Sample records for f-18 fdg coincidence

  1. F18-FDG coincidence-PET in patients with suspected gynecological malignancy.

    PubMed

    Zor, E; Stokkel, M P; Ozalp, S; Vardareli, E; Yalçin, O Tarik; Ak, I

    2006-07-01

    To assess the role of F18-FDG imaging with a dual-head coincidence mode gamma camera (Co-PET) in identifying malignant tumors in patients with a suspicious adnexal mass depicted by conventional imaging methods. F18-FDG Co-PET was performed preoperatively in 18 women (mean age 56.38 years) with suspected malignant gynecologic tumors according to clinical and abdomino-pelvic/transvaginal ultrasound or computed tomography findings. Exploratory laparotomy was performed in all patients within the 10 days post-F18-FDG Co-PET study, and the definitive diagnosis of the adnexal masses was established by histopathological examination. Histopathological examinations of the surgically excised adnexal masses revealed eight malignant, one borderline, and nine benign neoplastic tumors. Four benign tumors had no F18-FDG uptake, while the remaining five tumors, all leiomyomas, showed mild FDG accumulation. Eight malignant tumors showed intense F18-FDG uptake. Sensitivity, specificity, PPV, and NPV of F18-FDG co-PET in differentiating benign from malign adnexal masses were 88%, 44%, 61%, and 80%, respectively. Tumor to background ratios (T/B) in benign lesions (2.04 +/- 0.27) were significantly lower than in malignant lesions (7.4 +/- 0.99). F18-FDG Co-PET is of clinical value when assessing suspicious malignant adnexal masses. False-negative F18-FDG results might arise from borderline disease. Moderate F18-FDG uptake in leiomyomas can result false-positive, but T/B ratios may be helpful in such cases.

  2. 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues

    PubMed Central

    2014-01-01

    Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and

  3. Thoracic staging in lung cancer: prospective comparison of 18F-FDG PET/MR imaging and 18F-FDG PET/CT.

    PubMed

    Heusch, Philipp; Buchbender, Christian; Köhler, Jens; Nensa, Felix; Gauler, Thomas; Gomez, Benedikt; Reis, Henning; Stamatis, Georgios; Kühl, Hilmar; Hartung, Verena; Heusner, Till A

    2014-03-01

    Therapeutic decisions in non-small cell lung cancer (NSCLC) patients depend on the tumor stage. PET/CT with (18)F-FDG is widely accepted as the diagnostic standard of care. The purpose of this study was to compare a dedicated pulmonary (18)F-FDG PET/MR imaging protocol with (18)F-FDG PET/CT for primary and locoregional lymph node staging in NSCLC patients using histopathology as the reference. Twenty-two patients (12 men, 10 women; mean age ± SD, 65.1 ± 9.1 y) with histopathologically confirmed NSCLC underwent (18)F-FDG PET/CT, followed by (18)F-FDG PET/MR imaging, including a dedicated pulmonary MR imaging protocol. T and N staging according to the seventh edition of the American Joint Committee on Cancer staging manual was performed by 2 readers in separate sessions for (18)F-FDG PET/CT and PET/MR imaging, respectively. Results from histopathology were used as the standard of reference. The mean and maximum standardized uptake value (SUV(mean) and SUV(max), respectively) and maximum diameter of the primary tumor was measured and compared in (18)F-FDG PET/CT and PET/MR imaging. PET/MR imaging and (18)F-FDG PET/CT agreed on T stages in 16 of 16 of patients (100%). All patients were correctly staged by (18)F-FDG PET/CT and PET/MR (100%), compared with histopathology. There was no statistically significant difference between (18)F-FDG PET/CT and (18)F-FDG PET/MR imaging for lymph node metastases detection (P = 0.48). For definition of thoracic N stages, PET/MR imaging and (18)F-FDG PET/CT were concordant in 20 of 22 patients (91%). PET/MR imaging determined the N stage correctly in 20 of 22 patients (91%). (18)F-FDG PET/CT determined the N stage correctly in 18 of 22 patients (82%). The mean differences for SUV(mean) and SUV(max) of NSCLC in (18)F-FDG PET/MR imaging and (18)F-FDG PET/CT were 0.21 and -5.06. These differences were not statistically significant (P > 0.05). The SUV(mean) and SUV(max) measurements derived from (18)F-FDG PET/CT and (18)F-FDG PET

  4. Combined early dynamic (18)F-FDG PET/CT and conventional whole-body (18)F-FDG PET/CT provide one-stop imaging for detecting hepatocellular carcinoma.

    PubMed

    Wang, Shao-Bo; Wu, Hu-Bing; Wang, Quan-Shi; Zhou, Wen-Lan; Tian, Ying; Li, Hong-Sheng; Ji, Yun-Hai; Lv, Liang

    2015-06-01

    It is widely accepted that conventional (18)F-FDG PET/CT (whole-body static (18)F-FDG PET/CT, WB (18)F-FDG PET/CT) has a low detection rate for hepatocellular carcinoma (HCC). We prospectively assessed the role of early dynamic (18)F-FDG PET/CT (ED (18)F-FDG PET/CT) and WB (18)F-FDG PET/CT in detecting HCC, and we quantified the added value of ED (18)F-FDG PET/CT to WB (18)F-FDG PET/CT. Twenty-two patients with 37 HCC tumors (HCCs) who underwent both a liver ED (18)F-FDG PET/CT (performed simultaneously with a 5.5 MBq/kg (18)F-FDG bolus injection and continued for 240 s) and a WB (18)F-FDG PET/CT were enrolled in the study. The WB (18)F-FDG PET/CT and ED (18)F-FDG PET/CT scans were positive in 56.7% (21/37) and 78.4% (29/37) HCCs, respectively (P<0.05). ED (18)F-FDG PET/CT in conjunction with WB (18)F-FDG PET/CT (one-stop (18)F-FDG PET/CT) improved the positive detection rates of WB and ED (18)F-FDG PET/CT alone from 56.7% and 78.4% to 91.9% (34/37) (P<0.001 and P>0.05, respectively). One-stop (18)F-FDG PET/CT appears to be useful to improve WB (18)F-FDG PET/CT for HCC detection. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  5. Detection of osseous metastasis by 18F-NaF/18F-FDG PET/CT versus CT alone.

    PubMed

    Sampath, Srinath C; Sampath, Srihari C; Mosci, Camila; Lutz, Amelie M; Willmann, Juergen K; Mittra, Erik S; Gambhir, Sanjiv S; Iagaru, Andrei

    2015-03-01

    Sodium fluoride PET (18F-NaF) has recently reemerged as a valuable method for detection of osseous metastasis, with recent work highlighting the potential of coadministered 18F-NaF and 18F-FDG PET/CT in a single combined imaging examination. We further examined the potential of such combined examinations by comparing dual tracer 18F-NaF18/F-FDG PET/CT with CT alone for detection of osseous metastasis. Seventy-five participants with biopsy-proven malignancy were consecutively enrolled from a single center and underwent combined 18F-NaF/18F-FDG PET/CT and diagnostic CT scans. PET/CT as well as CT only images were reviewed in blinded fashion and compared with the results of clinical, imaging, or histological follow-up as a truth standard. Sensitivity of the combined 18F-NaF/18F-FDG PET/CT was higher than that of CT alone (97.4% vs 66.7%). CT and 18F-NaF/18F-FDG PET/CT were concordant in 73% of studies. Of 20 discordant cases, 18F-NaF/18F-FDG PET/CT was correct in 19 (95%). Three cases were interpreted concordantly but incorrectly, and all 3 were false positives. A single case of osseous metastasis was detected by CT alone, but not by 18F-NaF/18F-FDG PET/CT. Combined 18F-NaF/18F-FDG PET/CT outperforms CT alone and is highly sensitive and specific for detection of osseous metastases. The concordantly interpreted false-positive cases demonstrate the difficulty of distinguishing degenerative from malignant disease, whereas the single case of metastasis seen on CT but not PET highlights the need for careful review of CT images in multimodality studies.

  6. Optimizing a 18F-NaF and 18F-FDG cocktail for PET assessment of metastatic castration-resistant prostate cancer

    PubMed Central

    Simoncic, Urban; Perlman, Scott; Liu, Glenn; Jeraj, Robert

    2015-01-01

    Background The 18F-NaF/18F-FDG cocktail PET/CT imaging has been proposed for patients with osseous metastases. This work aimed to optimize the cocktail composition for patients with metastatic castrate-resistant prostate cancer (mCRPC). Materials and methods Study was done on 6 patients with mCRPC that had analyzed a total of 26 lesions. Patients had 18F-NaF and 18F-FDG injections separated in time. Dynamic PET/CT imaging recorded uptake time course for both tracers into osseous metastases. 18F-NaF and 18F-FDG uptakes were decoupled by kinetic analysis, which enabled calculation of 18F-NaF and 18F-FDG Standardized Uptake Value (SUV) images. Peak, mean and total SUVs were evaluated for both tracers and all visible lesions. The 18F-NaF/18F-FDG cocktail was optimized under the assumption that contribution of both tracers to the image formation should be equal. SUV images for combined 18F-NaF/18F-FDG cocktail PET/CT imaging were generated for cocktail compositions with 18F-NaF:18F-FDG ratio varying from 1:8 to 1:2. Results The 18F-NaF peak and mean SUVs were on average 4-5 times higher than the 18F-FDG peak and mean SUVs, with inter-lesion coefficient-of-variations (COV) of 20%. 18F-NaF total SUV was on average 7 times higher than the 18F-FDG total SUV. When the 18F-NaF:18F-FDG ratio changed from 1:8 to 1:2, typical SUV on generated PET images increased by 50%, while change in uptake visual pattern was hardly noticeable. Conclusion The 18F-NaF/18F-FDG cocktail has equal contributions of both tracers to the image formation when the 18F-NaF:18F-FDG ratio is 1:5. Therefore we propose this ratio as the optimal cocktail composition for mCRPC patients. We also urge to strictly control the 18F-NaF/18F-FDG cocktail composition in any 18F-NaF/18F-FDG cocktail PET/CT exams. PMID:26378490

  7. 18F-FDG or 3'-deoxy-3'-18F-fluorothymidine to detect transformation of follicular lymphoma.

    PubMed

    Wondergem, Marielle J; Rizvi, Saiyada N F; Jauw, Yvonne; Hoekstra, Otto S; Hoetjes, Nikie; van de Ven, Peter M; Boellaard, Ronald; Chamuleau, Martine E D; Cillessen, Saskia A G M; Regelink, Josien C; Zweegman, Sonja; Zijlstra, Josée M

    2015-02-01

    Considering the different treatment strategy for transformed follicular lymphoma (TF) as opposed to follicular lymphoma (FL), diagnosing transformation early in the disease course is important. There is evidence that (18)F-FDG has utility as a biomarker of transformation. However, quantitative thresholds may require inclusion of homogeneous non-Hodgkin lymphoma subtypes to account for differences in tracer uptake per subtype. Moreover, because proliferation is a hallmark of transformation, 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) might be superior to (18)F-FDG in this setting. To define the best tracer for detection of TF, we performed a prospective a head-to-head comparison of (18)F-FDG and (18)F-FLT in patients with FL and TF. (18)F-FDG and (18)F-FLT PET scans were obtained in 17 patients with FL and 9 patients with TF. We measured the highest maximum standardized uptake value (SUVmax), defined as the lymph node with the highest uptake per patient, and SUVrange, defined as the difference between the SUVmax of the lymph node with the highest and lowest uptake per patient. To reduce partial-volume effects, only lymph nodes larger than 3 cm(3) (A50 isocontour) were analyzed. Scans were acquired 1 h after injection of 185 MBq of (18)F-FDG or (18)F-FLT. To determine the discriminative ability of SUVmax and SUVrange of both tracers for TF, receiver-operating-characteristic curve analysis was performed. The highest SUVmax was significantly higher for TF than FL for both (18)F-FDG and (18)F-FLT (P < 0.001). SUVrange was significantly higher for TF than FL for (18)F-FDG (P = 0.029) but not for (18)F-FLT (P = 0.075). The ability of (18)F-FDG to discriminate between FL and TF was superior to that of (18)F-FLT for both the highest SUVmax (P = 0.039) and the SUVrange (P = 0.012). The cutoff value for the highest SUVmax of (18)F-FDG aiming at 100% sensitivity with a maximum specificity was found to be 14.5 (corresponding specificity, 82%). For (18)F-FLT, these values were

  8. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG.

    PubMed

    Chen, Wei; Cloughesy, Timothy; Kamdar, Nirav; Satyamurthy, Nagichettiar; Bergsneider, Marvin; Liau, Linda; Mischel, Paul; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S

    2005-06-01

    3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a recently developed PET tracer to image tumor cell proliferation. We characterized (18)F-FLT PET of brain gliomas and compared (18)F-FLT with (18)F-FDG PET in side-by-side studies of the same patients. Twenty-five patients with newly diagnosed or previously treated glioma underwent PET with (18)F-FLT and (18)F-FDG on consecutive days. Three stable patients in long-term remission were included as negative control subjects. Tracer kinetics in normal brain and tumor were measured. Uptake of (18)F-FLT and (18)F-FDG was quantified by the standardized uptake value (SUV) and the tumor-to-normal tissue (T/N) ratio. The accuracy of (18)F-FLT and (18)F-FDG PET in evaluating newly diagnosed and recurrent gliomas was compared. More than half of the patients underwent resection after the PET study and correlations between PET uptake and the Ki-67 proliferation index were examined. Patients were monitored for a mean of 15.4 mo (range, 12-20 mo). The predictive power of PET for tumor progression and survival was analyzed using Kaplan-Meier statistics. (18)F-FLT uptake in tumors was rapid, peaking at 5-10 min after injection and remaining stable up to 75 min. Hence, a 30-min scan beginning at 5 min after injection was sufficient for imaging. (18)F-FLT visualized all high-grade (grade III or IV) tumors. Grade II tumor did not show appreciable (18)F-FLT uptake and neither did the stable lesions. The absolute uptake of (18)F-FLT was low (maximum-pixel SUV [SUV(max)], 1.33) but image contrast was better than with (18)F-FDG (T/N ratio, 3.85 vs. 1.49). (18)F-FDG PET studies were negative in 5 patients with recurrent high-grade glioma who subsequently suffered tumor progression within 1-3 mo. (18)F-FLT SUV(max) correlated more strongly with Ki-67 index (r = 0.84; P < 0.0001) than (18)F-FDG SUV(max) (r = 0.51; P = 0.07). (18)F-FLT uptake also had more significant predictive power with respect to tumor progression and survival (P = 0

  9. In vivo spatial correlation between (18)F-BPA and (18)F-FDG uptakes in head and neck cancer.

    PubMed

    Kobayashi, Kazuma; Kurihara, Hiroaki; Watanabe, Yoshiaki; Murakami, Naoya; Inaba, Koji; Nakamura, Satoshi; Wakita, Akihisa; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Igaki, Hiroshi; Ito, Yoshinori; Yoshimoto, Seiichi; Shigematsu, Naoyuki; Itami, Jun

    2016-09-01

    Borono-2-(18)F-fluoro-phenylalanine ((18)F-BPA) has been used to estimate the therapeutic effects of boron neutron capture therapy (BNCT), while (18)F-fluorodeoxyglucose ((18)F-FDG) is the most commonly used positron emission tomography (PET) radiopharmaceutical in a routine clinical use. The aim of the present study was to evaluate spatial correlation between (18)F-BPA and (18)F-FDG uptakes using a deformable image registration-based technique. Ten patients with head and neck cancer were recruited from January 2014 to December 2014. All patients underwent whole-body (18)F-BPA PET/computed tomography (CT) and (18)F-FDG PET/CT within a 2-week period. For each patient, (18)F-BPA PET/CT and (18)F-FDG PET/CT images were aligned based on a deformable image registration framework. The voxel-by-voxel spatial correlation of standardized uptake value (SUV) within the tumor was analyzed. Our image processing framework achieved accurate and validated registration results for each PET/CT image. In 9/10 patients, the spatial distribution of SUVs between (18)F-BPA and (18)F-FDG showed a significant, positive correlation in the tumor volume. Deformable image registration-based voxel-wise analysis demonstrated a spatial correlation between (18)F-BPA and (18)F-FDG uptakes in the head and neck cancer. A tumor sub-volume with a high (18)F-FDG uptake may predict high accumulation of (18)F-BPA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Targeting personalized medicine in a non-Hodgkin lymphoma patient with 18F-FDG and 18F-choline PET/CT.

    PubMed

    Ribeiro, Thalles H; S, Raul; Castro, Ana Carolina G; Paulino, Eduardo; Mamede, Marcelo

    2017-02-01

    Early diagnosis and staging of non-Hodgkin lymphoma (NHL) is essential for therapeutic strategy decision. Positron emission tomography/computed tomography (PET/CT) with fluordeoxyglucose (FDG), a glucose analogue, labeled with fluor-18 (18F-FDG) has been used to evaluate staging, therapy response and prognosis in NHL patients. However, in some cases, 18F-FDG has shown false-positive uptake due to inflammatory reaction after chemo and/or radiation therapy. In this case report, we present a NHL patient evaluated with 18F-FDG and 18F-choline PET/CT scan imaging pre- and post-therapy. 18F-FDG and 18F-choline PET/CT were performed for the purpose of tumor staging and have shown intense uptake in infiltrative tissue as well as in the lymph node, but with some mismatching in the tumor. Post-treatment 18F-FDG and 18F-choline PET/ CT scans revealed no signs of radiotracer uptake, suggesting complete remission of the tumor. 18F-choline may be a complimentary tool for staging and assessment of therapeutic response in non-Hodgkin lymphoma, while non-18F-FDG tracer can be used for targeted therapy and patient management.

  11. WE-H-207A-05: Spatial Co-Localization of F-18 NaF Vs. F-18 FDG Defined Disease Volumes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferjancic, P; Harmon, S; Jeraj, R

    Purpose: Both [F-18]NaF and [F-18]FDG show promise for quantitative PET/CT assessment in metastatic prostate cancer to bone. Broad agreement between the tracers has been shown but voxel-wise correspondence has not been explored in depth. This study evaluates the spatial co-localization of [F-18]NaF PET and [F-18]FDG PET in bone lesions. Methods: Seventy-three lesion contours were identified in six patients receiving dynamic NaF PET/CT and FDG PET/CT scans two hours apart using identical fields-of-view. Tracer uptake (SUV) reflecting 60 minutes post-injection was modeled from kinetic parameters. Lesions were segmented by a physician separately on NaF PET and FDG PET. PET images weremore » rigidly aligned using skeletal references on CT images. Lesion size, degree of overlap, voxel-wise tracer uptake values (SUV), and CT density distributions were compared using Dice coefficient, Positive Predictive Value (PPV), and Spearman rank correlation tests. Results: Across all patients, 42 lesions were identified on NaF PET (median 1.4 cm{sup 3}, range <1–204 cm{sup 3}) compared to 31 using FDG PET (median 1.8 cm{sup 3}, range <1–244 cm{sup 3}). Spatial cooccurrence was found in 25 lesion pairs. Lesions on NaF PET had PPV of 0.91 and on FDG a PPV of 0.65. Overall, NaF-defined lesions were 47% (±24%) larger by volume with moderate overlap to FDG, resulting in mean Dice coefficient of 34% (±22%). In areas of overlap, voxel-wise correlation of NaF and FDG SUV was moderate (ρ=0.56). Expanding to regions of non-spatial overlap, voxels contained in FDG-only contours were almost exclusively low HU (median 118), compared to dense regions of NaF-only voxels (median 250). In sclerotic sub-volumes (HU > 300) NaF-defined contours encompassed 83% of total FDG volume. Conclusion: Moderate voxel-wise correlation of FDG and NaF PET/CT uptake was observed. Spatial discrepancies in FDG and NaF PET/CT imaging of boney metastases could be influenced by poor sensitivity of FDG PET/CT in

  12. Evaluation of the Outcome of Lung Nodules Missed on 18F-FDG PET/MRI Compared with 18F-FDG PET/CT in Patients with Known Malignancies.

    PubMed

    Sawicki, Lino M; Grueneisen, Johannes; Buchbender, Christian; Schaarschmidt, Benedikt M; Gomez, Benedikt; Ruhlmann, Verena; Umutlu, Lale; Antoch, Gerald; Heusch, Philipp

    2016-01-01

    The lower detection rate of (18)F-FDG PET/MRI than (18)F-FDG PET/CT regarding small lung nodules should be considered in the staging of malignant tumors. The purpose of this study was to evaluate the outcome of these small lung nodules missed by (18)F-FDG PET/MRI. Fifty-one oncologic patients (mean age ± SD, 56.6 ± 14.0 y; 29 women, 22 men; tumor stages, I [n = 7], II [n = 7], III [n = 9], IV [n = 28]) who underwent (18)F-FDG PET/CT and subsequent (18)F-FDG PET/MRI on the same day were retrospectively enrolled. Images were analyzed by 2 interpreters in random order and separate sessions with a minimum of 4 wk apart. A maximum of 10 lung nodules was identified for each patient on baseline imaging. The presence, size, and presence of focal tracer uptake was noted for each lung nodule detected on (18)F-FDG PET/CT and (18)F-FDG PET/MRI using a postcontrast T1-weighted 3-dimensional gradient echo volume-interpolated breath-hold examination sequence with fat suppression as morphologic dataset. Follow-up CT or (18)F-FDG PET/CT (mean time to follow-up, 11 mo; range, 3-35 mo) was used as a reference standard to define each missed nodule as benign or malignant based on changes in size and potential new tracer uptake. Nodule-to-nodule comparison between baseline and follow-up was performed using descriptive statistics. Out of 134 lung nodules found on (18)F-FDG PET/CT, (18)F-FDG PET/MRI detected 92 nodules. Accordingly, 42 lung nodules (average size ± SD, 3.9 ± 1.3 mm; range, 2-7 mm) were missed by (18)F-FDG PET/MRI. None of the missed lung nodules presented with focal tracer uptake on baseline imaging or follow-up (18)F-FDG PET/CT. Thirty-three out of 42 missed lung nodules (78.6%) in 26 patients were rated benign, whereas 9 nodules (21.4%) in 4 patients were rated malignant. As a result, 1 patient required upstaging from tumor stage I to IV. Although most small lung nodules missed on (18)F-FDG PET/MRI were found to be benign, there was a relevant number of undetected

  13. Biodistribution, pharmacokinetics and PET imaging of [(18)F]FMISO, [(18)F]FDG and [(18)F]FAc in a sarcoma- and inflammation-bearing mouse model.

    PubMed

    Liu, Ren-Shyan; Chou, Ta-Kai; Chang, Chih-Hsien; Wu, Chun-Yi; Chang, Chi-Wei; Chang, Tsui-Jung; Wang, Shih-Jen; Lin, Wuu-Jyh; Wang, Hsin-Ell

    2009-04-01

    2-Deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG), [(18)F]fluoroacetate ([(18)F]FAc) and [(18)F]fluoromisonidazole ([(18)F]FMISO) were all considered to be positron emission tomography (PET) probes for tumor diagnosis, though based on different rationale of tissue uptake. This study compared the biodistribution, pharmacokinetics and imaging of these three tracers in a sarcoma- and inflammation-bearing mouse model. C3H mice were inoculated with 2x10(5) KHT sarcoma cells in the right thigh on Day 0. Turpentine oil (0.1 ml) was injected in the left thigh on Day 11 to induce inflammatory lesion. Biodistribution, pharmacokinetics and microPET imaging of [(18)F]FMISO, [(18)F]FDG and [(18)F]FAc were performed on Day 14 after tumor inoculation. The inflammatory lesions were clearly visualized by [(18)F]FDG/microPET and autoradiography at 3 days after turpentine oil injection. The tumor-to-muscle and inflammatory lesion-to-muscle ratios derived from microPET imaging were 6.79 and 1.48 for [(18)F]FMISO, 8.12 and 4.69 for [(18)F]FDG and 3.72 and 3.19 for [(18)F]FAc at 4 h post injection, respectively. Among these, the tumor-to-inflammation ratio was the highest (4.57) for [(18)F]FMISO compared with that of [(18)F]FDG (1.73) and [(18)F]FAc (1.17), whereas [(18)F]FAc has the highest bioavailability (area under concentration of radiotracer vs. time curve, 116.2 hxpercentage of injected dose per gram of tissue). MicroPET images and biodistribution studies showed that the accumulation of [(18)F]FMISO in the tumor is significantly higher than that in inflammatory lesion at 4 h post injection. [(18)F]FDG and [(18)F]FAc delineated both tumor and inflammatory lesions. Our results demonstrated the potential of [(18)F]FMISO/PET in distinguishing tumor from inflammatory lesion.

  14. Diagnostic impact of PET with 18F-FDG, 18F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullary thyroid carcinoma.

    PubMed

    Beuthien-Baumann, B; Strumpf, A; Zessin, J; Bredow, J; Kotzerke, J

    2007-10-01

    In patients with medullary thyroid carcinoma (MTC), rising levels of the tumour markers calcitonin and CEA after primary surgery indicate tumour recurrence or metastases. The only chance of cure is the resection of localised tumour tissue. For positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) and (18)F-dihydroxyphenylalanine ((18)F-DOPA), sensitivities of 78% and 63% have been reported, but in a considerable percentage of MTC patients the source of tumour marker elevation is not detected. The aim of this retrospective data evaluation was to compare the value of PET with (18)F-FDG, (18)F-DOPA and the amino acid tracer 3-O-methyl-6-[(18)F]fluoro-DOPA ((18)F-OMFD) in the detection of MTC recurrence. Fifteen patients with elevated calcitonin were investigated with PET as part of their individual clinical work-up. All patients underwent (18)F-FDG PET and (18)F-DOPA PET, and ten patients underwent (18)F-OMFD PET. With (18)F-FDG, seven patients showed foci in the neck, mediastinum, upper abdomen or bone. In seven patients, (18)F-DOPA revealed suspicious foci; five of these seven patients showed partially corresponding uptake of (18)F-FDG in the neck and mediastinum. Two of these patients underwent surgery and metastases were verified. With (18)F-OMFD, a small focus in the liver was suspected in one patient without a correlate on (18)F-FDG PET, (18)F-DOPA PET or conventional imaging. (18)F-FDG and (18)F-DOPA showed foci that were highly suspicious for local recurrence or metastasis of MTC, although histological verification in these patients with numerous previous surgical interventions was performed in only two patients. The amino acid tracer (18)F-OMFD had no diagnostic impact in these patients.

  15. A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model.

    PubMed

    Fu, Yilong; Ong, Lai-Chun; Ranganath, Sudhir H; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K H; Wang, Chi-Hwa

    2016-01-01

    Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials.

  16. A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model

    PubMed Central

    Ranganath, Sudhir H.; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K. H.; Wang, Chi-Hwa

    2016-01-01

    Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/ 18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials. PMID:26844770

  17. Human radiation dosimetry of 6-[{sup 18}F]FDG predicted from preclinical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzic, Raymond F., E-mail: raymond.muzic@case.edu; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106; Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106

    Purpose: The authors are developing 6-[{sup 18}F]fluoro-6-deoxy-D-glucose (6-[{sup 18}F]FDG) as an in vivo tracer of glucose transport. While 6-[{sup 18}F]FDG has the same radionuclide half-life as 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (2-[{sup 18}F]FDG) which is ubiquitously used for PET imaging, 6-[{sup 18}F]FDG has special biologic properties and different biodistributions that make it preferable to 2-[{sup 18}F]FDG for assessing glucose transport. In preparation for 6-[{sup 18}F]FDG use in human PET scanning, the authors would like to determine the amount of 6-[{sup 18}F]FDG to inject while maintaining radiation doses in a safe range. Methods: Rats were injected with 6-[{sup 18}F]FDG, euthanized at specified times, andmore » tissues were collected and assayed for activity content. For each tissue sample, the percent of injected dose per gram was calculated and extrapolated to that for humans in order to construct predicted time-courses. Residence times were calculated as areas under the curves and were used as inputs to OLINDA/EXM in order to calculate the radiation doses. Results: Unlike with 2-[{sup 18}F]FDG for which the urinary bladder wall receives the highest absorbed dose due to urinary excretion, with 6-[{sup 18}F]FDG there is little urinary excretion and osteogenic cells and the liver are predicted to receive the highest absorbed doses: 0.027 mGy/MBq (0.100 rad/mCi) and 0.018 mGy/MBq (0.066 rad/mCi), respectively. Also, the effective dose from 6-[{sup 18}F]FDG, i.e., 0.013 mSv/MBq (0.046 rem/mCi), is predicted to be approximately 30% lower than that from 2-[{sup 18}F]FDG. Conclusions: 6-[{sup 18}F]FDG will be safe for use in the PET scanning of humans.« less

  18. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET

    PubMed Central

    Tang, Tien T.; Rendon, David A.; Zawaski, Janice A.; Afshar, Solmaz F.; Kaffes, Caterina K.; Sabek, Omaima M.

    2017-01-01

    Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied

  19. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET.

    PubMed

    Tang, Tien T; Rendon, David A; Zawaski, Janice A; Afshar, Solmaz F; Kaffes, Caterina K; Sabek, Omaima M; Gaber, M Waleed

    2017-01-01

    Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied

  20. Two years of experience with the [ 18F]FDG production module

    NASA Astrophysics Data System (ADS)

    Kim, Sang Wook; Hur, Min Goo; Chai, Jong-Seo; Park, Jeong Hoon; Yu, Kook Hyun; Jeong, Cheol Ki; Lee, Goung Jin; Min, Young Don; Yang, Seung Dae

    2007-08-01

    Chemistry module for a conventional [18F]FDG production by using tetrabutylammonium bicarbonate (TBA) and an acidic hydrolysis has been manufactured and evaluated. In this experiment, 75 mM (pH 7.5-7.8) of TBA solution and a ca. 2-curies order of [18F]-fluoride have been used for the evaluation. The commercial acidic purification cartridge was purchased from GE or UKE. The operation system (OS) was programmed with Lab-View which was selected because of its easy customization of the OS. Small sized solenoid valves (Burkert; type 6124) were selected to reduce the module dimensions (W 350 × D 270 × H 250). The total time for the synthesis of [18F]FDG was 30 ± 3 min. The production yield of [18F]FDG was 60 ± 2% on an average at EOS, with the decay uncorrected. This experimental data show that the traditional chemistry module can provide a good [18F]FDG production yield by optimizing the operational conditions. The radiochemical purity, radionuclidic purity, acidity, residual solvent, osmolality and endotoxin were determined to assess the quality of [18F]FDG. The examined contents for the quality control of [18F]FDG were found to be suitable for a clinical application.

  1. Comparative evaluation of 18F-FLT and 18F-FDG for detecting cardiac and extra-cardiac thoracic involvement in patients with newly diagnosed sarcoidosis.

    PubMed

    Norikane, Takashi; Yamamoto, Yuka; Maeda, Yukito; Noma, Takahisa; Dobashi, Hiroaki; Nishiyama, Yoshihiro

    2017-08-29

    18 F-FDG PET has been used in sarcoidosis for diagnosis and determination of the extent of the disease. However, assessing inflammatory lesions in cardiac sarcoidosis using 18 F-FDG can be challenging because it accumulates physiologically in normal myocardium. Another radiotracer, 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT), has been investigated as a promising PET tracer for evaluating tumor proliferative activity. In contrast to 18 F-FDG, 18 F-FLT uptake in the normal myocardium is low. The purpose of this retrospective study was to compare the uptake of 18 F-FLT and 18 F-FDG in the evaluation of cardiac and extra-cardiac thoracic involvement in patients with newly diagnosed sarcoidosis. Data for 20 patients with newly diagnosed sarcoidosis were examined. 18 F-FLT and 18 F-FDG PET/CT studies had been performed at 1 h after each radiotracer injection. The patients had fasted for at least 18 h before 18 F-FDG PET/CT but were given no special dietary instructions regarding the period before 18 F-FLT PET/CT. Uptake of 18 F-FLT and 18 F-FDG was examined visually and semiquantitatively using maximal standardized uptake value (SUVmax). Two patients had cardiac sarcoidosis, 7 had extra-cardiac thoracic sarcoidosis, and 11 had both cardiac and extra-cardiac thoracic sarcoidosis. On visual analysis for diagnosis of cardiac sarcoidosis, 4/20 18 F-FDG scans were rated as inconclusive because the 18 F-FDG pattern was diffuse, whereas no FLT scans were rated as inconclusive. The sensitivity of 18 F-FDG PET/CT for detection of cardiac sarcoidosis was 85%; specificity, 100%; and accuracy, 90%. The corresponding values for 18 F-FLT PET/CT were 92, 100, and 95%, respectively. Using semiquantitative analysis of cardiac sarcoidosis, the mean 18 F-FDG SUVmax was significantly higher than the mean 18 F-FLT SUVmax (P < 0.005). Both 18 F-FDG and 18 F-FLT PET/CT studies detected all 24 extra-cardiac lesions. Using semiquantitative analysis of extra-cardiac sarcoidosis, the mean 18

  2. 18F-FDG positron emission tomography/computed tomography in infective endocarditis.

    PubMed

    Salomäki, Soile Pauliina; Saraste, Antti; Kemppainen, Jukka; Bax, Jeroen J; Knuuti, Juhani; Nuutila, Pirjo; Seppänen, Marko; Roivainen, Anne; Airaksinen, Juhani; Pirilä, Laura; Oksi, Jarmo; Hohenthal, Ulla

    2017-02-01

    The diagnosis of infective endocarditis (IE), especially the diagnosis of prosthetic valve endocarditis (PVE) is challenging since echocardiographic findings are often scarce in the early phase of the disease. We studied the use of 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) in IE. Sixteen patients with suspected PVE and 7 patients with NVE underwent visual evaluation of 18 F-FDG-PET/CT. 18 F-FDG uptake was measured also semiquantitatively as maximum standardized uptake value (SUV max ) and target-to-background ratio (TBR). The modified Duke criteria were used as a reference. There was strong, focal 18 F-FDG uptake in the area of the affected valve in all 6 cases of definite PVE, in 3 of 5 possible PVE cases, and in 2 of 5 rejected cases. In all patients with definite PVE, SUV max of the affected valve was higher than 4 and TBR higher than 1.8. In contrast to PVE, only 1 of 7 patients with NVE had uptake of 18 F-FDG by PET/CT in the valve area. Embolic infectious foci were detected in 58% of the patients with definite IE. 18 F-FDG-PET/CT appears to be a sensitive method for the detection of paravalvular infection associated with PVE. Instead, the sensitivity of PET/CT is limited in NVE.

  3. The role of 18F-FDOPA and 18F-FDG-PET in the management of malignant and multifocal phaeochromocytomas.

    PubMed

    Taïeb, D; Tessonnier, L; Sebag, F; Niccoli-Sire, P; Morange, I; Colavolpe, C; De Micco, C; Barlier, A; Palazzo, F F; Henry, J F; Mundler, O

    2008-10-01

    (18)F-DOPA has emerged as a promising tool in the localization of chromaffin-tissue-derived tumours. Interestingly, phaeochromocytomas (PHEO) are also FDG avid. The aim of this study was to retrospectively evaluate the results of (18)F-FDOPA and/or (18)F-FDG-PET in patients with PHEO and paragangliomas (PGLs) and to compare the outcome of this approach with the traditional therapeutic work-up. Nine patients with non-MEN2 related PHEO or PGL were evaluated. At the time of the PET studies, the patients were classified into three groups based on their clinical history, conventional and SPECT imaging. The groups were malignant disease (n = 5, 1 VHL), apparently unique tumour site in patients with previous surgery (n = 1, SDHB) and multifocal tumours (n = 3, 1 VHL, 1 SDHD). (18)F-FDOPA and (18)F-FDG-PET PET/CT were then performed in all patients. PET successfully identified additional tumour sites in five out of five patients with metastatic disease that had not been identified with SPECT + CI. Whilst tumour tracer uptake varied between patients it exhibited a consistently favourable residence time for delayed acquisitions. (18)F-FDOPA uptake (SUVmax) was superior to (18)F-FDG uptake in cases of neck PGL (three patients, four tumours). If only metastatic forms and abdominal PGLs were considered, (18)F-FDG provided additional information in three cases (two metastatic forms, one multifocal disease with SDHD mutation) compared to (18)F-FDOPA. Our results suggest that tumour staging can be improved by combining (18)F-FDOPA and (18)F-FDG in the preoperative work-up of patients with abdominal and malignant PHEOs. (18)F-FDOPA is also an effective localization tool for neck PGLs. MIBG however, still has a role in these patients as MIBG and FDOPA images did not completely overlap.

  4. Correlation of inflammation assessed by 18F-FDG PET, active mineral deposition assessed by 18F-fluoride PET, and vascular calcification in atherosclerotic plaque: a dual-tracer PET/CT study.

    PubMed

    Derlin, Thorsten; Tóth, Zoltán; Papp, László; Wisotzki, Christian; Apostolova, Ivayla; Habermann, Christian R; Mester, Janos; Klutmann, Susanne

    2011-07-01

    Formation and progression of atherosclerotic plaque is a dynamic and complex process involving various pathophysiologic steps including inflammation and calcification. The purpose of this study was to compare macrophage activity as determined by (18)F-FDG PET and ongoing mineral deposition as measured by (18)F-sodium fluoride PET in atherosclerotic plaque and to correlate these findings with calcified plaque burden as assessed by CT. Forty-five patients were examined by whole-body (18)F-FDG PET, (18)F-sodium fluoride PET, and CT. Tracer uptake in various arterial segments was analyzed both qualitatively and semiquantitatively by measuring the blood-pool-corrected standardized uptake value (target-to-background ratio [TBR]). The pattern of tracer uptake in atherosclerotic lesions was compared after color-coded multistudy image fusion of PET and CT studies. The Fisher exact test and the Spearman correlation coefficient r(s) were used for statistical analysis of image-based results and cardiovascular risk factors. Intra- and interrater reproducibility were evaluated using the Cohen κ. (18)F-sodium fluoride uptake was observed at 105 sites in 27 (60%) of the 45 study patients, and mean TBR was 2.3 ± 0.7. (18)F-FDG uptake was seen at 124 sites in 34 (75.6%) patients, and mean TBR was 1.5 ± 0.3. Calcified atherosclerotic lesions were observed at 503 sites in 34 (75.6%) patients. Eighty-one (77.1%) of the 105 lesions with marked (18)F-sodium fluoride uptake and only 18 (14.5%) of the 124 lesions with (18)F-FDG accumulation were colocalized with arterial calcification. Coincident uptake of both (18)F-sodium fluoride and (18)F-FDG was observed in only 14 (6.5%) of the 215 arterial lesions with radiotracer accumulation. PET/CT with (18)F-FDG and (18)F-sodium fluoride may allow evaluation of distinct pathophysiologic processes in atherosclerotic lesions and might provide information on the complex interactions involved in formation and progression of atherosclerotic plaque.

  5. 18F-FDG PET/CT Imaging of Primary Gastric Lymphoma.

    PubMed

    Davis, Brady S; Thompson, Trevor A; Wolin, Ely A

    2016-12-01

    Primary gastric lymphoma (PGL) accounts for less than 4% of gastric neoplasms. 18 F-FDG PET with simultaneously acquired CT ( 18 F-FDG PET/CT) allows for staging and differentiation from other gastric cancers. Rapid diagnosis and staging are important because chemotherapeutic response is generally favorable. We describe a case of an 83-y-old woman with stage II 1 PGL. 18 F-FDG PET/CT can be helpful to differentiate various gastric masses and is an important factor in the staging of PGL. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. (18)F-alfatide II and (18)F-FDG dual-tracer dynamic PET for parametric, early prediction of tumor response to therapy.

    PubMed

    Guo, Jinxia; Guo, Ning; Lang, Lixin; Kiesewetter, Dale O; Xie, Qingguo; Li, Quanzheng; Eden, Henry S; Niu, Gang; Chen, Xiaoyuan

    2014-01-01

    A single dynamic PET acquisition using multiple tracers administered closely in time could provide valuable complementary information about a tumor's status under quasiconstant conditions. This study aimed to investigate the utility of dual-tracer dynamic PET imaging with (18)F-alfatide II ((18)F-AlF-NOTA-E[PEG4-c(RGDfk)]2) and (18)F-FDG for parametric monitoring of tumor responses to therapy. We administered doxorubicin to one group of athymic nude mice with U87MG tumors and paclitaxel protein-bound particles to another group of mice with MDA-MB-435 tumors. To monitor therapeutic responses, we performed dual-tracer dynamic imaging, in sessions that lasted 90 min, starting with injection via the tail vein catheters with (18)F-alfatide II, followed 40 min later by (18)F-FDG. To achieve signal separation of the 2 tracers, we fit a 3-compartment reversible model to the time-activity curve of (18)F-alfatide II for the 40 min before (18)F-FDG injection and then extrapolated to 90 min. The (18)F-FDG tumor time-activity curve was isolated from the 90-min dual-tracer tumor time-activity curve by subtracting the fitted (18)F-alfatide II tumor time-activity curve. With separated tumor time-activity curves, the (18)F-alfatide II binding potential (Bp = k3/k4) and volume of distribution (VD) and (18)F-FDG influx rate ((K1 × k3)/(k2 + k3)) based on the Patlak method were calculated to validate the signal recovery in a comparison with 60-min single-tracer imaging and to monitor therapeutic response. The transport and binding rate parameters K1-k3 of (18)F-alfatide II, calculated from the first 40 min of the dual-tracer dynamic scan, as well as Bp and VD correlated well with the parameters from the 60-min single-tracer scan (R(2) > 0.95). Compared with the results of single-tracer PET imaging, (18)F-FDG tumor uptake and influx were recovered well from dual-tracer imaging. On doxorubicin treatment, whereas no significant changes in static tracer uptake values of (18)F-alfatide II

  7. 18F-Alfatide II and 18F-FDG Dual Tracer Dynamic PET for Parametric, Early Prediction of Tumor Response to Therapy

    PubMed Central

    Guo, Jinxia; Guo, Ning; Lang, Lixin; Kiesewetter, Dale O.; Xie, Qingguo; Li, Quanzheng; Eden, Henry S.; Niu, Gang; Chen, Xiaoyuan

    2014-01-01

    A single dynamic PET acquisition using multiple tracers administered closely in time could provide valuable complementary information about a tumor’s status under quasi-constant conditions. This study aims to investigate the utility of dual-tracer dynamic PET imaging with 18F-Alfatide II (18F-AlF-NOTA-E[PEG4-c(RGDfk)]2) and 18F-FDG for parametric monitoring of tumor responses to therapy. Methods We administered doxorubicin to one group of athymic nude mice with U87MG tumors and Abraxane to another group of mice with MDA-MB-435 tumors. To monitor therapeutic responses, we performed dual-tracer dynamic imaging, in sessions that lasted 90 min, starting by injecting the mice via tail vein catheters with 18F-Alfatide II, followed 40 minutes later by 18F-FDG. To achieve signal separation of the two tracers, we fit a three-compartment reversible model to the time activity curve (TAC) of 18F-Alfatide II for the 40 min prior to 18F-FDG injection, and then extrapolated to 90 min. The 18F-FDG tumor TAC was isolated from the 90 min dual tracer tumor TAC by subtracting the fitted 18F-Alfatide II tumor TAC. With separated tumor TACs, the 18F-Alfatide II binding potential (Bp=k3/k4) and volume of distribution (VD), and 18F-FDG influx rate ((K1×k3)/(k2 + k3)) based on the Patlak method were calculated to validate the signal recovery in a comparison with 60-min single tracer imaging and to monitor therapeutic response. Results The transport and binding rate parameters K1-k3 of 18F-Alfatide II, calculated from the first 40 min of dual tracer dynamic scan, as well as Bp and VD, correlated well with the parameters from the 60 min single tracer scan (R2 > 0.95). Compared with the results of single tracer PET imaging, FDG tumor uptake and influx were recovered well from dual tracer imaging. Upon doxorubicin treatment, while no significant changes in static tracer uptake values of 18F-Alfatide II or 18F-FDG were observed, both 18F-Alfatide II Bp and 18F-FDG influx from kinetic

  8. [18F]fluorodeoxyglucose triple-head coincidence imaging as an adjunct to 131I scanning for follow-up of papillary thyroid carcinoma.

    PubMed

    Gonzalo, Irene T Gaw; Itti, Emmanuel; Mlikotic, Anton; Pham, Le H; Cesar, Romeo B; Meignan, Michel; Mishkin, Fred S

    2003-01-01

    To evaluate the feasibility of using [(18)F]fluorodeoxyglucose ((18)FDG) triple-head coincidence imaging as a potential cost-effective alternative to positron emission tomography in the setting of suspected recurrence of papillary thyroid carcinoma. We retrospectively studied 10 patients with suspected recurrence of papillary carcinoma of the thyroid, who underwent (18)FDG coincidence imaging,(131)I scanning, and a reference anatomic scan (computed tomography, magnetic resonance imaging, or both) within 1 year in most cases. The (131)I scan detected the recurrence in five patients (62.5%) and failed to reveal recurrent cancer in three patients (37.5%); in contrast,(18)FDG imaging detected the recurrence in eight patients (100%) and was true negative in two patients in whom the scans were performed more than 1 year after effective therapy for the recurrence. The sensitivity of detection was unrelated to lesion size. The (18)FDG imaging results led to additional radiotherapy in all (131)I-negative patients, two of whom had high thyroglobulin levels and one of whom had a low thyroglobulin concentration but the presence of antithy-roglobulin antibodies. We conclude that (18)FDG triple-head coincidence imaging is useful for routine management of patients with thyroid cancer who have no abnormalities detected on (131)I scans but have high serum thyroglobulin levels. This technique, however, may not be as sensitive as a dedicated positron emission tomographic device, particularly for the assessment of small tumors.

  9. (18)F-FDG and (18)F-FLT PET/CT imaging in the characterization of mediastinal lymph nodes.

    PubMed

    Rayamajhi, Sampanna Jung; Mittal, Bhagwant Rai; Maturu, Venkata Nagarjuna; Agarwal, Ritesh; Bal, Amanjit; Dey, Pranab; Shukla, Jaya; Gupta, Dheeraj

    2016-04-01

    There is currently no single modality for accurate characterization of enlarged mediastinal lymph nodes into benign or malignant. Recently (18)F-fluorothymidine (FLT) has been used as a proliferation marker. In this prospective study, we examined the role of (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) and (18)F-FLT PET/CT in categorizing mediastinal lymph nodes as benign or malignant. A total of 70 consecutive patients with mediastinal lymphadenopathy detected on computed tomography (CT) or chest radiograph underwent whole body (18)F-FLT PET/CT and (18)F-FDG PET/CT (within 1 week of each other). Lymph nodal tracer uptake was determined by calculation of standardized uptake value (SUV) with both the tracers. Results of PET/CT were compared with histopathology of the lymph nodes. Histopathology results showed thirty-seven patients with sarcoidosis, seven patients with tuberculosis, nine patients with non-small cell lung cancer, five patients with Hodgkin's lymphoma and twelve patients with non-Hodgkin's lymphoma. The mean FDG SUVmax of sarcoidosis, tuberculosis, Hodgkin's and non-Hodgkin's lymphoma was 12.7, 13.4, 8.2, and 8.8, respectively, and the mean FLT SUVmax was 6.0, 5.4, 4.4, and 3.8, respectively. It was not possible to characterize mediastinal lymphadenopathy as benign or malignant solely based on FDG SUVmax values (p > 0.05) or FLT SUVmax values (p > 0.05). There was no significant difference in FDG uptake (p > 0.9) or FLT uptake (p > 0.9) between sarcoidosis and tuberculosis. In lung cancer patients, the FDG SUVmax and FLT SUVmax of those lymph nodes with tumor infiltration on biopsy was 6.7 and 3.9, respectively, and those without nodal infiltration was 6.4 and 3.7, respectively, and both the tracers were not able to characterize the nodal status as malignant or benign (p > 0.05). Though (18)F-FLT PET/CT and (18)F-FDG PET/CT reflect different aspects of biology, i.e., proliferation and metabolism

  10. HPLC and TLC methods for analysis of [18F]FDG and its metabolites from biological samples.

    PubMed

    Rokka, Johanna; Grönroos, Tove J; Viljanen, Tapio; Solin, Olof; Haaparanta-Solin, Merja

    2017-03-24

    The most used positron emission tomography (PET) tracer, 2-[ 18 F]fluoro-2-deoxy-d-glucose ([ 18 F]FDG), is a glucose analogue that is used to measure tissue glucose consumption. Traditionally, the Sokoloff model is the basis for [ 18 F]FDG modeling. According to this model, [ 18 F]FDG is expected to be trapped in a cell in the form of [ 18 F]FDG-6-phosphate ([ 18 F]FDG-6-P). However, several studies have shown that in tissues, [ 18 F]FDG metabolism goes beyond [ 18 F]FDG-6-P. Our aim was to develop radioHPLC and radioTLC methods for analysis of [ 18 F]FDG metabolites from tissue samples. The radioHPLC method uses a sensitive on-line scintillation detector to detect radioactivity, and the radioTLC method employs digital autoradiography to detect the radioactivity distribution on a TLC plate. The HPLC and TLC methods were developed using enzymatically in vitro-produced metabolites of [ 18 F]FDG as reference standards. For this purpose, three [ 18 F]FDG metabolites were synthesized: [ 18 F]FDG-6-P, [ 18 F]FD-PGL, and [ 18 F]FDG-1,6-P2. The two methods were evaluated by analyzing the [ 18 F]FDG metabolic profile from rodent ex vivo tissue homogenates. The HPLC method with an on-line scintillation detector had a wide linearity in a range of 5Bq-5kBq (LOD 46Bq, LOQ 139Bq) and a good resolution (Rs ≥1.9), and separated [ 18 F]FDG and its metabolites clearly. The TLC method combined with digital autoradiography had a high sensitivity in a wide range of radioactivity (0.1Bq-2kBq, LOD 0.24Bq, LOQ 0.31Bq), and multiple samples could be analyzed simultaneously. As our test and the method validation with ex vivo samples showed, both methods are useful, and at best they complement each other in analysis of [ 18 F]FDG and its radioactive metabolites from biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Does Delayed-Time-Point Imaging Improve 18F-FDG-PET in Patients With MALT Lymphoma?

    PubMed Central

    Mayerhoefer, Marius E.; Giraudo, Chiara; Senn, Daniela; Hartenbach, Markus; Weber, Michael; Rausch, Ivo; Kiesewetter, Barbara; Herold, Christian J.; Hacker, Marcus; Pones, Matthias; Simonitsch-Klupp, Ingrid; Müllauer, Leonhard; Dolak, Werner; Lukas, Julius; Raderer, Markus

    2016-01-01

    Purpose To determine whether in patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue lymphoma (MALT), delayed–time-point 2-18F-fluoro-2-deoxy-d-glucose-positron emission tomography (18F-FDG-PET) performs better than standard–time-point 18F-FDG-PET. Materials and Methods Patients with untreated histologically verified MALT lymphoma, who were undergoing pretherapeutic 18F-FDG-PET/computed tomography (CT) and consecutive 18F-FDG-PET/magnetic resonance imaging (MRI), using a single 18F-FDG injection, in the course of a larger-scale prospective trial, were included. Region-based sensitivity and specificity, and patient-based sensitivity of the respective 18F-FDG-PET scans at time points 1 (45–60 minutes after tracer injection, TP1) and 2 (100–150 minutes after tracer injection, TP2), relative to the reference standard, were calculated. Lesion-to-liver and lesion-to-blood SUVmax (maximum standardized uptake values) ratios were also assessed. Results 18F-FDG-PET at TP1 was true positive in 15 o f 23 involved regions, and 18F-FDG-PET at TP2 was true-positive in 20 of 23 involved regions; no false-positive regions were noted. Accordingly, region-based sensitivities and specificities were 65.2% (confidence interval [CI], 45.73%–84.67%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP1; and 87.0% (CI, 73.26%–100%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP2, respectively. FDG-PET at TP1 detected lymphoma in at least one nodal or extranodal region in 7 of 13 patients, and 18F-FDG-PET at TP2 in 10 of 13 patients; accordingly, patient-based sensitivity was 53.8% (CI, 26.7%–80.9%) for 18F-FDG-PET at TP1, and 76.9% (CI, 54.0%–99.8%) for 18F-FDG-PET at TP2. Lesion-to-liver and lesion-to-blood maximum standardized uptake value ratios were significantly lower at TP1 (ratios, 1.05 ± 0.40 and 1.52 ± 0.62) than at TP2 (ratios, 1.67 ± 0.74 and 2.56 ± 1.10; P = 0.003 and P = 0.001). Conclusions Delayed–time-point imaging

  12. Chronic bacterial osteomyelitis: prospective comparison of (18)F-FDG imaging with a dual-head coincidence camera and (111)In-labelled autologous leucocyte scintigraphy.

    PubMed

    Meller, J; Köster, G; Liersch, T; Siefker, U; Lehmann, K; Meyer, I; Schreiber, K; Altenvoerde, G; Becker, W

    2002-01-01

    Indium-111-labelled white blood cells ((111)In-WBCs) are currently considered the tracer of choice in the diagnostic work-up of suspected active chronic osteomyelitis (COM). Previous studies in a limited number of patients, performed with dedicated PET systems, have shown that [(18)F]2'-deoxy-2-fluoro- D-glucose (FDG) imaging may offer at least similar diagnostic accuracy. The aim of this prospective study was to compare FDG imaging with a dual-head coincidence camera (DHCC) and (111)In-WBC imaging in patients with suspected COM. Thirty consecutive non-diabetic patients with possible COM underwent combined skeletal scintigraphy (30/30 patients), (111)In-WBC imaging (28/30 patients) and FDG-PET with a DHCC (30/30 patients). During diagnostic work-up, COM was proven in 11/36 regions of suspected skeletal infection and subsequently excluded in 25/36 regions. In addition, soft tissue infection was present in five patients and septic arthritis in three. (111)In-WBC imaging in 28 patients was true positive in 2/11 regions with proven COM and true negative in 21/23 regions without further evidence of COM. False-positive results occurred in two regions and false-negative results in nine regions suspected for COM. Most of the false-negative results (7/9) occurred in the central skeleton. If the analysis was restricted to the 18 regions with available histology ( n=17) or culture ( n=1), (111)In-WBC imaging was true positive in 2/18 regions, true negative in 8/18 regions, false negative in 7/18 regions and false positive in 1/18 regions. FDG-DHCC imaging was true positive in 11/11 regions with proven COM and true negative in 23/25 regions without further evidence of COM. False-positive results occurred in two regions. If the analysis was restricted to the 19 regions with available histology ( n=18) or culture ( n=1), FDG-DHCC imaging was true positive in 9/9 regions with proven COM and true negative in 10/10 regions without further evidence of COM. It is concluded that FDG

  13. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion.

    PubMed

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan; Lu, Peiou

    2016-01-01

    The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with 18F-FDG PET/CT integrated

  14. The Role of 18F-FDG PET/CT Integrated Imaging in Distinguishing Malignant from Benign Pleural Effusion

    PubMed Central

    Sun, Yajuan; Yu, Hongjuan; Ma, Jingquan

    2016-01-01

    Objective The aim of our study was to evaluate the role of 18F-FDG PET/CT integrated imaging in differentiating malignant from benign pleural effusion. Methods A total of 176 patients with pleural effusion who underwent 18F-FDG PET/CT examination to differentiate malignancy from benignancy were retrospectively researched. The images of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were visually analyzed. The suspected malignant effusion was characterized by the presence of nodular or irregular pleural thickening on CT imaging. Whereas on PET imaging, pleural 18F-FDG uptake higher than mediastinal activity was interpreted as malignant effusion. Images of 18F-FDG PET/CT integrated imaging were interpreted by combining the morphologic feature of pleura on CT imaging with the degree and form of pleural 18F-FDG uptake on PET imaging. Results One hundred and eight patients had malignant effusion, including 86 with pleural metastasis and 22 with pleural mesothelioma, whereas 68 patients had benign effusion. The sensitivities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging in detecting malignant effusion were 75.0%, 91.7% and 93.5%, respectively, which were 69.8%, 91.9% and 93.0% in distinguishing metastatic effusion. The sensitivity of 18F-FDG PET/CT integrated imaging in detecting malignant effusion was higher than that of CT imaging (p = 0.000). For metastatic effusion, 18F-FDG PET imaging had higher sensitivity (p = 0.000) and better diagnostic consistency with 18F-FDG PET/CT integrated imaging compared with CT imaging (Kappa = 0.917 and Kappa = 0.295, respectively). The specificities of CT imaging, 18F-FDG PET imaging and 18F-FDG PET/CT integrated imaging were 94.1%, 63.2% and 92.6% in detecting benign effusion. The specificities of CT imaging and 18F-FDG PET/CT integrated imaging were higher than that of 18F-FDG PET imaging (p = 0.000 and p = 0.000, respectively), and CT imaging had better diagnostic consistency with

  15. 18F-FDG avidity of pheochromocytomas and paragangliomas: a new molecular imaging signature?

    PubMed

    Taïeb, David; Sebag, Frederic; Barlier, Anne; Tessonnier, Laurent; Palazzo, Fausto F; Morange, Isabelle; Niccoli-Sire, Patricia; Fakhry, Nicolas; De Micco, Catherine; Cammilleri, Serge; Enjalbert, Alain; Henry, Jean-François; Mundler, Olivier

    2009-05-01

    Our objective was to evaluate (18)F-FDG PET uptake in patients with nonmetastatic and metastatic chromaffin-derived tumors. Twenty-eight consecutive unrelated patients with chromaffin tumors, including 9 patients with genetically determined disease, were studied. A combination of preoperative imaging work-up, surgical findings, and pathologic analyses was used to classify the patients into 2 groups: those with nonmetastatic disease (presumed benign, n = 18) and those with metastatic tumors (n = 10). (18)F-FDG PET was performed in all cases. Visual and quantitative analyses were individually graded for each tumor. Somatic mutations of the succinate dehydrogenase subunits B and D and Von-Hippel Lindau genes were also evaluated in 6 benign sporadic tumor samples. All but 2 patients showed significantly increased (18)F-FDG uptake on visual analysis. The maximum standardized uptake value (SUVmax) ranged from 1.9 to 42 (mean +/- SD, 8.2 +/- 9.7; median, 4.6) in nonmetastatic tumors and 2.3 to 29.3 (mean +/- SD, 9.7 +/- 8.4; median, 7.4) in metastatic tumors. No statistical difference was observed between the groups (P = 0.44), but succinate dehydrogenase-related tumors were notable in being the most (18)F-FDG-avid tumors (SUVmax, 42, 29.3, 21, 17, and 5.3). Succinate dehydrogenase and Von-Hippel Lindau-related tumors had a significantly higher SUVmax than did neurofibromatosis type 1 and multiple endocrine neoplasia type 2A syndrome-related tumors (P = 0.02). (18)F-FDG PET was superior to (131)I-metaiodobenzylguanidine in all metastatic patients but one. By contrast, (18)F-FDG PET underestimated the extent of the disease, compared with 6-(18)F-fluorodopa PET, in 5 patients with metastatic pheochromocytoma. However, succinate dehydrogenase mutations (germline and somatic) and functional dedifferentiation do not adequately explain (18)F-FDG uptake since most tumors were highly avid for (18)F-FDG. (18)F-FDG PET positivity is almost a constant feature of pheochromocytomas

  16. 18F-FDG PET/CT in breast cancer: Evidence-based recommendations in initial staging.

    PubMed

    Caresia Aroztegui, Ana Paula; García Vicente, Ana María; Alvarez Ruiz, Soledad; Delgado Bolton, Roberto Carlos; Orcajo Rincon, Javier; Garcia Garzon, Jose Ramon; de Arcocha Torres, Maria; Garcia-Velloso, Maria Jose

    2017-10-01

    Current guidelines do not systematically recommend 18F-FDG PET/CT for breast cancer staging; and the recommendations and level of evidence supporting its use in different groups of patients vary among guidelines. This review summarizes the evidence about the role of 18F-FDG PET/CT in breast cancer staging and the therapeutic and prognostic impact accumulated in the last decade. Other related aspects, such as the association of metabolic information with biology and prognosis are considered and evidence-based recommendations for the use of 18F-FDG PET/CT in breast cancer staging are offered. We systematically searched MEDLINE for articles reporting studies with at least 30 patients related to clinical questions following the Problem/Population, Intervention, Comparison, and Outcome framework. We critically reviewed the selected articles and elaborated evidence tables structuring the summarized information into methodology, results, and limitations. The level of evidence and the grades of recommendation for the use of 18F-FDG PET/CT in different contexts are summarized. Level III evidence supports the use of 18F-FDG PET/CT for initial staging in patients with recently diagnosed breast cancer; the diagnostic and therapeutic impact of the 18F-FDG PET/CT findings is sufficient for a weak recommendation in this population. In patients with locally advanced breast cancer, level II evidence supports the use of 18F-FDG PET/CT for initial staging; the diagnostic and therapeutic impact of the 18F-FDG PET/CT findings is sufficient for a strong recommendation in this population. In patients with recently diagnosed breast cancer, the metabolic information from baseline 18F-FDG PET/CT is associated with tumor biology and has prognostic implications, supported by level II evidence. In conclusion, 18F-FDG PET/CT is not recommended for staging all patients with early breast cancer, although evidence of improved regional and systemic staging supports its use in locally advanced

  17. Stereotactic Comparison Study of (18)F-Alfatide and (18)F-FDG PET Imaging in an LLC Tumor-Bearing C57BL/6 Mouse Model.

    PubMed

    Wei, Yu-Chun; Gao, Yongsheng; Zhang, Jianbo; Fu, Zheng; Zheng, Jinsong; Liu, Ning; Hu, Xudong; Hou, Wenhong; Yu, Jinming; Yuan, Shuanghu

    2016-06-28

    This study aimed to stereotactically compare the PET imaging performance of (18)F-Alfatide ((18)F-ALF-NOTA-PRGD2, denoted as (18)F-Alfatide) and (18)F-fluorodeoxyglucose (FDG) and immunohistochemistry (IHC) staining in Lewis lung carcinoma (LLC) tumor-bearing C57BL/6 mouse model. (18)F-FDG standard uptake values (SUVs) were higher than (18)F-Alfatide SUVs in tumors, most of the normal tissues and organs except for the bladder. Tumor-to-brain, tumor-to-lung, and tumor-to-heart ratios of (18)F-Alfatide PET were significantly higher than those of (18)F-FDG PET (P < 0.001). The spatial heterogeneity of the tumors was detected, and the tracer accumulation enhanced from the outer layer to the inner layer consistently using the two tracers. The parameters of the tumors were significantly correlated with each other between (18)F-FDG SUV and GLUT-1 (R = 0.895, P < 0.001), (18)F-Alfatide SUV and αvβ3 (R = 0.595, P = 0.019), (18)F-FDG SUV and (18)F-Alfatide SUV (R = 0.917, P < 0.001), and GLUT-1 and αvβ3 (R = 0.637, P = 0.011). Therefore, (18)F-Alfatide PET may be an effective tracer for tumor detection, spatial heterogeneity imaging and an alternative supplement to (18)F-FDG PET, particularly for patients with enhanced characteristics in the brain, chest tumors or diabetes, meriting further study.

  18. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging.

    PubMed

    Sachpekidis, C; Goldschmidt, H; Kopka, K; Kopp-Schneider, A; Dimitrakopoulou-Strauss, A

    2018-04-10

    Despite the significant upgrading in recent years of the role of 18 F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3'-Deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18 F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18 F-FDG PET/CT. Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18 F-FDG PET/CT and 18 F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18 F-FDG PET/CT demonstrated focal, 18 F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18 F-FLT PET/CT showed focal, 18 F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18 F-FDG avid, focal, MM-indicative lesions were detected with 18 F-FDG PET/CT, while 17 18 F-FLT avid, focal, MM-indicative lesions were detected with 18 F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18 F-FDG PET/CT than for 18 F-FLT PET/CT. A common finding was a mismatch of focally increased 18 F-FDG uptake and reduced 18 F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18 F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUV mean and SUV max were significantly higher for 18 F-FLT than for 18 F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in

  19. Association Between Osteogenesis and Inflammation During the Progression of Calcified Plaque Evaluated by 18F-Fluoride and 18F-FDG.

    PubMed

    Li, Xiang; Heber, Daniel; Cal-Gonzalez, Jacobo; Karanikas, Georgios; Mayerhoefer, Marius E; Rasul, Sazan; Beitzke, Dietrich; Zhang, Xiaoli; Agis, Hermine; Mitterhauser, Markus; Wadsak, Wolfgang; Beyer, Thomas; Loewe, Christian; Hacker, Marcus

    2017-06-01

    18 F-FDG is the most widely validated PET tracer for the evaluation of atherosclerotic inflammation. Recently, 18 F-NaF has also been considered a potential novel biomarker of osteogenesis in atherosclerosis. We aimed to analyze the association between inflammation and osteogenesis at different stages of atherosclerosis, as well as the interrelationship between these 2 processes during disease progression. Methods: Thirty-four myeloma patients underwent 18 F-NaF and 18 F-FDG PET/CT examinations. Lesions were divided into 3 groups (noncalcified, mildly calcified, and severely calcified lesions) on the basis of calcium density as measured in Hounsfield units by CT. Tissue-to-background ratios were determined from PET for both tracers. The association between inflammation and osteogenesis during atherosclerosis progression was evaluated in 19 patients who had at least 2 examinations with both tracers. Results: There were significant correlations between the maximum tissue-to-background ratios of the 2 tracers (Spearman r = 0.5 [ P < 0.01]; Pearson r = 0.4 [ P < 0.01]) in the 221 lesions at baseline. The highest uptake of both tracers was observed in noncalcified lesions, but without any correlation between the tracers (Pearson r = 0.06; P = 0.76). Compared with noncalcified plaques, mildly calcified plaques showed concordant significantly lower accumulation, with good correlation between the tracers (Pearson r = 0.7; P < 0.01). In addition, enhanced osteogenesis-derived 18 F-NaF uptake and regressive inflammation-derived 18 F-FDG uptake were observed in severely calcified lesions (Pearson r = 0.4; P < 0.01). During follow-up, increased calcium density and increased mean 18 F-NaF uptake were observed, whereas mean 18 F-FDG uptake decreased. Most noncalcified (86%) and mildly calcified (81%) lesions and 47% of severely calcified lesions had concordant development of both vascular inflammation and osteogenesis. Conclusion: The combination of 18 F-NaF PET imaging and 18 F-FDG

  20. Monitoring of anti-cancer treatment with 18F-FDG and 18F-FLT PET: a comprehensive review of pre-clinical studies

    PubMed Central

    Jensen, Mette Munk; Kjaer, Andreas

    2015-01-01

    Functional imaging of solid tumors with positron emission tomography (PET) imaging is an evolving field with continuous development of new PET tracers and discovery of new applications for already implemented PET tracers. During treatment of cancer patients, a general challenge is to measure treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) and 3’-deoxy-3’-[18F]fluorothymidine(18F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can be visualized and quantified non-invasively by PET. With 18F-FDG and 18F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment response. It is hypothesized that decreases in glycolysis and cell proliferation may occur in tumors that are sensitive to the applied cancer therapeutics and that tumors that are resistant to treatment will show unchanged glucose metabolism and cell proliferation. Whether 18F-FDG and/or 18F-FLT PET can be used for prediction of treatment response has been analyzed in many studies both following treatment with conventional chemotherapeutic agents but also following treatment with different targeted therapies, e.g. monoclonal antibodies and small molecules inhibitors. The results from these studies have been most variable; in some studies early changes in 18F-FDG and 18F-FLT uptake predicted later tumor regression whereas in other studies no change in tracer uptake was observed despite the treatment being effective. The present review gives an overview of pre-clinical studies that have used 18F-FDG and/or 18F-FLT PET for response monitoring of cancer therapeutics. PMID:26550536

  1. Defining optimal tracer activities in pediatric oncologic whole-body 18F-FDG-PET/MRI.

    PubMed

    Gatidis, Sergios; Schmidt, Holger; la Fougère, Christian; Nikolaou, Konstantin; Schwenzer, Nina F; Schäfer, Jürgen F

    2016-12-01

    To explore the feasibility of reducing administered tracer activities and to assess optimal activities for combined 18 F-FDG-PET/MRI in pediatric oncology. 30 18 F-FDG-PET/MRI examinations were performed on 24 patients with known or suspected solid tumors (10 girls, 14 boys, age 12 ± 5.6 [1-18] years; PET scan duration: 4 min per bed position). Low-activity PET images were retrospectively simulated from the originally acquired data sets using randomized undersampling of list mode data. PET data of different simulated administered activities (0.25-2.5 MBq/kg body weight) were reconstructed with or without point spread function (PSF) modeling. Mean and maximum standardized uptake values (SUV mean and SUV max ) as well as SUV variation (SUV var ) were measured in physiologic organs and focal FDG-avid lesions. Detectability of organ structures and of focal 18 F-FDG-avid lesions as well as the occurrence of false-positive PET lesions were assessed at different simulated tracer activities. Subjective image quality steadily declined with decreasing tracer activities. Compared to the originally acquired data sets, mean relative deviations of SUV mean and SUV max were below 5 % at 18 F-FDG activities of 1.5 MBq/kg or higher. Over 95 % of anatomic structures and all pathologic focal lesions were detectable at 1.5 MBq/kg 18 F-FDG. Detectability of anatomic structures and focal lesions was significantly improved using PSF. No false-positive focal lesions were observed at tracer activities of 1 MBq/kg 18 F-FDG or higher. Administration of 18 F-FDG activities of 1.5 MBq/kg is, thus, feasible without obvious diagnostic shortcomings, which is equivalent to a dose reduction of more than 50 % compared to current recommendations. Significant reduction in administered 18 F-FDG tracer activities is feasible in pediatric oncologic PET/MRI. Appropriate activities of 18 F-FDG or other tracers for specific clinical questions have to be further established in selected patient

  2. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood-Brain Barrier on (18)F-2-Fluoro-2-Deoxy-D-glucose ( (18)F-FDG) Brain Kinetics.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Goutal, Sébastien; Gervais, Philippe; Valette, Héric; Scherrmann, Jean-Michel; Bottlaender, Michel; Cisternino, Salvatore

    2015-05-01

    The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.

