iodocarbenes: quantum chemical characterisation of the ?, ? and ? states

    NASA Astrophysics Data System (ADS)

    Bacskay, George B.

    2015-07-01

    The equilibrium energies of the iodocarbenes CXI (X = Br, Cl, F) in their ?, ? and ? states and their atomisation and dissociation energies in the complete basis limit were determined by extrapolating valence correlated (R/U)CCSD(T) and Davidson corrected multi-reference configuration interaction (MRCI) energies calculated with the aug-cc-pVxZ (x = T,Q,5) basis sets and the ECP28MDF pseudopotential of iodine plus corrections for core and core-valence correlation, scalar relativity, spin-orbit coupling and zero-point energies. Spin-orbit energies were computed in a large basis of configurations chosen so as to accurately describe dissociation to the 3P and 2P states of C and of the halogens X and I, respectively. The computed singlet-triplet splittings are 13.6, 14.4 and 27.3 kcal mol-1 for X = Br, Cl and F, respectively. The enthalpies of formation at 0 K are predicted to be 97.4, 82.6 and 38.1 kcal mol-1 with estimated errors of ±1.0 kcal mol-1. The ? excitation energies (T00) in CBrI and CClI are calculated to be 41.1 and 41.7 kcal mol-1, respectively. The Renner-Teller intersections in both molecules are predicted to be substantially higher than the dissociation barriers on the ? surfaces. By contrast, in CFI the ? state is found to be unbound with respect to dissociation.

  9. Global and system-specific resting-state fMRI fluctuations are uncorrelated: principal component analysis reveals anti-correlated networks.

    PubMed

    Carbonell, Felix; Bellec, Pierre; Shmuel, Amir

    2011-01-01

    The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)-based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed robust anti

  10. Global and System-Specific Resting-State fMRI Fluctuations Are Uncorrelated: Principal Component Analysis Reveals Anti-Correlated Networks

    PubMed Central

    Carbonell, Felix; Bellec, Pierre

    2011-01-01

    Abstract The influence of the global average signal (GAS) on functional-magnetic resonance imaging (fMRI)–based resting-state functional connectivity is a matter of ongoing debate. The global average fluctuations increase the correlation between functional systems beyond the correlation that reflects their specific functional connectivity. Hence, removal of the GAS is a common practice for facilitating the observation of network-specific functional connectivity. This strategy relies on the implicit assumption of a linear-additive model according to which global fluctuations, irrespective of their origin, and network-specific fluctuations are super-positioned. However, removal of the GAS introduces spurious negative correlations between functional systems, bringing into question the validity of previous findings of negative correlations between fluctuations in the default-mode and the task-positive networks. Here we present an alternative method for estimating global fluctuations, immune to the complications associated with the GAS. Principal components analysis was applied to resting-state fMRI time-series. A global-signal effect estimator was defined as the principal component (PC) that correlated best with the GAS. The mean correlation coefficient between our proposed PC-based global effect estimator and the GAS was 0.97±0.05, demonstrating that our estimator successfully approximated the GAS. In 66 out of 68 runs, the PC that showed the highest correlation with the GAS was the first PC. Since PCs are orthogonal, our method provides an estimator of the global fluctuations, which is uncorrelated to the remaining, network-specific fluctuations. Moreover, unlike the regression of the GAS, the regression of the PC-based global effect estimator does not introduce spurious anti-correlations beyond the decrease in seed-based correlation values allowed by the assumed additive model. After regressing this PC-based estimator out of the original time-series, we observed

  11. Ab Initio Study of Chemical Reactions of Cold SrF and CaF Molecules with Alkali-Metal and Alkaline-Earth-Metal Atoms: The Implications for Sympathetic Cooling.

    PubMed

    Kosicki, Maciej Bartosz; Kędziera, Dariusz; Żuchowski, Piotr Szymon

    2017-06-01

    We investigate the energetics of the atom exchange reaction in the SrF + alkali-metal atom and CaF + alkali-metal atom systems. Such reactions are possible only for collisions of SrF and CaF with the lithium atoms, while they are energetically forbidden for other alkali-metal atoms. Specifically, we focus on SrF interacting with Li, Rb, and Sr atoms and use ab initio methods to demonstrate that the SrF + Li and SrF + Sr reactions are barrierless. We present potential energy surfaces for the interaction of the SrF molecule with the Li, Rb, and Sr atoms in their energetically lowest-lying electronic spin states. The obtained potential energy surfaces are deep and exhibit profound interaction anisotropies. We predict that the collisions of SrF molecules in the rotational or Zeeman excited states most likely have a strong inelastic character. We discuss the prospects for the sympathetic cooling of SrF and CaF molecules using ultracold alkali-metal atoms.

  12. [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging.

    PubMed

    Lemoine, Laëtitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Le Bars, Didier; Newman-Tancredi, Adrian; Zimmer, Luc

    2010-03-01

    The serotonin-1A (5-HT(1A)) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT(1A) receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT(1A) receptors. Since all clinical PET 5-HT(1A) radiopharmaceuticals are antagonists, it is of great interest to develop a( 18)F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT(1A) receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT(1A) receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [(18)F]MPPF, a validated 5-HT(1A) antagonist radiopharmaceutical. The chemical and radiochemical purities of [(18)F]F15599 were >98%. In vitro [(18)F]F15599 binding was consistent with the known 5-HT(1A) receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [(18)F]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [(18)F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT(1A) antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain

  13. Pharmaceutical Applications of Relaxation Filter-Selective Signal Excitation Methods for ¹⁹F Solid-State Nuclear Magnetic Resonance: Case Study With Atorvastatin in Dosage Formulation.

    PubMed

    Asada, Mamiko Nasu; Nemoto, Takayuki; Mimura, Hisashi

    2016-03-01

    We recently developed several new relaxation filter-selective signal excitation (RFS) methods for (13)C solid-state nuclear magnetic resonance (NMR) that allow (13)C signal extraction of the target components from pharmaceuticals. These methods were successful in not only qualification but also quantitation over the wide range of 5% to 100%. Here, we aimed to improve the sensitivity of these methods and initially applied them to (19)F solid-state NMR, on the basis that the fluorine atom is one of the most sensitive NMR-active nuclei. For testing, we selected atorvastatin calcium (ATC), an antilipid BCS class II drug that inhibits 3-hydroxy-3-methylglutaryl-coenzyme A reductase and is marketed in crystalline and amorphous forms. Tablets were obtained from 2 generic drug suppliers, and the ATC content occurred mainly as an amorphous form. Using the RFS method with (19)F solid-state NMR, we succeeded in qualifying trace amounts (less than 0.5% w/w level) of crystalline phase (Form I) of ATC in the tablets. RFS methods with (19)F solid-state NMR are practical and time efficient and can contribute not only to the study of pharmaceutical drugs, including those with small amounts of a highly potent active ingredient within a formulated product, but also to the study of fluoropolymers in material sciences. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  14. Mapping the effect of escitalopram treatment on amplitude of low-frequency fluctuations in patients with depression: a resting-state fMRI study.

    PubMed

    Wang, Li; Li, Xueni; Li, Ke; Su, Yunai; Zeng, Yawei; Zhang, Qinge; Wang, Gang; Jin, Zhen; Kong, Qingmei; Si, Tianmei

    2017-02-01

    Antidepressant medications represent the most common treatment option for major depressive disorder (MDD), but the neuro-psychological mechanisms by which antidepressants act to improve depressive symptoms remain under-specified. We designed this study to assess the effects of escitalopram treatment on spontaneous brain activity of MDD patients using functional magnetic resonance imaging (fMRI). Twenty first-episode drug-naive MDD patients received resting-state fMRI scans before and after 8 weeks of treatment with a selective serotonin reuptake inhibitor - escitalopram. Twenty age- and gender-matched healthy controls were also scanned twice with an 8-week interval. The fractional amplitude of low-frequency fluctuation (fALFF) was used to characterize the spontaneous brain activity. The analysis of covariance (ANCOVA) was performed to determine treatment-related changes in fALFF. The symptoms were significantly improved in MDD patients after treatment. We observed significant group-by-time interaction on fALFF in the left dorsomedial prefrontal cortex, the right middle frontal gyrus, and the left putamen. Post-hoc analyses showed that the fALFF values in these regions were significantly higher in the MDD patients compared to healthy controls at baseline and were reduced after treatment. The findings suggest that abnormalities in the brain areas involved in emotional processing and regulation could be normalized by effective antidepressant treatment with escitalopram in the MDD patients and free of a task situation.

  15. A longitudinal model for functional connectivity networks using resting-state fMRI.

    PubMed

    Hart, Brian; Cribben, Ivor; Fiecas, Mark

    2018-06-04

    Many neuroimaging studies collect functional magnetic resonance imaging (fMRI) data in a longitudinal manner. However, the current fMRI literature lacks a general framework for analyzing functional connectivity (FC) networks in fMRI data obtained from a longitudinal study. In this work, we build a novel longitudinal FC model using a variance components approach. First, for all subjects' visits, we account for the autocorrelation inherent in the fMRI time series data using a non-parametric technique. Second, we use a generalized least squares approach to estimate 1) the within-subject variance component shared across the population, 2) the baseline FC strength, and 3) the FC's longitudinal trend. Our novel method for longitudinal FC networks seeks to account for the within-subject dependence across multiple visits, the variability due to the subjects being sampled from a population, and the autocorrelation present in fMRI time series data, while restricting the number of parameters in order to make the method computationally feasible and stable. We develop a permutation testing procedure to draw valid inference on group differences in the baseline FC network and change in FC over longitudinal time between a set of patients and a comparable set of controls. To examine performance, we run a series of simulations and apply the model to longitudinal fMRI data collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Overall, we found no difference in the global FC network between Alzheimer's disease patients and healthy controls, but did find differing local aging patterns in the FC between the left hippocampus and the posterior cingulate cortex. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Structure determination of Ba5AlF13 by coupling electron, synchrotron and neutron powder diffraction, solid-state NMR and ab initio calculations.

    PubMed

    Martineau, Charlotte; Allix, Mathieu; Suchomel, Matthew R; Porcher, Florence; Vivet, François; Legein, Christophe; Body, Monique; Massiot, Dominique; Taulelle, Francis; Fayon, Franck

    2016-10-04

    The room temperature structure of Ba 5 AlF 13 has been investigated by coupling electron, synchrotron and neutron powder diffraction, solid-state high-resolution NMR ( 19 F and 27 Al) and first principles calculations. An initial structural model has been obtained from electron and synchrotron powder diffraction data, and its main features have been confirmed by one- and two-dimensional NMR measurements. However, DFT GIPAW calculations of the 19 F isotropic shieldings revealed an inaccurate location of one fluorine site (F3, site 8a), which exhibited unusual long F-Ba distances. The atomic arrangement was reinvestigated using neutron powder diffraction data. Subsequent Fourier maps showed that this fluorine atom occupies a crystallographic site of lower symmetry (32e) with partial occupancy (25%). GIPAW computations of the NMR parameters validate the refined structural model, ruling out the presence of local static disorder and indicating that the partial occupancy of this F site reflects a local motional process. Visualisation of the dynamic process was then obtained from the Rietveld refinement of neutron diffraction data using an anharmonic description of the displacement parameters to account for the thermal motion of the mobile fluorine. The whole ensemble of powder diffraction and NMR data, coupled with first principles calculations, allowed drawing an accurate structural model of Ba 5 AlF 13 , including site-specific dynamical disorder in the fluorine sub-network.

  17. United States Air Force F-35A Operational Basing Environmental Impact Statement. Volume 1

    DTIC Science & Technology

    2013-09-01

    Evaluation (FDE) program and Weapons School (WS) beddown, the F-22 designator was used. Subsequent testing , development, and deployment resulted in...Initial F-35A Operational Basing EIS Final, September 2013 contract to develop the JSF ( designated the F-35 Lightning II). Since then, testing of F...of the aircraft even with system failures. Throughout the design and testing process, safety initiatives took previous best practices for single

  18. Combining electronic structure and many-body theory with large databases: A method for predicting the nature of 4 f states in Ce compounds

    NASA Astrophysics Data System (ADS)

    Herper, H. C.; Ahmed, T.; Wills, J. M.; Di Marco, I.; Björkman, T.; Iuşan, D.; Balatsky, A. V.; Eriksson, O.

    2017-08-01

    Recent progress in materials informatics has opened up the possibility of a new approach to accessing properties of materials in which one assays the aggregate properties of a large set of materials within the same class in addition to a detailed investigation of each compound in that class. Here we present a large scale investigation of electronic properties and correlated magnetism in Ce-based compounds accompanied by a systematic study of the electronic structure and 4 f -hybridization function of a large body of Ce compounds. We systematically study the electronic structure and 4 f -hybridization function of a large body of Ce compounds with the goal of elucidating the nature of the 4 f states and their interrelation with the measured Kondo energy in these compounds. The hybridization function has been analyzed for more than 350 data sets (being part of the IMS database) of cubic Ce compounds using electronic structure theory that relies on a full-potential approach. We demonstrate that the strength of the hybridization function, evaluated in this way, allows us to draw precise conclusions about the degree of localization of the 4 f states in these compounds. The theoretical results are entirely consistent with all experimental information, relevant to the degree of 4 f localization for all investigated materials. Furthermore, a more detailed analysis of the electronic structure and the hybridization function allows us to make precise statements about Kondo correlations in these systems. The calculated hybridization functions, together with the corresponding density of states, reproduce the expected exponential behavior of the observed Kondo temperatures and prove a consistent trend in real materials. This trend allows us to predict which systems may be correctly identified as Kondo systems. A strong anticorrelation between the size of the hybridization function and the volume of the systems has been observed. The information entropy for this set of systems is

  19. A viscoplastic model with application to LiF-22 percent CaF2 hypereutectic salt

    NASA Technical Reports Server (NTRS)

    Freed, A. D.; Walker, K. P.

    1990-01-01

    A viscoplastic model for class M (metal-like behavior) materials is presented. One novel feature is its use of internal variables to change the stress exponent of creep (where n is approximately = 5) to that of natural creep (where n = 3), in accordance with experimental observations. Another feature is the introduction of a coupling in the evolution equations of the kinematic and isotropic internal variables, making thermal recovery of the kinematic variable implicit. These features enable the viscoplastic model to reduce to that of steady-state creep in closed form. In addition, the hardening parameters associated with the two internal state variables (one scalar-valued, the other tensor-valued) are considered to be functions of state, instead of being taken as constant-valued. This feature enables each internal variable to represent a much wider spectrum of internal states for the material. The model is applied to a LiF-22 percent CaF2 hypereutectic salt, which is being considered as a thermal energy storage material for space-based solar dynamic power systems.

  20. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis.

    PubMed

    Ogawa, Takako; Harada, Tetsuyuki; Ozaki, Hiroshi; Sonoike, Kintake

    2013-07-01

    In Synechocystis sp. PCC 6803, the disruption of the ndhF1 gene (slr0844), which encodes a subunit of one of the NDH-1 complexes (NDH-1L complex) serving for respiratory electron transfer, causes the largest change in Chl fluorescence induction kinetics among the kinetics of 750 disruptants searched in the Fluorome, the cyanobacterial Chl fluorescence database. The cause of the explicit phenotype of the ndhF1 disruptant was examined by measurements of the photosynthetic rate, Chl fluorescence and state transition. The results demonstrate that the defects in respiratory electron transfer obviously have great impact on Chl fluorescence in cyanobacteria. The inactivation of NDH-1L complexes involving electron transfer from NDH-1 to plastoquinone (PQ) would result in the oxidation of the PQ pool, leading to the transition to State 1, where the yield of Chl fluorescence is high. Apparently, respiration, although its rate is far lower than that of photosynthesis, could affect Chl fluorescence through the state transition as leverage. The disruption of the ndhF1 gene caused lower oxygen-evolving activity but the estimated electron transport rate from Chl fluorescence measurements was faster in the mutant than in the wild-type cells. The discrepancy could be ascribed to the decreased level of non-photochemical quenching due to state transition. One must be cautious when using the Chl fluorescence parameter to estimate photosynthesis in mutants defective in state transition.

  1. University Nanosatellite Program ION-F Constellation

    NASA Technical Reports Server (NTRS)

    Swenson, Charles; Fullmer, Rees; Redd, Frank

    2002-01-01

    The Space Engineering program at Utah State University has developed a small satellite, known as USUSat, under funding from AFOSR, AFRL, NASA and Utah State University's Space Dynamics Laboratory. This satellite was designed and significantly manufactured by students in the Mechanical and Aerospace Engineering and the Electrical and Computer Engineering Departments within the College of Engineering. USUSat is one of three spacecraft being designed for the Ionospheric Observation Nanosatellite Formation (ION- F). This formation comprises three 15 kg. spacecraft designed and built in cooperation by Utah State University, University of Washington, and Virginia Polytechnic Institute. The ION-F satellites are being designed and built by students at the three universities, with close coordination to insure compatibility for launch, deployment, and the formation flying mission. The JON-F mission is part of the U.S. Air Force Research Laboratory (AFRL) University Nanosatellite Program, which provides technology development and demonstrations for the TechSat2l Program. The University Nanosatellite Program involves 10 universities building nanosatellites for a launch in 2004 on two separate space shuttle missions. Additional support for the formation flying demonstration has been provided by NASA's Goddard Space Flight Center.

  2. Photosensitivity of the Ni-A state of [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F with visible light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osuka, Hisao; Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5, Takayama-cho, Ikoma-shi, Nara 630-0192; Shomura, Yasuhito

    2013-01-04

    Highlights: Black-Right-Pointing-Pointer Ni-A state of [NiFe] hydrogenase showed light sensitivity. Black-Right-Pointing-Pointer New FT-IR bands were observed with light irradiation of the Ni-A state. Black-Right-Pointing-Pointer EPR g-values of the Ni-A state shifted upon light irradiation. Black-Right-Pointing-Pointer The light-induced state converted back to the Ni-A state under the dark condition. -- Abstract: [NiFe] hydrogenase catalyzes reversible oxidation of molecular hydrogen. Its active site is constructed of a hetero dinuclear Ni-Fe complex, and the oxidation state of the Ni ion changes according to the redox state of the enzyme. We found that the Ni-A state (an inactive unready, oxidized state) of [NiFe] hydrogenasemore » from Desulfovibrio vulgaris Miyazaki F (DvMF) is light sensitive and forms a new state (Ni-AL) with irradiation of visible light. The Fourier transform infrared (FT-IR) bands at 1956, 2084 and 2094 cm{sup -1} of the Ni-A state shifted to 1971, 2086 and 2098 cm{sup -1} in the Ni-AL state. The g-values of g{sub x} = 2.30, g{sub y} = 2.23 and g{sub z} = 2.01 for the signals in the electron paramagnetic resonance (EPR) spectrum of the Ni-A state at room temperature varied for -0.009, +0.012 and +0.010, respectively, upon light irradiation. The light-induced Ni-AL state converted back immediately to the Ni-A state under dark condition at room temperature. These results show that the coordination structure of the Fe site of the Ni-A state of [NiFe] hydrogenase is perturbed significantly by light irradiation with relatively small coordination change at the Ni site.« less

  3. Studying brain organization via spontaneous fMRI signal.

    PubMed

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-11-19

    In recent years, some substantial advances in understanding human (and nonhuman) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the "resting" brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called "resting state." This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting-state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Finer parcellation reveals detailed correlational structure of resting-state fMRI signals.

    PubMed

    Dornas, João V; Braun, Jochen

    2018-01-15

    Even in resting state, the human brain generates functional signals (fMRI) with complex correlational structure. To simplify this structure, it is common to parcellate a standard brain into coarse chunks. Finer parcellations are considered less reproducible and informative, due to anatomical and functional variability of individual brains. Grouping signals with similar local correlation profiles, restricted to each anatomical region (Tzourio-Mazoyer et al., 2002), we divide a standard brain into 758 'functional clusters' averaging 1.7cm 3 gray matter volume ('MD758' parcellation). We compare 758 'spatial clusters' of similar size ('S758'). 'Functional clusters' are spatially contiguous and cluster quality (integration and segregation of temporal variance) is far superior to 'spatial clusters', comparable to multi-modal parcellations of half the resolution (Craddock et al., 2012; Glasser et al., 2016). Moreover, 'functional clusters' capture many long-range functional correlations, with O(10 5 ) reproducibly correlated cluster pairs in different anatomical regions. The pattern of functional correlations closely mirrors long-range anatomical connectivity established by fibre tracking. MD758 is comparable to coarser parcellations (Craddock et al., 2012; Glasser et al., 2016) in terms of cluster quality, correlational structure (54% relative mutual entropy vs 60% and 61%), and sparseness (35% significant pairwise correlations vs 36% and 44%). We describe and evaluate a simple path to finer functional parcellations of the human brain. Detailed correlational structure is surprisingly consistent between individuals, opening new possibilities for comparing functional correlations between cognitive conditions, states of health, or pharmacological interventions. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  5. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity.

    PubMed

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2014-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. © 2013.

  6. Quasi-periodic patterns (QPP): large-scale dynamics in resting state fMRI that correlate with local infraslow electrical activity

    PubMed Central

    Thompson, Garth John; Pan, Wen-Ju; Magnuson, Matthew Evan; Jaeger, Dieter; Keilholz, Shella Dawn

    2013-01-01

    Functional connectivity measurements from resting state blood-oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) are proving a powerful tool to probe both normal brain function and neuropsychiatric disorders. However, the neural mechanisms that coordinate these large networks are poorly understood, particularly in the context of the growing interest in network dynamics. Recent work in anesthetized rats has shown that the spontaneous BOLD fluctuations are tightly linked to infraslow local field potentials (LFPs) that are seldom recorded but comparable in frequency to the slow BOLD fluctuations. These findings support the hypothesis that long-range coordination involves low frequency neural oscillations and establishes infraslow LFPs as an excellent candidate for probing the neural underpinnings of the BOLD spatiotemporal patterns observed in both rats and humans. To further examine the link between large-scale network dynamics and infraslow LFPs, simultaneous fMRI and microelectrode recording were performed in anesthetized rats. Using an optimized filter to isolate shared components of the signals, we found that time-lagged correlation between infraslow LFPs and BOLD is comparable in spatial extent and timing to a quasi-periodic pattern (QPP) found from BOLD alone, suggesting that fMRI-measured QPPs and the infraslow LFPs share a common mechanism. As fMRI allows spatial resolution and whole brain coverage not available with electroencephalography, QPPs can be used to better understand the role of infraslow oscillations in normal brain function and neurological or psychiatric disorders. PMID:24071524

  7. Defining functional SMA and pre-SMA subregions in human MFC using resting state fMRI: functional connectivity-based parcellation method.

    PubMed

    Kim, Jae-Hun; Lee, Jong-Min; Jo, Hang Joon; Kim, Sook Hui; Lee, Jung Hee; Kim, Sung Tae; Seo, Sang Won; Cox, Robert W; Na, Duk L; Kim, Sun I; Saad, Ziad S

    2010-02-01

    Noninvasive parcellation of the human cerebral cortex is an important goal for understanding and examining brain functions. Recently, the patterns of anatomical connections using diffusion tensor imaging (DTI) have been used to parcellate brain regions. Here, we present a noninvasive parcellation approach that uses "functional fingerprints" obtained by correlation measures on resting state functional magnetic resonance imaging (fMRI) data to parcellate brain regions. In other terms, brain regions are parcellated based on the similarity of their connection--as reflected by correlation during resting state--to the whole brain. The proposed method was used to parcellate the medial frontal cortex (MFC) into supplementary motor areas (SMA) and pre-SMA subregions. In agreement with anatomical landmark-based parcellation, we find that functional fingerprint clustering of the MFC results in anterior and posterior clusters. The probabilistic maps from 12 subjects showed that the anterior cluster is mainly located rostral to the vertical commissure anterior (VCA) line, whereas the posterior cluster is mainly located caudal to VCA line, suggesting the homologues of pre-SMA and SMA. The functional connections from the putative pre-SMA cluster were connected to brain regions which are responsible for complex/cognitive motor control, whereas those from the putative SMA cluster were connected to brain regions which are related to the simple motor control. These findings demonstrate the feasibility of the functional connectivity-based parcellation of the human cerebral cortex using resting state fMRI. Copyright (c) 2009 Elsevier Inc. All rights reserved.

  8. Excited-state absorption in Er: BaY2F8 and Cs3Er2Br9 and comparison with Er: LiYF4

    NASA Astrophysics Data System (ADS)

    Pollnau, M.; Lüthy, W.; Weber, H. P.; Krämer, K.; Güdel, H. U.; McFarlane, R. A.

    1996-04-01

    The influence of Excited-State Absorption (ESA) on the green laser transition and the overlap of Ground-State Absorption (GSA) and ESA for 970 nm upconversion pumping in erbium is investigated in Er3+ : BaY2F8 and Cs3Er2Br9. Results are compared to Er3+ : LiYF4. In Er3+: BaY2F8, a good overlap between GSA and ESA is found at 969 nm in one polarization direction. The emission cross section at 550 nm is a factor of two smaller than in LiYF4. In Cs3Er2Br9, the smaller Stark splitting of the levels shifts the wavelengths of the green emission and ESA from4 I 1 3/2 off resonance. It enhances, however, ground-state reabsorption. The emission cross section at 550 nm is comparable to LiYF4. Upconversion leads to significant green fluorescence from2 H 9/2. A significant population of the4 I 11/2 level and ESA at 970 nm are not present under 800 nm pumping.

  9. Decreased functional connectivity and disrupted neural network in the prefrontal cortex of affective disorders: A resting-state fNIRS study.

    PubMed

    Zhu, Huilin; Xu, Jie; Li, Jiangxue; Peng, Hongjun; Cai, Tingting; Li, Xinge; Wu, Shijing; Cao, Wei; He, Sailing

    2017-10-15

    Affective disorders (AD) have been conceptualized as neural network-level diseases. In this study, we utilized functional near infrared spectroscopy (fNIRS) to investigate the spontaneous hemodynamic activities in the prefrontal cortex (PFC) of the AD patients with or without medications. 42 optical channels were applied to cover the superior frontal gyrus (SFG), middle frontal gyrus (MFG), and inferior frontal gyrus (IFG), which constitute one of the most important affective networks of the brain. We performed resting-state measurements on 28 patients who were diagnosed as having AD and 30 healthy controls (HC). Raw fNIRS data were preprocessed with independent component analysis (ICA) and a band-pass filter to remove artifacts and physiological noise. By systematically analyzing the intra-regional, intrahemispheric, and interhemispheric connectivities based on the spontaneous oscillations of Δ[HbO], our results indicated that patients with AD exhibited significantly reduced intra-regional and symmetrically interhemispheric connectivities in the PFC when compared to HC. More specifically, relative to HC, AD patients showed significantly lower locally functional connectivity in the right IFG, and poor long-distance connectivity between bilateral IFG. In addition, AD patients without medication presented more disrupted cortical organizations in the PFC, and the severity of self-reported symptoms of depression was negatively correlated with the strength of intra-regional and symmetrically interhemispheric connectivity in the PFC. Regarding the measuring technique, fNIRS has restricted measurement depth and spatial resolution. During the study, the subgroups of AD, such as major depressive disorder, bipolar, comorbidity, or non-comorbidity, dosage of psychotropic drugs, as well as different types of pharmacological responses were not distinguished and systematically compared. Furthermore, due to the limitation of the research design, it was still not very clear how

  10. f(R) gravity and chameleon theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brax, Philippe; Bruck, Carsten van de; Davis, Anne-Christine

    2008-11-15

    We analyze f(R) modifications of Einstein's gravity as dark energy models in the light of their connection with chameleon theories. Formulated as scalar-tensor theories, the f(R) theories imply the existence of a strong coupling of the scalar field to matter. This would violate all experimental gravitational tests on deviations from Newton's law. Fortunately, the existence of a matter dependent mass and a thin-shell effect allows one to alleviate these constraints. The thin-shell condition also implies strong restrictions on the cosmological dynamics of the f(R) theories. As a consequence, we find that the equation of state of dark energy is constrainedmore » to be extremely close to -1 in the recent past. We also examine the potential effects of f(R) theories in the context of the Eoet-wash experiments. We show that the requirement of a thin shell for the test bodies is not enough to guarantee a null result on deviations from Newton's law. As long as dark energy accounts for a sizeable fraction of the total energy density of the Universe, the constraints that we deduce also forbid any measurable deviation of the dark energy equation of state from -1. All in all, we find that both cosmological and laboratory tests imply that f(R) models are almost coincident with a {lambda}CDM model at the background level.« less

  11. Generalised filtering and stochastic DCM for fMRI.

    PubMed

    Li, Baojuan; Daunizeau, Jean; Stephan, Klaas E; Penny, Will; Hu, Dewen; Friston, Karl

    2011-09-15

    This paper is about the fitting or inversion of dynamic causal models (DCMs) of fMRI time series. It tries to establish the validity of stochastic DCMs that accommodate random fluctuations in hidden neuronal and physiological states. We compare and contrast deterministic and stochastic DCMs, which do and do not ignore random fluctuations or noise on hidden states. We then compare stochastic DCMs, which do and do not ignore conditional dependence between hidden states and model parameters (generalised filtering and dynamic expectation maximisation, respectively). We first characterise state-noise by comparing the log evidence of models with different a priori assumptions about its amplitude, form and smoothness. Face validity of the inversion scheme is then established using data simulated with and without state-noise to ensure that DCM can identify the parameters and model that generated the data. Finally, we address construct validity using real data from an fMRI study of internet addiction. Our analyses suggest the following. (i) The inversion of stochastic causal models is feasible, given typical fMRI data. (ii) State-noise has nontrivial amplitude and smoothness. (iii) Stochastic DCM has face validity, in the sense that Bayesian model comparison can distinguish between data that have been generated with high and low levels of physiological noise and model inversion provides veridical estimates of effective connectivity. (iv) Relaxing conditional independence assumptions can have greater construct validity, in terms of revealing group differences not disclosed by variational schemes. Finally, we note that the ability to model endogenous or random fluctuations on hidden neuronal (and physiological) states provides a new and possibly more plausible perspective on how regionally specific signals in fMRI are generated. Copyright © 2011. Published by Elsevier Inc.

  12. First Born amplitude for transitions from a circular state to a state of large (l, m)

    NASA Astrophysics Data System (ADS)

    Dewangan, D. P.

    2005-01-01

    The use of cylindrical polar coordinates instead of the conventional spherical polar coordinates enables us to derive compact expressions of the first Born amplitude for some selected sets of transitions from an arbitrary initial circular \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle state to a final \\big|\\psi_{n_f,l_f,m_f}\\big\\rangle state of large (lf, mf). The formulae for \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle \\longrightarrow \\big|\\psi_{n_f,n_f-1,n_f-2}\\big\\rangle and \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle \\longrightarrow \\big|\\psi_{n_f,n_f-1,n_f-3}\\big\\rangle transitions are expressed in terms of the Jacobi polynomials which serve as suitable starting points for constructing complete solutions over the bound energy levels of hydrogen-like atoms. The formulae for \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle \\longrightarrow \\big|\\psi_{n_f,n_f-1,-(n_f-2)}\\big\\rangle and \\big|\\psi_{n_i,n_i-1,n_i-1}\\big\\rangle \\longrightarrow \\big|\\psi_{n_f,n_f-1,-(n_f-3)}\\big\\rangle transitions are in simple algebraic forms and are directly applicable to all possible values of ni and nf. It emerges that the method can be extended to evaluate the first Born amplitude for many other transitions involving states of large (l, m).

  13. Line Lists for LiF and LiCl in the X^{1}Σ^{+} State

    NASA Astrophysics Data System (ADS)

    Bittner, Dror M.; Bernath, Peter F.

    2017-06-01

    Alkali-containing molecules are expected to be present in the atmospheres of exoplanets such as rocky super-Earths as well as in cool dwarf stars. Line lists for LiF and LiCl in their X^{1}Σ^{+} ground states have been calculated using LeRoy's LEVEL program. The potential energy functions, including the effects of the breakdown of the Born-Oppenheimer approximation, are obtained by direct fitting the experimental infrared vibration-rotation and microwave pure rotation data with extended Morse oscillator potentials using LeRoy's dPotFit program. The transition dipole matrix elements and line intensities were obtained with LEVEL using a dipole moment function from a high level ab initio calculation. Phil. Trans. R. Soc. A 372, 20130087 (2014) Astrophys. J. 519, 793 (1999) J. Quant. Spectrosc. Radiat. Transfer 186, 167 (2017) J. Quant. Spectrosc. Radiat. Transfer 186, 179 (2017)

  14. Dissociating mental states related to doing nothing by means of fMRI pattern classification.

    PubMed

    Kühn, Simone; Bodammer, Nils Christian; Brass, Marcel

    2010-12-01

    Most juridical systems recognize intentional non-actions - the failure to render assistance - as intentional acts by regarding them as in principle culpable. This raises the fundamental question whether intentional non-actions can be distinguished from simply not doing anything. Classical GLM analysis on functional magnetic resonance imaging (fMRI) data reveals that not doing anything is associated with resting state brain areas whereas intentionally non-acting is associated with brain activity in left inferior parietal lobe and left dorsal premotor cortex. By means of pattern classification we quantify the accuracy with which we can distinguish these two mental states on the basis of brain activity. In order to identify brain regions that harbour a distributed, overlapping representation of voluntary non-actions and the decision not to act we performed pattern classification on brain areas that did not appear in the GLM contrasts. The prediction rate is not reduced and we show that the prediction relies mostly on brain areas that have been associated with action production and motor imagery as supplementary motor area, right inferior frontal gyrus and right middle temporal area (V5/MT). Hence our data support the implicit assumption of legal practice that voluntary non-action shares important features with overt voluntary action. Copyright © 2010 Elsevier Inc. All rights reserved.

