Science.gov

Sample records for f-18 fdg brain

  1. Quantification of F-18 FDG PET images in temporal lobe epilepsy patients using probabilistic brain atlas.

    PubMed

    Kang, K W; Lee, D S; Cho, J H; Lee, J S; Yeo, J S; Lee, S K; Chung, J K; Lee, M C

    2001-07-01

    A probabilistic atlas of the human brain (Statistical Probabilistic Anatomical Maps: SPAM) was developed by the international consortium for brain mapping (ICBM). It is a good frame for calculating volume of interest (VOI) in many fields of brain images. After calculating the counts in VOI using the product of probability of SPAM images and counts in FDG images, asymmetric indices (AI) were calculated and used for finding epileptogenic zones in mesial temporal lobe epilepsy (mTLE). FDG PET images from 18 surgically confirmed mTLE patients and 22 age-matched controls were spatially normalized to the average brain MRI template of ICBM. Counts from normalized PET images were multiplied with the probability of 12 VOIs from SPAM images in both temporal lobes. Finally AI were calculated on each pair of VOIs, and compared with visual assessment. If AI of mTLE patients were not within 2.9 standard deviation from those of normal control group (P < 0.008; Bonferroni correction for P < 0.05), epileptogenic zones were considered to be found successfully. The counts of VOIs in the normal control group were symmetric (AI < 4.3%, paired t test P > 0.05) except for those of the inferior temporal gyrus (P < 0.001). By AIs in six pairs of VOIs, PET in mTLE had deficit on one side (P < 0.05). Lateralization was correct in only 14/18 of patients by AI, but 17/18 were consistent with visual inspection. In three patients with normal AI, PET images were symmetric on visual inspection. The asymmetric indices obtained by taking the product of the statistical probability anatomical map and FDG PET, correlated well with visual assessment in mTLE patients. SPAM is useful for the quantification of VOIs in functional images.

  2. Can brain thallium 201 SPECT substitute for F-18-FDG PET in detecting recurrent brain tumor in the presence of radiation necrosis; correlation with biopsy/surgery results

    SciTech Connect

    Antar, M.A.; Barnett, G.H.; McIntyre, W.J.

    1994-05-01

    F-18-FDG PET man has been largely successful in differentiating between radiation necrosis and recurrent brain tumors. Because of the expense and unavailability of PET scanners in most clinical centers, Tl-201 SPECT scan may offer an alternative. Therefore, we have evaluated both techniques in 18 patients (13 men and 5 women) whose ages range from 28 to 74 year old. Eleven patients had glioblastoma multiformi and 4 patients high grade astrocytoma and 3 patient meningiosarcoma. All patients received radiation therapy (5500-6000 Rad) and 13 patients received also chemotherapy. PET scan was performed 40-60 min. after 5-10 mCi of F-18 FDG (i.v.) and SPECT 30 min. after 4.6 mCi of Tl-201 chloride (i.v.). Severe FDG hypometabolism was evident in the irradiated regions, in all patients. Evidence of tumor recurrence was seen in 15 patients by both FDG PET and Thallium 201 SPECT. The ratio of peak pixel uptake of suspected tumor to that of normal cortex for FDG ranged from 0.67 to 1.5 with a mean of 1.02. The ratio of peak pixel uptake of thallium 201 in the suspected lesion to that of the contralateral scalp area ranges from 0.8 to 1.9 with mean of 1.1. There was concordance between the findings of PET and SPECT in 16/18 patients. However, the volume of involvement differs in these patients; most likely secondary to different mechanisms of uptake and both studies may complement each other. Subsequent biopsy/surgery in 11 patients confirmed tumor recurrence in 10 out of 11 patients. The findings suggest that thallium 201 brain SPECT scan can provide similar (but not identical) information regarding brain tumor recurrence in these patients.

  3. Uterine Epithelioid Angiosarcoma on F-18 FDG PET/CT.

    PubMed

    Hwang, Jae Pil; Lim, Sang Moo

    2013-06-01

    Uterine epithelioid angiosarcoma can have conventional imaging characteristics similar to those of other uterine tumors, such as leiomyoma, leiomyosarcomas or hemangioendothelioma. Uterine epithelioid angiosarcoma exhibiting increased fluorine-18 fluorodeoxyglucose (F-18 FDG) activity can be misdiagnosed. A 61-year-old woman who was diagnosed with uterine epithelioid angiosarcoma underwent F-18 FDG positron emission tomography/computed tomography (PET/CT) as a part of the pretreatment work up for surgery. F-18 FDG PET/CT showed an intense F-18 FDG uptake in the uterus in addition to increased F-18 FDG uptake at the paraaortic and aortocaval lymph nodes. To our knowledge, this is the first case report of intense F-18 FDG uptake in uterine epithelioid angiosarcoma in Korea.

  4. Effects of Tianmagouteng particles on brain cognitive function in spontaneously hypertensive rats with hyperactivity of liver-yang: A [F-18] FDG micro-PET imaging study.

    PubMed

    Zhang, Xiu-Jing; Sun, Tian-Cai; Liu, Zi-Wang; Wang, Feng-Jiao; Wang, Yong-De; Liu, Jing

    2017-09-26

    To collect visualized proof of Tianmagouteng particles (TMGTP) in alleviating cognitive dysfunction and to explore its effects on brain activity in spontaneously hypertensive rats (SHRs) with hyperactivity of liver-yang (Gan Yang Shang Kang, GYSK). Sixteen SHRs were randomized into treatment group and non-treatment. The SHR with GYSK was induced by gavaging aconite decoction (10mL/kg at 0.2g/mL). After the SHR models were prepared, the rats in the treatment group were administered TMGTP (10mL/kg) once a day for 14days.The rats in the non-treatment group or normal rats (control group) received an equivalent volume of saline. Morris water maze test was conducted before and after the treatment to observe cognitive function. Fluorine 18-deoxy glucose [F-18]FDG micro-PET brain imaging scans was performed after treatment. Data were analyzed with two-sample t-test (P<0. 001) using SPM2 image analysis software. Compared with the non-treatment group, the escape latency significantly decreased but the frequency of entrance into the target zone significantly increased in the treatment group. Consistent with the alteration of cognitive functions, TMGTP induced strong brain activity in the following sites: right dorsolateral nucleus and ventrolateral nucleus of thalamus, amygdala, left met thalamus, cerebellum leaflets, original crack, front cone crack, loop-shaped leaflets; but deactivation of right medial frontal gyrus, bilateral corpus callosum, hippocampus, and left dentate gyrus. TMGTP could alleviate cognitive dysfunction in SHRs with GYSK, which was possibly by inducing alteration of glucose metabolism in different brain regions with corresponding functions. Copyright © 2017. Published by Elsevier Masson SAS.

  5. Cerebral Toxoplasmosis in a Patient with AIDS on F-18 FDG PET/CT.

    PubMed

    Kim, Hae Won; Won, Kyoung Sook; Choi, Byung Wook; Zeon, Seok Kil

    2010-04-01

    The distinction between primary central nervous system (CNS) lymphoma and nonmalignant lesions due to opportunistic infections, in particular cerebral toxoplasmosis, is important because of the different treatments involved. A 32-year-old patient with AIDS was hospitalized for intermittent headaches. Brain magnetic resonance imaging (MRI) showed a small well-enhanced nodular lesion in the right frontal lobe. A fluorine-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography (PET)/computed tomography (CT) scan showed moderate FDG uptake in the nodular lesion of the right frontal lobe. We present a case of cerebral toxoplasmosis in a patient with acquired immunodeficiency syndrome (AIDS) and the usefulness of F-18 FDG PET/CT in the differential diagnosis of the cerebral toxoplasmosis will be discussed.

  6. Parametric dynamic F-18-FDG PET/CT breast imaging

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Feiglin, David; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Krol, Andrzej

    2008-03-01

    This study was undertaken to estimate metabolic tissue properties from dynamic breast F-18-FDG PET/CT image series and to display them as 3D parametric images. Each temporal PET series was obtained immediately after injection of 10 mCi of F-18-FDG and consisted of fifty 1- minute frames. Each consecutive frame was nonrigidly registered to the first frame using a finite element method (FEM) based model and fiducial skin markers. Nonlinear curve fitting of activity vs. time based on a realistic two-compartment model was performed for each voxel of the volume. Curve fitting was accomplished by application of the Levenburg-Marquardt algorithm (LMA) that minimized X2. We evaluated which parameters are most suitable to determine the spatial extent and malignancy in suspicious lesions. In addition, Patlak modeling was applied to the data. A mixture model was constructed and provided a classification system for the breast tissue. It produced unbiased estimation of the spatial extent of the lesions. We conclude that nonrigid registration followed by voxel-by-voxel based nonlinear fitting to a realistic two-compartment model yields better quality parametric images, as compared to unprocessed dynamic breast PET time series. By comparison with the mixture model, we established that the total cumulated activity and maximum activity parametric images provide the best delineation of suspicious breast tissue lesions and hyperactive subregions within the lesion that cannot be discerned in unprocessed images.

  7. Solitary sternal metastasis from hepatocellular carcinoma detected by F-18 FDG PET/CT.

    PubMed

    Kamaleshwaran, Koramadai Karuppusamy; Kashyap, Raghava; Bhattacharya, Anish; Mittal, Bhagwant Rai

    2013-01-01

    Fluorine-18 fluoro-deoxy-glucose positron emission tomography (F-18 FDG PET) is not sensitive modality for the diagnosis of primary hepatocellular carcinoma (HCC). However, FDG-PET imaging may be useful in the identification of extrahepatic metastases. We report an interesting image of HCC with solitary metastasis to sternum detected by F-18 FDG PET/CT.

  8. Relation Between Metabolic Activity of the Broca Region and F-18 FDG Uptake in Vocal Cords

    PubMed Central

    Eren, Mine Şencan; Durak, Hatice

    2012-01-01

    Objective: We aimed to investigate if increased F-18 Fluoro Deoxyglucose (F-18 FDG) uptake observed in vocal cords (VC) of the patients on Positron Emission Tomography/Computarize Tomography (PET/CT) scans is connected to speaking of the patients or not. If so, we expected to detect an increased metabolic activity in Broca's area. In this study, we have retrospectively searched for a correlation between the activity in the Broca's area and vocal cords of patients who had undergone FDG PET for different indications. Material and Methods: FDG PET/CT scans of 30 patients with (VC [+]) and 30 patients without (VC [-]) bilateral F-18 FDG uptake on their vocal cords were retrospectively evaluated. Brain quantification was carried out on NeuroQ software with 20 iterations using patients' transaxial brain cross sections. On the 20th-23rd-26th-29th cross sections, area/whole brain ratios of the right (R) and left (L) for Broca’s area were calculated. VC (+) and VC (-) patients' R and L Broca's areas were compared using Student's t-test. Results: There was no significant difference between the Broca's areas of VC (+) and VC (-) patients. L Broca's areas of both VC (+) and VC (-) patients were more active than R Broca's areas (p<0.05). There was a negative correlation between VC (+) patients' SUVmax values in the vocal cords and the activity in their R Broca's region. Conclusion: In our study, we did not find a significant difference between Broca's areas of VC (+) patients and VC (-) patients, so the activity in their vocal cords does not seem to be related to increased metabolic activity in Broca's areas. We have concluded that the vocal cord activity is not related to speaking of the patients. The activity in the vocal cord might be due to inflammation or, as in the eye muscles, may be associated with high metabolism in laryngeal muscles. Conflict of interest:None declared. PMID:23487345

  9. Relation Between Metabolic Activity of the Broca Region and F-18 FDG Uptake in Vocal Cords.

    PubMed

    Eren, Mine Şencan; Durak, Hatice

    2012-08-01

    We aimed to investigate if increased F-18 Fluoro Deoxyglucose (F-18 FDG) uptake observed in vocal cords (VC) of the patients on Positron Emission Tomography/Computarize Tomography (PET/CT) scans is connected to speaking of the patients or not. If so, we expected to detect an increased metabolic activity in Broca's area. In this study, we have retrospectively searched for a correlation between the activity in the Broca's area and vocal cords of patients who had undergone FDG PET for different indications. FDG PET/CT scans of 30 patients with (VC [+]) and 30 patients without (VC [-]) bilateral F-18 FDG uptake on their vocal cords were retrospectively evaluated. Brain quantification was carried out on NeuroQ software with 20 iterations using patients' transaxial brain cross sections. On the 20th-23rd-26th-29th cross sections, area/whole brain ratios of the right (R) and left (L) for Broca's area were calculated. VC (+) and VC (-) patients' R and L Broca's areas were compared using Student's t-test. There was no significant difference between the Broca's areas of VC (+) and VC (-) patients. L Broca's areas of both VC (+) and VC (-) patients were more active than R Broca's areas (p<0.05). There was a negative correlation between VC (+) patients' SUVmax values in the vocal cords and the activity in their R Broca's region. In our study, we did not find a significant difference between Broca's areas of VC (+) patients and VC (-) patients, so the activity in their vocal cords does not seem to be related to increased metabolic activity in Broca's areas. We have concluded that the vocal cord activity is not related to speaking of the patients. The activity in the vocal cord might be due to inflammation or, as in the eye muscles, may be associated with high metabolism in laryngeal muscles. None declared.

  10. F18-FDG coincidence-PET in patients with suspected gynecological malignancy.

    PubMed

    Zor, E; Stokkel, M P; Ozalp, S; Vardareli, E; Yalçin, O Tarik; Ak, I

    2006-07-01

    To assess the role of F18-FDG imaging with a dual-head coincidence mode gamma camera (Co-PET) in identifying malignant tumors in patients with a suspicious adnexal mass depicted by conventional imaging methods. F18-FDG Co-PET was performed preoperatively in 18 women (mean age 56.38 years) with suspected malignant gynecologic tumors according to clinical and abdomino-pelvic/transvaginal ultrasound or computed tomography findings. Exploratory laparotomy was performed in all patients within the 10 days post-F18-FDG Co-PET study, and the definitive diagnosis of the adnexal masses was established by histopathological examination. Histopathological examinations of the surgically excised adnexal masses revealed eight malignant, one borderline, and nine benign neoplastic tumors. Four benign tumors had no F18-FDG uptake, while the remaining five tumors, all leiomyomas, showed mild FDG accumulation. Eight malignant tumors showed intense F18-FDG uptake. Sensitivity, specificity, PPV, and NPV of F18-FDG co-PET in differentiating benign from malign adnexal masses were 88%, 44%, 61%, and 80%, respectively. Tumor to background ratios (T/B) in benign lesions (2.04 +/- 0.27) were significantly lower than in malignant lesions (7.4 +/- 0.99). F18-FDG Co-PET is of clinical value when assessing suspicious malignant adnexal masses. False-negative F18-FDG results might arise from borderline disease. Moderate F18-FDG uptake in leiomyomas can result false-positive, but T/B ratios may be helpful in such cases.

  11. Clinical implication of F-18 FDG PET/CT in patients with secondary hemophagocytic lymphohistiocytosis.

    PubMed

    Kim, Jahae; Yoo, Su Woong; Kang, Sae-Ryung; Bom, Hee-Seung; Song, Ho-Chun; Min, Jung-Joon

    2014-04-01

    The contribution that F-18 fluoro-2-deoxyglucose positron emission tomography/computed tomography (F-18 FDG) PET/CT makes to the diagnosis of malignancy in patients with hemophagocytic lymphohistiocytosis (HLH) is still uncertain. The aim of this study was to evaluate the diagnostic performance of F-18 FDG PET/CT for the detection of underlying malignancy, to investigate the correlation between PET and laboratory parameters, and to identify prognosis-related factors in patients with secondary HLH. We enrolled 14 patients who were diagnosed with HLH and referred for F-18 FDG PET/CT to exclude malignancy. The diagnostic performance of F-18 FDG PET/CT for malignancy detection was assessed. The correlations between PET and laboratory parameters were determined. The prognostic significance of the following factors was evaluated: PET and laboratory parameters, age in years, presence of underlying malignancy, and fever and splenomegaly. Six of the 14 patients had malignancies (four with lymphoma, one with multiple myeloma, and one with colonic malignancy). Sensitivity, specificity, and diagnostic accuracy of F-18 FDG PET/CT for malignancy detection were 83, 62.5, and 71.4 %, respectively. F-18 FDG uptake in the bone marrow and spleen was positively correlated with neutrophil count and C-reactive protein. All of the PET parameters, but none of the clinical or laboratory parameters, were significantly associated with patient outcome, as determined by univariate analysis. Given the small sample size, F-18 FDG PET/CT was useful for detecting underlying malignancy, and PET parameters correlated with laboratory parameters that reflected inflammatory status. F-18 FDG PET/CT might provide prognostic information for the management of patients with secondary HLH.

  12. [The clinical value of F-18 FDG PET/CT in patients with secondary hemophagocytic syndrome].

    PubMed

    Wang, Xing-Bing; Zhu, Yun-Xia; Liu, Xin; Pan, Bo; Zhang, Liang; Han, Yong-Sheng; Cai, Xiao-Yan; Zhu, Wei-Bo; Wu, Jing-Sheng; Sun, Zi-Min

    2014-12-01

    The aim of this study was to investigate the role of F-18 fluoro-2-deoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in diagnosis and prognostic evaluation of secondary hemophagocytic syndrome (HPS). A total of 11 secondary HPS patients examined with 18F-FDG-PET/CT were retrospectively analyzed. The diagnostic value of F-18 FDG PET/CT for malignancy detection was assessed. The values of maximum standardized uptake value (SUV(max)) in spleen (SUVS(p)) and in bone marrow (SUVBM) were measured to analyze their relationship with various laboratorial parameters and clinical outcome of secondary HPS patients. The results showed that 4 out of the 11 patients had malignancies, the sensitivity, specificity and diagnostic accuracy of F-18 FDG PET/CT for malignancy detection were 100%, 66.7% and 75% respectively, the SUV(max) of spleen and bone marrow showed no significant correlation with laboratorial parameters, a maximum SUVS(p) of 3.10 and a maximum SUVBM of 3.47 were the optimal cutoffs for predicting patients' outcome, the increased uptake of F-18 FDG in the BM and spleen were significantly associated with shorter survival time according to univariate analysis. It is concluded that 18F-FDG PET/CT may especially play an important role in diagnosis and predicting outcome of secondary HPS for the small sample size.

  13. F-18 FDG imaging of an asymptomatic sacrococcygeal pilonidal sinus in a patient with malignant disease.

    PubMed

    Ak, Ilknur

    2007-10-01

    This case illustrates a pitfall associated with F-18 FDG imaging. We present the images of a 57-year-old woman with non-Hodgkin's lymphoma that shows intense accumulation of F-18 FDG in a sacrococcygeal pilonidal sinus that could indicate a lymphomatous involvement from a primary disease. MRI showed a well-defined sinus tract from skin to the sacrococcygeal region corresponding to the F-18 FDG uptake. She did not have any symptoms of a sacrococcygeal pilonidal sinus such as discharge, swelling or pain. There was no visible opening of the sinus tract on the skin. Pilonidal sinus is commonly a hair-containing sinus or abscess in the sacrococcygeal area. Hair acts as a foreign body causing an inflammatory reaction.

  14. Renal Cell Carcinoma with Paraneoplastic Manifestations: Imaging with CT and F-18 FDG PET/CT.

    PubMed

    Nguyen, Ba D; Roarke, Michael C

    2007-01-01

    We present a case of renal cell carcinoma with prominent inflammatory and paraneoplastic manifestations. The initial CT detection of renal malignancy and subsequent post-therapeutic F-18 FDG PET/CT diagnosis of occult osseous metastasis were based on the patient's anemia, thrombocytosis and abnormally increased levels of serum C-reactive protein.

  15. Calcified metastases from ovarian carcinoma highlighted by F-18 FDG PET/CT: report of two cases.

    PubMed

    Hu, Si-Long; Zhou, Zheng-Rong; Zhang, Ying-Jian

    2012-08-01

    Two cases of postoperative female patients with ovarian serous papillary carcinoma were referred for F-18 Fluorodeoxyglucose (F-18 FDG) PET/CT to evaluate suspicious recurrence and/or metastasis. One patient presented with multiple extensive calcified lesions with increased FDG uptake in the abdominopelvic cavity and the series of PET/CT scans showed progression of disease after chemotherapy. The other patient presented with three calcified masses with intensive uptake of FDG located in the left pelvis, the right subphrenic region, and the right supradiaphragmatic area, respectively. These suggest that F-18 FDG PET/CT can be useful in identifying malignant calcification and assessing therapeutic response of calcified malignancy.

  16. Cholangiolocellular Carcinoma of the Liver Exhibiting High F-18 FDG Uptake.

    PubMed

    Mori, Naoko; Ichikawa, Tamaki; Hashimoto, Jun; Yamashita, Tomohiro; Yamada, Misuzu; Hirabayashi, Kenichi; Imai, Yutaka

    2016-06-20

    Cholangiolocellular carcinoma (CoCC) is a rare primary liver cancer. It is considered to originate from hepatic progenitor or stem cells. We report a rare case of a 74-year-old male with CoCC of the liver and duodenal gastrointestinal stromal tumor (GIST). Both tumors manifested tracer uptakes on F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT); however, the uptake in hepatic tumor was extremely higher than that in the duodenal tumor. This finding was helpful to exclude the metastasis of GIST.

  17. Benign Schwannoma Mimicking Metastatic Lesion on F-18 FDG PET/CT in Differentiated Thyroid Cancer.

    PubMed

    Kang, Sungmin

    2013-06-01

    We report a case of benign schwannoma mimicking metastatic carcinoma. A 55-year-old female with papillary thyroid carcinoma underwent total thyroidectomy. F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT) demonstrated a focal hypermetabolic lesion with maximum standardized uptake value (SUVmax) 5.3 at the right chest wall. Conventional chest CT demonstrated a 5.4 cm ovoid mass lesion between the intercostal muscles and liver. Pathology revealed a schwannoma by tumor excision. This case demonstrates that benign schwannoma may demonstrate FDG uptake mimicking metastatic carcinoma.

  18. Rapidly growing complex fibroadenoma with surrounding ductal hyperplasia mimics breast malignancy on serial F-18 FDG PET/CT imaging.

    PubMed

    Makis, William; Ciarallo, Anthony; Hickeson, Marc; Derbekyan, Vilma

    2011-07-01

    A 30-year-old woman was referred for an F-18 fluorodeoxyglucose (FDG) PET/CT to rule out lymphoma, and was found to have an incidental FDG-avid right breast nodule that grew significantly in size and FDG uptake on a subsequent scan, raising suspicion of a growing breast malignancy. Histologic evaluation showed a complex fibroadenoma with adenosis and surrounding ductal hyperplasia. Although variable F-18 FDG uptake in fibroadenomas has been described, a distinction between simple and complex fibroadenomas has not been made in the PET literature, even though complex fibroadenomas have a higher propensity to develop into malignancies. This case shows that a rapidly growing complex fibroadenoma can mimic a breast malignancy on serial F-18 FDG PET/CT scans, showing significant increase in both size and FDG-avidity on follow-up studies.

  19. Isolated thymic Langerhans cell histiocytosis discovered on F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT).

    PubMed

    Turpin, Sophie; Carret, Anne-Sophie; Dubois, Josée; Buteau, Chantal; Patey, Natalie

    2015-11-01

    The thymic infiltration in young patients with multisystemic Langerhans cell histiocytosis and its radiologic features are well known. However, isolated thymic disease has seldom been reported in the literature. We report the case of a 10-month-old child admitted for fever of unknown origin. Whole-body F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) was performed to identify a focus of infection. It demonstrated an unusual aspect of the thymus, which led to further investigation and revealed isolated infiltration of the thymus by Langerhans cell histiocytosis. The patient was treated accordingly and is now disease free. As evaluation of Langerhans cell histiocytosis patients with F-18 FDG PET/CT is becoming more frequent, it is important to be aware of the scintigraphical characteristics of thymic Langerhans cell histiocytosis.

  20. Differential Diagnosis of Neurodegenerative Dementias Using Metabolic Phenotypes on F-18 FDG PET/CT

    PubMed Central

    Tripathi, Madhavi; Tripathi, Manjari; Damle, Nishikant; Kushwaha, Suman; Jaimini, Abhinav; D’Souza, Maria M.; Sharma, Rajnish; Saw, Sanjiv; Mondal, Anupam

    2014-01-01

    Summary Positron emission tomography (PET) imaging with F-18 fluorodeoxyglucose (FDG) can be used as a downstream marker of neuronal injury, a hallmark of neurodegenerative dementias. Characteristic patterns of regional glucose metabolism have been used to classify the dementia subtypes, namely Alzheimer's dementia (AD), frontotemporal dementia (FTD), diffuse Lewy body (DLBD) and vascular dementia (VD). We undertook this study to assess the utility of FDG-PET in the differential diagnosis of dementia subtypes. One hundred and twenty-five patients diagnosed with dementia were referred from cognitive disorders and memory clinics of speciality neurology centres for the FDG-PET study. Imaging-based diagnosis of dementia type was established in 101 patients by visual assessment of individual scans by a PET physician blinded to the clinical diagnosis. The results were compared with an 18-month follow-up clinical assessment made by the specialist neurologist. Concordance of visual evaluation of FDG-PET scans with clinical diagnosis of the dementia type was achieved in 90% of patients scanned. This concordance was 93.4% for AD, 88.8% for FTD, 66.6% for DLBD and 92.3% for the other dementia syndromes. FDG-PET performed after the initial work-up of dementias is useful for supporting the clinical diagnosis of dementia subtype. PMID:24571830

  1. C11-Acetate and F-18 FDG PET for Men With Prostate Cancer Bone Metastases

    PubMed Central

    Yu, Evan Y.; Muzi, Mark; Hackenbracht, Joy A.; Rezvani, Brian B.; Link, Jeanne M.; Montgomery, Robert Bruce; Higano, Celestia S.; Eary, Janet F.; Mankoff, David A.

    2011-01-01

    Purpose of the Report This study tested the feasibility of C11-acetate (acetate) positron emission tomography (PET) imaging to assess response to therapy in men with bone metastatic prostate cancer and compared results for disease detection and response evaluation with F-18 fluorodeoxyglucose (FDG) PET. Materials and Methods Men with ≥3 prostate cancer bone metastases identified by Tc-99m methylene diphosphonate (MDP) bone scintigraphy and/or computed tomography were enrolled in a prospective study of serial acetate and FDG PET imaging. Patients were imaged before and 6 to 12 weeks after initial androgen deprivation therapy for new metastatic prostate cancer or first-line chemotherapy with docetaxel for castration-resistant prostate cancer. Qualitative assessment and changes in the tumor:normal uptake ratio were used to assess response by both acetate and FDG PET. In addition, the detection of bone metastases pretherapy was compared for acetate and FDG PET. Results A total of 8 patients with documented bone metastases were imaged, of which 6 were imaged both pre- and post-therapy. Acetate PET detected bone metastases in all 8 patients, whereas FDG PET detected lesions in 6 of the 7 imaged patients. Acetate PET generally detected more metastases with a higher tumor:normal uptake ratio. Qualitative and quantitative assessments of post-treatment response correlated with composite clinical designations of response, stable disease, or progression in 6 of 6 and 5 of 6 by acetate and 4 of 5 and 3 of 5 by FDG PET, respectively. Conclusions In this pilot study, results indicate that acetate PET holds promise for response assessment of prostate cancer bone metastases and is complementary to FDG PET in bone metastasis detection. PMID:21285676

  2. Muscular Sarcoidosis Detected by F-18 FDG PET/CT in a Hypercalcemic Patient

    PubMed Central

    Han, Eun Ji; Jang, Yi Sun; Lee, In Suk; Lee, Jong Min; Kang, Siwon

    2013-01-01

    Sarcoidosis is a systemic granulomatous disease of unknown etiology that involves many organs, occasionally mimicking malignancy. We herein report a 50-yr-old woman of muscular sarcoidosis of chronic myopathic type, manifested by hypercalcemia and muscle wasting. Besides insignificant hilar lymphadenopathy, her sarcoidosis was confined to generalized atrophic muscles and therefore, F-18 FDG PET/CT alone among conventional imaging studies provided diagnostic clues for the non-parathyroid-related hypercalcemia. On follow-up PET/CT during low-dose steroid treatment, FDG uptake in the muscles disappeared whereas that in the hilar lymph nodes remained. PET/CT may be useful in the evaluation of unexpected disease extent and monitoring treatment response in suspected or known sarcoidosis patients. PMID:24015050

  3. F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis.

    PubMed

    Haslerud, Torjan; Brauckhoff, Katrin; Reisæter, Lars; Küfner Lein, Regina; Heinecke, Achim; Varhaug, Jan Erik; Biermann, Martin

    2016-10-01

    Positron emission tomography (PET) with fluor-18-deoxy-glucose (FDG) is widely used for diagnosing recurrent or metastatic disease in patients with differentiated thyroid cancer (DTC). To assess the diagnostic accuracy of FDG-PET for DTC in patients after ablative therapy. A systematic search was conducted in Medline/PubMed, EMBASE, Cochrane Library, Web of Science, and Open Grey looking for all English-language original articles on the performance of FDG-PET in series of at least 20 patients with DTC having undergone ablative therapy including total thyroidectomy. Diagnostic performance measures were pooled using Reitsma's bivariate model. Thirty-four publications between 1996 and 2014 met the inclusion criteria. Pooled sensitivity and specificity were 79.4% (95% confidence interval [CI], 73.9-84.1) and 79.4% (95% CI, 71.2-85.4), respectively, with an area under the curve of 0.858. F18-FDG-PET is a useful method for detecting recurrent DTC in patients having undergone ablative therapy. © The Foundation Acta Radiologica 2015.

  4. Current concepts in F18 FDG PET/CT-based radiation therapy planning for lung cancer.

    PubMed

    Lee, Percy; Kupelian, Patrick; Czernin, Johannes; Ghosh, Partha

    2012-01-01

    Radiation therapy is an important component of cancer therapy for early stage as well as locally advanced lung cancer. The use of F18 FDG PET/CT has come to the forefront of lung cancer staging and overall treatment decision-making. FDG PET/CT parameters such as standard uptake value and metabolic tumor volume provide important prognostic and predictive information in lung cancer. Importantly, FDG PET/CT for radiation planning has added biological information in defining the gross tumor volume as well as involved nodal disease. For example, accurate target delineation between tumor and atelectasis is facilitated by utilizing PET and CT imaging. Furthermore, there has been meaningful progress in incorporating metabolic information from FDG PET/CT imaging in radiation treatment planning strategies such as radiation dose escalation based on standard uptake value thresholds as well as using respiratory-gated PET and CT planning for improved target delineation of moving targets. In addition, PET/CT-based follow-up after radiation therapy has provided the possibility of early detection of local as well as distant recurrences after treatment. More research is needed to incorporate other biomarkers such as proliferative and hypoxia biomarkers in PET as well as integrating metabolic information in adaptive, patient-centered, tailored radiation therapy.

  5. [Investigations of radiation exposure of the medical personnel during F-18-FDG PET studies].

    PubMed

    Linemann, H; Will, E; Beuthien-Baumann, B

    2000-01-01

    The aim of the investigation was the identification of those working steps with the highest radiation exposure for the medical personnel during F-18-FDG-PET studies and to evaluate the effectiveness of radiation protection devices and instructions developed in our PET-center. The personal dose and hand dose were measured for each working procedure during F-18-FDG-PET studies using electronic personal dosimeters and thermoluminescent dosimeters respectively. Additionally, measurements of the radiation level near the patient were taken. The mean personal dose resulting from syringe preparation was 1 microSv/syringe, from injection 3 microSv/patient, from blood sampling during quantitative studies 6 microSv/study, and from positioning and handling of the patient 6 microSv/study. The mean hand dose per syringe preparation was 710 microSv for each hand. The mean hand dose during injection was 13 microSv for the right hand and 27 microSv for the left hand. All above mentioned values were measured applying the routine radiation shielding in use in our PET center. With the developed radiation shielding and means to reduce radiation exposure applied the allowed annual dose for medical personnel are not exceeded. One exception is the hand dose resulting from syringe preparation. An automatic or remote filling device should be used at this working step.

  6. A Rationale for the Use of F18-FDG PET/CT in Fever and Inflammation of Unknown Origin

    PubMed Central

    Balink, H.; Verberne, H. J.; Bennink, R. J.; van Eck-Smit, B. L. F.

    2012-01-01

    This review focuses on the diagnostic value of hybrid F18-FDG Positron Emission Tomography/Computerized tomography (PET/CT) in fever of unknown origin (FUO) and inflammation of unknown origin (IUO). Due to the wide range of possible causes both FUO and IUO remain a clinical challenge for both patients and physicians. In addition, the aetiology of IUO shows the same variation in diseases as the FUO spectrum and probably requires the same diagnostic approach as FUO. There are numerous historically used diagnostic approaches incorporating invasive and non-invasive, and imaging techniques, all with relative high specificity but limited sensitivity. This hampers the generalization of these diagnostic approaches. However, recently published reports show that F18-FDG PET/CT in FUO and IUO has a high sensitivity and a relative non-specificity for malignancy, infection and inflammation. This makes F18-FDG PET/CT an ideal diagnostic tool to start the diagnostic process and to guide subsequent focused diagnostic approaches with higher specificity. In addition, F18-FDG PET/CT has a relative high negative predictive value. Therefore F18 FDG PET/CT should be incorporated in the routine diagnostic work-up of patients with FUO and IUO, preferably at an early stage in the diagnostic process. PMID:23316356

  7. Diagnostic performance of PET/CT with tracers other than F-18-FDG in oncology: an evidence-based review.

    PubMed

    Treglia, G; Sadeghi, R; Del Sole, A; Giovanella, L

    2014-09-01

    Fluorine-18-fluorodeoxyglucose (F-18-FDG) is the most used positron emitter radiopharmaceutical worldwide. This glucose analogue allows to study the glucose metabolism which is often increased in many tumors. Nowadays the diagnostic performance of positron emission tomography/computed tomography (PET/CT) using F-18-FDG in different tumors is well known. On the other hand, to date, there is an increasing interest for the use of PET tracers other than F-18-FDG in oncology, because they allow to study different metabolic pathways or receptor expression. The aim of this review is to summarize the scientific literature about the diagnostic performance of PET/CT using tracers other than F-18-FDG in oncology through an evidence-based approach. In particular, the results of meta-analyses (representing the highest level of evidence) on the diagnostic performance of PET tracers other than F-18-FDG in different tumors are described. Furthermore, recommendations for the use of different PET tracers in oncology are provided based on existing literature data.

  8. A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images.

    PubMed

    Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D DiFranco, Matthew; Opposits, Gabor; K Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo

    2016-01-01

    Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25-30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians.

  9. A Study on the Basic Criteria for Selecting Heterogeneity Parameters of F18-FDG PET Images

    PubMed Central

    Forgacs, Attila; Pall Jonsson, Hermann; Dahlbom, Magnus; Daver, Freddie; D. DiFranco, Matthew; Opposits, Gabor; K. Krizsan, Aron; Garai, Ildiko; Czernin, Johannes; Varga, Jozsef; Tron, Lajos; Balkay, Laszlo

    2016-01-01

    Textural analysis might give new insights into the quantitative characterization of metabolically active tumors. More than thirty textural parameters have been investigated in former F18-FDG studies already. The purpose of the paper is to declare basic requirements as a selection strategy to identify the most appropriate heterogeneity parameters to measure textural features. Our predefined requirements were: a reliable heterogeneity parameter has to be volume independent, reproducible, and suitable for expressing quantitatively the degree of heterogeneity. Based on this criteria, we compared various suggested measures of homogeneity. A homogeneous cylindrical phantom was measured on three different PET/CT scanners using the commonly used protocol. In addition, a custom-made inhomogeneous tumor insert placed into the NEMA image quality phantom was imaged with a set of acquisition times and several different reconstruction protocols. PET data of 65 patients with proven lung lesions were retrospectively analyzed as well. Four heterogeneity parameters out of 27 were found as the most attractive ones to characterize the textural properties of metabolically active tumors in FDG PET images. These four parameters included Entropy, Contrast, Correlation, and Coefficient of Variation. These parameters were independent of delineated tumor volume (bigger than 25–30 ml), provided reproducible values (relative standard deviation< 10%), and showed high sensitivity to changes in heterogeneity. Phantom measurements are a viable way to test the reliability of heterogeneity parameters that would be of interest to nuclear imaging clinicians. PMID:27736888

  10. Usefulness of F-18 FDG PET/CT in subcutaneous panniculitis-like T cell lymphoma: disease extent and treatment response evaluation.

    PubMed

    Kim, Jin-Suk; Jeong, Young Jin; Sohn, Myung-Hee; Jeong, Hwan-Jeong; Lim, Seok Tae; Kim, Dong Wook; Kwak, Jae-Yong; Yim, Chang-Yeol

    2012-12-01

    BACKGROUND.: Subcutaneous panniculitis-like T-cell lymphoma (SPTCL) is a rare form of cutaneous lymphomas, accounting for less than 1% of cases of non-Hodgkin's lymphoma. Fluorine-18 fluorodeoxyglucose (F-18 FDG) positron-emission tomography/computed tomography (PET/CT) findings of SPTCL before and after treatment were rarely reported. CASE REPORT.: We report a case of SPTCL in which F-18 FDG PET/CT showed increased FDG accumulations in numerous subcutaneous nodules without extracutaneous disease. Contrast-enhanced CT during F-18 FDG PET/CT showed multiple minimally enhancing nodules with an infiltrative pattern in the subcutaneous layer throughout the body. Follow-up F-18 FDG PET/CT after three cycles of CHOP chemotherapy showed a complete metabolic remission of the lesions. CONCLUSIONS.: F-18 FDG PET/CT is suggested to be useful in assessing the disease activity, extent and treatment response in SPTCL.

  11. Visualization of Synthetic Vascular Smooth Muscle Cells in Atherosclerotic Carotid Rat Arteries by F-18 FDG PET.

    PubMed

    Pahk, Kisoo; Joung, Chanmin; Jung, Se-Mi; Young Song, Hwa; Yong Park, Ji; Woo Byun, Jung; Lee, Yun-Sang; Chul Paeng, Jin; Kim, Chunsook; Kim, Sungeun; Kim, Won-Ki

    2017-08-01

    Synthetic vascular smooth muscle cells (VSMCs) play important roles in atherosclerosis, in-stent restenosis, and transplant vasculopathy. We investigated the synthetic activity of VSMCs in the atherosclerotic carotid artery using (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Atherosclerosis was induced in rats by partial ligation of the right carotid artery coupled with an atherogenic diet and vitamin D injections (2 consecutive days, 600,000 IU/day). One month later, rats were imaged by F-18 FDG PET. The atherosclerotic right carotid arteries showed prominent luminal narrowing with neointimal hyperplasia. The regions with neointimal hyperplasia were composed of α-smooth muscle actin-positive cells with decreased expression of smooth muscle myosin heavy chain. Surrogate markers of synthetic VSMCs such as collagen type III, cyclophilin A, and matrix metallopeptidase-9 were increased in neointima region. However, neither macrophages nor neutrophils were observed in regions with neointimal hyperplasia. F-18 FDG PET imaging and autoradiography showed elevated FDG uptake into the atherosclerotic carotid artery. The inner vessel layer showed higher tracer uptake than the outer layer. Consistently, the expression of glucose transporter 1 was highly increased in neointima. The present results indicate that F-18 FDG PET may be a useful tool for evaluating synthetic activities of VSMCs in vascular remodeling disorders.

  12. Relation Between F-18 FDG Uptake of PET/CT and BRAFV600E Mutation in Papillary Thyroid Cancer.

    PubMed

    Yoon, Seokho; An, Young-Sil; Lee, Su Jin; So, Eu Young; Kim, Jang-Hee; Chung, Yoon-Sok; Yoon, Joon-Kee

    2015-12-01

    BRAFV600E mutation and F-18 fluorodeoxyglucose (FDG) uptake are potential prognostic factors of papillary thyroid cancer (PTC). This study was performed to investigate the relationship between the BRAFV600E mutation and F-18 FDG uptake in PTC.We retrospectively included 169 PTC patients who underwent F-18 FDG positron emission tomography/computed tomography (PET/CT) before thyroidectomy from May 2009 to August 2012. Subjects were classified into overt PTC (>1 cm, n = 76) and papillary thyroid microcarcinoma (PTMC, n = 93) groups. Univariate and multivariate analyses were performed to assess the relationship between maximum standardized uptake value (SUVmax) of the primary tumors and clinicopathologic variables.The BRAFV600E mutation was detected in 82.2% (139/169). In all subjects, the BRAFV600E mutation and tumor size were independently related to SUVmax by multivariate analysis (P = 0.048 and P < 0.001, respectively). SUVmax was significantly higher in tumors with the BRAFV600E mutation than in those with wild-type BRAF (9.4 ± 10.9 vs 5.0 ± 4.1, P < 0.001). Similarly, in overt PTC group, the BRAFV600E mutation and tumor size were independently correlated with SUVmax (P = 0.032 and P = 0.001, respectively). By contrast, in PTMC group, only tumor size was significantly associated with SUVmax (P = 0.010). The presence of the BRAFV600E mutation is independently associated with high F-18 FDG uptake on preoperative PET/CT in patients with overt PTC, but this relationship was not evident in PTMC. This study provides a better understanding of the relationship between F-18 FDG uptake and BRAFV600E mutation in patients with PTC.

  13. Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David

    2015-03-01

    The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.

  14. MO-G-17A-07: Improved Image Quality in Brain F-18 FDG PET Using Penalized-Likelihood Image Reconstruction Via a Generalized Preconditioned Alternating Projection Algorithm: The First Patient Results

    SciTech Connect

    Schmidtlein, CR; Beattie, B; Humm, J; Li, S; Wu, Z; Xu, Y; Zhang, J; Shen, L; Vogelsang, L; Feiglin, D; Krol, A

    2014-06-15

    Purpose: To investigate the performance of a new penalized-likelihood PET image reconstruction algorithm using the 1{sub 1}-norm total-variation (TV) sum of the 1st through 4th-order gradients as the penalty. Simulated and brain patient data sets were analyzed. Methods: This work represents an extension of the preconditioned alternating projection algorithm (PAPA) for emission-computed tomography. In this new generalized algorithm (GPAPA), the penalty term is expanded to allow multiple components, in this case the sum of the 1st to 4th order gradients, to reduce artificial piece-wise constant regions (“staircase” artifacts typical for TV) seen in PAPA images penalized with only the 1st order gradient. Simulated data were used to test for “staircase” artifacts and to optimize the penalty hyper-parameter in the root-mean-squared error (RMSE) sense. Patient FDG brain scans were acquired on a GE D690 PET/CT (370 MBq at 1-hour post-injection for 10 minutes) in time-of-flight mode and in all cases were reconstructed using resolution recovery projectors. GPAPA images were compared PAPA and RMSE-optimally filtered OSEM (fully converged) in simulations and to clinical OSEM reconstructions (3 iterations, 32 subsets) with 2.6 mm XYGaussian and standard 3-point axial smoothing post-filters. Results: The results from the simulated data show a significant reduction in the 'staircase' artifact for GPAPA compared to PAPA and lower RMSE (up to 35%) compared to optimally filtered OSEM. A simple power-law relationship between the RMSE-optimal hyper-parameters and the noise equivalent counts (NEC) per voxel is revealed. Qualitatively, the patient images appear much sharper and with less noise than standard clinical images. The convergence rate is similar to OSEM. Conclusions: GPAPA reconstructions using the 1{sub 1}-norm total-variation sum of the 1st through 4th-order gradients as the penalty show great promise for the improvement of image quality over that currently achieved

  15. Radiation assessment to paediatric with F-18-FDG undergo whole-body PET/CT examination

    SciTech Connect

    Dhalisa, H. Rafidah, Z.; Mohamad, A. S.

    2016-01-22

    This study was carried out on wholebody radiation dose assessment to paediatrics patient who undergo PET/CT scanner at Institut Kanser Negara. Consist of 68 patients with varies of malignancies and epilepsy disease case covering age between 2 years to 12 years old. This is a retrospective study from 2010-2014. The use of PET/CT scanner as an advanced tool has been proven to give an extra radiation dose to the patient. It is because of the radiation exposure from the combination of both CT and PET scans rather than a single CT or PET scan. Furthermore, a study on radiation dose to paediatric patient undergoing PET/CT is rare in Malaysia. So, the aim of this study is to estimate the wholebody effective dose to paediatric patient in Malaysia. Effective dose from PET scan was calculated based on the activity of F18 FDG and dose coefficient reported in International Commission on Radiological Protection (ICRP) Publication 106. Effective dose from CT was determined using k coefficient as reported in ICRP publication 102 and Dose Length Product (DLP) value. The average effective dose from PET and CT were found to be 7.05mSv and 5.77mSv respectively. The mean wholebody effective dose received by a patient with combined PETCT examination was 12.78mSv. These results could be used as reference for dosimetry of a patient undergoing PETCT examination in Malaysia.

  16. Radiation assessment to paediatric with F-18-FDG undergo whole-body PET/CT examination

    NASA Astrophysics Data System (ADS)

    Dhalisa, H.; Mohamad, A. S.; Rafidah, Z.

    2016-01-01

    This study was carried out on wholebody radiation dose assessment to paediatrics patient who undergo PET/CT scanner at Institut Kanser Negara. Consist of 68 patients with varies of malignancies and epilepsy disease case covering age between 2 years to 12 years old. This is a retrospective study from 2010-2014. The use of PET/CT scanner as an advanced tool has been proven to give an extra radiation dose to the patient. It is because of the radiation exposure from the combination of both CT and PET scans rather than a single CT or PET scan. Furthermore, a study on radiation dose to paediatric patient undergoing PET/CT is rare in Malaysia. So, the aim of this study is to estimate the wholebody effective dose to paediatric patient in Malaysia. Effective dose from PET scan was calculated based on the activity of F18 FDG and dose coefficient reported in International Commission on Radiological Protection (ICRP) Publication 106. Effective dose from CT was determined using k coefficient as reported in ICRP publication 102 and Dose Length Product (DLP) value. The average effective dose from PET and CT were found to be 7.05mSv and 5.77mSv respectively. The mean wholebody effective dose received by a patient with combined PETCT examination was 12.78mSv. These results could be used as reference for dosimetry of a patient undergoing PETCT examination in Malaysia.

  17. Correlation of Glut-1 and Glut-3 expression with F-18 FDG uptake in pulmonary inflammatory lesions.

    PubMed

    Wang, Zhen Guang; Yu, Ming Ming; Han, Yu; Wu, Feng Yu; Yang, Guang Jie; Li, Da Cheng; Liu, Si Min

    2016-11-01

    The aim of the study was to investigate the correlation of glucose transporter-1 (Glut-1) and glucose transporter-3 (Glut-3) expression with F-18 FDG uptake in pulmonary inflammatory lesions.Twenty-two patients with pulmonary inflammatory lesions underwent positron emission tomography/computed tomography (PET/CT) examination preoperatively, and Glut-1 and Glut-3 expression were detected by immunohistochemistry in these lesions. Correlations of Glut-1 and Glut-3 with F-FDG uptake were assessed using Spearman's rank correlation test.The maximum standardized uptake value (SUVmax) of pulmonary inflammatory lesions in 22 patients was 0.50 to 7.50, with a mean value of 3.66 ± 1.62. Immunohistochemical staining scores of Glut-1 and Glut-3 were 2.18 ± 0.96 and 2.82 ± 1.37, respectively. The expression of Glut-1 and Glut-3 was positively correlated with F-18 FDG uptake. Glut-3 expression was evidently higher than Glut-1 expression in 22 patients.Glut-1 and Glut-3 expressions are high in pulmonary inflammatory lesions, and Glut-3 plays a more important role in F-18 FDG uptake in pulmonary inflammatory lesions.

  18. False-positive F-18 FDG uptake in PET/CT studies in pediatric patients with abdominal Burkitt's lymphoma.

    PubMed

    Riad, Raef; Omar, Walid; Sidhom, Iman; Zamzam, Manal; Zaky, Iman; Hafez, Magdy; Abdel-Dayem, Hussein M

    2010-03-01

    In pediatric patients with abdominal Burkitt's lymphoma, the involvement of the gastrointestinal tract and abdominal lymph nodes are the main presenting feature of the disease. Chemotherapy is the main treatment modality and could be preceded by surgical excision of the abdominal masses. To achieve cure or long-term disease-free survival a balance has to be struck between aggressive chemotherapy and the probability of tumor necrosis secondary to treatment complicated by acute infections, perforation or intestinal bleeding. F-18 fluorodeoxyglucose-positron emission tomography/computed tomography (F-18 FDG-PET/CT) has been recommended over conventional imaging modalities for the follow-up of these patients and for monitoring treatment response. As the incidences of postchemotherapy complications are high, the positive predictive value of PET/CT studies in these patients is very low and the false-positive rate is high from acute infections and tumor necrosis. Accordingly, histopathological confirmation of positive lesions on F-18 FDG-PET/CT studies is essential. This is especially important as post-therapy complications might present with nonspecific and nonurgent symptoms. At the same time initiating a second course of salvage chemotherapy is risky. Retrospectively reviewed F-18 FDG-PET/CT studies for 28 pediatric patients with abdominal Burkitt's lymphoma and diffuse large B-cell lymphoma after their treatment with chemotherapy or surgery. Four positive studies were found. All had pathological verification and were because of acute inflammation and tumor necrosis and there was no evidence of viable tumor cells. One patient had multiple recurrent lesions in the abdomen after the initial surgical excision and before starting chemotherapy. The incidence of acute complications in this series is 10.7%. This study confirms the high incidence of tumor necrosis and inflammation after chemotherapy for the abdominal Burkitt's lymphoma and consequently, the incidence of true

  19. F18-FDG-PET/CT for evaluation of intraductal papillary mucinous neoplasms (IPMN): a review of the literature.

    PubMed

    Bertagna, Francesco; Treglia, Giorgio; Baiocchi, Gian Luca; Giubbini, Raffaele

    2013-04-01

    Intraductal papillary mucinous neoplasms (IPMN) are intraductal mucin-producing neoplasms with tall columnar, mucin-containing epithelium, with or without papillary projections, involving the main pancreatic duct and/or major side branches. They account for approximately 25 % of all cystic neoplasms and can be subdivided into benign lesions, borderline lesions, and carcinoma. In this clinical scenario accurate preoperative diagnosis can eliminate unnecessary surgery, which is risky and potentially harmful, yet enable effective selection of patients who are candidates for surgery. In this review we try to provide a complete evaluation of the use of F18-FDG-PET/CT for diagnosis of this neoplasm on the basis of published papers. F18-FDG-PET/CT seems to be an useful technique for preoperative work-up of patients with suspected IPMN and is an improvement over conventional imaging in distinguishing benign from malignant lesions, especially for selecting patients for surgical treatment or for long-term follow-up.

  20. Differentiation of thoracic tumors from post-treatment changes using PET with F-18 FDG and C-11 methionine

    SciTech Connect

    Kim, E.E.; Garcia, J.R.; Wong, F.C.L.

    1994-05-01

    This study was undertaken to differentiate active residual or recurrent thoracic tumors from various post-treatment changes by utilizing PET with F-18 FDG and also to compare F-18 FDG and C-11 methionine (Met) in diagnostic accuracy. We have prospectively evaluated 77 FDG-PET studies in 61 patients with histologically proven lung (37) and other thoracic (24) malignant tumors. Eleven Met-PET studies were obtained in 10 patients (three lung, seven other cancers). All patients received surgery, radiation, and/or chemotherapy, and their routine follow-up radiographic exam including CT showed suspected recurrent or residual tumors. PET studies were performed using Posicam scanner (Positron Co.) transaxial as well as reconstructed coronal or sagittal images were obtained after injection of 5-10 mCi F-18 FDG or 15-20 mCi C-11 Met following at least four hour fasting and attenuating correction. All PET images were visually inspected and correlated with radiographic studies. Standard uptake values (SUVs) were generated and compared on serial studies. Fifty-one studies had histologic correlation and all patients had at least six month follow-ups. Sensitivity, specificity and accuracy for diagnosing active thoracic tumors with FDG-PET scans were 100% (52/52), 88% (22/25) and 96% (74/77), respectively. They were 100% (7/7), 100% (4/4) and 100% (11/11), respectively with Met-PET in selected patients. Three false positive (FP) FDG cases showed active inflammation histologically. SUVs of FDG-PET were 6.5{plus_minus}2.9 for true positives and 1.4{plus_minus}1.3 for true negatives, respectively. SUVs of Met-PET were 4.3{plus_minus}2.3 for TP and 1.2{plus_minus}0.5 for TN, respectively. In conclusion, PET with FDG or Met is useful in diagnosing active thoracic tumors after various treatments, and FDG showed greater SUV than Met.

  1. Prognostic value of pre-treatment F-18-FDG PET-CT in patients with hepatocellular carcinoma undergoing radioembolization

    PubMed Central

    Abuodeh, Yazan; Naghavi, Arash O; Ahmed, Kamran A; Venkat, Puja S; Kim, Youngchul; Kis, Bela; Choi, Junsung; Biebel, Benjamin; Sweeney, Jennifer; Anaya, Daniel A; Kim, Richard; Malafa, Mokenge; Frakes, Jessica M; Hoffe, Sarah E; El-Haddad, Ghassan

    2016-01-01

    AIM To evaluate the value of pre-treatment 18F-FDG PET/CT in patients with HCC following liver radioembolization. METHODS We identified 34 patients with HCC who underwent an FDG PET/CT scan prior to hepatic radioembolization at our institution between 2009 and 2013. Patients were seen in clinic one month after radioembolization and then at 2-3 mo intervals. We assessed the influence of FDG tumor uptake on outcomes including local liver control (LLC), distant liver control (DLC), time to distant metastases (DM), progression free survival (PFS) and overall survival (OS). RESULTS The majority of patients were males (n = 25, 74%), and had Child Pugh Class A (n = 31, 91%), with a median age of 68 years (46-84 years). FDG-avid disease was found in 19 (56%) patients with SUVmax ranging from 3 to 20. Female patients were more likely to have an FDG-avid HCC (P = 0.02). Median follow up of patients following radioembolization was 12 months (1.2-62.8 mo). FDG-avid disease was associated with a decreased 1 year LLC, DLC, DM and PFS (P < 0.05). Using multivariate analysis, FDG avidity predicted for LLC, DLC, and PFS (all P < 0.05). CONCLUSION In this retrospective study, pre-treatment HCC FDG-avidity was found to be associated with worse LLC, DLC, and PFS following radioembolization. Larger studies are needed to validate our initial findings to assess the role of F-18-FDG PET/CT scans as biomarker for patients with HCC following radioembolization. PMID:28058021

  2. Response Assessment and Prediction in Esophageal Cancer Patients via F-18 FDG PET/CT Scans

    NASA Astrophysics Data System (ADS)

    Higgins, Kyle J.

    Purpose: The purpose of this study is to utilize F-18 FDG PET/CT scans to determine an indicator for the response of esophageal cancer patients during radiation therapy. There is a need for such an indicator since local failures are quite common in esophageal cancer patients despite modern treatment techniques. If an indicator is found, a patient's treatment strategy may be altered to possibly improve the outcome. This is investigated with various standard uptake volume (SUV) metrics along with image texture features. The metrics and features showing the most promise and indicating response are used in logistic regression analysis to find an equation for the prediction of response. Materials and Methods: 28 patients underwent F-18 FDG PET/CT scans prior to the start of radiation therapy (RT). A second PET/CT scan was administered following the delivery of ~32 Gray (Gy) of dose. A physician contoured gross tumor volume (GTV) was used to delineate a PET based GTV (GTV-pre-PET) based on a threshold of >40% and >20% of the maximum SUV value in the GTV. Deformable registration was used in VelocityAI software to register the pre-treatment and intra-treatment CT scans so that the GTV-pre-PET contours could be transferred from the pre to intra scans (GTV-intra-PET). The fractional decrease in the maximum, mean, volume to the highest intensity 10%-90%, and combination SUV metrics of the significant previous SUV metrics were compared to post-treatment pathologic response for an indication of response. Next for the >40% threshold, texture features based on a neighborhood gray-tone dimension matrix (NGTDM) were analyzed. The fractional decrease in coarseness, contrast, busyness, complexity, and texture strength were compared to the pathologic response of the patients. From these previous two types of analysis, SUV and texture features, the two most significant results were used in logistic regression analysis to find an equation to predict the probability of a non

  3. Is there any complimentary role of F-18 NaF PET/CT in detecting of osseous involvement of multiple myeloma? A comparative study for F-18 FDG PET/CT and F-18 FDG NaF PET/CT.

    PubMed

    Ak, İlknur; Onner, Hasan; Akay, Olga Meltem

    2015-09-01

    Multiple myeloma (MM) is a disease characterized by a monoclonal plasma cell population in the bone marrow whereby osseous involvement is a predominant feature. The aim of this prospective study was to investigate the combined use of F-18 FDG and F-18 NaF PET/CT in the skeletal assessment of patients with MM and to compare the efficacy of these two PET tracers regarding detection of myeloma-indicative osseous lesions. A total of 26 patients (14 females and 12 males, mean age 61.8 ± 1.8 years (range 40-81 years)) with MM diagnosed according to standard criteria. All patients underwent both F-18 FDG PET/CT and F-18 NaF PET/CT scans within 1 week after the completion of the usual staging workup for MM. In total, approximately 128 focal F-18 FDG avid skeletal lesions were detected; the stage I (n = 5) patients had 10 bone lesions, the stage II (n = 11) patients had 43 lesions, and the stage III (n = 10) patients demonstrated 75 focal bone lesions. F-18 NaF PET/CTs demonstrated fewer myeloma indicative lesions than F-18 FDG PET/CTs. Totally, 57 focal bone lesions were detected with whole body F-18 NaF PET/CT (mean 2.19 ± 0.34, between 1 and 9 lesions); the five stage I patients had 6 bone lesions, the 11 stage II pts had 18 lesions, and the ten stage III patients demonstrated 33 focal bone lesions. On the other hand, F-18 NaF PET/CT demonstrated additional 135 bone lesions defined as rib fractures and other findings due to degenerative changes. In conclusion, our study implies that F-18 NaF PET/CT scan did not actually aid for assessing the myelomatous bone lesions in patients with MM. Therefore, a complementary F-18 NaF PET/CT may be an accurate modality for detecting of bone fracture in patients with MM.

  4. Extensive invasive extramammary Paget disease evaluated by F-18 FDG PET/CT: a case report.

    PubMed

    Li, Zu-Gui; Qin, Xiao-Jing

    2015-01-01

    Extramammary Paget disease (EMPD) is a rare cutaneous, intraepithelial adenocarcinoma. Because of its rarity, little is known about the value of fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) in evaluating this disease. Our case report aims to increase current knowledge of FDG PET/CT in EMPD as a noninvasive imaging tool for assessing the extension of the disease and detecting distant metastases.We reported a 64-year-old Chinese man who presented with a slowly progressive, ill-margined erythematous lesion with a crusted, eroded, and scaly surface involving multiple sites of penis, scrotum, left pelvic wall, hip, groin, and thigh for >4 years, which became extensive in the past 1 year. He was referred for an FDG PET/CT examination to further evaluate the lesions. A following skin biopsy was performed to obtain a definitive histological diagnosis.FDG PET/CT imaging revealed mild FDG uptake at the extensive cutaneous lesion with subcutaneous invasion, involvement of lymph nodes, and multiple intense FDG-avid of skeletal metastases. According to the appearance of FDG PET/CT, a provisional diagnosis of advanced cutaneous malignancy was made. Histopathology findings indicated characteristic of EMPD. The patient was treated with radiation therapy and died from complications 2 months after the last dose of radiotherapy.Our case highlighted that a whole-body FDG PET/CT should be incorporated into the diagnostic algorithm of EMPD to give a comprehensive assessment of this disease.

  5. Pulmonary artery sarcoma detected on F-18 FDG PET/CT as origin of multiple spinal metastases.

    PubMed

    Chun, In Kook; Eo, Jae Seon; Paeng, Jin Chul; Kim, Dong Wan; Chung, June-Key; Lee, Dong Soo

    2011-08-01

    A 67-year-old man with back pain was diagnosed as having multiple spinal metastases on MRI. On CT scan, only a filling defect in the right pulmonary artery was observed and suspected as venous thromboembolism. On F-18 fluorodeoxyglucose (FDG) PET/CT, intense hypermetabolism was observed in the right pulmonary artery in addition to the metastatic spine lesions. Biopsy confirmed the lesion as a primary pulmonary artery sarcoma (PAS), and the spine lesions as metastases of PAS. Although PAS is rare and its bone metastasis presenting initial symptom is extremely rare, FDG PET/CT is an effective diagnostic modality for PAS, not only in discrimination from venous thromboembolism, but also in workup of metastatic origin.

  6. Usefulness of F-18 FDG PET/CT in a case of Kaposi sarcoma with an unexpected bone lesion.

    PubMed

    Morooka, Miyako; Ito, Kimiteru; Kubota, Kazuo; Yanagisawa, Kunio; Teruya, Katsuji; Hasuo, Kahehiro; Shida, Yoshitaka; Minamimoto, Rhogo; Kikuchi, Yoshimi; Oka, Shinichi

    2011-03-01

    Bone lesions of Kaposi sarcoma are rare. A 56-year-old man who was HIV positive and was diagnosed with Kaposi sarcoma on the basis of the results of a biopsy of skin lesions, underwent F-18 FDG PET/CT scan for detecting Kaposi sarcoma lesions and other AIDS-related diseases. An abnormal uptake was observed in the lumbar spine. MRI showed a diffuse enhanced spine lesion, and Ga-67 and ²⁰¹Tl scanning were negative. As a result, the lesion was considered to be a Kaposi sarcoma, and the shrinkage of the lesion was noted after the therapy for Kaposi sarcoma.

  7. Dual-phase F-18 FDG PET-CT in staging and lymphoscintigraphy for detection of sentinel lymph nodes in oral cavity cancers.

    PubMed

    Sürücü, Erdem; Polack, Berna Degirmenci; Demir, Yusuf; Durmuşoğlu, Mehmet; Ekmekçi, Sümeyye; Sarıoğlu, Sülen; Çelik, Ahmet Orhan; Ada, Emel; İkiz, Ahmet Ömer

    2015-01-01

    Our objective was to evaluate the diagnostic role of dual-phase fluor-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography-computed tomography (PET-CT) and planar lymphoscintigraphy in patients with oral cavity cancer (OCC). We also investigated the combined impact of F-18 FDG PET-CT and sentinel lymph node biopsy (SLNB) in decision making for patients with OCC. Sixteen patients (4 female, 12 male; age range, 29-81 years) were included in this prospective study. F-18 FDG PET-CT [1 (early) and 2 h (delayed) after injection] and planar lymphoscintigraphy (2h before the surgery) were performed for all the patients before surgery. The sensitivity, specificity, and negative and positive predictive values in F-18 FDG PET-CT for the early and the delayed scans and tumor/liver uptake (T/L) in the lymph nodes were calculated. Receiver operating characteristic curves were obtained for standardized uptake value (SUV)max and T/L. Histopathological evaluations revealed that 5 patients had metastatic lymph nodes (pN+) whereas 11 patients had benign lymph nodes (pN-). Out of 43 lymph nodes visualized as cN(+) in F-18 FDG PET-CT, 14 were pathologically positive for malignancy, whereas 29 were pathologically benign. There was no statistical difference between the N(+) and N(-) patients in terms of age, depth of primary tumor, and the number of mitoses. However, there was a significant difference between the N(+) and N(-) patients (P=.011) in terms of early and delayed F-18 FDG uptake of primary tumors. There was a statistically significant difference in the value of SUVmax between the early and the delayed scans for the malignant lymph nodes (P=.00). This study indicates that F-18 FDG PET-CT is a reliable method for the correct evaluation of primary tumor and N staging in OCCs. Delayed phase of F-18 FDG imaging may increase primary lesion detectability due to higher FDG uptake in primary tumors compared to the early phase of imaging. F-18 FDG PET-CT might demonstrate skip

  8. Predictive value of intratumoral heterogeneity of F-18 FDG uptake for characterization of thyroid nodules according to Bethesda categories of fine needle aspiration biopsy results.

    PubMed

    Kim, Seong-Jang; Chang, Samuel

    2015-12-01

    The current study was aimed to investigate the clinical value of intratumoral heterogeneity of F-18 FDG uptake for characterization of thyroid nodule (TN) with inconclusive fine-needle aspiration biopsy (FNAB) results. The current study enrolled 200 patients who showed F-18 FDG incidentaloma and were performed FNAB. The intratumoral heterogeneity of F-18 FDG uptake was represented as the heterogeneity factor (HF), defined as the derivative (dV/dT) of a volume-threshold function for a primary tumor. The diagnostic and predictive values of HF and F-18 FDG PET/CT parameters were evaluated for characterization of inconclusive FNAB results. Among F-18 FDG PET/CT parameters, SUVmax, MTV, and TLG of malignant group were statistically higher than those of Bethesda category of suspicious malignant group. However, HF values were not statistically different between the groups of Bethesda categories (Kruskal-Wallis statistics, 9.924; p = 0.0774). In ROC analysis, when HF > 2.751 was used as cut-off value, the sensitivity and specificity for prediction of malignant TN were 100 % (95 % CI 69.2-100 %) and 60 % (95 % CI 42.1-76.1 %), respectively. The AUC was 0.826 (95 % CI 0.684-0.922) and standard error was 0.0648 (p < 0.0001). In conclusion, the intratumoral heterogeneity of F-18 FDG uptake represented by HF could be a predictor for characterization of TN with inconclusive FNAB results. Additional large population-based prospective studies are needed to validate the diagnostic utility of HF of F-18 FDG PET/CT.

  9. 2-Deoxy-2[F-18]FDG-PET for Detection of Recurrent Laryngeal Carcinoma after Radiotherapy: Interobserver Variability in Reporting

    PubMed Central

    van der Putten, L.; Hoekstra, O. S.; Kuik, D. J.; Comans, E. F. I.; Langendijk, J. A.; Leemans, C. R.

    2008-01-01

    Purpose To evaluate accuracy and interobserver variability in the assessment of 2-deoxy-2[F-18]fluoro-d-glucose-positron emission tomography (FDG-PET) for detection of recurrent laryngeal carcinoma after radiotherapy. Procedures Eleven experienced nuclear physicians from eight centres assessed 30 FDG-PET scans on the appearance of local recurrence (negative/equivocal/positive). Conservative (equivocal analysed as negative) and sensitive (equivocal analysed as positive) assessment strategies were compared to the reference standard (recurrence within 6months after PET). Results Seven patients had proven recurrences. For the conservative and sensitive strategy, the mean sensitivity was 87% and 97%, specificity 81% and 63%, positive predictive values 61% and 46% and negative predictive values 96% and 99%, respectively. Interobserver variability showed a reasonable relation in comparison to the reference standard (kappa = 0.55). Conclusions FDG-PET has acceptable interobserver agreement and yields good negative predictive value for detection of recurrent laryngeal carcinoma. It could therefore be used as first diagnostic step and may reduce futile invasive diagnostics. PMID:18622649

  10. Performance of F-18 FDG PET/CT for Predicting Malignant Potential of Gastrointestinal Stromal Tumors: A Systematic Review and Meta-analysis.

    PubMed

    Kim, Seong-Jang; Lee, Sang-Woo

    2017-10-10

    We aimed to explore the role of the diagnostic accuracy of F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) or positron emission tomography/computed tomography (PET/CT) for prediction of malignant potential of gastrointestinal stromal tumor (GIST) through a systematic review and meta-analysis. The MEDLINE, EMBASE, and Cochrane Library database, from the earliest available date of indexing through May 31, 2017, were searched for studies evaluating the diagnostic performance of F-18 FDG PET or PET/CT for prediction of malignant potential of GIST. We determined the sensitivities and specificities across studies, calculated positive and negative likelihood ratios (LR+ and LR-), and constructed summary receiver operating characteristic curves. Across 7 studies (188 patients), the pooled sensitivity for F-18 FDG PET or PET/CT was 0.88 (95% CI; 0.80-0.94) without heterogeneity (χ(2) =6.15, p=0.72) and a pooled specificity of 0.88 (95% CI; 0.75-0.94) with heterogeneity (χ(2) =23.2, p= 0.01). Likelihood ratio (LR) syntheses gave an overall positive likelihood ratio (LR+) of 7.2 (95% CI; 3.3-15.3) and negative likelihood ratio (LR-) of 0.13 (95% CI; 0.07-0.24). The pooled DOR was 54 (95% CI; 16-181). F-18 FDG PET or PET/CT demonstrated good sensitivity and specificity for the prediction of malignant potential of GIST. At present, the literature regarding the use of F-18 FDG PET or PET/CT for the prediction of malignant potential of GIST remains still limited; thus, further large multicenter studies would be necessary to substantiate the diagnostic accuracy of F-18 FDG PET or PET/CT prediction of malignant potential of GIST. This article is protected by copyright. All rights reserved.

  11. Diagnosis of ventriculoperitoneal shunt infection using [F-18]-FDG PET: a case report.

    PubMed

    Rehman, T; Chohan, M O; Yonas, H

    2011-06-01

    Infection of cerebrospinal fluid (CSF) shunts is a common occurrence and can often be difficult to diagnose using standard analysis of shunt fluid. This article presents the first case report on the diagnosis of a CSF shunt infection on FDG PET scan. A 26-year-old female underwent ventriculoperitoneal shunt placement after developing a pseudomeningocele subsequent to a suboccipital craniectomy for Chiari malformation. Two months later, the patient presented with abdominal pain and non-specific symptoms and was found to have a perisplenic abscess for which she was adequately treated. Failure of her symptoms to solve and an initial negative shunt CSF analysis prompted the search for other sources of infection. An FDG PET scan performed a week later found evidence of increase tracer uptake around the distal tip of the catheter and a repeat shunt CSF analysis showed evidence of CSF infection. FDG PET may be useful in diagnosing shunt related infections in case of high clinical suspicion when standard diagnostic modalities fail to diagnose hardware infection.

  12. Functional neuroimaging using F-18 FDG PET/CT in amnestic mild cognitive impairment: A preliminary study

    PubMed Central

    Tripathi, Madhavi; Tripathi, Manjari; Sharma, Rajnish; Jaimini, Abhinav; MD’Souza, Maria; Saw, Sanjiv; Mondal, Anupam; Kushwaha, Suman

    2013-01-01

    Background and Objective: People with amnestic mild cognitive impairment (aMCI) are at a higher risk of developing Alzheimers Dementia (AD) than their cognitively normal peers. Decreased glucose metabolism with F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) is a downstream marker of neuronal injury and neurodegeneration. The risk of developing AD is higher in patients with aMCI who have a pattern of AD related glucose metabolic changes on FDG-PET than those who do not have these changes. We evaluated the utility of visual and ‘statistical parametric mapping (SPM)-supported reading’ of the FDG-PET scans of patients clinically classified as aMCI for identification of predementia patterns and for prediction of their progression to AD (PTAD). Patients and Methods: A total of 35 patients diagnosed as aMCI (mini mental state examination (MMSE) score ≥ 25) at the cognitive disorders and memory (CDM) clinic of speciality neurology centers were referred for a resting FDG-PET study. All patients had a detailed neurological, neuropsychological, and magnetic resonance imaging (MRI) evaluation prior to referral. Mean age of patients was 67.9 ± 8.7 (standard deviation (SD)) years, male: female (M: F) =26:9. Twenty healthy age-matched controls were included in the study for SPM (http://www.fil.ion.ucl.ac.uk/spm/). Scans were interpreted visually and using SPM. Each scan was classified as high, intermediate, or low likelihood for PTAD. Results: On visual analysis, four scans were classified as high likelihood of PTAD and reveled hypometabolism in AD related territories. Seven patients had hypometabolism in at least one AD related territory and were classified as intermediate likelihood for PTAD. Two patients had hypometabolism in other than AD territories, while 22 patients did not show any significant hypometabolism on their FDG-PET scans and were classified as low likelihood for PTAD. SPM analysis of these cases confirmed the areas hypometabolism in all

  13. Nonrigid registration of dynamic breast F-18-FDG PET/CT images using deformable FEM model and CT image warping

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Unlu, Mehmet; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Coman, Ioana; Feiglin, David

    2007-03-01

    This study was undertaken to correct for motion artifacts in dynamic breast F-18-FDG PET/CT images, to improve differential-image quality, and to increase accuracy of time-activity curves. Dynamic PET studies, with subjects prone, and breast suspended freely employed a protocol with 50 frames, each 1-minute long. A 30 s long CT scan was acquired immediately before the first PET frame. F-18-FDG was administered during the first PET time frame. Fiducial skin markers (FSMs) each containing ~0.5 μCi of Ge-68 were taped to each breast. In our PET/PET registration method we utilized CT data. For corresponding FSMs visible on the 1 st and n th frames, the geometrical centroids of FSMs were found and their displacement vectors were estimated and used to deform the finite element method (FEM) mesh of the CT image (registered with 1 st PET frame) to match the consecutive dynamic PET time frames. Each mesh was then deformed to match the 1 st PET frame using known FSM displacement vectors as FEM loads, and the warped PET timeframe volume was created. All PET time frames were thus nonrigidly registered with the first frame. An analogy between orthogonal components of the displacement field and the temperature distribution in steady-state heat transfer in solids is used, via standard heat-conduction FEM software with "conductivity" of surface elements set arbitrarily significantly higher than that of volume elements. Consequently, the surface reaches steady state before the volume. This prevents creation of concentrated FEM loads at the locations of FSMs and reaching incorrect FEM solution. We observe improved similarity between the 1 st and n th frames. The contrast and the spatial definition of metabolically hyperactive regions are superior in the registered 3D images compared to unregistered 3D images. Additional work is needed to eliminate small image artifacts due to FSMs.