  3. Relationship Between Clinicopathological Characteristics and PET/CT Uptake in Esophageal Squamous Cell Carcinoma: [18F]Alfatide versus [18F]FDG.

    PubMed

    Dong, Yinjun; Wei, Yuchun; Chen, Guanxuan; Huang, Yong; Song, Pingping; Liu, Shuguang; Zheng, Jinsong; Cheng, Monica; Yuan, Shuanghu

    2018-06-04

    To assess a novel radiotracer aluminum [ 18 F]fluoride-1,4,7-triazacyclononane-triacetic acid-pegylated dimeric RGD ([ 18 F]ALF-NOTA-PRGD 2 , denoted as [ 18 F]Alfatide) for positron emission tomography (PET)/X-ray computed tomography (CT) and explore the relationships between clinicopathological characteristics and maximum standard uptake values in primary (SUV P ) and metastatic lymph nodes (SUV LN ) of patients with esophageal squamous cell carcinoma (ESCC), as verified by pathologic examination and compared with those obtained with 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]DG) PET. We prospectively enrolled patients with newly diagnosed ESCC who agreed to undergo [ 18 F]Alfatide PET/CT or [ 18 F]FDG PET/CT scans before surgery at Shandong Cancer Hospital from May 2011 to July 2017. SUVs and the pathological tumor-node-metastasis (pTNM) stages of primary tumors and metastatic lymph nodes (LNs) were measured and confirmed pathologically. Immunohistochemical (IHC) staining for integrin αvβ3 was performed on tumor samples (both primary tumors and metastatic LNs) collected from nine patients. Of 61 patients who underwent PET/CT scans, 46 then underwent curative surgery and were included in our analysis (n = 21 for [ 18 F]Alfatide PET/CT and n = 25 for [ 18 F]FDG PET/CT). No significant differences in the SUV P on [ 18 F]Alfatide PET/CT or [ 18 F]FDG PET/CT were observed among the cohorts according to gender, pathological stage, T stage, status of LNs, and differentiation (all P > 0.05). The SUV LN differed significantly between the pathological stages and status of LNs both on [ 18 F]Alfatide PET/CT (P = 0.03, 0.003) and [ 18 F]FDG PET/CT (P = 0.001. < 0.001), but not according to gender (P = 0.128, 0.129), T stage (P = 0.791, 0.727), or tumor differentiation (P = 0.049, 0.053). Significant positive correlations were observed between the SUV LN on [ 18 F]Alfatide PET/CT and [ 18 F]FDG PET/CT, and pathological stage (r = 0

  4. Disseminated Multi-system Sarcoidosis Mimicking Metastases on 18F-FDG PET/CT.

    PubMed

    Makis, William; Palayew, Mark; Rush, Christopher; Probst, Stephan

    2018-06-07

    A 60-year-old female with no significant medical history presented with hematuria. A computed tomography (CT) scan revealed extensive lymphadenopathy with hypodensities in the liver and spleen, and she was referred for an 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/CT (PET/CT) study to assess for malignancy of unknown primary. PET/CT revealed extensive 18 F-FDG avid lymphadenopathy as well as innumerable intensely 18 F-FDG avid lung, liver and splenic nodules, highly concerning for malignancy. A PET-guided bone marrow biopsy of the posterior superior iliac spine revealed several non-necrotizing, well-formed granulomas, consistent with sarcoidosis. The patient was managed conservatively and remained clinically well over the subsequent 9 years of follow-up.

  5. One-pot production of 18F-biotin by conjugation with 18F-FDG for pre-targeted imaging: synthesis and radio-labelling of a PEGylated precursor.

    PubMed

    Simpson, Michael; Trembleau, Laurent; Cheyne, Richard W; Smith, Tim A D

    2011-02-01

    The biotin-avidin affinity system is exploited in pre-targeted imaging using avidin-conjugated antibodies. (18)F-FDG is available at all PET centres. (18)F-FDG forms oximes by reaction with oxyamine. Herein we describe the synthesis of oxyamine-funtionalised biotin, its (18)F-labelling by conjugation with (18)F-FDG and confirm its ability to interact with avidin. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Imaging of adrenal incidentalomas with PET using (11)C-metomidate and (18)F-FDG.

    PubMed

    Minn, Heikki; Salonen, Anna; Friberg, Johan; Roivainen, Anne; Viljanen, Tapio; Långsjö, Jaakko; Salmi, Jorma; Välimäki, Matti; Någren, Kjell; Nuutila, Pirjo

    2004-06-01

    Our aim was to evaluate the use of PET with (11)C-metomidate and (18)F-FDG for the diagnosis of adrenal incidentalomas. Twenty-one patients underwent hormonal screening before dynamic imaging of the upper abdomen with (11)C-metomidate, and for 19 of these 21 patients, static (18)F-FDG imaging followed. Uptake of (11)C-metomidate and (18)F-FDG in incidentalomas was quantified and correlated with the hormonal work-up and the mass size on CT (median, 2.5 cm; range, 2-10 cm). The final diagnoses were hormonally active adenoma (n = 7), nonsecretory adenoma (n = 5), adrenocortical carcinoma (n = 1), pheochromocytoma (n = 2), benign noncortical tumor (n = 2), normal adrenal (n = 1), and malignant noncortical tumor (n = 3). Diagnosis was established at surgery (n = 9), percutaneous biopsy (n = 4), or follow-up (n = 8). The highest uptake of (11)C-metomidate, expressed as standardized uptake value (SUV), was found in adrenocortical carcinoma (SUV = 28.0), followed by active adenomas (median SUV = 12.7), nonsecretory adenomas (median SUV = 12.2), and noncortical tumors (median SUV = 5.7). Patients with adenomas had significantly higher tumor-to-normal-adrenal (11)C-metomidate SUV ratios than did patients with noncortical tumors. (18)F-FDG detected 2 of 3 noncortical malignancies but failed to detect adrenal metastases from renal cell carcinoma. All inactive and most active adenomas were difficult to detect with (18)F-FDG against background activity, whereas both pheochromocytomas and adrenocortical carcinoma showed slightly increased uptake of (18)F-FDG. There was no correlation between uptake of (11)C-metomidate or (18)F-FDG and mass size. (11)C-Metomidate is a promising PET tracer to identify incidentalomas of adrenocortical origin. (18)F-FDG should be reserved for patients with a moderate to high likelihood of neoplastic disease.

  7. 18F-FDG PET/CT in differentiating malignant from benign origins of obstructive jaundice.

    PubMed

    Wang, Shao-Bo; Wu, Hu-Bing; Wang, Quan-Shi; Zhou, Wen-Lan; Tian, Ying; Ji, Yun-Hai; Lv, Liang

    2015-10-01

    The various origins of obstructive jaundice make the diagnosis of the disease difficult. This study was undertaken to evaluate the role of 18F-FDG PET/CT in differentiating malignant from benign origins of obstructive jaundice and to quantify the added value of 18F-FDG PET/CT over conventional imaging (enhanced CT and/or MRI). Eighty-five patients with obstructive jaundice who underwent 18F-FDG PET/CT within 2 weeks after enhanced CT and/or MRI were reviewed retrospectively. All 18F-FDG PET/CT images were independently evaluated by 2 nuclear medicine physicians who were unaware of other imaging data; differences were resolved by consensus of the physicians. All conventional imaging interpretations, according to the medical records, were reviewed by 2 radiologists to determine the potential value. Final diagnoses were based on histological or surgical findings. Sixty-six patients were diagnosed with malignancies, and 19 patients with benign lesions. The maximum standardized uptake values for malignant and benign lesions causing biliary obstruction were 8.2+/-4.4 and 4.0+/-5.0, respectively (P<0.05). The sensitivity, specificity, and overall accuracy for differentiating malignant from benign origins with 18F-FDG PET/CT were 86.4% (57/66), 73.7% (14/19), and 83.5% (71/85), respectively. 18F-FDG PET/CT in conjunction with conventional imaging changed the sensitivity, specificity, and overall accuracy of conventional imaging alone from 75.8% (50/66) to 95.5% (63/66) (P<0.05), 68.4% (13/19) to 57.9% (11/19) (P>0.05), and 74.1% (63/85) to 87.1% (74/85) (P<0.05), respectively. 18F-FDG PET/CT is of great value in differentiating malignant from benign origins of obstructive jaundice and is a useful adjuvant to conventional imaging. 18F-FDG PET/CT should be recommended for further etiological clarification.

  8. Prospective Comparison of 99mTc-MDP Scintigraphy, Combined 18F-NaF and 18F-FDG PET/CT, and Whole-Body MRI in Patients with Breast and Prostate Cancer.

    PubMed

    Minamimoto, Ryogo; Loening, Andreas; Jamali, Mehran; Barkhodari, Amir; Mosci, Camila; Jackson, Tatianie; Obara, Piotr; Taviani, Valentina; Gambhir, Sanjiv Sam; Vasanawala, Shreyas; Iagaru, Andrei

    2015-12-01

    We prospectively evaluated the use of combined (18)F-NaF/(18)F-FDG PET/CT in patients with breast and prostate cancer and compared the results with those for (99m)Tc-MDP bone scintigraphy and whole-body MRI. Thirty patients (15 women with breast cancer and 15 men with prostate cancer) referred for standard-of-care bone scintigraphy were prospectively enrolled in this study. (18)F-NaF/(18)F-FDG PET/CT and whole-body MRI were performed after bone scintigraphy. The whole-body MRI protocol consisted of both unenhanced and contrast-enhanced sequences. Lesions detected with each test were tabulated, and the results were compared. For extraskeletal lesions, (18)F-NaF/(18)F-FDG PET/CT and whole-body MRI had no statistically significant differences in sensitivity (92.9% vs. 92.9%, P = 1.00), positive predictive value (81.3% vs. 86.7%, P = 0.68), or accuracy (76.5% vs. 82.4%, P = 0.56). However, (18)F-NaF/(18)F-FDG PET/CT showed significantly higher sensitivity and accuracy than whole-body MRI (96.2% vs. 81.4%, P < 0.001, 89.8% vs. 74.7%, P = 0.01) and bone scintigraphy (96.2% vs. 64.6%, P < 0.001, 89.8% vs. 65.9%, P < 0.001) for the detection of skeletal lesions. Overall, (18)F-NaF/(18)F-FDG PET/CT showed higher sensitivity and accuracy than whole-body MRI (95.7% vs. 83.3%, P < 0.002, 87.6% vs. 76.0%, P < 0.02) but not statistically significantly so when compared with a combination of whole-body MRI and bone scintigraphy (95.7% vs. 91.6%, P = 0.17, 87.6% vs. 83.0%, P = 0.53). (18)F-NaF/(18)F-FDG PET/CT showed no significant difference from a combination of (18)F-NaF/(18)F-FDG PET/CT and whole-body MRI. No statistically significant differences in positive predictive value were noted among the 3 examinations. (18)F-NaF/(18)F-FDG PET/CT is superior to whole-body MRI and (99m)Tc-MDP scintigraphy for evaluation of skeletal disease extent. Further, (18)F-NaF/(18)F-FDG PET/CT and whole-body MRI detected extraskeletal disease that may change the management of these patients. (18)F-NaF

  9. Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in combination with ultrasonography for axillary staging in primary breast cancer.

    PubMed

    Ueda, Shigeto; Tsuda, Hitoshi; Asakawa, Hideki; Omata, Jiro; Fukatsu, Kazuhiko; Kondo, Nobuo; Kondo, Tadaharu; Hama, Yukihiro; Tamura, Katsumi; Ishida, Jiro; Abe, Yoshiyuki; Mochizuki, Hidetaka

    2008-06-09

    Accurate evaluation of axillary lymph node (ALN) involvement is mandatory before treatment of primary breast cancer. The aim of this study is to compare preoperative diagnostic accuracy between positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT) and axillary ultrasonography (AUS) for detecting ALN metastasis in patients having operable breast cancer, and to assess the clinical management of axillary 18F-FDG PET/CT for therapeutic indication of sentinel node biopsy (SNB) and preoperative systemic chemotherapy (PSC). One hundred eighty-three patients with primary operable breast cancer were recruited. All patients underwent 18F-FDG PET/CT and AUS followed by SNB and/or ALN dissection (ALND). Using 18F-FDG PET/CT, we studied both a visual assessment of 18F-FDG uptake and standardized uptake value (SUV) for axillary staging. In a visual assessment of 18F-FDG PET/CT, the diagnostic accuracy of ALN metastasis was 83% with 58% in sensitivity and 95% in specificity, and when cut-off point of SUV was set at 1.8, sensitivity, specificity, and accuracy were 36, 100, and 79%, respectively. On the other hand, the diagnostic accuracy of AUS was 85% with 54% in sensitivity and 99% in specificity. By the combination of 18F-FDG PET/CT and AUS to the axilla, the sensitivity, specificity, and accuracy were 64, 94, and 85%, respectively. If either 18F-FDG PET uptake or AUS was positive in allixa, the probability of axillary metastasis was high; 50% (6 of 12) in 18F-FDG PET uptake only, 80% (4 of 5) in AUS positive only, and 100% (28 of 28) in dual positive. By the combination of AUS and 18F-FDG PET/CT, candidates of SNB were more appropriately selected. The axillary 18F-FDG uptake was correlated with the maximum size and nuclear grade of metastatic foci (p = 0.006 and p = 0.03). The diagnostic accuracy of 18F-FDG PET/CT was shown to be nearly equal to ultrasound, and considering their limited sensitivities, the high radiation exposure by 18F-FDG

  10. Feasibility of assessing [(18)F]FDG lung metabolism with late dynamic PET imaging.

    PubMed

    Laffon, Eric; de Clermont, Henri; Vernejoux, Jean-Marc; Jougon, Jacques; Marthan, Roger

    2011-04-01

    The aim of this work was to non-invasively establish the feasibility of assessing 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) lung metabolism with the use of a late dynamic positron emission tomograpy (PET) acquisition, i.e., beyond 2 h after injection. The present method has been probed in 11 patients without any respiratory disease, under fasting conditions, by assessing mean values of (18)F-FDG lung metabolism. A kinetic model analysis has been implemented on a simple calculation sheet. An arbitrary (population based) input function has been used in each individual, which was obtained from literature data. In the healthy lung, no (18)F-FDG release was found, and the mean values (±SD) of the (18)F-FDG uptake rate constant and of the fraction of the free tracer in blood and interstitial volume were: K = 0.0016 min(-1) (±0.0005), and F = 0.18 (±0.10), respectively. These results were in very close agreement with literature data that were obtained by both three-compartment model analysis and Patlak graphical analysis (gold standards), and that used an invasive blood sampling. Furthermore, K and the standard uptake value index have been compared. We conclude that assessing lung metabolism of (18)F-FDG in humans with the use of late dynamic PET imaging is feasible. The arbitrary input function of this non-invasive feasibility study could be replaced in further experiments by an input function obtained by arterial sampling. It is suggested that this method may prove useful to quantify (18)F-FDG lung metabolism under pathological conditions.

  11. Combined use of (18)F-FDG and (18)F-FMISO in unresectable non-small cell lung cancer patients planned for radiotherapy: a dynamic PET/CT study.

    PubMed

    Sachpekidis, Christos; Thieke, Christian; Askoxylakis, Vasileios; Nicolay, Nils H; Huber, Peter E; Thomas, Michael; Dimitrakopoulou, Georgia; Debus, Juergen; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    Aim of this study was to evaluate and compare, by means of dynamic and static PET/CT, the distribution patterns and pharmacokinetics of fluorine-18 fluorodeoxyglucose ((18)F-FDG) and of fluorine-18-fluoromisonidazole ((18)F-FMISO) in non-small cell lung cancer (NSCLC) patients scheduled for intensity modulated radiation therapy (IMRT). Thirteen patients suffering from inoperable stage III NSCLC underwent PET/CTs with (18)F-FDG and (18)F-FMISO for tumor metabolism and hypoxia assessment accordingly. Evaluation of PET/CT studies was based on visual analysis, semi-quantitative (SUV) calculations and absolute quantitative estimations, after application of a two-tissue compartment model and a non-compartmental approach. (18)F-FDG PET/CT revealed all thirteen primary lung tumors as sites of increased (18)F-FDG uptake. Six patients demonstrated also in total 43 (18)F-FDG avid metastases; these patients were excluded from radiotherapy. (18)F-MISO PET/CT demonstrated 12/13 primary lung tumors with faint tracer uptake. Only one tumor was clearly (18)F-FMISO avid, (SUVaverage = 3.4, SUVmax = 5.0). Mean values for (18)F-FDG, as derived from dPET/CT data, were SUVaverage = 8.9, SUVmax = 15.1, K1 = 0.23, k2 = 0.53, k3 = 0.17, k4 = 0.02, influx = 0.05 and fractal dimension (FD) = 1.25 for the primary tumors. The respective values for (18)F-FMISO were SUVaverage = 1.4, SUVmax = 2.2, K1 = 0.26, k2 = 0.56, k3 = 0.06, k4 = 0.06, influx = 0.02 and FD = 1.14. No statistically significant correlation was observed between the two tracers. (18)F-FDG PET/CT changed therapy management in six patients, by excluding them from planned IMRT. (18)F-FMISO PET/CT revealed absence of significant tracer uptake in the majority of the (18)F-FDG avid NSCLCs. Lack of correlation between the two tracers' kinetics indicates that they reflect different molecular mechanisms and implies the discordance between increased glycolysis and hypoxia in the malignancy.

  12. Combined use of 18F-FDG and 18F-FMISO in unresectable non-small cell lung cancer patients planned for radiotherapy: a dynamic PET/CT study

    PubMed Central

    Sachpekidis, Christos; Thieke, Christian; Askoxylakis, Vasileios; Nicolay, Nils H; Huber, Peter E; Thomas, Michael; Dimitrakopoulou, Georgia; Debus, Juergen; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    Aim of this study was to evaluate and compare, by means of dynamic and static PET/CT, the distribution patterns and pharmacokinetics of fluorine-18 fluorodeoxyglucose (18F-FDG) and of fluorine-18-fluoromisonidazole (18F-FMISO) in non-small cell lung cancer (NSCLC) patients scheduled for intensity modulated radiation therapy (IMRT). Thirteen patients suffering from inoperable stage III NSCLC underwent PET/CTs with 18F-FDG and 18F-FMISO for tumor metabolism and hypoxia assessment accordingly. Evaluation of PET/CT studies was based on visual analysis, semi-quantitative (SUV) calculations and absolute quantitative estimations, after application of a two-tissue compartment model and a non-compartmental approach. 18F-FDG PET/CT revealed all thirteen primary lung tumors as sites of increased 18F-FDG uptake. Six patients demonstrated also in total 43 18F-FDG avid metastases; these patients were excluded from radiotherapy. 18F-MISO PET/CT demonstrated 12/13 primary lung tumors with faint tracer uptake. Only one tumor was clearly 18F-FMISO avid, (SUVaverage = 3.4, SUVmax = 5.0). Mean values for 18F-FDG, as derived from dPET/CT data, were SUVaverage = 8.9, SUVmax = 15.1, K1 = 0.23, k2 = 0.53, k3 = 0.17, k4 = 0.02, influx = 0.05 and fractal dimension (FD) = 1.25 for the primary tumors. The respective values for 18F-FMISO were SUVaverage = 1.4, SUVmax = 2.2, K1 = 0.26, k2 = 0.56, k3 = 0.06, k4 = 0.06, influx = 0.02 and FD = 1.14. No statistically significant correlation was observed between the two tracers. 18F-FDG PET/CT changed therapy management in six patients, by excluding them from planned IMRT. 18F-FMISO PET/CT revealed absence of significant tracer uptake in the majority of the 18F-FDG avid NSCLCs. Lack of correlation between the two tracers’ kinetics indicates that they reflect different molecular mechanisms and implies the discordance between increased glycolysis and hypoxia in the malignancy. PMID:25973334

  13. Is (18)F-FDG PET really a promising marker for clinically relevant atherosclerosis?

    PubMed

    Brammen, Lindsay; Palumbo, Barbara; Lupattelli, Graziana; Sinzinger, Helmut

    2014-01-01

    Bural et al (2013), retrospectively investigated 143 subjects who received whole body fluorine-18-fluorodeoxyglucose- positron emission tomography ((18)F-FDG-PET) imaging for the assessment of non-cardiovascular diseases. They reported an increase of (18)F-FDG-positive lesions in various aortic segments, which increased with age, and were more pronounced in subjects being aged below 50 years as compared to those above 50. Bural et al also found the highest segmental (18)F-FDG-uptake in the descending thoracic aorta, but not in the abdominal aorta, where the majority of the most severe atherosclerotic lesions essentially appear. In addition, they did not appreciate any significant gender difference. Despite the severe limitation that no correlation to vascular disease, risk factors, or any clinical parameter was available, this report again raises the question as to what positive (18)F-FDG imaging really reflects and whether it will ever reach the great expectations. Conventional radiotracers revealed an excellent experimental correlation, as well as morphology. Uptake ratios of symptomatic lesion vs. contralateral unaffected side were comparable between (111)In-platelets, (123)I-LDL and (18)FFDG. There was also a mass strategic correlation, but no individual prediction of events at all. Due to better statistics, image quality and solution PET imaging of atherosclerosis holds great promise. However, correlations between various tracers and vascular wall characteristics (and staining methodologies) in 1% cholesterol fed rabbits reveal that (18)F-FDG is not always the best tracer. Vascular foam cell content is reflected by (111)In-HIG > (125)I-oxLp(a) > (18)F-FDG > (125)I-LDL (Brammen L, Palumbo B, Lupattelli G et al. Unpublished data). A close correlation to Framingham risk score is for example not helpful, as this score has a low predictive value of only 0.6. The available clinical correlations between (18)F-FDG-uptake and arterial wall characteristics are poor. For

  14. 18F-FDG as an inflammation biomarker for imaging dengue virus infection and treatment response

    PubMed Central

    Watanabe, Satoru; Herr, Keira J.; Kalimuddin, Shirin; Tham, Jing Yang; Ong, Joanne; Reolo, Marie; Serrano, Raymond M.F.; Cheung, Yin Bun; Low, Jenny G.H.; Vasudevan, Subhash G.

    2017-01-01

    Development of antiviral therapy against acute viral diseases, such as dengue virus (DENV), suffers from the narrow window of viral load detection in serum during onset and clearance of infection and fever. We explored a biomarker approach using 18F-fluorodeoxyglucose (18F-FDG) PET in established mouse models for primary and antibody-dependent enhancement infection with DENV. 18F-FDG uptake was most prominent in the intestines and correlated with increased virus load and proinflammatory cytokines. Furthermore, a significant temporal trend in 18F-FDG uptake was seen in intestines and selected tissues over the time course of infection. Notably, 18F-FDG uptake and visualization by PET robustly differentiated treatment-naive groups from drug-treated groups as well as nonlethal from lethal infections with a clinical strain of DENV2. Thus, 18F-FDG may serve as a novel DENV infection–associated inflammation biomarker for assessing treatment response during therapeutic intervention trials. PMID:28469088

  15. 18F-FDG PET/CT in detection of gynecomastia in patients with hepatocellular carcinoma.

    PubMed

    Wang, Hsin-Yi; Jeng, Long-Bin; Lin, Ming-Chia; Chao, Chih-Hao; Lin, Wan-Yu; Kao, Chia-Hung

    2013-01-01

    We retrospectively investigate the prevalence of gynecomastia as false-positive 2-[18F]fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) imaging in patients with hepatocellular carcinoma (HCC). Among the 127 male HCC patients who underwent 18F-FDG PET/CT scan, the 18FDG uptakes at the bilateral breasts in 9 patients with gynecomastia were recorded as standard uptake value (SUVmax) and the visual interpretation in both early and delayed images. The mean early SUVmax was 1.58/1.57 (right/left breast) in nine gynecomastia patients. The three patients with early visual score of 3 had higher early SUVmaxs. Gynecomastia is a possible cause of false-positive uptake on 18F-FDG PET/CT images. Copyright © 2013 Elsevier Inc. All rights reserved.

  16. Role of Fluorine-18-Fluorodeoxyglucose in the Work-up of Febrile AIDS Patients. Experience with Dual Head Coincidence Imaging.

    PubMed

    Santiago, Jonas F.; Jana, Suman; Gilbert, Holly M.; Salem, Shahenda; Bellman, Paul Curtis; Hsu, Ricky K.S.; Naddaf, Sleiman; Abdel-Dayem, Hussein M.

    1999-11-01

    OBJECTIVE AND METHODS: This study was undertaken to find the role of fluorine-18-fluorodeoxyglucose (F18-FDG) in the diagnostic work-up of febrile Acquired Immune Deficiency Syndrome (AIDS) patients. Forty-seven (42 male and 5 female; mean age = 40.3 years) febrile patients with AIDS underwent imaging with F18-FDG by Dual Head Coincidence Imaging (DHCI). Findings were correlated with other imaging modalities.RESULTS: Our data show good sensitivity for scanning with F18-FDG by DHCI in determining the extent of Castleman's disease, lymphoma, Kaposi's sarcoma (KS), adenocarcinoma, and germ cell carcinoma. Various opportunistic infections also manifest with increased F18-FDG uptake.CONCLUSION: Total-body imaging can be done with F18-FDG with better resolution and a shorter procedure time compared to imaging with Gallium-67 (Ga-67). Furthermore, F18-FDG is more sensitive than Ga-67 for evaluating extent of involvement in various pathologies affecting AIDS patients. The new technology of DHCI is a good alternative for hospitals with no dedicated positron emission tomography (PET) scanner.

  17. Imaging melphalan therapy response in preclinical extramedullary myeloma with 18F-FDOPA and 18F-FDG PET.

    PubMed

    Hathi, Deep; DeLassus, Elizabeth; Achilefu, Samuel; McConathy, Jonathan; Shokeen, Monica

    2018-04-26

    Multiple myeloma (MM) is a debilitating neoplasm of terminally differentiated plasma B-cells that has resulted in over 13,000 deaths in 2017 alone. Combination therapies involving melphalan, a small molecule DNA alkylating agent, are commonly prescribed to patients with relapsed/refractory MM, which necessitates the stratification of responding patients to minimize toxicities and improve quality of life. Here, we evaluated the use of 18 F-FDOPA, a clinically available positron emission tomography (PET) radiotracer with specificity to the L-type amino acid transporter-1 (LAT1), which also mediates melphalan uptake, for imaging melphalan therapy response in a preclinical immunocompetent model of MM. Methods: C57Bl/KaLwRij mice were implanted subcutaneously with unilateral murine 5TGM1-GFP tumors, and divided into three independent groups: untreated, treated beginning week 2, and treated beginning week 3 post tumor implantation. The untreated and week 2 therapy cohorts were imaged with preclinical magnetic resonance imaging (MRI) and dynamic 18 F-FDG and 18 F-FDOPA-PET/computed tomography (PET/CT) at week 4 on separate, contiguous days, while the week 3 therapy cohort was longitudinally imaged weekly for 2 weeks. Metabolic tumor volume, lesion avidity, maximum standard uptake value, and total uptake metrics were calculated for both tracers. Immunohistochemistry was performed on representative tissue from all groups for LAT1 and glucose transporter-1 (GLUT1) expression. Results: Melphalan therapy induced a statistically significant reduction in lesion avidity and uptake metrics for both 18 F-FDG and 18 F-FDOPA. There was no visible effect on GLUT1 expression, but LAT1 density was increased in the week 2 therapy cohort. Longitudinal imaging of the week 3 group showed variable changes in 18 F-FDG and 18 F-FDOPA uptake, with increase in 18 F-FDOPA lesion avidity in the 2nd week relative to baseline. LAT1 and GLUT1 surface density in the untreated tumor and week 3

  18. Fast and repetitive in-capillary production of [18F]FDG.

    PubMed

    Wester, Hans-Jürgen; Schoultz, Bent Wilhelm; Hultsch, Christina; Henriksen, Gjermund

    2009-04-01

    The increasing demand for radiopharmaceuticals to be provided reproducibly and flexibly with high frequency for clinical application and animal imaging would be better met by improved or even new strategies for automated tracer production. Radiosynthesis in microfluidic systems, i.e. narrow tubing with a diameter of approximately 50-500 microm, holds promise for providing the means for repetitive multidose and multitracer production. In this study, the performance of a conceptually simple microfluidic device integrated into a fully automated synthesis procedure for in-capillary radiosynthesis (ICR) of clinical grade [(18)F]FDG was evaluated. The instrumental set-up consisted of pumps for reagent and solvent delivery into small mixing chambers, micro-fluidic capillaries, in-process radioactivity monitoring, solid-phase extraction and on-column deprotection of the (18)F-labelled intermediate followed by on-line formulation of [(18)F]FDG. In-capillary(18)F-fluorination of 2.1 micromol 1,3,4,6-tetra-O-acetyl-2-O-trifluoromethanesulphonyl-beta-D-mannopyranose (TATM; precursor for [(18)F]FDG) in acetonitrile (MeCN) at a flow rate of 0.3 ml/min within 40 s and subsequent on-line hydrolysis of the intermediate by treatment with 0.3 M NaOH for 1 min at 40 degrees C resulted in a radiochemical yield of 88 +/- 4% within <7 min. Reproducibility, robustness and suitability as a fast and efficient radiopharmaceutical research tool for (18)F-fluorination was demonstrated by eight independent, sequentially performed ICRs which provided identical tracer quality (radiochemical purity >97%, MeCN <5 microg/ml) and similar absolute yields (approximately 1.4 GBq). The described ICR process is a simple and efficient alternative to classic radiotracer production systems and provides a comparatively cheap instrumental methodology for the repetitive production of [(18)F]FDG with remarkably high efficiency and high yield under fully automated conditions. Although the results concerning the

  19. Inflammatory cytokines and hypoxia contribute to 18F-FDG uptake by cells involved in pannus formation in rheumatoid arthritis.

    PubMed

    Matsui, Tamiko; Nakata, Norihito; Nagai, Shigenori; Nakatani, Akira; Takahashi, Miwako; Momose, Toshimitsu; Ohtomo, Kuni; Koyasu, Shigeo

    2009-06-01

    Assessment of the activity of rheumatoid arthritis (RA) is important for the prediction of future articular destruction. (18)F-FDG PET is known to represent the metabolic activity of inflammatory disease, which correlates with the pannus volume measured by MRI or ultrasonography. To evaluate the correlation between (18)F-FDG accumulation and RA pathology, we assessed (18)F-FDG accumulation in vivo using collagen-induced arthritis (CIA) animal models and (3)H-FDG uptake in vitro using various cells involved in arthritis. (18)F-FDG PET images of rats with CIA were acquired on days 10, 14, and 17 after arthritis induction. The specimens were subsequently subjected to macroautoradiography, and the (18)F-FDG accumulation was compared with the histologic findings. (3)H-FDG uptake in vitro in inflammatory cells (neutrophils, macrophages, T cells, and fibroblasts) was measured to evaluate the contributions of these cells to (18)F-FDG accumulation. In addition, the influence on (3)H-FDG uptake of inflammatory factors, such as cytokines (tumor necrosis factor alpha [TNFalpha], interleukin 1 [IL-1], and IL-6), and hypoxia was examined. (18)F-FDG PET depicted swollen joints, and (18)F-FDG accumulation increased with the progression of arthritis. Histologically, a higher level of (18)F-FDG accumulation correlated with the pannus rather than the infiltration of inflammatory cells around the joints. In the in vitro (3)H-FDG uptake assay, fibroblasts showed the highest (3)H-FDG uptake, followed by neutrophils. Although only a small amount of (3)H-FDG was incorporated by resting macrophages, a dramatic increase in (3)H-FDG uptake in both fibroblasts and macrophages was observed when these cells were exposed to inflammatory cytokines, such as TNFalpha and IL-1, and hypoxia. Although neutrophils showed relatively high (3)H-FDG uptake without activation, no increase in (3)H-FDG uptake was observed in response to inflammatory cytokines. (3)H-FDG uptake by T cells was much lower than

  20. Prospective study of serial 18F-FDG PET and 18F-fluoride (18F-NaF) PET to predict time to skeletal related events, time-to-progression, and survival in patients with bone-dominant metastatic breast cancer.

    PubMed

    Peterson, Lanell M; O'Sullivan, Janet; Wu, Qian Vicky; Novakova-Jiresova, Alena; Jenkins, Isaac; Lee, Jean H; Shields, Andrew; Montgomery, Susan; Linden, Hannah M; Gralow, Julie R; Gadi, Vijayakrishna K; Muzi, Mark; Kinahan, Paul E; Mankoff, David A; Specht, Jennifer M

    2018-05-10

    Assessing therapy response of breast cancer bone metastases is challenging. In retrospective studies, serial 18 F-FDG PET was predictive of time to skeletal related events (tSRE) and time-to-progression (TTP). 18 F-NaF PET improves bone metastasis detection compared to bone scans. We prospectively tested 18 F-FDG PET and 18 F-NaF PET to predict tSRE, TTP, and overall survival (OS) in patients with bone-dominant metastatic breast cancer (BD MBC). Methods: Patients with BD MBC were imaged with 18 F-FDG PET and 18 F-NaF PET prior to starting new therapy (scan1) and again at a range of times centered around approximately 4 months later (scan2). SUV max and SULpeak were recorded for a single index lesion and up to 5 most dominant lesions for each scan. tSRE, TTP, and OS were assessed exclusive of the PET images. Univariate Cox regression was performed to test the association between clinical endpoints and 18 F-FDG PET and 18 F-NaF PET measures. mPERCIST (Modified PET Response Criteria in Solid Tumors) criteria were also applied. Survival curves for mPERCIST compared response categories of Complete Response+Partial Response+Stable Disease versus Progressive Disease (CR+PR+SD vs PD) for tSRE, TTP, and OS. Results: Twenty-eight patients were evaluated. Higher FDG SULpeak at scan2 predicted shorter time to tSRE ( P = <0.001) and TTP ( P = 0.044). Higher FDG SUV max at scan2 predicted a shorter time to tSRE ( P = <0.001). A multivariable model using FDG SUV max of the index lesion at scan1 plus the difference in SUV max of up to 5 lesions between scans was predictive for tSRE and TTP. Among 24 patients evaluable by 18 F-FDG PET mPERCIST, tSRE and TTP were longer in responders (CR, PR, or stable) compared to non-responders (PD) ( P = 0.007, 0.028 respectively), with a trend toward improved survival ( P = 0.1). An increase in the uptake between scans of up to 5 lesions by 18 F-NaF PET was associated with longer OS ( P = 0.027). Conclusion: Changes in 18 F-FDG PET parameters

  1. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE PAGES

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    2014-05-28

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  2. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  3. Tumor aggressiveness and patient outcome in cancer of the pancreas assessed by dynamic 18F-FDG PET/CT.

    PubMed

    Epelbaum, Ron; Frenkel, Alex; Haddad, Riad; Sikorski, Natalia; Strauss, Ludwig G; Israel, Ora; Dimitrakopoulou-Strauss, Antonia

    2013-01-01

    This study aimed to assess the role of a quantitative dynamic PET model in pancreatic cancer as a potential index of tumor aggressiveness and predictor of survival. Seventy-one patients with (18)F-FDG-avid adenocarcinoma of the pancreas before treatment were recruited, including 27 with localized tumors (11 underwent pancreatectomy, and 16 had localized nonresectable tumors) and 44 with metastatic disease. Dynamic (18)F-FDG PET images were acquired over a 60-min period, followed by a whole-body PET/CT study. Quantitative data measurements were based on a 2-compartment model, and the following variables were calculated: VB (fractional blood volume in target area), K(1) and k(2) (kinetic membrane transport parameters), k(3) and k(4) (intracellular (18)F-FDG phosphorylation and dephosphorylation parameters, respectively), and (18)F-FDG INF (global (18)F-FDG influx). The single significant variable for overall survival (OS) in patients with localized disease was (18)F-FDG INF. Patients with a high (18)F-FDG INF (>0.033 min(-1)) had a median OS of 6 and 5 mo for nonresectable and resected tumors, respectively, versus 15 and 19 mo for a low (18)F-FDG INF in nonresectable and resected tumors, respectively (P < 0.04). In metastatic disease, multivariate analysis found VB, K(1), and k(3) to be significant variables for OS (P < 0.043, <0.031, and <0.009, respectively). Prognostic factors for OS in the entire group of patients that were significant at multivariate analysis were stage of disease, VB, K(1), and (18)F-FDG INF (P < 0.00035, <0.03, <0.024, and <0.008, respectively). Median OS for all patients with a high (18)F-FDG INF, low VB, and high K(1) was 3 mo, as opposed to 14 mo in patients with a low (18)F-FDG INF, high VB, and low K(1) (P < 0.021), irrespective of stage and resectability. Quantitative (18)F-FDG kinetic parameters measured by dynamic PET in newly diagnosed pancreatic cancer correlated with the aggressiveness of disease. The (18)F-FDG INF was the single

  4. (18)F-FDG uptake predicts diagnostic yield of transbronchial biopsy in peripheral lung cancer.

    PubMed

    Umeda, Yukihiro; Demura, Yoshiki; Anzai, Masaki; Matsuoka, Hiroki; Araya, Tomoyuki; Nishitsuji, Masaru; Nishi, Koichi; Tsuchida, Tatsuro; Sumida, Yasuyuki; Morikawa, Miwa; Ameshima, Shingo; Ishizaki, Takeshi; Kasahara, Kazuo; Ishizuka, Tamotsu

    2014-07-01

    Recent advances in endobronchial ultrasonography with a guide sheath (EBUS-GS) have enabled better visualization of distal airways, while virtual bronchoscopic navigation (VBN) has been shown useful as a guide to navigate the bronchoscope. However, indications for utilizing VBN and EBUS-GS are not always clear. To clarify indications for a bronchoscopic examination using VBN and EBUS-GS, we evaluated factors that predict the diagnostic yield of a transbronchial biopsy (TBB) procedure for peripheral lung cancer (PLC) lesions. We retrospectively reviewed the charts of 194 patients with 201 PLC lesions (≤3cm mean diameter), and analyzed the association of diagnostic yield of TBB with [(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG) positron emission tomography and chest computed tomography (CT) findings. The diagnostic yield of TBB using VBN and EBUS-GS was 66.7%. High maximum standardized uptake value (SUVmax), positive bronchus sign, and ground-glass opacity component shown on CT were all significant predictors of diagnostic yield, while multivariate analysis showed only high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign as significant predictors. Diagnostic yield was higher for PLC lesions with high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign (84.6%) than for those with SUVmax <2.8 and negative bronchus sign (33.3%). High (18)F-FDG uptake was also correlated with tumor invasiveness. High (18)F-FDG uptake predicted the diagnostic yield of TBB using VBN and EBUS-GS for PLC lesions. (18)F-FDG uptake and bronchus sign may indicate for the accurate application of bronchoscopy with those modalities for diagnosing PLC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Prognostic Value of 18F-FLT PET in Patients with Neuroendocrine Neoplasms: A Prospective Head-to-Head Comparison with 18F-FDG PET and Ki-67 in 100 Patients.

    PubMed

    Johnbeck, Camilla B; Knigge, Ulrich; Langer, Seppo W; Loft, Annika; Berthelsen, Anne Kiil; Federspiel, Birgitte; Binderup, Tina; Kjaer, Andreas

    2016-12-01

    Neuroendocrine neoplasms (NENs) constitute a heterogeneous group of tumors arising in various organs and with a large span of aggressiveness and survival rates. The Ki-67 proliferation index is presently used as the key marker of prognosis, and treatment guidelines are largely based on this index. 3'-deoxy-3'- 18 F-fluorothymidine ( 18 F-FLT) is a proliferation tracer for PET imaging valuable in the monitoring of disease progression and treatment response in various types of cancer. However, until now only data from 10 patients with NEN were available in the literature. The aim of the present study was to investigate 18 F-FLT PET as a prognostic marker for NENs in comparison with 18 F-FDG PET and Ki-67 index. One hundred patients were PET-scanned with both 18 F-FLT and 18 F-FDG within the same week, and the prognostic value of a positive scan was examined in terms of progression-free survival (PFS) and overall survival (OS). The correlation between the Ki-67 index and 18 F-FLT uptake was also investigated. Thirty-seven percent of patients had a positive 18 F-FLT PET scan, and 49% had 18 F-FDG PET-positive foci. Patients with a high 18 F-FLT uptake had a significantly shorter OS and PFS than patients with low or no 18 F-FLT uptake. No correlation was found between Ki-67 index and 18 F-FLT uptake. In a multivariate analysis 18 F-FLT, 18 F-FDG, and Ki-67 all were significant prognostic markers of PFS. For OS, only 18 F-FDG and Ki-67 remained significant. 18 F-FLT PET has prognostic value in NEN patients but when 18 F-FDG PET and Ki-67 index are also available, a multivariate model revealed that 18 F-FLT PET only adds information regarding PFS but not OS, whereas 18 F-FDG PET remains predictive of both PFS and OS. However, a clinically robust algorithm including 18 F-FLT in addition to 18 F-FDG and Ki-67 could not be found. Accordingly, the exact role, if any, of 18 F-FLT PET in NENs remains to be established. © 2016 by the Society of Nuclear Medicine and Molecular

  6. 18F-FDG SPECT/CT in the diagnosis of differentiated thyroid carcinoma with elevated thyroglobulin and negative iodine-131 scans.

    PubMed

    Ma, C; Wang, X; Shao, M; Zhao, L; Jiawei, X; Wu, Z; Wang, H

    2015-06-01

    Aim of the present study was to investigate the usefulness of 18F-FDG SPECT/CT in differentiated thyroid cancer (DTC) with elevated serum thyroglobulin (Tg) but negative iodine-131 scan. This retrospective review of patients with DTC recurrence who had 18F-FDG SPECT/CT and 18F-FDG PET/CT for elevated serum Tg but negative iodine-131 scan (March 2007-October 2012). After total thyroidectomy followed by radioiodine ablation, 86 consecutive patients with elevated Tg levels underwent 18F-FDG SPECT/CT or 18F-FDG PET/CT. Of these, 45 patients had 18F-FDG SPECT/CT, the other 41 patients had 18F-FDG PET/CT 3-4weeks after thyroid hormone withdrawal. The results of 18F-FDG PET/CT and SPECT/CT were correlated with patient follow-up information, which included the results from subsequent imaging modalities such as neck ultrasound, MRI and CT, Tg levels, and histologic examination of surgical specimens. The diagnostic accuracy of the two imaging modalities was evaluated. In 18F-FDG SPECT/CT scans, 24 (24/45) patients had positive findings, 22 true positive in 24 patients, false positive in 2 patients, true-negative and false-negative in 6, 15 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG SPECT/CT were 59.5%, 75% and 62.2%, respectively. Twenty six patients had positive findings on 18F-FDG PET/CT scans, 23 true positive in 26 (26/41) patients, false positive in 3 patients, true-negative and false-negative in 9, 6 patients, respectively. The overall sensitivity, specificity, and accuracy of 18F-FDG PET/CT were 79.3%, 81.8% and 78.1%, respectively. Clinical management changed for 13 (29%) of 45 patients by 18F-FDG SPECT/CT, 14 (34%) of 41 patients by 18F-FDG PET/CT including surgery, radiation therapy, or multikinase inhibitor. Based on the retrospective analysis of 86 patients, 18F-FDG SPECT/CT has lower sensitivity in the diagnosis of DTC recurrence with elevated Tg and negative iodine-131scan to 18F-FDG PET/CT. The clinical application of

  7. Can integrated 18F-FDG PET/MR replace sentinel lymph node resection in malignant melanoma?

    PubMed

    Schaarschmidt, Benedikt Michael; Grueneisen, Johannes; Stebner, Vanessa; Klode, Joachim; Stoffels, Ingo; Umutlu, Lale; Schadendorf, Dirk; Heusch, Philipp; Antoch, Gerald; Pöppel, Thorsten Dirk

    2018-06-06

    To compare the sensitivity and specificity of 18F-fluordesoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT), 18F-FDG PET/magnetic resonance (18F-FDG PET/MR) and 18F-FDG PET/MR including diffusion weighted imaging (DWI) in the detection of sentinel lymph node metastases in patients suffering from malignant melanoma. Fifty-two patients with malignant melanoma (female: n = 30, male: n = 22, mean age 50.5 ± 16.0 years, mean tumor thickness 2.28 ± 1.97 mm) who underwent 18F-FDG PET/CT and subsequent PET/MR & DWI for distant metastasis staging were included in this retrospective study. After hybrid imaging, lymphoscintigraphy including single photon emission computed tomography/CT (SPECT/CT) was performed to identify the sentinel lymph node prior to sentinel lymph node biopsy (SLNB). In a total of 87 sentinel lymph nodes in 64 lymph node basins visible on SPECT/CT, 17 lymph node metastases were detected by histopathology. In separate sessions PET/CT, PET/MR, and PET/MR & DWI were assessed for sentinel lymph node metastases by two independent readers. Discrepant results were resolved in a consensus reading. Sensitivities, specificities, positive predictive values and negative predictive values were calculated with histopathology following SPECT/CT guided SLNB as a reference standard. Compared with histopathology, lymph nodes were true positive in three cases, true negative in 65 cases, false positive in three cases and false negative in 14 cases in PET/CT. PET/MR was true positive in four cases, true negative in 63 cases, false positive in two cases and false negative in 13 cases. Hence, we observed a sensitivity, specificity, positive predictive value and negative predictive value of 17.7, 95.6, 50.0 and 82.3% for PET/CT and 23.5, 96.9, 66.7 and 82.3% for PET/MR. In DWI, 56 sentinel lymph node basins could be analyzed. Here, the additional analysis of DWI led to two additional false positive findings, while the number of true

  8. Diagnostic and prognostic value of 18F-FDG PET/CT in recurrent germinal tumor carcinoma.

    PubMed

    Alongi, Pierpaolo; Evangelista, Laura; Caobelli, Federico; Spallino, Marianna; Gianolli, Luigi; Midiri, Massimo; Picchio, Maria

    2018-01-01

    The aim of this bicentric retrospective study was to assess the diagnostic performance, the prognostic value, the incremental prognostic value and the impact on therapeutic management of 18 F-FDG PET/CT in patients with suspected recurrent germinal cell testicular carcinoma (GCT). From the databases of two centers including 31,500 18 F-FDG PET/CT oncological studies, 114 patients affected by GCT were evaluated in a retrospective study. All 114 patients underwent 18 F-FDG PET/CT for suspected recurrent disease. Diagnostic performance of visually interpreted 18 F-FDG PET/CT and potential impact on the treatment decision were assessed using histology (17 patients), other diagnostic imaging modalities (i.e., contrast enhanced CT in 89 patients and MRI in 15) and clinical follow-up (114 patients) as reference. Progression-free survival (PFS) and overall survival (OS) rates were computed by means of Kaplan-Meier survival analysis. The progression rate (Hazard Ratio-HR) was determined using univariate Cox regression analysis by considering various clinical variables. Recurrent GCT was confirmed in 47 of 52 patients with pathological 18 F-FDG PET/CT findings, by means of histology in 18 patients and by other diagnostic imaging modalities/follow-up in 29. Sensitivity, specificity, accuracy, positive and negative likelihood ratio (LR+ and LR-, respectively), pre-test Odds-ratio and post-test Odds-ratio of 18 FDG PET/CT were 86.8%, 90.2%, 88.4%, 8.85, 0.14, 0.85, 8.85, respectively. 18 F-FDG PET/CT impacted significantly on therapeutic management in 26/114 (23%) cases (from palliative to curative in 12 patients, from "wait and watch" to new chemotherapy in six patients and the "wait-and-watch" approach in eight patients with unremarkable findings). At 2 and 5-year follow-up, PFS was significantly longer in patients with a negative than a pathological 18 F-FDG PET/CT scan (98% and 95% vs 48% and 38%, respectively; p = 0.02). An unremarkable scan was associated also with a

  9. Diagnosing neuroleukemiosis: Is there a role for 18F-FDG-PET/CT?

    PubMed

    Sabaté-Llobera, A; Cortés-Romera, M; Gamundí-Grimalt, E; Sánchez-Fernández, J J; Rodríguez-Bel, L; Gámez-Cenzano, C

    An imaging case is presented on a patient referred to our department for an 18 F-FDG-PET/CT, as a paraneoplastic syndrome was suspected due to his clinical situation. He had a history of acute myeloid leukemia (AML) treated two years earlier, with sustained complete remission to date. 18 F-FDG-PET/CT findings revealed hypermetabolism in almost all nerve roots, suggesting meningeal spread, consistent with the subsequent MRI findings. Cerebrospinal fluid (CSF) findings confirmed a leptomeningeal reactivation of AML. Although not many studies have evaluated the role of 18 F-FDG-PET/CT in leukemia, it is a noninvasive tool for detecting extramedullary sites of disease and a good imaging alternative for those patients on whom an MRI cannot be performed. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  10. Whole-body MRI versus 18F-FDG PET/CT for pretherapeutic assessment and staging of lymphoma: a meta-analysis.

    PubMed

    Wang, Danyang; Huo, Yanlei; Chen, Suyun; Wang, Hui; Ding, Yingli; Zhu, Xiaochun; Ma, Chao

    2018-01-01

    18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) is the reference standard in staging of 18 F-FDG-avid lymphomas; however, there is no recommended functional imaging modality for indolent lymphomas. Therefore, we aimed to compare the performance of whole-body magnetic resonance imaging (WB-MRI) with that of 18 F-FDG PET/CT for lesion detection and initial staging in patients with aggressive or indolent lymphoma. We searched the MEDLINE, EMBASE, and CENTRAL databases for studies that compared WB-MRI with 18 F-FDG PET/CT for lymphoma staging or lesion detection. The methodological quality of the studies was assessed using version 2 of the "Quality Assessment of Diagnostic Accuracy Studies" tool. The pooled staging accuracy ( μ ) of WB-MRI and 18 F-FDG PET/CT for initial staging and for assessing possible heterogeneity ( χ 2 ) across studies were calculated using commercially available software. Eight studies comprising 338 patients were included. In terms of staging, the meta-analytic staging accuracies of WB-MRI and 18 F-FDG PET/CT for Hodgkin lymphoma and aggressive non-Hodgkin lymphoma (NHL) were 98% (95% CI, 94%-100%) and 98% (95% CI, 94%-100%), respectively. The pooled staging accuracy of 18 F-FDG PET/CT dropped to 87% (95% CI, 72%-97%) for staging in patients with indolent lymphoma, whereas that of WB-MRI remained 96% (95% CI, 91%-100%). Subgroup analysis indicated an even lower staging accuracy of 18 F-FDG PET/CT for staging of less FDG-avid indolent NHLs (60%; 95% CI, 23%-92%), in contrast to the superior performance of WB-MRI (98%; 95% CI, 88%-100%). WB-MRI is a promising radiation-free imaging technique that may serve as a viable alternative to 18 F-FDG PET/CT for staging of 18 FDG-avid lymphomas, where 18 F-FDG PET/CT remains the standard of care. Additionally, WB-MRI seems a less histology-dependent functional imaging test than 18 F-FDG PET/CT and may be the imaging test of choice for staging of indolent NHLs

  11. Multimodal correlation of dynamic [18F]-AV-1451 perfusion PET and neuronal hypometabolism in [18F]-FDG PET.

    PubMed

    Hammes, Jochen; Leuwer, Isabel; Bischof, Gérard N; Drzezga, Alexander; van Eimeren, Thilo

    2017-12-01

    Cerebral glucose metabolism measured with [18F]-FDG PET is a well established marker of neuronal dysfunction in neurodegeneration. The tau-protein tracer [18F]-AV-1451 PET is currently under evaluation and shows promising results. Here, we assess the feasibility of early perfusion imaging with AV-1451 as a substite for FDG PET in assessing neuronal injury. Twenty patients with suspected neurodegeneration underwent FDG and early phase AV-1451 PET imaging. Ten one-minute timeframes were acquired after application of 200 MBq AV-1451. FDG images were acquired on a different date according to clinical protocol. Early AV-1451 timeframes were coregistered to individual FDG-scans and spatially normalized. Voxel-wise intermodal correlations were calculated on within-subject level for every possible time window. The window with highest pooled correlation was considered optimal. Z-transformed deviation maps (ZMs) were created from both FDG and early AV-1451 images, comparing against FDG images of healthy controls. Regional patterns and extent of perfusion deficits were highly comparable to metabolic deficits. Best results were observed in a time window from 60 to 360 s (r = 0.86). Correlation strength ranged from r = 0.96 (subcortical gray matter) to 0.83 (frontal lobe) in regional analysis. ZMs of early AV-1451 and FDG images were highly similar. Perfusion imaging with AV-1451 is a valid biomarker for assessment of neuronal dysfunction in neurodegenerative diseases. Radiation exposure and complexity of the diagnostic workup could be reduced significantly by routine acquisition of early AV-1451 images, sparing additional FDG PET.

  12. 18F-FDG PET/CT in gastric MALT lymphoma: a bicentric experience.

    PubMed

    Albano, Domenico; Bertoli, Mattia; Ferro, Paola; Fallanca, Federico; Gianolli, Luigi; Picchio, Maria; Giubbini, Raffaele; Bertagna, Francesco

    2017-04-01

    The role of 18F-FDG-PET/CT in evaluating gastric MALT lymphoma is still controversial. In the literature the detection rate of 18F-FDG-PET/CT in patients with gastric MALT lymphoma is variable, and the reason for this heterogeneity is not still clear. Our aim was to investigate the particular metabolic behavior of these lymphoma. Sixty-nine patients (26 female, 43 male) with histologically confirmed gastric MALT lymphoma who underwent a 18F-FDG-PET/CT for initial staging from two centers were included. The PET images were analyzed visually and semi-quantitatively by measuring the maximum standardized uptake value (SUVmax), lesion-to-liver SUVmax ratio, and lesion-to-blood pool SUVmax ratio and compared with Ann Arbor stage, epidemiological (age, sex), histological (presence of gastritis, ulcer, H. pylori infection, plasmacytic differentiation, Ki-67 index), and morphological (tumor size, superficial lesions or mass-forming) characteristics. Thirty-six patients (52 %) had positive PET/CT (average SUVmax was 9±6.7; lesion-to-liver SUVmax ratio 3.7±2.6, lesion-to-blood pool SUVmax ratio 4.8±3.3) at the corresponding gastric lesion; the remaining 33 were not 18F-FDG-avid. In the univariate analysis, 18F-FDG avidity was significantly associated with morphological features (mass forming p<0.001 and high maximum diameter p<0.001), Ann Arbor stage (p=0.010), and Ki67 index (p<0.001) and not correlated with age, sex, presence of gastritis, ulcer, Helicobacter pylori infection, and plasmacytic differentiation. In the multivariate analysis, the correlations with gross morphological appearance, Ann Arbor stage, and Ki-67 score were confirmed. SUVmax, lesion-to-liver SUVmax ratio, and lesion-to-blood pool SUVmax ratio correlated significantly only with Ki67 index (p=0.047; p=0.012; p=0.042). 18F-FDG avidity was noted in 52 % of gastric MALT lymphoma and this avidity is correlated with gross morphological characteristics, tumor stage, and Ki-67 index. SUVmax, lesion

  13. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    PubMed

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  14. A multicenter clinical trial on the diagnostic value of dual-tracer PET/CT in pulmonary lesions using 3'-deoxy-3'-18F-fluorothymidine and 18F-FDG.

    PubMed

    Tian, Jiahe; Yang, Xiaofeng; Yu, Lijuan; Chen, Ping; Xin, Jun; Ma, Liming; Feng, Huiru; Tan, Yieyin; Zhao, Zhoushe; Wu, Wenkai

    2008-02-01

    Some new radiotracers might add useful information and improve diagnostic confidence of (18)F-FDG imaging in tumors. A multicenter clinical trial was designed to investigate the diagnostic performance of dual-tracer ((18)F-FDG and 3'-deoxy-3'-(18)F-fluorothymidine [(18)F-FLT]) PET/CT in pulmonary nodules. Fifty-five patients underwent dual-tracer imaging in 6 imaging centers using the same models of equipment and standardized protocols. The images were interpreted by a collective group of readers who were unaware of the clinical data. The diagnostic performance using either tracer alone or dual-tracers together, with or without CT, was compared. The histological diagnosis or clinical findings in a 12-mo follow-up period served as the standard of truth. In 16 patients with malignant tumor, 16 with tuberculosis, and 23 with other benign lesions, the sensitivity and specificity of (18)F-FDG and (18)F-FLT were 87.5% and 58.97% and 68.75% and 76.92%, respectively. The combination of dual-tracer PET/CT improved the sensitivity and specificity up to 100% and 89.74%. The 3 subgroups of patients could be best separated when the (18)F-FLT/(18)F-FDG standardized uptake value ratio of 0.4-0.90 was used as the threshold. By reflecting different biologic features, the dual-tracer PET/CT using (18)F-FDG and (18)F-FLT favorably affected the diagnosis of lung nodules.

  15. Detection of bladder metabolic artifacts in (18)F-FDG PET imaging.

    PubMed

    Roman-Jimenez, Geoffrey; Crevoisier, Renaud De; Leseur, Julie; Devillers, Anne; Ospina, Juan David; Simon, Antoine; Terve, Pierre; Acosta, Oscar

    2016-04-01

    Positron emission tomography using (18)F-fluorodeoxyglucose ((18)F-FDG-PET) is a widely used imaging modality in oncology. It enables significant functional information to be included in analyses of anatomical data provided by other image modalities. Although PET offers high sensitivity in detecting suspected malignant metabolism, (18)F-FDG uptake is not tumor-specific and can also be fixed in surrounding healthy tissue, which may consequently be mistaken as cancerous. PET analyses may be particularly hampered in pelvic-located cancers by the bladder׳s physiological uptake potentially obliterating the tumor uptake. In this paper, we propose a novel method for detecting (18)F-FDG bladder artifacts based on a multi-feature double-step classification approach. Using two manually defined seeds (tumor and bladder), the method consists of a semi-automated double-step clustering strategy that simultaneously takes into consideration standard uptake values (SUV) on PET, Hounsfield values on computed tomography (CT), and the distance to the seeds. This method was performed on 52 PET/CT images from patients treated for locally advanced cervical cancer. Manual delineations of the bladder on CT images were used in order to evaluate bladder uptake detection capability. Tumor preservation was evaluated using a manual segmentation of the tumor, with a threshold of 42% of the maximal uptake within the tumor. Robustness was assessed by randomly selecting different initial seeds. The classification averages were 0.94±0.09 for sensitivity, 0.98±0.01 specificity, and 0.98±0.01 accuracy. These results suggest that this method is able to detect most (18)F-FDG bladder metabolism artifacts while preserving tumor uptake, and could thus be used as a pre-processing step for further non-parasitized PET analyses. Copyright © 2016. Published by Elsevier Ltd.

  16. Brain energy metabolism and neuroinflammation in ageing APP/PS1-21 mice using longitudinal 18F-FDG and 18F-DPA-714 PET imaging.

    PubMed

    Takkinen, Jatta S; López-Picón, Francisco R; Al Majidi, Rana; Eskola, Olli; Krzyczmonik, Anna; Keller, Thomas; Löyttyniemi, Eliisa; Solin, Olof; Rinne, Juha O; Haaparanta-Solin, Merja

    2017-08-01

    Preclinical animal model studies of brain energy metabolism and neuroinflammation in Alzheimer's disease have produced conflicting results, hampering both the elucidation of the underlying disease mechanism and the development of effective Alzheimer's disease therapies. Here, we aimed to quantify the relationship between brain energy metabolism and neuroinflammation in the APP/PS1-21 transgenic mouse model of Alzheimer's disease using longitudinal in vivo 18 F-FDG and 18 F-DPA-714) PET imaging and ex vivo brain autoradiography. APP/PS1-21 (TG, n = 9) and wild type control mice (WT, n = 9) were studied longitudinally every third month from age 6 to 15 months with 18 F-FDG and 18 F-DPA-714 with a one-week interval between the scans. Additional TG (n = 52) and WT (n = 29) mice were used for ex vivo studies. In vivo, the 18 F-FDG SUVs were lower and the 18 F-DPA-714 binding ratios relative to the cerebellum were higher in the TG mouse cortex and hippocampus than in WT mice at age 12 to 15 months ( p < 0.05). The ex vivo cerebellum binding ratios supported the results of the in vivo 18 F-DPA-714 studies but not the 18 F-FDG studies. This longitudinal PET study demonstrated decreased energy metabolism and increased inflammation in the brains of APP/PS1-21 mice compared to WT mice.

  17. A method to quantify at late imaging a release rate of 18F-FDG in tissues.

    PubMed

    Laffon, Eric; Allard, Michèle; Marthan, Roger; Ducassou, Dominique

    2005-08-01

    This theoretical work shows that the rate constant for the (18)F-FDG release in tissues can be assessed without needing any arterial blood sampling. The method requires that the clearance of (18)F-FDG from plasma has occurred, whereas (18)F-FDG is still present in the tissue. This condition can be met dating from 3 h after (18)F-FDG injection, when hydration and/or phlorizin injection are applied after the routine static acquisition. The release rate constant can be obtained from a graphical analysis performed at the later decreasing phase of the tissue tracer activity. A two-compartment and a three-compartment model are developed, both in accordance with one another. To cite this article: E. Laffon et al., C. R. Biologies 328 (2005).

  18. Assessing the role of 18F-FDG PET and 18F-FDG PET/CT in the diagnosis of soft tissue musculoskeletal malignancies – A systematic review and meta-analysis

    PubMed Central

    Etchebehere, Elba C.; Hobbs, Brian P.; R.Milton, Denái; Malawi, Osama; Patel, Shreyaskumar; Benjamin, Robert S.; Macapinlac, Homer A.

    2016-01-01

    Purpose Twelve years ago a meta-analysis evaluated the diagnostic performance of 18F-FDG PET in assessing musculoskeletal soft tissue lesions (MsSTL). Currently, PET/CT has substituted PET imaging however there has not been any published meta-analysis on the use of PET/CT or a comparison of PET/CT with PET in the diagnosis of MsSTL. Therefore, we conducted a meta-analysis to identify the current diagnostic performance of 18F-FDG PET/CT and determine if there is added value when compared to PET. Patients and Methods A systematic review of English articles using MEDLINE PubMed, the Cochrane Library and EMBASE were searched from 1996 to March 2015. Studies exploring the diagnostic accuracy of 18F-FDG PET/CT (or dedicated PET) compared to histopathology in patients with MsSTL undergoing investigation for malignancy were included. Results Our meta-analysis included 14 articles composed of 755 patients with 757 soft tissue lesions. There were 451 (60%) malignant tumors and 306 benign lesions. The 18F-FDG PET/CT (and dedicated PET) mean sensitivity, specificity, accuracy, positive and negative predictive values for diagnosing MsSTL was 0.96 (0.90, 1.00), 0.77 (0.67, 0.86), 0.88 (0.85, 0.91), 0.86 (0.78, 0.94) and 0.91 (0.83, 0.99), respectively. The posterior mean (95% HPD interval) for the AUC was 0.92 (0.88, 0.96). PET/CT had higher specificity, accuracy and positive predictive value when compared to a dedicated PET (0.85, 0.89 and 0.91 vs 0.71, 0.85 and 0.82, respectively). Conclusions 18F-FDG PET/CT and dedicated PET are both highly accurate in the diagnosis of MsSTL. PET/CT is more accurate, specific and has a higher positive predictive value than PET. PMID:26631240

  19. The diagnostic value of 18F-FDG-PET/CT and MRI in suspected vertebral osteomyelitis - a prospective study.

    PubMed

    Kouijzer, Ilse J E; Scheper, Henk; de Rooy, Jacky W J; Bloem, Johan L; Janssen, Marcel J R; van den Hoven, Leon; Hosman, Allard J F; Visser, Leo G; Oyen, Wim J G; Bleeker-Rovers, Chantal P; de Geus-Oei, Lioe-Fee

    2018-05-01

    The aim of this study was to determine the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) and magnetic resonance imaging (MRI) in diagnosing vertebral osteomyelitis. From November 2015 until December 2016, 32 patients with suspected vertebral osteomyelitis were prospectively included. All patients underwent both 18 F-FDG-PET/CT and MRI within 48 h. All images were independently reevaluated by two radiologists and two nuclear medicine physicians who were blinded to each others' image interpretation. 18 F-FDG-PET/CT and MRI were compared to the clinical diagnosis according to international guidelines. For 18 F-FDG-PET/CT, sensitivity, specificity, PPV, and NPV in diagnosing vertebral osteomyelitis were 100%, 83.3%, 90.9%, and 100%, respectively. For MRI, sensitivity, specificity, PPV, and NPV were 100%, 91.7%, 95.2%, and 100%, respectively. MRI detected more epidural/spinal abscesses. An important advantage of 18 F-FDG-PET/CT is the detection of metastatic infection (16 patients, 50.0%). 18 F-FDG-PET/CT and MRI are both necessary techniques in diagnosing vertebral osteomyelitis. An important advantage of 18 F-FDG-PET/CT is the visualization of metastatic infection, especially in patients with bacteremia. MRI is more sensitive in detection of small epidural abscesses.

  20. Use of [18F]FDG PET to Monitor The Development of Cardiac Allograft Rejection

    PubMed Central

    Daly, Kevin P.; Dearling, Jason L. J.; Seto, Tatsuichiro; Dunning, Patricia; Fahey, Frederic; Packard, Alan B.; Briscoe, David M.