  15. A real-time stress classification system based on arousal analysis of the nervous system by an F-state machine.

    PubMed

    Martinez, R; Irigoyen, E; Arruti, A; Martin, J I; Muguerza, J

    2017-09-01

    Detection and labelling of an increment in the human stress level is a contribution focused principally on improving the quality of life of people. This work is aimed to develop a biophysical real-time stress identification and classification system, analysing two noninvasive signals, the galvanic skin response and the heart rate variability. An experimental procedure was designed and configured in order to elicit a stressful situation that is similar to those found in real cases. A total of 166 subjects participated in this experimental stage. The set of registered signals of each subject was considered as one experiment. A preliminary qualitative analysis of the signals collected was made, based on previous counselling received from neurophysiologists and psychologists. This study revealed a relationship between changes in the temporal signals and the induced stress states in each subject. To identify and classify such states, a subsequent quantitative analysis was performed in order to determine specific numerical information related to the above mentioned relationship. This second analysis gives the particular details to design the finally proposed classification algorithm, based on a Finite State Machine. The proposed system is able to classify the detected stress stages at three levels: low, medium, and high. Furthermore, the system identifies persistent stress situations or momentary alerts, depending on the subject's arousal. The system reaches an F 1 score of 0.984 in the case of high level, an F 1 score of 0.970 for medium level, and an F 1 score of 0.943 for low level. The resulting system is able to detect and classify different stress stages only based on two non invasive signals. These signals can be collected in people during their monitoring and be processed in a real-time sense, as the system can be previously preconfigured. Therefore, it could easily be implemented in a wearable prototype that could be worn by end users without feeling to be

  16. Clinical Potential of Prefusion RSV F-specific Antibodies.

    PubMed

    Rossey, Iebe; McLellan, Jason S; Saelens, Xavier; Schepens, Bert

    2018-03-01

    Human respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infections in the very young. The RSV fusion protein (F) is essential for virus entry because it mediates viral and host membrane fusion. During this fusion process F is converted from a metastable prefusion conformation into an energetically favored postfusion state. Antibodies that target F can prevent viral entry and reduce disease caused by RSV. During recent years, many prefusion F-specific antibodies have been described. These antibodies typically have stronger RSV-neutralizing activity compared to those that also bind F in the postfusion conformation. Here, we describe how F-specific antibodies protect against RSV and why specifically targeting prefusion F could have great clinical potential. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Functional Connectivity Estimated from Resting-State fMRI Reveals Selective Alterations in Male Adolescents with Pure Conduct Disorder

    PubMed Central

    Lu, Feng-Mei; Zhou, Jian-Song; Zhang, Jiang; Xiang, Yu-Tao; Zhang, Jian; Liu, Qi; Wang, Xiao-Ping; Yuan, Zhen

    2015-01-01

    Conduct disorder (CD) is characterized by a persistent pattern of antisocial behavior and aggression in childhood and adolescence. Previous task-based and resting-state functional magnetic resonance imaging (fMRI) studies have revealed widespread brain regional abnormalities in adolescents with CD. However, whether the resting-state networks (RSNs) are altered in adolescents with CD remains unknown. In this study, resting-state fMRI data were first acquired from eighteen male adolescents with pure CD and eighteen age- and gender-matched typically developing (TD) individuals. Independent component analysis (ICA) was implemented to extract nine representative RSNs, and the generated RSNs were then compared to show the differences between the CD and TD groups. Interestingly, it was observed from the brain mapping results that compared with the TD group, the CD group manifested decreased functional connectivity in four representative RSNs: the anterior default mode network (left middle frontal gyrus), which is considered to be correlated with impaired social cognition, the somatosensory network (bilateral supplementary motor area and right postcentral gyrus), the lateral visual network (left superior occipital gyrus), and the medial visual network (right fusiform, left lingual gyrus and right calcarine), which are expected to be relevant to the perceptual systems responsible for perceptual dysfunction in male adolescents with CD. Importantly, the novel findings suggested that male adolescents with pure CD were identified to have dysfunctions in both low-level perceptual networks (the somatosensory network and visual network) and a high-order cognitive network (the default mode network). Revealing the changes in the functional connectivity of these RSNs enhances our understanding of the neural mechanisms underlying the modulation of emotion and social cognition and the regulation of perception in adolescents with CD. PMID:26713867

  18. The {sup 17}F(p,{gamma}){sup 18}Ne3{sup +} resonance state studied with the {sup 16}O({sup 3}He,n){sup 18}Ne reaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parpottas, Y.; Grimes, S.M.; Brune, C.R.

    2005-08-01

    The astrophysically important 3{sup +} resonance of the {sup 17}F(p,{gamma}){sup 18}Ne reaction has been studied with the {sup 16}O({sup 3}He,n){sup 18}Ne reaction. High-resolution measurements were carried out for three different kinematic configurations. We find an excitation energy of 4527(4) keV and a proton width of 17(4) keV for the 3{sup +} state. Measured differential cross sections were compared with Hauser-Feshbach predictions to assign the spin of the 4527-keV state and confirm the spin assignments of the two known levels in this region. Our results differ from the earlier {sup 16}O({sup 3}He,n){sup 18}Ne findings of Garcia et al. [Phys. Rev. Cmore » 43, 2012 (1991)], but they agree well with the {sup 17}F(p,p){sup 17}F measurements of Bardayan et al. [Phys. Rev. C 62, 055804 (2002)].« less

  19. Complete characterization of the water dimer vibrational ground state and testing the VRT(ASP-W)III, SAPT-5st, and VRT(MCY-5f) surfaces

    NASA Astrophysics Data System (ADS)

    Keutsch, Frank N.; Goldman, Nir; Harker, Heather A.; Leforestier, Claude; Saykally, Richard J.

    We report the observation of extensive a- and c-type rotation-tunnelling (RT) spectra of (H2O)2 for Ka =0-3, and (D2O)2 for Ka =0-4. These data allow a detailed characterization of the vibrational ground state to energies comparable to those of the low-lying (70-80 cm-1) intermolecular vibrations. We present a comparison of the experimentally determined molecular constants and tunnelling splittings with those calculated on the VRT(ASP-W)III, SAPT-5st, and VRT(MCY-5f) intermolecular potential energy surfaces. The SAPT-5st potential reproduces the vibrational ground state properties of the water dimer very well. The VRT(MCY-5f) and especially the VRT(ASP-W)III potentials show larger disagreements, in particular for the bifurcation tunnelling splitting.

  20. A fuzzy integral method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification across multiple subjects.

    PubMed

    Cacha, L A; Parida, S; Dehuri, S; Cho, S-B; Poznanski, R R

    2016-12-01

    The huge number of voxels in fMRI over time poses a major challenge to for effective analysis. Fast, accurate, and reliable classifiers are required for estimating the decoding accuracy of brain activities. Although machine-learning classifiers seem promising, individual classifiers have their own limitations. To address this limitation, the present paper proposes a method based on the ensemble of neural networks to analyze fMRI data for cognitive state classification for application across multiple subjects. Similarly, the fuzzy integral (FI) approach has been employed as an efficient tool for combining different classifiers. The FI approach led to the development of a classifiers ensemble technique that performs better than any of the single classifier by reducing the misclassification, the bias, and the variance. The proposed method successfully classified the different cognitive states for multiple subjects with high accuracy of classification. Comparison of the performance improvement, while applying ensemble neural networks method, vs. that of the individual neural network strongly points toward the usefulness of the proposed method.

  1. Relation Between Magnetospheric State Parameters and the Occurrence of Plasma Depletion Events in the Nighttime Midlatitude F Region

    NASA Technical Reports Server (NTRS)

    Seker, Ilgin; Fung, Shing F.; Mathews, John D.

    2011-01-01

    Studies using all-sky imagers have revealed the presence of various ionospheric irregularities in the nighttime midlatitude F region. The most prevalent and well known of these are the medium-scale traveling ionospheric disturbances (MSTIDs) that usually occur when the geomagnetic activity is low and midlatitude spread F plumes that are often observed when the geomagnetic activity is high. The inverse and direct relations between geomagnetic activity and the occurrence rate of MSTIDs and midlatitude plumes, respectively, have been observed by several studies using different instruments; however, most of them focus on MSTIDs only and use only Kp to characterize geomagnetic activity. In order to understand the underlying causes of these two relations and to distinguish between MSTIDs and plumes, it is illuminating to better characterize the occurrence of MSTIDs and plumes using multiple magnetospheric state parameters. Here we statistically compare multiple geomagnetic driver and response parameters (such as Kp, AE, Dst, and solar wind parameters) with the occurrence rates of nighttime MSTIDs and plumes observed using an all ]sky imager at Arecibo Observatory (AO) between 2003 and 2008. We also present seasonal and annual variations of MSTIDs and plumes at AO. The results not only allow us to better distinguish MSTIDs and plumes, but also to shed further light on the generation mechanism and electrodynamics of these two different phenomena occurring at nighttime in the midlatitude F region.

  2. Effective Connectivity within the Default Mode Network: Dynamic Causal Modeling of Resting-State fMRI Data.

    PubMed

    Sharaev, Maksim G; Zavyalova, Viktoria V; Ushakov, Vadim L; Kartashov, Sergey I; Velichkovsky, Boris M

    2016-01-01

    The Default Mode Network (DMN) is a brain system that mediates internal modes of cognitive activity, showing higher neural activation when one is at rest. Nowadays, there is a lot of interest in assessing functional interactions between its key regions, but in the majority of studies only association of Blood-oxygen-level dependent (BOLD) activation patterns is measured, so it is impossible to identify causal influences. There are some studies of causal interactions (i.e., effective connectivity), however often with inconsistent results. The aim of the current work is to find a stable pattern of connectivity between four DMN key regions: the medial prefrontal cortex (mPFC), the posterior cingulate cortex (PCC), left and right intraparietal cortex (LIPC and RIPC). For this purpose functional magnetic resonance imaging (fMRI) data from 30 healthy subjects (1000 time points from each one) was acquired and spectral dynamic causal modeling (DCM) on a resting-state fMRI data was performed. The endogenous brain fluctuations were explicitly modeled by Discrete Cosine Set at the low frequency band of 0.0078-0.1 Hz. The best model at the group level is the one where connections from both bilateral IPC to mPFC and PCC are significant and symmetrical in strength (p < 0.05). Connections between mPFC and PCC are bidirectional, significant in the group and weaker than connections originating from bilateral IPC. In general, all connections from LIPC/RIPC to other DMN regions are much stronger. One can assume that these regions have a driving role within the DMN. Our results replicate some data from earlier works on effective connectivity within the DMN as well as provide new insights on internal DMN relationships and brain's functioning at resting state.

  3. Ca(5)Zr(3)F(22).

    PubMed

    Oudahmane, Abdelghani; El-Ghozzi, Malika; Avignant, Daniel

    2012-04-01

    Single crystals of Ca(5)Zr(3)F(22), penta-calcium trizirconium docosafluoride, were obtained unexpectedly by solid-state reaction between CaF(2) and ZrF(4) in the presence of AgF. The structure of the title compound is isotypic with that of Sr(5)Zr(3)F(22) and can be described as being composed of layers with composition [Zr(3)F(20)](8-) made up from two different [ZrF(8)](4-) square anti-prisms (one with site symmetry 2) by corner-sharing. The layers extending parallel to the (001) plane are further linked by Ca(2+) cations, forming a three-dimensional network. Amongst the four crystallographically different Ca(2+) ions, three are located on twofold rotation axes. The Ca(2+) ions exhibit coordination numbers ranging from 8 to 12, depending on the cut off, with very distorted fluorine environments. Two of the Ca(2+) ions occupy inter-stices between the layers whereas the other two are located in void spaces of the [Zr(3)F(20)](8-) layer and alternate with the two Zr atoms along [010]. The crystal under investigation was an inversion twin.

  4. Glass transition and composite formation in InF{sub 3}-containing oxyfluoroniobate system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Savchenko, N. N.; Ignatieva, L. N.; Marchenko, Yu. V.

    2016-05-18

    The glasses in the system MnNbOF{sub 5}-BaF{sub 2}-InF{sub 3} have been firstly synthesized and studied. The thermal parameters of these glasses are analyzed. It was stated that glass of the composition 40MnNbOF{sub 5}-40BaF{sub 2}-20InF{sub 3} is the most thermal stable in the system under study. By X-ray analysis the compositions of the crystalline phases obtained at the glass thermal treatment were determined: the main phases are Ba{sub 3}In{sub 2}F{sub 12} and BaNbOF{sub 5}. By Raman and IR spectra analysis it was stated that the networks of glasses in the system are built by the structural type of the glasses inmore » NbO{sub 2}F-BaF{sub 2} system: (NbO{sub n}F{sub m}) polyhedra joined oxygen bridges. Indium trifluoride forms InF{sub 6} polyhedra, which are embeded between oxyfluoroniobate ions, forming a common networks or forms its own layers from InF{sub 6} polyhedra. IR-spectroscopy method showed that at devitrification of the sample 30MnNbOF{sub 5}-50BaF{sub 2}-20InF{sub 3} the band position and shape change in going from glass state to crystalline. The bands in the range 900–700 cm{sup −1} shift into the low-frequency range and transformed into narrow peaks characteristic for the crystalline state. It was determined that for this sample the IR-spectroscopy method fixes the presence of the crystalline phases at 340°C without time of exposure, despite the fact that X-ray analysis shows an amorphous state for this sample at the same temperature. It was suggested, that controlling the composition and conditions of annealing of the glasses it can be obtain the transparent glass-ceramics of definite composition.« less

  5. Individualized Functional Parcellation of the Human Amygdala Using a Semi-supervised Clustering Method: A 7T Resting State fMRI Study.

    PubMed

    Zhang, Xianchang; Cheng, Hewei; Zuo, Zhentao; Zhou, Ke; Cong, Fei; Wang, Bo; Zhuo, Yan; Chen, Lin; Xue, Rong; Fan, Yong

    2018-01-01

    The amygdala plays an important role in emotional functions and its dysfunction is considered to be associated with multiple psychiatric disorders in humans. Cytoarchitectonic mapping has demonstrated that the human amygdala complex comprises several subregions. However, it's difficult to delineate boundaries of these subregions in vivo even if using state of the art high resolution structural MRI. Previous attempts to parcellate this small structure using unsupervised clustering methods based on resting state fMRI data suffered from the low spatial resolution of typical fMRI data, and it remains challenging for the unsupervised methods to define subregions of the amygdala in vivo . In this study, we developed a novel brain parcellation method to segment the human amygdala into spatially contiguous subregions based on 7T high resolution fMRI data. The parcellation was implemented using a semi-supervised spectral clustering (SSC) algorithm at an individual subject level. Under guidance of prior information derived from the Julich cytoarchitectonic atlas, our method clustered voxels of the amygdala into subregions according to similarity measures of their functional signals. As a result, three distinct amygdala subregions can be obtained in each hemisphere for every individual subject. Compared with the cytoarchitectonic atlas, our method achieved better performance in terms of subregional functional homogeneity. Validation experiments have also demonstrated that the amygdala subregions obtained by our method have distinctive, lateralized functional connectivity (FC) patterns. Our study has demonstrated that the semi-supervised brain parcellation method is a powerful tool for exploring amygdala subregional functions.

  6. Working memory capacity and the functional connectome - insights from resting-state fMRI and voxelwise centrality mapping.

    PubMed

    Markett, Sebastian; Reuter, Martin; Heeren, Behrend; Lachmann, Bernd; Weber, Bernd; Montag, Christian

    2018-02-01

    The functional connectome represents a comprehensive network map of functional connectivity throughout the human brain. To date, the relationship between the organization of functional connectivity and cognitive performance measures is still poorly understood. In the present study we use resting-state functional magnetic resonance imaging (fMRI) data to explore the link between the functional connectome and working memory capacity in an individual differences design. Working memory capacity, which refers to the maximum amount of context information that an individual can retain in the absence of external stimulation, was assessed outside the MRI scanner and estimated based on behavioral data from a change detection task. Resting-state time series were analyzed by means of voxelwise degree and eigenvector centrality mapping, which are data-driven network analytic approaches for the characterization of functional connectivity. We found working memory capacity to be inversely correlated with both centrality in the right intraparietal sulcus. Exploratory analyses revealed that this relationship was putatively driven by an increase in negative connectivity strength of the structure. This resting-state connectivity finding fits previous task based activation studies that have shown that this area responds to manipulations of working memory load.

  7. Solid state recorders for airborne reconnaissance

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.

    2003-08-01

    Solid state recorders have become the recorder of choice for meeting airborne ruggedized requirements for reconnaissance and flight test. The cost of solid state recorders have decreased over the past few years that they are now less expense than the traditional high speed tape recorders. CALCULEX, Inc manufactures solid state recorders called MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used on many different platforms such as F/A-22, Global Hawk, F-14, F-15, F-16, U-2, RF-4, and Tornado. This paper will discuss the advantages of using solid state recorders to meet the airborne reconnaissance requirement and the ability to record instrumentation data. The CALCULEX recorder has the ability to record sensor data and flight test data in the same chassis. This is an important feature because it eliminates additional boxes on the aircraft. The major advantages to using a solid state recorder include; reliability, small size, light weight, and power. Solid state recorders also have a larger storage capacity and higher bandwidth capability than other recording devices.

  8. Analysis of Resting-State fMRI Topological Graph Theory Properties in Methamphetamine Drug Users Applying Box-Counting Fractal Dimension.

    PubMed

    Siyah Mansoory, Meysam; Oghabian, Mohammad Ali; Jafari, Amir Homayoun; Shahbabaie, Alireza

    2017-01-01

    Graph theoretical analysis of functional Magnetic Resonance Imaging (fMRI) data has provided new measures of mapping human brain in vivo. Of all methods to measure the functional connectivity between regions, Linear Correlation (LC) calculation of activity time series of the brain regions as a linear measure is considered the most ubiquitous one. The strength of the dependence obligatory for graph construction and analysis is consistently underestimated by LC, because not all the bivariate distributions, but only the marginals are Gaussian. In a number of studies, Mutual Information (MI) has been employed, as a similarity measure between each two time series of the brain regions, a pure nonlinear measure. Owing to the complex fractal organization of the brain indicating self-similarity, more information on the brain can be revealed by fMRI Fractal Dimension (FD) analysis. In the present paper, Box-Counting Fractal Dimension (BCFD) is introduced for graph theoretical analysis of fMRI data in 17 methamphetamine drug users and 18 normal controls. Then, BCFD performance was evaluated compared to those of LC and MI methods. Moreover, the global topological graph properties of the brain networks inclusive of global efficiency, clustering coefficient and characteristic path length in addict subjects were investigated too. Compared to normal subjects by using statistical tests (P<0.05), topological graph properties were postulated to be disrupted significantly during the resting-state fMRI. Based on the results, analyzing the graph topological properties (representing the brain networks) based on BCFD is a more reliable method than LC and MI.

  9. The structure, mixing angle, mass and couplings of the light scalar f0(500) and f0(980) mesons

    NASA Astrophysics Data System (ADS)

    Agaev, S. S.; Azizi, K.; Sundu, H.

    2018-06-01

    The mixing angle, mass and couplings of the light scalar mesons f0 (500) and f0 (980) are calculated in the framework of QCD two-point sum rule approach by assuming that they are tetraquarks with diquark-antidiquark structures. The mesons are treated as mixtures of the heavy | H > = ([ su ] [ s bar u bar ] + [ sd ] [ s bar d bar ]) /√{ 2 } and light | L > = [ ud ] [ u bar d bar ] scalar diquark-antidiquark components. We extract from corresponding sum rules the mixing angles φH and φL of these states and evaluate the masses and couplings of the particles f0 (500) and f0 (980).

  10. Tracking brain arousal fluctuations with fMRI

    PubMed Central

    Chang, Catie; Leopold, David A.; Schölvinck, Marieke Louise; Mandelkow, Hendrik; Picchioni, Dante; Liu, Xiao; Ye, Frank Q.; Turchi, Janita N.; Duyn, Jeff H.

    2016-01-01

    Changes in brain activity accompanying shifts in vigilance and arousal can interfere with the study of other intrinsic and task-evoked characteristics of brain function. However, the difficulty of tracking and modeling the arousal state during functional MRI (fMRI) typically precludes the assessment of arousal-dependent influences on fMRI signals. Here we combine fMRI, electrophysiology, and the monitoring of eyelid behavior to demonstrate an approach for tracking continuous variations in arousal level from fMRI data. We first characterize the spatial distribution of fMRI signal fluctuations that track a measure of behavioral arousal; taking this pattern as a template, and using the local field potential as a simultaneous and independent measure of cortical activity, we observe that the time-varying expression level of this template in fMRI data provides a close approximation of electrophysiological arousal. We discuss the potential benefit of these findings for increasing the sensitivity of fMRI as a cognitive and clinical biomarker. PMID:27051064

  11. New Agegraphic Pilgrim Dark Energy in f(T, TG) Gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Debnath, Ujjal

    2015-08-01

    In this work, we briefly discuss a novel class of modified gravity like f(T, TG) gravity. In this background, we assume the new agegraphic version of pilgrim dark energy and reconstruct f(T, TG) models for two specific values of s. We also discuss the equation of state parameter, squared speed of sound and wDE-w‧DE plane for these reconstructed f(T, TG) models. The equation of state parameter provides phantom-like behavior of the universe. The wDE-w‧DE plane also corresponds to ΛCDM limit, thawing and freezing regions for both models.

  12. Schemes for Teleportation of an Unknown Single-Qubit Quantum State by Using an Arbitrary High-Dimensional Entangled State

    NASA Astrophysics Data System (ADS)

    Zhan, You-Bang; Zhang, Qun-Yong; Wang, Yu-Wu; Ma, Peng-Cheng

    2010-01-01

    We propose a scheme to teleport an unknown single-qubit state by using a high-dimensional entangled state as the quantum channel. As a special case, a scheme for teleportation of an unknown single-qubit state via three-dimensional entangled state is investigated in detail. Also, this scheme can be directly generalized to an unknown f-dimensional state by using a d-dimensional entangled state (d > f) as the quantum channel.

  13. The Stephen F. Austin Experimental Forest

    Treesearch

    Cary C. Russell; Ronald E. Thill; David L. Kulhavy

    2002-01-01

    On December 14, 1944, the Seventy-Eighth United States Congress passed a bill that authorized the transfer of 2,560 acres in Nacogdoches County, Texas, to the research branch of the United States Forest Service (USFS). This land became the Stephen F. Austin Experimental Forest (SFAEF) on September 19. 1945. One of eighty-one federal experimental forests and ranges...

  14. Laser cooling of BH and GaF: insights from an ab initio study.

    PubMed

    Gao, Yu-feng; Gao, Tao

    2015-04-28

    The feasibility of laser cooling BH and GaF is investigated using ab initio quantum chemistry. The ground state X (1)Σ(+) and first two excited states (3)Π and (1)Π of BH and GaF are calculated using the multireference configuration interaction (MRCI) level of theory. For GaF, the spin-orbit coupling effect is also taken into account in the electronic structure calculations at the MRCI level. Calculated spectroscopic constants for BH and GaF show good agreement with available theoretical and experimental results. The highly diagonal Franck-Condon factors (BH: f00 = 0.9992, f11 = 0.9908, f22 = 0.9235; GaF: f00 = 0.997, f11 = 0.989, f22 = 0.958) for the (1)Π (v' = 0-2) → X (1)Σ(+) (v = 0-2) transitions in BH and GaF are determined, which are found to be in good agreement with the theoretical and experimental data. Radiative lifetime calculations of the (1)Π (v' = 0-2) state (BH: 131, 151, and 187 ns; GaF: 2.26, 2.36, and 2.48 ns) are found to be short enough for rapid laser cooling. The proposed laser cooling schemes that drive the (1)Π (v' = 0) → X (1)Σ(+) (v = 0) transition use just one laser wavelength λ00 (BH: 436 nm, GaF: 209 nm). Though the cooling wavelength of GaF is deep in the UVC, a frequency quadrupled Ti:sapphire laser (189-235 nm) could be capable of generating useful quantities of light at this wavelength. The present results indicate that BH and GaF are two good choices of molecules for laser cooling.

  15. Second generation measurement of the electric dipole moment of the electron using trapped ThF+ ions

    NASA Astrophysics Data System (ADS)

    Ng, Kia Boon; Zhou, Yan; Gresh, Daniel; Cairncross, William; Grau, Matthew; Ni, Yiqi; Ye, Jun; Cornell, Eric

    2016-05-01

    ThF+ has been chosen as the candidate for a second generation measurement of the electric dipole moment of the electron (eEDM). Compared to the current HfF+ eEDM experiment, ThF+ has several advantages: (i) the eEDM-sensitive state (3Δ1) is the ground state, which facilitates a long coherence time; (ii) its effective electric field (38 GV/cm) is 50% larger than that of HfF+, which promises a direct increase of the eEDM sensitivity; and (iii) the ionization energy of neutral ThF is lower than its dissociation energy, which introduces greater flexibility in rotational state-selective photoionization via core-nonpenetrating Rydberg states. Here, we present progress of our experimental setup, preliminary spectroscopic data of multi-photon ionization, and discussions of new features in ion trapping, state preparation and population readout.

  16. Resting-state fMRI correlations: From link-wise unreliability to whole brain stability.

    PubMed

    Pannunzi, Mario; Hindriks, Rikkert; Bettinardi, Ruggero G; Wenger, Elisabeth; Lisofsky, Nina; Martensson, Johan; Butler, Oisin; Filevich, Elisa; Becker, Maxi; Lochstet, Martyna; Kühn, Simone; Deco, Gustavo

    2017-08-15

    The functional architecture of spontaneous BOLD fluctuations has been characterized in detail by numerous studies, demonstrating its potential relevance as a biomarker. However, the systematic investigation of its consistency is still in its infancy. Here, we analyze within- and between-subject variability and test-retest reliability of resting-state functional connectivity (FC) in a unique data set comprising multiple fMRI scans (42) from 5 subjects, and 50 single scans from 50 subjects. We adopt a statistical framework that enables us to identify different sources of variability in FC. We show that the low reliability of single links can be significantly improved by using multiple scans per subject. Moreover, in contrast to earlier studies, we show that spatial heterogeneity in FC reliability is not significant. Finally, we demonstrate that despite the low reliability of individual links, the information carried by the whole-brain FC matrix is robust and can be used as a functional fingerprint to identify individual subjects from the population. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Methods to detect, characterize, and remove motion artifact in resting state fMRI

    PubMed Central

    Power, Jonathan D; Mitra, Anish; Laumann, Timothy O; Snyder, Abraham Z; Schlaggar, Bradley L; Petersen, Steven E

    2013-01-01

    Head motion systematically alters correlations in resting state functional connectivity fMRI (RSFC). In this report we examine impact of motion on signal intensity and RSFC correlations. We find that motion-induced signal changes (1) are often complex and variable waveforms, (2) are often shared across nearly all brain voxels, and (3) often persist more than 10 seconds after motion ceases. These signal changes, both during and after motion, increase observed RSFC correlations in a distance-dependent manner. Motion-related signal changes are not removed by a variety of motion-based regressors, but are effectively reduced by global signal regression. We link several measures of data quality to motion, changes in signal intensity, and changes in RSFC correlations. We demonstrate that improvements in data quality measures during processing may represent cosmetic improvements rather than true correction of the data. We demonstrate a within-subject, censoring-based artifact removal strategy based on volume censoring that reduces group differences due to motion to chance levels. We note conditions under which group-level regressions do and do not correct motion-related effects. PMID:23994314

  18. State-Space Analysis of Granger-Geweke Causality Measures with Application to fMRI.

    PubMed

    Solo, Victor

    2016-05-01

    The recent interest in the dynamics of networks and the advent, across a range of applications, of measuring modalities that operate on different temporal scales have put the spotlight on some significant gaps in the theory of multivariate time series. Fundamental to the description of network dynamics is the direction of interaction between nodes, accompanied by a measure of the strength of such interactions. Granger causality and its associated frequency domain strength measures (GEMs) (due to Geweke) provide a framework for the formulation and analysis of these issues. In pursuing this setup, three significant unresolved issues emerge. First, computing GEMs involves computing submodels of vector time series models, for which reliable methods do not exist. Second, the impact of filtering on GEMs has never been definitively established. Third, the impact of downsampling on GEMs has never been established. In this work, using state-space methods, we resolve all these issues and illustrate the results with some simulations. Our analysis is motivated by some problems in (fMRI) brain imaging, to which we apply it, but it is of general applicability.

  19. State-Space Analysis of Granger-Geweke Causality Measures with Application to fMRI

    PubMed Central

    Solo, Victor

    2017-01-01

    The recent interest in the dynamics of networks and the advent, across a range of applications, of measuring modalities that operate on different temporal scales have put the spotlight on some significant gaps in the theory of multivariate time series. Fundamental to the description of network dynamics is the direction of interaction between nodes, accompanied by a measure of the strength of such interactions. Granger causality and its associated frequency domain strength measures (GEMs) (due to Geweke) provide a framework for the formulation and analysis of these issues. In pursuing this setup, three significant unresolved issues emerge. First, computing GEMs involves computing submodels of vector time series models, for which reliable methods do not exist. Second, the impact of filtering on GEMs has never been definitively established. Third, the impact of downsampling on GEMs has never been established. In this work, using state-space methods, we resolve all these issues and illustrate the results with some simulations. Our analysis is motivated by some problems in (fMRI) brain imaging, to which we apply it, but it is of general applicability. PMID:26942749

  20. Cosmological applications of F (T ,TG) gravity

    NASA Astrophysics Data System (ADS)

    Kofinas, Georgios; Saridakis, Emmanuel N.

    2014-10-01

    We investigate the cosmological applications of F (T ,TG) gravity, which is a novel modified gravitational theory based on the torsion invariant T and the teleparallel equivalent of the Gauss-Bonnet term TG. F (T ,TG) gravity differs from both F (T ) theories as well as from F (R ,G ) class of curvature modified gravity, and thus its corresponding cosmology proves to be very interesting. In particular, it provides a unified description of the cosmological history from early-times inflation to late-times self-acceleration, without the inclusion of a cosmological constant. Moreover, the dark energy equation-of-state parameter can be quintessence or phantomlike, or experience the phantom-divide crossing, depending on the parameters of the model.

  1. Nonleptonic decays of B →(f1(1285 ),f1(1420 ))V in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Xiao, Zhen-Jun; Zou, Zhi-Tian

    2016-12-01

    We investigate the branching ratios, the polarization fractions, the direct C P -violating asymmetries, and the relative phases in 20 nonleptonic decay modes of B →f1V within the framework of the perturbative QCD approach at leading order with f1 including two 3P1-axial-vector states f1(1285 ) and f1(1420 ) . Here, B denotes B+, B0, and Bs0 mesons and V stands for the lightest vector mesons ρ , K*, ω , and ϕ , respectively. The Bs0→f1V decays are studied theoretically for the first time in the literature. Together with the angle ϕf1≈(24-2.7+3.2)∘ extracted from the measurement through Bd /s→J /ψ f1(1285 ) modes for the f1(1285 )-f1(1420 ) mixing system, it is of great interest to find phenomenologically some modes such as the tree-dominated B+→f1ρ+ and the penguin-dominated B+,0→f1K*+,0 , Bs0→f1ϕ with large branching ratios around O (10-6) or even O (10-5), which are expected to be measurable at the LHCb and/or the Belle-II experiments in the near future. The good agreement (sharp contrast) of branching ratios and decay pattern for B+→f1ρ+ , B+,0→f1(1285 )K*+,0[B+,0→f1(1420 )K*+,0] decays between QCD factorization and perturbative QCD factorization predictions can help us to distinguish these two rather different factorization approaches via precision measurements, which would also be helpful for us in exploring the annihilation decay mechanism through its important roles for the considered B →f1V decays.

  2. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture

    PubMed Central

    Meszlényi, Regina J.; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network. PMID:29089883

  3. Resting State fMRI Functional Connectivity-Based Classification Using a Convolutional Neural Network Architecture.

    PubMed

    Meszlényi, Regina J; Buza, Krisztian; Vidnyánszky, Zoltán

    2017-01-01

    Machine learning techniques have become increasingly popular in the field of resting state fMRI (functional magnetic resonance imaging) network based classification. However, the application of convolutional networks has been proposed only very recently and has remained largely unexplored. In this paper we describe a convolutional neural network architecture for functional connectome classification called connectome-convolutional neural network (CCNN). Our results on simulated datasets and a publicly available dataset for amnestic mild cognitive impairment classification demonstrate that our CCNN model can efficiently distinguish between subject groups. We also show that the connectome-convolutional network is capable to combine information from diverse functional connectivity metrics and that models using a combination of different connectivity descriptors are able to outperform classifiers using only one metric. From this flexibility follows that our proposed CCNN model can be easily adapted to a wide range of connectome based classification or regression tasks, by varying which connectivity descriptor combinations are used to train the network.

  4. Modified QCD ghost f(T,TG) gravity

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Rani, Shamaila; Chattopadhyay, Surajit

    2015-12-01

    In this paper, we explore the reconstruction scenario of modified QCD ghost dark energy model and newly proposed f(T,TG) gravity in flat FRW universe. We consider the well-known assumption of scale factor, i.e., power law form. We construct the f(T,TG) model and discuss its cosmological consequences through various cosmological parameters such as equation of state parameter, squared speed of sound and ω_{DE}-ω '_{DE}. The equation of state parameter provides the quintom-like behavior of the universe. The squared speed of sound exhibits the stability of model in the later time. Also, ω_{DE}- ω '_{DE} corresponds to freezing as well as thawing regions. It is also interesting to remark here that the results of equation of state parameter and w_{DE}-w'_{DE} coincide with the observational data.

  5. Thermodynamic assessment of the LiF-NaF-BeF2-ThF4-UF4 system

    NASA Astrophysics Data System (ADS)

    Capelli, E.; Beneš, O.; Konings, R. J. M.

    2014-06-01

    The present study describes the full thermodynamic assessment of the LiF-NaF-BeF2-ThF4-UF4 system which is one of the key systems considered for a molten salt reactor fuel. The work is an extension of the previously assessed LiF-NaF-ThF4-UF4 system with addition of BeF2 which is characterized by very low neutron capture cross section and a relatively low melting point. To extend the database the binary BeF2-ThF4 and BeF2-UF4 systems were optimized and the novel data were used for the thermodynamic assessment of BeF2 containing ternary systems for which experimental data exist in the literature. The obtained database is used to optimize the molten salt reactor fuel composition and to assess its properties with the emphasis on the melting behaviour.

  6. Laser Spectroscopy and AB Initio Calculations on the TaF Molecule

    NASA Astrophysics Data System (ADS)

    Ng, Kiu Fung; Zou, Wenli; Liu, Wenjian; Cheung, Allan S. C.

    2016-06-01

    Electronic transition spectrum of the tantalum monoflouride (TaF) molecule in the spectral region between 448 and 520 nm has been studied using the technique of laser-ablation/reaction free jet expansion and laser induced fluorescence spectroscopy. TaF molecule was produced by reacting laser-ablated tantalum atoms with sulfur hexafluoride gas seeded in argon. Sixteen vibrational bands with resolved rotational structure have been recorded and analyzed, which were organized into six electronic transition systems and the ground state has been identified to be the X3Σ-(0+) state with bond length, ro, and equilibrium vibrational frequency, ωe, determined to be 1.8209 Å and 700.1 wn respectively. In addition, four vibrational bands belong to another transition system involving lower state with Ω = 2 component has also been analyzed. All observed transitions are with ΔΩ = 0. Least-squares fit of the measured line positions yielded molecular constants for the electronic states involved. The Λ-S and Ω states of TaF were calculated at the state-averaged complete active space self-consistent field (SA-CASSCF) and the subsequent internally contracted multi-reference configuration interaction with singles and doubles and Davidson's cluster correction (MRCISD+Q) levels of theory with the active space of 4 electrons in 6 orbitals, that is, the molecular orbitals corresponding to Ta 5d6s are active. The spin-orbit coupling (SOC) is calculated by the state-interaction approach at the SA-CASSCF level via the relativistic effective core potentials (RECPs) spin-orbit operator, where the diagonal elements of the spin-orbit matrix are replaced by the above MRCISD+Q energies. The spectroscopic properties of the ground and many low-lying electronic states of the TaF molecule will be reported. With respect to the observed electronic states in this work, the calculated results are in good agreement with our experimental determinations. This work represents the first experimental

  7. Signature of chaos in the 4 f -core-excited states for highly-charged tungsten ions

    NASA Astrophysics Data System (ADS)

    Safronova, Ulyana; Safronova, Alla

    2014-05-01

    We evaluate radiative and autoionizing transition rates in highly charged W ions in search for the signature of chaos. In particularly, previously published results for Ag-like W27+, Tm-like W5+, and Yb-like W4+ ions as well as newly obtained for I-like W21+, Xe-like W20+, Cs-like W19+, and La-like W17+ ions (with ground configuration [Kr] 4d10 4fk with k = 7, 8, 9, and 11, respectively) are considered that were calculated using the multiconfiguration relativistic Hebrew University Lawrence Livermore Atomic Code (HULLAC code) and the Hartree-Fock-Relativistic method (COWAN code). The main emphasis was on verification of Gaussian statistics of rates as a function of transition energy. There was no evidence of such statistics for above mentioned previously published results as well as for the transitions between the excited and autoionizing states for newly calculated results. However, we did find the Gaussian profile for the transitions between excited states such as the [Kr] 4d10 4fk - [Kr] 4d10 4f k - 1 5 d transitions , for newly calculated W ions. This work is supported in part by DOE under NNSA Cooperative Agreement DE-NA0001984.