  14. Unexpected Second Primary Malignancies Detected by F-18 FDG PET/CT During Follow-up for Primary Malignancy: Two Case Reports.

    PubMed

    Bang, Ji-In; Lee, Eun Seong; Kim, Tae-Sung; Kim, Seok-Ki

    2015-03-01

    As the survival rate of cancer patients has increased over the last few decades, the risk of cancer survivors developing second primary malignancies has gained attention. We report two rare cases of second primary hematologic malignancy detected by (18)F-fluorodeoxyglucose (F-18 FDG) positron emission tomography/computed tomography (PET/CT) during follow-up for primary solid malignancies. Acute lymphoblastic leukemia developed in a breast cancer patient and non-Hodgkin lymphoma in an anal cancer patient. F-18 FDG PET/CT findings led to the diagnosis of unexpected second primary hematologic malignancy in cancer survivors in these two cases.

  15. Pharmacologic perturbation as a potential tool to increase the sensitivity of FDG-PET in the evaluation of brain tumors

    SciTech Connect

    Wong, F.C.L.; Kim, E.E.; Yung, W.K.A.

    1994-05-01

    The usefulness of F-18 FDG PET in the study of brain tumors is limited by the high baseline cortical uptake which decreases the contrast of the tumor. Two alternatives to increase the tumor/background contrast have been reported: barbiturate-induced coma and postprandial state. This project evaluates the effects of sedation with diazepam or of oral glucose intake on the brain tumor/background contrast during F-18 FDG PET studies.

  16. F-18 FDG PET/CT metabolic tumor volume predicts overall survival in patients with disseminated epithelial ovarian cancer.

    PubMed

    Gallicchio, Rosj; Nardelli, Anna; Venetucci, Angela; Capacchione, Daniela; Pelagalli, Alessandra; Sirignano, Cesare; Mainenti, Pierpaolo; Pedicini, Piernicola; Guglielmi, Giuseppe; Storto, Giovanni

    2017-08-01

    We evaluated the prognostic impact of quantitative assessment by maximum standardized uptake value (SUVmax), metabolic tumour volume (MTV) and tumour lesion glycolysis (TLG) on [F-18] FDG PET/CT for patients with peritoneal carcinomatosis from epithelial ovarian cancer (EOC). Thirty-one patients with EOC underwent PET/CT for an early restaging after cytoreductive surgery, having been diagnosed with carcinomatosis (before chemotherapy). The SUVmax, MTV (cm(3); 42% threshold) and TLG (g) were registered on residual peritoneal lesions. The patients were followed up 20±12months thereafter. The PET/CT results were compared to overall survival (OS). The Kaplan-Meier survival analysis for the SUVmax did not reveal significant differences in OS (p=0.48). The MTV survival analysis showed a significant higher OS in patients presenting with a higher tumour burden than those with less tumour burden (p=0.01; 26 vs. 14 months), whereas TLG exhibited a similar trend though not significant (p=0.06). Apart from chemo-resistance, the higher the MTV, the better will be the response to chemotherapy. Quantitative assessment by MTV rather than by SUVmax and TLG on PET/CT may be helpful for stratifying patients who present with peritoneal carcinomatosis from EOC, in order to implement the appropriate therapeutic regimen. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Registration of parametric dynamic F-18-FDG PET/CT breast images with parametric dynamic Gd-DTPA breast images

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso; Krol, Andrzej; Lipson, Edward; Mandel, James; McGraw, Wendy; Lee, Wei; Tillapaugh-Fay, Gwen; Feiglin, David

    2009-02-01

    This study was undertaken to register 3D parametric breast images derived from Gd-DTPA MR and F-18-FDG PET/CT dynamic image series. Nonlinear curve fitting (Levenburg-Marquardt algorithm) based on realistic two-compartment models was performed voxel-by-voxel separately for MR (Brix) and PET (Patlak). PET dynamic series consists of 50 frames of 1-minute duration. Each consecutive PET image was nonrigidly registered to the first frame using a finite element method and fiducial skin markers. The 12 post-contrast MR images were nonrigidly registered to the precontrast frame using a free-form deformation (FFD) method. Parametric MR images were registered to parametric PET images via CT using FFD because the first PET time frame was acquired immediately after the CT image on a PET/CT scanner and is considered registered to the CT image. We conclude that nonrigid registration of PET and MR parametric images using CT data acquired during PET/CT scan and the FFD method resulted in their improved spatial coregistration. The success of this procedure was limited due to relatively large target registration error, TRE = 15.1+/-7.7 mm, as compared to spatial resolution of PET (6-7 mm), and swirling image artifacts created in MR parametric images by the FFD. Further refinement of nonrigid registration of PET and MR parametric images is necessary to enhance visualization and integration of complex diagnostic information provided by both modalities that will lead to improved diagnostic performance.

  18. PET with F-18 fluorodeoxyglucose measures of local brain activity and memory in schizophrenia and in depression

    SciTech Connect

    Riege, W.H.; Metter, E.J.; Kuhl, D.E.; Phelps, M.E.; Kling, A.

    1984-01-01

    Positron emission tomography with (F-18) fluorodeoxyglucose (FDG) scan has provided non-invasive measures of regional cerebral glucose utilization which are directly related with levels of functional activity in regions of the brain. The FDG technique was applied to the study of brain activity thought to be impaired in 6 chronic schizophrenics (SCH) and 6 depressed (D) patients in comparison with 6 healthy age-matched controls (C). Local cerebral metabolic rates of glucose utilization LCMRglc were determined for 8 regions in both left and right hemispheres and were expressed in reference to a person's mean CMRglc. Multivariate comparisons of the 16 measures showed no significant differences between the 3 groups; follow-up step-down analyses and t-tests failed to specify any regional or global LCMRglc reliable to separate patients from controls. They also did not differ in any of 18 multidimensional tests of memory and decision, except for lower delayed verbal recall in D patients. When both SCH and D were classified into those with CT large and those with CT small ventricles, there were no multivariate differences. Only partial LCMRglc separated large from small ventricle patients (F(1,7) = 6.12, p<0.042), but finding no multivariate significance makes this result questionable. The ventricular grouping of SCH alone may reveal a marginal difference in global CMRglc t(4) = 2.58, p<0.06, given a larger patient sample. In contrast to recent reports, indices to brain activity in schizophrenic and depressed patients do not seem to be abnormal.

  19. Validating novel tau PET tracer [F-18]-AV-1451 (T807) on postmortem brain tissue

    PubMed Central

    Marquie, Marta; Normandin, Marc D.; Vanderburg, Charles R.; Costantino, Isabel; Bien, Elizabeth A.; Rycyna, Lisa G.; Klunk, William E.; Mathis, Chester A.; Ikonomovic, Milos D.; Debnath, Manik L.; Vasdev, Neil; Dickerson, Bradford C.; Gomperts, Stephen N.; Growdon, John H.; Johnson, Keith A.; Frosch, Matthew P.; Hyman, Bradley T.; Gomez-Isla, Teresa

    2016-01-01

    Objective To examine region and substrate-specific autoradiographic and in vitro binding patterns of PET tracer [F-18]-AV-1451 (previously known as T807), tailored to allow in vivo detection of paired helical filament tau-containing lesions, and to determine whether there is off-target binding to other amyloid/non-amyloid proteins. Methods We applied [F-18]-AV-1451 phosphor screen autoradiography, [F-18]-AV-1451 nuclear emulsion autoradiography and [H-3]-AV-1451 in vitro binding assays to the study of postmortem samples from patients with a definite pathological diagnosis of Alzheimer’s disease, frontotemporal lobar degeneration-tau, frontotemporal lobar degeneration-TDP-43, progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies, multiple system atrophy, cerebral amyloid angiopathy and elderly controls free of pathology. Results Our data suggest that AV-1451 strongly binds to tau lesions primarily made of paired helical filaments in Alzheimer’s brains e.g. intra and extraneuronal tangles and dystrophic neurites, but does not seem to bind to a significant extent to neuronal and glial inclusions mainly composed of straight tau filaments in non-Alzheimer tauopathy brains or to β-amyloid, α-synuclein or TDP-43-containing lesions. AV-1451 off-target binding to neuromelanin- and melanin-containing cells and, to a lesser extent, to brain hemorrhagic lesions was identified. Interpretation Our data suggest that AV-1451 holds promise as surrogate marker for the detection of brain tau pathology in the form of tangles and paired helical filament-tau-containing neurites in Alzheimer’s brains but also point to its relatively lower affinity for lesions primarily made of straight tau filaments in non-Alzheimer tauopathy cases and to the existence of some AV-1451 off-target binding. These findings provide important insights for interpreting in vivo patterns of [F-18]-AV-1451 retention. PMID:26344059

  20. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging.

    PubMed

    Barrio, Jorge R; Small, Gary W; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A; Giza, Christopher C; Fitzsimmons, Robert P; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir

    2015-04-21

    Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer's dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE.

  1. In vivo characterization of chronic traumatic encephalopathy using [F-18]FDDNP PET brain imaging

    PubMed Central

    Barrio, Jorge R.; Small, Gary W.; Wong, Koon-Pong; Huang, Sung-Cheng; Liu, Jie; Merrill, David A.; Giza, Christopher C.; Fitzsimmons, Robert P.; Omalu, Bennet; Bailes, Julian; Kepe, Vladimir

    2015-01-01

    Chronic traumatic encephalopathy (CTE) is an acquired primary tauopathy with a variety of cognitive, behavioral, and motor symptoms linked to cumulative brain damage sustained from single, episodic, or repetitive traumatic brain injury (TBI). No definitive clinical diagnosis for this condition exists. In this work, we used [F-18]FDDNP PET to detect brain patterns of neuropathology distribution in retired professional American football players with suspected CTE (n = 14) and compared results with those of cognitively intact controls (n = 28) and patients with Alzheimer’s dementia (AD) (n = 24), a disease that has been cognitively associated with CTE. [F-18]FDDNP PET imaging results in the retired players suggested the presence of neuropathological patterns consistent with models of concussion wherein brainstem white matter tracts undergo early axonal damage and cumulative axonal injuries along subcortical, limbic, and cortical brain circuitries supporting mood, emotions, and behavior. This deposition pattern is distinctively different from the progressive pattern of neuropathology [paired helical filament (PHF)-tau and amyloid-β] in AD, which typically begins in the medial temporal lobe progressing along the cortical default mode network, with no or minimal involvement of subcortical structures. This particular [F-18]FDDNP PET imaging pattern in cases of suspected CTE also is primarily consistent with PHF-tau distribution observed at autopsy in subjects with a history of mild TBI and autopsy-confirmed diagnosis of CTE. PMID:25848027

  2. Imaging Keratitis-Icthyosis-Deafness (KID) syndrome with FDG-PET (F18-fluorodeoxiglucose-Positron Emission Tomography).

    PubMed

    Aparici, Carina Mari; Arcienega, Daniela; Cho, Eric; Hawkins, Randy

    2010-01-01

    Keratitis-Icthyosis-Deafness (KID) syndrome is a rare dysplasia characterized by vascularizing keratitis, congenital sensorineural hearing-loss, and progressive erythrokeratoderma. To our knowledge, this is the first KID syndrome imaged with FDG-PET in the literature. This paper is intended to help familiarize with the FDG abnormalities related to this rare entity.

  3. C11-acetate and F-18 FDG PET for men with prostate cancer bone metastases: relative findings and response to therapy.

    PubMed

    Yu, Evan Y; Muzi, Mark; Hackenbracht, Joy A; Rezvani, Brian B; Link, Jeanne M; Montgomery, Robert Bruce; Higano, Celestia S; Eary, Janet F; Mankoff, David A

    2011-03-01

    This study tested the feasibility of C11-acetate (acetate) positron emission tomography (PET) imaging to assess response to therapy in men with bone metastatic prostate cancer and compared results for disease detection and response evaluation with F-18 fluorodeoxyglucose (FDG) PET. Men with ≥3 prostate cancer bone metastases identified by Tc-99m methylene diphosphonate (MDP) bone scintigraphy and/or computed tomography were enrolled in a prospective study of serial acetate and FDG PET imaging. Patients were imaged before and 6 to 12 weeks after initial androgen deprivation therapy for new metastatic prostate cancer or first-line chemotherapy with docetaxel for castration-resistant prostate cancer. Qualitative assessment and changes in the tumor:normal uptake ratio were used to assess response by both acetate and FDG PET. In addition, the detection of bone metastases pretherapy was compared for acetate and FDG PET. A total of 8 patients with documented bone metastases were imaged, of which 6 were imaged both pre- and post-therapy. Acetate PET detected bone metastases in all 8 patients, whereas FDG PET detected lesions in 6 of the 7 imaged patients. Acetate PET generally detected more metastases with a higher tumor:normal uptake ratio. Qualitative and quantitative assessments of post-treatment response correlated with composite clinical designations of response, stable disease, or progression in 6 of 6 and 5 of 6 by acetate and 4 of 5 and 3 of 5 by FDG PET, respectively. In this pilot study, results indicate that acetate PET holds promise for response assessment of prostate cancer bone metastases and is complementary to FDG PET in bone metastasis detection.

  4. Unilateral thalamic hypometabolism on FDG brain PET in patient with temporal lobe epilepsy

    PubMed Central

    Sager, Sait; Asa, Sertac; Uslu, Lebriz; Halac, Metin

    2011-01-01

    Interictal Brain F-18 fluorodeoxyglucose (FDG) Positron Emission Tomography (PET) imaging has been widely used for localizing the focus of a seizure. Hypometabolism in the extratemporal cortex on FDG-PET study is an important finding to localize seizure focus, which might be seen as ipsilateral, contralateral or bilateral thalamus hypometabolism in epileptic patients. In this case report, it is aimed to show ipsilateral thalamus hypomethabolism on FDG PET brain study of a 24-year-old male patient with temporal lobe epilepsy. PMID:22174515

  5. Predictive value of F-18 FDG PET/CT quantization parameters in diffuse large B cell lymphoma: a meta-analysis with 702 participants.

    PubMed

    Xie, Mixue; Wu, Kefei; Liu, Yan; Jiang, Qi; Xie, Yanhui

    2015-01-01

    F-18 fluorodeoxyglucose (FDG) positron emission tomography/computerized tomography (PET/CT) is considered to be the most beneficial imaging method for staging patients with lymphoma. Whether maximum standardized uptake value (SUVmax), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) acquired from F-18 FDG PET/CT are predictors of prognosis of diffuse large B cell lymphoma (DLBCL) is controversial, with some studies concluding that it is and others concluding the opposite. Therefore, a systematic review was performed to explore the relationship of F-18 FDG PET/CT quantization parameters with the prognosis of DLBCL. Seven trials with a total of 703 DLBCL patients were included for analysis. Hazard ratios (HRs) for progression-free survival (PFS) and overall survival (OS), and odds ratios (ORs) for 3-year PFS and OS were pooled using the STATA package. Combined results suggested a strong link between the high SUVmax, MTV and TLG values and the poor 3-year PFS with ORs of 2.59, 3.69 and 2.29, respectively. Similarly, high MTV and TLG values unfavorably influenced the 3-year OS with ORs of 5.40 and 2.19, respectively. The pooled results also showed that high SUVmax and MTV were negative predictors of PFS with HRs of 1.61 (p = 0.038) and 2.18 (p = 0.000), respectively. The TLG value was not predictive of PFS. And for OS, only high MTV was a strong predictor of poor prognosis in DLBCL with HR 2.99 (p = 0.000). Our results suggested that SUVmax and MTV may be significant prognostic markers for PFS and MTV may be the only predictor for OS in DLBCL.

  6. Metformin discontinuation less than 72 h is suboptimal for F-18 FDG PET/CT interpretation of the bowel.

    PubMed

    Lee, Suk Hyun; Jin, Soyoung; Lee, Hyo Sang; Ryu, Jin-Sook; Lee, Jong Jin

    2016-11-01

    Metformin-induced [F-18] fluorodeoxyglucose (FDG) bowel uptake can hinder positron emission tomography/computed tomography (PET/CT) evaluation of the bowel. This study aimed to investigate the segmental bowel uptake of FDG according to metformin discontinuation times up to 72 h. We retrospectively divided 240 diabetic patients into four groups: metformin discontinuation <24 h (group A; n = 86), 24-48 h (group B; n = 40), 48-72 h (group C; n = 12), and no metformin (control group; n = 102). Segmental FDG bowel uptakes were measured visually (four-point scale) and semi-quantitatively (maximum standardized uptake value). Compared with the control group, FDG uptake increased significantly from the ileum to the rectosigmoid colon in group A, from the transverse to the rectosigmoid colon in group B, and from the descending colon to the rectosigmoid colon in group C in both visual and semi-quantitative analyses. Metformin discontinuation for <72 h is likely suboptimal for PET/CT image interpretation, especially with respect to the distal segments of the colon.

  7. Validating novel tau positron emission tomography tracer [F-18]-AV-1451 (T807) on postmortem brain tissue.

    PubMed

    Marquié, Marta; Normandin, Marc D; Vanderburg, Charles R; Costantino, Isabel M; Bien, Elizabeth A; Rycyna, Lisa G; Klunk, William E; Mathis, Chester A; Ikonomovic, Milos D; Debnath, Manik L; Vasdev, Neil; Dickerson, Bradford C; Gomperts, Stephen N; Growdon, John H; Johnson, Keith A; Frosch, Matthew P; Hyman, Bradley T; Gómez-Isla, Teresa

    2015-11-01

    To examine region- and substrate-specific autoradiographic and in vitro binding patterns of positron emission tomography tracer [F-18]-AV-1451 (previously known as T807), tailored to allow in vivo detection of paired helical filament-tau-containing lesions, and to determine whether there is off-target binding to other amyloid/non-amyloid proteins. We applied [F-18]-AV-1451 phosphor screen autoradiography, [F-18]-AV-1451 nuclear emulsion autoradiography, and [H-3]-AV-1451 in vitro binding assays to the study of postmortem samples from patients with a definite pathological diagnosis of Alzheimer disease, frontotemporal lobar degeneration-tau, frontotemporal lobar degeneration-transactive response DNA binding protein 43 (TDP-43), progressive supranuclear palsy, corticobasal degeneration, dementia with Lewy bodies, multiple system atrophy, cerebral amyloid angiopathy and elderly controls free of pathology. Our data suggest that [F-18]-AV-1451 strongly binds to tau lesions primarily made of paired helical filaments in Alzheimer brains (eg, intraneuronal and extraneuronal tangles and dystrophic neurites), but does not seem to bind to a significant extent to neuronal and glial inclusions mainly composed of straight tau filaments in non-Alzheimer tauopathy brains or to lesions containing β-amyloid, α-synuclein, or TDP-43. [F-18]-AV-1451 off-target binding to neuromelanin- and melanin-containing cells and, to a lesser extent, to brain hemorrhagic lesions was identified. Our data suggest that [F-18]-AV-1451 holds promise as a surrogate marker for the detection of brain tau pathology in the form of tangles and paired helical filament-tau-containing neurites in Alzheimer brains but also point to its relatively lower affinity for lesions primarily made of straight tau filaments in non-Alzheimer tauopathy cases and to the existence of some [F-18]-AV-1451 off-target binding. These findings provide important insights for interpreting in vivo patterns of [F-18]-AV-1451 retention

  8. Three-dimensional texture analysis of contrast enhanced CT images for treatment response assessment in Hodgkin lymphoma: Comparison with F-18-FDG PET

    SciTech Connect

    Knogler, Thomas; El-Rabadi, Karem; Weber, Michael; Karanikas, Georgios; Mayerhoefer, Marius E.

    2014-12-15

    Purpose: To determine the diagnostic performance of three-dimensional (3D) texture analysis (TA) of contrast-enhanced computed tomography (CE-CT) images for treatment response assessment in patients with Hodgkin lymphoma (HL), compared with F-18-fludeoxyglucose (FDG) positron emission tomography/CT. Methods: 3D TA of 48 lymph nodes in 29 patients was performed on venous-phase CE-CT images before and after chemotherapy. All lymph nodes showed pathologically elevated FDG uptake at baseline. A stepwise logistic regression with forward selection was performed to identify classic CT parameters and texture features (TF) that enable the separation of complete response (CR) and persistent disease. Results: The TF fraction of image in runs, calculated for the 45° direction, was able to correctly identify CR with an accuracy of 75%, a sensitivity of 79.3%, and a specificity of 68.4%. Classical CT features achieved an accuracy of 75%, a sensitivity of 86.2%, and a specificity of 57.9%, whereas the combination of TF and CT imaging achieved an accuracy of 83.3%, a sensitivity of 86.2%, and a specificity of 78.9%. Conclusions: 3D TA of CE-CT images is potentially useful to identify nodal residual disease in HL, with a performance comparable to that of classical CT parameters. Best results are achieved when TA and classical CT features are combined.

  9. Active transport of C-11-Methyl-D-Glucose and 3-F-18-Deoxyglucose in acute ischemic brain disease and Huntington's chorea, studied by positron-emission-tomography (PET)

    SciTech Connect

    Vyska, K.; Magloire, R.; Schuier, F.; Machulla, H.J.; Knust, E.J.; Lange, W.; Becker, V.; Spohr, G.; Notohamiprodjo, G.; Feinendegen, L.E.

    1984-01-01

    C-11-Methyl-D-Glucose (CMG) and 3-F-18-Deoxyglucose (3FDG) were demonstrated to be non-metabolizable glucose analogues which are transported across the blood-brain-barrier into and out of tissue via the glucose carrier system (GCS). These two substances were used as indicators for determining the perfusion-independent rate constant of GCS in the brain. Five normals with informed consent, 12 patients with acute ischemic brain disease and 9 patients with initial and advanced Huntington's chorea were examined by PET after i.v. application of 5 mCi of GMG or 3FDG. In each patient 30 transaxial images were registered in 1 selected plane, image collection time being 1 min. Time-activity curves were created from different regions of interest. The slope to tracer steady state between tissue and blood yields the perfusion-independent rate constant of GCS from tissue to blood (k/sub 2/). In normals k/sub 2/ for CMG was 0.235 +- 0.03/min, as expected, and for 3FDG 0.47 +- 0.07/min indicating a higher affinity to GCS for 3FDG than CMG. In acute ischemic brain disease k/sub 2/ was normal or reduced at the site of insult for both CMG and 3FDG. In Huntington's chorea, k/sub 2/ was reduced in the basal ganglia but normal or occasionally significantly increased in frontal or occipital cortical areas, for CMG and 3FDG. The authors conclude that CMG permits noninvasive analysis of the perfusion-independent rate constant of CCS. 3FDG shows a higher affinity for CCS than CMC but gives comparable information.

  10. Non-invasive breast biopsy method using GD-DTPA contrast enhanced MRI series and F-18-FDG PET/CT dynamic image series

    NASA Astrophysics Data System (ADS)

    Magri, Alphonso William

    This study was undertaken to develop a nonsurgical breast biopsy from Gd-DTPA Contrast Enhanced Magnetic Resonance (CE-MR) images and F-18-FDG PET/CT dynamic image series. A five-step process was developed to accomplish this. (1) Dynamic PET series were nonrigidly registered to the initial frame using a finite element method (FEM) based registration that requires fiducial skin markers to sample the displacement field between image frames. A commercial FEM package (ANSYS) was used for meshing and FEM calculations. Dynamic PET image series registrations were evaluated using similarity measurements SAVD and NCC. (2) Dynamic CE-MR series were nonrigidly registered to the initial frame using two registration methods: a multi-resolution free-form deformation (FFD) registration driven by normalized mutual information, and a FEM-based registration method. Dynamic CE-MR image series registrations were evaluated using similarity measurements, localization measurements, and qualitative comparison of motion artifacts. FFD registration was found to be superior to FEM-based registration. (3) Nonlinear curve fitting was performed for each voxel of the PET/CT volume of activity versus time, based on a realistic two-compartmental Patlak model. Three parameters for this model were fitted; two of them describe the activity levels in the blood and in the cellular compartment, while the third characterizes the washout rate of F-18-FDG from the cellular compartment. (4) Nonlinear curve fitting was performed for each voxel of the MR volume of signal intensity versus time, based on a realistic two-compartment Brix model. Three parameters for this model were fitted: rate of Gd exiting the compartment, representing the extracellular space of a lesion; rate of Gd exiting a blood compartment; and a parameter that characterizes the strength of signal intensities. Curve fitting used for PET/CT and MR series was accomplished by application of the Levenburg-Marquardt nonlinear regression

  11. Multiphase CT scanning and different intravenous contrast media concentrations in combined F-18-FDG PET/CT: Effect on quantitative and clinical assessment.

    PubMed

    Rebière, Marilou; Verburg, Frederik A; Palmowski, Moritz; Krohn, Thomas; Pietsch, Hubertus; Kuhl, Christiane K; Mottaghy, Felix M; Behrendt, Florian F

    2012-08-01

    To evaluate the influence of multiphase CT scanning and different intravenous contrast media on contrast enhancement, attenuation correction and image quality in combined PET/CT. 140 patients were prospectively enrolled for F-18-FDG-PET/CT including a low-dose unenhanced, arterial and venous contrast enhanced CT. The first (second) 70 patients, received contrast medium with 370 (300) mg iodine/ml. The iodine delivery rate (1.3mg/s) and total iodine load (44.4g) were identical for both groups. Contrast enhancement and maximum and mean standardized FDG uptake values (SUVmax and SUVmean) were determined for the un-enhanced, arterial and venous PET/CT at multiple anatomic sites and PET reconstructions were visually evaluated. Arterial contrast enhancement was significantly higher for the 300mg/ml contrast medium compared to 370mgI/ml at all anatomic sites. Venous enhancement was not different between the two contrast media. SUVmean and SUVmax were significantly higher for the contrast enhanced compared to the non-enhanced PET/CT at all anatomic sites (all P<0.001). Tracer uptake was significantly higher in the arterial than in the venous PET/CT in the arteries using both contrast media (all P<0.001). No differences in tracer uptake were found between the contrast media (all P>0.05). Visual assessment revealed no relevant differences between the different PET reconstructions. There is no relevant qualitative influence on the PET scan from the use of different intravenous contrast media in its various phases in combined multiphase PET/CT. For quantitative analysis of tracer uptake it is required to use an identical PET/CT protocol. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  12. Quantitative assessment of simultaneous F-18 FDG PET/MRI in patients with various types of hepatic tumors: Correlation between glucose metabolism and apparent diffusion coefficient.

    PubMed

    Kong, Eunjung; Chun, Kyung Ah; Cho, Ihn Ho

    2017-01-01

    Metabolism and water diffusion may have a relationship or an effect on each other in the same tumor. Knowledge of their relationship could expand the understanding of tumor biology and serve the field of oncologic imaging. This study aimed to evaluate the relationship between metabolism and water diffusivity in hepatic tumors using a simultaneous positron emission tomography/magnetic resonance imaging (PET/MRI) system with F-18 fluorodeoxyglucose (FDG) and to reveal the metabolic and diffusional characteristics of each type of hepatic tumor. Forty-one patients (mean age 63 ± 13 years, 31 male) with hepatic tumors (18 hepatocellular carcinoma [HCC], six cholangiocarcinoma [CCC], 10 metastatic tumors, one neuroendocrine malignancy, and six benign lesions) underwent FDG PET/MRI before treatment. Maximum standard uptake (SUVmax) values from FDG PET and the apparent diffusion coefficient (ADC) from the diffusion-weighted images were obtained for the tumor and their relationships were examined. We also investigated the difference in SUVmax and ADC for each type of tumor. SUVmax showed a negative correlation with ADC (r = -0.404, p = 0.009). The median of SUVmax was 3.22 in HCC, 6.99 in CCC, 6.30 in metastatic tumors, and 1.82 in benign lesions. The median of ADC was 1.039 × 10-3 mm/s2 in HCC, 1.148 × 10-3 mm/s2 in CCC, 0.876 × 10-3 mm/s2 in metastatic tumors, and 1.323 × 10-3 mm/s2 in benign lesions. SUVmax was higher in metastatic tumors than in benign lesions (p = 0.023). Metastatic tumors had a lower ADC than CCC (p = 0.039) and benign lesions (p = 0.004). HCC had a lower ADC than benign lesions, with a suggestive trend (p = 0.06). Our results indicate that SUVmax is negatively correlated with ADC in hepatic tumors, and each group of tumors has different metabolic and water diffusivity characteristics. Evaluation of hepatic tumors by PET/MRI could be helpful in understanding tumor characteristics.

  13. Guidelines for brain radionuclide imaging. Perfusion single photon computed tomography (SPECT) using Tc-99m radiopharmaceuticals and brain metabolism positron emission tomography (PET) using F-18 fluorodeoxyglucose. The Belgian Society for Nuclear Medicine.

    PubMed

    Vander Borght, T; Laloux, P; Maes, A; Salmon, E; Goethals, I; Goldman, S

    2001-12-01

    The purpose of these guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of brain perfusion SPECT studies using Tc-99m radiopharmaceuticals and brain metabolism PET studies using F-18 fluorodeoxyglucose (FDG). These guidelines have been adapted and extended from those produced by the Society of Nuclear Medicine (Juni et al., 1998) and the European Association of Nuclear Medicine by a Belgian group of experts in the field trained in neurology and/or nuclear medicine. Some indications are not universally approved (e.g. brain death), but largely supported by the literature. They have been included in these guidelines in order to provide recommendations and a standardised protocol.

  14. Breath-hold and free-breathing F-18-FDG-PET/CT in malignant melanoma—detection of additional tumoral foci and effects on quantitative parameters

    PubMed Central

    Bärwolf, Robert; Zirnsak, Mariana; Freesmeyer, Martin

    2017-01-01

    Abstract During PET/CT acquisition, respiratory motion generates artifacts in the form of breath-related blurring, which may impair lesion detectability and diagnostic accuracy. This observational study was undertaken to verify whether breath-hold F-18-FDG-PET/CT (bhPET) detects additional foci compared to free-breathing PET/CT (fbPET) in cases of malignant melanoma, and to assess the impact of breath-holding on standard uptake values (SUV) and metabolic isocontoured volume (mVic40). Thirty-four patients with melanoma were examined. BhPET and fbPET findings of 117 lesions were compared and correlated with standard contrast-enhanced (ce) CT and MRI for lesion verification. Quantitative parameters (SUVmax, SUVmean, and mVic40) were assessed for both methods and evaluated by linear regression and Spearman correlation. The impact of lesion size and time interval between investigations was analyzed. In 1 patient, a CT-confirmed liver metastasis was seen only on bhPET but not on fbPET. At bhPET, SUVmax, and SUVmean proved significantly higher and mVic40 significantly lower than at fbPET. The positive effect on SUVmax and SUVmean was more pronounced in smaller lesions, whereas the time interval between bhPET and fbPET did not influence SUV or mVic40. In our patient cohort, bhPET yielded significantly higher SUV and provided improved volumetric lesion definition, particularly of smaller lesions. Also one additional liver lesion was identified. Breath-hold PET/CT is technically feasible, and may become clinically useful when fine quantitative evaluations are needed. PMID:28079829

  15. Syndrome-specific patterns of regional cerebral glucose metabolism in posterior cortical atrophy in comparison to dementia with Lewy bodies and Alzheimer's disease--a [F-18]-FDG pet study.

    PubMed

    Spehl, Timo S; Hellwig, Sabine; Amtage, Florian; Weiller, Cornelius; Bormann, Tobias; Weber, Wolfgang A; Hüll, Michael; Meyer, Philipp T; Frings, Lars

    2015-01-01

    Posterior cortical atrophy (PCA) is a rare neurodegenerative syndrome with visuospatial deficits. PET studies have identified hypometabolism of the occipital cortex in PCA. There is, however, a huge overlap in clinical presentation and involvement of the occipital cortex between PCA, dementia with Lewy bodies (DLB), and Alzheimer's disease (AD). Syndrome-specific patterns of metabolism have not yet been demonstrated that allow for a reliable differentiation with [F-18]-FDG-PET. A total of 33 dementia patients (PCA n = 6, DLB n = 12, AD n = 15) who underwent [F-18]-FDG-PET imaging and a neuropsychological examination were retrospectively analyzed. Group comparisons of regional cerebral glucose metabolism were calculated with statistical parametric mapping. Extracted clusters were used to evaluate discrimination accuracy by logistic regression. PCA patients showed a syndrome-specific area of hypometabolism in the right lateral temporooccipital cortex. DLB patients showed specific hypometabolism predominantly in the left occipital cortex. Logistic regression based on these two regions correctly separated patients with a sensitivity/specificity of 83/93% for PCA, 75/86% for DLB and 67/78% for AD. Overall accuracy was 73%. [F-18]-FDG-PET could reveal syndrome-specific patterns of glucose metabolism in PCA and DLB. Accurate group discrimination in the differential diagnosis of dementia with visuospatial impairment is feasible. Copyright © 2014 by the American Society of Neuroimaging.

  16. F18 EF5 PET/CT Imaging in Patients with Brain Metastases from Breast Cancer

    DTIC Science & Technology

    2012-07-01

    patients are offered gamma knife radiotherapy upfront rather than whole brain radiotherapy which has impacted our accrual rates. Additionally, though we...status often receive upfront gamma knife radiotherapy instead which currently those patients are excluded from the study. To address these challenges...treatment. Additionally, opening up the protocol enrollment to include patients receiving gamma knife radiotherapy has also been considered. Including

  17. F18 EF5 PET/CT Imaging in Patients with Brain Metastases from Breast Cancer

    DTIC Science & Technology

    2014-09-01

    Pennsylvania, where more patients are offered gamma knife radiotherapy upfront rather than whole brain radiotherapy which has impacted our accrual rates...to follow. Furthermore, patients with better performance status often receive upfront gamma knife radiotherapy instead. These patients were...four weeks post treatment. Additionally, opening up the protocol enrollment to include patients receiving gamma knife radiotherapy was done

  18. Oncocytic carcinoid tumor of the lung with intense F-18 fluorodeoxyglucose (FDG) uptake in positron emission tomography-computed tomography (PET/CT).

    PubMed

    Tanabe, Yuki; Sugawara, Yoshifumi; Nishimura, Rieko; Hosokawa, Kohei; Kajihara, Makoto; Shimizu, Teruhiko; Takahashi, Tadaaki; Sakai, Shinya; Sawada, Shigeki; Yamashita, Motohiro; Ohtani, Haruhiko

    2013-10-01

    The present report describes a case of typical carcinoid tumor with intense fluorodeoxyglucose (FDG) uptake. The most of tumor cells were characterized by eosinophilic cytoplasm resulting from accumulation of mitochondria, which was called an oncocytic carcinoid tumor. Glucose transporter type 1 (GLUT-1) was expressed in a membranous pattern in the oncocytic component. Oncocytic carcinoid tumors could show intense FDG uptake due to the numerous intracellular mitochondria and the membranous overexpression of GLUT-1. Thus, it could be a potential pitfall of interpreting FDG-PET/CT image.

  19. Semi-Quantitative Calculations of Primary Tumor Metabolic Activity Using F-18 FDG PET/CT as a Predictor of Survival in 92 Patients With High-Grade Bone or Soft Tissue Sarcoma.

    PubMed

    Andersen, Kim Francis; Fuglo, Hanna Maria; Rasmussen, Sine Hvid; Petersen, Michael Mork; Loft, Annika

    2015-07-01

    To assess the prognostic value of primary tumor metabolic activity in patients with high-grade bone sarcomas (BS) or soft tissue sarcomas (STS) using F-18 FDG PET/CT. A single-site, retrospective study including 92 patients with high-grade BS or STS. Pretreatment F-18 FDG PET/CT scan was performed. Clinical data were registered. Accuracy of maximum standardized uptake value of primary tumor (SUVmax) and tumor-to-background (T/B) uptake ratio as prognostic variables and identification of cut-off values to group patients were determined. Kaplan-Meier survival estimates and log-rank test were used to compare survival distributions. Prognostic variables were assessed using Cox proportional hazards regression analysis. Forty-one of 92 patients died during follow-up (45%). Average survival was 6.5 years (95% CI 5.8-7.3 years) and probability of 5-year survival was 52%. Accuracy of SUVmax and T/B uptake ratio as prognostic variables in all patients and during subgroup analysis of patients with STS was significant. No significant results for AUCs were registered in patients with BS. Surgery was independently prognostic for survival throughout multivariate regression analysis of all patients (P = 0.001, HR 3.84) and subgroup analysis (BS: P = 0.02, HR 11.62; STS: P = 0.005, HR 4.13). SUVmax was significant as prognostic variable in all patients (P = 0.02, HR 3.66) and in patients with STS (P = 0.007, HR 3.75). No significant results were demonstrated for T/B uptake ratio. Estimation of primary tumor metabolic activity with pretherapeutic SUVmax using F-18 FDG PET/CT demonstrates independent properties beyond histologic grading for prediction of survival in patients with high-grade STS, but not with high-grade BS.

  20. Radiosynthesis and Biological Evaluation of alpha-[F-18]Fluoromethyl Phenylalanine for Brain Tumor Imaging

    PubMed Central

    Huang, Chaofeng; Yuan, Liya; Rich, Keith; McConathy, Jonathan

    2013-01-01

    Objectives Radiolabeled amino acids have proven utility for imaging brain tumors in humans, particularly those that target system L amino acid transport. We have prepared the novel phenylalanine analogue, α-[18F]fluoromethyl phenylalanine (FMePhe, 9), as part of an effort to develop new system L tracers that can be prepared in high radiochemical yield through nucleophilic [18F]fluorination. The tumor imaging properties of both enantiomers this new tracer were evaluated through cell uptake, biodistribution and microPET studies in the mouse DBT model of high grade glioma. Methods The non-radioactive form of 9 and the cyclic sulfamidate labeling precursor were prepared from commercially available racemic α-benzylserine. Racemic [18F]9 was prepared from the labeling precursor in two steps using standard [18F]fluoride nucleophilic reaction conditions followed by acidic deprotection. The individual enantiomers [18F]9a and [18F]9b were isolated using preparative chiral HPLC. In vitro uptake inhibition assays were performed with each enantiomer using DBT cells. Biodistribution and microPET/CT studies were performed with each enantiomers in male BALB/c mice at approximately 2 weeks after implantation of DBT tumor cells. Results Radiolabeling of the cyclic sulfamidate precursor 5 provide racemic [18F]9 in high radiochemical yield (60–70%, n = 4) and high radiochemical purity (>96%, n = 4). In vitro uptake assays demonstrate that both [18F]9a and [18F]9b undergo tumor cell uptake through system L transport. The biodistribution studies using the single enantiomers [18F]9a and [18F]9b demonstrated good tumor uptake with lower uptake in most normal tissues, and [18F]9a had higher tumor uptake than [18F]9b. MicroPET imaging demonstrated good tumor visualization within 10 min of injection, rapid uptake of radioactivity, and tumor to brain ratios of approximately 6:1 at 60 min postinjection. Conclusions The novel PET tracer, [18F]FMePhe, is readily synthesized in good yield

  1. Radiosynthesis and biological evaluation of alpha-[F-18]fluoromethyl phenylalanine for brain tumor imaging.

    PubMed

    Huang, Chaofeng; Yuan, Liya; Rich, Keith M; McConathy, Jonathan

    2013-05-01

    Radiolabeled amino acids have proven utility for imaging brain tumors in humans, particularly those that target system L amino acid transport. We have prepared the novel phenylalanine analogue, (FMePhe, 9), as part of an effort to develop new system L tracers that can be prepared in high radiochemical yield through nucleophilic [(18)F]fluorination. The tumor imaging properties of both enantiomers of this new tracer were evaluated through cell uptake, biodistribution and microPET studies in the mouse DBT model of high grade glioma. The non-radioactive form of 9 and the cyclic sulfamidate labeling precursor were prepared from commercially available racemic α-benzylserine. Racemic [(18)F]9 was prepared from the labeling precursor in two steps using standard[(18)F]fluoride nucleophilic reaction conditions followed by acidic deprotection. The individual enantiomers [(18)F]9a and [(18)F]9b were isolated using preparative chiral HPLC. In vitro uptake inhibition assays were performed with each enantiomer using DBT cells. Biodistribution and microPET/CT studies were performed with each enantiomer in male BALB/c mice at approximately 2 weeks after implantation of DBT tumor cells. Radiolabeling of the cyclic sulfamidate precursor 5 provides racemic [(18)F]9 in high radiochemical yield (60%-70%, n=4) and high radiochemical purity (>96%, n=4). In vitro uptake assays demonstrate that both [(18)F]9a and [(18)F]9b undergo tumor cell uptake through system L transport. The biodistribution studies using the single enantiomers [(18)F]9a and [(18)F]9b demonstrated good tumor uptake with lower uptake in most normal tissues, and [(18)F]9a had higher tumor uptake than [(18)F]9b. MicroPET imaging demonstrated good tumor visualization within 10 min of injection, rapid uptake of radioactivity, and tumor to brain ratios of approximately 6:1 at 60 min postinjection. The novel PET tracer, [(18)F]FMePhe, is readily synthesized in good yield from a cyclic sulfamidate precursor. Biodistribution

  2. F-18-FDG-PET Confined Radiotherapy of Locally Advanced NSCLC With Concomitant Chemotherapy: Results of the PET-PLAN Pilot Trial

    SciTech Connect

    Fleckenstein, Jochen; Hellwig, Dirk; Kremp, Stephanie; Grgic, Aleksandar; Groeschel, Andreas; Kirsch, Carl-Martin; Nestle, Ursula; Ruebe, Christian

    2011-11-15

    Purpose: The integration of fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) in the process of radiotherapy (RT) planning of locally advanced non-small-cell lung cancer (NSCLC) may improve diagnostic accuracy and minimize interobserver variability compared with target volume definition solely based on computed tomography. Furthermore, irradiating only FDG-PET-positive findings and omitting elective nodal regions may allow dose escalation by treating smaller volumes. The aim of this prospective pilot trial was to evaluate the therapeutic safety of FDG-PET-based RT treatment planning with an autocontour-derived delineation of the primary tumor. Methods and Materials: Eligible patients had Stages II-III inoperable NSCLC, and simultaneous, platinum-based radiochemotherapy was indicated. FDG-PET and computed tomography acquisitions in RT treatment planning position were coregistered. The clinical target volume (CTV) included the FDG-PET-defined primary tumor, which was autodelineated with a source-to-background algorithm, plus FDG-PET-positive lymph node stations. Limited by dose restrictions for normal tissues, prescribed total doses were in the range of 66.6 to 73.8 Gy. The primary endpoint was the rate of out-of-field isolated nodal recurrences (INR). Results: As per intent to treat, 32 patients received radiochemotherapy. In 15 of these patients, dose escalation above 66.6 Gy was achieved. No Grade 4 toxicities occurred. After a median follow-up time of 27.2 months, the estimated median survival time was 19.3 months. During the observation period, one INR was observed in 23 evaluable patients. Conclusions: FDG-PET-confined target volume definition in radiochemotherapy of NSCLC, based on a contrast-oriented source-to-background algorithm, was associated with a low risk of INR. It might provide improved tumor control because of dose escalation.

  3. Comparison of F-18 FDG-PET/CT and Tc-99m MIBI in the preoperative evaluation of cold thyroid nodules in the same patient group.

    PubMed

    Sager, Sait; Vatankulu, Betul; Erdogan, Ezgi; Mut, Sanem; Teksoz, Serkan; Ozturk, Tulin; Sonmezoglu, Kerim; Kanmaz, Bedii

    2015-09-01

    Recent studies have reported that standardized uptake values of FDG-PET imaging might predict malignant thyroid nodules and can be used in the preoperative evaluation of thyroid lesions. The aim of our study was to evaluate FDG-PET imaging in patients with cold thyroid nodules and to compare the imaging findings with Tc-99m MIBI scans and with post-op histopathology results. Twenty-three patients (18F, 5M) with 24 nodules that were suspicious in ultrasound and cold in Tc-99m pertechnetate scan, were included in the study. Each nodule underwent sonographically guided fine-needle aspiration biopsy. FDG-PET and MIBI scans were performed with an interval of 3-5 days. All patients underwent thyroidectomy and their FDG-PET, and MIBI thyroid scan results were compared with post-thyroidectomy pathology results. Post-op histopathology results found 7 malignant and 17 benign nodules. Six of the seven malignant nodules had increased uptake, which were positive for malignancy in both PET and MIBI scans. Each imaging method used different radiopharmaceuticals but showed one false-negative result in two different patients. FDG-PET produced false positives in eight nodules and MIBI scans found false positives in four nodules. FDG-PET imaging and MIBI scan showed the same sensitivity in malignant nodule evaluation, but their specificity differed. As a result, we suggest that FDG-PET imaging is not superior to MIBI scanning in differentiating malignant from benign thyroid nodules. MIBI imaging should be the first choice in the preoperative evaluation of patients with cold thyroid nodules as an adjunct procedure to FNAB because of its low cost and availability. This imaging technique can be used routinely in patients who are reluctant to undergo FNAB.

  4. A strategy for obtaining both resting and psychologically activated state metabolic data from a single PET study using (F-18)-fluorodeoxyglucose(FDG)

    SciTech Connect

    Chang, J.; Duara, R.; Barker, W.; Apicella, A.; Gilson, A.

    1985-05-01

    When psychological activation is studied with PET using the deoxyglucose method, a stable and specific psychological state for at least 30 minutes is required before commencing the scan. At this time, if the subject reverts to the testing state, a progressive degradation of the activated pattern occurs. However, a strategy could be used to obtain corrected activation state data and resting state data in a single study using a tracer such as FDG. The amount of tracer FDG and FDG-6P in the tissue at the time of study completion, t, will be the sum of the remaining quantity (R) of tracer accumulated in the tissue at the time T, when activation ceases, and the uptake during the subsequent period t-T when resting state glucose transport kinetics apply.

  5. Assessment of myocardial injury after reperfusion with T1-201, Tc-99m pyrophosphate (PPi) and F-18 deoxyglucose (FDG)

    SciTech Connect

    Sochor, H.; Schwaiger, M.; Hansen, H.W.; Parodi, O.; Selin, C.; Huang, S.C.; Ellison, D.; Grover, M.; Schelbert, H.R.

    1984-01-01

    The authors previously demonstrated that enhanced glucose utilization assessed by FDG and Positron-CT in reperfused myocardium predicts functional recovery. This study compared segmental uptake of FDG with T1-201 and PPi as conventional indicators of tissue viability in 5 dogs, submitted to a 3 hr LAD occlusion followed by 24 hrs of reperfusion (R). Myocardial blood flow (MBF) was then determined by microspheres and T1-201, PPi and FDG administered i.v. Regional tracer concentrations were determined by well counting of tissue samples and grouped according to MBF (% of control). Severe flow reductions were associated with PPi uptake increase, T1-201 decrease and depressed glucose utilization representing mainly irreversible injury. Moderately reduced MBF areas showed the highest PPi uptake with T1-201 similar to MBF, but preserved FDG uptake not different from control, indicating partially viable tissue. Areas with MBF >60% had significantly increased PPi despite normal T1-201 uptake and enhanced glucose utilization and thus, preserved viability. Thus, assessment of tissue injury by conventional tracers such as T1-201 and PPi is limited. By contrast, quantification of residual glucose metabolism by PCT appears more accurate for evaluating myocardial viability and predicting potential functional recovery.

  6. Comparison of FDG-PET findings of brain metastasis from non-small-cell lung cancer and small-cell lung cancer.

    PubMed

    Lee, Ho-Young; Chung, June-Key; Jeong, Jae Min; Lee, Dong Soo; Kim, Dong Gyu; Jung, Hee Won; Lee, Myung Chul

    2008-05-01

    We compared the F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) findings of brain metastasis between patients with non-small-cell lung cancer (NSCLC) and small cell lung cancer (SCLC). A whole-body FDG and a brain PET were performed in 48 patients (31 men, 17 women; 57 +/- 9 years, 42 NSCLC, 6 SCLC), who had brain metastasis on magnetic resonance (MR). All primary lung lesions were detected by FDG-PET and confirmed pathologically. We analyzed the PET findings, lesion sizes, and the pathological result of primary lung cancer. Of the 48 patients, 31 (64.6%) showed hypermetabolic lesions on FDG-PET of the brain image, and 14 (29.2%) showed hypometabolic lesions. Three patients (6.3%) had both hypermetabolic and hypometabolic lesions. On the lesion-based analysis, 74 lesions (67.3%) showed hypermetabolism on FDG-PET, and 36 lesions (32.7%) showed hypometabolism. All primary lung lesions were hypermetabolic on FDG-PET. When the FDG findings of metastatic brain lesions were analyzed with the pathological types of primary lung cancer, NSCLC was more frequently associated with hypermetabolic metastatic brain lesions than SCLC (80% and 26.7%, respectively, P < 0.01). On comparing the sizes of metastatic lesions between SCLC (1.3 +/- 1.2 cm) and NSCLC (1.8 +/- 1.2 cm), lesions of <1 cm were more frequent in SCLC than in NSCLC (P = 0.012). But no significant relationship was found between the size and PET finding of metastatic lesion (P = 0.412). Even when the primary lesion of lung cancer showed hypermetabolism in FDG-PET, FDG accumulation in metastatic brain lesions was variable. One-third of brain metastases from lung cancer showed hypometabolism. NSCLC was more frequently associated with hypermetabolic metastatic brain lesions than SCLC. The PET findings of brain lesions were affected not only by the size of lesion but also by its biological characteristics.

  7. Volume-Based F-18 FDG PET/CT Imaging Markers Provide Supplemental Prognostic Information to Histologic Grading in Patients With High-Grade Bone or Soft Tissue Sarcoma.

    PubMed

    Andersen, Kim Francis; Fuglo, Hanna Maria; Rasmussen, Sine Hvid; Petersen, Michael Mork; Loft, Annika

    2015-12-01

    The aim of the study is to assess the prognostic value of different volume-based calculations of tumor metabolic activity in the initial assessment of patients with high-grade bone sarcomas (BS) and soft tissue sarcomas (STS) using F-18 FDG PET/CT.A single-site, retrospective study from 2002 to 2012 including 92 patients with histologically verified high-grade BS (N = 37) or STS (N = 55). All patients underwent a pretreatment F-18 FDG PET/CT scan. Clinical data were registered. Measurements of the accuracy of metabolic tumor volume with a preset threshold of 40% of the maximum standardized uptake value of primary tumor (MTV40%) and total lesion glycolysis (TLG) as prognostic variables and identification of optimal discriminating cut-off values were performed through ROC curve analysis. Patients were grouped according to the cut-off values. All deaths were considered an event in survival analysis. Kaplan-Meier survival estimates and log-rank test were used to compare the degree of equality of survival distributions. Prognostic variables with related hazard ratios (HR) were assessed using Cox proportional hazards regression analysis.Forty-one of 92 patients died during follow-up (45%; 12 BS and 29 STS). Average survival for included patients was 6.5 years (95% CI 5.8-7.3 years) and probability of 5-year survival was 52%. There was a high-significant accuracy of TLG and MTV40% as prognostic variables when looking on all patients and during subgroup analysis. AUCs were higher for TLG than for MTV40%. TLG above optimal cut-off value was the only variable which was independently prognostic for survival throughout multivariate regression analysis of all included patients (P = 0.01, HR 4.78 [95% CI 1.45-15.87]) and subgroup analysis (BS: P = 0.04, HR 11.11 [95% CI 1.09-111.11]; STS: P < 0.05, HR 3.37 [95% CI 1.02-11.11]). No significant results were demonstrated for MTV40%.Volume-based F-18 FDG PET/CT imaging markers in terms of pretreatment estimation

  8. [An approach for comparative quantification of myocardial blood flow (O-15-H2O-PET), perfusion (Tc-99m-tetrofosmin-SPECT) and metabolism (F-18-FDG-PET)].

    PubMed

    Schäfer, W M; Nowak, B; Kaiser, H J; Block, S; Koch, K C; vom Dahl, J; Büll, U

    2001-10-01

    In the present study a new approach has been developed for comparative quantification of absolute myocardial blood flow (MBF), myocardial perfusion, and myocardial metabolism in short-axis slices. 42 patients with severe CAD, referred for myocardial viability diagnostics, were studied consecutively with 0-15-H2O PET (H2O-PET) (twice), Tc-99m-Tetrofosmin SPECT (TT-SPECT) and F-18-FDG PET (FDG-PET). All data sets were reconstructed using attenuation correction and reoriented into short axis slices. Each heart was divided into three representative slices (base, midventricular, apex) and 18 ROIs were defined on the FDG PET images and transferred to the corresponding H2O-PET and TT-SPECT slices. TT-SPECT and FDG-PET data were normalized to the ROI showing maximum perfusion. MBF was calculated for all left-ventricular ROIs using a single-compartment-model fitting the dynamic H2O-PET studies. Microsphere equivalent MBF (MBF_micr) was calculated by multiplying MBF and tissue-fraction, a parameter which was obtained by fitting the dynamic H2O-PET studies. To reduce influence of viability only well perfused areas (> 70% TT-SPECT) were used for comparative quantification. First and second mean global MBF values were 0.85 ml x min-1 x g-1 and 0.84 ml x min-1 x g-1, respectively, with a repeatability coefficient of 0.30 ml x min-1 x g-1. After sectorization mean MBF_micr was between 0.58 ml x min-1 x ml-1 and 0.68 ml x min-1 x ml-1 in well perfused areas. Corresponding TT-SPECT values ranged from 83% to 91%, and FDG-PET values from 91% to 103%. All procedures yielded higher values for the lateral than the septal regions. Comparative quantification of MBF, MBF_micr, TT-SPECT perfusion and FDG-PET metabolism can be done with the introduced method in short axis slices. The obtained values agree well with experimentally validated values of MBF and MBF_micr.

  9. Haematogenous muscular metastasis of non-small cell lung cancer in F-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Savas, Karyagar; Pinar, Koc Zehra; Sevda, Karyagar Saglampinar; Ugur, Kesici; Evrim, Savli; Halit, Cinarka; Sevdegul, Mungan; Ansal, Balci Tansel

    2015-01-01

    F-18 FDG PET/CT is the most effective method for demonstrating extrapulmonary metastases of lung cancer. The aim of this study is to investigate the level of muscular metastasis of non-small-cell lung carcinoma (NSCLC) in F-18 FDG PET/CT and to demonstrate the characteristics of this special group of patients. A total of 1150 patients with the diagnosis of NSCLC, who were referred for F-18 FDG PET/CT, were included into the study. Among these patients, the findings of 13 who were shown to have muscle metastases were studied. In the retrospective analysis of the patients, 13 patients (12 male, 1 female; mean: 59 ±7 years old) were found to have haematogenous (excluding local invasion) muscular metastases of NSCLC using F-18 FDG PET/CT. Two of the 13 patients had only muscular metastases (one patient isolated, one patient two foci). The other 11 patients had additional distant metastases in six metastatic sites (bone in 7 patients, distant lymph node in 6, adrenal gland in 5, contralateral lung in 3, liver in 1, and brain metastasis in 1 patient). Five patients died during the mean 11 ±8 months follow up. Muscular metastasis is not a rare condition, especially in F-18 FDG PET/CT examinations, and is frequently associated with additional distant metastases.

  10. Haematogenous muscular metastasis of non-small cell lung cancer in F-18 fluorodeoxyglucose positron emission tomography/computed tomography

    PubMed Central

    Savas, Karyagar; Pinar, Koc Zehra; Sevda, Karyagar Saglampinar; Evrim, Savli; Halit, Cinarka; Sevdegul, Mungan; Ansal, Balci Tansel

    2014-01-01

    Aim of the study F-18 FDG PET/CT is the most effective method for demonstrating extrapulmonary metastases of lung cancer. The aim of this study is to investigate the level of muscular metastasis of non-small-cell lung carcinoma (NSCLC) in F-18 FDG PET/CT and to demonstrate the characteristics of this special group of patients. Material and methods A total of 1150 patients with the diagnosis of NSCLC, who were referred for F-18 FDG PET/CT, were included into the study. Among these patients, the findings of 13 who were shown to have muscle metastases were studied. Results In the retrospective analysis of the patients, 13 patients (12 male, 1 female; mean: 59 ±7 years old) were found to have haematogenous (excluding local invasion) muscular metastases of NSCLC using F-18 FDG PET/CT. Two of the 13 patients had only muscular metastases (one patient isolated, one patient two foci). The other 11 patients had additional distant metastases in six metastatic sites (bone in 7 patients, distant lymph node in 6, adrenal gland in 5, contralateral lung in 3, liver in 1, and brain metastasis in 1 patient). Five patients died during the mean 11 ±8 months follow up. Conclusions Muscular metastasis is not a rare condition, especially in F-18 FDG PET/CT examinations, and is frequently associated with additional distant metastases. PMID:26557766

  11. Prognostic significance and predictive performance of volume-based parameters of F-18 FDG PET/CT in squamous cell head and neck cancers.

    PubMed

    Sager, Sait; Asa, Sertaç; Yilmaz, Mehmet; Uslu, Lebriz; Vatankulu, Betul; Halaç, Metin; Sönmezoglu, Kerim; Kanmaz, Bedii

    2014-01-01

    It has been previously reported that metabolic tumor volume on positron emission tomography-computed tomography predicts disease recurrence and death in head-and-neck cancer. In this study, we assessed the prognostic value of metabolic tumor volume measured using F18-Fluorodeoxyglucose PET/CT in patients with head and neck squamous cell carcinoma. We analyzed the imaging findings of 74 patients (age 57±16) retrospectively, with head and neck cancer who underwent PET/CT scan for staging and after treatment. Forty-tree patients had nasopharynx, 15 patients had hypopharynx, 9 patients had larynx, and 7 patients had oropharynx cancer. The MTVs of primary sites with or without lymph nodes were measured, and outcomes were assessed using the treatment response evaluation by the Response Evaluation Criteria in Solid Tumors and recurrence events during follow-up. A total of 48 patients had complete response or no recurrence was detected as of in the last follow-up. Of the first PET/CT scan, the median primary tumor SUVmax was 18.8 and the median nodal SUVmax was 13.4. The median primary tumor MTV% 50s ranged from 11.12 cm3 to 16.28 cm3, and the MTV after the therapy ranged from 1.18 cm3 to 3.51 cm3. Metabolic tumor volume (MTV) represents tumor burden, which shows F18-Fluorodeoxyglucose uptake and has a potential value in predicting short-term outcome and disease-free survival in patients with head and neck cancer.

  12. Altered myocardial glucose utilization and the reverse mismatch pattern on rubidium-82 perfusion/F-18-FDG PET during the sub-acute phase following reperfusion of acute anterior myocardial infarction.

    PubMed

    Anselm, Daniel D; Anselm, Anjali H; Renaud, Jennifer; Atkins, Harold L; de Kemp, Robert; Burwash, Ian G; Williams, Kathryn A; Guo, Ann; Kelly, Cathy; Dasilva, Jean; Beanlands, Rob S B; Glover, Christopher A

    2011-08-01

    Reperfused myocardium post-acute myocardial infarction (AMI) may have altered metabolism with implications for therapy response and function recovery. We explored glucose utilization and the "reverse mismatch" (RMM) pattern (decreased F-18-fluorodeoxyglucose (FDG) uptake relative to perfusion) in patients who underwent mechanical reperfusion with percutaneous coronary intervention (PCI) for AMI. Thirty-one patients with anterior wall AMI treated with acute reperfusion, with left ventricular ejection fraction ≤45%, underwent rest rubidium-82 (Rb-82) and FDG PET 2-10 days post-AMI. Resting echocardiograms were used to assess wall motion abnormalities. Significant RMM occurred in 15 (48%) patients and was associated with a shorter time to PCI of 2.9 hours (2.2, 13.3 hours) compared to patients without significant RMM: 11.4 hours (3.9, 22.4 hours) (P = .03). Within the peri-infarct regions, segments with significant RMM were more likely to have wall motion abnormalities (OR = 2.3 (1.1, 4.7), P = .02) compared to segments without significant RMM. RMM is a common pattern on perfusion/FDG PET during the sub-acute phase following reperfusion of AMI and is associated with shorter times to PCI. Within the peri-infarct region, RMM occurs frequently and is more often associated with wall motion abnormalities than segments without RMM. Whether this represents a myocardial metabolic shift during the sub-acute phase of recovery warrants further study.

  13. Potential impact of atelectasis and primary tumor glycolysis on F-18 FDG PET/CT on survival in lung cancer patients.

    PubMed

    Hasbek, Zekiye; Yucel, Birsen; Salk, Ismail; Turgut, Bulent; Erselcan, Taner; Babacan, Nalan Akgul; Kacan, Turgut

    2014-01-01

    Atelectasis is an important prognostic factor that can cause pleuritic chest pain, coughing or dyspnea, and even may be a cause of death. In this study, we aimed to investigate the potential impact of atelectasis and PET parameters on survival and the relation between atelectasis and PET parameters. The study consisted of patients with lung cancer with or without atelectasis who underwent (18)F-FDG PET/CT examination before receiving any treatment. (18)F-FDG PET/CT derived parameters including tumor size, SUVmax, SUVmean, MTV, total lesion glycosis (TLG), SUV mean of atelectasis area, atelectasis volume, and histological and TNM stage were considered as potential prognostic factors for overall survival. Fifty consecutive lung cancer patients (22 patients with atelectasis and 28 patients without atelectasis, median age of 65 years) were evaluated in the present study. There was no relationship between tumor size and presence or absence of atelectasis, nor between presence/absence of atelectasis and TLG of primary tumors. The overall one-year survival rate was 83% and median survival was 20 months (n=22) in the presence of atelectasis; the overall one-year survival rate was 65.7% (n=28) and median survival was 16 months (p=0.138) in the absence of atelectasis. With respect to PFS; the one-year survival rate of AT+ patients was 81.8% and median survival was 19 months; the one-year survival rate of AT- patients was 64.3% and median survival was 16 months (p=0.159). According to univariate analysis, MTV, TLG and tumor size were significant risk factors for PFS and OS (p<0.05). However, SUVmax was not a significant factor for PFS and OS (p>0.05). The present study suggested that total lesion glycolysis and metabolic tumor volume were important predictors of survival in lung cancer patients, in contrast to SUVmax. In addition, having a segmental lung atelectasis seems not to be a significant factor on survival.

  14. Monte Carlo estimation of radiation dose in organs of female and male adult phantoms due to FDG-F18 absorbed in the lungs

    NASA Astrophysics Data System (ADS)

    Belinato, Walmir; Santos, William S.; Silva, Rogério M. V.; Souza, Divanizia N.

    2014-03-01

    The determination of dose conversion factors (S values) for the radionuclide fluorodeoxyglucose (18F-FDG) absorbed in the lungs during a positron emission tomography (PET) procedure was calculated using the Monte Carlo method (MCNPX version 2.7.0). For the obtained dose conversion factors of interest, it was considered a uniform absorption of radiopharmaceutical by the lung of a healthy adult human. The spectrum of fluorine was introduced in the input data file for the simulation. The simulation took place in two adult phantoms of both sexes, based on polygon mesh surfaces called FASH and MASH with anatomy and posture according to ICRP 89. The S values for the 22 internal organs/tissues, chosen from ICRP No. 110, for the FASH and MASH phantoms were compared with the results obtained from a MIRD V phantoms called ADAM and EVA used by the Committee on Medical Internal Radiation Dose (MIRD). We observed variation of more than 100% in S values due to structural anatomical differences in the internal organs of the MASH and FASH phantoms compared to the mathematical phantom.

  15. The significance of pre-therapeutic F-18-FDG PET-CT in lymphoma-associated hemophagocytic lymphohistiocytosis when pathological evidence is unavailable.

    PubMed

    Wang, Jujuan; Wang, Dongjiao; Zhang, Qingbo; Duan, Limin; Tian, Tian; Zhang, Xiaoyan; Li, Jianyong; Qiu, Hongxia

    2016-04-01

    The significance of positron emission tomography/computed tomography (PET-CT) in identifying patients with lymphoma-associated hemophagocytic lymphohistiocytosis (LAHLH) when pathological evidence is unavailable remains uncertain. In this retrospective study, 44 HLH patients who underwent PET-CT before clinical treatment were enrolled, and 18 of them were highly suspected as LAHLH by PET-CT. We compared the PET-CT parameters between confirmed LAHLH and non-LAHLH patients. The efficacy of initial therapies for highly suspected LAHLH patients was analyzed as well. We found that the SUVSp, SUVBM, SUVLN, SUVmax, SUVLN/Li, and SUVmax/Li in LAHLH group were significantly higher than those in non-LAHLH group (p = 0.003, p = 0.034, p = 0.003, p < 0.001, p = 0.039, and p = 0.035, respectively). HLH patients with an SUVmax value >5.5, an SUVLN value >3.3, and an SUVSp value >4.8 were more likely to be LAHLH (p < 0.001, p = 0.003, and p = 0.003, respectively). And the incidence of multiple lymphadenopathy with increased FDG uptake or the incidence of multiple bone lesions in LAHLH patients was significantly higher than those in non-LAHLH group (92.9 vs. 35.7 %, p = 0.004; 42.9 vs. 0 %, p = 0.016, respectively). Furthermore, by comparing the efficacy of initial therapies for highly suspected LAHLH patients (n = 18), we indicated that the CR rate was significantly higher in lymphoma-chemotherapy group than in immunosuppressive therapy group (90 and 25 %, respectively; p = 0.013). OS analysis revealed that highly suspected LAHLH patients treated with lymphoma-chemotherapy had better prognosis (264 days) than those treated with immunosuppressive therapy (15 days) (p < 0.0001). When pathological evidence is absent, PET-CT may play an important role in identifying HLH patients underlying lymphoma. Once highly suspected as LAHLH by PET-CT, lymphoma-chemotherapies that directly treat the underling lymphoma may have a relatively favorable effect and better clinical outcomes than

  16. SU-D-9A-02: Relative Effects of Threshold Choice and Spatial Resolution Modeling On SUV and Volume Quantification in F18-FDG PET Imaging of Anal Cancer Patients

    SciTech Connect

    Zhao, F; Bowsher, J; Palta, M; Czito, B; Willett, C; Yin, F

    2014-06-01

    Purpose: PET imaging with F18-FDG is utilized for treatment planning, treatment assessment, and prognosis. A region of interest (ROI) encompassing the tumor may be determined on the PET image, often by a threshold T on the PET standard uptake values (SUVs). Several studies have shown prognostic value for relevant ROI properties including maximum SUV value (SUVmax), metabolic tumor volume (MTV), and total glycolytic activity (TGA). The choice of threshold T may affect mean SUV value (SUVmean), MTV, and TGA. Recently spatial resolution modeling (SRM) has been introduced on many PET systems. SRM may also affect these ROI properties. The purpose of this work is to investigate the relative influence of SRM and threshold choice T on SUVmean, MTV, TGA, and SUVmax. Methods: For 9 anal cancer patients, 18F-FDG PET scans were performed prior to treatment. PET images were reconstructed by 2 iterations of Ordered Subsets Expectation Maximization (OSEM), with and without SRM. ROI contours were generated by 5 different SUV threshold values T: 2.5, 3.0, 30%, 40%, and 50% of SUVmax. Paired-samples t tests were used to compare SUVmean, MTV, and TGA (a) for SRM on versus off and (b) between each pair of threshold values T. SUVmax was also compared for SRM on versus off. Results: For almost all (57/60) comparisons of 2 different threshold values, SUVmean, MTV, and TGA showed statistically significant variation. For comparison of SRM on versus off, there were no statistically significant changes in SUVmax and TGA, but there were statistically significant changes in MTV for T=2.5 and T=3.0 and in SUVmean for all T. Conclusion: The near-universal statistical significance of threshold choice T suggests that, regarding harmonization across sites, threshold choice may be a greater concern than choice of SRM. However, broader study is warranted, e.g. other iterations of OSEM should be considered.

  17. Brain MRI, Tc-99m HMPAO SPECT and F-18 FP-CIT PET/CT Findings in a Patient with Wilson Disease: A Case Report.

    PubMed

    Kim, Seungyoo; Song, In Uk; Chung, Yong An; Choi, Eun Kyung; Oh, Jin Kyoung

    2014-12-01

    A 34-year-old female had experienced head and hand tremors with a dystonic component for 8 months. Brain MRI showed T2 high signal intensity in the periaqueductal region, dorsal midbrain and dorsal upper pons. No abnormal uptake was noted on Tc-99m HMPAO SPECT or F-18 FP-CIT PET/CT. Wilson disease was diagnosed according to the 2008 consensus guideline from the American Association for the Study of Liver Disease and 2012 guideline from the European Association for the Study of the Liver. This case demonstrates T2 signal change in the basal ganglia, excluding the putamen, in a Wilson disease patient with relatively severe clinical findings, but normal Tc-99m HMPAO SPECT and F-18 FP-CIT PET/CT.

  18. Effect of Donepezil on Wernicke Aphasia After Bilateral Middle Cerebral Artery Infarction: Subtraction Analysis of Brain F-18 Fluorodeoxyglucose Positron Emission Tomographic Images.

    PubMed

    Yoon, Seo Yeon; Kim, Je-Kyung; An, Young-Sil; Kim, Yong Wook

    2015-01-01

    Aphasia is one of the most common neurologic deficits occurring after stroke. Although the speech-language therapy is a mainstream option for poststroke aphasia, pharmacotherapy is recently being tried to modulate different neurotransmitter systems. However, the efficacy of those treatments is still controversial. We present a case of a 53-year-old female patient with Wernicke aphasia, after the old infarction in the territory of left middle cerebral artery for 8 years and the recent infarction in the right middle cerebral artery for 4 months. On the initial evaluation, the Aphasia Quotient in Korean version of the Western Aphasia Battery was 25.6 of 100. Baseline brain F-18 fluorodeoxyglucose positron emission tomographic images demonstrated a decreased cerebral metabolism in the left temporoparietal area and right temporal lobe. Donepezil hydrochloride, a reversible acetylcholinesterase inhibitor, was orally administered 5 mg/d for 6 weeks after the initial evaluation and was increased to 10 mg/d for the following 6 weeks. After the donepezil treatment, the patient showed improvement in language function, scoring 51.0 of 100 on Aphasia Quotient. A subtraction analysis of the brain F-18 fluorodeoxyglucose positron emission tomographic images after donepezil medication demonstrated increased uptake in both middle temporal gyri, extended to the occipital area and the left cerebellum. Thus, we suggest that donepezil can be an effective therapeutic choice for the treatment of Wernicke aphasia.

  19. F-18 SRA landing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A highly-modified F-18 Hornet being flown by the Dryden Flight Research Center in a joint NASA/DOD/industry research program touches down on the main runway at Edwards Air Force Base following another research flight. The two-seat 'B' model F-18, formerly a support aircraft at DFRC, has been converted into a Sytems Research Aircraft (SRA) to flight test a variety of experimental components and sub-sytems. Among the more than 20 experiments is the Advanced L-Probe Air Data Integration, or 'ALADIN,' scheduled to begin flight tests this fall. Similiar to a standard pitot tube, the fuselage-mounted ALADIN probe measures and integrates Mach speed, altitude, angle of attack and side-slip angle. The experiment also incorporates a neural network computer which will be 'trained' to compute air data measured by the probe.

  20. F-18 SRA landing

    NASA Technical Reports Server (NTRS)

    1996-01-01

    A highly modified F-18B Hornet fighter being flown by NASA's Dryden Flight Research Center settles towards the runway at Edwards Air Force Base following another research flight. Known as the Systems Research Aircraft (SRA), the two-seat F-18 is currently engaged in a multi-year project to evaluate a variety of advanced control subsystems and sensors. Among the more than 20 experiments being researched in the joint NASA/DOD/industry program is the Electrical-Powered Actuation Design (EPAD), which is testing prototype aileron actuators which operate independently of the aircraft's hydraulic system. One experimental electrohydrostatic actuator (EHA) generates hydraulic force to move the aileron via a compact electric-driven hydraulic pump incorporated in the actuator itself. Another 'smart' actuator uses actuator-mounted electronics while a third electro-mechanical actuator is electrically operated and moves the aileron mechanically. Such actuators could eliminate much of the need for complex central hydraulic systems on future aircraft, with signifigant savings in weight and cost. They are also being evaluated for use on the planned Reusable Launch Vehicle.

  1. [F-18]FDDNP microPET imaging correlates with brain Aβ burden in a transgenic rat model of Alzheimer disease: effects of aging, in vivo blockade, and anti-Aβ antibody treatment.