    2014-01-01

    Background Positron Emission Tomography (PET) has the potential to be a specific, sensitive and quantitative diagnostic test for transplant rejection. To test this hypothesis, we evaluated 18F-labeled fluorodeoxyglucose ([18F]FDG) and 13N-labeled ammonia ([13N]NH3) small animal PET imaging in a well-established murine cardiac rejection model. Methods Heterotopic transplants were performed using minor MHC mismatched B6.C-H2bm12 donor hearts in C57BL/6(H-2b) recipients. C57BL/6 donor hearts into C57BL/6 recipients served as isograft controls. [18F]FDG PET imaging was performed weekly between post-transplant days 7 and 42 and the percent injected dose was computed for each graft. [13N]NH3 imaging was performed to evaluate myocardial perfusion. Results There was a significant increase in [18F]FDG uptake in allografts from day 14 to day 21 (1.6% to 5.2%; P<0.001) and uptake in allografts was significantly increased on post-transplant days 21 (5.2% vs. 0.9%; P=0.005) and 28 (4.8% vs. 0.9%; P=0.006) compared to isograft controls. Furthermore, [18F]FDG uptake correlated with an increase in rejection within allografts between days 14 and 28 post-transplant. Finally, the uptake of [13N]NH3 was significantly lower relative to the native heart in allografts with chronic vasculopathy compared to isograft controls on day 28 (P=0.01). Conclusions PET imaging with [18F]FDG can be used following transplantation to monitor the evolution of rejection. In addition, decreased uptake of [13N]NH3 in rejecting allografts may be reflective of decreased myocardial blood flow. These data suggest that combined [18F]FDG and [13N]NH3 PET imaging could be used as a non-invasive, quantitative technique for serial monitoring of allograft rejection and has potential application in human transplant recipients. PMID:25675207

  1. Early dynamic 18F-FDG PET to detect hyperperfusion in hepatocellular carcinoma liver lesions.

    PubMed

    Schierz, Jan-Henning; Opfermann, Thomas; Steenbeck, Jörg; Lopatta, Eric; Settmacher, Utz; Stallmach, Andreas; Marlowe, Robert J; Freesmeyer, Martin

    2013-06-01

    In addition to angiographic data on vascularity and vascular access, demonstration of hepatocellular carcinoma (HCC) liver nodule hypervascularization is a prerequisite for certain intrahepatic antitumor therapies. Early dynamic (ED) (18)F-FDG PET/CT could serve this purpose when the current standard method, contrast-enhanced (CE) CT, or other CE morphologic imaging modalities are unsuitable. A recent study showed ED (18)F-FDG PET/CT efficacy in this setting but applied a larger-than-standard (18)F-FDG activity and an elaborate protocol likely to hinder routine use. We developed a simplified protocol using standard activities and easily generated visual and descriptive or quantitative endpoints. This pilot study assessed the ability of these endpoints to detect HCC hyperperfusion and, thereby, evaluated the suitability in of the protocol everyday practice. Twenty-seven patients with 34 HCCs (diameter ≥ 1.5 cm) with hypervascularization on 3-phase CE CT underwent liver ED (18)F-FDG PET for 240 s, starting with (18)F-FDG (250-MBq bolus injection). Four frames at 15-s intervals, followed by 3 frames at 60-s intervals were reconstructed. Endpoints included focal tracer accumulation in the first 4 frames (60 s), subsequent focal washout, and visual and quantitative differences between tumor and liver regions of interest in maximum and mean ED standardized uptake value (ED SUVmax and ED SUVmean, respectively) 240-s time-activity curves. All 34 lesions were identified by early focal (18)F-FDG accumulation and faster time-to-peak ED SUVmax or ED SUVmean than in nontumor tissue. Tumor peak ED SUVmax and ED SUVmean exceeded liver levels in 85% and 53%, respectively, of lesions. Nadir tumor signal showed no consistent pattern relative to nontumor signal. HCC had a significantly shorter time to peak and significantly faster rate to peak for both ED SUVmax and ED SUVmean curves and a significantly higher peak ED SUVmax but not peak ED SUVmean than the liver. This pilot study

  2. Progressing Toward a Cohesive Pediatric 18F-FDG PET/MR Protocol: Is Administration of Gadolinium Chelates Necessary?

    PubMed

    Klenk, Christopher; Gawande, Rakhee; Tran, Vy Thao; Leung, Jennifer Trinh; Chi, Kevin; Owen, Daniel; Luna-Fineman, Sandra; Sakamoto, Kathleen M; McMillan, Alex; Quon, Andy; Daldrup-Link, Heike E

    2016-01-01

    With the increasing availability of integrated PET/MR scanners, the utility and need for MR contrast agents for combined scans is questioned. The purpose of our study was to evaluate whether administration of gadolinium chelates is necessary for evaluation of pediatric tumors on (18)F-FDG PET/MR images. First, in 119 pediatric patients with primary and secondary tumors, we used 14 diagnostic criteria to compare the accuracy of several MR sequences: unenhanced T2-weighted fast spin-echo imaging; unenhanced diffusion-weighted imaging; and-before and after gadolinium chelate contrast enhancement-T1-weighted 3-dimensional spoiled gradient echo LAVA (liver acquisition with volume acquisition) imaging. Next, in a subset of 36 patients who had undergone (18)F-FDG PET within 3 wk of MRI, we fused the PET images with the unenhanced T2-weighted MR images (unenhanced (18)F-FDG PET/MRI) and the enhanced T1-weighted MR images (enhanced (18)F-FDG PET/MRI). Using the McNemar test, we compared the accuracy of the two types of fused images using the 14 diagnostic criteria. We also evaluated the concordance between (18)F-FDG avidity and gadolinium chelate enhancement. The standard of reference was histopathologic results, surgical notes, and follow-up imaging. There was no significant difference in diagnostic accuracy between the unenhanced and enhanced MR images. Accordingly, there was no significant difference in diagnostic accuracy between the unenhanced and enhanced (18)F-FDG PET/MR images. (18)F-FDG avidity and gadolinium chelate enhancement were concordant in 30 of the 36 patients and 106 of their 123 tumors. Gadolinium chelate administration is not necessary for accurate diagnostic characterization of most solid pediatric malignancies on (18)F-FDG PET/MR images, with the possible exception of focal liver lesions. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  3. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.

    PubMed

    Trägårdh, Malene; Møller, Niels; Sørensen, Michael

    2015-09-01

    PET with the glucose analog (18)F-FDG is used to measure regional tissue metabolism of glucose. However, (18)F-FDG may have affinities different from those of glucose for plasma membrane transporters and intracellular enzymes; the lumped constant (LC) can be used to correct these differences kinetically. The aims of this study were to investigate the feasibility of measuring human hepatic glucose metabolism with dynamic (18)F-FDG PET/CT and to determine an operational LC for (18)F-FDG by comparison with (3)H-glucose measurements. Eight healthy human subjects were included. In all studies, (18)F-FDG and (3)H-glucose were mixed in saline and coadministered. A 60-min dynamic PET recording of the liver was performed for 180 min with blood sampling from catheters in a hepatic vein and a radial artery (concentrations of (18)F-FDG and (3)H-glucose in blood). Hepatic blood flow was determined by indocyanine green infusion. First, 3 subjects underwent studies comparing bolus administration and constant-infusion administration of tracers during hyperinsulinemic-euglycemic clamping. Next, 5 subjects underwent studies comparing fasting and hyperinsulinemic-euglycemic clamping with tracer infusions. Splanchnic extraction fractions of (18)F-FDG (E*) and (3)H-glucose (E) were calculated from concentrations in blood, and the LC was calculated as ln(1 - E*)/ln(1 - E). Volumes of interest were drawn in the liver tissue, and hepatic metabolic clearance of (18)F-FDG (mL of blood/100 mL of liver tissue/min) was estimated. For bolus versus infusion, E* values were always negative when (18)F-FDG was administered as a bolus and were always positive when it was administered as an infusion. For fasting versus clamping, E* values were positive in 4 of 5 studies during fasting and were always positive during clamping. Negative extraction fractions were ascribed to the tracer distribution in the large volume of distribution in the prehepatic splanchnic bed. The LC ranged from 0.43 to 2

  4. Added value of 18F-FDG PET/CT in diagnosing infected hip prosthesis.

    PubMed

    Kwee, Robert M; Broos, Wouter Am; Brans, Boudewijn; Walenkamp, Geert Him; Geurts, Jan; Weijers, René E

    2018-05-01

    Background The diagnosis of infected hip prosthesis is frequently not straightforward yet very important as it changes treatment. Purpose To retrospectively investigate the added value of 18F-FDG PET/CT to conventional tests including radiography, erythrocyte sedimentation rate (ESR)/C-reactive protein (CRP) testing, and joint aspiration, in diagnosing infected hip prosthesis. Material and Methods Seventy-eight hip prostheses of 78 patients (55% men; mean age = 66.5 years; age range = 30-85 years) with non-specific clinical presentation, i.e. no abscess or sinus tract communicating with the joint space at clinical examination, were analyzed. Cultures of intra-articular fluid and peri-implant tissues after revision surgery or clinical follow-up ≥6 months served as gold standard. Areas under the receiver operating characteristic curves (AUCs) of radiography, ESR/CRP testing, aspiration culture, and white blood cell (WBC) count without and with the addition of 18F-FDG PET/CT were compared. Results The addition of 18F-FDG PET/CT increased AUCs: for radiography with 0.212, P = 0.001; for ESR/CRP testing with 0.076, P = 0.072; for aspiration culture with 0.126, P = 0.032; and for aspiration WBC count with 0.191, P = 0.035. Conclusion This study shows that 18F-FDG PET/CT adds to individual conventional tests in diagnosing infected hip prosthesis. It may improve the preoperative planning and should therefore be considered in the diagnostic work-up. Future studies should define the exact place of 18F-FDG PET/CT in the diagnostic work-up of periprosthetic joint infection.

  5. Paraneoplastic syndromes: detection of malignant tumors using [(18)F]FDG-PET.

    PubMed

    Berner, U; Menzel, C; Rinne, D; Kriener, S; Hamscho, N; Döbert, N; Diehl, M; Kaufmann, R; Grünwald, F

    2003-06-01

    Paraneoplastic syndromes (PS) comprise a variety of clinical symptoms and diseases associated with underlying malignancy. Differentiation towards benign autoimmune diseases is necessary due to different therapeutic options. This diagnostic challenge includes cost- and time-consuming methods and is not successful in many cases. The aim of this study was the evaluation of [(18)F]fluorodeoxyglucose positron emission tomography ([(18)F]FDG-PET) for detecting or ruling out malignancy in these patients. In this retrospective work-up a total of 30 patients with suspected PS (m:f = 17:13, mean age 55, range 22-76 years) were examined with [(18)F]FDG-PET between 1996 and 2001. Diagnoses were erythrodermia, cerebellar degeneration, dermatomyositis, polyneuropathia and others. PET scans were compared to histopathological (n=14), radiological and follow up data (mean follow up 3.6 years, range 1-6 years). In 7 out of 30 patients (23%) an underlying malignancy was detected. Six out of 7 malignant neoplasms showed a distinctly increased glucose consumption. One benign neoplasm caused increased tracer uptake, another PET positive patient refused biopsy and showed no growth of a malignant tumour during clinical follow up of 28 months. The remaining 21 patients without suspicious glucose consumption did not demonstrate a malignancy in other diagnostic modalities or during subsequent clinical follow-up. [(18)F]FDG-PET seems to be a useful tool in the diagnostic work-up of patients with suspected paraneoplastic syndrome.

  6. 18F-FDG PET/CT delayed images with forced diuresis for revaluating abdominopelvic malignancies.

    PubMed

    Wang, Hui-Chun; Wang, Zhi-Min; Wang, Yu-Bin; Chen, Xiao-Hong; Cui, Lan-Lan

    2017-05-01

    The aim of this retrospective study was to evaluate the role of delayed images after forced diuresis coupled with oral hydration in abdominopelvic 18 F-FDG PET/CT. Forty-six patients consisting of 17 urological diseases, 9 gynecological tumors, 18 colorectal malignancies, and 2 cancers of unknown primary site were retrospectively analyzed. All patients who presented with indeterminate or equivocal abdominopelvic foci on standard 18 F-FDG PET/CT underwent a delayed abdominopelvic imaging after administration of 20 mg furosemide intravenously and extra water intake of 500 mL. PET/CT images before and after furosemide were compared with each other and their findings correlated with pathology or clinical follow-up (>6 months). On initial PET/CT, the glucose metabolism characters of lesions were disguised by radioactive urine, or some undetermined 18 F-FDG accumulating foci near the urinary tract appeared. While postdiuretic PET/CT demonstrated an excellent urinary tracer washout, and hypermetabolic lesions could be clearly detected and precisely localized in all cases. On the other hand, the suspected active foci caused by potential stagnation of excreted 18 F-FDG in urinary tract were eliminated. The sensitivity, specificity, and accuracy were 94.4% (34/36), 8/10, 91.3% (42/46), respectively. Furthermore, the additional lesions with surrounding invasion or locoregional metastasis were discovered in 8 of 46 (17.4%) patients only by the delayed images, including 2 gynecological and 6 rectal malignancies. Detection of abdominopelvic malignancies can be improved using delayed 18 F-FDG PET/CT images after a diuretic and oral hydration.

  7. Comparison between endoscopic macroscopic classification and F-18 FDG PET findings in gastric mucosa-associated lymphoid tissue lymphoma patients.

    PubMed

    Hirose, Yasumitsu; Kaida, Hayato; Ishibashi, Masatoshi; Uozumi, Jun; Arikawa, Shunji; Kurata, Seiji; Hayabuchi, Naofumi; Nakahara, Keita; Ohshima, Koichi

    2012-02-01

    The aim of this study was to compare endoscopic macroscopic classification with fluorine-18 fluorodeoxyglucose (F-18 FDG) uptake in gastric mucosa-associated lymphoid tissue (MALT) lymphoma and to investigate the usefulness of F-18 FDG positron emission tomography (PET) for diagnosing gastric MALT lymphoma. Sixteen patients with gastric MALT lymphoma who underwent F-18 FDG PET and gastrointestinal imaging modalities were included in this study. Sixteen healthy asymptomatic participants undergoing both F-18 FDG PET and endoscopy for cancer screening were in the control group. We investigated the difference of F-18 FDG uptake between the gastric MALT lymphoma and the control group and compared the uptake pattern in gastric MALT lymphoma with our macroscopic classification. The endoscopic findings of 16 gastric MALT lymphoma patients were classified macroscopically as chronic gastritis-like tumors (n = 6), depressed tumors (n = 5), and protruding tumors (n = 5). Abnormal gastric F-18 FDG uptake was observed in 63% of tumors in the gastric MALT lymphoma group and 50% of cases in the control group. The median maximum standardized uptake values for gastric MALT lymphoma patients and control group were 4.0 and 2.6, respectively, the difference of which was statistically significant (P = 0.003). F-18 FDG uptake results were positive for all protruding tumors but only 50% for chronic gastritis-like tumors and 40% for depressed-type tumors. F-18 FDG PET may be a useful method for evaluating protrusion-type gastric MALT lymphoma. When strong focal or diffuse F-18 FDG uptake is detected in the stomach, endoscopic biopsy should be performed, even if the endoscopic finding is chronic gastritis.

  8. Novel synthesis and initial preclinical evaluation of (18)F-[FDG] labeled rhodamine: a potential PET myocardial perfusion imaging agent.

    PubMed

    AlJammaz, Ibrahim; Al-Otaibi, Basim; AlHindas, Hussein; Okarvi, Subhani M

    2015-10-01

    Myocardial perfusion imaging is one of the most commonly performed investigations in nuclear medicine studies. Due to the clinical importance of [(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) and its availability in almost every PET center, a new radiofluorinated [(18)F]-FDG-rhodamine conjugate was synthesized using [(18)F]-FDG as a prosthetic group. In a convenient and simple one-step radiosynthesis, [(18)F]-FDG-rhodamine conjugate was prepared in quantitative radiochemical yields, with total synthesis time of nearly 20 min and radiochemical purity of greater than 98%, without the need for HPLC purification, which make these approaches amenable for automation. Biodistribution studies in normal rats at 60 min post-injection demonstrated a high uptake in the heart (>11% ID/g) and favorable pharmacokinetics. Additionally, [(18)F]-FDG-rhodamine showed an extraction value of 27.63%±5.12% in rat hearts. These results demonstrate that [(18)F]-FDG-rhodamine conjugate may be useful as an imaging agent for the positron emission tomography evaluation of myocardial perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Diagnostic value of 18F-FDG-PET/CT for the follow-up and restaging of soft tissue sarcomas in adults.

    PubMed

    Kassem, T W; Abdelaziz, O; Emad-Eldin, S

    2017-10-01

    The purpose of this study was to evaluate the clinical utility of 2-[ 18 F] fluoro-2-deoxy-D-glucose ( 18 FDG) positron emission tomography (PET)/computed tomography (CT) ( 18 F-FDG-PET/CT) in the follow-up of adult patients with soft tissue sarcomas. We prospectively evaluated 37 consecutive patients with known soft tissue sarcoma with 18 F-FDG-PET/CT examination for suspected recurrence of disease. They were 21 men and 16 women with a mean age of 49.6±10.6 (SD) years (range, 34-75years). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of 18 F-FDG-PET/CT examination were calculated on a per patient basis. 18 F-FDG-PET/CT showed an overall diagnostic accuracy of 91.8%, sensitivity of 90% and a specificity of 100%. The positive predictive value and negative predictive value were 100 and 70%, respectively. The 18 F-FDG-PET/CT interpretations were correct in 34/37 patients (91.8%). Incorrect interpretations occurred in three patients (8.1%). Reasons for false negative findings were low 18 F-FDG uptake of local recurrence in one patient and low 18 F-FDG uptake of subcentimetric inguinal lymph node metastases. 18 F-FDG-PET/CT has a high diagnostic value in the follow-up of patients with soft tissue sarcoma. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  10. [(18)F]FDG PET Neuroimaging Predicts Pentylenetetrazole (PTZ) Kindling Outcome in Rats.

    PubMed

    Bascuñana, Pablo; Javela, Julián; Delgado, Mercedes; Fernández de la Rosa, Rubén; Shiha, Ahmed Anis; García-García, Luis; Pozo, Miguel Ángel

    2016-10-01

    Epileptogenesis, i.e., development of epilepsy, involves a number of processes that alter the brain function in the way that triggers spontaneous seizures. Kindling is one of the most used animal models of temporal lobe epilepsy (TLE) and epileptogenesis, although chemical kindling suffers from high inter-assay success unpredictability. This study was aimed to analyze the eventual regional brain metabolic changes during epileptogenesis in the pentylenetetrazole (PTZ) kindling model in order to obtain a predictive kindling outcome parameter. In vivo longitudinal positron emission tomography (PET) scans with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) along the PTZ kindling protocol (35 mg/kg intraperitoneally (i.p.), 18 sessions) in adult male rats were performed in order to evaluate the regional brain metabolism. The half of the PTZ-injected rats reached the kindled state. In addition, a significant decrease of [(18)F]FDG uptake at the end of the protocol in most of the brain structures of kindled animals was found, reflecting the characteristic epilepsy-associated hypometabolism. However, PTZ-injected animals but not reaching the kindled state did not show this widespread brain hypometabolism. Retrospective analysis of the data revealed that hippocampal [(18)F]FDG uptake normalized to pons turned out to be a predictive index of the kindling outcome. Thus, a 19.06 % reduction (p = 0.008) of the above parameter was found in positively kindled rats compared to non-kindled ones just after the fifth PTZ session. Non-invasive PET neuroimaging was a useful tool for discerning epileptogenesis progression in this animal model. Particularly, the [(18)F]FDG uptake of the hippocampus proved to be an early predictive parameter to differentiate resistant and non-resistant animals to the PTZ kindling.

  11. Technologist radiation exposure in routine clinical practice with 18F-FDG PET.

    PubMed

    Guillet, Benjamin; Quentin, Pierre; Waultier, Serge; Bourrelly, Marc; Pisano, Pascale; Mundler, Olivier

    2005-09-01

    The use of 18F-FDG for clinical PET studies increases technologist radiation dose exposure because of the higher gamma-radiation energy of this isotope than of other conventional medical gamma-radiation-emitting isotopes. Therefore, 18F-FDG imaging necessitates stronger radiation protection requirements. The aims of this study were to assess technologist whole-body and extremity exposure in our PET department and to evaluate the efficiency of our radiation protection devices (homemade syringe drawing device, semiautomated injector, and video tracking of patients). Radiation dose assessment was performed for monodose as well as for multidose 18F-FDG packaging with both LiF thermoluminescence dosimeters (TLD) and electronic personal dosimeters (ED) during 5 successive 18F-FDG PET steps (from syringe filling to patient departure). The mean +/- SD total effective doses received by technologists (n = 50) during all of the working steps were 3.24 +/- 2.1 and 3.01 +/- 1.4 microSv, respectively, as measured with ED and TLD (345 +/- 84 MBq injected). These values were confirmed by daily TLD technologist whole-body dose measurements (2.98 +/- 1.8 microSv; 294 +/- 78 MBq injected; n = 48). Finger irradiation doses during preparation of single 18F-FDG syringes were 204.9 +/- 24 and 198.4 +/- 23 microSv with multidose vials (345 +/- 93 MBq injected) and 127.3 +/- 76 and 55.9 +/- 47 microSv with monodose vials (302 +/- 43 MBq injected) for the right hand and the left hand, respectively. The protection afforded by the semiautomated injector, estimated as the ratio of the doses received by TLD placed on the syringe shield and on the external face of the injector, was near 2,000. These results showed that technologist radiation doses in our PET department were lower than those reported in the literature. This finding may be explained by the use of a homemade syringe drawing device, a semiautomated injector, and patient video tracking, allowing a shorter duration of contact between

  12. Optimization of the reference region method for dual pharmacokinetic modeling using Gd-DTPA/MRI and (18) F-FDG/PET.

    PubMed

    Poulin, Éric; Lebel, Réjean; Croteau, Étienne; Blanchette, Marie; Tremblay, Luc; Lecomte, Roger; Bentourkia, M'hamed; Lepage, Martin

    2015-02-01

    The combination of MRI and positron emission tomography (PET) offers new possibilities for the development of novel methodologies. In pharmacokinetic image analysis, the blood concentration of the imaging compound as a function of time, [i.e., the arterial input function (AIF)] is required for MRI and PET. In this study, we tested whether an AIF extracted from a reference region (RR) in MRI can be used as a surrogate for the manually sampled (18) F-FDG AIF for pharmacokinetic modeling. An MRI contrast agent, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) and a radiotracer, (18) F-fluorodeoxyglucose ((18) F-FDG), were simultaneously injected in a F98 glioblastoma rat model. A correction to the RR AIF for Gd-DTPA is proposed to adequately represent the manually sampled AIF. A previously published conversion method was applied to convert this AIF into a (18) F-FDG AIF. The tumor metabolic rate of glucose (TMRGlc) calculated with the manually sampled (18) F-FDG AIF, the (18) F-FDG AIF converted from the RR AIF and the (18) F-FDG AIF converted from the corrected RR AIF were found not statistically different (P>0.05). An AIF derived from an RR in MRI can be accurately converted into a (18) F-FDG AIF and used in PET pharmacokinetic modeling. © 2014 Wiley Periodicals, Inc.

  13. F-18 FDG PET/CT in 26 patients with SAPHO syndrome: a new vision of clinical and bone scintigraphy correlation.

    PubMed

    Sun, Xiaochuan; Li, Chen; Cao, Yihan; Shi, Ximin; Li, Li; Zhang, Weihong; Wu, Xia; Wu, Nan; Jing, Hongli; Zhang, Wen

    2018-05-22

    Whole-body bone scintigraphy (WBBS) and MRI are widely used in assessment of patients with synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. However, the value of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in SAPHO syndrome was unclear. The aim of this study was to characterize the manifestation of SAPHO syndrome on 18 F-FDG PET/CT and explore its relationship with clinical symptoms and WBBS. Twenty-six patients who suffered from SAPHO syndrome and had undergone whole-body 18 F-FDG PET/CT were recruited in Peking Union Medical College Hospital from 2004 to 2016. Clinical manifestations and laboratory findings were recorded for all patients. Imaging data on 18F-FDG PET/CT and WBBS were collected and analyzed retrospectively. All the 26 patients (20 females and 6 males) exhibited skeletal abnormalities on 18 F-FDG PET/CT. Multiple skeletal lesions affecting the anterior chest wall or spine with low to moderate 18 F-FDG uptake and coexistence of osteolysis and osteosclerosis presented as the typical features of SAPHO syndrome. Sixteen (61.5%) patients had abnormal 18 F-FDG uptake outside the osteoarticular system. PET scan had moderate to substantial agreement with CT and WBBS in revealing lesions in the anterior chest wall and axial skeleton. Nonetheless, the correlation between increased 18 F-FDG uptake and clinical symptoms was weak. SAPHO syndrome exhibits characteristic features on 18 F-FDG PET/CT. It showed comparable capacity in revealing skeletal lesions with bone scintigraphy.

  14. Characterization of 'cold' vertebrae on 18F-FDG PET/CT.

    PubMed

    Jaimini, Abhinav; D'Souza, Maria M; Seniaray, Nikhil; Sharma, Harshul; Arbind, Arpana; Sharma, Rajnish; Mondal, Anupam

    2016-01-01

    A photon-deficient ('cold') vertebra on fluorine-18 fluorodeoxyglucose (F-FDG) PET is a known entity and can arise as a result of varying etiologies. A proper interpretation of this observation is required to make an accurate diagnosis for appropriate management. Twelve cases with 'cold' vertebrae on F-FDG PET/computed tomography (CT) were selected and analyzed from a population of 600 patients with a known malignancy who had undergone whole-body F-FDG PET/CT for staging, disease viability assessment, response to treatment, or suspected recurrence purposes. The patterns were studied and correlated with clinical history and the results of the low-dose CT performed with the PET scan for attenuation correction and anatomical localization. The most common cause for cold vertebrae was found to be postexternal radiotherapy, causing photopenia involving multiple vertebrae corresponding to the radiotherapy portals. Two other causes found in the study were the destruction of the vertebral marrow cavity by metastatic tumor cells and vertebral hemangioma. Characteristic features of 'cold' vertebrae have been described in the study with illustrations. Pattern recognition coupled with clinical history and CT correlation of 'cold' vertebrae on F-FDG PET/CT can help in diagnosing the correct underlying etiology, which can help in better management of the patients.

  15. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    PubMed Central

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  16. Adrenergic pathway activation enhances brown adipose tissue metabolism: A [18F]FDG PET/CT study in mice

    PubMed Central

    Mirbolooki, M. Reza; Upadhyay, Sanjeev Kumar; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar

    2013-01-01

    Objective Pharmacologic approaches to study brown adipocyte activation in vivo with a potential of being translational to humans are desired. The aim of this study was to examine pre- and postsynaptic targeting of adrenergic system for enhancing brown adipose tissue (BAT) metabolism quantifiable by [18F]fluoro-2-deoxyglucose ([18F]FDG) positron emission tomography (PET)/ computed tomography (CT) in mice. Methods A β3-adrenoreceptor selective agonist (CL 316243), an adenylyl cyclase enzyme activator (forskolin) and a potent blocker of presynaptic norepinephrine transporter (atomoxetine) were injected through the tail vein of Swiss Webster mice 30 minutes before intravenous (iv) administration of [18F]FDG. The mice were placed on the PET/CT bed for 30 min PET acquisition followed by 10 min CT acquisition for attenuation correction and anatomical delineation of PET images. Results Activated interscapular (IBAT), cervical, periaortic and intercostal BAT were observed in 3-dimentional analysis of [18F]FDG PET images. CL 316243 increased the total [18F]FDG standard uptake value (SUV) of IBAT 5-fold greater compared to that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.4-fold), and muscle (2.7-fold), as compared to the control. There was no significant difference in heart, brain, spleen and liver uptakes between groups. Forskolin increased [18F]FDG SUV of IBAT 1.9-fold greater than that in placebo-treated mice. It also increased the [18F]FDG SUV of white adipose tissue (2.2-fold) and heart (5.4-fold) compared to control. There was no significant difference in muscle, brain, spleen, and liver uptakes between groups. Atomoxetine increased [18F]FDG SUV of IBAT 1.7-fold greater than that in placebo-treated mice. There were no significant differences in all other organs compared to placebo-treated mice except liver (1.6 fold increase). A positive correlation between SUV levels of IBAT and CT hounsfiled unit (HU) (R2=0.55, p<0.001) and

  17. Risk stratification of gallbladder polyps (1-2 cm) for surgical intervention with 18F-FDG PET/CT.

    PubMed

    Lee, Jaehoon; Yun, Mijin; Kim, Kyoung-Sik; Lee, Jong-Doo; Kim, Chun K

    2012-03-01

    We assessed the value of (18)F-FDG uptake in the gallbladder polyp (GP) in risk stratification for surgical intervention and the optimal cutoff level of the parameters derived from GP (18)F-FDG uptake for differentiating malignant from benign etiologies in a select, homogeneous group of patients with 1- to 2-cm GPs. Fifty patients with 1- to 2-cm GPs incidentally found on the CT portion of PET/CT were retrospectively analyzed. All patients had histologic diagnoses. GP (18)F-FDG activity was visually scored positive (≥liver) or negative (18)F-FDG-related parameters in risk stratification. Twenty GPs were classified as malignant and 30 as benign. Multivariate analyses showed that the age and all parameters (visual criteria, SUVgp, and GP/L) related to (18)F-FDG uptake were significant risk factors, with the GP/L being the most significant. The sex, size of GPs, and presence of concurrent gallstones were found to be insignificant. (18)F-FDG uptake in a GP is a strong risk factor that can be used to determine the necessity of surgical intervention more effectively than other known risk factors. However, all criteria derived from (18)F-FDG uptake presented in this series may be applicable to the assessment of 1- to 2-cm GPs.

  18. Multicenter comparison of 18F-FDG and 68Ga-DOTA-peptide PET/CT for pulmonary carcinoid.

    PubMed

    Lococo, Filippo; Perotti, Germano; Cardillo, Giuseppe; De Waure, Chiara; Filice, Angelina; Graziano, Paolo; Rossi, Giulio; Sgarbi, Giorgio; Stefanelli, Antonella; Giordano, Alessandro; Granone, Pierluigi; Rindi, Guido; Versari, Annibale; Rufini, Vittoria

    2015-03-01

    The aims of this study were to retrospectively evaluate and compare the detection rate (DR) of 68Ga-DOTA-peptide and 18F-FDG PET/CT in the preoperative workup of patients with pulmonary carcinoid (PC) and to assess the utility of various functional indices obtained with the 2 tracers in predicting the histological characterization of PC, that is, typical versus atypical. Thirty-three consecutive patients with confirmed PC referred for 18F-FDG and 68Ga-DOTA-peptide PET/CT in 2 centers between January 2009 and April 2013 were included. The semiquantitative evaluation included the SUV max, the SUV of the tumor relative to the maximal liver uptake for 18F-FDG (SUV T/L) or the maximal spleen uptake for 68Ga-DOTA-peptides (SUV T/S), the ratio between SUV max of 68Ga-DOTA-peptides PET/CT, and the SUV max of 18F-FDG PET/CT (SUV max ratio). Histology was used as reference standard. Definitive diagnosis consisted of 23 typical carcinoids (TCs) and 10 atypical carcinoids. 18F-FDG PET/CT was positive in 18 cases and negative in 15 (55% DR). 68Ga-DOTA-peptide PET/CT was positive in 26 cases and negative in 7 (79% DR). In the subgroup analysis, 68Ga-DOTA-peptide PET/CT was superior in detecting TC (91% DR; P < 0.001), whereas 18F-FDG PET/CT was superior in detecting atypical carcinoid (100% DR; P = 0.04). The SUV max ratio was the most accurate semiquantitative index in identifying TC. Overall diagnostic performance of PET/CT in detecting PC is optimal when integrating 18F-FDG and 68Ga-DOTA-peptide PET/CT findings. In the subgroup analysis, the SUV max ratio seems to be the most accurate index in predicting TC. Both methods should be performed when PC is suspected or when the histological subtype is undefined.

  19. Heterogeneity in Intratumor Correlations of 18F-FDG, 18F-FLT, and 61Cu-ATSM PET in Canine Sinonasal Tumors

    PubMed Central

    Bradshaw, Tyler J.; Bowen, Stephen R.; Jallow, Ngoneh; Forrest, Lisa J.; Jeraj, Robert

    2014-01-01

    Intratumor heterogeneity in biologic properties and in relationships between various phenotypes may present a challenge for biologically targeted therapies. Understanding the relationships between different phenotypes in individual tumor types could help inform treatment selection. The goal of this study was to characterize spatial correlations of glucose metabolism, proliferation, and hypoxia in 2 histologic types of tumors. Methods Twenty canine veterinary patients with spontaneously occurring sinonasal tumors (13 carcinomas and 7 sarcomas) were imaged with 18F-FDG, 18F-labeled 39-deoxy-39-fluorothymidine (18F-FLT), and 61Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone) (61Cu-ATSM) PET/CT on 3 consecutive days. Precise positioning and immobilization techniques coupled with anesthesia enabled motionless scans with repeatable positioning. Standardized uptake values (SUVs) of gross sarcoma and carcinoma volumes were compared by use of Mann– Whitney U tests. Patient images were rigidly registered together, and intratumor tracer uptake distributions were compared. Voxel-based Spearman correlation coefficients were used to quantify intertracer correlations, and the correlation coefficients of sarcomas and carcinomas were compared. The relative overlap of the highest uptake volumes of the 3 tracers was quantified, and the values were compared for sarcomas and carcinomas. Results Large degrees of heterogeneity in SUV measures and phenotype correlations were observed. Carcinoma and sarcoma tumors differed significantly in SUV measures, with carcinoma tumors having significantly higher 18F-FDG maximum SUVs than sarcoma tumors (11.1 vs. 5.0; P = 0.01) as well as higher 61Cu-ATSM mean SUVs (2.6 vs. 1.2; P = 0.02). Carcinomas had significantly higher population-averaged Spearman correlation coefficients than sarcomas in comparisons of 18F-FDG and 18F-FLT (0.80 vs. 0.61; P = 0.02), 18F-FLT and 61Cu-ATSM (0.83 vs. 0.38; P < 0.0001), and 18F-FDG and 61Cu-ATSM (0.82 vs. 0

  20. Is integrated 18F-FDG PET/MRI superior to 18F-FDG PET/CT in the differentiation of incidental tracer uptake in the head and neck area?

    PubMed

    Schaarschmidt, Benedikt Michael; Gomez, Benedikt; Buchbender, Christian; Grueneisen, Johannes; Nensa, Felix; Sawicki, Lino Morris; Ruhlmann, Verena; Wetter, Axel; Antoch, Gerald; Heusch, Philipp

    2017-01-01

    We aimed to investigate the accuracy of 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) compared with contrast-enhanced 18F-FDG PET/computed tomography (PET/CT) for the characterization of incidental tracer uptake in examinations of the head and neck. A retrospective analysis of 81 oncologic patients who underwent contrast-enhanced 18F-FDG PET/CT and subsequent PET/MRI was performed by two readers for incidental tracer uptake. In a consensus reading, discrepancies were resolved. Each finding was either characterized as most likely benign, most likely malignant, or indeterminate. Using all available clinical information including results from histopathologic sampling and follow-up examinations, an expert reader classified each finding as benign or malignant. McNemar's test was used to compare the performance of both imaging modalities in characterizing incidental tracer uptake. Forty-six lesions were detected by both modalities. On PET/CT, 27 lesions were classified as most likely benign, one as most likely malignant, and 18 as indeterminate; on PET/MRI, 31 lesions were classified as most likely benign, one lesion as most likely malignant, and 14 as indeterminate. Forty-three lesions were benign and one lesion was malignant according to the reference standard. In two lesions, a definite diagnosis was not possible. McNemar's test detected no differences concerning the correct classification of incidental tracer uptake between PET/CT and PET/MRI (P = 0.125). In examinations of the head and neck area, incidental tracer uptake cannot be classified more accurately by PET/MRI than by PET/CT.

  1. Positron emission tomography with [ 18F]-FDG in oncology

    NASA Astrophysics Data System (ADS)

    Talbot, J. N.; Petegnief, Y.; Kerrou, K.; Montravers, F.; Grahek, D.; Younsi, N.

    2003-05-01

    Positron Emission Tomography (PET) is a several decade old imaging technique that has more recently demonstrated its utility in clinical applications. The imaging agents used for PET contain a positron emmiter coupled to a molecule that drives the radionuclide to target organs or to tissues performing the targetted biological function. PET is then part of functional imaging. As compared to conventional scintigraphy that uses gamma photons, the coincidence emission of two 511 keV annihilation photons in opposite direction that finally results from by beta plus decay makes it possible for PET to get rid of the collimators that greatly contribute to the poor resolution of scintigraphy. In this article, the authors describe the basics of physics for PET imaging and report on the clinical performances of the most commonly used PET tracer: [ 18F]-fluorodeoxyglucose (FDG). A recent and promising development in this field is fusion of images coming from different imaging modalities. New PET machines now include a CT and this fusion is therefore much easier.

  2. Very low-dose adult whole-body tumor imaging with F-18 FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Naveed, Muhammad; McGrath, Mary; Lisi, Michele; Lavalley, Cathy; Feiglin, David

    2015-03-01

    The aim of this study was to evaluate if effective radiation dose due to PET component in adult whole-body tumor imaging with time-of-flight F-18 FDG PET/CT could be significantly reduced. We retrospectively analyzed data for 10 patients with the body mass index ranging from 25 to 50. We simulated F-18 FDG dose reduction to 25% of the ACR recommended dose via reconstruction of simulated shorter acquisition time per bed position scans from the acquired list data. F-18 FDG whole-body scans were reconstructed using time-of-flight OSEM algorithm and advanced system modeling. Two groups of images were obtained: group A with a standard dose of F-18 FDG and standard reconstruction parameters and group B with simulated 25% dose and modified reconstruction parameters, respectively. Three nuclear medicine physicians blinded to the simulated activity independently reviewed the images and compared diagnostic quality of images. Based on the input from the physicians, we selected optimal modified reconstruction parameters for group B. In so obtained images, all the lesions observed in the group A were visible in the group B. The tumor SUV values were different in the group A, as compared to group B, respectively. However, no significant differences were reported in the final interpretation of the images from A and B groups. In conclusion, for a small number of patients, we have demonstrated that F-18 FDG dose reduction to 25% of the ACR recommended dose, accompanied by appropriate modification of the reconstruction parameters provided adequate diagnostic quality of PET images acquired on time-of-flight PET/CT.

  3. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images.

    PubMed

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S; Lin, Weili; Shen, Dinggang

    2015-09-01

    Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient's exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [(18)F]FDG PET image by using a low-dose brain [(18)F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. The authors employ a regression forest for predicting the standard-dose brain [(18)F]FDG PET image by low-dose brain [(18)F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [(18)F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [(18)F]FDG PET image and substantially enhanced image quality of low

  4. Prediction of standard-dose brain PET image by using MRI and low-dose brain [18F]FDG PET images

    PubMed Central

    Kang, Jiayin; Gao, Yaozong; Shi, Feng; Lalush, David S.; Lin, Weili; Shen, Dinggang

    2015-01-01

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. As yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [18F]FDG PET image by using a low-dose brain [18F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [18F]FDG PET image by low-dose brain [18F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [18F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [18F]FDG PET image and substantially enhanced

  5. Impact of angiogenesis-related gene expression on the tracer kinetics of 18F-FDG in colorectal tumors.

    PubMed

    Strauss, Ludwig G; Koczan, Dirk; Klippel, Sven; Pan, Leyun; Cheng, Caixia; Willis, Stefan; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2008-08-01

    18F-FDG kinetics are primarily dependent on the expression of genes associated with glucose transporters and hexokinases but may be modulated by other genes. The dependency of 18F-FDG kinetics on angiogenesis-related gene expression was evaluated in this study. Patients with primary colorectal tumors (n = 25) were examined with PET and 18F-FDG within 2 days before surgery. Tissue specimens were obtained from the tumor and the normal colon during surgery, and gene expression was assessed using gene arrays. Overall, 23 angiogenesis-related genes were identified with a tumor-to-normal ratio exceeding 1.50. Analysis revealed a significant correlation between k1 and vascular endothelial growth factor (VEGF-A, r = 0.51) and between fractal dimension and angiopoietin-2 (r = 0.48). k3 was negatively correlated with VEGF-B (r = -0.46), and a positive correlation was noted for angiopoietin-like 4 gene (r = 0.42). A multiple linear regression analysis was used for the PET parameters to predict the gene expression, and a correlation coefficient of r = 0.75 was obtained for VEGF-A and of r = 0.76 for the angiopoietin-2 expression. Thus, on the basis of these multiple correlation coefficients, angiogenesis-related gene expression contributes to about 50% of the variance of the 18F-FDG kinetic data. The global 18F-FDG uptake, as measured by the standardized uptake value and influx, was not significantly correlated with angiogenesis-associated genes. 18F-FDG kinetics are modulated by angiogenesis-related genes. The transport rate for 18F-FDG (k1) is higher in tumors with a higher expression of VEGF-A and angiopoietin-2. The regression functions for the PET parameters provide the possibility to predict the gene expression of VEGF-A and angiopoietin-2.

  6. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    PubMed

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  7. Long-term quality assurance of [(18)F]-fluorodeoxyglucose (FDG) manufacturing.

    PubMed

    Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter

    2016-01-01

    Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of (18)F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade "A" isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade "A" isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [(18)F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems.

  8. Long-term quality assurance of [18F]-fluorodeoxyglucose (FDG) manufacturing

    PubMed Central

    Gaspar, Ludovit; Reich, Michal; Kassai, Zoltan; Macasek, Fedor; Rodrigo, Luis; Kruzliak, Peter; Kovac, Peter

    2016-01-01

    Nine years of experience with 2286 commercial synthesis allowed us to deliver comprehensive information on the quality of 18F-FDG production. Semi-automated FDG production line using Cyclone 18/9 machine (IBA Belgium), TRACERLab MXFDG synthesiser (GE Health, USA) using alkalic hydrolysis, grade “A” isolator with dispensing robotic unit (Tema Sinergie, Italy), and automatic control system under GAMP5 (minus2, Slovakia) was assessed by TQM tools as highly reliable aseptic production line, fully compliant with Good Manufacturing Practice and just-in-time delivery of FDG radiopharmaceutical. Fluoride-18 is received in steady yield and of very high radioactive purity. Synthesis yields exhibited high variance connected probably with quality of disposable cassettes and chemicals sets. Most performance non-conformities within the manufacturing cycle occur at mechanical nodes of dispensing unit. The long-term monitoring of 2286 commercial synthesis indicated high reliability of automatic synthesizers. Shewhart chart and ANOVA analysis showed that minor non-compliances occurred were mostly caused by the declinations of less experienced staff from standard operation procedures, and also by quality of automatic cassettes. Only 15 syntheses were found unfinished and in 4 cases the product was out-of-specification of European Pharmacopoeia. Most vulnerable step of manufacturing was dispensing and filling in grade “A” isolator. Its cleanliness and sterility was fully controlled under the investigated period by applying hydrogen peroxide vapours (VHP). Our experience with quality assurance in the production of [18F]-fluorodeoxyglucose (FDG) at production facility of BIONT based on TRACERlab MXFDG production module can be used for bench-marking of the emerging manufacturing and automated manufacturing systems. PMID:27508102

  9. 18F-FDG PET/CT in Detecting Metastatic Infection in Children.

    PubMed

    Kouijzer, Ilse J E; Blokhuis, Gijsbert J; Draaisma, Jos M T; Oyen, Wim J G; de Geus-Oei, Lioe-Fee; Bleeker-Rovers, Chantal P

    2016-04-01

    Metastatic infection is a severe complication of bacteremia with high morbidity and mortality. The aim of this study was to investigate the diagnostic value of 18F-FDG PET combined with CT (FDG PET/CT) in children suspected of having metastatic infection. The results of FDG PET/CT scans performed in children because of suspected metastatic infection from September 2003 to June 2013 were analyzed retrospectively. The results were compared with the final clinical diagnosis. FDG PET/CT was performed in 13 children with suspected metastatic infection. Of the total number of FDG PET/CT scans, 38% were clinically helpful. Positive predictive value of FDG PET/CT was 71%, and negative predictive value was 100%. FDG PET/CT appears to be a valuable diagnostic technique in children with suspected metastatic infection. Prospective studies of FDG PET/CT as part of a structured diagnostic protocol are needed to assess the exact additional diagnostic value.

  10. 18F-FDG PET/CT Can Predict Development of Thyroiditis due to Immunotherapy for Lung Cancer.

    PubMed

    Eshghi, Naghmehossadat; Garland, Linda; Nia, Emily Saghar; Betancourt, Robert; Krupinski, Elizabeth; Kuo, Phillip H

    2018-03-29

    Objective: For patients undergoing immunotherapy with nivolumab for lung cancer, determine if increased 18 F-FDG uptake in the thyroid gland predicts development of thyroiditis with subsequent hypothyroidism. Secondarily, determine if 18 F-FDG uptake in the thyroid gland correlates with administered cycles of nivolumab. Materials and Methods: Retrospective chart review over 2 years found 18 lung cancer patients treated with nivolumab and with 18 F-FDG PET/CT scans pre- and during therapy. Standardized uptake value (SUV) mean and maximum and total lesion glycolysis (TLG) of the thyroid gland were measured. SUVs were also measured for the pituitary gland, liver and spleen. Patients obtained monthly thyroid testing. PET/CT parameters were analyzed by unpaired t-test for differences between two groups (patients who developed hypothyroidism and those who did not). Correlation between development of thyroiditis and number of cycles of nivolumab received was also tested. Results: Six of eighteen patients developed hypothyroidism. T-test comparing the two groups (patients who developed hypothyroidism and those who did not) demonstrated significant differences in SUVmean ( P = 0.04), SUV max ( P = 0.04) and TLG ( P = 0.02) of the thyroid gland. Two of four patients who developed thyroiditis and had increased 18 F-FDG uptake in the thyroid gland, had normal TSH at time of follow-up 18 F-FDG PET/CT. Patients who developed thyroiditis with subsequent hypothyroidism stayed longer on therapy (10.6 cycles) compared to patients without thyroiditis (7.6 cycles), but the trend was not statistically significant. No significant difference in PET/CT parameters was observed for pituitary gland, liver or spleen. Conclusion: 18 F-FDG PET/CT can predict the development of thyroiditis with subsequent hypothyroidism before laboratory testing. Further study is required to confirm the positive trend between thyroiditis and duration of therapy. Copyright © 2018 by the Society of Nuclear

  11. Value of 18F-FDG PET/CT in diagnosing chronic Q fever in patients with central vascular disease.

    PubMed

    Hagenaars, J C J P; Wever, P C; Vlake, A W; Renders, N H M; van Petersen, A S; Hilbink, M; de Jager-Leclercq, M G L; Moll, F L; Koning, O H J; Hoekstra, C J

    2016-08-01

    The aim of this study is to describe the value of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in diagnosing chronic Q fever in patients with central vascular disease and the added value of 18F-FDG PET/CT in the diagnostic combination strategy as described in the Dutch consensus guideline for diagnosing chronic Q fever. 18F-FDG PET/CT was performed in patients with an abdominal aortic aneurysm or aorto-iliac reconstruction and chronic Q fever, diagnosed by serology and positive PCR for Coxiella burnetii DNA in blood and/or tissue (PCR-positive study group). Patients with an abdominal aortic aneurysm or aorto-iliac reconstruction without clinical and serological findings indicating Q fever infection served as a control group. Patients with a serological profile of chronic Q fever and a negative PCR in blood were included in additional analyses (PCR-negative study group). Thirteen patients were evaluated in the PCR-positive study group and 22 patients in the control group. 18F-FDG PET/CT indicated vascular infection in 6/13 patients in the PCR-positive study group and 2/22 patients in the control group. 18F-FDG PET/CT demonstrated a sensitivity of 46% (95% CI: 23-71%), specificity of 91% (95% CI: 71-99%), positive predictive value of 75% (95% CI:41-93%) and negative predictive value of 74% (95% CI: 55-87%). In the PCR-negative study group, 18F-FDG PET/CT was positive in 10/20 patients (50%). The combination of 18F-FDG PET/CT, as an imaging tool for identifying a focus of infection, and Q fever serology is a valid diagnostic strategy for diagnosing chronic Q fever in patients with central vascular disease.

  12. The Value of 18F-FDG PET/CT in Diagnosis and During Follow-up in 273 Patients with Chronic Q Fever.

    PubMed

    Kouijzer, Ilse J E; Kampschreur, Linda M; Wever, Peter C; Hoekstra, Corneline; van Kasteren, Marjo E E; de Jager-Leclercq, Monique G L; Nabuurs-Franssen, Marrigje H; Wegdam-Blans, Marjolijn C A; Ammerlaan, Heidi S M; Buijs, Jacqueline; Geus-Oei, Lioe-Fee de; Oyen, Wim J G; Bleeker-Rovers, Chantal P

    2018-01-01

    In 1%-5% of all acute Q fever infections, chronic Q fever develops, mostly manifesting as endocarditis, infected aneurysms, or infected vascular prostheses. In this study, we investigated the diagnostic value of 18 F-FDG PET/CT in chronic Q fever at diagnosis and during follow-up. Methods: All adult Dutch patients suspected of chronic Q fever who were diagnosed since 2007 were retrospectively included until March 2015, when at least one 18 F-FDG PET/CT scan was obtained. Clinical data and results from 18 F-FDG PET/CT at diagnosis and during follow-up were collected. 18 F-FDG PET/CT scans were prospectively reevaluated by 3 nuclear medicine physicians using a structured scoring system. Results: In total, 273 patients with possible, probable, or proven chronic Q fever were included. Of all 18 F-FDG PET/CT scans performed at diagnosis, 13.5% led to a change in diagnosis. Q fever-related mortality rate in patients with and without vascular infection based on 18 F-FDG PET/CT was 23.8% and 2.1%, respectively ( P = 0.001). When 18 F-FDG PET/CT was added as a major criterion to the modified Duke criteria, 17 patients (1.9-fold increase) had definite endocarditis. At diagnosis, 19.6% of 18 F-FDG PET/CT scans led to treatment modification. During follow-up, 57.3% of 18 F-FDG PET/CT scans resulted in treatment modification. Conclusion: 18 F-FDG PET/CT is a valuable technique in diagnosis of chronic Q fever and during follow-up, often leading to a change in diagnosis or treatment modification and providing important prognostic information on patient survival. © 2018 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury.

    PubMed

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R

    2017-11-01

    Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [ 18 F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [ 18 F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [ 18 F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [ 18 F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Diagnostic Value of 18F-FDG PET/CT Versus MRI in the Setting of Antibody-Specific Autoimmune Encephalitis.

    PubMed

    Solnes, Lilja B; Jones, Krystyna M; Rowe, Steven P; Pattanayak, Puskar; Nalluri, Abhinav; Venkatesan, Arun; Probasco, John C; Javadi, Mehrbod S

    2017-08-01

    Diagnosis of autoimmune encephalitis presents some challenges in the clinical setting because of varied clinical presentations and delay in obtaining antibody panel results. We examined the role of neuroimaging in the setting of autoimmune encephalitides, comparing the utility of 18 F-FDG PET/CT versus conventional brain imaging with MRI. Methods: A retrospective study was performed assessing the positivity rate of MRI versus 18 F-FDG PET/CT during the initial workup of 23 patients proven to have antibody-positive autoimmune encephalitis. 18 F-FDG PET/CT studies were analyzed both qualitatively and semiquantitatively. Areas of cortical lobar hypo (hyper)-metabolism in the cerebrum that were 2 SDx from the mean were recorded as abnormal. Results: On visual inspection, all patients were identified as having an abnormal pattern of 18 F-FDG uptake. In semiquantitative analysis, at least 1 region of interest with metabolic change was identified in 22 of 23 (95.6%) patients using a discriminating z score of 2. Overall, 18 F-FDG PET/CT was more often abnormal during the diagnostic period than MRI (10/23, 43% of patients). The predominant finding on brain 18 F-FDG PET/CT imaging was lobar hypometabolism, being observed in 21 of 23 (91.3%) patients. Hypometabolism was most commonly observed in the parietal lobe followed by the occipital lobe. An entire subset of antibody-positive patients, anti- N -methyl-d-aspartate receptor (5 patients), had normal MRI results and abnormal 18 F-FDG PET/CT findings whereas the other subsets demonstrated a greater heterogeneity. Conclusion: Brain 18 F-FDG PET/CT may play a significant role in the initial evaluation of patients with clinically suspected antibody-mediated autoimmune encephalitis. Given that it is more often abnormal when compared with MRI in the acute setting, this molecular imaging technique may be better positioned as an early biomarker of disease so that treatment may be initiated earlier, resulting in improved patient

  15. 123I-Mibg scintigraphy and 18F-Fdg-Pet imaging for diagnosing neuroblastoma

    PubMed Central

    Bleeker, Gitta; Tytgat, Godelieve Am; Adam, Judit A; Caron, Huib N; Kremer, Leontien Cm; Hooft, Lotty; van Dalen, Elvira C

    2015-01-01

    Background Neuroblastoma is an embryonic tumour of childhood that originates in the neural crest. It is the second most common extracranial malignant solid tumour of childhood. Neuroblastoma cells have the unique capacity to accumulate Iodine-123-metaiodobenzylguanidine (123I-MIBG), which can be used for imaging the tumour. Moreover, 123I-MIBG scintigraphy is not only important for the diagnosis of neuroblastoma, but also for staging and localization of skeletal lesions. If these are present, MIBG follow-up scans are used to assess the patient's response to therapy. However, the sensitivity and specificity of 123I-MIBG scintigraphy to detect neuroblastoma varies according to the literature. Prognosis, treatment and response to therapy of patients with neuroblastoma are currently based on extension scoring of 123I-MIBG scans. Due to its clinical use and importance, it is necessary to determine the exact diagnostic accuracy of 123I-MIBG scintigraphy. In case the tumour is not MIBG avid, fluorine-18-fluorodeoxy-glucose (18F-FDG) positron emission tomography (PET) is often used and the diagnostic accuracy of this test should also be assessed. Objectives Primary objectives: 1.1 To determine the diagnostic accuracy of 123I-MIBG (single photon emission computed tomography (SPECT), with or without computed tomography (CT)) scintigraphy for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 1.2 To determine the diagnostic accuracy of negative 123I-MIBG scintigraphy in combination with 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old, i.e. an add-on test. Secondary objectives: 2.1 To determine the diagnostic accuracy of 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 2.2 To compare the diagnostic accuracy of 123I

  16. Incongruity of imaging using fluorescent 2-DG conjugates compared to 18F-FDG in preclinical cancer models.

    PubMed

    Tseng, Jen-Chieh; Wang, Yuchuan; Banerjee, Pallab; Kung, Andrew L

    2012-10-01

    We compared the use of near-infrared conjugates of 2-deoxyglucose (NIR 2-DG) to 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) for the purposes of imaging tumors, as well as response to therapy. Uptake of both 18F-FDG and NIR 2-DG within gastrointestinal stromal tumor xenografts were imaged before and after nilotinib treatment. Confocal microscopy was performed to determine NIR 2-DG distribution in tumors. Treatment with nilotinib resulted in a rapid reduction in 18F-FDG uptake and reduced tumor cell viability which was predictive of long-term antitumor efficacy. In contrast, optical imaging with NIR 2-DG probes was unable to differentiate control from niltonib-treated animals, and microscopic analysis revealed no change in probe distribution as a result of treatment. These results suggest that conjugation of large bulky fluorophores to 2-DG disrupts the facilitated transport and retention of these probes in cells. Therefore, optical imaging of NIR 2-DG probes cannot substitute for 18F-FDG positron emission tomography imaging as a biomarker of tumor cell viability and metabolism.

  17. Imaging infection with 18F-FDG-labeled leukocyte PET/CT: initial experience in 21 patients.

    PubMed

    Dumarey, Nicolas; Egrise, Dominique; Blocklet, Didier; Stallenberg, Bernard; Remmelink, Myriam; del Marmol, Véronique; Van Simaeys, Gaëtan; Jacobs, Frédérique; Goldman, Serge

    2006-04-01

    The aim of this study was to assess the feasibility and the potential role of PET/CT with (18)F-FDG-labeled autologous leukocytes in the diagnosis and localization of infectious lesions. Twenty-one consecutive patients with suspected or documented infection were prospectively evaluated with whole-body PET/CT 3 h after injection of autologous (18)F-FDG-labeled leukocytes. Two experienced nuclear medicine physicians who were unaware of the clinical end-diagnosis reviewed all PET/CT studies. A visual score (0-3)-according to uptake intensity-was used to assess studies. The results of PET/CT with (18)F-FDG-labeled white blood cell ((18)F-FDG-WBC) assessment were compared with histologic or biologic diagnosis in 15 patients and with clinical end-diagnosis after complete clinical work-up in 6 patients. Nine patients had fever of unknown etiology, 6 patients had documented infection but with unknown extension of the infectious disease, 4 patients had a documented infection with unfavorable evolution, and 2 patients had a documented infection with known extension. The best trade-off between sensitivity and specificity was obtained when a visual score of >or=2 was chosen to identify increased tracer uptake as infection. With this threshold, sensitivity, specificity, and accuracy were each 86% on a patient-per-patient basis and 91%, 85%, and 90% on a lesion-per-lesion basis. In this small group of patients, the absence of areas with increased WBC uptake on WBC PET/CT had a 100% negative predictive value. Hybrid (18)F-FDG-WBC PET/CT was found to have a high sensitivity and specificity for the diagnosis of infection. It located infectious lesions with a high precision. In this small series, absence of areas with increased uptake virtually ruled out the presence of infection. (18)F-FDG-WBC PET/CT for infection detection deserves further investigation in a larger prospective series.

  18. Clinical values of (18) F-FDG PET/CT in oral cavity cancer with dental artifacts on CT or MRI.

    PubMed

    Hong, Hye Ran; Jin, Soyoung; Koo, Hyun Jung; Roh, Jong-Lyel; Kim, Jae Seung; Cho, Kyung-Ja; Choi, Seung-Ho; Nam, Soon Yuhl; Kim, Sang Yoon

    2014-11-01

    2a To investigate the role of (18) F-FDG PET/CT in tumor staging, extent, and volume measurements in oral cavity squamous cell carcinoma (OSCC) patients with/without dental artifacts on CT or MRI. This study was conducted in 63 consecutive patients with OSCC who received initial workups including (18) F-FDG PET/CT and MRI. The results of the imaging modalities were compared to those of pathology, using McNemar's test and the paired t-test. Thirty-seven patients (59%) had dental or metallic artifacts obscuring primary tumors. (18) F-FDG PET/CT scanning was superior to MRI in tumor staging (weighted κ = 0.870 vs. 0.518, P = 0.004) in patients with dental artifacts. In addition, (18) F-FDG PET/CT scans were more specific than MRI in detecting sublingual gland (P = 0.014) and mouth floor (P = 0.011) involvement. In patients with dental artifacts, there was a significant discrepancy between primary tumor volume (PTV) measured by pathology and MRI (P = 0.018), but not between PTV measured from pathology and (18) F-FDG PET/CT at SUV2.5 (P = 0.245), which showed the highest intraclass correlation coefficient value (0.860). (18) F-FDG PET/CT scans provide accurate tumor staging and volume measurements in OSCC patients with CR/MRI dental artifacts, leading to improved preoperative planning. 2b CONDENSED ABSTRACT This study evaluated the clinical value of (18) F-FDG PET/CT in 63 patients with oral cavity cancers. In 37 (59%) patients with dental artifacts on CT/MRI, (18) F-FDG PET/CT showed superior results compared to MRI in tumor staging and represented the highest intraclass correlation coefficient value to tumor volume determined by pathology. © 2014 Wiley Periodicals, Inc.

  19. Correlation of intra-tumor 18F-FDG uptake heterogeneity indices with perfusion CT derived parameters in colorectal cancer.

    PubMed

    Tixier, Florent; Groves, Ashley M; Goh, Vicky; Hatt, Mathieu; Ingrand, Pierre; Le Rest, Catherine Cheze; Visvikis, Dimitris

    2014-01-01

    Thirty patients with proven colorectal cancer prospectively underwent integrated 18F-FDG PET/DCE-CT to assess the metabolic-flow phenotype. Both CT blood flow parametric maps and PET images were analyzed. Correlations between PET heterogeneity and perfusion CT were assessed by Spearman's rank correlation analysis. Blood flow visualization provided by DCE-CT images was significantly correlated with 18F-FDG PET metabolically active tumor volume as well as with uptake heterogeneity for patients with stage III/IV tumors (|ρ|:0.66 to 0.78; p-value<0.02). The positive correlation found with tumor blood flow indicates that intra-tumor heterogeneity of 18F-FDG PET accumulation reflects to some extent tracer distribution and consequently indicates that 18F-FDG PET intra-tumor heterogeneity may be associated with physiological processes such as tumor vascularization.

  20. Role of (18)F-FDG PET-CT in head and neck squamous cell carcinoma.

    PubMed

    Castaldi, P; Leccisotti, L; Bussu, F; Miccichè, F; Rufini, V

    2013-02-01

    The role of PET-CT imaging in head and neck squamous cell carcinoma during pre-treatment staging, radiotherapy planning, treatment response assessment and post-therapy follow-up is reviewed with focus on current evidence, controversial issues and future clinical applications. In staging, the role of (18)F-FDG PET-CT is well recognized for detecting cervical nodal involvement as well as for exclusion of distant metastases and synchronous primary tumours. In the evaluation of treatment response, the high negative predictive value of (18)F-FDG PET-CT performed at least 8 weeks from the end of radio-chemotherapy allows prevention of unnecessary diagnostic invasive procedures and neck dissection in many patients, with a significant impact on clinical outcome. On the other hand, in this setting, the low positive predictive value due to possible post-radiation inflammation findings requires special care before making a clinical decision. Controversial data are currently available on the role of PET imaging during the course of radio-chemotherapy. The prognostic role of (18)F-FDG PET-CT imaging in head and neck squamous cell carcinoma is recently emerging, in addition to the utility of this technique in evaluation of the tumour volume for planning radiation therapy. Additionally, new PET radiopharmaceuticals could provide considerable information on specific tumour characteristics, thus overcoming the limitations of (18)F-FDG.

  1. Italian Multicenter Study on Accuracy of 18F-FDG PET/CT in Assessing Bone Marrow Involvement in Pediatric Hodgkin Lymphoma.

    PubMed

    Cistaro, Angelina; Cassalia, Laura; Ferrara, Cinzia; Quartuccio, Natale; Evangelista, Laura; Bianchi, Maurizio; Fagioli, Franca; Bisi, Gianni; Baldari, Sergio; Zanella, Alessandro; Pillon, Marta; Zucchetta, Pietro; Burei, Marta; Sala, Alessandra; Guerra, Luca; Guglielmo, Priscilla; Burnelli, Roberta; Panareo, Stefano; Scalorbi, Federica; Rambaldi, Ilaria; Piccardo, Arnoldo; Garaventa, Alberto; Familiari, Demetrio; Fornito, Maria Concetta; Lopci, Egesta; Mascarin, Maurizio; Altini, Corinna; Ferrari, Cristina; Perillo, Teresa; Santoro, Nicola; Borsatti, Eugenio; Rubini, Giuseppe

    2018-06-01

    The present study investigated the utility of fluorine-18 ( 18 F) fluoro-2-deoxy-d-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) in assessing bone marrow involvement (BMI) compared with bone marrow biopsy (BMB) in newly diagnosed pediatric Hodgkin lymphoma (HL). A total of 224 pediatric patients with HL underwent 18 F-FDG PET/CT at staging. BMB or follow-up imaging was used as the standard of reference for the evaluation of BMI. 18 F-FDG PET/CT was negative for BMI in 193 cases. Of the 193 patients, the findings for 16 were originally reported as doubtful and later interpreted as negative for BMI, with negative findings on follow-up imaging and BMB. At BMB, 1 of the 16 patients (6.25%) had BMI. Of the 193 patients, 192 (99.48%) had negative BMB findings. Thus, the 18 F-FDG PET/CT findings were truly negative for 192 patients and falsely negative for 1 patient for BMI. 18 F-FDG PET/CT showed high diagnostic performance in the evaluation of BMI in pediatric HL. Thus, BMB should be ideally reserved for patients presenting with doubtful 18 F-FDG PET/CT findings for BMI. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Does Antibiotic Treatment Affect the Diagnostic Accuracy of 18F-FDG PET/CT Studies in Patients with Suspected Infectious Processes?

    PubMed

    Kagna, Olga; Kurash, Marina; Ghanem-Zoubi, Nesrin; Keidar, Zohar; Israel, Ora

    2017-11-01

    18 F-FDG PET/CT plays a significant role in the assessment of various infectious processes. Patients with suspected or known sites of infection are often referred for 18 F-FDG imaging while already receiving antibiotic treatment. The current study assessed whether antibiotic therapy affected the detectability rate of infectious processes by 18 F-FDG PET/CT. Methods: A 5-y retrospective study of all adult patients who underwent 18 F-FDG PET/CT in search of a focal source of infection was performed. The presence, duration, and appropriateness of antibiotic treatment before 18 F-FDG imaging were recorded. Diagnosis of an infectious process was based on microbiologic or pathologic data as well as on clinical and radiologic follow-up. Results: Two hundred seventeen patients underwent 243 PET/CT studies in search of a focal source of infection and were included in the study. Sixty-seven studies were excluded from further analysis because of a final noninfectious etiology or lack of further follow-up or details regarding the antibiotic treatment. The final study population included 176 18 F-FDG PET/CT studies in 153 patients (107 men, 46 women; age range, 18-86 y). One hundred nineteen studies (68%) were performed in patients receiving antibiotic therapy for a range of 1-73 d. A diagnosis of infection was made in 107 true-positive cases (61%), including 63 studies (59%) in patients receiving appropriate antibiotic therapy started before the performance of the 18 F-FDG PET/CT study. There were 52 true-negative (29%) and 17 false-positive (10%) 18 F-FDG PET/CT studies. No false-negative results were found. Conclusion: 18 F-FDG PET/CT correctly identified foci of increased uptake compatible with infection in most patients, including all patients receiving appropriate antimicrobial therapy, with no false-negative cases. On the basis of the current study results, the administration of antibiotics appears to have no clinically significant impact on the diagnostic accuracy of 18

  3. Oncogene pathway activation in mammary tumors dictates [18F]-FDG-PET uptake

    PubMed Central

    Alvarez, James V.; Belka, George K.; Pan, Tien-chi; Chen, Chien-Chung; Blankemeyer, Eric; Alavi, Abass; Karp, Joel; Chodosh, Lewis A.

    2015-01-01

    Increased glucose utilization is a hallmark of human cancer that is used to image tumors clinically. In this widely used application, glucose uptake by tumors is monitored by positron emission tomography (PET) of the labeled glucose analog F-18-2-fluoro-2-deoxyglucose (18F-FDG). Despite its widespread clinical use, the cellular and molecular mechanisms that determine FDG uptake - a tool that can monitor tumor heterogeneity - remain poorly understood. In this study, we compared FDG uptake in mammary tumors driven by the Akt1, c-MYC, HER2/neu, Wnt1 or H-Ras oncogenes in genetically engineered mice, correlating it to tumor growth, cell proliferation and levels of gene expression involved in key steps of glycolytic metabolism. We found that FDG uptake by tumors was dictated principally by the driver oncogene and was not independently associated with tumor growth or cellular proliferation. Oncogene downregulation resulted in a rapid decrease in FDG uptake, preceding effects on tumor regression, irrespective of the baseline level of uptake. FDG uptake correlated positively with expression of hexokinase-2 (HK2) and HIF-1α and associated negatively with PFK-2b expression and p-AMPK. The correlation of HK2 and FDG uptake was independent of all variables tested, including the initiating oncogene, suggesting that HK2 is an independent predictor of FDG uptake. In contrast, expression of Glut1 was correlated with FDG uptake only in tumors driven by Akt or HER2/neu. Together, these results showed that the oncogenic pathway activated within a tumor is a primary determinant of its FDG uptake, mediated by key glycolytic enzymes that provide a framework to interpret effects on this key parameter in clinical imaging. PMID:25239452

  4. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure.

    PubMed

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B; Verberne, Hein J

    2017-01-01

    Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,-transversum,-descendens and sigmoid). The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss.

  5. IMPROVED DERIVATION OF INPUT FUNCTION IN DYNAMIC MOUSE [18F]FDG PET USING BLADDER RADIOACTIVITY KINETICS

    PubMed Central

    Wong, Koon-Pong; Zhang, Xiaoli; Huang, Sung-Cheng

    2013-01-01

    Purpose Accurate determination of the plasma input function (IF) is essential for absolute quantification of physiological parameters in positron emission tomography (PET). However, it requires an invasive and tedious procedure of arterial blood sampling that is challenging in mice because of the limited blood volume. In this study, a hybrid modeling approach is proposed to estimate the plasma IF of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mice using accumulated radioactivity in urinary bladder together with a single late-time blood sample measurement. Methods Dynamic PET scans were performed on nine isoflurane-anesthetized male C57BL/6 mice after a bolus injection of [18F]FDG at the lateral caudal vein. During a 60- or 90-min scan, serial blood samples were taken from the femoral artery. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. Total accumulated radioactivity in the urinary bladder was fitted to a renal compartmental model with the last blood sample and a 1-exponential function that described the [18F]FDG clearance in blood. Multiple late-time blood sample estimates were calculated by the blood [18F]FDG clearance equation. A sum of 4-exponentials was assumed for the plasma IF that served as a forcing function to all tissues. The estimated plasma IF was obtained by simultaneously fitting the [18F]FDG model to the time-activity curves (TACs) of liver and muscle and the forcing function to early (0–1 min) left-ventricle data (corrected for delay, dispersion, partial-volume effects and erythrocytes uptake) and the late-time blood estimates. Using only the blood sample acquired at the end of the study to estimate the IF and the use of liver TAC as an alternative IF were also investigated. Results The area under the plasma TACs calculated for all studies using the hybrid approach was not significantly different from that using all blood samples. [18F]FDG uptake constants in brain, myocardium, skeletal

  6. Metabolic effects of pulmonary obstruction on myocardial functioning: a pilot study using multiple time-point 18F-FDG-PET imaging.