  8. Neglecting Democracy in Education Policy: A-F School Report Card Accountability Systems

    ERIC Educational Resources Information Center

    Murray, Kevin; Howe, Kenneth R.

    2017-01-01

    Sixteen states have adopted school report card accountability systems that assign A-F letter grades to schools. Other states are now engaged in deliberation about whether they, too, should adopt such systems. This paper examines A-F accountability systems with respect to three kinds of validity. First, it examines whether or not these…

  9. Experimentally induced thyrotoxicosis leads to increased connectivity in temporal lobe structures: a resting state fMRI study.

    PubMed

    Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F

    2015-06-01

    Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Optical properties of Eu2+ ions in BaY2F8 for completely-solid-state cw UV laser emission

    NASA Astrophysics Data System (ADS)

    Toncelli, Alessandra; Moglia, Francesca; Tonelli, Mauro

    2010-11-01

    Eu-doped BaYF single crystals have been grown with two different Eu ion concentrations: 0.5%, 1% Eu doping levels. It was found that part of the Eu ions added in the melt were reduced during the growth process and the ratio between the Eu and Eu content in the crystal depends on the duration of the growth process. A complete room-temperature polarized spectroscopic characterization of the divalent Eu ions in this host crystal is presented with particular insights in the laser potentialities of the compound in the UV region. Polarized absorption, emission and excitation spectra are presented together with the lifetime measurement of the emitting level. It was found that due to the weak nephelauxetic effect the 4f7→4f65d1 band is located at higher energy than the 4f→4f(8S→6P) transition. As a result, when pumped in the 200- 300 nm range, this crystal shows an interesting emission that extends from 351 to 366 nm and has a decay-time as long as τ=(1.5±0.1) ms. This opens the possibility to obtain completely-solid-state laser emission in the UV region with potentialities for cw or mode-locked emission.

  11. Optical properties of Ni2+ and radiation defects in MgF sub 2 and MnF sub 2

    NASA Astrophysics Data System (ADS)

    Feuerhelm, L. N.

    1980-03-01

    The radiation defects in pure MgF2 were made by observating the polarized absorption, luminescence, and excitation spectra in electron-irradiated MgF2. Additionally, studies of the absorption, emission, excitation, and temperature dependence of the lifetimes of transitions in nickel-doped MgF2 and MnF2 were accomplished, as well as the observation of radiation effects on these crystals. The absorption band at about 320 nm in irradiated MgF2 is identified to be due to the F2(D2b) center, and to have an emission at about 450 nm. Analysis of the temperature dependence of this band indicates a dominant phonon mode of 255 cm(-1) for the excited state. The F2(C1) center is identified with an absorption of about 360 nm and an emission of 410 nm. An absorption peak at 300 nm, for which no corresponding emission was found, is tentatively identified to be the F3-center, and to have a dominant phonon mode of 255 cm(-1). The temperature dependence of the lifetimes of transitions in nickel-doped MgF2 is analyzed by the quantum mechanical single configuration coordinate model of Struck and Fonger, and a complete configuration coordinate model is made for this crystal. Similar studies are made in MnF2:Ni.

  12. F-111B in Ames 40x80 Foot Wind Tunnel.

    NASA Image and Video Library

    1969-02-06

    Installation Photos, 3/4 front view from below. F-111B in Ames 40x80 Foot Wind Tunnel. The General Dynamics/Grumman F-111B was a long-range carrier-based interceptor aircraft that was planned to be a follow-on to the F-4 Phantom II. The F-111B was developed in the 1960s by General Dynamics in conjunction with Grumman for the United States Navy (USN) as part of the joint Tactical Fighter Experimental (TFX) with the United States Air Force (USAF) to produce a common fighter for the services that could perform a variety of missions. It incorporated innovations such as variable-geometry wings, afterburning turbofan engines, and a long-range radar and missile weapons system.

  13. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study.

    PubMed

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-09-12

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention.

  14. Identifying the Neural Substrates of Procrastination: a Resting-State fMRI Study

    PubMed Central

    Zhang, Wenwen; Wang, Xiangpeng; Feng, Tingyong

    2016-01-01

    Procrastination is a prevalent problematic behavior that brings serious consequences to individuals who suffer from it. Although this phenomenon has received increasing attention from researchers, the underpinning neural substrates of it is poorly studied. To examine the neural bases subserving procrastination, the present study employed resting-state fMRI. The main results were as follows: (1) the behavioral procrastination was positively correlated with the regional activity of the ventromedial prefrontal cortex (vmPFC) and the parahippocampal cortex (PHC), while negatively correlated with that of the anterior prefrontal cortex (aPFC). (2) The aPFC-seed connectivity with the anterior medial prefrontal cortex and the posterior cingulate cortex was positively associated with procrastination. (3) The connectivity between vmPFC and several other regions, such as the dorsomedial prefrontal cortex, the bilateral inferior prefrontal cortex showed a negative association with procrastination. These results suggested that procrastination could be attributed to, on the one hand, hyper-activity of the default mode network (DMN) that overrides the prefrontal control signal; while on the other hand, the failure of top-down control exerted by the aPFC on the DMN. Therefore, the present study unravels the biomarkers of procrastination and provides treatment targets for procrastination prevention. PMID:27616687

  15. Neurophenomenology of an Altered State of Consciousness: An fMRI Case Study.

    PubMed

    Modestino, Edward J

    2016-01-01

    A research participant came to our lab with self-proclaimed, ecstatic, Kundalini meditative experiences. Using neurophenomenology and functional magnetic resonance imaging (fMRI), we were able to identify brain activation in the left prefrontal cortex [primarily in left Brodmann׳s areas (BAs) 46 and 10, but also extending into BAs 11, 47, and 45] associated with this experience. The Phenomenology of Consciousness Inventory provided evidence that this was a perceived altered state of consciousness. Additionally, the Physio-Kundalini Syndrome Index strongly suggested that what he was experiencing was indeed Kundalini. The feelings of joy, happiness and the left prefrontal brain region found in this study are consistent with many published neuroimaging and electrophysiological studies of meditation. This case study suggests that using first-person subjective experience within a phenomenological reduction process can be combined with neuroimaging to divulge objective brain regions associated with such experiences. Furthermore, this provides evidence that at least in this participant, the Kundalini experience is associated with brain activation in the left prefrontal cortex. Future research is needed to confirm these results in a large group study, perhaps contrasting brain activation of those who experience spontaneously emerging Kundalini with trained Kundalini practitioners. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Resting state fMRI: A review on methods in resting state connectivity analysis and resting state networks.

    PubMed

    Smitha, K A; Akhil Raja, K; Arun, K M; Rajesh, P G; Thomas, Bejoy; Kapilamoorthy, T R; Kesavadas, Chandrasekharan

    2017-08-01

    The inquisitiveness about what happens in the brain has been there since the beginning of humankind. Functional magnetic resonance imaging is a prominent tool which helps in the non-invasive examination, localisation as well as lateralisation of brain functions such as language, memory, etc. In recent years, there is an apparent shift in the focus of neuroscience research to studies dealing with a brain at 'resting state'. Here the spotlight is on the intrinsic activity within the brain, in the absence of any sensory or cognitive stimulus. The analyses of functional brain connectivity in the state of rest have revealed different resting state networks, which depict specific functions and varied spatial topology. However, different statistical methods have been introduced to study resting state functional magnetic resonance imaging connectivity, yet producing consistent results. In this article, we introduce the concept of resting state functional magnetic resonance imaging in detail, then discuss three most widely used methods for analysis, describe a few of the resting state networks featuring the brain regions, associated cognitive functions and clinical applications of resting state functional magnetic resonance imaging. This review aims to highlight the utility and importance of studying resting state functional magnetic resonance imaging connectivity, underlining its complementary nature to the task-based functional magnetic resonance imaging.

  17. Structural basis for immunization with postfusion respiratory syncytial virus fusion F glycoprotein (RSV F) to elicit high neutralizing antibody titers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, Kurt A.; Settembre, Ethan C.; Shaw, Christine A.

    2012-02-07

    Respiratory syncytial virus (RSV), the main cause of infant bronchiolitis, remains a major unmet vaccine need despite more than 40 years of vaccine research. Vaccine candidates based on a chief RSV neutralization antigen, the fusion (F) glycoprotein, have foundered due to problems with stability, purity, reproducibility, and potency. Crystal structures of related parainfluenza F glycoproteins have revealed a large conformational change between the prefusion and postfusion states, suggesting that postfusion F antigens might not efficiently elicit neutralizing antibodies. We have generated a homogeneous, stable, and reproducible postfusion RSV F immunogen that elicits high titers of neutralizing antibodies in immunized animals.more » The 3.2-{angstrom} X-ray crystal structure of this substantially complete RSV F reveals important differences from homology-based structural models. Specifically, the RSV F crystal structure demonstrates the exposure of key neutralizing antibody binding sites on the surface of the postfusion RSV F trimer. This unanticipated structural feature explains the engineered RSV F antigen's efficiency as an immunogen. This work illustrates how structural-based antigen design can guide the rational optimization of candidate vaccine antigens.« less

  18. Inter- and intraconfigurational luminescence of Er3+ ions in BaY2F8 under VUV excitation

    NASA Astrophysics Data System (ADS)

    Kirm, M.; Lichtenberg, H.; Makhov, V. N.; Negodin, E.; Ouvarova, T. V.; Suljoti, E.; True, M.; Zimmerer, G.

    Using energy- and time-resolved spectroscopy the luminescence properties of Er3+ doped BaY2F8 crystals were investigated at 10 K under VUV synchrotron radiation excitation. Radiative intraconfigurational f - f and interconfigurational d - f transitions in Er3+ ions were observed under f - d excitation. Whereas the onset of S-4(3/2) population via f - d excitation starts at 59 900 cm(-1) , efficient excitation of emissions arising from the P-2(3/2) state begins only above 67 000 cm(-1) in VUV region. Such behaviour can be explained by a cross-relaxation process of the type (F-2(2)(5/2) , I-4(15/2))-->(P-2(3/2) , P-2(3/2)) taking place within f -states of Er3+ ions finally populating the emitting P-2(3/2) state.

  19. On the application of CaF2:Eu and SrF2:Eu phosphors in LED based phototherapy lamp

    NASA Astrophysics Data System (ADS)

    Belsare, P. D.; Moharil, S. V.; Joshi, C. P.; Omanwar, S. K.

    2013-06-01

    In the last few years the interest of scientific community has been increased towards solid state lighting based on LEDs because of their superior advantages over the conventional fluorescent lamps. As the GaN based LEDs are easily available efforts of the researchers are now on making the new phosphors which are excitable in the near UV region (360-400nm) for solid state lighting. This paper reports the photoluminescence characteristics of CaF2:Eu and SrF2:Eu phosphor prepared by wet chemical method. The violet emission of these phosphors with near UV excitation can be useful in making a phototherapy lamp based on LEDs for treating various skin diseases like acne vulgaris and hyperbilirubinemia.

  20. Changes in Gray Matter Density, Regional Homogeneity, and Functional Connectivity in Methamphetamine-Associated Psychosis: A Resting-State Functional Magnetic Resonance Imaging (fMRI) Study.

    PubMed

    Zhang, Shengyu; Hu, Qiang; Tang, Tao; Liu, Chao; Li, Chengchong; Zang, Yin-Yin; Cai, Wei-Xiong

    2018-06-13

    BACKGROUND Using regional homogeneity (ReHo) blood oxygen level-dependent functional MR (BOLD-fMRI), we investigated the structural and functional alterations of brain regions among patients with methamphetamine-associated psychosis (MAP). MATERIAL AND METHODS This retrospective study included 17 MAP patients, 16 schizophrenia (SCZ) patients, and 18 healthy controls. Informed consent was obtained from all patients before the clinical assessment, the severity of clinical symptoms was evaluated prior to the fMRI scanning, and then images were acquired and preprocessed after each participant received 6-min fRMI scanning. The participants all underwent BOLD-fMRI scanning. Voxel-based morphometry was used to measure gray matter density (GMD). Resting-state fMRI (rs-fMRI) was conducted to analyze functional MR, ReHo, and functional connectivity (FC). RESULTS GMD analysis results suggest that MAP patients, SCZ patients, and healthy volunteers show different GMDs within different brain regions. Similarly, the ReHo analysis results suggest that MAP patients, SCZ patients, and healthy volunteers have different GMDs within different brain regions. Negative correlations were found between ReHo- and the PANSS-positive scores within the left orbital interior frontal gyrus (L-orb-IFG) of MAP patients. ReHo- and PANSS-negative scores of R-SFG were negatively correlated among SCZ patients. The abnormal FC of R-MFG showed a negative correlation with the PANSS score among MAP patients. CONCLUSIONS The abnormalities in brain structure and FC were associated with the development of MAP.

  1. Assessment of temporal state-dependent interactions between auditory fMRI responses to desired and undesired acoustic sources.

    PubMed

    Olulade, O; Hu, S; Gonzalez-Castillo, J; Tamer, G G; Luh, W-M; Ulmer, J L; Talavage, T M

    2011-07-01

    A confounding factor in auditory functional magnetic resonance imaging (fMRI) experiments is the presence of the acoustic noise inherently associated with the echo planar imaging acquisition technique. Previous studies have demonstrated that this noise can induce unwanted neuronal responses that can mask stimulus-induced responses. Similarly, activation accumulated over multiple stimuli has been demonstrated to elevate the baseline, thus reducing the dynamic range available for subsequent responses. To best evaluate responses to auditory stimuli, it is necessary to account for the presence of all recent acoustic stimulation, beginning with an understanding of the attenuating effects brought about by interaction between and among induced unwanted neuronal responses, and responses to desired auditory stimuli. This study focuses on the characterization of the duration of this temporal memory and qualitative assessment of the associated response attenuation. Two experimental parameters--inter-stimulus interval (ISI) and repetition time (TR)--were varied during an fMRI experiment in which participants were asked to passively attend to an auditory stimulus. Results present evidence of a state-dependent interaction between induced responses. As expected, attenuating effects of these interactions become less significant as TR and ISI increase and in contrast to previous work, persist up to 18s after a stimulus presentation. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Spectroscopic Constants of the Known Electronic States of Lead Monofluoride

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McRaven, C.P.; Sivakumar, P.; Shafer-Ray, N.E.

    2010-08-01

    Based on measurements made by mass-resolved 1 + 1{prime} + 1{double_prime} resonance-enhanced multiphoton ionization spectroscopy, we have determined new molecular constants describing the rotational and fine structure levels of the B, D, E, and F states of the most abundant isotopic variant {sup 208}Pb{sup 19}F, and we summarize the spectroscopic constants for all the know electronic states of the radical. Many spectroscopic constants for the isotopologues {sup 206}Pb{sup 19}F and {sup 207}Pb{sup 19}F have also been determined. The symmetry of the D-state is found to be {sup 2}{pi}{sub 1/2}, and the F-state is found to be an {Omega} = 3/2more » state.« less

  3. Role of Acentric Displacements on the Crystal Structure and Second-Harmonic Generating Properties of RbPbCO3F and CsPbCO3F

    PubMed Central

    2015-01-01

    Two lead fluorocarbonates, RbPbCO3F and CsPbCO3F, were synthesized and characterized. The materials were synthesized through solvothermal and conventional solid-state techniques. RbPbCO3F and CsPbCO3F were structurally characterized by single-crystal X-ray diffraction and exhibit three-dimensional (3D) crystal structures consisting of corner-shared PbO6F2 polyhedra. For RbPbCO3F, infrared and ultraviolet–visible spectroscopy and thermogravimetric and differential thermal analysis measurements were performed. RbPbCO3F is a new noncentrosymmetric material and crystallizes in the achiral and nonpolar space group P6̅m2 (crystal class 6̅m2). Powder second-harmonic generation (SHG) measurements on RbPbCO3F and CsPbCO3F using 1064 nm radiation revealed an SHG efficiency of approximately 250 and 300 × α-SiO2, respectively. Charge constants d33 of approximately 72 and 94 pm/V were obtained for RbPbCO3F and CsPbCO3F, respectively, through converse piezoelectric measurements. Electronic structure calculations indicate that the nonlinear optical response originates from the distorted PbO6F2 polyhedra, because of the even–odd parity mixing of the O 2p states with the nearly spherically symmetric 6s electrons of Pb2+. The degree of inversion symmetry breaking is quantified using a mode-polarization vector analysis and is correlated with cation size mismatch, from which it is possible to deduce the acentric properties of 3D alkali-metal fluorocarbonates. PMID:24867361

  4. Zeeman interaction in the Δ31 state of HfF+ to search for the electron electric dipole moment

    NASA Astrophysics Data System (ADS)

    Petrov, A. N.; Skripnikov, L. V.; Titov, A. V.

    2017-08-01

    A theoretical study devoted to suppression of magnetic systematic effects in HfF+ cation for an experiment to search for the electron electric dipole moment is reported. The g factors for J =1 , F =3 /2 , | MF|=3 /2 hyperfine levels of the Δ31 state are calculated as functions of the external electric field. The minimal value for the difference between the g factors of Ω -doublet levels, Δ g =3 ×10-6 , is attained at the electric field 7 V/cm. The body-fixed g factor, G∥, was obtained both within the ab initio electronic structure calculations and with our fit of the experimental data [H. Loh, K. C. Cossel, M. C. Grau, K.-K. Ni, E. R. Meyer, J. L. Bohn, J. Ye, and E. A. Cornell, Science 342, 1220 (2013), 10.1126/science.1243683]. For the electronic structure calculations we used a combined scheme to perform correlation calculations of HfF+, which includes both the direct four-component all-electron and generalized relativistic effective core potential approaches. The electron correlation effects were treated using the coupled cluster methods. The calculated value G∥=0.0115 agrees very well with the G∥=0.0118 obtained with our fitting procedure. The calculated ab initio value D∥=-1.53 a.u. for the molecule-frame dipole moment (with the origin in the center of mass) is in agreement with the experimental datum D∥=-1.54 (1 ) a.u. [H. Loh, Ph.D. thesis, Massachusetts Institute of Technology, 2006.].

  5. Development of new antiatherosclerotic and antithrombotic drugs utilizing F11 receptor (F11R/JAM-A) peptides.

    PubMed

    Babinska, A; Clement, C C; Swiatkowska, M; Szymanski, J; Shon, A; Ehrlich, Y H; Kornecki, E; Salifu, M O

    2014-07-01

    Peptides with enhanced resistance to proteolysis, based on the amino acid sequence of the F11 receptor molecule (F11R, aka JAM-A/Junctional adhesion molecule-A), were designed, prepared, and examined as potential candidates for the development of anti-atherosclerotic and anti-thrombotic therapeutic drugs. A sequence at the N-terminal of F11R together with another sequence located in the first Ig-loop of this protein, were identified to form a steric active-site operating in the F11R-dependent adhesion between cells that express F11R molecules on their external surface. In silico modeling of the complex between two polypeptide chains with the sequences positioned in the active-site was used to generate peptide-candidates designed to inhibit homophilic interactions between surface-located F11R molecules. The two lead F11R peptides were modified with D-Arg and D-Lys at selective sites, for attaining higher stability to proteolysis in vivo. Using molecular docking experiments we tested different conformational states and the putative binding affinity between two selected D-Arg and D-Lys-modified F11R peptides and the proposed binding pocket. The inhibitory effects of the F11R peptide 2HN-(dK)-SVT-(dR)-EDTGTYTC-CONH2 on antibody-induced platelet aggregation and on the adhesion of platelets to cytokine-inflammed endothelial cells are reported in detail, and the results point out the significant potential utilization of F11R peptides for the prevention and treatment of atherosclerotic plaques and associated thrombotic events. © 2014 Wiley Periodicals, Inc.

  6. Quantum 1/F Noise in Solid State Double Devices, in Particular Hg(1-x) CdxTe Diodes.

    DTIC Science & Technology

    1986-05-22

    1 / f noise , diffusion noise , recombination noise , Hooge formula, Hooge parameter, coherent and...The data will be discussed and interpreted in subsequent sections. f 1 . The Hooge equation and quantum 1 / f noise (A. van der Ziel) According to Hooge [ 1 ...the relative current 1 / f noise of a semiconductor resistor may be written as SI( f ) uH 12 N where uH is the Hooge

  7. Clustering of galaxies with f(R) gravity

    NASA Astrophysics Data System (ADS)

    Capozziello, Salvatore; Faizal, Mir; Hameeda, Mir; Pourhassan, Behnam; Salzano, Vincenzo; Upadhyay, Sudhaker

    2018-02-01

    Based on thermodynamics, we discuss the galactic clustering of expanding Universe by assuming the gravitational interaction through the modified Newton's potential given by f(R) gravity. We compute the corrected N-particle partition function analytically. The corrected partition function leads to more exact equations of state of the system. By assuming that the system follows quasi-equilibrium, we derive the exact distribution function that exhibits the f(R) correction. Moreover, we evaluate the critical temperature and discuss the stability of the system. We observe the effects of correction of f(R) gravity on the power-law behaviour of particle-particle correlation function also. In order to check the feasibility of an f(R) gravity approach to the clustering of galaxies, we compare our results with an observational galaxy cluster catalogue.

  8. Two novel nonlinear optical carbonates in the deep-ultraviolet region: KBeCO3F and RbAlCO3F2

    PubMed Central

    Kang, Lei; Lin, Zheshuai; Qin, Jingui; Chen, Chuangtian

    2013-01-01

    With the rapid developments of the all-solid-state deep-ultraviolet (deep-UV) lasers, the good nonlinear optical (NLO) crystal applied in this spectral region is currently lacking. Here, we design two novel NLO carbonates KBeCO3F and RbAlCO3F2 from the first-principles theory implemented in the molecular engineering expert system especially for NLO crystals. Both structurally stable crystals possess very large energy band gaps and optical anisotropy, so they would become the very promising deep-UV NLO crystals alternative to KBBF. Recent experimental results on MNCO3F (M = K, Rb, Cs; N = Ca, Sr, Ba) not only confirm our calculations, but also suggest that the synthesis of the KBeCO3F and RbAlCO3F2 crystals is feasible. PMID:23455618

  9. Low-frequency (1/f) noise in nanocrystal field-effect transistors.

    PubMed

    Lai, Yuming; Li, Haipeng; Kim, David K; Diroll, Benjamin T; Murray, Christopher B; Kagan, Cherie R

    2014-09-23

    We investigate the origins and magnitude of low-frequency noise in high-mobility nanocrystal field-effect transistors and show the noise is of 1/f-type. Sub-band gap states, in particular, those introduced by nanocrystal surfaces, have a significant influence on the 1/f noise. By engineering the device geometry and passivating nanocrystal surfaces, we show that in the linear and saturation regimes the 1/f noise obeys Hooge's model of mobility fluctuations, consistent with transport of a high density of accumulated carriers in extended electronic states of the NC thin films. In the subthreshold regime, the Fermi energy moves deeper into the mobility gap and sub-band gap trap states give rise to a transition to noise dominated by carrier number fluctuations as described in McWhorter's model. CdSe nanocrystal field-effect transistors have a Hooge parameter of 3 × 10(-2), comparable to other solution-deposited, thin-film devices, promising high-performance, low-cost, low-noise integrated circuitry.

  10. Role of Spontaneous Brain Activity in Explicit and Implicit Aspects of Cognitive Flexibility under Socially Conflicting Situations: A Resting-state fMRI Study using Fractional Amplitude of Low-frequency Fluctuations.

    PubMed

    Fujino, Junya; Tei, Shisei; Jankowski, Kathryn F; Kawada, Ryosaku; Murai, Toshiya; Takahashi, Hidehiko

    2017-12-26

    We are constantly exposed to socially conflicting situations in everyday life, and cognitive flexibility is essential for adaptively coping with such difficulties. Flexible goal choice and pursuit are not exclusively conscious, and therefore cognitive flexibility involves both explicit and implicit forms of processing. However, it is unclear how individual differences in explicit and implicit aspects of flexibility are associated with neural activity in a resting state. Here, we measured intrinsic fractional amplitude of low-frequency fluctuations (fALFF) by resting-state functional magnetic resonance imaging (RS-fMRI) as an indicator of regional brain spontaneous activity, together with explicit and implicit aspects of cognitive flexibility using the Cognitive Flexibility Scale (CFS) and Implicit Association Test (IAT). Consistent with the dual processing theory, there was a strong association between explicit aspects of flexibility (CFS score) and "rationalism" thinking style and between implicit aspects (IAT effect) and "experientialism." The level of explicit flexibility was also correlated with fALFF values in the left lateral prefrontal cortex, whereas the level of implicit flexibility was correlated with fALFF values in the right cerebellum. Furthermore, the fALFF values in both regions predicted individual preference for flexible decision-making strategy in a vignettes simulation task. These results add to our understanding of the neural mechanisms underlying flexible decision-making for solving social conflicts. More generally, our findings highlight the utility of RS-fMRI combined with both explicit and implicit psychometric measures for better understanding individual differences in social cognition. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  11. Linear Dichroism in Angle-Resolved Core-Level Photoemission Spectra Reflecting 4f Ground-State Symmetry of Strongly Correlated Cubic Pr Compounds

    NASA Astrophysics Data System (ADS)

    Hamamoto, Satoru; Fujioka, Shuhei; Kanai, Yuina; Yamagami, Kohei; Nakatani, Yasuhiro; Nakagawa, Koya; Fujiwara, Hidenori; Kiss, Takayuki; Higashiya, Atsushi; Yamasaki, Atsushi; Kadono, Toshiharu; Imada, Shin; Tanaka, Arata; Tamasaku, Kenji; Yabashi, Makina; Ishikawa, Tetsuya; Matsumoto, Keisuke T.; Onimaru, Takahiro; Takabatake, Toshiro; Sekiyama, Akira

    2017-12-01

    We report experimentally observed linear dichroism in angle-resolved core-level photoemission spectra of PrIr2Zn20 and PrB6 with cubic symmetry. The different anisotropic 4f charge distributions between the compounds due to the crystalline-electric-field splitting are responsible for the difference in the linear dichroism, which has been verified by spectral simulations with the full multiplet theory for a single-site Pr3+ ion with cubic symmetry. The observed linear dichroism and polarization-dependent spectra in two different photoelectron directions for PrIr2Zn20 are reproduced by theoretical analysis for the Γ3 ground state, whereas those of the Pr 3d and 4d core levels indicate the Γ5 ground state for PrB6.

  12. Twenty-four-nucleotide siRNAs produce heritable trans-chromosomal methylation in F1 Arabidopsis hybrids.

    PubMed

    Greaves, Ian K; Eichten, Steven R; Groszmann, Michael; Wang, Aihua; Ying, Hua; Peacock, W James; Dennis, Elizabeth S

    2016-11-01

    Hybrid Arabidopsis plants undergo epigenetic reprogramming producing decreased levels of 24-nt siRNAs and altered patterns of DNA methylation that can affect gene expression. Driving the changes in methylation are the processes trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). In TCM/TCdM the methylation state of one allele is altered to resemble the other allele. We show that Pol IV-dependent sRNAs are required to establish TCM events. The changes in DNA methylation and the associated changes in sRNA levels in the F1 hybrid can be maintained in subsequent generations and affect hundreds of regions in the F2 epigenome. The inheritance of these altered epigenetic states varies in F2 individuals, resulting in individuals with genetically identical loci displaying different epigenetic states and gene expression profiles. The change in methylation at these regions is associated with the presence of sRNAs. Loci without any sRNA activity can have altered methylation states, suggesting that a sRNA-independent mechanism may also contribute to the altered methylation state of the F1 and F2 generations.

  13. Twenty-four–nucleotide siRNAs produce heritable trans-chromosomal methylation in F1 Arabidopsis hybrids

    PubMed Central

    Greaves, Ian K.; Eichten, Steven R.; Groszmann, Michael; Wang, Aihua; Ying, Hua; Peacock, W. James; Dennis, Elizabeth S.

    2016-01-01

    Hybrid Arabidopsis plants undergo epigenetic reprogramming producing decreased levels of 24-nt siRNAs and altered patterns of DNA methylation that can affect gene expression. Driving the changes in methylation are the processes trans-chromosomal methylation (TCM) and trans-chromosomal demethylation (TCdM). In TCM/TCdM the methylation state of one allele is altered to resemble the other allele. We show that Pol IV-dependent sRNAs are required to establish TCM events. The changes in DNA methylation and the associated changes in sRNA levels in the F1 hybrid can be maintained in subsequent generations and affect hundreds of regions in the F2 epigenome. The inheritance of these altered epigenetic states varies in F2 individuals, resulting in individuals with genetically identical loci displaying different epigenetic states and gene expression profiles. The change in methylation at these regions is associated with the presence of sRNAs. Loci without any sRNA activity can have altered methylation states, suggesting that a sRNA-independent mechanism may also contribute to the altered methylation state of the F1 and F2 generations. PMID:27791153

  14. The Relation Between Magnetospheric State Parameters and the Occurrence of Plasma Depletion Events in the Night-Time Mid-Latitude F-Region

    NASA Technical Reports Server (NTRS)

    Seker, Ilgin; Fung, Shing F.; Mathews, John D.

    2010-01-01

    Studies using all-sky imagers have revealed the presence of various ionospheric irregularities in the night-time mid-latitude F-region. The most prevalent and well known of these are the Medium Scale Traveling Ionospheric Disturbances (MSTIDs) that usually occur when the geomagnetic activity is low, and mid-latitude spread-F plumes that are often observed when the geomagnetic activity is high. The inverse and direct relations between geomagnetic activity (particularly Kp) and the occurrence rate of MSTIDs and midlatitude plumes, respectively, have been observed by several studies using different instruments. In order to understand the underlying causes of these two relations, it is illuminating to better characterize the occurrence of MSTIDs and plumes using multiple magnetospheric state parameters. Here we statistically compare multiple geomagnetic driver and response parameters (such as Kp, AE, Dst, and solar wind parameters) with the occurrence rates of night-time MSTIDs and plumes observed using an all-sky imager at Arecibo Observatory (AO) between 2003 and 2008. The results not only allow us to better distinguish MSTIDs and plumes, but also shed further light on the generation mechanism and electrodynamics of these two different phenomena occurring at night-time in the mid-latitude F-region.

  15. Building an EEG-fMRI Multi-Modal Brain Graph: A Concurrent EEG-fMRI Study

    PubMed Central

    Yu, Qingbao; Wu, Lei; Bridwell, David A.; Erhardt, Erik B.; Du, Yuhui; He, Hao; Chen, Jiayu; Liu, Peng; Sui, Jing; Pearlson, Godfrey; Calhoun, Vince D.

    2016-01-01

    The topological architecture of brain connectivity has been well-characterized by graph theory based analysis. However, previous studies have primarily built brain graphs based on a single modality of brain imaging data. Here we develop a framework to construct multi-modal brain graphs using concurrent EEG-fMRI data which are simultaneously collected during eyes open (EO) and eyes closed (EC) resting states. FMRI data are decomposed into independent components with associated time courses by group independent component analysis (ICA). EEG time series are segmented, and then spectral power time courses are computed and averaged within 5 frequency bands (delta; theta; alpha; beta; low gamma). EEG-fMRI brain graphs, with EEG electrodes and fMRI brain components serving as nodes, are built by computing correlations within and between fMRI ICA time courses and EEG spectral power time courses. Dynamic EEG-fMRI graphs are built using a sliding window method, versus static ones treating the entire time course as stationary. In global level, static graph measures and properties of dynamic graph measures are different across frequency bands and are mainly showing higher values in eyes closed than eyes open. Nodal level graph measures of a few brain components are also showing higher values during eyes closed in specific frequency bands. Overall, these findings incorporate fMRI spatial localization and EEG frequency information which could not be obtained by examining only one modality. This work provides a new approach to examine EEG-fMRI associations within a graph theoretic framework with potential application to many topics. PMID:27733821

  16. Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3

    NASA Astrophysics Data System (ADS)

    Vaitheeswaran, G.; Kanchana, V.; Zhang, Xinxin; Ma, Yanming; Svane, A.; Christensen, N. E.

    2016-08-01

    A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent GW approximation. The GW calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.

  17. Calculated high-pressure structural properties, lattice dynamics and quasi particle band structures of perovskite fluorides KZnF3, CsCaF3 and BaLiF3.

    PubMed

    Vaitheeswaran, G; Kanchana, V; Zhang, Xinxin; Ma, Yanming; Svane, A; Christensen, N E

    2016-08-10

    A detailed study of the high-pressure structural properties, lattice dynamics and band structures of perovskite structured fluorides KZnF3, CsCaF3 and BaLiF3 has been carried out by means of density functional theory. The calculated structural properties including elastic constants and equation of state agree well with available experimental information. The phonon dispersion curves are in good agreement with available experimental inelastic neutron scattering data. The electronic structures of these fluorides have been calculated using the quasi particle self-consistent [Formula: see text] approximation. The [Formula: see text] calculations reveal that all the fluorides studied are wide band gap insulators, and the band gaps are significantly larger than those obtained by the standard local density approximation, thus emphasizing the importance of quasi particle corrections in perovskite fluorides.

  18. Syntheses, Raman spectra, and X-ray crystal structures of [XeF(5)][mu-F(OsO(3)F(2))(2)] and [M][OsO(3)F(3)] (M = XeF(5)(+), Xe(2)F(11)(+)).