    PubMed

    Teng, Edmond; Kepe, Vladimir; Frautschy, Sally A; Liu, Jie; Satyamurthy, Nagichettiar; Yang, Fusheng; Chen, Ping-Ping; Cole, Graham B; Jones, Mychica R; Huang, Sung-Cheng; Flood, Dorothy G; Trusko, Stephen P; Small, Gary W; Cole, Gregory M; Barrio, Jorge R

    2011-09-01

    In vivo detection of Alzheimer's disease (AD) neuropathology in living patients using positron emission tomography (PET) in conjunction with high affinity molecular imaging probes for β-amyloid (Aβ) and tau has the potential to assist with early diagnosis, evaluation of disease progression, and assessment of therapeutic interventions. Animal models of AD are valuable for exploring the in vivo binding of these probes, particularly their selectivity for specific neuropathologies, but prior PET experiments in transgenic mice have yielded conflicting results. In this work, we utilized microPET imaging in a transgenic rat model of brain Aβ deposition to assess [F-18]FDDNP binding profiles in relation to age-associated accumulation of neuropathology. Cross-sectional and longitudinal imaging demonstrated that [F-18]FDDNP binding in the hippocampus and frontal cortex progressively increases from 9 to 18months of age and parallels age-associated Aβ accumulation. Specificity of in vivo [F-18]FDDNP binding was assessed by naproxen pretreatment, which reversibly blocked [F-18]FDDNP binding to Aβ aggregrates. Both [F-18]FDDNP microPET imaging and neuropathological analyses revealed decreased Aβ burden after intracranial anti-Aβ antibody administration. The combination of this non-invasive imaging method and robust animal model of brain Aβ accumulation allows for future longitudinal in vivo assessments of potential therapeutics for AD that target Aβ production, aggregation, and/or clearance. These results corroborate previous analyses of [F-18]FDDNP PET imaging in clinical populations.

  2. Radiolabeling of Poly(lactic-co-glycolic acid) (PLGA) Nanoparticles with Biotinylated F-18 Prosthetic Groups and Imaging of Their Delivery to the Brain with Positron Emission Tomography

    PubMed Central

    2015-01-01

    The avidin–biotin interaction permits rapid and nearly irreversible noncovalent linkage between biotinylated molecules and avidin-modified substrates. We designed a biotinylated radioligand intended for use in the detection of avidin-modified polymer nanoparticles in tissue with positron emission tomography (PET). Using an F-18 labeled prosthetic group, [18F]4-fluorobenzylamine, and a commercially available biotin derivate, NHS-PEG4-biotin, [18F]-fluorobenzylamide-poly(ethylene glycol)4-biotin ([18F]NPB4) was prepared with high purity and specific activity. The attachment of the [18F]NPB4 radioligand to avidin-modified poly(lactic-co-glycolic acid) (PLGA) nanoparticles was tested by using PET imaging to measure the kinetics of convection-enhanced delivery (CED) of nanoparticles of varying size to the rat brain. PET imaging enabled the direct observation of nanoparticle delivery by measurement of the spatial volume of distribution of radiolabeled nanoparticles as a function of time, both during and after the infusion. This work thus validates new methods for radiolabeling PEG-biotin derivatives and also provides insight into the fate of nanoparticles that have been infused directly into the brain. PMID:25322194

  3. Comparison of analytical methods of brain [(18)F]FDG-PET after severe traumatic brain injury.

    PubMed

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R

    2017-08-12

    Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [(18)F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [(18)F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [(18)F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [(18)F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017. Published by Elsevier B.V.

  4. Comparison of the Intraperitoneal, Retroorbital and per Oral Routes for F-18 FDG Administration as Effective Alternatives to Intravenous Administration in Mouse Tumor Models Using Small Animal PET/CT Studies.

    PubMed

    Kim, Chulhan; Kim, In Hye; Kim, Seo-Il; Kim, Young Sang; Kang, Se Hun; Moon, Seung Hwan; Kim, Tae-Sung; Kim, Seok-Ki

    2011-09-01

    We compared alternative routes for (18)F-fluorodeoxyglucose (FDG) administration, such as the retroorbital (RO), intraperitoneal (IP) and per oral (PO) routes, with the intravenous (IV) route in normal tissues and tumors of mice. CRL-1642 (ATCC, Lewis lung carcinoma) cells were inoculated in female BALB/c-nu/nu mice 6 to 10 weeks old. When the tumor grew to about 9 mm in diameter, positron emission tomography (PET) scans were performed after FDG administration via the RO, IP, PO or IV route. Additional serial PET scans were performed using the RO, IV or IP route alternatively from 5 to 29 days after the tumor cell injection. There was no significant difference in the FDG uptake in normal tissues at 60 min after FDG administration via RO, IP and IV routes. PO administration, however, showed delayed distribution and unwanted high gastrointestinal uptake. Tumoral uptake of FDG showed a similar temporal pattern and increased until 60 min after FDG administration in the RO, IP and IV injection groups. In the PO administration group, tumoral uptake was delayed and reduced. There was no statistical difference among the RO, IP and IV administration groups for additional serial PET scans. RO administration is an effective alternative route to IV administration for mouse FDG PET scans using normal mice and tumor models. In addition, IP administration can be a practical alternative in the late phase, although the initial uptake is lower than those in the IV and RO groups.

  5. F-18 FDG PET/CT and Tc-99m sulfur colloid SPECT imaging in the diagnosis and treatment of a case of dual solitary fibrous tumors of the retroperitoneum and pancreas.

    PubMed

    Azadi, Javad; Subhawong, Andrea; Durand, Daniel James

    2012-03-01

    Although FDG PET is increasingly used for the staging of many types of sarcoma, little has been written regarding the FDG PET imaging characteristics of solitary fibrous tumor. We report a patient undergoing FDG PET/CT surveillance for squamous cell carcinoma of the tongue who was incidentally found to have two soft tissue masses in the retroperitoneum and pancreatic tail. Due to their low degree of FDG avidity, they were followed conservatively for approximately one year as they gradually increased in size. Technetium-99m sulfur colloid SPECT helped confirm that the pancreatic tail mass was not a splenule, after which both lesions were surgically resected and found to be extrathoracic solitary fibrous tumors without malignant features. These findings suggest that, as with other low-grade sarcomas, benign extrathoracic solitary fibrous tumors exhibit relatively little glycolytic metabolism in vivo.

  6. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    DOE PAGES

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; ...

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less

  7. Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG

    PubMed Central

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-01-01

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683

  8. Dynamic functional imaging of brain glucose utilization using fPET-FDG.

    PubMed

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B; Catana, Ciprian; Polimeni, Jonathan R; Sander, Christin Y; Zürcher, Nicole R; Chonde, Daniel B; Fowler, Joanna S; Rosen, Bruce R; Hooker, Jacob M

    2014-10-15

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[(18)F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.

  9. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    SciTech Connect

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.

  10. Comparison of F-18 Fluorodeoxyglucose and F-18 Fluorothymidine Positron Emission Tomography in Differentiating Radiation Necrosis from Recurrent Glioma

    PubMed Central

    Enslow, Michael S.; Zollinger, Lauren V.; Morton, Kathryn A.; Kadrmas, Dan J.; Butterfield, Regan I.; Christian, Paul E.; Boucher, Kenneth M.; Heilbrun, Marta E.; Jensen, Randy L.; Hoffman, John M.

    2012-01-01

    Purpose of the Report The objective was to compare F-18 fluorodeoxyglucose (FDG) and F-18 fluorothymidine (FLT) positron emission tomography (PET) in differentiating radiation necrosis from recurrent glioma. Materials and methods Visual and quantitative analyses were derived from static FDG PET and static and dynamic FLT PET in 15 patients with suspected recurrence of treated ≥ grade II glioma with a new focus of Gd-contrast enhancement on MRI. For FDG PET, SUVmax and the ratio of lesion SUVmax to the SUVmean of contralateral white matter were measured. For FLT PET, SUVmax and Patlak-derived metabolic flux parameter Kimax were measured for the same locus. A 5-point visual confidence scale was applied to FDG PET and FLT PET. ROC analysis was applied to visual and quantitative results. Differences between recurrent tumor and radiation necrosis were tested by Kruskal-Wallis analysis. Based on follow-up Gd-MRI imaging, lesion-specific recurrent tumor was defined as a definitive increase in size of the lesion, and radiation necrosis as stability or regression. Results For FDG SUVmax, FDG ratio lesion:white matter and FLT Kimax, there was a significant difference between mean values for recurrent tumor and radiation necrosis. Recurrent tumor was best identified by FDG ratio of lesion:contralateral normal white matter (AUC 0.98, CI 0.91–1.00, sens. 100%, spec. 75% for an optimized cut-off value of 1.82). Conclusion Both quantitative and visual determinations allow accurate differentiation between recurrent glioma and radiation necrosis by both FDG and FLT PET. In this small series, FLT PET offers no advantage over FDG PET. PMID:22889774

  11. Cardiac Magnetic Resonance for Evaluating Catheter Related FDG Avidity

    PubMed Central

    Gage, Kenneth L.; Berman, Claudia G.; Montilla-Soler, Jaime L.

    2016-01-01

    A 53-year-old female with a history of metastatic left arm melanoma presented for F(18) fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) which showed a moderately FDG avid focus at her port catheter tip near the cavoatrial junction. Although catheter tip related FDG avidity has previously been suggested to be bland thrombus or infection, melanoma can metastasize to unusual locations including the superior vena cava. In addition, the patient had an elevated risk of anticoagulation due to a history of hemorrhagic brain metastases. Therefore, confirmatory cardiac magnetic resonance (CMR) was obtained and findings were consistent with bland catheter-related thrombus. PMID:27867676

  12. Ictal onset zone and seizure propagation delineated on ictal F-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Tripathi, Madhavi; Tripathi, Manjari; Garg, Ajay; Damle, Nishikant; Bal, Chandrasekhar

    2016-01-01

    The present case highlights the utility of ictal F-18 fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) in delineating the seizure onset zone in a child with complex partial seizures. Although F-18 FDG PET has been successfully used to delineate interictal hypometabolism, planned ictal FDG PET, in cases with prolonged seizure activity, can provide better spatial resolution than single-photon emission CT by delineating the seizure onset zone and propagation pathway.

  13. Concordance between brain (18)F-FDG PET and cerebrospinal fluid biomarkers in diagnosing Alzheimer's disease.

    PubMed

    Rubí, S; Noguera, A; Tarongí, S; Oporto, M; García, A; Vico, H; Espino, A; Picado, M J; Mas, A; Peña, C; Amer, G

    2017-06-20

    Cortical posterior hypometabolism on PET imaging with (18)F-FDG (FDG-PET), and altered levels of Aß1-42 peptide, total Tau (tTau) and phosphorylated Tau (pTau) proteins in cerebrospinal fluid (CSF) are established diagnostic biomarkers in Alzheimer's disease (AD). An evaluation has been made of the concordance and relationship between the results of FDG-PET and CSF biomarkers in symptomatic patients with suspected AD. A retrospective review was carried out on 120 patients with cognitive impairment referred to our Cognitive Neurology Unit, and who were evaluated by brain FDG-PET and a lumbar puncture for CSF biomarkers. In order to calculate their Kappa coefficient of concordance, the result of the FDG-PET and the set of the three CSF biomarkers in each patient was classified as normal, inconclusive, or AD-compatible. The relationship between the results of both methods was further assessed using logistic regression analysis, including the Aß1-42, tTau and pTau levels as quantitative predictors, and the FDG-PET result as the dependent variable. The weighted Kappa coefficient between FDG-PET and CSF biomarkers was 0.46 (95% CI: 0.35-0.57). Logistic regression analysis showed that the Aß1-42 and tTau values together were capable of discriminating an FDG-PET result metabolically suggestive of AD from one non-suggestive of AD, with a 91% sensitivity and 93% specificity at the cut-off line Aß1-42=44+1.3×tTau. The level of concordance between FDG-PET and CSF biomarkers was moderate, indicating their complementary value in diagnosing AD. The Aß1-42 and tTau levels in CSF help to predict the patient FDG-PET cortical metabolic status. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  14. Long-term effects of 'ecstasy' abuse on the human brain studied by FDG PET.

    PubMed

    Buchert, R; Obrocki, J; Thomasius, R; Väterlein, O; Petersen, K; Jenicke, L; Bohuslavizki, K H; Clausen, M

    2001-08-01

    The popular recreational drug, 'ecstasy', mainly contains 3,4-methylenedioxymethamphetamine (MDMA) as the psychotropic agent. MDMA is suspected of causing neurotoxic lesions to the serotonergic system as demonstrated by animal studies, examinations of human cerebrospinal fluid, and the first positron emission tomography (PET) studies using the serotonin transporter ligand [11C]-McN5652. Damage of serotonergic afferents might mediate long-lasting alterations of cerebral glucose metabolism as a secondary effect. To study a relationship between ecstasy use and long-lasting alterations, PET using 2-[18F]-fluoro-2-deoxy-d-glucose (FDG) was performed in 93 ecstasy users and 27 subjects without any known history of illicit-drug abuse. As an index of glucose metabolism, mean normalized FDG uptake was determined in both groups using a computerized brain atlas, and was compared for a selected number of brain regions. FDG uptake was normalized in each individual by dividing local FDG uptake by the maximum FDG uptake in the individual's brain. Within the group of ecstasy users we examined the relationship between FDG uptake and cumulative ecstasy dose, time since last ecstasy ingestion at the time of PET scanning, and age at first ecstasy use, respectively. Normalized FDG uptake was reduced within the striatum and amygdala of ecstasy users when compared to controls. No statistically significant correlation of the FDG uptake and the cumulative dose of ecstasy was detected. A positive correlation was found in the cingulate between FDG uptake and the time since last ecstasy ingestion. As compared to the control group, normalized FDG uptake in the cingulate was reduced in ecstasy users who took ecstasy during the last 6 months, while it was elevated in former ecstasy users who did not consume ecstasy for more than 1 year. FDG uptake was significantly more affected in ecstasy users who started to consume ecstasy before the age of 18 years. In conclusion, ecstasy abuse causes long

  15. Asymmetrical F-18 Flurorodeoxyglucose uptake in the breasts: A dilemma solved by patient history.

    PubMed

    Gupta, Ravi Kant; Tripathi, Madhavi; Sahoo, Manas Kumar; Nazar, Aftab Hasan; Agarwal, Krishankant; Kumar, Kunal; Damle, Nishikant; Bal, Chandrasekhar

    2016-01-01

    The present case highlights the importance of history taking in solving the dilemmas of variant F-18 FDG uptake on PET/CT. Asymmetrically increased, abnormal looking, FDG uptake in the right breast of our patient was related to her breast feeding practice. Because of personal preference the patient suckled her child from the right breast only. This resulted in asymmetry of size, increase in glandular breast parenchyma and FDG uptake in the breast that was suckled.

  16. Concurrent Low Brain and High Liver Uptake on FDG PET Are Associated with Cardiovascular Risk Factors

    PubMed Central

    Nam, Hyun-Yeol; Jun, Sungmin; Pak, Kyoungjune

    2017-01-01

    Objective Concurrent low brain and high liver uptake are sometimes observed on fluorine-18-labeled fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET). We investigated the potential clinical significance of this uptake pattern related to metabolic syndrome (MS). Materials and Methods We retrospectively reviewed data from 264 consecutive males who had undergone general health check-ups, including FDG PET/CT scans. After an overnight fast, the men had their peripheral blood drawn and the levels of various laboratory parameters measured; an FDG PET/CT scan was performed on the same day. We measured the maximum standardized uptake values of the brain and liver from regions of interest manually placed over the frontal cortex at the level of the centrum semiovale and the right lobe of the liver parenchyma, respectively. Results Fasting blood glucose (FBG; odds ratio [OR] = 1.063, p < 0.001) and glycated hemoglobin (HbA1c; OR = 3.634, p = 0.010) were the strongest predictive factors for low brain FDG uptake, whereas waist circumference (OR = 1.200, p < 0.001) and γ-glutamyl transpeptidase (OR = 1.012, p = 0.001) were the strongest predictive factors for high liver uptake. Eleven subjects (4.2%) showed concurrent low brain and high liver FDG uptake, and all but one of these subjects (90.9%) had MS. Systolic blood pressure, waist circumference, FBG, triglyceride, alanine aminotransferase, insulin resistance (measured by homeostasis model assessment), insulin, HbA1c, and body mass index were higher in subjects with this FDG uptake pattern than in those without (all, p < 0.001). Conclusion Concurrent low brain and high liver FDG uptake were closely associated with MS. Moreover, subjects with this pattern had higher values for various cardiovascular risk factors than did those without. PMID:28246520

  17. Pilot study of F(18)-Fluorodeoxyglucose Positron Emission Tomography/computerised tomography in Wilms' tumour: correlation with conventional imaging, pathology and immunohistochemistry.

    PubMed

    Begent, Joanna; Sebire, Neil J; Levitt, Gill; Brock, Penelope; Jones, Kathy Pritchard; Ell, Peter; Gordon, Isky; Anderson, John

    2011-02-01

    Wilms' tumour is the second most common paediatric solid tumour. Prognosis is good although higher stage disease carries significant mortality and treatment related morbidity. In the UK, risk stratification is based on histological response to pre-operative chemotherapy. F(18)-Fluorodeoxyglucose Positron Emission Tomography (F(18)FDG-PET) is an emerging functional imaging technique in paediatric oncology. Little is known about the relationship between F(18)FDG-PET images and the disease process of Wilms' tumour. We performed F(18)FDG-PET/CT scans in seven children with Wilms' tumour after induction chemotherapy, immediately before surgery. The standard uptake values (SUV) of F(18)FDG-PET/CT images were related to conventional imaging and histopathological findings. In total seven children were studied. F(18)FDG-PET/CT was consistently safely performed. All tumours showed F(18)FDG activity. Four tumours had activity with SUV/bw max >5 g/ml. Histological examination of these active areas revealed viable anaplastic Wilms' tumour. Furthermore, in these four tumours GLUT-1 and Ki67 immunostaining was strongly positive. Three further tumours demonstrated lower uptake (SUV/bw max <5 g/ml), which represented areas of microscopic foci of residual viable tumour mixed with post chemotherapy change. Metastatic disease was F(18)FDG avid in two of four children with stage four diseases. In conclusion, following chemotherapy, active Wilms' tumour is F(18)FDG avid and higher SUV was seen in histologically high risk disease.

  18. FDG PET brain scan demonstrated glucose hypometabolism of bilateral caudate nuclei and putamina in a patient with chorea-acanthocytosis.

    PubMed

    Cui, Ruixue; You, Hui; Niu, Na; Li, Fang

    2015-12-01

    Chorea-acanthocytosis is 1 type of neuroacanthocytosis that is a group of rare, hereditary neurodegenerative disorders. We presented a brain FDG PET finding of a 31-year-old woman with chorea-acanthocytosis. The images demonstrated significant hypometabolism in bilateral caudate nuclei and putamina. The finding of FDG PET is more prominent than that of MRI. Another interesting observation is the mildly increased FDG uptake in pituitary gland, although its relationship with the disease is unclear.

  19. EANM procedure guidelines for PET brain imaging using [18F]FDG, version 2.

    PubMed

    Varrone, Andrea; Asenbaum, Susanne; Vander Borght, Thierry; Booij, Jan; Nobili, Flavio; Någren, Kjell; Darcourt, Jacques; Kapucu, Ozlem L; Tatsch, Klaus; Bartenstein, Peter; Van Laere, Koen

    2009-12-01

    These guidelines summarize the current views of the European Association of Nuclear Medicine Neuroimaging Committee (ENC). The purpose of the guidelines is to assist nuclear medicine practitioners in making recommendations, performing, interpreting, and reporting the results of fluorine-18 fluoro-2-deoxyglucose ([(18)F]FDG) PET imaging of the brain. The aim is to help achieve a high standard of FDG imaging, which will increase the diagnostic impact of this technique in neurological and psychiatric practice. The present document replaces a former version of the guidelines that were published in 2002 [1] and includes an update in the light of advances in PET technology, the introduction of hybrid PET/CT systems and the broadening clinical indications for FDG brain imaging. These guidelines are intended to present information specifically adapted for European practice. The information provided should be taken in the context of local conditions and regulations.

  20. Diffuse FDG renal uptake in lymphoma.

    PubMed

    Navalkissoor, Shaunak; Szyszko, Teresa; Gnanasegaran, Gopinath; Nunan, Thomas

    2010-10-01

    In patients presenting with acute renal failure and known/suspected lymphoma, the diagnosis of diffuse renal involvement is important, as there is potential for rapid resolution with chemotherapy. Although FDG is excreted through the kidneys and focal renal disease may be difficult to identify, diffuse renal FDG is more easily recognized and is always abnormal. We report a patient presenting with acute renal failure and suspected lymphoma. F-18 FDG PET/CT study demonstrated diffuse increased FDG uptake in bilaterally enlarged kidneys. Following 1 cycle of chemotherapy, the renal function normalized. An interim F-18 FDG PET/CT demonstrated normal size and FDG uptake within both kidneys.

  1. F-18 fluorodeoxyglucose PET/CT and post hoc PET/MRI in a case of primary meningeal melanomatosis.

    PubMed

    Lee, Hong Je; Ahn, Byeong-Cheol; Hwang, Seong Wook; Cho, Suk Kyong; Kim, Hae Won; Lee, Sang-Woo; Hwang, Jeong-Hyun; Lee, Jaetae

    2013-01-01

    Primary meningeal melanomatosis is a rare, aggressive variant of primary malignant melanoma of the central nervous system, which arises from melanocytes within the leptomeninges and carries a poor prognosis. We report a case of primary meningeal melanomatosis in a 17-year-old man, which was diagnosed with (18)F-fluorodeoxyglucose (F-18 FDG) PET/CT, and post hoc F-18 FDG PET/MRI fusion images. Whole-body F-18 FDG PET/CT was helpful in ruling out the extracranial origin of melanoma lesions, and in assessing the therapeutic response. Post hoc PET/MRI fusion images facilitated the correlation between PET and MRI images and demonstrated the hypermetabolic lesions more accurately than the unenhanced PET/CT images. Whole body F-18 FDG PET/CT and post hoc PET/MRI images might help clinicians determine the best therapeutic strategy for patients with primary meningeal melanomatosis.

  2. Role of (18)F-FDG PET/CT in primary brain lymphoma.

    PubMed

    de-Bonilla-Damiá, Á; Fernández-López, R; Capote-Huelva, F J; de la Cruz-Vicente, F; Egea-Guerrero, J J; Borrego-Dorado, I

    To study the usefulness of (18)F-FDG PET/CT in the initial evaluation and in the response assessment in primary brain lymphoma. A retrospective analysis was carried out on 18 patients diagnosed with primary brain lymphoma, a histological subtype of diffuse large B-cell lymphoma, on whom an initial (18)F-FDG PET/CT and MRI was performed, with 7 of the cases being analysed after the completion of treatment in order to assess response and clinical follow up. Initial (18)F-FDG PET/CT showed 26 hypermetabolic foci, whereas 46 lesions were detected by MRI. The average SUV maximum of the lesions was 17.56 with T/N 3.55. The concordance of both tests for identifying the same number of lesions was moderate, obtaining a kappa index of 0.395 (P<.001). In the evaluation of treatment, MRI identified 16 lesions compared to 7 pathological accumulations observed by (18)F-FDG PET/CT. The concordance of both tests to assess type of response to treatment was moderate (kappa index 0.41) (P=.04). In both the initial evaluation and the assessment of the response to treatment, PET/CT led to a change strategy in 22% of patients who had lesions outside the cerebral parenchyma. MRI appears to be the method of choice for detecting brain disease in patients with primary brain lymphoma, whereas (18)F-FDG PET/CT seems to play a relevant role in the assessment of extra-cerebral disease. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  3. Comparison of the diagnostic accuracy of PET/MRI to PET/CT-acquired FDG brain exams for seizure focus detection: a prospective study.

    PubMed

    Paldino, Michael J; Yang, Erica; Jones, Jeremy Y; Mahmood, Nadia; Sher, Andrew; Zhang, Wei; Hayatghaibi, Shireen; Krishnamurthy, Ramkumar; Seghers, Victor

    2017-05-16

    There is great interest in positron emission tomography (PET)/magnetic resonance (MR) as a clinical tool due to its capacity to provide diverse diagnostic information in a single exam. The goal of this exam is to compare the diagnostic accuracy of PET/MR-acquired [F-18]2-fluoro-2-deoxyglucose (FDG) brain exams to that of PET/CT with respect to identifying seizure foci in children with localization-related epilepsy. Institutional Review Board approval and informed consent were obtained for this Health Insurance Portability and Accountability Act-compliant, prospective study. All patients referred for clinical FDG-PET/CT exams of the brain at our institution for a diagnosis of localization-related epilepsy were prospectively recruited to undergo an additional FDG-PET acquisition on a tandem PET/MR system. Attenuation-corrected FDG images acquired at PET/MR and PET/CT were interpreted independently by five expert readers. Readers were blinded to the scanner used for acquisition and attenuation correction as well as all other clinical and imaging data. A Likert scale scoring system (1-5) was used to assess image quality. The locale of seizure origin determined at multidisciplinary epilepsy surgery work rounds was considered the reference standard. Non-inferiority testing for paired data was used to compare the diagnostic accuracy of PET/MR to that of PET/CT. The final study population comprised 35 patients referred for a diagnosis of localization-related epilepsy (age range: 2-19 years; median: 11 years; 21 males, 14 females). Image quality did not differ significantly between the two modalities. The accuracy of PET/MR was not inferior to that of PET/CT for localization of a seizure focus (P=0.017). The diagnostic accuracy of FDG-PET images acquired on a PET/MR scanner and generated using MR-based attenuation correction was not inferior to that of PET images processed by traditional CT-based correction.

  4. Short-Term Practice Effects and Brain Hypometabolism: Preliminary Data from an FDG PET Study.

    PubMed

    Duff, Kevin; Horn, Kevin P; Foster, Norman L; Hoffman, John M

    2015-05-01

    Practice effects are improvements in cognitive test scores due to repeated exposure to the same tests. Typically viewed as error, short-term practice effects have been shown to provide valuable clinical information about diagnosis, prognosis, and treatment outcomes in older patients with mild cognitive impairments. This study examined short-term practice effects across one week and brain hypometabolism on fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) in 25 older adults (15 intact, 10 Mild Cognitive Impairment). Averaged cerebral brain metabolism on FDG PET was correlated with multiple cognitive scores at baseline in those with Mild Cognitive Impairment, and short-term practice effects accounted for additional variance in these same subjects. The relationship between brain metabolism and cognition (either at baseline or practice effects) was minimal in the intact individuals. Although needing replication in larger samples, short-term practice effects on tests of executive functioning and memory may provide valuable information about biomarkers of Alzheimer's disease.

  5. F-18 SRA in flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Dryden Flight Research Center, Edwards, California, is using this early-model F-18 Hornet as a flying research platform to evaluate a number of emerging technologies in aircraft control and information systems. The Systems Research Aircraft, a pre-production two-seat version of the twin-engine tactical fighter aircraft, has been extensively modified for its research role. Among projects flown on the plane are experiments to evaluate fiber optics for flight-critical control systems, advanced air data acquisition systems, and electrically-powered flight control actuators which do not require connection to the aircraft central hydraulic system. The new technologies could lead to lighter and more efficient aircraft designs with higher performance and greater safety.

  6. Positron Emission Tomography Using Fluorine F 18 EF5 to Find Oxygen in Tumor Cells of Patients Who Are Undergoing Surgery or Biopsy for Newly Diagnosed Brain Tumors

    ClinicalTrials.gov

    2013-01-15

    Adult Anaplastic Astrocytoma; Adult Anaplastic Ependymoma; Adult Anaplastic Oligodendroglioma; Adult Brain Stem Glioma; Adult Central Nervous System Germ Cell Tumor; Adult Choroid Plexus Tumor; Adult Craniopharyngioma; Adult Diffuse Astrocytoma; Adult Ependymoblastoma; Adult Ependymoma; Adult Giant Cell Glioblastoma; Adult Glioblastoma; Adult Gliosarcoma; Adult Grade I Meningioma; Adult Grade II Meningioma; Adult Grade III Meningioma; Adult Medulloblastoma; Adult Meningeal Hemangiopericytoma; Adult Mixed Glioma; Adult Myxopapillary Ependymoma; Adult Oligodendroglioma; Adult Pilocytic Astrocytoma; Adult Pineoblastoma; Adult Pineocytoma; Adult Subependymoma; Adult Supratentorial Primitive Neuroectodermal Tumor (PNET); Meningeal Melanocytoma

  7. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    SciTech Connect

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-09-15

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG PET

  8. Symmetric increased skeletal muscular uptake of F-18 fluoro-deoxyglucose: A clue for the diagnosis of Graves' disease.

    PubMed

    Santhosh, Sampath; Mittal, Bhagwant Rai; Kashyap, Raghava; Bhattacharya, Anish; Singh, Baljinder

    2011-07-01

    F-18 fluoro-deoxyglucose (FDG) uptake in the thyroid and thymus is well reported in patients with Graves' disease. Incidental skeletal muscle uptake has also been reported in other non-musculoskeletal (benign and malignant) pathologies. We report a patient of Graves' disease showing symmetrical skeletal muscle uptake but no thyroidal or thymus uptake of FDG.

  9. Functional pattern of brain FDG-PET in amyotrophic lateral sclerosis.

    PubMed

    Pagani, Marco; Chiò, Adriano; Valentini, Maria Consuelo; Öberg, Johanna; Nobili, Flavio; Calvo, Andrea; Moglia, Cristina; Bertuzzo, Davide; Morbelli, Silvia; De Carli, Fabrizio; Fania, Piercarlo; Cistaro, Angelina

    2014-09-16

    We investigated a large sample of patients with amyotrophic lateral sclerosis (ALS) at rest in order to assess the value of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) PET as a biomarker to discriminate patients from controls. A total of 195 patients with ALS and 40 controls underwent brain (18)F-FDG-PET, most within 5 months of diagnosis. Spinal and bulbar subgroups of ALS were also investigated. Twenty-five bilateral cortical and subcortical volumes of interest and cerebellum were taken into account, and (18)F-FDG uptakes were individually normalized by whole-brain values. Group analyses investigated the ALS-related metabolic changes. Discriminant analysis investigating sensitivity and specificity was performed using the 51 volumes of interest as well as age and sex. Metabolic connectivity was explored by voxel-wise interregional correlation analysis. Hypometabolism was found in frontal, motor, and occipital cortex and hypermetabolism in midbrain, temporal pole, and hippocampus in patients with ALS compared to controls. A similar metabolic pattern was also found in the 2 subgroups. Discriminant analysis showed a sensitivity of 95% and a specificity of 83% in separating patients from controls. Connectivity analysis found a highly significant positive correlation between midbrain and white matter in corticospinal tracts in patients with ALS. (18)F-FDG distribution changes in ALS showed a clear pattern of hypometabolism in frontal and occipital cortex and hypermetabolism in midbrain. The latter might be interpreted as the neurobiological correlate of diffuse subcortical gliosis. Discriminant analysis resulted in high sensitivity and specificity in differentiating patients with ALS from controls. Once validated by diseased-control studies, the present methodology might represent a potentially useful biomarker for ALS diagnosis. This study provides Class III evidence that (18)F-FDG-PET accurately distinguishes patients with ALS from normal controls (sensitivity 95

  10. Validation of true low-dose 18F-FDG PET of the brain

    PubMed Central

    Fällmar, David; Lilja, Johan; Kilander, Lena; Danfors, Torsten; Lubberink, Mark; Larsson, Elna-Marie; Sörensen, Jens

    2016-01-01

    The dosage of 18F-FDG must be sufficient to ensure adequate PET image quality. For younger patients and research controls, the lowest possible radiation dose should be used. The purpose of this study was to find a protocol for FDG-PET of the brain with reduced radiation dose and preserved quantitative characteristics. Eight patients with neurodegenerative disorders and nine controls (n=17) underwent FDG-PET/CT twice on separate occasions, first with normal-dose (3 MBq/kg), and second with low-dose (0.75 MBq/kg, 25% of the original). Five additional controls (total n=22) underwent FDG-PET twice, using normal-dose and ultra-low-dose (0.3 MBq/kg, 10% of original). All subjects underwent MRI. Ten-minute summation images were spatially normalized and intensity normalized. Regional standard uptake value ratios (SUV-r) were calculated using an automated atlas. SUV-r values from the normal- and low-dose images were compared pairwise. No clinically significant bias was found in any of the three groups. The mean absolute difference in regional SUV-r values was 0.015 (1.32%) in controls and 0.019 (1.67%) in patients. The ultra-low-dose protocol produced a slightly higher mean difference of 0.023 (2.10%). The main conclusion is that 0.75 MBq/kg (56 MBq for a 75-kg subject) is a sufficient FDG dose for evaluating regional SUV-ratios in brain PET scans in adults with or without neurodegenerative disease, resulting in a reduction of total PET/CT effective dose from 4.54 to 1.15 mSv. The ultra-low-dose (0.5 mSv) could be useful in research studies requiring serial PET in healthy controls or children. PMID:27766185

  11. Validation of true low-dose (18)F-FDG PET of the brain.

    PubMed

    Fällmar, David; Lilja, Johan; Kilander, Lena; Danfors, Torsten; Lubberink, Mark; Larsson, Elna-Marie; Sörensen, Jens

    2016-01-01

    The dosage of (18)F-FDG must be sufficient to ensure adequate PET image quality. For younger patients and research controls, the lowest possible radiation dose should be used. The purpose of this study was to find a protocol for FDG-PET of the brain with reduced radiation dose and preserved quantitative characteristics. Eight patients with neurodegenerative disorders and nine controls (n=17) underwent FDG-PET/CT twice on separate occasions, first with normal-dose (3 MBq/kg), and second with low-dose (0.75 MBq/kg, 25% of the original). Five additional controls (total n=22) underwent FDG-PET twice, using normal-dose and ultra-low-dose (0.3 MBq/kg, 10% of original). All subjects underwent MRI. Ten-minute summation images were spatially normalized and intensity normalized. Regional standard uptake value ratios (SUV-r) were calculated using an automated atlas. SUV-r values from the normal- and low-dose images were compared pairwise. No clinically significant bias was found in any of the three groups. The mean absolute difference in regional SUV-r values was 0.015 (1.32%) in controls and 0.019 (1.67%) in patients. The ultra-low-dose protocol produced a slightly higher mean difference of 0.023 (2.10%). The main conclusion is that 0.75 MBq/kg (56 MBq for a 75-kg subject) is a sufficient FDG dose for evaluating regional SUV-ratios in brain PET scans in adults with or without neurodegenerative disease, resulting in a reduction of total PET/CT effective dose from 4.54 to 1.15 mSv. The ultra-low-dose (0.5 mSv) could be useful in research studies requiring serial PET in healthy controls or children.

  12. F-18 SRA during flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This bright blue-and-white twin-jet aircraft may look like an ordinary F/A-18 Hornet fighter, but inside its a different bird. Currently being flown by NASA's Dryden Flight Research Center, Edwards, California, in a multi-year, joint NASA/DOD/industry program, the former Navy fighter has been modified into a unique Systems Research Aircraft (SRA) to investigate a host of new technologies in the areas of flight controls, airdata sensing and advanced computing. One of the more than 20 experiments being tested aboard the SRA F-18 is an advanced air data sensing system which uses a group of pressure taps flush-mounted on the forward fuselage to measure both altitude and wind speed and direction--critical data for flight control and research investigations. The Real-Time Flush Air Data Sensing system concept is being evaluated for possible use on the X-33 resuable space-launch vehicle. The primary goal of the SRA program is to validate through flight research cutting-edge technologies which could benefit future aircraft and spacecraft by improving efficiency and performance, reducing weight and complexity, with a resultant reduction on development and operational costs.

  13. F-18 SRA during flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration's Systems Research Aircraft (SRA), a highly modified F-18 jet fighter, is seen here during a recent research flight. The former Navy aircraft is being flown by NASA's Dryden Flight Research Center at Edwards Air Force Base, California, to evaluate a number of experimental aerospace technologies in a multi-year, joint NASA/DOD/industry program. Among the more than 20 experiments being flight-tested were several involving fiber optic sensor systems. Experiments developed by McDonnell-Douglas and Lockheed-Martin centered on installation and maintenace techniques for various types of fiber-optic hardware proposed for use in military and commercial aircraft, while a Parker-Hannifin experiment focused in alternative fiber-optic designs for position measurement sensors as well as operational experience in handling optical sensor systems. Other experiments being flown on this testbed aircraft include electronically-controlled control surface actuators, flush air data collection systems, 'smart' skin antennae and laser-based systems. Incorporation of one or more of these technologies in future aircraft and spacecraft could result in signifigant savings in weight, maintenance and overall cost.

  14. Common malignant brain tumors: can 18F-FDG PET/CT aid in differentiation?

    PubMed

    Purandare, Nilendu C; Puranik, Ameya; Shah, Sneha; Agrawal, Archi; Gupta, Tejpal; Moiyadi, Aliasgar; Shetty, Prakash; Shridhar, Epari; Jalali, Rakesh; Rangarajan, Venkatesh

    2017-09-15

    The objectives of this study were to evalute the metabolic characteristics of common malignant space-occupying lesions (SOL) of the brain and to determine the utility of fluorine-18-fluorodeoxyglucose (F-FDG) PET/CT in differentiating between the common types of malignant brain SOL. All patients with brain SOL who were referred for an F-FDG PET/CT scan by a multidisciplinary team were included in this retrospective study. The metabolic characteristics of the brain lesions in the form of maximum standardized uptake value (SUVmax) along with tumor-to-background activity ratios were determined and differences were compared using nonparametric statistical tests. Histopathological confirmation was used as the gold standard in all patients. Receiver operating characteristic curve analysis was used to find the optimal SUVmax cutoff to differentiate the tumor types. Glioblastoma multiforme (GBM; n=30), lymphoma (n=25), and metastases (n=46) accounted for most malignant tumors (95.2%). Lymphomas showed a significantly high metabolic uptake (median SUVmax=20.3, range: 8.1-46.3) compared with GBM ( median SUVmax=10.3, range: 2.6-21.7) and metastases (median SUVmax=11.5, range: 2.9-19.6) (P=0.00). The tumor-to-background activity ratios for lymphomas were also significantly higher. There was an overlap in the metabolic uptake of GBM and metastases, with no significant difference between their SUVmax values (P=0.245). A SUVmax more than 15.5 showed an 84% sensitivity and an 80% specificity to diagnose lymphomas (area under the curve=0.876, P=0.00). Four patients with brain lymphoma had extracranial disease on F-FDG PET. Lung cancer was the most common primary malignancy in patients with brain metastases. Central nervous system lymphomas can be differentiated from GBM and metastases by their higher metabolic activity. In addition, F-FDG PET/CT can potentially impact therapeutic decisions by detecting primary malignancy in patients with metastatic brain lesions and extracranial

  15. Bitemporal hypometabolism in Creutzfeldt-Jakob Disease measured by positron emission tomography with (F-18)2-fluorodeoxyglucose

    SciTech Connect

    Friedland, R.P.; Budinger, T.F.; Prusiner, S.B.; Jagust, W.J.

    1984-01-01

    It is well established that Creutzfeldt-Jakob Disease (CJD) is caused by a slow infectious agent similar to the scrapie prion. However, the pathogenesis of this infection is poorly understood. Positron emission tomography (PET) was performed on a 54 year old male subject with autopsy confirmed CJD using (F-18)2-fluorodeoxyglucose (FDG) and the Donner 280-crystal tomograph. An x-ray computed tomographic study of the brain performed 4 days prior to PET was normal. In the PET study the frontal to temporal cortex difference of activity densities was 30% on the left and 12% on the right, reflecting temporal hypometabolism. The left-right temporal cortex difference of activity density was 25%, documenting marked hemispheric asymmetry. These findings are similar to those previously obtained in PET-FDG studies of patients with clinically defined Alzheimer's Disease (AD) and are distinctly different from PET-FDG finding in patients with other dementing illnesses or in healthy aged subjects. Recent work has demonstrated extensive biological similarities between CJD, scrapie and AD. The similarities in the regional metabolic alterations between CJD and AD provide additional evidence for the hypothesis that AD is caused by a slow infectious (prion-like) pathogen.

  16. FDG-PET imaging in mild traumatic brain injury: a critical review

    PubMed Central

    Byrnes, Kimberly R.; Wilson, Colin M.; Brabazon, Fiona; von Leden, Ramona; Jurgens, Jennifer S.; Oakes, Terrence R.; Selwyn, Reed G.

    2013-01-01

    Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs (mTBI) and patients not seeking medical attention is unknown. Currently, classification of mTBI or concussion is a clinical assessment since diagnostic imaging is typically inconclusive due to subtle, obscure, or absent changes in anatomical or physiological parameters measured using standard magnetic resonance (MR) or computed tomography (CT) imaging protocols. Molecular imaging techniques that examine functional processes within the brain, such as measurement of glucose uptake and metabolism using [18F]fluorodeoxyglucose and positron emission tomography (FDG-PET), have the ability to detect changes after mTBI. Recent technological improvements in the resolution of PET systems, the integration of PET with magnetic resonance imaging (MRI), and the availability of normal healthy human databases and commercial image analysis software contribute to the growing use of molecular imaging in basic science research and advances in clinical imaging. This review will discuss the technological considerations and limitations of FDG-PET, including differentiation between glucose uptake and glucose metabolism and the significance of these measurements. In addition, the current state of FDG-PET imaging in assessing mTBI in clinical and preclinical research will be considered. Finally, this review will provide insight into potential critical data elements and recommended standardization to improve the application of FDG-PET to mTBI research and clinical practice. PMID:24409143

  17. FDG-PET imaging in mild traumatic brain injury: a critical review.

    PubMed

    Byrnes, Kimberly R; Wilson, Colin M; Brabazon, Fiona; von Leden, Ramona; Jurgens, Jennifer S; Oakes, Terrence R; Selwyn, Reed G

    2014-01-09

    Traumatic brain injury (TBI) affects an estimated 1.7 million people in the United States and is a contributing factor to one third of all injury related deaths annually. According to the CDC, approximately 75% of all reported TBIs are concussions or considered mild in form, although the number of unreported mild TBIs (mTBI) and patients not seeking medical attention is unknown. Currently, classification of mTBI or concussion is a clinical assessment since diagnostic imaging is typically inconclusive due to subtle, obscure, or absent changes in anatomical or physiological parameters measured using standard magnetic resonance (MR) or computed tomography (CT) imaging protocols. Molecular imaging techniques that examine functional processes within the brain, such as measurement of glucose uptake and metabolism using [(18)F]fluorodeoxyglucose and positron emission tomography (FDG-PET), have the ability to detect changes after mTBI. Recent technological improvements in the resolution of PET systems, the integration of PET with magnetic resonance imaging (MRI), and the availability of normal healthy human databases and commercial image analysis software contribute to the growing use of molecular imaging in basic science research and advances in clinical imaging. This review will discuss the technological considerations and limitations of FDG-PET, including differentiation between glucose uptake and glucose metabolism and the significance of these measurements. In addition, the current state of FDG-PET imaging in assessing mTBI in clinical and preclinical research will be considered. Finally, this review will provide insight into potential critical data elements and recommended standardization to improve the application of FDG-PET to mTBI research and clinical practice.

  18. [(18)F]FDG-PET Combined with MRI Elucidates the Pathophysiology of Traumatic Brain Injury in Rats.

    PubMed

    Brabazon, Fiona; Wilson, Colin M; Shukla, Dinesh K; Mathur, Sanjeev; Jaiswal, Shalini; Bermudez, Sara; Byrnes, Kimberly R; Selwyn, Reed

    2017-03-01

    Non-invasive measurements of brain metabolism using (18)F-fluorodeoxyglucose (FDG) with positron emission tomography (PET) may provide important information about injury severity following traumatic brain injury (TBI). There is growing interest in the potential of combining functional PET imaging with anatomical and functional magnetic resonance imaging (MRI). This study aimed to investigate the effectiveness of combining clinically available FDG-PET with T2 and diffusion MR imaging, with a particular focus on inflammation and the influence of glial alterations after injury. Adult male Sprague Dawley rats underwent a moderate controlled cortical impact (CCI) injury followed by FDG-PET, MRI, and histological evaluation. FDG uptake showed significant alterations in the corpus callosum, hippocampus, and amygdala after TBI, demonstrating that a relatively "focal" CCI injury can result in global alterations. Analysis of MRI T2 intensity and apparent diffusion coefficient (ADC) also showed significant alterations in these regions to include cytotoxic and vasogenic edema. Histology showed increased glial activation in the corpus callosum and hippocampus that was associated with increased FDG uptake at sub-acute time-points. Glial activation was not detected in the amygdala but neuronal damage was evident, as the amygdala was the only region to show a reduction in both FDG uptake and ADC at sub-acute time-points. Overall, FDG-PET detected glial activation but was confounded by the presence of cell damage, whereas MRI consistently detected cell damage but was confounded by glial activation. These results demonstrate that FDG-PET and MRI can be used together to improve our understanding of the complex alterations in the brain after TBI.

  19. Brain FDG-PET metabolic abnormalities in Macrophagic Myofasciitis: Are They Stable?

    PubMed

    Blanc-Durand, Paul; Van Der Gucht, Axel; Aoun Sebaiti, Mehdi; Abulizi, Mukedaisi; Authier, Francois-Jérome; Itti, Emmanuel

    2017-03-16

    We address this letter in addition to our recent published study (1). The aim is to add some insight to the evolution of the brain abnormalities that are observed with macrophagic myofasciitis (MMF). MMF is a chronic disease whom evolution is slow and symptoms first may occurs from months to year after a vaccination containing aluminium hydroxid adjuvants (2). Nevertheless, its evolution is not fully understood or known. MMF associated cognitive dysfunction (MACD) is based on a tripod combining dysexecutive syndrom, visual memory impairment and interhemispheric disconnection. One pilot study suggest that MACD appears clinically stable over time (3). One recent study evaluating a support vector machine classifier also suggest that the abnormalities observed with 18-fluorodeoxyglose positron emission tomography ((18)F-FDG PET) may be sensitive and could be used to monitor patients. The study population comes from cohort followed in our Reference Center for Rare Neuromuscular Diseases and data were collected retrospectively. Among those patients, 15 had two consecutives (18)F-FDG PET brain acquisitions (median age 42.1 [range 20.9 to 63.5]) following the same brain protocol acquisition as previously described (1). Median time duration between the two examinations was 2.3 years (range 0.5 to 4]. Using analysis of covariance and negative or positive contrast in SPM12, a t-test mask was generated from the comparison between the two means of the first cerebral (18)F-FDG PET images and between the mean of the second acquisition. Results of the comparison were collected at a P-value < 0.005 at the voxel level, for clusters k ≥ 200 voxels (corrected for cluster volume) with adjustment for age. Brain abnormalities maps didn't show any statistical difference between the two examinations confirming the idea that MMF is a slowly or not progressive disease and it is in concordance with the fact that neurological symptoms even if fluctuate do not worsen over time (nor ameliorate).

  20. F-18-fluorodeoxyglucose positron emission tomography-guided sampling of mediastinal lymph nodes in the diagnosis of cardiac sarcoidosis.

    PubMed

    Simonen, Piia; Lehtonen, Jukka; Kandolin, Riina; Schildt, Jukka; Marjasuo, Suvi; Miettinen, Heikki; Airaksinen, Juhani; Vihinen, Tapani; Tuohinen, Suvi; Haataja, Petri; Kupari, Markku

    2015-11-15

    Histologic proof of granulomatous inflammation is prerequisite for the diagnosis of cardiac sarcoidosis (CS). Because of the limited sensitivity of endomyocardial biopsy (EMB), confirmation of sarcoidosis often has to be acquired from extracardiac biopsies. We set out to review our experience of F-18-fluorodeoxyglucose positron emission tomography (F-18-FDG PET) in guiding extracardiac tissue biopsies in suspected CS. We included in this work 68 consecutive patients with proved CS who had undergone cardiac F-18-FDG PET with (n = 57) or without whole-body imaging as part of initial diagnostic evaluation. Their hospital charts, imaging studies, and diagnostic biopsies were reviewed in retrospect. Whole-body PET images showed extracardiac foci of abnormally high F-18-FDG uptake in 39 of 57 patients, of whom 38 had involvement of mediastinal lymph nodes (MLN). Parallel F-18-FDG uptake was found in other lymph nodes (n = 10), lungs (n = 9), liver (n = 3), spleen (n = 2), and thyroid gland (n = 1). Adding the mediastinal findings at cardiac PET without whole-body imaging, abnormal F-18-FDG uptake in MLN was found in totally 43 of the 68 patients with CS (63%). Histology of systemic sarcoidosis was known at presentation of cardiac symptoms in 8 patients. Of the 60 patients with missing histology, 24 patients underwent mediastinoscopy for sampling of PET-positive MLN, most often (n = 20) after nondiagnostic EMB; microscopy revealed diagnostic noncaseating granulomatous inflammation in 24 of the 24 cases (sensitivity 100%). In the remaining 36 patients, sarcoidosis histology was confirmed by EMB (n = 30), by biopsy of lungs (n = 2) or peripheral lymph nodes (n = 2), or at autopsy (n = 1) or post-transplantation (n = 1). In conclusion, MLN accumulate F-18-FDG at PET in most patients with CS and provide a highly productive source for diagnostic biopsies either primarily or subsequent to nondiagnostic EMB.

  1. Quantitative characterization of brain β-amyloid using a joint PiB/FDG PET image histogram

    NASA Astrophysics Data System (ADS)

    Camp, Jon J.; Hanson, Dennis P.; Holmes, David R.; Kemp, Bradley J.; Senjem, Matthew L.; Murray, Melissa E.; Dickson, Dennis W.; Parisi, Joseph; Petersen, Ronald C.; Lowe, Val J.; Robb, Richard A.

    2014-03-01

    A complex analysis performed by spatial registration of PiB and MRI patient images in order to localize the PiB signal to specific cortical brain regions has been proven effective in identifying imaging characteristics associated with underlying Alzheimer's Disease (AD) and Lewy Body Disease (LBD) pathology. This paper presents an original method of image analysis and stratification of amyloid-related brain disease based on the global spatial correlation of PiB PET images with 18F-FDG PET images (without MR images) to categorize the PiB signal arising from the cortex. Rigid registration of PiB and 18F-FDG images is relatively straightforward, and in registration the 18F-FDG signal serves to identify the cortical region in which the PiB signal is relevant. Cortical grey matter demonstrates the highest levels of amyloid accumulation and therefore the greatest PiB signal related to amyloid pathology. The highest intensity voxels in the 18F-FDG image are attributed to the cortical grey matter. The correlation of the highest intensity PiB voxels with the highest 18F-FDG values indicates the presence of β-amyloid protein in the cortex in disease states, while correlation of the highest intensity PiB voxels with mid-range 18F-FDG values indicates only nonspecific binding in the white matter.

  2. Added value of using a cocktail of F-18 sodium fluoride and F-18 fluorodeoxyglucose in positron emission tomography/computed tomography for detecting bony metastasis: a case report.

    PubMed

    Chan, Hung-Pin; Hu, Chin; Yu, Chang-Ching; Huang, Tsung-Chi; Peng, Nan-Jing

    2015-04-01

    Current nuclear imaging of the skeletal system is achieved using technetium-99m (Tc-99m) methylene diphosphonate (MDP), F-18 sodium fluoride (NaF), or F-18 fluorodeoxyglucose (FDG). However, comparisons of these are rare in the literature. We present a case of a 51-year-old female with suspicious lung cancer due to main symptoms of dyspnea, nonproductive cough, and pleural pain. Tc-99m MDP whole-body bone scan (WBBS) showed multiple bony metastases. Five days later, positron emission tomography/computed tomography (PET/CT) images using both F-18 NaF and a cocktail of F-18 NaF and F-18 FDG were obtained on the same day 2 hours apart. The former showed more foci and precisely showed bony lesions compared to those obtained using Tc-99m MDP WBBS. However, the latter demonstrated more extensive radiotracer uptake, especially in osteolytic lesions, and additional soft tissue lesions in the left axillary and surpraclavicular nodes as well as the left pleura. Surgical biopsy was performed in left axillary nodes, and the metastatic carcinoma was found to be of breast origin. This case demonstrated that a cocktail of F-18 NaF and F-18 FDG could be useful in PET/CT for not only detecting more skeletal lesions but also guiding biopsies accurately to the affected tissue.

  3. Striatofrontal Deafferentiation in MSA-P: Evaluation with [18F]FDG Brain PET

    PubMed Central

    Kim, Hae Won; Oh, Minyoung; Oh, Jungsu S.; Oh, Seung Jun; Lee, Sang Ju; Chung, Sun Ju; Kim, Jae Seung

    2017-01-01

    Background Although cognitive impairment is not a consistent feature of multiple system atrophy (MSA), increasing evidence suggests that cognitive impairment is common in MSA with predominant parkinsonism (MSA-P). It is assumed that the cognitive impairment in MSA-P is caused by the striatal dysfunction and disruption of striatofrontal connections. The aim of this study was to evaluate the relationship between regional glucose metabolism in the frontal cortex and striatum in patients with MSA-P using [18F]FDG brain PET. Methods Twenty-nine patients with MSA-P and 28 healthy controls underwent [18F]FDG brain PET scan. The [18F]FDG brain PET images were semiquantitatively analyzed on the basis of a template in standard space. The regional glucose metabolism of the cerebral cortex and striatum were compared between MSA-P and healthy control groups. The correlations between age, symptom duration, H&Y stage, UPDRS III score, MMSE score, and glucose metabolism in the cerebellum and striatum to glucose metabolism in the frontal cortex were evaluated by multivariate analysis. Results The glucose metabolism in the frontal cortex and striatum in MSA-P patients were significantly lower than those in healthy controls. Glucose metabolism in the striatum was the most powerful determinant of glucose metabolism in the frontal cortex in MSA-P. Only age and glucose metabolism in the cerebellum were independent variables affecting the glucose metabolism in the frontal cortex in healthy controls. Conclusion The decrease in frontal glucose metabolism in MSA-P is related to the decrease in striatal glucose metabolism. This result provided evidence of striatofrontal deafferentiation in patients with MSA-P. PMID:28085923

  4. Striatofrontal Deafferentiation in MSA-P: Evaluation with [18F]FDG Brain PET.

    PubMed

    Kim, Hae Won; Oh, Minyoung; Oh, Jungsu S; Oh, Seung Jun; Lee, Sang Ju; Chung, Sun Ju; Kim, Jae Seung

    2017-01-01

    Although cognitive impairment is not a consistent feature of multiple system atrophy (MSA), increasing evidence suggests that cognitive impairment is common in MSA with predominant parkinsonism (MSA-P). It is assumed that the cognitive impairment in MSA-P is caused by the striatal dysfunction and disruption of striatofrontal connections. The aim of this study was to evaluate the relationship between regional glucose metabolism in the frontal cortex and striatum in patients with MSA-P using [18F]FDG brain PET. Twenty-nine patients with MSA-P and 28 healthy controls underwent [18F]FDG brain PET scan. The [18F]FDG brain PET images were semiquantitatively analyzed on the basis of a template in standard space. The regional glucose metabolism of the cerebral cortex and striatum were compared between MSA-P and healthy control groups. The correlations between age, symptom duration, H&Y stage, UPDRS III score, MMSE score, and glucose metabolism in the cerebellum and striatum to glucose metabolism in the frontal cortex were evaluated by multivariate analysis. The glucose metabolism in the frontal cortex and striatum in MSA-P patients were significantly lower than those in healthy controls. Glucose metabolism in the striatum was the most powerful determinant of glucose metabolism in the frontal cortex in MSA-P. Only age and glucose metabolism in the cerebellum were independent variables affecting the glucose metabolism in the frontal cortex in healthy controls. The decrease in frontal glucose metabolism in MSA-P is related to the decrease in striatal glucose metabolism. This result provided evidence of striatofrontal deafferentiation in patients with MSA-P.

  5. Brain (18)F-FDG PET Metabolic Abnormalities in Patients with Long-Lasting Macrophagic Myofascitis.

    PubMed

    Van Der Gucht, Axel; Aoun Sebaiti, Mehdi; Guedj, Eric; Aouizerate, Jessie; Yara, Sabrina; Gherardi, Romain K; Evangelista, Eva; Chalaye, Julia; Cottereau, Anne-Ségolène; Verger, Antoine; Bachoud-Levi, Anne-Catherine; Abulizi, Mukedaisi; Itti, Emmanuel; Authier, François-Jérôme

    2017-03-01

    The aim of this study was to characterize brain metabolic abnormalities in patients with macrophagic myofascitis (MMF) and the relationship with cognitive dysfunction through the use of PET with (18)F-FDG. Methods:(18)F-FDG PET brain imaging and a comprehensive battery of neuropsychological tests were performed in 100 consecutive MMF patients (age [mean ± SD], 45.9 ± 12 y; 74% women). Images were analyzed with statistical parametric mapping (SPM12). Through the use of analysis of covariance, all (18)F-FDG PET brain images of MMF patients were compared with those of a reference population of 44 healthy subjects similar in age (45.4 ± 16 y; P = 0.87) and sex (73% women; P = 0.88). The neuropsychological assessment identified 4 categories of patients: those with no significant cognitive impairment (n = 42), those with frontal subcortical (FSC) dysfunction (n = 29), those with Papez circuit dysfunction (n = 22), and those with callosal disconnection (n = 7). Results: In comparison with healthy subjects, the whole population of patients with MMF exhibited a spatial pattern of cerebral glucose hypometabolism (P < 0.001) involving the occipital lobes, temporal lobes, limbic system, cerebellum, and frontoparietal cortices, as shown by analysis of covariance. The subgroup of patients with FSC dysfunction exhibited a larger extent of involved areas (35,223 voxels vs. 13,680 voxels in the subgroup with Papez circuit dysfunction and 5,453 voxels in patients without cognitive impairment). Nonsignificant results were obtained for the last subgroup because of its small population size. Conclusion: Our study identified a peculiar spatial pattern of cerebral glucose hypometabolism that was most marked in MMF patients with FSC dysfunction. Further studies are needed to determine whether this pattern could represent a diagnostic biomarker of MMF in patients with chronic fatigue syndrome and cognitive dysfunction.

  6. Impact of benzodiazepines on brain FDG-PET quantification after single-dose and chronic administration in rats.

    PubMed

    Silva-Rodríguez, Jesús; García-Varela, Lara; López-Arias, Esteban; Domínguez-Prado, Inés; Cortés, Julia; Pardo-Montero, Juan; Fernández-Ferreiro, Anxo; Ruibal, Álvaro; Sobrino, Tomás; Aguiar, Pablo

    2016-12-01

    Current guidelines for brain PET imaging advice against the injection of diazepam prior to brain FDG-PET examination in order to avoid possible interactions of benzodiazepines with the radiotracer uptake. Nevertheless, many patients undergoing PET studies are likely to be under chronic treatment with benzodiazepines, for example due to the use of different medications such as sleeping pills. Animal studies may provide an extensive and accurate estimation of the effect of benzodiazepines on brain metabolism in a well-defined and controlled framework. This study aims at evaluating the impact of benzodiazepines on brain FDG uptake after single-dose administration and chronic treatment in rats. Twelve Sprague-Dawley healthy rats were randomly divided into two groups, one treated with diazepam and the other used as control group. Both groups underwent PET/CT examinations after single-dose and chronic administration of diazepam (treated) or saline (controls) during twenty-eight days. Different atlas-based quantification methods were used to explore differences on the total uptake and uptake patterns of FDG between both groups. Our analysis revealed a significant reduction of global FDG uptake after acute (-16.2%) and chronic (-23.2%) administration of diazepam. Moreover, a strong trend pointing to differences between acute and chronic administrations (p<0.08) was also observed. Uptake levels returned to normal after interrupting the administration of diazepam. On the other hand, patterns of FDG uptake were not affected by the administration of diazepam. The administration of diazepam causes a progressive decrease of the FDG global uptake in the rat brain, but it does not change local patterns within the brain. Under these conditions, visual assessment and quantification methods based on regional differences such as asymmetry indexes or SPM statistical analysis would still be valid when administrating this medication. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Short-Term Practice Effects and Brain Hypometabolism: Preliminary Data from an FDG PET Study

    PubMed Central

    Duff, Kevin; Horn, Kevin P.; Foster, Norman L.; Hoffman, John M.

    2015-01-01

    Practice effects are improvements in cognitive test scores due to repeated exposure to the same tests. Typically viewed as error, short-term practice effects have been shown to provide valuable clinical information about diagnosis, prognosis, and treatment outcomes in older patients with mild cognitive impairments. This study examined short-term practice effects across one week and brain hypometabolism on fluoro-2-deoxyglucose (FDG) positron emission tomography (PET) in 25 older adults (15 intact, 10 Mild Cognitive Impairment). Averaged cerebral brain metabolism on FDG PET was correlated with multiple cognitive scores at baseline in those with Mild Cognitive Impairment, and short-term practice effects accounted for additional variance in these same subjects. The relationship between brain metabolism and cognition (either at baseline or practice effects) was minimal in the intact individuals. Although needing replication in larger samples, short-term practice effects on tests of executive functioning and memory may provide valuable information about biomarkers of Alzheimer’s disease. PMID:25908614

  8. [F-18]-fluorodeoxyglucose positron emission tomography for targeting radiation dose escalation for patients with glioblastoma multiforme: Clinical outcomes and patterns of failure

    SciTech Connect

    Douglas, James G. . E-mail: drjay@u.washington.edu; Stelzer, Keith J.; Mankoff, David A.; Tralins, Kevin S.; Krohn, Kenneth A.; Muzi, Mark; Silbergeld, Daniel L.; Rostomily, Robert C.; Scharnhorst, Jeffrey B.S.; Spence, Alexander M.

    2006-03-01

    Purpose: [F-18]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging for brain tumors has been shown to identify areas of active disease. Radiation dose escalation in the treatment of glioblastoma multiforme may lead to improved disease control. Based on these premises, we initiated a prospective study of FDG-PET for the treatment planning of radiation dose escalation for the treatment of glioblastoma multiforme. Methods and Materials: Forty patients were enrolled. Patients were treated with standard conformal fractionated radiotherapy with volumes defined by MRI imaging. When patients reached a dose of 45-50.4 Gy, they underwent FDG-PET imaging for boost target delineation, for an additional 20 Gy (2 Gy per fraction) to a total dose of 79.4 Gy (n = 30). Results: The estimated 1-year and 2-year overall survival (OS) for the entire group was 70% and 17%, respectively, with a median overall survival of 70 weeks. The estimated 1-year and 2-year progression-free survival (PFS) was 18% and 3%, respectively, with a median of 24 weeks. No significant improvements in OS or PFS were observed for the study group in comparison to institutional historical controls. Conclusions: Radiation dose escalation to 79.4 Gy based on FDG-PET imaging demonstrated no improvement in OS or PFS. This study establishes the feasibility of integrating PET metabolic imaging into radiotherapy treatment planning.

  9. Utility of F-18 fluorodeoxyglucose posıtron emıssıon tomography/computed ın carcınoma of unknown primary.

    PubMed

    Elboga, Umut; Kervancioğlu, Selim; Sahin, Ertan; Basibuyuk, Mustafa; Celen, Y Zeki; Aktolun, Cumali

    2014-01-01

    Carcinoma of unknown primary (CUP) is a heterogeneous group of tumors with various clinical features causing diagnostic and therapeutic challenges. The aim of this study was to evaluate the ability of F-18 FDG PET/CT for localizing the primary tumor, disclosing additional metastases, and changing the treatment in patients with CUP. One hundred and twelve metastatic patients (female = 40, male = 72, median age = 60.5 years) in whom conventional diagnostic work-up failed to disclose the primary tumor were included in the study. F-18 FDG PET/CT imaging was performed in a standard protocol (patient supine, arms on patient's side, vertex to thigh, 369.3 MBq (296-444 MBq) F-18 FDG, a 60-minute uptake period, 6-7 bed position). Histopathology was taken as the only reference standard. F-18 FDG PET/CT correctly detected primary tumor in 37 of 112 (33.03%) patients. The most common site of primary tumor detected by F-18 FDG PET/CT was lung (n = 18), which was followed by nasopharynx (n = 7), pancreas (n = 5), tonsil (n = 2), breast (n = 2), thyroid (n = 1), uterus (n = 1) and colon/rectum (n = 1). F-18 FDG PET/CT imaging disclosed additional previously undetected metastases in 32 (28.5%) and changed the treatment in 33 (29.4%) of 112 patients. There were false positive F-18 FDG PET/CT results in 21 (18.5%) patients. F-18 FDG PET/CT is able to disclose the primary tumor, disclose new metatases and change the treatment in about one third of patients with CUP.

  10. Potential of F-18 PET/CT in the Detection of Leptomeningeal Metastasis.

    PubMed

    Short, Ryan G; Bal, Susan; German, John P; Poelstra, Raymond J; Kardan, Arash

    2014-12-01

    Leptomeningeal metastasis (LM) is a rare but increasingly common condition in which malignant cells migrate to the meninges. The gold standard for diagnosing LM is detection of cancer cells in the cerebrospinal fluid (CSF). Contrast enhanced-magnetic resonance imaging (CE-MRI) is also used to diagnose LM. We describe a case of LM in which CE-MRI of the neuroaxis was initially negative for meningeal enhancement but F-18 fluorodeoxyglucose positron-emission tomography/computed tomography (F-18 FDG PET/CT) revealed hypermetabolism within the lumbar spinal canal. Positive F-18 FDG PET findings have rarely been reported in LM and, to our knowledge, have never been reported in the context of initially negative CE-MRI scanning of the neuroaxis. F-18 FDG PET/CT may represent an alternative modality for diagnosing LM in patients who are unable to undergo CE-MRI and/or LP or in patients for whom initial CE-MRI and/or LP are negative for LM.

  11. F-18 Fluoride Positron Emission Tomography-Computed Tomography for Detecting Atherosclerotic Plaques.

    PubMed

    Kang, Won Jun

    2015-01-01

    A large number of major cardiovascular events occur in patients due to minimal or some lumen narrowing of the coronary artery. Recent biological studies have shown that the biological composition or vulnerability of the plaque is more critical for plaque rupture compared to the degree of stenosis. To overcome the limitations of anatomical images, molecular imaging techniques have been suggested as promising imaging tools in various fields. F-18 fluorodeoxyglucose (FDG), which is widely used in the field of oncology, is an example of molecular probes used in atherosclerotic plaque evaluation. FDG is a marker of plaque macrophage glucose utilization and inflammation, which is a prominent characteristic of vulnerable plaque. Recently, F-18 fluoride has been used to visualize vulnerable plaque in clinical studies. F-18 fluoride accumulates in regions of active microcalcification, which is normally observed during the early stages of plaque formation. More studies are warranted on the accumulation of F-18 fluoride and plaque formation/vulnerability; however, due to high specific accumulation, low background activity, and easy accessibility, F-18 fluoride is emerging as a promising non-invasive imaging probe to detect vulnerable plaque.

  12. Preparation and biodistribution of F-18 labeled FQNPe

    SciTech Connect

    Luo, H.; Beets, K.; McPherson, D.W.; Knapp, F.F. Jr.

    1996-05-01

    1-Azabicyclo[2.2.2]oct-3-yl {alpha}-(1-fluoropentan-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate (FQNPe) is an attractive candidate for the in vivo imaging of muscarinic receptors (mAChR) by PET. Initial studies with this new agent demonstrated a high binding affinity and ability to bind to regions of the brain containing mAChR. Fluorine-18 (F-18) labeling of racemic 1 was performed using X = tosyl, triflate, or mesylate group and a decay corrected radiolabeling yields of 2.6, 33, 75%, respectively, were obtained. F-18-3 in 11 % yield (decay corrected to beginning of synthesis). Initial biodistribution studies in rats (n=5) showed F-18-3 had high cerebral uptake of 0.72 ({plus_minus}0.26) and 0.83 ({plus_minus} 0.12) injected dose/gram at 15 and 30 minutes, respectively. The F-18 labeling and biodistribution study of the (-)-quinuclidinyl (-)-acetate and (-)-quinuclidinyl (+)-acetate isomers of FQNPe are currently being pursued.

  13. 18F-FDG PET/CT Brain Imaging on a Patient With Paraneoplastic Opsoclonus-Myoclonus Syndrome Arising out of a Mature Cystic Teratoma.

    PubMed

    Na, Chang Ju; Jeong, Young Jin; Lim, Seok Tae; Sohn, Myung-Hee; Jeong, Hwan-Jeong

    2016-02-01

    Opsoclonus-myoclonus syndrome (OMS) is an involuntary multidirectional eye movement accompanied by myoclonic jerks and a subtype of paraneoplastic neurological syndromes. Clinical features of OMS include opsoclonus with myoclonic jerks and cerebellar ataxia. Although there have been a few studies on brain FDG PET in paraneoplastic neurological syndrome associated with some kinds of malignancies such as lung and gastric cancer, brain FDG PET of patients with OMS caused by a mature cystic teratoma has not been reported. Here, we described a case of brain FDG PET/CT studies performed in a woman with OMS provoked from a mature cystic teratoma.

  14. Pancreatic tuberculosis: Evaluation of therapeutic response using F-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography.

    PubMed

    Santhosh, Sampath; Bhattacharya, Anish; Rana, Surinder Singh; Bhasin, Deepak Kumar; Srinivasan, Radhika; Mittal, Bhagwant Rai

    2014-10-01

    F-18 fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (FDG PET/CT) is a functional imaging technique that monitors glucose metabolism in tissues. Pulmonary tuberculosis (TB) has been reported to show intense uptake of FDG, with a decrease in metabolism of the tuberculous lesions after successful anti-tubercular treatment (ATT). The authors present a patient with pancreatic TB and demonstrate the usefulness of FDG PET/CT in monitoring the response to ATT.

  15. Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging.

    PubMed

    Teune, Laura K; Renken, Remco J; de Jong, Bauke M; Willemsen, Antoon T; van Osch, Matthias J; Roerdink, Jos B T M; Dierckx, Rudi A; Leenders, Klaus L

    2014-01-01

    Under normal conditions, the spatial distribution of resting cerebral blood flow and cerebral metabolic rate of glucose are closely related. A relatively new magnetic resonance (MR) technique, pseudo-continuous arterial spin labeling (PCASL), can be used to measure regional brain perfusion. We identified a Parkinson's disease (PD)-related perfusion and metabolic covariance pattern in the same patients using PCASL and FDG-PET imaging and assessed (dis)similarities in the disease-related pattern between perfusion and metabolism in PD patients. Nineteen PD patients and seventeen healthy controls underwent [(18)F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging. Of 14 PD patients and all healthy controls PCASL-MRI could be obtained. Data were analyzed using scaled subprofile model/principal component analysis (SSM/PCA). Unique Parkinson's disease-related perfusion and metabolic covariance patterns were identified using PCASL and FDG-PET in the same patients. The PD-related metabolic covariance brain pattern is in high accordance with previously reports. Also our disease-related perfusion pattern is comparable to the earlier described perfusion pattern. The most marked difference between our perfusion and metabolic patterns is the larger perfusion decrease in cortical regions including the insula. We identified PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in the same patients which were comparable with results of existing research. In this respect, PCASL appears to be a promising addition in the early diagnosis of individual parkinsonian patients.

  16. Parkinson's disease-related perfusion and glucose metabolic brain patterns identified with PCASL-MRI and FDG-PET imaging

    PubMed Central

    Teune, Laura K.; Renken, Remco J.; de Jong, Bauke M.; Willemsen, Antoon T.; van Osch, Matthias J.; Roerdink, Jos B.T.M.; Dierckx, Rudi A.; Leenders, Klaus L.

    2014-01-01

    Introduction Under normal conditions, the spatial distribution of resting cerebral blood flow and cerebral metabolic rate of glucose are closely related. A relatively new magnetic resonance (MR) technique, pseudo-continuous arterial spin labeling (PCASL), can be used to measure regional brain perfusion. We identified a Parkinson's disease (PD)-related perfusion and metabolic covariance pattern in the same patients using PCASL and FDG-PET imaging and assessed (dis)similarities in the disease-related pattern between perfusion and metabolism in PD patients. Methods Nineteen PD patients and seventeen healthy controls underwent [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET) imaging. Of 14 PD patients and all healthy controls PCASL-MRI could be obtained. Data were analyzed using scaled subprofile model/principal component analysis (SSM/PCA). Results Unique Parkinson's disease-related perfusion and metabolic covariance patterns were identified using PCASL and FDG-PET in the same patients. The PD-related metabolic covariance brain pattern is in high accordance with previously reports. Also our disease-related perfusion pattern is comparable to the earlier described perfusion pattern. The most marked difference between our perfusion and metabolic patterns is the larger perfusion decrease in cortical regions including the insula. Conclusion We identified PD-related perfusion and metabolic brain patterns using PCASL and FDG-PET in the same patients which were comparable with results of existing research. In this respect, PCASL appears to be a promising addition in the early diagnosis of individual parkinsonian patients. PMID:25068113

  17. [(18)F]FDG is not transported by P-glycoprotein and breast cancer resistance protein at the rodent blood-brain barrier.