    PubMed

    Choi, Grace G; Han, Yuchi; Weston, Brian; Ciftci, Esra; Werner, Thomas J; Torigian, Drew; Salavati, Ali; Alavi, Abass

    2015-01-01

    The aim of this study was to evaluate fluorine-18 fluorodeoxyglucose (18F-FDG) uptake in the right ventricle (RV) of patients with chronic obstructive pulmonary disease (COPD) and to characterize the variability of 18F-FDG uptake in the RV at different time points following radiotracer administration using PET/computerized tomography (CT). Impaired RV systolic function, RV hypertrophy, and RV dilation are associated with increases in mean pulmonary arterial pressure in patients with COPD. Metabolic changes in the RV using 18F-FDG-PET images 2 and 3 h after tracer injection have not yet been investigated. Twenty-five patients with clinical suspicion of lung cancer underwent 18F-FDG-PET/CT imaging at 1, 2, and 3 h after tracer injection. Standardized uptake values (SUVs) and volumes of RV were recorded from transaxial sections to quantify the metabolic activity. The SUV of RV was higher in patients with COPD stages 1-3 as compared with that in patients with COPD stage 0. RV SUV was inversely correlated with FEV1/FVC pack-years of smoking at 1 h after 18F-FDG injection. In the majority of patients, 18F-FDG activity in RV decreased over time. There was no significant difference in the RV myocardial free wall and chamber volume on the basis of COPD status. The severity of lung obstruction and pack-years of smoking correlate with the level of 18F-FDG uptake in the RV myocardium, suggesting that there may be metabolic changes in the RV associated with lung obstruction that can be detected noninvasively using 18F-FDG-PET/CT. Multiple time-point images of the RV did not yield any additional value in this study.

  7. Modeling of Tracer Transport Delays for Improved Quantification of Regional Pulmonary 18F-FDG Kinetics, Vascular Transit Times, and Perfusion

    PubMed Central

    Wellman, Tyler J.; Winkler, Tilo; Vidal Melo, Marcos F.

    2015-01-01

    18F-FDG-PET is increasingly used to assess pulmonary inflammatory cell activity. However, current models of pulmonary 18F-FDG kinetics do not account for delays in 18F-FDG transport between the plasma sampling site and the lungs. We developed a three-compartment model of 18F-FDG kinetics that includes a delay between the right heart and the local capillary blood pool, and used this model to estimate regional pulmonary perfusion. We acquired dynamic 18F-FDG scans in 12 mechanically ventilated sheep divided into control and lung injury groups (n=6 each). The model was fit to tracer kinetics in three isogravitational regions-of-interest to estimate regional lung transport delays and regional perfusion. 13NN bolus infusion scans were acquired during a period of apnea to measure regional perfusion using an established reference method. The delayed input function model improved description of 18F-FDG kinetics (lower Akaike Information Criterion) in 98% of studied regions. Local transport delays ranged from 2.0–13.6s, averaging 6.4±2.9s, and were highest in non-dependent regions. Estimates of regional perfusion derived from model parameters were highly correlated with perfusion measurements based on 13NN-PET (R2=0.92, p<0.001). By incorporating local vascular transports delays, this model of pulmonary 18F-FDG kinetics allows for simultaneous assessment of regional lung perfusion, transit times, and inflammation. PMID:25940652

  8. The usefulness of (18)F-FDG PET/MRI fusion image in diagnosing pancreatic tumor: comparison with (18)F-FDG PET/CT.

    PubMed

    Nagamachi, Shigeki; Nishii, Ryuichi; Wakamatsu, Hideyuki; Mizutani, Youichi; Kiyohara, Shogo; Fujita, Seigo; Futami, Shigemi; Sakae, Tatefumi; Furukoji, Eiji; Tamura, Shozo; Arita, Hideo; Chijiiwa, Kazuo; Kawai, Keiichi

    2013-07-01

    This study aimed at demonstrating the feasibility of retrospectively fused (18)F FDG-PET and MRI (PET/MRI fusion image) in diagnosing pancreatic tumor, in particular differentiating malignant tumor from benign lesions. In addition, we evaluated additional findings characterizing pancreatic lesions by FDG-PET/MRI fusion image. We analyzed retrospectively 119 patients: 96 cancers and 23 benign lesions. FDG-PET/MRI fusion images (PET/T1 WI or PET/T2WI) were made by dedicated software using 1.5 Tesla (T) MRI image and FDG-PET images. These images were interpreted by two well-trained radiologists without knowledge of clinical information and compared with FDG-PET/CT images. We compared the differential diagnostic capability between PET/CT and FDG-PET/MRI fusion image. In addition, we evaluated additional findings such as tumor structure and tumor invasion. FDG-PET/MRI fusion image significantly improved accuracy compared with that of PET/CT (96.6 vs. 86.6 %). As additional finding, dilatation of main pancreatic duct was noted in 65.9 % of solid types and in 22.6 % of cystic types, on PET/MRI-T2 fusion image. Similarly, encasement of adjacent vessels was noted in 43.1 % of solid types and in 6.5 % of cystic types. Particularly in cystic types, intra-tumor structures such as mural nodule (35.4 %) or intra-cystic septum (74.2 %) were detected additionally. Besides, PET/MRI-T2 fusion image could detect extra benign cystic lesions (9.1 % in solid type and 9.7 % in cystic type) that were not noted by PET/CT. In diagnosing pancreatic lesions, FDG-PET/MRI fusion image was useful in differentiating pancreatic cancer from benign lesions. Furthermore, it was helpful in evaluating relationship between lesions and surrounding tissues as well as in detecting extra benign cysts.

  9. Role of (18)F-FDG PET/CT in the evaluation of response to antibiotic therapy in patients affected by infectious spondylodiscitis.

    PubMed

    Niccoli Asabella, Artor; Iuele, Francesca; Simone, Francesco; Fanelli, Margherita; Lavelli, Valentina; Ferrari, Cristina; Di Palo, Alessandra; Notaristefano, Antonio; Merenda, Nunzio Clemente; Rubini, Giuseppe

    2015-01-01

    Spondylodiscitis is characterized by infection involving the intervertebral disc and adjacent vertebrae. It can occur anywhere in the vertebral column but more commonly involves lumbar spine. Our aim was to evaluate the usefulness of (18)F-FDG PET/CT to detect the early response to antibiotic therapy in patients affected by infectious spondylodiscitis and to compare the role of (18)F-FDG PET/CT and MRI in post-treatment evaluation. 15 patients (12M, 3F), with mean age 65±13 years old, with typical clinical symptoms of Infectious Spondylodiscitis (pain, fever and increase of inflammatory indexes) and confirmed by blood culture or vertebral biopsy underwent within three day-interval a (18)F-FDG PET/CT and Magnetic Resonance (MR) at "baseline" and after antibiotic therapy. Semiquantitative parameters at (18)F-FDG PET/CT "baseline" SUVmax1, MTV1 and TLG1 and after therapy SUVmax2, MTV2 and TLG2 of involved vertebrae were calculated. Follow-up period of at least three months was available for all patients. T-student test for paired groups was performed to compare baseline and after therapy (18)F-FDG PET/CT semiquantitative parameters. According to (18)F-FDG PET/CT parameters all patients showed a response to antibiotic therapy. All patients were positive at "baseline" MRI of the spine, while at follow-up, 7/15 patients showed MR signs of infection and were considered "positive" and 8/15 showed resolution of infectious condition and, therefore they were considered "negative". A statistical significant difference between (18)F-FDG PET/CT "baseline" and after antibiotic therapy was found for all semiquantitative parameters: SUVmax (t=5.8, P=0.01); MTV (t=5.17, P=0.001); TLG (t=5,26, P=0,001). The comparison between the "baseline" and "after treatment" (18)F-FDG semiquantitative parameters showed a significant reduction of all parameters. This reduction was relevant also in patients with positive post-treatment MRI. This can be probably related to the tissue remodeling in

  10. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure

    PubMed Central

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Purpose Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. Methods In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,—transversum,—descendens and sigmoid). Results The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Conclusion Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss. PMID:28464031

  11. Detection of Atherosclerotic Inflammation by 68Ga-DOTATATE PET Compared to [18F]FDG PET Imaging.

    PubMed

    Tarkin, Jason M; Joshi, Francis R; Evans, Nicholas R; Chowdhury, Mohammed M; Figg, Nichola L; Shah, Aarti V; Starks, Lakshi T; Martin-Garrido, Abel; Manavaki, Roido; Yu, Emma; Kuc, Rhoda E; Grassi, Luigi; Kreuzhuber, Roman; Kostadima, Myrto A; Frontini, Mattia; Kirkpatrick, Peter J; Coughlin, Patrick A; Gopalan, Deepa; Fryer, Tim D; Buscombe, John R; Groves, Ashley M; Ouwehand, Willem H; Bennett, Martin R; Warburton, Elizabeth A; Davenport, Anthony P; Rudd, James H F

    2017-04-11

    Inflammation drives atherosclerotic plaque rupture. Although inflammation can be measured using fluorine-18-labeled fluorodeoxyglucose positron emission tomography ([ 18 F]FDG PET), [ 18 F]FDG lacks cell specificity, and coronary imaging is unreliable because of myocardial spillover. This study tested the efficacy of gallium-68-labeled DOTATATE ( 68 Ga-DOTATATE), a somatostatin receptor subtype-2 (SST 2 )-binding PET tracer, for imaging atherosclerotic inflammation. We confirmed 68 Ga-DOTATATE binding in macrophages and excised carotid plaques. 68 Ga-DOTATATE PET imaging was compared to [ 18 F]FDG PET imaging in 42 patients with atherosclerosis. Target SSTR2 gene expression occurred exclusively in "proinflammatory" M1 macrophages, specific 68 Ga-DOTATATE ligand binding to SST 2 receptors occurred in CD68-positive macrophage-rich carotid plaque regions, and carotid SSTR2 mRNA was highly correlated with in vivo 68 Ga-DOTATATE PET signals (r = 0.89; 95% confidence interval [CI]: 0.28 to 0.99; p = 0.02). 68 Ga-DOTATATE mean of maximum tissue-to-blood ratios (mTBR max ) correctly identified culprit versus nonculprit arteries in patients with acute coronary syndrome (median difference: 0.69; interquartile range [IQR]: 0.22 to 1.15; p = 0.008) and transient ischemic attack/stroke (median difference: 0.13; IQR: 0.07 to 0.32; p = 0.003). 68 Ga-DOTATATE mTBR max predicted high-risk coronary computed tomography features (receiver operating characteristics area under the curve [ROC AUC]: 0.86; 95% CI: 0.80 to 0.92; p < 0.0001), and correlated with Framingham risk score (r = 0.53; 95% CI: 0.32 to 0.69; p <0.0001) and [ 18 F]FDG uptake (r = 0.73; 95% CI: 0.64 to 0.81; p < 0.0001). [ 18 F]FDG mTBR max differentiated culprit from nonculprit carotid lesions (median difference: 0.12; IQR: 0.0 to 0.23; p = 0.008) and high-risk from lower-risk coronary arteries (ROC AUC: 0.76; 95% CI: 0.62 to 0.91; p = 0.002); however, myocardial [ 18 F]FDG spillover rendered coronary

  12. Prediction of standard-dose brain PET image by using MRI and low-dose brain [{sup 18}F]FDG PET images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kang, Jiayin; Gao, Yaozong; Shi, Feng

    Purpose: Positron emission tomography (PET) is a nuclear medical imaging technology that produces 3D images reflecting tissue metabolic activity in human body. PET has been widely used in various clinical applications, such as in diagnosis of brain disorders. High-quality PET images play an essential role in diagnosing brain diseases/disorders. In practice, in order to obtain high-quality PET images, a standard-dose radionuclide (tracer) needs to be used and injected into a living body. As a result, it will inevitably increase the patient’s exposure to radiation. One solution to solve this problem is predicting standard-dose PET images using low-dose PET images. Asmore » yet, no previous studies with this approach have been reported. Accordingly, in this paper, the authors propose a regression forest based framework for predicting a standard-dose brain [{sup 18}F]FDG PET image by using a low-dose brain [{sup 18}F]FDG PET image and its corresponding magnetic resonance imaging (MRI) image. Methods: The authors employ a regression forest for predicting the standard-dose brain [{sup 18}F]FDG PET image by low-dose brain [{sup 18}F]FDG PET and MRI images. Specifically, the proposed method consists of two main steps. First, based on the segmented brain tissues (i.e., cerebrospinal fluid, gray matter, and white matter) in the MRI image, the authors extract features for each patch in the brain image from both low-dose PET and MRI images to build tissue-specific models that can be used to initially predict standard-dose brain [{sup 18}F]FDG PET images. Second, an iterative refinement strategy, via estimating the predicted image difference, is used to further improve the prediction accuracy. Results: The authors evaluated their algorithm on a brain dataset, consisting of 11 subjects with MRI, low-dose PET, and standard-dose PET images, using leave-one-out cross-validations. The proposed algorithm gives promising results with well-estimated standard-dose brain [{sup 18}F]FDG

  13. Effectiveness of Breast MRI and (18)F-FDG PET/CT for the Preoperative Staging of Invasive Lobular Carcinoma versus Ductal Carcinoma.

    PubMed

    Jung, Na Young; Kim, Sung Hoon; Kim, Sung Hun; Seo, Ye Young; Oh, Jin Kyoung; Choi, Hyun Su; You, Won Jong

    2015-03-01

    We evaluated the utility of magnetic resonance imaging (MRI) and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) for the preoperative staging of invasive lobular carcinoma (ILC) of the breast and compared the results with those of invasive ductal carcinoma (IDC). The study included pathologically proven 32 ILCs and 73 IDCs. We compared clinical and histopathological characteristics and the diagnostic performances of MRI and (18)F-FDG PET/CT for the primary mass, additional ipsilateral and/or contralateral lesion(s), and axillary lymph node metastasis between the ILC and IDC groups. Primary ILCs were greater in size, but demonstrated lower maximum standardized uptake values than IDCs. All primary masses were detected on MRI. The detection rate for ILCs (75.0%) was lower than that for IDCs (83.6%) on (18)F-FDG PET/CT, but the difference was not significant. For additional ipsilateral lesion(s), the sensitivities and specificities of MRI were 87.5% and 58.3% for ILC and 100.0% and 66.7% for IDC, respectively; whereas the sensitivities and specificities of (18)F-FDG PET/CT were 0% and 91.7% for ILC and 37.5% and 94.7% for IDC, respectively. The sensitivity of (18)F-FDG PET/CT for ipsilateral lesion(s) was significantly lower in the ILC group than the IDC group. The sensitivity for ipsilateral lesion(s) was significantly higher with MRI; however, specificity was higher with (18)F-FDG PET/CT in both tumor groups. There was no significant difference in the diagnostic performance for additional contralateral lesion(s) or axillary lymph node metastasis on MRI or (18)F-FDG PET/CT for ILC versus IDC. The MRI and (18)F-FDG PET/CT detection rates for the primary cancer do not differ between the ILC and IDC groups. Although (18)F-FDG PET/CT demonstrates lower sensitivity for primary and additional ipsilateral lesions, it shows higher specificity for additional ipsilateral lesions, and could play a complementary role in the staging of

  14. 18F-FDG uptake and its clinical relevance in primary gastric lymphoma.

    PubMed

    Yi, Jun Ho; Kim, Seok Jin; Choi, Joon Young; Ko, Young Hyeh; Kim, Byung-Tae; Kim, Won Seog

    2010-06-01

    We studied the clinical relevance of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in patients with primary gastric lymphoma underwent positron emission tomography (PET)/ computed tomography (CT) scan. Forty-two patients with primary gastric lymphoma were analysed: 32 diffuse large B-cell lymphomas (DLBCL) and 10 extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas). The PET/CT scans were compared with clinical and pathologic features, and the results of CT and endoscopy. Nine patients were up-staged based on the results of their PET/CT scan compared to CT (seven DLBCLs, two MALT lymphomas) while six patients were down-staged by the PET/CT scan. The standard uptake value (SUV) was used as an indicator of a lesion with a high metabolic rate. The high SUVmax group, defined as an SUVmax >or= median value, was significantly associated with an advanced Lugano stage (p < 0.001). Three patients with DLBCL, who showed an initially high SUVmax, died of disease progression. Among 24 patients for whom follow-up PET/CT scan with endoscopy was performed, 11 patients with ulcerative or mucosal lesions showed residual (18)F-FDG uptake. All of these gastric lesions were grossly and pathologically benign lesions without evidence of lymphoma cells. In conclusion, PET/CT scan can be used in staging patients with primary gastric lymphoma; however, the residual (18)F-FDG uptake observed during follow-up should be interpreted cautiously and should be combined with endoscopy and multiple biopsies of the stomach. (c) 2009 John Wiley & Sons, Ltd.

  15. (18)F-FDG PET/CT for the detection of large vessel vasculitis in patients with polymyalgia rheumatica.

    PubMed

    Lavado-Pérez, C; Martínez-Rodríguez, I; Martínez-Amador, N; Banzo, I; Quirce, R; Jiménez-Bonilla, J; De Arcocha-Torres, M; Bravo-Ferrer, Z; Jiménez-Alonso, M; López-Defilló, J L; Blanco, R; González-Gay, M A; Carril, J M

    2015-01-01

    Polymyalgia rheumatica (PMR) may present together with large vessel vasculitis (LVV), and frequently requires a more intensive therapy. The aim of the study was to evaluate the impact of (18)F-FDG PET/CT in the diagnosis and management of LVV associated to PMR. This prospective study included 40 consecutive patients (27 women/13 men, 68.10±10.27 years) with PMR and suspicion of associated LVV submitted for (18)F-FDG PET/CT. A PET/CT scan was obtained 180 min after (18)F-FDG intravenous injection. A visual analysis was performed on the images. Five vascular regions were evaluated: supra-aortic trunks (SAT), thoracic aorta (TA), abdominal aorta (AA), iliac arteries (IA), and femoral/tibioperoneal arteries (FTA). The intensity of uptake was graded from 0 to 3. A final diagnosis of LVV was established in 26/40 patients (65%). In the 26 patients with a diagnosis of LVV, the highest intensity of (18)F-FDG uptake was observed in the TA, SAT, and FTA. All of these patients showed uptake at the TA, with grade 2 and 3 in most cases. In 4 of the 14 patients without LVV, no uptake was observed in any vascular region, and in the other 10 patients only a grade 1 uptake was observed in 1 or to 2 territories. Out of the 20 treated LVV patients, (18)F-FDG PET/CT led to a therapeutic change in 17 (85%). (18)F-FDG PET/CT was useful in identifying patients with LVV associated to PMR. The detection of vascular inflammation had an important impact, and led to a change of treatment in a high percentage of patients with LVV. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  16. High (18)F-FDG uptake in urinary calculi on PET/CT: An unrecognized non-malignant accumulation.

    PubMed

    Fu, Zhanli; Li, Ziao; Huang, Jia; Zhang, Jin; Liu, Meng; Li, Qian; Li, Yi

    2016-08-01

    To assess the high (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in urinary calculi on positron-emission tomography/computed tomography (PET/CT). In this study, (18)F-FDG PET/CT examinations were retrospectively reviewed from November 2013 to February 2016 in a single center, and patients with high (18)F-FDG uptake in urinary calculi were identified. The following data were collected from each patient, including age, sex, primary disease, method to verify the urinary calculus, and imaging characteristics of the calculus. A total of 2758 PET/CT studies (2567 patients) were reviewed, and 52 patients with urinary calculi were identified, in which 6 (11.5%, 6/52) patients (5 males, 1 female, age 34-73 years, median age 60.5 years) demonstrated high (18)F-FDG uptake in the urinary calculi. Among the 6 patients, 3 patients had bladder calculi, 2 patients had renal calculi, and 1 patient had both bladder and renal calculi. The size of the urinary calculi varied from sandy to 19mm on CT. The maximal Hounsfield units of the calculi ranged from 153 to 1078. The SUVmax of the calculi on the routine PET/CT scan ranged from 11.7 to 143.0. Delayed PET/CT scans were performed on 4 patients, which showed the calculi SUVmax increasing in 2 patients, while decreasing in the other 2 patients. One patient with bladder calculus underwent a follow-up PET/CT, which showed enlargement of the calculus as well as the increased SUVmax. This study shows an uncommon high (18)F-FDG uptake in urinary calculi. Recognition of this non-malignant accumulation in urinary calculi is essential for correct interpretation of PET/CT findings. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. (18)F-FBPA as a tumor specific tracer of L-type amino acid transporter 1 (LAT1): PET evaluation in tumor and inflammation compared to (18)F-FDG and (11)C-methionine.

    PubMed

    Watabe, Tadashi; Hatazawa, Jun

    2015-01-01

    (18)F-FDG-PET is used worldwide for oncology patients. However, we sometimes encounter false positive cases of (18)F-FDG PET, such as moderate uptake in the inflammatory lesion, because (18)F-FDG accumulates not only in the cancer cells but also in the inflammatory cells (macrophage, granulation tissue, etc). To overcome this limitation of (18)F-FDG, we started to use (4-borono-2- [(18)F]fluoro-L-phenylalanine) (18)F-FBPA, an artificial amino acid tracer which is focusing attention as a tumor specific PET tracer. Physiological accumulation of (18)F-FBPA is limited in the kidney and urinary tract in humans, which enable preferable evaluation of uptake in the abdominal organs compared to (11)C-methionine ((11)C-MET). The purpose of this study was to evaluate (18)F-FBPA as a tumor specific tracer by in vitro cellular uptake analysis focusing on the selectivity of L-type amino acid transporter 1 (LAT1), which is specifically expressed in tumor cells, and in vivo PET analysis in rat xenograft and inflammation models compared to (18)F-FDG and (11)C-methionine. Uptake inhibition and efflux experiments were performed in HEK293-LAT1 and LAT2 cells using cold BPA, cold (18)F-FBPA, and hot (18)F-FBPA to evaluate LAT affinity and transport capacity. Position emission tomography studies were performed in rat xenograft model of C6 glioma 2 weeks after the implantation (n=9, body weight=197±10.5g) and subcutaneous inflammation model 4 days after the injection of turpentine oil (n=9, body weight=197±14.4g). Uptake on static PET images were compared among (18)F-FBPA at 60-70min post injection, (18)F-FDG at 60-70min, and (11)C-MET at 20-30min in the tumors and the inflammatory lesions by maximum standardized uptake value (SUVmax). Cellular uptake analysis showed no significant difference in inhibitory effect and efflux of LAT1 between cold (18)F-FBPA and cold BPA, suggesting the same affinity and transport capacity via LAT1. Uptake of (18)F-FBPA via LAT1 was superior to LAT2 by

  18. PROSPECTIVE EVALUATION OF 18F-FDG UPTAKE IN POST-ISCHEMIC MYOCARDIUM BY SIMULTANEOUS PET/MRI AS A PROGNOSTIC MARKER OF FUNCTIONAL OUTCOME

    PubMed Central

    Rischpler, Christoph; Dirschinger, Ralf J.; Nekolla, Stephan G.; Kossmann, Hans; Nicolosi, Stefania; Hanus, Franziska; van Marwick, Sandra; Kunze, Karl P.; Meinicke, Alexander; Götze, Katharina; Kastrati, Adnan; Langwieser, Nicolas; Ibrahim, Tareq; Nahrendorf, Matthias; Schwaiger, Markus; Laugwitz, Karl-Ludwig

    2016-01-01

    Background The immune system orchestrates the repair of infarcted myocardium. Imaging of the cellular inflammatory response by 18F-FDG PET/MRI in the heart has been demonstrated in preclinical and clinical studies. However, the clinical relevance of post-MI 18F-FDG uptake in the heart has not been elucidated. The objective of this study was to explore the value of 18F-FDG-PET/MRI in patients after AMI as a biosignal for left ventricular functional outcome. Methods and Results We prospectively enrolled 49 patients with STEMI and performed 18F-FDG-PET/MRI 5 days after PCI and follow-up cardiac MRI after 6–9 months. In a subset of patients, 99mTc-sestamibi-SPECT was performed with tracer injection prior to revascularization. Cellular innate immune response was analyzed at multiple time points. Segmental comparison of 18F-FDG-uptake and LGE showed substantial overlap (κ=0.66), while quantitative analysis demonstrated that 18F-FDG extent exceeded LGE extent (33.2±16.2 %LV vs. 20.4±10.6 %LV, p<0.0001) and corresponded to the area-at-risk (r=0.87, p<0.0001). The peripheral blood count of CD14high/CD16+ monocytes correlated with the infarction size and 18F-FDG signal extent (r=0.53, p<0.002 and r=0.42, p<0.02, respectively). 18F-FDG uptake in the infarcted myocardium was highest in areas with transmural scar and the SUVmean was associated with left ventricular functional outcome independent of infarct size (ΔEF: p<0.04, ΔEDV: p<0.02, ΔESV: p<0.005). Conclusions In the current study, the intensity of 18F-FDG uptake in the myocardium after AMI correlated inversely with functional outcome at 6 months. Thus, 18F-FDG uptake in infarcted myocardium may represent a novel biosignal of myocardial injury. PMID:27056601

  19. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.

    PubMed

    Bleeker, Gitta; Tytgat, Godelieve A M; Adam, Judit A; Caron, Huib N; Kremer, Leontien C M; Hooft, Lotty; van Dalen, Elvira C

    2015-09-29

    Neuroblastoma is an embryonic tumour of childhood that originates in the neural crest. It is the second most common extracranial malignant solid tumour of childhood.Neuroblastoma cells have the unique capacity to accumulate Iodine-123-metaiodobenzylguanidine (¹²³I-MIBG), which can be used for imaging the tumour. Moreover, ¹²³I-MIBG scintigraphy is not only important for the diagnosis of neuroblastoma, but also for staging and localization of skeletal lesions. If these are present, MIBG follow-up scans are used to assess the patient's response to therapy. However, the sensitivity and specificity of ¹²³I-MIBG scintigraphy to detect neuroblastoma varies according to the literature.Prognosis, treatment and response to therapy of patients with neuroblastoma are currently based on extension scoring of ¹²³I-MIBG scans. Due to its clinical use and importance, it is necessary to determine the exact diagnostic accuracy of ¹²³I-MIBG scintigraphy. In case the tumour is not MIBG avid, fluorine-18-fluorodeoxy-glucose ((18)F-FDG) positron emission tomography (PET) is often used and the diagnostic accuracy of this test should also be assessed. 1.1 To determine the diagnostic accuracy of ¹²³I-MIBG (single photon emission computed tomography (SPECT), with or without computed tomography (CT)) scintigraphy for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old.1.2 To determine the diagnostic accuracy of negative ¹²³I-MIBG scintigraphy in combination with (18)F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old, i.e. an add-on test. 2.1 To determine the diagnostic accuracy of (18)F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old.2.2 To compare the diagnostic accuracy of ¹²³I-MIBG (SPECT-CT) and (18)F-FDG

  20. Role of (18)F-FDG PET-CT in Monitoring the Cyclophosphamide Induced Pulmonary Toxicity in Patients with Breast Cancer - 2 Case Reports.

    PubMed

    Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar

    2016-09-01

    Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of (18)F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim (18)F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on (18)F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.

  1. Quantification of Dynamic [18F]FDG Pet Studies in Acute Lung Injury.

    PubMed

    Grecchi, Elisabetta; Veronese, Mattia; Moresco, Rosa Maria; Bellani, Giacomo; Pesenti, Antonio; Messa, Cristina; Bertoldo, Alessandra

    2016-02-01

    This work aims to investigate lung glucose metabolism using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission tomography (PET) imaging in acute lung injury (ALI) patients. Eleven ALI patients and five healthy controls underwent a dynamic [(18)F]FDG PET/X-ray computed tomography (CT) scan. The standardized uptake values (SUV) and three different methods for the quantification of glucose metabolism (i.e., ratio, Patlak, and spectral analysis iterative filter, SAIF) were applied both at the region and the voxel levels. SUV reported a lower correlation than the ratio with the net tracer uptake. Patlak and SAIF analyses did not show any significant spatial or quantitative (R(2) > 0.80) difference. The additional information provided by SAIF showed that in lung inflammation, elevated tracer uptake is coupled with abnormal tracer exchanges within and between lung tissue compartments. Full kinetic modeling provides a multi-parametric description of glucose metabolism in the lungs. This allows characterizing the spatial distribution of lung inflammation as well as returning the functional state of the tissues.

  2. 18F-FDG-PET/CT Angiography for the Diagnosis of Infective Endocarditis.

    PubMed

    Roque, A; Pizzi, M N; Cuéllar-Calàbria, H; Aguadé-Bruix, S

    2017-02-01

    This article reviews the current imaging role of 18 F-fluordeoxyglucose positron emission computed tomography ( 18 F-FDG-PET/CT) combined with cardiac CT angiography (CTA) in infective endocarditis and discusses the strengths and limitations of this technique. The diagnosis of infective endocarditis affecting prosthetic valves and intracardiac devices is challenging because echocardiography and, therefore, the modified Duke criteria have well-recognized limitations in this clinical scenario. The high sensitivity of 18 F-FDG-PET/CT for the detection of infection associated with the accurate definition of structural damage by gated cardiac CTA in a combined technique (PET/CTA) has provided a significant increase in diagnostic sensitivity for the detection of IE. PET/CTA has proven to be a useful diagnostic tool in patients with suspected infective endocarditis. The additional information provided by this technique improves diagnostic performance in prosthetic valve endocarditis when it is used in combination with the Duke criteria. The findings obtained in PET/CTA studies have been included as a major criterion in the recently updated diagnostic algorithm in infective endocarditis guidelines.

  3. Inter- and Intraobserver Agreement of 18F-FDG PET/CT Image Interpretation in Patients Referred for Assessment of Cardiac Sarcoidosis.

    PubMed

    Ohira, Hiroshi; Ardle, Brian Mc; deKemp, Robert A; Nery, Pablo; Juneau, Daniel; Renaud, Jennifer M; Klein, Ran; Clarkin, Owen; MacDonald, Karen; Leung, Eugene; Nair, Girish; Beanlands, Rob; Birnie, David

    2017-08-01

    Recent studies have reported the usefulness of 18 F-FDG PET in aiding with the diagnosis and management of patients with cardiac sarcoidosis (CS). However, image interpretation of 18 F-FDG PET for CS is sometimes challenging. We sought to investigate the inter- and intraobserver agreement and explore factors that led to important discrepancies between readers. Methods: We studied consecutive patients with no significant coronary artery disease who were referred for assessment of CS. Two experienced readers masked to clinical information, imaging reports, independently reviewed 18 F-FDG PET/CT images. 18 F-FDG PET/CT images were interpreted according to a predefined standard operating procedure, with cardiac 18 F-FDG uptake patterns categorized into 5 patterns: none, focal, focal on diffuse, diffuse, and isolated lateral wall or basal uptake. Overall image assessment was classified as either consistent with active CS or not. Results: One hundred scans were included from 71 patients. Of these, 46 underwent 18 F-FDG PET/CT with a no-restriction diet (no-restriction group), and 54 underwent 18 F-FDG PET/CT with a low-carbohydrate, high-fat and protein-permitted diet (low-carb group). There was agreement of the interpretation category in 74 of 100 scans. The κ-value of agreement among all 5 categories was 0.64, indicating moderate agreement. For overall clinical interpretation, there was agreement in 93 of 100 scans (κ = 0.85). When scans were divided into the preparation groups, there was a trend toward higher agreement in the low-carb group versus the no-restriction group (80% vs. 67%, P = 0.08). Regarding the overall clinical interpretation, there was also a trend toward greater agreement in the low-carb group versus the no-restriction group (96% vs. 89%, P = 0.08). Conclusion : The interobserver agreement of cardiac 18 F-FDG uptake image patterns was moderate. However, agreement was better regarding overall interpretation of CS. Detailed prescan dietary

  4. Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography.

    PubMed

    Toyama, Hiroshi; Ichise, Masanori; Liow, Jeih-San; Modell, Kendra J; Vines, Douglass C; Esaki, Takanori; Cook, Michelle; Seidel, Jurgen; Sokoloff, Louis; Green, Michael V; Innis, Robert B

    2004-08-01

    The purpose of this study was to evaluate the feasibility of absolute quantification of regional cerebral glucose utilization (rCMR(glc)) in mice by use of (18)F-FDG and a small animal PET scanner. rCMR(glc) determined with (18)F-FDG PET was compared with values determined simultaneously by the autoradiographic 2-(14)C-DG method. In addition, we compared the rCMR(glc) values under isoflurane, ketamine and xylazine anesthesia, and awake states. Immediately after injection of (18)F-FDG and 2-(14)C-DG into mice, timed arterial samples were drawn over 45 min to determine the time courses of (18)F-FDG and 2-(14)C-DG. Animals were euthanized at 45 min and their brain was imaged with the PET scanner. The brains were then processed for 2-(14)C-DG autoradiography. Regions of interest were manually placed over cortical regions on corresponding coronal (18)F-FDG PET and 2-(14)C-DG autoradiographic images. rCMR(glc) values were calculated for both tracers by the autoradiographic 2-(14)C-DG method with modifications for the different rate and lumped constants for the 2 tracers. Average rCMR(glc) values in cerebral cortex with (18)F-FDG PET under normoglycemic conditions (isoflurane and awake) were generally lower (by 8.3%) but strongly correlated with those of 2-(14)C-DG (r(2) = 0.95). On the other hand, under hyperglycemic conditions (ketamine/xylazine) average cortical rCMR(glc) values with (18)F-FDG PET were higher (by 17.3%) than those with 2-(14)C-DG. Values for rCMR(glc) and uptake (percentage injected dose per gram [%ID/g]) with (18)F-FDG PET were significantly lower under both isoflurane and ketamine/xylazine anesthesia than in the awake mice. However, the reductions of rCMR(glc) were markedly greater under isoflurane (by 57%) than under ketamine and xylazine (by 19%), whereas more marked reductions of %ID/g were observed with ketamine/xylazine (by 54%) than with isoflurane (by 37%). These reverse differences between isoflurane and ketamine/xylazine may be due to

  5. The effect of renal failure on 18F-FDG uptake: a theoretic assessment.

    PubMed

    Laffon, Eric; Cazeau, Anne-Laure; Monet, Antoine; de Clermont, Henri; Fernandez, Philippe; Marthan, Roger; Ducassou, Dominique

    2008-12-01

    This work addresses the issue of using (18)F-FDG PET in patients with renal failure. A model analysis has been developed to compare tissue (18)F-FDG uptake in a patient who has normal renal function with uptake in a theoretic limiting case that assumes tracer plasma decay is tracer physical decay and is trapped irreversibly. This comparison has allowed us to propose, in the limiting case, that the usually injected activity be lowered by a factor of 3. We also proposed that the PET static acquisition be obtained at about 160 min after tracer injection. These 2 proposals were aimed at obtaining a similar patient radiation dose and similar tissue (18)F-FDG uptake. In patients with arbitrary renal failure (i.e., between the 2 extremes of normal function and the theoretic limiting case), we propose that the injected activity be lowered (without exceeding a factor of 3) and that the acquisition be started between 45 and 160 min after tracer injection, depending on the severity of renal failure. Furthermore, the model also shows that the more severe the renal failure is, the more overestimated is the standardized uptake value, unless the renal failure indirectly impairs tissue sensitivity to insulin and hence glucose metabolism.

  6. 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance in Lymphoma

    PubMed Central

    Giraudo, Chiara; Raderer, Markus; Karanikas, Georgios; Weber, Michael; Kiesewetter, Barbara; Dolak, Werner; Simonitsch-Klupp, Ingrid; Mayerhoefer, Marius E.

    2016-01-01

    Objectives The aim of this study was to compare 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance (MR) (with and without diffusion-weighted imaging [DWI]) to 18F-FDG PET/computed tomography (CT), with regard to the assessment of nodal and extranodal involvement, in patients with Hodgkin lymphoma and non-Hodgkin lymphoma, without restriction to FDG-avid subytpes. Materials and Methods Patients with histologically proven lymphoma were enrolled in this prospective, institutional review board–approved study. After a single 18F-FDG injection, patients consecutively underwent 18F-FDG PET⁄CT and 18F-FDG PET/MR on the same day for staging or restaging. Three sets of images were analyzed separately: 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR with DWI. Region-based agreement and examination-based sensitivity and specificity were calculated for 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR DWI. Maximum and mean standardized uptake values (SUVmax, SUVmean) on 18F-FDG PET/CT and 18F-FDG PET/MR were compared and correlated with minimum and mean apparent diffusion coefficients (ADCmin, ADCmean). Results Thirty-four patients with a total of 40 examinations were included. Examination-based sensitivities for 18F-FDG PET/CT, 18F-FDG PET/MR, and 18F-FDG PET/MR DWI were 82.1%, 85.7%, and 100%, respectively; specificities were 100% for all 3 techniques; and accuracies were 87.5%, 90%, and 100%, respectively. 18F-FDG PET/CT was false negative in 5 of 40 examinations (all with mucosa-associated lymphoid tissue lymphoma), and 18F-FDG PET/MR (without DWI) was false negative in 4 of 40 examinations. Region-based percentages of agreement were 99% (κ, 0.95) between 18F-FDG PET/MR DWI and 18F-FDG PET/CT, 99.2% (κ, 0.96) between 18F-FDG PET/MR and 18F-FDG PET/CT, and 99.4% (κ, 0.97) between 18F-FDG PET/MR DWI and 18F-FDG PET/MR. There was a strong correlation between 18F-FDG PET/CT and 18F-FDG PET/MR for SUVmax (r = 0

  7. Correlation of Glut-1 and Glut-3 expression with F-18 FDG uptake in pulmonary inflammatory lesions

    PubMed Central

    Wang, Zhen Guang; Yu, Ming Ming; Han, Yu; Wu, Feng Yu; Yang, Guang Jie; Li, Da Cheng; Liu, Si Min

    2016-01-01

    Abstract The aim of the study was to investigate the correlation of glucose transporter-1 (Glut-1) and glucose transporter-3 (Glut-3) expression with F-18 FDG uptake in pulmonary inflammatory lesions. Twenty-two patients with pulmonary inflammatory lesions underwent positron emission tomography/computed tomography (PET/CT) examination preoperatively, and Glut-1 and Glut-3 expression were detected by immunohistochemistry in these lesions. Correlations of Glut-1 and Glut-3 with 18F-FDG uptake were assessed using Spearman's rank correlation test. The maximum standardized uptake value (SUVmax) of pulmonary inflammatory lesions in 22 patients was 0.50 to 7.50, with a mean value of 3.66 ± 1.62. Immunohistochemical staining scores of Glut-1 and Glut-3 were 2.18 ± 0.96 and 2.82 ± 1.37, respectively. The expression of Glut-1 and Glut-3 was positively correlated with F-18 FDG uptake. Glut-3 expression was evidently higher than Glut-1 expression in 22 patients. Glut-1 and Glut-3 expressions are high in pulmonary inflammatory lesions, and Glut-3 plays a more important role in F-18 FDG uptake in pulmonary inflammatory lesions. PMID:27902598

  8. The effect of work system on the hand exposure of workers in 18F-FDG production centres.

    PubMed

    Wrzesień, Małgorzata

    2018-05-07

    The production of the 18 F isotope-the marker of deoxyglucose ( 18 F-FDG)-the radiopharmaceutical most commonly used in the oncological diagnostic technique of positron emission tomography, requires a cyclotron device. At present, there are nine facilities working in Poland that are equipped with cyclotrons used for producing the short-lived isotopes. The aim of the paper is to determine the hand exposure of workers employed in the two 18 F-FDG production centres taking in to account the production procedures and work system in those facilities. Measurements, which included all professional workers exposed to ionizing radiation that were employed in two facilities, were performed by using high-sensitivity thermoluminescent detectors during the routine activities of the personnel. The work system used at the production centre has an impact on the level of the recorded doses. Among the production procedures performed by the staff, the highest ionizing radiation doses have been received by the staff during the 18 F-FDG quality control. The maximum estimated annual Hp(0.07) for chemists from the quality control department can exceed the annual skin limit dose (500 mSv). The source of lowest doses on the hands are the cyclotron operating procedure and the 18 F-FDG production, provided that these procedures can't be combined with other production procedures.

  9. Subclinical seizures as a pitfall in 18F-FDG PET imaging of temporal lobe epilepsy.

    PubMed

    Tafti, Bashir Akhavan; Mandelkern, Mark; Berenji, Gholam Reza

    2014-09-01

    A 61-year-old man with history of heroin abuse, hepatitis B, hepatitis C, and hypertension was evaluated for seizures. MRI findings were concerning for temporal epilepsy. A brain 18F-FDG PET study showed a hypermetabolic focus in the left temporal lobe, although the patient was asymptomatic during the scan. Later review of electroencephalography recordings revealed a subclinical seizure during imaging. A whole-body 18F-FDG PET scan performed 4 days later for cancer screening purposes, during which the electroencephalography tracings were normal, showed no abnormal metabolic activity in the brain.

  10. PET/CT with 18F-FDG- and 18F-FBEM-labeled leukocytes for metabolic activity and leukocyte recruitment monitoring in a mouse model of pulmonary fibrosis.

    PubMed

    Bondue, Benjamin; Sherer, Félicie; Van Simaeys, Gaetan; Doumont, Gilles; Egrise, Dominique; Yakoub, Yousof; Huaux, François; Parmentier, Marc; Rorive, Sandrine; Sauvage, Sébastien; Lacroix, Simon; Vosters, Olivier; De Vuyst, Paul; Goldman, Serge

    2015-01-01

    Idiopathic pulmonary fibrosis is characterized by a progressive and irreversible respiratory failure. Validated noninvasive methods able to assess disease activity are essential for prognostic purposes as well as for the evaluation of emerging antifibrotic treatments. C57BL/6 mice were used in a murine model of pulmonary fibrosis induced by an intratracheal instillation of bleomycin (control mice were instilled with a saline solution). At different times after instillation, PET/CT with (18)F-FDG- or (18)F-4-fluorobenzamido-N-ethylamino-maleimide ((18)F-FBEM)-labeled leukocytes was performed to assess metabolic activity and leukocyte recruitment, respectively. In bleomycin-treated mice, a higher metabolic activity was measured on (18)F-FDG PET/CT scans from day 7 to day 24 after instillation, with a peak of activity measured at day 14. Of note, lung mean standardized uptake values correlated with bleomycin doses, histologic score of fibrosis, lung hydroxyproline content, and weight loss. Moreover, during the inflammatory phase of the model (day 7), but not the fibrotic phase (day 23), bleomycin-treated mice presented with an enhanced leukocyte recruitment as assessed by (18)F-FBEM-labeled leukocyte PET/CT. Autoradiographic analysis of lung sections and CD45 immunostaining confirm the higher and early recruitment of leukocytes in bleomycin-treated mice, compared with control mice. (18)F-FDG- and (18)F-FBEM-labeled leukocyte PET/CT enable monitoring of metabolic activity and leukocyte recruitment in a mouse model of pulmonary fibrosis. Implications for preclinical evaluation of antifibrotic therapy are expected. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  11. Increased 18F-FDG Uptake Is Predictive of Rupture in a Novel Rat Abdominal Aortic Aneurysm Rupture Model

    PubMed Central

    English, Sean J.; Piert, Morand R.; Diaz, Jose A.; Gordon, David; Ghosh, Abhijit; D'Alecy, Louis G.; Whitesall, Steven E.; Sharma, Ashish K.; DeRoo, Elise P.; Watt, Tessa; Su, Gang; Henke, Peter K.; Eliason, Jonathan L.; Ailawadi, Gorav; Upchurch, Gilbert R.

    2015-01-01

    Objective To determine whether 18F-fluorodeoxyglucose (18F-FDG) micro–positron emission tomography (micro-PET) can predict abdominal aortic aneurysm (AAA) rupture. Background An infrarenal AAA model is needed to study inflammatory mechanisms that drive rupture. 18F-FDG PET can detect vascular inflammation in animal models and patients. Methods After exposing Sprague-Dawley rats to intra-aortic porcine pancreatic elastase (PPE) (12 U/mL), AAA rupture was induced by daily, subcutaneous, β-aminopropionitrile (BAPN, 300 mg/kg, N = 24) administration. Negative control AAA animals (N = 15) underwent daily saline subcutaneous injection after PPE exposure. BAPN-exposed animals that did not rupture served as positive controls [nonruptured AAA (NRAAA) 14d, N = 9]. Rupture was witnessed using radiotelemetry. Maximum standard uptakes for 18F-FDG micro-PET studies were determined. Aortic wall PAI-1, uPA, and tPA concentrations were determined by western blot analyses. Interleukin (IL)-1β, IL-6, IL-10, and MIP-2 were determined by Bio-Plex bead array. Neutrophil and macrophage populations per high-power field were quantified. Matrix metalloproteinase (MMP) activities were determined by zymography. Results When comparing ruptured AAA (RAAA) to NRAAA 14d animals, increased focal 18F-FDG uptakes were detected at subsequent sites of rupture (P = 0.03). PAI-1 expression was significantly less in RAAA tissue (P = 0.01), with comparable uPA and decreased tPA levels (P = 0.02). IL-1β (P = 0.04), IL-6 (P = 0.001), IL-10 (P = 0.04), and MIP-2 (P = 0.02)expression, neutrophil (P = 0.02) and macrophage presence (P = 0.002), and MMP9 (P < 0.0001) activity were increased in RAAA tissue. Conclusions With this AAA rupture model, increased prerupture 18F-FDG uptake on micro-PET imaging was associated with increased inflammation in the ruptured AAA wall. 18F-FDG PET imaging may be used to monitor inflammatory changes before AAA rupture. PMID:24651130

  12. Prevalence and malignancy risk of focal colorectal incidental uptake detected by (18)F-FDG-PET or PET/CT: a meta-analysis.

    PubMed

    Treglia, Giorgio; Taralli, Silvia; Salsano, Marco; Muoio, Barbara; Sadeghi, Ramin; Giovanella, Luca

    2014-06-01

    The aim of the study was to meta-analyze published data about prevalence and malignancy risk of focal colorectal incidentalomas (FCIs) detected by Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography ((18)F-FDG-PET or PET/CT). A comprehensive computer literature search of studies published through July 31(st) 2012 regarding FCIs detected by (18)F-FDG-PET or PET/CT was performed. Pooled prevalence of patients with FCIs and risk of malignant or premalignant FCIs after colonoscopy or histopathology verification were calculated. Furthermore, separate calculations for geographic areas were performed. Finally, average standardized uptake values (SUV) in malignant, premalignant and benign FCIs were reported. Thirty-two studies comprising 89,061 patients evaluated by (18)F-FDG-PET or PET/CT were included. The pooled prevalence of FCIs detected by (18)F-FDG-PET or PET/CT was 3.6% (95% confidence interval [95% CI]: 2.6-4.7%). Overall, 1,044 FCIs detected by (18)F-FDG-PET or PET/CT underwent colonoscopy or histopathology evaluation. Pooled risk of malignant or premalignant lesions was 68% (95% CI: 60-75%). Risk of malignant and premalignant FCIs in Asia-Oceania was lower compared to that of Europe and America. A significant overlap in average SUV was found between malignant, premalignant and benign FCIs. FCIs are observed in a not negligible number of patients who undergo (18)F-FDG-PET or PET/CT studies with a high risk of malignant or premalignant lesions. SUV is not reliable as a tool to differentiate between malignant, premalignant and benign FCIs. Further investigation is warranted whenever FCIs are detected by (18)F-FDG-PET or PET/CT.

  13. [18F]MEL050 as a melanin-targeted PET tracer: Fully automated radiosynthesis and comparison to 18F-FDG for the detection of pigmented melanoma in mice primary subcutaneous tumors and pulmonary metastases.

    PubMed

    Rizzo-Padoin, Nathalie; Chaussard, Michael; Vignal, Nicolas; Kotula, Ewa; Tsoupko-Sitnikov, Vadim; Vaz, Sofia; Hontonnou, Fortune; Liu, Wang-Qing; Poyet, Jean-Luc; Vidal, Michel; Merlet, Pascal; Hosten, Benoit; Sarda-Mantel, Laure

    2016-12-01

    Melanoma is a highly malignant cutaneous tumor of melanin-producing cells. MEL050 is a synthetic benzamide-derived molecule that specifically binds to melanin with high affinity. Our aim was to implement a fully automated radiosynthesis of [ 18 F]MEL050, using for the first time, the AllInOne™ synthesis module (Trasis), and to evaluate the potential of [ 18 F]MEL050 for the detection of pigmented melanoma in mice primary subcutaneous tumors and pulmonary metastases, and to compare it with that of [ 18 F]FDG. Automated radiosynthesis of [ 18 F]MEL050, including HPLC purification and formulation, were performed on an AllInOne™ synthesis module. [ 18 F]MEL050 was synthesized using a one-step bromine-for-fluorine nucleophilic heteroaromatic substitution. Melanoma models were induced by subcutaneous (primary tumor) or intravenous (pulmonary metastases) injection of B16-F10-luc2 cells in NMRI mice. The maximum percentage of [ 18 F]MEL050 Injected Dose per g of lung tissue (%ID/g Max) was determined on PET images, compared to [ 18 F]FDG and correlated to in vivo bioluminescence imaging. The automated radiosynthesis of [ 18 F]MEL050 required an overall radiosynthesis time of 48min, with a yield of 13-18% (not-decay corrected) and radiochemical purity higher than 99%. [ 18 F]MEL050 PET/CT images were concordant with bioluminescence imaging, showing increased radiotracer uptake in all primary subcutaneous tumors and pulmonary metastases of mice. PET quantification of radiotracers uptake in tumors and muscles demonstrated similar tumor-to-background ratio (TBR) with [ 18 F]MEL050 and [ 18 F]FDG in subcutaneous tumors and higher TBR with [ 18 F]MEL050 than with [ 18 F]FDG in pulmonary metastases. We successfully implemented the radiosynthesis of [ 18 F]MEL050 using the AllInOne™ module, including HPLC purification and formulation. In vivo PET/CT validation of [ 18 F]MEL050 was obtained in mouse models of pigmented melanoma, where higher [ 18 F]MEL050 uptake was observed

  14. 18F-FDG PET radiomics approaches: comparing and clustering features in cervical cancer.

    PubMed

    Tsujikawa, Tetsuya; Rahman, Tasmiah; Yamamoto, Makoto; Yamada, Shizuka; Tsuyoshi, Hideaki; Kiyono, Yasushi; Kimura, Hirohiko; Yoshida, Yoshio; Okazawa, Hidehiko

    2017-11-01

    The aims of our study were to find the textural features on 18 F-FDG PET/CT which reflect the different histological architectures between cervical cancer subtypes and to make a visual assessment of the association between 18 F-FDG PET textural features in cervical cancer. Eighty-three cervical cancer patients [62 squamous cell carcinomas (SCCs) and 21 non-SCCs (NSCCs)] who had undergone pretreatment 18 F-FDG PET/CT were enrolled. A texture analysis was performed on PET/CT images, from which 18 PET radiomics features were extracted including first-order features such as standardized uptake value (SUV), metabolic tumor volume (MTV) and total lesion glycolysis (TLG), second- and high-order textural features using SUV histogram, normalized gray-level co-occurrence matrix (NGLCM), and neighborhood gray-tone difference matrix, respectively. These features were compared between SCC and NSCC using a Bonferroni adjusted P value threshold of 0.0028 (0.05/18). To assess the association between PET features, a heat map analysis with hierarchical clustering, one of the radiomics approaches, was performed. Among 18 PET features, correlation, a second-order textural feature derived from NGLCM, was a stable parameter and it was the only feature which showed a robust trend toward significant difference between SCC and NSCC. Cervical SCC showed a higher correlation (0.70 ± 0.07) than NSCC (0.64 ± 0.07, P = 0.0030). The other PET features did not show any significant differences between SCC and NSCC. A higher correlation in SCC might reflect higher structural integrity and stronger spatial/linear relationship of cancer cells compared with NSCC. A heat map with a PET feature dendrogram clearly showed 5 distinct clusters, where correlation belonged to a cluster including MTV and TLG. However, the association between correlation and MTV/TLG was not strong. Correlation was a relatively independent PET feature in cervical cancer. 18 F-FDG PET textural features might reflect the

  15. Utility of 18 F-FDG PET/CT scan to diagnose the etiology of fever of unknown origin in patients on dialysis.

    PubMed

    Tek Chand, Kalawat; Chennu, Krishna Kishore; Amancharla Yadagiri, Lakshmi; Manthri Gupta, Ranadheer; Rapur, Ram; Vishnubotla, Siva Kumar

    2017-04-01

    Studies on fever of unknown origin (FUO) in patients of chronic kidney disease and end stage renal disease patients on dialysis were not many. In this study, we used 18 F-FDG PET/CT scan whole body survey for detection of hidden infection, in patients on dialysis, labelled as FUO. In this retrospective study, 20 patients of end stage renal disease on dialysis were investigated for the cause of FUO using 18F-FDG PET/CT scan. All these patients satisfied the definition of FUO as defined by Petersdorf and Beeson. Any focal abnormal site of increased FDG concentration detected by PET/CT, either a solitary or multiple lesions was documented and at least one of the detected abnormal sites of radio tracer concentration was further examined for histopathology. All patients were on renal replacement therapy. Of these, 18 were on hemodialysis and two were on peritoneal dialysis. 18F-FDG PET/CT scan showed metabolically active lesions in 15 patients and metabolically quiescent in five patients. After 18F-FDG PET/CT scan all, but one patient had a change in treatment for fever. Anti-tuberculous treatment was given in 15 patients, antibiotics in four patients and anti-malaria treatment in one patient. The present study is first study of 18F-FDG PET/CT scan in patients of end stage renal disease on dialysis with FUO. The study showed that the 18 F FDG PET/CT scan may present an opportunity to attain the diagnosis in end stage renal disease patients on dialysis with FUO. © 2016 International Society for Hemodialysis.

  16. Post-PET ultrasound improves specificity of 18F-FDG-PET for recurrent differentiated thyroid cancer while maintaining sensitivity

    PubMed Central

    Kråkenes, Jostein; Brauckhoff, Katrin; Haugland, Hans Kristian; Heinecke, Achim; Akslen, Lars A; Varhaug, Jan Erik; Brauckhoff, Michael

    2015-01-01

    Background Positron emission tomography (PET) using fluor-18-deoxyglucose (18F-FDG) with or without computed tomography (CT) is generally accepted as the most sensitive imaging modality for diagnosing recurrent differentiated thyroid cancer (DTC) in patients with negative whole body scintigraphy with iodine-131 (I-131). Purpose To assess the potential incremental value of ultrasound (US) over 18F-FDG-PET-CT. Material and Methods Fifty-one consecutive patients with suspected recurrent DTC were prospectively evaluated using the following multimodal imaging protocol: (i) US before PET (pre-US) with or without fine needle biopsy (FNB) of suspicious lesions; (ii) single photon emission computed tomography (≥3 GBq I-131) with co-registered CT (SPECT-CT); (iii) 18F-FDG-PET with co-registered contrast-enhanced CT of the neck; (iv) US in correlation with the other imaging modalities (post-US). Postoperative histology, FNB, and long-term follow-up (median, 2.8 years) were taken as composite gold standard. Results Fifty-eight malignant lesions were identified in 34 patients. Forty lesions were located in the neck or upper mediastinum. On receiver operating characteristics (ROC) analysis, 18F-FDG-PET had a limited lesion-based specificity of 59% at a set sensitivity of 90%. Pre-US had poor sensitivity and specificity of 52% and 53%, respectively, increasing to 85% and 94% on post-US, with knowledge of the PET/CT findings (P < 0.05 vs. PET and pre-US). Multimodal imaging changed therapy in 15 out of 51 patients (30%). Conclusion In patients with suspected recurrent DTC, supplemental targeted US in addition to 18F-FDG-PET-CT increases specificity while maintainin sensitivity, as non-malignant FDG uptake in cervical lesions can be confirmed. PMID:25770086

  17. Multicellular Tumour Spheroid as a model for evaluation of [18F]FDG as biomarker for breast cancer treatment monitoring

    PubMed Central

    Monazzam, Azita; Razifar, Pasha; Simonsson, Martin; Qvarnström, Fredrik; Josephsson, Raymond; Blomqvist, Carl; Långström, Bengt; Bergström, Mats

    2006-01-01

    Background In order to explore a pre-clinical method to evaluate if [18F]FDG is valid for monitoring early response, we investigated the uptake of FDG in Multicellular tumour spheroids (MTS) without and with treatment with five routinely used chemotherapy agents in breast cancer. Methods The response to each anticancer treatment was evaluated by measurement of the [18F]FDG uptake and viable volume of the MTSs after 2 and 3 days of treatment. Results The effect of Paclitaxel and Docetaxel on [18F]FDG uptake per viable volume was more evident in BT474 (up to 55% decrease) than in MCF-7 (up to 25% decrease). Doxorubicin reduced the [18F]FDG uptake per viable volume more noticeable in MCF-7 (25%) than in BT474 MTSs. Tamoxifen reduced the [18F]FDG uptake per viable volume only in MCF-7 at the highest dose of 1 μM. No effect of Imatinib was observed. Conclusion MTS was shown to be appropriate to investigate the potential of FDG-PET for early breast cancer treatment monitoring; the treatment effect can be observed before any tumour size changes occur. The combination of PET radiotracers and image analysis in MTS provides a good model to evaluate the relationship between tumour volume and the uptake of metabolic tracer before and after chemotherapy. This feature could be used for screening and selecting PET-tracers for early assessment of treatment response. In addition, this new method gives a possibility to assess quickly, and in vitro, a good preclinical profile of existing and newly developed anti-cancer drugs. PMID:16556298

  18. Prevalence and malignancy risk of focal colorectal incidental uptake detected by 18F-FDG-PET or PET/CT: a meta-analysis

    PubMed Central

    Treglia, Giorgio; Taralli, Silvia; Salsano, Marco; Muoio, Barbara; Sadeghi, Ramin; Giovanella, Luca

    2014-01-01

    Background The aim of the study was to meta-analyze published data about prevalence and malignancy risk of focal colorectal incidentalomas (FCIs) detected by Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography (18F-FDG-PET or PET/CT). Methods A comprehensive computer literature search of studies published through July 31st 2012 regarding FCIs detected by 18F-FDG-PET or PET/CT was performed. Pooled prevalence of patients with FCIs and risk of malignant or premalignant FCIs after colonoscopy or histopathology verification were calculated. Furthermore, separate calculations for geographic areas were performed. Finally, average standardized uptake values (SUV) in malignant, premalignant and benign FCIs were reported. Results Thirty-two studies comprising 89,061 patients evaluated by 18F-FDG-PET or PET/CT were included. The pooled prevalence of FCIs detected by 18F-FDG-PET or PET/CT was 3.6% (95% confidence interval [95% CI]: 2.6–4.7%). Overall, 1,044 FCIs detected by 18F-FDG-PET or PET/CT underwent colonoscopy or histopathology evaluation. Pooled risk of malignant or premalignant lesions was 68% (95% CI: 60–75%). Risk of malignant and premalignant FCIs in Asia-Oceania was lower compared to that of Europe and America. A significant overlap in average SUV was found between malignant, premalignant and benign FCIs. Conclusions FCIs are observed in a not negligible number of patients who undergo 18F-FDG-PET or PET/CT studies with a high risk of malignant or premalignant lesions. SUV is not reliable as a tool to differentiate between malignant, premalignant and benign FCIs. Further investigation is warranted whenever FCIs are detected by 18F-FDG-PET or PET/CT. PMID:24991198

  19. Missed causative tumors in diagnosing tumor-induced osteomalacia with (18)F-FDG PET/CT: a potential pitfall of standard-field imaging.

    PubMed

    Kaneuchi, Yoichi; Hakozaki, Michiyuki; Yamada, Hitoshi; Hasegawa, Osamu; Tajino, Takahiro; Konno, Shinichi

    2016-01-01

    We describe herein two tumor-induced osteomalacia (TIO) cases for whom the causative lesions, located in their popliteal fossa, that were not identified in the standard field of fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT), which usually images only the head, trunk, and proximal parts of the extremities. A 47 years old Japanese man with multiple pathological fractures due to osteomalacia, accompanied by muscle weakness, hypophosphatemia, and an elevation of alkaline phosphatase (ALP) was referred to our hospital. A (18)F-FDG PET/CT scan was performed, but no (18)F-FDG uptake was detected in the standard field of imaging. Magnetic resonance imaging revealed a small subcutaneous tumor (1.9×1.2×0.6cm) of the left posteriomedial knee, displaying uniform enhancement on gadolinium-enhanced T1-weighted fat-suppression imaging. The tumor was resected widely and diagnosed as phosphaturic mesenchymal tumor, mixed connective tissue variant (PMTMCT). The other patient was a 31 years old Japanese woman with multiple pathological fractures, hypophosphatemia and elevated of ALP and was referred to our hospital on suspicion of TIO. Although the causative lesion was not identified in the standard field of (18)F-FDG PET/CT, (18)F-FDG uptake (SUVmax 2.9) was detected on the right knee in the additional whole-body (18)F-FDG PET/CT. Magnetic resonance imaging revealed a soft-tissue tumor (6.4×4.1×2.9cm) in the right posterior knee. Following biopsy, the tumor was marginally resected, and was pathologically diagnosed as PMTMCT. Once patients are suspected to have TIO, a whole-body nuclear imaging study such as (18)F-FDG PET/CT should be performed, in order not to miss the hidden causative tumor, especially occurring in the distal extremities.

  20. 18F-FDG labeling of mesenchymal stem cells and multipotent adult progenitor cells for PET imaging: effects on ultrastructure and differentiation capacity.

    PubMed

    Wolfs, Esther; Struys, Tom; Notelaers, Tineke; Roberts, Scott J; Sohni, Abhishek; Bormans, Guy; Van Laere, Koen; Luyten, Frank P; Gheysens, Olivier; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2013-03-01

    Because of their extended differentiation capacity, stem cells have gained great interest in the field of regenerative medicine. For the development of therapeutic strategies, more knowledge on the in vivo fate of these cells has to be acquired. Therefore, stem cells can be labeled with radioactive tracer molecules such as (18)F-FDG, a positron-emitting glucose analog that is taken up and metabolically trapped by the cells. The aim of this study was to optimize the radioactive labeling of mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) in vitro with (18)F-FDG and to investigate the potential radiotoxic effects of this labeling procedure with a range of techniques, including transmission electron microscopy (TEM). Mouse MSCs and rat MAPCs were used for (18)F-FDG uptake kinetics and tracer retention studies. Cell metabolic activity, proliferation, differentiation and ultrastructural changes after labeling were evaluated using an Alamar Blue reagent, doubling time calculations and quantitative TEM, respectively. Additionally, mice were injected with MSCs and MAPCs prelabeled with (18)F-FDG, and stem cell biodistribution was investigated using small-animal PET. The optimal incubation period for (18)F-FDG uptake was 60 min. Significant early tracer washout was observed, with approximately 30%-40% of the tracer being retained inside the cells 3 h after labeling. Cell viability, proliferation, and differentiation capacity were not severely affected by (18)F-FDG labeling. No major changes at the ultrastructural level, considering mitochondrial length, lysosome size, the number of lysosomes, the number of vacuoles, and the average rough endoplasmic reticulum width, were observed with TEM. Small-animal PET experiments with radiolabeled MAPCs and MSCs injected intravenously in mice showed a predominant accumulation in the lungs and a substantial elution of (18)F-FDG from the cells. MSCs and MAPCs can be successfully labeled with (18)F-FDG for

  1. The use of 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) as a non-invasive pharmacodynamic biomarker to determine the minimally pharmacologically active dose of AZD8835, a novel PI3Kα inhibitor

    PubMed Central

    Maynard, Juliana; Emmas, Sally-Ann; Ble, Francois-Xavier; Barjat, Herve; Lawrie, Emily; Hancox, Urs; Polanska, Urszula M.; Pritchard, Alison; Hudson, Kevin

    2017-01-01

    Background The phosphatidyl inositol 3 kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) signal transduction pathway is frequently de-regulated and activated in human cancer and is an important therapeutic target. AZD8835 is a PI3K inhibitor, with selectivity against PI3K α and δ isoforms, which is currently in Phase 1 clinical trials. 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) is a non-invasive pharmacodynamic imaging biomarker that has become an integral part of drug development. It has been used widely with PI3K inhibitors both clinically and pre-clinically because of the role of the PI3K pathway in glucose metabolism. In this study we investigated the potential of 18F-FDG PET as a non-invasive pharmacodynamic biomarker for AZD8835. We sought to understand if 18F-FDG PET could determine the minimally effective dose of AZD8835 and correlate with other pharmacodynamic biomarkers for validation of its use in clinical development. 18F-FDG PET scans were performed in nude mice in the BT474C breast xenograft model. Mice were fasted prior to imaging and static 18F-FDG PET was performed. Treatment groups received AZD8835 by oral gavage at a dose volume of 10ml/kg. Treatment groups received either 3, 6, 12.5, 25 or 50mg/kg AZD8835. Tumour growth was monitored throughout the study, and at the end of the imaging procedure, tumours were taken and a full pharmacodynamic analysis was performed. Results Results showed that AZD8835 reduced 18F-FDG uptake at a dose of 12.5, 25 and 50mg/kg with no significant reduction at doses of 3 and 6mg/kg. These results were consistent with other pharmacodynamics biomarkers measured and show 18F-FDG PET as a sensitive biomarker with the ability to determine the minimal effective dose of AZD8835. Conclusions Our pre-clinical studies support the use of 18F-FDG PET imaging as a sensitive and non- invasive pharmacodynamic biomarker (understanding the role of PI3K signalling in glucose uptake) for AZD8835 with

  2. Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer.

    PubMed

    Heijmen, Linda; de Geus-Oei, Lioe-Fee; de Wilt, Johannes H W; Visvikis, Dimitris; Hatt, Mathieu; Visser, Eric P; Bussink, Johan; Punt, Cornelis J A; Oyen, Wim J G; van Laarhoven, Hanneke W M

    2012-12-01

    Several studies showed potential for monitoring response to systemic therapy in metastatic colorectal cancer patients with (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Before (18)F-FDG PET can be implemented for response evaluation the repeatability should be known. This study was performed to assess the magnitude of the changes in standardized uptake value (SUV), volume and total lesion glycolysis (TLG) in colorectal liver metastases and validate the biological basis of (18)F-FDG PET in colorectal liver metastases. Twenty patients scheduled for liver metastasectomy underwent two (18)F-FDG PET scans within 1 week. Bland-Altman analysis was performed to assess repeatability of SUV(max), SUV(mean), volume and TLG. Tumours were delineated using an adaptive threshold method (PET(SBR)) and a semiautomatic fuzzy locally adaptive Bayesian (FLAB) delineation method. Coefficient of repeatability of SUV(max) and SUV(mean) were ∼39 and ∼31 %, respectively, independent of the delineation method used and image reconstruction parameters. However, repeatability was worse in recently treated patients. The FLAB delineation method improved the repeatability of the volume and TLG measurements compared to PET(SBR), from coefficients of repeatability of over 85 % to 45 % and 57 % for volume and TLG, respectively. Glucose transporter 1 (GLUT1) expression correlated to the SUV(mean). Vascularity (CD34 expression) and tumour hypoxia (carbonic anhydrase IX expression) did not correlate with (18)F-FDG PET parameters. In conclusion, repeatability of SUV(mean) and SUV(max) was mainly affected by preceding systemic therapy. The repeatability of tumour volume and TLG could be improved using more advanced and robust delineation approaches such as FLAB, which is recommended when (18)F-FDG PET is utilized for volume or TLG measurements. Improvement of repeatability of PET measurements, for instance by dynamic PET scanning protocols, is probably necessary to effectively

  3. (18)F-FDG PET/CT, cytoreductive surgery and intraperitoneal chemohyperthermia for the therapeutic management in peritoneal carcinomatosis: A pilot study.

    PubMed

    Cistaro, A; Cucinotta, M; Cassalia, L; Priola, A; Priola, S; Pappalardo, M; Coppolino, P; De Simone, M; Quartuccio, N

    2016-01-01

    Peritoneal carcinomatosis is a common evolution of neoplasms and the terminal stage of disease. A new therapeutic technique, based on the total surgical removal of peritoneal lesions (peritonectomy procedure - PP) combined with the intraperitoneal chemohyperthermia (IPCH), has been developed. Proper patient selection is mandatory for optimizing the results of treatment. The aim of this study was to investigate the role of [(18)F]fluoro-2-deoxy-d-glucose Positron Emission Tomography/Computed Tomography ((18)F-FDG PET/CT) in patients with peritoneal carcinosis selected to undergo PP and IPCH. Furthermore, we aimed to identify characteristic patterns of abdominal(18)F-FDG uptake and to correlate these patterns with available anatomic findings after surgery. Patients with either histologically confirmed peritoneal carcinosis or suspected upon clinical follow-up and/or imaging findings were prospectively submitted to pre-surgery (18)F-FDG PET/CT scan. Only those patients without evidence of extra-peritoneal metastases at PET/CT scan were treated with PP and IPCH. 11 patients with peritoneal carcinomatosis (5 colorectal, 4 ovarian, 1 pancreatic) and 1 unknown primitive cancer, were eligible for the study. In all cases PET/CT scan showed multiple peritoneal implants. In 6 out of 11 cases (54%) metastases were evidenced by (18)F-FDG PET/CT: 2 cases with liver metastases; 1 case with bone metastases; 3 patients with lymph-node lesions. Two distinct imaging patterns, with focal or diffuse increased (18)F-FDG uptake, were recognized. PP+IPCH of patients selected by (18)F-FDG PET/CT seems to be safe and feasible. PET/CT scan appears as a reliable tool for the detection, characterization of peritoneal implants with potential impact in the therapeutic management of these patients. Copyright © 2016 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  4. Radiation exposure to nuclear medicine staffs during 18F-FDG PET/CT procedures at Ramathibodi Hospital

    NASA Astrophysics Data System (ADS)

    Donmoon, T.; Chamroonrat, W.; Tuntawiroon, M.