    PubMed

    Hughes, Michael J; Mercier, Hélène P A; Schrobilgen, Gary J

    2010-04-05

    Stoichiometric amounts of XeF(6) and (OsO(3)F(2))(infinity) react at 25-50 degrees C to form salts of the known XeF(5)(+) and Xe(2)F(11)(+) cations, namely, [XeF(5)][mu-F(OsO(3)F(2))(2)], [XeF(5)][OsO(3)F(3)], and [Xe(2)F(11)][OsO(3)F(3)]. Although XeF(6) is oxophilic toward a number of transition metal and main-group oxides and oxide fluorides, fluoride/oxide metathesis was not observed. The series provides the first examples of noble-gas cations that are stabilized by metal oxide fluoride anions and the first example of a mu-F(OsO(3)F(2))(2)(-) salt. Both [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are orange solids at room temperature. The [XeF(5)][OsO(3)F(3)] salt is an orange liquid at room temperature that solidifies at 5-0 degrees C. When the salts are heated at 50 degrees C under 1 atm of N(2) for more than 2 h, significant XeF(6) loss occurs. The X-ray crystal structures (-173 degrees C) show that the salts exist as discrete ion pairs and that the osmium coordination spheres in OsO(3)F(3)(-) and mu-F(OsO(3)F(2))(2)(-) are pseudo-octahedral OsO(3)F(3)-units having facial arrangements of oxygen and fluorine atoms. The mu-F(OsO(3)F(2))(2)(-) anion is comprised of two symmetry-related OsO(3)F(2)-groups that are fluorine-bridged to one another. Ion pairing results from secondary bonding interactions between the fluorine/oxygen atoms of the anions and the xenon atom of the cation, with the Xe...F/O contacts occurring opposite the axial fluorine and from beneath the equatorial XeF(4)-planes of the XeF(5)(+) and Xe(2)F(11)(+) cations so as to avoid the free valence electron lone pairs of the xenon atoms. The xenon atoms of [XeF(5)][mu-F(OsO(3)F(2))(2)] and [Xe(2)F(11)][OsO(3)F(3)] are nine-coordinate and the xenon atom of [XeF(5)][OsO(3)F(3)] is eight-coordinate. Quantum-chemical calculations at SVWN and B3LYP levels of theory were used to obtain the gas-phase geometries, vibrational frequencies, and NBO bond orders, valencies, and NPA charges of

  19. Assessing the Effectiveness of Increased FIO2for Enhancing Driver's Activation State Using Simulated Monotonous Driving.

    PubMed

    Yamakoshi, T; Yamakoshi, K; Nogawa, M; Sawada, Y; Rolfe, P; Kusakabe, M

    2005-01-01

    Lowering of what we term a driver's Activation State (AS) during monotonous driving conditions may increase the risk of an accident. To develop an in-car environment that allows active driving - "Biofee dforward System" - we have investigated the effects of applying a stimulus of increased inspired oxygen fraction (FIO2) supply on a driver's AS, using simulated monotonous driving. We used our previously substantiated index of As derived from beat-by-beat blood pressure (BP) response following an electrical stimulus. We have made physiological measurements including BP and found that the increased FIO2stimulus is effective in enhancing the AS. This finding was also confirmed in terms of the autonomic activity balance as well as the lengthening in time for active, safer, driving.

  20. Synthesis and structure resolution of RbLaF4.

    PubMed

    Rollet, Anne-Laure; Allix, Mathieu; Veron, Emmanuel; Deschamps, Michael; Montouillout, Valérie; Suchomel, Matthew R; Suard, Emmanuelle; Barre, Maud; Ocaña, Manuel; Sadoc, Aymeric; Boucher, Florent; Bessada, Catherine; Massiot, Dominique; Fayon, Franck

    2012-02-20

    The synthesis and structure resolution of RbLaF(4) are described. RbLaF(4) is synthesized by solid-state reaction between RbF and LaF(3) at 425 °C under a nonoxidizing atmosphere. Its crystal structure has been resolved by combining neutron and synchrotron powder diffraction data refinements (Pnma,a = 6.46281(2) Å, b = 3.86498(1) Å, c = 16.17629(4) Å, Z = 4). One-dimensional (87)Rb, (139)La, and (19)F MAS NMR spectra have been recorded and are in agreement with the proposed structural model. Assignment of the (19)F resonances is performed on the basis of both (19)F-(139)La J-coupling multiplet patterns observed in a heteronuclear DQ-filtered J-resolved spectrum and (19)F-(87)Rb HMQC MAS experiments. DFT calculations of both the (19)F isotropic chemical shieldings and the (87)Rb, (139)La electric field gradient tensors using the GIPAW and PAW methods implemented in the CASTEP code are in good agreement with the experimental values and support the proposed structural model. Finally, the conductivity of RbLaF(4) and luminescence properties of Eu-doped LaRbF(4) are investigated.

  1. Planned Improvements for the WB-57F Aircraft

    NASA Astrophysics Data System (ADS)

    Baccus, S.; Roberts, A.; Ross, M.

    2003-12-01

    NASA WB-57F aircraft have supported the atmospheric science community for over 30 years. Recent attention has focused on the chemistry and dynamics of the UTLS region of the atmosphere and several NASA sponsored field campaigns (ACCENT, CRYSTAL-FACE) have made critical use of the WB-57F's unique ability to carry large (3 ton) payloads during extended cruise at all altitudes from the lower troposphere to the lower stratosphere (20 km ceiling). In addition, the WB-57F's robust structure permits a large number and variety of instruments to be carried at inlet-favorable locations on the aircraft. In order to further improve the WB-57F's performance and unique utility to the atmospheric research and spacecraft validation communities, NASA is planning several upgrades to the WB-57F including state-of-the-art avionics and autopilot, landing gear replacement, maximum gross weight increase, engine replacement, and ultrapod installation. We will review the present WB-57F performance, plans for upcoming science campaigns, and plans for increased WB-57F payload, range, endurance, and ceiling resulting from the upgrades.

  2. Angular distributions for the F+H2-->HF+H reaction: The role of the F spin-orbit excited state and comparison with molecular beam experiments

    NASA Astrophysics Data System (ADS)

    Tzeng, Yi-Ren; Alexander, Millard H.

    2004-09-01

    We report quantum mechanical calculations of center-of-mass differential cross sections (DCS) for the F+H2→HF+H reaction performed on the multistate [Alexander-Stark-Werner (ASW)] potential energy surfaces (PES) that describe the open-shell character of this reaction. For comparison, we repeat single-state calculations with the Stark-Werner (SW) and Hartke-Stark-Werner (HSW) PESs. The ASW DCSs differ from those predicted for the SW and HSW PES in the backward direction. These differences arise from nonadiabatic coupling between several electronic states. The DCSs are then used in forward simulations of the laboratory-frame angular distributions (ADs) measured by Lee, Neumark, and co-workers [J. Chem. Phys. 82, 3045 (1985)]. The simulations are scaled to match experiment over the range 12°<Θlab<80°. As a natural consequence of the reduced backward scattering, the ASW ADs are more forward and sideways scattered than predicted by the HSW PES. At the two higher collision energies (2.74 and 3.42 kcal/mol) the enhanced sideways scattering of HF v'=2 products bring the ASW ADs in very good agreement with the experiment. At the lowest collision energy (1.84 kcal/mol), the simulations, for all three sets of PESs consistently underestimate the sideways scattering. The residual disagreements, particularly at the lowest collision energy, may be due to the known deficiencies in the PESs.

  3. Connectomic markers of symptom severity in sport-related concussion: Whole-brain analysis of resting-state fMRI.

    PubMed

    Churchill, Nathan W; Hutchison, Michael G; Graham, Simon J; Schweizer, Tom A

    2018-01-01

    Concussion is associated with significant adverse effects within the first week post-injury, including physical complaints and altered cognition, sleep and mood. It is currently unknown whether these subjective disturbances have reliable functional brain correlates. Resting-state functional magnetic resonance imaging (rs-fMRI) has been used to measure functional connectivity of individuals after traumatic brain injury, but less is known about the relationship between functional connectivity and symptom assessments after a sport concussion. In this study, rs-fMRI was used to evaluate whole-brain functional connectivity for seventy (70) university-level athletes, including 35 with acute concussion and 35 healthy matched controls. Univariate analyses showed that greater symptom severity was mainly associated with lower pairwise connectivity in frontal, temporal and insular regions, along with higher connectivity in a sparser set of cerebellar regions. A novel multivariate approach also extracted two components that showed reliable covariation with symptom severity: (1) a network of frontal, temporal and insular regions where connectivity was negatively correlated with symptom severity (replicating the univariate findings); and (2) a network with anti-correlated elements of the default-mode network and sensorimotor system, where connectivity was positively correlated with symptom severity. These findings support the presence of connectomic signatures of symptom complaints following a sport-related concussion, including both increased and decreased functional connectivity within distinct functional brain networks.

  4. Sign Crossover in All Maxwell-Stefan Diffusivities for Molten Salt LiF-BeF2: A Molecular Dynamics Study.

    PubMed

    Chakraborty, Brahmananda

    2015-08-20

    Applying Green-Kubo formalism and equilibrium molecular dynamics (MD) simulations, we have studied for the first time the dynamic correlation, Onsager coefficients, and Maxwell-Stefan (MS) diffusivities of molten salt LiF-BeF2, which is a potential candidate for a coolant in a high temperature reactor. We observe an unusual composition dependence and strikingly a crossover in sign for all the MS diffusivities at a composition of around 7% of LiF where the MS diffusivity between cation-anion pair (Đ(BeF) and Đ(LiF)) jumps from positive to negative value while the MS diffusivity between cation-cation pair (Đ(LiBe)) becomes positive from a negative value. Even though the negative MS diffusivities have been observed for electrolyte solutions between cation-cation pair, here we report negative MS diffusivity between cation-anion pair where Đ(BeF) shows a sharp rise around 66% of BeF2, reaches maximum value at 70% of BeF2, and then decreases almost exponentially with a sign change for BeF2 around 93%. For low mole fraction of LiF, Đ(BeF) follows the Debye-Huckel theory and rises with the square root of LiF mole fraction similar to the MS diffusivity between cation-anion pair in aqueous solution of electrolyte salt. Negative MS diffusivities while unusual are, however, shown to satisfy the non-negative entropy constraints at all thermodynamic states as required by the second law of thermodynamics. We have established a strong correlation between the structure and dynamics and predict that the formation of flouride polyanion network between Be and F ions and coulomb interaction is responsible for sharp variation of the MS diffusivities which controls the multicomponent diffusion phenomenon in LiF-BeF2 which has a strong impact on the performance of the reactor.

  5. Alteration of Spontaneous Brain Activity After Hypoxia-Reoxygenation: A Resting-State fMRI Study.

    PubMed

    Zhang, Jiaxing; Chen, Ji; Fan, Cunxiu; Li, Jinqiang; Lin, Jianzhong; Yang, Tianhe; Fan, Ming

    2017-03-01

    Zhang, Jiaxing, Ji Chen, Cunxiu Fan, Jinqiang Li, Jianzhong Lin, Tianhe Yang, and Ming Fan. Alteration of spontaneous brain activity after hypoxia-reoxygenation: A resting-state fMRI study. High Alt Med Biol. 18:20-26, 2017.-The present study was designed to investigate the effect of hypoxia-reoxygenation on the spontaneous neuronal activity in brain. Sixteen sea-level (SL) soldiers (20.5 ± 0.7 years), who garrisoned the frontiers in high altitude (HA) (2300-4400 m) for two years and subsequently descended to sea level for one to seven days, were recruited. Control group consisted of 16 matched SL natives. The amplitude of low-frequency fluctuations (ALFF) of regional brain functional magnetic resonance imaging signal in resting state and functional connectivity (FC) between brain regions was analyzed. HA subjects showed significant increases of ALFF at several sites within the bilateral occipital cortices and significant decreases of ALFF in the right anterior insula and extending to the caudate, putamen, inferior frontal orbital cortex, temporal pole, and superior temporal gyrus; lower ALFF values in the right insula were positively correlated with low respiratory measurements. The right insula in HA subjects had increases of FC with the right superior temporal gyrus, postcentral gyrus, rolandic operculum, supramarginal gyrus, and inferior frontal triangular area. We thus demonstrated that hypoxia-reoxygenation had influence on the spontaneous neuronal activity in brain. The decrease of insular neuronal activity may be related to the reduction of ventilatory drive, while the increase of FC with insula may indicate a central compensation.

  6. Cytochrome b 6 f function and localization, phosphorylation state of thylakoid membrane proteins and consequences on cyclic electron flow.

    PubMed

    Dumas, Louis; Chazaux, Marie; Peltier, Gilles; Johnson, Xenie; Alric, Jean

    2016-09-01

    Both the structure and the protein composition of thylakoid membranes have an impact on light harvesting and electron transfer in the photosynthetic chain. Thylakoid membranes form stacks and lamellae where photosystem II and photosystem I localize, respectively. Light-harvesting complexes II can be associated to either PSII or PSI depending on the redox state of the plastoquinone pool, and their distribution is governed by state transitions. Upon state transitions, the thylakoid ultrastructure and lateral distribution of proteins along the membrane are subject to significant rearrangements. In addition, quinone diffusion is limited to membrane microdomains and the cytochrome b 6 f complex localizes either to PSII-containing grana stacks or PSI-containing stroma lamellae. Here, we discuss possible similarities or differences between green algae and C3 plants on the functional consequences of such heterogeneities in the photosynthetic electron transport chain and propose a model in which quinones, accepting electrons either from PSII (linear flow) or NDH/PGR pathways (cyclic flow), represent a crucial control point. Our aim is to give an integrated description of these processes and discuss their potential roles in the balance between linear and cyclic electron flows.

  7. United States Air Force F-35A Operational Basing Environmental Impact Statement. Appendix E: Comments

    DTIC Science & Technology

    2013-09-01

    this pork -laden boondoggle down our throats? Finally, to those who accuse F-35 opponents of being unpatriotic, you should know better. Patriotism is...Vermont Air Guard base as the members bring money into the ar ea during training weekends/days for food , housing and entertainment. These monies...adults and children living in the noise zone 3. There was no crash data for FY 13 fo r the F-22 (page BR4-49/50) ’] • Since safety estimates of the F-35A

  8. Thermodynamic assessment of the LiF-ThF4-PuF3-UF4 system

    NASA Astrophysics Data System (ADS)

    Capelli, E.; Beneš, O.; Konings, R. J. M.

    2015-07-01

    The LiF-ThF4-PuF3-UF4 system is the reference salt mixture considered for the Molten Salt Fast Reactor (MSFR) concept started with PuF3. In order to obtain the complete thermodynamic description of this quaternary system, two binary systems (ThF4-PuF3 and UF4-PuF3) and two ternary systems (LiF-ThF4-PuF3 and LiF-UF4-PuF3) have been assessed for the first time. The similarities between CeF3/PuF3 and ThF4/UF4 compounds have been taken into account for the presented optimization as well as in the experimental measurements performed, which have confirmed the temperatures predicted by the model. Moreover, the experimental results and the thermodynamic database developed have been used to identify potential compositions for the MSFR fuel and to evaluate the influence of partial substitution of ThF4 by UF4 in the salt.

  9. Magnetic state selected by magnetic dipole interaction in the kagome antiferromagnet NaBa2Mn3F11

    NASA Astrophysics Data System (ADS)

    Hayashida, Shohei; Ishikawa, Hajime; Okamoto, Yoshihiko; Okubo, Tsuyoshi; Hiroi, Zenji; Avdeev, Maxim; Manuel, Pascal; Hagihala, Masato; Soda, Minoru; Masuda, Takatsugu

    2018-02-01

    We haved studied the ground state of the classical kagome antiferromagnet NaBa2Mn3F11 . Strong magnetic Bragg peaks observed for d spacings shorter than 6.0 Å were indexed by the propagation vector of k0=(0 ,0 ,0 ) . Additional peaks with weak intensities in the d -spacing range above 8.0 Å were indexed by the incommensurate vector of k1=[0.3209 (2 ) ,0.3209 (2 ) ,0 ] and k2=[0.3338 (4 ) ,0.3338 (4 ) ,0 ] . Magnetic structure analysis unveils a 120∘ structure with the tail-chase geometry having k0 modulated by the incommensurate vector. A classical calculation of the Heisenberg kagome antiferromagnet with antiferromagnetic second-neighbor interaction, for which the ground state a k0120∘ degenerated structure, reveals that the magnetic dipole-dipole (MDD) interaction including up to the fourth neighbor terms selects the tail-chase structure. The observed modulation of the tail-chase structure is attributed to a small perturbation such as the long-range MDD interaction or the interlayer interaction.

  10. Effects of behavioral activation on default mode network connectivity in subthreshold depression: A preliminary resting-state fMRI study.

    PubMed

    Yokoyama, Satoshi; Okamoto, Yasumasa; Takagaki, Koki; Okada, Go; Takamura, Masahiro; Mori, Asako; Shiota, Syouichi; Ichikawa, Naho; Jinnin, Ran; Yamawaki, Shigeto

    2018-02-01

    Subthreshold depression is a risk factor for major depressive disorder, and it is known to have a negative impact on quality of life (QOL). Although behavioral activation, which is one type of cognitive behavioral therapy, is an effective psychological intervention for subthreshold depression, neural mechanisms of behavioral activation are unclear. Enhanced functional connectivity between default mode network (DMN) and the other regions has been demonstrated in participants with subthreshold depression. The purpose of this study was to examine the effects of behavioral activation on DMN abnormalities by using resting-state functional MRI (rs-fMRI). Participants with subthreshold depression (N =40) were randomly assigned to either an intervention group or a non-intervention group. They were scanned using rs-fMRI before and after the intervention. Independent component analysis indicated three subnetworks of the DMN. Analyzing intervention effects on functional connectivity of each subnetwork indicated that connectivity of the anterior DMN subnetwork with the dorsal anterior cingulate was reduced after the intervention. Moreover, this reduction was correlated with an increase in health-related QOL. We did not compare the findings with healthy participants. Further research should be conducted by including healthy controls to verify the results of this study. Mechanisms of behavioral activation might be related to enhanced ability to independently use the dACC and the DMN, which increases an attention control to positive external stimuli. This is the first study to investigate neural mechanisms of behavioral activation using rs-fMRI. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. f1: a code to compute Appell's F1 hypergeometric function

    NASA Astrophysics Data System (ADS)

    Colavecchia, F. D.; Gasaneo, G.

    2004-02-01

    In this work we present the FORTRAN code to compute the hypergeometric function F1( α, β1, β2, γ, x, y) of Appell. The program can compute the F1 function for real values of the variables { x, y}, and complex values of the parameters { α, β1, β2, γ}. The code uses different strategies to calculate the function according to the ideas outlined in [F.D. Colavecchia et al., Comput. Phys. Comm. 138 (1) (2001) 29]. Program summaryTitle of the program: f1 Catalogue identifier: ADSJ Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADSJ Program obtainable from: CPC Program Library, Queen's University of Belfast, N. Ireland Licensing provisions: none Computers: PC compatibles, SGI Origin2∗ Operating system under which the program has been tested: Linux, IRIX Programming language used: Fortran 90 Memory required to execute with typical data: 4 kbytes No. of bits in a word: 32 No. of bytes in distributed program, including test data, etc.: 52 325 Distribution format: tar gzip file External subprograms used: Numerical Recipes hypgeo [W.H. Press et al., Numerical Recipes in Fortran 77, Cambridge Univ. Press, 1996] or chyp routine of R.C. Forrey [J. Comput. Phys. 137 (1997) 79], rkf45 [L.F. Shampine and H.H. Watts, Rep. SAND76-0585, 1976]. Keywords: Numerical methods, special functions, hypergeometric functions, Appell functions, Gauss function Nature of the physical problem: Computing the Appell F1 function is relevant in atomic collisions and elementary particle physics. It is usually the result of multidimensional integrals involving Coulomb continuum states. Method of solution: The F1 function has a convergent-series definition for | x|<1 and | y|<1, and several analytic continuations for other regions of the variable space. The code tests the values of the variables and selects one of the precedent cases. In the convergence region the program uses the series definition near the origin of coordinates, and a numerical integration of the third-order differential

  12. Interview with Joe F. Head

    ERIC Educational Resources Information Center

    West, Kim

    2008-01-01

    This article presents an interview with Joe F. Head, Dean of University Admissions and Enrollment Services at Kennesaw State University (KSU) in Georgia, who has more than 35 years of experience in admissions and enrollment services. After completing an M.Ed. in higher education at Georgia Southern University, Head immediately landed a position as…

  13. Neuroaging through the Lens of the Resting State Networks

    PubMed Central

    2018-01-01

    Resting state functional magnetic resonance imaging (rs-fMRI) allows studying spontaneous brain activity in absence of task, recording changes of Blood Oxygenation Level Dependent (BOLD) signal. rs-fMRI enables identification of brain networks also called Resting State Networks (RSNs) including the most studied Default Mode Network (DMN). The simplicity and speed of execution make rs-fMRI applicable in a variety of normal and pathological conditions. Since it does not require any task, rs-fMRI is particularly useful for protocols on patients, children, and elders, increasing participant's compliance and reducing intersubjective variability due to the task performance. rs-fMRI has shown high sensitivity in identification of RSNs modifications in several diseases also in absence of structural modifications. In this narrative review, we provide the state of the art of rs-fMRI studies about physiological and pathological aging processes. First, we introduce the background of resting state; then we review clinical findings provided by rs-fMRI in physiological aging, Mild Cognitive Impairment (MCI), Alzheimer Dementia (AD), and Late Life Depression (LLD). Finally, we suggest future directions in this field of research and its potential clinical applications. PMID:29568755

  14. Modulation of brain response to emotional conflict as a function of current mood in bipolar disorder: preliminary findings from a follow-up state-based fMRI study.

    PubMed

    Rey, Gwladys; Desseilles, Martin; Favre, Sophie; Dayer, Alexandre; Piguet, Camille; Aubry, Jean-Michel; Vuilleumier, Patrik

    2014-08-30

    We used functional magnetic resonance imaging (fMRI) to examine affective control longitudinally in a group of patients with bipolar disorder (BD). Participants comprised 12 BD patients who underwent repeated fMRI scans in euthymic (n=11), depressed (n=9), or hypomanic (n=9) states, and were compared with 12 age-matched healthy controls. During fMRI, participants performed an emotional face-word interference task with either low or high attentional demands. Relative to healthy controls, patients showed decreased activation of the cognitive control network normally associated with conflict processing, more severely during hypomania than during depression, but regardless of level of task demand in both cases. During euthymia, a decreased response to conflict was observed only during the high load condition. Additionally, unlike healthy participants, patients exhibited deactivation in several key areas in response to emotion-conflict trials - including the rostral anterior cingulate cortex during euthymia, the hippocampus during depression, and the posterior cingulate cortex during hypomania. Our results indicate that the ability of BD patients to recruit control networks when processing affective conflict, and the abnormal suppression of activity in distinct components of the default mode network, may depend on their current clinical state and attentional demand. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  15. Gender differences in brain regional homogeneity of healthy subjects after normal sleep and after sleep deprivation: a resting-state fMRI study.

    PubMed

    Dai, Xi-Jian; Gong, Hong-Han; Wang, Yi-Xiang; Zhou, Fu-Qing; Min, You-Jiang; Zhao, Feng; Wang, Si-Yong; Liu, Bi-Xia; Xiao, Xiang-Zuo

    2012-06-01

    To explore the gender differences of brain regional homogeneity (ReHo) in healthy subjects during the resting-state, after normal sleep, and after sleep deprivation (SD) using functional magnetic resonance imaging (fMRI) and the ReHo method. Sixteen healthy subjects (eight males and eight females) each underwent the resting-state fMRI exams twice, i.e., once after normal sleep and again after 24h's SD. According to the gender and sleep, 16 subjects were all measured twice and divided into four groups: the male control group (MC), female control group (FC), male SD group (MSD), and female SD group (FSD). The ReHo method was used to calculate and analyze the data, SPM5 software was used to perform a two-sample T-test and a two-pair T-test with a P value <0.001, and cluster volume ≥ 270 mm(3) was used to determine statistical significance. Compared with the MC, the MSD showed significantly higher ReHo in the right paracentral lobule (BA3/6), but in no obviously lower regions. Compared with the FC, the FSD showed significantly higher ReHo in bilateral parietal lobes (BA2/3), bilateral vision-related regions of occipital lobes (BA17/18/19), right frontal lobe (BA4/6), and lower ReHo in the right frontal lobe. Compared with the FC, the MC showed significantly higher ReHo in the left occipital lobe (BA18/19), and left temporal lobe (BA21), left frontal lobe, and lower ReHo in the right insula and in the left parietal lobe. Compared with the FSD, the MSD showed significantly higher ReHo in the left cerebellum posterior lobe (uvula/declive of vermis), left parietal lobe, and bilateral frontal lobes, and lower ReHo in the right occipital lobe (BA17) and right frontal lobe (BA4). The differences of brain activity in the resting state can be widely found not only between the control and SD group in a same gender group, but also between the male group and female group. Thus, we should take the gender differences into consideration in future fMRI studies, especially the

  16. Origin of the F685 and F695 fluorescence in photosystem II.

    PubMed

    Andrizhiyevskaya, Elena G; Chojnicka, Agnieszka; Bautista, James A; Diner, Bruce A; van Grondelle, Rienk; Dekker, Jan P

    2005-06-01

    The emission spectra of CP47-RC and core complexes of Photosystem II (PS II) were measured at different temperatures and excitation wavelengths in order to establish the origin of the emission and the role of the core antenna in the energy transfer and charge separation processes in PS II. Both types of particles reveal strong dependences of spectral shape and yield on temperature. The results indicate that the well-known F-695 emission at 77 K arises from excitations that are trapped on a red-absorbing CP47 chlorophyll, whereas the F-685 nm emission at 77 K arises from excitations that are transferred slowly from 683 nm states in CP47 and CP43 to the RC, where they are trapped by charge separation. We conclude that F-695 at 77 K originates from the low-energy part of the inhomogeneous distribution of the 690 nm absorbing chlorophyll of CP47, while at 4 K the fluorescence originates from the complete distribution of the 690 nm chlorophyll of CP47 and from the low-energy part of the inhomogeneous distribution of one or more CP43 chlorophylls.

  17. United States Air Force F-35A Operational Basing Environmental Impact Statement. Appendix E: Comments

    DTIC Science & Technology

    2013-09-01

    Germanos, Nicholas M Civ USAF HQ ACC/A7NS From: Sent: To: Subject: Hi Leo Ioannou Wednesday, July 10, 2013 11:28 AM Germanos, Nicholas M Civ USAF HQ...we have them here . And the F35s, even if they are louder, I would not mind them either. Remember . Keep the F35s coming. SOUND OF FREEDOM Leo ...34 Explaining further, Reuters reported that: uThose a re the dates that Loc kheed Martin’s F-35 will achieve <http://articles.chicagotribune.com/2013-05

  18. Connectopic mapping with resting-state fMRI.

    PubMed

    Haak, Koen V; Marquand, Andre F; Beckmann, Christian F

    2018-04-15

    Brain regions are often topographically connected: nearby locations within one brain area connect with nearby locations in another area. Mapping these connection topographies, or 'connectopies' in short, is crucial for understanding how information is processed in the brain. Here, we propose principled, fully data-driven methods for mapping connectopies using functional magnetic resonance imaging (fMRI) data acquired at rest by combining spectral embedding of voxel-wise connectivity 'fingerprints' with a novel approach to spatial statistical inference. We apply the approach in human primary motor and visual cortex, and show that it can trace biologically plausible, overlapping connectopies in individual subjects that follow these regions' somatotopic and retinotopic maps. As a generic mechanism to perform inference over connectopies, the new spatial statistics approach enables rigorous statistical testing of hypotheses regarding the fine-grained spatial profile of functional connectivity and whether that profile is different between subjects or between experimental conditions. The combined framework offers a fundamental alternative to existing approaches to investigating functional connectivity in the brain, from voxel- or seed-pair wise characterizations of functional association, towards a full, multivariate characterization of spatial topography. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  19. F2 screen for resistance to Bacillus thuringiensis Cry2Ab2-maize in field populations of Spodoptera frugiperda (Lepidoptera: Noctuidae) from the southern United States.

    PubMed

    Niu, Ying; Qureshi, Jawwad A; Ni, Xinzhi; Head, Graham P; Price, Paula A; Meagher, Robert L; Kerns, David; Levy, Ronnie; Yang, Xiangbing; Huang, Fangneng

    2016-07-01

    The fall armyworm, Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae), is a target pest of transgenic maize and cotton expressing Bacillus thuringiensis (Bt) proteins in both North and South America. In 2013 and 2014, a total of 215 F2 two-parent families of S. frugiperda were established using single-pair mating of field individuals collected from seven locations in four states of the southern U.S.: Texas, Louisiana, Georgia, and Florida. The objective of the investigation was to detect resistance alleles in field populations to Cry2Ab2, a common Bt protein produced in transgenic maize and cotton. For each F2 family, 128 F2 neonates were screened on leaf tissue of Cry2Ab2 maize plants in the laboratory. A conservative estimate of the frequency of major Cry2Ab2 resistance alleles in S. frugiperda from the four states was 0.0023 with a 95% credibility interval of 0.0003-0.0064. In addition, six families were considered to likely possess minor resistance alleles at a frequency of 0.0082 with a 95% credibility interval of 0.0033-0.0152. One F2 family from Georgia (GA-15) was confirmed to possess a major resistance allele to the Cry2Ab2 protein. Larvae from this family survived well on whole maize plants expressing Cry2Ab2 protein and demonstrated a significant level (>15-fold) of resistance when fed with the same protein incorporated in a meridic diet. The detection of the major resistance allele along with the relatively abundant minor resistance alleles revealed in this study may have important implications for resistance management. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Noble-Gas Difluoride Complexes of Mercury(II): The Syntheses and Structures of Hg(OTeF 5) 2·1.5NgF 2 (Ng = Xe, Kr) and Hg(OTeF 5) 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DeBackere, John R.; Mercier, Helene P. A; Schrobilgen, Gary J.

    2014-02-03

    The synthesis of high-purity Hg(OTeF 5) 2 has resulted in its structural characterization in the solid state by Raman spectroscopy and single-crystal X-ray diffraction (XRD) and in solution by 19F NMR spectroscopy. The crystal structure of Hg(OTeF 5) 2 (-173 °C) consists of discrete Hg(OTeF 5) 2 units having gauche-conformations that interact through long Hg---O and Hg---F intramolecular contacts to give a chain structure. Furthermore, the Lewis acidity of Hg(OTeF 5) 2 toward NgF 2 (Ng = Xe, Kr) was investigated in SO 2ClF solvent and shown to form stable coordination complexes with NgF 2 at -78 °C. Both complexesmore » were characterized by low-temperature Raman spectroscopy (-155 °C) and single-crystal XRD. The complexes are isostructural and are formulated as Hg(OTeF 5) 2·1.5NgF 2. The Hg(OTeF 5) 2 units of Hg(OTeF 5) 2·1.5NgF 2 also have gauche-conformations and are linked through bridging NgF 2 molecules, also resulting in chain structures. The complexes represent the only examples of coordination compounds where NgF 2 coordinates to mercury in a neutral covalent compound and the only example of mercury coordinated to KrF 2. Moreover, the Hg(OTeF 5) 2·1.5KrF 2 complex is the only KrF 2 complex known to contain a bridging KrF 2 ligand. Energy-minimized gas-phase geometries and vibrational frequencies for the model compounds, [Hg(OTeF5) 2] 3 and [Hg(OTeF 5) 2] 3·2NgF 2, were obtained and provide good approximations of the local environments of Hg(OTeF 5) 2 and NgF 2 in the crystal structures of Hg(OTeF5)2 and Hg(OTeF 5) 2·1.5NgF 2. Assignments of the Raman spectra of Hg(OTeF 5) 2 and Hg(OTeF 5) 2·1.5NgF 2 are based on the calculated vibrational frequencies of the model compounds. Natural bond orbital analyses provided the associated bond orders, valencies, and natural population analysis charges.« less

  1. Rotational Mode Specificity in the F(-) + CH3Y [Y = F and Cl] SN2 Reactions.

    PubMed

    Szabó, István; Czakó, Gábor

    2015-12-17

    More than 12 million quasiclassical trajectories are computed for the F(-) + CH3Y(v = 0, JK) [Y = F and Cl] SN2 reactions using full-dimensional ab initio analytical potential energy surfaces. The initial (J, K = 0) and (J, K = J) [J = 0, 2, 4, 6, 8] rotational state specific cross sections are obtained at different collision energies (Ecoll) in the 1-20 kcal mol(-1) range, and the scattering angle and initial attack angle distributions as well as the mechanism-specific opacity functions are reported at Ecoll = 10 kcal mol(-1). The tumbling rotation (K = 0) inhibits the F(-) + CH3F reaction by a factor of 3 for J = 8 at Ecoll = 10 kcal mol(-1). This tumbling rotational effect becomes smaller at low and high Ecoll, and the tumbling motion affects the cross sections of F(-) + CH3Cl by only a few percent. The spinning rotation (K = J) hinders both reactions by factors in the 1.3-1.7 range for J = 8 at low Ecoll, whereas slight promotion is found as the Ecoll increases. The tumbling rotation may counteract the attractive ion-dipole forces, and the spinning motion hinders the complex formation, thereby decreasing the reactivity.

  2. An evaluation of independent component analyses with an application to resting-state fMRI

    PubMed Central

    Matteson, David S.; Ruppert, David; Eloyan, Ani; Caffo, Brian S.

    2013-01-01

    Summary We examine differences between independent component analyses (ICAs) arising from different as-sumptions, measures of dependence, and starting points of the algorithms. ICA is a popular method with diverse applications including artifact removal in electrophysiology data, feature extraction in microarray data, and identifying brain networks in functional magnetic resonance imaging (fMRI). ICA can be viewed as a generalization of principal component analysis (PCA) that takes into account higher-order cross-correlations. Whereas the PCA solution is unique, there are many ICA methods–whose solutions may differ. Infomax, FastICA, and JADE are commonly applied to fMRI studies, with FastICA being arguably the most popular. Hastie and Tibshirani (2003) demonstrated that ProDenICA outperformed FastICA in simulations with two components. We introduce the application of ProDenICA to simulations with more components and to fMRI data. ProDenICA was more accurate in simulations, and we identified differences between biologically meaningful ICs from ProDenICA versus other methods in the fMRI analysis. ICA methods require nonconvex optimization, yet current practices do not recognize the importance of, nor adequately address sensitivity to, initial values. We found that local optima led to dramatically different estimates in both simulations and group ICA of fMRI, and we provide evidence that the global optimum from ProDenICA is the best estimate. We applied a modification of the Hungarian (Kuhn-Munkres) algorithm to match ICs from multiple estimates, thereby gaining novel insights into how brain networks vary in their sensitivity to initial values and ICA method. PMID:24350655

  3. 1. Historic American Buildings Survey, William F. Winter, Jr., Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Historic American Buildings Survey, William F. Winter, Jr., Photographer Summer 1931, EAST SIDE, Gift of New York State Department of Education. - Shaker North Family Barn, State Route 22 & U.S. Route 20, New Lebanon, Columbia County, NY

  4. 3. Historic American Buildings Survey, William F. Winter, Jr., Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. Historic American Buildings Survey, William F. Winter, Jr., Photographer August 1931, SOUTH SIDES, Gift of New York State Department of Education. - Shaker North Family Barn, State Route 22 & U.S. Route 20, New Lebanon, Columbia County, NY

  5. 4. Historic American Buildings Survey, William F. Winter, Jr., Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. Historic American Buildings Survey, William F. Winter, Jr., Photographer Summer 1930, SOUTH WINGS, Gift of New York State Department of Education. - Shaker North Family Barn, State Route 22 & U.S. Route 20, New Lebanon, Columbia County, NY

  6. Charmless hadronic B →(f1(1285 ),f1(1420 ))P decays in the perturbative QCD approach

    NASA Astrophysics Data System (ADS)

    Liu, Xin; Xiao, Zhen-Jun; Li, Jing-Wu; Zou, Zhi-Tian

    2015-01-01

    We study 20 charmless hadronic B →f1P decays in the perturbative QCD (pQCD) formalism with B denoting Bu, Bd, and Bs mesons; P standing for the light pseudoscalar mesons; and f1 representing axial-vector mesons f1(1285 ) and f1(1420 ) that result from a mixing of quark-flavor f1 q[u/u ¯ +d d ¯ √{2 } ] and f1 s[s s ¯ ] states with the angle ϕf1.The estimations of C P -averaged branching ratios and C P asymmetries of the considered B →f1P decays, in which the Bs→f1P modes are investigated for the first time, are presented in the pQCD approach with ϕf 1˜24 ° from recently measured Bd /s→J /ψ f1(1285 ) decays. It is found that (a) the tree (penguin) dominant B+→f1π+(K+) decays with large branching ratios [O (10-6) ] and large direct C P violations (around 14%-28% in magnitude) simultaneously are believed to be clearly measurable at the LHCb and Belle II experiments; (b) the Bd→f1KS0 and Bs→f1(η ,η') decays with nearly pure penguin contributions and safely negligible tree pollution also have large decay rates in the order of 10-6- 10-5 , which can be confronted with the experimental measurements in the near future; (c) as the alternative channels, the B+→f1(π+,K+) and Bd→f1KS0 decays have the supplementary power in providing more effective constraints on the Cabibbo-Kobayashi-Maskawa weak phases α , γ , and β , correspondingly, which are explicitly analyzed through the large decay rates and the direct and mixing-induced C P asymmetries in the pQCD approach and are expected to be stringently examined by the measurements with high precision; (d) the weak annihilation amplitudes play important roles in the B+→f1(1420 )K+ , Bd→f1(1420 )KS0 , Bs→f1(1420 )η' decays, and so on, which would offer more evidence, once they are confirmed by the experiments, to identify the soft-collinear effective theory and the pQCD approach on the evaluations of annihilation diagrams and to help further understand the annihilation mechanism in the heavy

  7. Resting states are resting traits--an FMRI study of sex differences and menstrual cycle effects in resting state cognitive control networks.