    PubMed

    Wanek, Thomas; Traxl, Alexander; Bankstahl, Jens P; Bankstahl, Marion; Sauberer, Michael; Langer, Oliver; Kuntner, Claudia

    2015-07-01

    Transport of 2-[(18)F]fluoro-2-deoxy-d-glucose ([(18)F]FDG) by the multidrug efflux transporters P-glycoprotein (ABCB1) and breast cancer resistance protein (ABCG2) at the blood-brain barrier (BBB) may confound the interpretation of [(18)F]FDG brain PET data. Aim of this study was to assess the influence of ABCB1 and ABCG2 at the BBB on brain distribution of [(18)F]FDG in vivo by performing [(18)F]FDG PET scans in wild-type and transporter knockout mice and by evaluating changes in [(18)F]FDG brain distribution after transporter inhibition. Dynamic small-animal PET experiments (60min) were performed with [(18)F]FDG in groups of wild-type and transporter knockout mice (Abcb1a/b((-/-)), Abcg2((-/-)) and Abcb1a/b((-/-))Abcg2((-/-))) and in wild-type rats without and with i.v. pretreatment with the known ABCB1 inhibitor tariquidar (15mg/kg, given at 2h before PET). Blood was sampled from animals from the orbital sinus vein at the end of the PET scans and measured in a gamma counter. Brain uptake of [(18)F]FDG was expressed as the brain-to-blood radioactivity concentration ratio in the last PET time frame (Kb,brain). Kb,brain values of [(18)F]FDG were not significantly different between different mouse types both without and with tariquidar pretreatment. The blood-to-brain transfer rate constant of [(18)F]FDG was significantly lower in tariquidar-treated as compared with vehicle-treated rats (0.350±0.025mL/min/g versus 0.416±0.024mL/min/g, p=0.026, paired t-test) but Kb,brain values were not significantly different between both rat groups. Our results show that [(18)F]FDG is not transported by Abcb1 at the mouse and rat BBB in vivo. In addition we found no evidence for Abcg2 transport of [(18)F]FDG at the mouse BBB. Our findings imply that functional activity of ABCB1 and ABCG2 at the BBB does not need to be taken into account when interpreting brain [(18)F]FDG PET data. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Brain 18F-FDG-PET characteristics in patients with paraneoplastic neurological syndrome and its correlation with clinical and MRI findings.

    PubMed

    Masangkay, Neil; Basu, Sandip; Moghbel, Mateen; Kwee, Thomas; Alavi, Abass

    2014-10-01

    This study aimed to examine the imaging characteristics and clinical and MRI correlates of brain F-fluorodeoxyglucose (F-FDG)-PET imaging in patients with paraneoplatic neurological syndrome. Data of patients diagnosed with paraneoplastic neurological syndrome were retrospectively reviewed using the electronic medical records of the patients, looking specifically at records of hospital stays, laboratory findings and imaging reports. Both brain MRI and F-FDG-PET imaging characteristics were analyzed and compared. A total of 19 patients (ages 26-78; 13 female and six male patients) with clinical diagnoses of PNS were analyzed in this study. Limbic encephalitis (paraneoplastic limbic encephalitis) was found in 10 patients, seven of whom had a diagnosis of cancer. Brain F-FDG-PET showed bilaterally increased mesial temporal F-FDG uptake in eight of 10 patients with limbic encephalitis; seven of these eight patients exhibited memory loss. There was also a notable reduction in general cortical F-FDG uptake (including in the primary visual cortex) in six of the 10 patients with limbic encephalitis; three of the six patients had their primary motor cortices spared, two of them being spared bilaterally. Five of the seven limbic encephalitis patients with diagnosed cancer and two of the three without it had the aforementioned cortical and temporal lobe findings. Of the eight patients with onconeuronal antibodies, seven had temporal lobe enhancement and a total of six had diffuse cortical dysfunction. One patient with paraneoplastic limbic encephalitis without antibodies had demonstrated severely increased F-FDG uptake in both occipital lobes extending to the temporal lobes. The other patient without antibodies had a normal PET scan. Only one patient among four with paraneoplastic cerebellar degeneration had demonstrated decreased cerebellar uptake on F-FDG-PET that correlated with atrophy of the cerebellar vermis on MRI. Three patients had a clinical diagnosis of sensory

  19. Evaluation of MLACF based calculated attenuation brain PET imaging for FDG patient studies

    NASA Astrophysics Data System (ADS)

    Bal, Harshali; Panin, Vladimir Y.; Platsch, Guenther; Defrise, Michel; Hayden, Charles; Hutton, Chloe; Serrano, Benjamin; Paulmier, Benoit; Casey, Michael E.

    2017-04-01

    Calculating attenuation correction for brain PET imaging rather than using CT presents opportunities for low radiation dose applications such as pediatric imaging and serial scans to monitor disease progression. Our goal is to evaluate the iterative time-of-flight based maximum-likelihood activity and attenuation correction factors estimation (MLACF) method for clinical FDG brain PET imaging. FDG PET/CT brain studies were performed in 57 patients using the Biograph mCT (Siemens) four-ring scanner. The time-of-flight PET sinograms were acquired using the standard clinical protocol consisting of a CT scan followed by 10 min of single-bed PET acquisition. Images were reconstructed using CT-based attenuation correction (CTAC) and used as a gold standard for comparison. Two methods were compared with respect to CTAC: a calculated brain attenuation correction (CBAC) and MLACF based PET reconstruction. Plane-by-plane scaling was performed for MLACF images in order to fix the variable axial scaling observed. The noise structure of the MLACF images was different compared to those obtained using CTAC and the reconstruction required a higher number of iterations to obtain comparable image quality. To analyze the pooled data, each dataset was registered to a standard template and standard regions of interest were extracted. An SUVr analysis of the brain regions of interest showed that CBAC and MLACF were each well correlated with CTAC SUVrs. A plane-by-plane error analysis indicated that there were local differences for both CBAC and MLACF images with respect to CTAC. Mean relative error in the standard regions of interest was less than 5% for both methods and the mean absolute relative errors for both methods were similar (3.4%  ±  3.1% for CBAC and 3.5%  ±  3.1% for MLACF). However, the MLACF method recovered activity adjoining the frontal sinus regions more accurately than CBAC method. The use of plane-by-plane scaling of MLACF images was found to be a

  20. Investigation of partial volume correction methods for brain FDG PET studies

    NASA Astrophysics Data System (ADS)

    Yang, J.; Huang, S. C.; Mega, M.; Lin, K. P.; Toga, A. W.; Small, G. W.; Phelps, M. E.

    1996-12-01

    The use of positron emission tomography (PET) in quantitative fluorodeoxyglucose (FDG) studies of aging and dementia has been limited by partial volume effects. A general method for correction of partial volume effects (PVE) in PET involves the following common procedures: segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and muscle (MS) components: MRI PET registration; and generation of simulated PET images. Afterward, two different approaches can be taken. The first approach derives first a pixel-by-pixel correction map as the ratio of the measured image to the simulated image [with realistic full-width at half-maximum (FWHM)]. The correction map was applied to the MRI segmentation image. Regions of interest (ROI's) can then be applied to give results free of partial volume effects. The second approach uses the ROI values of the simulated "pure" image (with negligible FWHM) and those of the simulated and the measured PET images to correct for the PVE effect. By varying the ratio of radiotracer concentrations for different tissue components, the in-plane FWHM's of a three-dimensional point spread function, and the ROI size, the authors evaluated the performance of these two approaches in terms of their accuracy and sensitivity to different simulation configurations. The results showed that both approaches are more robust than the approach developed by Muller-Gartner et al. (1992), and the second approach is more accurate and more robust than the first. In conclusion, the authors recommend that the second approach should be used on FDG PET images to correct for partial volume effects and to determine whether an apparent change in GM radiotracer concentration is truly due to metabolic changes.

  1. Investigation of partial volume correction methods for brain FDG PET studies

    SciTech Connect

    Yang, J.; Huang, S.C.; Mega, M.; Toga, A.W.; Small, G.W.; Phelps, M.E.; Lin, K.P.

    1996-12-01

    The use of positron emission tomography (PET) in quantitative fluorodeoxyglucose (FDG) studies of aging and dementia has been limited by partial volume effects. A general method for correction of partial volume effects (PVE) in PET involves the following common procedures; segmentation of MRI brain images into gray matter (GM), white matter (WM), cerebral spinal fluid (CSF), and muscle (MS) components; MRI PET registration; and generation of simulated PET images. Afterward, two different approaches can be taken. The first approach derives first a pixel-by-pixel correction map as the ratio of the measured image to the simulated image [with realistic full-width at half-maximum (FWHM)]. The correction map was applied to the MRI segmentation image. Regions of interest (ROI`s) can then be applied to give results free of partial volume effects. The second approach uses the ROI values of the simulated ``pure`` image (with negligible FWHM) and those of the simulated and the measured PET images to correct for the PVE effect. By varying the ratio of radiotracer concentrations for different tissue components, the in-plane FWHM`s of a three-dimensional point spread function, and the ROI size, the authors evaluated the performance of these two approaches in terms of their accuracy and sensitivity to different simulation configurations. The results showed that both approaches are more robust than the approach developed by Muller-Gartner et al., and the second approach is more accurate and more robust than the first. In conclusion, the authors recommend that the second approach should be used on FDG PET images to correct for partial volume effects and to determine whether an apparent change in GM radiotracer concentration is truly due to metabolic changes.

  2. Intracranial Leptomeningeal Carcinomatosis in Three Cases from Breast Cancer Demonstrated on F-18 Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography.

    PubMed

    Ortapamuk, Hulya; Demir, Mustafa Kemal

    2017-01-01

    Leptomeningeal carcinomatosis (LC) is an uncommon late manifestation of non-central nervous system (CNS) solid tumors. With prolonged survival in solid tumors, an increased frequency of metastases is noted in these tumors too. The detection of tumor cells in the cerebrospinal fluid remains the gold standard. Noninvasively, magnetic resonance imaging is frequently used for the diagnosis of LC. Although its low sensitivity of F-18 fluorodeoxyglucose positron emission tomography/computerized tomography (F-18 FDG PET/CT) on demonstrating CNS lesions, it could be useful in identifying the possibility of LC of breast carcinoma by giving high attention to the meninges. We discuss here three cases all of them having intracranial LC; where (18)F-FDG PET/CT study helped us in the diagnosis of LC. To our knowledge, this is the second report about intracranial LC from breast cancer demonstrating on (18)F-FDG PET/CT.

  3. Intracranial Leptomeningeal Carcinomatosis in Three Cases from Breast Cancer Demonstrated on F-18 Fluorodeoxyglucose Positron Emission Tomography/Computerized Tomography

    PubMed Central

    Ortapamuk, Hulya; Demir, Mustafa Kemal

    2017-01-01

    Leptomeningeal carcinomatosis (LC) is an uncommon late manifestation of non-central nervous system (CNS) solid tumors. With prolonged survival in solid tumors, an increased frequency of metastases is noted in these tumors too. The detection of tumor cells in the cerebrospinal fluid remains the gold standard. Noninvasively, magnetic resonance imaging is frequently used for the diagnosis of LC. Although its low sensitivity of F-18 fluorodeoxyglucose positron emission tomography/computerized tomography (F-18 FDG PET/CT) on demonstrating CNS lesions, it could be useful in identifying the possibility of LC of breast carcinoma by giving high attention to the meninges. We discuss here three cases all of them having intracranial LC; where 18F-FDG PET/CT study helped us in the diagnosis of LC. To our knowledge, this is the second report about intracranial LC from breast cancer demonstrating on 18F-FDG PET/CT. PMID:28242978

  4. In Vivo Kinetics of [F-18]MEFWAY: A comparison with [C-11]WAY100635 and [F-18]MPPF in the nonhuman primate

    PubMed Central

    Wooten, DW; Moraino, JD; Hillmer, AT; Engle, JW; DeJesus, OJ; Murali, D; Barnhart, TE; Nickles, RJ; Davidson, RJ; Schneider, ML; Mukherjee, J; Christian, BT

    2010-01-01

    [F-18]Mefway was developed to provide an F-18 labeled PET neuroligand with high affinity for the serotonin 5-HT1A receptor to improve the in vivo assessment of the 5-HT1A system. The goal of this work was to compare the in vivo kinetics of [F-18]mefway, [F-18]MPPF, and [C-11]WAY100635 in the rhesus monkey. Methods Each of four monkeys were given bolus injections of [F-18]mefway, [C-11]WAY100635, and [F-18]MPPF and scans were acquired with a microPET P4 scanner. Arterial blood was sampled to assay parent compound throughout the time course of the PET experiment. Time activity curves were extracted in the high 5-HT1A binding areas of the anterior cingulate cortex (ACG), mesial temporal cortex (MTC), raphe nuclei (RN) and insula cortex (IC). Time activity curves were also extracted in the cerebellum (CB) which was used as a reference region. The in vivo kinetics of the radiotracers were compared based upon the nondisplaceable distribution volume (VND) and binding potential (BPND). Results At 30 minutes, the fraction of radioactivity in the plasma due to parent compound was 19%, 28%, and 29% and cleared from the arterial plasma at rates of 0.0031, 0.0078, and 0.0069 (min-1) ([F-18]mefway, [F-18]MPPF, [C-11]WAY100635). The BPND in the brain regions were; MTC: 7.4±0.6, 3.1±0.4, 7.0±1.2, ACG: 7.2±1.2, 2.1±0.2, 7.9±1.2; RN: 3.7±0.6, 1.3±0.3, 3.3±0.7 and IC: 4.2±0.6, 1.2±0.1, 4.7±1.0 for [F-18]mefway, [F-18]MPPF, and [C-11]WAY100635 respectively. Conclusions In the rhesus monkey, [F-18]mefway has similar in vivo kinetics to [C-11]WAY100635 and yields greater than 2-fold higher BPND than [F-18]MPPF. These properties make [F-18]mefway a promising radiotracer for 5-HT1A assay, providing higher counting statistics and a greater dynamic range in BPND. PMID:21484878

  5. Factors affecting bilateral temporal lobe hypometabolism on 18F-FDG PET brain scan in unilateral medial temporal lobe epilepsy.

    PubMed

    Tepmongkol, Supatporn; Srikijvilaikul, Teeradej; Vasavid, Pataramon

    2013-11-01

    Bilateral temporal lobe hypometabolism (BTH) on (18)F-FDG PET brain scan is frequently seen in unilateral medial temporal lobe epilepsy (mTLE). This study aimed to identify the factors that influence BTH in patients with mTLE in order to minimize the significant factor(s) prior to performing a FDG-PET brain scan. Forty patients with unilateral mTLE who underwent (18)F-FDG PET scan for presurgical epilepsy workup were included. Bilateral temporal lobe hypometabolism of the anterior and medial parts of the temporal lobe was identified by a semiquantitative visual scale. Lateralization of TLE was identified by either intracranial EEG (22/40 cases) and/or improvement of seizure 2 years after temporal lobectomy (37/40 cases). The factors analyzed included basic demographic characteristics (age, sex, occupation, years of education, and handedness), history related to seizure (age at epilepsy onset and epilepsy duration, history of febrile seizure and head injury, frequency of seizure with impaired cognition in the last 3 months, presence of secondarily generalized tonic-clonic seizure, automatism side, presence of postictal confusion, and side of MRI temporal abnormality), information during video-EEG monitoring (clinical lateralization, interictal scalp EEG lateralization (interictal epileptiform discharge), and ictal scalp EEG lateralization), and information during the FDG-PET study (duration from the last seizure (≤2 days or >2 days), last seizure type, and the presence of slow waves or sharp waves during the FDG uptake period). Significant factors related to BTH were analyzed using multivariate analysis. Only the ≤2-day duration from the last seizure to the PET scan shows a significant effect (p=0.021) on BTH finding with 15 times greater incidence compared to a duration >2 days. Bilateral temporal lobe hypometabolism, which causes conflict in lateralizing the epileptogenic zone in temporal lobe epilepsy, can be avoided by performing PET scan more than 2 days

  6. Advantages and disadvantages of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary.

    PubMed

    Yu, Xiaozhou; Li, Xiaofeng; Song, Xiuyu; Dai, Dong; Zhu, Lei; Zhu, Yanjia; Wang, Jian; Zhao, Huiqin; Xu, Wengui

    2016-11-01

    Carcinoma of unknown primary is a type of malignant disease where the primary carcinoma cannot be identified by conventional examination, which presents challenges in diagnosis and therapy. This study aims to evaluate the detailed clinical value and indications of using fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in a large sample. A total of 449 patients who were selected under strict standards were retrospectively included in this study. F-18 FDG PET/CT accurately detected the primary carcinoma in 115 of 449 patients whose primaries could not be detected by conventional examination (25.6%), with additional 27 false-positive patients. The most common primary site was the lung (34.8%). In addition, except for in metastatic melanoma (1/19, 5.3%) and axillary metastasis patients (2/49, 4.1%), F-18 FDG PET/CT had a comparative performance in detecting primary carcinoma in other pathological types and anatomical locations. The scan is able to guide treatment strategy modifications to some extent (130/449, 29.0%). We strongly recommend the use of F-18 FDG PET/CT in the early phase of examination. It is also recommended as a supplementary radiological method, and certain patients may benefit from its application in cases where regular examination is inconclusive. However, in metastatic melanoma or axillary metastasis patients where the primary site cannot be identified by routine examination, regular application of F-18 FDG PET/CT for the sole purpose of detecting the primary carcinoma should not be encouraged.

  7. Advantages and disadvantages of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in carcinoma of unknown primary

    PubMed Central

    Yu, Xiaozhou; Li, Xiaofeng; Song, Xiuyu; Dai, Dong; Zhu, Lei; Zhu, Yanjia; Wang, Jian; Zhao, Huiqin; Xu, Wengui

    2016-01-01

    Carcinoma of unknown primary is a type of malignant disease where the primary carcinoma cannot be identified by conventional examination, which presents challenges in diagnosis and therapy. This study aims to evaluate the detailed clinical value and indications of using fluorine-18-2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography (F-18 FDG PET/CT) in a large sample. A total of 449 patients who were selected under strict standards were retrospectively included in this study. F-18 FDG PET/CT accurately detected the primary carcinoma in 115 of 449 patients whose primaries could not be detected by conventional examination (25.6%), with additional 27 false-positive patients. The most common primary site was the lung (34.8%). In addition, except for in metastatic melanoma (1/19, 5.3%) and axillary metastasis patients (2/49, 4.1%), F-18 FDG PET/CT had a comparative performance in detecting primary carcinoma in other pathological types and anatomical locations. The scan is able to guide treatment strategy modifications to some extent (130/449, 29.0%). We strongly recommend the use of F-18 FDG PET/CT in the early phase of examination. It is also recommended as a supplementary radiological method, and certain patients may benefit from its application in cases where regular examination is inconclusive. However, in metastatic melanoma or axillary metastasis patients where the primary site cannot be identified by routine examination, regular application of F-18 FDG PET/CT for the sole purpose of detecting the primary carcinoma should not be encouraged. PMID:27895731

  8. F-18 HARV research pilot Jim Smolka

    NASA Technical Reports Server (NTRS)

    1994-01-01

    James W. 'Smoke' Smolka, a research pilot at NASA's Dryden Flight Research Center, Edwards, California, since 1985, was co-project pilot on the F-18 High Alpha Research Vehicle (HARV) aircraft. Before joining NASA, Smolka was an F-16 experimental test pilot with General Dynamics Corporation for two years at Edwards. He was also a project pilot with the Advanced Fighter Technology Integration (AFTI) F-16 Joint Test Force located at Dryden. In addition to his work with the F-18 program, Smolka also flies as a pilot on the NASA B-52 launch aircraft, and as a co-project pilot on the F-16XL Supersonic Laminar Flow aircraft. He also participated in F-15 HIDEC flight and engine control system programs, and the AFTI F-111 Mission Adaptive Wing, and F-104 Aeronautical Research Aircraft programs. Smolka has accumulated 5000 hours of flight time since he became a pilot in 1973. NASA used an F-18 Hornet fighter aircraft as its High Alpha Research Vehicle (HARV). The aircraft is on loan from the U.S. Navy. The high angle of attack technology program is a joint effort of NASA's Dryden, Ames, Langley, and Lewis Research Centers. Its flight operations were based at Dryden.

  9. F-18 HARV research pilot Jim Smolka

    NASA Technical Reports Server (NTRS)

    1994-01-01

    James W. 'Smoke' Smolka, a research pilot at NASA's Dryden Flight Research Center, Edwards, California, since 1985, was co-project pilot on the F-18 High Alpha Research Vehicle (HARV) aircraft. Before joining NASA, Smolka was an F-16 experimental test pilot with General Dynamics Corporation for two years at Edwards. He was also a project pilot with the Advanced Fighter Technology Integration (AFTI) F-16 Joint Test Force located at Dryden. In addition to his work with the F-18 program, Smolka also flies as a pilot on the NASA B-52 launch aircraft, and as a co-project pilot on the F-16XL Supersonic Laminar Flow aircraft. He also participated in F-15 HIDEC flight and engine control system programs, and the AFTI F-111 Mission Adaptive Wing, and F-104 Aeronautical Research Aircraft programs. Smolka has accumulated 5000 hours of flight time since he became a pilot in 1973. NASA used an F-18 Hornet fighter aircraft as its High Alpha Research Vehicle (HARV). The aircraft is on loan from the U.S. Navy. The high angle of attack technology program is a joint effort of NASA's Dryden, Ames, Langley, and Lewis Research Centers. Its flight operations were based at Dryden.

  10. Metabolic imaging of deep brain stimulation in anorexia nervosa: a 18F-FDG PET/CT study.

    PubMed

    Zhang, Hui-Wei; Li, Dian-You; Zhao, Jun; Guan, Yi-Hui; Sun, Bo-Min; Zuo, Chuan-Tao

    2013-12-01

    Anorexia nervosa (AN), a disorder of unknown etiology, has the highest mortality rate of any psychiatric disorder. Drawing the brain metabolic pattern of AN may help to target the core biological and psychological features of the disorder and to perfect the diagnosis and recovery criteria. In this study, we used 18F-FDG PET to show brain metabolic network for AN. Glucose metabolism in 6 AN patients and 12 age-matched healthy controls was studied using 18F-FDG PET. SPM2 was used to compare brain metabolism in AN patients with that in healthy controls. Four of 6 AN patients took deep brain stimulation (DBS) targeted in nucleus accumbens (NAcc). About 3 to 6 months after the surgery, the 4 AN patients took another 18F-FDG PET scan to assess the change in brain glucose metabolism. The SPM (statistical parametric mapping ) analysis showed hypermetabolism in the frontal lobe (bilateral, BA10, BA11, BA47), the limbic lobe (bilateral, hippocampus, and amygdala), lentiform nucleus (bilateral), left insula (BA13), and left subcallosal gyrus (BA25). It also showed hypometabolism in the parietal lobe (bilateral, BA7, BA40). The hypermetabolism in frontal lobe, hippocampus, and lentiform nucleus decreased after NAcc-DBS. The changes in brain glucose metabolism illustrated the brain metabolic pattern in AN patients. Furthermore, the pattern can be modulated by NAcc-DBS, which confirmed specificity of the pattern. The regions with altered metabolism could interconnect to form a network and integrate information related to appetite. Our study may provide information for targeting the potential candidate brain regions for understanding the pathophysiology of AN and assessing the effects of existing and future treatment approaches.

  11. Functional brain mapping of actual car-driving using [18F]FDG-PET.

    PubMed

    Jeong, Myeonggi; Tashiro, Manabu; Singh, Laxsmi N; Yamaguchi, Keiichiro; Horikawa, Etsuo; Miyake, Masayasu; Watanuki, Shouichi; Iwata, Ren; Fukuda, Hiroshi; Takahashi, Yasuo; Itoh, Masatoshi

    2006-11-01

    This study aims at identifying the brain activation during actual car-driving on the road, and at comparing the results to those of previous studies on simulated car-driving. Thirty normal volunteers, aged 20 to 56 years, were divided into three subgroups, active driving, passive driving and control groups, for examination by positron emission tomography (PET) and [18F]2-deoxy-2-fluoro-D-glucose (FDG). The active driving subjects (n = 10) drove for 30 minutes on quiet normal roads with a few traffic signals. The passive driving subjects (n = 10) participated as passengers on the front seat. The control subjects (n = 10) remained seated in a lit room with their eyes open. Voxel-based t-statistics were applied using SPM2 to search brain activation among the subgroups mentioned above. Significant brain activation was detected during active driving in the primary and secondary visual cortices, primary sensorimotor areas, premotor area, parietal association area, cingulate gyrus, the parahippocampal gyrus as well as in thalamus and cerebellum. The passive driving manifested a similar-looking activation pattern, lacking activations in the premotor area, cingulate and parahippocampal gyri and thalamus. Direct comparison of the active and passive driving conditions revealed activation in the cerebellum. The result of actual driving looked similar to that of simulated driving, suggesting that visual perception and visuomotor coordination were the main brain functions while driving. In terms of attention and autonomic arousal, however, it seems there was a significant difference between simulated and actual driving possibly due to risk of accidents. Autonomic and emotional aspects of driving should be studied using an actual driving study-design.

  12. Classification of Parkinsonian Syndromes from FDG-PET Brain Data Using Decision Trees with SSM/PCA Features

    PubMed Central

    Mudali, D.; Teune, L. K.; Renken, R. J.; Leenders, K. L.; Roerdink, J. B. T. M.

    2015-01-01

    Medical imaging techniques like fluorodeoxyglucose positron emission tomography (FDG-PET) have been used to aid in the differential diagnosis of neurodegenerative brain diseases. In this study, the objective is to classify FDG-PET brain scans of subjects with Parkinsonian syndromes (Parkinson's disease, multiple system atrophy, and progressive supranuclear palsy) compared to healthy controls. The scaled subprofile model/principal component analysis (SSM/PCA) method was applied to FDG-PET brain image data to obtain covariance patterns and corresponding subject scores. The latter were used as features for supervised classification by the C4.5 decision tree method. Leave-one-out cross validation was applied to determine classifier performance. We carried out a comparison with other types of classifiers. The big advantage of decision tree classification is that the results are easy to understand by humans. A visual representation of decision trees strongly supports the interpretation process, which is very important in the context of medical diagnosis. Further improvements are suggested based on enlarging the number of the training data, enhancing the decision tree method by bagging, and adding additional features based on (f)MRI data. PMID:25918550

  13. [F-18]-AV-1451 binding correlates with postmortem neurofibrillary tangle Braak staging.

    PubMed

    Marquié, Marta; Siao Tick Chong, Michael; Antón-Fernández, Alejandro; Verwer, Eline E; Sáez-Calveras, Nil; Meltzer, Avery C; Ramanan, Prianca; Amaral, Ana C; Gonzalez, Jose; Normandin, Marc D; Frosch, Matthew P; Gómez-Isla, Teresa

    2017-06-13

    [F-18]-AV-1451, a PET tracer specifically developed to detect brain neurofibrillary tau pathology, has the potential to facilitate accurate diagnosis of Alzheimer's disease (AD), staging of brain tau burden and monitoring disease progression. Recent PET studies show that patients with mild cognitive impairment and AD dementia exhibit significantly higher in vivo [F-18]-AV-1451 retention than cognitively normal controls. Importantly, PET patterns of [F-18]-AV-1451 correlate well with disease severity and seem to match the predicted topographic Braak staging of neurofibrillary tangles (NFTs) in AD, although this awaits confirmation. We studied the correlation of autoradiographic binding patterns of [F-18]-AV-1451 and the stereotypical spatiotemporal pattern of progression of NFTs using legacy postmortem brain samples representing different Braak NFT stages (I-VI). We performed [F-18]-AV-1451 phosphor-screen autoradiography and quantitative tau measurements (stereologically based NFT counts and biochemical analysis of tau pathology) in three brain regions (entorhinal cortex, superior temporal sulcus and visual cortex) in a total of 22 cases: low Braak (I-II, n = 6), intermediate Braak (III-IV, n = 7) and high Braak (V-VI, n = 9). Strong and selective [F-18]-AV-1451 binding was detected in all tangle-containing regions matching precisely the observed pattern of PHF-tau immunostaining across the different Braak stages. As expected, no signal was detected in the white matter or other non-tangle containing regions. Quantification of [F-18]-AV-1451 binding was very significantly correlated with the number of NFTs present in each brain region and with the total tau and phospho-tau content as reported by Western blot and ELISA. [F-18]-AV-1451 is a promising biomarker for in vivo quantification of brain tau burden in AD. Neuroimaging-pathologic studies conducted on postmortem material from individuals imaged while alive are now needed to confirm these observations.

  14. Comparison of brain MRI and 18F-FDG PET in the differential diagnosis of multiple system atrophy from Parkinson's disease.

    PubMed

    Kwon, Kyum-Yil; Choi, Choong G; Kim, Jae S; Lee, Myoung C; Chung, Sun J

    2007-12-01

    To investigate the diagnostic value of brain magnetic resonance image (MRI) and (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) in the differentiation of multiple system atrophy (MSA) from Parkinson's disease (PD). Thirty-five patients with MSA (23 MSA-P and 12 MSA-C) and 17 patients with PD were included in this study. Overall correct diagnosis rates between clinical and imaging diagnosis among MSA-P, MSA-C, and PD patients were 80% for visual MRI analysis, 88.5% for visual (18)F-FDG PET analysis, and 84.3% for SPM-supported analysis of (18)F-FDG PET. The sensitivity of brain MRI, and visual and SPM analysis of (18)F-FDG PET in differentiating MSA from PD was 72.7%, 90.9%, and 95.5%, respectively, the specificity was 100% for each imaging analysis, the positive predictive value was 100% for each imaging analysis, and the negative predictive value was 60%, 81.8%, and 90%, respectively. Our results suggest that brain MRI and (18)F-FDG PET are diagnostically useful in differentiating MSA (MSA-P and MSA-C) from PD, and indicate that (18)F-FDG PET has a tendency toward higher sensitivity compared to brain MRI, but a larger longitudinal study including pathological data will be required to confirm our findings.

  15. 76 FR 37129 - Determination That SODIUM FLUORIDE F 18 (Sodium Fluoride F-18) Injection, 10 to 200 Millicuries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ... HUMAN SERVICES Food and Drug Administration Determination That SODIUM FLUORIDE F 18 (Sodium Fluoride F... Drug Administration (FDA) has determined that SODIUM FLUORIDE F 18 (sodium fluoride F-18) injection, 10... FLUORIDE F 18 injection, 10 to 200 mCi/mL, if all other legal and regulatory requirements are met. FOR...

  16. Identification of ischemic and hibernating myocardium: feasibility of post-exercise F-18 deoxyglucose positron emission tomography

    SciTech Connect

    Marwick, T.H.; MacIntyre, W.J.; Salcedo, E.E.; Go, R.T.; Saha, G.; Beachler, A. )

    1991-02-01

    The identification of ischemic and hibernating myocardium facilitates the selection of patients most likely to benefit from revascularization. This study examined the feasibility of metabolic imaging, using post-exercise F-18 deoxyglucose positron emission tomography (FDG-PET) for the diagnosis of both ischemia and hibernation in 27 patients with known coronary anatomy. Normal post-exercise FDG uptake was defined in each patient by reference to normal resting perfusion and normal coronary supply. Abnormal elevation of FDG (ischemia or hibernation) was compared in 13 myocardial segments in each patient, with the results of dipyridamole stress perfusion imaging performed by rubidium-82 positron emission tomography (Rb-PET). Myocardial ischemia was diagnosed by either FDG-PET or Rb-PET in 34 segments subtended by significant local coronary stenoses. Increased FDG uptake was present in 32/34 (94%) and a reversible perfusion defect was identified by Rb-PET in 22/34 (65%, p less than .01). In 3 patients, ischemia was identified by metabolic imaging alone. In 16 patients with previous myocardial infarction, perfusion defects were present at rest in 89 regions, 30 of which (34%) demonstrated increased FDG uptake, consistent with the presence of hibernation. Increased post-exercise FDG uptake appears to be a sensitive indicator of ischemia and myocardial hibernation. Increased post-exercise FDG uptake, appears to be a sensitive indicator of ischemia and myocardial hibernation. This test may be useful in selecting post-infarction patients for revascularization.

  17. F-18 SRA taxi at dawn

    NASA Technical Reports Server (NTRS)

    1993-01-01

    One of NASA's F/A-18 Hornets is seen here sitting on the ramp at the Dryden Flight Research Center, Edwards, California, at dawn August 6, 1993. F-18 aircraft, on loan to NASA by the U.S. Navy, are currently being flown at Dryden as support aircraft and as research testbeds. As support aircraft, they are used primarily for safety chase, pilot proficiency and aerial photography. As research aircraft, they are involved in thrust vectoring and high angle of attack research, as well as numerous smaller scale experiments.

  18. F-18 SRA taxi at dawn

    NASA Technical Reports Server (NTRS)

    1993-01-01

    One of NASA's F/A-18 Hornets is seen here sitting on the ramp at the Dryden Flight Research Center, Edwards, California, at dawn August 6, 1993. F-18 aircraft, on loan to NASA by the U.S. Navy, are currently being flown at Dryden as support aircraft and as research testbeds. As support aircraft, they are used primarily for safety chase, pilot proficiency and aerial photography. As research aircraft, they are involved in thrust vectoring and high angle of attack research, as well as numerous smaller scale experiments.

  19. 18F-FDG PET brain images as features for Alzheimer classification

    NASA Astrophysics Data System (ADS)

    Azmi, M. H.; Saripan, M. I.; Nordin, A. J.; Ahmad Saad, F. F.; Abdul Aziz, S. A.; Wan Adnan, W. A.

    2017-08-01

    2-Deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG) Positron Emission Tomography (PET) imaging offers meaningful information for various types of diseases diagnosis. In Alzheimer's disease (AD), the hypometabolism of glucose which observed on the low intensity voxel in PET image may relate to the onset of the disease. The importance of early detection of AD is inevitable because the resultant brain damage is irreversible. Several statistical analysis and machine learning algorithm have been proposed to investigate the rate and the pattern of the hypometabolism. This study focus on the same aim with further investigation was performed on several hypometabolism pattern. Some pre-processing steps were implemented to standardize the data in order to minimize the effect of resolution and anatomical differences. The features used are the mean voxel intensity within the AD pattern mask, which derived from several z-score and FDR threshold values. The global mean voxel (GMV) and slice-based mean voxel (SbMV) intensity were observed and used as input to the neural network. Several neural network architectures were tested and compared to the nearest neighbour method. The highest accuracy equals to 0.9 and recorded at z-score ≤-1.3 with 1 node neural network architecture (sensitivity=0.81 and specificity=0.95) and at z-score ≤-0.7 with 10 nodes neural network (sensitivity=0.83 and specificity=0.94).

  20. F-18 cockpit and instrument panel

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Dryden Flight Research Center's F/A-18 chase and support aircraft retains the basic fighter plane cockpit controls with some exceptions. The pilot's center control stick is relatively typical of a modern fighter aircraft. This F-18 has no weapons delivery capability. The primary cockpit displays include a left- and right-side cathode-ray tube display, referred to as the DDIs, and the heads-up display (HUD). The DDIs and HUD are generally used to display primary flight condition information such as airspeed, altitude, altitude rate, attitude, heading, etc. Other flight conditions displayed include angle of attack (AOA), Mach number, and load factor. The HUD also provides primary flight condition information to the pilot without having to refer to the DDIs. Select flight controls information also can be presented on the HUD. The twenty pushbuttons located on the periphery of each DDI are used to select a variety of displays for pilot interrogation of F-18 systems. These displays are pilot selectable and menu driven.

  1. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  2. Synthesis of 6-(F-18)L-fluoro-dopa using F-18 labelled acetyl hypofluorite

    SciTech Connect

    Adam, M.J.; Abeysekera, B.; Ruth, T.J.; Grierson, J.R.; Pate, B.D.

    1985-05-01

    The synthesis of (F-18)6-fluoro-dopa via acetyl hypofluorite has recently been reported. The authors have modified this procedure by adding an acetate protecting group on the dopa ring and have treated this new starting material with either solution or gas phase F-18 acetyl hypofluorite. Using this starting material the yield has been significantly increased over the published method. The authors routinely prepare 4-5 mCi of pure (F-18)6-fluoro-dopa (3-4% radiochemical yield, at EOS) in an overall synthesis time of 2 hours. Both 2 and 6 fluoro-dopa are produced in nearly equivalent amounts by this method as determined by /sup 19/F nmr. These are easily separated by HPLC after deblocking with HI. The final isolated product is >99% in the L-isomer form and fluorinated in >97% in the 6 position.

  3. Development and use of a kinetic FDG-PET dataset simulated from the MNI standard brain

    NASA Astrophysics Data System (ADS)

    Schottlander, David; Guimond, Alexandre; Pan, Xiao-Bo; Brady, Michael; Declerck, Jérôme; Collins, Louis; Evans, Alan C.; Reilhac, Anthonin

    2006-03-01

    Simulated data is an important tool for evaluation of reconstruction and image processing algorithms in the frequent absence of ground truth, in-vivo data from living subjects. This is especially true in the case of dynamic PET studies, in which counting statistics of the volume can vary widely over the time-course of the acquisition. Realistic simulated data-sets which model anatomy and physiology, and make explicit the spatial and temporal image acquisition characteristics, facilitate experimentation with a wide range of the conditions anticipated in practice, and which can severely challenge algorithm performance and reliability. As a first example, we have developed a realistic dynamic FDG-PET data-set using the PET-SORTEO Monte Carlo simulation code and the MNI digital brain phantom. The phantom is a three-dimensional data-set that defines the spatial distribution of different tissues. Time activity curves were calculated using an impulse response function specified by generally accepted rate constants, convolved with an input function obtained by blood sampling, and assigned to grey and white matter tissue regions. We created a dynamic PET study using PET-SORTEO configured to simulate an ECAT Exact HR+. The resulting sinograms were reconstructed with all corrections, using variations of FBP and OSEM. Having constructed the dynamic PET data-sets, we used them to evaluate the performance of intensity-based registration as part of a tool for quantifying hyper/hypo perfusion with particular application to analysis of brain dementia scans, and a study of the stability of kinetic parameter estimation.

  4. Intelligent [F-18] fluoride target system

    NASA Astrophysics Data System (ADS)

    Hichwa, R. D.; Aykac, M.; Bilgen, D.; Watkins, G. L.

    1999-06-01

    An automated target filling system has been developed for [F-18]F- production from [O-18]water. The system consists of a pair of standard syringe dispensing pumps, valve manifolds, pressure and flow sensors, RS-232 serial I/O modules, high pressure silver targets and X-windows software. Operations are controlled through a graphical interface and can be manipulated individually, in groups for specific functions, or as complex processes either manually or automatically. Major functional operations include: 1) system test, 2) target fill, 3) target empty, and 4) target clean up. Fault conditions if present are identified and flagged. Alternate (duplicate) pathways are automatically used if a nonfatal failure mode is detected. Results from the testing procedures are logged to a file for documented adherence to SOPs and trend assessment of performance.

  5. F-18 SRA in flight from below

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's Dryden Flight Research Center, Edwards, California, is using this early-model F-18 Hornet as a flying research platform to evaluate a number of emerging technologies in aircraft control and information systems. The Systems Research Aircraft, a pre-production two-seat version of the twin-engine tactical fighter aircraft, has been extensively modified for its research role. Among projects flown on the plane are experiments to evaluate fiber optics for flight-critical control systems, advanced air data acquisition systems, and electrically-powered flight control actuators which do not require connection to the aircraft central hydraulic system. The new technologies could lead to lighter and more efficient aircraft designs with higher performance and greater safety.

  6. Tumor characteristics of ductal carcinoma in situ of breast visualized on [F-18] fluorodeoxyglucose-positron emission tomography/computed tomography: Results from a retrospective study.

    PubMed

    Fujioka, Tomoyuki; Kubota, Kazunori; Toriihara, Akira; Machida, Youichi; Okazawa, Kaori; Nakagawa, Tsuyoshi; Saida, Yukihisa; Tateishi, Ukihide

    2016-08-28

    To clarify clinicopathological features of ductal carcinoma in situ (DCIS) visualized on [F-18] fluorodeoxyglucose-positron emission tomography/computed tomography (FDG-PET/CT). This study retrospectively reviewed 52 consecutive tumors in 50 patients with pathologically proven pure DCIS who underwent [F-18] FDG-PET/CT before surgery. [F-18] FDG-PET/CT was performed after biopsy in all patients. The mean interval from biopsy to [F-18] FDG-PET/CT was 29.2 d. [F-18] FDG uptake by visual analysis and maximum standardized uptake value (SUVmax) was compared with clinicopathological characteristics. [F-18] FDG uptake was visualized in 28 lesions (53.8%) and the mean and standard deviation of SUVmax was 1.63 and 0.90. On univariate analysis, visual analysis and the SUVmax were associated with symptomatic presentation (P = 0.012 and 0.002, respectively), palpability (P = 0.030 and 0.024, respectively), use of core-needle biopsy (CNB) (P = 0.023 and 0.012, respectively), ultrasound-guided biopsy (P = 0.040 and 0.006, respectively), enhancing lesion ≥ 20 mm on magnetic resonance imaging (MRI) (P = 0.001 and 0.010, respectively), tumor size ≥ 20 mm on histopathology (P = 0.002 and 0.008, respectively). However, [F-18] FDG uptake parameters were not significantly associated with age, presence of calcification on mammography, mass formation on MRI, presence of comedo necrosis, hormone status (estrogen receptor, progesterone receptor and human epidermal growth factor receptor-2), and nuclear grade. The factors significantly associated with visual analysis and SUVmax were symptomatic presentation (P = 0.019 and 0.001, respectively), use of CNB (P = 0.001 and 0.031, respectively), and enhancing lesion ≥ 20 mm on MRI (P = 0.001 and 0.049, respectively) on multivariate analysis. Although DCIS of breast is generally non-avid tumor, symptomatic and large tumors (≥ 20 mm) tend to be visualized on [F-18] FDG-PET/CT.

  7. F-18 HARV research pilot Dana Purifoy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dana D. Purifoy is an aerospace research pilot at NASA's Dryden Flight Research Center, Edwards, California. He joined NASA in August 1994. Purifoy is a former Air Force test pilot who served as a project pilot in the joint NASA/Air Force X-29 Forward Swept Wing research program conducted at Dryden from 1984 to 1991. His most recent assignment in the Air Force was flying U-2 aircraft as a test pilot at Air Force Plant 42, Palmdale, CA. In addition to flying the X-29 at Dryden as an Air Force pilot, Purifoy also served as project pilot and joint test force director with the AFTI F-16 (Advanced Fighter Technology Integration/F-16) program, also located at Dryden. Before his assignments as project pilot on the X-29 and AFTI/F-16 aircraft, Purifoy was chief of the Academics Systems Branch at the Air Force Test Pilot School at Edwards. Prior to becoming a test pilot, he flew F-111 and F-16 aircraft in Great Britain and Germany. He has accumulated 3800 hours of flying time in his career. The final flight for the F-18 High Alpha Research Vehicle (HARV) took place at NASA Dryden on May 29, 1996. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.

  8. F-18 HARV research pilot Dana Purifoy

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Dana D. Purifoy is an aerospace research pilot at NASA's Dryden Flight Research Center, Edwards, California. He joined NASA in August 1994. Purifoy is a former Air Force test pilot who served as a project pilot in the joint NASA/Air Force X-29 Forward Swept Wing research program conducted at Dryden from 1984 to 1991. His most recent assignment in the Air Force was flying U-2 aircraft as a test pilot at Air Force Plant 42, Palmdale, CA. In addition to flying the X-29 at Dryden as an Air Force pilot, Purifoy also served as project pilot and joint test force director with the AFTI F-16 (Advanced Fighter Technology Integration/F-16) program, also located at Dryden. Before his assignments as project pilot on the X-29 and AFTI/F-16 aircraft, Purifoy was chief of the Academics Systems Branch at the Air Force Test Pilot School at Edwards. Prior to becoming a test pilot, he flew F-111 and F-16 aircraft in Great Britain and Germany. He has accumulated 3800 hours of flying time in his career. The final flight for the F-18 High Alpha Research Vehicle (HARV) took place at NASA Dryden on May 29, 1996. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.

  9. Differential diagnosis of posterior fossa brain tumors: Multiple discriminant analysis of Tl-SPECT and FDG-PET.

    PubMed

    Yamauchi, Moritaka; Okada, Tomohisa; Okada, Tsutomu; Yamamoto, Akira; Fushimi, Yasutaka; Arakawa, Yoshiki; Miyamoto, Susumu; Togashi, Kaori

    2017-08-01

    This study investigated the combined capability of thallium-201 (Tl)-SPECT and fluorine-18-fluoro-deoxy-glucose (FDG)-PET for differential diagnosis of posterior fossa brain tumors using multiple discriminant analysis.This retrospective study was conducted under approval of the institutional review board. In the hospital information system, 27 patients with posterior fossa intra-axial tumor between January 2009 and June 2015 were enrolled and grouped as the following 7 entities: low grade glioma (LGG) 6, anaplastic astrocytoma (AA) 2, glioblastoma (GBM) 3, medulloblastoma (MB) 3, hemangioblastoma (HB) 6, metastatic tumor (Mets) 3, and malignant lymphoma (ML) 4. Tl and FDG uptakes were measured at the tumors and control areas, and several indexes were derived. Using indexes selected by the stepwise method, discriminant analysis was conducted with leave-one-out cross-validation.The predicted accuracy for tumor classification was 70.4% at initial analysis and 55.6% at cross-validation to differentiate 7 tumor entities. HB, LGG, and ML were well-discriminated, but AA was located next to LGG. GBM, MB, and Mets largely overlapped and could not be well distinguished even applying multiple discriminant analysis. Correct classification in the original and cross-validation analyses was 44.4% and 33.3% for Tl-SPECT and 55.6% and 48.1% for FDG-PET.

  10. F18-fluorodeoxyglucose-positron emission tomography and computed tomography is not accurate in preoperative staging of gastric cancer

    PubMed Central

    Ha, Tae Kyung; Choi, Yun Young; Song, Soon Young

    2011-01-01

    Purpose To investigate the clinical benefits of F18-fluorodeoxyglucose-positron emission tomography and computed tomography (18F-FDG-PET/CT) over multi-detector row CT (MDCT) in preoperative staging of gastric cancer. Methods FDG-PET/CT and MDCT were performed on 78 patients with gastric cancer pathologically diagnosed by endoscopy. The accuracy of radiologic staging retrospectively was compared to pathologic result after curative resection. Results Primary tumors were detected in 51 (65.4%) patients with 18F-FDG-PET/CT, and 47 (60.3%) patients with MDCT. Regarding detection of lymph node metastasis, the sensitivity of FDG-PET/CT was 51.5% with an accuracy of 71.8%, whereas those of MDCT were 69.7% and 69.2%, respectively. The sensitivity of 18F-FDG-PET/CT for a primary tumor with signet ring cell carcinoma was lower than that of 18F-FDG-PET/CT for a primary tumor with non-signet ring cell carcinoma (35.3% vs. 73.8%, P < 0.01). Conclusion Due to its low sensitivity, 18F-FDG-PET/CT alone shows no definite clinical benefit for prediction of lymph node metastasis in preoperative staging of gastric cancer. PMID:22066108

  11. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    PubMed

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  12. Predicting conversion from MCI to AD with FDG-PET brain images at different prodromal stages.

    PubMed

    Cabral, Carlos; Morgado, Pedro M; Campos Costa, Durval; Silveira, Margarida

    2015-03-01

    Early diagnosis of Alzheimer disease (AD), while still at the stage known as mild cognitive impairment (MCI), is important for the development of new treatments. However, brain degeneration in MCI evolves with time and differs from patient to patient, making early diagnosis a very challenging task. Despite these difficulties, many machine learning techniques have already been used for the diagnosis of MCI and for predicting MCI to AD conversion, but the MCI group used in previous works is usually very heterogeneous containing subjects at different stages. The goal of this paper is to investigate how the disease stage impacts on the ability of machine learning methodologies to predict conversion. After identifying the converters and estimating the time of conversion (TC) (using neuropsychological test scores), we devised 5 subgroups of MCI converters (MCI-C) based on their temporal distance to the conversion instant (0, 6, 12, 18 and 24 months before conversion). Next, we used the FDG-PET images of these subgroups and trained classifiers to distinguish between the MCI-C at different stages and stable non-converters (MCI-NC). Our results show that MCI to AD conversion can be predicted as early as 24 months prior to conversion and that the discriminative power of the machine learning methods decreases with the increasing temporal distance to the TC, as expected. These findings were consistent for all the tested classifiers. Our results also show that this decrease arises from a reduction in the information contained in the regions used for classification and by a decrease in the stability of the automatic selection procedure.

  13. FDG-PET in the Evaluation of Brain Metabolic Changes Induced by Cognitive Stimulation in aMCI Subjects.

    PubMed

    Ciarmiello, Andrea; Gaeta, Maria Chiara; Benso, Francesco; Del Sette, Massimo

    2015-01-01

    Cognitive training has reported to improve cognitive performance in Mild Cognitive Impairment (MCI) as well as in older healthy subjects. 18F-FDG-PET is widely used in the diagnoses of dementia for its ability to identify early metabolic changes. This study was aimed to assess the effect of cognitive stimulation on brain metabolic network and clinical cognitive performance. Thirty aMCI subjects were enrolled in the study and allocated in two groups matched for cognitive profile, sex and schooling and then randomly assigned to the training arm or to the placebo arm. All subjects underwent neuropsychological assessment and PET imaging before and after intervention. We found significant association between brain metabolism and cognitive stimulation in treated aMCI subjects. Brain metabolic changes included Brodmann areas reported to be involved in working memory and attentive processes as well as executive functions. Our study shows that metabolic changes occur earlier than possible clinical changes related to the intervention. 18F-FDG-PET could provide a useful biomarker of response to identify a population of aMCI suitable to respond to treatment, according to most recent data on default network mode and its adaptivity to external stimuli.

  14. Investigation of an F-18 oxytocin receptor selective ligand via PET imaging.

    PubMed

    Smith, Aaron L; Freeman, Sara M; Voll, Ronald J; Young, Larry J; Goodman, Mark M

    2013-10-01

    The compound 1-(1-(2-(2-(2-fluoroethoxy)-4-(piperidin-4-yloxy)phenyl)acetyl)piperidin-4-yl)-3,4-dihydroquinolin-2(1H)-one (1) was synthesized and positively evaluated in vitro for high potency and selectivity with human oxytocin receptors. The positron emitting analogue, [F-18]1, was synthesized and investigated in vivo via PET imaging using rat and cynomolgus monkey models. PET imaging studies in female Sprague-Dawley rats suggested [F-18]1 reached the brain and accumulated in various regions of the brain, but washed out too rapidly for adequate quantification and localization. In vivo PET imaging studies in a male cynomolgus monkey suggested [F-18]1 had limited brain penetration while specific uptake of radioactivity significantly accumulated within the vasculature of the cerebral ventricles in areas representative of the choroid plexus. Copyright © 2013. Published by Elsevier Ltd.

  15. The F18 fimbrial adhesin FedF is highly conserved among F18+Escherichia coli isolates.

    PubMed

    Tiels, P; Verdonck, F; Smet, A; Goddeeris, B; Cox, E

    2005-10-31

    F18+Escherichia coli cause postweaning diarrhoea and oedema disease in newly weaned piglets. Protection against these diseases can be established by preventing the fimbrial adhesion of these bacteria to the enterocytes of the porcine intestine. To test a vaccine against F18+E. coli consisting of the adhesin of F18 fimbriae, FedF, the conservation of the FedF subunit had to be examined. Therefore, the fedF sequence of 37 F18+E. coli isolates from different countries was determined and compared to the fedF gene of the F18ab reference strain F107/86. The amino acid sequence of the mature FedF from the individual F18+E. coli isolates was 96-100% identical to that from E. coli F107/86, but the overall homology was 90.4%. Hyper variable regions were not found in the FedF sequence. The FedF sequence was conserved over the different countries and between the two antigenic variants, F18ab and F18ac, suggesting that F18ab and F18ac strains have the same receptor. Furthermore, the conserved C-terminal region in the FedF adhesin suggests that the F18 fimbriae, in analogy with type 1 and P pili, are assembled by a donor strand mechanism. In conclusion, the reported conservation of FedF supports the usefulness of the fimbrial adhesin as a subunit vaccine against F18+E. coli infection.

  16. F-18 SRA during flight from below

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The National Aeronautics and Space Administration's Systems Research Aircraft (SRA), a highly modified F-18 jet fighter, shows its colors during a recent research flight. The former Navy aircraft is being flown by NASA's Dryden Flight Research Center at Edwards Air Force Base, California, to evaluate a number of experimental aerospace technologies in a multi-year, joint NASA/DOD/industry program. Among the more than 20 experiments being flight-tested were several involving fiber optic sensor systems. Experiments developed by McDonnell-Douglas and Lockheed-Martin centered on installation and maintenace techniques for various types of fiber-optic hardware proposed for use in military and commercial aircraft, while a Parker-Hannifin experiment focused in alternative fiber-optic designs for postion measurement sensors as well as operational experience in handling optical sensor systems. Other experiments being flown on this testbed aircraft include electronically-controlled control surface actuators, flush air data collection systems, 'smart' skin antennae and laser-based systems. Incorporation of one or more of these technologies in future aircraft and spacecraft could result in signifigant savings in weight, maintenance and overall cost.

  17. F-18 SRA in flight over lakebed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The National Aeronautics and Space Administration's Systems Research Aircraft (SRA), a highly modified F-18 jet fighter, on an early research flight over Rogers Dry Lake. The former Navy aircraft is being flown by NASA's Dryden Flight Research Center at Edwards Air Force Base, California, to evaluate a number of experimental aerospace technologies in a multi-year, joint NASA/DOD/industry program. Among the more than 20 experiments being flight-tested were several involving fiber optic sensor systems. Experiments developed by McDonnell-Douglas and Lockheed-Martin centered on installation and maintenace techniques for various types of fiber-optic hardware proposed for use in military and commercial aircraft, while a Parker-Hannifin experiment focused in alternative fiber-optic designs for postion measurement sensors as well as operational experience in handling optical sensor systems. Other experiments being flown on this testbed aircraft include electronically-controlled control surface actuators, flush air data collection systems, 'smart' skin antennae and laser-based systems. Incorporation of one or more of these technologies in future aircraft and spacecraft could result in signifigant savings in weight, maintenance and overall cost.

  18. Incidence of Brain Metastases on Follow-up (18)F-FDG PET/CT Scans of Non-Small Cell Lung Cancer Patients: Should We Include the Brain?

    PubMed

    Nia, Emily S; Garland, Linda L; Eshghi, Naghmehossadat; Nia, Benjamin B; Avery, Ryan J; Kuo, Phillip H

    2017-09-01

    The brain is the most common site of distant metastasis from lung cancer. Thus, MRI of the brain at initial staging is routinely performed, but if this examination is negative a follow-up examination is often not performed. This study evaluates the incidence of asymptomatic brain metastases in non-small cell lung cancer patients detected on follow-up (18)F-FDG PET/CT scans. Methods: In this Institutional Review Board-approved retrospective review, all vertex to thigh (18)F-FDG PET/CT scans in patients with all subtypes of lung cancer from August 2014 to August 2016 were reviewed. A total of 1,175 (18)F-FDG PET/CT examinations in 363 patients were reviewed. Exclusion criteria included brain metastases on initial staging, histologic subtype of small-cell lung cancer, and no follow-up (18)F-FDG PET/CT examinations. After our exclusion criteria were applied, a total of 809 follow-up (18)F-FDG PET/CT scans in 227 patients were included in the final analysis. The original report of each (18)F-FDG PET/CT study was reviewed for the finding of brain metastasis. The finding of a new brain metastasis prompted a brain MRI, which was reviewed to determine the accuracy of the (18)F-FDG PET/CT. Results: Five of 227 patients with 809 follow-up (18)F-FDG PET/CT scans reviewed were found to have incidental brain metastases. The mean age of the patients with incidental brain metastasis was 68 y (range, 60-77 y). The mean time from initial diagnosis to time of detection of incidental brain metastasis was 36 mo (range, 15-66 mo). When MRI was used as the gold standard, our false-positive rate was zero. Conclusion: By including the entire head during follow-up (18)F-FDG PET/CT scans of patients with non-small cell lung cancer, brain metastases can be detected earlier while still asymptomatic. But, given the additional scan time, radiation, and low incidence of new brain metastases in asymptomatic patients, the cost-to-benefit ratio should be weighed by each institution. © 2017 by the

  19. Relationship between Tl-201, Tc-99m (Sn) pyrophosphate and F-18 2-deoxyglucose uptake in ischemically injured dog myocardium

    SciTech Connect

    Sochor, H.; Schwaiger, M.; Schelbert, H.R.; Huang, S.C.; Ellison, D.; Hansen, H.; Selin, C.; Parodi, O.; Phelps, M.E.

    1987-11-01

    We have previously demonstrated that enhanced glucose utilization in reperfused myocardium as assessed by F-18 2-deoxyglucose (FDG) and positron tomography predicts functional recovery. In this study, we compared segmental uptake of F-18 FDG with that of Tl-201 and Tc-99m (Sn) pyrophosphate (Tc-99m PPi) as conventional markers of tissue viability in seven dogs after a 3-hour intracoronary balloon occlusion and 20 hours of reperfusion. Myocardial blood flow was determined with microspheres. Regional retention fractions were calculated from tracer tissue concentrations, the arterial input function, and blood flow. Ischemic injury was assessed by triphenyltetrazolium chloride (TTC) staining and histologic analysis. At 24 hours, blood flow was 22% lower in reperfused than in control myocardium (p less than 0.05). Uptake of Tl-201 was related linearly to blood flow (r = 0.92), while glucose utilization and Tc-99m PPi were 2.9 (p less than 0.01) and 4.7 (p less than 0.05) times higher in reperfused than in control myocardium. Retention fractions of Tc-99m PPi increased with the degree of ischemic injury, while F-18 FDG uptake was highest in segments with mild cell injury. Thus, in ischemically injured myocardium, Tl-201 primarily reflects blood flow. F-18 FDG as a marker of glucose utilization identifies ischemically injured but viable tissue. The admixture of necrotic cells can be determined with Tc-99m PPi. Our results indicate that a dual tracer approach might best characterize the presence and extent of reversibly and of irreversibly injured tissue in a given myocardial region.

  20. Effect of α-Methyl versus α-Hydrogen Substitution on Brain Availability and Tumor Imaging Properties of Heptanoic [F-18]Fluoroalkyl Amino Acids for Positron Emission Tomography (PET).

    PubMed

    Bouhlel, Ahlem; Alyami, Wadha; Li, Aixiao; Yuan, Liya; Rich, Keith; McConathy, Jonathan

    2016-04-14

    Two [(18)F]fluoroalkyl substituted amino acids differing only by the presence or absence of a methyl group on the α-carbon, (S)-2-amino-7-[(18)F]fluoro-2-methylheptanoic acid ((S)-[(18)F]FAMHep, (S)-[(18)F]14) and (S)-2-amino-7-[(18)F]fluoroheptanoic acid ((S)-[(18)F]FAHep, (S)-[(18)F]15), were developed for brain tumor imaging and compared to the well-established system L amino acid tracer, O-(2-[(18)F]fluoroethyl)-l-tyrosine ([(18)F]FET), in the delayed brain tumor (DBT) mouse model of high-grade glioma. Cell uptake, biodistribution, and PET/CT imaging studies showed differences in amino acid transport of these tracer by DBT cells. Recognition of (S)-[(18)F]15 but not (S)-[(18)F]14 by system L amino acid transporters led to approximately 8-10-fold higher uptake of the α-hydrogen substituted analogue (S)-[(18)F]15 in normal brain. (S)-[(18)F]15 had imaging properties similar to those of (S)-[(18)F]FET in the DBT tumor model while (S)-[(18)F]14 afforded higher tumor to brain ratios due to much lower uptake by normal brain. These results have important implications for the future development of α-alkyl and α,α-dialkyl substituted amino acids for brain tumor imaging.

  1. MRI-based elastic-mapping method for inter-subject comparison of brain FDG-PET images

    SciTech Connect

    Yang, J.; Huang, S.C.; Lin, K.P.; Small, G.; Phelps, M.E.

    1996-12-31

    Inter-subject anatomic differences prohibits direct image-wise statistical evaluation of brain FDG-PET images of Alzheimer`s disease (AD) patients. In this study, we propose a MRI-based elastic-mapping method which enables image-wise evaluation. The method involves intra-subject MR-PET registration, 3-D elastic mapping of two set of MR images, and elastically transforming the co-registered PET images. The MR-PET registration used simulated PET images, which were based on segmentation of MR images. In the 3-D elastic mapping stage, first a global linear scaling was applied to compensate for brain size difference, then a deformation field was obtained by minimizing the regional sum of squared difference between the two sets of MR images. Two groups (AD patient and normal control), each with three subjects, were included in the current study. After processing, images from all subjects have similar shapes. Averaging the images across all subjects (either within the individual group or for both groups) give images indistinguishable from original single subject FDG images (i.e. without much spatial resolution loss), except with lower image noise level. The method is expected to allow statistical image-wise analysis to be performed across different subjects.

  2. Cerebrospinal fluid lactate levels and brain [18F]FDG PET hypometabolism within the default mode network in Alzheimer's disease.

    PubMed

    Liguori, Claudio; Chiaravalloti, Agostino; Sancesario, Giuseppe; Stefani, Alessandro; Sancesario, Giulia Maria; Mercuri, Nicola Biagio; Schillaci, Orazio; Pierantozzi, Mariangela

    2016-10-01

    It has been suggested that neuronal energy metabolism may be involved in Alzheimer's disease (AD). In this view, the finding of increased cerebrospinal fluid (CSF) lactate levels in AD patients has been considered the result of energetic metabolism dysfunction. Here, we investigated the relationship between neuronal energy metabolism, as measured via CSF lactate levels, and cerebral glucose metabolism, as stated at the 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography ([18F]FDG PET) in AD patients. AD patients underwent lumbar puncture to measure CSF lactate levels and [18F]FDG PET to assess brain glucose metabolism. CSF and PET data were compared to controls. Since patients were studied at rest, we specifically investigated brain areas active in rest-condition owing to the Default Mode Network (DMN). We correlated the CSF lactate concentrations with the [18F]FDG PET data in brain areas owing to the DMN, using sex, age, disease duration, Mini Mental State Examination, and CSF levels of tau proteins and beta-amyloid as covariates. AD patients (n = 32) showed a significant increase of CSF lactate levels compared to Control 1 group (n = 28). They also showed brain glucose hypometabolism in the DMN areas compared to Control 2 group (n = 30). Within the AD group we found the significant correlation between increased CSF lactate levels and glucose hypometabolism in Broadman areas (BA) owing to left medial prefrontal cortex (BA10, mPFC), left orbitofrontal cortex (BA11, OFC), and left parahippocampal gyrus (BA 35, PHG). We found high CSF levels of lactate and glucose hypometabolism within the DMN in AD patients. Moreover, we found a relationship linking the increased CSF lactate and the reduced glucose consumption in the left mPFC, OFC and PHG, owing to the anterior hub of DMN. These findings could suggest that neural glucose hypometabolism may affect the DMN efficiency in AD, also proposing the possible role of damaged brain energetic machine in

  3. An open tool for input function estimation and quantification of dynamic PET FDG brain scans.

    PubMed

    Bertrán, Martín; Martínez, Natalia; Carbajal, Guillermo; Fernández, Alicia; Gómez, Álvaro

    2016-08-01

    Positron emission tomography (PET) analysis of clinical studies is mostly restricted to qualitative evaluation. Quantitative analysis of PET studies is highly desirable to be able to compute an objective measurement of the process of interest in order to evaluate treatment response and/or compare patient data. But implementation of quantitative analysis generally requires the determination of the input function: the arterial blood or plasma activity which indicates how much tracer is available for uptake in the brain. The purpose of our work was to share with the community an open software tool that can assist in the estimation of this input function, and the derivation of a quantitative map from the dynamic PET study. Arterial blood sampling during the PET study is the gold standard method to get the input function, but is uncomfortable and risky for the patient so it is rarely used in routine studies. To overcome the lack of a direct input function, different alternatives have been devised and are available in the literature. These alternatives derive the input function from the PET image itself (image-derived input function) or from data gathered from previous similar studies (population-based input function). In this article, we present ongoing work that includes the development of a software tool that integrates several methods with novel strategies for the segmentation of blood pools and parameter estimation. The tool is available as an extension to the 3D Slicer software. Tests on phantoms were conducted in order to validate the implemented methods. We evaluated the segmentation algorithms over a range of acquisition conditions and vasculature size. Input function estimation algorithms were evaluated against ground truth of the phantoms, as well as on their impact over the final quantification map. End-to-end use of the tool yields quantification maps with [Formula: see text] relative error in the estimated influx versus ground truth on phantoms. The main

  4. Brain FDG-PET changes in ALS and ALS-FTD.

    PubMed

    Renard, Dimitri; Collombier, Laurent; Castelnovo, Giovanni; Fourcade, Genevieve; Kotzki, Pierre-Olivier; LaBauge, Pierre

    2011-12-01

    FDG-PET in ALS most typically demonstrates a primary (and sometimes also supplementary) motor cortex hypometabolism, often associated with more diffuse cortical hypometabolism involving mostly the dorsolateral prefrontal cortex, the medial and lateral premotor cortices, and the bilateral insular cortex involvement. In ALS-FTD, extensive temporal hypometabolism is seen in addition to severe diffuse frontal hypometabolism. This study analyses FDG-PET findings in 6 ALS patients and 4 ALS-FTD patients. In addition to earlier described areas of hypometabolism in ALS, we found also reduced FDG-PET metabolism in the medial frontal cortex, the orbitofrontal cortex, and the anterior temporal lobe in our ALS patients. The anterolateral area was the best preserved part of the frontal lobe in ALS patients. In ALS-FTD, frontal and temporal hypometabolism was severe (and parietal hypometabolism was often also present) with relatively preserved perirolandic metabolism. In ALS, more diffuse frontal and temporal FDG-PET hypometabolism was seen than earlier reported, with the anterolateral area as the best preserved part of the frontal lobe. In ALS-FTD, relatively preserved perirolandic metabolism was seen, associated with severe frontal and temporal hypometabolism.

  5. F18-fluorodeoxyglucose positron emission tomography in the context of other imaging techniques and prognostic factors in multiple myeloma

    PubMed Central

    Bartel, Twyla B.; Haessler, Jeff; Brown, Tracy L. Y.; Shaughnessy, John D.; van Rhee, Frits; Anaissie, Elias; Alpe, Terri; Angtuaco, Edgardo; Walker, Ronald; Epstein, Joshua; Crowley, John

    2009-01-01

    F18-fluorodeoxyglucose positron emission tomography (FDG-PET) is a powerful tool to investigate the role of tumor metabolic activity and its suppression by therapy for cancer survival. As part of Total Therapy 3 for newly diagnosed multiple myeloma, metastatic bone survey, magnetic resonance imaging, and FDG-PET scanning were evaluated in 239 untreated patients. All 3 imaging techniques showed correlations with prognostically relevant baseline parameters: the number of focal lesions (FLs), especially when FDG-avid by PET-computed tomography, was positively linked to high levels of β-2-microglobulin, C-reactive protein, and lactate dehydrogenase; among gene expression profiling parameters, high-risk and proliferation-related parameters were positively and low-bone-disease molecular subtype inversely correlated with FL. The presence of more than 3 FDG-avid FLs, related to fundamental features of myeloma biology and genomics, was the leading independent parameter associated with inferior overall and event-free survival. Complete FDG suppression in FL before first transplantation conferred significantly better outcomes and was only opposed by gene expression profiling-defined high-risk status, which together accounted for approximately 50% of survival variability (R2 test). Our results provide a rationale for testing the hypothesis that myeloma survival can be improved by altering treatment in patients in whom FDG suppression cannot be achieved after induction therapy. PMID:19443657

  6. Metabolic Brain Covariant Networks as Revealed by FDG-PET with Reference to Resting-State fMRI Networks

    PubMed Central

    Di, Xin

    2012-01-01

    Abstract The human brain is inherently organized as separate networks, as has been widely revealed by resting-state functional magnetic resonance imaging (fMRI). Although the large-scale functional connectivity can be partially explained by the underlying white-matter structural connectivity, the question of whether the underlying functional connectivity is related to brain metabolic factors is still largely unanswered. The present study investigated the presence of metabolic covariant networks across subjects using a set of fluorodeoxyglucose (18F, FDG) positron-emission tomography (PET) images. Spatial-independent component analysis was performed on the subject series of FDG-PET images. A number of networks that were mainly homotopic regions could be identified, including visual, auditory, motor, cerebellar, and subcortical networks. However, the anterior-posterior networks such as the default-mode and left frontoparietal networks could not be observed. Region-of-interest-based correlation analysis confirmed that the intersubject metabolic covariances within the default-mode and left frontoparietal networks were reduced as compared with corresponding time-series correlations using resting-state fMRI from an independent sample. In contrast, homotopic intersubject metabolic covariances observed using PET were comparable to the corresponding fMRI resting-state time-series correlations. The current study provides preliminary illustration, suggesting that the human brain metabolism pertains to organized covariance patterns that might partially reflect functional connectivity as revealed by resting-state blood oxygen level dependent (BOLD). The discrepancy between the PET covariance and BOLD functional connectivity might reflect the differences of energy consumption coupling and ongoing neural synchronization within these brain networks. PMID:23025619

  7. Brain metastases detectability of routine whole body (18)F-FDG PET and low dose CT scanning in 2502 asymptomatic patients with solid extracranial tumors.

    PubMed

    Bochev, Pavel; Klisarova, Aneliya; Kaprelyan, Ara; Chaushev, Borislav; Dancheva, Zhivka

    2012-01-01

    As fluorine-18-fluorodesoxyglucose positron emission tomography/computed tomography ( (18)F-FDG PET/CT) is gaining wider availability, more and more patients with malignancies undergo whole body PET/CT, mostly to assess tumor spread in the rest of the body, but not in the brain. Brain is a common site of metastatic spread in patients with solid extracranial tumors. Gold standard in the diagnosis of brain metastases remains magnetic resonance imaging (MRI). However MRI is not routinely indicated and is not available for all cancer patients. Fluorine-18-FDG PET is considered as having poor sensitivity in detecting brain metastases, but this may not be true for PET/CT. The aim of our study was to assess the value of (18)F-FDG PET/CT in the detection of brain metastases found by whole body scan including the brain, in patients with solid extracranial neoplasms. A total of 2502 patients with solid extracranial neoplasms were studied. All patients underwent a routine whole body (18)F-FDG PET/CT scan with the whole brain included in the scanned field. Patients with known or suspected brain metastases were preliminary excluded from the study. Hypermetabolic and ring-like brain lesions on the PET scan were considered as metastases. Lesions with CT characteristics of brain metastases were regarded as such irrespective of their metabolic pattern. Lesions in doubt were verified by MRI during first testing or on follow-up or by operation. Our results showed that brain lesions, indicative of and verified to be metastases were detected in 25 out of the 2502 patients (1%), with lung cancer being the most common primary. Twenty three out of these 25 patients had no neurological symptoms by the time of the scan. The detection rate of brain metastases was relatively low, but information was obtained with a minimum increase of radiation burden. In conclusion, whole body (18)F-FDG PET/CT detected brain metastases in 1% of the patients if brain was included in the scanned field. Brain

  8. 13N-ammonia combined with 18F-FDG could discriminate between necrotic high-grade gliomas and brain abscess.

    PubMed

    Shi, Xinchong; Yi, Chang; Wang, Xiaoyan; Zhang, Bing; Chen, Zhifeng; Tang, Ganghua; Zhang, Xiangsong

    2015-03-01

    Accurate prediction of brain abscess is beneficial for timely management. In this study, we investigated the utility of 13N-ammonia and its combination with 18F-FDG in differentiating brain abscess from necrotic high-grade gliomas. Thirteen patients with ring-like enhancement high-grade gliomas and 11 patients with brain abscess were recruited in our study. All of them underwent both 18F-FDG and 13N-ammonia PET imaging. Lesion uptake was evaluated by lesion to normal gray matter ratio (L/N). Histopathology diagnosis was obtained for all the patients after PET imaging. The L/N values of 18F-FDG were not significantly different between brain abscess and necrotic high-grade gliomas (P = 0.35). The uptake of 13N-ammonia in gliomas was higher than that in abscess lesions (L/N: 1.38 ± 0.31 vs 0.84 ± 0.18, P < 0.001). The receiver operating characteristic curve analysis determined the optimal L/N cutoff value (13N-ammonia) of 1.0 with the area under the curve of 0.94 and the overall accuracy of 87.5%. Discriminant analysis demonstrated that the combination of 18F-FDG and 13N-ammonia could distinguish the 2 clinical entities with higher accuracy of 95%, and only 1 necrotic glioma lesion was misclassified into the abscess group. 13N-ammonia is effective in distinguishing brain abscess from necrotic high-grade gliomas, and its combination with 18F-FDG could further elevate the diagnostic accuracy.