    2016-03-01

    The aim of this study is to estimate the whole body and finger radiation doses per study received by nuclear medicine staff involved in dispensing, administration of 18F-FDG and interacting with radioactive patients during PET/CT imaging procedures in a PET/CT facility. The whole-body doses received by radiopharmacists, technologists and nurses were measured by electronic dosimeter and the finger doses by ring dosimeter during a period of 4 months. In 70 PET/CT studies, the mean whole-body dose per study to radiopharmacist, technologist, and nurse were 1.07±0.09, 1.77±0.46, μSv, and not detectable respectively. The mean finger doses per study received by radiopharmacist, technologist, and nurse were 265.65±107.55, 4.84±1.08 and 19.22±2.59 μSv, respectively. The average time in contact with 18F-FDG was 5.88±0.03, 39.06±1.89 and 1.21±0.02 minutes per study for radiopharmacist, technologist and nurse respectively. Technologists received highest mean effective whole- body dose per study and radiopharmacist received the highest finger dose per study. When compared with the ICRP dose limit, each individual worker can work with many more 18F- FDG PET/CT studies for a whole year without exceeding the occupational dose limits. This study confirmed that low levels of radiation does are received by our medical personnel involved in 18F-FDG PET/CT procedures.

  5. Is 18F-FDG PET/CT useful for distinguishing between primary thyroid lymphoma and chronic thyroiditis?

    PubMed

    Nakadate, Masashi; Yoshida, Katsuya; Ishii, Akihiro; Koizumi, Masayuki; Tochigi, Naobumi; Suzuki, Yoshio; Ryu, Yoshiharu; Nakagawa, Tassei; Umehara, Isao; Shibuya, Hitoshi

    2013-09-01

    This study aims to investigate the usefulness of (18)F-FDG PET/CT for distinguishing between primary thyroid lymphoma (PTL) and chronic thyroiditis. We retrospectively reviewed the data of 196 patients with diffuse (18)F-FDG uptake of the thyroid gland and enrolled patients who were diagnosed as having PTL or chronic thyroiditis based on the medical records, pathological findings, and laboratory data. The enrolled patients comprised 10 PTL patients (M/F = 4:6) and 51 chronic thyroiditis patients (M/F = 8:43). Images had been acquired on a PET/CT scanner at 100 minutes after intravenous injection of (18)F-FDG. The PTL group consisted of 7 patients with diffuse large B-cell lymphoma (DLBCL) and 3 with mucosa-associated lymphoid tissue (MALT) lymphoma. The maximum standardized uptake value (SUV(max)) was significantly higher in the PTL group than that in the chronic thyroiditis group (25.3 ± 8.0 and 7.4 ± 3.2, P < 0.001). On the other hand, the CT density (Hounsfield unit: HU) was significantly lower in the PTL group than that in the chronic thyroiditis group (46.1 ± 7.0 HU and 62.1 ± 6.9 HU, P < 0.001). Within the PTL group, the SUV(max) was significantly higher in the cases of DLBCL than in those of MALT lymphoma (29.0 ± 6.4 and 16.7 ± 2.3, P = 0.017). The SUV(max) was significantly higher and the CT density was significantly lower in PTL as compared with those in chronic thyroiditis. Thus, (18)F-FDG PET/CT may be useful for distinguishing between PTL and chronic thyroiditis.

  6. A new assessment model for tumor heterogeneity analysis with [18]F-FDG PET images.

    PubMed

    Wang, Ping; Xu, Wengui; Sun, Jian; Yang, Chengwen; Wang, Gang; Sa, Yu; Hu, Xin-Hua; Feng, Yuanming

    2016-01-01

    It has been shown that the intratumor heterogeneity can be characterized with quantitative analysis of the [18]F-FDG PET image data. The existing models employ multiple parameters for feature extraction which makes it difficult to implement in clinical settings for the quantitative characterization. This article reports an easy-to-use and differential SUV based model for quantitative assessment of the intratumor heterogeneity from 3D [18]F-FDG PET image data. An H index is defined to assess tumor heterogeneity by summing voxel-wise distribution of differential SUV from the [18]F-FDG PET image data. The summation is weighted by the distance of SUV difference among neighboring voxels from the center of the tumor and can thus yield increased values for tumors with peripheral sub-regions of high SUV that often serves as an indicator of augmented malignancy. Furthermore, the sign of H index is used to differentiate the rate of change for volume averaged SUV from its center to periphery. The new model with the H index has been compared with a widely-used model of gray level co-occurrence matrix (GLCM) for image texture characterization with phantoms of different configurations and the [18]F-FDG PET image data of 6 lung cancer patients to evaluate its effectiveness and feasibility for clinical uses. The comparison of the H index and GLCM parameters with the phantoms demonstrate that the H index can characterize the SUV heterogeneity in all of 6 2D phantoms while only 1 GLCM parameter can do for 1 and fail to differentiate for other 2D phantoms. For the 8 3D phantoms, the H index can clearly differentiate all of them while the 4 GLCM parameters provide complicated patterns in the characterization. Feasibility study with the PET image data from 6 lung cancer patients show that the H index provides an effective single-parameter metric to characterize tumor heterogeneity in terms of the local SUV variation, and it has higher correlation with tumor volume change after

  7. Imaging cellular pharmacokinetics of 18F-FDG and 6-NBDG uptake by inflammatory and stem cells.

    PubMed

    Zaman, Raiyan T; Tuerkcan, Silvan; Mahmoudi, Morteza; Saito, Toshinobu; Yang, Phillip C; Chin, Frederick T; McConnell, Michael V; Xing, Lei

    2018-01-01

    Myocardial infarction (MI) causes significant loss of cardiomyocytes, myocardial tissue damage, and impairment of myocardial function. The inability of cardiomyocytes to proliferate prevents the heart from self-regeneration. The treatment for advanced heart failure following an MI is heart transplantation despite the limited availability of the organs. Thus, stem-cell-based cardiac therapies could ultimately prevent heart failure by repairing injured myocardium that reverses cardiomyocyte loss. However, stem-cell-based therapies lack understanding of the mechanisms behind a successful therapy, including difficulty tracking stem cells to provide information on cell migration, proliferation and differentiation. In this study, we have investigated the interaction between different types of stem and inflammatory cells and cell-targeted imaging molecules, 18F-FDG and 6-NBDG, to identify uptake patterns and pharmacokinetics in vitro. Macrophages (both M1 and M2), human induced pluripotent stem cells (hiPSCs), and human amniotic mesenchymal stem cells (hAMSCs) were incubated with either 18F-FDG or 6-NBDG. Excess radiotracer and fluorescence were removed and a 100 μm-thin CdWO4 scintillator plate was placed on top of the cells for radioluminescence microscopy imaging of 18F-FDG uptake, while no scintillator was needed for fluorescence imaging of 6-NBDG uptake. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) and an Electron Multiplying Charge-Couple Device (EM-CCD) camera. Custom-written software was developed in MATLAB for image processing. The average cellular activity of 18F-FDG in a single cell of hAMSCs (0.670±0.028 fCi/μm2, P = 0.001) was 20% and 36% higher compared to uptake in hiPSCs (0.540±0.026 fCi/μm2, P = 0.003) and macrophages (0.430±0.023 fCi/μm2, P = 0.002), respectively. hAMSCs exhibited the slowest influx (0.210 min-1) but the fastest efflux (0.327 min-1) rate compared to the other tested

  8. Intervention to lower anxiety of 18F-FDG PET/CT patients by use of audiovisual imagery during the uptake phase before imaging.

    PubMed

    Vogel, Wouter V; Valdés Olmos, Renato A; Tijs, Tim J W; Gillies, Murray F; van Elswijk, Gijs; Vogt, Juergen

    2012-06-01

    Many patients referred for PET suffer from anxiety, possibly affecting the workflow and patient experience. In addition, patient anxiety may affect image quality through uptake of (18)F-FDG in muscles or brown adipose tissue (BAT).This study investigated the effects of a nonpharmacologic intervention-the use of audiovisual imagery in the PET uptake room-on patient anxiety and false-positive uptake of (18)F-FDG (in muscles and BAT). A 2-stage study was conducted on 101 patients. The cohort undergoing the intervention included 51 patients. The first stage (n = 35) included physiologic measurements (cardiovascular activity, muscular activity, skin conductance, and cortisol), a state anxiety questionnaire, and visual evaluation of (18)F-FDG uptake in muscles and BAT; the second stage (n = 66) included only the state anxiety questionnaire and the (18)F-FDG uptake evaluation. Throughout the stay in the uptake room, a significant decrease in overall anxiety was found, together with several other significant changes in patient physiology. In the cohort with audiovisual intervention, however, the decrease in patient anxiety was significantly larger. The cohort with intervention also showed significantly lower (18)F-FDG uptake in BAT but not in muscles. The investigated audiovisual intervention helps to lower patient anxiety in the PET uptake room and can lower false-positive (18)F-FDG uptake in BAT.

  9. Prognostic value of (18)F-FDG PET/CT volumetric parameters in recurrent epithelial ovarian cancer.

    PubMed

    Mayoral, M; Fernandez-Martinez, A; Vidal, L; Fuster, D; Aya, F; Pavia, J; Pons, F; Lomeña, F; Paredes, P

    2016-01-01

    Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) from (18)F-FDG PET/CT are emerging prognostic biomarkers in various solid neoplasms. These volumetric parameters and the SUVmax have shown to be useful criteria for disease prognostication in preoperative and post-treatment epithelial ovarian cancer (EOC) patients. The purpose of this study was to evaluate the utility of (18)F-FDG PET/CT measurements to predict survival in patients with recurrent EOC. Twenty-six patients with EOC who underwent a total of 31 (18)F-FDG PET/CT studies for suspected recurrence were retrospectively included. SUVmax and volumetric parameters whole-body MTV (wbMTV) and whole-body TLG (wbTLG) with a threshold of 40% and 50% of the SUVmax were obtained. Correlation between PET parameters and progression-free survival (PFS) and the survival analysis of prognostic factors were calculated. Serous cancer was the most common histological subtype (76.9%). The median PFS was 12.5 months (range 10.7-20.6 months). Volumetric parameters showed moderate inverse correlation with PFS but there was no significant correlation in the case of SUVmax. The correlation was stronger for first recurrences. By Kaplan-Meier analysis and log-rank test, wbMTV 40%, wbMTV 50% and wbTLG 50% correlated with PFS. However, SUVmax and wbTLG 40% were not statistically significant predictors for PFS. Volumetric parameters wbMTV and wbTLG 50% measured by (18)F-FDG PET/CT appear to be useful prognostic predictors of outcome and may provide valuable information to individualize treatment strategies in patients with recurrent EOC. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  10. Different predictive values of interim 18F-FDG PET/CT in germinal center like and non-germinal center like diffuse large B-cell lymphoma.

    PubMed

    Kim, Jihyun; Lee, Jeong-Ok; Paik, Jin Ho; Lee, Won Woo; Kim, Sang Eun; Song, Yoo Sung

    2017-01-01

    Diffuse large B-cell lymphoma (DLBCL) is a pathologically heterogeneous disease with different prognoses according to its molecular profiles. Despite the broad usage of 18 F-fluoro-2-dexoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT), previous studies that have investigated the value of interim 18 F-FDG PET/CT in DLBCL have given the controversial results. The purpose of this study was to evaluate the prognostic value of interim 18 F-FDG PET/CT in DLBCL according to germinal center B cell-like (GCB) and non-GCB molecular profiling. We enrolled 118 newly diagnosed DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP). Interim 18 F-FDG PET/CT scans performed after 2 or 3 cycles of R-CHOP treatment were evaluated based on the Lugano response criteria. Patients were grouped as GCB or non-GCB molecular subtypes according to immunohistochemistry results of CD10, BCL6, and MUM1, based on Hans' algorithm. In total 118 DLBCL patients, 35 % were classified as GCB, and 65 % were classified as non-GCB. Interim PET/CT was negative in 70 %, and positive in 30 %. During the median follow-up period of 23 months, the positive interim 18 F-FDG PET/CT group showed significantly inferior progression free survival (PFS) compared to the negative interim 18 F-FDG PET/CT group (P = 0.0004) in entire patients. A subgroup analysis according to molecular profiling demonstrated significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in GCB subtype of DLBCL (P = 0.0001), but there was no significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in non-GCB subtype of DLBCL. Interim 18 F-FDG PET/CT scanning had a significant predictive value for disease progression in patients with the GCB subtype of DLBCL treated with R-CHOP, but not in those with the non-GCB subtype. Therefore, molecular profiles of DLBCL should be considered for

  11. Usefulness of (18)F-FDG PET/CT in recurrent basal cell carcinoma: Report of a case.

    PubMed

    Ayala, S; Perlaza, P; Puig, S; Prats, E; Vidal-Sicart, S

    2016-01-01

    We analyze the case of a patient with left periorbital infiltrating basal cell carcinoma treated with surgical excision in October 2010. Surgery included orbital exenteration and reconstruction using skin graft and radiotherapy. In May 2013 a MR imaging showed a mass in the left orbital fossa, suggesting a recurrence in the graft. A basal cell carcinoma recurrence with perineural invasion was confirmed in the biopsy. On (18)F-FDG PET/CT performed, a hypermetabolic activity was observed in the left periorbital area with extension to surrounding sinus and bones. The use of (18)F-FDG PET/CT in patients with advanced basal cell carcinoma has not been fully explored due to the rarity of this entity. This case demonstrates the usefulness of this technique to determine the extent of non-melanocytic recurrent skin tumors, and its value in the staging and treatment control, supporting the incorporation of (18)F-FDG PET/CT in the management of advanced basal cell carcinoma. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  12. [Is 3'-deoxy-3'- [18F] fluorothymidine ([18F]-FLT) the next tracer for routine clinical PET after R [18F]-FDG?].

    PubMed

    Couturier, Olivier; Leost, Françoise; Campone, Mario; Carlier, Thomas; Chatal, Jean-François; Hustinx, Roland

    2005-09-01

    Positron emission tomography (PET) with [18F]-FDG is now firmly established as a clinical tool in oncology. Its applications are however limited in some indications, due to the lack of specificity of its uptake mechanism for tumors, or the low avidity of some cancer types such as prostate. Alternative tracers are thus being developed, in order to fill up this void. Proliferation as a biological target is particularly attractive in cancer imaging. From that perspective, fluorothymidine ([18F]-FLT or FLT) has generated a strong interest among the scientific community, especially since the radiosynthesis process has been improved and simplified, thus making possible to envision a routine use for the tracer. This article aims at summarizing the status of the current scientific data regarding FLT. The uptake mechanism of FLT is well known, relying on the thymidine kinase 1 (TK1) enzymatic activity, and thus on DNA synthesis. Preclinical studies have shown a clear relationship between tracer accumulation and level of tumor proliferation, even though DNA salvage pathwayss intervene in the process and may complicate the interpretation of the results. Several clinical studies suggest a good specificity for tumor, albeit with a lower sensitivity than with FDG. In all likelihood however, the future of FLT lies in the evaluation of antitumor response and possibly the pretherapeutic prognostic characterization, rather than in the diagnosis and staging of malignancies. Although the scientific data regarding this issue remain limited, initial results are encouraging. Further significant work remains to be done in order to fully assess the clinical performances of the tracer, on the one hand, and to determine its place relative to FDG and other emerging tracers, on the other hand. Until these studies are completed, FLT should be considered as a promising tracer, but remaining at an experimental stage of its development.

  13. Clinical impact of 18 F-FDG positron emission tomography/CT on adenoid cystic carcinoma of the head and neck.

    PubMed

    Jung, Ji-Hoon; Lee, Sang-Woo; Son, Seung Hyun; Kim, Choon-Young; Lee, Chang-Hee; Jeong, Ju Hye; Jeong, Shin Young; Ahn, Byeong-Cheol; Lee, Jaetae

    2017-03-01

    The purpose of this retrospective study was to assess the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT and the prognostic value of metabolic PET parameters in patients with adenoid cystic carcinoma of the head and neck (ACCHN). Forty patients with newly diagnosed ACCHN were enrolled in this study. We investigated the diagnostic value of 18 F-FDG PET/CT for detecting and staging compared to conventional CT. Kaplan-Meier survival analysis for progression-free survival (PFS) was performed with clinicopathological factors and metabolic PET parameters. The 18 F-FDG PET/CT showed comparable sensitivity (92.3%) to conventional CT for lesion detection, and changed staging and management plan in 6 patients (15.0%). Lower PFS rates were associated with advanced T classification, advanced TNM classification, high maximum standardized uptake value (SUVmax; >5.1), and high total lesion glycolysis (>40.1) of the primary tumor. The 18 F-FDG PET/CT can provide additional information for initial staging, and metabolic PET parameters may serve as prognostic factors of ACCHN. © 2016 Wiley Periodicals, Inc. Head Neck 39: 447-455, 2017. © 2016 Wiley Periodicals, Inc.

  14. Evaluation of efficacy of a new MEK inhibitor, RO4987655, in human tumor xenografts by [(18)F] FDG-PET imaging combined with proteomic approaches.

    PubMed

    Tegnebratt, Tetyana; Ruge, Elisabeth; Bader, Sabine; Ishii, Nobuya; Aida, Satoshi; Yoshimura, Yasushi; Ooi, Chia-Huey; Lu, Li; Mitsios, Nicholas; Meresse, Valerie; Mulder, Jan; Pawlak, Michael; Venturi, Miro; Tessier, Jean; Stone-Elander, Sharon

    2014-12-01

    Inhibition of mitogen-activated protein kinase (MEK, also known as MAPK2, MAPKK), a key molecule of the Ras/MAPK (mitogen-activated protein kinase) pathway, has shown promising effects on B-raf-mutated and some RAS (rat sarcoma)-activated tumors in clinical trials. The objective of this study is to examine the efficacy of a novel allosteric MEK inhibitor RO4987655 in K-ras-mutated human tumor xenograft models using [(18)F] FDG-PET imaging and proteomics technology. [(18)F] FDG uptake was studied in human lung carcinoma xenografts from day 0 to day 9 of RO4987655 therapy using microPET Focus 120 (CTI Concorde Microsystems, Knoxville, TN, USA). The expression levels of GLUT1 and hexokinase 1 were examined using semi-quantitative fluorescent immunohistochemistry (fIHC). The in vivo effects of RO4987655 on MAPK/PI3K pathway components were assessed by reverse phase protein arrays (RPPA). We have observed modest metabolic decreases in tumor [(18)F] FDG uptake after MEK inhibition by RO4987655 as early as 2 h post-treatment. The greatest [(18)F] FDG decreases were found on day 1, followed by a rebound in [(18)F] FDG uptake on day 3 in parallel with decreasing tumor volumes. Molecular analysis of the tumors by fIHC did not reveal statistically significant correlations of GLUT1 and hexokinase 1 expressions with the [(18)F] FDG changes. RPPA signaling response profiling revealed not only down-regulation of pERK1/2, pMKK4, and pmTOR on day 1 after RO4987655 treatment but also significant up-regulation of pMEK1/2, pMEK2, pC-RAF, and pAKT on day 3. The up-regulation of these markers is interpreted to be indicative of a reactivation of the MAPK and activation of the compensatory PI3K pathway, which can also explain the rebound in [(18)F] FDG uptake following MEK inhibition with RO4987655 in the K-ras-mutated human tumor xenografts. We have performed the first preclinical evaluation of a new MEK inhibitor, RO4987655, using a combination of [(18)F] FDG-PET imaging and molecular

  15. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET.

    PubMed

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2018-06-01

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  16. Localization and prediction of malignant potential in recurrent pheochromocytoma/paraganglioma (PCC/PGL) using 18F-FDG PET/CT.

    PubMed

    Fikri, Ahmad Saad Fathinul; Kroiss, A; Ahmad, A Z F; Zanariah, H; Lau, W F E; Uprimny, C; Donnemiller, E; Kendler, D; Nordin, A J; Virgolini, I J

    2014-06-01

    To our knowledge, data are lacking on the role of 18F-FDG PET/CT in the localization and prediction of neuroendocrine tumors, in particular the pheochromocytoma/paraganglioma (PCC/PGL) group. To evaluate the role of 18F-FDG PET/CT in localizing and predicting the malignant potential of PCC/PGL. Twenty-three consecutive patients with a history of PCC/PGL, presenting with symptoms related to catecholamine excess, underwent 18F-FDG PET/CT. Final confirmation of the diagnosis was made using the composite references. PET/CT findings were analyzed on a per-lesion basis and a per-patient basis. Tumor SUVmax was analyzed to predict the dichotomization of patient endpoints for the local disease and metastatic groups. We investigated 23 patients (10 men, 13 women) with a mean age of 46.43 ± 3.70 years. Serum catecholamine levels were elevated in 82.60% of these patients. There were 136 sites (mean SUVmax: 16.39 ± 3.47) of validated disease recurrence. The overall sensitivities for diagnostic CT, FDG PET, and FDG PET/CT were 86.02%, 87.50%, and 98.59%, respectively. Based on the composite references, 39.10% of patients had local disease. There were significant differences in the SUVmax distribution between the local disease and metastatic groups; a significant correlation was noted when a SUVmax cut-off was set at 9.2 (P<0.05). In recurrent PCC/PGL, diagnostic 18F-FDG PET/CT is a superior tool in the localization of recurrent tumors. Tumor SUVmax is a potentially useful predictor of malignant tumor potential. © The Foundation Acta Radiologica 2013 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  17. F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis

    PubMed Central

    Haslerud, Torjan; Brauckhoff, Katrin; Reisæter, Lars; Küfner Lein, Regina; Heinecke, Achim; Varhaug, Jan Erik

    2015-01-01

    Background Positron emission tomography (PET) with fluor-18-deoxy-glucose (FDG) is widely used for diagnosing recurrent or metastatic disease in patients with differentiated thyroid cancer (DTC). Purpose To assess the diagnostic accuracy of FDG-PET for DTC in patients after ablative therapy. Material and Methods A systematic search was conducted in Medline/PubMed, EMBASE, Cochrane Library, Web of Science, and Open Grey looking for all English-language original articles on the performance of FDG-PET in series of at least 20 patients with DTC having undergone ablative therapy including total thyroidectomy. Diagnostic performance measures were pooled using Reitsma’s bivariate model. Results Thirty-four publications between 1996 and 2014 met the inclusion criteria. Pooled sensitivity and specificity were 79.4% (95% confidence interval [CI], 73.9–84.1) and 79.4% (95% CI, 71.2–85.4), respectively, with an area under the curve of 0.858. Conclusion F18-FDG-PET is a useful method for detecting recurrent DTC in patients having undergone ablative therapy. PMID:26163534

  18. 18F-FDG PET/CT as an Indicator of Survival in Ewing Sarcoma of Bone

    PubMed Central

    Salem, Usama; Amini, Behrang; Chuang, Hubert H.; Daw, Najat C.; Wei, Wei; Haygood, Tamara Miner; Madewell, John E.; Costelloe, Colleen M.

    2017-01-01

    Objective: The existing literature of 18 F-FDG PET/CT in Ewing sarcoma investigates mixed populations of patients with both soft tissue and bone primary tumors. The aim of our study was to evaluate whether the maximum standardized uptake value (SUVmax) obtained with 18F-FDG PET/CT before and after induction chemotherapy can be used as an indicator of survival in patients with Ewing sarcoma originating exclusively in the skeleton. Materials and Methods: A retrospective database search from 2004-2011 identified 28 patients who underwent 18 F-FDG PET/CT before (SUV1, n= 28) and after (SUV2, n=23) induction chemotherapy. Mean follow up was 3.3 years and median follow up for survivors was 6.3 years (range: 2.6-9.8 years). Multivariate and univariate Cox proportional hazard model was used to assess for correlation of SUV1, SUV2, and the change in SUVmax with overall survival (OS) and progression-free survival (PFS). Results: Mean SUVmax was 10.74 before (SUV1) and after 4.11 (SUV2) induction chemotherapy. High SUV1 (HR = 1.05, 95% CI: 1.0-1.1, P = 0.01) and SUV2 (HR =1.2, 95% CI: 1.0-1.4, P = 0.01) were associated with worse OS. A cut off point of 11.6 was identified for SUV1. SUV1 higher than 11.6 had significantly worse OS (HR = 5.71, 95% CI: 1.85 - 17.61, P = 0.003) and PFS (HR = 3.16, 95% CI: 1.13 - 8.79, P = 0.03, P < 0.05 is significant). Conclusion: 18F-FDG PET/CT can be used as a prognostic indicator for survival in primary Ewing sarcoma of bone. PMID:28928879

  19. The diagnostic performance and added value of (18)F-FDG PET/CT in the detection of liver metastases in recurrent colorectal carcinoma patients.

    PubMed

    Odalovic, Strahinja; Artiko, Vera; Sobic-Saranovic, Dragana; Stojiljkovic, Milica; Petrovic, Milorad; Petrovic, Nebojsa; Kozarevic, Nebojsa; Grozdic-Milojevic, Isidora; Obradovic, Vladimir

    2015-01-01

    The aim of this study was to assess the value of (18)F-fluorodeoxyglucose ((18)F-FDG) PET/CT in detection of liver metastases in patients with suspected recurrent colorectal carcinoma, as well as to compare diagnostic performance of (18)F-FDG PET/CT with conventional imaging methods (MDCT). This study included 73 patients with resected primary colorectal adenocarcinoma referred for (18)F-FDG PET/CT to the National PET Center, at the Clinical Center of Serbia, Belgrade, from January 2010 to May 2013, with suspicion of recurrence. The patients underwent (18)F-FDG PET/CT examination on a 64-slice hybrid PET/CT scanner (Biograph, TruePoint64, Siemens Medical Solutions, Inc. USA). Prior to (18)F-FDG PET/CT all patients underwent contrast-enhanced MDCT. Findings of (18)F-FDG PET/CT and MDCT were compared to findings of subsequent histopathological examinations or with results of clinical and imaging follow-up over at least six months. Final diagnosis of liver metastases of colorectal cancer was made either by histopathological examination of specimen after biopsy or surgery, or based on clinical, laboratory and imaging evaluation during first six months after PET/CT scan. In detection of liver metastases (18)F-FDG PET/CT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy of 83.3%, 95.3%, 92.6%, 89.1% and 90.4%, respectively. In addition, MDCT showed sensitivity, specificity, positive predictive value, negative predictive value and accuracy in detection of liver metastases of 60%, 88.4%, 78.3%, 76% and 76.7%, respectively. There was significant difference in sensitivity (83.3% vs 60%; P=0.045) between these two methods. In addition, significant difference was observed in accuracy between PET/CT and MDCT (90.4% vs 76.7%; P=0.016). The higher specificity in visualization of liver metastases was also achieved by (18)F-FDG PET/CT compared to MDCT (95.3% vs 88.4%), but this difference was not significant (P=0.37). (18)F-FDG PET

  20. Thyroglobulin levels and thyroglobulin doubling time independently predict a positive 18F-FDG PET/CT scan in patients with biochemical recurrence of differentiated thyroid carcinoma.

    PubMed

    Giovanella, Luca; Trimboli, Pierpaolo; Verburg, Frederik A; Treglia, Giorgio; Piccardo, Arnoldo; Foppiani, Luca; Ceriani, Luca

    2013-06-01

    To assess the relationship between serum thyroglobulin (Tg) levels, Tg doubling time (Tg-DT) and the diagnostic performance of (18)F-FDG PET/CT in detecting recurrences of (131)I-negative differentiated thyroid carcinoma (DTC). Included in the present study were 102 patients with DTC. All patients were treated by thyroid ablation (e.g. thyroidectomy and (131)I), and underwent (18)F-FDG PET/CT due to detectable Tg levels and negative conventional imaging. Consecutive serum Tg measurements performed before the (18)F-FDG PET/CT examination were used for Tg-DT calculation. The (18)F-FDG PET/CT results were assessed as true or false after histological and/or clinical follow-up. Serum Tg levels were higher in patients with a positive (18)F-FDG PET/CT scan (median 6.7 ng/mL, range 0.7-73.6 ng/mL) than in patients with a negative scan (median 1.8 ng/mL, range 0.5-4.9 ng/mL; P < 0.001). In 43 (88 %) of 49 patients with a true-positive (18)F-FDG PET/CT scan, the Tg levels were >5.5 ng/mL, and in 31 (74 %) of 42 patients with a true-negative (18)F-FDG PET/CT scan, the Tg levels were ≤5.5 ng/mL. A Tg-DT of <1 year was found in 46 of 49 patients (94 %) with a true-positive (18)F-FDG PET/CT scan, and 40 of 42 patients (95 %) with a true-negative scan had a stable or increased Tg-DT. Moreover, combining Tg levels and Tg-DT as selection criteria correctly distinguished between patients with a positive and a negative scan (P<0.0001). The accuracy of (18)F-FDG PET/CT significantly improves when the serum Tg level is above 5.5 ng/mL during levothyroxine treatment or when the Tg-DT is less than 1 year, independent of the absolute value.

  1. Optimizing 18F-FDG PET/CT Imaging of Vessel Wall Inflammation –The Impact of 18F-FDG Circulation Time, Injected Dose, Uptake Parameters, and Fasting Blood Glucose Levels

    PubMed Central

    Bucerius, Jan; Mani, Venkatesh; Moncrieff, Colin; Machac, Josef; Fuster, Valentin; Farkouh, Michael E.; Tawakol, Ahmed; Rudd, James H. F.; Fayad, Zahi A.

    2014-01-01

    Purpose 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is increasingly used for imaging of vessel wall inflammation. However, limited data is available regarding the impact of methodological variables, i. e. patient’s pre-scan fasting glucose, the FDG circulation time, the injected FDG dose, and of different FDG uptake parameters, in vascular FDG-PET imaging. Methods 195 patients underwent vascular FDG-PET/CT of the aorta and the carotids. Arterial standard uptake values (meanSUVmax) as well as target-to-background-ratios (meanTBRmax) and the FDG blood pool activity in the superior vein cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake classified according to tertiles of patient’s pre-scan fasting glucose levels, the FDG circulation time, and the injected FDG dose was compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood pool FDG uptake. Results Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l showing favorable relations between the arterial and blood pool FDG uptake. FDG circulation times showed negative associations with the aortic meanSUVmax values as well as SVC- and JV FDG blood pool activity but a positive correlation with the aortic- and carotid meanTBRmax values. Pre-scan glucose was negatively associated with aortic- and carotid meanTBRmax and carotid meanSUVmax values, but correlated positively with the SVC blood pool uptake. Injected FDG dose failed to show any significant association with the vascular FDG uptake. Conclusion FDG circulation times and pre-scan blood glucose levels significantly impact FDG uptake within the aortic and carotid wall and may bias the results of image interpretation in patients undergoing vascular FDG-PET/CT. FDG dose injected was less critical. Therefore, circulation times of about 2.5 h and pre-scan glucose levels

  2. Comparison among conventional and advanced MRI, 18F-FDG PET/CT, phenotype and genotype in glioblastoma.

    PubMed

    Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide

    2017-10-31

    Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value ( 18 F-FDG SUV max ), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18 F-FDG SUV max , Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18 F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB.

  3. Comparison among conventional and advanced MRI, 18F-FDG PET/CT, phenotype and genotype in glioblastoma

    PubMed Central

    Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide

    2017-01-01

    Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value (18F-FDG SUVmax), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18F-FDG SUVmax, Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB. PMID:29207673

  4. Correlation of {sup 18}F-FDG Avid Volumes on Pre–Radiation Therapy and Post–Radiation Therapy FDG PET Scans in Recurrent Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusharina, Nadya, E-mail: nshusharina@partners.org; Cho, Joseph; Sharp, Gregory C.

    2014-05-01

    Purpose: To investigate the spatial correlation between high uptake regions of 2-deoxy-2-[{sup 18}F]-fluoro-D-glucose positron emission tomography ({sup 18}F-FDG PET) before and after therapy in recurrent lung cancer. Methods and Materials: We enrolled 106 patients with inoperable lung cancer into a prospective study whose primary objectives were to determine first, the earliest time point when the maximum decrease in FDG uptake representing the maximum metabolic response (MMR) is attainable and second, the optimum cutoff value of MMR based on its predicted tumor control probability, sensitivity, and specificity. Of those patients, 61 completed the required 4 serial {sup 18}F-FDG PET examinations aftermore » therapy. Nineteen of 61 patients experienced local recurrence at the primary tumor and underwent analysis. The volumes of interest (VOI) on pretherapy FDG-PET were defined by use of an isocontour at ≥50% of maximum standard uptake value (SUV{sub max}) (≥50% of SUV{sub max}) with correction for heterogeneity. The VOI on posttherapy images were defined at ≥80% of SUV{sub max}. The VOI of pretherapy and posttherapy {sup 18}F-FDG PET images were correlated for the extent of overlap. Results: The size of VOI at pretherapy images was on average 25.7% (range, 8.8%-56.3%) of the pretherapy primary gross tumor volume (GTV), and their overlap fractions were 0.8 (95% confidence interval [CI]: 0.7-0.9), 0.63 (95% CI: 0.49-0.77), and 0.38 (95% CI: 0.19-0.57) of VOI of posttherapy FDG PET images at 10 days, 3 months, and 6 months, respectively. The residual uptake originated from the pretherapy VOI in 15 of 17 cases. Conclusions: VOI defined by the SUV{sub max}-≥50% isocontour may be a biological target volume for escalated radiation dose.« less

  5. Brain and Brown Adipose Tissue Metabolism in Transgenic Tg2576 Mice Models of Alzheimer Disease Assessed Using 18F-FDG PET Imaging

    PubMed Central

    Coleman, Robert A.; Liang, Christopher; Patel, Rima; Ali, Sarah

    2017-01-01

    Objective: Imaging animal models of Alzheimer disease (AD) is useful for the development of therapeutic drugs and understanding AD. Transgenic Swedish hAPPswe Tg2576 mice are a good model of β-amyloid plaques. We report 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET) imaging of brain and intrascapular brown adipose tissue (IBAT) in transgenic mice 2576 (Tg2576) and wild-type (WT) mice. Methods: Transgenic Tg2576 mice and WT mice, >18 months were injected intraperitonally with ≈ 25 to 30 MBq 18F-FDG while awake. After 60 minutes, they were anesthetized with isoflurane (2.5%) and imaged with Inveon MicroPET. Select mice were killed, imaged ex vivo, and 20 µm sections cut for autoradiography. 18F-FDG uptake in brain and IBAT PET and brain autoradiographs were analyzed. Results: Fasting blood glucose levels averaged 120 mg/dL for WT and 100 mg/dL for Tg2576. Compared to WT, Tg2576 mice exhibited a decrease in SUVglc in the various brain regions. Average reductions in the cerebrum regions were as high as −20%, while changes in cerebellum were −3%. Uptake of 18F-FDG in IBAT decreased by −60% in Tg2576 mice and was found to be significant. Intrascapular brown adipose tissue findings in Tg2576 mice are new and not previously reported. Use of blood glucose for PET data analysis and corpus callosum as reference region for autoradiographic analysis were important to detect change in Tg2576 mice. Conclusion: Our results suggest that 18F-FDG uptake in the Tg2576 mice brain show 18F-FDG deficits only when blood glucose is taken into consideration. PMID:28654383

  6. Risk-related 18F-FDG PET/CT and new diagnostic strategies in patients with solitary pulmonary nodule: the ITALIAN multicenter trial.

    PubMed

    Spadafora, Marco; Pace, Leonardo; Evangelista, Laura; Mansi, Luigi; Del Prete, Francesco; Saladini, Giorgio; Miletto, Paolo; Fanti, Stefano; Del Vecchio, Silvana; Guerra, Luca; Pepe, Giovanna; Peluso, Giuseppina; Nicolai, Emanuele; Storto, Giovanni; Ferdeghini, Marco; Giordano, Alessandro; Farsad, Mohsen; Schillaci, Orazio; Gridelli, Cesare; Cuocolo, Alberto

    2018-05-05

    Diagnosis of solitary pulmonary nodule (SPN) is an important public health issue and 18 F-FDG PET/CT has proven to be more effective than CT alone. Pre-test risk stratification and clinical presentation of SPN could affect the diagnostic strategy. A relevant issue is whether thoracic segmental (s)-PET/CT could be implemented in patients with SPN. This retrospective multicenter study compared the results of FDG whole-body (wb)-PET/CT to those of s-PET/CT. 18 F-FDG PET/CT of 502 patients, stratified for pre-test cancer risk, were retrospectively analyzed. The thoracic part of wb-PET/CT, considered s-PET/CT, was compared to wb-PET/CT. Clinical and PET/CT variables were investigated for SPN characterization as well as for identification of patients in whom s-PET/CT could be performed. Histopathology or follow-up data were used as a reference. In the study population, 36% had malignant, 35% benign, and 29% indeterminate SPN. 18 F-FDG uptake indicative of thoracic and extra-thoracic lesions was detectable in 13% and 3% of the patients. All patients with extra-thoracic metastases (n = 13) had thoracic lymph node involvement and highest 18 F-FDG uptake at level of SPN (negative predictive value 100%). Compared to wb-PET/CT, s-PET/CT could save about 2/3 of 18 F-FDG dose, radiation exposure or scan-time, without affecting the clinical impact of PET/CT. Pre-test probability of malignancy can guide the diagnostic strategy of 18 FDG-PET/CT in patients with SPN. In subjects with low-intermediate pretest probability s-PET/CT imaging might be planned in advance, while in those at high risk and with thoracic lymph node involvement a wb-PET/CT is necessary.

  7. Time-course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow.

    PubMed

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei-Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes; Silverman, Daniel H S

    2008-06-23

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time-course of [18F]FDG uptake in normal tissues using small animal-dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG-PET scans were acquired for each mouse at 0 (pre-radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non-irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time-course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3-12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p < 0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2-8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p = 0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time-course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually.

  8. Correlation of myocardial p-(123)I-iodophenylpentadecanoic acid retention with (18)F-FDG accumulation during experimental low-flow ischemia.

    PubMed

    Shi, Cindy Q; Young, Lawrence H; Daher, Edouard; DiBella, Edward V R; Liu, Yi-Hwa; Heller, Eliot N; Zoghbi, Sami; Wackers, Frans J Th; Soufer, Robert; Sinusas, Albert J

    2002-03-01

    Myocardial ischemia is associated with reduced free fatty acid (FFA) beta-oxidation and increased glucose utilization. This study evaluated the potential of dynamic SPECT imaging of a FFA analog, p-(123)I-iodophenylpentadecanoic acid (IPPA), for detection of ischemia and compares retention of IPPA with (18)F-FDG accumulation. In a canine model of regional low-flow ischemia (n = 9), serial IPPA SPECT images (2 min per image) were acquired over 52--90 min. In a subset of dogs (n = 6), (18)F-FDG was injected after completing SPECT imaging and allowed to accumulate for 40 min before killing the animals. Flow was assessed with radiolabeled microspheres. Myocardial metabolism was evaluated independently by selective coronary arterial and venous sampling. Serial IPPA SPECT images showed an initial defect in the ischemic region (0.70% plus minus 0.03% ischemic-to-nonischemic ratio), which normalized within 48 min because of the slower IPPA clearance from the ischemic region (t(1/2) = 54.2 plus minus 3.3 min) relative to the nonischemic region (t(1/2) = 36.7 plus minus 5.6 min) (P < 0.05). Delayed myocardial IPPA and (18)F-FDG activities were correlated (r = 0.70; n = 576 segments), and both were maximally increased in segments with a moderate flow reduction (IPPA, 151% of nonischemic; (18)F-FDG, 450% of nonischemic; P < 0.05). Serial SPECT imaging showed delayed myocardial clearance of IPPA in ischemic regions with moderate flow reduction, which lead to increased late myocardial retention of IPPA. Retention of IPPA correlated with (18)F-FDG accumulation, supporting the potential of IPPA as a noninvasive marker of ischemic myocardium.

  9. PET/CT in giant cell arteritis: High 18F-FDG uptake in the temporal, occipital and vertebral arteries.

    PubMed

    Rehak, Z; Vasina, J; Ptacek, J; Kazda, T; Fojtik, Z; Nemec, P

    18 F-FDG PET/CT imaging is useful in patients with fever of unknown origin and can detect giant cell arteritis in extracranial large arteries. However, it is usually assumed that temporal arteries cannot be visualized with a PET/CT scanner due to their small diameter. Three patients with clinical symptoms of temporal arteritis were examined using a standard whole body PET/CT protocol (skull base - mid thighs) followed by a head PET/CT scan using the brain protocol. High 18 F-FDG uptake in the aorta and some arterial branches were detected in all 3 patients with the whole body protocol. Using the brain protocol, head imaging led to detection of high 18 F-FDG uptake in temporal arteries as well as in their branches (3 patients), in occipital arteries (2 patients) and also in vertebral arteries (3 patients). Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  10. A dual tracer (68)Ga-DOTANOC PET/CT and (18)F-FDG PET/CT pilot study for detection of cardiac sarcoidosis.

    PubMed

    Gormsen, Lars C; Haraldsen, Ate; Kramer, Stine; Dias, Andre H; Kim, Won Yong; Borghammer, Per

    2016-12-01

    Cardiac sarcoidosis (CS) is a potentially fatal condition lacking a single test with acceptable diagnostic accuracy. (18)F-FDG PET/CT has emerged as a promising imaging modality, but is challenged by physiological myocardial glucose uptake. An alternative tracer, (68)Ga-DOTANOC, binds to somatostatin receptors on inflammatory cells in sarcoid granulomas. We therefore aimed to conduct a proof-of-concept study using (68)Ga-DOTANOC to diagnose CS. In addition, we compared diagnostic accuracy and inter-observer variability of (68)Ga-DOTANOC vs. (18)F-FDG PET/CT. Nineteen patients (seven female) with suspected CS were prospectively recruited and dual tracer scanned within 7 days. PET images were reviewed by four expert readers for signs of CS and compared to the reference standard (Japanese ministry of Health and Welfare CS criteria). CS was diagnosed in 3/19 patients. By consensus, 11/19 (18)F-FDG scans and 0/19 (68)Ga-DOTANOC scans were rated as inconclusive. The sensitivity of (18)F-FDG PET for diagnosing CS was 33 %, specificity was 88 %, PPV was 33 %, NPV was 88 %, and diagnostic accuracy was 79 %. For (68)Ga-DOTANOC, accuracy was 100 %. Inter-observer agreement was poor for (18)F-FDG PET (Fleiss' combined kappa 0.27, NS) and significantly better for (68)Ga-DOTANOC (Fleiss' combined kappa 0.46, p = 0.001). Despite prolonged pre-scan fasting, a large proportion of (18)F-FDG PET/CT images were rated as inconclusive, resulting in low agreement among reviewers and correspondingly poor diagnostic accuracy. By contrast, (68)Ga-DOTANOC PET/CT had excellent diagnostic accuracy with the caveat that inter-observer variability was still significant. Nevertheless, (68)Ga-DOTANOC PET/CT looks very promising as an alternative CS PET tracer. Current Controlled Trials NCT01729169 .

  11. Can (18)F-FDG PET/CT scan change treatment planning and be prognostic in recurrent colorectal carcinoma? A prospective and follow-up study.

    PubMed

    Artiko, Vera; Odalovic, Strahinja; Sobic-Saranovic, Dragana; Petrovic, Milorad; Stojiljkovic, Milica; Petrovic, Nebojsa; Kozarevic, Nebojsa; Grozdic-Milojevic, Isidora; Obradovic, Vladimir

    2015-01-01

    To prospectively study whether in patients with resected primary colorectal cancer fluorine- 18-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) examination could diagnose the stage, specify treatment procedure and be prognostic. This prospective study included 75 patients with resected primary colorectal adenocarcinoma referred for (18)F-FDG PET/CT to the National PET Center, at the Clinical Center of Serbia, Belgrade, from January 2010 to May 2013. Findings of (18)F-FDG PET/CT were compared to findings of subsequent histopathological examinations or with results of clinical and imaging follow-up. Patients were followed after PET/CT examination for a mean follow-up time of 16.7±5.9 months. In the detection of recurrent disease (18)F-FDG PET/CT showed overall sensitivity, specificity, PPV, NPV and accuracy of 96.6%, 82.4%, 94.9%, 87.5% and 93.3%, respectively. In the detection of stages I and II sensitivity, specificity and accuracy of (18)F-FDG PET/CT were: 88%, 96.6% and 94.7%, respectively, and in the detection of stages III and IV sensitivity, specificity and accuracy were 94.9%, 87.5% and 93.3%, respectively. These findings prevented or changed intended surgical treatment in 12/32 cases. Univariate and multivariate Cox proportional regression analyses revealed that metastatic recurrence (stages III and IV) was the only and independent prognostic factor of disease progression during follow-up (P=0.012 and P=0.023, respectively). Although, survival seemed better in patients with local recurrence compared to metastatic recurrent disease, this difference did not reach significance (Log-rank test; P=0.324). In addition, progression-free survival time was significantly longer in patients in whom (18)F-FDG PET/CT scan led to treatment changes (Log-rank test; P=0.037). (18)F-FDG PET/CT was sensitive and accurate for the detection and staging of local and metastatic recurrent colorectal carcinoma, with higher specificity in the

  12. Rifaximin suppresses background intestinal 18F-FDG uptake on PET/CT scans.

    PubMed

    Franquet, Elisa; Palmer, Mathew R; Gifford, Anne E; Selen, Daryl J; Chen, Yih-Chieh S; Sedora-Roman, Neda; Joyce, Robin M; Kolodny, Gerald M; Moss, Alan C

    2014-10-01

    Identification of cancer or inflammatory bowel disease in the intestinal tract by PET/computed tomography (CT) imaging can be hampered by physiological uptake of F-fluorodeoxyglucose (F-FDG) in the normal colon. Previous work has localized this F-FDG uptake to the intestinal lumen, predominantly occupied by bacteria. We sought to determine whether pretreatment with an antibiotic could reduce F-FDG uptake in the healthy colon. Thirty patients undergoing restaging PET/CT for nongastrointestinal lymphoma were randomly selected to receive rifaximin 550 mg twice daily for 2 days before their scan (post-rifaximin). Their PET/CT images were compared with those from their prior study (pre-rifaximin). Cecal maximum standard uptake value (SUVmax) and overall colonic F-FDG uptake were compared between scans. All PET/CT images were blindly scored by a radiologist. The same comparison of sequential scans was also undertaken in 30 patients who did not receive antibiotics. Thirty post-rifaximin scans were compared with 30 pre-rifaximin scans in the same patients. SUVmax in the cecum was significantly lower in the patient's post-rifaximin scans than in their pre-rifaximin scans (P=0.002). The percentage of scans with greater than grade 1 colonic F-FDG uptake was significantly lower in the post-rifaximin scans than in the pre-rifaximin scans (P<0.05). In contrast, there was no significant difference in the paired sequential scans from control patients, nor a reduction in the percentage of scans with greater than grade 1 colonic F-FDG uptake. This pilot study shows that treatment with rifaximin for 2 days before PET/CT scanning can significantly reduce physiological F-FDG uptake in the normal colonic lumen.

  13. Generalized Lymph Node Activation after Influenza Vaccination on 18F FDG-PET/CT Imaging, an Important Pitfall in PET Interpretation.

    PubMed

    Ayati, Narjess; Jesudason, Sarah; Berlangieri, Salvatore U; Scott, Andrew M

    2017-01-01

    We report on a 59-year-old female patient with an infected vascular graft investigated with 18 F FDG-PET/CT. The first of two studies showed FDG activity in the left deltoid and ipsilateral axillary lymph nodes explained by influenza vaccination the day prior. The second 18 F FDG-PET/CT showed multiple FDG-avid lymph nodes on both sides of the diaphragm without tracer accumulation at the vaccination site. Three months later the CT was negative for lymphadenopathy within the chest or abdominal region. Although influenza vaccination is a potential source of false positive results in FDG PET studies, generalised lymph node activation post vaccination is a rare finding with only one prior published report in individuals infected with HIV-1. This case emphasizes the necessity of taking a history of vaccination prior to a FDG PET study, and consideration of a vaccine-related immune response even without evidence of tracer activity at the vaccination site when generalised FDG-avid lymphadenopathy is encountered.

  14. Prognostic value of pre-treatment 18F-FDG PET uptake for nasopharyngeal carcinoma.

    PubMed

    Aktan, Meryem; Kanyilmaz, Gul; Yavuz, Berrin Benli; Koc, Mehmet; Eryılmaz, Mehmet Akif; Adli, Mustafa

    2017-11-25

    To evaluate the prognostic value of maximal standardized uptake values (SUV max ) from serial fluor-18-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in patients with nasopharyngeal carcinoma (NPC). Fifty-two patients with NPC who underwent 18 F-FDG PET/CT scan before radiotherapy with/without chemotherapy were reviewed retrospectively. Twenty-seven patients (52%) were applied 3-D conformal radiotherapy and 25 patients (48%) applied intensity-modulated radiotherapy (IMRT). Fourteen (27%) patients were given neoadjuvant chemotherapy and forty-four (84.6%) patients were given concomitant and adjuvant chemotherapy. Median follow-up time was 34 months (range 5.6-66.4 months). Forty-four (84.6%) patients were alive at last follow-up and eight (15.4%) had died. The best cut-off value of the SUV max for the primary tumor site (SUV max -PT) was 13 and 9 for the lymph nodes (SUV max -LN). Patients with SUV max -PT ≥ 13.0 and SUV max -LN ≥ 9 had a significantly higher risk for the development of the distant metastases (p = 0.044 and p = 0.038). DFS was affected in patients with SUV max -PT ≥ 13 (log rank χ 2  = 2.54, p = 0.017) and was significantly lower in patients with SUV max -LN ≥ 9 for the lymph nodes (log rank χ 2  = 5.81, p = 0.013). OS was not affected by SUV levels. A multivariate Cox proportional hazard model of DFS included age (≥ 40), SUV max -LN (< 9), T stage (T1-2) and neoadjuvant chemotherapy are significantly better prognosis for the DFS. 18 F-FDG PET/CT uptake before treatment, as determined by SUV max , may be a valuable tool to evaluate prognosis in NPC patients.

  15. Preclinical evaluation of the anti-tumor effects of the natural isoflavone genistein in two xenograft mouse models monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-cetuximab small animal PET.

    PubMed

    Honndorf, Valerie S; Wiehr, Stefan; Rolle, Anna-Maria; Schmitt, Julia; Kreft, Luisa; Quintanilla-Martinez, Letitia; Kohlhofer, Ursula; Reischl, Gerald; Maurer, Andreas; Boldt, Karsten; Schwarz, Michael; Schmidt, Holger; Pichler, Bernd J

    2016-05-10

    The natural phytoestrogen genistein is known as protein kinase inhibitor and tumor suppressor in various types of cancers. We studied its antitumor effect in two different xenograft models using positron emission tomography (PET) in vivo combined with ex vivo histology and nuclear magnetic resonance (NMR) metabolic fingerprinting. A431 and Colo205 tumor-bearing mice were treated with vehicle or genistein (500 mg/kg/d) over a period of 12 days. Imaging was performed with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 3'-deoxy-3'-[18F]fluorothymidine ([18F] FLT). In a second study A431 tumor-bearing mice were treated with vehicle, genistein (500 mg/kg/d), cetuximab (1 mg/3d) or a combination of the compounds and imaged using [18F]FDG, [18F]FLT and [64Cu]NODAGA-cetuximab. Data were compared to histology and principal components analysis (PCA) of NMR fingerprinting data. Genistein reduced tumor growth significantly in both xenografts. [18F] FLT uptake was consistent in both models and corresponded to histological findings and also PCA whereas [18F]FDG and [64Cu]NODAGA-cetuximab were not suitable for therapy monitoring. As mono-therapy the natural isoflavone genistein has a powerful therapeutic effect in vivo on A431 and Colo205 tumors. [18F]FLT has superior consistency compared to the other tested tracers in therapy monitoring, while the treatment effect could be shown on the molecular level by histology and metabolic fingerprinting.

  16. Longitudinal studies of the 18F-FDG kinetics after ipilimumab treatment in metastatic melanoma patients based on dynamic FDG PET/CT.

    PubMed

    Sachpekidis, Christos; Anwar, Hoda; Winkler, Julia K; Kopp-Schneider, Annette; Larribere, Lionel; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-06-05

    Immunotherapy has raised the issue of appropriate treatment response evaluation, due to the unique mechanism of action of the immunotherapeutic agents. Aim of this analysis is to evaluate the potential role of quantitative analysis of 2-deoxy-2-( 18 F)fluoro-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) data in monitoring of patients with metastatic melanoma undergoing ipilimumab therapy. 25 patients with unresectable metastatic melanoma underwent dynamic PET/CT (dPET/CT) of the thorax and upper abdomen as well as static, whole body PET/CT with 18 F-FDG before the start of ipilimumab treatment (baseline PET/CT), after two cycles of treatment (interim PET/CT) and at the end of treatment after four cycles (late PET/CT). The evaluation of dPET/CT studies was based on semi-quantitative (standardized uptake value, SUV) calculation as well as quantitative analysis, based on two-tissue compartment modeling and a fractal approach. Patients' best clinical response, assessed at a mean of 59 weeks, was used as reference. According to their best clinical response, patients were dichotomized in those demonstrating clinical benefit (CB, n = 16 patients) and those demonstrating no clinical benefit (no-CB, n = 9 patients). No statistically significant differences were observed between CB and no-CB regarding either semi-quantitative or quantitative parameters in all scans. On contrary, the application of the recently introduced PET response evaluation criteria for immunotherapy (PERCIMT) led to a correct classification rate of 84% (21/25 patients). Quantitative analysis of 18 F-FDG PET data does not provide additional information in treatment response evaluation of metastatic melanoma patients receiving ipilimumab. PERCIMT criteria correlated better with clinical response.

  17. Measurements of occupational exposure for a technologist performing 18F FDG PET scans.

    PubMed

    Biran, Talma; Weininger, Jolie; Malchi, Shalom; Marciano, Rami; Chisin, Roland

    2004-11-01

    Radiation doses to one PET technologist performing 100 18F FDG (18F fluorodeoxyglucose) imaging procedures were measured in a clinical setting using two types of thermoluminescent dosimeter (TLD) badges, one finger-ring TLD and one electronic pocket dosimeter (EPD). 18F FDG was handled either with unshielded or with viewing window tungsten shielded syringes. The resulting doses using unshielded syringes were 13.8 +/- 0.8 microSv/370 MBq and 14.3 +/- 0.4 microSv/370 MBq, measured with TLD 100 and with TLD 700H/600H, respectively. For the same series of measurements, the doses obtained using shielded syringes were 10.7 +/- 0.4 microSv/370 MBq and 7.2 +/- 2.1 microSv/370 MBq with TLD700H/600H and with EPD, respectively. The dose to the right hand from shielded syringes was 69.3 +/- 5.5 microSv/370 MBq. All these values are within the ICRP recommended dose limits. Extrapolated to 725 examinations per year, the resulting effective dose measured with TLD would be 10 mSv with unshielded and 7.5 mSv with shielded syringes, respectively (25% dose reduction). The doses measured by TLD were consistently higher than those measured by EPD, suggesting that EPD measurements might underestimate occupational doses.

  18. Functional imaging in differentiating bronchial masses: an initial experience with a combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan.

    PubMed

    Kumar, Arvind; Jindal, Tarun; Dutta, Roman; Kumar, Rakesh

    2009-10-01

    To evaluate the role of combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in differentiating bronchial tumors observed in contrast enhanced computed tomography scan of chest. Prospective observational study. Place of study: All India Institute of Medical Sciences, New Delhi, India. 7 patients with bronchial mass detected in computed tomography scan of the chest were included in this study. All patients underwent (18)F-FDG PET-CT scan, (68)Ga DOTA-TOC PET-CT scan and fiberoptic bronchoscope guided biopsy followed by definitive surgical excision. The results of functional imaging studies were analyzed and the results are correlated with the final histopathology of the tumor. Histopathological examination of 7 bronchial masses revealed carcinoid tumors (2 typical, 1 atypical), inflammatory myofibroblastic tumor (1), mucoepidermoid carcinoma (1), hamartoma (1), and synovial cell sarcoma (1). The typical carcinoids had mild (18)F-FDG uptake and high (68)Ga DOTA-TOC uptake. Atypical carcinoid had moderate uptake of (18)F-FDG and high (68)Ga DOTA-TOC uptake. Inflammatory myofibroblastic tumor showed high uptake of (18)F-FDG and no uptake of (68)Ga DOTA-TOC. Mucoepidermoid carcinoma showed mild (18)F-FDG uptake and no (68)Ga DOTA-TOC uptake. Hamartoma showed no uptake on either scans. Synovial cell sarcoma showed moderate (18)F-FDG uptake and mild focal (68)Ga DOTA-TOC uptake. This initial experience with the combined use of (18)F-FDG and (68)Ga DOTA-TOC PET-CT scan reveals different uptake patterns in various bronchial tumors. Bronchoscopic biopsy will continue to be the gold standard; however, the interesting observations made in this study merits further evaluation of the utility of the combination of (18)F-FDG PET-CT scan and (68)Ga DOTA-TOC PET-CT scan in larger number of patients with bronchial masses.

  19. Spectrum of the Breast Lesions With Increased 18F-FDG Uptake on PET/CT

    PubMed Central

    Dong, Aisheng; Wang, Yang; Lu, Jianping; Zuo, Changjing

    2016-01-01

    Abstract Interpretation of 18F-FDG PET/CT studies in breast is challenging owing to nonspecific FDG uptake in various benign and malignant conditions. Benign conditions include breast changes in pregnancy and lactation, gynecomastia, mastitis, fat necrosis, fibroadenoma, intraductal papilloma, and atypical ductal hyperplasia. Among malignancies, invasive ductal carcinoma and invasive lobular carcinoma are common histological types of breast carcinoma. Rarely, other unusual histological types of breast carcinomas (eg, intraductal papillary carcinoma, invasive micropapillary carcinoma, medullary carcinoma, mucinous carcinoma, and metaplastic carcinoma), lymphoma, and metastasis can be the causes. Knowledge of a wide spectrum of hypermetabolic breast lesions on FDG PET/CT is essential in accurate reading of FDG PET/CT. The purpose of this atlas article is to demonstrate features of various breast lesions encountered at our institution, both benign and malignant, which can result in hypermetabolism on FDG PET/CT imaging. PMID:26975010

  20. (18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK).

    PubMed

    Hultsch, Christina; Schottelius, Margret; Auernheimer, Jörg; Alke, Andrea; Wester, Hans-Jürgen

    2009-09-01

    Oxime formation between an aminooxy-functionalized peptide and an (18)F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [(18)F]fluorodeoxyglucose ([(18)F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide. The use of [(18)F]FDG from routine production ([(18)F]FDGTUM) containing an excess of D: -glucose did not allow the radiosynthesis of [(18)F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [(18)F]FDG for the routine clinical synthesis of (18)F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [(18)F]FDG obtained via HPLC separation of [(18)F]FDGTUM from excess glucose, however, afforded [(18)F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 degrees C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [(18)F]FDG-RGD showed increased tumour accumulation compared to the "gold standard" [(18)F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds. These data demonstrate that chemoselective (18)F-labelling of aminooxy-functionalized peptides using n.c.a. [(18)F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of (18)F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [(18)F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [(18)F]FDG-synthesis, [(18)F]fluoroglucosylation of peptides may represent a promising alternative to

  1. 18F-FDG PET/CT imaging of atypical subacute thyroiditis in thyrotoxicosis: A case report.

    PubMed

    Yoshida, Katsuya; Yokoh, Hidetaka; Toriihara, Akira; Fujii, Hayahiko; Harata, Naoki; Isogai, Jun; Tateishi, Ukihide

    2017-07-01

    In addition to its established role in oncologic imaging, F-fluorodeoxyglucose positron emission tomography/computed tomography (F-FDG PET/CT) is useful for the assessment of inflammatory activity. However, subacute thyroiditis (SAT) in thyrotoxicosis is rarely detected during these scans. A 66-year-old man with SAT in thyrotoxicosis demonstrated symptoms of transient fatigue, headache, and fever, without typical neck pain. Using F-FDG PET/CT, we found increased F-FDG uptake in the thyroid gland, predominantly in the right side due to SAT. We also observed a coexisting decrease in F-FDG uptake in the liver and increased F-FDG uptake in skeletal muscle due to thyrotoxicosis. Using F-FDG PET/CT, the combined observations of increased F-FDG uptake in the thyroid and skeletal muscle, and decreased F-FDG uptake in the liver, even when the typical symptom of neck pain is subtle or absent, may be helpful for the differential diagnosis of SAT in thyrotoxicosis.

  2. Direct comparison of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT in the follow-up of patients with neuroendocrine tumour treated with the first full peptide receptor radionuclide therapy cycle.

    PubMed

    Nilica, Bernhard; Waitz, Dietmar; Stevanovic, Vlado; Uprimny, Christian; Kendler, Dorota; Buxbaum, Sabine; Warwitz, Boris; Gerardo, Llanos; Henninger, Benjamin; Virgolini, Irene; Rodrigues, Margarida

    2016-08-01

    To determine the value of (68)Ga-DOTA-TOC and (18)F-FDG PET/CT for initial and follow-up evaluation of patients with neuroendocrine tumour (NET) treated with peptide receptor radionuclide therapy (PRRT). We evaluated 66 patients who had histologically proven NET and underwent both PRRT and three combined (68)Ga-DOTA-TOC and (18)F-FDG PET/CT studies. (68)Ga-DOTA-TOC PET/CT was performed before PRRT, 3 months after completion of PRRT and after a further 6 - 9 months. (18)F-FDG PET/CT was done within 2 months of (68)Ga-DOTA-TOC PET/CT. Follow-up ranged from 11.8 to 80.0 months (mean 34.5 months). All patients were (68)Ga-DOTA-TOC PET-positive initially and at follow-up after the first full PRRT cycle. Overall, 62 of the 198 (18)F-FDG PET studies (31 %) were true-positive in 38 of the 66 patients (58 %). Of the 66 patients, 28 (5 grade 1, 23 grade 2) were (18)F-FDG-negative initially and during follow-up (group 1), 24 (5 grade 1, 13 grade 2, 6 grade 3) were (18)F-FDG-positive initially and during follow-up (group 2), 9 patients (2 grade 1, 6 grade 2, 1 grade 3) were (18)F-FDG-negative initially but (18)F-FDG-positive during follow-up (group 3), and 5 patients (all grade 2) were (18)F-FDG-positive initially but (18)F-FDG-negative during follow-up (group 4).(18)F-FDG PET showed more and/or larger metastases than (68)Ga-DOTA-TOC PET in five patients of group 2 and four patients of group 3, all with progressive disease. In three patients with progressive disease who died during follow-up tumour SUVmax increased by 41 - 82 % from the first to the last follow-up investigation. In NET patients, the presence of (18)F-FDG-positive tumours correlates strongly with a higher risk of progression. Initially, patients with (18)F-FDG-negative NET may show (18)F-FDG-positive tumours during follow-up. Also patients with grade 1 and grade 2 NET may have (18)F-FDG-positive tumours. Therefore, (18)F-FDG PET/CT is a complementary tool to (68)Ga-DOTA-TOC PET/CT with clinical

  3. Establishing age-associated normative ranges of the cerebral 18F-FDG uptake ratio in children.

    PubMed

    Hua, Chiaho; Merchant, Thomas E; Li, Xingyu; Li, Yimei; Shulkin, Barry L

    2015-04-01

    In this study, we reported age-associated ranges of the regional cerebral (18)F-FDG uptake ratio in pediatric patients as a surrogate to normative data from healthy children. (18)F-FDG PET scans of 132 children and adolescents (age, 1-20 y) with non-central nervous system-related diseases and normal-appearing tracer distributions in the brain were retrospectively analyzed. PET images of individual patients were warped to a 3-dimensional reference template. Uptake ratio was calculated for 63 anatomic regions by normalizing the regional count per voxel with the average count per voxel in all regions. Models of regional uptake ratio as a function of age and sex were developed to calculate the 95% prediction interval. The paracentral lobule and cuneus had the highest resting metabolic state among all gray matter regions, whereas the brain stem, uncus, and hippocampus had the lowest uptake. A large left-right asymmetry was present in the angular gyrus and inferior occipital gyrus. Quantitative data of the regression, 95% confidence interval, and 95% prediction interval for each age were summarized for the 63 regions. In 52 of 63 regions, the (18)F-FDG uptake ratio had a significant age effect. The linear model was optimal for 12 regions, whereas the spline model with 1 age knot was a better fit for 40 regions. In children younger than 5 y, frontal and temporal lobes had a lower uptake than parietal and occipital lobes in general. However, uptake in the frontal lobe continued to increase with age but it decreased in the parietal and occipital lobes. Anatomic regions of the brain in children and adolescents exhibited uniquely different (18)F-FDG uptake trends with age. Our results may be useful for studying childhood development and possibly regional metabolic defects in children with traumatic brain injury or central nervous system disorders or children receiving cancer treatment. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  4. Pulmonary 18F-FDG uptake helps refine current risk stratification in idiopathic pulmonary fibrosis (IPF).

    PubMed

    Win, Thida; Screaton, Nicholas J; Porter, Joanna C; Ganeshan, Balaji; Maher, Toby M; Fraioli, Francesco; Endozo, Raymondo; Shortman, Robert I; Hurrell, Lynn; Holman, Beverley F; Thielemans, Kris; Rashidnasab, Alaleh; Hutton, Brian F; Lukey, Pauline T; Flynn, Aiden; Ell, Peter J; Groves, Ashley M

    2018-05-01

    There is a lack of prognostic biomarkers in idiopathic pulmonary fibrosis (IPF) patients. The objective of this study is to investigate the potential of 18 F-FDG-PET/ CT to predict mortality in IPF. A total of 113 IPF patients (93 males, 20 females, mean age ± SD: 70 ± 9 years) were prospectively recruited for 18 F-FDG-PET/CT. The overall maximum pulmonary uptake of 18 F-FDG (SUV max ), the minimum pulmonary uptake or background lung activity (SUV min ), and target-to-background (SUV max / SUV min ) ratio (TBR) were quantified using routine region-of-interest analysis. Kaplan-Meier analysis was used to identify associations of PET measurements with mortality. We also compared PET associations with IPF mortality with the established GAP (gender age and physiology) scoring system. Cox analysis assessed the independence of the significant PET measurement(s) from GAP score. We investigated synergisms between pulmonary 18 F-FDG-PET measurements and GAP score for risk stratification in IPF patients. During a mean follow-up of 29 months, there were 54 deaths. The mean TBR ± SD was 5.6 ± 2.7. Mortality was associated with high pulmonary TBR (p = 0.009), low forced vital capacity (FVC; p = 0.001), low transfer factor (TLCO; p < 0.001), high GAP index (p = 0.003), and high GAP stage (p = 0.003). Stepwise forward-Wald-Cox analysis revealed that the pulmonary TBR was independent of GAP classification (p = 0.010). The median survival in IPF patients with a TBR < 4.9 was 71 months, whilst in those with TBR > 4.9 was 24 months. Combining PET data with GAP data ("PET modified GAP score") refined the ability to predict mortality. A high pulmonary TBR is independently associated with increased risk of mortality in IPF patients.

  5. A novel semi-robotized device for high-precision 18F-FDG-guided breast cancer biopsy.

    PubMed

    Hellingman, D; Teixeira, S C; Donswijk, M L; Rijkhorst, E J; Moliner, L; Alamo, J; Loo, C E; Valdés Olmos, R A; Stokkel, M P M

    To assess the 3D geometric sampling accuracy of a new PET-guided system for breast cancer biopsy (BCB) from areas within the tumour with high 18 F-FDG uptake. In the context of the European Union project MammoCare, a prototype semi-robotic stereotactic prototype BCB-device was incorporated into a dedicated high resolution PET-detector for breast imaging. The system consists of 2 stacked rings, each containing 12 plane detectors, forming a dodecagon with a 186mm aperture for 3D reconstruction (1mm 3 voxel). A vacuum-assisted biopsy needle attached to a robot-controlled arm was used. To test the accuracy of needle placement, the needle tip was labelled with 18 F-FDG and positioned at 78 target coordinates distributed over a 35mm×24mm×28mm volume within the PET-detector field-of-view. At each position images were acquired from which the needle positioning accuracy was calculated. Additionally, phantom-based biopsy proofs, as well as MammoCare images of 5 breast cancer patients, were evaluated for the 3D automated locating of 18 F-FDG uptake areas within the tumour. Needle positioning tests revealed an average accuracy of 0.5mm (range 0-1mm), 0.6mm (range 0-2mm), and 0.4mm (range 0-2mm) for the x/y/z-axes, respectively. Furthermore, the MammoCare system was able to visualize and locate small (<10mm) regions with high 18 F-FDG uptake within the tumour suitable for PET-guided biopsy after being located by the 3D automated application. Accuracy testing demonstrated high-precision of this semi-automatic 3D PET-guided system for breast cancer core needle biopsy. Its clinical feasibility evaluation in breast cancer patients scheduled for neo-adjuvant chemotherapy will follow. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  6. Incidence of Brain Metastases on Follow-up 18F-FDG PET/CT Scans of Non-Small Cell Lung Cancer Patients: Should We Include the Brain?