    PubMed

    Hjelmervik, Helene; Hausmann, Markus; Osnes, Berge; Westerhausen, René; Specht, Karsten

    2014-01-01

    To what degree resting state fMRI is stable or susceptible to internal mind states of the individual is currently an issue of debate. To address this issue, the present study focuses on sex differences and investigates whether resting state fMRI is stable in men and women or changes within relative short-term periods (i.e., across the menstrual cycle). Due to the fact that we recently reported menstrual cycle effects on cognitive control based on data collected during the same sessions, the current study is particularly interested in fronto-parietal resting state networks. Resting state fMRI was measured in sixteen women during three different cycle phases (menstrual, follicular, and luteal). Fifteen men underwent three sessions in corresponding time intervals. We used independent component analysis to identify four fronto-parietal networks. The results showed sex differences in two of these networks with women exhibiting higher functional connectivity in general, including the prefrontal cortex. Menstrual cycle effects on resting states were non-existent. It is concluded that sex differences in resting state fMRI might reflect sexual dimorphisms in the brain rather than transitory activating effects of sex hormones on the functional connectivity in the resting brain.

  8. Changes in resting-state fMRI in vestibular neuritis.

    PubMed

    Helmchen, Christoph; Ye, Zheng; Sprenger, Andreas; Münte, Thomas F

    2014-11-01

    Vestibular neuritis (VN) is a sudden peripheral unilateral vestibular failure with often persistent head movement-related dizziness and unsteadiness. Compensation of asymmetrical activity in the primary peripheral vestibular afferents is accomplished by restoration of impaired brainstem vestibulo-ocular and vestibulo-spinal reflexes, but presumably also by changing cortical vestibular tone imbalance subserving, e.g., spatial perception and orientation. The aim of this study was to elucidate (i) whether there are changes of cerebral resting-state networks with respect to functional interregional connectivity (resting-state activity) in VN patients and (ii) whether these are related to neurophysiological, perceptual and functional parameters of vestibular-induced disability. Using independent component analysis (ICA), we compared resting-state networks between 20 patients with unilateral VN and 20 age- and gender-matched healthy control subjects. Patients were examined in the acute VN stage and after 3 months. A neural network (component 50) comprising the parietal lobe, medial aspect of the superior parietal lobule, posterior cingulate cortex, middle frontal gyrus, middle temporal gyrus, parahippocampal gyrus, anterior cingulate cortex, insular cortex, caudate nucleus, thalamus and midbrain was modulated between acute VN patients and healthy controls and in patients over time. Within this network, acute VN patients showed decreased resting-state activity (ICA) in the contralateral intraparietal sulcus (IPS), in close vicinity to the supramarginal gyrus (SMG), which increased after 3 months. Resting-state activity in IPS tended to increase over 3 months in VN patients who improved with respect to functional parameters of vestibular-induced disability (VADL). Resting-state activity in the IPS was not related to perceptual (subjective visual vertical) or neurophysiological parameters of vestibular-induced disability (e.g., gain of vestibulo-ocular reflex, caloric

  9. Photoproduction of the f1(1285 ) meson

    NASA Astrophysics Data System (ADS)

    Dickson, R.; Schumacher, R. A.; Adhikari, K. P.; Akbar, Z.; Amaryan, M. J.; Anefalos Pereira, S.; Badui, R. A.; Ball, J.; Battaglieri, M.; Batourine, V.; Bedlinskiy, I.; Biselli, A.; Boiarinov, S.; Briscoe, W. J.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Chetry, T.; Ciullo, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; Dashyan, N.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dugger, M.; Dupre, R.; El Alaoui, A.; El Fassi, L.; Eugenio, P.; Fanchini, E.; Fedotov, G.; Filippi, A.; Fleming, J. A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Gothe, R. W.; Griffioen, K. A.; Guo, L.; Hafidi, K.; Hakobyan, H.; Hanretty, C.; Harrison, N.; Hattawy, M.; Holtrop, M.; Hicks, K.; Hughes, S. M.; Ilieva, Y.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joosten, S.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Kuleshov, S. V.; Lanza, L.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Mattione, P.; McKinnon, B.; Meyer, C. A.; Mirazita, M.; Markov, N.; Mokeev, V.; Moriya, K.; Munevar, E.; Murdoch, G.; Nadel-Turonski, P.; Net, L. A.; Ni, A.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Pisano, S.; Pogorelko, O.; Price, J. W.; Prok, Y.; Puckett, A. J. R.; Raue, B. A.; Ripani, M.; Rizzo, A.; Rosner, G.; Roy, P.; Salgado, C.; Seder, E.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, E. S.; Smith, G. D.; Sober, D.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strakovsky, I. I.; Stankovic, I.; Strauch, S.; Sytnik, V.; Taiuti, M.; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D. P.; Weygand, D.; Wood, M. H.; Zachariou, N.; Zana, L.; Zhang, J.; Zonta, I.; CLAS Collaboration

    2016-06-01

    The f1(1285 ) meson with mass 1281.0 ±0.8 MeV/c2 and width 18.4 ±1.4 MeV (full width at half maximum) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the η π+π-,K+K¯0π- , and K-K0π+ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the η π+π- final-state Dalitz distribution are consistent with the axial-vector JP=1+ f1(1285 ) identity, rather than the pseudoscalar 0- η (1295 ) . The production mechanism is more consistent with s -channel decay of a high-mass N* state and not with t -channel meson exchange. Decays to η π π go dominantly via the intermediate a0±(980 ) π∓ states, with the branching ratio Γ [a0π (noK ¯K )] /Γ [η π π (all)] =0.74 ±0.09 . The branching ratios Γ (K K ¯π ) /Γ (η π π ) =0.216 ±0.033 and Γ (γ ρ0) /Γ (η π π ) =0.047 ±0.018 were also obtained. The first is in agreement with previous data for the f1(1285 ) , while the latter is lower than the world average.

  10. Photoproduction of the f 1 ( 1285 ) meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, Ryan; Schumacher, Reinhard A.; Adhikari, K. P.

    Themore » $$f_1(1285)$$ meson with mass $$1281.0 \\pm 0.8$$ MeV/$c^2$ and width $$18.4 \\pm 1.4$$ MeV (FWHM) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the $$\\eta\\pi^{+}\\pi^{-}$$, $$K^+\\bar{K}^0\\pi^-$$, and $$K^-K^0\\pi^+$$ decay channels from threshold up to a center-of-mass energy of 2.8 GeV. mass, width, and an amplitude analysis of the $$\\eta\\pi^{+}\\pi^{-}$$ final-state Dalitz distribution are consistent with the axial-vector $J^P=1^+$ $$f_1(1285)$$ identity, rather than the pseudoscalar $0^-$ $$\\eta(1295)$$. production mechanism is more consistent with $s$-channel decay of a high-mass $N^*$ state, and not with $t$-channel meson exchange. Decays to $$\\eta\\pi\\pi$$ go dominantly via the intermediate $$a_0^\\pm(980)\\pi^\\mp$$ states, with the branching ratio $$\\Gamma(a_0\\pi \\text{ (no} \\bar{K} K\\text{)}) / \\Gamma(\\eta\\pi\\pi \\text{(all)}) = 0.74\\pm0.09$$. branching ratios $$\\Gamma(K \\bar{K} \\pi)/\\Gamma(\\eta\\pi\\pi) = 0.216\\pm0.033$$ and $$\\Gamma(\\gamma\\rho^0)/\\Gamma(\\eta\\pi\\pi) = 0.047\\pm0.018$$ were also obtained. first is in agreement with previous data for the $$f_1(1285)$$, while the latter is lower than the world average.« less

  11. Photoproduction of the f 1 ( 1285 ) meson

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dickson, R.; Schumacher, R. A.; Adhikari, K. P.

    The f(1)(1285) meson withmass 1281.0 +/- 0.8MeV/c(2) and width 18.4 +/- 1.4MeV (full width at half maximum) was measured for the first time in photoproduction from a proton target using CLAS at Jefferson Lab. Differential cross sections were obtained via the eta pi(+)pi(-), K+(K) over bar (0) pi(-), and (K-K0)pi(+) decay channels from threshold up to a center-of-mass energy of 2.8 GeV. The mass, width, and an amplitude analysis of the eta pi(+)pi(-) final-state Dalitz distribution are consistent with the axial-vector J(P) = 1(+) f(1)(1285) identity, rather than the pseudoscalar 0(-) eta(1295). The production mechanism is more consistent with s-channelmore » decay of a high-mass N* state and not with t-channel meson exchange. Decays to eta pi pi go dominantly via the intermediate a(0)(+/-) (980)pi(-/+) states, with the branching ratio Gamma [a(0)pi (no (K) over barK)]/Gamma[eta pi pi (all)] = 0.74 +/- 0.09. The branching ratios Gamma (K (K) over bar pi)/Gamma(eta pi pi) = 0.216 +/- 0.033 and Gamma (gamma rho(0))/Gamma(eta pi pi) = 0.047 +/- 0.018 were also obtained. The first is in agreement with previous data for the f(1)(1285), while the latter is lower than the world average.« less

  12. The effect of body-mind relaxation meditation induction on major depressive disorder: A resting-state fMRI study.

    PubMed

    Chen, Fangfang; Lv, Xueyu; Fang, Jiliang; Yu, Shan; Sui, Jing; Fan, Lingzhong; Li, Tao; Hong, Yang; Wang, XiaoLing; Wang, Weidong; Jiang, Tianzi

    2015-09-01

    Meditation has been increasingly evaluated as an important complementary therapeutic tool for the treatment of depression. The present study employed resting-state functional magnetic resonance imaging (rs-fMRI) to examine the effect of body-mind relaxation meditation induction (BMRMI) on the brain activity of depressed patients and to investigate possible mechanisms of action for this complex intervention. 21 major depressive disorder patients (MDDs) and 24 age and gender-matched healthy controls (HCs) received rs-fMRI scans at baseline and after listening to a selection of audio designed to induce body-mind relaxation meditation. The rs-fMRI data were analyzed using Matlab toolbox to obtain the amplitude of low-frequency fluctuations (ALFF) of the BOLD signal for the whole brain. A mixed-design repeated measures analysis of variance (ANOVA) was performed on the whole brain to find which brain regions were affected by the BMRMI. An additional functional connectivity analysis was used to identify any atypical connection patterns after the BMRMI. After the BMRMI experience, both the MDDs and HCs showed decreased ALFF values in the bilateral frontal pole (BA10). Additionally, increased functional connectivity from the right dorsal medial prefrontal cortex (dmPFC) to the left dorsal lateral prefrontal cortex (dlPFC) and the left lateral orbitofrontal cortex (OFC) was identified only in the MDDs after the BMRMI. In order to exclude the impact of other events on the participants׳ brain activity, the Hamilton Rating Scales for Depression (HDRS) was not measured after the body-mind relaxation induction. Our findings support the hypothesis that body-mind relaxation meditation induction may regulate the activities of the prefrontal cortex and thus may have the potential to help patients construct reappraisal strategies that can modulate the brain activity in multiple emotion-processing systems. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Functional Connectivity Mapping in the Animal Model: Principles and Applications of Resting-State fMRI

    PubMed Central

    Gorges, Martin; Roselli, Francesco; Müller, Hans-Peter; Ludolph, Albert C.; Rasche, Volker; Kassubek, Jan

    2017-01-01

    “Resting-state” fMRI has substantially contributed to the understanding of human and non-human functional brain organization by the analysis of correlated patterns in spontaneous activity within dedicated brain systems. Spontaneous neural activity is indirectly measured from the blood oxygenation level-dependent signal as acquired by echo planar imaging, when subjects quietly “resting” in the scanner. Animal models including disease or knockout models allow a broad spectrum of experimental manipulations not applicable in humans. The non-invasive fMRI approach provides a promising tool for cross-species comparative investigations. This review focuses on the principles of “resting-state” functional connectivity analysis and its applications to living animals. The translational aspect from in vivo animal models toward clinical applications in humans is emphasized. We introduce the fMRI-based investigation of the non-human brain’s hemodynamics, the methodological issues in the data postprocessing, and the functional data interpretation from different abstraction levels. The longer term goal of integrating fMRI connectivity data with structural connectomes obtained with tracing and optical imaging approaches is presented and will allow the interrogation of fMRI data in terms of directional flow of information and may identify the structural underpinnings of observed functional connectivity patterns. PMID:28539914

  14. Studying brain organization via spontaneous fMRI signal

    PubMed Central

    Power, Jonathan D; Schlaggar, Bradley L; Petersen, Steven E

    2014-01-01

    In recent years, some substantial advances in understanding human (and non-human) brain organization have emerged from a relatively unusual approach: the observation of spontaneous activity, and correlated patterns in spontaneous activity, in the “resting” brain. Most commonly, spontaneous neural activity is measured indirectly via fMRI signal in subjects who are lying quietly in the scanner, the so-called “resting state”. This Primer introduces the fMRI-based study of spontaneous brain activity, some of the methodological issues active in the field, and some ways in which resting state fMRI has been used to delineate aspects of area-level and supra-areal brain organization. PMID:25459408

  15. Regulation of the thermoalkaliphilic F1-ATPase from Caldalkalibacillus thermarum

    PubMed Central

    Ferguson, Scott A.; Cook, Gregory M.; Montgomery, Martin G.; Leslie, Andrew G. W.

    2016-01-01

    The crystal structure has been determined of the F1-catalytic domain of the F-ATPase from Caldalkalibacillus thermarum, which hydrolyzes adenosine triphosphate (ATP) poorly. It is very similar to those of active mitochondrial and bacterial F1-ATPases. In the F-ATPase from Geobacillus stearothermophilus, conformational changes in the ε-subunit are influenced by intracellular ATP concentration and membrane potential. When ATP is plentiful, the ε-subunit assumes a “down” state, with an ATP molecule bound to its two C-terminal α-helices; when ATP is scarce, the α-helices are proposed to inhibit ATP hydrolysis by assuming an “up” state, where the α-helices, devoid of ATP, enter the α3β3-catalytic region. However, in the Escherichia coli enzyme, there is no evidence that such ATP binding to the ε-subunit is mechanistically important for modulating the enzyme’s hydrolytic activity. In the structure of the F1-ATPase from C. thermarum, ATP and a magnesium ion are bound to the α-helices in the down state. In a form with a mutated ε-subunit unable to bind ATP, the enzyme remains inactive and the ε-subunit is down. Therefore, neither the γ-subunit nor the regulatory ATP bound to the ε-subunit is involved in the inhibitory mechanism of this particular enzyme. The structure of the α3β3-catalytic domain is likewise closely similar to those of active F1-ATPases. However, although the βE-catalytic site is in the usual “open” conformation, it is occupied by the unique combination of an ADP molecule with no magnesium ion and a phosphate ion. These bound hydrolytic products are likely to be the basis of inhibition of ATP hydrolysis. PMID:27621435

  16. Publications - AR 2011-F | Alaska Division of Geological & Geophysical

    Science.gov Websites

    project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Annual Report Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2011-F main

  17. Publications - AR 2010-F | Alaska Division of Geological & Geophysical

    Science.gov Websites

    project descriptions, in DGGS Staff, Alaska Division of Geological & Geophysical Surveys Annual Report Visiting Alaska State Employees DGGS State of Alaska search Alaska Division of Geological & Geophysical Facebook DGGS News Natural Resources Geological & Geophysical Surveys Publications AR 2010-F main

  18. Rapid whole-brain resting-state fMRI at 3 T: Efficiency-optimized three-dimensional EPI versus repetition time-matched simultaneous-multi-slice EPI.

    PubMed

    Stirnberg, Rüdiger; Huijbers, Willem; Brenner, Daniel; Poser, Benedikt A; Breteler, Monique; Stöcker, Tony

    2017-12-01

    State-of-the-art simultaneous-multi-slice (SMS-)EPI and 3D-EPI share several properties that benefit functional MRI acquisition. Both sequences employ equivalent parallel imaging undersampling with controlled aliasing to achieve high temporal sampling rates. As a volumetric imaging sequence, 3D-EPI offers additional means of acceleration complementary to 2D-CAIPIRINHA sampling, such as fast water excitation and elliptical sampling. We performed an application-oriented comparison between a tailored, six-fold CAIPIRINHA-accelerated 3D-EPI protocol at 530 ms temporal and 2.4 mm isotropic spatial resolution and an SMS-EPI protocol with identical spatial and temporal resolution for whole-brain resting-state fMRI at 3 T. The latter required eight-fold slice acceleration to compensate for the lack of elliptical sampling and fast water excitation. Both sequences used vendor-supplied on-line image reconstruction. We acquired test/retest resting-state fMRI scans in ten volunteers, with simultaneous acquisition of cardiac and respiration data, subsequently used for optional physiological noise removal (nuisance regression). We found that the 3D-EPI protocol has significantly increased temporal signal-to-noise ratio throughout the brain as compared to the SMS-EPI protocol, especially when employing motion and nuisance regression. Both sequence types reliably identified known functional networks with stronger functional connectivity values for the 3D-EPI protocol. We conclude that the more time-efficient 3D-EPI primarily benefits from reduced parallel imaging noise due to a higher, actual k-space sampling density compared to SMS-EPI. The resultant BOLD sensitivity increase makes 3D-EPI a valuable alternative to SMS-EPI for whole-brain fMRI at 3 T, with voxel sizes well below 3 mm isotropic and sampling rates high enough to separate dominant cardiac signals from BOLD signals in the frequency domain. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. PAIR Comparison between Two Within-Group Conditions of Resting-State fMRI Improves Classification Accuracy

    PubMed Central

    Zhou, Zhen; Wang, Jian-Bao; Zang, Yu-Feng; Pan, Gang

    2018-01-01

    Classification approaches have been increasingly applied to differentiate patients and normal controls using resting-state functional magnetic resonance imaging data (RS-fMRI). Although most previous classification studies have reported promising accuracy within individual datasets, achieving high levels of accuracy with multiple datasets remains challenging for two main reasons: high dimensionality, and high variability across subjects. We used two independent RS-fMRI datasets (n = 31, 46, respectively) both with eyes closed (EC) and eyes open (EO) conditions. For each dataset, we first reduced the number of features to a small number of brain regions with paired t-tests, using the amplitude of low frequency fluctuation (ALFF) as a metric. Second, we employed a new method for feature extraction, named the PAIR method, examining EC and EO as paired conditions rather than independent conditions. Specifically, for each dataset, we obtained EC minus EO (EC—EO) maps of ALFF from half of subjects (n = 15 for dataset-1, n = 23 for dataset-2) and obtained EO—EC maps from the other half (n = 16 for dataset-1, n = 23 for dataset-2). A support vector machine (SVM) method was used for classification of EC RS-fMRI mapping and EO mapping. The mean classification accuracy of the PAIR method was 91.40% for dataset-1, and 92.75% for dataset-2 in the conventional frequency band of 0.01–0.08 Hz. For cross-dataset validation, we applied the classifier from dataset-1 directly to dataset-2, and vice versa. The mean accuracy of cross-dataset validation was 94.93% for dataset-1 to dataset-2 and 90.32% for dataset-2 to dataset-1 in the 0.01–0.08 Hz range. For the UNPAIR method, classification accuracy was substantially lower (mean 69.89% for dataset-1 and 82.97% for dataset-2), and was much lower for cross-dataset validation (64.69% for dataset-1 to dataset-2 and 64.98% for dataset-2 to dataset-1) in the 0.01–0.08 Hz range. In conclusion, for within-group design studies (e

  20. Modular nonvolatile solid state recorder (MONSSTR) update

    NASA Astrophysics Data System (ADS)

    Klang, Mark R.; Small, Martin B.; Beams, Tom

    2001-12-01

    Solid state recorders have begun replacing traditional tape recorders in fulfilling the requirement to record images on airborne platforms. With the advances in electro-optical, IR, SAR, Multi and Hyper-spectral sensors and video recording requirements, solid state recorders have become the recorder of choice. Solid state recorders provide the additional storage, higher sustained bandwidth, less power, less weight and smaller footprint to meet the current and future recording requirements. CALCULEX, Inc., manufactures a non-volatile flash memory solid state recorder called the MONSSTR (Modular Non-volatile Solid State Recorder). MONSSTR is being used to record images from many different digital sensors on high performance aircraft such as the RF- 4, F-16 and the Royal Air Force Tornado. MONSSTR, with its internal multiplexer, is also used to record instrumentation data. This includes multiple streams of PCM and multiple channels of 1553 data. Instrumentation data is being recorded by MONSSTR systems in a range of platforms including F-22, F-15, F-16, Comanche Helicopter and US Navy torpedos. MONSSTR can also be used as a cockpit video recorder. This paper will provide an update of the MONSSTR.

  1. Intensity-based masking: A tool to improve functional connectivity results of resting-state fMRI.

    PubMed

    Peer, Michael; Abboud, Sami; Hertz, Uri; Amedi, Amir; Arzy, Shahar

    2016-07-01

    Seed-based functional connectivity (FC) of resting-state functional MRI data is a widely used methodology, enabling the identification of functional brain networks in health and disease. Based on signal correlations across the brain, FC measures are highly sensitive to noise. A somewhat neglected source of noise is the fMRI signal attenuation found in cortical regions in close vicinity to sinuses and air cavities, mainly in the orbitofrontal, anterior frontal and inferior temporal cortices. BOLD signal recorded at these regions suffers from dropout due to susceptibility artifacts, resulting in an attenuated signal with reduced signal-to-noise ratio in as many as 10% of cortical voxels. Nevertheless, signal attenuation is largely overlooked during FC analysis. Here we first demonstrate that signal attenuation can significantly influence FC measures by introducing false functional correlations and diminishing existing correlations between brain regions. We then propose a method for the detection and removal of the attenuated signal ("intensity-based masking") by fitting a Gaussian-based model to the signal intensity distribution and calculating an intensity threshold tailored per subject. Finally, we apply our method on real-world data, showing that it diminishes false correlations caused by signal dropout, and significantly improves the ability to detect functional networks in single subjects. Furthermore, we show that our method increases inter-subject similarity in FC, enabling reliable distinction of different functional networks. We propose to include the intensity-based masking method as a common practice in the pre-processing of seed-based functional connectivity analysis, and provide software tools for the computation of intensity-based masks on fMRI data. Hum Brain Mapp 37:2407-2418, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  2. Inner-shell photoionization and core-hole decay of Xe and XeF2.

    PubMed

    Southworth, Stephen H; Wehlitz, Ralf; Picón, Antonio; Lehmann, C Stefan; Cheng, Lan; Stanton, John F

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF2 from Xe 3d(5/2), Xe 3d(3/2), and F 1s subshells in the 660-740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF2 cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionization show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F(+) and F(2+) ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe(+) and F(+) ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.

  3. On dynamical systems approaches and methods in f ( R ) cosmology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alho, Artur; Carloni, Sante; Uggla, Claes, E-mail: aalho@math.ist.utl.pt, E-mail: sante.carloni@tecnico.ulisboa.pt, E-mail: claes.uggla@kau.se

    We discuss dynamical systems approaches and methods applied to flat Robertson-Walker models in f ( R )-gravity. We argue that a complete description of the solution space of a model requires a global state space analysis that motivates globally covering state space adapted variables. This is shown explicitly by an illustrative example, f ( R ) = R + α R {sup 2}, α > 0, for which we introduce new regular dynamical systems on global compactly extended state spaces for the Jordan and Einstein frames. This example also allows us to illustrate several local and global dynamical systems techniquesmore » involving, e.g., blow ups of nilpotent fixed points, center manifold analysis, averaging, and use of monotone functions. As a result of applying dynamical systems methods to globally state space adapted dynamical systems formulations, we obtain pictures of the entire solution spaces in both the Jordan and the Einstein frames. This shows, e.g., that due to the domain of the conformal transformation between the Jordan and Einstein frames, not all the solutions in the Jordan frame are completely contained in the Einstein frame. We also make comparisons with previous dynamical systems approaches to f ( R ) cosmology and discuss their advantages and disadvantages.« less

  4. Measurement of 17F(d ,n )18Ne and the impact on the 17F(p ,γ )18Ne reaction rate for astrophysics

    NASA Astrophysics Data System (ADS)

    Kuvin, S. A.; Belarge, J.; Baby, L. T.; Baker, J.; Wiedenhöver, I.; Höflich, P.; Volya, A.; Blackmon, J. C.; Deibel, C. M.; Gardiner, H. E.; Lai, J.; Linhardt, L. E.; Macon, K. T.; Rasco, B. C.; Quails, N.; Colbert, K.; Gay, D. L.; Keeley, N.

    2017-10-01

    Background: The 17F(p ,γ )18Ne reaction is part of the astrophysical "hot CNO" cycles that are important in astrophysical environments like novas. Its thermal reaction rate is low owing to the relatively high energy of the resonances and therefore is dominated by direct, nonresonant capture in stellar environments at temperatures below 0.4 GK. Purpose: An experimental method is established to extract the proton strength to bound and unbound states in experiments with radioactive ion beams and to determine the parameters of direct and resonant capture in the 17F(p ,γ )18Ne reaction. Method: The 17F(d ,n )18Ne reaction is measured in inverse kinematics using a beam of the short-lived isotope 17F and a compact setup of neutron, proton, γ -ray, and heavy-ion detectors called resoneut. Results: The spectroscopic factors for the lowest l =0 proton resonances at Ec .m .=0.60 and 1.17 MeV are determined, yielding results consistent within 1.4 σ of previous proton elastic-scattering measurements. The asymptotic normalization coefficients of the bound 21+ and 22+ states in 18Ne are determined and the resulting direct-capture reaction rates are extracted. Conclusions: The direct-capture component of the 17F(p ,γ )18Ne reaction is determined for the first time from experimental data on 18Ne.

  5. Directional patterns of cross frequency phase and amplitude coupling within the resting state mimic patterns of fMRI functional connectivity

    PubMed Central

    Weaver, Kurt E.; Wander, Jeremiah D.; Ko, Andrew L.; Casimo, Kaitlyn; Grabowski, Thomas J.; Ojemann, Jeffrey G.; Darvas, Felix

    2016-01-01

    Functional imaging investigations into the brain's resting state interactions have yielded a wealth of insight into the intrinsic and dynamic neural architecture supporting cognition and behavior. Electrophysiological studies however have highlighted the fact that synchrony across large-scale cortical systems is composed of spontaneous interactions occurring at timescales beyond the traditional resolution of fMRI, a feature that limits the capacity of fMRI to draw inference on the true directional relationship between network nodes. To approach the question of directionality in resting state signals, we recorded resting state functional MRI (rsfMRI) and electrocorticography (ECoG) from four human subjects undergoing invasive epilepsy monitoring. Using a seed-point based approach, we employed phase-amplitude coupling (PAC) and biPhase Locking Values (bPLV), two measures of cross-frequency coupling (CFC) to explore both outgoing and incoming connections between the seed and all non-seed, site electrodes. We observed robust PAC between a wide range of low-frequency phase and high frequency amplitude estimates. However, significant bPLV, a CFC measure of phase-phase synchrony, was only observed at specific narrow low and high frequency bandwidths. Furthermore, the spatial patterns of outgoing PAC connectivity were most closely associated with the rsfMRI connectivity maps. Our results support the hypothesis that PAC is relatively ubiquitous phenomenon serving as a mechanism for coordinating high-frequency amplitudes across distant neuronal assemblies even in absence of overt task structure. Additionally, we demonstrate that the spatial distribution of a seed-point rsfMRI sensorimotor network is strikingly similar to specific patterns of directional PAC. Specifically, the high frequency activities of distal patches of cortex owning membership in a rsfMRI sensorimotor network were most likely to be entrained to the phase of a low frequency rhythm engendered from the

  6. No-carrier-added (18F)-N-methylspiroperidol

    DOEpatents

    Shiue, Chyng-Yann; Fowler, Joanna S.; Wolf, Alfred P.

    1993-01-01

    There is disclosed a radioligand labeled with a positron emitting radionuclide suitable for dynamic study in living humans with positron emission transaxial tomography. [.sup.18 F]-N-methylspiroperidol, exhibiting extremely high affinity for the dopamine receptors, provides enhanced uptake and retention in the brain concomitant with reduced radiation burden. These characteristics all combine to provide [.sup.18 F]-N-methylspiroperidol as a radioligand superior to known radioligands for mapping dopamine receptors in normal and disease states in the living brain. Additionally, a new synthetic procedure for this material is disclosed.

  7. No-carrier-added (18F)-N-methylspiroperidol

    DOEpatents

    Shiue, Chyng-Yann; Fowler, Joanna S.; Wolf, Alfred P.

    1993-07-06

    There is disclosed a radioligand labeled with a positron emitting radionuclide suitable for dynamic study in living humans with positron emission transaxial tomography. [.sup.18 F]-N-methylspiroperidol, exhibiting extremely high affinity for the dopamine receptors, provides enhanced uptake and retention in the brain concomitant with reduced radiation burden. These characteristics all combine to provide [.sup.18 F]-N-methylspiroperidol as a radioligand superior to known radioligands for mapping dopamine receptors in normal and disease states in the living brain. Additionally, a new synthetic procedure for this material is disclosed.

  8. 2. Historic American Buildings Survey, William F. Winter, Jr., Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. Historic American Buildings Survey, William F. Winter, Jr., Photographer June 1931, SOUTH (LEFT) AND EAST SIDES, Gift of New York State Department of Education. - Shaker North Family Dwelling House (second), State Route 22 & U.S. Route 20, New Lebanon, Columbia County, NY

  9. 9. Historic American Buildings Survey, William F. Winter, Jr., Photographer ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Historic American Buildings Survey, William F. Winter, Jr., Photographer Summer 1931, ATTIC WITH JOINING CHIMNEYS, Gift of New York State Department of Education. - Shaker North Family Dwelling House (second), State Route 22 & U.S. Route 20, New Lebanon, Columbia County, NY

  10. Alterations of functional connectivities from early to middle adulthood: Clues from multivariate pattern analysis of resting-state fMRI data.

    PubMed

    Tian, Lixia; Ma, Lin; Wang, Linlin

    2016-04-01

    In contrast to extended research interests in the maturation and aging of human brain, alterations of brain structure and function from early to middle adulthood have been much less studied. The aim of the present study was to investigate the extent and pattern of the alterations of functional interactions between brain regions from early to middle adulthood. We carried out the study by multivariate pattern analysis of resting-state fMRI (RS-fMRI) data of 63 adults aged 18 to 45 years. Specifically, using elastic net, we performed brain age estimation and age-group classification (young adults aged 18-28 years vs. middle-aged adults aged 35-45 years) based on the resting-state functional connectivities (RSFCs) between 160 regions of interest (ROIs) evaluated on the RS-fMRI data of each subject. The results indicate that the estimated brain ages were significantly correlated with the chronological age (R=0.78, MAE=4.81), and a classification rate of 94.44% and area under the receiver operating characteristic curve (AUC) of 0.99 were obtained when classifying the young and middle-aged adults. These results provide strong evidence that functional interactions between brain regions undergo notable alterations from early to middle adulthood. By analyzing the RSFCs that contribute to brain age estimation/age-group classification, we found that a majority of the RSFCs were inter-network, and we speculate that inter-network RSFCs might mature late but age early as compared to intra-network ones. In addition, the strengthening/weakening of the RSFCs associated with the left/right hemispheric ROIs, the weakening of cortico-cerebellar RSFCs and the strengthening of the RSFCs between the default mode network and other networks contributed much to both brain age estimation and age-group classification. All these alterations might reflect that aging of brain function is already in progress in middle adulthood. Overall, the present study indicated that the RSFCs undergo notable

  11. Characterization of task-free and task-performance brain states via functional connectome patterns.

    PubMed

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2013-12-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACPs) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. Copyright © 2013 Elsevier B.V. All rights reserved.

  12. Characterization of Task-free and Task-performance Brain States via Functional Connectome Patterns

    PubMed Central

    Zhang, Xin; Guo, Lei; Li, Xiang; Zhang, Tuo; Zhu, Dajiang; Li, Kaiming; Chen, Hanbo; Lv, Jinglei; Jin, Changfeng; Zhao, Qun; Li, Lingjiang; Liu, Tianming

    2014-01-01

    Both resting state fMRI (R-fMRI) and task-based fMRI (T-fMRI) have been widely used to study the functional activities of the human brain during task-free and task-performance periods, respectively. However, due to the difficulty in strictly controlling the participating subject's mental status and their cognitive behaviors during R-fMRI/T-fMRI scans, it has been challenging to ascertain whether or not an R-fMRI/T-fMRI scan truly reflects the participant's functional brain states during task-free/task-performance periods. This paper presents a novel computational approach to characterizing and differentiating the brain's functional status into task-free or task-performance states, by which the functional brain activities can be effectively understood and differentiated. Briefly, the brain's functional state is represented by a whole-brain quasi-stable connectome pattern (WQCP) of R-fMRI or T-fMRI data based on 358 consistent cortical landmarks across individuals, and then an effective sparse representation method was applied to learn the atomic connectome patterns (ACP) of both task-free and task-performance states. Experimental results demonstrated that the learned ACPs for R-fMRI and T-fMRI datasets are substantially different, as expected. A certain portion of ACPs from R-fMRI and T-fMRI data were overlapped, suggesting some subjects with overlapping ACPs were not in the expected task-free/task-performance brain states. Besides, potential outliers in the T-fMRI dataset were further investigated via functional activation detections in different groups, and our results revealed unexpected task-performances of some subjects. This work offers novel insights into the functional architectures of the brain. PMID:23938590

  13. Spatial reversal learning defect coincides with hypersynchronous telencephalic BOLD functional connectivity in APPNL-F/NL-F knock-in mice.