  9. Gender differences in healthy aging and Alzheimer's Dementia: A (18) F-FDG-PET study of brain and cognitive reserve.

    PubMed

    Malpetti, Maura; Ballarini, Tommaso; Presotto, Luca; Garibotto, Valentina; Tettamanti, Marco; Perani, Daniela

    2017-08-01

    Cognitive reserve (CR) and brain reserve (BR) are protective factors against age-associated cognitive decline and neurodegenerative disorders. Very limited evidence exists about gender effects on brain aging and on the effect of CR on brain modulation in healthy aging and Alzheimer's Dementia (AD). We investigated gender differences in brain metabolic activity and resting-state network connectivity, as measured by (18) F-FDG-PET, in healthy aging and AD, also considering the effects of education and occupation. The clinical and imaging data were retrieved from large datasets of healthy elderly subjects (HE) (225) and AD patients (282). In HE, males showed more extended age-related reduction of brain metabolism than females in frontal medial cortex. We also found differences in brain modulation as metabolic increases induced by education and occupation, namely in posterior associative cortices in HE males and in the anterior limbic-affective and executive networks in HE females. In AD patients, the correlations between education and occupation levels and brain hypometabolism showed gender differences, namely a posterior temporo-parietal association in males and a frontal and limbic association in females, indicating the involvement of different networks. Finally, the metabolic connectivity in both HE and AD aligned with these results, suggesting greater efficiency in the posterior default mode network for males, and in the anterior frontal executive network for females. The basis of these brain gender differences in both aging and AD, obtained exploring cerebral metabolism, metabolic connectivity and the effects of education and occupation, is likely at the intersection between biological and sociodemographic factors. Hum Brain Mapp 38:4212-4227, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  10. FDG-PET in the selection of brain lesions for biopsy

    SciTech Connect

    Hanson, M.W.; Glantz, M.J.; Hoffman, J.M.; Friedman, A.H.; Burger, P.C.; Schold, S.C.; Coleman, R.E. )

    1991-09-01

    The CT-guided stereotaxic needle biopsy has become a widely used procedure in the diagnostic evaluation of intracranial lesions including tumors. Conventional CT or MR frequently defines the anatomic regions of abnormality, which may be multiple lesions or a single lesion that is heterogeneous in cellular composition owing to the topographic variation of cellular constituency or the combination of active disease, nonspecific inflammation, necrosis, and/or edema. In these cases, selection of the most appropriate site for a successful diagnostic needle biopsy can be difficult. In three patients, we have used (18F)fluorodeoxyglucose (FDG) positron emission tomography (PET) to determine the site most likely to provide a diagnostic biopsy result. In the first patient, who presented with confusion, multiple biopsies from the temporal lobe, based on MR abnormalities, revealed only reactive gliosis and edema. Repeat biopsy directed by PET revealed an anaplastic astrocytoma. In a second patient, PET allowed us to differentiate radiation effect from active metastatic breast cancer. In the third patient, who presented with a grand mal seizure, biopsy of a CT-defined hypodense region demonstrated lymphocytosis. Metabolism of FDG was normal or increased in areas of Aspergillus encephalitis at autopsy. These preliminary studies suggest a complementary role for FDG-PET and CT or MR in selected patients for defining the intracranial site most likely to yield a positive biopsy result.

  11. Rare case of primary inferior vena cava leiomyosarcoma on F-18 fluorodeoxyglucose positron emission tomography-computed tomography scan: Differentiation from nontumor thrombus in a background of procoagulant state.

    PubMed

    Singh, Natasha; Shivdasani, Divya; Karangutkar, Sanket

    2014-10-01

    We report a rare case of leiomyosarcoma of the inferior vena cava (IVC) in which F-18 fluorodeoxyglucose (F-18 FDG) positron emission tomography-computed tomography (PET-CT) scan provided vital evidence, which led to its diagnosis, in a background of procoagulant state of the patient, where previous ultrasound-Doppler and echocardiography studies were nonspecific and revealed bilateral lower limb deep vein thrombosis with thrombus in IVC. The whole body F-18 FDG PET-CT scan was done in view of no significant improvement in clinical status of the patient over few months in spite of appropriate medical management. FDG PET-CT scan revealed high grade uptake in a large mass lesion occupying the right atrium, extending superiorly into terminal superior vena cava, inferiorly into dilated IVC and probably into hepatic veins. CT guided biopsy of this F-18 FDG avid mass was consistent with the diagnosis of leiomyosarcoma, which however was not amenable to surgery at this stage. F-18 FDG PET-CT accurately differentiated tumor mass from bland thrombus and further had a significant impact on the management, since aggressive surgery combined with adjuvant therapy offers the best outcome for patients with leiomyosarcoma of the IVC.

  12. Role of ¹⁸F-FDG PET imaging in paediatric primary dystonia and dystonia arising from neurodegeneration with brain iron accumulation.

    PubMed

    Szyszko, Teresa A; Dunn, Joel T; O'Doherty, Michael J; Reed, Laurence; Lin, Jean-Pierre

    2015-05-01

    No current neuroimaging modality offers mechanistic or prognostic information to guide management in paediatric dystonia. We assessed F-fluorodeoxyglucose (¹⁸F-FDG) PET/computed tomography (CT) brain imaging in childhood primary dystonia (PDS) and neurodegeneration with brain iron accumulation (NBIA) to determine whether it would identify altered metabolism and hence constitute a potentially useful 'biomarker' indicating functional disturbances associated with dystonia and severity of the disease. A total of 27 children (15 PDS and 12 NBIA) underwent brain ¹⁸F-FDG PET/CT imaging under anaesthesia during acquisition. The images were assessed visually and the two groups were compared quantitatively with statistical parametric mapping. PET/CT images were spatially transformed to Montreal Neurological Institute standard space. Voxelwise ¹⁸F-FDG uptake was normalized to whole-brain uptake. Data of both groups were correlated separately with duration and severity of dystonia as assessed using the Burke-Fahn-Marsden Dystonia Rating Scale (BFMDRS). Visual inspection did not identify any abnormalities in ¹⁸F-FDG uptake within the cerebral cortex, basal ganglia, or thalami in either group. Quantitative analysis identified higher uptake in the posterior cingulate and bilateral posterior putamina but decreased uptake in the occipital cortex and cerebellum in NBIA compared with PDS. The NBIA group had more severe dystonia scores compared with the PDS group. BFMDRS was negatively correlated with age but not with duration of dystonia. Compared with PDS, NBIA is dominated by relative overactivity in the putamen and by cerebellar underactivity, patterns that may reflect the increased severity of dystonia in NBIA cases. Hence, there is a potential role for ¹⁸F-FDG PET/CT imaging in paediatric dystonia, particularly in the NBIA group.

  13. Differential diagnosis of adrenal mass using imaging modality: special emphasis on f-18 fluoro-2-deoxy-d-glucose positron emission tomography/computed tomography.

    PubMed

    Lee, Hong Je; Lee, Jaetae

    2014-03-01

    Adrenal incidentalomas are adrenal masses serendipitously detected during an imaging study performed for reasons unrelated to suspicion of adrenal disease. The incidence of adrenal incidentalomas has increased because of the widespread use of various imaging modalities. In oncology patients with adrenal incidentalomas, the characterization of the adrenal masses is challenging because nearly 50% of incidental adrenal masses are metastatic lesions that need special medical attention. Although unenhanced computed tomography (CT) densitometry, chemical shift magnetic resonance imaging (MRI), delayed contrast-enhanced CT and CT histogram analysis have been used as sensitive and specific modalities for differentiating benign from malignant adrenal masses, F-18 fluoro-2-deoxy-D-glucose positron emission tomography (F-18 FDG PET)/CT is a highly accurate imaging modality compared to CT or MRI, especially when these two imaging modalities are combined. In addition, a semiquantitative analysis using standardized uptake value ratio further improves the diagnostic accuracy of F-18 FDG PET/CT in differentiating benign from malignant adrenal masses. Thus, F-18 FDG PET/CT is very helpful for determining the best therapeutic management, especially for assessing the need for surgery.

  14. Pathological correlations of [F-18]-AV-1451 imaging in non-alzheimer tauopathies.

    PubMed

    Marquié, Marta; Normandin, Marc D; Meltzer, Avery C; Siao Tick Chong, Michael; Andrea, Nicolas V; Antón-Fernández, Alejandro; Klunk, William E; Mathis, Chester A; Ikonomovic, Milos D; Debnath, Manik; Bien, Elizabeth A; Vanderburg, Charles R; Costantino, Isabel; Makaretz, Sara; DeVos, Sarah L; Oakley, Derek H; Gomperts, Stephen N; Growdon, John H; Domoto-Reilly, Kimiko; Lucente, Diane; Dickerson, Bradford C; Frosch, Matthew P; Hyman, Bradley T; Johnson, Keith A; Gómez-Isla, Teresa

    2017-01-01

    Recent studies have shown that positron emission tomography (PET) tracer AV-1451 exhibits high binding affinity for paired helical filament (PHF)-tau pathology in Alzheimer's brains. However, the ability of this ligand to bind to tau lesions in other tauopathies remains controversial. Our goal was to examine the correlation of in vivo and postmortem AV-1451 binding patterns in three autopsy-confirmed non-Alzheimer tauopathy cases. We quantified in vivo retention of [F-18]-AV-1451 and performed autoradiography, [H-3]-AV-1451 binding assays, and quantitative tau measurements in postmortem brain samples from two progressive supranuclear palsy (PSP) cases and a MAPT P301L mutation carrier. They all underwent [F-18]-AV-1451 PET imaging before death. The three subjects exhibited [F-18]-AV-1451 in vivo retention predominantly in basal ganglia and midbrain. Neuropathological examination confirmed the PSP diagnosis in the first two subjects; the MAPT P301L mutation carrier had an atypical tauopathy characterized by grain-like tau-containing neurites in gray and white matter with heaviest burden in basal ganglia. In all three cases, autoradiography failed to show detectable [F-18]-AV-1451 binding in multiple brain regions examined, with the exception of entorhinal cortex (reflecting incidental age-related neurofibrillary tangles) and neuromelanin-containing neurons in the substantia nigra (off-target binding). The lack of a consistent significant correlation between in vivo [F-18]-AV-1541 retention and postmortem in vitro binding and tau measures in these cases suggests that this ligand has low affinity for tau lesions primarily made of straight tau filaments. AV-1451 may have limited utility for in vivo selective and reliable detection of tau aggregates in these non-Alzheimer tauopathies. ANN NEUROL 2017;81:117-128. © 2016 American Neurological Association.

  15. Prospective Validation of 18F-FDG Brain PET Discriminant Analysis Methods in the Diagnosis of Amyotrophic Lateral Sclerosis.

    PubMed

    Van Weehaeghe, Donatienne; Ceccarini, Jenny; Delva, Aline; Robberecht, Wim; Van Damme, Philip; Van Laere, Koen

    2016-08-01

    An objective biomarker for early identification and accurate differential diagnosis of amyotrophic lateral sclerosis (ALS) is lacking. (18)F-FDG PET brain imaging with advanced statistical analysis may provide a tool to facilitate this. The objective of this work was to validate volume-of-interest (VOI) and voxel-based (using a support vector machine [SVM] approach) (18)F-FDG PET analysis methods to differentiate ALS from controls in an independent prospective large cohort, using a priori-derived classifiers. Furthermore, the prognostic value of (18)F-FDG PET was evaluated. A prospective cohort of patients with a suspected diagnosis of a motor neuron disorder (n = 119; mean age ± SD, 61 ± 12 y; 81 men and 38 women) was recruited. One hundred five patients were diagnosed with ALS (mean age ± SD, 61.0 ± 12 y; 74 men and 31 women) (group 2), 10 patients with primary lateral sclerosis (mean age ± SD, 55.5 ± 12 y; 3 men and 7 women), and 4 patients with progressive muscular atrophy (mean age ± SD, 59.2 ± 5 y; 4 men). The mean disease duration of all patients was 15.0 ± 13.4 mo at diagnosis, with PET conducted 15.2 ± 13.3 mo after the first symptoms. Data were compared with a previously gathered dataset of 20 screened healthy subjects (mean age ± SD, 62.4 ± 6.4 y; 12 men and 8 women) and 70 ALS patients (mean age ± SD, 62.2 ± 12.5 y; 44 men and 26 women) (group 1). Data were spatially normalized and analyzed on a VOI basis (statistical software (using the Hammers atlas) and voxel basis using statistical parametric mapping. Discriminant analysis and SVM were used to classify new cases based on the classifiers derived from group 1. Compared with controls, ALS patients showed a nearly identical pattern of hypo- and hypermetabolism in groups 1 and 2. VOI-based discriminant analysis resulted in an 88.8% accuracy in predicting the new ALS cases. For the SVM approach, this accuracy was 100%. Brain metabolism between ALS and primary lateral sclerosis patients was

  16. F18 Life Support: APECS and EDOX Cockpit Integration

    NASA Technical Reports Server (NTRS)

    Herrick, Paul

    1998-01-01

    Two systems are currently being integrated into the F18 Hornet support aircraft at NASA Dryden Flight Research Center (DFRC). The first system is the Aircrew Personal Environmental Control System (APECS). The system is designed to increase aircrew performance by combating heat stress in the cockpit. The second system is the Extended Duration Oxygen System (EDOX). This system will provide additional redundancy and oxygen system duration to the F18 without extensive modification to the current system.

  17. A follow-up ¹⁸F-FDG brain PET study in a case of Hashimoto's encephalopathy causing drug-resistant status epilepticus treated with plasmapheresis.

    PubMed

    Pari, Elisa; Rinaldi, Fabrizio; Premi, Enrico; Codella, Maria; Rao, Renata; Paghera, Barbara; Panarotto, Maria Beatrice; De Maria, Giovanni; Padovani, Alessandro

    2014-04-01

    Hashimoto's encephalopathy (HE) is a rare neuropsychiatric syndrome associated with antithyroid antibodies. It may have an acute onset (episodes of cerebral ischemia, seizure, and psychosis) or it may present as an indolent form (depression, cognitive decline, myoclonus, tremors, and fluctuations in level of consciousness). We here describe a case of encephalopathy presenting as non-convulsive status epilepticus associated with Hashimoto's thyroiditis (HT), unresponsive to corticosteroid therapy, with improvement after plasma exchange treatment. A previously healthy 19-year-old woman, presented generalized tonic-clonic seizures. About a month later, she manifested a speech disorder characterized by difficulties in the production and comprehension of language. Within a few days she also developed confusion and difficulties in recognizing familiar places, with gradual worsening over time. EEG revealed a non-convulsive status epilepticus (NCSE). CSF examination showed slightly elevated cell count and four oligoclonal bands. MRI was unremarkable, and (18)F-FDG brain PET showed widespread hypometabolism, mostly in posterior regions bilaterally. Laboratory and ultrasound findings showed signs of HT. Treatment with steroid was introduced without any improvement. After five sessions of plasma exchange there was a decrease of antithyroid antibodies, as well as EEG and clinical improvement. Three months after discharge (18)F-FDG brain PET showed a complete normalization of the picture, and the patient was asymptomatic. This report emphasizes the successful treatment of HE with plasma exchange in a patient who presented with NCSE. Based on the actual evidence, the term "Encephalopathy associated with Hashimoto's thyroiditis" may be the most proper. Furthermore, to our knowledge, this is the first case of an adult patient studied twice with an (18)F-FDG brain PET: prior to treatment with plasma exchange, and at 3 months follow-up when the patient was clinically completely

  18. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal (18)F-FDG and (18)F-DPA-714 PET imaging.

    PubMed

    Takkinen, Jatta S; López-Picón, Francisco R; Al Majidi, Rana; Eskola, Olli; Krzyczmonik, Anna; Keller, Thomas; Löyttyniemi, Eliisa; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja

    2017-08-01

    Preclinical animal model studies of brain energy metabolism and neuroinflammation in Alzheimer's disease have produced conflicting results, hampering both the elucidation of the underlying disease mechanism and the development of effective Alzheimer's disease therapies. Here, we aimed to quantify the relationship between brain energy metabolism and neuroinflammation in the APP/PS1-21 transgenic mouse model of Alzheimer's disease using longitudinal in vivo(18)F-FDG and (18)F-DPA-714) PET imaging and ex vivo brain autoradiography. APP/PS1-21 (TG, n = 9) and wild type control mice (WT, n = 9) were studied longitudinally every third month from age 6 to 15 months with (18)F-FDG and (18)F-DPA-714 with a one-week interval between the scans. Additional TG (n = 52) and WT (n = 29) mice were used for ex vivo studies. In vivo, the (18)F-FDG SUVs were lower and the (18)F-DPA-714 binding ratios relative to the cerebellum were higher in the TG mouse cortex and hippocampus than in WT mice at age 12 to 15 months ( p < 0.05). The ex vivo cerebellum binding ratios supported the results of the in vivo(18)F-DPA-714 studies but not the (18)F-FDG studies. This longitudinal PET study demonstrated decreased energy metabolism and increased inflammation in the brains of APP/PS1-21 mice compared to WT mice.

  19. Defining risk groups of patients with cancer of unknown primary site and cervical nodal metastases by F-18 fluorodeoxyglucose positron emission tomography and computed tomography imaging.

    PubMed

    Su, Yung-Yueh; Chen, Shih-Shin; Hsieh, Chia-Hsun; Liao, Chun-Ta; Lin, Chien-Yu; Kang, Chung-Jan; Yen, Tzu-Chen

    2016-08-01

    We sought to investigate the clinical utility of F-18 fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) in Taiwanese patients with cancer of unknown primary site (CUP) and cervical nodal metastases. We also aimed to study the impact of F-18 FDG PET/CT on clinical treatment priority in this patient group. Between September 2006 and May 2014, patients with CUP and cervical nodal metastases who underwent F-18 FDG PET/CT imaging study were retrospectively identified. The clinicopathological risk factors and PET parameters were analyzed in relation to 2-year overall survival (OS) rates using univariate and multivariate analyses. Two-year OS curves were plotted with the Kaplan-Meier method. Of the eligible patients (n = 54), 12 (22.2%) had distant metastases (DM) at presentation. A total of 13 (24.1%) and 15 (27.8%) primary tumors were identified by FDG PET/CT imaging and an additional triple biopsy, respectively. The results of multivariate analysis identified smoking [p = 0.033, 95% confidence interval (CI) = 1.197-40.342], a maximum standardized uptake value (SUVmax) of cervical nodes ≥ 14.2 (p = 0.035, 95% CI = 1.134-28.029), and DM at presentation (p = 0.031, 95% CI = 1.257-114.854) as independent predictors of 2-year OS. Specifically, patients who carried ≥ 2 risk factors showed poorer outcomes (70.3% vs. 11.8%, p < 0.001). Fifteen study patients (27.8%) had their treatment modified by FDG PET/CT findings. We conclude that FDG PET/CT is clinically useful in CUP patients not only for tumor staging, but also for modifying treatment regimens.

  20. Genetic and Environmental Influences on Regional Brain Uptake of 18F-FDG: A PET Study on Monozygotic and Dizygotic Twins.

    PubMed

    Watanabe, Shinichiro; Kato, Hiroki; Shimosegawa, Eku; Hatazawa, Jun

    2016-03-01

    Genetic or environmental influences on cerebral glucose metabolism are unknown. We attempted to reveal these influences in elderly twins by means of (18)F-FDG PET. (18)F-FDG uptake was studied in 40 monozygotic and 18 dizygotic volunteer twin pairs aged 30 y or over. We also created 18 control pairs by pairing age- and sex-matched genetically unrelated subjects from dizygotic and monozygotic pairs. SUV images of the brain were reconstructed and analyzed by voxel-based statistical analysis with automated region-of-interest setting. The (18)F-FDG uptake in each cerebral lobe was semiquantified by taking a ratio of SUVmean in each region of interest to whole-brain SUVaverage. We calculated an intraclass correlation coefficient of SUV ratio in each region of interest for monozygotic and dizygotic pairs. By comparing differences in coefficients between monozygotic and dizygotic pairs, genetic and environmental contributions were estimated. The intraclass correlation coefficient in monozygotic pairs was significantly higher than that in dizygotic pairs in the parietal lobes bilaterally (P < 0.001) and in the left temporal lobe (P < 0.05) but was not significantly different in other lobes. The present study indicated that in the right and left parietal lobes and left temporal lobe, cerebral glucose metabolism is influenced more by genetics than by environment, whereas in other brain regions the influence of environment is dominant. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Skeletal muscle metastases as the initial manifestation of an unknown primary lung cancer detected on F-18 fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Agrawal, Kanhaiyalal; Bhattacharya, Anish; Singh, Navneet; Harisankar, Chidambaram Natarajan Balasubramanian; Mittal, Bhagwant Rai

    2013-01-01

    Skeletal muscle metastasis as the initial presentation of the unknown primary lung cancer is unusual. A 65-year-old male patient presented with pain and swelling of the right forearm. Fine needle aspiration of the swelling revealed metastatic squamous cell carcinoma. The patient underwent whole body F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) to identify the site of the primary malignancy. The authors present PET/CT images showing FDG-avid metastases to the skeletal muscles along with a previously unknown primary tumor in the right lung, in a patient presenting with initial muscular symptoms without any pulmonary manifestations.

  2. A Case of Dedifferentiated Liposarcoma Showing a Biphasic Pattern on 2-Deoxy-2-F18-Fluoro-D-Glucose Positron Emission Tomography/Computed Tomography

    PubMed Central

    Hoshi, Manabu; Oebisu, Naoto; Takada, Jun; Wakasa, Kenichi; Nakamura, Hiroaki

    2013-01-01

    Abstract Integrated 2-deoxy-2-F18-fluoro-D-glucose positron emission tomography combined with computed tomography (FDG-PET/CT) has been used in the field of soft tissue sarcoma. We report an 81-year-old man with dedifferentiated liposarcoma in the left thigh, which was composed of well-differentiated liposarcoma and pleomorphic malignant fibrous histiocytoma. As well as other radiological modalities, FDG-PET was able to demonstrate a biphasic signal pattern composed of well-differentiated liposarcoma and dedifferentiated area, being consistent with the histological grade of malignancy. PMID:23888226

  3. Analysis of predictability of F-18 fluorodeoxyglucose-PET/CT in the recurrence of papillary thyroid carcinoma.

    PubMed

    Kim, Suk Kyeong; So, Young; Chung, Hyun Woo; Yoo, Young Bum; Park, Kyung Sik; Hwang, Tae Sook; Kim, Bokyung; Lee, Won Woo

    2016-10-01

    Whether preoperative F-18 fluorodeoxyglucose (FDG)-positron emission tomography/computed tomography (PET/CT) can predict recurrence of papillary thyroid carcinoma (PTC) remains unclear. Herein, we evaluated the potential of primary tumor FDG avidity for the prediction of tumor recurrence in PTC patients. A total of 412 PTC patients (72 males, 340 females; age: 47.2 ± 12.2 years; range: 17-84 years) who underwent FDG-PET/CT prior to total thyroidectomy (n = 350), subtotal thyroidectomy (n = 2), or lobectomy (n = 60) from 2007 to 2011 were analyzed. The predictive ability for recurrence was investigated among various clinicopathological factors, BRAF(V)(600E) mutation, and preoperative FDG avidity of the primary tumor using Kaplan-Meier (univariate) and Cox proportional hazards regression (multivariate) analyses. Of the 412 patients, 19 (4.6%) experienced recurrence, which was confirmed either by pathology (n = 17) or high serum thyroglobulin level (n = 2), during a mean follow-up period of 43.9 ± 16.6 months. Of the 412 patients, 237 (57.5%) had FDG-avid tumors (maximum standardized uptake value, 7.1 ± 7.0; range: 1.6-50.5). Kaplan-Meier analysis revealed that tumor size (P = 0.0054), FDG avidity of the tumor (P = 0.0049), extrathyroidal extension (P = 0.0212), and lymph node (LN) stage (P < 0.0001) were significant predictors for recurrence. However, only LN stage remained a significant predictor in the multivariate analysis (P < 0.0001). Patients with FDG-avid tumors had higher LN stage (P < 0.0001), larger tumor size (P < 0.0001), and more frequent extrathyroidal extension (P < 0.0001). In conclusion, FDG avidity of the primary tumor in preoperative FDG-PET/CT could not predict the recurrence of PTC. LN stage was the only identified predictor of PTC recurrence.

  4. Effectiveness of the addition of the brain region to the FDG-PET/CT imaging area in patients with suspected or diagnosed lung cancer.

    PubMed

    Tasdemir, Bekir; Urakci, Zuhat; Dostbil, Zeki; Unal, Kemal; Simsek, F Selcuk; Teke, Fatma; Goya, Cemil

    2016-03-01

    We aimed to evaluate the effectiveness of the brain region imaging in FDG-PET/CT scanning of patients with suspected or diagnosed lung cancer. We performed the study retrospectively on the medical charts of 427 patients. We divided the FDG-PET/CT field of view (FOV) into four major imaging regions: brain, head-neck, abdomen and pelvis. Metastatic findings on these regions were checked and determined the potential of these findings to affect the chemotherapy or radiotherapy protocol or surgical management. If metastatic findings had a potential to modify these parameters, we named this situation as "clinical contribution". Considering the number of bed positions of these regions, we calculated the clinical contribution of each region and named as "effective clinical contribution". Then, we calculated the metastatic findings, clinical contribution, and effective clinical contribution ratios. We found different brain metastasis ratios for lung cancer, solitary pulmonary mass (SPM), and solitary pulmonary nodule (SPN) groups (8.7, 2.8 and 0.9 %, respectively). In addition, the clinical contribution and effective clinical contribution ratios in the brain region for these three groups were 6.4, 2.8, 0.0 and 6.4, 2.8, 0.0 %, respectively. The highest metastatic findings (30.6 %) and clinical contribution (9.8 %) ratios were found in the abdomen region of the lung cancer group. However, the highest effective clinical contribution ratio (6.8 %) was found in the brain region within the same group. The addition of the brain region to the limited whole-body FOV in FDG-PET/CT scanning seems to be effective in the lung cancer and SPM groups, but not in the SPN group.

  5. Mapping the Binding Domain of the F18 Fimbrial Adhesin

    PubMed Central

    Smeds, A.; Pertovaara, M.; Timonen, T.; Pohjanvirta, T.; Pelkonen, S.; Palva, A.

    2003-01-01

    F18 fimbrial Esherichia coli strains are associated with porcine postweaning diarrhea and pig edema disease. Recently, the FedF subunit was identified as the adhesin of the F18 fimbriae. In this study, adhesion domains of FedF were further studied by constructing deletions within the fedF gene and expressing FedF proteins with deletions either together with the other F18 fimbrial subunits or as fusion proteins tagged with maltose binding protein. The region essential for adhesion to porcine intestinal epithelial cells was mapped between amino acid residues 60 and 109 of FedF. To map the binding domain even more closely, all eight charged amino acid residues within this region were independently replaced by alanine. Three of these single point mutants expressing F18 fimbriae exhibited significantly diminished capabilities to adhere to porcine epithelial cells in vitro. In addition, a triple point mutation and a double point mutation completely abolished receptor adhesiveness. The result further confirmed that the region between amino acid residues 60 and 109 is essential for the binding of F18 fimbriae to their receptor. In addition, the adhesion capability of the binding domain was eliminated after treatment with iodoacetamide, suggesting the formation of a disulfide bridge between Cys-63 and Cys-83, whereas Cys-111 and Cys-116 could be deleted without affecting the binding ability of FedF. PMID:12654838

  6. Specific α4β2 Nicotinic Acetylcholine Receptor Binding of [F-18]Nifene in the Rhesus Monkey

    PubMed Central

    Hillmer, A.T.; Wooten, D.W.; Moirano, J.; Slesarev, M.; Barnhart, T.E.; Engle, J.W.; Nickles, R.J.; Murali, D.; Schneider, M.; Mukherjee, J.; Christian, B.T.

    2013-01-01

    Objective [F-18]Nifene is a PET radioligand developed to image α4β2* nicotinic acetylcholine receptors (nAChR) in the brain. This work assesses the in vivo binding and imaging characteristics of [F-18]nifene in rhesus monkeys for the development of PET experiments examining nAChR binding. Methods Dynamic PET imaging experiments with [F-18]nifene were acquired in 4 anesthetized macaca mulatta (rhesus) monkeys using a microPET P4 scanner. Data acquisition was initiated with a bolus injection of 109 ± 17 MBq [F-18]nifene and the time course of the radioligand in the brain was measured for up to 120 minutes. For two experiments, a displacement dose of (−)nicotine (0.03 mg/kg, i.v.) was given 45–60 minutes post injection and followed 30 minutes later with a second [F-18]nifene injection to measure radioligand nondisplaceable uptake. Time activity curves were extracted in the regions of the antereoventral thalamus (AVT), lateral geniculate nucleus region (LGN), frontal cortex, and the cerebellum (CB). Results The highest levels of [F-18]nifene uptake were observed in the AVT and LGN. Target-to-CB ratios reached maximum values of 3.3 ± 0.4 in the AVT and 3.2 ± 0.3 in the LG 30–45 minutes post-injection. Significant binding of [F-18]nifene was observed in the subiculum, insula cortex, temporal cortex, cingulate gyrus, frontal cortex, striatum, and midbrain areas. The (−)nicotine displaced bound [F-18]nifene to near background levels within 15 minutes post-drug injection. No discernable displacement was observed in the CB, suggesting its potential as a reference region. Logan graphical estimates using the CB as a reference region yielded binding potentials (BPND) of 1.6 ± 0.1 in the AVT, and 1.3 ± 0.1 in the LGN. The post-nicotine injection displayed uniform nondisplaceable uptake of [F-18]nifene throughout gray and white brain matter. Conclusions [F-18]Nifene exhibits rapid equilibration and a moderately high target to background binding profile in the α4

  7. A quantitative analysis of the F18 flight control system

    NASA Technical Reports Server (NTRS)

    Doyle, Stacy A.; Dugan, Joanne B.; Patterson-Hine, Ann

    1993-01-01

    This paper presents an informal quantitative analysis of the F18 flight control system (FCS). The analysis technique combines a coverage model with a fault tree model. To demonstrate the method's extensive capabilities, we replace the fault tree with a digraph model of the F18 FCS, the only model available to us. The substitution shows that while digraphs have primarily been used for qualitative analysis, they can also be used for quantitative analysis. Based on our assumptions and the particular failure rates assigned to the F18 FCS components, we show that coverage does have a significant effect on the system's reliability and thus it is important to include coverage in the reliability analysis.

  8. A quantitative analysis of the F18 flight control system

    NASA Technical Reports Server (NTRS)

    Doyle, Stacy A.; Dugan, Joanne B.; Patterson-Hine, Ann

    1993-01-01

    This paper presents an informal quantitative analysis of the F18 flight control system (FCS). The analysis technique combines a coverage model with a fault tree model. To demonstrate the method's extensive capabilities, we replace the fault tree with a digraph model of the F18 FCS, the only model available to us. The substitution shows that while digraphs have primarily been used for qualitative analysis, they can also be used for quantitative analysis. Based on our assumptions and the particular failure rates assigned to the F18 FCS components, we show that coverage does have a significant effect on the system's reliability and thus it is important to include coverage in the reliability analysis.

  9. Falsely Negative F-18 FDG PET of Osteosarcoma Arising In Paget Disease.

    PubMed

    Bush, Lisabeth Ann; Toresdahl, Brett; Hoch, Benjamin; Chew, Felix S

    2009-01-01

    We present the case of a large, painful pelvic bone tumor in a 53-year-old woman with severe Paget disease. Her presentation was complicated with bilateral total hip arthroplasty, history of spinal stenosis, and multiple lucent lesions in the spine and pelvis in severely affected pagetoid bone. This case features the rare but dreaded complication of osteosarcomatous transformation in Paget disease. A variety of imaging modalities including PET/CT were utilized in the evaluation of these lesions. The PET/CT findings were counter-intuitive with regard to the intense uptake of the underlying chronic disease process and the near-absence of uptake in the tumors. The histology of the pelvic mass is also intriguing, as it demonstrated a sarcoma with giant cell features. Conservative, non-operative management was chosen, due to the patient's poor medical condition, so we may never know the nature of the spinal lesion in this case, but will discuss the differential diagnosis for a lytic spinal lesion in a patient with severe Paget disease complicated by osteosarcoma with giant cell features.

  10. [Influence of photon scattering on the quantification of relative changes in longitudinal brain PET studies with 18F-FDG].

    PubMed

    Aguiar Fernández, P; Falcón Falcón, C; Crespo Vázquez, C; Cot Sanz, A; Lomeña Caballero, F; Pavía Segura, J; Ros Puig, D

    2005-01-01

    To study the effect of photon scattering on the quantification of relative changes of 18F-FDG uptake in longitudinal brain PET studies. Two studies from a numerical Zubal phantom were simulated. One of these was a basal reference study and the other was an activated study showing an increase or decrease in the uptake in a region of the anterior cingulated cortex. SimSET Monte Carlo code was used to simulate PET sinograms. Primary photons, which did not undergo interactions, and scattered photons, which underwent one or more interactions, were stored in separate files to assess the effect of scattering. Reconstruction was carried out using an iterative algorithm based on ordered subsets of projections (OSEM-2D). The relative changes in uptake were calculated from images reconstructed with all the photons (primary and scattered) and from images reconstructed with only primary photons. A linear relationship between the calculated and theoretical values was obtained both for the images reconstructed with all the photons and for those reconstructed with primary photons. Our findings show a relative change recovery of 79% +/- 0.4% for all photons and 91% +/- 0.5% for primary photons only. Our results highlight subestimation of relative changes of 12% +/- 0.7% when scattered photons are used. Thus the importance of correcting this degradation in order to improve quantification is shown.

  11. Although Non-diagnostic Between Necrosis and Recurrence, FDG PET/CT Assists Management of Brain Tumours After Radiosurgery.

    PubMed

    Torrens, Michael; Malamitsi, Julia; Karaiskos, Pantelis; Valotassiou, Varvara; Laspas, Fotis; Andreou, John; Stergiou, Christos; Prassopoulos, Vassilis

    2016-01-01

    To re-evaluate the role of (18)F-fluoro-deoxy-D-glucose (FDG) positron emission tomography/ computer assisted tomography (PET/CT) co-registered with magnetic resonance imaging (MRI) in differentiating adverse radiation effect (ARE) from tumour recurrence after Gamma Knife radiosurgery of brain tumours. Twenty-seven PET/CT studies co-registered with MRI were performed on 16 patients after radiosurgery, with 12/16 patients having multiple radiosurgery treatments. Long term follow-up was used for evaluation, with 3/16 patients being histopathologically confirmed. PET/CT was positive in all studies in 6/16 patients, negative in all studies in 6/16 and changed from negative to positive in one. In 2/16 patients, PET/CT was both positive and negative in separate tumour foci. In 9/16 cases with a positive PET/CT, tumour was confirmed. In 6/16 patients with a negative PET/CT, 3/6 had recurrence and 3/6 ARE. In 1/16, equivocal results became negative after retreatment. PET/CT/MRI identified tumour within ARE. Sensitivity of PET/CT/MRI proved to be 64.7%, and specificity 100%. PET/CT/MRI assists management, by revealing metabolism rather than histology. Copyright © 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  12. Reversal of brain metabolic abnormalities following treatment of AIDS dementia complex with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine): a PET-FDG study

    SciTech Connect

    Brunetti, A.; Berg, G.; Di Chiro, G.; Cohen, R.M.; Yarchoan, R.; Pizzo, P.A.; Broder, S.; Eddy, J.; Fulham, M.J.; Finn, R.D.

    1989-05-01

    Brain glucose metabolism was evaluated in four patients with acquired immunodeficiency syndrome (AIDS) dementia complex using (/sup 18/F)fluorodeoxyglucose (FDG) and positron emission tomography (PET) scans at the beginning of therapy with 3'-azido-2',3'-dideoxythymidine (AZT, zidovudine), and later in the course of therapy. In two patients, baseline, large focal cortical abnormalities of glucose utilization were reversed during the course of therapy. In the other two patients, the initial PET study did not reveal pronounced focal alterations, while the post-treatment scans showed markedly increased cortical glucose metabolism. The improved cortical glucose utilization was accompanied in all patients by immunologic and neurologic improvement. PET-FDG studies can detect cortical metabolic abnormalities associated with AIDS dementia complex, and may be used to monitor the metabolic improvement in response to AZT treatment.

  13. Insufficiency of bone scintigraphy in vertebral lesions of langerhans cell histiocytosis compared to f-18 fluorodeoxyglucose positron emission tomography/computed tomography and diagnostic computed tomography.

    PubMed

    Koç, Zehra Pınar; Şimşek, Selçuk; Akarsu, Saadet; Balcı, Tansel Ansal; Onur, Mehmet Ruhi; Kepenek, Ferat

    2015-02-05

    Langerhans cell histiocytosis (LCH) is a benign disorder related to the histiocytes which can infiltrate bone tissue. The most effective method for demonstrating severity of this disease is PET/CT and bone scintigraphy might show bone lesions. We present a seventeen year old male patient with disseminated LCH presented with exophtalmos and having multiple vertebral lesions which were identified by F-18 FDG PET/CT scan and diagnostic CT but not in the bone scintigraphy.

  14. F-18 HARV With Nose Strakes For Forebody Vortex Control

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.

    1996-01-01

    Nose of F-18 High Alpha Research Vehicle (HARV) modified with conformal, mechanically actuated nose strakes for enhanced rolling (ANSER). Forebody vortex control effected by use of actuated strakes and/or other flow-control devices. System provides means to evaluate design tradeoffs.

  15. Two F-18s in Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This 32 second video clip shows two F-18s in NASA's Autonomous Formation Flight (AFF) program. The aircraft use smoke contrails to gather data on wingtip vortices. Flight research attempts to utilize the energy in the vortices for more efficient flight.

  16. [F-18]-(-,-)-FQNPe - an attractive ligand for evaluation of muscarinic-cholinergic neuron activity by PET

    SciTech Connect

    Luo, H.; McPherson, D.W.; Beets, A.L.; Knapp, F.F. Jr.

    1997-05-01

    The stereoisomers of 1-azabicyclo[2.2.2]oct-3-yl {alpha}-{alpha}-(1-fluoropentan-5-yl)-{alpha}-hydroxy-{alpha}-phenylacetate ({open_quotes}FQNPe{close_quotes}) have been resolved. (-,-)- receptors (K{sub i}, nM; ml, 0.3; m2, 0.1). [F-18]-(-,-)-FQNPe demonstrated high cerebral and myocardial uptake in rats in vivo. We now report significant blocking of [F-18]-(-.-)-FQNPe uptake in receptor-rich tissues in rats in vivo after (R)-QNB pretreatment and the absence of any TLC detectable FQNPe metabolites in tissue extracts. Rats were injected with (R)-QNB (3 mg/kg) 1 h prior to [F-18]-FQNPe injection (370-629 KBq). After 1 h, rats were sacrificed and tissues removed and counted. (R)-QNB significantly decreased FQNPe uptake in heart and all receptor-rich regions but not blood (Table; Mean % ID/g, n=5); C, control; Q, (R)-QNB; Hrt, heart; Cer, cerebellum; Pon, pons; Med, medulla; Cor, cortex; Stri, striatum; Hip, hippocampus; Th, thallamus; SuC, superior colliculi; InC, inferior colliculi. Tissues from untreated rats were Folch-extracted and 71-77% of activity was in organic extracts from brain and heart. TLC of organic extracts indicated a single radioactive component with R{sub f} of FQNPe. These combined results demonstrate that [F-18]-(-,-)-FQNPe does not appear to be metabolized in heart and brain, shows good receptor localization and is thus an attractive ligand for evaluation as a potential imaging agent by PET.

  17. Glucose Metabolic Changes in the Brain and Muscles of Patients with Nonspecific Neck Pain Treated by Spinal Manipulation Therapy: A [18F]FDG PET Study

    PubMed Central

    Inami, Akie; Ogura, Takeshi; Watanuki, Shoichi; Masud, Md. Mehedi; Shibuya, Katsuhiko; Miyake, Masayasu; Matsuda, Rin; Hiraoka, Kotaro; Itoh, Masatoshi; Fuhr, Arlan W.; Yanai, Kazuhiko

    2017-01-01

    Objective. The aim of this study was to investigate changes in brain and muscle glucose metabolism that are not yet known, using positron emission tomography with [18F]fluorodeoxyglucose ([18F]FDG PET). Methods. Twenty-one male volunteers were recruited for the present study. [18F]FDG PET scanning was performed twice on each subject: once after the spinal manipulation therapy (SMT) intervention (treatment condition) and once after resting (control condition). We performed the SMT intervention using an adjustment device. Glucose metabolism of the brain and skeletal muscles was measured and compared between the two conditions. In addition, we measured salivary amylase level as an index of autonomic nervous system (ANS) activity, as well as muscle tension and subjective pain intensity in each subject. Results. Changes in brain activity after SMT included activation of the dorsal anterior cingulate cortex, cerebellar vermis, and somatosensory association cortex and deactivation of the prefrontal cortex and temporal sites. Glucose uptake in skeletal muscles showed a trend toward decreased metabolism after SMT, although the difference was not significant. Other measurements indicated relaxation of cervical muscle tension, decrease in salivary amylase level (suppression of sympathetic nerve activity), and pain relief after SMT. Conclusion. Brain processing after SMT may lead to physiological relaxation via a decrease in sympathetic nerve activity. PMID:28167971

  18. Brain metabolic changes in Hodgkin disease patients following diagnosis and during the disease course: An 18F-FDG PET/CT study

    PubMed Central

    CHIARAVALLOTI, AGOSTINO; PAGANI, MARCO; CANTONETTI, MARIA; DI PIETRO, BARBARA; TAVOLOZZA, MARIO; TRAVASCIO, LAURA; DI BIAGIO, DANIELE; DANIELI, ROBERTA; SCHILLACI, ORAZIO

    2015-01-01

    The aim of the present study was to investigate brain glucose metabolism in patients with Hodgkin disease (HD) after diagnosis and during chemotherapy treatment. Following the administration of first-line doxorubicin, bleomycin, vinblastine and dacarbazine (ABVD) chemotherapy, 74 HD patients underwent 18F-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/computed tomography brain scans, both baseline (PET0) and interim (PET2) at the Department of Biomedicine and Prevention, University of Rome Tor Vergata (Rome, Italy). Fifty-seven patients were further evaluated 15±6 days after four additional cycles (PET6). Furthermore, a control group (CG) of 40 chemotherapy-naïve subjects was enrolled. Differences in brain 18F-FDG uptake between the CG, PET0, PET2 and PET6 scans were analyzed using statistical parametric mapping. Compared with the PET0 and CG scans, the PET2 scan demonstrated a higher metabolic activity in Brodmann area (BA) 39, and a metabolic reduction in BA 11 bilaterally and in left BA 32. All of these changes disappeared at PET6. The results of the present study indicate that ABVD chemotherapy has a limited impact on brain metabolism. PMID:25621038

  19. Evaluation of cancer detection with whole-body positron emission tomography (PET) and 2-[F-18]fluoro-2-deoxy-D-glucose

    NASA Astrophysics Data System (ADS)

    Hoh, Carl K.; Hawkins, Randall A.; Glaspy, John A.; Dahlbom, Magnus; Tse, Nielson Y.; Hoffman, Edward T.; Schiepers, Christiaan; Choi, Yong; Rege, Sheila; Nitzsche, Egbert U.; Maddahi, Jamshid; Phelps, Michael E.

    1993-08-01

    Until recently, positron emission tomography (PET) has been acquired and displayed in a standard transaxial image format. The development of whole body PET has allowed biochemical and physiologic imaging of the entire body, expanding the limited axial field of view of the conventional PET scanner. In this study, the application of whole body PET studies with 2-[F-18]fluoro-2-deoxy-D-glucose (FDG) for tumor imaging was evaluated. Whole body PET studies were positive (presence of focal FDG uptake relative to surrounding tissue activity) in 61 of 70 patients (87%) with biopsy confirmed malignant tumors. PET images failed to reveal focal hypermetabolism in 9 of the 70 patients. Of the 17 patients with benign biopsies lesions, 13 patients had whole body PET studies without focal areas of FDG uptake. Because of the high glycolytic rate of malignant tissue, the whole body PET FDG technique has promise in the detection of a wide variety of both primary and metastatic malignancies. The presence of FDG uptake in benign inflammatory conditions may limit the specificity of the technique. The true positive rates for the characterization of known lesions was 87% in this series, and the PET FDG method is promising both in determining both the nature of a localized lesion, and in defining the systemic extent of malignant disease.

  20. Reduced grey matter metabolism due to white matter edema allows optimal assessment of brain tumors on 18F-FDG-PET.

    PubMed

    Pourdehnad, Michael; Basu, Sandip; Duarte, Paulo; Okpaku, Aubrey S; Saboury, Babak; Hustinx, Roland; Alavi, Abass

    2011-01-01

    The main aim of this research was to demonstrate that the cortical and subcortical grey matter hypometabolism as revealed by fluorine-18 fluorodesoxyglucose-positron emission tomography ((18)F-FDG-PET) imaging in brain tumors is related to associated edema as demonstrated by magnetic resonance imaging (MRI). This in turn enhances the ability to assess disease activity in the tumor and the degree of loss of cerebral function in the adjacent and distant structures. We evaluated brain T1 and T2 weighted MRI and (18)F-FDG-PET scans of 29 patients (19 adult, 10 pediatric) with history of brain tumor. Tumor histology types included 21 gliomas, 1 melanoma, 1 primitive neuroectodermal tumor, 3 medulloblastomas and 3 ependymomas. The majority of scans were performed within the same week (94% <1 month. The extent of hypo and hypermetabolism was assessed on the (18)F-FDG-PET scans. A template of 12 regions of interest (ROI) was applied and the laterality indices of the regional counts (signal intensity) were computed. Extent of edema, enhancement, and anatomical change were assessed on the MRI scans. Extent of edema in the same ROI was evaluated by a 6-point semiquantitative scale and laterality indices were generated. Metabolic activity of the grey matter was correlated with the extent of edema using these indices. In all cases where edema was present, significant hypometabolism was observed in the adjacent structures. Overall, there was a strong correlation between the extent of edema and severity of hypometabolism (r=0.92, P=0.01). This was true regardless of the location of edema, whether there was history of radiation treatment (r=0.91, P=0.03), or not (r=0.97, P=0.17). In conclusion, edema independent of underlying variables appeared to contribute significantly to cortical and sub-cortical grey matter hypometabolism observed in patients with brain tumors. This would indicate that brain tumors can be successfully assessed by (18)F-FDG-PET and therefore the efforts for

  1. Construction and Evaluation of Quantitative Small-Animal PET Probabilistic Atlases for [18F]FDG and [18F]FECT Functional Mapping of the Mouse Brain

    PubMed Central

    Casteels, Cindy; Vunckx, Kathleen; Aelvoet, Sarah-Ann; Baekelandt, Veerle; Bormans, Guy; Van Laere, Koen; Koole, Michel

    2013-01-01

    Automated voxel-based or pre-defined volume-of-interest (VOI) analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([18F]FDG) and dopamine transporter ([18F]FECT) small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM) mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM) was explored for [18F]FDG and [18F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA) mice. Methods Twenty-three adult C57BL6 mice were scanned with [18F]FDG and [18F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [18F]FDG data were quantified using (1) an image-derived-input function obtained from the liver (cMRglc), using (2) standardized uptake values (SUVglc) corrected for blood glucose levels and by (3) normalizing counts to the whole-brain uptake. Parametric [18F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination. Results Registration accuracy was between 0.21–1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [18F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45–60 min time frame (spearman r = 0.71). Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an unilateral striatal decrease in DAT

  2. Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of (18)F-FDG PET Data.

    PubMed

    Pagani, Marco; Giuliani, Alessandro; Öberg, Johanna; De Carli, Fabrizio; Morbelli, Silvia; Girtler, Nicola; Arnaldi, Dario; Accardo, Jennifer; Bauckneht, Matteo; Bongioanni, Francesca; Chincarini, Andrea; Sambuceti, Gianmario; Jonsson, Cathrine; Nobili, Flavio

    2017-07-01

    Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. Methods: We implemented independent-component analysis of (18)F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups. Results: We could identify spatially distinct independent components in each group, with generation of local circuits increasing proportionally to the severity of the disease. AD-specific independent components first appeared in the late-MCI stage and could discriminate converting MCI and AD from nonconverting MCI with an accuracy of 83.5%. Progressive disintegration of the intrinsic networks from normal aging to MCI to AD was inversely proportional to the conversion time. Conclusion: Independent-component analysis of (18)F-FDG PET data showed a gradual disruption of functional brain connectivity with progression of cognitive decline in AD. This information might be useful as a prognostic aid for individual patients and as a surrogate biomarker in intervention trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  3. Numerical investigation of tail buffet on F-18 aircraft

    NASA Technical Reports Server (NTRS)

    Rizk, Yehia M.; Guruswamy, Guru P.; Gee, Ken

    1992-01-01

    Numerical investigation of vortex induced tail buffet is conducted on the F-18 aircraft at high angles of attack. The Reynolds-averaged Navier-Stokes equations are integrated using a time-accurate, implicit procedure. A generalized overset zonal grid scheme is used to decompose the computational space around the complete aircraft with faired-over inlet. A weak coupling between the aerodynamics and structures is assumed to compute the structural oscillation of the flexible vertical tail. Time-accurate computations of the turbulent flow around the F-18 aircraft at 30 degrees angle of attack show the surface and off-surface flowfield details, including the unsteadiness created by the vortex burst and its interaction with the vertical twin tail which causes the tail buffet. The effect of installing a LEX fence on modifying the vortex structure upstream of the tail is also examined.

  4. F-18 HARV final flight over Edwards AFB

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The final flight for the F-18 High Alpha Research Vehicle (HARV) took place at NASA Dryden Flight Research Center, Edwards, California, on May 29, 1996 and was flown by NASA pilot Ed Schneider. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.

  5. F-18 HARV final flight over Dryden FRC

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The final flight for the F-18 High Alpha Research Vehicle (HARV) took place at NASA Dryden Flight Research Center, Edwards, California, on May 29, 1996 and was flown by NASA pilot Ed Schneider. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.

  6. F-18 high alpha research vehicle: Lessons learned

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Regenie, Victoria A.; Flick, Bradley C.

    1994-01-01

    The F-18 High Alpha Research Vehicle has proven to be a useful research tool with many unique capabilities. Many of these capabilities are to assist in characterizing flight at high angles of attack, while some provide significant research in their own right. Of these, the thrust vectoring system, the unique ability to rapidly reprogram flight controls, the reprogrammable mission computer, and a reprogrammable onboard excitation system have allowed an increased utility and versatility of the research being conducted. Because of this multifaceted approach to research in the high angle of attack regime, the capabilities of the F-18 High Alpha Research Vehicle were designed to cover as many high alpha technology bases as the program would allow. These areas include aerodynamics, controls, handling qualities, and propulsion.

  7. F-18 HARV in flight refueling with KC-135 tanker

    NASA Technical Reports Server (NTRS)

    1995-01-01

    A thrust vectoring system can be seen mounted on the aft end of this NASA F-18 research aircraft at the Dryden Flight Research Center, Edwards, California, during an inflight refueling stop with a KC-135A (Serial #55-3135) tanker. The system was used to enhance its maneuverability and control at high angles of attack (high alpha) when conventional aerodynamic controls - ailerons, rudders, and elevators - are ineffective. The system features three spoon-shaped paddles mounted around the exhaust nozzles of each engine. The system, linked to the aircraft's flight control system, moves the paddles into the exhaust flow to redirect thrust for directional control and increased maneuverability at angles of attack near 70 degrees. First research flights with the system operating began during the spring of 1991. Data from the F-18 High Alpha Research Vehicle (HARV) program produced information to validate computer codes and wind tunnel results and led to design methods providing better performance in future aircraft.

  8. Synthesis of F-18 labeled resazurin by direct electrophilic fluorination.

    PubMed

    Kachur, Alexander V; Arroyo, Alejandro D; Popov, Anatoliy V; Saylor, Sarah J; Delikatny, E James

    2015-10-01

    We present the synthesis and characterization of F18-labeled fluorinated derivatives of resazurin, a probe for cell viability. The compounds were prepared by direct fluorination of resazurin with diluted [F18]-F2 gas under acidic conditions. The fluorination occurs into the ortho-positions to the hydroxyl group producing various mono-, di-, and trifluorinated derivatives. The properties of the fluorinated resazurins are similar to the parent compound with the addition of fluorine leading to decreased pKa values and a bathochromic shift of the absorption maxima. The fluorinated resazurin derivatives can be used as probes for observation of cell viability in various cells, tissues and organs using a combination of positron emission tomography and direct optical imaging of Cerenkov luminescence.

  9. Synthesis of F-18 labeled resazurin by direct electrophilic fluorination

    PubMed Central

    Kachur, Alexander V.; Arroyo, Alejandro D.; Popov, Anatoliy V.; Saylor, Sarah J.; Delikatny, E. James

    2015-01-01

    We present the synthesis and characterization of F18-labeled fluorinated derivatives of resazurin, a probe for cell viability. The compounds were prepared by direct fluorination of resazurin with diluted [F18]-F2 gas under acidic conditions. The fluorination occurs into the ortho-positions to the hydroxyl group producing various mono-, di-, and trifluorinated derivatives. The properties of the fluorinated resazurins are similar to the parent compound with the addition of fluorine leading to decreased pKa values and a bathochromic shift of the absorption maxima. The fluorinated resazurin derivatives can be used as probes for observation of cell viability in various cells, tissues and organs using a combination of positron emission tomography and direct optical imaging of Cerenkov luminescence. PMID:26504251

  10. Atomic Mass and Nuclear Binding Energy for F-18 (Fluorine)

    NASA Astrophysics Data System (ADS)

    Sukhoruchkin, S. I.; Soroko, Z. N.

    This document is part of the Supplement containing the complete sets of data of Subvolume A `Nuclei with Z = 1 - 54' of Volume 22 `Nuclear Binding Energies and Atomic Masses' of Landolt-Börnstein - Group I `Elementary Particles, Nuclei and Atoms'. It provides atomic mass, mass excess, nuclear binding energy, nucleon separation energies, Q-values, and nucleon residual interaction parameters for atomic nuclei of the isotope F-18 (Fluorine, atomic number Z = 9, mass number A = 18).

  11. Biological relationship between F18ab and F18ac fimbriae of enterotoxigenic and verotoxigenic Escherichia coli from weaned pigs with oedema disease or diarrhoea.

    PubMed

    Nagy, B; Whipp, S C; Imberechts, H; Bertschinger, H U; Dean-Nystrom, E A; Casey, T A; Salajka, E

    1997-01-01

    Comparative fimbrial expression and adhesion studies were made on enterotoxigenic and verotoxigenic E. coli (ETEC and VTEC) strains isolated from cases of porcine postweaning diarrhoea or oedema disease. F107(F18ab) fimbriae--monitored by polyclonal and monoclonal antibodies and by electron microscopy--were poorly expressed on most VTEC strains. In contrast, 2134P(F18ac) fimbriae were more readily detected on most ETEC strains. The F18ac strains adhered in vivo to ligated intestinal loops in weaned pigs while the F18ab strains did not adhere or adhered weakly. Similarly, the F18ac strains adhered to isolated intestinal brush borders in weaned pigs but the F18ab strains (except for the F107 reference E. coli) did not adhere or adhered weakly in vitro. Neither the F18ab nor F18ac strains adhered to brush borders from newborn pigs. In vitro adhesion of F18ab and F18ac strains was mannose resistant and receptors for F18 seemed to differ from receptors for K88(F4). It is concluded that the antigenic variants of F18 fimbriae (F18ab and F18ac) are biologically distinct. F18ab fimbriae are expressed poorly both in vitro and in vivo and are frequently linked with the production of SLT-IIv and serogroup O139, while F18ac are more efficiently expressed in vitro and in vivo and most often are linked with enterotoxin (STa, STb) production, and serogroups O141, O157.

  12. A New F-18 Labeled PET Agent For Imaging Alzheimer's Plaques

    SciTech Connect

    Kulkarni, Padmakar V.; Hao Guiyang; Arora, Veera; Long, Michael; Slavine, Nikolai; Chiguru, Srinivas; Qu Baoxi; Sun Xiankai; Bennett, Michael; Antich, Peter P.; Bonte, Frederick J.; Vasdev, Neil

    2011-06-01

    Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new class of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.

  13. A New F-18 Labeled PET Agent For Imaging Alzheimer's Plaques

    NASA Astrophysics Data System (ADS)

    Kulkarni, Padmakar V.; Vasdev, Neil; Hao, Guiyang; Arora, Veera; Long, Michael; Slavine, Nikolai; Chiguru, Srinivas; Qu, Bao Xi; Sun, Xiankai; Bennett, Michael; Antich, Peter P.; Bonte, Frederick J.

    2011-06-01

    Amyloid plaques and neurofibrillary tangles are hallmarks of Alzheimer's disease (AD). Advances in development of imaging agents have focused on targeting amyloid plaques. Notable success has been the development of C-11 labeled PIB (Pittsburgh Compound) and a number of studies have demonstrated the utility of this agent. However, the short half life of C-11 (t1/2: 20 min), is a limitation, thus has prompted the development of F-18 labeled agents. Most of these agents are derivatives of amyloid binding dyes; Congo red and Thioflavin. Some of these agents are in clinical trials with encouraging results. We have been exploring new class of agents based on 8-hydroxy quinoline, a weak metal chelator, targeting elevated levels of metals in plaques. Iodine-123 labeled clioquinol showed affinity for amyloid plaques however, it had limited brain uptake and was not successful in imaging in intact animals and humans. We have been successful in synthesizing F-18 labeled 8-hydroxy quinoline. Small animal PET/CT imaging studies with this agent showed high (7-10% ID/g), rapid brain uptake and fast washout of the agent from normal mice brains and delayed washout from transgenic Alzheimer's mice. These promising results encouraged us in further evaluation of this class of compounds for imaging AD plaques.

  14. Gender Differences of Brain Glucose Metabolic Networks Revealed by FDG-PET: Evidence from a Large Cohort of 400 Young Adults

    PubMed Central

    Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming

    2013-01-01

    Background Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. Materials and Methods FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25∼45 years, mean age±SD: 40.9±3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Results Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. Conclusion This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control

  15. Gender differences of brain glucose metabolic networks revealed by FDG-PET: evidence from a large cohort of 400 young adults.

    PubMed

    Hu, Yuxiao; Xu, Qiang; Li, Kai; Zhu, Hong; Qi, Rongfeng; Zhang, Zhiqiang; Lu, Guangming

    2013-01-01

    Gender differences of the human brain are an important issue in neuroscience research. In recent years, an increasing amount of evidence has been gathered from noninvasive neuroimaging studies supporting a sexual dimorphism of the human brain. However, there is a lack of imaging studies on gender differences of brain metabolic networks based on a large population sample. FDG PET data of 400 right-handed, healthy subjects, including 200 females (age: 25:45 years, mean age ± SD: 40.9 ± 3.9 years) and 200 age-matched males were obtained and analyzed in the present study. We first investigated the regional differences of brain glucose metabolism between genders using a voxel-based two-sample t-test analysis. Subsequently, we investigated the gender differences of the metabolic networks. Sixteen metabolic covariance networks using seed-based correlation were analyzed. Seven regions showing significant regional metabolic differences between genders, and nine regions conventionally used in the resting-state network studies were selected as regions-of-interest. Permutation tests were used for comparing within- and between-network connectivity between genders. Compared with the males, females showed higher metabolism in the posterior part and lower metabolism in the anterior part of the brain. Moreover, there were widely distributed patterns of the metabolic networks in the human brain. In addition, significant gender differences within and between brain glucose metabolic networks were revealed in the present study. This study provides solid data that reveal gender differences in regional brain glucose metabolism and brain glucose metabolic networks. These observations might contribute to the better understanding of the gender differences in human brain functions, and suggest that gender should be included as a covariate when designing experiments and explaining results of brain glucose metabolic networks in the control and experimental individuals or patients.

  16. Role of F-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of recurrence in patients with cervical cancer.

    PubMed

    Bhoil, Amit; Mittal, Bhagwant Rai; Bhattacharya, Anish; Santhosh, Sampath; Patel, Firuza

    2013-10-01

    Treatment of cervical cancer is usually surgery in the early stages and radiotherapy or chemoradiotherapy in more advanced stages of the disease. Recurrence may occur in multiple sites following primary treatment. Although recurrent metastatic disease is not curable, surgical treatment may be of great help if locoregional recurrence is detected early. Fluorine-18 Fluorodeoxyglucose positron emission tomography - computed tomography (F-18 FDG PET/CT) forms an important part of investigations in the diagnosis of clinically suspicious recurrent cervical cancer. To assess the role of F-18 FDG PET/CT in diagnosing recurrence in patients with clinical suspicion of recurrent cervical cancer. We retrospectively evaluated 53 histopathologically proved patients of cervical cancer. All the patients had been treated with either surgery/radiation therapy with or without chemotherapy. The standard PET/CT acquisition protocol, with delayed post void static pelvic images, wherever required, was followed in all patients. Significant uptake of FDG in the lymph nodes was considered to be a recurrence suggestive of metastasis. Para-aortic lymph nodal involvement was considered to be distant metastasis. Any significant uptake in the lung nodule on FDG PET was evaluated either by histological confirmation, by taking fine needle aspiration cytology (FNAC), or by a follow-up chest CT done after three months. Of the 53 patients with clinically equivocal recurrence, FDG PET/CT suggested recurrence in 41 patients (local recurrence in 14 patients and distant recurrence/metastasis with or without local recurrence in 27 patients). It had a sensitivity of 97.5%, a specificity of 63.6%, positive predictive value of 90.9%, and negative predictive value of 87.5%. PET/CT appears to have an important role in detecting recurrence following primary treatment of cervical cancer. The high positive and negative predictive values of PET/CT may be helpful in planning management of recurrent cervical cancer.

  17. Unusual Soft Tissue Uptake of F-18 Sodium Fluoride in Three Patients Undergoing F-18 NaF PET/CT Bone Scans for Prostate Cancer.

    PubMed

    Hawkins, Andrew S; Howard, Brandon A

    2017-09-01

    Three males aged 71 to 80 years with known stage IV metastatic prostate cancer underwent F-18 sodium fluoride (NaF) PET/CT to assess osseous metastatic disease burden and stability. In addition to F-18 NaF avid known osseous metastases, each patient also exhibited increased F-18 NaF activity in soft tissues. The first patient exhibited multiple F-18 NaF avid enlarged retroperitoneal and pelvic lymph nodes on consecutive PET/CT scans. The second patient demonstrated an F-18 NaF avid thyroid nodule on consecutive PET/CT scans. The third patient exhibited increased F-18 NaF activity in a hepatic metastasis.

  18. F-18 HARV in flight with actuated nose strakes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's F-18 from the Dryden Flight Research Center, Edwards, California, soars over the Mojave Desert while flying the third and final phase of the HARV (High Alpha Research Vehicle) program. A set of control surfaces called strakes were installed in the nose of the aircraft. The strakes, outlined in gold and white, provided improved yaw control at steep angles of attack. Normally folded flush, the units -- four feet long and six inches wide -- can be opened independently to interact with the nose vortices to produce large side forces for control. Testing involved evaluation of the strakes by themselves as well as combined with the aircraft's Thrust Vectoring System. The strakes were designed by NASA's Langley Research Center, then installed and flight tested at Dryden.

  19. F-18 HARV in flight with actuated nose strakes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's F-18 from the Dryden Flight Research Center, Edwards, California, soars over the Mojave Desert while flying the current phase of the HARV (High Alpha Research Vehicle) program. A set of control surfaces called strakes were installed in the nose of the aircraft. The strakes, outlined in gold and white, provided improved yaw control at steep angles of attack. Normally folded flush, the units -- four feet long and six inches wide -- can be opened independently to interact with the nose vortices to produce large side forces for control. Testing involved evaluation of the strakes by themselves as well as combined with the aircraft's Thrust Vectoring System. The strakes were designed by NASA's Langley Research Center, then installed and flight tested at Dryden.

  20. Experiments With Recirculating Target for F-18 Production

    NASA Astrophysics Data System (ADS)

    Kiselev, M. Y.

    2003-08-01

    Approximately 10 ml of O-18 water was loaded in an apparatus containing a 5 ml storage vessel, pump, silver target attached to a cyclotron, filter, backpressure regulator, conductivity meter, several valves and ion exchange cartridges. The water was continuously pumped through the target during proton bombardment at a rate 5 ml/min. Continuous irradiation with beam current ranging from 10 to 50 uA was conducted while pressure, temperature and conductivity were continuously monitored. The results indicate that recirculating of the target water can increase production of F-18 in relation to consumed O-18 water material. It can also increase productivity by eliminating idle periods for re-filling the target. A backpressure regulator can precisely control target pressure. This method also allows for continuous monitoring of the target material temperature, pressure, conductivity and accumulated radioactivity. Results of these observations provide important information about target performance and physical processes taking place inside the target.

  1. Relationship between baseline brain metabolism measured using [¹⁸F]FDG PET and memory and executive function in prodromal and early Alzheimer's disease.

    PubMed

    Habeck, Christian; Risacher, Shannon; Lee, Grace J; Glymour, M Maria; Mormino, Elizabeth; Mukherjee, Shubhabrata; Kim, Sungeun; Nho, Kwangsik; DeCarli, Charles; Saykin, Andrew J; Crane, Paul K

    2012-12-01

    Differences in brain metabolism as measured by FDG-PET in prodromal and early Alzheimer's disease (AD) have been consistently observed, with a characteristic parietotemporal hypometabolic pattern. However, exploration of brain metabolic correlates of more nuanced measures of cognitive function has been rare, particularly in larger samples. We analyzed the relationship between resting brain metabolism and memory and executive functioning within diagnostic group on a voxel-wise basis in 86 people with AD, 185 people with mild cognitive impairment (MCI), and 86 healthy controls (HC) from the Alzheimer's Disease Neuroimaging Initiative (ADNI). We found positive associations within AD and MCI but not in HC. For MCI and AD, impaired executive functioning was associated with reduced parietotemporal metabolism, suggesting a pattern consistent with known AD-related hypometabolism. These associations suggest that decreased metabolic activity in the parietal and temporal lobes may underlie the executive function deficits in AD and MCI. For memory, hypometabolism in similar regions of the parietal and temporal lobes were significantly associated with reduced performance in the MCI group. However, for the AD group, memory performance was significantly associated with metabolism in frontal and orbitofrontal areas, suggesting the possibility of compensatory metabolic activity in these areas. Overall, the associations between brain metabolism and cognition in this study suggest the importance of parietal and temporal lobar regions in memory and executive function in the early stages of disease and an increased importance of frontal regions for memory with increasing impairment.

  2. An evaluation of [F-18]-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma.

    PubMed

    Newman, Erik N; Jones, Robin L; Hawkins, Douglas S

    2013-07-01

    Staging investigations following the diagnosis of Ewing sarcoma may include chest computerized tomography (CT), technetium bone scintigraphy (bone scan), [F-18]-fluorodeoxy-D-glucose positron emission tomography (FDG-PET) scan, and bone marrow biopsy and aspiration (BMA/Bx). Each of these staging investigations provides complementary prognostic information, however the optimal combination of staging investigations is not clear. We conducted a retrospective study of 91 patients diagnosed with Ewing sarcoma and consecutively treated at our medical facilities between January 1, 2001 and December 31, 2011. We compared the radiologist's interpretations of staging FDG-PET and bone scans. We additionally compared the results of imaging evaluations to bilateral and unilateral BMA/Bx. We found FDG-PET and bone scan to have an examination-based concordance rate of 98% (one discordant case with a positive FDG-PET and negative bone scan). The region-based concordance rate for the imaging modalities was 97% for all cases and 63% for metastatic cases. The ipsilateral concordance rate for BMA/Bx was 98% with BMBx detecting metastases in seven cases and BMA detecting metastases in four cases. The left versus right concordance rates for BMBx and BMA were 98% and 97%, respectively. In all cases where bone marrow metastases were detected by BMA or BMBx, FDG-PET and bone scan detected osseous metastases. Our study indicates FDG-PET may be sufficient for initial screening for osseous metastases and identified all patients who also have bone marrow metastases. If osseous metastases are detected, a bone scan can detect additional osseous lesions and BMBx may indicate prognostic bone marrow metastases. Copyright © 2012 Wiley Periodicals, Inc.

  3. Diffuse increased splenic F-18 fluorodeoxyglucose uptake may be an indirect sign of acute pyogenic cause rather than tuberculous in patients with infectious spondylitis.

    PubMed

    Kim, Keunyoung; Kim, Seong-Jang; Kim, In Joo; Kim, Bum Soo; Pak, Kyoungjune; Kim, Heeyoung

    2011-12-01

    The aim of this study was to investigate whether diffuse increased splenic fluorodeoxyglucose (FDG) uptake may be an indirect sign of an acute pyogenic cause of infectious spondylitis (IS). A retrospective review identified consecutive records of patients with IS who underwent F-18 FDG positron emission tomography-computed tomography scans between January 2007 and July 2008 and recruited 23 patients (57.8 ± 15.6 years, range: 20-81 years, eight men, 15 women) and their hematological laboratory data. The regions of interest were used to measure the maximum standardized uptake value (SUVmax) for the bone marrow (BM), liver, and spleen in each patient. We calculated the spleen/liver ratio (S/L ratio) by dividing the spleen SUVmax by liver SUVmax and the spleen/BM ratio (S/B ratio) by dividing spleen SUVmax by BM SUVmax as a parameter to assess the splenic FDG uptake. The acute pyogenic cause of the IS group showed statistically significantly higher values of spleen SUVmax (median, 1.71 vs. 1.16, P=0.0108), S/L ratio (median, 1.08 vs. 0.88, P=0.0454), and S/B ratio (median, 1.30 vs. 0.94, P=0.0055) than the chronic tuberculous cause of the IS. The optimal cut-off values for the quantitative indices were spleen SUVmax>1.49, S/B ratio>0.957, and S/L ratio>0.889. On the basis of the results presented, this study demonstrated that some quantitative indices from F-18 FDG positron emission tomography/computed tomography images could be indirect signs of an acute pyogenic cause of the IS. Among the various quantitative indices, spleen SUVmax, S/B ratio, and S/L ratio were potent indicators for an acute pyogenic cause of the IS.

  4. F-18 SRA in banked flight over lakebed

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's F/A-18 Hornet is seen here in a banked turn over Rogers Dry Lake in the Mojave desert on an early research flight. Currently being flown by NASA's Dryden Flight Research Center, Edwards, California, in a multi-year, joint NASA/DOD/industry program, the former Navy fighter has been modified into a unique Systems Research Aircraft (SRA) to investigate a host of new technologies in the areas of flight controls, airdata sensing and advanced computing. One of the more than 20 experiments being tested aboard the SRA F-18 is an advanced air data sensing system which uses a group of pressure taps flush-mounted on the forward fuselage to measure both altitude and wind speed and direction--critical data for flight control and research investigations. The Real-Time Flush Air Data Sensing system concept is being evaluated for possible use on the X-33 and X-34 resuable space-launch vehicles. The primary goal of the SRA program is to validate through flight research cutting-edge technologies which could benefit future aircraft and spacecraft by improving efficiency and performance, reducing weight and complexity, with a resultant reduction on development and operational costs.

  5. F-18 production with the TOP linac injector

    NASA Astrophysics Data System (ADS)

    Cianfarani, Cesidio; Cisbani, Evaristo; Orlandi, Gianluca; Frullani, Salvatore; Picardi, Luigi; Ronsivalle, Concetta

    2006-06-01

    ENEA and ISS (Italian National Institute of Health), are collaborating to develop a dedicated proton medical accelerator, TOP (Oncological Therapy with Protons) linac, consisting of a sequence of three pulsed linear accelerators. The 7 MeV injector can be used in three operating modes: Protontherapy and Radiobiology Mode—injecting low current proton beam into the TOP linac accelerating sections; Radioisotope Mode—generating an intense proton beam (8-10 mA, 50-100 μs, 30-100 Hz) to produce the positron-emitting radionuclide F18 for PET analyses. In the high current mode, at the exit of the injector the beam is guided through a magnetic quadrupoles channel to a target composed by a thin chamber (0.5 mm thick and 1 in. diameter) containing water enriched with O18. Production yield as well as total activity similar to these achieved with higher energy cyclotrons have been obtained. Environmental doses measured give indications on the shielding required for operation under current radioprotection regulations. Improvements are foreseen to optimize the production yield, the useful beam current and to better characterize gamma and neutron dose rates in the different operational modes.

  6. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer’s Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET

    PubMed Central

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-01-01

    Alzheimer’s disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18F-labed fluorodeoxyglucose (18F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer’s cognition after cognitive decline, at least in animals. PMID:27763550

  7. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer's Disease Assessed in APP/PS1 Transgenic Mice Using (18)F-FDG-PET.

    PubMed

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-10-18

    Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using (18)F-labed fluorodeoxyglucose ((18)F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.

  8. Functional neuroimaging in epilepsy: FDG PET and ictal SPECT.

    PubMed Central

    Lee, D. S.; Lee, S. K.; Lee, M. C.

    2001-01-01

    Epileptogenic zones can be localized by F-18 fluorodeoxyglucose positron emission tomography (FDG PET) and ictal single-photon emission computed tomography(SPECT). In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG PET or ictal SPECT is excellent, however, the sensitivity of MRI is so high that the incremental sensitivity by FDG PET or ictal SPECT has yet to be proven. When MRI findings are ambiguous or normal, or discordant with those of ictal EEG, FDG PET and ictal SPECT are helpful for localization without the need for invasive ictal EEG. In neocortical epilepsy, the sensitivities of FDG PET or ictal SPECT are fair. However, because almost a half of the patients are normal on MRI, FDG PET and ictal SPECT are helpful for localization or at least for lateralization in these non-lesional epilepsies in order to guide the subdural insertion of electrodes. Interpretation of FDG PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods confirmed the performance of previous visual interpretation results. Ictal SPECT was analyzed using subtraction methods(coregistered to MRI) and voxel-based analysis. Rapidity of injection of tracers, HMPAO versus ECD, and repeated ictal SPECT, which remain the technical issues of ictal SPECT, are detailed. PMID:11748346

  9. A voxel-based analysis of FDG-PET in traumatic brain injury: regional metabolism and relationship between the thalamus and cortical areas.