    PubMed

    Nia, Emily S; Garland, Linda L; Eshghi, Naghmehossadat; Nia, Benjamin B; Avery, Ryan J; Kuo, Phillip H

    2017-09-01

    The brain is the most common site of distant metastasis from lung cancer. Thus, MRI of the brain at initial staging is routinely performed, but if this examination is negative a follow-up examination is often not performed. This study evaluates the incidence of asymptomatic brain metastases in non-small cell lung cancer patients detected on follow-up 18 F-FDG PET/CT scans. Methods: In this Institutional Review Board-approved retrospective review, all vertex to thigh 18 F-FDG PET/CT scans in patients with all subtypes of lung cancer from August 2014 to August 2016 were reviewed. A total of 1,175 18 F-FDG PET/CT examinations in 363 patients were reviewed. Exclusion criteria included brain metastases on initial staging, histologic subtype of small-cell lung cancer, and no follow-up 18 F-FDG PET/CT examinations. After our exclusion criteria were applied, a total of 809 follow-up 18 F-FDG PET/CT scans in 227 patients were included in the final analysis. The original report of each 18 F-FDG PET/CT study was reviewed for the finding of brain metastasis. The finding of a new brain metastasis prompted a brain MRI, which was reviewed to determine the accuracy of the 18 F-FDG PET/CT. Results: Five of 227 patients with 809 follow-up 18 F-FDG PET/CT scans reviewed were found to have incidental brain metastases. The mean age of the patients with incidental brain metastasis was 68 y (range, 60-77 y). The mean time from initial diagnosis to time of detection of incidental brain metastasis was 36 mo (range, 15-66 mo). When MRI was used as the gold standard, our false-positive rate was zero. Conclusion: By including the entire head during follow-up 18 F-FDG PET/CT scans of patients with non-small cell lung cancer, brain metastases can be detected earlier while still asymptomatic. But, given the additional scan time, radiation, and low incidence of new brain metastases in asymptomatic patients, the cost-to-benefit ratio should be weighed by each institution. © 2017 by the Society of

  7. Importance of 18F-FDG PET/CT to select patients with nonresectable colorectal liver metastases for liver transplantation.

    PubMed

    Grut, Harald; Revheim, Mona-Elisabeth; Line, Pål-Dag; Dueland, Svein

    2018-04-20

    The aim of this study was to evaluate fluorine-18-fluorodeoxyglucose (F-FDG) PET/CT for the selection of patients with nonresectable colorectal liver metastases (NCLM) for liver transplantation (LT). In the secondary cancer study, we reported an improved 5-year overall survival in patients treated with LT for NCLM (56%) compared with chemotherapy (9%). However, many patients were rejected for LT owing to the detection of extrahepatic disease at preoperative imaging. F-FDG PET/CT and contrast-enhanced computed tomography (ceCT) examinations before tentative LT for NCLM were assessed, and findings contraindicating LT were registered. Maximum, mean and peak standardized uptake values; tumor-to-background ratio; metabolic tumor volume; and total lesion glycolysis were measured and calculated for all liver metastases. Overall survival was calculated by the Kaplan-Meier method. Thirty-two patients excluded by F-FDG PET/CT and/or ceCT before tentative LT for NCLM were identified. F-FDG PET/CT from 20 of the 32 excluded patients revealed extrahepatic disease. Eight of the other 12 patients had a negative F-FDG PET/CT finding but were excluded by ceCT. Ten patients were excluded by F-FDG PET/CT only. Four patients were excluded owing to detected malignancy from frozen sections at the start of the intended transplant operation. Tumor-to-background ratio of the liver metastases was significantly higher in patients where F-FDG PET/CT detected extrahepatic disease (P=0.03). The median (range) survival after exclusion was 16 (0-52) months. The ability of F-FDG PET/CT to detect extrahepatic disease before LT for NCLM is vital to establish LT as a treatment option.

  8. (68)Ga-AMBA and (18)F-FDG for preclinical PET imaging of breast cancer: effect of tamoxifen treatment on tracer uptake by tumor.

    PubMed

    Prignon, A; Nataf, V; Provost, C; Cagnolini, A; Montravers, F; Gruaz-Guyon, A; Lantry, L E; Talbot, J N; Nunn, A D

    2015-02-01

    AMBA is a bombesin analogue that binds to GRPr. In a mouse model of estrogen-dependent human breast cancer, we tested whether (68)Ga-AMBA can be used for PET detection of GRPr-expressing tumors and could be more accurate than (18)F-FDG to monitor tumor response to hormone therapy. The radiolabeling of (68)Ga-AMBA was automated using a R&D Synchrom module. ZR75-1, a breast cancer cell line, was xenografted in nude mice. (68)Ga-AMBA tumor uptake was compared with that of (18)F-FDG before and after treatment with tamoxifen. AMBA was (68)Ga-radiolabelled in 30min with 95.3% yield and purity≥98%. Prior to treatment, (68)Ga-AMBA was highly concentrated into tumors (tumor to non-tumor ratio=2.4 vs. 1.3 with (18)F-FDG). With tamoxifen treatment (n=6) (68)Ga-AMBA uptake plateaued after 1week and decreased after 2weeks, with a significant reduction compared to controls (n=4). In contrast the effect of tamoxifen treatment could not be appreciated using (18)F-FDG. (68)Ga-AMBA appeared better than (18)F-FDG to visualize and monitor the response to hormone treatment in this breast cancer model. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Metabolic Tumor Volume on 18F-FDG PET/CT Improves Preoperative Identification of High-Risk Endometrial Carcinoma Patients.

    PubMed

    Husby, Jenny A; Reitan, Bernt C; Biermann, Martin; Trovik, Jone; Bjørge, Line; Magnussen, Inger J; Salvesen, Øyvind O; Salvesen, Helga B; Haldorsen, Ingfrid S

    2015-08-01

    Our objective was to prospectively explore the diagnostic value of (18)F-FDG PET/CT for preoperative staging in endometrial carcinomas and to investigate whether (18)F-FDG PET-specific quantitative tumor parameters reflect clinical and histologic characteristics. Preoperative (18)F-FDG PET/CT was prospectively performed on 129 consecutive endometrial carcinoma patients. Two physicians who did not know the clinical findings or staging results independently reviewed the images, assessing primary tumor, cervical stroma involvement and metastatic spread, and determining maximum and mean standardized uptake value (SUVmax and SUVmean, respectively) for tumor, metabolic tumor volume (MTV), and total lesion glycolysis (TLG). All parameters were analyzed in relation to histomorphologic and clinical tumor characteristics. Receiver-operating-characteristic curves for identification of deep myometrial invasion and lymph node metastases were generated, and MTV cutoffs for predicting deep myometrial invasion and lymph node metastases were calculated. The sensitivity, specificity, and accuracy of (18)F-FDG PET/CT for the detection of lymph node metastases were 77%-85%, 91%-96%, and 89%-93%, respectively. SUVmax, SUVmean, MTV, and TLG were significantly related to deep myometrial invasion, presence of lymph node metastases, and high histologic grade (P < 0.015 for all) and independently predicted deep myometrial invasion (P < 0.015) and lymph node metastases (P < 0.025) after adjustment for preoperative histologic risk (based on subtype and grade) in endometrial biopsies. Optimal cutoffs for MTV in predicting deep myometrial invasion (20 mL) and the presence of lymph node metastases (30 mL) yielded odds ratios of 7.8 (P < 0.001) and 16.5 (P = 0.001), respectively. (18)F-FDG PET/CT represents a clinically valuable tool for preoperatively evaluating the presence of lymph node metastases in endometrial carcinoma patients. Applying MTV cutoffs for the prediction of deep myometrial

  10. Kinetic Modelling of Infection Tracers [18F]FDG, [68Ga]Ga-Citrate, [11C]Methionine, and [11C]Donepezil in a Porcine Osteomyelitis Model.

    PubMed

    Jødal, Lars; Jensen, Svend B; Nielsen, Ole L; Afzelius, Pia; Borghammer, Per; Alstrup, Aage K O; Hansen, Søren B

    2017-01-01

    Positron emission tomography (PET) is increasingly applied for infection imaging using [ 18 F]FDG as tracer, but uptake is unspecific. The present study compares the kinetics of [ 18 F]FDG and three other PET tracers with relevance for infection imaging. A juvenile porcine osteomyelitis model was used. Eleven pigs underwent PET/CT with 60-minute dynamic PET imaging of [ 18 F]FDG, [ 68 Ga]Ga-citrate, [ 11 C]methionine, and/or [ 11 C]donepezil, along with blood sampling. For infectious lesions, kinetic modelling with one- and two-tissue-compartment models was conducted for each tracer. Irreversible uptake was found for [ 18 F]FDG and [ 68 Ga]Ga-citrate; reversible uptake was found for [ 11 C]methionine (two-tissue model) and [ 11 C]donepezil (one-tissue model). The uptake rate for [ 68 Ga]Ga-citrate was slow and diffusion-limited. For the other tracers, the uptake rate was primarily determined by perfusion (flow-limited uptake). Net uptake rate for [ 18 F]FDG and distribution volume for [ 11 C]methionine were significantly higher for infectious lesions than for correspondingly noninfected tissue. For [ 11 C]donepezil in pigs, labelled metabolite products appeared to be important for the analysis. The kinetics of the four studied tracers in infection was characterized. For clinical applications, [ 18 F]FDG remains the first-choice PET tracer. [ 11 C]methionine may have a potential for detecting soft tissue infections. [ 68 Ga]Ga-citrate and [ 11 C]donepezil were not found useful for imaging of osteomyelitis.

  11. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    PubMed

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  12. Prevalence, Mass, and Glucose-Uptake Activity of 18F-FDG-Detected Brown Adipose Tissue in Humans Living in a Temperate Zone of Italy

    PubMed Central

    Persichetti, Agnese; Sciuto, Rosa; Rea, Sandra; Basciani, Sabrina; Lubrano, Carla; Mariani, Stefania; Ulisse, Salvatore; Nofroni, Italo; Maini, Carlo Ludovico; Gnessi, Lucio

    2013-01-01

    Background The 18F-fluorodeoxyglucose (18F-FDG)-detected brown adipose tissue (BAT), is enhanced by cold stimulus and modulated by other factors that still have to be disentangled. We investigated the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in a population of adults living in the temperate climatic zone of the Rome area. Methods and Findings We retrospectively analyzed 6454 patients who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) examinations. We found 18F-FDG BAT in 217 of the 6454 patients (3.36%). Some of them underwent more than one scan and the positive scans were 278 among 8004 (3.47%). The prevalence of patients with at least one positive scan was lower in men (1.77%; 56 of 3161) compared with women (4.88%; 161 of 3293). The BAT positive patients were most frequently younger, thinner and with lower plasma glucose levels compared with BAT negative patients. The amount of BAT in the defined region of interest, the activity of BAT and the number of positive sites of active BAT were similar in both sexes. The prevalence of patients with 18F-FDG positive PET/CT was highest in December-February, lower in March-May and September-November, and lowest in June-August and was positively correlated with night length and negatively correlated with ambient temperature. Changes in day length and variations of temperature, associated with the prevalence of positive BAT patients. Among the patients who had multiple scans, outdoor temperature was significantly lower and day length was shorter on the occasion when BAT was detected. Conclusions This study identifies day length, outdoor temperature, age, sex, BMI, and plasma glucose levels as major determinants of the prevalence, mass, and activity of 18F-FDG-detected BAT. PMID:23667608

  13. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice.

    PubMed

    Wong, Koon-Pong; Sha, Wei; Zhang, Xiaoli; Huang, Sung-Cheng

    2011-05-01

    The effects of dietary condition and blood glucose level on the kinetics and uptake of (18)F-FDG in mice were systematically investigated using intraperitoneal and tail-vein injection. Dynamic PET was performed for 60 min on 23 isoflurane-anesthetized male C57BL/6 mice after intravenous (n = 11) or intraperitoneal (n = 12) injection of (18)F-FDG. Five and 6 mice in the intravenous and intraperitoneal groups, respectively, were kept fasting overnight (18 ± 2 h), and the others were fed ad libitum. Serial blood samples were collected from the femoral artery to measure (18)F-FDG and glucose concentrations. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. The standardized uptake value (SUV) was estimated from the 45- to 60-min image. The metabolic rate of glucose (MRGlu) and (18)F-FDG uptake constant (K(i)) were derived by Patlak graphical analysis. In the brain, SUV and K(i) were significantly higher in fasting mice with intraperitoneal injection, but MRGlu did not differ significantly under different dietary states and administration routes. Cerebral K(i) was inversely related to elevated blood glucose levels, irrespective of administration route or dietary state. In myocardium, SUV, K(i), and MRGlu were significantly lower in fasting than in nonfasting mice for both routes of injection. Myocardial SUV and K(i) were strongly dependent on the dietary state, and K(i) did not correlate with the blood glucose level. Similar results were obtained for skeletal muscle, although the differences were not as pronounced. Intraperitoneal injection is a valid alternative route, providing pharmacokinetic data equivalent to data from tail-vein injection for small-animal (18)F-FDG PET. Cerebral K(i) varies inversely with blood glucose level, but the measured cerebral MRGlu does not correlate with blood glucose level or dietary condition. Conversely, the K(i) values of the myocardium and skeletal muscle are strongly dependent on

  14. Effects of atorvastatin and diet interventions on atherosclerotic plaque inflammation and [18F]FDG uptake in Ldlr-/-Apob100/100 mice.

    PubMed

    Hellberg, Sanna; Sippola, Suvi; Liljenbäck, Heidi; Virta, Jenni; Silvola, Johanna M U; Ståhle, Mia; Savisto, Nina; Metso, Jari; Jauhiainen, Matti; Saukko, Pekka; Ylä-Herttuala, Seppo; Nuutila, Pirjo; Knuuti, Juhani; Roivainen, Anne; Saraste, Antti

    2017-08-01

    Uptake of the positron emission tomography (PET) tracer 2-deoxy-2-[ 18 F]-fluoro-d- glucose ([ 18 F]FDG) into macrophages is a sensitive marker of inflammation in atherosclerosis. To assess the anti-inflammatory effects of statins, we studied whether atorvastatin therapy reduces aortic [ 18 F]FDG uptake in hypercholesterolemic mice deficient in low-density lipoprotein receptor (Ldlr), and expressing only apolipoprotein B-100 (Ldlr -/- Apob 100/100 ). Thirty-six Ldlr -/- Apob 100/100 mice were fed a high-fat diet (HFD) for 12 weeks and then allocated to receive a HFD (n = 13), chow diet (Chow, n = 12), or HFD with added atorvastatin (HFD + A, n = 11), for another 12 weeks. In addition to aortic histopathology, [ 18 F]FDG uptake was studied in vivo using PET/computed tomography (CT), and ex vivo by gamma counting of excised aorta. Total cholesterol levels were lower in the Chow and HFD + A groups than in the HFD group (10 ± 3.2, 23 ± 4.9 and 34 ± 9.2 mmol/l, respectively), with the Chow group also showing a lower plaque burden and lower numbers of macrophages in the lesions. Compared to the HFD group, [ 18 F]FDG uptake in the aorta (normalized for blood) was lower in the Chow group in both in vivo (2.1 ± 0.21 vs. 1.7 ± 0.25, p = 0.018) and ex vivo (5.2 ± 2.3 vs. 2.8 ± 0.87, p = 0.011) analyses, whereas atorvastatin had no effect on uptake (2.1 ± 0.42 in vivo and 3.9 ± 1.8 ex vivo). [ 18 F]FDG uptake correlated with plasma total cholesterol levels. Atorvastatin therapy did not show cholesterol-independent effects on inflammation in atherosclerotic lesions in Ldlr -/- Apob 100/100 mice, as determined by histology and [ 18 F]FDG PET, whereas a cholesterol-lowering diet intervention was effective. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. The feasibility of 18F-AlF-NOTA-PRGD2 PET/CT for monitoring early response of Endostar antiangiogenic therapy in human nasopharyngeal carcinoma xenograft model compared with 18F-FDG

    PubMed Central

    Liang, Sheng; Zhang, Caiyuan; Cheng, Weiwei; Hai, Wangxi; Yin, Bing; Wang, Dengbin

    2016-01-01

    Purpose Radiolabeled arginine-glycine-aspartic acid (RGD) peptides have been developed for PET imaging of integrin avβ3 in the tumor vasculature, leading to great potential for noninvasively evaluating tumor angiogenesis and monitoring antiangiogenic treatment. The aim of this study was to investigate a novel one-step labeled integrin-targeted tracer, 18F-AlF-NOTA-PRGD2, for PET/CT for detecting tumor angiogenesis and monitoring the early therapeutic efficacy of antiangiogenic agent Endostar in human nasopharyngeal carcinoma (NPC) xenograft model. Experimental design and results Mice bearing NPC underwent 18F-AlF-NOTA-PRGD2 PET/CT at baseline and after 2, 4, 7, and 14 days of consecutive treatment with Endostar or PBS, compared with 18F-FDG PET/CT. Tumors were harvested at all imaging time points for histopathological analysis with H & E and microvessel density (MVD) and integrin avβ3 immunostaining. The maximum percent injected dose per gram of body weight (%ID/gmax) tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT was significantly lower than that in the control group starting from day 2 (p < 0.01), much earlier and more accurately than that of 18F-FDG PET/CT. Moreover, a moderate linear correlation was observed between tumor MVD and the corresponding tumor uptake of 18F-AlF-NOTA-PRGD2 PET/CT (r = 0.853, p < 0.01). Conclusions 18F-AlF-NOTA-PRGD2 PET/CT can be used for in vivo angiogenesis imaging and monitoring early response to Endostar antiangiogenic treatment in NPC xenograft model, favoring its potential clinical translation. PMID:27029065

  16. The combination of 13N-ammonia and 18F-FDG whole-body PET/CT on the same day for diagnosis of advanced prostate cancer

    PubMed Central

    Yi, Chang; Yu, Donglan; Shi, Xinchong; Luo, Ganhua; He, Qiao; Zhang, Xuezhen

    2016-01-01

    Purpose The aim of the study was to evaluate the efficacy of 13N-ammonia and 18F-fluorodeoxyglucose (18F-FDG) PET performed on the same day in the detection of advanced prostate cancer (PC) and its metastases. Patients and methods Twenty-six patients with high-risk PC [Gleason score 8–10 or prostate-specific antigen (PSA)>20 ng/ml or clinical tumor extension≥T2c] were recruited into the study. 13N-Ammonia and 18F-FDG PET/CT were performed on the same day (18F-FDG followed ammonia, with an interval of a minimum of 2 h). Lesions were interpreted as positive, negative, or equivocal. Patient-based and field-based performance characteristics for both imaging techniques were reported. Results There was significant correlation between 13N-ammonia and 18F-FDG PET/CT in the detection of primary PC (κ=0.425, P=0.001) and no significant difference in sensitivity (60.2 vs. 54.5%) and specificity (100 vs. 83.3%). The maximum standard uptake values and corresponding target-to-background ratio values of the concordantly positive lesions in prostate glands in the two studies did not differ significantly (P=0.124 and 0.075, respectively). The sensitivity and specificity of PET imaging using 13N-ammonia for lymph node metastases were 77.5 and 96.3%, respectively, whereas the values were 75 and 44.4% using 18F-FDG. The two modalities were highly correlated with respect to the detection of lymph nodes and bone metastases. Conclusion The concordance between the two imaging modalities suggests a clinical impact of 13N-ammonia PET/CT in advanced PC patients as well as of 18F-FDG. 13N-Ammonia is a useful PET tracer and a complement to 18F-FDG for detecting primary focus and distant metastases in PC. The combination of these two tracers on the same day can accurately detect advanced PC. PMID:26588068

  17. Estimation of patient radiation dose from whole body 18F- FDG PET/CT examination in cancer imaging: a preliminary study

    NASA Astrophysics Data System (ADS)

    Mahmud, M. H.; Nordin, A. J.; Saad, F. F. Ahmad; Fattah Azman, A. Z.

    2014-11-01

    This study aims to estimate the radiation effective dose resulting from whole body fluorine-18 flourodeoxyglucose Positron Emission Tomography (18F-FDG PET) scanning as compared to conservative Computed Tomography (CT) techniques in evaluating oncology patients. We reviewed 19 oncology patients who underwent 18F-FDG PET/CT at our centre for cancer staging. Internal and external doses were estimated using radioactivity of injected FDG and volume CT Dose Index (CTDIvol), respectively with employment of the published and modified dose coefficients. The median differences of dose among the conservative CT and PET protocols were determined using Kruskal Wallis test with p < 0.05 considered as significant. The median (interquartile range, IQR) effective doses of non-contrasted CT, contrasted CT and PET scanning protocols were 7.50 (9.35) mSv, 9.76 (3.67) mSv and 6.30 (1.20) mSv, respectively, resulting in the total dose of 21.46 (8.58) mSv. Statistically significant difference was observed in the median effective dose between the three protocols (p < 0.01). The effective doses of whole body 18F-FDG PET technique may be effective the lowest amongst the conventional CT imaging techniques.

  18. Fatal mechanical asphyxia induces changes in energy utilization in the rat brain: An (18)F-FDG-PET study.

    PubMed

    Ma, Suhua; You, Shengzhong; Hao, Li; Zhang, Dongchuan; Quan, Li

    2015-07-01

    This study was designed to evaluate changes in brain glucose metabolism in rats following ligature strangulation. Thirteen male Wistar rats were used in the present study, divided into control (n=7) and asphyxia groups (n=6, ligature strangulation). Positron emission tomography (PET) with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) was used to evaluate brain glucose metabolism. Rats were scanned for PET-CT, and image data co-registered with a T2WI MRI template using SPM8 software. Image J was employed to draw regions of interest (ROIs) from the MRI template and acquire ROI activity information from the PET images. In the asphyxia group vs. controls, (18)F-FDG uptake (FU) was decreased in the substantia nigra (25.26%, p<0.001), rhombencephalon (pons/medulla oblongata, 13.92%, p<0.01), hypothalamus (22.06%, p<0.01), ventral tegmentum (10.12%, p<0.05) and amygdala (12.74%, p<0.05); however, FU was increased in motor (18.21%, p<0.05) and visual cortices (19.2%, p<0.05). The glucose metabolism distribution map in the asphyxiated rat brains were substantially changed versus controls. PET with (18)F-FDG can demonstrate excitement and inhibition of different brain areas even in cases of ligature strangulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  19. Micro Regional Heterogeneity of 64Cu-ATSM and 18F-FDG Uptake in Canine Soft Tissue Sarcomas: Relation to Cell Proliferation, Hypoxia and Glycolysis.

    PubMed

    Zornhagen, Kamilla Westarp; Hansen, Anders E; Oxboel, Jytte; Clemmensen, Andreas E; El Ali, Henrik H; Kristensen, Annemarie T; Kjær, Andreas

    2015-01-01

    Tumour microenvironment heterogeneity is believed to play a key role in cancer progression and therapy resistance. However, little is known about micro regional distribution of hypoxia, glycolysis and proliferation in spontaneous solid tumours. The overall aim was simultaneous investigation of micro regional heterogeneity of 64Cu-ATSM (hypoxia) and 18F-FDG (glycolysis) uptake and correlation to endogenous markers of hypoxia, glycolysis, proliferation and angiogenesis to better therapeutically target aggressive tumour regions and prognosticate outcome. Exploiting the different half-lives of 64Cu-ATSM (13 h) and 18F-FDG (2 h) enabled simultaneous investigation of micro regional distribution of hypoxia and glycolysis in 145 tumour pieces from four spontaneous canine soft tissue sarcomas. Pairwise measurements of radioactivity and gene expression of endogenous markers of hypoxia (HIF-1α, CAIX), glycolysis (HK2, GLUT1 and GLUT3), proliferation (Ki-67) and angiogenesis (VEGFA and TF) were performed. Dual tracer autoradiography was compared with Ki-67 immunohistochemistry. Micro regional heterogeneity in hypoxia and glycolysis within and between tumour sections of each tumour piece was observed. The spatial distribution of 64Cu-ATSM and 18F-FDG was rather similar within each tumour section as reflected in moderate positive significant correlations between the two tracers (ρ = 0.3920-0.7807; p = 0.0180 -<0.0001) based on pixel-to-pixel comparisons of autoradiographies and gamma counting of tumour pieces. 64Cu-ATSM and 18F-FDG correlated positively with gene expression of GLUT1 and GLUT3, but negatively with HIF-1α and CAIX. Significant positive correlations were seen between Ki-67 gene expression and 64Cu-ATSM (ρ = 0.5578, p = 0.0004) and 18F-FDG (ρ = 0.4629-0.7001, p = 0.0001-0.0151). Ki-67 gene expression more consistently correlated with 18F-FDG than with 64Cu-ATSM. Micro regional heterogeneity of hypoxia and glycolysis was documented in spontaneous canine soft

  20. Micro Regional Heterogeneity of 64Cu-ATSM and 18F-FDG Uptake in Canine Soft Tissue Sarcomas: Relation to Cell Proliferation, Hypoxia and Glycolysis

    PubMed Central

    Zornhagen, Kamilla Westarp; Hansen, Anders E.; Oxboel, Jytte; Clemmensen, Andreas E.; El Ali, Henrik H.; Kristensen, Annemarie T.; Kjær, Andreas

    2015-01-01

    Objectives Tumour microenvironment heterogeneity is believed to play a key role in cancer progression and therapy resistance. However, little is known about micro regional distribution of hypoxia, glycolysis and proliferation in spontaneous solid tumours. The overall aim was simultaneous investigation of micro regional heterogeneity of 64Cu-ATSM (hypoxia) and 18F-FDG (glycolysis) uptake and correlation to endogenous markers of hypoxia, glycolysis, proliferation and angiogenesis to better therapeutically target aggressive tumour regions and prognosticate outcome. Methods Exploiting the different half-lives of 64Cu-ATSM (13h) and 18F-FDG (2h) enabled simultaneous investigation of micro regional distribution of hypoxia and glycolysis in 145 tumour pieces from four spontaneous canine soft tissue sarcomas. Pairwise measurements of radioactivity and gene expression of endogenous markers of hypoxia (HIF-1α, CAIX), glycolysis (HK2, GLUT1 and GLUT3), proliferation (Ki-67) and angiogenesis (VEGFA and TF) were performed. Dual tracer autoradiography was compared with Ki-67 immunohistochemistry. Results Micro regional heterogeneity in hypoxia and glycolysis within and between tumour sections of each tumour piece was observed. The spatial distribution of 64Cu-ATSM and 18F-FDG was rather similar within each tumour section as reflected in moderate positive significant correlations between the two tracers (ρ = 0.3920–0.7807; p = 0.0180 –<0.0001) based on pixel-to-pixel comparisons of autoradiographies and gamma counting of tumour pieces. 64Cu-ATSM and 18F-FDG correlated positively with gene expression of GLUT1 and GLUT3, but negatively with HIF-1α and CAIX. Significant positive correlations were seen between Ki-67 gene expression and 64Cu-ATSM (ρ = 0.5578, p = 0.0004) and 18F-FDG (ρ = 0.4629–0.7001, p = 0.0001–0.0151). Ki-67 gene expression more consistently correlated with 18F-FDG than with 64Cu-ATSM. Conclusions Micro regional heterogeneity of hypoxia and glycolysis

  1. Cerebral 18F-FDG PET in macrophagic myofasciitis: An individual SVM-based approach.

    PubMed

    Blanc-Durand, Paul; Van Der Gucht, Axel; Guedj, Eric; Abulizi, Mukedaisi; Aoun-Sebaiti, Mehdi; Lerman, Lionel; Verger, Antoine; Authier, François-Jérôme; Itti, Emmanuel

    2017-01-01

    Macrophagic myofasciitis (MMF) is an emerging condition with highly specific myopathological alterations. A peculiar spatial pattern of a cerebral glucose hypometabolism involving occipito-temporal cortex and cerebellum have been reported in patients with MMF; however, the full pattern is not systematically present in routine interpretation of scans, and with varying degrees of severity depending on the cognitive profile of patients. Aim was to generate and evaluate a support vector machine (SVM) procedure to classify patients between healthy or MMF 18F-FDG brain profiles. 18F-FDG PET brain images of 119 patients with MMF and 64 healthy subjects were retrospectively analyzed. The whole-population was divided into two groups; a training set (100 MMF, 44 healthy subjects) and a testing set (19 MMF, 20 healthy subjects). Dimensionality reduction was performed using a t-map from statistical parametric mapping (SPM) and a SVM with a linear kernel was trained on the training set. To evaluate the performance of the SVM classifier, values of sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV) and accuracy (Acc) were calculated. The SPM12 analysis on the training set exhibited the already reported hypometabolism pattern involving occipito-temporal and fronto-parietal cortices, limbic system and cerebellum. The SVM procedure, based on the t-test mask generated from the training set, correctly classified MMF patients of the testing set with following Se, Sp, PPV, NPV and Acc: 89%, 85%, 85%, 89%, and 87%. We developed an original and individual approach including a SVM to classify patients between healthy or MMF metabolic brain profiles using 18F-FDG-PET. Machine learning algorithms are promising for computer-aided diagnosis but will need further validation in prospective cohorts.

  2. Adenocarcinoma with BAC Features Presented as the Nonsolid Nodule Is Prone to Be False-Negative on 18F-FDG PET/CT

    PubMed Central

    Wu, Hu-bing; Wang, Lijuan; Wang, Quan-shi; Han, Yan-jian; Li, Hong-sheng; Zhou, Wen-lan; Tian, Ying

    2015-01-01

    Purpose. The present study investigated which type of adenocarcinoma with BAC features was prone to be false-negative on 18F-FDG PET/CT. Materials and Methods. A retrospective study was performed on 51 consecutive patients with localized adenocarcinoma with BAC features. CT and PET were assessed for lesion size, GGO percentage, and SUVmax. Lesions with FDG uptake the same as or more than mediastinal blood-pool activity were considered as PET-positive. Results. Of the 51 cases, 19.6% presented as pure GGO nodules, 31.4% as mixed nodules, and 49.0% as solid nodules. None of the pure GGO nodules was 18F-FDG avid, compared with 37.5% of mixed nodules and 96.0% of solid nodules (χ 2 = 31.55, P = 0.000). In the mixed nodule group, SUVmax was negatively correlated with GGO percentage (r = −0.588; P = 0.021). The positive detection rate of 18F-FDG PET/CT was 50.0%, 55.6%, and 100% in tumors 1.1–2.0 cm, 2.1–3.0 cm, and >3.0 cm in diameter, respectively (χ 2 = 5.815, P = 0.055). General linear model factor analysis showed that the GGO was an important factor contributing to false-negative PET/CT results (F = 23.992, P = 0.000), but lesion size was not (F = 0.602, P = 0.866). Conclusions. The present study indicated that the adenocarcinoma with BAC features presented as nonsolid nodule is prone to be false negative on 18F-FDG PET/CT. PMID:25879020

  3. Hybrid core shell nanoparticles entrapping Gd-DTPA and 18F-FDG for simultaneous PET/MRI acquisitions.

    PubMed

    Vecchione, Donatella; Aiello, Marco; Cavaliere, Carlo; Nicolai, Emanuele; Netti, Paolo Antonio; Torino, Enza

    2017-09-01

    Although there has been an improvement in the hardware and software of the PET/MRI system, the development of the nanoprobes exploiting the simultaneous acquisition of the bimodal data is still under investigation. Moreover, few studies on biocompatible and clinically relevant probes are available. This work presents a core-shell polymeric nanocarrier with improved relaxometric properties for simultaneous PET/MRI acquisitions. Core-shell nanoparticles entrapping the Gd-DTPA and 18 F-FDG are obtained by a complex coacervation. The boosting of r 1 of the entrapped Gd-DTPA up to five-times compared with 'free Gd-DTPA', is confirmed by the PET/MRI scan. The sorption of 18 F-FDG into the nanoparticles is studied and designed to be integrated downstream for the production of the tracer.

  4. Accumulation of (18)F-FDG in the liver in hepatic steatosis.

    PubMed

    Keramida, Georgia; Potts, Jonathan; Bush, Jan; Verma, Sumita; Dizdarevic, Sabina; Peters, Adrien M

    2014-09-01

    Nonalcoholic fatty liver disease is associated with hepatic inflammation. An emerging technique to image inflammation is PET using the glucose tracer, (18)F-FDG. The purpose of this study was to determine whether in hepatic steatosis the liver accumulates FDG in excess of FDG physiologically exchanging between blood and hepatocyte. Hepatic FDG uptake, as SUV = [voxel counts / administered activity] × body weight), and CT density were measured in a liver region in images obtained 60 minutes after injection of FDG in 304 patients referred for routine PET/CT. Maximum SUV (region voxel with the highest count rate, SUVmax) and average SUV ( SUVave) were measured. Blood FDG concentration was measured as the maximum SUV over the left ventricular cavity (SUVLV). SUVave was adjusted for hepatic fat using a formula equating percentage fat to CT density. Patients were divided in subgroups on the basis of blood glucose (< 4, 4 to < 5, 5 to < 6, 6 to < 8, 8 to < 10, and > 10 mmol/L). Hepatic steatosis was defined as CT density less than 40 HU (n = 71). The percentage of hepatic fat increased exponentially with blood glucose. SUVmax / SUVLV and fat-adjusted SUVave / SUVLV but not SUVave / SUVLV correlated with blood glucose. Fat-adjusted SUVave was higher in patients with hepatic steatosis (p < 0.001) by ~0.4 in all blood glucose groups. There was a similar difference (~0.3) in SUVmax (p < 0.005) but no difference in SUVave. SUVmax / SUVLV and fat-adjusted SUVave / SUVLV correlated with blood glucose in patients with hepatic steatosis but not in those without. SUVave / SUVLV correlated with blood glucose in neither group. FDG uptake is increased in hepatic steatosis, probably resulting from irreversible uptake in inflammatory cells superimposed on reversible hepatocyte uptake.

  5. Can the inflammatory response be evaluated using 18F-FDG within zones of microvascular obstruction after myocardial infarction?

    PubMed

    Prato, Frank S; Butler, John; Sykes, Jane; Keenliside, Lynn; Blackwood, Kimberley J; Thompson, R Terry; White, James A; Mikami, Yoko; Thiessen, Jonathan D; Wisenberg, Gerald

    2015-02-01

    Inflammation that occurs after acute myocardial infarction plays a pivotal role in healing by facilitating the creation of a supportive scar. (18)F-FDG, which is taken up avidly by macrophages, has been proposed as a marker of cell-based inflammation. However, its reliability as an accurate indicator of inflammation has not been established, particularly in the early postinfarction period when regional myocardial perfusion is often severely compromised. Nine adult dogs underwent left anterior descending coronary occlusion with or without reperfusion. Animals were imaged between 7 and 21 d after infarction with PET/MR imaging after bolus injection of gadolinium-diethylenetriaminepentaacetic acid (DTPA), bolus injection of (18)F-FDG, bolus injection of (99)Tc-DTPA to simulate the distribution of gadolinium-DTPA (which represents its partition coefficient in well-perfused tissue), and injection of (111)In-labeled white blood cells 24 h earlier. After sacrifice, myocardial tissue concentrations of (18)F, (111)In, and (99)Tc were determined in a well counter. Linear regression analysis evaluated the relationships between the concentrations of (111)In and (18)F and the dependence of the ratio of (111)In/(18)F to the apparent distribution volume of (99m)Tc-DTPA. In 7 of 9 animals, (111)In increased as (18)F increased with the other 2 animals, showing weak negative slopes. With respect to the dependence of (111)In/(18)F with partition coefficient, 4 animals showed no dependence and 4 showed a weak positive slope, with 1 animal showing a negative slope. Further, in regions of extensive microvascular obstruction, (18)F significantly underestimated the extent of the presence of (111)In. In the early post-myocardial infarction period, (18)F-FDG PET imaging after a single bolus administration may underestimate the extent and degree of inflammation within regions of microvascular obstruction. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  6. A Comparison between 18F-FDG PET/CT Imaging and Biological and Radiological Findings in Restaging of Hepatoblastoma Patients

    PubMed Central

    Treglia, Giorgio; Pagano, Manuela; Fania, Piercarlo; Basso, Maria Eleonora; Fagioli, Franca; Ficola, Umberto

    2013-01-01

    Background. In this study we retrospectively evaluated if 18F-FDG-PET/CT provided incremental diagnostic information over CI in a group of hepatoblastoma patients performing restaging. Procedure. Nine patients (mean age: 5.9 years; range: 3.1–12 years) surgically treated for hepatoblastoma were followed up by clinical examination, serum α-FP monitoring, and US. CI (CT or MRI) and PET/CT were performed in case of suspicion of relapse. Fine-needle aspiration biopsies (FNAB) were carried out for final confirmation if the results of CI, PET/CT, and/or α-FP levels were suggestive of relapse. PET/CT and CI findings were analyzed for comparison purposes, using FNAB as reference standard. Results. α-FP level was suggestive of disease recurrence in 8/9 patients. Biopsy was performed in 8/9 cases. CI and PET/CT resulted to be concordant in 5/9 patients (CI identified recurrence of disease, but 18F-FDG-PET/CT provided a better definition of disease extent); in 4/9 cases, CI diagnostic information resulted in negative findings, whereas PET/CT correctly detected recurrence of disease. 18F-FDG-PET/CT showed an agreement of 100% (8/8) with FNAB results. Conclusions. 18F-FDG-PET/CT scan seems to better assess HB patients with respect to CI and may provide incremental diagnostic value in the restaging of this group of patients. PMID:24063012

  7. Discussion on the alteration of FDG uptake by the breast according to the menstrual cycle in 18F-FDG PET/CT

    NASA Astrophysics Data System (ADS)

    Park, H. H.; Park, M. S.; Lee, C. H.; Cho, J. H.; Dong, K. R.; Chung, W. K.

    2012-09-01

    18F-FDG (fluorodeoxyglucose) PET (positron emission tomography)/CT (computed tomography) is a useful modality for identifying high-glucose-consuming cells, such as cancer cells, by the glucose metabolism of FDG. FDG is taken up by cancer and inflammatory cells, but occasionally there is also some FDG uptake by normal tissues as a result of their individual physiological characteristics. In particular, in fertile females, unusual FDG uptake in the breast changes according to the stages in the menstrual cycle, which can adversely affect a diagnosis. Therefore, this study examined the change in breast FDG uptake in the menstrual cycle on 18F-FDG PET/CT. One hundred and sixty females (34±3.5 years old), who had not undergone a gynecologic anamnesis and had a regular menstrual cycle over the previous 6 months, were examined from March 2010 to February 2011. The subjects were divided into the following four groups (each with 40 patients): flow phase, proliferative phase, ovulatory phase and secretory phase using Pregnancy Calculator Ver. 0.14 and history taking. Discovery Ste was used as the PET/CT. The standardized uptake values (SUVs) on the accumulated region on the breast were analyzed, and three nuclear medicine specialists performed a blind test. The SUVs on the breast were the flow phase (1.64±0.25), proliferative phase (0.93±0.28), ovulatory phase (1.66±0.26) and secretory phase (1.77±0.28). A high uptake value was observed in the secretory, flow and ovulatory phases. The FDG accumulation of the breast was divided into the following three grades compared with the lung and liver by gross analysis: the breast uptake was equal to the lung (Grade I), between the lung and liver (Grade II) and equal to or greater than the liver (Grade III). These results showed a high uptake value in the secretory, flow and ovulatory phases. In fertile females, the FDG uptake of the breast showed changes according to the menstrual cycle, which can be used to improve the diagnosis

  8. The Association Between Liver and Tumor [18F]FDG Uptake in Patients with Diffuse Large B Cell Lymphoma During Chemotherapy.

    PubMed

    Wu, Xingchen; Bhattarai, Abhisek; Korkola, Pasi; Pertovaara, Hannu; Eskola, Hannu; Kellokumpu-Lehtinen, Pirkko-Liisa

    2017-10-01

    The aim of this study was to explore the association between liver, mediastinum and tumor 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) uptake during chemotherapy in diffuse large B cell lymphoma (DLBCL). Nineteen patients with proven DLBCL underwent positron emission tomography (PET)/X-ray computed tomography scan at baseline, 1 week and 2 cycles after rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) therapy, and again after chemotherapy completion. The mean and maximal standardized uptake value (SUVmean and SUVmax) of the liver and mediastinum were measured and correlated with the tumor SUVmax, SUVsum, whole-body metabolic tumor volume (MTVwb), and total lesion glycolysis (TLG). At baseline, both the liver and mediastinum SUVmean and SUVmax correlated inversely with the tumor MTVwb or TLG (p < 0.01 or 0.001). The liver SUVmean and SUVmax increased significantly after 1 week of R-CHOP therapy and remained at the high level until chemotherapy completion. The mediastinum SUVmean and SUVmax remained stable during chemotherapy. The tumor SUVmax, SUVsum, MTVwb, and TLG decreased significantly after 1 week of R-CHOP therapy. The change of the liver SUVmean correlated inversely with the change of tumor MTVwb and TLG after 1 week of chemotherapy (p < 0.05, respectively). The intersubject variability of liver and mediastinum [ 18 F]FDG uptake ranged from 11 to 26 %. The liver [ 18 F]FDG uptake increased significantly after R-CHOP therapy. One of the possible reasons is the distribution of a greater fraction of the tracer to healthy tissues rather than tumor after effective chemotherapy. The variability of the liver [ 18 F]FDG uptake during chemotherapy might affect the visual analysis of the interim PET scan and this needs to be confirmed in future studies with a large patient cohort. In addition, the intersubject variability of the liver and mediastinum [ 18 F]FDG uptake should be considered.

  9. Quantitative assessment of atherosclerotic plaques on (18)F-FDG PET/MRI: comparison with a PET/CT hybrid system.

    PubMed

    Li, Xiang; Heber, Daniel; Rausch, Ivo; Beitzke, Dietrich; Mayerhoefer, Marius E; Rasul, Sazan; Kreissl, Michael; Mitthauser, Markus; Wadsak, Wolfgang; Hartenbach, Markus; Haug, Alexander; Zhang, Xiaoli; Loewe, Christian; Beyer, Thomas; Hacker, Marcus

    2016-07-01

    PET with (18)F-FDG has the potential to assess vascular macrophage metabolism. (18)F-FDG is most often used in combination with contrast-enhanced CT to localize increased metabolism to specific arterial lesions. Novel (18)F-FDG PET/MRI hybrid imaging shows high potential for the combined evaluation of atherosclerotic plaques, due to the superior morphological conspicuity of plaque lesions. The purpose of this study was to evaluate the reliability and accuracy of (18)F-FDG PET/MRI uptake quantification compared to PET/CT as a reference standard in patients with carotid atherosclerotic plaques. The study group comprised 34 consecutive oncological patients with carotid plaques who underwent both PET/CT and PET/MRI with (18)F-FDG on the same day. The presence of atherosclerotic plaques was confirmed by 3 T MRI scans. Maximum standardized uptake values (SUVmax) for carotid plaque lesions and the average SUV of the blood pool within the adjacent internal jugular vein were determined and target-to-blood ratios (TBRs, plaque to blood pool) were calculated. Atherosclerotic lesions with maximum colocalized focal FDG uptake were assessed in each patient. SUVmax values of carotid plaque lesions were significantly lower on PET/MRI than on PET/CT (2.3 ± 0.6 vs. 3.1 ± 0.6; P < 0.01), but were significantly correlated between PET/CT and PET/MRI (Spearman's r = 0.67, P < 0.01). In contrast, TBRmax values of plaque lesions were similar on PET/MRI and on PET/CT (2.2 ± 0.3 vs. 2.2 ± 0.3; P = 0.4), and again were significantly correlated between PET/MRI and PET/CT (Spearman's r = 0.73, P < 0.01). Considering the increasing trend in SUVmax and TBRmax values from early to delayed imaging time-points on PET/CT and PET/MRI, respectively, with continuous clearance of radioactivity from the blood, a slight underestimation of TBRmax values may also be expected with PET/MRI compared with PET/CT. SUVmax and TBRmax values are widely accepted reference

  10. [Diagnostic value of (18)F-FDG PET/CT for solitary nodular-type bronchoalveolar carcinoma].

    PubMed

    Liu, Weikun; Li, Xiangdong; Quan, Jiangtao; Ouyang, Xi; Zheng, Hui

    2013-01-01

    To assess the value of (18)F-FDG PET/CT in the diagnosis of solitary nodular-type bronchoalveolar carcinoma (BAC). The clinical and radiographic data were analyzed retrospectively in 30 patients with pathologically confirmed solitary nodular-type BAC who underwent (18)F-FDG PET/CT examinations between August, 2005 and December, 2006. The morphological and radioactive findings of the lesions were reviewed, and the maximum standard uptake values (SUVmax) were measured. The diagnostic accuracy of PET, PET/CT, and HRCT were analyzed. The (18)F-FDG SUV was markedly lower in BAC than in other well differentiated adenocarcinoma. In 19 of the BAC cases, PET showed a SUVmax of no less than 2.5, demonstrating positive changes. Of the total of 30 cases, 5 had ground glass opacity (GGO) changes, 3 exhibited mixed nodules with GGO changes around the lesions, and 22 cases presented with solid nodules. HRCT showed that BAC located often in the superior lobes of the bilateral lungs, mostly below the pleura in the surrounding lung field; the lesions were patchy or nodular with irregular shapes, showing lobulation in 22 cases, spiculation in 15 cases, pleural indentation in 21 cases, and vacuolar changes in 4 cases. The diagnostic accuracy of PET, PET/CT and HRCT for solitary nodular-type BAC was 36.67%, 93.33%, and 93.33%, respectively. The SUVmax of BAC provides only limited value for defining the nature of the lesions, but can serve as a general reference for assessing the disease activity. PET/CT, which allows both functional and imaging assessment, can be a valuable modality to reduce the misdiagnosis rate of BAC.

  11. [Diagnostic value of (18)F-FDG PET/CT for solitary nodular-type bronchoalveolar carcinoma].

    PubMed

    Liu, Wei-Kun; Li, Xiang-Dong; Quan, Jiang-Tao; Ouyang, Xi; Zheng, Hui

    2015-01-01

    To assess the value of (18)F-FDG PET/CT in the diagnosis of solitary nodular-type bronchoalveolar carcinoma (BAC). The clinical and radiographic data were analyzed retrospectively in 30 patients with pathologically confirmed solitary nodular-type BAC who underwent (18)F-FDG PET/CT examinations between August, 2005 and December, 2006. The morphological and radioactive findings of the lesions were reviewed, and the maximum standard uptake values (SUVmax) were measured. The diagnostic accuracy of PET, PET/CT, and HRCT were analyzed. The (18)F-FDG SUV was markedly lower in BAC than in other well differentiated adenocarcinoma. In 19 of the BAC cases, PET showed a SUVmax of no less than 2.5, demonstrating positive changes. Of the total of 30 cases, 5 had ground glass opacity (GGO) changes, 3 exhibited mixed nodules with GGO changes around the lesions, and 22 cases presented with solid nodules. HRCT showed that BAC located often in the superior lobes of the bilateral lungs, mostly below the pleura in the surrounding lung field; the lesions were patchy or nodular with irregular shapes, showing lobulation in 22 cases, spiculation in 15 cases, pleural indentation in 21 cases, and vacuolar changes in 4 cases. The diagnostic accuracy of PET, PET/CT and HRCT for solitary nodular-type BAC was 36.67%, 93.33%, and 93.33%, respectively. The SUVmax of BAC provides only limited value for defining the nature of the lesions, but can serve as a general reference for assessing the disease activity. PET/CT, which allows both functional and imaging assessment, can be a valuable modality to reduce the misdiagnosis rate of BAC.

  12. Comparison of (11)C-4'-thiothymidine, (11)C-methionine, and (18)F-FDG PET/CT for the detection of active lesions of multiple myeloma.

    PubMed

    Okasaki, Momoko; Kubota, Kazuo; Minamimoto, Ryogo; Miyata, Yoko; Morooka, Miyako; Ito, Kimiteru; Ishiwata, Kiichi; Toyohara, Jun; Inoue, Tomio; Hirai, Risen; Hagiwara, Shotaro; Miwa, Akiyoshi

    2015-04-01

    The aims of this study were to evaluate the possibility of using (11)C-methionine ((11)C-MET) and (11)C-4'-thiothymidine ((11)C-4DST) whole-body PET/CT for the imaging of amino acid metabolism and DNA synthesis, respectively, when searching for bone marrow involvement in patients with multiple myeloma (MM) and to compare these findings with those for (18)F-FDG PET/CT and aspiration cytology. A total of 64 patients with MM, solitary plasmacytoma, monoclonal gammopathy of undetermined significance, or an unspecified diagnosis were prospectively enrolled. All the patients underwent three whole-body PET/CT examinations within a period of 1 week. First, the tracer accumulation was visually evaluated as positive, equivocal, or negative for 55 focal lytic lesions visualized using CT in 24 patients. Second, the percentages of marrow plasma cells as calculated using a bone marrow aspiration smear and tracer accumulation were evaluated in the posterior iliac crests of 36 patients. Among the 55 lytic lesions, the (11)C-MET and (11)C-4DST findings tended to reveal more positive findings than the (18)F-FDG findings. Based on the standard criteria for the diagnosis of active myeloma using the percentage of marrow plasma cells, significant differences were found between the (18)F-FDG and (11)C-MET findings and between the (18)F-FDG and (11)C-4DST findings, but no significant difference was observed between the (11)C-MET and (11)C-4DST findings. The addition of (11)C-MET and (11)C-4DST to (18)F-FDG when performing PET/CT enabled clearer evaluations of equivocal lesions. Based on cytological diagnostic criteria, (11)C-MET and (11)C-4DST were more sensitive than (18)F-FDG for the detection of active lesions. (11)C-MET and (11)C-4DST were more useful than (18)F-FDG for the detection of active lesions, especially during the early stage of disease.

  13. Characterizing the normative profile of 18F-FDG PET brain imaging: sex difference, aging effect, and cognitive reserve.

    PubMed

    Yoshizawa, Hiroshi; Gazes, Yunglin; Stern, Yaakov; Miyata, Yoko; Uchiyama, Shinichiro

    2014-01-30

    The aim of this study was to investigate findings of positron emission tomography with 18F-fluorodeoxyglucose (18F-FDG PET) in normal subjects to clarify the effects of sex differences, aging, and cognitive reserve on cerebral glucose metabolism. Participants comprised 123 normal adults who underwent 18F-FDG PET and a neuropsychological battery. We used statistical parametric mapping (SPM8) to investigate sex differences, and aging effects. The effects of cognitive reserve on 18F-FDG uptake were investigated using years of education as a proxy. Finally, we studied the effect of cognitive reserve on the recruitment of glucose metabolism in a memory task by dichotomizing the data according to educational level. Our results showed that the overall cerebral glucose metabolism in females was higher than that in males, whereas male participants had higher glucose metabolism in the bilateral inferior temporal gyri and cerebellum than females. Age-related hypometabolism was found in anterior regions, including the anterior cingulate gyrus. These areas are part of the attentional system, which may decline with aging even in healthy elderly individuals. Highly educated subjects revealed focal hypermetabolism in the right hemisphere and lower recruitment of glucose metabolism in memory tasks. This phenomenon is likely a candidate for a neural substrate of cognitive reserve. © 2013 Published by Elsevier Ireland Ltd.

  14. 18F-FDG PET-CT pattern in idiopathic normal pressure hydrocephalus.

    PubMed

    Townley, Ryan A; Botha, Hugo; Graff-Radford, Jonathan; Boeve, Bradley F; Petersen, Ronald C; Senjem, Matthew L; Knopman, David S; Lowe, Val; Jack, Clifford R; Jones, David T

    2018-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is an important and treatable cause of neurologic impairment. Diagnosis is complicated due to symptoms overlapping with other age related disorders. The pathophysiology underlying iNPH is not well understood. We explored FDG-PET abnormalities in iNPH patients in order to determine if FDG-PET may serve as a biomarker to differentiate iNPH from common neurodegenerative disorders. We retrospectively compared 18 F-FDG PET-CT imaging patterns from seven iNPH patients (mean age 74 ± 6 years) to age and sex matched controls, as well as patients diagnosed with clinical Alzheimer's disease dementia (AD), Dementia with Lewy Bodies (DLB) and Parkinson's Disease Dementia (PDD), and behavioral variant frontotemporal dementia (bvFTD). Partial volume corrected and uncorrected images were reviewed separately. Patients with iNPH, when compared to controls, AD, DLB/PDD, and bvFTD, had significant regional hypometabolism in the dorsal striatum, involving the caudate and putamen bilaterally. These results remained highly significant after partial volume correction. In this study, we report a FDG-PET pattern of hypometabolism in iNPH involving the caudate and putamen with preserved cortical metabolism. This pattern may differentiate iNPH from degenerative diseases and has the potential to serve as a biomarker for iNPH in future studies. These findings also further our understanding of the pathophysiology underlying the iNPH clinical presentation.

  15. Role of 18F-FDG PET/CT in diagnosing peritoneal carcinomatosis in the restaging of patient with ovarian cancer as compared to contrast enhanced CT and tumor marker Ca-125.

    PubMed

    Rubini, G; Altini, C; Notaristefano, A; Merenda, N; Rubini, D; Ianora, A A Stabile; Asabella, A Niccoli

    2014-01-01

    To investigate the role of whole-body fluorine-18-2-deoxy-2-fluoro-d-glucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) in the identification of peritoneal carcinomatosis in patients with ovarian cancer (OC). Seventy-nine patients with histologically proven stages III-IV OC who underwent (18)F-FDG PET/CT were studied retrospectively. We considered group A as 51 patients who also underwent computed-tomography with contrast-enhancement (CECT), and group B as 35 patients who had also been tested for biomarker Ca-125. Sensitivity, specificity, accuracy, positive predictive values (PPV) and negative predictive values (NPV) of (18)F-FDG PET/CT as compared to CECT and to Ca-125 were evaluated. (18)F-FDG PET/CT' sensitivity, specificity, accuracy, PPV and NPV for all 79 patients were: 85%, 92.31%, 88.61%, 91.89% and 85.71%, respectively. (18)F-FDG PET/CT sensitivity in group A was 78.6%, while it was 53.6% for CECT. (18)F-FDG PET/CT specificity, calculated in the same group, was 91.3%, while that of CECT was 60.9% (statistically significant difference, McNemar 4, P=0.039). Accuracy was 84.3% and 56.9%, respectively. (18)F-FDG PET/CT' sensitivity in group B was 86.4%, while that of Ca-125 was 81.8% (no statistical difference, McNemar 0, P=1). (18)F-FDG PET/CT specificity in group B was 84.6% while that of Ca-125 was 38.5% (clear but not statistically significant difference, McNemar 3.12, P=0.070). Accuracy calculated in the same group was 85.7% for (18)F-FDG PET/CT and 65.7% for Ca-125. (18)F-FDG PET/CT is a useful diagnostic tool when peritoneal biopsy cannot be performed and it can better select those who are candidates for adjuvant chemotherapy. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  16. Interesting Layering of Excreted 18F-FDG in the Urinary Bladder in Patients with Urinary Tract Infection and Distended Bladder.

    PubMed

    Shen, Guohua; Zhang, Wenjie; Jia, Zhiyun; Deng, Houfu

    2015-09-01

    Settling of (18)F-FDG in the bladder is often noted on whole-body PET/CT images, but this phenomenon has never received any careful attention and the mechanism has been unclear. The 2 patients described in this report, one with a T1 pathologic fracture and another with widespread bone and lymph node metastases from an unknown primary tumor, underwent PET/CT. Both had urinary tract infection and a distended bladder during scanning. The interesting layering of (18)F-FDG in the urinary bladder was observed in both patients. The presence of this phenomenon demands careful evaluation of the urine by the clinician, and the mechanism is hypothesized to be slow (18)F-FDG excretion in patients with a distended urinary bladder, resulting in delayed mixing with urine. In addition, urinary tract infection may be a potential cause. Images showing this interesting layering should be interpreted with care. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  17. Comparison of whole body magnetic resonance imaging (WBMRI) to whole body computed tomography (WBCT) or 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) in patients with myeloma: Systematic review of diagnostic performance.

    PubMed

    Gariani, Joanna; Westerland, Olwen; Natas, Sarah; Verma, Hema; Cook, Gary; Goh, Vicky

    2018-04-01

    To undertake a systematic review to determine the diagnostic performance of whole body MRI (WBMRI) including diffusion weighted sequences (DWI) compared to whole body computed tomography (WBCT) or 18 F-fluorodeoxyglucose positron emission tomography/CT ( 18 F-FDG PET/CT) in patients with myeloma. Two researchers searched the primary literature independently for WBMRI studies of myeloma. Data were extracted focusing on the diagnostic ability of WBMRI versus WBCT and 18 F-FDG PET/CT. Meta-analysis was intended. 6 of 2857 articles were eligible that included 147 patients, published from 2008 to 2016. Studies were heterogeneous including both newly diagnosed & relapsed patients. All were single centre studies. Four of the six studies (66.7%) accrued prospectively and 5/6 (83.3%, 3 prospective) included WBMRI and 18 F-FDG PET/CT. Three of seven (42.9%) included DWI. The lack of an independent reference standard for individual lesions was noted in 5/6 (83.3%) studies. Studies reported that WBMRI detected more lesions than 18 F-FDG PET/CT (sensitivity 68-100% versus 47-100%) but was less specific (specificity 37-83% versus 62-85.7%). No paper assessed impact on management. Studies were heterogeneous, the majority lacking an independent reference standard. Future prospective trials should address these limitations and assess the impact of WBMRI on management. Copyright © 2018. Published by Elsevier B.V.

  18. IgG4-Related Disease Simulating Carcinoma Colon With Diffuse Peritoneal Carcinomatosis on 18F-FDG PET/CT.

    PubMed

    Vadi, Shelvin Kumar; Parihar, Ashwin Singh; Kumar, Rajender; Singh, Harmandeep; Mittal, Bhagwant Rai; Bal, Amanjit; Sinha, Saroj Kumar

    2018-05-14

    IgG4-related disease (IgG4-RD) continues to be a diagnostic challenge and a great mimicker of malignancies. We report here a case of young man who presented with subacute intestinal obstruction with initial imaging and clinical features suggestive of carcinoma colon. 18F-FDG PET/CT showed diffuse peritoneal carcinomatosis pattern typically seen with abdominal malignancies. However, the histopathology and the raised IgG4 levels diagnosed it to be IgG4-RD. Although 18F-FDG PET/CT has typical patterns corresponding to the multisystemic involvement of IgG4-RD, the index case did not show any such findings.

  19. Parapharyngeal neuroglial heterotopia appearing as high uptake on 18F-FDG PET: case report and literature review of radiographical findings.

    PubMed

    Kameyama, Masayuki; Kawaguchi, Tomohiro; Niizuma, Hidetaka; Ogawa, Takenori; Watanabe, Kenichi; Hayashi, Toshiaki; Sato, Kanako; Kanamori, Masayuki; Watanabe, Mika; Katori, Yukio; Kure, Shigeo; Tominaga, Teiji

    2018-04-01

    Parapharyngeal neuroglial heterotopia is a rare entity, and the specific radiographical findings are unclear. We present a case of parapharyngeal neuroglial heterotopia examined with proton magnetic resonance spectroscopy ( 1 H-MRS) and 18 F-fluorodesoxyglucose positron emission tomography ( 18 F-FDG PET). Our neonate patient presented with neck mass and polyhydramnios during gestation. Computed tomography and magnetic resonance imaging demonstrated the morphological characteristics, but failed to establish the diagnosis. 1 H-MRS showed a non-malignant pattern, but 18 F-FDG PET demonstrated high glucose metabolism. Complete resection was achieved and the histopathological diagnosis was neuroglial heterotopia. Assessment of biological activity may be useful for both preoperative diagnosis and postoperative evaluation of residual lesions.

  20. Post-therapy lesions in patients with non-Hodgkin's lymphoma characterized by 18F-FDG PET/CT-guided biopsy using automated robotic biopsy arm.

    PubMed

    Radhakrishnan, Renjith K; Mittal, Bhagwant R; Basher, Rajender K; Prakash, Gaurav; Malhotra, Pankaj; Kalra, Naveen; Das, Ashim

    2018-01-01

    The aim of this study was to analyse the positive predictive value (PPV) of post-therapy fluorine-18-fluorodeoxyglucose (F-FDG) PET/CT performed for response or recurrence evaluation in patients with non-Hodgkin's lymphoma (NHL) and to appraise the diagnostic utility of F-FDG PET/CT-guided biopsy in this setting. A total of 17 patients with NHL showing F-FDG avid lesions in F-FDG PET/CT performed for response or recurrence assessment underwent F-FDG PET/CT-guided biopsy using automated robotic biopsy arm needle navigation technique. The objectives were analysed in reference to histopathology. In all, 15 of the 17 (88.5%) procedures yielded adequate representative tissue samples. Nine out of 15 lesions were positive for residual disease and the remaining revealed benign findings on histopathology. One patient with inconclusive biopsy underwent surgical resection and histopathology confirmed the presence of residual disease. PPV of theF-FDG PET/CT was observed to be 62.5% (10/16). F-FDG PET/CT for response evaluation in NHL possesses a low PPV and hence warrants histopathological correlation when F-FDG PET/CT findings influence management decision. Diagnostic yield of F-FDG PET/CT-guided biopsy is high and has the potential to reduce sampling errors.

  1. Spatial-Temporal [{sup 18}F]FDG-PET Features for Predicting Pathologic Response of Esophageal Cancer to Neoadjuvant Chemoradiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Shan; Department of Control Science and Engineering, Huazhong University of Science and Technology, Wuhan; Kligerman, Seth

    2013-04-01

    Purpose: To extract and study comprehensive spatial-temporal {sup 18}F-labeled fluorodeoxyglucose ([{sup 18}F]FDG) positron emission tomography (PET) features for the prediction of pathologic tumor response to neoadjuvant chemoradiation therapy (CRT) in esophageal cancer. Methods and Materials: Twenty patients with esophageal cancer were treated with trimodal therapy (CRT plus surgery) and underwent [{sup 18}F]FDG-PET/CT scans both before (pre-CRT) and after (post-CRT) CRT. The 2 scans were rigidly registered. A tumor volume was semiautomatically delineated using a threshold standardized uptake value (SUV) of ≥2.5, followed by manual editing. Comprehensive features were extracted to characterize SUV intensity distribution, spatial patterns (texture), tumor geometry, andmore » associated changes resulting from CRT. The usefulness of each feature in predicting pathologic tumor response to CRT was evaluated using the area under the receiver operating characteristic curve (AUC) value. Results: The best traditional response measure was decline in maximum SUV (SUV{sub max}; AUC, 0.76). Two new intensity features, decline in mean SUV (SUV{sub mean}) and skewness, and 3 texture features (inertia, correlation, and cluster prominence) were found to be significant predictors with AUC values ≥0.76. According to these features, a tumor was more likely to be a responder when the SUV{sub mean} decline was larger, when there were relatively fewer voxels with higher SUV values pre-CRT, or when [{sup 18}F]FDG uptake post-CRT was relatively homogeneous. All of the most accurate predictive features were extracted from the entire tumor rather than from the most active part of the tumor. For SUV intensity features and tumor size features, changes were more predictive than pre- or post-CRT assessment alone. Conclusion: Spatial-temporal [{sup 18}F]FDG-PET features were found to be useful predictors of pathologic tumor response to neoadjuvant CRT in esophageal cancer.« less

  2. Time‐course of effects of external beam radiation on [18F]FDG uptake in healthy tissue and bone marrow

    PubMed Central

    Kesner, Adam L; Lau, Victoria K; Speiser, Michael; Hsueh, Wei‐Ann; Agazaryan, Nzhde; DeMarco, John J; Czernin, Johannes

    2008-01-01

    The utility of PET for monitoring responses to radiation therapy have been complicated by metabolically active processes in surrounding normal tissues. We examined the time‐course of [18F]FDG uptake in normal tissues using small animal‐dedicated PET during the 2 month period following external beam radiation. Four mice received 12 Gy of external beam radiation, in a single fraction to the left half of the body. Small animal [18F]FDG‐PET scans were acquired for each mouse at 0 (pre‐radiation), 1, 2, 3, 4, 5, 8, 12, 19, 24, and 38 days following irradiation. [18F]FDG activity in various tissues was compared between irradiated and non‐irradiated body halves before, and at each time point after irradiation. Radiation had a significant impact on [18F]FDG uptake in previously healthy tissues, and time‐course of effects differed in different types of tissues. For example, liver tissue demonstrated increased uptake, particularly over days 3–12, with the mean left to right uptake ratio increasing 52% over mean baseline values (p<0.0001). In contrast, femoral bone marrow uptake demonstrated decreased uptake, particularly over days 2–8, with the mean left to right uptake ratio decreasing 26% below mean baseline values (p=0.0005). Significant effects were also seen in lung and brain tissue. Radiation had diverse effects on [18F]FDG uptake in previously healthy tissues. These kinds of data may help lay groundwork for a systematically acquired database of the time‐course of effects of radiation on healthy tissues, useful for animal models of cancer therapy imminently, as well as interspecies extrapolations pertinent to clinical application eventually. PACs Number: 87.50.‐a

  3. Increased (18)F-FDG uptake in the trapezius muscle in patients with spinal accessory neuropathy.

    PubMed

    Lee, Seung Hak; Seo, Han Gil; Oh, Byung-Mo; Choi, Hongyoon; Cheon, Gi Jeong; Lee, Shi-Uk

    2016-03-15

    To investigate (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) signal changes of denervated muscles in patients with electrophysiologically confirmed neuropathy. This is a case series of three cancer patients who were referred to the electromyography laboratory in 2013 due to shoulder discomfort after surgery including neck dissection. Spinal accessory neuropathy was diagnosed based on electrophysiological studies. Patients' medical history, electrophysiological data, and FDG-PET images were reviewed retrospectively. Mean standard uptake values (SUV) of trapezius muscles were measured. The patients (3 men, aged 61-78years) showed spinal accessory neuropathy with different degrees of severity. In all patients, preoperative or postoperative FDG-PET showed increased FDG uptake in the ipsilateral trapezius muscle. These results were compatible with previously reported glucose hypermetabolism in denervated skeletal muscles. This is the first clinical report of increased FDG uptake by denervated muscles in electrophysiologically confirmed neuropathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Diagnostic performance of an automated analysis software for the diagnosis of Alzheimer’s dementia with 18F FDG PET

    PubMed Central

    Partovi, Sasan; Yuh, Roger; Pirozzi, Sara; Lu, Ziang; Couturier, Spencer; Grosse, Ulrich; Schluchter, Mark D; Nelson, Aaron; Jones, Robert; O’Donnell, James K; Faulhaber, Peter

    2017-01-01

    The objective of this study was to assess the ability of a quantitative software-aided approach to improve the diagnostic accuracy of 18F FDG PET for Alzheimer’s dementia over visual analysis alone. Twenty normal subjects (M:F-12:8; mean age 80.6 years) and twenty mild AD subjects (M:F-12:8; mean age 70.6 years) with 18F FDG PET scans were obtained from the ADNI database. Three blinded readers interpreted these PET images first using a visual qualitative approach and then using a quantitative software-aided approach. Images were classified on two five-point scales based on normal/abnormal (1-definitely normal; 5-definitely abnormal) and presence of AD (1-definitely not AD; 5-definitely AD). Diagnostic sensitivity, specificity, and accuracy for both approaches were compared based on the aforementioned scales. The sensitivity, specificity, and accuracy for the normal vs. abnormal readings of all readers combined were higher when comparing the software-aided vs. visual approach (sensitivity 0.93 vs. 0.83 P = 0.0466; specificity 0.85 vs. 0.60 P = 0.0005; accuracy 0.89 vs. 0.72 P<0.0001). The specificity and accuracy for absence vs. presence of AD of all readers combined were higher when comparing the software-aided vs. visual approach (specificity 0.90 vs. 0.70 P = 0.0008; accuracy 0.81 vs. 0.72 P = 0.0356). Sensitivities of the software-aided and visual approaches did not differ significantly (0.72 vs. 0.73 P = 0.74). The quantitative software-aided approach appears to improve the performance of 18F FDG PET for the diagnosis of mild AD. It may be helpful for experienced 18F FDG PET readers analyzing challenging cases. PMID:28123864

  5. Effects of age and cardiovascular risk factors on (18)F-FDG PET/CT quantification of atherosclerosis in the aorta and peripheral arteries.