    PubMed

    Shah, Disha; Latif-Hernandez, Amira; De Strooper, Bart; Saito, Takashi; Saido, Takaomi; Verhoye, Marleen; D'Hooge, Rudi; Van der Linden, Annemie

    2018-04-19

    Amyloid pathology occurs early in Alzheimer's disease (AD), and has therefore been the focus of numerous studies. Transgenic mouse models have been instrumental to study amyloidosis, but observations might have been confounded by APP-overexpression artifacts. The current study investigated early functional defects in an APP knock-in mouse model, which allows assessing the effects of pathological amyloid-beta (Aβ) without interference of APP-artifacts. Female APP NL/NL knock-in mice of 3 and 7 months old were compared to age-matched APP NL-F/NL-F mice with increased Aβ42/40 ratio and initial Aβ-plaque deposition around 6 months of age. Spatial learning was examined using a Morris water maze protocol consisting of acquisition and reversal trials interleaved with reference memory tests. Functional connectivity (FC) of brain networks was assessed using resting-state functional MRI (rsfMRI). The Morris water maze data revealed that 3 months old APP NL-F/NL-F mice were unable to reach the same reference memory proficiency as APP NL/NL mice after reversal training. This cognitive defect in 3-month-old APP NL-F/NL-F mice coincided with hypersynchronous FC of the hippocampal, cingulate, caudate-putamen, and default-mode-like networks. The occurrence of these defects in APP NL-F/NL-F mice demonstrates that cognitive flexibility and synchronicity of telencephalic activity are specifically altered by early Aβ pathology without changes in APP neurochemistry.

  14. Waveguide Modulator for Interference Tolerant Functional Near Infrared Spectrometer (fNIRS)

    NASA Technical Reports Server (NTRS)

    Walton, Joanne; Tin, Padetha; Mackey, Jeffrey

    2017-01-01

    Many crew-related errors in aviation and astronautics are caused by hazardous cognitive states including overstress, disengagement, high fatigue and ineffective crew coordination. Safety can be improved by monitoring and predicting these cognitive states in a non-intrusive manner and designing mitigation strategies. Measuring hemoglobin concentration changes in the brain with functional Near Infrared Spectroscopy is a promising technique for monitoring cognitive state and optimizing human performance during both space and aviation operations. A compact, wearable fNIRS system would provide an innovative early warning system during long duration missions to detect and prevent vigilance decrements in pilots and astronauts. This effort focused on developing a waveguide modulator for use in a fNIRS system.

  15. Tropomyosin movement on F-actin during muscle activation explained by energy landscapes.

    PubMed

    Orzechowski, Marek; Moore, Jeffrey R; Fischer, Stefan; Lehman, William

    2014-03-01

    Muscle contraction is regulated by tropomyosin movement across the thin filament surface, which exposes or blocks myosin-binding sites on actin. Recent atomic structures of F-actin-tropomyosin have yielded the positions of tropomyosin on myosin-free and myosin-decorated actin. Here, the repositioning of α-tropomyosin between these locations on F-actin was systematically examined by optimizing the energy of the complex for a wide range of tropomyosin positions on F-actin. The resulting energy landscape provides a full-map of the F-actin surface preferred by tropomyosin, revealing a broad energy basin associated with the tropomyosin position that blocks myosin-binding. This is consistent with previously proposed low-energy oscillations of semi-rigid tropomyosin, necessary for shifting of tropomyosin following troponin-binding. In contrast, the landscape shows much less favorable energies when tropomyosin locates near its myosin-induced "open-state" position. This indicates that spontaneous movement of tropomyosin away from its energetic "ground-state" to the open-state is unlikely in absence of myosin. Instead, myosin-binding must drive tropomyosin toward the open-state to activate the thin filament. Additional energy landscapes were computed for disease-causing actin mutants that distort the topology of the actin-tropomyosin energy landscape, explaining their phenotypes. Thus, the computation of such energy landscapes offers a sensitive way to estimate the impact of mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  16. Toward Adaptation of fNIRS Instrumentation to Airborne Environments

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Mackey, Jeffrey R.

    2013-01-01

    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness.

  17. Toward Adaptation of fNIRS Instrumentation to Airborne Environments

    NASA Technical Reports Server (NTRS)

    Adamovsky, Grigory; Mackey, Jeffrey; Harrivel, Angela; Hearn, Tristan; Floyd, Bertram

    2014-01-01

    The paper reviews potential applications of functional Near-Infrared Spectroscopy (fNIRS), a well-known medical diagnostic technique, to monitoring the cognitive state of pilots with a focus on identifying ways to adopt this technique to airborne environments. We also discuss various fNIRS techniques and the direction of technology maturation of associated hardware in view of their potential for miniaturization, maximization of data collection capabilities, and user friendliness.

  18. Compressed Sensing for fMRI: Feasibility Study on the Acceleration of Non-EPI fMRI at 9.4T

    PubMed Central

    Kim, Seong-Gi; Ye, Jong Chul

    2015-01-01

    Conventional functional magnetic resonance imaging (fMRI) technique known as gradient-recalled echo (GRE) echo-planar imaging (EPI) is sensitive to image distortion and degradation caused by local magnetic field inhomogeneity at high magnetic fields. Non-EPI sequences such as spoiled gradient echo and balanced steady-state free precession (bSSFP) have been proposed as an alternative high-resolution fMRI technique; however, the temporal resolution of these sequences is lower than the typically used GRE-EPI fMRI. One potential approach to improve the temporal resolution is to use compressed sensing (CS). In this study, we tested the feasibility of k-t FOCUSS—one of the high performance CS algorithms for dynamic MRI—for non-EPI fMRI at 9.4T using the model of rat somatosensory stimulation. To optimize the performance of CS reconstruction, different sampling patterns and k-t FOCUSS variations were investigated. Experimental results show that an optimized k-t FOCUSS algorithm with acceleration by a factor of 4 works well for non-EPI fMRI at high field under various statistical criteria, which confirms that a combination of CS and a non-EPI sequence may be a good solution for high-resolution fMRI at high fields. PMID:26413503

  19. The Effective Hamiltonian for the Ground State of 207Pb19F and New Measurements of the Fine Structure Spectrum Near 1.2 μ m.

    NASA Astrophysics Data System (ADS)

    Mawhorter, Richard; Murphey, Benjamin; Baum, Alexander; Sears, Trevor J.; Yang, T. Zh.; Rupasinghe, P. M.; McRaven, C. P.; Shafer-Ray, N. E.; Alphei, Lukas D.; Grabow, Jens-Uwe.

    2011-06-01

    We have measured rotational transitions in the ground, X_1 ^2Π1/2, electronic state of naturally occuring isotopomers of PbF in a supersonic free jet Fourier transform microwave spectrometer. The data for 207Pb19F is particularly interesting because it is a candidate for a future experimental e-EDM measurement. To fit the data for this species to the measurement precision, the nuclear spin-spin dipolar interaction and a second term that can be equivalently viewed as a centrifugal distortion correction to the familiar Frosch and Foley hyperfine coupling terms, or an Ω- dependent correction to the nuclear spin-rotational coupling are required, in addition to the standard terms. To characterize the higher X_2 ^2Π3/2 component of the ground state of PbF, we are attempting a direct measurement of transitions between the two components in a slit jet-cooled sample using a frequency comb-referenced extended cavity diode laser. This spectrum was originally detected in a hot source by Fourier transform near-infrared spectroscopy, but low-J transitions were unresolved at that time. Acknowledgments: Work at Brookhaven National Laboratory was carried out under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Work by N. E. Shafer-Ray was performed with support from the National Science Foundatation award NSF-0855431. J.-U. Grabow ackonwledges funding from the Deutsche Forschungsgemeinschaft and the Land Niedersachsen. K. Ziebarth, K. Setzer, O. Shestakov and E. Fink J. Molec. Spectrosc. 191, 108 1998.

  20. Comprehensive ab initio calculation and simulation on the low-lying electronic states of TlX (X = F, Cl, Br, I, and At).

    PubMed

    Zou, Wenli; Liu, Wenjian

    2009-03-01

    The low-lying electronic states of TlX (X=F, Cl, Br, I, and At) are investigated using the configuration interaction based complete active space third-order perturbation theory [CASPT3(CI)] with spin-orbit coupling accounted for. The potential energy curves and the corresponding spectroscopic constants are reported. The results are grossly in good agreement with the available experimental data. The absorption spectra are simulated as well to reassign the experimental bands. The present results are also useful for guiding future experimental measurements.

  1. Detecting Brain State Changes via Fiber-Centered Functional Connectivity Analysis

    PubMed Central

    Li, Xiang; Lim, Chulwoo; Li, Kaiming; Guo, Lei; Liu, Tianming

    2013-01-01

    Diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) have been widely used to study structural and functional brain connectivity in recent years. A common assumption used in many previous functional brain connectivity studies is the temporal stationarity. However, accumulating literature evidence has suggested that functional brain connectivity is under temporal dynamic changes in different time scales. In this paper, a novel and intuitive approach is proposed to model and detect dynamic changes of functional brain states based on multimodal fMRI/DTI data. The basic idea is that functional connectivity patterns of all fiber-connected cortical voxels are concatenated into a descriptive functional feature vector to represent the brain’s state, and the temporal change points of brain states are decided by detecting the abrupt changes of the functional vector patterns via the sliding window approach. Our extensive experimental results have shown that meaningful brain state change points can be detected in task-based fMRI/DTI, resting state fMRI/DTI, and natural stimulus fMRI/DTI data sets. Particularly, the detected change points of functional brain states in task-based fMRI corresponded well to the external stimulus paradigm administered to the participating subjects, thus partially validating the proposed brain state change detection approach. The work in this paper provides novel perspective on the dynamic behaviors of functional brain connectivity and offers a starting point for future elucidation of the complex patterns of functional brain interactions and dynamics. PMID:22941508

  2. Altered interhemispheric functional connectivity in patients with anisometropic and strabismic amblyopia: a resting-state fMRI study.

    PubMed

    Liang, Minglong; Xie, Bing; Yang, Hong; Yin, Xuntao; Wang, Hao; Yu, Longhua; He, Sheng; Wang, Jian

    2017-05-01

    Altered brain functional connectivity has been reported in patients with amblyopia by recent neuroimaging studies. However, relatively little is known about the alterations in interhemispheric functional connectivity in amblyopia. The present study aimed to investigate the functional connectivity patterns between homotopic regions across hemispheres in patients with anisometropic and strabismic amblyopia under resting state. Nineteen monocular anisometropic amblyopia (AA), 18 strabismic amblyopia (SA), and 20 normal-sight controls (NC) were enrolled in this study. After a comprehensive ophthalmologic examination, resting-state fMRI scanning was performed in all participants. The pattern of the interhemispheric functional connectivity was measured with the voxel-mirrored homotopic connectivity (VMHC) approach. VMHC values differences within and between three groups were compared, and correlations between VMHC values and each the clinical variable were also analyzed. Altered VMHC was observed in AA and SA patients in lingual gyrus and fusiform gyrus compared with NC subjects. The altered VMHC of lingual gyrus showed a pattern of AA > SA > NC, while the altered VMHC of fusiform gyrus showed a pattern of AA > NC > SA. Moreover, the VMHC values of lingual gyrus were positively correlated with the stereoacuity both in AA and SA patients, and the VMHC values of fusiform gyrus were positively correlated with the amount of anisometropia just in AA patients. These findings suggest that interhemispheric functional coordination between several homotopic visual-related brain regions is impaired both in AA and SA patients under resting state and revealed the similarities and differences in interhemispheric functional connectivity between the anisometropic and strabismic amblyopia.

  3. Coupled potential energy surface for the F(2P)+CH4→HF+CH3 entrance channel and quantum dynamics of the CH4·F- photodetachment.

    PubMed

    Westermann, Till; Eisfeld, Wolfgang; Manthe, Uwe

    2013-07-07

    An approach to construct vibronically and spin-orbit coupled diabatic potential energy surfaces (PESs) which describe all three relevant electronic states in the entrance channels of the X(P) + CH4 →HX + CH3 reactions (with X=F((2)P), Cl((2)P), or O((3)P)) is introduced. The diabatization relies on the permutational symmetry present in the methane molecule and results in diabatic states which transform as the three p orbitals of the X atom. Spin-orbit coupling is easily and accurately included using the atomic spin-orbit coupling matrix of the isolated X atom. The method is applied to the F + CH4 system obtaining an accurate PES for the entrance channel based on ab initio multi-reference configuration interaction (MRCI) calculations. Comparing the resulting PESs with spin-orbit MRCI calculations, excellent agreement is found for the excited electronic states at all relevant geometries. The photodetachment spectrum of CH4·F(-) is investigated via full-dimensional (12D) quantum dynamics calculations on the coupled PESs using the multi-layer multi-configurational time-dependent Hartree approach. Extending previous work [J. Palma and U. Manthe, J. Chem. Phys. 137, 044306 (2012)], which was restricted to the dynamics on a single adiabatic PES, the contributions of the electronically excited states to the photodetachment spectrum are calculated and compared to experiment. Considering different experimental setups, good agreement between experiment and theory is found. Addressing questions raised in the previous work, the present dynamical calculations show that the main contribution to the second peak in the photodetachment spectrum results from electron detachment into the electronically excited states of the CH4F complex.

  4. Accurate multireference calculations of the electronic structure of TiF 2 and TiCl 2

    NASA Astrophysics Data System (ADS)

    Vogel, M.; Wenzel, W.

    2005-09-01

    We report a systematic study of the electronic structure of two members of the transition metal dihalide family, TiF 2 and TiCl 2. Using the configuration interaction method in large basis sets we investigated the lowest 15 states of TiF 2 and TiCl 2. We report bond lengths, frequencies and dissociation energies of both molecules. For TiF 2 we found a near degeneracy of the ground and the first excited state with a possible breakdown of the Born-Oppenheimer approximation.

  5. Detection of osseous metastasis by 18F-NaF/18F-FDG PET/CT versus CT alone.

    PubMed

    Sampath, Srinath C; Sampath, Srihari C; Mosci, Camila; Lutz, Amelie M; Willmann, Juergen K; Mittra, Erik S; Gambhir, Sanjiv S; Iagaru, Andrei

    2015-03-01

    Sodium fluoride PET (18F-NaF) has recently reemerged as a valuable method for detection of osseous metastasis, with recent work highlighting the potential of coadministered 18F-NaF and 18F-FDG PET/CT in a single combined imaging examination. We further examined the potential of such combined examinations by comparing dual tracer 18F-NaF18/F-FDG PET/CT with CT alone for detection of osseous metastasis. Seventy-five participants with biopsy-proven malignancy were consecutively enrolled from a single center and underwent combined 18F-NaF/18F-FDG PET/CT and diagnostic CT scans. PET/CT as well as CT only images were reviewed in blinded fashion and compared with the results of clinical, imaging, or histological follow-up as a truth standard. Sensitivity of the combined 18F-NaF/18F-FDG PET/CT was higher than that of CT alone (97.4% vs 66.7%). CT and 18F-NaF/18F-FDG PET/CT were concordant in 73% of studies. Of 20 discordant cases, 18F-NaF/18F-FDG PET/CT was correct in 19 (95%). Three cases were interpreted concordantly but incorrectly, and all 3 were false positives. A single case of osseous metastasis was detected by CT alone, but not by 18F-NaF/18F-FDG PET/CT. Combined 18F-NaF/18F-FDG PET/CT outperforms CT alone and is highly sensitive and specific for detection of osseous metastases. The concordantly interpreted false-positive cases demonstrate the difficulty of distinguishing degenerative from malignant disease, whereas the single case of metastasis seen on CT but not PET highlights the need for careful review of CT images in multimodality studies.

  6. Effects of Varying Gravity Levels on fNIRS Headgear Performance and Signal Recovery

    NASA Technical Reports Server (NTRS)

    Mackey, Jeffrey R.; Harrivel, Angela R.; Adamovsky, Grigory; Lewandowski, Beth E.; Gotti, Daniel J.; Tin, Padetha; Floyd, Bertram M.

    2013-01-01

    This paper reviews the effects of varying gravitational levels on functional Near-Infrared Spectroscopy (fNIRS) headgear. The fNIRS systems quantify neural activations in the cortex by measuring hemoglobin concentration changes via optical intensity. Such activation measurement allows for the detection of cognitive state, which can be important for emotional stability, human performance and vigilance optimization, and the detection of hazardous operator state. The technique depends on coupling between the fNIRS probe and users skin. Such coupling may be highly susceptible to motion if probe-containing headgear designs are not adequately tested. The lack of reliable and self-applicable headgear robust to the influence of motion artifact currently inhibits its operational use in aerospace environments. Both NASAs Aviation Safety and Human Research Programs are interested in this technology as a method of monitoring cognitive state of pilots and crew.

  7. Electron impact elastic and excitation cross-sections of the isomers of C4F6 molecule for plasma modeling

    NASA Astrophysics Data System (ADS)

    Gupta, Dhanoj; Song, Mi-Young; Baluja, K. L.; Choi, Heechol; Yoon, Jung-Sik

    2018-06-01

    We report the calculations of elastic (along with its symmetry components) and electronic excitation cross sections by electron impact of the three isomers of C4F6, namely, hexafluoro-1,3-butadiene (1,3-C4F6), hexafluoro-2-butyne (2-C4F6), and hexafluorocyclobutene (c-C4F6) belonging to the point groups C2, D3d, and C2v, respectively, using the R-matrix approach. The electron energy range is from 0.01 eV to 12 eV. We have employed the cc-pVTZ basis set for C and F atoms to generate self-consistent field molecular orbitals to construct the target states for all the isomers included in our calculations. All the target states are constructed by including correlation effects in a configuration interaction (CI) approach. The target properties such as vertical excitation energies and dipole moment of all the isomers are in reasonable agreement with the literature values. Differences in the cross sections of these isomers are strongly influenced by the effect of correlation and polarization effects and their geometrical extent. We have included the ground state and many excited states of each isomer in the trial wave function of the entire scattering system. The resulting elastic cross sections are compared with the available experimental results. The agreement is reasonably good for energies above 5 eV. The shape resonances detected at 2.57, 2.95, and 3.20 eV for c-C4F6, 1,3-C4F6, and 2-C4F6 isomers are associated with the negative anion formation of C3F3- as observed in the mass spectrometry experiments. We have also performed 1-state CI calculation for all the isomers that include only the correlated ground state. The position of resonances shifts to lower energies as the number of target states is increased compared to 1-state calculation for all the isomers. The elastic cross section for 2-C4F6 isomer is larger than the other isomers because of its larger spatial extent. The present cross section data are important for plasma simulation and modeling, especially

  8. Microscopic Approach to Magnetism and Superconductivity of f-Electron Systems with Filled Skutterudite Structure

    NASA Astrophysics Data System (ADS)

    Hotta, Takashi

    2005-04-01

    In order to gain a deep insight into f-electron properties of filled skutterudite compounds from a microscopic viewpoint, we investigate the multiorbital Anderson model including Coulomb interactions, spin-orbit coupling, and crystalline electric field effect. First we examine the local f-electron state in detail in comparison with the results of LS and j-j coupling schemes. For each case of n=1--13, where n is the number of f electrons per rare-earth ion, the model is analyzed by using the numerical renormalization group (NRG) method to evaluate magnetic susceptibility and entropy of f electron. In particular, for the f 2-electron system corresponding to the Pr-based filled skutterudite, it is found that magnetic fluctuations significantly remain at low temperatures, even when the ground state is Γ1 singlet, if Γ_4(2) triplet is the excited state with small excitation energy. In order to make further step to construct a simplified model which can be treated even in a periodic system, we also analyze the Anderson model constructed based on the j-j coupling scheme by using the NRG method. It is clearly observed that the magnetic properties are quite similar to those of the original Anderson model. Then, we construct an orbital degenerate Hubbard model based on the j-j coupling scheme to investigate the mechanism of superconductivity of filled skutterudites. In the 2-site model, we carefully evaluate the superconducting pair susceptibility for the case of n=2 and find that the susceptibility for off-site Cooper pair is clearly enhanced only in a transition region in which the singlet and triplet ground states are interchanged. We envision a scenario that unconventional superconductivity induced by magnetic fluctuations may occur in the f 2-electron system with Γ1 ground state such as Pr-based filled skutterudite compounds.

  9. Hazardous Waste Management System: Identification and Listing of Hazardous Waste - CERCLA Hazardous Substance Designation-Petroleum Refinery Primary and Other Listings (F037 and F038) - Federal Register Notice, May 13, 1991

    EPA Pesticide Factsheets

    The Agency is promulgating an interim final rule revising the definition of wastes subject to the F037 and F038 listings to state that sludges from non-contact, once-through cooling waters are not included.

  10. Compact setup for the production of {sup 87}Rb |F = 2, m{sub F} = + 2〉 Bose-Einstein condensates in a hybrid trap

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nolli, Raffaele; Venturelli, Michela; Marmugi, Luca, E-mail: l.marmugi@ucl.ac.uk

    We present a compact experimental apparatus for Bose-Einstein condensation of {sup 87}Rb in the |F  =  2, m{sub F} = + 2〉 state. A pre-cooled atomic beam of {sup 87}Rb is obtained by using an unbalanced magneto-optical trap, allowing controlled transfer of trapped atoms from the first vacuum chamber to the science chamber. Here, atoms are transferred to a hybrid trap, as produced by overlapping a magnetic quadrupole trap with a far-detuned optical trap with crossed beam configuration, where forced radiofrequency evaporation is realized. The final evaporation leading to Bose-Einstein condensation is then performed by exponentially lowering the optical trapmore » depth. Control and stabilization systems of the optical trap beams are discussed in detail. The setup reliably produces a pure condensate in the |F = 2, m{sub F} = + 2〉 state in 50 s, which includes 33 s loading of the science magneto-optical trap and 17 s forced evaporation.« less

  11. Media for identification of Gibberella zeae and production of F-2-(Zearalenone).

    PubMed

    Bacon, C W; Robbins, J D; Porter, J K

    1977-02-01

    Media are described for the isolaton of Fusarium graminearum in the perithecial state, Gibberella zeae, and for the production of F-2 (zearalenone) by Fusarium species. On soil extract-corn meal agar isolated medium, G. Zeae produced perithecia in 9 to 14 days under a 12-h photoperiod. Species of Fusarium were screened for F-2 production on a liquid medium. From strains that produced F-2, the yields, from stationary cultures of G. zeae and F. culmorum after 12 days of incubation, ranged from 22 to 86 mg/liter. Three strains produced no F-2. Glumatic acid, starch, yeast extract,and the proper ratio of medium volume-to-flask volume were necessary for F-2 synthesis.

  12. Insertion of rare gas atoms into BF3 and AlF3 molecules: An ab initio investigation

    NASA Astrophysics Data System (ADS)

    Jayasekharan, T.; Ghanty, T. K.

    2006-12-01

    The structure, stability, charge redistribution, and harmonic vibrational frequencies of rare gas inserted group III-B fluorides with the general formula F -Rg-MF2 (where M =B and Al; Rg =Ar, Kr, and Xe) have been investigated using ab initio quantum chemical methods. The Rg atom is inserted in one of the M -F bond of MF3 molecules, and the geometries are optimized for ground as well as transition states using the MP2 method. It has been found that Rg inserted F -Rg-M portion is linear in both F -Rg-BF2 and F -Rg-AlF2 species. The binding energies corresponding to the lowest energy fragmentation products MF3+Rg (two-body dissociation) have been computed to be -670.4, -598.8, -530.7, -617.0, -562.1, and -494.0kJ /mol for F -Ar-BF2, F -Kr-BF2, F -Xe-BF2, F -Ar-AlF2, F -Kr-AlF2, and F -Xe-AlF2 species, respectively. The dissociation energies corresponding to MF2+Rg +F fragments (three-body dissociation) are found to be positive with respect to F -Rg-MF2 species, and the computed values are 56.3, 127.8, and 196.0kJ/mol for F -Ar-BF2, F -Kr-BF2, and F -Xe-BF2 species, respectively. The corresponding values for F -Ar-AlF2, F -Kr-AlF2, and F -Xe-AlF2 species are also found to be positive. The decomposition of F -Rg-MF2 species into the MF3+Rg (two-body dissociation) channel typically proceeds via a transition state involving F -Rg-M out-of-plane bending mode. The transition state barrier heights are 35.5, 62.7, 89.8, 22.0, 45.6, and 75.3kJ/mol for F -Ar-BF2, F -Kr-BF2, F -Xe-BF2, F -Ar-AlF2, F -Kr-AlF2, and F -Xe-AlF2 species, respectively. The calculated geometrical parameters and the energy values suggest that these species are metastable and may be prepared and characterized using low temperature matrix isolation techniques, and are possibly the next new candidates for gas phase or matrix experiments.

  13. The phase diagrams of KCaF3 and NaMgF3 by ab initio simulations

    NASA Astrophysics Data System (ADS)

    Jakymiw, Clément; Vočadlo, Lidunka; Dobson, David P.; Bailey, Edward; Thomson, Andrew R.; Brodholt, John P.; Wood, Ian G.; Lindsay-Scott, Alex

    2018-04-01

    ABF3 compounds have been found to make valuable low-pressure analogues for high-pressure silicate phases that are present in the Earth's deep interior and that may also occur in the interiors of exoplanets. The phase diagrams of two of these materials, KCaF3 and NaMgF3, have been investigated in detail by static ab initio computer simulations based on density functional theory. Six ABF3 polymorphs were considered, as follows: the orthorhombic perovskite structure (GdFeO3-type; space group Pbnm); the orthorhombic CaIrO3 structure ( Cmcm; commonly referred to as the "post-perovskite" structure); the orthorhombic Sb2S3 and La2S3 structures (both Pmcn); the hexagonal structure previously suggested in computer simulations of NaMgF3 ( P63/ mmc); the monoclinic structure found to be intermediate between the perovskite and CaIrO3 structures in CaRhO3 ( P21/ m). Volumetric and axial equations of state of all phases considered are presented. For KCaF3, as expected, the perovskite phase is shown to be the most thermodynamically stable at atmospheric pressure. With increasing pressure, the relative stability of the KCaF3 phases then follows the sequence: perovskite → La2S3 structure → Sb2S3 structure → P63/ mmc structure; the CaIrO3 structure is never the most stable form. Above about 2.6 GPa, however, none of the KCaF3 polymorphs are stable with respect to dissociation into KF and CaF2. The possibility that high-pressure KCaF3 polymorphs might exist metastably at 300 K, or might be stabilised by chemical substitution so as to occur within the standard operating range of a multi-anvil press, is briefly discussed. For NaMgF3, the transitions to the high-pressure phases occur at pressures outside the normal range of a multi-anvil press. Two different sequences of transitions had previously been suggested from computer simulations. With increasing pressure, we find that the relative stability of the NaMgF3 phases follows the sequence: perovskite → CaIrO3 structure → Sb2

  14. Facilitated ion transport in all-solid-state flexible supercapacitors.

    PubMed

    Choi, Bong Gill; Hong, Jinkee; Hong, Won Hi; Hammond, Paula T; Park, HoSeok

    2011-09-27

    The realization of highly flexible and all-solid-state energy-storage devices strongly depends on both the electrical properties and mechanical integrity of the constitutive materials and the controlled assembly of electrode and solid electrolyte. Herein we report the preparation of all-solid-state flexible supercapacitors (SCs) through the easy assembly of functionalized reduced graphene oxide (f-RGO) thin films (as electrode) and solvent-cast Nafion electrolyte membranes (as electrolyte and separator). In particular, the f-RGO-based SCs (f-RGO-SCs) showed a 2-fold higher specific capacitance (118.5 F/g at 1 A/g) and rate capability (90% retention at 30 A/g) compared to those of all-solid-state graphene SCs (62.3 F/g at 1A/g and 48% retention at 30 A/g). As proven by the 4-fold faster relaxation of the f-RGO-SCs than that of the RGO-SCs and more capacitive behavior of the former at the low-frequency region, these results were attributed to the facilitated ionic transport at the electrical double layer by means of the interfacial engineering of RGO by Nafion. Moreover, the superiority of all-solid-state flexible f-RGO-SCs was demonstrated by the good performance durability under the 1000 cycles of charging and discharging due to the mechanical integrity as a consequence of the interconnected networking structures. Therefore, this research provides new insight into the rational design and fabrication of all-solid-state flexible energy-storage devices as well as the fundamental understanding of ion and charge transport at the interface. © 2011 American Chemical Society

  15. Reconstruction of missed critical frequency of F2-layer over Mexico using TEC

    NASA Astrophysics Data System (ADS)

    Sergeeva, M. A.; Maltseva, O. A.; Gonzalez-Esparza, A.; Romero Hernandez, E.; De la Luz, V.; Rodriguez-Martinez, M. R.

    2016-12-01

    The study of the Earth's ionosphere's state is one of the key issues within the Space Weather monitoring task. It is hard to overestimate the importance of diagnostics of its current state and forecasts of Space Weather conditions. There are different methods of short-time predictions for the ionosphere state change. The real-time monitoring of the ionospheric Total Electron Content (TEC) provides the opportunity to choose an appropriate technique for the particular observation point on the Earth. From September 2015 the continuous monitoring of TEC variations over the territory of Mexico is performed by the Mexican Space Weather Service (SCiESMEX). Regular patterns of the diurnal and seasonal TEC variations were revealed in base of past statistics and real-time observations which can be used to test the prediction method. Some specific features of the ionosphere behaviour are discussed. However, with all the merits of TEC as an ionospheric parameter, for the full picture of the processes in the ionosphere and for practical applications it is needed to identify the behaviour of other principal ionospheric parameters provided by ionosondes. Currently, SCiESMEX works on the project of the ionosonde installation in Mexico. This study was focused on the reconstruction of the critical frequency of F2-layer of the ionosphere (foF2) when this data is missing. For this purpose measurements of TEC and the median value of the equivalent slab thickness of the ionosphere were used. First, the foF2 values reconstruction was made for the case of the ionosonde data being absent during some hours or days. Second, the possibility of foF2 reconstruction was estimated for the Mexican region having no ionosonde using local TEC data and foF2 data obtained in the regions close to Mexico. Calculations were performed for quiet and disturbed periods. The results of reconstruction were compared to the foF2 obtained from the International Reference Model and to median foF2 values. Comparison

  16. Two-step photoconductivity in LiY x Lu1 - x F4:Ce,Yb crystals

    NASA Astrophysics Data System (ADS)

    Nurtdinova, L. A.; Korableva, S. L.; Leontiev, A. V.

    2016-10-01

    Photoconductivity of LiY x Lu1- x F4:Ce,Yb ( x = 0-1) crystals is measured under one- and two-step excitation. It is established that the photoconductivity is due to intra-center transitions from excited states of Ce3+ ions. The position of the ground 4 f-state of Ce3+ ion relative to the bottom of the conduction band is determined. The choice of pumping conditions to obtain the lasing on the 5 d-4 f transitions of trivalent cerium in these active media is substantiated.

  17. F Reactor Inspection

    ScienceCinema

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2018-01-16

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosure and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."

  18. F Reactor Inspection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Grindstaff, Keith; Hathaway, Boyd; Wilson, Mike

    2014-10-29

    Workers from Mission Support Alliance, LLC., removed the welds around the steel door of the F Reactor before stepping inside the reactor to complete its periodic inspection. This is the first time the Department of Energy (DOE) has had the reactor open since 2008. The F Reactor is one of nine reactors along the Columbia River at the Department's Hanford Site in southeastern Washington State, where environmental cleanup has been ongoing since 1989. As part of the Tri-Party Agreement, the Department completes surveillance and maintenance activities of cocooned reactors periodically to evaluate the structural integrity of the safe storage enclosuremore » and to ensure confinement of any remaining hazardous materials. "This entry marks a transition of sorts because the Hanford Long-Term Stewardship Program, for the first time, was responsible for conducting the entry and surveillance and maintenance activities," said Keith Grindstaff, Energy Department Long-Term Stewardship Program Manager. "As the River Corridor cleanup work is completed and transitioned to long-term stewardship, our program will manage any on-going requirements."« less

  19. Molecular beam epitaxy growth of SmFeAs(O,F) films with Tc = 55 K using the new fluorine source FeF3

    NASA Astrophysics Data System (ADS)

    Sakoda, Masahito; Ishii, Akihiro; Takinaka, Kenji; Naito, Michio

    2017-07-01

    REFeAs(O,F) (RE: rare-earth element) has the highest-Tc (˜58 K) among the iron-based superconductors, but a thin-film growth of REFeAs(O,F) is difficult. This is because it is not only a complex compound consisting of five elements but also requires doping of highly reactive fluorine to achieve superconductivity. We have reported in our previous article that fluorine can be supplied to a film by subliming solid-state fluorides such as FeF2 or SmF3. In this article, we report on the growth of SmFeAs(O,F) using FeF3 as an alternative fluorine source. FeF3 is solid at ambient temperatures and decomposes at temperatures as low as 100-200 °C, and releases fluorine-containing gas during the thermal decomposition. With this alternative fluorine source, we have grown SmFeAs(O,F) films with Tc as high as 55 K. This achievement demonstrates that FeF3 has potential as a fluorine source that can be employed ubiquitously for a thin-film growth of any fluorine containing compounds. One problem specific to FeF3 is that the compound is highly hydroscopic and contains a substantial amount of water even in its anhydrous form. In this article, we describe how to overcome this specific problem.

  20. f(R)-gravity from Killing tensors

    NASA Astrophysics Data System (ADS)

    Paliathanasis, Andronikos

    2016-04-01

    We consider f(R)-gravity in a Friedmann-Lemaître-Robertson-Walker spacetime with zero spatial curvature. We apply the Killing tensors of the minisuperspace in order to specify the functional form of f(R) and for the field equations to be invariant under Lie-Bäcklund transformations, which are linear in momentum (contact symmetries). Consequently, the field equations to admit quadratic conservation laws given by Noether’s theorem. We find three new integrable f(R)-models, for which, with the application of the conservation laws, we reduce the field equations to a system of two first-order ordinary differential equations. For each model we study the evolution of the cosmological fluid. We find that for each integrable model the cosmological fluid has an equation of state parameter, in which there is linear behavior in terms of the scale factor which describes the Chevallier, Polarski and Linder parametric dark energy model.

  1. Multiconfigurational nature of 5f orbitals in uranium and plutonium intermetallics

    PubMed Central

    Booth, C.H.; Jiang, Yu; Wang, D.L.; Mitchell, J.N.; Tobash, P.H.; Bauer, E.D.; Wall, M.A.; Allen, P.G.; Sokaras, D.; Nordlund, D.; Weng, T.-C.; Torrez, M.A.; Sarrao, J.L.