    PubMed

    García-Panach, Javier; Lull, Nuria; Lull, Juan José; Ferri, Joan; Martínez, Carlos; Sopena, Pablo; Robles, Montserrat; Chirivella, Javier; Noé, Enrique

    2011-09-01

    The objective was to study the correlations and the differences in glucose metabolism between the thalamus and cortical structures in a sample of severe traumatic brain injury (TBI) patients with different neurological outcomes. We studied 49 patients who had suffered a severe TBI and 10 healthy control subjects using 18F-fluorodeoxyglucose positron emission tomography (18F-FDG-PET). The patients were divided into three groups: a vegetative or minimally-conscious state (MCS&VS) group (n=17), which included patients who were in a vegetative or a minimally conscious state; an In-post-traumatic amnesia (In-PTA) group (n=12), which included patients in PTA; and an Out-PTA group (n=20), which included patients who had recovered from PTA. SPM5 software was used to determine the metabolic differences between the groups. FDG-PET images were normalized and four regions of interest were generated around the thalamus, precuneus, and the frontal and temporal lobes. The groups were parameterized using Student's t-test. Principal component analysis was used to obtain an intensity-estimated-value per subject to correlate the function between the structures. Differences in glucose metabolism in all structures were related to the neurological outcome, and the most severe patients showed the most severe hypometabolism. We also found a significant correlation between the cortico-thalamo-cortical metabolism in all groups. Voxel-based analysis suggests a functional correlation between these four areas, and decreased metabolism was associated with less favorable outcomes. Higher levels of activation of the cortico-cortical connections appear to be related to better neurological condition. Differences in the thalamo-cortical correlations between patients and controls may be related to traumatic dysfunction due to focal or diffuse lesions.

  10. F-15B and F-18 SRA in flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA's F-15B (upper right), later used for aerodynaic flight research, is seen here with the F/A-18B Systems Research Aircraft, on a flight from the Dryden Flight Research Facility, Edwards, California. Currently being flown by Dryden in a multi-year, joint NASA/DOD/industry program, the F/A-18B has been modified into a unique Systems Research Aircraft (SRA) to investigate a host of new technologies in the areas of flight controls, airdata sensing and advanced computing. One of the more than 20 experiments being tested aboard the SRA F-18 is an advanced air data sensing system which uses a group of pressure taps flush-mounted on the forward fuselage to measure both altitude and wind speed and direction--critical data for flight control and research investigations. The Real-Time Flush Air Data Sensing system concept is being evaluated for possible use on the X-33 and X-34 resuable space-launch vehicles. The primary goal of the SRA program is to validate through flight research cutting-edge technologies which could benefit future aircraft and spacecraft by improving effeciency and performance, reducing weight and complexity, with a resultant reduction on development and operational costs. NASA's F-15B aircraft is being used by Dryden as an aerospace research aircraft. Certain experiments can be placed on the Flight Test Fixture, which is mounted under the fuselage. The research projects can then be subjected to different aerodynamic loads, speeds and temperatures. The F-15B, No. 836, was acquired in 1993 and is also used at Dryden as a research support aircraft.

  11. Hypermetabolic pattern in frontal cortex and other brain regions in unmedicated schizophrenia patients. Results from a FDG-PET study.

    PubMed

    Soyka, M; Koch, W; Möller, H J; Rüther, T; Tatsch, K

    2005-10-01

    We report results of a FDG-PET study in 10 patients with schizophrenia (6 unmedicated, 4 never medicated) and 12 healthy age-matched controls. The patients met ICD-10 and DSM-IV criteria for schizophrenia and all reported psychotic, "positive" symptoms when tested. Schizophrenic patients had higher absolute CMRGlu values in almost all quantified regions compared to normal subjects. Using the occipital cortex as the reference region patients showed a hyperfrontal metabolic pattern. Other significant regional differences were found with respect to thalamus, striatum and temporal cortex. The finding of a hyperfrontality in un- and never medicated psychotic schizophrenic patients must be discussed in the light of the psychopathological symptoms of patients when tested, a possible disruption of cortico-striato-thalamic feedback loops and recent findings of a hyperfrontality in experimentally induced psychosis (ketamine- and psilocybin-model of schizophrenia).

  12. FDG uptake in cervical facet subchondral cysts demonstrated by PET/CT.

    PubMed

    Lin, Eugene; Sicuro, Paul

    2008-04-01

    F-18 fluorodeoxyglucose (FDG) uptake in facet joints related to degenerative disease has been previously described. However, FDG uptake in subchondral cysts is the subject of this report. We describe 2 cases of intense focal FDG uptake in subchondral cysts in the cervical facets seen on positron emission tomography/computed tomography (PET/CT) exams. The location of these cysts immediately adjacent to the facet joints and the presence of associated facet joint degenerative changes are helpful in distinguishing this uptake from metastatic disease or other bone lesions.

  13. The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California

    NASA Image and Video Library

    2004-10-04

    The F-18 simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The F-18 Hornet is used primarily as a safety chase and mission support aircraft at NASA's Dryden Flight Research Center, Edwards, California. As support aircraft, the F-18's are used for safety chase, pilot proficiency, aerial photography and other mission support functions.

  14. F-18 Fluorodeoxyglucose Positron Emission Tomography study of Impaired Emotion Processing in First Episode Schizophrenia

    PubMed Central

    Choudhary, Mona; Kumar, Arvind; Tripathi, Madhavi; Bhatia, Triptish; Shivakumar, Venkataram; Beniwal, Ram Pratap; Gur, Ruben C.; Gur, Raquel E.; Nimgaonkar, Vishwajit L.

    2015-01-01

    Background Schizophrenia cases have consistently shown to have behavioural and neurofunctional abnormalities but studies during early course are scarce. The present work assesses the performance of acute first episode schizophrenia cases on correlation of a facial emotion perception task with brain function using Fluorine-18 Fluorodeoxyglucose (FDG) positron emission tomography (PET). Methods Twenty First episode schizophrenia cases and 20 matched healthy controls living in the community were enrolled. For cases, longest duration of illness was one year and treatment with neuroleptic did not exceed two weeks on the day of scan. To measure facial emotion perception (FEP) both groups were administered the Emotion battery from the Penn Computerized Battery followed by PET acquisition. SPM 8 analysis for group differences at p<0.001 was performed. Results Schizophrenia subjects showed hypoactivation of bilateral prefrontal cortices and fusiform gyrii, with significant hyperactivation of bilateral basal ganglia and left precuneus. Positive correlation of metabolism in prefrontal cortex and performance indices on emotions domain was seen. No correlation of CPZ equivalent days with metabolism in basal ganglia was observed. Conclusions The performance of schizophrenia cases on FEP task was significantly impaired in comparison to the control group. Brain regions implicated in emotion processing showed hypometabolism in cases as compared to controls. Failure of schizophrenia cases to optimally recruit brain circuitry may be contributing to deficits on FEP task. These findings suggest inherent deficits in neural circuitry of emotion processing in schizophrenia; devoid of confounding effects of neuroleptics and duration of illness. PMID:25655909

  15. Comparison of the Prognostic Value of F-18 Pet Metabolic Parameters of Primary Tumors and Regional Lymph Nodes in Patients with Locally Advanced Cervical Cancer Who Are Treated with Concurrent Chemoradiotherapy

    PubMed Central

    Chong, Gun Oh; Jeong, Shin Young; Park, Shin-Hyung; Lee, Yoon Hee; Lee, Sang-Woo; Hong, Dae Gy; Kim, Jae-Chul; Lee, Yoon Soon; Cho, Young Lae

    2015-01-01

    Objective This study investigated the metabolic parameters of primary tumors and regional lymph nodes, as measured by pre-treatment F-18 fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) to compare the prognostic value for the prediction of tumor recurrence. This study also identified the most powerful parameter in patients with locally advanced cervical cancer treated with concurrent chemoradiotherapy. Methods Fifty-six patients who were diagnosed with cervical cancer with pelvic and/or paraaortic lymph node metastasis were enrolled in this study. Metabolic parameters including the maximum standardized uptake value (SUVmax), the metabolic tumor volume (MTV), and total lesion glycolysis (TLG) of the primary tumors and lymph nodes were measured by pre-treatment F-18 FDG PET/CT. Univariate and multivariate analyses for disease-free survival (DFS) were performed using the clinical and metabolic parameters. Results The metabolic parameters of the primary tumors were not associated with DFS. However, DFS was significantly longer in patients with low values of nodal metabolic parameters than in those with high values of nodal metabolic parameters. A univariate analysis revealed that nodal metabolic parameters (SUVmax, MTV and TLG), paraaortic lymph node metastasis, and post-treatment response correlated significantly with DFS. Among these parameters, nodal SUVmax (hazard ratio [HR], 4.158; 95% confidence interval [CI], 1.1–22.7; p = 0.041) and post-treatment response (HR, 7.162; 95% CI, 1.5–11.3; p = 0.007) were found to be determinants of DFS according to a multivariate analysis. Only nodal SUVmax was an independent pre-treatment prognostic factor for DFS, and the optimal cutoff for nodal SUVmax to predict progression was 4.7. Conclusion Nodal SUVmax according to pre-treatment F-18 FDG PET/CT may be a prognostic biomarker for the prediction of disease recurrence in patients with locally advanced cervical cancer. PMID:26368542

  16. Role of fimbriae F18 for actively acquired immunity against porcine enterotoxigenic Escherichia coli.

    PubMed

    Sarrazin, E; Bertschinger, H U

    1997-02-01

    Enterotoxigenic (ETEC) and enterotoxaemic (ETEEC) Escherichia (E.) coli that express F18 (F107) fimbriate colonize the small intestine and cause diarrhoea and/or oedema disease in weaned pigs. So far, two antigenic variants of F18 can be distinguished with a common antigenic factor designated 'a' and two specific factors called 'b' and 'c'. In this study the existence of crosswise anti-colonization immunity between E. coli strains that express F18ab or F18ac fimbrial variants, respectively, was demonstrated. Weaned pigs of susceptible genotype with respect to susceptibility to adhesion of E. coli with fimbriae F18 were inoculated with E. coli strains 3064STM (0157:K-:H-:F18ab; resistant to streptomycin) and 8199RIF (0141ab:K-:H4:F18ac; resistant to rifampicin). The faecal shedding was compared subsequent to immunization and homologous or heterologous challenge. An enzyme-linked immunosorbent assay (ELISA) was applied to measure IgA, IgM and IgG antibodies against the F18ab and F18ac antigens in saliva, faeces, serum and intestinal wash samples. About 8 log CFU/g of the inoculated strains were found in faeces of all pigs following immunization as well as in non-immunized controls after challenge. Bacterial counts of the inoculated strains after challenge were between 2 and 5 log lower, without any difference between homologous and heterologous challenge. Intestinal colonization with fimbriated E. coli resulted in production of significantly increased levels of anti-fimbrial antibodies, especially IgA, in serum and intestinal wash samples. There were higher levels of homologous than of heterologous anti-fimbrial antibodies. Production of antibodies against F18a or against another common fimbrial antigen is probably responsible for crosswise anti-colonization immunity between E. coli strains with F18ab and F18ac fimbrial variants. Serum F18-specific IgA may be a useful indicator of a mucosal immune response directed against F18 fimbriae.

  17. Radiosynthesis of F-18-3-acetylcyclofoxy: A high affinity opiate antagonist

    SciTech Connect

    Channing, M.A.; Eckelman, W.C.; Bennett, J.M.; Burke, T.R. Jr.; Rice, K.C.; Larson, S.M.

    1985-05-01

    A convenient method for the preparation of F-18-3-acetylcyclofoxy (3-acetyl-6-deoxy-6-beta-F-18-fluoronaltrexone was developed. The method uses reactor-produced F-18-fluoride as its tetraethylammonium salt. F-18 fluoride is produced at the National Bureau of Standards nuclear reactor by the Li-6(n,..cap alpha..)H-3, 0-16(H-3,n) F-18 nuclear reaction. A sealed quartz tube containing enriched lithium carbonate (0.4 g) was irradiated in a neutron flux of 1.1 x 10/sup 14/ n/cm/sup 2//s for 2h to produce 80 mCi. The lithium is removed by cation exchange resin. The fluoride is then adsorbed on a strong anion exchange column which is rinsed to remove H-3 and any remaining cations. The F-18 is then eluted with tetraethylammonium hydroxide to produce tetraethylammonium fluoride (TEAF). The triflate of 3-acetyl-6-alpha-naltrexol, synthesized by reaction of the alcohol with trifluoromethanesulfonic anhydride was added in anhydrous acetonitrile to the dry F-18 TEAF containing 0.2 ..mu..mol F-19 TEAF. The mixture was refluxed for 15 minutes after which the product was purified by reversed phase chromatography. F-18-acetylcyclofoxy was prepared in 35% radiochemical yield. About 55% of the F-18 was lost by decay (36%) and by incomplete transfer (19%). The specific activity of the final product was approximately 50 Ci/mmol but the effective specific activity was approximately 25 Ci/mmol. Visualization of the basal ganglia in baboons was possible using PET. F-18 3-acetylcyclofoxy is the first positron-emitting opiate for which the active and inactive forms of naloxone were used to unequivocially demonstrate stereospecific displacement from opiate receptor-rich regions.

  18. Defining PET / CT Protocols With Optimized F18-FDG (Fluorodeoxyglucose) Dose, Focusing on Reduced Radiation Dose and Improved Image Quality

    ClinicalTrials.gov

    2015-08-19

    Malignant Neoplasm of Breast.; Hodgkin's Disease.; Non-Hodgkin Lymphoma, Follicular (Nodular).; Malignant Neoplasm of Bronchus and Lung.; Malignant Neoplasm of Colon.; Secondary Neoplasm Malignant and Unspecified Lymph Nodes.; Malignant Melanoma of the Skin.; Malignant Neoplasm of Small Intestine.

  19. Development of [F-18]-Labeled Amyloid Imaging Agents for PET

    SciTech Connect

    Mathis, CA

    2007-05-09

    The applicant proposes to design and synthesize a series of fluorine-18-labeled radiopharmaceuticals to be used as amyloid imaging agents for positron emission tomography (PET). The investigators will conduct comprehensive iterative in vitro and in vivo studies based upon well defined acceptance criteria in order to identify lead agents suitable for human studies. The long term goals are to apply the selected radiotracers as potential diagnostic agents of Alzheimer's disease (AD), as surrogate markers of amyloid in the brain to determine the efficacy of anti-amyloid therapeutic drugs, and as tools to help address basic scientific questions regarding the progression of the neuropathology of AD, such as testing the "amyloid cascade hypothesis" which holds that amyloid accumulation is the primary cause of AD.

  20. A New F-18 Prosthetic Group via an Oxime Coupling

    PubMed Central

    Carberry, Patrick; Lieberman, Brian P.; Ploessl, Karl; Choi, Seok R.; Haase, Danniebelle N.; Kung, Hank F.

    2011-01-01

    A novel fluorine-18 prosthetic ligand, 5-(1,3-dioxolan-2-yl)-2-(2-(2-(2- fluoroethoxy)ethoxy)ethoxy)pyridine [18F]2, has been synthesized. The prosthetic ligand is formed in high radiochemical yield (rcy = 71 ± 2 %, n = 3) with excellent radiochemical purity (rcp = 99 ± 1 %, n = 3) in a short reaction time (10 min). [18F]2 is a small, neutral, organic complex, easily synthesized in four steps from a readily available starting material. It can be anchored onto a target molecule containing an aminooxy functional group under acidic conditions by way of an oxime bond. We report herein two examples [18F]23 and [18F]24, potential imaging agents for β-amyloid plaques, which were labeled with this prosthetic group. This approach could be used for labeling proteins and peptides containing an aminooxy group. Biodistribution in male ICR mice for both oxime labeled complexes [18F]23 and [18F]24 were compared to that of the known β-amyloid plaque indicator, [18F]-AV-45, florbetapir 1. Oximes [18F]23 and [18F]24 are larger in size and therefore should reduce the blood-brain barrier (BBB) penetration. The brain uptake for oxime [18F]23 appeared to be reduced, but still retained some capability to cross the BBB. Oxime [18F]24 showed promising results after 2 min post injection (0.48 % dose/gram), however the uptake increased after 30 min post injection (0.92 % dose/gram) suggesting an in-vivo decomposition/metabolism of compound [18F]24. We have demonstrated a general protocol for the fluoride-18 labeling with a new prosthetic ligand [18F]2 that is tolerant towards several functional groups and is formed via chemoselective oxime coupling. PMID:21452846

  1. Differentiation between Treatment-Induced Necrosis and Recurrent Tumors in Patients with Metastatic Brain Tumors: Comparison among (11)C-Methionine-PET, FDG-PET, MR Permeability Imaging, and MRI-ADC-Preliminary Results.

    PubMed

    Tomura, N; Kokubun, M; Saginoya, T; Mizuno, Y; Kikuchi, Y

    2017-08-01

    In patients with metastatic brain tumors after gamma knife radiosurgery, the superiority of PET using (11)C-methionine for differentiating radiation necrosis and recurrent tumors has been accepted. To evaluate the feasibility of MR permeability imaging, it was compared with PET using (11)C-methionine, FDG-PET, and DWI for differentiating radiation necrosis from recurrent tumors. The study analyzed 18 lesions from 15 patients with metastatic brain tumors who underwent gamma knife radiosurgery. Ten lesions were identified as recurrent tumors by an operation. In MR permeability imaging, the transfer constant between intra- and extravascular extracellular spaces (/minute), extravascular extracellular space, the transfer constant from the extravascular extracellular space to plasma (/minute), the initial area under the signal intensity-time curve, contrast-enhancement ratio, bolus arrival time (seconds), maximum slope of increase (millimole/second), and fractional plasma volume were calculated. ADC was also acquired. On both PET using (11)C-methionine and FDG-PET, the ratio of the maximum standard uptake value of the lesion divided by the maximum standard uptake value of the symmetric site in the contralateral cerebral hemisphere was measured ((11)C-methionine ratio and FDG ratio, respectively). The receiver operating characteristic curve was used for analysis. The area under the receiver operating characteristic curve for differentiating radiation necrosis from recurrent tumors was the best for the (11)C-methionine ratio (0.90) followed by the contrast-enhancement ratio (0.81), maximum slope of increase (millimole/second) (0.80), the initial area under the signal intensity-time curve (0.78), fractional plasma volume (0.76), bolus arrival time (seconds) (0.76), the transfer constant between intra- and extravascular extracellular spaces (/minute) (0.74), extravascular extracellular space (0.68), minimum ADC (0.60), the transfer constant from the extravascular

  2. Test-retest reproducibility for regional brain metabolic responses to lorazepam

    SciTech Connect

    Wang, G.J.; Volkow, N.D.; Overall, J. |||

    1996-05-01

    Changes in regional brain glucose metabolism as assessed with PET and FDG in response to acute administration of benzodiazepine agonists have been used as indicators of benzodiazepine-GABA receptor function. The purpose of this study was to assess the reproducibility of these responses. Sixteen healthy right-handed men were scanned with positron emission tomography (PET) and [F-18] fluorodeoxyglucose (FDG) twice: prior to placebo and prior to lorazepam (30 {mu}g/kg). The same double FDG procedure was repeated 6-8 weeks later to assess test-retest reproducibility. The regional absolute brain metabolic values obtained during the second evaluation were significantly lower than those obtained for the first evaluation regardless of condition (p {le} 0.001). Lorazepam significantly and consistently decreased whole brain metabolism and the magnitude as well as the regional pattern of the changes was comparable for both studies (12.3 {plus_minus} 6.9% and 13.7 {plus_minus} 7.4%). Lorazepam effects were largest in thalamus (22.2 {plus_minus} 8.9%). Relative metabolic measures ROI/global were highly reproducible both for drug as well as replication condition. This is the first study to measure test-retest reproducibility in regional brain metabolic response to a pharmacological challenge. While the global and regional absolute metabolic values were significantly lower for the repeated evaluation, the regional brain metabolic response to lorazepam was highly reproducible.

  3. Quantitative characterization of brain β-amyloid in 718 normal subjects using a joint PiB/FDG PET image histogram

    NASA Astrophysics Data System (ADS)

    Camp, Jon J.; Hanson, Dennis P.; Lowe, Val J.; Kemp, Bradley J.; Senjem, Matthew L.; Murray, Melissa E.; Dickson, Dennis W.; Parisi, Joseph E.; Petersen, Ronald C.; Robb, Richard A.; Holmes, David R.

    2016-03-01

    We have previously described an automated system for the co-registration of PiB and FDG PET images with structural MRI and a neurological anatomy atlas to produce region-specific quantization of cortical activity and amyloid burden. We also reported a global joint PiB/FDG histogram-based measure (FDG-Associated PiB Uptake Ratio - FAPUR) that performed as well as regional PiB ratio in stratifying Alzheimer's disease (AD) and Lewy Body Dementia (LBD) patients from normal subjects in an autopsy-verified cohort of 31. In this paper we examine results of this analysis on a clinically-verified cohort of 718 normal volunteers. We found that the global FDG ratio correlated negatively with age (r2 = 0.044) and global PiB ratio correlated positively with age (r2=0.038). FAPUR also correlated negatively with age (r2-.025), and in addition, we introduce a new metric - the Pearson's correlation coefficient (r2) of the joint PiB/FDG histogram which correlates positively (r2=0.014) with age. We then used these measurements to construct age-weighted Z-scores for all measurements made on the original autopsy cohort. We found similar stratification using Z-scores compared to raw values; however, the joint PiB/FDG r2 Z-score showed the greatest stratification ability.

  4. Clinicopathological Features of Cases with Primary Breast Cancer not Identified by 18F-FDG-PET.

    PubMed

    Fujii, Takaaki; Yajima, Reina; Tsuboi, Miki; Higuchi, Toru; Obayashi, Sayaka; Tokiniwa, Hideaki; Nagaoka, Rin; Takata, Daisuke; Horiguchi, Jun; Kuwano, Hiroyuki

    2016-06-01

    Several studies have reported that high F18-fluorodeoxyglucose (FDG) uptake is predictive of poor prognosis and aggressive features in patients with breast cancer. While these studies evaluated the prognostic value for cases with high FDG uptake, they did not elucidate the meaning of FDG negativity in primary breast cancer. In this study, we evaluated the clinicopathological features of breast cancer cases without FDG uptake. We retrospectively investigated the cases of 219 consecutive patients with primary breast cancer who underwent FDG-positron emission tomography (PET) preoperatively. Among the 219 patients, 25 (11.4%) did not have FDG uptake in the tumor. The 219 cases with breast cancer were divided into two groups based on the presence of FDG uptake in the primary tumor. The present univariate analysis revealed that histology, small invasive tumor size, high estrogen receptor (ER) or progesterone receptor (PgR) expression, low nuclear grade and absence of lymph node metastasis were significantly associated with negative FDG uptake in the primary tumor. On the other hand, the size of ductal spread was not significantly different between the two groups. Multivariate analysis revealed that small-size tumor invasion and lower nuclear grade were statistically significant. Among the 25 cases without FDG uptake, there was no recurrent disease in spite of there being no case that underwent chemotherapy, while 4 cases among the 194 cases with FDG uptake had disease recurrence. Our findings imply that preoperative FDG negativity in primary breast cancer is effective in predicting better prognosis, but is less effective in predicting ductal spread. Cases without FDG uptake in the primary tumor may have a lower risk of recurrent disease and may be able to safely avoid adjuvant chemotherapy. Copyright© 2016 International Institute of Anticancer Research (Dr. John G. Delinassios), All rights reserved.

  5. Brain glucose metabolism is associated with hormone level in Cushing's disease: A voxel-based study using FDG-PET.

    PubMed

    Liu, Shuai; Wang, Yinyan; Xu, Kaibin; Ping, Fan; Wang, Renzhi; Li, Fang; Cheng, Xin

    2016-01-01

    Chronic exposure to elevated levels of glucocorticoids can exert a neurotoxic effect in patients, possibly manifesting as molecular imaging alterations in patients. The aim of this study was to investigate the potential association between brain metabolism and elevated hormone level using (18)F-fluorodeoxyglucose positron emission tomography. We retrospectively enrolled 92 consecutive patients with confirmed diagnosis of Cushing's disease. A voxel-based analysis was performed to investigate the association between cerebral (18)F-fluorodeoxyglucose uptake and serum cortisol level. Relatively impaired metabolism of specific brain regions correlated with serum cortisol level was found. Specifically, notable correlations were found in the hippocampus, amygdala, and cerebellum, regions considered to be involved in the regulation and central action of glucocorticoids. Moreover, some hormone-associated regions were found in the frontal and occipital cortex, possibly mediating the cognitive changes seen in Cushing's disease. Our findings link patterns of perturbed brain metabolism relates to individual hormone level, thus presenting a substrate for cognitive disturbances seen in Cushing's disease patients, as well as in other conditions with abnormal cortisol levels.

  6. High susceptibility prevalence for F4(+) and F18(+)Escherichia coli in Flemish pigs.

    PubMed

    Nguyen, Ut V; Coddens, Annelies; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Poucke, Mario Van; Peelman, Luc; Cox, Eric

    2017-04-01

    F4 and/or F18 enterotoxigenic Escherichia coli (F4(+)/F18(+) ETEC) are responsible for diarrhea while F18(+) verotoxigenic E. coli (F18(+) VTEC) cause edema disease in pigs. Both infections can result in severe economic losses, which are mainly the result of the medication, growth retardation and mortality. The susceptibility of piglets to these pathogens is determined by the presence of F4 and F18 receptors (F4R and F18R). Understanding the composition of the susceptibility phenotypes of pigs is useful for animal health and breeding management. This study aimed to determine the prevalence of the F4 ETEC susceptibility phenotypes and F18(+)E. coli susceptibility among Flemish pig breeds by using the in vitro villous adhesion assay. In this study, seven F4 ETEC susceptibility phenotypes were found, namely A (F4abR(+),acR(+),adR(+); 59.16%), B (F4abR(+),acR(+),adR(-); 6.28%), C (F4abR(+),acR(-),adR(+); 2.62%), D (F4abR(-),acR(-),adR(+); 6.28%), E (F4abR(-),acR(-),adR(-); 24.08%), F (F4abR(+),acR(-),adR(-); 1.05%) and G (F4abR(-),acR(+),adR(-); 0.52%). F4ab and F4ac E. coli showed a stronger degree of adhesion to the intestinal villi (53.40% and 52.88% strong adhesion, respectively), compared to F4ad E. coli (43.46% strong adhesion). Furthermore, the correlation between F4ac and F4ab adhesion was higher (r=0.78) than between F4ac and F4ad adhesion (r=0.41) and between F4ab and F4ad adhesion (r=0.57). For F18(+)E. coli susceptibility, seven out of 82 pigs were F18R negative (8.54%), but only two of these seven pigs (2.44%) were also negative for F4R. As such, the chance to identify a pig that is positive for a F4 ETEC variant or F18(+)E. coli is 97.56%. Therefore, significant economic losses will arise due to F4(+) and/or F18(+)E. coli infections in the Flemish pig population due to the high susceptibility prevalence. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Cerebral metabolic rates for glucose in mood disorders. Studies with positron emission tomography and fluorodeoxyglucose F 18

    SciTech Connect

    Baxter, L.R. Jr.; Phelps, M.E.; Mazziotta, J.C.; Schwartz, J.M.; Gerner, R.H.; Selin, C.E.; Sumida, R.M.

    1985-05-01

    Cerebral metabolic rates for glucose were examined in patients with unipolar depression (N = 11), bipolar depression (N = 5), mania (N = 5), bipolar mixed states (N = 3), and in normal controls (N = 9) using positron emission tomography and fluorodeoxyglucose F 18. All subjects were studied supine under ambient room conditions with eyes open. Bipolar depressed and mixed patients had supratentorial whole brain glucose metabolic rates that were significantly lower than those of the other comparison groups. The whole brain metabolic rates for patients with bipolar depression increased going from depression or a mixed state to a euthymic or manic state. Patients with unipolar depression showed a significantly lower ratio of the metabolic rate of the caudate nucleus, divided by that of the hemisphere as a whole, when compared with normal controls and patients with bipolar depression.

  8. Numerical simulation of the flow about the F-18 HARV at high angle of attack

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.

    1994-01-01

    This report summarizes research done over the past two years as part of NASA Grant NCC 2-729. This research has been aimed at validating numerical methods for computing the flow about the complete F-18 HARV at alpha = 30 deg and alpha = 45 deg. At 30 deg angle of attack, the flow about the F-18 is dominated by the formation, and subsequent breakdown, of strong vortices over the wing leading-edge extensions (LEX). As the angle of attack is increased to alpha = 45 deg, the fuselage forebody of the F-18 contains significant laminar and transitional regions which are not present at alpha = 30 deg. Further, the flow over the LEX at alpha = 45 deg is dominated by an unsteady shedding in time, rather than strong coherent vortices. This complex physics, combined with the complex geometry of a full aircraft configuration, provides a challenge for current computational fluid dynamics (CFD) techniques. The following sections present the numerical method and grid generation scheme that was used, a review of prior research done to numerically model the F-18 HARV, and a discussion of the current research. The current research is broken into two main topics: the effect of engine-inlet mass-flow rate on the F-18 vortex breakdown position, and the results using a refined F-18 computational model to compute the flow at alpha = 30 deg and alpha = 45 deg.

  9. Numerical simulation of the flow about the F-18 HARV at high angle of attack

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.

    1995-01-01

    This research has been aimed at validating numerical methods for computing the flow about the complete F-18 HARV at alpha = 30 deg and alpha = 45 deg. At 30 deg angle of attack, the flow about the F-18 is dominated by the formation, and subsequent breakdown, of strong vortices over the wing leading-edge extensions (LEX). As the angle of attack is increased to alpha = 45 deg, the fuselage forebody of the F-18 contains significant laminar and transitional regions which are not present at alpha = 30 deg. Further, the flow over the LEX at alpha = 45 deg is dominated by an unsteady shedding in time, rather than strong coherent vortices. This complex physics, combined with the complex geometry of a full-aircraft configuration, provides a challenge for current computational fluid dynamics (CFD) techniques. The following sections present the numerical method and grid generation scheme that was used, a review of prior research done to numerically model the F-18 HARV, and a discussion of the current research. The current research is broken into three main topics; the effect of engine-inlet mass-flow rate on the F-18 vortex breakdown position, the results using a refined F-18 computational model to compute the flow at alpha = 30 deg and alpha = 45 deg, and research done using the simplified geometry of an ogive-cylinder configuration to investigate the physics of unsteady shear-layer shedding. The last section briefly summarizes the discussion.

  10. Quantitative evaluation of two scatter correction techniques for (18)F-FDG brain PET/MR imaging in regard to MR-based attenuation correction.

    PubMed

    Teuho, Jarmo; Saunavaara, Virva; Tolvanen, Tuula; Tuokkola, Terhi; Karlsson, Antti; Tuisku, Jouni; Teräs, Mika

    2017-03-23

    minimal in non-time-of-flight (TOF) (18)F-FDG PET/MR brain imaging. The SSS algorithm was not affected significantly by MRAC. The performance of MCSSS algorithm is comparable but not superior to SSS, warranting further investigations of algorithm optimization and performance with different radiotracers and TOF imaging.

  11. Longitudinal FDG microPET imaging of neuropathic pain: does cerebellar activity correlate with neuropathic pain development in a rat model?

    PubMed

    Kim, Jinhyung; Shin, Jaewoo; Oh, Jin-Hwan; Jung, Hyun Ho; Kim, Young-Bo; Cho, Zang-Hee; Chang, Jin Woo

    2015-06-01

    We used [F-18] FDG microPET imaging as part of a longitudinal study to investigate changes in the brain. Glucose metabolism during the development of neuropathic pain after tibial and sural nerve transection (TST) model rats. MicroPET images were obtained 1 week before operation and then weekly for 8 weeks post-operation. The behavioral test was performed immediately after the every FDG administration. After TST modeling, neuropathic pain rats showed increased mechanical sensitivity of the injured hind paw. The withdrawal response to mechanical pain stimulation by von Frey filaments was observed within the first week (3.8 ± 0.73), and it rapidly increased in the third week (7.13 ± 0.82). This response reached a peak in the fourth week after surgery (9.0 ± 0.53), which persisted until the eighth week. In microPET scan imaging, cerebellum, which initially started from the ansiform lobule, was activated gradually to all part from the third week in all image acquisitions through the eighth week. The longitudinal microPET scan study of brains from neuropathic pain rat models showed sequential cerebellar activity that was in accordance with results from behavioral test responses, thus supporting a role for the cerebellum in the development of neuropathic pain.

  12. FDG PET/CT appearance of local osteosarcoma recurrences in pediatric patients.

    PubMed

    Sharp, Susan E; Shulkin, Barry L; Gelfand, Michael J; McCarville, M Beth

    2017-09-08

    Osteosarcoma is the most common pediatric malignant bone tumor, frequently surgically managed with limb salvage rather than amputation. Local recurrences are seen in up to 9% of osteosarcoma patients, with CT and MRI imaging often limited by metal artifacts. To describe the [F-18]2-fluoro-2-deoxyglucose (FDG) PET/CT appearance of local osteosarcoma recurrences with correlation to findings on other imaging modalities. A retrospective review of pediatric osteosarcoma patients imaged with FDG PET/CT was performed in patients with pathologically proven local recurrences. FDG PET/CT findings were reviewed and correlated with available comparison imaging studies. Ten local osteosarcoma recurrences in eight pediatric osteosarcoma patients were imaged with FDG PET/CT. All eight patients had a local recurrence after limb salvage; two patients had a second local recurrence after amputation. All local recurrences were seen with FDG PET/CT, demonstrating solid (n=5) or peripheral/nodular (n=5) FDG uptake patterns. Maximum standard uptake values (SUVs) ranged from 3.0 to 15.7. In five recurrences imaged with FDG PET/CT and MRI, MRI was limited or nondiagnostic in three. In four recurrences imaged with FDG PET/CT and bone scan, the bone scan was negative in three. Local osteosarcoma recurrences are well visualized by FDG PET/CT, demonstrating either solid or peripheral/nodular FDG uptake with a wide range of maximum SUVs. FDG PET/CT demonstrates the full extent of local recurrences, while MRI can be limited by artifact from metallic hardware. PET/CT appears to be more sensitive than bone scan in detecting local osteosarcoma recurrences.

  13. Diagnostic utility of FDG-PET in neurolymphomatosis: report of five cases.

    PubMed

    Kinoshita, Hisanori; Yamakado, Hodaka; Kitano, Toshiyuki; Kitamura, Akihiro; Yamashita, Hirofumi; Miyamoto, Masakazu; Hitomi, Takefumi; Okada, Tomohisa; Nakamoto, Yuji; Sawamoto, Nobukatsu; Takaori-Kondo, Akifumi; Takahashi, Ryosuke

    2016-09-01

    Neurolymphomatosis (NL) is a rare condition involving the infiltration of lymphoma cells into the peripheral nervous system. NL can be primary or secondary in the setting of an unknown or known hematologic malignancy, respectively. Here, we report five cases in which F-18 2-fluoro-2-deoxy-glucose positron emission tomography/computed tomography (F-18 FDG-PET/CT) had great value for diagnosing NL. Two cases were rare primary NL, and the other three were secondary NL. Clinical presentations were asymmetric sensorimotor disturbances in the extremities with or without involvement of cranial nerves. Furthermore, all patients experienced spontaneous pain in the face or affected extremities. Cerebrospinal fluid analysis was cytologically negative in two of five cases. Gadolinium (Gd)-enhanced magnetic resonance imaging (MRI) detected abnormalities in the cranial nerves, nerve roots, and cauda equina in all cases except case 1 and the recurrent stage of case 2. F-18 FDG-PET/CT showed clear visualization of almost all the lymphomatous involvement of peripheral nerves and other tissues in all patients. Furthermore, F-18 FDG-PET/CT detected abnormalities including asymptomatic lesions that were not detected with MRI, and also identified the appropriate lesion for diagnostic biopsy. However, as in case 3, the lesions in the left oculomotor nerve and the cauda equina were detected only with Gd-enhanced MRI, which has superior spatial resolution. In conclusion, F-18 FDG-PET/CT is a sensitive modality that can suggest the presence of malignancy and identify appropriate places for diagnostic biopsies. It is especially useful when combined with Gd-enhanced MRI, even in patients with primary NL that is usually difficult to diagnose.

  14. Metabolism of human gliomas: Assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET

    SciTech Connect

    Alger, J.R.; Frank, J.A.; Bizzi, A.; Fulham, M.J.; DeSouza, B.X.; Duhaney, M.O.; Inscoe, S.W.; Black, J.L.; van Zijl, P.C.; Moonen, C.T. , Bethesda, MD )

    1990-12-01

    Localized hydrogen-1 magnetic resonance (MR) spectroscopy and fluorine-18 fluorodeoxyglucose (FDG) positron emission tomography (PET) were employed to obtain metabolic information from intracranial gliomas. Advantages and difficulties associated with comparison of results from the two modalities were realized. Forty patients were studied with H-1 MR spectroscopy. MR signal intensities from lactate, N-acetylaspartate (NAA), choline, and creatine from a volume of interest containing the tumor and a contralateral volume were obtained and evaluated. NAA signal intensities were generally decreased in the tumor spectra, and choline signal intensities were elevated. H-1 MR spectroscopy was unsuccessful in eight patients, and FDG PET scans were not obtained in four of the patients with successful MR spectroscopic examinations. Lactate signal intensity was detected in 10 of the 28 patients who had successful H-1 MR spectroscopic and FDG PET studies. Lactate signal intensities were observed in lesions shown at FDG PET to be hypermetabolic, as well as in lesions found to be hypometabolic.

  15. Effectiveness of F18+ Fimbrial Antigens Released by a Novel Autolyzed Salmonella Expression System as a Vaccine Candidate against Lethal F18+ STEC Infection

    PubMed Central

    Won, Gayeon; Lee, John H.

    2016-01-01

    Porcine edema disease (ED) caused by Shiga toxin 2e producing Escherichia coli expressing F18ab+ fimbriae (F18ab+STEC) frequently occurs in post-weaned piglets, resulting in a significant economic loss in swine industries worldwide. In the present study, we proposed an efficient prevention scheme against ED in which the attenuated Salmonella Typhimurium inactivated by the E-mediated cell lysis to deliver target antigens, FedF and FedA, which function in fimbrial-mediated adhesion and as a major subunit of F18ab+fimbriae, respectively. The co-expression of FedA and FedF protein with outer membrane protein A signal peptide was confirmed in the resultant strains JOL1460 and JOL1464 by immunoblot analysis. Immunization with the candidate strains in mice led to the significant generation of immunoglobulin (Ig) G, specific to both antigens and secretory IgA specific to FedF (P < 0.05). The titers of IgG isotypes, IgG1 and IgG2a, used as markers for T-helpers (Th)-2 and Th-1lymphocytes, respectively, also significantly increased in the immunized group (P < 0.05). The increase in CD3+CD4+ T lymphocyte subpopulation and in vitro proliferative activity was observed in in vivo stimulated splenocytes, which indicated the immunostimulatory effect of the candidate strains. Moreover, the immunized mice were completely protected from a lethal challenge against wild-type F18+STEC whereas 28% of mice died in the non-immunized group. This study demonstrated that the inactivated Salmonella system could efficiently release FedF and FedA and induce robust immune responses specific to the target antigens, which is sufficient to protect the mice from the lethal challenge. PMID:27920758

  16. Expression of key glycosphingolipid biosynthesis-globo series pathway genes in Escherichia coli F18-resistant and Escherichia coli F18-sensitive piglets.

    PubMed

    Dong, W H; Dai, C H; Sun, L; Wang, J; Sun, S Y; Zhu, G Q; Wu, S L; Bao, W B

    2016-08-01

    A pioneering study showed that the glycosphingolipid biosynthesis-globo series pathway genes (FUT1, FUT2, ST3GAL1, HEXA, HEXB, B3GALNT1 and NAGA) may play an important regulatory role in resistance to Escherichia coli F18 in piglets. Therefore, we analysed differential gene expression in 11 tissues of two populations of piglets sensitive and resistant respectively to E. coli F18 and the correlation of differential gene expression in duodenal and jejunal tissues. We found that the mRNA expression of the seven genes was relatively high in spleen, liver, lung, kidney, stomach and intestinal tract; the levels in thymus and lymph nodes were lower, with the lowest levels in heart and muscle. FUT2 gene expression in the duodenum and jejunum of the resistant population was significantly lower than that in the sensitive group (P < 0.01). ST3GAL1 gene expression was also significantly lower in the duodenum of the resistant population than in the sensitive group (P < 0.05). No significant differences were observed among the remaining genes. The expression level of FUT1 was extremely significantly positively correlated with FUT2 and B3GALNT1 expression (P < 0.01) and also had a significant positive correlation with NAGA expression (P < 0.05). The expression level of FUT2 had extremely significant positive correlations with FUT1, ST3GAL1 and B3GALNT1 (P < 0.01). These results suggest that FUT2 plays an important role in E. coli F18 resistance in piglets. FUT1, ST3GAL1, B3GALNT1 and NAGA may also participate in the mechanism of resistance to E. coli F18.

  17. Sinonasal oncocytic Schneiderian papilloma accompanied by intravascular lymphoma: A case report on FDG-PET/CT imaging.

    PubMed

    Koyama, Masamichi; Terauchi, Takashi; Koizumi, Mitsuru; Tanaka, Hiroko; Takeuchi, Kengo

    2016-08-01

    F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) is useful for the staging and assessment of treatment response in patients with lymphoma. Occasionally, benign lesions demonstrate avid FDG uptake and result in false positive findings. We report the case of an 82-year-old man presenting with cutaneous lesions, which were histopathologically diagnosed as intravascular lymphoma. FDG-PET/CT for staging demonstrated an FDG-avid mass extending from the right maxillary sinus to the nasal cavity, moderate uptake in the adrenal glands, mild uptake in the knee and the foot, and faint uptake in the skin and subcutaneous tissue of the legs. He subsequently underwent biopsy of the paranasal mass, which was diagnosed as oncocytic Schneiderian papilloma without lymphoma invasion. Glucose transporter (GLUT) 1 staining was highly positive in the papilloma cells, resulting in high FDG avidity. After completion of chemotherapy, the abnormal FDG uptakes in the skin, soft tissue, and adrenal glands disappeared on PET/CT. However, avid FDG uptake persisted in the sinonasal Schneiderian papilloma for 15 months before regression. Benign tumors with oncocytic components may show avid FDG uptake. Therefore, correct diagnosis of oncocytic Schneiderian papilloma on FDG images is difficult when other accompanying malignant tumors, especially lymphoma, are present. If post-therapeutic PET/CT images show a discordant lesion, oncocytic tumors, albeit uncommon, should be considered in the differential diagnoses.

  18. Results From F-18B Stability and Control Parameter Estimation Flight Tests at High Dynamic Pressures

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Noffz, Gregory K.; Iliff, Kenneth W.

    2000-01-01

    A maximum-likelihood output-error parameter estimation technique has been used to obtain stability and control derivatives for the NASA F-18B Systems Research Aircraft. This work has been performed to support flight testing of the active aeroelastic wing (AAW) F-18A project. The goal of this research is to obtain baseline F-18 stability and control derivatives that will form the foundation of the aerodynamic model for the AAW aircraft configuration. Flight data have been obtained at Mach numbers between 0.85 and 1.30 and at dynamic pressures ranging between 600 and 1500 lbf/sq ft. At each test condition, longitudinal and lateral-directional doublets have been performed using an automated onboard excitation system. The doublet maneuver consists of a series of single-surface inputs so that individual control-surface motions cannot be correlated with other control-surface motions. Flight test results have shown that several stability and control derivatives are significantly different than prescribed by the F-18B aerodynamic model. This report defines the parameter estimation technique used, presents stability and control derivative results, compares the results with predictions based on the current F-18B aerodynamic model, and shows improvements to the nonlinear simulation using updated derivatives from this research.

  19. Ground-Recorded Sonic Boom Signatures of F-18 Aircraft in Formation Flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1996-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the tail shock of the upper F-18 (called tail-canopy). The second formation had the canopy of the lower F- 18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft . An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  20. STM study of C60F18 high dipole moment molecules on Au(111)

    NASA Astrophysics Data System (ADS)

    Bairagi, K.; Bellec, A.; Chumakov, R. G.; Menshikov, K. A.; Lagoute, J.; Chacon, C.; Girard, Y.; Rousset, S.; Repain, V.; Lebedev, A. M.; Sukhanov, L. P.; Svechnikov, N. Yu.; Stankevich, V. G.

    2015-11-01

    Scanning tunneling microscopy and spectroscopy studies of C60F18 molecules deposited on Au(111) are reported and compared to C60 molecules both at liquid helium temperature and room temperature (RT). Whereas adsorption and electronic properties of C60F18 single molecules were studied at low temperature (LT), self-assemblies were investigated at RT. In both cases, the fluorine atoms of the C60F18 molecules are pointed towards the surface. Individual C60F18 molecules on Au(111) have a HOMO-LUMO gap of 2.9 eV. The self-assembled islands exhibit a close-packed hexagonal lattice with amorphous borders. The comparison with C60 molecules clearly demonstrates the influence of the C60F18 electric dipole moment (EDM) on the electronic properties of single molecules and on the thermodynamics of self-assembled islands. Besides, the apparent height value of a separate molecule increases in a self-assembly environment as a result of a depolarization phenomenon.

  1. Purification and characterization of the fimbria F18ac (2134P) isolated from enterotoxigenic Escherichia coli (ETEC).

    PubMed

    Amorim, C R; Matsuura, M S; Rosa, J C; Greene, L J; Leite, D S; Yano, T

    2000-09-15

    The adhesin F18ac purified on Sepharose CL 4B column chromatography and SDS-PAGE stained with Coomassie Blue and Western blotting using specific anti-F18ac serum presented one band of approximately 17kDa. Gold immunolabeling revealed that the adhesin F18ac has a fimbrial structure on the bacterial surface. The first 27 amino acid residues of the N-terminal portion of the adhesin F18ac, showed 92.5% homology (25 amino acids) with the F107 (F18ab) fimbriae.

  2. Research flight-control system development for the F-18 high alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Pahle, Joseph W.; Powers, Bruce; Regenie, Victoria; Chacon, Vince; Degroote, Steve; Murnyak, Steven

    1991-01-01

    The F-18 high alpha research vehicle was recently modified by adding a thrust vectoring control system. A key element in the modification was the development of a research flight control system integrated with the basic F-18 flight control system. Discussed here are design requirements, system development, and research utility of the resulting configuration as an embedded system for flight research in the high angle of attack regime. Particular emphasis is given to control system modifications and control law features required for high angle of attack flight. Simulation results are used to illustrate some of the thrust vectoring control system capabilities and predicted maneuvering improvements.

  3. F-18 SRA closeup of nose cap showing Advanced L-Probe Air Data Integration experiment

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This L-shaped probe mounted on the forward fuselage of a modified F-18 Systems Research Aircraft was the focus of an air data collection experiment flown at NASA's Dryden Flight Research Center, Edwards, California. The Advanced L-Probe Air Data Integration (ALADIN) experiment focused on providing pilots with angle-of-attack and angle-of-sideslip information as well as traditional airspeed and altitude data from a single system. For the experiment, the probes--one mounted on either side of the F-18's forward fuselage--were hooked to a series of four transducers, which relayed pressure measurements to an on-board research computer.

  4. Auditory adaptation to sound intensity in conscious rats: 2-[F-18]-fluoro-2-deoxy-D-glucose PET study.

    PubMed

    Jang, Dong Pyo; Lee, Kyoung Min; Lee, Sang-Yoon; Oh, Jin-Hwan; Park, Chan-Woong; Kim, In Young; Kim, Young-Bo; Cho, Zang-Hee

    2012-03-07

    Despite the importance of the adaptive process for discriminating the broad range of sound intensity, there have been few systemic investigations targeting the auditory mechanisms. In this study, the adaptation effect of sound intensity on the change in glucose metabolism in rat brains was examined using a PET technique. In the first experiment, broadband white noise sound (40, 60, 80, or 100 dB sound pressure level) was given for 30 min after an 2-[F-18]-fluoro-2-deoxy-D-glucose injection in an awake condition. In the second experiment, sound stimuli with an intensity modulation of 0, 0.5, and 5.0 Hz in frequency and at three intensity levels were used for examining the metabolism change according to the short time scale variation of the sound intensity. As a result, the metabolic activities in the bilateral cochlear nucleus, superior olivary complexes, and inferior colliculus were proportional to the sound intensity level, whereas the bilateral auditory cortical areas unexpectedly decreased as the sound intensity level increased in the first experiment. In the second experiment, the glucose metabolism in the auditory cortex was higher at 0.5 and 5.0 Hz modulation frequency than the 0.0 Hz modulation frequency, while retaining an inverse relationship with the sound intensity. The metabolism in inferior colliculus was higher at 5.0 Hz modulation frequency than 0.0 and 0.5 Hz modulation frequencies. Taken together, the auditory cortex metabolism seemed to be actively adapted to the average sound intensity, which indicates that it plays an important role in processing the broad range to sound intensity more than the other nucleus of the auditory pathway. Especially, this study demonstrated that the sound intensity-dependent glucose metabolism can be seen in a small rodent's brain stem level using 2-[F-18]-fluoro-2-deoxy-D-glucose PET functional neuroimaging.

  5. The brain metabolic activity after resuscitation with liposome-encapsulated hemoglobin in a rat model of hypovolemic shock

    PubMed Central

    Rao, Geeta; Hedrick, Andria F; Yadav, Vivek R; Xie, Jun; Hussain, Alamdar; Awasthi, Vibhudutta

    2015-01-01

    We examined the effect of resuscitation with liposome-encapsulated hemoglobin (LEH) on cerebral bioenergetics in a rat model of 45% hypovolemia. The rats were resuscitated with isovolemic LEH or saline after 15 minutes of shock and followed up to 6 hours. Untreated hypovolemic rats received no fluid. The cerebral uptake of F-18-fluorodeoxyglucose (FDG) was measured by PET, and at 6 hours, the brain was collected for various assays. Hypovolemia decreased cellular adenosine triphosphate (ATP), phosphocreatine, nicotinamide adenine dinucleotide (NAD)/NADH ratio, citrate synthase activity, glucose-6-phosphate, and nerve growth factor (NGF), even when FDG uptake remained unchanged. The FDG uptake was reduced by saline, but not by LEH infusion. The reduced FDG uptake in saline group was associated with a decrease in hexokinase I expression. The LEH infusion effectively restored ATP content, NAD/NADH ratio, and NGF expression, and reduced the hypovolemia-induced accumulation of pyruvate and ubiquitinated proteins; in comparison, saline was significantly less effective. The LEH infusion was associated with low pH and high anion gap, indicating anionic gap acidosis. The results suggest that hypovolemic shock perturbs glucose metabolism at the level of pyruvate utilization, resulting in deranged cerebral energy stores. The correction of volume and oxygen deficits by LEH recovers the cerebral metabolism and creates a prosurvival phenotype. PMID:25944591

  6. The brain metabolic activity after resuscitation with liposome-encapsulated hemoglobin in a rat model of hypovolemic shock.

    PubMed

    Rao, Geeta; Hedrick, Andria F; Yadav, Vivek R; Xie, Jun; Hussain, Alamdar; Awasthi, Vibhudutta

    2015-09-01

    We examined the effect of resuscitation with liposome-encapsulated hemoglobin (LEH) on cerebral bioenergetics in a rat model of 45% hypovolemia. The rats were resuscitated with isovolemic LEH or saline after 15 minutes of shock and followed up to 6 hours. Untreated hypovolemic rats received no fluid. The cerebral uptake of F-18-fluorodeoxyglucose (FDG) was measured by PET, and at 6 hours, the brain was collected for various assays. Hypovolemia decreased cellular adenosine triphosphate (ATP), phosphocreatine, nicotinamide adenine dinucleotide (NAD)/NADH ratio, citrate synthase activity, glucose-6-phosphate, and nerve growth factor (NGF), even when FDG uptake remained unchanged. The FDG uptake was reduced by saline, but not by LEH infusion. The reduced FDG uptake in saline group was associated with a decrease in hexokinase I expression. The LEH infusion effectively restored ATP content, NAD/NADH ratio, and NGF expression, and reduced the hypovolemia-induced accumulation of pyruvate and ubiquitinated proteins; in comparison, saline was significantly less effective. The LEH infusion was associated with low pH and high anion gap, indicating anionic gap acidosis. The results suggest that hypovolemic shock perturbs glucose metabolism at the level of pyruvate utilization, resulting in deranged cerebral energy stores. The correction of volume and oxygen deficits by LEH recovers the cerebral metabolism and creates a prosurvival phenotype.

  7. The poststall nonlinear dynamics and control of an F-18: A preliminary investigation

    NASA Technical Reports Server (NTRS)

    Patten, William N.

    1988-01-01

    The successful high angle of attack (HAOA) operation of fighter aircraft will necessarily require the introduction of a new onboard control methodology that address the nonlinearity of the system when flown at the stall/poststall limits of the craft's flight envelope. As a precursor to this task, a researcher endeavored to familarize himself with the dynamics of one specific aircraft, the F-18, when it is flown at HAOA. This was accomplished by conducting a number of real time flight sorties using the NASA-Langley Research Center's F-18 simulator, which was operated with a pilot in the loop. In addition to developing a first hand familarity with the aircraft's dynamic characteristic at HAOA, work was also performed to identify the input/output operational footprint of the F-18's control surfaces. This investigator proposes to employ the nonlinear models of the plant identified this summer in a subsequent research effort that will make it possible to fly the F-18 effectively at poststall angles of attack. The controller design used there will rely on a new technique proposed by this investigator that provides for the automatic generation of online optimal control solutions for nonlinear dynamic systems.

  8. CYP4F18-Deficient Neutrophils Exhibit Increased Chemotaxis to Complement Component C5a.

    PubMed

    Vaivoda, Rachel; Vaine, Christine; Boerstler, Cassandra; Galloway, Kristy; Christmas, Peter

    2015-01-01

    CYP4Fs were first identified as enzymes that catalyze hydroxylation of leukotriene B4 (LTB4). CYP4F18 has an unusual expression in neutrophils and was predicted to play a role in regulating LTB4-dependent inflammation. We compared chemotaxis of wild-type and Cyp4f18 knockout neutrophils using an in vitro assay. There was no significant difference in the chemotactic response to LTB4, but the response to complement component C5a increased 1.9-2.25-fold in knockout cells compared to wild-type (P < 0.01). This increase was still observed when neutrophils were treated with inhibitors of eicosanoid synthesis. There were no changes in expression of other CYP4 enzymes in knockout neutrophils that might compensate for loss of CYP4F18 or lead to differences in activity. A mouse model of dextran sodium sulfate colitis was used to investigate the consequences of increased C5a-dependent chemotaxis in vivo, but there was no significant difference in weight loss, disease activity, or colonic tissue myeloperoxidase between wild-type and Cyp4f18 knockout mice. This study demonstrates the limitations of inferring CYP4F function based on an ability to use LTB4 as a substrate, points to expanding roles for CYP4F enzymes in immune regulation, and underscores the in vivo challenges of CYP knockout studies.

  9. CYP4F18-Deficient Neutrophils Exhibit Increased Chemotaxis to Complement Component C5a

    PubMed Central

    Vaivoda, Rachel; Vaine, Christine; Boerstler, Cassandra; Galloway, Kristy; Christmas, Peter

    2015-01-01

    CYP4Fs were first identified as enzymes that catalyze hydroxylation of leukotriene B4 (LTB4). CYP4F18 has an unusual expression in neutrophils and was predicted to play a role in regulating LTB4-dependent inflammation. We compared chemotaxis of wild-type and Cyp4f18 knockout neutrophils using an in vitro assay. There was no significant difference in the chemotactic response to LTB4, but the response to complement component C5a increased 1.9–2.25-fold in knockout cells compared to wild-type (P < 0.01). This increase was still observed when neutrophils were treated with inhibitors of eicosanoid synthesis. There were no changes in expression of other CYP4 enzymes in knockout neutrophils that might compensate for loss of CYP4F18 or lead to differences in activity. A mouse model of dextran sodium sulfate colitis was used to investigate the consequences of increased C5a-dependent chemotaxis in vivo, but there was no significant difference in weight loss, disease activity, or colonic tissue myeloperoxidase between wild-type and Cyp4f18 knockout mice. This study demonstrates the limitations of inferring CYP4F function based on an ability to use LTB4 as a substrate, points to expanding roles for CYP4F enzymes in immune regulation, and underscores the in vivo challenges of CYP knockout studies. PMID:26613087

  10. Complete Genome Sequence of Salmonella enterica Serovar Enteritidis Bacteriophage f18SE, Isolated in Chile

    PubMed Central

    Segovia, Cristopher; Vasquez, Ignacio; Maracaja-Coutinho, Vinicius; Robeson, James

    2015-01-01

    Bacteriophage f18SE was isolated from poultry sewage in Olmue, Chile, and lytic activity was demonstrated against Salmonella enterica serovar Enteritidis and serovar Pullorum strains. This bacteriophage has a 41,868-bp double-stranded DNA (ds-DNA) genome encoding 53 coding sequences (CDSs) and belongs to the family Siphoviridae, subfamily Jerseyvirinae. PMID:26450716

  11. Measurement of Radiative Proton Capture on F18 and Implications for Oxygen-Neon Novae

    NASA Astrophysics Data System (ADS)

    Akers, C.; Laird, A. M.; Fulton, B. R.; Ruiz, C.; Bardayan, D. W.; Buchmann, L.; Christian, G.; Davids, B.; Erikson, L.; Fallis, J.; Hager, U.; Hutcheon, D.; Martin, L.; Murphy, A. St. J.; Nelson, K.; Spyrou, A.; Stanford, C.; Ottewell, D.; Rojas, A.

    2013-06-01

    The rate of the F18(p,γ)Ne19 reaction affects the final abundance of the γ-ray observable radioisotope F18, produced in novae. However, no successful measurement of this reaction exists and the rate used is calculated from incomplete information on the contributing resonances. Of the two resonances thought to play a significant role, one has a radiative width estimated from the assumed analogue state in the mirror nucleus, F19. The second does not have an analogue state assignment at all, resulting in an arbitrary radiative width being assumed. Here, we report the first successful direct measurement of the F18(p,γ)Ne19 reaction. The strength of the 665 keV resonance (Ex=7.076MeV) is found to be over an order of magnitude weaker than currently assumed in nova models. Reaction rate calculations show that this resonance therefore plays no significant role in the destruction of F18 at any astrophysical energy.

  12. Targeting Pod Effects on Weapons Release from F-18C Hornet

    DTIC Science & Technology

    2008-01-01

    70 L I S T O F T A B L E S Table 1. Number of surface patches used on models ...from the F-18C Hornet 6. AUTHOR( S ) - Godiksen III, William H. 5. FUNDING NUMBERS 7. PERFORMING ORGANIZATION NAME( S ...AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME( S ) AND ADDRESS(ES) 10

  13. F18 EF5 PET/CT Imaging in Patients with Brain Metastases from Breast Cancer

    DTIC Science & Technology

    2013-07-01

    metastases. We have had a change in the paradigm of treatment here at the University of Pennsylvania, where more patients are offered gamma knife ...interested in the study, many of them have concurrent extracranial disease. Patients with better performance status often receive upfront gamma knife ...include patients receiving gamma knife radiotherapy was done. Including patients with other types of primary malignancies has also been considered

  14. Imaging the pharmacokinetics of [F-18]FAU in patients with tumors: PET studies.

    PubMed

    Sun, Haihao; Collins, Jerry M; Mangner, Thomas J; Muzik, Otto; Shields, Anthony F

    2006-02-01

    FAU (1-(2'-deoxy-2'-fluoro-beta-D: -arabinofuranosyl) uracil) can be phosphorylated by thymidine kinase, methylated by thymidylate synthase, followed by DNA incorporation and thus functions as a DNA synthesis inhibitor. This first-in-human study of [F-18]FAU was conducted in cancer patients to determine its suitability for imaging and also to understand its pharmacokinetics as a potential antineoplastic agent. Six patients with colorectal (n = 3) or breast cancer (n = 3) were imaged with [F-18]FAU. Serial blood and urine samples were analyzed using HPLC to determine the clearance and metabolites. Imaging showed that [F-18]FAU was concentrated in breast tumors and a lymph node metastasis (tumor-to-normal-breast-tissue-ratio 3.7-4.7). FAU retention in breast tumors was significantly higher than in normal breast tissues at 60 min and retained in tumor over 2.5 h post-injection. FAU was not retained above background in colorectal tumors. Increased activity was seen in the kidney and urinary bladder due to excretion. Decreased activity was seen in the bone marrow with a mean SUV 0.6. Over 95% of activity in the blood and urine was present as intact [F-18]FAU at the end of the study. Increased [F-18]FAU retention was shown in the breast tumors but not in colorectal tumors. The increased retention of FAU in the breast compared to bone marrow indicates that FAU may be useful as an unlabeled antineoplastic agent. The low retention in the marrow indicates that unlabeled FAU might lead to little marrow toxicity; however, the images were not of high contrast to consider FAU for diagnostic clinical imaging.

  15. Correlation of (18)F-FDG PET and MRI Apparent Diffusion Coefficient Histogram Metrics with Survival in Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium.

    PubMed

    Zukotynski, Katherine A; Vajapeyam, Sridhar; Fahey, Frederic H; Kocak, Mehmet; Brown, Douglas; Ricci, Kelsey I; Onar-Thomas, Arzu; Fouladi, Maryam; Poussaint, Tina Young

    2017-08-01

    The purpose of this study was to describe baseline (18)F-FDG PET voxel characteristics in pediatric diffuse intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline MRI apparent diffusion coefficient (ADC) histogram metrics, progression-free survival (PFS), and overall survival. Methods: Baseline brain (18)F-FDG PET and MRI scans were obtained in 33 children from Pediatric Brain Tumor Consortium clinical DIPG trials. (18)F-FDG PET images, postgadolinium MR images, and ADC MR images were registered to baseline fluid attenuation inversion recovery MR images. Three-dimensional regions of interest on fluid attenuation inversion recovery MR images and postgadolinium MR images and (18)F-FDG PET and MR ADC histograms were generated. Metrics evaluated included peak number, skewness, and kurtosis. Correlation between PET and MR ADC histogram metrics was evaluated. PET pixel values within the region of interest for each tumor were plotted against MR ADC values. The association of these imaging markers with survival was described. Results: PET histograms were almost always unimodal (94%, vs. 6% bimodal). None of the PET histogram parameters (skewness or kurtosis) had a significant association with PFS, although a higher PET postgadolinium skewness tended toward a less favorable PFS (hazard ratio, 3.48; 95% confidence interval [CI], 0.75-16.28 [P = 0.11]). There was a significant association between higher MR ADC postgadolinium skewness and shorter PFS (hazard ratio, 2.56; 95% CI, 1.11-5.91 [P = 0.028]), and there was the suggestion that this also led to shorter overall survival (hazard ratio, 2.18; 95% CI, 0.95-5.04 [P = 0.067]). Higher MR ADC postgadolinium kurtosis tended toward shorter PFS (hazard ratio, 1.30; 95% CI, 0.98-1.74 [P = 0.073]). PET and MR ADC pixel values were negatively correlated using the Pearson correlation coefficient. Further, the level of PET and MR ADC correlation was significantly positively associated with PFS; tumors with higher

  16. Structural loads testing on the Active Aeroelastic Wing F-18 in the Flight Loads Laboratory at NASA'

    NASA Technical Reports Server (NTRS)

    2001-01-01

    Structural loads testing on the Active Aeroelastic Wing F-18 in the Flight Loads Laboratory at NASA's Dryden flight Research Center, Edwards, California. The heavily modified and instrumented F-18A entered the Loads Lab in mid-March, 2001, for fit checks of loads hardware and instrumentation checkout prior to initiation of actual structural loads testing. The F-18A underwent loads testing on its modified wings for almost six months, followed by extensive systems tests and simulation before flight tests began.

  17. The measurement and improvement of the lateral agility of the F-18

    NASA Technical Reports Server (NTRS)

    Eggold, David P.; Valasek, John; Downing, David R.

    1991-01-01

    The effect of vehicle configuration and flight control system performance on the roll agility of a modern fighter aircraft has been investigated. A batch simulation of a generic F-18 Hornet was used to study the roll agility as measured by the time to roll through 90 deg metric. Problems discussed include definition of agility, factors affecting the agility of a vehicle, the development of the time to roll through 90 deg agility metric, and a simulation experiment. It is concluded that the integral of stability or wind axis roll rate should be used as a measure of the roll measure traversed. The time through roll angle 90 deg metric is considered to be a good metric for measuring the transient performance aspect of agility. Roll agility of the F-18, as measured by 90 deg metric, can be improved by 10 to 30 percent. Compatible roll and rudder actuator rates can significantly affect 90 deg agility metric.

  18. F-18 simulation with Simulation Group Lead Martha Evans at the controls

    NASA Technical Reports Server (NTRS)

    1993-01-01

    Simulation Group Leader Martha Evans is seen here at the controls of the F-18 aircraft simulator at NASA's Dryden Flight Research Center, Edwards, California. Simulators offer a safe and economical alternative to actual flights to gather data, as well as being excellent facilities for pilot practice and training. The highly modified F-18 airplane flew 383 flights over a nine year period and demonstrated concepts that greatly increase fighter maneuverability. Among concepts proven in the aircraft is the use of paddles to direct jet engine exhaust in cases of extreme altitudes where conventional control surfaces lose effectiveness. Another concept, developed by NASA Langley Research Center, is a deployable wing-like surface installed on the nose of the aircraft for increased right and left (yaw) control on nose-high flight angles.

  19. F-18 SRA closeup of nose cap showing new flush air data system sensor holes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The small numbers on the nose of this F-18 aircraft at NASA's Dryden Flight Research Center, Edwards, California, show the locations of 11 tiny holes which are an integral part of a new air data system installed on the aircraft. The Real-Time Flush Air Data Sensing system measures the speed and direction of the airflow past the aircraft and its altitude, similar to standard air data systems. It incorporates flush-mounted pressure taps, miniature transducers and an advanced research computer to give pilots more accurate information than standard systems employing external probes can provide. Developed by Dryden researchers in cooperation with Honeywell's Research and Technology Center, Minneapolis, Minnesota, the system was flight tested on Dryden's Systems Research Aircraft (SRA) last year, and is now being used as a precise reference for other air data systems currently being evaluated on the modified F-18.

  20. The measurement and improvement of the lateral agility of the F-18

    NASA Technical Reports Server (NTRS)

    Eggold, David P.; Valasek, John; Downing, David R.

    1991-01-01

    The effect of vehicle configuration and flight control system performance on the roll agility of a modern fighter aircraft has been investigated. A batch simulation of a generic F-18 Hornet was used to study the roll agility as measured by the time to roll through 90 deg metric. Problems discussed include definition of agility, factors affecting the agility of a vehicle, the development of the time to roll through 90 deg agility metric, and a simulation experiment. It is concluded that the integral of stability or wind axis roll rate should be used as a measure of the roll measure traversed. The time through roll angle 90 deg metric is considered to be a good metric for measuring the transient performance aspect of agility. Roll agility of the F-18, as measured by 90 deg metric, can be improved by 10 to 30 percent. Compatible roll and rudder actuator rates can significantly affect 90 deg agility metric.

  1. Pet imaging of human pituitary 5-HT2 receptors with F-18 setoperone

    SciTech Connect

    Fischman, A.J.; Bonab, A.A.; Babich, J.W.

    1995-05-01

    Serotonin (5-HT) receptors play an important role in the regulation of pituitary function. In particular, 5HT agonists stimulate ACTH, {beta}-endorphin, prolactin and growth hormone secretion but inhibit TSH release. 5-HT binding sites have been identified by autoradiographic studies of rat and human pituitary. In the present investigation, we used PET with F-18 setoperone to image 5-HT2 receptors in normal humans. Setoperone, a piperidine derivative with potent 5-HT2 receptor blocking properties was labelled with F-18 by nucleophilic substitution on the nitro derivative. After HPLC purification, specific activity was between 10,000 and 15,000 mCi/{mu} mole and radiochemical purity was >98%. Six healthy male volunteers were injected with 5-7 mCi of F-18. Setoperone and serial PET images and arterial blood samples were collected over 2 hrs. Specific binding to 5-HT2 receptors in the frontal cortex (FC), striatum (ST) and pituitary (P) was quantitated using the cerebellum (C) as reference. The tracer showed clear retention in FC, ST and P (known to contain a high density of 5-HT2 receptors) relative to C (known to be devoid of 5-HT2 receptors). In all subjects, FC/C, ST/C and P/C ratios increased during the first hr. and remained stable thereafter. For FC and ST, the ratios reached similar values; 3.92{plus_minus}0.73 and 3.53{plus_minus}0.32. For pituitary, a significantly higher ratio, was measured at all times; 6.53{plus_minus}1.82 (p<0.01). These results indicate that F-18 setoperone is an effective PET radiopharmaceutical for imaging 5-HT2 receptors in the human pituitary. Future applications of this agent could provide important new insights into neuroendocrine function.

  2. Ground-recorded sonic boom signatures of F-18 aircraft formation flight

    NASA Technical Reports Server (NTRS)

    Bahm, Catherine M.; Haering, Edward A., Jr.

    1995-01-01

    Two F-18 aircraft were flown, one above the other, in two formations, in order for the shock systems of the two aircraft to merge and propagate to the ground. The first formation had the canopy of the lower F-18 in the inlet shock of the upper F-18 (called inlet-canopy). The flight conditions were Mach 1.22 and an altitude of 23,500 ft. An array of five sonic boom recorders was used on the ground to record the sonic boom signatures. This paper describes the flight test technique and the ground level sonic boom signatures. The tail-canopy formation resulted in two, separated, N-wave signatures. Such signatures probably resulted from aircraft positioning error. The inlet-canopy formation yielded a single modified signature; two recorders measured an approximate flattop signature. Loudness calculations indicated that the single inlet-canopy signatures were quieter than the two, separated tail-canopy signatures. Significant loudness occurs after a sonic boom signature. Such loudness probably comes from the aircraft engines.

  3. F-18 chase craft with NASA test pilots Schneider and Fulton

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ed Schneider, (left), is the project pilot for the F-18 High Angle of Attack program at NASA's Dryden Flight Research Center, Edwards, California. He has been a NASA research pilot at Dryden since 1983. In addition to his assignment with the F-18 High Angle of Attack program, Schneider is a project pilot for the F-15B aeronautical research aircraft, the NASA NB-52B launch aircraft, and the SR-71 'Blackbird' aircraft. He is a Fellow and was the 1994 President of the Society of Experimental Test Pilots. In 1996 he was awarded the NASA Exceptional Service Medal. Schneider is seen here with Fitzhugh L. Fulton Jr., (right), who was a civilian research pilot at Dryden. from August 1, 1966, until July 3, 1986, following 23 years of service as a pilot in the U.S. Air Force. Fulton was the project pilot on all early tests of the 747 Shuttle Carrier Aircraft (SCA) used to air launch the Space Shuttle prototype Enterprise in the Approach and Landing Tests (ALT) at Dryden in l977. For his work in the ALT program, Fulton received NASA's Exceptional Service Medal. He also received the Exceptional Service Medal again in 1983 for flying the 747 SCA during the European tour of the Space Shuttle Enterprise. During his career at Dryden, Fulton was project pilot on NASA's NB-52B launch aircraft used to air launch a variety of piloted and unpiloted research aircraft, including the X-15s and lifting bodies. He flew the XB-70 prototype supersonic bomber on both NASA-USAF tests and NASA research flights during the late 1960s, attaining speeds exceeding Mach 3. He was also a project pilot on the YF-12A and YF-12C research program from April 14, 1969, until September 25, 1978. The F/A-18 Hornet seen behind them is used primarily as a safety chase and support aircraft at NASA's Dryden Flight Research Center, Edwards, Calif. As support aircraft, the F-18's are used for safety chase, pilot proficiency and aerial photography. As a safety chase aircraft, F-18's, flown by research pilots

  4. Etiopathologies associated with intercostal muscle hypermetabolism and prominent right ventricle visualization on 2-deoxy-2[F-18]fluoro-D-glucose-positron emission tomography: significance of an incidental finding and in the setting of a known pulmonary disease.