    PubMed

    Pasha, Ahmed K; Moghbel, Mateen; Saboury, Babak; Gharavi, Mohammed H; Blomberg, Björn A; Torigian, Drew A; Kwee, Thomas C; Basu, Sandip; Mohler Iii, Emile R; Alavi, Abass

    2015-01-01

    To quantify fluorine-18 fluorodeoxyglucose ((18)F-FDG) uptake in the aorta and peripheral arteries and assess the variation of (18)F-FDG uptake with age and cardiovascular risk factors. The subject population of this retrospective study comprises melanoma patients who underwent whole-body (18)F-FDG PET/CT scans. The patients' medical records were examined for cardiovascular risk factors and for a history of coronary artery disease or peripheral artery disease. Fluorine-18-FDG uptake in the peripheral arteries (iliac and femoral) and aorta was semi-quantified as a weighted-average mean standardized uptake value (wA-SUVmean), while background noise was accounted for by measuring mean venous blood pool SUV (V-SUVmean) in the superior vena cava. Atherosclerosis was semi-quantified by the tissue-to-background ratio (TBR) (wA-SUVmean divided by V-SUVmean). A regression model and t-test were used to evaluate the effect of age and location on the degree of atherosclerosis. To assess the effect of cardiovascular risk factors on atherosclerotic burden, the wA-SUVmean of patients with at least one of these risk factors was compared to that of patients without any risk factors. A total of 76 patients (46 men, 30 women; 22-91 years old) were included in this study. The average TBR of the aorta and peripheral arteries were 2.68 and 1.43, respectively, and increased with age in both locations. In regression analysis, the beta coefficients of age for TBR in the aorta and peripheral arteries were 0.55 (P<0.001) and 0.03 (P<0.001), respectively. In all age groups, the TBR of the aorta was significantly greater than that of the peripheral arteries. The Pearson correlation coefficients between the four age groups and the TBR of the aorta and peripheral arteries were 0.83 (P<0.001) and 0.75 (P<0.001), respectively. The wA-SUVmean of patients with cardiovascular risk factors was only significant (P<0.05) in the aorta. An increase in (18)F-FDG uptake was observed in the peripheral

  6. Comparison of SPET brain perfusion and 18F-FDG brain metabolism in patients with chronic fatigue syndrome.

    PubMed

    Abu-Judeh, H H; Levine, S; Kumar, M; el-Zeftawy, H; Naddaf, S; Lou, J Q; Abdel-Dayem, H M

    1998-11-01

    Chronic fatigue syndrome is a clinically defined condition of uncertain aetiology. We compared 99Tcm-HMPAO single photon emission tomography (SPET) brain perfusion with dual-head 18F-FDG brain metabolism in patients with chronic fatigue syndrome. Eighteen patients (14 females, 4 males), who fulfilled the diagnostic criteria of the Centers for Disease Control for chronic fatigue syndrome, were investigated. Thirteen patients had abnormal SPET brain perfusion scans and five had normal scans. Fifteen patients had normal glucose brain metabolism scans and three had abnormal scans. We conclude that, in chronic fatigue syndrome patients, there is discordance between SPET brain perfusion and 18F-FDG brain uptake. It is possible to have brain perfusion abnormalities without corresponding changes in glucose uptake.

  7. Alpha-fetoprotein and (18)F-FDG positron emission tomography predict tumor recurrence better than Milan criteria in living donor liver transplantation.

    PubMed

    Hong, Geun; Suh, Kyung-Suk; Suh, Suk-Won; Yoo, Tae; Kim, Hyeyoung; Park, Min-Su; Choi, YoungRok; Paeng, Jin Chul; Yi, Nam-Joon; Lee, Kwang-Woong

    2016-04-01

    Given the organ shortage for liver transplantation (LT) and the limitations of the current morphology-based selection criteria, improved criteria are needed to achieve the maximum benefit of LT for hepatocellular carcinoma (HCC). We hypothesized that a combination of biological markers may better predict the prognosis than the Milan criteria. HCC patients (n=123) with preoperative data on serum alpha-fetoprotein (AFP) levels and (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) positivity underwent live-donor LT between January 2003 and December 2009. The cut-off values for serum AFP levels (200 ng/ml) and (18)F-FDG PET positivity (1.10) for tumor recurrence were determined by c-statistics using receiver operating characteristic curves. Univariate and multivariate analyses with preoperative variables were performed to find pre-transplant prognostic factors. Disease-free survival rates and overall survival rates were analysed with regard to serum AFP levels and (18)F-FDG PET positivity. The 5-year disease-free survival rates and overall survival rates were 80.3% and 81.6% respectively. (18)F-FDG PET positivity (hazard ratio (HR) 9.766, 95% CI 3.557-26.816; p<0.001) and serum AFP level (HR 6.234, 95% CI 2.643-14.707; p<0.001) were the only significant pre-transplant prognostic factors in the multivariate analysis; tumor number and size were not significant. A combination of criteria showed that the biologically high-risk group (AFP level ⩾200 ng/ml and PET-positive) had an HR of 29.069 (95% CI 8.797-96.053; p<0.001) compared with the double-negative group. Use of the Milan criteria yielded an HR of 1.351 (95% CI 0.500-3.652; p=0.553). The combination of the serum AFP level and (18)F-FDG PET data predicted better outcomes than those using the Milan criteria, improving objectivity when adult-to-adult living donor LT is contemplated. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  8. Use of micro-positron emission tomography with (18)F-fallypride to measure the levels of dopamine receptor-D2 and (18)F-FDG as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 rats.

    PubMed

    Li, Ping; Gui, Songbai; Cao, Lei; Gao, Hua; Bai, Jiwei; Li, Chuzhong; Zhang, Yazhuo

    2016-01-01

    Dopamine receptor-D2 (DRD2) is the most important drug target in prolactinoma. The aim of this current study was to investigate the role of using micro-positron emission tomography (micro-PET) with (18)F-fallypride and (18)F-fluorodeoxyglucose ((18)F-FDG) as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 (F344) rats and detect the difference of the levels of DRD2 in the pituitary glands and prolactinomas of F344 rat prolactinoma models. Female F344 rat prolactinoma models were established by subcutaneous administration of 15 mg 17β-estradiol for 8 weeks. The growth of tumors was monitored by the small-animal magnetic resonance imaging and micro-PET. A series of molecular biological experiments were also performed 4 and 6 weeks after pump implantation. The micro-PET molecular imaging with (18)F-fallypride revealed a decreased expression of DRD2 in F344 rat prolactinoma models, but the micro-PET molecular imaging with (18)F-FDG presented an increased uptake in the prolactinoma compared with the pituitary gland. A decreasing trend of levels of DRD2 in F344 rat prolactinoma models was also detected by molecular biological experiments. From this, we can conclude that micro-PET with (18)F-fallypride and (18)F-FDG can be used to assess tumorigenesis of the prolactinomas in vivo and molecular imaging detection of DRD2 level in prolactinoma may be an indication of treatment effect in the animal experiment.

  9. Brain 18F-FDG PET Metabolic Abnormalities in Patients with Long-Lasting Macrophagic Myofascitis.

    PubMed

    Van Der Gucht, Axel; Aoun Sebaiti, Mehdi; Guedj, Eric; Aouizerate, Jessie; Yara, Sabrina; Gherardi, Romain K; Evangelista, Eva; Chalaye, Julia; Cottereau, Anne-Ségolène; Verger, Antoine; Bachoud-Levi, Anne-Catherine; Abulizi, Mukedaisi; Itti, Emmanuel; Authier, François-Jérôme

    2017-03-01

    The aim of this study was to characterize brain metabolic abnormalities in patients with macrophagic myofascitis (MMF) and the relationship with cognitive dysfunction through the use of PET with 18 F-FDG. Methods: 18 F-FDG PET brain imaging and a comprehensive battery of neuropsychological tests were performed in 100 consecutive MMF patients (age [mean ± SD], 45.9 ± 12 y; 74% women). Images were analyzed with statistical parametric mapping (SPM12). Through the use of analysis of covariance, all 18 F-FDG PET brain images of MMF patients were compared with those of a reference population of 44 healthy subjects similar in age (45.4 ± 16 y; P = 0.87) and sex (73% women; P = 0.88). The neuropsychological assessment identified 4 categories of patients: those with no significant cognitive impairment ( n = 42), those with frontal subcortical (FSC) dysfunction ( n = 29), those with Papez circuit dysfunction ( n = 22), and those with callosal disconnection ( n = 7). Results: In comparison with healthy subjects, the whole population of patients with MMF exhibited a spatial pattern of cerebral glucose hypometabolism ( P < 0.001) involving the occipital lobes, temporal lobes, limbic system, cerebellum, and frontoparietal cortices, as shown by analysis of covariance. The subgroup of patients with FSC dysfunction exhibited a larger extent of involved areas (35,223 voxels vs. 13,680 voxels in the subgroup with Papez circuit dysfunction and 5,453 voxels in patients without cognitive impairment). Nonsignificant results were obtained for the last subgroup because of its small population size. Conclusion: Our study identified a peculiar spatial pattern of cerebral glucose hypometabolism that was most marked in MMF patients with FSC dysfunction. Further studies are needed to determine whether this pattern could represent a diagnostic biomarker of MMF in patients with chronic fatigue syndrome and cognitive dysfunction. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  10. Concordance between (99m)Tc-ECD SPECT and 18F-FDG PET interpretations in patients with cognitive disorders diagnosed according to NIA-AA criteria.

    PubMed

    Ito, Kimiteru; Shimano, Yasumasa; Imabayashi, Etsuko; Nakata, Yasuhiro; Omachi, Yoshie; Sato, Noriko; Arima, Kunimasa; Matsuda, Hiroshi

    2014-10-01

    The purpose of this study was to clarify the concordance of diagnostic abilities and interobserver agreement between 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) and brain perfusion single photon-emission computed tomography (SPECT) in patients with Alzheimer's disease (AD) who were diagnosed according to the research criteria of the National Institute of Aging-Alzheimer's Association Workshop. Fifty-five patients with "AD and mild cognitive impairment (MCI)" (n = 40) and "non-AD" (n = 15) were evaluated with 18F-FDG PET and (99m)Tc-ethyl cysteinate dimer (ECD) SPECT during an 8-week period. Three radiologists independently graded the regional uptake in the frontal, temporal, parietal, and occipital lobes as well as the precuneus/posterior cingulate cortex in both images. Kappa values were used to determine the interobserver reliability regarding regional uptake. The regions with better interobserver reliability between 18F-FDG PET and (99m)Tc-ECD SPECT were the frontal, parietal, and temporal lobes. The (99m)Tc-ECD SPECT agreement in the occipital lobes was not significant. The frontal, temporal, and parietal lobes showed good correlations between 18F-FDG PET and (99m)Tc-ECD SPECT in the degree of uptake, but the occipital lobe and precuneus/posterior cingulate cortex did not show good correlations. The diagnostic accuracy rates of "AD and MCI" ranged from 60% to 70% in both of the techniques. The degree of uptake on 18F-FDG PET and (99m)Tc-ECD SPECT showed significant correlations in the frontal, temporal, and parietal lobes. The diagnostic abilities of 18F-FDG PET and (99m)Tc-ECD SPECT for "AD and MCI," when diagnosed according to the National Institute of Aging-Alzheimer's Association Workshop criteria, were nearly identical. Copyright © 2014 John Wiley & Sons, Ltd.

  11. Value of 18F-FDG PET and PET/CT for evaluation of pediatric malignancies.

    PubMed

    Uslu, Lebriz; Donig, Jessica; Link, Michael; Rosenberg, Jarrett; Quon, Andrew; Daldrup-Link, Heike E

    2015-02-01

    Successful management of solid tumors in children requires imaging tests for accurate disease detection, characterization, and treatment monitoring. Technologic developments aim toward the creation of integrated imaging approaches that provide a comprehensive diagnosis with a single visit. These integrated diagnostic tests not only are convenient for young patients but also save direct and indirect health-care costs by streamlining procedures, minimizing hospitalizations, and minimizing lost school or work time for children and their parents. (18)F-FDG PET/CT is a highly sensitive and specific imaging modality for whole-body evaluation of pediatric malignancies. However, recent concerns about ionizing radiation exposure have led to a search for alternative imaging methods, such as whole-body MR imaging and PET/MR. As we develop new approaches for tumor staging, it is important to understand current benchmarks. This review article will synthesize the current literature on (18)F-FDG PET/CT for tumor staging in children, summarizing questions that have been solved and providing an outlook on unsolved avenues. © 2015 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  12. Changes in cerebral [18F]-FDG uptake induced by acute alcohol administration in a rat model of alcoholism.

    PubMed

    Gispert, Juan D; Figueiras, Francisca P; Vengeliene, Valentina; Herance, José R; Rojas, Santiago; Spanagel, Rainer

    2017-06-01

    Several [ 18 F]-FDG positron emission tomography (PET) studies in alcoholics have consistently reported decreases in overall brain glucose metabolism at rest and following acute alcohol administration. However, changes in cerebral glucose utilization associated with the transition to addiction are not well understood and require longitudinal translational imaging studies in animal models of alcoholism. Here, we studied brain glucose uptake in alcohol drinking rats in order to provide convergent evidence to what has previously been reported in human studies. Brain glucose metabolism was measured by [ 18 F]-FDG microPET imaging in different male Wistar rat groups: short-term drinking (three months), long-term drinking (twelve months) and alcohol-naïve. Global and regional cerebral glucose uptake was measured at rest and following acute alcohol administration. We showed that alcohol significantly reduced the whole-brain glucose metabolism. This effect was most pronounced in the parietal cortex and cerebellum. Alcohol-induced decreases in brain [ 18 F]-FDG uptake was most apparent in alcohol-naïve rats, less intense in short-term drinkers and absent in long-term drinkers. The latter finding indicates the occurrence of tolerance to the intoxicating effects of alcohol in long-term drinking individuals. In contrast, some regions, like the ventral striatum and entorhinal cortex, showed enhanced metabolic activity, an effect that did not undergo tolerance during long-term alcohol consumption. Our findings are comparable to those described in human studies using the same methodology. We conclude that [ 18 F]-FDG PET studies in rat models of alcoholism provide good translation and can be used for future longitudinal studies investigating alterations in brain function during different stages of the addiction cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Reproducibility of 18F-FDG PET uptake measurements in head and neck squamous cell carcinoma on both PET/CT and PET/MR

    PubMed Central

    Fischer, B M; Aznar, M C; Hansen, A E; Vogelius, I R; Löfgren, J; Andersen, F L; Loft, A; Kjaer, A; Højgaard, L; Specht, L

    2015-01-01

    Objective: To investigate reproducibility of fluorine-18 fludeoxyglucose (18F-FDG) uptake on 18F-FDG positron emission tomography (PET)/CT and 18F-FDG PET/MR scans in patients with head and neck squamous cell carcinoma (HNSCC). Methods: 30 patients with HNSCC were included in this prospective study. The patients were scanned twice before radiotherapy treatment with both PET/CT and PET/MR. Patients were scanned on the same scanners, 3 days apart and according to the same protocol. Metabolic tumour activity was measured by the maximum and peak standardized uptake value (SUVmax and SUVpeak, respectively), and total lesion glycolysis from the metabolic tumour volume defined from ≥50% SUVmax. Bland–Altman analysis with limits of agreement, coefficient of variation (CV) from the two modalities were performed in order to test the reproducibility. Furthermore, CVs from SUVmax and SUVpeak were compared. The area under the curve from cumulative SUV–volume histograms were measured and tested for reproducibility of the distribution of 18F-FDG uptake. Results: 24 patients had two pre-treatment PET/CT scans and 21 patients had two pre-treatment PET/MR scans available for further analyses. Mean difference for SUVmax, peak and mean was approximately 4% for PET/CT and 3% for PET/MR, with 95% limits of agreement less than ±20%. CV was small (5–7%) for both modalities. There was no significant difference in CVs between PET/CT and PET/MR (p = 0.31). SUVmax was not more reproducible than SUVpeak (p = 0.09). Conclusion: 18F-FDG uptake in PET/CT and PET/MR is highly reproducible and we found no difference in reproducibility between PET/CT and PET/MR. Advances in knowledge: This is the first report to test reproducibility of PET/CT and PET/MR. PMID:25634069

  14. Complementary roles of tumour specific PET tracer ¹⁸F-FAMT to ¹⁸F-FDG PET/CT for the assessment of bone metastasis.

    PubMed

    Morita, Motoho; Higuchi, Tetsuya; Achmad, Arifudin; Tokue, Azusa; Arisaka, Yukiko; Tsushima, Yoshito

    2013-10-01

    The usefulness of (18)F-FDG PET/CT for bone metastasis evaluation has already been established. The amino acid PET tracer [(18)F]-3-fluoro-alpha-methyl tyrosine ((18)F-FAMT) has been reported to be highly specific for malignancy. We evaluated the additional value of (18)F-FAMT PET/CT to complement (18)F-FDG PET/CT in the evaluation of bone metastasis. This retrospective study included 21 patients with bone metastases of various cancers who had undergone both (18)F-FDG and (18)F-FAMT PET/CT within 1 month of each other. (18)F-FDG-avid bone lesions suspicious for malignancy were carefully selected based on the cut-off value for malignancy, and the SUVmax of the (18)F-FAMT in the corresponding lesions were evaluated. A total of 72 (18)F-FDG-positive bone lesions suspected to be metastases in the 21 patients were used as the reference standard. (18)F-FAMT uptake was found in 87.5 % of the lesions. In the lesions of lung cancer origin, the uptake of the two tracers showed a good correlation (40 lesions, r = 0.68, P < 0.01). Bone metastatic lesions of oesophageal cancer showed the highest average of (18)F-FAMT uptake. Bone metastatic lesions of squamous cell carcinoma showed higher (18)F-FAMT uptake than those of adenocarcinoma. No significant difference in (18)F-FAMT uptake was seen between osteoblastic and osteolytic bone metastatic lesions. The usefulness of (18)F-FAMT PET/CT for bone metastasis detection regardless of the lesion phenotype was demonstrated. The fact that (18)F-FAMT uptake was confirmed by (18)F-FDG uptake suggests that (18)F-FAMT PET/CT has the potential to complement (18)F-FDG PET/CT for the detection of bone metastases.

  15. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET.

    PubMed

    Tixier, Florent; Hatt, Mathieu; Le Rest, Catherine Cheze; Le Pogam, Adrien; Corcos, Laurent; Visvikis, Dimitris

    2012-05-01

    (18)F-FDG PET measurement of standardized uptake value (SUV) is increasingly used for monitoring therapy response and predicting outcome. Alternative parameters computed through textural analysis were recently proposed to quantify the heterogeneity of tracer uptake by tumors as a significant predictor of response. The primary objective of this study was to evaluate the reproducibility of these heterogeneity measurements. Double baseline (18)F-FDG PET scans were acquired within 4 d of each other for 16 patients before any treatment was considered. A Bland-Altman analysis was performed on 8 parameters based on histogram measurements and 17 parameters based on textural heterogeneity features after discretization with values between 8 and 128. The reproducibility of maximum and mean SUV was similar to that in previously reported studies, with a mean percentage difference of 4.7% ± 19.5% and 5.5% ± 21.2%, respectively. By comparison, better reproducibility was measured for some textural features describing local heterogeneity of tracer uptake, such as entropy and homogeneity, with a mean percentage difference of -2% ± 5.4% and 1.8% ± 11.5%, respectively. Several regional heterogeneity parameters such as variability in the intensity and size of regions of homogeneous activity distribution had reproducibility similar to that of SUV measurements, with 95% confidence intervals of -22.5% to 3.1% and -1.1% to 23.5%, respectively. These parameters were largely insensitive to the discretization range. Several parameters derived from textural analysis describing heterogeneity of tracer uptake by tumors on local and regional scales had reproducibility similar to or better than that of simple SUV measurements. These reproducibility results suggest that these (18)F-FDG PET-derived parameters, which have already been shown to have predictive and prognostic value in certain cancer models, may be used to monitor therapy response and predict patient outcome.

  16. Evaluation of focal cortical dysplasia and mixed neuronal and glial tumors in pediatric epilepsy patients using 18F-FDG and 11C-methionine pet.

    PubMed

    Phi, Ji Hoon; Paeng, Jin Chul; Lee, Hyo Sang; Wang, Kyu-Chang; Cho, Byung-Kyu; Lee, Ji-Yeoun; Park, Sung-Hye; Lee, Joongyub; Lee, Dong Soo; Kim, Seung-Ki

    2010-05-01

    Focal cortical dysplasia (FCD) and mixed neuronal and glial tumors share many clinical characteristics; therefore, the presurgical differential diagnosis of these diseases using MRI is difficult in some cases. The aim of this study was to determine whether (11)C-methionine PET, compared with (18)F-FDG PET, was useful for the evaluation of these diseases. The clinical and imaging data of 30 pediatric lesional epilepsy patients pathologically diagnosed with FCD, dysembryoplastic neuroepithelial tumor (DNT), or ganglioglioma were reviewed. Eleven patients had FCD, 8 patients had a DNT, and 11 patients had a ganglioglioma. (18)F-FDG and (11)C-methinine PET scans were obtained from 25 patients and 15 patients, respectively. Visual grading analysis and quantitative assessment of (18)F-FDG and (11)C-methionine PET, represented as a lesion-to-gray matter ratio (LGR), were performed. In the visual grading analysis, both (18)F-FDG PET and (11)C-methionine PET detected a significant difference among the 3 disease groups (P = 0.033 and P = 0.016, respectively), but discrimination of FCD from mixed neuronal and glial tumors was possible only with (11)C-methionine PET. The mean LGR of (18)F-FDG PET was 0.502 +/- 0.119 for FCD, 0.631 +/- 0.107 for DNTs, and 0.620 +/- 0.196 for gangliogliomas; there was no significant difference in LGR among the groups (P = 0.111). However, the mean LGR of (11)C-methionine PET was 1.078 +/- 0.182 for FCD, 1.564 +/- 0.368 for DNT, and 2.114 +/- 0.723 for gangliogliomas; there was a significant difference in LGR among the groups (P = 0.014). Post hoc analysis revealed that the LGR of FCD was significantly different from that of DNTs and gangliogliomas. The mean LGR value of DNTs fell between those of FCD and gangliogliomas. Although (18)F-FDG plays a major role in the preoperative work-up of epilepsy surgery patients, it appears from this study that (18)F-FDG does not contribute to the differential diagnosis and that another tracer such as (11)C

  17. Comparison of DWI and 18F-FDG PET/CT for assessing preoperative N-staging in gastric cancer: evidence from a meta-analysis.

    PubMed

    Luo, Mingxu; Song, Hongmei; Liu, Gang; Lin, Yikai; Luo, Lintao; Zhou, Xin; Chen, Bo

    2017-10-13

    The diagnostic values of diffusion weighted imaging (DWI) and 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) for N-staging of gastric cancer (GC) were identified and compared. After a systematic search to identify relevant articles, meta-analysis was used to summarize the sensitivities, specificities, and areas under curves (AUCs) for DWI and PET/CT. To better understand the diagnostic utility of DWI and PET/CT for N-staging, the performance of multi-detector computed tomography (MDCT) was used as a reference. Fifteen studies were analyzed. The pooled sensitivity, specificity, and AUC with 95% confidence intervals of DWI were 0.79 (0.73-0.85), 0.69 (0.61-0.77), and 0.81 (0.77-0.84), respectively. For PET/CT, the corresponding values were 0.52 (0.39-0.64), 0.88 (0.61-0.97), and 0.66 (0.62-0.70), respectively. Comparison of the two techniques revealed DWI had higher sensitivity and AUC, but no difference in specificity. DWI exhibited higher sensitivity but lower specificity than MDCT, and 18 F-FDG PET/CT had lower sensitivity and equivalent specificity. Overall, DWI performed better than 18 F-FDG PET/CT for preoperative N-staging in GC. When the efficacy of MDCT was taken as a reference, DWI represented a complementary imaging technique, while 18 F-FDG PET/CT had limited utility for preoperative N-staging.

  18. Comparison of DWI and 18F-FDG PET/CT for assessing preoperative N-staging in gastric cancer: evidence from a meta-analysis

    PubMed Central

    Luo, Mingxu; Song, Hongmei; Liu, Gang; Lin, Yikai; Luo, Lintao; Zhou, Xin; Chen, Bo

    2017-01-01

    The diagnostic values of diffusion weighted imaging (DWI) and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) for N-staging of gastric cancer (GC) were identified and compared. After a systematic search to identify relevant articles, meta-analysis was used to summarize the sensitivities, specificities, and areas under curves (AUCs) for DWI and PET/CT. To better understand the diagnostic utility of DWI and PET/CT for N-staging, the performance of multi-detector computed tomography (MDCT) was used as a reference. Fifteen studies were analyzed. The pooled sensitivity, specificity, and AUC with 95% confidence intervals of DWI were 0.79 (0.73–0.85), 0.69 (0.61–0.77), and 0.81 (0.77–0.84), respectively. For PET/CT, the corresponding values were 0.52 (0.39–0.64), 0.88 (0.61–0.97), and 0.66 (0.62–0.70), respectively. Comparison of the two techniques revealed DWI had higher sensitivity and AUC, but no difference in specificity. DWI exhibited higher sensitivity but lower specificity than MDCT, and 18F-FDG PET/CT had lower sensitivity and equivalent specificity. Overall, DWI performed better than 18F-FDG PET/CT for preoperative N-staging in GC. When the efficacy of MDCT was taken as a reference, DWI represented a complementary imaging technique, while 18F-FDG PET/CT had limited utility for preoperative N-staging. PMID:29137440

  19. SU-F-R-13: Decoding 18F-FDG Uptake Heterogeneity for Primary and Lymphoma Tumors by Using Texture Analysis in PET Images

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    Purpose: To explore 18F-FDG uptake heterogeneity of primary tumor and lymphoma tumor by texture features of PET image and quantify the heterogeneity difference between primary tumor and lymphoma tumor. Methods: 18 patients with primary tumor and lymphoma tumor in lung cancer were enrolled. All patients underwent whole-body 18F-FDG PET/CT scans before treatment. Texture features, based on Gray-level Co-occurrence Matrix, second and high order matrices are extracted from code using MATLAB software to quantify 18F-FDG uptake heterogeneity. The relationships of volume between energy, entropy, correlation, homogeneity and contrast were analyzed. Results: For different cases, tumor heterogeneity was not the same. Texturemore » parameters (contrast, entropy, and correlation) of lymphoma were lower than primary tumor. On the contrast, the texture parameters (energy, homogeneity and inverse different moment) of lymphoma were higher than primary tumor. Significantly, correlations were observed between volume and energy (primary, r=−0.194, p=0.441; lymphoma, r=−0.339, p=0.582), homogeneity (primary, r=−0.146, p=0.382; lymphoma, r=−0.193, p=0.44), inverse difference moment (primary, r=−0.14, p=0.374; lymphoma, r=−0.172, p=0.414) and a positive correlation between volume and entropy (primary, r=0.233, p=0.483; lymphoma, r=0.462, p=0.680), contrast (primary, r=0.159, p=0.399; lymphoma, r=0.341, p=0.584), correlation (primary, r=0.027, p=0.165; lymphoma, r=0.046, p=0.215). For the same patient, energy for primary and lymphoma tumor is equal. The volume of lymphoma is smaller than primary tumor, but the homogeneity were higher than primary tumor. Conclusion: This study showed that there were effective heterogeneity differences between primary and lymphoma tumor by FDG-PET image texture analysis.« less

  20. Impact of Endoscopic Ultrasonography on 18F-FDG-PET/CT Upfront Towards Patient Specific Esophageal Cancer Treatment.

    PubMed

    Hulshoff, J B; Mul, V E M; de Boer, H E M; Noordzij, W; Korteweg, T; van Dullemen, H M; Nagengast, W B; Oppedijk, V; Pierie, J P E N; Plukker, John Th M

    2017-07-01

    In patients with potentially resectable esophageal cancer (EC), the value of endoscopic ultrasonography (EUS) after fluorine-18 labeled fluorodeoxyglucose positron emission tomography with computed tomography ( 18 F-FDG-PET/CT) is questionable. Retrospectively, we assessed the impact of EUS after PET/CT on the given treatment in EC patients. During the period 2009-2015, 318 EC patients were staged as T1-4aN0-3M0 with hybrid 18 F-FDG-PET/CT or 18 F-FDG-PET with CT and EUS if applicable in a nonspecific order. We determined the impact of EUS on the given treatment in 279 patients who also were staged with EUS. EUS had clinical consequences if it changed curability, extent of radiation fields or lymph node resection (AJCC stations 2-5), and when the performed fine-needle aspiration (FNA) provided conclusive information of suspicious lymph node. EUS had an impact in 80 (28.7%) patients; it changed the radiation field in 63 (22.6%), curability in 5 (1.8%), lymphadenectomy in 48 (17.2%), and FNA was additional in 21 (7.5%). In patients treated with nCRT (n = 194), EUS influenced treatment in 53 (27.3%) patients; in 38 (19.6%) the radiation field changed, in 3 (1.5%) the curability, in 35 (18.0%) the lymphadenectomy, and in 17 (8.8%) FNA was additional. EUS influenced both the extent of radiation field and nodal resection in 31 (16.0%) nCRT patients. EUS had an impact on the given treatment in approximately 29%. In most patients, the magnitude of EUS found expression in the extent of radiotherapy target volume delineation to upper/high mediastinal lymph nodes.

  1. A comparison of image contrast with 64Cu-labeled long circulating liposomes and 18F-FDG in a murine model of mammary carcinoma

    PubMed Central

    Wong, Andrew W; Ormsby, Eleanor; Zhang, Hua; Seo, Jai Woong; Mahakian, Lisa M; Caskey, Charles F; Ferrara, Katherine W

    2013-01-01

    Conjugation of the 64Cu PET radioisotope (t1/2 = 12.7 hours) to long circulating liposomes enables long term liposome tracking. To evaluate the potential clinical utility of this radiotracer in diagnosis and therapeutic guidance, we compare image contrast, tumor volume, and biodistribution of 64Cu-liposomes to metrics obtained with the dominant clinical tracer, 18F-FDG. Twenty four female FVB mice with MET1 mammary carcinoma tumor grafts were examined. First, serial PET images were obtained with the 18F-FDG radiotracer at 0.5 hours after injection and with the 64Cu-liposome radiotracer at 6, 18, 24, and 48 hours after injection (n = 8). Next, paired imaging and histology were obtained at four time points: 0.5 hours after 18F-FDG injection and 6, 24, and 48 hours after 64Cu-liposome injection (n = 16). Tissue biodistribution was assessed with gamma counting following necropsy and tumors were paraffin embedded, sectioned, and stained with hematoxylin and eosin. The contrast ratio of images obtained using 18F-FDG was 0.88 ± 0.01 (0.5 hours after injection), whereas with the 64Cu-liposome radiotracer the contrast ratio was 0.78 ± 0.01, 0.89 ± 0.01, 0.88 ± 0.01, and 0.94 ± 0.01 at 6, 18, 24, and 48 hours, respectively. Estimates of tumor diameter were comparable between 64Cu-liposomes and 18F-FDG, 64Cu-liposomes and necropsy, and 64Cu-liposomes and ultrasound with Pearson’s r-squared values of 0.79, 0.79, and 0.80, respectively. Heterogeneity of tumor tracer uptake was observed with both tracers, correlating with regions of necrosis on histology. The average tumor volume of 0.41 ± 0.05 cc measured with 64Cu-liposomes was larger than that estimated with 18F-FDG (0.28 ± 0.04 cc), with this difference apparently resulting primarily from accumulation of the radiolabeled particles in the pro-angiogenic tumor rim. The imaging of radiolabeled nanoparticles can facilitate tumor detection, identification of tumor margins, therapeutic evaluation and interventional

  2. Evaluation of treatment response and resistance in metastatic renal cell cancer (mRCC) using integrated 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI); The REMAP study.

    PubMed

    Kelly-Morland, Christian; Rudman, Sarah; Nathan, Paul; Mallett, Susan; Montana, Giovanni; Cook, Gary; Goh, Vicky

    2017-06-02

    Tyrosine kinase inhibitors are the first line standard of care for treatment of metastatic renal cell carcinoma (RCC). Accurate response assessment in the setting of antiangiogenic therapies remains suboptimal as standard size-related response criteria do not necessarily accurately reflect clinical benefit, as they may be less pronounced or occur later in therapy than devascularisation. The challenge for imaging is providing timely assessment of disease status allowing therapies to be tailored to ensure ongoing clinical benefit. We propose that combined assessment of morphological, physiological and metabolic imaging parameters using 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ( 18 F-FDG PET/MRI) will better reflect disease behaviour, improving assessment of response/non-response/relapse. The REMAP study is a single-centre prospective observational study. Eligible patients with metastatic renal cell carcinoma, planned for systemic therapy, with at least 2 lesions will undergo an integrated 18 F-FDG PET and MRI whole body imaging with diffusion weighted and contrast-enhanced multiphasic as well as standard anatomical MRI sequences at baseline, 12 weeks and 24 weeks of systemic therapy allowing 18 F-FDG standardised uptake value (SUV), apparent diffusion co-efficient (ADC) and normalised signal intensity (SI) parameters to be obtained. Standard of care contrast-enhanced computed tomography CT scans will be performed at equivalent time-points. CT response categorisation will be performed using RECIST 1.1 and alternative (modified)Choi and MASS criteria. The reference standard for disease status will be by consensus panel taking into account clinical, biochemical and conventional imaging parameters. Intra- and inter-tumoural heterogeneity in vascular, diffusion and metabolic response/non-response will be assessed by image texture analysis. Imaging will also inform the development of computational methods for automated disease status

  3. [18F]FDG PET/CT-based response assessment of stage IV non-small cell lung cancer treated with paclitaxel-carboplatin-bevacizumab with or without nitroglycerin patches.

    PubMed

    de Jong, Evelyn E C; van Elmpt, Wouter; Leijenaar, Ralph T H; Hoekstra, Otto S; Groen, Harry J M; Smit, Egbert F; Boellaard, Ronald; van der Noort, Vincent; Troost, Esther G C; Lambin, Philippe; Dingemans, Anne-Marie C

    2017-01-01

    Nitroglycerin (NTG) is a vasodilating drug, which increases tumor blood flow and consequently decreases hypoxia. Therefore, changes in [18F] fluorodeoxyglucose positron emission tomography ([18F]FDG PET) uptake pattern may occur. In this analysis, we investigated the feasibility of [18F]FDG PET for response assessment to paclitaxel-carboplatin-bevacizumab (PCB) treatment with and without NTG patches. And we compared the [18F]FDG PET response assessment to RECIST response assessment and survival. A total of 223 stage IV non-small cell lung cancer (NSCLC) patients were included in a phase II study (NCT01171170) randomizing between PCB treatment with or without NTG patches. For 60 participating patients, a baseline and a second [18F]FDG PET/computed tomography (CT) scan, performed between day 22 and 24 after the start of treatment, were available. Tumor response was defined as a 30 % decrease in CT and PET parameters, and was compared to RECIST response at week 6. The predictive value of these assessments for progression free survival (PFS) and overall survival (OS) was assessed with and without NTG. A 30 % decrease in SUVpeak assessment identified more patients as responders compared to a 30 % decrease in CT diameter assessment (73 % vs. 18 %), however, this was not correlated to OS (SUVpeak30 p = 0.833; CTdiameter30 p = 0.557). Changes in PET parameters between the baseline and the second scan were not significantly different for the NTG group compared to the control group (p value range 0.159-0.634). The CT-based (part of the [18F]FDG PET/CT) parameters showed a significant difference between the baseline and the second scan for the NTG group compared to the control group (CT diameter decrease of 7 ± 23 % vs. 19 ± 14 %, p = 0.016, respectively). The decrease in tumoral FDG uptake in advanced NSCLC patients treated with chemotherapy with and without NTG did not differ between both treatment arms. Early PET-based response assessment

  4. The Effect of Patient Age on Standardized, Uptake Value-Hounsfield Unit Values of Male Genitourinery Structures In F-18 FDG PET/CT

    PubMed Central

    Çavuşoğlu, Berrin; Durak, Hatice

    2011-01-01

    Objective: Relation between patient age and Hounsfield Unit (HU),which is the linear attenuation coefficient, and Standardized Uptake Values (SUV) which is the amount of 18F-fluorodeoxyglucose (F-18 FDG) uptake, measured in the areas of interest drawn to prostate, seminal vesicles and testicles in F-18 FDG Positron Emission Tomography/Computed Tomography (PET/CT) images was investigated. Material and Methods: Mean and maximum SUV and HU values were recorded from the areas of interest (min 12 mm in diameter) which showed FDG uptake in prostate, seminal vesicles and testicles from F-18 FDG PET-CT images of 21 male patients under 40 years without genitourinary cancer. The effect of patient age to SUV and HU values was examined with Pearson correlation test using SPSS program. Results: There was a negative insignificant correlation between patient age and SUV and HU values for prostate. For seminal vesicles, correlation between patient age and SUV values and HUmax were positive but insignificant, while correlation with HUmean was significant (r=0.459, p=0.00). Correlation between patient age and SUVmax and SUVmean values were significant for testicles (r=0.506, p=0.002 and r=0.467, p=0.005, respectively) but the correlation between patient age and HUmax and HUmean values was not significant. Conclusion: F-18 FDG uptake in testicles in males increases with age until 40, suggesting an increase in metabolic rate. The significant correlation between age and mean HU values is probably caused by thickening of the tissue without an increase in glucose metabolism in seminal vesicles. In prostate, the effect of patient age to SUV and HU values was not observed until the age 40. Conflict of interest:None declared. PMID:23486855

  5. Comparative uptake of ¹⁸F-FEN-DPAZn2, ¹⁸F-FECH, ¹⁸F-fluoride, and ¹⁸F-FDG in fibrosarcoma and aseptic inflammation.

    PubMed

    Liang, Xiang; Tang, Ganghua; Wang, Hongliang; Hu, Kongzhen; Tang, Xiaolan; Nie, Dahong; Sun, Ting; Huang, Tingting

    2014-08-01

    The aim of this study is to evaluate uptake of 2-(18)F-fluoroethyl-bis(zinc(II)-dipicolylamine) ((18)F-FEN-DPAZn2) as a promising cell death imaging agent, a choline analog (18)F-fluoroethylcholine ((18)F-FECH), (18)F-fluoride as a bone imaging agent, and a glucose analog 2-(18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG) in the combined S180 fibrosarcoma and turpentine-induced inflammation mice models. The results showed that (18)F-FDG had the highest tumor-to-blood uptake ratio and tumor-to-muscle ratio, and high inflammation-to-blood ratio and inflammation-to-muscle ratio. (18)F -FECH showed moderate tumor-to-blood ratio and tumor-to-muscle ratio, and low inflammation-to-blood ratio and inflammation-to-muscle ratio. However, accumulation of (18)F FEN-DPAZn2 in tumor was similar to that in normal muscle. Also, (18)F-FEN-DPAZn2 and (18)F-fluoride exhibited the best selectivity to inflammation. (18)F-FECH positron emission tomography (PET) imaging demonstrates some advantages over (18)F-FDG PET for the differentiation of tumor from inflammation. (18)F FEN-DPAZn2 and (18)F-fluoride can be used for PET imaging of aseptic inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Is (18)F-FDG a surrogate tracer to measure tumor hypoxia? Comparison with the hypoxic tracer (14)C-EF3 in animal tumor models.

    PubMed

    Christian, Nicolas; Deheneffe, Stéphanie; Bol, Anne; De Bast, Marc; Labar, Daniel; Lee, John A; Grégoire, Vincent

    2010-11-01

    Fluorodeoxyglucose (FDG) has been reported as a surrogate tracer to measure tumor hypoxia with positron emission tomography (PET). The hypothesis is that there is an increased uptake of FDG under hypoxic conditions secondary to enhanced glycolysis, compensating the hypoxia-induced loss of cellular energy production. Several studies have already addressed this issue, some with conflicting results. This study aimed to compare the tracers (14)C-EF3 and (18)F-FDG to detect hypoxia in mouse tumor models. C3H, tumor-bearing mice (FSAII and SCCVII tumors) were injected iv with (14)C-EF3, and 1h later with (18)F-FDG. Using a specifically designed immobilization device with fiducial markers, PET (Mosaic®, Philips) images were acquired 1h after the FDG injection. After imaging, the device containing mouse was frozen, transversally sliced and imaged with autoradiography (AR) (FLA-5100, Fujifilm) to obtain high resolution images of the (18)F-FDG distribution within the tumor area. After a 48-h delay allowing for (18)F decay a second AR was performed to image (14)C-EF3 distribution. AR images were aligned to reconstruct the full 3D tumor volume, and were compared with the PET images. Image segmentation with threshold-based methods was applied on both AR and PET images to derive various tracer activity volumes. The matching index DSI (dice similarity index) was then computed. The comparison was performed under normoxic (ambient air, FSAII: n=4, SCCVII, n=5) and under hypoxic conditions (10% O(2) breathing, SCCVII: n=4). On AR, under both ambient air and hypoxic conditions, there was a decreasing similarity between (14)C-EF3 and FDG with higher activity sub-volumes. Under normoxic conditions, when comparing the 10% of tumor voxels with the highest (18)F-FDG or (14)C-EF3 activity, a DSI of 0.24 and 0.20 was found for FSAII and SCCVII, respectively. Under hypoxic conditions, a DSI of 0.36 was observed for SCCVII tumors. When comparing the (14)C-EF3 distribution in AR with the

  7. The Incremental Value of Subjective and Quantitative Assessment of 18F-FDG PET for the Prediction of Pathologic Complete Response to Preoperative Chemoradiotherapy in Esophageal Cancer.

    PubMed

    van Rossum, Peter S N; Fried, David V; Zhang, Lifei; Hofstetter, Wayne L; van Vulpen, Marco; Meijer, Gert J; Court, Laurence E; Lin, Steven H

    2016-05-01

    A reliable prediction of a pathologic complete response (pathCR) to chemoradiotherapy before surgery for esophageal cancer would enable investigators to study the feasibility and outcome of an organ-preserving strategy after chemoradiotherapy. So far no clinical parameters or diagnostic studies are able to accurately predict which patients will achieve a pathCR. The aim of this study was to determine whether subjective and quantitative assessment of baseline and postchemoradiation (18)F-FDG PET can improve the accuracy of predicting pathCR to preoperative chemoradiotherapy in esophageal cancer beyond clinical predictors. This retrospective study was approved by the institutional review board, and the need for written informed consent was waived. Clinical parameters along with subjective and quantitative parameters from baseline and postchemoradiation (18)F-FDG PET were derived from 217 esophageal adenocarcinoma patients who underwent chemoradiotherapy followed by surgery. The associations between these parameters and pathCR were studied in univariable and multivariable logistic regression analysis. Four prediction models were constructed and internally validated using bootstrapping to study the incremental predictive values of subjective assessment of (18)F-FDG PET, conventional quantitative metabolic features, and comprehensive (18)F-FDG PET texture/geometry features, respectively. The clinical benefit of (18)F-FDG PET was determined using decision-curve analysis. A pathCR was found in 59 (27%) patients. A clinical prediction model (corrected c-index, 0.67) was improved by adding (18)F-FDG PET-based subjective assessment of response (corrected c-index, 0.72). This latter model was slightly improved by the addition of 1 conventional quantitative metabolic feature only (i.e., postchemoradiation total lesion glycolysis; corrected c-index, 0.73), and even more by subsequently adding 4 comprehensive (18)F-FDG PET texture/geometry features (corrected c-index, 0

  8. SU-D-201-03: Imaging Cellular Pharmacokinetics of 18F-FDG in Inflammatory/Stem Cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaman, R; Tuerkcan, S; Mahmoudi, M

    Purpose: Atherosclerosis is a progressive inflammatory condition that underlies coronary artery disease (CAD)—the leading cause of death in the USA. Thus, understating the metabolism of inflammatory cells can be a valuable tool for investigating CAD. To the best of our knowledge, we are the first to successfully investigate the pharmacokinetics of [18F]fluoro-deoxyglucose (18F-FDG) uptake in a single macrophages and compared with induced pluripotent stem cells (iPSCs) and mesenchymal stem cells (MSCs) with a novel imaging technique, radioluminescence microscopy, initially developed for cancer imaging. Methods: Live cells were cultured sparsely on Matrigel in a glass-bottom dish and starved for 1 hourmore » before incubation with 250 microCi of 18F-FDG for 45 minutes. Excess radiotracer was removed using DMEM medium without glucose. Before imaging, DMEM (1 mL) was added to the cell culture and a 100 microm-thin CdWO4 scintillator plate was placed on top of the cells. Light produced following beta decay was imaged with a highly sensitive inverted microscope (LV200, Olympus) fitted with a 40x/1.3 high-NA oil objective, and an EM-CCD camera. The images were collected over 18,000 frames with 4×4 binning (1200 MHz EM Gain, 300ms exposure). Custom-written software was developed in MATLAB for image processing (Figure 1). For statistical analysis 10 different region-of-interests (ROIs) were selected for each cell type. Results: Figures 2A–2B show bright-field/fusion images for all three different cell types. The relationship between cell-to-cell comparisons was found to be linear for macrophages unlike iPSCs and MSCs, which were best fitted with moving or rolling average (Figure 2C). The average observed decay of 18F-FDG in a single cell of MSCs per second (0.067) was 20% and 36% higher compared to iPSCs (0.054) and macrophages (0.043), respectively (Figure 2D). Conclusion: MSCs was found to be 2–3x more sensitive to glucose molecule despite constant parameters for

  9. Comparison of Positron Emission Tomography Using 2-[18F]-fluoro-2-deoxy-D-glucose and 3-deoxy-3-[18F]-fluorothymidine in Lung Cancer Imaging

    PubMed Central

    Wang, Fu-Li; Tan, Ye-Ying; Gu, Xiang-Min; Li, Tian-Ran; Lu, Guang-Ming; Liu, Gang; Huo, Tian-Long

    2016-01-01

    Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[18F]-fluorothymidine (18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the 18F-FDG was greater than the ratio using 18F-FLT (P < 0.05). The Ki-67 expression showed a significant positive correlation with the 18F-FLT binding ratio (r = 0.824, P < 0.01). The tumor-to-nontumor uptake ratio of 18F-FDG imaging in xenografts was higher than that of 18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of 18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of 18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of 18F-FDG and 18F-FLT (r = 0.658, P < 0.05 and r = 0.724, P < 0.01, respectively). Conclusions: The 18F-FDG uptake ratio is higher than that of 18F-FLT in A549 cells at the cellular level. 18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor

  10. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT.

    PubMed

    Büsing, Karen A; Schönberg, Stefan O; Brade, Joachim; Wasser, Klaus

    2013-02-01

    Chronically altered glucose metabolism interferes with (18)F-FDG uptake in malignant tissue and healthy organs and may therefore lower tumor detection in (18)F-FDG PET/CT. The present study assesses the impact of elevated blood glucose levels (BGL), diabetes, insulin treatment, and obesity on (18)F-FDG uptake in tumors and biodistribution in normal organ tissues. (18)F-FDG PET/CT was analyzed in 90 patients with BGL ranging from 50 to 372 mg/dl. Of those, 29 patients were diabetic and 21 patients had received insulin prior to PET/CT; 28 patients were obese with a body mass index >25. The maximum standardized uptake value (SUV(max)) of normal organs and the main tumor site was measured. Differences in SUV(max) in patients with and without elevated BGLs, diabetes, insulin treatment, and obesity were compared and analyzed for statistical significance. Increased BGLs were associated with decreased cerebral FDG uptake and increased uptake in skeletal muscle. Diabetes and insulin diminished this effect, whereas obesity slightly enhanced the outcome. Diabetes and insulin also increased the average SUV(max) in muscle cells and fat, whereas the mean cerebral SUV(max) was reduced. Obesity decreased tracer uptake in several healthy organs by up to 30%. Tumoral uptake was not significantly influenced by BGL, diabetes, insulin, or obesity. Changes in BGLs, diabetes, insulin, and obesity affect the FDG biodistribution in muscular tissue and the brain. Although tumoral uptake is not significantly impaired, these findings may influence the tumor detection rate and are therefore essential for diagnosis and follow-up of malignant diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Comparison of 18F-FDG PET/CT and PET/MRI in patients with multiple myeloma

    PubMed Central

    Sachpekidis, Christos; Hillengass, Jens; Goldschmidt, Hartmut; Mosebach, Jennifer; Pan, Leyun; Schlemmer, Heinz-Peter; Haberkorn, Uwe; Dimitrakopoulou-Strauss, Antonia

    2015-01-01

    PET/MRI represents a promising hybrid imaging modality with several potential clinical applications. Although PET/MRI seems highly attractive in the diagnostic approach of multiple myeloma (MM), its role has not yet been evaluated. The aims of this prospective study are to evaluate the feasibility of 18F-FDG PET/MRI in detection of MM lesions, and to investigate the reproducibility of bone marrow lesions detection and quantitative data of 18F-FDG uptake between the functional (PET) component of PET/CT and PET/MRI in MM patients. The study includes 30 MM patients. All patients initially underwent 18F-FDG PET/CT (60 min p.i.), followed by PET/MRI (120 min p.i.). PET/CT and PET/MRI data were assessed and compared based on qualitative (lesion detection) and quantitative (SUV) evaluation. The hybrid PET/MRI system provided good image quality in all cases without artefacts. PET/MRI identified 65 of the 69 lesions, which were detectable with PET/CT (94.2%). Quantitative PET evaluations showed the following mean values in MM lesions: SUVaverage=5.5 and SUVmax=7.9 for PET/CT; SUVaverage=3.9 and SUVmax=5.8 for PET/MRI. Both SUVaverage and SUVmax were significantly higher on PET/CT than on PET/MRI. Spearman correlation analysis demonstrated a strong correlation between both lesional SUVaverage (r=0.744) and lesional SUVmax (r=0.855) values derived from PET/CT and PET/MRI. Regarding detection of myeloma skeletal lesions, PET/MRI exhibited equivalent performance to PET/CT. In terms of tracer uptake quantitation, a significant correlation between the two techniques was demonstrated, despite the statistically significant differences in lesional SUVs between PET/CT and PET/MRI. PMID:26550538

  12. Fronto-limbic dysfunction in borderline personality disorder: a 18F-FDG positron emission tomography study.

    PubMed

    Salavert, José; Gasol, Miquel; Vieta, Eduard; Cervantes, Ana; Trampal, Carlos; Gispert, Juan Domingo

    2011-06-01

    Several functional neuroimaging studies have demonstrated abnormalities in fronto-limbic pathways when comparing borderline personality disorder (BPD) patients with controls. The present study aimed to evaluate regional cerebral metabolism in euthymic BPD patients with similar measured impulsivity levels by means of 18F-FDG PET during resting state and to compare them against a control group. The present study evaluates regional cerebral metabolism in 8 euthymic BPD patients with 18F-FDG PET during resting state as compared to 8 controls with similar socio-geographic characteristics. BPD patients presented a marked hypo-metabolism in frontal lobe and showed hyper-metabolism in motor cortex (paracentral lobules and post-central cortex), medial and anterior cingulus, occipital lobe, temporal pole, left superior parietal gyrus and right superior frontal gyrus. No significant differences appeared in basal ganglia or thalamus. Results reveal a dysfunction in patients' frontolimbic network during rest and provide further evidence for the importance of these regions in relation to BPD symptomatology. Copyright © 2011 Elsevier B.V. All rights reserved.

  13. Extranodal manifestations of lymphoma on [18F]FDG-PET/CT: a pictorial essay

    PubMed Central

    Kashyap, Raghava; Manohar, Kuruva; Harisankar, Chidambaram Natrajan Balasubramanian; Bhattacharya, Anish; Singh, Baljinder; Malhotra, Pankaj; Varma, Subhash

    2011-01-01

    Abstract Lymphoma is the seventh most common type of malignancy in both sexes. It is a neoplastic proliferation of lymphoid cells at various stages of differentiation and affects lymph nodes with infiltration into the bone marrow, spleen and thymus. However, extra nodal involvement is frequently seen in many cases. With the development of dedicated positron emission tomography (PET) scanners with fused computed tomographic (CT) systems in the same gantry, [18F]fluorodeoxyglucose (FDG)-PET/CT has become a major tool in the evaluation of lymphomas and it is inimitable in certain situations such as assessment of response to therapy. Extranodal lymphoma can present with diverse manifestations and sometimes mimics other organ-related pathologies. Knowledge of the protean manifestations of extranodal lymphoma is required to accurately detect the disease and differentiate it from the various physiologic and benign causes of FDG uptake in various organs. We present a case series of extranodal involvement of histologically proven cases of lymphomas detected on FDG-PET/CT at our institute to demonstrate the challenges in interpretation of extranodal lymphoma. PMID:22123338

  14. The value of [11C]-acetate PET and [18F]-FDG PET in hepatocellular carcinoma before and after treatment with transarterial chemoembolization and bevacizumab.

    PubMed

    Li, Shuren; Peck-Radosavljevic, Markus; Ubl, Philipp; Wadsak, Wolfgang; Mitterhauser, Markus; Rainer, Eva; Pinter, Matthias; Wang, Hao; Nanoff, Christian; Kaczirek, Klaus; Haug, Alexander; Hacker, Marcus

    2017-09-01

    This prospective study was to investigate the value of [ 11 C]-acetate PET and [ 18 F]-FDG PET in the evaluation of hepatocellular carcinoma (HCC) before and after treatment with transarterial chemoembolization (TACE) and vascular endothelial growth factor (VEGF) antibody (bevacizumab). Twenty-two patients (three women, 19 men; 62 ± 8 years) with HCC verified by histopathology were treated with TACE and bevacizumab (n = 11) or placebo (n = 11). [ 11 C]-acetate PET and [ 18 F]-FDG PET were performed before and after TACE with bevacizumab or placebo. Comparisons between groups were performed with t-tests and Chi-squared tests, where appropriate. Overall survival (OS) was defined as the time from start of bevacizumab or placebo until the date of death/last follow-up, respectively. The patient-related sensitivity of [ 11 C]-acetate PET, [ 18 F]-FDG PET, and combined [ 11 C]-acetate and [ 18 F]-FDG PET was 68%, 45%, and 73%, respectively. There was a significantly higher rate of conversion from [ 11 C]-acetate positive lesions to negative lesions in patients treated with TACE and bevacizumab as compared with that in patients with TACE and placebo (p < 0.05). In patients with negative acetate PET, the mean OS in patients treated with TACE and bevacizumab was 259 ± 118 days and was markedly shorter as compared with that (668 ± 217 days) in patients treated with TACE and placebo (p < 0.05). In patients treated with TACE and placebo, there was significant difference in mean OS in patients with positive FDG PET as compared with that in patients with negative FDG PET (p < 0.05). The HCC lesions had different tracer avidities showing the heterogeneity of HCC. Our study suggests that combining [ 18 F]-FDG with [ 11 C]-acetate PET could be useful for the management of HCC patients and might also provide relevant prognostic and molecular heterogeneity information.

  15. Predicting Response to Neoadjuvant Chemoradiotherapy in Esophageal Cancer with Textural Features Derived from Pretreatment 18F-FDG PET/CT Imaging.

    PubMed

    Beukinga, Roelof J; Hulshoff, Jan B; van Dijk, Lisanne V; Muijs, Christina T; Burgerhof, Johannes G M; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Slump, Cornelis H; Mul, Véronique E M; Plukker, John Th M

    2017-05-01

    Adequate prediction of tumor response to neoadjuvant chemoradiotherapy (nCRT) in esophageal cancer (EC) patients is important in a more personalized treatment. The current best clinical method to predict pathologic complete response is SUV max in 18 F-FDG PET/CT imaging. To improve the prediction of response, we constructed a model to predict complete response to nCRT in EC based on pretreatment clinical parameters and 18 F-FDG PET/CT-derived textural features. Methods: From a prospectively maintained single-institution database, we reviewed 97 consecutive patients with locally advanced EC and a pretreatment 18 F-FDG PET/CT scan between 2009 and 2015. All patients were treated with nCRT (carboplatin/paclitaxel/41.4 Gy) followed by esophagectomy. We analyzed clinical, geometric, and pretreatment textural features extracted from both 18 F-FDG PET and CT. The current most accurate prediction model with SUV max as a predictor variable was compared with 6 different response prediction models constructed using least absolute shrinkage and selection operator regularized logistic regression. Internal validation was performed to estimate the model's performances. Pathologic response was defined as complete versus incomplete response (Mandard tumor regression grade system 1 vs. 2-5). Results: Pathologic examination revealed 19 (19.6%) complete and 78 (80.4%) incomplete responders. Least absolute shrinkage and selection operator regularization selected the clinical parameters: histologic type and clinical T stage, the 18 F-FDG PET-derived textural feature long run low gray level emphasis, and the CT-derived textural feature run percentage. Introducing these variables to a logistic regression analysis showed areas under the receiver-operating-characteristic curve (AUCs) of 0.78 compared with 0.58 in the SUV max model. The discrimination slopes were 0.17 compared with 0.01, respectively. After internal validation, the AUCs decreased to 0.74 and 0.54, respectively. Conclusion

  16. F-18 FDG PET/CT findings of a case of sacral nerve root neurolymphomatosis that occurred during chemotherapy.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Matsunaga, Naofumi; Yujiri, Toshiaki; Nakazora, Tatsuki; Ariyoshi, Kouichi

    2011-01-01

    Neurolymphomatosis (NL) is a rare, unique subtype of lymphomatous infiltration of peripheral nerves. Clinical/radiologic diagnosis of NL is challenging. We report F-18 FDG PET/CT findings of a case of breast diffuse large B-cell lymphoma, in which NL developed regardless of regression of systemic lesions during induction chemotherapy. FDG PET/CT showed characteristic findings of well-demarcated, linear abnormal FDG uptake along a sacral vertebral foramen, leading to diagnosis of NL, with the finding of thickened nerve roots on magnetic resonance imaging. Altered chemotherapeutic regimen resulted in disappearance of these abnormal FDG uptake, with recovery of neurologic symptoms. Peripheral nerve NL may occur during chemotherapy, and FDG PET/CT can be a useful imaging modality in diagnosis and monitoring of therapeutic response of this disease.

  17. Robustness of Radiomic Features in [11C]Choline and [18F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of Segmentation and Discretization.

    PubMed

    Lu, Lijun; Lv, Wenbing; Jiang, Jun; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2016-12-01

    Radiomic features are increasingly utilized to evaluate tumor heterogeneity in PET imaging and to enable enhanced prediction of therapy response and outcome. An important ingredient to success in translation of radiomic features to clinical reality is to quantify and ascertain their robustness. In the present work, we studied the impact of segmentation and discretization on 88 radiomic features in 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and [ 11 C]methyl-choline ([ 11 C]choline) positron emission tomography/X-ray computed tomography (PET/CT) imaging of nasopharyngeal carcinoma. Forty patients underwent [ 18 F]FDG PET/CT scans. Of these, nine patients were imaged on a different day utilizing [ 11 C]choline PET/CT. Tumors were delineated using reference manual segmentation by the consensus of three expert physicians, using 41, 50, and 70 % maximum standardized uptake value (SUV max ) threshold with background correction, Nestle's method, and watershed and region growing methods, and then discretized with fixed bin size (0.05, 0.1, 0.2, 0.5, and 1) in units of SUV. A total of 88 features, including 21 first-order intensity features, 10 shape features, and 57 second- and higher-order textural features, were extracted from the tumors. The robustness of the features was evaluated via the intraclass correlation coefficient (ICC) for seven kinds of segmentation methods (involving all 88 features) and five kinds of discretization bin size (involving the 57 second- and higher-order features). Forty-four (50 %) and 55 (63 %) features depicted ICC ≥0.8 with respect to segmentation as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Thirteen (23 %) and 12 (21 %) features showed ICC ≥0.8 with respect to discretization as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Six features were obtained from both [ 18 F]FDG and [ 11 C]choline having ICC ≥0.8 for both segmentation and discretization, five of which were gray-level co-occurrence matrix

  18. Role of 18F-FDG PET/CT in the Carcinoma of the Uterus: A Review of Literature

    PubMed Central

    Musto, Alessandra; Grassetto, Gaia; Marzola, Maria Cristina; Chondrogiannis, Sotirios; Maffione, Anna Margherita; Rampin, Lucia; Fuster, David; Giammarile, Francesco; Colletti, Patrick M.

    2014-01-01

    In the present review we reported the value of 18F-fluorodeoxyglucose (FDG) PET/CT in face of uterine cancer, in terms of sensitivity, specificity and accuracy. Moreover, we made a comparison with the other imaging techniques currently used to evacuate these tumors including contrast-enhanced CT, contrast enhanced-MRI and transvaginal ultrasonography. FDG PET/CT has been reported to be of particular value in detecting occult metastatic lesions, in prediction of response to treatment and as a pro-gnostic factor. PMID:25323881

  19. Silastic injection for vocal fold medialization resulting in a false-positive finding on F18 FDG-PET/CT.

    PubMed

    Mahfouz, Ayman; Naji, Meeran; Mok, Wing Yan; Taghi, Ali S; Win, Zarni

    2015-09-01

    A false-positive uptake of F18-fluorodeoxyglucose (FDG) on positron-emission tomography/computed tomography (PET/CT) can result in confusion and misinterpretation of scans. Such uptakes have been previously described after injection of polytetrafluoroethylene (Teflon) into the vocal folds. Similarly, vocal fold injection of silicone elastomer (Silastic) can result not only in a false-positive FDG uptake on PET/CT, but also in chronic inflammation. We report a case of increased FDG uptake in a vocal fold after Silastic injection that was misinterpreted as a malignancy in a 70-year-old woman who had metastatic carcinoma of the stomach.

  20. Extramedullary Solitary Plasmacytoma: Demonstrating the Role of 18F-FDG PET Imaging.

    PubMed

    Gautam, Archana; Sahu, Kamal Kant; Alamgir, Ahsan; Siddiqi, Imran; Ailawadhi, Sikander

    2017-04-01

    An Extramedullary Plasmacytoma (EMP) is characterized by a neoplastic proliferation of clonal plasma cells outside the medullary cavity. EMPs are a rare occurrence compared to other malignant plasma cell disorders and account for approximately 3-5% of plasma-cell neoplasms. Although most cases of EMP are not immediately life threatening at diagnosis, EMPs can progress to Multiple Myeloma (MM) and thus, warrant monitoring. Currently, there are no standard guidelines for when and how to monitor patients who are diagnosed with or treated for a solitary plasmacytoma. We present a case of solitary EMP who was treated adequately and definitively but developed a distinct, non-contiguous subsequent solitary EMP and was only discovered due to surveillance 18 F-Fludeoxyglucose Positron Emission Tomography ( 18 F-FDG) (PET) scan. Uniform surveillance guidelines should be developed and the potential benefits of PET and other imaging techniques as well as their cost should be considered.

  1. Fat-constrained 18F-FDG PET reconstruction using Dixon MR imaging and the origin ensemble algorithm

    NASA Astrophysics Data System (ADS)

    Wülker, Christian; Heinzer, Susanne; Börnert, Peter; Renisch, Steffen; Prevrhal, Sven

    2015-03-01

    Combined PET/MR imaging allows to incorporate the high-resolution anatomical information delivered by MRI into the PET reconstruction algorithm for improvement of PET accuracy beyond standard corrections. We used the working hypothesis that glucose uptake in adipose tissue is low. Thus, our aim was to shift 18F-FDG PET signal into image regions with a low fat content. Dixon MR imaging can be used to generate fat-only images via the water/fat chemical shift difference. On the other hand, the Origin Ensemble (OE) algorithm, a novel Markov chain Monte Carlo method, allows to reconstruct PET data without the use of forward- and back projection operations. By adequate modifications to the Markov chain transition kernel, it is possible to include anatomical a priori knowledge into the OE algorithm. In this work, we used the OE algorithm to reconstruct PET data of a modified IEC/NEMA Body Phantom simulating body water/fat composition. Reconstruction was performed 1) natively, 2) informed with the Dixon MR fat image to down-weight 18F-FDG signal in fatty tissue compartments in favor of adjacent regions, and 3) informed with the fat image to up-weight 18F-FDG signal in fatty tissue compartments, for control purposes. Image intensity profiles confirmed the visibly improved contrast and reduced partial volume effect at water/fat interfaces. We observed a 17+/-2% increased SNR of hot lesions surrounded by fat, while image quality was almost completely retained in fat-free image regions. An additional in vivo experiment proved the applicability of the presented technique in practice, and again verified the beneficial impact of fat-constrained OE reconstruction on PET image quality.

  2. Metabolic impact of partial volume correction of [18F]FDG PET-CT oncological studies on the assessment of tumor response to treatment.

    PubMed

    Stefano, A; Gallivanone, F; Messa, C; Gilardi, M C; Gastiglioni, I

    2014-12-01

    The aim of this work is to evaluate the metabolic impact of Partial Volume Correction (PVC) on the measurement of the Standard Uptake Value (SUV) from [18F]FDG PET-CT oncological studies for treatment monitoring purpose. Twenty-nine breast cancer patients with bone lesions (42 lesions in total) underwent [18F]FDG PET-CT studies after surgical resection of breast cancer primitives, and before (PET-II) chemotherapy and hormone treatment. PVC of bone lesion uptake was performed on the two [18F]FDG PET-CT studies, using a method based on Recovery Coefficients (RC) and on an automatic measurement of lesion metabolic volume. Body-weight average SUV was calculated for each lesion, with and without PVC. The accuracy, reproducibility, clinical feasibility and the metabolic impact on treatment response of the considered PVC method was evaluated. The PVC method was found clinically feasible in bone lesions, with an accuracy of 93% for lesion sphere-equivalent diameter >1 cm. Applying PVC, average SUV values increased, from 7% up to 154% considering both PET-I and PET-II studies, proving the need of the correction. As main finding, PVC modified the therapy response classification in 6 cases according to EORTC 1999 classification and in 5 cases according to PERCIST 1.0 classification. PVC has an important metabolic impact on the assessment of tumor response to treatment by [18F]FDG PET-CT oncological studies.

  3. A pulmonary metastasis of a cystosarcoma phyllodes of the breast detected by 18F-FDG PET/CT.

    PubMed

    Treglia, Giorgio; Muoio, Barbara; Caldarella, Carmelo; Parapatt, George Koshy

    2014-03-01

    We describe a pulmonary metastasis of a cystosarcoma phyllodes of the breast (CPB) detected by F-FDG PET/CT. A 65-year-old female patient previously operated on for a cystosarcoma phyllodes of the left breast underwent F-FDG PET/CT for restaging. F-FDG PET/CT showed an area of increased F-FDG uptake corresponding to a 2-cm right pulmonary nodule. Histology suggested the presence of a pulmonary metastasis of CPB.

  4. Lymphoma and tuberculosis: temporal evolution of dual pathology on sequential 18F-FDG PET/CT.

    PubMed

    Mukherjee, Anirban; Sharma, Punit; Karunanithi, Sellam; Dhull, Varun Singh; Kumar, Rakesh

    2014-08-01

    Tuberculosis can often be seen in patients undergoing chemotherapy for lymphoma, especially in endemic countries. As both tuberculosis and lymphoma can lead to hypermetabolic lesions of F-FDG PET/CT, a diagnostic dilemma often ensues. We present the sequential F-FDG PET/CT images of a 22-year-old female patient with Hodgkin lymphoma who developed tuberculosis and later relapse of lymphoma. These images present the temporal evaluation of the dual pathology on F-FDG PET/CT.

  5. A rare adult renal neuroblastoma better imaged by 18F-FDG than by 68Ga-dotanoc in the PET/CT scan.

    PubMed

    Jain, Tarun Kumar; Singh, Sharwan Kumar; Sood, Ashwani; Ashwathanarayama, Abhiram Gj; Basher, Rajender Kumar; Shukla, Jaya; Mittal, Bhagwant Rai

    2017-01-01

    Primary renal neuroblastoma is an uncommon tumor in children and extremely rare in adults. We present a case of a middle aged female having a large retroperitoneal mass involving the right kidney with features of neuroblastoma on pre-operative histopathology. Whole-body fluorine-18-fluoro-deoxyglucose positron emission tomography ( 18 F-FDG PET/CT) and 68 Ga-dotanoc PET/CT scans performed for staging and therapeutic potential revealed a tracer avid mass replacing the right kidney and also pelvic lymph nodes. The 18 F-FDG PET/CT scan showed better both the primary lesion and the metastases in the pelvic lymph nodes than the 68 Ga-dotanoc scan supporting diagnosis and treatment planning.