    2012-01-01

    Uranium and plutonium’s 5f electrons are tenuously poised between strongly bonding with ligand spd-states and residing close to the nucleus. The unusual properties of these elements and their compounds (e.g., the six different allotropes of elemental plutonium) are widely believed to depend on the related attributes of f-orbital occupancy and delocalization for which a quantitative measure is lacking. By employing resonant X-ray emission spectroscopy (RXES) and X-ray absorption near-edge structure (XANES) spectroscopy and making comparisons to specific heat measurements, we demonstrate the presence of multiconfigurational f-orbital states in the actinide elements U and Pu and in a wide range of uranium and plutonium intermetallic compounds. These results provide a robust experimental basis for a new framework toward understanding the strongly-correlated behavior of actinide materials. PMID:22706643

  2. The Mineralogy, Geochemistry, and Redox State of Multivalent Cations During the Crystallization of Primitive Shergottitic Liquids at Various (f)O2. Insights into the (f)O2 Fugacity of the Martian Mantle and Crustal Influences on Redox Conditions of Martian Magmas.

    NASA Technical Reports Server (NTRS)

    Shearer, C. K.; Bell, A. S.; Burger, P. V.; Papike, J. J.; Jones, J.; Le, L.; Muttik, N.

    2016-01-01

    The (f)O2 [oxygen fugacity] of crystallization for martian basalts has been estimated in various studies to range from IW-1 to QFM+4 [1-3]. A striking geochemical feature of the shergottites is the large range in initial Sr isotopic ratios and initial epsilon(sup Nd) values. Studies by observed that within the shergottite group the (f)O2 [oxygen fugacity] of crystallization is highly correlated with these chemical and isotopic characteristics with depleted shergottites generally crystallizing at reduced conditions and enriched shergottites crystallizing under more oxidizing conditions. More recent work has shown that (f)O2 [oxygen fugacity] changed during the crystallization of these magmas from one order of magnitude in Y980459 (Y98) to several orders of magnitude in Larkman Nunatak 06319. These real or apparent variations within single shergottitic magmas have been attributed to mixing of a xenocrystic olivine component, volatile loss-water disassociation, auto-oxidation during crystallization of mafic phases, and assimilation of an oxidizing crustal component (e.g. sulfate). In contrast to the shergottites, augite basalts such as NWA 8159 are highly depleted yet appear to be highly oxidized (e.g. QFM+4). As a first step in attempting to unravel petrologic complexities that influence (f)O2 [oxygen fugacity] in martian magmas, this study explores the effect of (f)O2 [oxygen fugacity] on the liquid line of descent (LLD) for a primitive shergottite liquid composition (Y98). The results of this study will provide a fundamental basis for reconstructing the record of (f)O2 [oxygen fugacity] in shergottites and other martian basalts, its effect on both mineral chemistries and valence state partitioning, and a means for examining the role of crystallization (and other more complex processes) on the petrologic linkages between olivine-phyric and pyroxene-plagioclase shergottites.

  3. Evaluation of the mechanical properties of class-F fly ash.

    PubMed

    Kim, Bumjoo; Prezzi, Monica

    2008-01-01

    Coal-burning power plants in the United States (US) generate more than 70 million tons of fly ash as a by-product annually. Recycling large volumes of fly ash in geotechnical applications may offer an attractive alternative to the disposal problem as most of it is currently dumped in ponds or landfills. Class-F fly ash, resulting from burning of bituminous or anthracite coals, is the most common type of fly ash in the US. In the present study, the mechanical characteristics (compaction response, compressibility, and shear strength) of class-F fly ash were investigated by performing various laboratory tests (compaction test, one-dimensional compression test, direct shear test and consolidated-drained triaxial compression test) on fly ash samples collected from three power plants in the state of Indiana (US). Test results have shown that despite some morphological differences, class-F fly ash exhibits mechanical properties that are, in general, comparable to those observed in natural sandy soils.

  4. Errors on interrupter tasks presented during spatial and verbal working memory performance are linearly linked to large-scale functional network connectivity in high temporal resolution resting state fMRI.

    PubMed

    Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn

    2015-12-01

    The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.

  5. 63. G.F.H., photographer July 30, 1932 DEL NORTE COUNTY, SECTION ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. G.F.H., photographer July 30, 1932 DEL NORTE COUNTY, SECTION A, HIGHWAY 1. 1-DN A #124, STA. 164=00 SHOWING DRAINAGE CONDITIONS, G.F.H., 7-30-32. - Redwood National & State Parks Roads, California coast from Crescent City to Trinidad, Crescent City, Del Norte County, CA

  6. Catalysis-Enhancement via Rotary Fluctuation of F1-ATPase

    PubMed Central

    Watanabe, Rikiya; Hayashi, Kumiko; Ueno, Hiroshi; Noji, Hiroyuki

    2013-01-01

    Protein conformational fluctuations modulate the catalytic powers of enzymes. The frequency of conformational fluctuations may modulate the catalytic rate at individual reaction steps. In this study, we modulated the rotary fluctuation frequency of F1-ATPase (F1) by attaching probes with different viscous drag coefficients at the rotary shaft of F1. Individual rotation pauses of F1 between rotary steps correspond to the waiting state of a certain elementary reaction step of ATP hydrolysis. This allows us to investigate the impact of the frequency modulation of the rotary fluctuation on the rate of the individual reaction steps by measuring the duration of rotation pauses. Although phosphate release was significantly decelerated, the ATP-binding and hydrolysis steps were less sensitive or insensitive to the viscous drag coefficient of the probe. Brownian dynamics simulation based on a model similar to the Sumi-Marcus theory reproduced the experimental results, providing a theoretical framework for the role of rotational fluctuation in F1 rate enhancement. PMID:24268150

  7. Approximate Dynamic Programming: Combining Regional and Local State Following Approximations.

    PubMed

    Deptula, Patryk; Rosenfeld, Joel A; Kamalapurkar, Rushikesh; Dixon, Warren E

    2018-06-01

    An infinite-horizon optimal regulation problem for a control-affine deterministic system is solved online using a local state following (StaF) kernel and a regional model-based reinforcement learning (R-MBRL) method to approximate the value function. Unlike traditional methods such as R-MBRL that aim to approximate the value function over a large compact set, the StaF kernel approach aims to approximate the value function in a local neighborhood of the state that travels within a compact set. In this paper, the value function is approximated using a state-dependent convex combination of the StaF-based and the R-MBRL-based approximations. As the state enters a neighborhood containing the origin, the value function transitions from being approximated by the StaF approach to the R-MBRL approach. Semiglobal uniformly ultimately bounded (SGUUB) convergence of the system states to the origin is established using a Lyapunov-based analysis. Simulation results are provided for two, three, six, and ten-state dynamical systems to demonstrate the scalability and performance of the developed method.

  8. Report of Investigation: Lieutenant General John F. Mulholland U.S. Army (Redacted)

    DTIC Science & Technology

    2014-06-09

    unprofessional ... I’m just venting ... but you guys have pissed me the f--k off.2 One complainant stated he infonned Maj Gen Laster he believed LTG...L TG Mulh<.)lland) needed to stop as he was bein g unprofessional and remarked he was just venting but "you guys have pissed me the f--k off...course of his career. (b) (6) (b) (7)(() (b) 161 !bl (7l(CJoffered similar testimoJ1yto . ­ testified L TG Mulholland stated the team ··had pissed me

  9. Fundamental Quantum 1/F Noise in Ultrasmall Semi Conductor Devices and Their Optimal Design Principles.

    DTIC Science & Technology

    1986-05-01

    1 . quantum 1 / f noise t - 12 . In that case the Hooge parameter0(H may be written H...Eqs. (4.2)-(4.5). The Hooge formula 2 0 is thus derived from first =.% principles as a quantum 1 / f result withOH given by Eq. (4.12). All i/ f noise ...between coherent state I/ f noise and the Umklapp I/ f noise . 1 / f noise in n+-p Hgl-xCdxTe occurs in many forms and each form should be tested. If a Hooge

  10. Detection of Hearing Loss Using 2f2-f1 and 2f1-f2 Distortion-Product Otoacoustic Emissions

    ERIC Educational Resources Information Center

    Fitzgerald, Tracy S.; Prieve, Beth A.

    2005-01-01

    Although many distortion-product otoacoustic emissions (DPOAEs) may be measured in the ear canal in response to 2 pure tone stimuli, the majority of clinical studies have focused exclusively on the DPOAE at the frequency 2f1-f2. This study investigated another DPOAE, 2f2-f1, in an attempt to determine the following: (a) the optimal stimulus…

  11. Surface shift of the occupied and unoccupied 4f levels of the rare-earth metals

    NASA Astrophysics Data System (ADS)

    Aldén, M.; Johansson, B.; Skriver, H. L.

    1995-02-01

    The surface energy shifts of the occupied and unoccupied 4f levels for the lanthanide metals have been calculated from first principles by means of a Green's-function technique within the tight-binding linear muffin-tin orbitals method. We use the concept of complete screening to identify the occupied and unoccupied 4f energy level shifts as the surface segregation energy of a 4fn-1 and 4fn+1 impurity atom, respectively, in a 4fn host metal. The calculations include both initial- and final-state effects and give values that are considerably lower than those measured on polycrystalline samples as well as those found in previous initial-state model calculations. The present theory agrees well with very recent high-resolution, single-crystal film measurements for Gd, Tb, Dy, Ho, Er, Tm, and Lu. We furthermore utilize the unique possibility offered by the lanthanide metals to clarify the roles played by the initial and the different final states of the core-excitation process, permitted by the fact that the so-called initial-state effect is identical upon 4f removal and 4f addition. Surface energy and work function calculations are also reported.

  12. Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F] OF2.

    PubMed

    Bishop, A; Satyamurthy, N; Bida, G; Hendry, G; Phelps, M; Barrio, J R

    1996-04-01

    The production of 18F electrophilic reagents via the 18O(p,n)18F reaction has been investigated in small-volume target bodies made of aluminum, copper, gold-plated copper and nickel, having straight or conical bore shapes. Three irradiation protocols-single-step, two-step and modified two-step-were used for the recovery of the 18F activity. The single-step irradiation protocol was tested in all the target bodies. Based on the single-step performance, aluminum targets were utilized extensively in the investigation of the two-step and modified two-step irradiation protocols. With an 11-MeV cyclotron and using the two-step irradiation protocol, > 1Ci [18F]F2 was recovered reproducibly from an aluminum target body. Probable radical mechanisms for the formation of OF2 and FONO2 (fluorine nitrate) in the single-step and modified two-step targets are proposed based on the amount of ozone generated and the nitrogen impurity present in the target gases, respectively.

  13. Inner-shell photoionization and core-hole decay of Xe and XeF{sub 2}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Southworth, Stephen H.; Picón, Antonio; Lehmann, C. Stefan

    2015-06-14

    Photoionization cross sections and partial ion yields of Xe and XeF{sub 2} from Xe 3d{sub 5/2}, Xe 3d{sub 3/2}, and F 1s subshells in the 660–740 eV range are compared to explore effects of the F ligands. The Xe 3d-ϵf continuum shape resonances dominate the photoionization cross sections of both the atom and molecule, but prominent resonances appear in the XeF{sub 2} cross section due to nominal excitation of Xe 3d and F 1s electrons to the lowest unoccupied molecular orbital (LUMO), a delocalized anti-bonding MO. Comparisons of the ion products from the atom and molecule following Xe 3d photoionizationmore » show that the charge-state distribution of Xe ions is shifted to lower charge states in the molecule along with production of energetic F{sup +} and F{sup 2+} ions. This suggests that, in decay of a Xe 3d core hole, charge is redistributed to the F ligands and the system dissociates due to Coulomb repulsion. The ion products from excitation of the F 1s-LUMO resonance are different and show strong increases in the yields of Xe{sup +} and F{sup +} ions. The subshell ionization thresholds, the LUMO resonance energies, and their oscillator strengths are calculated by relativistic coupled-cluster methods and agree well with measurements.« less

  14. Energetic Diagrams and Structural Properties of Monohaloacetylenes HC≡CX (X = F, Cl, Br).

    PubMed

    Khiri, D; Hochlaf, M; Chambaud, G

    2016-08-04

    Highly correlated electronic wave functions within the Multi Reference Configuration Interaction (MRCI) approach are used to study the stability and the formation processes of the monohaloacetylenes HCCX and monohalovinylidenes C2HX (X = F, Cl, Br) in their electronic ground state. These tetra-atomics can be formed through the reaction of triatomic fragments C2F, C2Cl, and C2Br with a hydrogen atom or of C2H with halogen atoms via barrierless reactions, whereas the reactions between the diatomics [C2 + HX] need to overcome barriers of 1.70, 0.89, and 0.58 eV for X = F, Cl, and Br. It is found that the linear HCCX isomers, in singlet symmetry, are more stable than the singlet C2HX iso-forms by 1.995, 2.083, and 1.958 eV for X = F, Cl, and Br. The very small isomerization barriers from iso to linear forms are calculated 0.067, 0.044, and 0.100 eV for F, Cl, and Br systems. The dissociation energies of the HCCX systems (without ZPE corrections), resulting from the breaking of the CX bond, are calculated to be 5.647, 4.691, and 4.129 eV for X = F, Cl, Br, respectively. At the equilibrium geometry of the X(1)Σ(+) state of HCCX, the vertical excitation energies in singlet and triplet symmetries are all larger than the respective dissociation energies. Stable excited states are found only as (3)A', (3)A″, and (1)A″ monohalovinylidene structures.

  15. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI

    PubMed Central

    Xu, Tingting; Cullen, Kathryn R.; Mueller, Bryon; Schreiner, Mindy W.; Lim, Kelvin O.; Schulz, S. Charles; Parhi, Keshab K.

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03–0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03–0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new

  16. Network analysis of functional brain connectivity in borderline personality disorder using resting-state fMRI.

    PubMed

    Xu, Tingting; Cullen, Kathryn R; Mueller, Bryon; Schreiner, Mindy W; Lim, Kelvin O; Schulz, S Charles; Parhi, Keshab K

    2016-01-01

    Borderline personality disorder (BPD) is associated with symptoms such as affect dysregulation, impaired sense of self, and self-harm behaviors. Neuroimaging research on BPD has revealed structural and functional abnormalities in specific brain regions and connections. However, little is known about the topological organizations of brain networks in BPD. We collected resting-state functional magnetic resonance imaging (fMRI) data from 20 patients with BPD and 10 healthy controls, and constructed frequency-specific functional brain networks by correlating wavelet-filtered fMRI signals from 82 cortical and subcortical regions. We employed graph-theory based complex network analysis to investigate the topological properties of the brain networks, and employed network-based statistic to identify functional dysconnections in patients. In the 0.03-0.06 Hz frequency band, compared to controls, patients with BPD showed significantly larger measures of global network topology, including the size of largest connected graph component, clustering coefficient, small-worldness, and local efficiency, indicating increased local cliquishness of the functional brain network. Compared to controls, patients showed lower nodal centrality at several hub nodes but greater centrality at several non-hub nodes in the network. Furthermore, an interconnected subnetwork in 0.03-0.06 Hz frequency band was identified that showed significantly lower connectivity in patients. The links in the subnetwork were mainly long-distance connections between regions located at different lobes; and the mean connectivity of this subnetwork was negatively correlated with the increased global topology measures. Lastly, the key network measures showed high correlations with several clinical symptom scores, and classified BPD patients against healthy controls with high accuracy based on linear discriminant analysis. The abnormal topological properties and connectivity found in this study may add new knowledge

  17. Effect of high-energy electron irradiation in an electron microscope column on fluorides of alkaline earth elements (CaF2, SrF2, and BaF2)

    NASA Astrophysics Data System (ADS)

    Nikolaichik, V. I.; Sobolev, B. P.; Zaporozhets, M. A.; Avilov, A. S.

    2012-03-01

    The effect of high-energy (150 eV) electron irradiation in an electron microscope column on crystals of fluorides of alkaline earth elements CaF2, SrF2, and BaF2 is studied. During structural investigations by electron diffraction and electron microscopy, the electron irradiation causes chemical changes in MF2 crystals such as the desorption of fluorine and the accumulation of oxygen in the irradiated area with the formation of oxide MO. The fluorine desorption rate increases significantly when the electron-beam density exceeds the threshold value of ˜2 × 103 pA/cm2). In BaF2 samples, the transformation of BaO into Ba(OH)2 was observed when irradiation stopped. The renewal of irradiation is accompanied by the inverse transformation of Ba(OH)2 into BaO. In the initial stage of irradiation of all MF2 compounds, the oxide phase is in the single-crystal state with a lattice highly matched with the MF2 matrix. When the irradiation dose is increased, the oxide phase passes to the polycrystalline phase. Gaseous products of MF2 destruction (in the form of bubbles several nanometers in diameter) form a rectangular array with a period of ˜20 nm in the sample.

  18. K(3)TaF(8) from laboratory X-ray powder data.

    PubMed

    Smrcok, Lubomír; Cerný, Radovan; Boca, Miroslav; Macková, Iveta; Kubíková, Blanka

    2010-02-01

    The crystal structure of tripotassium octafluoridotantalate, K(3)TaF(8), determined from laboratory powder diffraction data by the simulated annealing method and refined by total energy minimization in the solid state, is built from discrete potassium cations, fluoride anions and monocapped trigonal-prismatic [TaF(7)](2-) ions. All six atoms in the asymmetric unit are in special positions of the P6(3)mc space group: the Ta and one F atom in the 2b (3m) sites, the K and two F atoms in the 6c (m) sites, and one F atom in the 2a (3m) site. The structure consists of face-sharing K(6) octahedra with a fluoride anion at the center of each octahedron, forming chains of composition [FK(3)](2+) running along [001] with isolated [TaF(7)](2-) trigonal prisms in between. The structure of the title compound is different from the reported structure of Na(3)TaF(8) and represents a new structure type.

  19. United States Air Force F-35A Operational Basing Environmental Impact Statement. Appendix E: Comments

    DTIC Science & Technology

    2013-09-01

    her sight and hearing at a young . said that hearing loss was the greater atni ction f()r reason. r,\\ professionals in the music mdustry. their...A. Approved for public release: distribution unlimited. 13. SUPPLEMENTARY NOTES Report totals 2440 pages 14. ABSTRACT Development and fielding of...cognitive development of James A. Dumont, Esq. R0252 GP-20 NO-8 E-483 Comments of Richard Joseph eta! on F-35A Operational Basing DEIS July

  20. Application of advanced machine learning methods on resting-state fMRI network for identification of mild cognitive impairment and Alzheimer's disease.

    PubMed

    Khazaee, Ali; Ebrahimzadeh, Ata; Babajani-Feremi, Abbas

    2016-09-01

    The study of brain networks by resting-state functional magnetic resonance imaging (rs-fMRI) is a promising method for identifying patients with dementia from healthy controls (HC). Using graph theory, different aspects of the brain network can be efficiently characterized by calculating measures of integration and segregation. In this study, we combined a graph theoretical approach with advanced machine learning methods to study the brain network in 89 patients with mild cognitive impairment (MCI), 34 patients with Alzheimer's disease (AD), and 45 age-matched HC. The rs-fMRI connectivity matrix was constructed using a brain parcellation based on a 264 putative functional areas. Using the optimal features extracted from the graph measures, we were able to accurately classify three groups (i.e., HC, MCI, and AD) with accuracy of 88.4 %. We also investigated performance of our proposed method for a binary classification of a group (e.g., MCI) from two other groups (e.g., HC and AD). The classification accuracies for identifying HC from AD and MCI, AD from HC and MCI, and MCI from HC and AD, were 87.3, 97.5, and 72.0 %, respectively. In addition, results based on the parcellation of 264 regions were compared to that of the automated anatomical labeling atlas (AAL), consisted of 90 regions. The accuracy of classification of three groups using AAL was degraded to 83.2 %. Our results show that combining the graph measures with the machine learning approach, on the basis of the rs-fMRI connectivity analysis, may assist in diagnosis of AD and MCI.

  1. Optical properties in the visible luminescence of SiO2:B2O3:CaO:GdF3 glass scintillators containing CeF3

    NASA Astrophysics Data System (ADS)

    Park, J. M.; Kim, H. J.; Karki, Sujita; Kaewkhao, J.; Damdee, B.; Kothan, S.; Kaewjaeng, S.

    2017-12-01

    CeF3-doped silicaborate-calcium-gadolinium glass scintillators, with the formula 10SiO2:(55-x)B2O3:10CaO:25GdF3:xCeF3, were fabricated by the melt-quenching technique. The doping concentration of the CeF3 was from 0.00 mol% to 0.20 mol%. The optical properties of the CeF3 doped glass scintillators were studied by using various radiation sources. The transition state of the CeF3-doped glass scintillators studied by using the absorption and photo-luminescence spectrum results. The X-ray, photo, proton and laser-induced luminescence spectra were also studied to understand the luminescence mechanism under various conditions. To understand the temperature dependence, the laser-induced luminescence and the decay component of the CeF3-doped glass scintillator were studied while the temperature was varied from 300 K to 10 K. The emission wavelength spectrum showed from 350 nm to 55 nm under various radiation sources. Also the CeF3-doped glass scintillator have one decay component as 34 ns at room temperature.

  2. 78 FR 23903 - Proposed Information Collection; Comment Request; Quarterly Summary of State and Local Government...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-23

    ... Quarterly Summary of State and Local Government Tax Revenue, using the F-71 (Quarterly Survey of Property Tax Collections), F-72 (Quarterly Survey of State Tax Collections), and F-73 (Quarterly Survey of Non... data for individual states. The information contained in this survey is the most current information...

  3. Optimizing a 18F-NaF and 18F-FDG cocktail for PET assessment of metastatic castration-resistant prostate cancer

    PubMed Central

    Simoncic, Urban; Perlman, Scott; Liu, Glenn; Jeraj, Robert

    2015-01-01

    Background The 18F-NaF/18F-FDG cocktail PET/CT imaging has been proposed for patients with osseous metastases. This work aimed to optimize the cocktail composition for patients with metastatic castrate-resistant prostate cancer (mCRPC). Materials and methods Study was done on 6 patients with mCRPC that had analyzed a total of 26 lesions. Patients had 18F-NaF and 18F-FDG injections separated in time. Dynamic PET/CT imaging recorded uptake time course for both tracers into osseous metastases. 18F-NaF and 18F-FDG uptakes were decoupled by kinetic analysis, which enabled calculation of 18F-NaF and 18F-FDG Standardized Uptake Value (SUV) images. Peak, mean and total SUVs were evaluated for both tracers and all visible lesions. The 18F-NaF/18F-FDG cocktail was optimized under the assumption that contribution of both tracers to the image formation should be equal. SUV images for combined 18F-NaF/18F-FDG cocktail PET/CT imaging were generated for cocktail compositions with 18F-NaF:18F-FDG ratio varying from 1:8 to 1:2. Results The 18F-NaF peak and mean SUVs were on average 4-5 times higher than the 18F-FDG peak and mean SUVs, with inter-lesion coefficient-of-variations (COV) of 20%. 18F-NaF total SUV was on average 7 times higher than the 18F-FDG total SUV. When the 18F-NaF:18F-FDG ratio changed from 1:8 to 1:2, typical SUV on generated PET images increased by 50%, while change in uptake visual pattern was hardly noticeable. Conclusion The 18F-NaF/18F-FDG cocktail has equal contributions of both tracers to the image formation when the 18F-NaF:18F-FDG ratio is 1:5. Therefore we propose this ratio as the optimal cocktail composition for mCRPC patients. We also urge to strictly control the 18F-NaF/18F-FDG cocktail composition in any 18F-NaF/18F-FDG cocktail PET/CT exams. PMID:26378490

  4. Fast‐Rate Capable Electrode Material with Higher Energy Density than LiFePO4: 4.2V LiVPO4F Synthesized by Scalable Single‐Step Solid‐State Reaction

    PubMed Central

    Kim, Minkyung; Lee, Seongsu

    2015-01-01

    Use of compounds that contain fluorine (F) as electrode materials in lithium ion batteries has been considered, but synthesizing single‐phase samples of these compounds is a difficult task. Here, it is demonstrated that a simple scalable single‐step solid‐state process with additional fluorine source can obtain highly pure LiVPO4F. The resulting material with submicron particles achieves very high rate capability ≈100 mAh g−1 at 60 C‐rate (1‐min discharge) and even at 200 C‐rate (18 s discharge). It retains superior capacity, ≈120 mAh g−1 at 10 C charge/10 C discharge rate (6‐min) for 500 cycles with >95% retention efficiency. Furthermore, LiVPO4F shows low polarization even at high rates leading to higher operating potential >3.45 V (≈3.6 V at 60 C‐rate), so it achieves high energy density. It is demonstrated for the first time that highly pure LiVPO4F can achieve high power capability comparable to LiFePO4 and much higher energy density (≈521 Wh g−1 at 20 C‐rate) than LiFePO4 even without nanostructured particles. LiVPO4F can be a real substitute of LiFePO4. PMID:27774395

  5. Fast-Rate Capable Electrode Material with Higher Energy Density than LiFePO4: 4.2V LiVPO4F Synthesized by Scalable Single-Step Solid-State Reaction.

    PubMed

    Kim, Minkyung; Lee, Seongsu; Kang, Byoungwoo

    2016-03-01

    Use of compounds that contain fluorine (F) as electrode materials in lithium ion batteries has been considered, but synthesizing single-phase samples of these compounds is a difficult task. Here, it is demonstrated that a simple scalable single-step solid-state process with additional fluorine source can obtain highly pure LiVPO 4 F. The resulting material with submicron particles achieves very high rate capability ≈100 mAh g -1 at 60 C-rate (1-min discharge) and even at 200 C-rate (18 s discharge). It retains superior capacity, ≈120 mAh g -1 at 10 C charge/10 C discharge rate (6-min) for 500 cycles with >95% retention efficiency. Furthermore, LiVPO 4 F shows low polarization even at high rates leading to higher operating potential >3.45 V (≈3.6 V at 60 C-rate), so it achieves high energy density. It is demonstrated for the first time that highly pure LiVPO 4 F can achieve high power capability comparable to LiFePO 4 and much higher energy density (≈521 Wh g -1 at 20 C-rate) than LiFePO 4 even without nanostructured particles. LiVPO 4 F can be a real substitute of LiFePO 4.

  6. All Prime Contract Awards by State or Country, Place, and Contractor, FY 88. Part 22. (Germany, F-Grenada)

    DTIC Science & Technology

    1988-01-01

    444វ m< 0 4 4 4 4 4 4 4 44 ~ 4 4 4 4 4 4 4 4 ᝰ n " o o(- Iu uU F u0 0 F 0 0999)04 tD J2%F 9’O QU U u u u U (-00(4 F C)C (n1> F ) C-) 4 f)m-( 40 O...40000. ŕ 0100--4 𔃺 000 L-L)aJOC L. 0 C C 0 C00a00C0 >0 C 00000 0 000 -1 000-4 1 oo (0(0 xᝰ < U)(DO(0 (D(0 (D (D(D(0 00 1-C co Mr- oo tD - -r-. -0...I I)la) ’ I ~ ~ "~ .~ .) .0 . I.. .. .I " OCI ɘ" I w 4-IOU T(0 4 - o v0 m tD m(0 v m w -LOflC)0) 0)’.O ") -I -CA wI(0 I ɘ" 1 0400C’)m!-1’- --40), C

  7. United States Air Force F-35A Operational Basing Environmental Impact Statement. Appendix E: Responses

    DTIC Science & Technology

    2013-09-01

    R0287, R0549, R0662, R0740 Concerned that the afterburner was not factored into the noise zone equation. Afterburner takeoffs were factored into...the noise assessment. The F-35s at Burlington International Airport are proposed to use afterburners on only 5 percent of their takeoffs (vice the...90 percent done now by F-16s). However, the afterburner would be turned off shortly after the aircraft becomes airborne, much prior to crossing the

  8. The roles of 4f- and 5f-orbitals in bonding: A magnetochemical, crystal field, density functional theory, and multi-reference wavefunction study

    DOE PAGES

    Lukens, Wayne W.; Speldrich, Manfred; Yang, Ping; ...

    2016-05-31

    The electronic structures of 4f 3/5f 3 Cp" 3M and Cp" 3M·alkylisocyanide complexes, where Cp" is 1,3-bis-(trimethylsilyl)cyclopentadienyl, are explored with a focus on the splitting of the f-orbitals, which provides information about the strengths of the metal–ligand interactions. While the f-orbital splitting in many lanthanide complexes has been reported in detail, experimental determination of the f-orbital splitting in actinide complexes remains rare in systems other than halide and oxide compounds, since the experimental approach, crystal field analysis, is generally significantly more difficult for actinide complexes than for lanthanide complexes. In this study, a set of analogous neodymium(III) and uranium(III) tris-cyclopentadienylmore » complexes and their isocyanide adducts was characterized by electron paramagnetic resonance (EPR) spectroscopy and magnetic susceptibility. The crystal field model was parameterized by combined fitting of EPR and susceptibility data, yielding an accurate description of f-orbital splitting. The isocyanide derivatives were also studied using density functional theory, resulting in f-orbital splitting that is consistent with crystal field fitting, and by multi-reference wavefunction calculations that support the electronic structure analysis derived from the crystal-field calculations. The results highlight that the 5f-orbitals, but not the 4f-orbitals, are significantly involved in bonding to the isocyanide ligands. The main interaction between isocyanide ligand and the metal center is a σ-bond, with additional 5f to π* donation for the uranium complexes. As a result, while interaction with the isocyanide π*-orbitals lowers the energies of the 5f xz2 and 5f yz2-orbitals, spin–orbit coupling greatly reduces the population of 5f xz2 and 5f yz2 in the ground state.« less

  9. Exploring connectivity with large-scale Granger causality on resting-state functional MRI.

    PubMed

    DSouza, Adora M; Abidin, Anas Z; Leistritz, Lutz; Wismüller, Axel

    2017-08-01

    Large-scale Granger causality (lsGC) is a recently developed, resting-state functional MRI (fMRI) connectivity analysis approach that estimates multivariate voxel-resolution connectivity. Unlike most commonly used multivariate approaches, which establish coarse-resolution connectivity by aggregating voxel time-series avoiding an underdetermined problem, lsGC estimates voxel-resolution, fine-grained connectivity by incorporating an embedded dimension reduction. We investigate application of lsGC on realistic fMRI simulations, modeling smoothing of neuronal activity by the hemodynamic response function and repetition time (TR), and empirical resting-state fMRI data. Subsequently, functional subnetworks are extracted from lsGC connectivity measures for both datasets and validated quantitatively. We also provide guidelines to select lsGC free parameters. Results indicate that lsGC reliably recovers underlying network structure with area under receiver operator characteristic curve (AUC) of 0.93 at TR=1.5s for a 10-min session of fMRI simulations. Furthermore, subnetworks of closely interacting modules are recovered from the aforementioned lsGC networks. Results on empirical resting-state fMRI data demonstrate recovery of visual and motor cortex in close agreement with spatial maps obtained from (i) visuo-motor fMRI stimulation task-sequence (Accuracy=0.76) and (ii) independent component analysis (ICA) of resting-state fMRI (Accuracy=0.86). Compared with conventional Granger causality approach (AUC=0.75), lsGC produces better network recovery on fMRI simulations. Furthermore, it cannot recover functional subnetworks from empirical fMRI data, since quantifying voxel-resolution connectivity is not possible as consequence of encountering an underdetermined problem. Functional network recovery from fMRI data suggests that lsGC gives useful insight into connectivity patterns from resting-state fMRI at a multivariate voxel-resolution. Copyright © 2017 Elsevier B.V. All

  10. Investigating Focal Connectivity Deficits in Alzheimer's Disease Using Directional Brain Networks Derived from Resting-State fMRI

    PubMed Central

    Zhao, Sinan; Rangaprakash, D; Venkataraman, Archana; Liang, Peipeng; Deshpande, Gopikrishna

    2017-01-01

    Connectivity analysis of resting-state fMRI has been widely used to identify biomarkers of Alzheimer's disease (AD) based on brain network aberrations. However, it is not straightforward to interpret such connectivity results since our understanding of brain functioning relies on regional properties (activations and morphometric changes) more than connections. Further, from an interventional standpoint, it is easier to modulate the activity of regions (using brain stimulation, neurofeedback, etc.) rather than connections. Therefore, we employed a novel approach for identifying focal directed connectivity deficits in AD compared to healthy controls. In brief, we present a model of directed connectivity (using Granger causality) that characterizes the coupling among different regions in healthy controls and Alzheimer's disease. We then characterized group differences using a (between-subject) generative model of pathology, which generates latent connectivity variables that best explain the (within-subject) directed connectivity. Crucially, our generative model at the second (between-subject) level explains connectivity in terms of local or regionally specific abnormalities. This allows one to explain disconnections among multiple regions in terms of regionally specific pathology; thereby offering a target for therapeutic intervention. Two foci were identified, locus coeruleus in the brain stem and right orbitofrontal cortex. Corresponding disrupted connectivity network associated with the foci showed that the brainstem is the critical focus of disruption in AD. We further partitioned the aberrant connectomic network into four unique sub-networks, which likely leads to symptoms commonly observed in AD. Our findings suggest that fMRI studies of AD, which have been largely cortico-centric, could in future investigate the role of brain stem in AD. PMID:28729831

  11. 1/f-Noise of open bacterial porin channels.

    PubMed

    Wohnsland, F; Benz, R

    1997-07-01

    General diffusion pores and specific porin channels from outer membranes of gram-negative bacteria were reconstituted into lipid bilayer membranes. The current noise of the channels was investigated for the different porins in the open state and in the ligand-induced closed state using fast Fourier transformation. The open channel noise exhibited 1/f-noise for frequencies up to 200 Hz. The 1/f-noise was investigated using the Hooge formula (Hooge, Phys. Lett. 29A: 139-140 (1969)), and the Hooge parameter alpha was calculated for all bacterial porins used in this study. The 1/f-noise was in part caused by slow inactivation and activation of porin channels. However, when care was taken that during the noise measurement no opening or closing of porin channels occurred, the Hooge Parameter alpha was a meaningful number for a given channel. A linear relationship was observed between alpha and the single-channel conductance, g, of the different porins. This linear relation between single-channel conductance and the Hooge parameter alpha could be qualitatively explained by assuming that the passing of an ion through a bacterial porin channel is-to a certain extent-influenced by nonlinear effects between channel wall and passing ion.

  12. Ba2F2Fe(1.5)Se3: An Intergrowth Compound Containing Iron Selenide Layers.

    PubMed

    Driss, Dalel; Janod, Etienne; Corraze, Benoit; Guillot-Deudon, Catherine; Cario, Laurent

    2016-03-21

    The iron selenide compound Ba2F2Fe(1.5)Se3 was synthesized by a high-temperature ceramic method. The single-crystal X-ray structure determination revealed a layered-like structure built on [Ba2F2](2+) layers of the fluorite type and iron selenide layers [Fe(1.5)Se3](2-). These [Fe1.5Se3](2-) layers contain iron in two valence states, namely, Fe(II+) and Fe(III+) located in octahedral and tetrahedral sites, respectively. Magnetic measurements are consistent with a high-spin state for Fe(II+) and an intermediate-spin state for Fe(III+). Moreover, susceptibility and resistivity measurements demonstrate that Ba2F2Fe(1.5)Se3 is an antiferromagnetic insulator.