    PubMed

    Basu, Sandip; Alzeair, Saad; Li, Geming; Dadparvar, Simin; Alavi, Abass

    2007-01-01

    The present study was undertaken to investigate the significance of 2-deoxy-2-[F-18]fluoro-D-glucose (FDG) uptake in the intercostal muscles (ICM) and prominent visualization of right ventricle (RV) in FDG-positron emission tomography (PET) scans and its implications. Patients identified to have FDG uptake in the ICM with or without prominent visualization of the RV either incidentally or in the background of an existing explanatory cause at the time of FDG-PET studies were included in this retrospective study. These patients had undergone FDG-PET either for ruling out malignancy or for disease monitoring purposes in setting a proven malignancy. We reviewed the clinical and investigational records (including computed tomography [CT] thorax, chest X-ray, 2-D echo and pulmonary function tests, and arterial blood gas analysis) of the group with incidental FDG uptake for revelation of a pathology explaining such uptake. A total of 14 cases with 16 FDG-PET studies were identified from the retrospective examination of case records. One patient had three FDG-PET at different time points of his disease course. The patient population included 13 males and one female with age range 46-88 years. The patients were classified into two groups: (1) cases with isolated ICM uptake (n=10); (2) cases with both ICM and RV uptake (n=4). Among 10 patients with isolated ICM uptake, in six patients it was a serendipitous observation, whereas four patients had existing explanatory cause at the time of FDG-PET. The causes found to be associated included COPD, asthma, recent heart failure, interstitial lung disease (post external radiotherapy) and pulmonary embolism, atelectasis with pleural effusion. In all four cases with associated RV uptake, there was evidence of pulmonary hypertension (PH). Among these, in one patient this was a serendipitous observation. He had evidence of interstitial lung disease (ILD) in CT thorax, and 2-D echo showed moderate PH. The remaining three patients had

  5. F-18 HARV in high-alpha flight with smoke generator

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The NASA Dryden Flight Research Center, Edwards, California, used an F-18 Hornet fighter aircraft as its High Angle-of-Attack (alpha) Research Vehicle (HARV) in a three-phased flight research program lasting from April 1987 until September 1996. The aircraft completed 385 research flights and demonstrated stabilized flight at angles of attack between 65 and 70 degrees using thrust vectoring vanes, a research flight control system, and (eventually) forebody strakes (hinged structures on the forward side of the fuselage to provide control by interacting with vortices that are generated at high angles of attack, and thus create side forces). This combination of technologies provided carefree handling of a fighter aircraft in a part of the flight regime that was otherwise very dangerous. Flight research with the HARV increased our understanding of flight at high angles of attack, enabling designers of U.S. fighter aircraft to design airplanes that will fly safely in portions of the flight envelope that pilots previously had to avoid. Angle of attack (alpha) is an aeronautical term that describes the angle of an aircraft body and wings relative to its actual flightpath. During maneuvers, pilots often fly at extreme angles of attack -- with the nose pitched up while the aircraft continues in its original direction. This can lead to conditions in which the airflow becomes separated over large regions of the lifting surfaces (airfoils). These conditions can result in insufficient lift to maintain altitude or control of the aircraft and a corresponding increase in drag -- a condition known as stall. (In an ideal situation, the airflow would remain attached to the airfoil surface from leading to trailing edge; this would reduce the drag that impedes the movement of the airfoil through the atmosphere. When the airflow separates from the surface, this increases the drag and can lead to a stall.) The HARV was developed from a pre-production model of the F-18, a single

  6. Synthesis of Fluorine-Containing Phosphodiesterase 10A (PDE10A) Inhibitors and the In Vivo Evaluation of F-18 Labeled PDE10A PET Tracers in Rodent and Nonhuman Primate

    PubMed Central

    Li, Junfeng; Zhang, Xiang; Jin, Hongjun; Fan, Jinda; Flores, Hubert; Perlmutter, Joel S.; Tu, Zhude

    2015-01-01

    A series of fluorine-containing PDE10A inhibitors were designed and synthesized to improve the metabolic stability of [11C]MP-10. Twenty of the 22 new analogues had high potency and selectivity for PDE10A: 18a–j, 19d–j, 20a–b, and 21b had IC50 values <5 nM for PDE10A. Seven F-18 labeled compounds [18F]18a–e, [18F]18g, and [18F]20a were radiosynthesized by 18F-introduction onto the quinoline rather than the pyrazole moiety of the MP-10 pharmacophore and performed in vivo evaluation. Biodistribution studies in rats showed ~2-fold higher activity in the PDE10A-enriched striatum than nontarget brain regions; this ratio increased from 5 to 30 min postinjection, particularly for [18F]18a–d and [18F]20a. Micro-PET studies of [18F]18d and [18F]20a in nonhuman primates provided clear visualization of striatum with suitable equilibrium kinetics and favorable metabolic stability. These results suggest this strategy may identify a 18F-labeled PET tracer for quantifying the levels of PDE10A in patients with CNS disorders including Huntington’s disease and schizophrenia. PMID:26430878

  7. New Cyclotron Targetry to Enhance F-18 clinical Position Emission Tomography

    SciTech Connect

    J. Michael Doster

    2008-12-19

    This project proposes to develop cyclotron targets that produce F-18 for clinical Positron Emission Tomography (PET) at significantly higher rates than that available from current targetry. This production rate of 18F is directly proportional to the beam current. Higher beam currents would result in increased 18F production but would be accompanied by higher heat loads to the target. The beam power available in most commercial cyclotrons exceeds the heat removal capacity of current target technology by a factor of two to four, significantly limiting the production rate of Fluorine-18.

  8. 4-[F-18]fluoroproline: A potential tracer for collagen synthesis. Radiosynthesis and biological evaluation

    SciTech Connect

    Hamacher, K.; Herz, M.; Truckenbrodt, R.

    1996-05-01

    Proline is an important constituent of the structural protein collagen. It has been shown that its fluorinated analogs (2S,4S)- and particularly (2S,4R)-4-fluoroproline are also incorporated into collagen (Gottlieb et al., Biochemistry (1965), 4: 2507). 4-[F-18]fluoroproline is therefore a potential probe for studying abnormal collagen synthesis e. g. in tumors, lung fibrosis and liver cirrhosis. We have evaluated the two diastereomeric forms using a transplantable osteosarcoma in mice as an in vivo model for elevated collagen synthesis, and a MCF 7 mamma carcinoma cell line for monolayer incubation studies.

  9. Numerical simulation of the flow about an F-18 aircraft in the high-alpha regime

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Rizk, Yehia M.

    1994-01-01

    The current research is aimed at developing and extending numerical methods to accurately predict the high Reynolds number flow about the NASA F-18 HARV at large angles of attack. The resulting codes are validated by comparison of the numerical results with in-flight aerodynamic measurements and flow visualization obtained on the HARV. Further, computations have been used to provide an analysis and numerical optimization of a pneumatic slot blowing concept, and a mechanical strake concept, for use as potential forebody flow control devices in improving high-alpha maneuverability.

  10. Targeting Prostate-Specific Membrane Antigen (PSMA) with F-18-Labeled Compounds: the Influence of Prosthetic Groups on Tumor Uptake and Clearance Profile.

    PubMed

    Bouvet, Vincent; Wuest, Melinda; Bailey, Justin J; Bergman, Cody; Janzen, Nancy; Valliant, John F; Wuest, Frank

    2017-06-21

    Prostate-specific membrane antigen (PSMA) is an important biomarker expressed in the majority of prostate cancers. The favorable positron emission tomography (PET) imaging profile of the PSMA imaging agent 2-(3-(1-carboxy-5-[(6-[(18)F]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentane-dioic acid [(18)F]DCFPyL in preclinical prostate cancer models and in prostate cancer patients stimulated the development and validation of other fluorine-containing PSMA inhibitors to further enhance pharmacokinetics and simplify production methods. Here, we describe the synthesis and radiopharmacological evaluation of various F-18-labeled PSMA inhibitors which were prepared through different prosthetic group chemistry strategies. Prosthetic groups N-succinimidyl-4-[(18)F]fluorobenzoate ([(18)F]SFB), 4-[(18)F]fluorobenzaldehyde, and 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) were used for bioconjugation reactions to PSMA-binding lysine-urea-glutamate scaffold via acylation and oxime formation. All fluorine-containing PSMA inhibitors were tested for their PSMA inhibitory potency in an in vitro competitive binding assay in comparison to an established reference compound [(125)I]TAAG-PSMA. Tumor uptake and clearance profiles of three F-18-labeled PSMA inhibitors ([(18)F]4, [(18)F]7, and [(18)F]8) were studied with dynamic PET imaging using LNCaP tumor-bearing mice. F-18-labeled PSMA inhibitors were synthesized in 32-69 % radiochemical yields using (1) acylation reaction at the primary amino group of the lysine residue with [(18)F]SFB and (2) oxime formation with 4-[(18)F]fluorobenzaldehyde and [(18)F]FDG using the respective aminooxy-functionalized lysine residue. Compound 7 displayed an IC50 value of 6 nM reflecting very high affinity for PSMA. Compounds 4 and 8 showed IC50 values of 13 and 62 nM, respectively. The IC50 value of reference compound DCFPyL was 13 nM. Dynamic PET imaging revealed the following SUV60min for radiotracer uptake in PSMA(+) LNCaP tumors: 0

  11. Supplementation with Lactobacillus paracasei or Pediococcus pentosaceus does not prevent diarrhoea in neonatal pigs infected with Escherichia coli F18.

    PubMed

    Andersen, Anders D; Cilieborg, Malene S; Lauridsen, Charlotte; Mørkbak, Anne Louise; Sangild, Per Torp

    2017-07-01

    Infectious diarrhoea is a worldwide problem in newborns. Optimal bacterial colonisation may enhance gut maturation and protect against pathogenic bacteria after birth. We hypothesised that lactic acid bacteria (LAB) administration prevents pathogen-induced diarrhoea in formula-fed newborns. Newborn caesarean-delivered, colostrum-deprived term piglets on parenteral nutrition for the first 15 h, were used as models for sensitive newborn infants. A commercially available probiotic strain, Lactobacillus paracasei F19 (LAP, 2·6×108 colony-forming units (CFU)/kg per d) and a novel LAB isolate, Pediococcus pentosaceus (PEP, 1·3×1010 CFU/kg per d), were administered for 5 d with or without inoculation of the porcine pathogen, Escherichia coli F18 (F18, 1010 CFU/d). This resulted in six treatment groups: Controls (n 9), LAP (n 10), PEP (n 10), F18 (n 10), F18-LAP (n 10) and F18-PEP (n 10). The pathogen challenge increased diarrhoea and density of F18 in the intestinal mucosa (P<0·05). LAB supplementation further increased the diarrhoea score, relative to F18 alone (P<0·01). Intestinal structure and permeability were similar among groups, whereas brush border enzymes were affected in variable intestinal regions with decreased activities in most cases after F18 and LAB inoculation. Bacterial density in colon mucosa increased after F18 inoculation (P<0·05) but was unaffected by LAB supplementation. In colon contents, acetic and butyric acids were increased by PEP (P<0·05). The LAB used in this study failed to reduce E. coli-induced diarrhoea in sensitive newborn pigs. In vulnerable newborns there may be a delicate balance among bacterial composition and load, diet and the host. Caution may be required when administering LAB to compromised newborns suffering from enteric infections.

  12. An Overview of the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.; Wilson, R. Joseph; Flick, Bradley C.; Rood, Richard L.

    1996-01-01

    This paper gives an overview of the NASA F-18 High Alpha Research Vehicle. The three flight phases of the program are introduced, along with the specific goals and data examples taken during each phase. The aircraft configuration and systems needed to perform the disciplinary and inter-disciplinary research are discussed. The specific disciplines involved with the flight research are introduced, including aerodynamics, controls, propulsion, systems, and structures. Decisions that were made early in the planning of the aircraft project and the results of those decisions are briefly discussed. Each of the three flight phases corresponds to a particular aircraft configuration, and the research dictated the configuration to be flown. The first phase gathered data with the baseline F-18 configuration. The second phase was the thrust-vectoring phase. The third phase used a modified forebody with deployable nose strakes. Aircraft systems supporting these flights included extensive instrumentation systems, integrated research flight controls using flight control hardware and corresponding software, analog interface boxes to control forebody strakes, a thrust-vectoring system using external post-exit vanes around axisymmetric nozzles, a forebody vortex control system with strakes, and backup systems using battery-powered emergency systems and a spin recovery parachute.

  13. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  14. Numerical prediction of the unsteady flowfield around the F-18 aircraft at large incidence

    NASA Technical Reports Server (NTRS)

    Rizk, Yehia M.; Gee, Ken

    1991-01-01

    This paper describes a numerical method capable of solving the steady and unsteady viscous flow around complete aircraft configurations at high angles of attack. This method is used to simulate the external flow around the F-18 aircraft, including deflected control surfaces. The current technique employs a generalized overset zonal grid scheme to decompose the computational space around the aircraft. The grid around various components of the aircraft are created numerically using a three-dimensional hyperbolic grid generation procedure. The Reynolds-averaged Navier-Stokes equations are integrated using a time-accurate, implicit procedure. Results for the turbulent flow around the F-18 aircraft at 30 degrees angle of attack show the details of the flowfield structure, including the unsteadiness created by the vortex burst and the resulting fluctuating airloads exerted on the vertical tail. The computed results agree fairly well with flight data for surface pressure, surface flow pattern, vortex burst location, and the dominant frequency for tail load fluctuations.

  15. Thrust Vectoring on the NASA F-18 High Alpha Research Vehicle

    NASA Technical Reports Server (NTRS)

    Bowers, Albion H.; Pahle, Joseph W.

    1996-01-01

    Investigations into a multiaxis thrust-vectoring system have been conducted on an F-18 configuration. These investigations include ground-based scale-model tests, ground-based full-scale testing, and flight testing. This thrust-vectoring system has been tested on the NASA F-18 High Alpha Research Vehicle (HARV). The system provides thrust vectoring in pitch and yaw axes. Ground-based subscale test data have been gathered as background to the flight phase of the program. Tests investigated aerodynamic interaction and vane control effectiveness. The ground-based full-scale data were gathered from static engine runs with image analysis to determine relative thrust-vectoring effectiveness. Flight tests have been conducted at the NASA Dryden Flight Research Center. Parameter identification input techniques have been developed. Individual vanes were not directly controlled because of a mixer-predictor function built into the flight control laws. Combined effects of the vanes have been measured in flight and compared to combined effects of the vanes as predicted by the cold-jet test data. Very good agreement has been found in the linearized effectiveness derivatives.

  16. F-18 SRA closeup of nose cap showing new flush air data system sensor holes

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Small numbers on the nose cap of this F-18 Systems Research Aircraft at NASA's Dryden Flight Research Center, Edwards, California, show the locations of 11 tiny holes, which are an integral part of a new air data system installed on the aircraft. The Real-Time Flush Air Data Sensing system measures the speed and direction of the airflow past the aircraft and its altitude, similar to standard air data systems. It differs from those systems by incorporating flush-mounted pressure taps, miniature transducers and an advanced research computer to give the pilot more accurate information than systems employing external probes provide. Stephen A. Whitmore of Dryden's Aerodynamics Branch won NASA's Space Act Award for his development of the Real-Time Flush Air Data Sensing system. The award honors projects which are scientifically or technologically significant to the aeronautics and space community. The system was flight tested on the modified F-18 last year, and is now being used as a precise reference system for other air data systems currently being evaluated on the aircraft.

  17. An intra-operative positron probe with background rejection capability for FDG-guided surgery.

    PubMed

    Yamamoto, Seiichi; Matsumoto, Keiichi; Sakamoto, Setsu; Tarutani, Kazumasa; Minato, Kotaro; Senda, Michio

    2005-02-01

    For radio-guided surgery on tumors using F-18-FDG, detection of annihilation gamma photons emanating from other parts of the body produces background radiation counts and limits its use in clinical situations. To overcome this limitation, we have developed an intra-operative positron probe with background-rejection capability. The positron probe uses a phoswich detector composed of a plastic scintillator and a bismuth germinate (BGO). A positron from a positron emitter such as F-18 is detected by the plastic scintillator and emits annihilation photons. The BGO detects one of the annihilation photons while a photo-multiplier tube (PMT) detects scintillation photons from both scintillators. The decay time differences of these two scintillators are used to distinguish whether the event is a true event where a positron and a following annihilation photon are detected simultaneously, or a background event. In this configuration, only positrons can be selectively detected, even in an environment of high background gamma photon flux. Spatial resolution was 11-mm full width at half maximum (FWHM) 5 mm from the detector surface. Measured sensitivity for the F-18 point source was 2.6 cps/kBq 5 mm from the detector surface. The background count rate was less than 0.5 cps for a 20-cm diameter cylindrical phantom containing 37 MBq of F-18 solution measured on the phantom surface, while the positron count rate was almost linear over a range of approximately 6 kcps. These results indicate that our developed intra-operative positron probe is valuable for radio-guided surgery on tumors using F-18-FDG in a high flux of background annihilation gamma photons.

  18. Cognition and amyloid load in Alzheimer disease imaged with florbetapir F 18(AV-45) positron emission tomography.

    PubMed

    Rosenberg, Paul B; Wong, D F; Edell, S L; Ross, J S; Joshi, A D; Brašić, J R; Zhou, Y; Raymont, V; Kumar, A; Ravert, H T; Dannals, R F; Pontecorvo, M J; Skovronsky, D M; Lyketsos, C G

    2013-03-01

    To examine the association between regional brain uptake of a novel amyloid positron emission tomography (PET) tracer florbetapir F 18 ([(18)F]-AV-45) and cognitive performance in a pilot study. Cross-sectional comparison of [(18)F]-AV-45 in AD patients versus controls. Three specialty memory clinics. Eleven participants with probable Alzheimer disease (AD) by NINDS/ADRDA criteria and 15 healthy comparison (HC) participants. Participants underwent PET imaging following a 370 MBq (10 mCi) intravenous administration of [(18)F]-AV-45. Regional/cerebellar standardized uptake value ratios (SUVRs) were calculated. Cognition was assessed using Mini-Mental State Examination, Alzheimer's Disease Assessment Scale-Cognitive subscale (ADAS-Cog), Wechsler Logical Memory IA (immediate recall) test (LMIA), and verbal category fluency. Greater [(18)F]-AV-45 SUVR was associated with poorer performance on all cognitive tests. In the HC group, occipital, parietal, precuneus, temporal, and cortical average SUVR was associated with greater ADAS-Cog, and greater anterior cingulate SUVR was associated with lower LMIA. Two HC participants had [(18)F]-AV-45 cortical/cerebellar SUVR greater than 1.5, one of whom had deficits in episodic recall and on follow-up met criteria for amnestic mild cognitive impairment. [(18)F]-AV-45 SUVR in several brain regions was associated with worse global cognitive performance particularly in HC, suggesting its potential as a marker of preclinical AD. Copyright © 2013 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.

  19. FDG-PET-positive ovarian thecoma with GLUT5 expression: Five cases.

    PubMed

    Bono, Yukiko; Mizumoto, Yasunari; Nakamura, Mitsuhiro; Iwadare, Jyunpei; Obata, Takeshi; Fujiwara, Hiroshi

    2017-03-01

    Positron emission tomography (PET) with fluorodeoxyglucose F18 ((18) F-FDG) is useful for detecting malignancies, but benign lesions occasionally have false-positive (18) F-FDG uptake. Here, we report the cases of five postmenopausal women with solid ovarian tumors suspected to be ovarian cancer on magnetic resonance imaging and (18) F-FDG uptake. Mean age of the five patients was 57 years (range, 53-65 years). Average early standardized uptake value (SUV) of (18) F-FDG was 5.76 (range, 2.2-12.0) and delayed SUV was 6.56 (range, 2.4-13.8). In all five patients, frozen section diagnosis at surgery was thecoma, and bilateral salpingo-oophorectomy was performed. On immunohistochemistry, immunoreactive glucose transporter 5 (GLUT5) expression was detected in thecoma tissues. This case shows that thecoma sometimes has positive (18) F-FDG uptake on positron emission tomography-computed tomography (PET-CT), indicating the need for caution regarding false-positive PET-CT in patients with benign solid ovarian tumor.

  20. Progressive osteoblastic bone metastases in breast cancer negative on FDG-PET.

    PubMed

    Huyge, Valérie; Garcia, Camilo; Vanderstappen, Anja; Alexiou, Jean; Gil, Thierry; Flamen, Patrick

    2009-07-01

    Positron emission tomography using F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) is increasingly used in breast cancer. The new generation cameras integrate PET and CT within the same camera, allowing the simultaneous assessment of the structural and metabolic aspects of disease. There is presently a controversy on the clinical significance of osteoblastic bone metastases in breast cancer which are not detected on FDG-PET. It has been suggested that these radiologically dense lesions represent the result of successful treatment of initially osteolytic lesions. We report a case of a 65-year-old woman with a suspicion of recurrent breast cancer based on an increasing serum tumor marker. Serial PET/CT showed progressive blastic bone metastases on the CT without FDG uptake. These lesions were confirmed by bone single photon emission computed tomography. This case report shows: first, that progressive osteoblastic lesions can lack FDG-avidity, leading to a false-negative PET; and secondly, that bone scintigraphy should not be replaced by FDG-PET/CT for the detection of bone metastases in breast cancer.

  1. Development of Korean Standard Brain Templates

    PubMed Central

    Lee, Jae Sung; Kim, Jinsu; Kim, Yu Kyeong; Kang, Eunjoo; Kang, Hyejin; Kang, Keon Wook; Lee, Jong Min; Kim, Jae-Jin; Park, Hae-Jeong; Kwon, Jun Soo; Kim, Sun I.; Yoo, Tae Woo; Chang, Kee-Hyun; Lee, Myung Chul

    2005-01-01

    We developed age, gender and ethnic specific brain templates based on MR and Positron-Emission Tomography (PET) images of Korean normal volunteers. Seventy-eight normal right-handed volunteers (M/F=49/29) underwent 3D T1-weighted SPGR MR and F-18-FDG PET scans. For the generation of standard templates, an optimal target brain that has the average global hemispheric shape was selected for each gender. MR images were then spatially normalized by linear transformation to the target brains, and normalization parameters were reapplied to PET images. Subjects were subdivided into 2 groups for each gender: the young/midlife (<55 yr) and the elderly groups. Young and elderly MRI/PET templates were composed by averaging the spatially normalized images. Korean templates showed different shapes and sizes (mean length, width, and height of the brains were 16.5, 14.3 and 12.1 cm for man, and 15.6, 13.5 and 11.4 cm for woman) from the template based on Caucasian (18.3, 14.2, and 13.3 cm). MRI and PET templates developed in this study will provide the framework for more accurate stereotactic standardization and anatomical localization. PMID:15953874

  2. Changes in Cervical Cancer FDG Uptake During Chemoradiation and Association With Response

    SciTech Connect

    Kidd, Elizabeth A.; Thomas, Maria; Siegel, Barry A.; Dehdashti, Farrokh; Grigsby, Perry W.

    2013-01-01

    Purpose: Previous research showed that pretreatment uptake of F-18 fluorodeoxyglucose (FDG), as assessed by the maximal standardized uptake value (SUV{sub max}) and the variability of uptake (FDG{sub hetero}), predicted for posttreatment response in cervical cancer. In this pilot study, we evaluated the changes in SUV{sub max} and FDG{sub hetero} during concurrent chemoradiation for cervical cancer and their association with post-treatment response. Methods and Materials: Twenty-five patients with stage Ib1-IVa cervical cancer were enrolled. SUV{sub max}, FDG{sub hetero}, and metabolic tumor volume (MTV) were recorded from FDG-positron emission tomography (PET)/computed tomography (CT) scans performed pretreatment and during weeks 2 and 4 of treatment and were evaluated for changes and association with response assessed on 3-month post-treatment FDG-PET/CT. Results: For all patients, the average pretreatment SUV{sub max} was 17.8, MTV was 55.4 cm{sup 3}, and FDG{sub hetero} was -1.33. A similar decline in SUV{sub max} was seen at week 2 compared with baseline and week 4 compared with week 2 (34%). The areas of highest FDG uptake in the tumor remained relatively consistent on serial scans. Mean FDG{sub hetero} decreased during treatment. For all patients, MTV decreased more from week 2 to week 4 than from pretreatment to week 2. By week 4, the average SUV{sub max} had decreased by 57% and the MTV had decreased by 30%. Five patients showed persistent or new disease on 3-month post-treatment PET. These poor responders showed a higher average SUV{sub max}, larger MTV, and greater heterogeneity at all 3 times. Week 4 SUV{sub max} (P=.037), week 4 FDG{sub hetero} (P=.005), pretreatment MTV (P=.008), and pretreatment FDG{sub hetero} (P=.008) were all significantly associated with post-treatment PET response. Conclusions: SUV{sub max} shows a consistent rate of decline during treatment and declines at a faster rate than MTV regresses. Based on this pilot study

  3. Genetic Diversity among Escherichia coli Isolates Carrying f18 Genes from Pigs with Porcine Postweaning Diarrhea and Edema Disease

    PubMed Central

    Nagy, Béla; Wilson, Richard A.; Whittam, Thomas S.

    1999-01-01

    Multilocus enzyme electrophoresis was applied to detect allelic variation and multilocus genotypes (electrophoretic types [ETs]) among 43 Escherichia coli isolates from weaned pigs suffering from edema disease or from diarrhea. ETs were analyzed in relation to O serogroups and virulence genes (sta, stb, lt, stx2, and f18) by DNA hybridization. Genomic diversity was the lowest in serogroup O138, while virulence genes (stx2 and f18) were the most uniform in serogroup O139. In general, the serogroups or toxin and F18 fimbria types were not related to selected ETs, suggesting that the toxin and f18 fimbria genes in E. coli isolates from pigs with postweaning diarrhea or edema disease occur in a variety of chromosomal backgrounds. PMID:10203547

  4. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using 18F-FDG PET and MRI

    PubMed Central

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-01-01

    Abstract Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and

  5. Analysis of the Metabolic and Structural Brain Changes in Patients With Torture-Related Post-Traumatic Stress Disorder (TR-PTSD) Using ¹⁸F-FDG PET and MRI.

    PubMed

    Zandieh, Shahin; Bernt, Reinhard; Knoll, Peter; Wenzel, Thomas; Hittmair, Karl; Haller, Joerg; Hergan, Klaus; Mirzaei, Siroos

    2016-04-01

    Many people exposed to torture later suffer from torture-related post-traumatic stress disorder (TR-PTSD). The aim of this study was to analyze the morphologic and functional brain changes in patients with TR-PTSD using magnetic resonance imaging (MRI) and positron emission tomography (PET). This study evaluated 19 subjects. Thirteen subcortical brain structures were evaluated using FSL software. On the T1-weighted images, normalized brain volumes were measured using SIENAX software. The study compared the volume of the brain and 13 subcortical structures in 9 patients suffering from TR-PTSD after torture and 10 healthy volunteers (HV). Diffusion-weighted imaging (DWI) was performed in the transverse plane. In addition, the 18F-FDG PET data were evaluated to identify the activity of the elected regions. The mean left hippocampal volume for the TR-PTSD group was significantly lower than in the HV group (post hoc test (Bonferroni) P < 0.001). There was a significant difference between the gray matter volume of the patients with TR-PTSD and the HV group (post hoc test (Bonferroni) P < 0.001). The TR-PTSD group showed low significant expansion of the ventricles in contrast to the HV group (post hoc test (Bonferroni) P < 0.001). Diffusion-weighted imaging revealed significant differences in the right frontal lobe and the left occipital lobe between the TR-PTSD and HV group (post hoc test (Bonferroni) P < 0.001). Moderate hypometabolism was noted in the occipital lobe in 6 of the 9 patients with TR-PTSD, in the temporal lobe in 1 of the 9 patients, and in the caudate nucleus in 5 of the 9 patients. In 2 cases, additional hypometabolism was observed in the posterior cingulate cortex and in the parietal and frontal lobes. The findings from this study show that TR-PTSD might have a deleterious influence on a set of specific brain structures. This study also demonstrated that PET combined with MRI is sensitive in detecting possible metabolic and structural

  6. Effects of nonlinear unsteady aerodynamics on performance, stability and control of an F-18 configuration

    NASA Astrophysics Data System (ADS)

    Lin, Guofeng

    Large-amplitude forced oscillation data for an F-18 configuration are analyzed with two modeling methods: Fourier functional analysis to form the indicial integrals, and a generalized dynamic aerodynamic model for stability and control analysis. The indicial integral is first applied to calculate the pitch damping parameter for comparison with the conventional forced oscillation test. It is shown that the reduced frequency affects the damping much more strongly than the test amplitude. Using the indicial integral models in a flight simulation code for an F-18 configuration, it is found that the configuration with unsteady aerodynamics becomes unstable in pitch if the pitch rate is high, in contrast to the quasi-steady configuration which depends mainly on the instantaneous angle of attack. In a pitch-up maneuver in the post-stall regime the configuration with unsteady aerodynamics can stay at a high pitch attitude and angle of attack without losing altitude for a much longer duration than the quasi-steady model. However, the speed will decrease faster because of higher drag. The newly developed generalized dynamic aerodynamic model is of the nonlinear algebraic form with the coefficients being determined from a set of large amplitude oscillatory experimental data by using least-square fitting. The resulting model coefficients are functions of the reduced frequency and amplitude. The new aerodynamic models have been verified with data in harmonic oscillation with a smaller amplitude and in constant pitch-rate motions. The new algebraic models are especially useful in stability and control analysis, and are used in bifurcation analysis and control studies for the same F-18 HARV configuration. The results show significant differences in the equilibrium surfaces and dynamic stability. It is also shown that control gains developed with the conventional quasi-steady aerodynamic data may not be adequate when the effect of unsteady aerodynamics is significant. A numerical

  7. Numerical simulation of high-incidence flow over the F-18 aircraft

    NASA Technical Reports Server (NTRS)

    Cummings, Russell M.; Schiff, Lewis B.; Rizk, Yehia M.; Chaderjian, Neal M.

    1990-01-01

    Navier-Stokes solutions have been obtained using the Chimera overset grid scheme for flow over the wing, fuselage, and wing leading-edge extension (LEX) of the F-18 aircraft at high incidence. Solutions are also presented for flow over the fuselage forebody at high angles of attack. The solutions are for turbulent flows at high-Reynolds number flight-test conditions, and are compared with available qualitative and quantitative experimental data. Comparisons of predicted surface flow patterns, off-surface flow visualizations, and surface-pressure distributions are in good agreement with flight-test data. The ability of the numerical method to predict the bursting of the LEX vortex as it encounters the adverse pressure gradient field of the wing is demonstrated.

  8. The F-18 High Alpha Research Vehicle: A High-Angle-of-Attack Testbed Aircraft

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria; Gatlin, Donald; Kempel, Robert; Matheny, Neil

    1992-01-01

    The F-18 High Alpha Research Vehicle is the first thrust-vectoring testbed aircraft used to study the aerodynamics and maneuvering available in the poststall flight regime and to provide the data for validating ground prediction techniques. The aircraft includes a flexible research flight control system and full research instrumentation. The capability to control the vehicle at angles of attack up to 70 degrees is also included. This aircraft was modified by adding a pitch and yaw thrust-vectoring system. No significant problems occurred during the envelope expansion phase of the program. This aircraft has demonstrated excellent control in the wing rock region and increased rolling performance at high angles of attack. Initial pilot reports indicate that the increased capability is desirable although some difficulty in judging the size and timing of control inputs was observed. The aircraft, preflight ground testing and envelope expansion flight tests are described.

  9. F-18 HARV in flight close-up of actuated nose strakes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's F-18 from the Dryden Flight Research Center, Edwards, California, soars over the Mojave Desert while flying the third phase of the HARV (High Alpha Research Vehicle) program. This is a closer look at the set of control surfaces called strakes that were installed in the nose of the aircraft. The strakes, outlined in gold and white, are expected to provide improved yaw control at steep angles of attack. Normally folded flush, the units -- four feet long and six inches wide -- can be opened independently to interact with the nose vortices to produce large side forces for control. Testing involved evaluation of the strakes by themselves as well as combined with the aircraft's Thrust Vectoring System. The strakes were designed by NASA's Langley Research Center, then installed and flight tested at Dryden.

  10. F-18 HARV in flight close-up of actuated nose strakes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    NASA's F-18 from the Dryden Flight Research Center, Edwards, California, soars over the Mojave Desert while flying the third phase of the HARV (High Alpha Research Vehicle) program. This is a closer look at the set of control surfaces called strakes that were installed in the nose of the aircraft. The strakes, outlined in gold and white, provided improved yaw control at steep angles of attack. Normally folded flush, the units -- four feet long and six inches wide -- can be opened independently to interact with the nose vortices to produce large side forces for control. Testing involved evaluation of the strakes by themselves as well as combined with the aircraft's Thrust Vectoring System. The strakes were designed by NASA's Langley Research Center, then installed and flight tested at Dryden.

  11. F-18 HARV on ramp close-up of actuated nose strakes

    NASA Technical Reports Server (NTRS)

    1995-01-01

    Outlined with gold stripes are the hinged nose strakes, modifications made to NASA's F-18 HARV (High Alpha Research Vehicle) at the Dryden Flight Research Center, Edwards, California. Actuated Nose Strakes for Enhanced Rolling (ANSER) were installed to fly the third and final phase in the HARV flight test project. Normally folded flush, the units -- four feet long and six inches wide -- can be opened independently to interact with the nose vortices to produce large side forces for control. Early wind tunnel tests indicated that the strakes would be as effective in yaw control at high angles of attack as rudders are at lower angles. Testing involved evaluation of the strakes by themselves as well as combined with the aircraft's Thrust Vectoring System. The strakes were designed by NASA's Langley Research Center, then installed and flight tested at Dryden.

  12. Numerical simulation of the flow about the F-18 HARV at high angle of attack

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.

    1994-01-01

    As part of NASA's High Alpha Technology Program, research has been aimed at developing and extending numerical methods to accurately predict the high Reynolds number flow about the NASA F-18 High Alpha Research Vehicle (HARV) at large angles of attack. The HARV aircraft is equipped with a bidirectional thrust vectoring unit which enables stable, controlled flight through 70 deg angle of attack. Currently, high-fidelity numerical solutions for the flow about the HARV have been obtained at alpha = 30 deg, and validated against flight-test data. It is planned to simulate the flow about the HARV through alpha = 60 deg, and obtain solutions of the same quality as those at the lower angles of attack. This report presents the status of work aimed at extending the HARV computations to the extreme angle of attack range.

  13. F-18 HARV on ground during engine run showing thrust vectoring

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The exhaust plume from the left engine of NASA's F-18 High Alpha Research Vehicle (HARV) is deflected upward by the paddle-like vanes of the aircraft's thrust vectoring system during an early morning 'hot loads' ground test of the system at the NASA Dryden Flight Research Center, Edwards, California. The thrust vectoring system was used to enhance maneuverability and control in flight regimes where conventional controls are ineffective. During the tests Feb. 15-22 1991, the thrust vectoring vanes were tested with both engines running and individually, and validated the structural loads and thermal profiles on the three vanes surrounding each engine. The tests paved the way for later thrust vectoring aircraft. Data from the NASA high angle of attack program is producing technical data to validate computer codes and wind tunnel research about airflow phenomena at high angles of attack and is expected to lead to better maneuverability in future high performance aircraft and make them safer.

  14. Computational Investigation of an F-18 Aircraft in the High-Alpha Regime

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Rizk, Yehia M.; Kutler, Paul (Technical Monitor)

    1994-01-01

    One of the goals of NASA's High Alpha Technology Program is to provide flight-validated design methods for the high-angle-of-attack regime. This is an integrated effort utilizing computational simulations, wind tunnel experiments, and flight tests using the F-18 High Alpha Research Vehicle (HARV). The dominant physics of the aircraft flows in the high alpha regime changes as the angle of attack is increased. At moderate angle of attack the flow is characterized by boundary layer separation and the formation of tight vortices. As the angle of attack is increased, these vortices break down producing unsteady wakes. With further increase in angle of attack, the, vortex breakdown moves progressively upstream until the entire flowfield becomes dominated by the unsteady wake. Previous computational work has demonstrated the ability to simulate flows about the F-18 HARV in the medium-to-high angle of attack range, where the flowfield is characterized by the vortex formation and subsequent breakdown. This paper extends the previous computations to include conditions of 45 degree angle of attack where the flowfield becomes dominated by the unsteady wake shed from the Leading Edge Extension (LEX), and regions of laminar and transitional flow appear on the fuselage forebody. A more complete surface geometry is utilized, which includes the features of the engine nacelle, inlet diffuser, and the boundary layer diverter duct. A volume grid sensitivity study was also performed to extend the accuracy of the results, most notably in the prediction of the LEX vortex breakdown position. This paper includes comparisons of computational results with both in-flight surface pressure measurements, and flow visualizations of the surface and off-surface particle trajectories.

  15. Computational Investigation of an F-18 Aircraft in the High-Alpha Regime

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Rizk, Yehia M.; Kutler, Paul (Technical Monitor)

    1994-01-01

    One of the goals of NASA's High Alpha Technology Program is to provide flight-validated design methods for the high-angle-of-attack regime. This is an integrated effort utilizing computational simulations, wind tunnel experiments, and flight tests using the F-18 High Alpha Research Vehicle (HARV). The dominant physics of the aircraft flows in the high alpha regime changes as the angle of attack is increased. At moderate angle of attack the flow is characterized by boundary layer separation and the formation of tight vortices. As the angle of attack is increased, these vortices break down producing unsteady wakes. With further increase in angle of attack, the, vortex breakdown moves progressively upstream until the entire flowfield becomes dominated by the unsteady wake. Previous computational work has demonstrated the ability to simulate flows about the F-18 HARV in the medium-to-high angle of attack range, where the flowfield is characterized by the vortex formation and subsequent breakdown. This paper extends the previous computations to include conditions of 45 degree angle of attack where the flowfield becomes dominated by the unsteady wake shed from the Leading Edge Extension (LEX), and regions of laminar and transitional flow appear on the fuselage forebody. A more complete surface geometry is utilized, which includes the features of the engine nacelle, inlet diffuser, and the boundary layer diverter duct. A volume grid sensitivity study was also performed to extend the accuracy of the results, most notably in the prediction of the LEX vortex breakdown position. This paper includes comparisons of computational results with both in-flight surface pressure measurements, and flow visualizations of the surface and off-surface particle trajectories.

  16. Cranberry extract inhibits in vitro adhesion of F4 and F18(+)Escherichia coli to pig intestinal epithelium and reduces in vivo excretion of pigs orally challenged with F18(+) verotoxigenic E. coli.

    PubMed

    Coddens, Annelies; Loos, Michaela; Vanrompay, Daisy; Remon, Jean Paul; Cox, Eric

    2017-01-20

    F4(+)E. coli and F18(+)E. coli infections are an important threat for pig industry worldwide. Antibiotics are commonly used to treat infected piglets, but the emerging development of resistance against antibiotics raises major concerns. Hence, alternative therapies to prevent pigs from F4(+)E. coli and F18(+)E. coli infections need to be developed. Since cranberry previously showed anti-adhesive activity against uropathogenic E. coli, we aimed to investigate whether cranberry extract could also inhibit binding of F4(+)E. coli and F18(+)E. coli to pig intestinal epithelium. Using the in vitro villus adhesion assay, we found that low concentrations of cranberry extract (20μg or 100μg/ml) have strong inhibitory activity on F4(+)E. coli (75.3%, S.D.=9.31 or 95.8%, S.D.=2.56, respectively) and F18(+)E. coli adherence (100% inhibition). This effect was not due to antimicrobial activity. Moreover, cranberry extract (10mg or 100mg) could also abolish in vivo binding of F4 and F18 fimbriae to the pig intestinal epithelium in ligated loop experiments. Finally, two challenge experiments with F18(+)E. coli were performed to address the efficacy of in-feed or water supplemented cranberry extract. No effect could be observed in piglets that received cranberry extract only in feed (1g/kg or 10g/kg). However, supplementation of feed (10g/kg) and drinking water (1g/L) significantly decreased excretion and diarrhea. The decreased infection resulted in a decreased serum antibody response indicating reduced exposure to F18(+)E. coli.

  17. FDG positron emission computed tomography in a study of aphasia

    SciTech Connect

    Metter, E.J.; Wasterlain, C.G.; Kuhl, D.E.; Hanson, W.R.; Phelps, M.E.

    1981-08-01

    Positron emission computed tomography (PECT) using 18F-2-fluoro-2-deoxy-D-glucose (FDG) was used to investigate the correlations between clinical status, anatomy (as described by CT), and metabolism in five patients with stable aphasia resulting from ischemic cerebral infarction. Local cerebral metabolic activity was diminished in an area larger than the area of infarction demonstrated by CT. In one patient, FDG PECT revealed a metabolic lesion that probably caused the aphasic syndrome and was not apparent by CT. The data suggest that reliance on CT in delineating the extent of the brain lesion in aphasia or other neuropsychological defects can be misleading; FDG PECT may provide important additional information. Two patients with similar metabolic lesions had very different clinical syndromes, showing that even when currently available methods are combined, major gaps remain in clinicoanatomical correlations in aphasia.

  18. Relationship between the expression level of SLA-DQA and Escherichia coli F18 infection in piglets.

    PubMed

    Bao, Wen-bin; Ye, Lan; Zi, Chen; Liu, Lu; Zhu, Jing; Pan, Zhang-yuan; Zhu, Guo-qiang; Huang, Xue-gen; Wu, Sheng-long

    2012-02-15

    The expression of SLA-DQA was assayed by Real-time PCR to analyze the differential expression between ETEC F18-resistant and -sensitive post-weaning piglets, and then to compare the expression levels of SLA-DQA in 11 different tissues from 8-, 18-, 30- and 35-day-old ETEC F18-resistant piglets, which aimed at discussing the role of SLA-DQA in resistance to ETEC F18. The results showed that SLA-DQA is broadly expressed in 11 tissues with the highest expression level in lymph nodes, and a relatively higher expression level in lung, spleen, jejunum, and duodenum. In tissues of lymph node, lung, spleen, jejunum, and duodenum, the mRNA expression of SLA-DQA in resistant individuals was significantly higher than that in sensitive ones (P<0.05). In most tissues, the expression of SLA-DQA increased from 8 to 18 and 30 days (weaning day), and increased persistently to 35 days of post-weaning. Expression levels of SLA-DQA on 35 days in most tissues were significant higher than that on 8, 18 and 30 days (P<0.05). The results demonstrated that the resistance to ETEC F18 in post-weaning piglets is related to up-regulation of mRNA expression of SLA-DQA to a certain extent. The analysis suggested that SLA-DQA may be not the direct immune factor that resisted the Escherichia coli F18, but perhaps enhanced humoral immunity and cell immunity to reduce the transmembrane signal transduction of ETEC F18 bacterial LPS and then led to the resistance to ETEC F18 in piglets. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Fluorination of aromatic compounds by cleavage of aryl-tin bonds with F-18 F/sub 2/ and CH/sub 3/COOF

    SciTech Connect

    Adam, M.J.; Abeysekera, B.F.; Ruth, T.J.; Jivan, S.; Pate, B.D.

    1984-01-01

    Direct fluorination of aromatic nuclei is difficult since the reaction is usually accompanied by unselective, partial, or total replacement of hydrogen. By attaching the tri-n-butyltin moiety to one position of the ring one can achieve an enhanced reactivity and site selectivity toward electrophilic fluorination. The intent of this study was to demonstrate the utility of the fluorodestannylation reaction for fluorine labelling of aromatic compounds and to compare F/sub 2/ and acetyl hypofluorite as the fluorinating agents. Thus, eight stannylated aromatic compounds (1-8) were synthesized via lithium halogen exchange of the bromo precursor and subsequent transmetallation using tri-n-butyltin chloride. The stannylated substrates were treated with F-18 F/sub 2/ and -78/sup 0/C and CH/sub 3/COOF at room temperature. Both reagents gave good yields of labelled aryl fluorides. Overall, acetyl hypofluorite gave more consistent yields (approx. =70%), while F/sub 2/ gave more variable yields (54-95%). This method is currently being extended to label more complex systems such as L-Dopa with F-18 for brain studies with positron emission tomography. The authors have successfully stannylated Dopa on the ring and fluorination studies of this substrate are underway.

  20. F-18 deoxyglucose and stress N-13 ammonia positron emission tomography in anterior wall healed myocardial infarction

    SciTech Connect

    Fudo, T.; Kambara, H.; Hashimoto, T.; Hayashi, M.; Nohara, R.; Tamaki, N.; Yonekura, Y.; Senda, M.; Konishi, J.; Kawai, C.

    1988-06-01

    To evaluate myocardial blood flow and glucose utilization, N-13 ammonia (NH3) and F-18 deoxyglucose positron emission tomography scanning was performed in 22 patients with previous anterior wall myocardial infarction, using a high-resolution, multi-slice, whole-body scanner. The N-13 ammonia study was performed at rest and after exercise. The F-18 deoxyglucose study was performed at rest after fasting greater than 5 hours. The N-13 ammonia study revealed a hypoperfused area in 19 of the 22 patients (86%), that corresponded to the infarcted regions as diagnosed by electrocardiography, coronary arteriography and left ventriculography (21 patients). The hypoperfused areas expanded after exercise in 16 of 22 patients (73%). F-18 deoxyglucose uptake was observed in these hypoperfused areas, especially in patients with hypokinetic wall motion on left ventriculography and in exercise-induced hypoperfused areas. However, positron emission tomography demonstrated diffuse uptake of F-18 deoxyglucose in 3 of 8 patients with dyskinetic wall motion. Thus, metabolically active myocardium in infarcted areas or periinfarct ischemia can be visualized with F-18 deoxyglucose and stress N-13 ammonia studies.

  1. SU-E-J-243: Reproducibility of Radiomics Features Through Different Voxel Discretization Levels in F18-FDG PET Images of Cervical Cancer

    SciTech Connect

    Altazi, B; Fernandez, D; Zhang, G; Biagioli, M; Moros, E; Moffitt, H. Lee

    2015-06-15

    Purpose: Site-specific investigations of the role of Radiomics in cancer diagnosis and therapy are needed. We report of the reproducibility of quantitative image features over different discrete voxel levels in PET/CT images of cervical cancer. Methods: Our dataset consisted of the pretreatment PET/CT scans from a cohort of 76 patients diagnosed with cervical cancer, FIGO stage IB-IVA, age range 31–76 years, treated with external beam radiation therapy to a dose range between 45–50.4 Gy (median dose: 45 Gy), concurrent cisplatin chemotherapy and MRI-based Brachytherapy to a dose of 20–30 Gy (median total dose: 28 Gy). Two board certified radiation oncologists delineated Metabolic Tumor volume (MTV) for each patient. Radiomics features were extracted based on 32, 64, 128 and 256 discretization levels (DL). The 64 level was chosen to be the reference DL. Features were calculated based on Co-occurrence (COM), Gray Level Size Zone (GLSZM) and Run-Length (RLM) matrices. Mean Percentage Differences (Δ) of features for discrete levels were determined. Normality distribution of Δ was tested using Kolomogorov - Smirnov test. Bland-Altman test was used to investigate differences between feature values measured on different DL. The mean, standard deviation and upper/lower value limits for each pair of DL were calculated. Interclass Correlation Coefficient (ICC) analysis was performed to examine the reliability of repeated measures within the context of the test re-test format. Results: 3 global and 5 regional features out of 48 features showed distribution not significantly different from a normal one. The reproducible features passed the normality test. Only 5 reproducible results were reliable, ICC range 0.7 – 0.99. Conclusion: Most of the radiomics features tested showed sensitivity to voxel level discretization between (32 – 256). Only 4 GLSZM, 3 COM and 1 RLM showed insensitivity towards mentioned discrete levels.

  2. Reliability of Post-Chemoradiotherapy F-18-FDG PET/CT for Prediction of Locoregional Failure in Human Papillomavirus-Associated Oropharyngeal Cancer

    PubMed Central

    Vainshtein, Jeffrey M.; Spector, Matthew E.; Stenmark, Matthew H.; Bradford, Carol R.; Wolf, Gregory T.; Worden, Francis P.; Chepeha, Douglas B.; McHugh, Jonathan B.; Carey, Thomas; Wong, Ka Kit; Eisbruch, Avraham

    2014-01-01

    Objectives Although widely adopted, the accuracy of post-chemoradiotherapy (CRT) 18F-fluorodeoxygluocose positron emission tomography/computed tomography (PET/CT) for predicting locoregional failure (LRF) in human papillomavirus-related (HPV+) oropharyngeal cancer (OPC) remains poorly characterized. We assessed the predictive value of 3-month PET/CT response for LRF in this population. Materials and Methods 101 consecutive patients with stage III-IV HPV+ OPC who underwent definitive CRT with pre-treatment and 3-month post-CRT PET/CT at our institution from 3/2005–3/2011 were included. 3-month PET/CT response was re-classified as complete-response (CR), near-CR, or incomplete-response (

  3. SU-E-J-258: Prediction of Cervical Cancer Treatment Response Using Radiomics Features Based On F18-FDG Uptake in PET Images

    SciTech Connect

    Altazi, B; Fernandez, D; Zhang, G; Biagioli, M; Moros, E; Moffitt, H. Lee

    2015-06-15

    Purpose: Radiomics have shown potential for predicting treatment outcomes in several body sites. This study investigated the correlation between PET Radiomics features and treatment response of cervical cancer outcomes. Methods: our dataset consisted of a cohort of 79 patients diagnosed with cervical cancer, FIGO stage IB-IVA, age range 25–86 years, (median age at diagnosis: 50 years) all treated between: 2009–14 with external beam radiation therapy to a dose range between: 45–50.4 Gy (median= 45 Gy), concurrent cisplatin chemotherapy and MRI-based brachytherapy to a dose of 20–30 Gy (median= 28 Gy). Metabolic Tumor Volume (MTV) in patient’s primary site was delineated on pretreatment PET/CT by two board certified Radiation Oncologists. The features extracted from each patient’s volume were: 26 Co-occurrence matrix (COM) Feature, 11 Run-Length Matrix (RLM), 11 Gray Level Size Zone Matrix (GLSZM) and 33 Intensity-based features (IBF). The treatment outcome was divided based on the last follow up status into three classes: No Evidence of Disease (NED), Alive with Disease (AWD) and Dead of Disease (DOD). The ability for the radiomics features to differentiate between the 3 treatments outcome categories were assessed by One-Way ANOVA test with p-value < 0.05 was to be statistically significant. The results from the analysis were compared with the ones obtained previously for standard Uptake Value (SUV). Results: Based on patients last clinical follow-up; 52 showed NED, 17 AWD and 10 DOD. Radiomics Features were able to classify the patients based on their treatment response. A parallel analysis was done for SUV measurements for comparison. Conclusion: Radiomics features were able to differentiate between the three different classes of treatment outcomes. However, most of the features were only able to differentiate between NED and DOD class. Also, The ability or radiomics features to differentiate types of response were more significant than SUV.

  4. Stereotaxic (18)F-FDG PET and MRI templates with three-dimensional digital atlas for statistical parametric mapping analysis of tree shrew brain.

    PubMed

    Huang, Qi; Nie, Binbin; Ma, Chen; Wang, Jing; Zhang, Tianhao; Duan, Shaofeng; Wu, Shang; Liang, Shengxiang; Li, Panlong; Liu, Hua; Sun, Hua; Zhou, Jiangning; Xu, Lin; Shan, Baoci

    2017-09-14

    Tree shrews are proposed as an alternative animal model to nonhuman primates due to their close affinity to primates. Neuroimaging techniques are widely used to study brain functions and structures of humans and animals. However, tree shrews are rarely applied in neuroimaging field partly due to the lack of available species specific analysis methods. In this study, 10 PET/CT and 10 MRI images of tree shrew brain were used to construct PET and MRI templates; based on histological atlas we reconstructed a three-dimensional digital atlas with 628 structures delineated; then the digital atlas and templates were aligned into a stereotaxic space. Finally, we integrated the digital atlas and templates into a toolbox for tree shrew brain spatial normalization, statistical analysis and results localization. We validated the feasibility of the toolbox by simulated data with lesions in laterodorsal thalamic nucleus (LD). The lesion volumes of simulated PET and MRI images were (12.97±3.91)mm(3) and (7.04±0.84)mm(3). Statistical results at p<0.005 showed the lesion volumes of PET and MRI were 13.18mm(3) and 8.06mm(3) in LD. To our knowledge, we report the first PET template and digital atlas of tree shrew brain. Compared to the existing MRI templates, our MRI template was aligned into stereotaxic space. And the toolbox is the first software dedicated for tree shrew brain analysis. The templates and digital atlas of tree shrew brain, as well as the toolbox, facilitate the use of tree shrews in neuroimaging field. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. A comparison study of 11C-methionine and 18F-fluorodeoxyglucose positron emission tomography-computed tomography scans in evaluation of patients with recurrent brain tumors

    PubMed Central

    Sharma, Rajnish; D’Souza, Maria; Jaimini, Abhinav; Hazari, Puja Panwar; Saw, Sanjeev; Pandey, Santosh; Singh, Dinesh; Solanki, Yachna; Kumar, Nitin; Mishra, Anil K.; Mondal, Anupam

    2016-01-01

    Introduction: 11C-methonine ([11C]-MET) positron emission tomography-computed tomography (PET-CT) is a well-established technique for evaluation of tumor for diagnosis and treatment planning in neurooncology. [11C]-MET reflects amino acid transport and has been shown to be more sensitive than magnetic resonance imaging (MRI) in stereotactic biopsy planning. This study compared fluorodeoxyglucose (FDG) PET-CT and MET PET-CT in the detection of various brain tumors. Materials and Methods: Sixty-four subjects of brain tumor treated by surgery, chemotherapy, and/or radiotherapy were subjected to [18F]-FDG, [11C]-MET, and MRI scan. The lesion was analyzed semiquantitatively using tumor to normal contralateral ratio. The diagnosis was confirmed by surgery, stereotactic biopsy, clinical follow-up, MRI, or CT scans. Results: Tumor recurrence was found in 5 out of 22 patients on [F-18] FDG scan while [11C]-MET was able to detect recurrence in 18 out of 22 patients in low-grade gliomas. Two of these patients were false positive for the presence of recurrence of tumor and later found to be harboring necrosis. Among oligodendroglioma, medulloblastoma and high-grade glioma out of 42 patients 39 were found to be concordant MET and FDG scans. On semiquantitative analysis, mean T/NT ratio was found to be 2.96 ± 0.94 for lesions positive for recurrence of tumors and 1.18 ± 0.74 for lesions negative for recurrence of tumor on [11C]-MET scan. While the ratio for FDG scan on semiquantitative analysis was found to be 2.05 ± 1.04 for lesions positive for recurrence of tumors and 0.52 ± 0.15 for lesions negative for recurrence of tumors. Conclusion: The study highlight that [11C]-MET is superior to [18F]-FDG PET scans to detect recurrence in low-grade glioma. A cut-off value of target to nontarget value of 1.47 is a useful parameter to distinguish benign from malignant lesion on an [11C]-MET Scan. Both [18F]-FDG and [11C]-MET scans were found to be useful in high-grade astrocytoma

  6. Radiation Dose from Whole-Body F-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: Nationwide Survey in Korea

    PubMed Central

    2016-01-01

    The purpose of this study was to estimate average radiation exposure from 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) examinations and to analyze possible factors affecting the radiation dose. A nation-wide questionnaire survey was conducted involving all institutions that operate PET/CT scanners in Korea. From the response, radiation doses from injected FDG and CT examination were calculated. A total of 105 PET/CT scanners in 73 institutions were included in the analysis (response rate of 62.4%). The average FDG injected activity was 310 ± 77 MBq and 5.11 ± 1.19 MBq/kg. The average effective dose from FDG was estimated to be 5.89 ± 1.46 mSv. The average CT dose index and dose-length product were 4.60 ± 2.47 mGy and 429.2 ± 227.6 mGy∙cm, which corresponded to 6.26 ± 3.06 mSv. The radiation doses from FDG and CT were significantly lower in case of newer scanners than older ones (P < 0.001). Advanced PET technologies such as time-of-flight acquisition and point-spread function recovery were also related to low radiation dose (P < 0.001). In conclusion, the average radiation dose from FDG PET/CT is estimated to be 12.2 mSv. The radiation dose from FDG PET/CT is reduced with more recent scanners equipped with image-enhancing algorithms. PMID:26908992

  7. Imaging cardiac SCN5A using the novel F-18 radiotracer radiocaine

    PubMed Central

    Hooker, Jacob M.; Strebl, Martin G.; Schroeder, Frederick A.; Wey, Hsiao-Ying; Ambardekar, Amrut V.; McKinsey, Timothy A.; Schoenberger, Matthias

    2017-01-01

    The key function of the heart, a well-orchestrated series of contractions, is controlled by cardiac action potentials. These action potentials are initiated and propagated by a single isoform of voltage gated sodium channels – SCN5A. However, linking changes in SCN5A expression levels to human disease in vivo has not yet been possible. Radiocaine, an F-18 radiotracer for positron emission tomography (PET), is the first SCN5A imaging agent in the heart. Explants from healthy and failing human hearts were compared using radiocaine autoradiography to determine that the failing heart has ~30% lower SCN5A levels - the first evidence of changes in SCN5A expression in humans as a function of disease. Paving the way for translational imaging, radiocaine proved to exhibit high in vivo specific binding to the myocardium of non-human primates. We envision that SCN5A measurements using PET imaging may serve as a novel diagnostic tool to stratify arrhythmia risk and assess for progression of heart failure in patients with a broad spectrum of cardiovascular diseases. PMID:28205593

  8. Experience with Ada on the F-18 High Alpha Research Vehicle flight test program

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Earls, Michael; Le, Jeanette; Thomson, Michael

    1994-01-01

    Considerable experience has been acquired with Ada at the NASA Dryden Flight Research Facility during the on-going High Alpha Technology Program. In this program, an F-18 aircraft has been highly modified by the addition of thrust-vectoring vanes to the airframe. In addition, substantial alteration was made in the original quadruplex flight control system. The result is the High Alpha Research Vehicle. An additional research flight control computer was incorporated in each of the four channels. Software for the research flight control computer was written Ada. To date, six releases of this software have been flown. This paper provides a detailed description of the modifications to the research flight control system. Efficient ground-testing of the software was accomplished by using simulations that used the Ada for portions of their software. These simulations are also described. Modifying and transferring the Ada flight software to the software simulation configuration has allowed evaluation of this language. This paper also discusses such significant issues in using Ada as portability, modifiability, and testability as well as documentation requirements.

  9. F-16XL and F-18 High Speed Acoustic Flight Test Databases

    NASA Technical Reports Server (NTRS)

    Kelly, J. J.; Wilson, M. R.; Rawls, J., Jr.; Norum, T. D.; Golub, R. A.

    1999-01-01

    This report presents the recorded acoustic data and the computed narrow-band and 1/3-octave band spectra produced by F-18 and F-16XL aircraft in subsonic flight over an acoustic array. Both broadband-shock noise and turbulent mixing noise are observed in the spectra. Radar and c-band tracking systems provided the aircraft position which enabled directivity and smear angles from the aircraft to each microphone to be computed. These angles are based on source emission time and thus give some idea about the directivity of the radiated sound field due to jet noise. A follow-on static test was also conducted where acoustic and engine data were obtained. The acoustic data described in the report has application to community noise analysis, noise source characterization and validation of prediction models. A detailed description of the signal processing procedures is provided. Follow-on static tests of each aircraft were also conducted for which engine data and far-field acoustic data are presented.

  10. Effect of Actuated Forebody Strakes on the Forebody Aerodynamics of the NASA F-18 HARV

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Murri, Daniel G.; Lanser, Wendy R.

    1996-01-01

    Extensive pressure measurements and off-surface flow visualization were obtained on the forebody and strakes of the NASA F-18 High Alpha Research Vehicle (HARV) equipped with actuated forebody strakes. Forebody yawing moments were obtained by integrating the circumferential pressures on the forebody and strakes. Results show that large yawing moments can be generated with forebody strakes. At angles of attack greater than 40 deg., deflecting one strake at a time resulted in a forebody yawing moment control reversal for small strake deflection angles. At alpha = 40 deg. and 50 deg., deflecting the strakes differentially about a 20 deg. symmetric strake deployment eliminated the control reversal and produced a near linear variation of forebody yawing moment with differential strake deflection. At alpha = 50 deg. and for 0 deg. and 20 deg. symmetric strake deployments, a larger forebody yawing moment was generated by the forward fuselage (between the radome and the apex of the leading-edge extensions), than on the radome where the actuated forebody strakes were located. Cutouts on the flight vehicle strakes that were not on the wind tunnel models are believed to be responsible for deficits in the suction peaks on the flight radome pressure distributions and differences in the forebody yawing moments.

  11. Forebody Aerodynamics of the F-18 High Alpha Research Vehicle with Actuated Forebody Strakes

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Murri, Daniel G.

    2001-01-01

    Extensive pressure measurements and off-surface flow visualization were obtained on the forebody and strakes of the NASA F-18 High Alpha Research Vehicle (HARV) equipped with actuated forebody strakes. Forebody yawing moments were obtained by integrating the circumferential pressures on the forebody and strakes. Results show that large yawing moments can be generated with forebody strakes. At a 50 deg-angle-of-attack, deflecting one strake at a time resulted in a forebody yawing moment control reversal for small strake deflection angles. However, deflecting the strakes differentially about a 20 deg symmetric strake deployment eliminated the control reversal and produced a near linear variation of forebody yawing moment with differential strake deflection. At an angle of attack of 50 deg and for 0 deg and 20 deg symmetric strake deployments, a larger forebody yawing moment was generated by the forward fuselage (between the radome and the apex of the leading-edge extensions) than on the radome where the actuated forebody strakes were located. Cutouts on the flight vehicle strakes that were not on the wind tunnel models are believed to be responsible for deficits in the suction peaks on the flight radome pressure distributions and differences in the forebody yawing moments.

  12. Experience with Ada on the F-18 High Alpha Research Vehicle Flight Test Program

    NASA Technical Reports Server (NTRS)

    Regenie, Victoria A.; Earls, Michael; Le, Jeanette; Thomson, Michael

    1992-01-01

    Considerable experience was acquired with Ada at the NASA Dryden Flight Research Facility during the on-going High Alpha Technology Program. In this program, an F-18 aircraft was highly modified by the addition of thrust-vectoring vanes to the airframe. In addition, substantial alteration was made in the original quadruplex flight control system. The result is the High Alpha Research Vehicle. An additional research flight control computer was incorporated in each of the four channels. Software for the research flight control computer was written in Ada. To date, six releases of this software have been flown. This paper provides a detailed description of the modifications to the research flight control system. Efficient ground-testing of the software was accomplished by using simulations that used the Ada for portions of their software. These simulations are also described. Modifying and transferring the Ada for flight software to the software simulation configuration has allowed evaluation of this language. This paper also discusses such significant issues in using Ada as portability, modifiability, and testability as well as documentation requirements.

  13. Flight-determined engine exhaust characteristics of an F404 engine in an F-18 airplane

    NASA Technical Reports Server (NTRS)

    Ennix, Kimberly A.; Burcham, Frank W., Jr.; Webb, Lannie D.

    1993-01-01

    Personnel at the NASA Langley Research Center (NASA-Langley) and the NASA Dryden Flight Research Facility (NASA-Dryden) recently completed a joint acoustic flight test program. Several types of aircraft with high nozzle pressure ratio engines were flown to satisfy a twofold objective. First, assessments were made of subsonic climb-to-cruise noise from flights conducted at varying altitudes in a Mach 0.30 to 0.90 range. Second, using data from flights conducted at constant altitude in a Mach 0.30 to 0.95 range, engineers obtained a high quality noise database. This database was desired to validate the Aircraft Noise Prediction Program and other system noise prediction codes. NASA-Dryden personnel analyzed the engine data from several aircraft that were flown in the test program to determine the exhaust characteristics. The analysis of the exhaust characteristics from the F-18 aircraft are reported. An overview of the flight test planning, instrumentation, test procedures, data analysis, engine modeling codes, and results are presented.

  14. Forebody Flow Visualization on the F-18 HARV with Actuated Forebody Strakes

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Murri, Daniel G.

    1998-01-01

    Off-surface smoke flow visualization and extensive pressure measurements were obtained on the forebody of the NASA F-18 High Alpha Research Vehicle equipped with actuated forebody strakes. Test points at alpha = 50 deg. were examined in which only one strake was deflected or in which both strakes were deflected differentially. The forebody pressures were integrated to obtain forebody yawing moments. Results showed that small single strake deflections can cause an undesirable yawing moment reversal. At alpha = 50 deg., this reversal was corrected by deploying both strakes at 20 deg. initially, then differentially from 20 deg. to create a yawing moment. The off-surface flow visualization showed that in the case of the small single strake deflection, the resulting forebody/strake vortex remained close to the surface and caused accelerated flow and increased suction pressures on the deflected side. When both strakes were deflected differentially, two forebody/strake vortices were present. The forebody/strake vortex from the larger deflection would lift from the surface while the other would remain close to the surface. The nearer forebody/strake vortex would cause greater flow acceleration, higher suction pressures and a yawing moment on that side of the forebody. Flow visualization provided a clear description of the strake vortices fluid mechanics.

  15. Forebody Aerodynamics of the F-18 High Alpha Research Vehicle with Actuated Forebody Strakes

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Murri, Daniel G.

    2003-01-01

    Extensive pressure measurements and off-surface flow visualization were obtained on the forebody and strakes of the NASA F-18 High Alpha Research Vehicle (HARV) equipped with actuated forebody strakes. Forebody yawing moments were obtained by integrating the circumferential pressures on the forebody and strakes. Results show that large yawing moments can be generated with forebody strakes. At a 50 -angle-of-attack, deflecting one strake at a time resulted in a forebody yawing moment control reversal for small strake deflection angles. However, deflecting the strakes differentially about a 20 symmetric strake deployment eliminated the control reversal and produced a near linear variation of forebody yawing moment with differential strake deflection. At an angle of attack of 50 and for 0 and 20 symmetric strake deployments, a larger forebody yawing moment was generated by the forward fuselage (between the radome and the apex of the leading-edge extensions) than on the radome where the actuated forebody strakes were located. Cutouts on the flight vehicle strakes that were not on the wind tunnel models are believed to be responsible for deficits in the suction peaks on the flight radome pressure distributions and differences in the forebody yawing moments.

  16. Performance characteristics of nonaxisymmetric nozzles installed on the F-18 aircraft

    NASA Technical Reports Server (NTRS)

    Capone, F. J.; Gowadia, N. S.; Wooten, W. H.

    1979-01-01

    The Langley Research Center has conducted an experimental program on a model of the F-18 airplane to determine the performance of nonaxisymmetric nozzles relative to the aircraft's baseline axisymmetric nozzle. The performance of a single expansion ramp (ADEN) and two-dimensional convergent-divergent (2-D C-D) nozzle were compared to the baseline axisymmetric nozzles. The effects of vectoring and reversing were also studied. Performance of a modified YF-17 airplane with the ADEN nozzle was also estimated. The results of this investigation indicate that nonaxisymmetric nozzles can be installed on a twin engine fighter airplane with equal or better performance than axisymmetric nozzles. The nonaxisymmetric nozzles also offer potential for innovative and improved aircraft maneuver through thrust vectoring and reversing. The YF-17/ADEN flown as a technology demonstrator would have reduced performance compared to an unmodified YF-17. However, on an equal aircraft weight basis, performance would essentially be equivalent. This study also showed that the YF-17 can serve as a testbed to validate nonaxisymmetric nozzle technology.

  17. Adaptive Flight Control Design with Optimal Control Modification on an F-18 Aircraft Model

    NASA Technical Reports Server (NTRS)

    Burken, John J.; Nguyen, Nhan T.; Griffin, Brian J.

    2010-01-01

    In the presence of large uncertainties, a control system needs to be able to adapt rapidly to regain performance. Fast adaptation is referred to as the implementation of adaptive control with a large adaptive gain to reduce the tracking error rapidly; however, a large adaptive gain can lead to high-frequency oscillations which can adversely affect the robustness of an adaptive control law. A new adaptive control modification is presented that can achieve robust adaptation with a large adaptive gain without incurring high-frequency oscillations as with the standard model-reference adaptive control. The modification is based on the minimization of the Y2 norm of the tracking error, which is formulated as an optimal control problem. The optimality condition is used to derive the modification using the gradient method. The optimal control modification results in a stable adaptation and allows a large adaptive gain to be used for better tracking while providing sufficient robustness. A damping term (v) is added in the modification to increase damping as needed. Simulations were conducted on a damaged F-18 aircraft (McDonnell Douglas, now The Boeing Company, Chicago, Illinois) with both the standard baseline dynamic inversion controller and the adaptive optimal control modification technique. The results demonstrate the effectiveness of the proposed modification in tracking a reference model.

  18. Preparations for flight research to evaluate actuated forebody strakes on the F-18 high-alpha research vehicle

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Shah, Gautam H.; Dicarlo, Daniel J.

    1994-01-01

    As part of the NASA High-Angle-of-Attack Technology Program (HATP), flight tests are currently being conducted with a multi-axis thrust vectoring system applied to the NASA F-18 High Alpha Research Vehicle (HARV). A follow-on series of flight tests with the NASA F-18 HARV will be focusing on the application of actuated forebody strake controls. These controls are designed to provide increased levels of yaw control at high angles of attack where conventional aerodynamic controls become ineffective. The series of flight tests are collectively referred to as the Actuated Nose Strakes for Enhanced Rolling (ANSER) Flight Experiment. The development of actuated forebody strake controls for the F-18 HARV is discussed and a summary of the ground tests conducted in support of the flight experiment is provided. A summary of the preparations for the flight tests is also provided.

  19. Altered Leukotriene B4 metabolism in CYP4F18-deficient mice does not impact inflammation following renal ischemia

    PubMed Central

    Winslow, Valeria; Vaivoda, Rachel; Vasilyev, Aleksandr; Dombkowski, David; Douaidy, Karim; Stark, Christopher; Drake, Justin; Guilliams, Evin; Choudhary, Dharamainder; Preffer, Frederic; Stoilov, Ivaylo; Christmas, Peter

    2014-01-01

    Inflammatory responses to infection and injury must be restrained and negatively regulated to minimize damage to host tissue. One proposed mechanism involves enzymatic inactivation of the pro-inflammatory mediator leukotriene B4, but it is difficult to dissect the roles of various metabolic enzymes and pathways. A primary candidate for a regulatory pathway is omega oxidation of leukotriene B4 in neutrophils, presumptively by CYP4F3A in humans and CYP4F18 in mice. This pathway generates ω, ω-1, and ω-2 hydroxylated products of leukotriene B4, depending on species. We created mouse models targeting exons 8 and 9 of the Cyp4f18 allele that allows both conventional and conditional knockout of Cyp4f18. Neutrophils from wild-type mice convert leukotriene B4 to 19-hydroxy leukotriene B4, and to a lesser extent 18-hydroxy leukotriene B4, whereas these products were not detected in neutrophils from conventional Cyp4f18 knockouts. A mouse model of renal ischemia-reperfusion injury was used to investigate the consequences of loss of CYP4F18 in vivo. There were no significant changes in infiltration of neutrophils and other leukocytes into kidney tissue as determined by flow cytometry and immunohistochemistry, or renal injury as assessed by histological scoring and measurement of blood urea nitrogen. It is concluded that CYP4F18 is necessary for omega oxidation of leukotriene B4 in neutrophils, and is not compensated by other CYP enzymes, but loss of this metabolic pathway is not sufficient to impact inflammation and injury following renal ischemia-reperfusion in mice. PMID:24632148

  20. Altered leukotriene B4 metabolism in CYP4F18-deficient mice does not impact inflammation following renal ischemia.

    PubMed

    Winslow, Valeria; Vaivoda, Rachel; Vasilyev, Aleksandr; Dombkowski, David; Douaidy, Karim; Stark, Christopher; Drake, Justin; Guilliams, Evin; Choudhary, Dharamainder; Preffer, Frederic; Stoilov, Ivaylo; Christmas, Peter

    2014-06-01

    Inflammatory responses to infection and injury must be restrained and negatively regulated to minimize damage to host tissue. One proposed mechanism involves enzymatic inactivation of the pro-inflammatory mediator leukotriene B4, but it is difficult to dissect the roles of various metabolic enzymes and pathways. A primary candidate for a regulatory pathway is omega oxidation of leukotriene B4 in neutrophils, presumptively by CYP4F3A in humans and CYP4F18 in mice. This pathway generates ω, ω-1, and ω-2 hydroxylated products of leukotriene B4, depending on species. We created mouse models targeting exons 8 and 9 of the Cyp4f18 allele that allows both conventional and conditional knockouts of Cyp4f18. Neutrophils from wild-type mice convert leukotriene B4 to 19-hydroxy leukotriene B4, and to a lesser extent 18-hydroxy leukotriene B4, whereas these products were not detected in neutrophils from conventional Cyp4f18 knockouts. A mouse model of renal ischemia-reperfusion injury was used to investigate the consequences of loss of CYP4F18 in vivo. There were no significant changes in infiltration of neutrophils and other leukocytes into kidney tissue as determined by flow cytometry and immunohistochemistry, or renal injury as assessed by histological scoring and measurement of blood urea nitrogen. It is concluded that CYP4F18 is necessary for omega oxidation of leukotriene B4 in neutrophils, and is not compensated by other CYP enzymes, but loss of this metabolic pathway is not sufficient to impact inflammation and injury following renal ischemia-reperfusion in mice. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. FDG-PET Contributions to the Pathophysiology of Memory Impairment.