  13. Resting State Networks and Consciousness

    PubMed Central

    Heine, Lizette; Soddu, Andrea; Gómez, Francisco; Vanhaudenhuyse, Audrey; Tshibanda, Luaba; Thonnard, Marie; Charland-Verville, Vanessa; Kirsch, Murielle; Laureys, Steven; Demertzi, Athena

    2012-01-01

    In order to better understand the functional contribution of resting state activity to conscious cognition, we aimed to review increases and decreases in functional magnetic resonance imaging (fMRI) functional connectivity under physiological (sleep), pharmacological (anesthesia), and pathological altered states of consciousness, such as brain death, coma, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state. The reviewed resting state networks were the DMN, left and right executive control, salience, sensorimotor, auditory, and visual networks. We highlight some methodological issues concerning resting state analyses in severely injured brains mainly in terms of hypothesis-driven seed-based correlation analysis and data-driven independent components analysis approaches. Finally, we attempt to contextualize our discussion within theoretical frameworks of conscious processes. We think that this “lesion” approach allows us to better determine the necessary conditions under which normal conscious cognition takes place. At the clinical level, we acknowledge the technical merits of the resting state paradigm. Indeed, fast and easy acquisitions are preferable to activation paradigms in clinical populations. Finally, we emphasize the need to validate the diagnostic and prognostic value of fMRI resting state measurements in non-communicating brain damaged patients. PMID:22969735

  14. Li(x)FeF6 (x = 2, 3, 4) battery materials: structural, electronic and lithium diffusion properties.

    PubMed

    Schroeder, Melanie; Eames, Christopher; Tompsett, David A; Lieser, Georg; Islam, M Saiful

    2013-12-21

    Lithium iron fluoride materials have attracted recent interest as cathode materials for lithium ion batteries. The electrochemical properties of the high energy density Li(x)FeF6 (x = 2, 3, 4) materials have been evaluated using a combination of potential-based and DFT computational methods. Voltages of 6.1 V and 3.0 V are found for lithium intercalation from Li2FeF6 to α-Li3FeF6 and α-Li3FeF6 to Li4FeF6 respectively. The calculated density of states indicate that Li2FeF6 possesses metallic states that become strongly insulating after lithium intercalation to form α-Li3FeF6. The large energy gain associated with this metal-insulator transition is likely to contribute to the associated large voltage of 6.1 V. Molecular dynamics simulations of lithium diffusion in α-Li3FeF6 at typical battery operating temperatures indicate high lithium-ion mobility with low activation barriers. These results suggest the potential for good rate performance of lithium iron fluoride cathode materials.

  15. Brain Entropy Mapping Using fMRI

    PubMed Central

    Wang, Ze; Li, Yin; Childress, Anna Rose; Detre, John A.

    2014-01-01

    Entropy is an important trait for life as well as the human brain. Characterizing brain entropy (BEN) may provide an informative tool to assess brain states and brain functions. Yet little is known about the distribution and regional organization of BEN in normal brain. The purpose of this study was to examine the whole brain entropy patterns using a large cohort of normal subjects. A series of experiments were first performed to validate an approximate entropy measure regarding its sensitivity, specificity, and reliability using synthetic data and fMRI data. Resting state fMRI data from a large cohort of normal subjects (n = 1049) from multi-sites were then used to derive a 3-dimensional BEN map, showing a sharp low-high entropy contrast between the neocortex and the rest of brain. The spatial heterogeneity of resting BEN was further studied using a data-driven clustering method, and the entire brain was found to be organized into 7 hierarchical regional BEN networks that are consistent with known structural and functional brain parcellations. These findings suggest BEN mapping as a physiologically and functionally meaningful measure for studying brain functions. PMID:24657999

  16. F+ and F⁻ affinities of simple N(x)F(y) and O(x)F(y) compounds.

    PubMed

    Grant, Daniel J; Wang, Tsang-Hsiu; Vasiliu, Monica; Dixon, David A; Christe, Karl O

    2011-03-07

    Atomization energies at 0 K and heats of formation at 0 and 298 K are predicted for the neutral and ionic N(x)F(y) and O(x)F(y) systems using coupled cluster theory with single and double excitations and including a perturbative triples correction (CCSD(T)) method with correlation consistent basis sets extrapolated to the complete basis set (CBS) limit. To achieve near chemical accuracy (±1 kcal/mol), three corrections to the electronic energy were added to the frozen core CCSD(T)/CBS binding energies: corrections for core-valence, scalar relativistic, and first order atomic spin-orbit effects. Vibrational zero point energies were computed at the CCSD(T) level of theory where possible. The calculated heats of formation are in good agreement with the available experimental values, except for FOOF because of the neglect of higher order correlation corrections. The F(+) affinity in the N(x)F(y) series increases from N(2) to N(2)F(4) by 63 kcal/mol, while that in the O(2)F(y) series decreases by 18 kcal/mol from O(2) to O(2)F(2). Neither N(2) nor N(2)F(4) is predicted to bind F(-), and N(2)F(2) is a very weak Lewis acid with an F(-) affinity of about 10 kcal/mol for either the cis or trans isomer. The low F(-) affinities of the nitrogen fluorides explain why, in spite of the fact that many stable nitrogen fluoride cations are known, no nitrogen fluoride anions have been isolated so far. For example, the F(-) affinity of NF is predicted to be only 12.5 kcal/mol which explains the numerous experimental failures to prepare NF(2)(-) salts from the well-known strong acid HNF(2). The F(-) affinity of O(2) is predicted to have a small positive value and increases for O(2)F(2) by 23 kcal/mol, indicating that the O(2)F(3)(-) anion might be marginally stable at subambient temperatures. The calculated adiabatic ionization potentials and electron affinities are in good agreement with experiment considering that many of the experimental values are for vertical processes. © 2011

  17. Measurement of radiative proton capture on F 18 and implications for oxygen-neon novae reexamined

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akers, C.; Laird, A. M.; Fulton, B. R.

    The rate of the F-18(p, gamma)Ne-19 reaction affects the final abundance of the gamma-ray observable radioisotope F-18, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, F-19. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the F-18(p, gamma)Ne-19 reaction. Themore » strength of the 665 keV resonance (E-x = 7.076 MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of F-18 at any astrophysical energy.« less

  18. 26 CFR 1.142(f)(4)-1 - Manner of making election to terminate tax-exempt bond financing.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-exempt bond financing. 1.142(f)(4)-1 Section 1.142(f)(4)-1 Internal Revenue INTERNAL REVENUE SERVICE... Requirements for State and Local Bonds § 1.142(f)(4)-1 Manner of making election to terminate tax-exempt bond... for making election—(1) In general. An election under section 142(f)(4)(B) must be filed with the...

  19. Some aspects of reconstruction using a scalar field in f( T) gravity

    NASA Astrophysics Data System (ADS)

    Chakrabarti, Soumya; Said, Jackson Levi; Farrugia, Gabriel

    2017-12-01

    General relativity characterizes gravity as a geometric property exhibited on spacetime by massive objects, while teleparallel gravity achieves the same results at the level of equations, by taking a torsional perspective of gravity. Similar to the f( R) theory teleparallel gravity can also be generalized to f( T), with the resulting field equations being inherently distinct from f( R) gravity in that they are second order, while in the former case they turn out to be fourth order. In the present case, a minimally coupled scalar field is investigated in the f( T) gravity context for several forms of the scalar field potential. A number of new f( T) solutions are found for these potentials. Their respective state parameters are also being examined.

  20. Qualitative analysis of ionospheric disorders in Solok earthquake (March 6, 2007) viewed from anomalous critical frequency of layer F (f0F2) and genesis spread F

    NASA Astrophysics Data System (ADS)

    Pujiastuti, D.; Daniati, S.; Taufiqurrahman, E.; Mustafa, B.; Ednofri

    2018-03-01

    A qualitative analysis has been conducted by comparing the critical frequency anomalies of layer F (f0F2) and Spread F events to see the correlation with seismic activity before the Solok earthquake (March 6, 2007) in West Sumatra. The ionospherics data used was taken using the FMCW ionosonde at LAPAN SPD Kototabang, Palupuah, West Sumatra. The process of ionogramme scaling is done first to get the daily value of f0F2. The value of f0F2 is then compared with its monthly median to see the daily variations that appear. Anomalies of f0F2 and Spread F events were observed from February 20, 2007 to March 6, 2007. The presence of f0F2 anomalies was the negative deviation and the presence of Spread F before earthquake events were recommended as Solok earthquake precursors as they occurred when geomagneticsics and solar activities were normal.

  1. Effect of NaF, SnF(2), and TiF(4) Toothpastes on Bovine Enamel and Dentin Erosion-Abrasion In Vitro.

    PubMed

    Comar, Lívia Picchi; Gomes, Marina Franciscon; Ito, Naiana; Salomão, Priscila Aranda; Grizzo, Larissa Tercília; Magalhães, Ana Carolina

    2012-01-01

    The aim of this study was to compare the effect of toothpastes containing TiF(4), NaF, and SnF(2) on tooth erosion-abrasion. Bovine enamel and dentin specimens were distributed into 10 groups (n = 12): experimental placebo toothpaste (no F); NaF (1450 ppm F); TiF(4) (1450 ppm F); SnF(2) (1450 ppm F); SnF(2) (1100 ppm F) + NaF (350 ppm F); TiF(4) (1100 ppm F) + NaF (350 ppm F); commercial toothpaste Pro-Health (SnF(2)-1100 ppm F + NaF-350 ppm F, Oral B); commercial toothpaste Crest (NaF-1.500 ppm F, Procter & Gamble); abrasion without toothpaste and only erosion. The erosion was performed 4 × 90 s/day (Sprite Zero). The toothpastes' slurries were applied and the specimens abraded using an electric toothbrush 2 × 15 s/day. Between the erosive and abrasive challenges, the specimens remained in artificial saliva. After 7 days, the tooth wear was evaluated using contact profilometry (μm). The experimental toothpastes with NaF, TiF(4), SnF(2), and Pro-Health showed a significant reduction in enamel wear (between 42% and 54%). Pro-Health also significantly reduced the dentin wear. The toothpastes with SnF(2)/NaF and TiF(4)/NaF showed the best results in the reduction of enamel wear (62-70%) as well as TiF(4), SnF(2), SnF(2)/NaF, and TiF(4)/NaF for dentin wear (64-79%) (P < 0.05). Therefore, the experimental toothpastes containing both conventional and metal fluoride seem to be promising in reducing tooth wear.

  2. Precision half-life measurement of 17F

    NASA Astrophysics Data System (ADS)

    Brodeur, M.; Nicoloff, C.; Ahn, T.; Allen, J.; Bardayan, D. W.; Becchetti, F. D.; Gupta, Y. K.; Hall, M. R.; Hall, O.; Hu, J.; Kelly, J. M.; Kolata, J. J.; Long, J.; O'Malley, P.; Schultz, B. E.

    2016-02-01

    Background: The precise determination of f t values for superallowed mixed transitions between mirror nuclide are gaining attention as they could provide an avenue to test the theoretical corrections used to extract the Vu d matrix element from superallowed pure Fermi transitions. The 17F decay is particularly interesting as it proceeds completely to the ground state of 17O, removing the need for branching ratio measurements. The dominant uncertainty on the f t value of the 17F mirror transition stems from a number of conflicting half-life measurements. Purpose: A precision half-life measurement of 17F was performed and compared to previous results. Methods: The life-time was determined from the β counting of implanted 17F on a Ta foil that was removed from the beam for counting. The 17F beam was produced by transfers reaction and separated by the TwinSol facility of the Nuclear Science Laboratory of the University of Notre Dame. Results: The measured value of t1/2 new=64.402 (42) s is in agreement with several past measurements and represents one of the most precise measurements to date. In anticipation of future measurements of the correlation parameters for the decay and using the new world average t1/2 world=64.398 (61) s, we present a new estimate of the mixing ratio ρ for the mixed transition as well as the correlation parameters based on assuming Standard Model validity. Conclusions: The relative uncertainty on the new world average for the half-life is dominated by the large χ2=31 of the existing measurements. More precision measurements with different systematics are needed to remedy to the situation.

  3. Altered amygdalar resting-state connectivity in depression is explained by both genes and environment.

    PubMed

    Córdova-Palomera, Aldo; Tornador, Cristian; Falcón, Carles; Bargalló, Nuria; Nenadic, Igor; Deco, Gustavo; Fañanás, Lourdes

    2015-10-01

    Recent findings indicate that alterations of the amygdalar resting-state fMRI connectivity play an important role in the etiology of depression. While both depression and resting-state brain activity are shaped by genes and environment, the relative contribution of genetic and environmental factors mediating the relationship between amygdalar resting-state connectivity and depression remain largely unexplored. Likewise, novel neuroimaging research indicates that different mathematical representations of resting-state fMRI activity patterns are able to embed distinct information relevant to brain health and disease. The present study analyzed the influence of genes and environment on amygdalar resting-state fMRI connectivity, in relation to depression risk. High-resolution resting-state fMRI scans were analyzed to estimate functional connectivity patterns in a sample of 48 twins (24 monozygotic pairs) informative for depressive psychopathology (6 concordant, 8 discordant and 10 healthy control pairs). A graph-theoretical framework was employed to construct brain networks using two methods: (i) the conventional approach of filtered BOLD fMRI time-series and (ii) analytic components of this fMRI activity. Results using both methods indicate that depression risk is increased by environmental factors altering amygdalar connectivity. When analyzing the analytic components of the BOLD fMRI time-series, genetic factors altering the amygdala neural activity at rest show an important contribution to depression risk. Overall, these findings show that both genes and environment modify different patterns the amygdala resting-state connectivity to increase depression risk. The genetic relationship between amygdalar connectivity and depression may be better elicited by examining analytic components of the brain resting-state BOLD fMRI signals. © 2015 Wiley Periodicals, Inc.

  4. Metal-to-metal charge transfer between dopant and host ions: Photoconductivity of Yb-doped CaF{sub 2} and SrF{sub 2} crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barandiarán, Zoila, E-mail: zoila.barandiaran@uam.es; Seijo, Luis; Instituto Universitario de Ciencia de Materiales Nicolás Cabrera and Condensed Matter Physics Center

    2015-10-14

    Dopant-to-host electron transfer is calculated using ab initio wavefunction-based embedded cluster methods for Yb/Ca pairs in CaF{sub 2} and Yb/Sr pairs in SrF{sub 2} crystals to investigate the mechanism of photoconductivity. The results show that, in these crystals, dopant-to-host electron transfer is a two-photon process mediated by the 4f{sup N−1}5d excited states of Y b{sup 2+}: these are reached by the first photon excitation; then, they absorb the second photon, which provokes the Y b{sup 2+} + Ca{sup 2+} (Sr{sup 2+}) → Y b{sup 3+} + Ca{sup +} (Sr{sup +}) electron phototransfer. This mechanism applies to all the observed Ymore » b{sup 2+} 4f–5d absorption bands with the exception of the first one: Electron transfer cannot occur at the first band wavelengths in CaF{sub 2}:Y b{sup 2+} because the Y b{sup 3+}–Ca{sup +} states are not reached by the two-photon absorption. In contrast, Yb-to-host electron transfer is possible in SrF{sub 2}:Y b{sup 2+} at the wavelengths of the first 4f–5d absorption band, but the mechanism is different from that described above: first, the two-photon excitation process occurs within the Y b{sup 2+} active center, then, non-radiative Yb-to-Sr electron transfer can occur. All of these features allow to interpret consistently available photoconductivity experiments in these materials, including the modulation of the photoconductivity by the absorption spectrum, the differences in photoconductivity thresholds observed in both hosts, and the peculiar photosensitivity observed in the SrF{sub 2} host, associated with the lowest 4f–5d band.« less

  5. Functional connectomics from resting-state fMRI

    PubMed Central

    Smith, Stephen M; Vidaurre, Diego; Beckmann, Christian F; Glasser, Matthew F; Jenkinson, Mark; Miller, Karla L; Nichols, Thomas E; Robinson, Emma; Salimi-Khorshidi, Gholamreza; Woolrich, Mark W; Barch, Deanna M; Uğurbil, Kamil; Van Essen, David C

    2014-01-01

    Spontaneous fluctuations in activity in different parts of the brain can be used to study functional brain networks. We review the use of resting-state functional MRI for the purpose of mapping the macroscopic functional connectome. After describing MRI acquisition and image processing methods commonly used to generate data in a form amenable to connectomics network analysis, we discuss different approaches for estimating network structure from that data. Finally, we describe new possibilities resulting from the high-quality rfMRI data being generated by the Human Connectome Project, and highlight some upcoming challenges in functional connectomics. PMID:24238796

  6. Do cosmological data rule out f (R ) with w ≠-1 ?

    NASA Astrophysics Data System (ADS)

    Battye, Richard A.; Bolliet, Boris; Pace, Francesco

    2018-05-01

    We review the equation of state (EoS) approach to dark sector perturbations and apply it to f (R ) gravity models of dark energy. We show that the EoS approach is numerically stable and use it to set observational constraints on designer models. Within the EoS approach we build an analytical understanding of the dynamics of cosmological perturbations for the designer class of f (R ) gravity models, characterized by the parameter B0 and the background equation of state of dark energy w . When we use the Planck cosmic microwave background temperature anisotropy, polarization, and lensing data as well as the baryonic acoustic oscillation data from SDSS and WiggleZ, we find B0<0.006 (95% C.L.) for the designer models with w =-1 . Furthermore, we find B0<0.0045 and |w +1 |<0.002 (95% C.L.) for the designer models with w ≠-1 . Previous analyses found similar results for designer and Hu-Sawicki f (R ) gravity models using the effective field theory approach [Raveri et al., Phys. Rev. D 90, 043513 (2014), 10.1103/PhysRevD.90.043513; Hu et al., Mon. Not. R. Astron. Soc. 459, 3880 (2016), 10.1093/mnras/stw775]; therefore this hints for the fact that generic f (R ) models with w ≠-1 can be tightly constrained by current cosmological data, complementary to solar system tests [Brax et al., Phys. Rev. D 78, 104021 (2008), 10.1103/PhysRevD.78.104021; Faulkner et al., Phys. Rev. D 76, 063505 (2007), 10.1103/PhysRevD.76.063505]. When compared to a w CDM fluid with the same sound speed, we find that the equation of state for f (R ) models is better constrained to be close to -1 by about an order of magnitude, due to the strong dependence of the perturbations on w .

  7. Optical properties of Mn 2+ in KCaF 3 single crystal

    NASA Astrophysics Data System (ADS)

    Mazurak, Z.; Ratuszna, A.; Daniel, Ph.

    1999-02-01

    It is known that the spectroscopic properties of 3d impurities in crystals are very sensitive to the environment of the ion and can be changed considerably by using different matrices. The crystal structure of KCaF 3 has been previously determined by the Rietveld profile method. At room temperature, KCa 1- xMn xF 3 ( x<0.1) crystallizes in monoclinic C2 h ( B2 1/ m) symmetry. The local geometries around Mn 2+ in this crystals, in their ground and excited states, are the primary properties that govern the spectroscopic behavior of these systems, which enjoy of fundamental and technological interest. The present work reports the absorption and luminescence spectra of the Mn 2+-doped KCaF 3 (fluoroperovskite). The luminescence spectra recorded over a range of temperatures are dominated by wide bands, corresponding to the 4T 1(G)→ 6A 1(G), Mn 2+ transition. The lifetime ( τ= f( T)) of the first excited state 4T 1(G) was measured as a function of temperature. The lifetime of the Mn 2+ emission, in this crystal have been found to be temperature independent ( τ<7 μs). The absorption and emission spectra of Mn 2+ (3d 5) in KCaF 3 are analyzed using a C4 crystal-field hamiltonian. The calculated energy levels are in good agreement with those obtained experimentally. The resulting crystal-field parameters Bnm are a good representation of the crystal-field interactions of Mn 2+ in KCaF 3.

  8. Structural and electronic properties of Li-ion battery cathode material MoF{sub 3} from first-principles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, A.Y.; Wu, S.Q.; Yang, Y.

    2015-07-15

    The transition metal fluorides have been extensively investigated recently as the electrode materials with high working voltage and large capacity. The structural, electronic and magnetic properties of MoF{sub 3} are studied by the first-principles calculations within both the generalized gradient approximation (GGA) and GGA+U frameworks. Our results show that the antiferromagnetic configuration of MoF{sub 3} is more stable than the ferromagnetic one, which is consistent with experimental results. The analysis of the electronic density of states shows that MoF{sub 3} is a Mott–Hubbard insulator with a d–d type band gap, which is similar to the case of FeF{sub 3}. Moreover,more » small spin polarizations were found on the sites of fluorine ions, which accords with a fluorine-mediated superexchange mechanism for the Mo–Mo magnetic interaction. - Graphical abstract: Deformation charge density and spin-density for MoF{sub 3} in the AF configuration. - Highlights: • The ground state of MoF{sub 3} is shown to be antiferromagnetic, in consistent with experiments. • The electronic states show that MoF{sub 3} is a Mott–Hubbard insulator with a d–d type band gap. • A fluorine-mediated super-exchange mechanism for the Mo–Mo magnetic interaction is shown.« less

  9. BoF - Python in Astronomy

    NASA Astrophysics Data System (ADS)

    Barrett, P. E.

    This BoF will be chaired by Paul Barrett and will begin with an introduction to Python in astronomy, be followed by reports of current Python projects, and conclude with a discussion about the current state of Python in astronomy. The introduction will give a brief overview of the language, highlighting modules, resources, and aspects of the language that are important to scientific programming and astronomical data analysis. The closing discussion will provide an opportunity for questions and comments.

  10. F-35 Joint Strike Fighter Aircraft (F-35)

    DTIC Science & Technology

    2015-12-01

    Selected Acquisition Report ( SAR ) RCS: DD-A&T(Q&A)823-198 F-35 Joint Strike Fighter Aircraft (F-35) As of FY 2017 President’s Budget Defense...Acquisition Management Information Retrieval (DAMIR) March 21, 2016 08:47:09 UNCLASSIFIED F-35 December 2015 SAR March 21, 2016 08:47:09 UNCLASSIFIED 2...Document OSD - Office of the Secretary of Defense O&S - Operating and Support PAUC - Program Acquisition Unit Cost F-35 December 2015 SAR March 21

  11. Comparative uptake of ¹⁸F-FEN-DPAZn2, ¹⁸F-FECH, ¹⁸F-fluoride, and ¹⁸F-FDG in fibrosarcoma and aseptic inflammation.

    PubMed

    Liang, Xiang; Tang, Ganghua; Wang, Hongliang; Hu, Kongzhen; Tang, Xiaolan; Nie, Dahong; Sun, Ting; Huang, Tingting

    2014-08-01

    The aim of this study is to evaluate uptake of 2-(18)F-fluoroethyl-bis(zinc(II)-dipicolylamine) ((18)F-FEN-DPAZn2) as a promising cell death imaging agent, a choline analog (18)F-fluoroethylcholine ((18)F-FECH), (18)F-fluoride as a bone imaging agent, and a glucose analog 2-(18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG) in the combined S180 fibrosarcoma and turpentine-induced inflammation mice models. The results showed that (18)F-FDG had the highest tumor-to-blood uptake ratio and tumor-to-muscle ratio, and high inflammation-to-blood ratio and inflammation-to-muscle ratio. (18)F -FECH showed moderate tumor-to-blood ratio and tumor-to-muscle ratio, and low inflammation-to-blood ratio and inflammation-to-muscle ratio. However, accumulation of (18)F FEN-DPAZn2 in tumor was similar to that in normal muscle. Also, (18)F-FEN-DPAZn2 and (18)F-fluoride exhibited the best selectivity to inflammation. (18)F-FECH positron emission tomography (PET) imaging demonstrates some advantages over (18)F-FDG PET for the differentiation of tumor from inflammation. (18)F FEN-DPAZn2 and (18)F-fluoride can be used for PET imaging of aseptic inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. A method for independent component graph analysis of resting-state fMRI.

    PubMed

    Ribeiro de Paula, Demetrius; Ziegler, Erik; Abeyasinghe, Pubuditha M; Das, Tushar K; Cavaliere, Carlo; Aiello, Marco; Heine, Lizette; di Perri, Carol; Demertzi, Athena; Noirhomme, Quentin; Charland-Verville, Vanessa; Vanhaudenhuyse, Audrey; Stender, Johan; Gomez, Francisco; Tshibanda, Jean-Flory L; Laureys, Steven; Owen, Adrian M; Soddu, Andrea

    2017-03-01

    Independent component analysis (ICA) has been extensively used for reducing task-free BOLD fMRI recordings into spatial maps and their associated time-courses. The spatially identified independent components can be considered as intrinsic connectivity networks (ICNs) of non-contiguous regions. To date, the spatial patterns of the networks have been analyzed with techniques developed for volumetric data. Here, we detail a graph building technique that allows these ICNs to be analyzed with graph theory. First, ICA was performed at the single-subject level in 15 healthy volunteers using a 3T MRI scanner. The identification of nine networks was performed by a multiple-template matching procedure and a subsequent component classification based on the network "neuronal" properties. Second, for each of the identified networks, the nodes were defined as 1,015 anatomically parcellated regions. Third, between-node functional connectivity was established by building edge weights for each networks. Group-level graph analysis was finally performed for each network and compared to the classical network. Network graph comparison between the classically constructed network and the nine networks showed significant differences in the auditory and visual medial networks with regard to the average degree and the number of edges, while the visual lateral network showed a significant difference in the small-worldness. This novel approach permits us to take advantage of the well-recognized power of ICA in BOLD signal decomposition and, at the same time, to make use of well-established graph measures to evaluate connectivity differences. Moreover, by providing a graph for each separate network, it can offer the possibility to extract graph measures in a specific way for each network. This increased specificity could be relevant for studying pathological brain activity or altered states of consciousness as induced by anesthesia or sleep, where specific networks are known to be altered in

  13. Induction and resuscitation of the viable but nonculturable state in a cyanobacteria-lysing bacterium isolated from cyanobacterial bloom.

    PubMed

    Chen, Huirong; Fu, Lixian; Luo, Lingxi; Lu, Jun; White, W Lindsey; Hu, Zhangli

    2012-01-01

    The viable but nonculturable (VBNC) state has been found to be a growth strategy used by many aquatic pathogens; however, few studies have focused on VBNC state on other aquatic bacterial groups. The purpose of this study was to explore the VBNC state of cyanobacteria-lysing bacteria and the conditions that regulate their VBNC state transformation. Three cyanobacteria-lysing heterotrophic bacterial strains (F1, F2 and F3) were isolated with liquid infection method from a lake that has experienced a cyanobacterial bloom. According to their morphological, physiological and biochemical characteristics and results of 16SrDNA sequence analysis, F1, F2 and F3 were identified as strains of Staphylococcus sp., Stappia sp. and Microbacterium sp., respectively. After being co-cultured with the axenic cyanobacterium, Microcystis aeruginosa 905, for 7 days, strains F1, F2 and F3 exhibited an inhibition effect on cyanobacterial growth, which was expressed as a reduction in chlorophyll concentration of 96.0%, 94.9% and 84.8%, respectively. Both autoclaved and filtered bacterial cultures still showed lytic effects on cyanobacterial cells while centrifuged pellets were less efficient than other fractions. This indicated that lytic factors were extracelluar and heat-resistant. The environmental conditions that could induce the VBNC state of strain F1 were also studied. Under low temperature (4°C), distilled deionized water (DDW) induced almost 100% of F1 cells to the VBNC state after 6 days while different salinities (1%, 3% and 5% of NaCl solution) and lake water required 18 days. A solution of the cyanobacterial toxin microcystin-LR (MC-LR) crude extract also induced F1 to the VBNC state, and the effect was stronger than DDW. Even the lowest MC-LR concentration (10 μg L(-1)) could induce 69.7% of F1 cells into VBNC state after 24 h. On the other hand, addition of Microcystis aeruginosa cells caused resuscitation of VBNC state F1 cells within 1 day, expressed as an

  14. Supersonic aerodynamic characteristics of an advanced F-16 derivative aircraft configuration

    NASA Technical Reports Server (NTRS)

    Fox, Mike C.; Forrest, Dana K.

    1993-01-01

    A supersonic wind tunnel investigation was conducted in the NASA Langley Unitary Plan Wind Tunnel on an advanced derivative configuration of the United States Air Force F-16 fighter. Longitudinal and lateral directional force and moment data were obtained at Mach numbers of 1.60 to 2.16 to evaluate basic performance parameters and control effectiveness. The aerodynamic characteristics for the F-16 derivative model were compared with the data obtained for the F-16C model and also with a previously tested generic wing model that features an identical plan form shape and similar twist distribution.

  15. Solubility of uranium oxide in molten salt electrolysis bath of LiF-BaF2 with LaF3 additive

    NASA Astrophysics Data System (ADS)

    Alangi, Nagaraj; Mukherjee, Jaya; Gantayet, L. M.

    2016-03-01

    The solubility of UO2 in the molten mixtures of equimolar LiF-BaF2(1:1) with LaF3 as additive was studied in the range of 1423 K-1523 K. The molten fluoride salt mixture LiF-BaF2 LaF3 was equilibrated with a sintered uranium oxide pellet at 1423 K, 1473 K, 1523 K and the salt samples were collected after equilibration. Studies were conducted in the range of 10%-50% by weight additions of LaF3 in the equimolar LiF-BaF2(1:1) base fluoride salt bath. Solubility of UO2 increased with rise in LaF3 concentration in the molten fluoride in the temperature range of 1423 K-1523 K. At a given concentration of LaF3, the UO2 solubility increased monotonously with temperature. With mixed solvent, when UF4 was added as a replacement of part of LaF3 in LiF-BaF2(1:1)-10 wt% LaF3 and LiF-BaF2(1:1)-30 wt% LaF3, there was an enhancement of solubility of UO2.

  16. United States Air Force F-35A Operational Basing Environmental Impact Statement. Appendix E: Comments

    DTIC Science & Technology

    2013-09-01

    Nicholas M Civ USAF HQ ACC/A7NS No F-35s in Burlington, Vermont, please! Wherever I go, when people hear I am from Vermont, they wax enthusiastic...them to upkeep a machine that’s sole purpose i s to fly cross t he ocean (or too wherever) and t ake the l ives of many others? Even i f we except this...monstrosi t y of a machine , can we really entrust it to the care of an organization that appears to be unable to write an accurate report? We may

  17. Sub-molecular modulation of a 4f driven Kondo resonance by surface-induced asymmetry

    NASA Astrophysics Data System (ADS)

    Warner, Ben; El Hallak, Fadi; Atodiresei, Nicolae; Seibt, Philipp; Prüser, Henning; Caciuc, Vasile; Waters, Michael; Fisher, Andrew J.; Blügel, Stefan; van Slageren, Joris; Hirjibehedin, Cyrus F.

    2016-09-01

    Coupling between a magnetic impurity and an external bath can give rise to many-body quantum phenomena, including Kondo and Hund's impurity states in metals, and Yu-Shiba-Rusinov states in superconductors. While advances have been made in probing the magnetic properties of d-shell impurities on surfaces, the confinement of f orbitals makes them difficult to access directly. Here we show that a 4f driven Kondo resonance can be modulated spatially by asymmetric coupling between a metallic surface and a molecule containing a 4f-like moment. Strong hybridization of dysprosium double-decker phthalocyanine with Cu(001) induces Kondo screening of the central magnetic moment. Misalignment between the symmetry axes of the molecule and the surface induces asymmetry in the molecule's electronic structure, spatially mediating electronic access to the magnetic moment through the Kondo resonance. This work demonstrates the important role that molecular ligands have in mediating electronic and magnetic coupling and in accessing many-body quantum states.

  18. Fermi energy 5f spectral weight variation in uranium alloys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Denlinger, J.D.; Clack, J.; Allen, J.W.

    1997-04-01

    Uranium materials display a wide range of thermal, electrical and magnetic properties, often exotic. For more than a decade there have been efforts to use photoemission spectroscopy to develop a systematic and unified understanding of the 5f electron states giving rise to this behavior. These efforts have been hampered by a paucity of systems where changes in transport properties are accompanied by substantial spectral changes, so as to allow an attempt to correlate the two kinds of properties within some model. The authors have made resonant photoemission measurements to extract the 5f spectral weight in three systems which show varyingmore » degrees of promise of permitting such an attempt, Y{sub 1{minus}x}U{sub x}Pd{sub 3}, U(Pd{sub x}Pt{sub 1{minus}x}){sub 3} and U(Pd{sub x}Cu{sub 1{minus}x}){sub 5}. They have also measured U 4f core level spectra. The 4f spectra can be modeled with some success by the impurity Anderson model (IAM), and the 5f spectra are currently being analyzed in that framework. The IAM characterizes the 5f-electrons of a single site by an f binding energy {epsilon}{sub f}, an f Coulomb interaction and a hybridization V to conduction electrons. Latent in the model are the phenomena of 5f mixed valence and the Kondo effect.« less

  19. Die Interhalogenkationen [Br2F5]+ und [Br3F8].

    PubMed

    Ivlev, Sergei; Karttunen, Antti; Buchner, Magnus; Conrad, Matthias; Kraus, Florian

    2018-05-02

    Wir berichten über die Synthese und Charakterisierung der bislang einzigen Polyhalogenkationen, in denen verbrückende Fluoratome vorliegen. Das [Br2F5]+-Kation enthält eine symmetrische [F2Br-µ-F-BrF2]-Brücke, das [Br3F8]+-Kation enthält unsymmetrische µ-F-Brücken. Die Fluoronium-Ionen wurden in Form ihrer [SbF6]--Salze erhalten und Raman-, und 19F-NMR-spektroskopisch, sowie durch Röntgenbeugung am Einkristall untersucht. Quantenchemische Rechnungen, sowohl für die isolierten Kationen in der Gasphase, als auch für die Festkörper selbst, wurden durchgeführt. Populationsanalysen zeigen, dass die µ-F-Atome die am stärksten negativ partialgeladenen Atome der Kationen sind. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Theoretical Study of Decomposition Pathways for HArF and HKrF

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Lundell, Jan; Gerber, R. Benny; Kwak, Donchan (Technical Monitor)

    2002-01-01

    To provide theoretical insights into the stability and dynamics of the new rare gas compounds HArF and HKrF, reaction paths for decomposition processes HRgF to Rg + HF and HRgF to H + Rg + F (Rg = Ar, Kr) are calculated using ab initio electronic structure methods. The bending channels, HRgF to Rg + HF, are described by single-configurational MP2 and CCSD(T) electronic structure methods, while the linear decomposition paths, HRgF to H + Rg + F, require the use of multi-configurational wave functions that include dynamic correlation and are size extensive. HArF and HKrF molecules are found to be energetically stable with respect to atomic dissociation products (H + Rg + F) and separated by substantial energy barriers from Rg + HF products, which ensure their kinetic stability. The results are compatible with experimental data on these systems.