    PubMed

    Segobin, Shailendra; La Joie, Renaud; Ritz, Ludivine; Beaunieux, Hélène; Desgranges, Béatrice; Chételat, Gaël; Pitel, Anne Lise; Eustache, Francis

    2015-09-01

    Measurement of synaptic activity by Positron Emission Tomography (PET) and its relation to cognitive functions such as episodic memory, working memory and executive functions in healthy humans and patients with neurocognitive disorders have been well documented. In this review, we introduce the concept of PET imaging that allows the observation of a particular biological process in vivo through the use of radio-labelled compounds, its general use to the medical world and its contributions to the understanding of memory systems. We then focus on [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG-PET), the radiotracer that is used to measure local cerebral metabolic rate of glucose that is indicative of synaptic activity in the brain. FDG-PET at rest has been at the forefront of functional neuroimaging over the past 3 decades, contributing to the understanding of cognitive functions in healthy humans and how these functional patterns change with cognitive alterations. We discuss methodological considerations that are important for optimizing FDG-PET imaging data prior to analysis. We then highlight the contribution of FDG-PET to the understanding of the patterns of functional differences in non-degenerative pathologies, normal ageing, and age-related neurodegenerative disorders. Through reasonable temporal and spatial resolution, its ability to measure synaptic activity in the whole brain, independently of any specific network and disease, makes it ideal to observe regional functional changes associated with memory impairment.

  2. Degree of tumor FDG uptake correlates with proliferation index in triple negative breast cancer.

    PubMed

    Tchou, Julia; Sonnad, Seema S; Bergey, Meredith R; Basu, Sandip; Tomaszewski, John; Alavi, Abass; Schnall, Mitchell

    2010-12-01

    2-Deoxy-2-[F-18]fluoro-D-glucose (FDG) uptake may be a useful surrogate marker for proliferation index, but the correlation has not always been clear-cut. Previous research by our group suggests that FDG-positron emission tomography (PET) is sensitive in detecting triple negative breast cancer. We therefore performed a pilot study to test if FDG uptake correlated with proliferation index in women with triple negative cancer. To determine whether proliferation index correlates with metabolic uptake of FDG in women with triple negative breast cancer, we performed a retrospective analysis correlating %Ki67 nuclear stain with tumor maximum standardized uptake values (SUVmax) in a group of 41 women, 22 with triple negative and 19 with non-triple negative breast cancer. As expected, [18F]-PET imaging was significantly more sensitive in detecting triple negative breast cancer than non-triple negative breast cancer, 95.5% vs 68.4% (p = 0.036). In general, SUVmax and %Ki67 nuclear stain values rise as histologic grade worsens. Histologic grade of triple negative breast cancer was more often poorly differentiated than non-triple negative cancer (p = 0.001). SUVmax correlated with %Ki67 nuclear staining in our entire cohort (spearman correlation = 0.485, p = 0.002). Moreover, this significant correlation appeared to be driven primarily by a subset of women with triple negative cancer (spearman correlation = 0.497, p = 0.019). Degree of tumor FDG uptake correlated significantly with proliferation index in women with triple negative breast cancer suggesting a potential role of FDG-PET in treatment response monitoring for this group of women. Future studies are necessary to define the role of PET imaging as a non-invasive means to monitor breast cancer treatment response in the neoadjuvant setting.

  3. Diagnostic evaluation of solitary pulmonary nodules (SPNs) using PET-FDG imaging

    SciTech Connect

    Gupta, N.; Chandramouli, B.; Reeb, S.

    1994-05-01

    We have reported high sensitivity of PET-FDG imaging in detecting malignancy in SPNs. We now report clinical utility of PET-FDG imaging in pre-intervention workup of 66 pts (age 24-89 yrs) with radiographically indeterminate SPNs (0.5-3 cm) in size. All pts had PET imaging performed 1 hr after injection of 10 mCi of F-18 FDG. Images were analyzed qualitatively and semi-quantitatively to compute DUR indices using ROI analysis. Final diagnosis was established by histology in 65/66 pts (thoracotomy 47, needle biopsy 13, bronchoscopy 5, stable nodule 1). PET-FDG imaging demonstrates sensitivity, specificity and predictive accuracy of 94%, 87% and 92% respectively. All 3 false negative cases were SPNs <1.5 cm in size and histologically adenoca. True positive malignant SPNs were adenoca 18, small cell 5, squamous cell 12, nonsmall cell 7, and others 6. Among 15 benign lesions (granuloma 6, histoplasmosis 4, nonspecific inflammation 2, hamartoma 1, stable nodule 1, organizing pneumonia 1), 2 false positive cases were seen in histoplasmosis. In 10 patients hilar/mediastinal lymph node lesions were accurately classified as benign (5) or malignant (5). Mean DUR in malignant lesions (5.41{plus_minus}2.63) was significantly greater (p value <0.001) than benign lesions (1.12{plus_minus}0.78). In conclusion, PET-FDG imaging is highly accurate in differentiating benign from malignant lung modules and lymph node lesions. PET-FDG imaging may thus optimize surgical management of pts with radiographically SPNs.

  4. Tumor Response and Survival Predicted by Post-Therapy FDG-PET/CT in Anal Cancer

    SciTech Connect

    Schwarz, Julie K.; Siegel, Barry A.; Dehdashti, Farrokh; Myerson, Robert J.; Fleshman, James W.; Grigsby, Perry W.

    2008-05-01

    Purpose: To evaluate the response to therapy for anal carcinoma using post-therapy imaging with positron emission tomography (PET)/computed tomography and F-18 fluorodeoxyglucose (FDG) and to compare the metabolic response with patient outcome. Patients and Methods: This was a prospective cohort study of 53 consecutive patients with anal cancer. All patients underwent pre- and post-treatment whole-body FDG-PET/computed tomography. Patients had been treated with external beam radiotherapy and concurrent chemotherapy. Whole-body FDG-PET was performed 0.9-5.4 months (mean, 2.1) after therapy completion. Results: The post-therapy PET scan did not show any abnormal FDG uptake (complete metabolic response) in 44 patients. Persistent abnormal FDG uptake (partial metabolic response) was found in the anal tumor in 9 patients. The 2-year cause-specific survival rate was 94% for patients with a complete vs. 39% for patients with a partial metabolic response in the anal tumor (p = 0.0008). The 2-year progression-free survival rate was 95% for patients with a complete vs. 22% for patients with a partial metabolic response in the anal tumor (p < 0.0001). A Cox proportional hazards model of survival outcome indicated that a complete metabolic response was the most significant predictor of progression-free survival in our patient population (p = 0.0003). Conclusions: A partial metabolic response in the anal tumor as determined by post-therapy FDG-PET is predictive of significantly decreased progression-free and cause-specific survival after chemoradiotherapy for anal cancer.

  5. Impact of (18)FDG PET and (11)C-PIB PET brain imaging on the diagnosis of Alzheimer's disease and other dementias in a regional memory clinic in Hong Kong.

    PubMed

    Shea, Y F; Ha, J; Lee, S C; Chu, L W

    2016-08-01

    This study investigated the improvement in the accuracy of diagnosis of dementia subtypes among Chinese dementia patients who underwent [18F]-2-fluoro-2-deoxy-D-glucose positron emission tomography ((18)FDG PET) with or without carbon 11-labelled Pittsburgh compound B ((11)C-PIB). This case series was performed in the Memory Clinic at Queen Mary Hospital, Hong Kong. We reviewed 109 subjects (56.9% were female) who received PET with or without (11)C-PIB between January 2007 and December 2014. Data including age, sex, education level, Mini-Mental State Examination score, Clinical Dementia Rating scale score, neuroimaging report, and pre-/post-imaging clinical diagnoses were collected from medical records. The agreement between the initial and post-PET with or without (11)C-PIB dementia diagnosis was analysed by the Cohen's kappa statistics. The overall accuracy of initial clinical diagnosis of dementia subtype was 63.7%, and diagnosis was subsequently changed in 36.3% of subjects following PET with or without (11)C-PIB. The rate of accurate initial clinical diagnosis (compared with the final post-imaging diagnosis) was 81.5%, 44.4%, 14.3%, 28.6%, 55.6% and 0% for Alzheimer's disease, dementia with Lewy bodies, frontotemporal dementia, vascular dementia, other dementia, and mixed dementia, respectively. The agreement between the initial and final post-imaging dementia subtype diagnosis was only fair, with a Cohen's kappa of 0.25 (95% confidence interval, 0.05-0.45). For the 21 subjects who underwent (11)C-PIB PET imaging, 19% (n=4) of those with Alzheimer's disease (PIB positive) were initially diagnosed with non-Alzheimer's disease dementia. In this study, PET with or without (11)C-PIB brain imaging helped improve the accuracy of diagnosis of dementia subtype in 36% of our patients with underlying Alzheimer's disease, dementia with Lewy bodies, vascular dementia, and frontotemporal dementia.

  6. [(18)F]FDG PET signal is driven by astroglial glutamate transport.

    PubMed

    Zimmer, Eduardo R; Parent, Maxime J; Souza, Débora G; Leuzy, Antoine; Lecrux, Clotilde; Kim, Hyoung-Ihl; Gauthier, Serge; Pellerin, Luc; Hamel, Edith; Rosa-Neto, Pedro

    2017-03-01

    Contributions of glial cells to neuroenergetics have been the focus of extensive debate. Here we provide positron emission tomography evidence that activation of astrocytic glutamate transport via the excitatory amino acid transporter GLT-1 triggers widespread but graded glucose uptake in the rodent brain. Our results highlight the need for a reevaluation of the interpretation of [(18)F]FDG positron emission tomography data, whereby astrocytes would be recognized as contributing to the [(18)F]FDG signal.

  7. Diagnostic Ability of FDG-PET/CT in the Detection of Malignant Pleural Effusion

    PubMed Central

    Nakajima, Reiko; Abe, Koichiro; Sakai, Shuji

    2015-01-01

    Abstract We investigated the role of F-18 fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography (CT) for the differential diagnosis of malignant and benign pleural effusion. We studied 36 consecutive patients with histologically proven cancer (excluding malignant mesothelioma) who underwent FDG-PET/CT for suspected malignant pleural effusion. Fourteen patients had cytologically proven malignant pleural effusion and the other 22 patients had either negative cytology or clinical follow-up, which confirmed the benign etiology. We examined the maximum standardized uptake values (SUVmax) of pleural effusion and the target-to-normal tissue ratio (TNR), calculated as the ratio of the pleural effusion SUVmax to the SUVmean of the normal tissues (liver, spleen, 12th thoracic vertebrae [Th12], thoracic aorta, and spinalis muscle). We also examined the size and density (in Hounsfield units) of the pleural effusion and pleural abnormalities on CT images. TNR (Th12) and increased pleural FDG uptake compared to background blood pool were significantly more frequent in cases with malignant pleural effusion (P < 0.05 for both). The cutoff TNR (Th12) value of >0.95 was the most accurate; the sensitivity, specificity, and accuracy for this value were 93%, 68%, and 75%, respectively. FDG-PET/CT can be a useful method for the differential diagnosis of malignant and benign pleural effusion. PMID:26200610

  8. Flight-Determined, Subsonic, Lateral-Directional Stability and Control Derivatives of the Thrust-Vectoring F-18 High Angle of Attack Research Vehicle (HARV), and Comparisons to the Basic F-18 and Predicted Derivatives

    NASA Technical Reports Server (NTRS)

    Iliff, Kenneth W.; Wang, Kon-Sheng Charles

    1999-01-01

    The subsonic, lateral-directional, stability and control derivatives of the thrust-vectoring F-1 8 High Angle of Attack Research Vehicle (HARV) are extracted from flight data using a maximum likelihood parameter identification technique. State noise is accounted for in the identification formulation and is used to model the uncommanded forcing functions caused by unsteady aerodynamics. Preprogrammed maneuvers provided independent control surface inputs, eliminating problems of identifiability related to correlations between the aircraft controls and states. The HARV derivatives are plotted as functions of angles of attack between 10deg and 70deg and compared to flight estimates from the basic F-18 aircraft and to predictions from ground and wind tunnel tests. Unlike maneuvers of the basic F-18 aircraft, the HARV maneuvers were very precise and repeatable, resulting in tightly clustered estimates with small uncertainty levels. Significant differences were found between flight and prediction; however, some of these differences may be attributed to differences in the range of sideslip or input amplitude over which a given derivative was evaluated, and to differences between the HARV external configuration and that of the basic F-18 aircraft, upon which most of the prediction was based. Some HARV derivative fairings have been adjusted using basic F-18 derivatives (with low uncertainties) to help account for differences in variable ranges and the lack of HARV maneuvers at certain angles of attack.

  9. 1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow

  10. 1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This short movie clip shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles

  11. 1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

    NASA Technical Reports Server (NTRS)

    1985-01-01

    This image shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles for flow

  12. 1/48-scale model of an F-18 aircraft in Flow Visualization Facility (FVF)

    NASA Technical Reports Server (NTRS)

    1980-01-01

    This short movie clip shows a plastic 1/48-scale model of an F-18 aircraft inside the 'Water Tunnel' more formally known as the NASA Dryden Flow Visualization Facility. Water is pumped through the tunnel in the direction of normal airflow over the aircraft; then, colored dyes are pumped through tubes with needle valves. The dyes flow back along the airframe and over the airfoils highlighting their aerodynamic characteristics. The aircraft can also be moved through its pitch axis to observe airflow disruptions while simulating actual flight at high angles of attack. The Water Tunnel at NASA's Dryden Flight Research Center, Edwards, CA, became operational in 1983 when Dryden was a Flight Research Facility under the management of the Ames Research Center in Mountain View, CA. As a medium for visualizing fluid flow, water has played a significant role. Its use dates back to Leonardo da Vinci (1452-1519), the Renaissance Italian engineer, architect, painter, and sculptor. In more recent times, water tunnels have assisted the study of complex flows and flow-field interactions on aircraft shapes that generate strong vortex flows. Flow visualization in water tunnels assists in determining the strength of vortices, their location, and possible methods of controlling them. The design of the Dryden Water Tunnel imitated that of the Northrop Corporation's tunnel in Hawthorne, CA. Called the Flow Visualization Facility, the Dryden tunnel was built to assist researchers in understanding the aerodynamics of aircraft configured in such a way that they create strong vortex flows, particularly at high angles of attack. The tunnel provides results that compare well with data from aircraft in actual flight in another fluid-air. Other uses of the tunnel have included study of how such flight hardware as antennas, probes, pylons, parachutes, and experimental fixtures affect airflow. The facility has also been helpful in finding the best locations for emitting smoke from flight vehicles

  13. Recurrent glioma and crossed cerebellar diaschisis in a patient examined with 18F-DOPA and 18F-FDG PET/CT.

    PubMed

    Calabria, Ferdinando; Schillaci, Orazio

    2012-09-01

    Two years after resection of a left parietal glioma, a 46-year-old woman underwent F-FDG and F-DOPA brain PET/CT. FDG showed left parietal hypometabolism with crossed cerebellar diaschisis. No abnormally increased FDG activity was seen. F-DOPA PET/CT scan demonstrated focal left parietal uptake. Recurrent glioma was confirmed by surgical biopsy. F-DOPA may demonstrate abnormal amino acid metabolism in evaluation of recurrence of glioma.

  14. Oral administration of citrus pulp reduces gastrointestinal recovery of orally dosed Escherichia coli F18 in weaned pigs

    USDA-ARS?s Scientific Manuscript database

    The effects of citrus pulp (CTP) on the immune and cortisol responses to E. coli F18 inoculation and subsequent E. coli recovery were evaluated in newly weaned pigs (23.3 + 1.8 d of age). Barrows were assigned to 1 of 2 treatment groups; with (CTP; n = 15) and without (Control; n = 15) the in-feed i...

  15. Oral administration of citrus pulp reduces gasrointestinal recovery of orally dosed Escherichia coli F18 in weaned pigs

    USDA-ARS?s Scientific Manuscript database

    The effects of citrus pulp (CTP), on the immune and cortisol responses to E. coli F18 inoculation and subsequent E. coli recovery were evaluated in newly weaned pigs (23.3 + 1.8 d of age). Barrows were assigned to 1 of 2 treatment groups; with (CTP; n = 15) and without (Control; n = 15) the in-feed ...

  16. Acute brain metabolic effects of cocaine in rhesus monkeys with a history of cocaine use.

    PubMed

    Henry, Porche' Kirkland; Murnane, Kevin S; Votaw, John R; Howell, Leonard L

    2010-12-01

    Cocaine addiction involves an escalation in drug intake which alters many brain functions. The present study documented cocaine-induced changes in brain metabolic activity as a function of cocaine self-administration history. Experimentally naive rhesus monkeys (N = 6) were given increasing access to cocaine under a fixed-ratio schedule of intravenous (i.v.) drug self-administration. PET imaging with F-18 labeled fluorodeoxyglucose (FDG) was used to measure acute intramuscular (i.m.) cocaine-induced changes in brain metabolism in the cocaine-naïve state, following 60 sessions under limited-access conditions (1 h/day), following 60 sessions under extended-access conditions (4 h/day), and following 4 weeks of drug withdrawal. In the cocaine-naïve state, cocaine-induced increases in brain metabolism were restricted to the prefrontal cortex. As cocaine exposure increased from limited to extended access, metabolic effects expanded throughout the frontal cortex and were induced within the striatum. Conversely, cocaine-induced activation was far less robust following withdrawal. The results highlight a progressive expansion of the metabolic effects of cocaine to include previously unaffected dopamine innervated brain regions as a consequence of cocaine self-administration history. The identification of brain regions progressively influenced by drug exposure may be highly relevant toward efforts to develop treatments for cocaine addiction.

  17. Cognitive reserve associated with FDG-PET in preclinical Alzheimer disease.

    PubMed

    Ewers, Michael; Insel, Philip S; Stern, Yaakov; Weiner, Michael W

    2013-03-26

    To examine the effect of education (a surrogate measure of cognitive reserve) on FDG-PET brain metabolism in elderly cognitively healthy (HC) subjects with preclinical Alzheimer disease (AD). Fifty-two HC subjects (mean age 75 years) with FDG-PET and CSF measurement of Aβ1-42 were included from the prospective Alzheimer's Disease Neuroimaging Initiative biomarker study. HC subjects received a research classification of preclinical AD if CSF Aβ1-42 was <192 pg/mL (Aβ1-42 [+]) vs HC with normal Aβ (Aβ1-42 [-]). In regression analyses, we tested the interaction effect between education and CSF Aβ1-42 status (Aβ1-42 [+] vs Aβ1-42 [-]) on FDG-PET metabolism in regions of interest (ROIs) (posterior cingulate, angular gyrus, inferior/middle temporal gyrus) and the whole brain (voxel-based). An interaction between education and CSF Aβ1-42 status was observed for FDG-PET in the posterior cingulate (p < 0.001) and angular gyrus ROIs (p = 0.03), but was not significant for the inferior/middle temporal gyrus ROI (p = 0.06), controlled for age, sex, and global cognitive ability (Alzheimer's Disease Assessment Scale-cognitive subscale). The interaction effect was such that higher education was associated with lower FDG-PET in the Aβ1-42 (+) group, but with higher FDG-PET in the Aβ1-42 (-) group. Voxel-based analysis showed that this interaction effect was primarily restricted to temporo-parietal and ventral prefrontal brain areas. Higher education was associated with lower FDG-PET in preclinical AD (Aβ1-42 [+]), suggesting that cognitive reserve had a compensatory function to sustain cognitive ability in presence of early AD pathology that alters FDG-PET metabolism.

  18. The Effect of Endogenous Adenosine on Neuronal Activity in Rats: An FDG PET Study

    PubMed Central

    Paul, Soumen; Zhang, Dali; Mzengeza, Shadreck; Ko, Ji Hyun

    2016-01-01

    ABSTRACT 2–18F‐fluorodeoxy‐D‐glucose (FDG) is a glucose analog that is taken up by cells and phosphorylated. The amount of FDG accumulated by cells is a measure of the rate of glycolysis, which reflects cellular activity. As the levels and actions of the neuromodulator adenosine are dynamically regulated by neuronal activity, this study was designed to test whether endogenous adenosine affects tissue accumulation of FDG as assessed by positron emission tomography (PET) or by postmortem analysis of tissue radioactivity. Rats were given an intraperitoneal injection of the adenosine A1 receptor antagonist 8‐cyclopentyl‐1,3‐dipropyl‐xanthine (DPCPX, 3 mg/kg), the adenosine kinase inhibitor ABT‐702 (3 mg/kg), or vehicle 10 minutes prior to an intravenous injection of FDG (15.4 ± 0.7 MBq per rat). Rats were then subjected to a 15 minute static PET scan. Reconstructed images were normalized to FDG PET template for rats and standard uptake values (SUVs) were calculated. To examine the regional effect of active treatment compared to vehicle, statistical parametric mapping analysis was performed. Whole‐brain FDG uptake was not affected by drug treatment. Significant regional hypometabolism was detected, particularly in cerebellum, of DPCPX‐ and ABT‐702 treated rats, relative to vehicle‐treated rats. Thus, endogenous adenosine can affect FDG accumulation although this effect is modest in quiescent rats. PMID:27082948

  19. Voxel-based comparison of state-of-the-art reconstruction algorithms for 18F-FDG PET brain imaging using simulated and clinical data.

    PubMed

    Vunckx, K; Dupont, P; Goffin, K; Van Paesschen, W; Van Laere, K; Nuyts, J

    2014-11-15

    The resolution of a PET scanner (2.5-4.5mm for brain imaging) is similar to the thickness of the cortex in the (human) brain (2.5mm on average), hampering accurate activity distribution reconstruction. Many techniques to compensate for the limited resolution during or post-reconstruction have been proposed in the past and have been shown to improve the quantitative accuracy. In this study, state-of-the-art reconstruction techniques are compared on a voxel-basis for quantification accuracy and group analysis using both simulated and measured data of healthy volunteers and patients with epilepsy. Maximum a posteriori (MAP) reconstructions using either a segmentation-based or a segmentation-less anatomical prior were compared to maximum likelihood expectation maximization (MLEM) reconstruction with resolution recovery. As anatomical information, a spatially aligned 3D T1-weighted magnetic resonance image was used. Firstly, the algorithms were compared using normal brain images to detect systematic bias with respect to the true activity distribution, as well as systematic differences between two methods. Secondly, it was verified whether the algorithms yielded similar results in a group comparison study. Significant differences were observed between the reconstructed and the true activity, with the largest errors when using (post-smoothed) MLEM. Only 5-10% underestimation in cortical gray matter voxel activity was found for both MAP reconstructions. Higher errors were observed at GM edges. MAP with the segmentation-based prior also resulted in a significant bias in the subcortical regions due to segmentation inaccuracies, while MAP with the anatomical prior which does not need segmentation did not. Significant differences in reconstructed activity were also found between the algorithms at similar locations (mainly in gray matter edge voxels and in cerebrospinal fluid voxels) in the simulated as well as in the clinical data sets. Nevertheless, when comparing two groups

  20. F-18 HARV yaw rate expansion flight #125 with Inverted Recovery

    NASA Technical Reports Server (NTRS)

    1991-01-01

    NASA's Dryden Flight Research Center, Edwards, CA, used an F-18 Hornet fighter aircraft as its High Angle-of-Attack (Alpha) Research Vehicle (HARV) in a three-phased flight research program lasting from April 1987 until September 1996. The aircraft completed 385 research flights and demonstrated stabilized flight at angles of attack between 65 and 70 degrees using thrust vectoring vanes, a research flight control system, and (eventually) forebody strakes (hinged structures on the forward side of the fuselage to provide control by interacting with vortices, generated at high angles of attack, to create side forces). This combination of technologies provided carefree handling of a fighter aircraft in a part of the flight regime that was otherwise very dangerous. Flight research with the HARV increased our understanding of flight at high angles of attack (angle of the wings with respect to the direction in which the aircraft was heading), enabling designers of U.S. fighter aircraft to design airplanes that will fly safely in portions of the flight envelope that pilots previously had to avoid. Flight 125 with the HARV involved yaw rate expansion up to 50 degrees per second (moving the nose to the left or right at that rate). NASA research pilot Ed Schneider was the pilot, and the purpose of the flight was to look at the spin characteristics of the HARV. The sequence in this particular video clip includes the first and second maneuvers in the flight. On the first maneuver, the pilot attempted to achieve a yaw rate of 40 degrees per second and actually went to 47 degrees. The spin was oscillatory in pitch (up and down) and roll (rotating around the longitudinal axis). Recovery was normal. On the second maneuver of the flight in which Schneider tried to achieve a yaw rate of 40 degrees per second, the aircraft overshot to 54 degrees per second during an oscillatory spin. In the course of the recovery, the aircraft rolled after a large sideslip buildup. Moderate aft stick

  1. Reciprocal Benefits of Mass-Univariate and Multivariate Modeling in Brain Mapping: Applications to Event-Related Functional MRI, H2 15O-, and FDG-PET

    PubMed Central

    Habeck, Christian G.

    2006-01-01

    In brain mapping studies of sensory, cognitive, and motor operations, specific waveforms of dynamic neural activity are predicted based on theoretical models of human information processing. For example in event-related functional MRI (fMRI), the general linear model (GLM) is employed in mass-univariate analyses to identify the regions whose dynamic activity closely matches the expected waveforms. By comparison multivariate analyses based on PCA or ICA provide greater flexibility in detecting spatiotemporal properties of experimental data that may strongly support alternative neuroscientific explanations. We investigated conjoint multivariate and mass-univariate analyses that combine the capabilities to (1) verify activation of neural machinery we already understand and (2) discover reliable signatures of new neural machinery. We examined combinations of GLM and PCA that recover latent neural signals (waveforms and footprints) with greater accuracy than either method alone. Comparative results are illustrated with analyses of real fMRI data, adding to Monte Carlo simulation support. PMID:23165047

  2. Evaluation of the dependence of the exposure dose on the attenuation correction in brain PET/CT scans using 18F-FDG

    NASA Astrophysics Data System (ADS)

    Choi, Eun-Jin; Jeong, Moon-Taeg; Jang, Seong-Joo; Choi, Nam-Gil; Han, Jae-Bok; Yang, Nam-Hee; Dong, Kyung-Rae; Chung, Woon-Kwan; Lee, Yun-Jong; Ryu, Young-Hwan; Choi, Sung-Hyun; Seong, Kyeong-Jeong

    2014-01-01

    This study examined whether scanning could be performed with minimum dose and minimum exposure to the patient after an attenuation correction. A Hoffman 3D Brain Phantom was used in BIO_40 and D_690 PET/CT scanners, and the CT dose for the equipment was classified as a low dose (minimum dose), medium dose (general dose for scanning) and high dose (dose with use of contrast medium) before obtaining the image at a fixed kilo-voltage-peak (kVp) and milliampere (mA) that were adjusted gradually in 17-20 stages. A PET image was then obtained to perform an attenuation correction based on an attenuation map before analyzing the dose difference. Depending on tube current in the range of 33-190 milliampere-second (mAs) when BIO_40 was used, a significant difference in the effective dose was observed between the minimum and the maximum mAs (p < 0.05). According to a Scheffe post-hoc test, the ratio of the minimum to the maximum of the effective dose was increased by approximately 5.26-fold. Depending on the change in the tube current in the range of 10-200 mA when D_690 was used, a significant difference in the effective dose was observed between the minimum and the maximum of mA (p < 0.05). The Scheffe posthoc test revealed a 20.5-fold difference. In conclusion, because effective exposure dose increases with increasing operating current, it is possible to reduce the exposure limit in a brain scan can be reduced if the CT dose can be minimized for a transmission scan.

  3. [18F FDG PET-Applications in Oncology].

    PubMed

    Răileanu, Irena; Rusu, V; Stefănescu, Cipriana; Cinotti, L; Hountis, D

    2002-01-01

    In the first part our intention was, essentially, to present the particularities of glucose tumoral cells metabolism, PET components, the synthesis of 18F FDG and the detection of unknown cancers. This second part makes reference about mainly types of tumors who benefit by FDG-PET indications. Clinical PET has a rapid growth because of its use in cancer diagnosis and management. According with published studies all over the world, the sensibility and specificity of FDG-PET, noninvasive method, is higher than that of the conventional methods like CT, IRM, ultrasonography. PET is en excellent detection method of most of common cancer types and depends not on the histological neoplasm type; the more aggressive is the tumor, more it will uptake the radiotracer. The cost is significant, so the indications must be very precise: evaluating the malignity of solitary pulmonary nodules, evaluating the recurrences of melanoma, colon cancer diagnosis, differentiation between recurrent brain tumor and radiation injury, differential diagnosis of the benign lymph and malign lymph nodes, staging of Hodgkin's and non-Hodgkin's lymphoma, evaluation the response to therapy. Because the PET images are difficult to interpret, appears the necessity of correlation with anatomic images: this was the fusion images beginnings (the PET and CT images combination); now the physiologic information has precise anatomic localization. The growing of this method is very probably, both using 18F FDG -thanks to its highly favorable physical characteristics- and other new radiopharmaceuticals. The clinical cases that illustrate the applications are investigated at CERMEP, Lyon, France.

  4. Screening for occult malignancy with FDG-PET/CT in patients with unprovoked venous thromboembolism.

    PubMed

    Alfonso, Ana; Redondo, Margarita; Rubio, Tomás; Del Olmo, Beatriz; Rodríguez-Wilhelmi, Pablo; García-Velloso, María J; Richter, José A; Páramo, José A; Lecumberri, Ramón

    2013-11-01

    Extensive screening strategies to detect occult cancer in patients with unprovoked venous thromboembolism (VTE) are complex and no benefit in terms of survival has been reported. FDG-PET/CT (2-[F-18] fluoro-2-deoxy-D-glucose positron emission tomography combined with computed tomography), a noninvasive technique for the diagnosis and staging of malignancies, could be useful in this setting. Consecutive patients ≥ 50 years with a first unprovoked VTE episode were prospectively included. Screening with FDG-PET/CT was performed 3-4 weeks after the index event. If positive, appropriate diagnostic work-up was programmed. Clinical follow-up continued for 2 years. Blood samples were collected to assess coagulation biomarkers. FDG-PET/CT was negative in 68/99 patients (68.7%), while suspicious FDG uptake was detected in 31/99 patients (31.3%). Additional diagnostic work-up confirmed a malignancy in 7/31 patients (22.6%), with six of them at early stage. During follow-up, two patients with negative FDG-PET/CT were diagnosed with cancer. Sensitivity (S), positive (PPV) and negative predictive values (NPV) of FDG-PET/CT as single tool for the detection of occult malignancy were 77.8% (95% CI: 0.51-1), 22.6% (95% CI: 0.08-0.37) and 97.1% (95% CI: 0.93-1), respectively. Median tissue factor (TF) activity in patients with occult cancer was 5.38 pM vs. 2.40 pM in those without cancer (p = 0.03). Limitation of FDG-PET/CT screening to patients with TF activity > 2.8 pM would improve the PPV to 37.5% and reduce the costs of a single cancer diagnosis from 20,711€ to 11,670€. FDG-PET/CT is feasible for the screening of occult cancer in patients with unprovoked VTE, showing high S and NPV. The addition of TF activity determination may be useful for patient selection. Copyright © 2013 UICC.

  5. NASA's SR-71B and F-18 HARV aircraft left Edwards Air Force Base, Calif., on March 24, 2003

    NASA Image and Video Library

    2003-03-24

    Dryden Flight Research Center's SR-71B Blackbird aircraft, NASA tail number 831, is destined for the Kalamazoo Air Zoo museum in Kalamazoo, Mich., and the F-18 High Angle-of-Attack Research Vehicle (HARV) aircraft, NASA tail number 840, is going to the Virginia Air and Space Center in Hampton, Va. NASA's SR-71B was one of only two SR-71 trainer aircraft built, and served NASA in that role, as well as for some high-speed research, from 1991 to 1999. The F-18 HARV provided some of the most comprehensive data on the high-angle-of-attack flight regime, flying at angles of up to 70 degrees from the horizontal. The HARV flew 385 research flights at Dryden from 1987 through 1996.

  6. Flutter Clearance of the F-18 High-angle-of-attack Research Vehicle with Experimental Wingtip Instrumentation Pods

    NASA Technical Reports Server (NTRS)

    Freudinger, Lawrence C.

    1989-01-01

    An F-18 aircraft was modified with wingtip instrumentation pods for use in NASA's high-angle-of-attack research program. Ground vibration and flight flutter testing were performed to clear an acceptable flight envelope for the aircraft. Flight test utilized atmospheric turbulence for structural excitation; the aircraft displayed no adverse aeroelastic trends within the envelope tested. The data presented in this report include mode shapes from the ground vibration and estimates of frequency and damping as a function of Mach number.

  7. Surface flow visualization of separated flows on the forebody of an F-18 aircraft and wind-tunnel model

    NASA Technical Reports Server (NTRS)

    Fisher, David F.; Richwine, David M.; Banks, Daniel W.

    1988-01-01

    A method of in-flight surface flow visualization similar to wind-tunnel-model oil flows is described for cases where photo-chase planes or onboard photography are not practical. This method, used on an F-18 aircraft in flight at high angles of attack, clearly showed surface flow streamlines in the fuselage forebody. Vortex separation and reattachment lines were identified with this method and documented using postflight photography. Surface flow angles measured at the 90 and 270 degrees meridians show excellent agreement with the wind tunnel data for a pointed tangent ogive with an aspect ratio of 3.5. The separation and reattachment line locations were qualitatively similar to the F-18 wind-tunnel-model oil flows but neither the laminar separation bubble nor the boundary-layer transition on the wind tunnel model were evident in the flight surface flows. The separation and reattachment line locations were in fair agreement with the wind tunnel data for the 3.5 ogive. The elliptical forebody shape of the F-18 caused the primary separation lines to move toward the leeward meridian. Little effect of angle of attack on the separation locations was noted for the range reported.

  8. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  9. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  10. SR-71B - in Flight with F-18 Chase Aircraft - View from Air Force Tanker

    NASA Technical Reports Server (NTRS)

    1996-01-01

    NASA 831, an SR-71B operated by the Dryden Flight Research Center, Edwards, California, cruises over the Mojave Desert with an F/A-18 Hornet flying safety chase. They were photographed on a 1996 mission from an Air Force refueling tanker The F/A-18 Hornet is used primarily as a safety chase and support aircraft at Dryden. As support aircraft, the F-18s are used for safety chase, pilot proficiency and aerial photography. Two SR-71 aircraft have been used by NASA as testbeds for high-speed and high-altitude aeronautical research. The aircraft, an SR-71A and an SR-71B pilot trainer aircraft, have been based here at NASA's Dryden Flight Research Center, Edwards, California. They were transferred to NASA after the U.S. Air Force program was cancelled. As research platforms, the aircraft can cruise at Mach 3 for more than one hour. For thermal experiments, this can produce heat soak temperatures of over 600 degrees Fahrenheit (F). This operating environment makes these aircraft excellent platforms to carry out research and experiments in a variety of areas -- aerodynamics, propulsion, structures, thermal protection materials, high-speed and high-temperature instrumentation, atmospheric studies, and sonic boom characterization. The SR-71 was used in a program to study ways of reducing sonic booms or over pressures that are heard on the ground, much like sharp thunderclaps, when an aircraft exceeds the speed of sound. Data from this Sonic Boom Mitigation Study could eventually lead to aircraft designs that would reduce the 'peak' overpressures of sonic booms and minimize the startling affect they produce on the ground. One of the first major experiments to be flown in the NASA SR-71 program was a laser air data collection system. It used laser light instead of air pressure to produce airspeed and attitude reference data, such as angle of attack and sideslip, which are normally obtained with small tubes and vanes extending into the airstream. One of Dryden's SR-71s was used

  11. Induction of Th1 polarized immune responses by thiolated Eudragit-coated F4 and F18 fimbriae of enterotoxigenic Escherichia coli.

    PubMed

    Lee, Won-Jung; Cha, Seungbin; Shin, Minkyoung; Islam, Mohammad Ariful; Cho, Chong-su; Yoo, Han Sang

    2011-10-01

    Diarrhea in newborn and weaned piglets is mainly induced by enterotoxigenic Escherichia coli (ETEC) with fimbriae F4 (K88) and F18 (F107). In this study, we evaluated F4 and F18 coated with thiolated Eudragit microspheres (TEMS) as a candidate for an oral vaccine. The average particle sizes of TEMS, F4-loaded TEMS, and F18-loaded TEMS were measured as 4.2±0.75 μm, 4.7±0.50 μm, and 4.5±0.37 μm, respectively. F4 is more efficiently encapsulated than F18 in the loading with TEMS. In the release test, F4 and F18 fimbriae were protected in acidic circumstances, whereas most were released at pH 7.4 of intestine circumstances. Production of TNF-α and NO from RAW 264.7 cells was increased in a time-dependent manner after exposure to all groups, whereas only F4- or F18-loaded TEMS-stimulated IL-6 secretion. The levels of IFN-γ from mouse splenocytes after exposure to F4 or F18 were increased while IL-4 was not detectable. These results suggest that F4- and F18-loaded TEMS may effectively induce immune response with the efficient release of antigens to appropriate target sites. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. KEY COMPARISON: Comparisons CCRI(II)-K3.F-18 and APMP.RI(II)-K3.F-18 of activity measurements of the radionuclide 18F and links to the key comparison reference value of the BIPM.RI(II)-K1.F-18 comparison

    NASA Astrophysics Data System (ADS)

    Ratel, G.; Michotte, C.; Woods, M. J.

    2005-01-01

    In 2003, the CCRI(II) decided that an indirect comparison of 18F measurements piloted by the National Physical Laboratory (NPL), UK in 2001 was sufficiently well constructed that it could be converted into a CCRI(II) comparison, with comparison identifier CCRI(II)-K3.F-18. At the same time, the pilot laboratory made a bilateral comparison with the institute in Chinese Taipei, comparison identifier APMP.RI(II)-K3.F-18. The results of the comparisons have been reported and the key comparison working group (KCWG) of the CCRI(II) has approved the mechanism to link all the results to the key comparison reference value (KCRV) of 18F. The KCRV has been determined through the International Reference System (SIR) for activity comparison at the Bureau International des Poids et Mesures (BIPM), with comparison identifier BIPM.RI(II)-K1.F-18. These comparisons have enabled a further four results to be added to the matrix of degrees of equivalence for 18F activity measurements. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by Section II of the Consultative Committee for Ionizing Radiation (CCRI(II)), according to the provisions of the Mutual Recognition Arrangement (MRA).

  13. Prevalence of the fimbrial antigens F18 and K88 and of enterotoxins and verotoxins among Escherichia coli isolated from weaned pigs.

    PubMed

    Wittig, W; Klie, H; Gallien, P; Lehmann, S; Timm, M; Tschäpe, H

    1995-11-01

    Until recently, the fimbrial F18 antigen has been provisionally designated F107, 2134P, or 8813. Using the slide agglutination test, this antigen was shown to be present on 139 of 160 Escherichia coli strains of type O139:K82 and on all of the 146 K88-negative strains of the other pathogenic porcine serotypes. These strains were isolated from weaned pigs which in most cases had died from postweaning colibacillosis. All strains were haemolytic. With only three exceptions, they produced verotoxin and/or enterotoxin. The F18ab variant strongly predominated on the O139:K82 strains and was found on about half of the O138:K81 strains and a few O157 strains, whereas the other strains carried the F18ac variant. In serotypes which can carry either F18 or K88 fimbriae, closer clonal relationships between the strains associated with F18 and those associated with K88 were missing.

  14. Evaluation of focus laterality in temporal lobe epilepsy: a quantitative study comparing double inversion-recovery MR imaging at 3T with FDG-PET.

    PubMed

    Morimoto, Emiko; Okada, Tomohisa; Kanagaki, Mitsunori; Yamamoto, Akira; Fushimi, Yasutaka; Matsumoto, Riki; Takaya, Shigetoshi; Ikeda, Akio; Kunieda, Takeharu; Kikuchi, Takayuki; Paul, Dominik; Miyamoto, Susumu; Takahashi, Ryosuke; Togashi, Kaori

    2013-12-01

    To quantitatively compare the diagnostic capability of double inversion-recovery (DIR) with F-18 fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of seizure focus laterality in temporal lobe epilepsy (TLE). This study was approved by the institutional review board, and written informed consent was obtained. Fifteen patients with TLE and 38 healthy volunteers were enrolled. All magnetic resonance (MR) images were acquired using a 3T-MRI system. Voxel-based analysis (VBA) was conducted for FDG-PET images and white matter segments of DIR images (DIR-WM) focused on the whole temporal lobe (TL) and the anterior part of the temporal lobe (ATL). Distribution of hypometabolic areas on FDG-PET and increased signal intensity areas on DIR-WM were evaluated, and their laterality was compared with clinically determined seizure focus laterality. Correct diagnostic rates of laterality were evaluated, and agreement between DIR-WM and FDG-PET was assessed using κ statistics. Increased signal intensity areas on DIR-WM were located at the vicinity of the hypometabolic areas on FDG-PET, especially in the ATL. Correct diagnostic rates of seizure focus laterality for DIR-WM (0.80 and 0.67 for the TL and the ATL, respectively) were slightly higher than those for FDG-PET (0.67 and 0.60 for the TL and the ATL, respectively). Agreement of laterality between DIR-WM and FDG-PET was substantial for the TL and almost perfect for the ATL (κ = 0.67 and 0.86, respectively). High agreement in localization between DIR-WM and FDG-PET and nearly equivalent detectability of them show us an additional role of MRI in TLE. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.

  15. [Usefulness of SPECT images in helping radiologists understand brain diseases].

    PubMed

    Hayashida, K

    2001-04-01

    Nuclear brain imaging is able to show functional abnormalities of lesions that are not detectable by CT and MR images. The diagnostic keys of nuclear-imaging in terms of clinical usefulness are its early detection of lesions and determination of the efficacy of drug and surgical therapies. In dementic patients, F-18 FDG brain images can be diagnosed as Alzheimer's disease 12 months earlier than is possible on CT and MRI images, and can provide information for effective drug therapy. O-15 water CBF images can predict the effect of Nicholin by assessing transient increases in cerebral blood flow (CBF), thereby facilitating improvement in higher brain functions such as orientation. In stroke patients, brain SPECT images with Tc-99m HMPAO can predict fatal cerebral hemorrhage caused by anti-thrombic therapy by showing the decrease in count ratio (count ratio of infarcted to contralateral area of < 0.34) in the acute phase and identifying disruption of the blood brain barrier by showing hyperfixation in the subacute phase. Brain SPECT with I-123 IMP can also identify "misery" perfused areas resulting from reduced CBF and decreased vasoreactivity in the chronic phase. This criterion is utilized for patient selection for extracranial/intracranial bypass surgery, because patients with areas of poor perfusion might be indicated for such surgery. Since nuclear medicine images can accurately select candidates for drug or surgical therapies, they will be beneficial in reducing Medicare costs as well as in enhancing patients' quality of life as a result of the successful treatment. With the advancement of technology, nuclear medicine units that can simultaneously obtain CT images and can combine functional with anatomical images will provide more useful information for the diagnosis of brain disease.

  16. Designations F18ab and F18ac for the related fimbrial types F107, 2134P and 8813 of Escherichia coli isolated from porcine postweaning diarrhoea and from oedema disease.

    PubMed

    Rippinger, P; Bertschinger, H U; Imberechts, H; Nagy, B; Sorg, I; Stamm, M; Wild, P; Wittig, W

    1995-08-01

    The relatedness of the fimbriae produced by eight E. coli strains including type strains with F107 fimbriae, 2134P pili and colonization factor 8813 (preliminary F18), was examined. These strains had been isolated principally from pigs which were affected with postweaning diarrhoea or with oedema disease. The fimbriae were analyzed by means of electron microscopy, slide agglutination, immunofluorescence, immunogold labelling, immuno-diffusion, immunoelectrophoresis and western blot, molecular genetic techniques, and in vitro adhesion. The fimbriae of all the strains were long flexible filaments with a diameter not larger than 4.6 nm showing a zig-zag pattern. Results obtained by the serological techniques confirmed that the fimbriae possessed a common antigenic determinant designated 'a' in addition to a variant-specific determinant designated 'b' or 'c'. Immunoelectron microscopy demonstrated that the determinants 'a' and 'b' or 'a' and 'c' were localized along the same fimbrium. In immunoelectrophoresis, fimbrial extracts of selected strains yielded a single precipitation line towards the cathode. One single major subunit of approximately 15 kDa was recognised in western blots by antisera against the common antigenic determinant and the variant specific determinants. All strains possessed sequences related to gene fedA, coding for the major subunit of fimbriae F107. Two types of fedA-related subunit genes were differentiated, corresponding to the 'ab' and 'ac' types of fimbriae as defined by serological methods. The results demonstrated that F107 fimbriae, 2134P pili and colonization factor 8813 are related, and that two serological variants can be distinguished. We propose designations F18ab (for F107), and F18ac (for 2134P and 8813) in analogy to the nomenclature of F4 fimbriae.

  17. Wilson's disease studied with FDG and positron emission tomography

    SciTech Connect

    Hawkins, R.A.; Mazziotta, J.C.; Phelps, M.E.

    1987-11-01

    Four patients with Wilson's disease and eight normal controls were studied with 2-deoxy-2-(/sup 18/F)fluoro-D-glucose (FDG) and positron emission tomography (PET). The patients had diffusely reduced glucose metabolism in all brain regions evaluated compared with controls, with the exception of the thalamus. The ratio of the cerebral metabolic rate for glucose in the lenticular nuclei to hemispheres declined from 1.23 (+/- 0.14 SD) in controls to 1.03 (+/- 0.06) (p less than 0.025) in Wilson's disease patients. Compared with Huntington's disease, the PET FDG results in Wilson's disease indicate relatively less focal involvement of the caudate nucleus, more severe focal changes in the lenticular nuclei, and more significant global changes in glucose metabolism.

  18. Analysis of Metabolism of 6FDG: A PET Glucose Transport Tracer

    PubMed Central

    Muzic, Raymond F.; Chandramouli, Visvanathan; Huang, Hsuan-Ming; Wu, Chunying; Wang, Yanming; Ismail-Beigi, Faramarz

    2011-01-01

    Introduction We are developing 18F-labeled 6-fluoro-6-deoxy-D-glucose ([18F]6FDG) as a tracer of glucose transport. As part of this process it is important to characterize and quantify putative metabolites. In contrast to the ubiquitous PET tracer 18F-labeled 2-fluoro-2-deoxy-D-glucose ([18F]2FDG) which is phosphorylated and trapped intracellularly, the substitution of fluorine for a hydroxyl group at carbon 6 in [18F]6FDG should prevent its phosphorylation. Consequently, [18F]6FDG has the potential to trace the transport step of glucose metabolism without the confounding effects of phosphorylation and subsequent steps of metabolism. Herein the focus is to determine whether, and the degree to which, [18F]6FDG remains unchanged following intravenous injection. Methods Biodistribution studies were performed using 6FDG labeled with 18F as well as the longer-lived radionuclides 3H and 14C. Tissues were harvested at 1, 6, and 24 h following intravenous administration and radioactivity was extracted from the tissues and analyzed using a combination of ion exchange columns, high-performance liquid chromatography, and chemical reactivity. Results At the 1 h time-point, the vast majority of radioactivity in the liver, brain, heart, skeletal muscle, and blood was identified as 6FDG. At the 6- and 24-h time-points there was evidence of a minor amount of radioactive materials that appeared to be 6-fluoro-6-deoxy-D-sorbitol and possibly 6-fluoro-6-deoxy-D-gluconic acid. Conclusion On the time scale typical of PET imaging studies radioactive metabolites of [18F]6FDG are negligible. PMID:21718942

  19. Gastric distension by ingesting food is useful in the evaluation of primary gastric cancer by FDG PET.

    PubMed

    Zhu, Zhaohui; Li, Fang; Zhuang, Hongming

    2007-02-01

    Gastric carcinoma is the second leading cause of cancer-related death worldwide. Detection and surgical resection of gastric cancer in the early stage provides the only hope for improved survival in patients with gastric cancer. Positron emission tomography (PET) with F-18 2-deoxy-2-fluoro-D-glucose (FDG) has been shown to be essential in the evaluation of a variety of malignancies. However, conventional FDG PET has limited value for detecting a primary tumor of the stomach, mostly because of the relatively high levels of physiological uptake by the contracted stomach. We report 3 cases of primary gastric carcinomas detected successfully by FDG PET after the ingestion of food. The PET images of the stomach after ingesting food were compared with the routine fasting-state whole-body PET images for each patient. When the stomach was distended by food, the malignant lesions were more discernible. These cases indicate that gastric distension by ingesting food may be a simple method that can help to detect a primary gastric malignancy by FDG PET.

  20. Parameter Identification Flight Test Maneuvers for Closed Loop Modeling of the F-18 High Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Batterson, James G. (Technical Monitor); Morelli, E. A.

    1996-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for longitudinal and lateral linear model parameter estimation at 5,20,30,45, and 60 degrees angle of attack, using the Actuated Nose Strakes for Enhanced Rolling (ANSER) control law in Thrust Vectoring (TV) mode. Each maneuver is to be realized by applying square wave inputs to specific pilot station controls using the On-Board Excitation System (OBES). Maneuver descriptions and complete specifications of the time / amplitude points defining each input are included, along with plots of the input time histories.

  1. Piloted Parameter Identification Flight Test Maneuvers for Closed Loop Modeling of the F-18 High Alpha Research Vehicle (HARV)

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1996-01-01

    Flight test maneuvers are specified for the F-18 High Alpha Research Vehicle (HARV). The maneuvers were designed for closed loop parameter identification purposes, specifically for longitudinal and lateral linear model parameter estimation at 5, 20, 30, 45, and 60 degrees angle of attack, using the NASA 1A control law. Each maneuver is to be realized by the pilot applying square wave inputs to specific pilot station controls. Maneuver descriptions and complete specifications of the time/amplitude points defining each input are included, along with plots of the input time histories.

  2. A generalized patched-grid algorithm with application to the F-18 forebody with actuated control strake

    NASA Technical Reports Server (NTRS)

    Biedron, R. T.; Thomas, J. L.

    1990-01-01

    Analysis of complex configurations using structured grids virtually demands multiple blocks of grids. To facilitate calculations involving multiple blocks, a geneal grid-block patching algorithm based on generalized coordinate inerpolation has been developed. The computational grid may contain as many arbirarily shaped blocks as required to make the grid generation problem tractable and to accurately model the fow features. Results are presented for several test cases as well as for the F-18 forebody control strake. The methodology developed has application to overlapped or embedded grids.

  3. Free-to-roll tests of X-31 and F-18 subscale models with correlation to flight test results

    NASA Technical Reports Server (NTRS)

    Williams, David L., II; Nelson, Robert C.; Fisher, David F.

    1994-01-01

    This presentation will concentrate on a series of low-speed wind tunnel tests conducted on a 2.5 percent subscale F-18 model and a 2 percent subscale X-31 model. The model's control surfaces were unaugmented; and for the most part, were deflected at a constant angle throughout the tests. The tests consisted mostly of free-to-roll experiments conducted with the use of an air-bearing, surface pressure measurements, off-surface flow visualization, and force-balance tests. Where possible the results of the subscale tests have been compared to flight test data, or to other wind tunnel data taken at higher Reynolds numbers.

  4. Role of F18 fluorodeoxyglucose positron-emission tomography/computed tomography in the management of Askin's tumor.

    PubMed

    Santhosh, Sampath; Kashyap, Raghava; Bhattacharya, Anish; Kumar Jindal, Surinder; Rai Mittal, Bhagwant

    2013-07-01

    A primitive neuroectodermal tumor (PNET) of the thoraco-abdominal region is one of a group of small round cell tumors usually found in children and young adults, originally described by Askin et al. Most cases arise in the soft-tissues of the thorax, but may rarely occur within the lung with the symptoms of chest wall pain, pleural effusion and dyspnea. The authors present two cases demonstrating the utility of F18 fluorodeoxyglucose positron-emission tomography/computed tomography in the staging and prognosis of PNET of the chest wall.

  5. CD14 in the TLRs signaling pathway is associated with the resistance to E. coli F18 in Chinese domestic weaned piglets

    PubMed Central

    Wu, Zhengchang; Liu, Ying; Dong, Wenhua; Zhu, Guo-qiang; Wu, Shenglong; Bao, Wenbin

    2016-01-01

    Escherichia coli F18 (E. coli F18) is mainly responsible for post-weaning diarrhea (PWD) in piglets. The genetic basis and regulatory mechanism of E. coli F18 resistance in Chinese domestic weaned piglets remain unclear. Meishan piglets were used as model animals to test their susceptibility to E. coli F18. By performing a comparative transcriptome study on duodenum tissues of sensitive and resistant pigs, we identified 198 differentially expressed genes (DEGs; 125 upregulated and 73 downregulated) in the resistant pigs. DEGs were predominately involved in immune system pathways, including the Toll-like receptor (TLR) signaling pathway. qPCR and western blot showed CD14, IFN-α, TLR4 and IL-1β, etc. in the TLR signaling pathway had significantly higher expression levels in lipopolysaccharide (LPS)-induced small intestinal epithelial cell lines (IPEC-J2) than those in normal IPEC-J2 cells. Immunohistochemical analysis showed the increased expression of CD14 gene in the E. coli F18-resistant individuals. After CD14 knockdown, the levels of cytokines IL-6 and IL-12 were significantly reduced in IPEC-J2 cell supernatants. The adhesion ability of F18ab strain with IPEC-J2 cells was significantly increased (p < 0.01). This study revealed the TLR signaling pathway, and especially CD14, probably plays an important role in resistance to E. coli F18 infection in Chinese domestic piglets. PMID:27098998

  6. FDG-PET scan shows increased cerebral blood flow in rat after sublingual glycine application

    NASA Astrophysics Data System (ADS)

    Blagosklonov, Oleg; Podoprigora, Guennady I.; Davani, Siamak; Nartsissov, Yaroslav R.; Comas, Laurent; Boulahdour, Hatem; Cardot, Jean-Claude

    2007-02-01

    Positron emission tomography (PET) with [18F]-2-fluoro-deoxy-D-glucose (FDG) is being increasingly used in research. Isotope studies may be of help in an assessment of vasoactive potential of newly developed therapeutic preparations, including natural metabolites, like glycine. As a medicine, glycine was recently shown to have a positive therapeutic effect in the treatment of patients with neurological disorders based on vascular disturbances. By previous direct biomicroscopic investigations of pial microvessels in laboratory rats, an expressed vasodilatory effect of topically applied glycine was proved. The aim of this study was to evaluate the influence of glycine on the rat cerebral blood flow (CBF) using FDG-PET scan. A baseline study was started immediately after intravenous injection of 19 MBq of FDG in anesthetized rat. The PET images were acquired twice, one by one during 20 min. Two hours later, after sublingual application of glycine and the second FDG injection, the pair of PET scan was performed during 20 min as well. Finally, 4 days after the first studies, we repeated the PET scans in the same conditions after sublingual application of glycine. The quantitative analysis of FDG volume concentration (Bq/ml) in the rat brain demonstrated that in both studies after glycine administration, the FDG uptake increased at least 1.5 times in comparison with the baseline data. Moreover, the peak of the concentration was coming in more rapidly. These results confirm the enhancing effect of glycine on the rat CBF possibly because of its vasodilatory effect on brain microvessels. Therefore, FDG-PET technique contributes to better understanding of glycine pharmacokinetics.

  7. Regional, kinetic [18F]FDG PET imaging of a unilateral Parkinsonian animal model

    PubMed Central

    Silva, Matthew D; Glaus, Charles; Hesterman, Jacob Y; Hoppin, Jack; Puppa, Geraldine Hill della; Kazules, Timothy; Orcutt, Kelly M; Germino, Mary; Immke, David; Miller, Silke

    2013-01-01

    Positron emission tomography (PET) imaging with the glucose analog 2-deoxy-2-[18F]fluoro-D-glucose ([18F] FDG) has demonstrated clinical utility for the monitoring of brain glucose metabolism alteration in progressive neurodegenerative diseases. We examined dynamic [18F]FDG PET imaging and kinetic modeling of atlas-based regions to evaluate regional changes in the cerebral metabolic rate of glucose in the widely-used 6-hydroxydopamine (6-OHDA) rat model of Parkinson’s disease. Following a bolus injection of 18.5 ± 1 MBq [18F]FDG and a 60-minute PET scan, image-derived input functions from the vena cava and left ventricle were used with three models, including Patlak graphical analysis, to estimate the influx constant and the metabolic rate in ten brain regions. We observed statistically significant changes in [18F]FDG uptake ipsilateral to the 6-OHDA injection in the basal ganglia, olfactory bulb, and amygdala regions; and these changes are of biological relevance to the disease. These experiments provide further validation for the use of [18F]FDG PET imaging in this model for drug discovery and development. PMID:23526185

  8. Calcified peritoneal metastasis identified on 18F-fluoride positron emission tomography/computed tomography: Importance of extraosseous uptake of F-18 fluoride.

    PubMed

    Verma, Priyanka; Chandra, Piyush; Agrawal, Archi; Purandare, Nilendu; Shah, Sneha; Rangarajan, Venkatesh

    2016-01-01

    F-18 NaF positron emission tomography/computed tomography (PET/CT) is used for the evaluation of malignant and nonmalignant osseous disease. Extraosseous uptake of 18 fluoride-NaF has been observed in the arterial vasculature, gastrointestinal tract, and genitourinary tract. We describe a case of a woman with carcinoma of unknown primary in whom F-18 NaF PET/CT showed tracer uptake in the calcified peritoneal metastasis. Extraosseous findings on F-18 NaF PET/CT, though rare, may be visualized and may result in important management changes.

  9. F-18 Labeled Vasoactive Intestinal Peptide Analogue in the PET Imaging of Colon Carcinoma in Nude Mice

    PubMed Central

    Liu, Yuxia; Shen, Hua; Pang, Lifang; Yin, Duanzhi; Wang, Yongxian; Li, Shanqun; Shi, Hongcheng

    2013-01-01

    As large amount of vasoactive intestinal peptide (VIP) receptors are expressed in various tumors and VIP-related diseases, radiolabeled VIP provides a potential PET imaging agent for VIP receptor. However, structural modification of VIP is required before being radiolabeled and used for VIP receptor imaging due to its poor in vivo stability. As a VIP analogue, [R8, 15, 21, L17]-VIP exhibited improved stability and receptor specificity in preliminary studies. In this study, F-18 labeled [R8,15,21, L17]-VIP was produced with the radiochemical yield being as high as 33.6% ± 3% (decay-for-corrected, n = 5) achieved within 100 min, a specific activity of 255 GBq/μmol, and a radiochemical purity as high as 99% as characterized by radioactive HPLC, TLC, and SDS-Page radioautography. A biodistribution study in normal mice also demonstrated fast elimination of F-18 labeled [R8,15,21, L17]-VIP in the blood, liver, and gastrointestinal tracts. A further micro-PET imaging study in C26 colon carcinoma bearing mice confirmed the high tumor specificity, with the tumor/muscle radioactivity uptake ratio being as high as 3.03 at 60 min following injection, and no apparent radioactivity concentration in the intestinal tracts. In addition, blocking experiment and Western Blot test further confirmed its potential in PET imaging of VIP receptor-positive tumor. PMID:24459669

  10. Coupled numerical simulation of the external and engine inlet flows for the F-18 at large incidence

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Rizk, Yehia M.; Schiff, Lewis B.

    1992-01-01

    This paper presents a numerical simulation of the external and engine inlet flows for the F-18 aircraft at typical high-angle-of-attack flight conditions. Two engine inlet mass flow rates, corresponding to flight idle and maximum power, were computed. This was accomplished using a structured, overset grid technique to couple the external and internal grid systems. Reynolds-averaged Navier-Stokes solutions were obtained using an implicit, finite-differencing scheme. Results show a strong coupling of the external and engine inlet flows, especially at the maximum power setting. Increasing the mass flow rate through the inlet caused the primary vortex breakdown location to move downstream. This trend is also observed in flight tests performed on the F-18. A reversed flow region upstream of the inlet duct is visible in the faired-inlet and flight-idle computations. This flow reversal is not present in the maximum power setting computation. These large-scale changes in flow structure highlight the importance of simulating inlet conditions in high-angle-of-attack aircraft computations.

  11. FDG μPET Fails to Detect a Disease-Specific Phenotype in Rats Transgenic for Huntington's Disease – A 15 Months Follow-up Study.

    PubMed

    Reilmann, Ralf; Lippross, Veronika; Hölzner, Eva; Gigengack, Fabian; Bohlen, Stefan; Kugel, Harald; Deppe, Michael; Osada, Nani; Lücke, M; Riess, Olaf; Nguyen, Huu Phuc; Von Hörsten, Stephan; Schäfers, Klaus; Schäfers, Michael; Jacobs, Andreas H; Hermann, Sven

    2015-01-01

    FDG-PET detects hypometabolism in premanifest and symptomatic Huntington's disease (HD). A cross-sectional study suggested that whole-brain FDG-PET is capable to detect a phenotype in transgenic (tg) HD rats. Recently, a longitudinal follow-up study showed no FDG-PET changes in tgHD rats. Both studies applied small sample sizes and analysis was limited to whole-brain or striatum. We therefore performed a follow-up study in a larger cohort of tgHD and wild-type (wt) rats encompassing several pre-defined regions of interest (ROIs) and hypothesis free voxel-by-voxel SPM analysis to clarify whether FDG-PET can detect a phenotype in tgHD rats and to determine onset …and effect sizes of changes over time. N = 19 tgHD- and n = 20 wt-rats, mixed gender, were included. Repeated small animal FDG-μPET and MRI were performed at 5,10,15, and 20 months of age. ROIs encompassing entire brain, cortex, striatum, thalamus, subventricular-zone, and cerebellum were placed manually on the MRI and transferred to the co-registered μPET. Mean and maximal FDG-PET activities within ROIs were calculated and normalized to cerebellar FDG uptake. Activity and spatially normalized FDG-μPET were compared between groups on a hypothesis-free voxel-by-voxel basis using SPM. FDG uptake showed changes over time in both tgHD- and wt-rats, however, there was no consistent difference between tgHD- and wt-rats in both the manual ROI and SPM analysis. In this transgenic rat model of HD FDG-μPET imaging does not detect significant alterations at the ages investigated. Further investigations are warranted employing other age groups and alternative imaging biomarkers for neuronal degeneration, respectively.

  12. Structure/Function Analysis of the Vaccinia Virus F18 Phosphoprotein, an Abundant Core Component Required for Virion Maturation and Infectivity▿

    PubMed Central

    Wickramasekera, Nadi T.; Traktman, Paula

    2010-01-01

    Poxvirus virions, whose outer membrane surrounds two lateral bodies and a core, contain at least 70 different proteins. The F18 phosphoprotein is one of the most abundant core components and is essential for the assembly of mature virions. We report here the results of a structure/function analysis in which the role of conserved cysteine residues, clusters of charged amino acids and clusters of hydrophobic/aromatic amino acids have been assessed. Taking advantage of a recombinant virus in which F18 expression is IPTG (isopropyl-β-d-thiogalactopyranoside) dependent, we developed a transient complementation assay to evaluate the ability of mutant alleles of F18 to support virion morphogenesis and/or to restore the production of infectious virus. We have also examined protein-protein interactions, comparing the ability of mutant and WT F18 proteins to interact with WT F18 and to interact with the viral A30 protein, another essential core component. We show that F18 associates with an A30-containing multiprotein complex in vivo in a manner that depends upon clusters of hydrophobic/aromatic residues in the N′ terminus of the F18 protein but that it is not required for the assembly of this complex. Finally, we confirmed that two PSSP motifs within F18 are the sites of phosphorylation by cellular proline-directed kinases in vitro and in vivo. Mutation of both of these phosphorylation sites has no apparent impact on virion morphogenesis but leads to the assembly of virions with significantly reduced infectivity. PMID:20392848

  13. FDG-PET/CT is a pivotal imaging modality to diagnose rare intravascular large B-cell lymphoma: case report and review of literature.

    PubMed

    Colavolpe, Cecile; Ebbo, Mikael; Trousse, Delphine; Khibri, Hajar; Franques, Jerome; Chetaille, Bruno; Coso, Diane; Ouvrier, Matthieu John; Gastaud, Lauris; Guedj, Eric; Schleinitz, Nicolas

    2015-06-01

    Intravascular large B-cell lymphoma (IVLBCL) remains a diagnostic challenge, because of non-specific findings on clinical, laboratory, and imaging studies. We present a case in which 18F-fluorodeoxyglucose (FDG)-positron emission tomography (PET)/computed tomography was particularly useful to suspect the diagnosis, to detect unexpected locations, to guide contributive biopsy, and to assess the response to treatment. In case of initial negative results, FDG-PET should be repeated in the course of clinical evolution. In the presence of neurological or hormonal symptoms without brain magnetic resonance imaging abnormality, FDG-PET brain slices could depict additional pituitary and/or brain hypermetabolisms. We discuss the potential interests of FDG-PET in IVLBCL by a literature review. Copyright © 2014 John Wiley & Sons, Ltd.

  14. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI.

    PubMed

    Farhadi, Mohammad; Mahmoudian, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaee, Mohammad; Ahmadizadeh, Majid; Ghasemikian, Khosro; Gholami, Saeid; Ghoreyshi, Esmaeel; Beyty, Saeid; Shamshiri, Ahmadreza; Madani, Sedighe; Bakaev, Valery; Moradkhani, Seddighe; Raeisali, Gholamreza

    2010-04-01

    Tinnitus is often defined as the perception of sounds or noise in the absence of any external auditory stimuli. The pathophysiology of subjective idiopathic tinnitus remains unclear. The aim of this study was to investigate the functional brain activities and possible involved cerebral areas in subjective idiopathic tinnitus patients by means of single photon emission computerized tomography (SPECT) coincidence imaging, which was fused with magnetic resonance imaging (MRI). In this cross-sectional study, 56 patients (1 subject excluded) with subjective tinnitus and 8 healthy controls were enrolled. After intravenous injection of 5 mCi F18-FDG (fluorodeoxyglucose), all subjects underwent a brain SPECT coincidence scan, which was then superimposed on their MRIs. In the eight regions of interest (middle temporal, inferotemporal, medial temporal, lateral temporal, temporoparietal, frontal, frontoparietal, and parietal areas), the more pronounced values were represented in medial temporal, inferotemporal, and temporoparietal areas, which showed more important proportion of associative auditory cortices in functional attributions of tinnitus than primary auditory cortex. Brain coincidence SPECT scan, when fused on MRI is a valuable technique in the assessment of patients with tinnitus and could show the significant role of different regions of central nervous system in functional attributions of tinnitus.

  15. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI

    PubMed Central

    Farhadi, Mohammad; Mahmoudian, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaee, Mohammad; Ahmadizadeh, Majid; Ghasemikian, Khosro; Gholami, Saeid; Ghoreyshi, Esmaeel; Beyty, Saeid; Shamshiri, Ahmadreza; Madani, Sedighe; Bakaev, Valery; Moradkhani, Seddighe; Raeisali, Gholamreza

    2010-01-01

    Tinnitus is often defined as the perception of sounds or noise in the absence of any external auditory stimuli. The pathophysiology of subjective idiopathic tinnitus remains unclear. The aim of this study was to investigate the functional brain activities and possible involved cerebral areas in subjective idiopathic tinnitus patients by means of single photon emission computerized tomography (SPECT) coincidence imaging, which was fused with magnetic resonance imaging (MRI). In this cross-sectional study, 56 patients (1 subject excluded) with subjective tinnitus and 8 healthy controls were enrolled. After intravenous injection of 5 mCi F18-FDG (fluorodeoxyglucose), all subjects underwent a brain SPECT coincidence scan, which was then superimposed on their MRIs. In the eight regions of interest (middle temporal, inferotemporal, medial temporal, lateral temporal, temporoparietal, frontal, frontoparietal, and parietal areas), the more pronounced values were represented in medial temporal, inferotemporal, and temporoparietal areas, which showed more important proportion of associative auditory cortices in functional attributions of tinnitus than primary auditory cortex. Brain coincidence SPECT scan, when fused on MRI is a valuable technique in the assessment of patients with tinnitus and could show the significant role of different regions of central nervous system in functional attributions of tinnitus. PMID:20068582

  16. Brain metabolic correlates of fatigue in Parkinson's disease: A PET study.

    PubMed

    Zhang, Li; Li, Tiannv; Yuan, Yongsheng; Tong, Qing; Jiang, Siming; Wang, Min; Wang, Jianwei; Ding, Jian; Xu, Qinrong; Zhang, Kezhong

    2017-09-18

    The neural bases of fatigue in Parkinson's disease (PD) remain uncertain. We aimed to assess the brain metabolic correlates of fatigue in patients with PD. Twenty-seven PD patients without clinically relevant depression (17-item Hamilton Depression Rating Scale [HAMD] score ≥ 14), apathy (Apathy Scale [AS] score ≥ 14) and excessive daytime somnolence (Epworth Sleepiness Scale [ESS] score ≥ 10) were evaluated with Fatigue Severity Scale (FSS). Each patient had an F-18 fluorodeoxyglucose PET (FDG-PET) scan. Motor symptoms were measured with the Unified Parkinson's Disease Rating Scale (UPDRS) motor part. Levodopa equivalent daily dose (LEDD) for each patient was also calculated. The PET images were analyzed using statistical parametric mapping software. We introduced the age, educational level, HAMD scores, AS scores and ESS scores as covariates. High FSS scores were associated with brain hypermetabolism in areas including the right middle temporal gyrus (Brodmann area [BA] 37) and left middle occipital gyrus (BA 19). Increased FSS scores correlated with hypometabolism in regions such as the right precuneus (BA 23), left inferior frontal gyrus (BA 45) and left superior frontal gyrus (orbital part, BA 11). This study demonstrates that brain areas including frontal, temporal and parietal regions indicative of emotion, motivation and cognitive functions are involved in fatigue in PD patients.

  17. Electronic structures and nonlinear optical properties of highly deformed halofullerenes C(3v) C60F18 and D(3d) C60Cl30.

    PubMed

    Tang, Shu-Wei; Feng, Jing-Dong; Qiu, Yong-Qing; Sun, Hao; Wang, Feng-Di; Chang, Ying-Fei; Wang, Rong-Shun

    2010-11-15

    Electronic structures and nonlinear optical properties of two highly deformed halofullerenes C(3v) C(60)F(18) and D(3d) C(60)Cl(30) have been systematically studied by means of density functional theory. The large energy gaps (3.62 and 2.61 eV) between the highest occupied and lowest unoccupied molecular orbitals (HOMOs and LUMOs) and the strong aromatic character (with nucleus-independent chemical shifts varying from -15.08 to -23.71 ppm) of C(60)F(18) and C(60)Cl(30) indicate their high stabilities. Further investigations of electronic property show that C(60)F(18) and C(60)Cl(30) could be excellent electron acceptors for potential photonic/photovoltaic applications in consequence of their large vertical electron affinities. The density of states and frontier molecular orbitals are also calculated, which present that HOMOs and LUMOs are mainly distributed in the tortoise shell subunit of C(60)F(18) and the aromatic [18] trannulene ring of C(60)Cl(30), and the influence from halogen atoms is secondary. In addition, the static linear polarizability and second-order hyperpolarizability of C(60)F(18) and C(60)Cl(30) are calculated using finite-field approach. The values of and for C(60)F(18) and C(60)Cl(30) molecules are significantly larger than those of C(60) because of their lower symmetric structures and high delocalization of pi electrons.

  18. 18F-FDG PET/CT diagnosis of vagus nerve neurolymphomatosis.

    PubMed

    Tsang, Hailey Hoi Ching; Lee, Elaine Yuen Phin; Anthony, Marina-Portia; Khong, Pek-Lan

    2012-09-01

    A 62-year-old woman was in remission from previously treated stage IV diffuse large B-cell lymphoma with cranial involvement. She presented with new-onset hoarseness of voice and choking; MRI of the brain showed disease recurrence in the left cavernous sinus. She was subsequently referred for F-FDG PET/CT with contrast for further evaluation of lymphomatous recurrence. F-FDG PET/CT not only revealed hypermetabolic activity in the left cavernous sinus correlating to the MRI findings but also showed an interesting manifestation explaining the patient's hoarseness of voice, being neurolymphomatosis along the left vagus nerve.

  19. Sphenoid wing meningioma behavior on 11C-PiB and 18F-FDG PET.

    PubMed

    Chaves, Hernan; Bergamo, Yanina; Paz, Santiago; Sanchez, Flavio; Vazquez, Silvia

    2015-01-01

    Two patients with mild cognitive impairment underwent C-PiB and F-FDG brain PET. Both patients had previously gone through a contrast-enhanced MRI scan that revealed extra-axial tumors next to the sphenoid wing, suggestive of meningiomas. C-PiB PET images showed a highly increased uptake by the extra-axial masses. These 2 cases represent 1.2% of our C-PiB population (n = 163). No meningioma was found with negative C-PiB uptake. The F-FDG concentration was not increased within the lesions. C-PiB could be used as a meningioma marker.

  20. Usefulness of Choline-PET for the detection of residual he