  6. A risk-adapted approach using US features and FNA results in the management of thyroid incidentalomas identified by 18F-FDG PET.

    PubMed

    Choi, J S; Choi, Y- J; Kim, E K; Yoon, J H; Youk, J H; Han, K H; Moon, H J; Kang, W J; Kwak, J Y

    2014-02-01

    To assess the risk of malignancy of thyroid incidentalomas found on 18F-FDG PET/CT by US features and cytologic results, and to evaluate the clinical usage of a combination of US features and cytology for post-FNA management of thyroid incidentalomas on 18F-FDG PET/CT. From September 2006 to December 2008, 132 patients with 134 thyroid incidentalomas detected on 18F-FDG PET/CT who had undergone US and US-FNA were included in this study. We evaluated the malignancy rate of thyroid incidentalomas in different subgroups subdivided by US features and US-FNA cytology results. Several variables were compared between the benign and malignant group. The risk of malignancy was 58.2 % (78/132) in thyroid incidentalomas on 18F-FDG PET/CT. Age, gender, and tumor size were not significantly different between the malignant and benign group.  Malignancy rate of thyroid incidentalomas was significantly higher in the suspicious malignant (88.9 %) than in the probably benign group (11.3 %) on US (p < 0.001). Malignancy rates were high in thyroid nodules with "malignancy", "suspicious for malignancy", or "follicular neoplasm" on cytologic results, regardless of US features. However, malignancy rates of thyroid incidentalomas with "unsatisfactory" or "benign" results on cytology were higher in the suspicious malignant (75 %, 12.5 %, respectively) than in the probably benign (0 %) group on US.  This study demonstrated that the risk of malignancy was high in thyroid incidentalomas on 18F-FDG PET/CT even without suspicious US features. However, there was no malignancy in nodules with no suspicious US features and benign cytology. Based on these results, we concluded that US may not replace FNA in the diagnosis of PET incidentalomas, and that a follow-up may be considered of thyroid incidentalomas with benign cytology and no suspicious US features. © Georg Thieme Verlag KG Stuttgart · New York.

  7. Diagnostic value of using 18F-FDG PET and PET/CT in immunocompetent patients with primary central nervous system lymphoma: A systematic review and meta-analysis.

    PubMed

    Zou, Yaru; Tong, Jianjing; Leng, Haiyan; Jiang, Jingwei; Pan, Meng; Chen, Zi

    2017-06-20

    18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) and PET/CT have become two of the most powerful tools for malignant lymphoma exploration, but their diagnostic role in primary central nervous system lymphoma (PCNSL) is still disputed. The purpose of our study is to identify the usefulness of 18F-FDG PET and PET/CT for detecting PCNSL. A total of 129 patients, obtained from eight eligible studies, were included for this systematic review and meta-analysis. The performance of 18F-FDG PET and PET/CT for diagnosing PCNSL were as follows: the pooled sensitivity was 0.88 (95% CI: 0.80-0.94), specificity was 0.86 (95% CI: 0.73-0.94), positive likelihood ratio (PLR) was 3.99 (95% CI: 2.31-6.90), negative likelihood ratio (NLR) was 0.11 (95% CI: 0.04-0.32), and diagnostic odds ratio (DOR) was 33.40 (95% CI: 10.40-107.3). In addition, the area under the curve (AUC) and Q index were 0.9192 and 0.8525, respectively. PubMed/MEDLINE, Embase and Cochrane Library were systematically searched for potential publications (last updated on July 16th, 2016). Reference lists of included articles were also checked. Original articles that reported data on patients who were suspected of having PCNSL were considered suitable for inclusion. The sensitivities and specificities of 18F-FDG PET and PET/CT in each study were evaluated. The Stata software and Meta-Disc software were employed in the process of data analysis. 18F-FDG PET and PET/CT showed considerable accuracy in identifying PCNSL in immunocompetent patients and could be a valuable radiological diagnostic tool for PCNSL.

  8. A comparative 18F-FDG PET/CT imaging of experimental Staphylococcus aureus osteomyelitis and Staphylococcus epidermidis foreign-body-associated infection in the rabbit tibia

    PubMed Central

    2012-01-01

    Background 18F-FDG-PET imaging has emerged as a promising method in the diagnosis of chronic osteomyelitis commonly due to Staphylococcus aureus. The inaccuracy of 18F-FDG-PET in the detection of periprosthetic joint infections may be related to the predominance of low-virulent S. epidermidis strains as the causative pathogen. We have compared the18F-FDG-PET characteristics of S. aureus osteomyelitis and foreign-body-associated S. epidermidis infections under standardized laboratory conditions. Methods Twenty-two rabbits were randomized into three groups. In group 1, a localized osteomyelitis model induced with a clinical strain of S. aureus was applied. In groups 2 and 3, a foreign-body-associated infection model induced with a clinical or laboratory strain of S. epidermidis was applied. A small block of bone cement was surgically introduced into the medullary cavity of the proximal tibia followed by peri-implant injection of S. aureus (1 × 105 CFU/mL) or one of the two S. epidermidis (1 × 109 CFU/mL) strains with an adjunct injection of aqueous sodium morrhuate. In group 1, the cement block was surgically removed at 2 weeks but left in place in groups 2 and 3 in order to mimic foreign-body-associated S. epidermidis infections. At 8 weeks, the animals were imaged using 18F-FDG PET/CT. The presence of bacterial infection was confirmed by cultures, and the severity of bone infections was graded by means of radiography, peripheral quantitative CT, and semi-quantitative histology. Results The S. aureus strain caused constantly culture-positive osteomyelitis. The clinical S. epidermidis strain resulted in foreign-body-associated infections, while the laboratory S. epidermidis strain (ATCC 35983) induced only occasionally culture-positive infections. There was a correlation (r = 0.645; P = 0.013) between semi-quantitative score of leukocyte infiltration and the 18F-FDG uptake in animals with positive cultures. Standardized uptake value

  9. 18F-FDG uptake assessed by PET/CT in abdominal aortic aneurysms is associated with cellular and molecular alterations prefacing wall deterioration and rupture.

    PubMed

    Courtois, Audrey; Nusgens, Betty V; Hustinx, Roland; Namur, Gauthier; Gomez, Pierre; Somja, Joan; Defraigne, Jean-Olivier; Delvenne, Philippe; Michel, Jean-Baptiste; Colige, Alain C; Sakalihasan, Natzi

    2013-10-01

    Rupture of abdominal aortic aneurysms (AAAs) leads to a significant morbidity and mortality in aging populations, and its prediction would be most beneficial to public health. Spots positive for uptake of (18)F-FDG detected by PET are found in 12% of AAA patients (PET+), who are most often symptomatic and at high rupture risk. Comparing the (18)F-FDG-positive site with a negative site from the same aneurysm and with samples collected from AAA patients with no (18)F-FDG uptake should allow the discrimination of biologic alterations that would help in identifying markers predictive of rupture. Biopsies of the AAA wall were obtained from patients with no (18)F-FDG uptake (PET0, n = 10) and from PET+ patients (n = 8), both at the site positive for uptake and at a distant negative site of the aneurysmal wall. Samples were analyzed by immunohistochemistry, quantitative real-time polymerase chain reaction, and zymography. The sites of the aneurysmal wall with a positive (18)F-FDG uptake were characterized by a strikingly increased number of adventitial inflammatory cells, highly proliferative, and by a drastic reduction of smooth muscle cells (SMCs) in the media as compared with their negative counterpart and with the PET0 wall. The expression of a series of genes involved in the maintenance and remodeling of the wall was significantly modified in the negative sites of PET+, compared with the PET0 wall, suggesting a systemic alteration of the aneurysmal wall. Furthermore, a striking increase of several matrix metalloproteinases (MMPs), notably the MMP1 and MMP13 collagenases, was observed in the positive sites, mainly in the adventitia. Moreover, PET+ patients were characterized by a higher circulating C-reactive protein. Positive (18)F-FDG uptake in the aneurysmal wall is associated with an active inflammatory process characterized by a dense infiltrate of proliferating leukocytes in the adventitia and an increased circulating C-reactive protein. Moreover, a loss of SMC

  10. Routine 18F-2-deoxy-2-fluoro-D-glucose (18F-FDG) myocardial tomography using a normal large field of view gamma-camera.

    PubMed

    Höflin, F; Ledermann, H; Noelpp, U; Weinreich, R; Rösler, H

    1989-12-01

    There is a recent need to study glucose metabolism of the heart in ischemic, as well as in "hibernating or stunned" myocardium, and compare it with that in perfusion studies. In non-positron emission tomography centers, positron imaging is possible with a standard Anger-type camera if proper collimation and adequate shielding of the camera crystal can be achieved. For the study with fast-decaying isotopes, seven-pinhole tomography (7PHT), a limited-angle method designed for transaxial tomography of the left ventricle using a nonrotating camera, is well suited, because projections are acquired simultaneously. Individual adjustment (patient supine) of the camera's view axis (CAx) with the left ventricular axis (LVAx) gives excellent results: sensitivity for CHD 82%, specificity 72% in a prospective 201TI study (48 patients, x-ray coronarography as reference). Good alignment of CAx with LVAx is also achieved with the patient prone in LAO in a hammock above the camera surface. In this setting additional lead shielding of the camera is possible using a table reinforced with 5 cm of lead with a central hole for the 7PH-collimator, which has a special lead inlay. This allows utilization of the 511 KeV emitter 18F-FDG, which with a half-life of 109 minutes, can be transported a reasonable distance from the production site. System sensitivity and resolution for 18F was found comparable to 201Tl, 99mTc, and 123I using a phantom. First clinical examinations after 201Tl stress/redistribution studies showed increased 18F-FDG uptake in ischemic heart segments, as well as in "hibernating" nonperfused or "stunned" myocardium.

  11. Predicting pathologic tumor response to chemoradiotherapy with histogram distances characterizing longitudinal changes in 18F-FDG uptake patterns

    PubMed Central

    Tan, Shan; Zhang, Hao; Zhang, Yongxue; Chen, Wengen; D’Souza, Warren D.; Lu, Wei

    2013-01-01

    Purpose: A family of fluorine-18 (18F)-fluorodeoxyglucose (18F-FDG) positron-emission tomography (PET) features based on histogram distances is proposed for predicting pathologic tumor response to neoadjuvant chemoradiotherapy (CRT). These features describe the longitudinal change of FDG uptake distribution within a tumor. Methods: Twenty patients with esophageal cancer treated with CRT plus surgery were included in this study. All patients underwent PET/CT scans before (pre-) and after (post-) CRT. The two scans were first rigidly registered, and the original tumor sites were then manually delineated on the pre-PET/CT by an experienced nuclear medicine physician. Two histograms representing the FDG uptake distribution were extracted from the pre- and the registered post-PET images, respectively, both within the delineated tumor. Distances between the two histograms quantify longitudinal changes in FDG uptake distribution resulting from CRT, and thus are potential predictors of tumor response. A total of 19 histogram distances were examined and compared to both traditional PET response measures and Haralick texture features. Receiver operating characteristic analyses and Mann-Whitney U test were performed to assess their predictive ability. Results: Among all tested histogram distances, seven bin-to-bin and seven crossbin distances outperformed traditional PET response measures using maximum standardized uptake value (AUC = 0.70) or total lesion glycolysis (AUC = 0.80). The seven bin-to-bin distances were: L2 distance (AUC = 0.84), χ2 distance (AUC = 0.83), intersection distance (AUC = 0.82), cosine distance (AUC = 0.83), squared Euclidean distance (AUC = 0.83), L1 distance (AUC = 0.82), and Jeffrey distance (AUC = 0.82). The seven crossbin distances were: quadratic-chi distance (AUC = 0.89), earth mover distance (AUC = 0.86), fast earth mover distance (AUC = 0.86), diffusion distance (AUC = 0.88), Kolmogorov-Smirnov distance (AUC = 0.88), quadratic form distance

  12. Differentiation and diagnosis of benign and malignant testicular lesions using 18F-FDG PET/CT.

    PubMed

    Shao, Dan; Gao, Qiang; Tian, Xu-Wei; Wang, Si-Yun; Liang, Chang-Hong; Wang, Shu-Xia

    2017-08-01

    The purpose of this study was to evaluate the differential diagnostic value of 18 F-fluorodeoxy glucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) for benign and malignant testicular lesions. The PET/CT scans of 53 patients with testicular lesions confirmed by biopsy or surgical pathology were retrospectively analyzed. There were 32 cases of malignant tumors and 21 cases of benign lesions. Differences in the maximum standardized uptake value (SUVmax) measurements and the SUVmax lesion/background ratios between benign and malignant lesions were analyzed. The diagnostic value of this PET/CT modality for the differential diagnosis of benign versus malignant testicular lesions was calculated. The differences in the SUVmax measurements and the SUVmax lesion/background ratios between benign and malignant lesions were statistically significant (SUVmax: Z=-4.295, p=0.000; SUVmax lesion/background ratio: Z=-5.219, p=0.000); specifically, both of these indicators were higher in malignant lesions compared to benign lesions. An SUVmax of 3.75 was the optimal cutoff value to differentiate between benign and malignant testicular lesions. The diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of this PET/CT modality in the differential diagnosis of benign versus malignant testicular lesions were 90.6%, 80.9%, 86.8%, 87.9%, and 85.0%, respectively. 18 F-FDG PET/CT can accurately identify benign and malignant testicular lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.

    PubMed

    Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing

    2018-03-12

    Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.

  14. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18F-fluorodopamine, 18F-fluoro-2-deoxy-D-glucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy.

    PubMed

    King, Kathryn S; Chen, Clara C; Alexopoulos, Dimitrios K; Whatley, Millie A; Reynolds, James C; Patronas, Nicholas; Ling, Alexander; Adams, Karen T; Xekouki, Paraskevi; Lando, Howard; Stratakis, Constantine A; Pacak, Karel

    2011-09-01

    Accurate diagnosis of head and neck paragangliomas is often complicated by biochemical silence and lack of catecholamine-associated symptoms, making accurate anatomical and functional imaging techniques essential to the diagnostic process. Ten patients (seven SDHD, three SDHB), with a total of 26 head and neck paragangliomas, were evaluated with anatomical and functional imaging. This study compares five different functional imaging techniques [(18)F-fluorodihydroxyphenylalanine ((18)F-FDOPA) positron emission tomography (PET), (18)F-fluorodopamine ((18)F-FDA) PET/computed tomography (CT), (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET/CT, (123)I-metaiodobenzylguanidine ((123)I-MIBG) scintigraphy, and (111)In-pentetreotide scintigraphy] in the localization of head and neck paragangliomas. Prospectively (18)F-FDOPA PET localized 26 of 26 lesions in the 10 patients, CT/magnetic resonance imaging localized 21 of 26 lesions, (18)F-FDG PET/CT localized 20 of 26 lesions, (111)In-pentetreotide scintigraphy localized 16 of 25 lesions, (18)F-FDA PET/CT localized 12 of 26 lesions, and (123)I-MIBG scintigraphy localized eight of 26 lesions. Differences in imaging efficacy related to genetic phenotype, even in the present small sample size, included the negativity of (18)F-FDA PET/CT and (123)I-MIBG scintigraphy in patients with SDHB mutations and the accuracy of (18)F-FDG PET/CT in all patients with SDHD mutations, as compared with the accuracy of (18)F-FDG PET/CT in only one patient with an SDHB mutation. Overall, (18)F-FDOPA PET proved to be the most efficacious functional imaging modality in the localization of SDHx-related head and neck paragangliomas and may be a potential first-line functional imaging agent for the localization of these tumors.

  15. Extramedullary Solitary Plasmacytoma: Demonstrating the Role of 18F-FDG PET Imaging

    PubMed Central

    Gautam, Archana; Sahu, Kamal Kant; Alamgir, Ahsan; Siddiqi, Imran

    2017-01-01

    An Extramedullary Plasmacytoma (EMP) is characterized by a neoplastic proliferation of clonal plasma cells outside the medullary cavity. EMPs are a rare occurrence compared to other malignant plasma cell disorders and account for approximately 3-5% of plasma-cell neoplasms. Although most cases of EMP are not immediately life threatening at diagnosis, EMPs can progress to Multiple Myeloma (MM) and thus, warrant monitoring. Currently, there are no standard guidelines for when and how to monitor patients who are diagnosed with or treated for a solitary plasmacytoma. We present a case of solitary EMP who was treated adequately and definitively but developed a distinct, non-contiguous subsequent solitary EMP and was only discovered due to surveillance 18F-Fludeoxyglucose Positron Emission Tomography (18F-FDG) (PET) scan. Uniform surveillance guidelines should be developed and the potential benefits of PET and other imaging techniques as well as their cost should be considered. PMID:28571247

  16. Radiotherapy volume delineation using dynamic [18F]-FDG PET/CT imaging in patients with oropharyngeal cancer: a pilot study.

    PubMed

    Silvoniemi, Antti; Din, Mueez U; Suilamo, Sami; Shepherd, Tony; Minn, Heikki

    2016-11-01

    Delineation of gross tumour volume in 3D is a critical step in the radiotherapy (RT) treatment planning for oropharyngeal cancer (OPC). Static [ 18 F]-FDG PET/CT imaging has been suggested as a method to improve the reproducibility of tumour delineation, but it suffers from low specificity. We undertook this pilot study in which dynamic features in time-activity curves (TACs) of [ 18 F]-FDG PET/CT images were applied to help the discrimination of tumour from inflammation and adjacent normal tissue. Five patients with OPC underwent dynamic [ 18 F]-FDG PET/CT imaging in treatment position. Voxel-by-voxel analysis was performed to evaluate seven dynamic features developed with the knowledge of differences in glucose metabolism in different tissue types and visual inspection of TACs. The Gaussian mixture model and K-means algorithms were used to evaluate the performance of the dynamic features in discriminating tumour voxels compared to the performance of standardized uptake values obtained from static imaging. Some dynamic features showed a trend towards discrimination of different metabolic areas but lack of consistency means that clinical application is not recommended based on these results alone. Impact of inflammatory tissue remains a problem for volume delineation in RT of OPC, but a simple dynamic imaging protocol proved practicable and enabled simple data analysis techniques that show promise for complementing the information in static uptake values.

  17. Genetic and Environmental Influences on Regional Brain Uptake of 18F-FDG: A PET Study on Monozygotic and Dizygotic Twins.

    PubMed

    Watanabe, Shinichiro; Kato, Hiroki; Shimosegawa, Eku; Hatazawa, Jun

    2016-03-01

    Genetic or environmental influences on cerebral glucose metabolism are unknown. We attempted to reveal these influences in elderly twins by means of (18)F-FDG PET. (18)F-FDG uptake was studied in 40 monozygotic and 18 dizygotic volunteer twin pairs aged 30 y or over. We also created 18 control pairs by pairing age- and sex-matched genetically unrelated subjects from dizygotic and monozygotic pairs. SUV images of the brain were reconstructed and analyzed by voxel-based statistical analysis with automated region-of-interest setting. The (18)F-FDG uptake in each cerebral lobe was semiquantified by taking a ratio of SUVmean in each region of interest to whole-brain SUVaverage. We calculated an intraclass correlation coefficient of SUV ratio in each region of interest for monozygotic and dizygotic pairs. By comparing differences in coefficients between monozygotic and dizygotic pairs, genetic and environmental contributions were estimated. The intraclass correlation coefficient in monozygotic pairs was significantly higher than that in dizygotic pairs in the parietal lobes bilaterally (P < 0.001) and in the left temporal lobe (P < 0.05) but was not significantly different in other lobes. The present study indicated that in the right and left parietal lobes and left temporal lobe, cerebral glucose metabolism is influenced more by genetics than by environment, whereas in other brain regions the influence of environment is dominant. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  18. Automated Synthesis of 18F-Fluoropropoxytryptophan for Amino Acid Transporter System Imaging

    PubMed Central

    Shih, I-Hong; Duan, Xu-Dong; Kong, Fan-Lin; Williams, Michael D.; Zhang, Yin-Han; Yang, David J.

    2014-01-01

    Objective. This study was to develop a cGMP grade of [18F]fluoropropoxytryptophan (18F-FTP) to assess tryptophan transporters using an automated synthesizer. Methods. Tosylpropoxytryptophan (Ts-TP) was reacted with K18F/kryptofix complex. After column purification, solvent evaporation, and hydrolysis, the identity and purity of the product were validated by radio-TLC (1M-ammonium acetate : methanol = 4 : 1) and HPLC (C-18 column, methanol : water = 7 : 3) analyses. In vitro cellular uptake of 18F-FTP and 18F-FDG was performed in human prostate cancer cells. PET imaging studies were performed with 18F-FTP and 18F-FDG in prostate and small cell lung tumor-bearing mice (3.7 MBq/mouse, iv). Results. Radio-TLC and HPLC analyses of 18F-FTP showed that the Rf and Rt values were 0.9 and 9 min, respectively. Radiochemical purity was >99%. The radiochemical yield was 37.7% (EOS 90 min, decay corrected). Cellular uptake of 18F-FTP and 18F-FDG showed enhanced uptake as a function of incubation time. PET imaging studies showed that 18F-FTP had less tumor uptake than 18F-FDG in prostate cancer model. However, 18F-FTP had more uptake than 18F-FDG in small cell lung cancer model. Conclusion. 18F-FTP could be synthesized with high radiochemical yield. Assessment of upregulated transporters activity by 18F-FTP may provide potential applications in differential diagnosis and prediction of early treatment response. PMID:25136592

  19. Automated synthesis of 18F-fluoropropoxytryptophan for amino acid transporter system imaging.

    PubMed

    Shih, I-Hong; Duan, Xu-Dong; Kong, Fan-Lin; Williams, Michael D; Yang, Kevin; Zhang, Yin-Han; Yang, David J

    2014-01-01

    This study was to develop a cGMP grade of [(18)F]fluoropropoxytryptophan ((18)F-FTP) to assess tryptophan transporters using an automated synthesizer. Tosylpropoxytryptophan (Ts-TP) was reacted with K(18)F/kryptofix complex. After column purification, solvent evaporation, and hydrolysis, the identity and purity of the product were validated by radio-TLC (1M-ammonium acetate : methanol = 4 : 1) and HPLC (C-18 column, methanol : water = 7 : 3) analyses. In vitro cellular uptake of (18)F-FTP and (18)F-FDG was performed in human prostate cancer cells. PET imaging studies were performed with (18)F-FTP and (18)F-FDG in prostate and small cell lung tumor-bearing mice (3.7 MBq/mouse, iv). Radio-TLC and HPLC analyses of (18)F-FTP showed that the Rf and Rt values were 0.9 and 9 min, respectively. Radiochemical purity was >99%. The radiochemical yield was 37.7% (EOS 90 min, decay corrected). Cellular uptake of (18)F-FTP and (18)F-FDG showed enhanced uptake as a function of incubation time. PET imaging studies showed that (18)F-FTP had less tumor uptake than (18)F-FDG in prostate cancer model. However, (18)F-FTP had more uptake than (18)F-FDG in small cell lung cancer model. (18)F-FTP could be synthesized with high radiochemical yield. Assessment of upregulated transporters activity by (18)F-FTP may provide potential applications in differential diagnosis and prediction of early treatment response.

  20. 18F-FDG micro-PET imaging for research investigations in the Octopus vulgaris: applications and future directions in invertebrate neuroscience and tissue regeneration.

    PubMed

    Zullo, Letizia; Buschiazzo, Ambra; Massollo, Michela; Riondato, Mattia; Democrito, Alessia; Marini, Cecilia; Benfenati, Fabio; Sambuceti, Gianmario

    2018-03-09

    This study aimed at developing a method for administration of 18 F-Fludeoxyglucose ( 18 F-FDG) in the common octopus and micro-positron emission tomography (micro-PET) bio-distribution assay for the characterization of glucose metabolism in body organs and regenerating tissues. Methods: Seven animals (two with one regenerating arm) were anesthetized with 3.7% MgCl 2 in artificial seawater. Each octopus was injected with 18-30 MBq of isosmotic 18 F-FDG by accessing the branchial heart or the anterior vena cava. After an uptake time of ~50 minutes, the animal was sacrificed, placed on a bed of a micro-PET scanner and submitted to 10 min static 3-4 bed acquisitions to visualize the entire body. To confirm the interpretation of images, internal organs of interest were collected. The level of radioactivity of each organ was counted with a γ-counter. Results: Micro-PET scanning documented a good 18 F-FDG full body distribution following vena cava administration. A high mantle mass radioactivity facing a relatively low tracer uptake in the arms was revealed. In particular, the following organs were clearly identified and measured for their uptake: brain (standardized uptake value, SUV max of 6.57±1.86), optic lobes (SUV max of 7.59±1.66) and arms (SUV max of 1.12±0.06). Interestingly, 18 F-FDG uptake was up to threefold higher in the regenerating arm stumps at the level of highly proliferating areas. Conclusion: This study represents a stepping-stone over the use of non-invasive functional techniques to address questions relevant to invertebrate neuroscience and regenerative medicine. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  1. Early 18F-FDG uptake as a reliable imaging biomarker of T790M-mediated resistance but not MET amplification in non-small cell lung cancer treated with EGFR tyrosine kinase inhibitors.

    PubMed

    De Rosa, Viviana; Iommelli, Francesca; Monti, Marcello; Mainolfi, Ciro Gabriele; Fonti, Rosa; Del Vecchio, Silvana

    2016-12-01

    The two main mechanisms of resistance to EGFR tyrosine kinase inhibitors (TKIs) in non-small cell lung cancer (NSCLC) are the occurrence of T790M secondary mutation in the kinase domain of EGFR and MET amplification. The aim of the present study was to test whether early changes of 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in animal models bearing erlotinib-resistant NSCLC may have different imaging patterns of response to erlotinib depending on the molecular mechanisms underlying resistance. Animal tumor models were developed using NSCLC H1975 cells bearing the T790M mutation and H1993 cells with MET amplification. Nude mice bearing erlotinib-resistant H1975 and H1993 xenografts (four animals for each cell line and for each treatment) were subjected to 18 F-FDG PET/CT scan before and immediately after treatment (50 mg/kg p.o. for 3 days) with erlotinib, WZ4002, crizotinib, or vehicle. A three-dimensional region of interest analysis was performed to determine the percent change of 18 F-FDG uptake in response to treatment. At the end of the imaging studies, tumors were removed and analyzed for glycolytic and mitochondrial proteins as well as levels of cyclin D1. Imaging studies with 18 F-FDG PET/CT in H1975 tumor-bearing mice showed a reduction of 18 F-FDG uptake of 25.87 % ± 8.93 % after treatment with WZ4002 whereas an increase of 18 F-FDG uptake up to 23.51 % ± 9.72 % was observed after treatment with erlotinib or vehicle. Conversely, H1993 tumors showed a reduction of 18 F-FDG uptake after treatment with both crizotinib (14.70 % ± 1.30 %) and erlotinib (18.40 % ± 9.19 %) and an increase of tracer uptake in vehicle-treated (56.65 % ± 5.65 %) animals. The in vivo reduction of 18 F-FDG uptake was always associated with downregulation of HKII and p-PKM2 Tyr105 glycolytic proteins and upregulation of mitochondrial complexes (subunits I-IV) in excised tumors. 18 F-FDG uptake is a reliable imaging biomarker of T790M

  2. Flexible scintillator autoradiography for tumor margin inspection using 18F-FDG

    NASA Astrophysics Data System (ADS)

    Vyas, K. N.; Grootendorst, M.; Mertzanidou, T.; Macholl, S.; Stoyanov, D.; Arridge, S. R.; Tuch, D. S.

    2018-03-01

    Autoradiography potentially offers high molecular sensitivity and spatial resolution for tumor margin estimation. However, conventional autoradiography requires sectioning the sample which is destructive and labor-intensive. Here we describe a novel autoradiography technique that uses a flexible ultra-thin scintillator which conforms to the sample surface. Imaging with the flexible scintillator enables direct, high-resolution and high-sensitivity imaging of beta particle emissions from targeted radiotracers. The technique has the potential to identify positive tumor margins in fresh unsectioned samples during surgery, eliminating the processing time demands of conventional autoradiography. We demonstrate the feasibility of the flexible autoradiography approach to directly image the beta emissions from radiopharmaceuticals using lab experiments and GEANT-4 simulations to determine i) the specificity for 18F compared to 99mTc-labeled tracers ii) the sensitivity to detect signal from various depths within the tissue. We found that an image resolution of 1.5 mm was achievable with a scattering background and we estimate a minimum detectable activity concentration of 0.9 kBq/ml for 18F. We show that the flexible autoradiography approach has high potential as a technique for molecular imaging of tumor margins using 18F-FDG in a tumor xenograft mouse model imaged with a radiation-shielded EMCCD camera. Due to the advantage of conforming to the specimen, the flexible scintillator showed significantly better image quality in terms of tumor signal to whole-body background noise compared to rigid and optimally thick CaF2:Eu and BC400. The sensitivity of the technique means it is suitable for clinical translation.

  3. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study

    PubMed Central

    Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829

  4. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study.

    PubMed

    Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.

  5. Is there any significance of lung cancer histology to compare the diagnostic accuracies of (18)F-FDG-PET/CT and (99m)Tc-MDP BS for the detection of bone metastases in advanced NSCLC?

    PubMed

    Inal, Ali; Kaplan, Muhammed Ali; Kucukoner, Mehmet; Urakcı, Zuhat; Dostbil, Zeki; Komek, Hail; Onder, Hakan; Tasdemir, Bekir; Isıkdogan, Abdurrahman

    2014-01-01

    Bone scintigraphy (BS) and fluorine-18 deoxyglucose positron emission tomography computed tomography ((18)F-FDG-PET/CT) are widely used for the detection of bone involvement. The optimal imaging modality for the detection of bone metastases in histological subgroups of non-small cell lung cancer (NSCLC) remains ambiguous. The aim of this study was to compare the efficacy of (18)F-FDG-PET/C and 99mTc-methylene diphosphonate ((99m)Tc-MDP) BS in the detection of bone metastases of patients in NSCLC. Specifically, we compared the diagnostic accuracies of these imaging techniques evaluating bone metastasis in histological subgroups of NSCLC. Fifty-three patients with advanced NSCLC, who had undergone both (18)F-FDG-PET/CT and BS and were eventually diagnosed as having bone metastasis, were enrolled in this retrospective study. The sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of (18)F-FDG-PET/CT and BS were 90.4%, 99.4%, 98.1%, 96.6%, 97.0% and 84.6%, 93.1%, 82.5%, 93.2, 90.8%, respectively. The κ statistics were calculated for (18)F-FDG-PET/CT and BS. The κ-value was 0.67 between (18)F-FDG-PET/CT and BS in all patients. On the other hand, the κ-value was 0.65 in adenocarcinoma, and 0.61 in squamous cell carcinoma between (18)F-FDG-PET/CT and BS. The κ-values suggested excellent agreement between all patients and histological subgroups of NSCLC. (18)F-FDG-PET/CT was more favorable than BS in the screening of metastatic bone lesions, but the trend did not reach statistical significance in all patients and histological subgroups of NSCLC. Our results need to be validated in prospective and larger study clinical trials to further clarify this topic.

  6. [18F-FDG PET/CT diagnosis of liver cyst infection in a patient with autosomal dominant polycystic kidney disease and fever of unknown origin].

    PubMed

    Banzo, J; Ubieto, M A; Gil, D; Prats, E; Razola, P; Tardín, L; Andrés, A; Rambalde, E F; Ayala, S M; Cáncer, L; Velilla, J

    2013-01-01

    The diagnosis, localization and treatment of infected cysts in the kidney or liver of patients with autosomal dominant polycystic kidney disease (ADPKD) remain a clinical challenge. We report the findings of (18)F-FDG PET-CT in an ADPKD diagnosed patient who required renal transplantation five years before and in his follow up presented repeated episodes of bacteriemia without known focus on radiological tests performed. The (18)F-FDG PET-CT scan showed numerous hypermetabolic images with focal or ring-shaped morphology related to the content and the wall of some hepatic cysts. The increased metabolic activity was localized on segments VI and VII. We proceeded to drainage of one cyst in segment VI, removing 110 cc of purulent fluid which grew E. Coli BLEE. The (18)F-FDG PET/CT scan should be included in the diagnostic algorithm for detecting infected liver cysts in patients with ADPKD and fever of unknown origin. Copyright © 2012 Elsevier España, S.L. and SEMNIM. All rights reserved.

  7. Role of 18F-FDG PET/CT in the diagnosis and management of multiple myeloma and other plasma cell disorders: a consensus statement by the International Myeloma Working Group.

    PubMed

    Cavo, Michele; Terpos, Evangelos; Nanni, Cristina; Moreau, Philippe; Lentzsch, Suzanne; Zweegman, Sonja; Hillengass, Jens; Engelhardt, Monika; Usmani, Saad Z; Vesole, David H; San-Miguel, Jesus; Kumar, Shaji K; Richardson, Paul G; Mikhael, Joseph R; da Costa, Fernando Leal; Dimopoulos, Meletios-Athanassios; Zingaretti, Chiara; Abildgaard, Niels; Goldschmidt, Hartmut; Orlowski, Robert Z; Chng, Wee Joo; Einsele, Hermann; Lonial, Sagar; Barlogie, Bart; Anderson, Kenneth C; Rajkumar, S Vincent; Durie, Brian G M; Zamagni, Elena

    2017-04-01

    The International Myeloma Working Group consensus aimed to provide recommendations for the optimal use of 18 fluorodeoxyglucose ( 18 F-FDG) PET/CT in patients with multiple myeloma and other plasma cell disorders, including smouldering multiple myeloma and solitary plasmacytoma. 18 F-FDG PET/CT can be considered a valuable tool for the work-up of patients with both newly diagnosed and relapsed or refractory multiple myeloma because it assesses bone damage with relatively high sensitivity and specificity, and detects extramedullary sites of proliferating clonal plasma cells while providing important prognostic information. The use of 18 F-FDG PET/CT is mandatory to confirm a suspected diagnosis of solitary plasmacytoma, provided that whole-body MRI is unable to be performed, and to distinguish between smouldering and active multiple myeloma, if whole-body X-ray (WBXR) is negative and whole-body MRI is unavailable. Based on the ability of 18 F-FDG PET/CT to distinguish between metabolically active and inactive disease, this technique is now the preferred functional imaging modality to evaluate and to monitor the effect of therapy on myeloma-cell metabolism. Changes in FDG avidity can provide an earlier evaluation of response to therapy compared to MRI scans, and can predict outcomes, particularly for patients who are eligible to receive autologous stem-cell transplantation. 18 F-FDG PET/CT can be coupled with sensitive bone marrow-based techniques to detect minimal residual disease (MRD) inside and outside the bone marrow, helping to identify those patients who are defined as having imaging MRD negativity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effect of 18F-FDG-PET image reconstruction algorithms on the expression of characteristic metabolic brain network in Parkinson's disease.

    PubMed

    Tomše, Petra; Jensterle, Luka; Rep, Sebastijan; Grmek, Marko; Zaletel, Katja; Eidelberg, David; Dhawan, Vijay; Ma, Yilong; Trošt, Maja

    2017-09-01

    To evaluate the reproducibility of the expression of Parkinson's Disease Related Pattern (PDRP) across multiple sets of 18F-FDG-PET brain images reconstructed with different reconstruction algorithms. 18F-FDG-PET brain imaging was performed in two independent cohorts of Parkinson's disease (PD) patients and normal controls (NC). Slovenian cohort (20 PD patients, 20 NC) was scanned with Siemens Biograph mCT camera and reconstructed using FBP, FBP+TOF, OSEM, OSEM+TOF, OSEM+PSF and OSEM+PSF+TOF. American Cohort (20 PD patients, 7 NC) was scanned with GE Advance camera and reconstructed using 3DRP, FORE-FBP and FORE-Iterative. Expressions of two previously-validated PDRP patterns (PDRP-Slovenia and PDRP-USA) were calculated. We compared the ability of PDRP to discriminate PD patients from NC, differences and correlation between the corresponding subject scores and ROC analysis results across the different reconstruction algorithms. The expression of PDRP-Slovenia and PDRP-USA networks was significantly elevated in PD patients compared to NC (p<0.0001), regardless of reconstruction algorithms. PDRP expression strongly correlated between all studied algorithms and the reference algorithm (r⩾0.993, p<0.0001). Average differences in the PDRP expression among different algorithms varied within 0.73 and 0.08 of the reference value for PDRP-Slovenia and PDRP-USA, respectively. ROC analysis confirmed high similarity in sensitivity, specificity and AUC among all studied reconstruction algorithms. These results show that the expression of PDRP is reproducible across a variety of reconstruction algorithms of 18F-FDG-PET brain images. PDRP is capable of providing a robust metabolic biomarker of PD for multicenter 18F-FDG-PET images acquired in the context of differential diagnosis or clinical trials. Copyright © 2017 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  9. Reproducibility of tumor uptake heterogeneity characterization through textural feature analysis in 18F-FDG PET

    PubMed Central

    Tixier, Florent; Hatt, Mathieu; Le Rest, Catherine Cheze; Le Pogam, Adrien; Corcos, Laurent; Visvikis, Dimitris

    2012-01-01

    18F-FDG PET measurement of standardized uptake values (SUV) is increasingly used for monitoring therapy response or predicting outcome. Alternative parameters computed through textural analysis were recently proposed to quantify the tumor tracer uptake heterogeneity as significant predictors of response. The primary objective of this study was the evaluation of the reproducibility of these heterogeneity measurements. Methods Double-baseline 18F-FDG PET scans of 16 patients acquired within a period of 4 days prior to any treatment were considered. A Bland-Altman analysis was carried out on six parameters based on histogram measurements and 17 heterogeneity parameters based on textural features obtained after discretization with values between 8 and 128. Results SUVmax and SUVmean reproducibility were similar to previously reported studies with a mean percentage difference of 4.7±19.5% and 5.5±21.2% respectively. By comparison better reproducibility was measured for some of the textural features describing tumor tracer local heterogeneity, such as entropy and homogeneity with a mean percentage difference of −2±5.4% and 1.8±11.5% respectively. Several of the tumor regional heterogeneity parameters such as the variability in the intensity and size of homogeneous tumor activity distribution regions had similar reproducibility to the SUV measurements with 95% confidence intervals of −22.5% to 3.1% and −1.1% to 23.5% respectively. These parameters were largely insensitive to the discretization range values. Conclusion Several of the parameters derived from textural analysis describing tumor tracer heterogeneity at local and regional scales had similar or better reproducibility as simple SUV measurements. These reproducibility results suggest that these FDG PET image derived parameters which have already been shown to have a predictive and prognostic value in certain cancer models, may be used within the context of therapy response monitoring or predicting

  10. [18F]FDG labeling of neural stem cells for in vivo cell tracking with positron emission tomography: inhibition of tracer release by phloretin.

    PubMed

    Stojanov, Katica; de Vries, Erik F J; Hoekstra, Dick; van Waarde, Aren; Dierckx, Rudi A J O; Zuhorn, Inge S

    2012-02-01

    The introduction of neural stem cells into the brain has promising therapeutic potential for the treatment of neurodegenerative diseases. To monitor the cellular replacement therapy, that is, to determine stem cell migration, survival, and differentiation, in vivo tracking methods are needed. Ideally, these tracking methods are noninvasive. Noninvasive tracking methods that have been successfully used for the visualization of blood-derived progenitor cells include magnetic resonance imaging and radionuclide imaging using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The SPECT tracer In-111-oxine is suitable for stem cell labeling, but for studies in small animals, the higher sensitivity and facile quantification that can be obtained with PET are preferred. Here the potential of 2'-[18F]fluoro-2'-deoxy-D-glucose ([18F]-FDG), a PET tracer, for tracking of neural stem cell (NSCs) trafficking toward an inflammation site was investigated. [18F]-FDG turns out to be a poor radiopharmaceutical to label NSCs owing to the low labeling efficiency and substantial release of radioactivity from these cells. Efflux of [18F]-FDG from NSCs can be effectively reduced by phloretin in vitro, but inhibition of tracer release is insufficient in vivo for accurate monitoring of stem cell trafficking.

  11. (18)F-FDG PET/CT findings in a case with HIV (-) Kaposi sarcoma.

    PubMed

    Ozdemir, E; Poyraz, N Y; Keskin, M; Kandemir, Z; Turkolmez, S

    2014-01-01

    Although mucocutaneous sites are the most frequently encountered sites of involvement, Kaposi Sarcoma (KS) may also occasionally involve the breast and the skeletal, endocrine, urinary and nervous systems.. Various imaging modalities may be used to delineate the extent of the disease by detecting unexpected sites of involvement. Herein, we report a case of classical type KS, in whom staging with (18)F-FDG PET/CT imaging disclosed widespread disease and unexpected findings of bone and salivary gland involvement. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  12. 18F-FDG PET/CT and PET/MRI Perform Equally Well in Cancer: Evidence from Studies on More Than 2,300 Patients

    PubMed Central

    Spick, Claudio; Herrmann, Ken; Czernin, Johannes

    2016-01-01

    18F-FDG PET/CT has become the reference standard in oncologic imaging against which the performance of other imaging modalities is measured. The promise of PET/MRI includes multiparametric imaging to further improve diagnosis and phenotyping of cancer. Rather than focusing on these capabilities, many investigators have examined whether 18F-FDG PET combined with mostly anatomic MRI improves cancer staging and restaging. After a description of PET/MRI scanner designs and a discussion of technical and operational issues, we review the available literature to determine whether cancer assessments are improved with PET/MRI. The available data show that PET/MRI is feasible and performs as well as PET/CT in most types of cancer. Diagnostic advantages may be achievable in prostate cancer and in bone metastases, whereas disadvantages exist in lung nodule assessments. We conclude that 18F-FDG PET/MRI and PET/CT provide comparable diagnostic information when MRI is used simply to provide the anatomic framework. Thus, PET/MRI could be used in lieu of PET/CT if this approach becomes economically viable and if reasonable workflows can be established. Future studies should explore the multiparametric potential of MRI. PMID:26742709

  13. Clinical Value of a One-Stop-Shop Low-Dose Lung Screening Combined with (18)F-FDG PET/CT for the Detection of Metastatic Lung Nodules from Colorectal Cancer.

    PubMed

    Han, Yeon-Hee; Lim, Seok Tae; Jeong, Hwan-Jeong; Sohn, Myung-Hee

    2016-06-01

    The aim of this study was to evaluate the clinical usefulness of additional low-dose high-resolution lung computed tomography (LD-HRCT) combined with (18)F-fluoro-2-deoxyglucose positron emission tomography with CT ((18)F-FDG PET/CT) compared with conventional lung setting image of (18)F-FDG PET/CT for the detection of metastatic lung nodules from colorectal cancer. From January 2011 to September 2011, 649 patients with colorectal cancer underwent additional LD-HRCT at maximum inspiration combined with (18)F-FDG PET/CT. Forty-five patients were finally diagnosed to have lung metastasis based on histopathologic study or clinical follow-up. Twenty-five of the 45 patients had ≤5 metastatic lung nodules and the other 20 patients had >5 metastatic nodules. One hundred and twenty nodules in the 25 patients with ≤5 nodules were evaluated by conventional lung setting image of (18)F-FDG PET/CT and by additional LD-HRCT respectively. Sensitivities, specificities, diagnostic accuracies, positive predictive values (PPVs), and negative predictive values (NPVs) of conventional lung setting image of (18)F-FDG PET/CT and additional LD-HRCT were calculated using standard formulae. The McNemar test and receiver-operating characteristic (ROC) analysis were performed. Of the 120 nodules in the 25 patients with ≤5 metastatic lung nodules, 66 nodules were diagnosed as metastatic. Eleven of the 66 nodules were confirmed histopathologically and the others were diagnosed by clinical follow-up. Conventional lung setting image of (18)F-FDG PET/CT detected 40 of the 66 nodules and additional LD-HRCT detected 55 nodules. All 15 nodules missed by conventional lung setting imaging but detected by additional LD-HRCT were <1 cm in size. The sensitivity, specificity, and diagnostic accuracy of the modalities were 60.6 %, 85.2 %, and 71.1 % for conventional lung setting image and 83.3 %, 88.9 %, and 85.8 % for additional LD-HRCT. By ROC analysis, the area under the ROC curve

  14. In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging

    DTIC Science & Technology

    2017-12-01

    AWARD NUMBER: W81XWH-13-1-0138 TITLE: In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical...18Ffluorocholine/ 18F-FDG Cerenkov radiation energy transfer (CRET) coupled with TF- and ErbB2/3- molecularly targeted nearinfrared (NIR) QDs can be used to detect...to examine whether internal illumination via 18F-fluorocholine Cerenkov radiation energy transfer (CRET) coupled with TF- and ErbB2/3- molecularly

  15. Intraoperative detection of 18F-FDG-avid tissue sites using the increased probe counting efficiency of the K-alpha probe design and variance-based statistical analysis with the three-sigma criteria

    PubMed Central

    2013-01-01

    Background Intraoperative detection of 18F-FDG-avid tissue sites during 18F-FDG-directed surgery can be very challenging when utilizing gamma detection probes that rely on a fixed target-to-background (T/B) ratio (ratiometric threshold) for determination of probe positivity. The purpose of our study was to evaluate the counting efficiency and the success rate of in situ intraoperative detection of 18F-FDG-avid tissue sites (using the three-sigma statistical threshold criteria method and the ratiometric threshold criteria method) for three different gamma detection probe systems. Methods Of 58 patients undergoing 18F-FDG-directed surgery for known or suspected malignancy using gamma detection probes, we identified nine 18F-FDG-avid tissue sites (from amongst seven patients) that were seen on same-day preoperative diagnostic PET/CT imaging, and for which each 18F-FDG-avid tissue site underwent attempted in situ intraoperative detection concurrently using three gamma detection probe systems (K-alpha probe, and two commercially-available PET-probe systems), and then were subsequently surgical excised. Results The mean relative probe counting efficiency ratio was 6.9 (± 4.4, range 2.2–15.4) for the K-alpha probe, as compared to 1.5 (± 0.3, range 1.0–2.1) and 1.0 (± 0, range 1.0–1.0), respectively, for two commercially-available PET-probe systems (P < 0.001). Successful in situ intraoperative detection of 18F-FDG-avid tissue sites was more frequently accomplished with each of the three gamma detection probes tested by using the three-sigma statistical threshold criteria method than by using the ratiometric threshold criteria method, specifically with the three-sigma statistical threshold criteria method being significantly better than the ratiometric threshold criteria method for determining probe positivity for the K-alpha probe (P = 0.05). Conclusions Our results suggest that the improved probe counting efficiency of the K-alpha probe design used in

  16. Differentiating the grades of thymic epithelial tumor malignancy using textural features of intratumoral heterogeneity via (18)F-FDG PET/CT.

    PubMed

    Lee, Hyo Sang; Oh, Jungsu S; Park, Young Soo; Jang, Se Jin; Choi, Ik Soo; Ryu, Jin-Sook

    2016-05-01

    We aimed to explore the ability of textural heterogeneity indices determined by (18)F-FDG PET/CT for grading the malignancy of thymic epithelial tumors (TETs). We retrospectively enrolled 47 patients with pathologically proven TETs who underwent pre-treatment (18)F-FDG PET/CT. TETs were classified by pathological results into three subgroups with increasing grades of malignancy: low-risk thymoma (LRT; WHO classification A, AB and B1), high-risk thymoma (B2 and B3), and thymic carcinoma (TC). Using (18)F-FDG PET/CT, we obtained conventional imaging indices including SUVmax and 20 intratumoral heterogeneity indices: i.e., four local-scale indices derived from the neighborhood gray-tone difference matrix (NGTDM), eight regional-scale indices from the gray-level run-length matrix (GLRLM), and eight regional-scale indices from the gray-level size zone matrix (GLSZM). Area under the receiver operating characteristic curve (AUC) was used to demonstrate the abilities of the imaging indices for differentiating subgroups. Multivariable logistic regression analysis was performed to show the independent significance of the textural indices. Combined criteria using optimal cutoff values of the SUVmax and a best-performing heterogeneity index were applied to investigate whether they improved differentiation between the subgroups. Most of the GLRLM and GLSZM indices and the SUVmax showed good or fair discrimination (AUC >0.7) with best performance for some of the GLRLM indices and the SUVmax, whereas the NGTDM indices showed relatively inferior performance. The discriminative ability of some of the GLSZM indices was independent from that of SUVmax in multivariate analysis. Combined use of the SUVmax and a GLSZM index improved positive predictive values for LRT and TC. Texture analysis of (18)F-FDG PET/CT scans has the potential to differentiate between TET tumor grades; regional-scale indices from GLRLM and GLSZM perform better than local-scale indices from the NGTDM. The SUVmax

  17. A novel small molecule mediate 18F-FDG excited fluorescence molecular imaging

    NASA Astrophysics Data System (ADS)

    Zhang, Zeyu; Guo, Hongbo; Hu, Zhenhua; Tian, Jie

    2018-02-01

    Fluorescence molecular imaging (FMI) has been widely used in many medical fields with small molecule indocyanine green (ICG). However, low signal-background ratio and limited specificity to tumor remain big challenges for FMI. In this study, a novel excitation strategy is proposed on the basis of clinical approved ICG and 18F-FDG. A series of in vitro experiments are designed to reveal the mechanism and results show obvious decreasing of ICG fluorescence intensity with the increasing distance to excitation source. Meanwhile, the ICG fluorescence intensity is proportional to the activity of radiopharmaceutical. Results from different respects illustrate the promising of this proposed excitation strategy.

  18. Multiple and solitary skeletal muscle metastases on 18F-FDG PET/CT imaging.

    PubMed

    Nocuń, Anna; Chrapko, Beata

    2015-11-01

    The aim of this study was to investigate the features and patterns of skeletal muscle metastases (SMM) detected with F-fluorodeoxyglucose (F-FDG) PET/computed tomography (PET/CT). Our database was analyzed for patients with pathologically proven malignancy, who underwent F-FDG PET/CT in our institution. The patients with SMM were included in the study group on the basis of the final diagnosis confirmed by follow-up or histopathology. Images were acquired using a PET/CT system Biograph mCT S(64)-4R. CT was performed without contrast enhancement. The selected group included 31 patients (1.7% of the database, which consisted of 1805 patients). A total of 233 lesions were found. The prevalence of SMM evaluated in specific primary malignancies was the highest in melanoma (6.9%), followed by carcinoma of unknown primary (4.4%), colorectal cancer (4.1%) and lung cancer (2.8%). Three patterns of skeletal muscle metastatic involvement were observed: multiple SMM accompanied by other metastases (64.5%), solitary lesion associated with other metastases (29%) and isolated intramuscular lesions (two cases, 6.5%). Isolated SMM represented recurrence of the malignant disease. In patients with extraskeletal metastases, solitary or multiple SMM did not affect tumor staging. Solitary SMM are less common than multiple on F-FDG PET/CT imaging. SMM are usually associated with other metastases and do not affect tumor staging. The cases of isolated SMM are very rare. Nevertheless, in patients with a diagnosis of malignant disease, a solitary, F-FDG avid intramuscular focus should be suspected to represent metastasis.

  19. Diagnostic value of combining ¹¹C-choline and ¹⁸F-FDG PET/CT in hepatocellular carcinoma.

    PubMed

    Castilla-Lièvre, Maria-Angéla; Franco, Dominique; Gervais, Philippe; Kuhnast, Bertrand; Agostini, Hélène; Marthey, Lysiane; Désarnaud, Serge; Helal, Badia-Ourkia

    2016-05-01

    In this prospective study, our goal was to emphasize the diagnostic value of combining (11)C-choline and (18)F-FDG PET/CT for hepatocellular carcinoma (HCC) in patients with chronic liver disease. Thirty-three consecutive patients were enrolled. All patients were suspected to have HCC based on CT and/or MRI imaging. A final diagnosis was obtained by histopathological examination or by imaging alone according to American Association for the Study of Liver Disease criteria. All patients underwent PET/CT with both tracers within a median of 5 days. All lesions showing higher tracer uptake than normal liver were considered positive for HCC. We examined how tracer uptake was related to biological (serum α-fetoprotein levels) and pathological (differentiation status, peritumoral capsule and vascular invasion) prognostic markers of HCC, as well as clinical observations at 6 months (recurrence and death). Twenty-eight HCC, four cholangiocarcinomas and one adenoma were diagnosed. In the HCC patients, the sensitivity of (11)C-choline, (18)F-FDG and combined (11)C-choline and (18)F-FDG PET/CT for the detection of HCC was 75 %, 36 % and 93 %, respectively. Serum α-fetoprotein levels >200 ng/ml were more frequent among patients with (18)F-FDG-positive lesions than those with (18)F-FDG-negative lesions (p < 0.05). Early recurrence (n=2) or early death (n=5) occurred more frequently in patients with (18)F-FDG-positive lesions than in those with (18)F-FDG-negative lesions (p < 0.05). The combined use of (11)C-choline and (18)F-FDG PET/CT detected HCC with high sensitivity. This approach appears to be of potential prognostic value and may facilitate the selection of patients for surgical resection or liver transplantation.

  20. The Value of 18F-FDG PET/CT Mathematical Prediction Model in Diagnosis of Solitary Pulmonary Nodules

    PubMed Central

    Chen, Yao; Tang, Kun; Lin, Jie

    2018-01-01

    Purpose To establish an 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) mathematical prediction model to improve the diagnosis of solitary pulmonary nodules (SPNs). Materials and Methods We retrospectively reviewed 177 consecutive patients who underwent 18F-FDG PET/CT for evaluation of SPNs. The mathematical model was established by logistic regression analysis. The diagnostic capabilities of the model were calculated, and the areas under the receiver operating characteristic curve (AUC) were compared with Mayo and VA model. Results The mathematical model was y = exp⁡(x)/[1 + exp⁡(x)], x = −7.363 + 0.079 × age + 1.900 × lobulation + 1.024 × vascular convergence + 1.530 × pleural retraction + 0.359 × the maximum of standardized uptake value (SUVmax). When the cut-off value was set at 0.56, the sensitivity, specificity, and accuracy of our model were 86.55%, 74.14%, and 81.4%, respectively. The area under the receiver operating characteristic curve (AUC) of our model was 0.903 (95% confidence interval (CI): 0.860 to 0.946). The AUC of our model was greater than that of the Mayo model, the VA model, and PET (P < 0.05) and has no difference with that of PET/CT (P > 0.05). Conclusion The mathematical predictive model has high accuracy in estimating the malignant probability of patients with SPNs. PMID:29789808

  1. Dynamic contrast-enhanced MRI versus 18F-FDG PET/CT: Which is better in differentiation between malignant and benign solitary pulmonary nodules?

    PubMed

    Feng, Feng; Qiang, Fulin; Shen, Aijun; Shi, Donghui; Fu, Aiyan; Li, Haiming; Zhang, Mingzhu; Xia, Ganlin; Cao, Peng

    2018-02-01

    To prospectively compare the discriminative capacity of dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) with that of 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) in the differentiation of malignant and benign solitary pulmonary nodules (SPNs). Forty-nine patients with SPNs were included in this prospective study. Thirty-two of the patients had malignant SPNs, while the other 17 had benign SPNs. All these patients underwent DCE-MRI and 18 F-FDG PET/CT examinations. The quantitative MRI pharmacokinetic parameters, including the trans-endothelial transfer constant (K trans ), redistribution rate constant (K ep ), and fractional volume (V e ), were calculated using the Extended-Tofts Linear two-compartment model. The 18 F-FDG PET/CT parameter, maximum standardized uptake value (SUV max ), was also measured. Spearman's correlations were calculated between the MRI pharmacokinetic parameters and the SUV max of each SPN. These parameters were statistically compared between the malignant and benign nodules. Receiver operating characteristic (ROC) analyses were used to compare the diagnostic capability between the DCE-MRI and 18 F-FDG PET/CT indexes. Positive correlations were found between K trans and SUV max , and between K ep and SUV max (P<0.05). There were significant differences between the malignant and benign nodules in terms of the K trans , K ep and SUV max values (P<0.05). The areas under the ROC curve (AUC) of K trans , K ep and SUV max between the malignant and benign nodules were 0.909, 0.838 and 0.759, respectively. The sensitivity and specificity in differentiating malignant from benign SPNs were 90.6% and 82.4% for K trans ; 87.5% and 76.5% for K ep ; and 75.0% and 70.6% for SUV max , respectively. The sensitivity and specificity of K trans and K ep were higher than those of SUV max , but there was no significant difference between them (P>0.05). DCE-MRI can be used to differentiate between

  2. Dynamic contrast-enhanced MRI versus 18F-FDG PET/CT: Which is better in differentiation between malignant and benign solitary pulmonary nodules?

    PubMed Central

    Feng, Feng; Qiang, Fulin; Shen, Aijun; Shi, Donghui; Fu, Aiyan; Li, Haiming; Zhang, Mingzhu; Xia, Ganlin; Cao, Peng

    2018-01-01

    Objective To prospectively compare the discriminative capacity of dynamic contrast enhanced-magnetic resonance imaging (DCE-MRI) with that of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) in the differentiation of malignant and benign solitary pulmonary nodules (SPNs). Methods Forty-nine patients with SPNs were included in this prospective study. Thirty-two of the patients had malignant SPNs, while the other 17 had benign SPNs. All these patients underwent DCE-MRI and 18F-FDG PET/CT examinations. The quantitative MRI pharmacokinetic parameters, including the trans-endothelial transfer constant (Ktrans), redistribution rate constant (Kep), and fractional volume (Ve), were calculated using the Extended-Tofts Linear two-compartment model. The 18F-FDG PET/CT parameter, maximum standardized uptake value (SUVmax), was also measured. Spearman’s correlations were calculated between the MRI pharmacokinetic parameters and the SUVmax of each SPN. These parameters were statistically compared between the malignant and benign nodules. Receiver operating characteristic (ROC) analyses were used to compare the diagnostic capability between the DCE-MRI and 18F-FDG PET/CT indexes. Results Positive correlations were found between Ktrans and SUVmax, and between Kep and SUVmax (P<0.05). There were significant differences between the malignant and benign nodules in terms of the Ktrans, Kep and SUVmax values (P<0.05). The areas under the ROC curve (AUC) of Ktrans, Kep and SUVmax between the malignant and benign nodules were 0.909, 0.838 and 0.759, respectively. The sensitivity and specificity in differentiating malignant from benign SPNs were 90.6% and 82.4% for Ktrans; 87.5% and 76.5% for Kep; and 75.0% and 70.6% for SUVmax, respectively. The sensitivity and specificity of Ktrans and Kep were higher than those of SUVmax, but there was no significant difference between them (P>0.05). Conclusions DCE-MRI can be used to differentiate between

  3. Absolute number of new lesions on 18F-FDG PET/CT is more predictive of clinical response than SUV changes in metastatic melanoma patients receiving ipilimumab.

    PubMed

    Anwar, Hoda; Sachpekidis, Christos; Winkler, Julia; Kopp-Schneider, Annette; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-03-01

    Evaluation of response to immunotherapy is a matter of debate. The aim of the present study was to evaluate the response of metastatic melanoma to treatment with ipilimumab by means of 18 F-FDG PET/CT, using the patients' clinical response as reference. The final cohort included in the analyses consisted of 41 patients with metastatic melanoma who underwent 18 F-FDG PET/CT before and after administration of ipilimumab. After determination of the best clinical response, the PET/CT scans were reviewed and a separate independent analysis was performed, based on the number and functional size of newly emerged 18 F-FDG-avid lesions, as well as on the SUV changes after therapy. The median observation time of the patients after therapy was 21.4 months (range 6.3-41.9 months). Based on their clinical response, patients were dichotomized into those with clinical benefit (CB) and those without CB (No-CB). The CB group (31 patients) included those with stable disease, partial remission and complete remission, and the No-CB group (10 patients) included those with progressive disease. The application of a threshold of four newly emerged 18 F-FDG-avid lesions on the posttherapy PET/CT scan led to a sensitivity (correctly predicting CB) of 84% and a specificity (correctly predicting No-CB) of 100%. This cut-off was lower for lesions with larger functional diameters (three new lesions larger than 1.0 cm and two new lesions larger than 1.5 cm). SUV changes after therapy did not correlate with clinical response. Based on these findings, we developed criteria for predicting clinical response to immunotherapy by means of 18 F-FDG PET/CT (PET Response Evaluation Criteria for Immunotherapy, PERCIMT). Our results show that a cut-off of four newly emerged 18 F-FDG-avid lesions on posttherapy PET/CT gives a reliable indication of treatment failure in patients under ipilimumab treatment. Moreover, the functional size of the new lesions plays an important role in predicting the clinical

  4. (18)F-FDG uptake of the spinal cord was decreased after conventional dose radiotherapy in esophageal cancer patients.

    PubMed

    Harata, Naoki; Yoshida, Katsuya; Oota, Sayako; Fujii, Hayahiko; Isogai, Jun; Yoshimura, Ryoichi

    2016-01-01

    We retrospectively investigated changes of (18)F-fluorodeocyglucose ((18)F-FDG) uptake in the spinal cord, inside and outside the radiation fields, in patients with esophageal cancer before and after conventional dose radiotherapy. A total of 17 consecutive patients with esophageal cancer (16 males, one female; age 50-83 years, mean 67.0 years), who underwent conventional dose radiotherapy and (18)F-FDG PET/CT before and 5.1 months (range 1.6-8.6 months) after the radiotherapy, were retrospectively evaluated. Sixteen patients had esophageal cancer and one patient had esophageal metastasis from thyroid cancer. Mean standardized uptake values (SUVmean) of the cervical, thoracic (inside and outside the radiation fields) and lumbar spinal cord were measured. SUVmean of the thoracic spinal cord inside the radiation field was decreased significantly after radiotherapy compared to those before radiotherapy (p < 0.001). SUVmean of the cervical spinal cord showed the same trend but it was not statistically significant (p = 0.051). SUVmean of the thoracic spinal cord outside the radiation field and the lumbar spinal cord did not differ significantly before and after the radiotherapy (p = 0.146 and p = 0.701, respectively). The results suggest that glucose metabolism of the spinal cord is decreased in esophageal cancer patients after conventional dose radiotherapy.

  5. Preclinical Multimodal Molecular Imaging Using 18F-FDG PET/CT and MRI in a Phase I Study of a Knee Osteoarthritis in In Vivo Canine Model.

    PubMed

    Menendez, Maria I; Hettlich, Bianca; Wei, Lai; Knopp, Michael V

    2017-01-01

    The aim of this study was to use a multimodal molecular imaging approach to serially assess regional metabolic changes in the knee in an in vivo anterior cruciate ligament transection (ACLT) canine model of osteoarthritis (OA). Five canine underwent ACLT in one knee and the contralateral knee served as uninjured control. Prior, 3, 6, and 12 weeks post-ACLT, the dogs underwent 18 F-fluoro-d-glucose ( 18 F-FDG) positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI). The MRI was coregistered with the PET/CT, and 3-dimensional regions of interest (ROIs) were traced manually and maximum standardized uptake values (SUV max ) were evaluated. 18 F-fluoro-d-glucose SUV max in the ACLT knee ROIs was significantly higher compared to the uninjured contralateral knees at 3, 6, and 12 weeks. Higher 18 F-FDG uptake observed in ACLT knees compared to the uninjured knees reflects greater metabolic changes in the injured knees over time. Knee 18 F-FDG uptake in an in vivo ACLT canine model using combined PET/CT and MRI demonstrated to be highly sensitive in the detection of metabolic alterations in osseous and nonosteochondral structures comprising the knee joint. 18 F-fluoro-d-glucose appeared to be a capable potential imaging biomarker for early human knee OA diagnosis, prognosis, and management.

  6. Ictal 18F-FDG PET/MRI in a Patient With Cortical Heterotopia and Focal Epilepsy.

    PubMed

    Calabria, Ferdinando F; Cascini, Giuseppe Lucio; Gambardella, Antonio; Labate, Angelo; Cherubini, Andrea; Gullà, Domenico; Tafuri, Benedetta; Sabatini, Umberto; Vescio, Virginia; Quattrone, Aldo

    2017-10-01

    A 19-year-old man with epilepsy underwent ictal F-FDG PET/MRI, showing a 5 mm heterotopic nodule in the periventricular white matter, adjacent to the frontal horn of the left lateral ventricle (SUVmax, 5.5; glucidic cerebral metabolic rate, 0.317 μmol/mL). A repeated F-FDG PET/MRI, during seizure freedom, showed, at visual analysis, subtle decrease of the nodule metabolism. SUVmax and glucidic cerebral metabolic rate were clearly reduced to 3.7 and 0.226, respectively. Ictal F-FDG PET/MRI could be useful in epilepsy because of the added value of SUVmax and cerebral metabolic rate of glucose analysis to understand the relationship between heterotopy and epilepsy.

  7. 18F-FDG avid Sclerosing Angiomatoid Nodular Transformation (SANT) of spleen on PET-CT - a rare mimicker of metastasis.

    PubMed

    Sharma, Punit

    2018-01-01

    Sclerosing Angiomatoid Nodular Transformation (SANT) is a rare benign vascular tumor of spleen. It consists of multiple angiomatoid nodules surrounded by dense fibrous tissue that often coalesces centrally to form a scar, which is considered to be a characteristic feature. These are usually asymptomatic and incidentally detected on imaging for other underlying pathology. SANTs can be 18F-Fluorodeoxyglucose (18F-FDG) avid on positron emission tomography-computed tomography (PET-CT) and thus can lead to false positive finding in oncological patients.

  8. Correlation of spleen metabolism assessed by 18F-FDG PET with serum interleukin-2 receptor levels and other biomarkers in patients with untreated sarcoidosis.

    PubMed

    Kalkanis, Alexandros; Kalkanis, Dimitrios; Drougas, Dimitrios; Vavougios, George D; Datseris, Ioannis; Judson, Marc A; Georgiou, Evangelos

    2016-03-01

    The objective of our study was to assess the possible relationship between splenic F-18-fluorodeoxyglucose (18F-FDG) uptake and other established biochemical markers of sarcoidosis activity. Thirty treatment-naive sarcoidosis patients were prospectively enrolled in this study. They underwent biochemical laboratory tests, including serum interleukin-2 receptor (sIL-2R), serum C-reactive protein, serum angiotensin-I converting enzyme, and 24-h urine calcium levels, and a whole-body combined 18F-FDG PET/computed tomography (PET/CT) scan as a part of an ongoing study at our institute. These biomarkers were statistically compared in these patients. A statistically significant linear dependence was detected between sIL-2R and log-transformed spleen-average standard uptake value (SUV avg) (R2=0.488, P<0.0001) and log-transformed spleen-maximum standard uptake value (SUV max) (R2=0.490, P<0.0001). sIL-2R levels and splenic size correlated linearly (Pearson's r=0.373, P=0.042). Multivariate linear regression analysis revealed that this correlation remained significant after age and sex adjustment (β=0.001, SE=0.001, P=0.024). No statistically significant associations were detected between (a) any two serum biomarkers or (b) between spleen-SUV measurements and any serum biomarker other than sIL-2R. Our analysis revealed an association between sIL-2R levels and spleen 18F-FDG uptake and size, whereas all other serum biomarkers were not significantly associated with each other or with PET 18F-FDG uptake. Our results suggest that splenic inflammation may be related to the systemic inflammatory response in sarcoidosis that may be associated with elevated sIL-2R levels.

  9. Radiation absorbed dose estimates for 18F-BPA PET.

    PubMed

    Kono, Yuzuru; Kurihara, Hiroaki; Kawamoto, Hiroshi; Yasui, Naoko; Honda, Naoki; Igaki, Hiroshi; Itami, Jun

    2017-09-01

    Background Boron neutron capture therapy (BNCT) is a molecular radiation therapy approach based on the 10 B (n, α) 7 Li nuclear reaction in cancer cells. In BNCT, delivery of 10 B in the form of 4-borono-phenylalanine conjugated with fructose (BPA-fr) to the cancer cells is important. The PET tracer 4-borono-2-18F-fluoro-phenylalanine (FBPA) has been used to predict the accumulation of BPA-fr before BNCT. Purpose To determine the biodistribution and dosimetric parameters in 18F-BPA PET/CT studies. Material and Methods Human biokinetic data were obtained during clinical 18F-BPA PET studies between February and June 2015 at one institution. Nine consecutive patients were studied prospectively. The internal radiation dose was calculated on the basis of radioactivity data from blood, urine, and normal tissue of the heart, liver, spleen, kidney, and other parts of the body at each time point using OLINDA/EXM1.1 program. We compared our calculations with published 18F-FDG data. Results Adult patients (3 men, 3 women; age range, 28-68 years) had significantly smaller absorbed doses than pediatric patients (3 patients; age range, 5-12 years) ( P = 0.003). The mean effective dose was 57% lower in adult patients compared with pediatric patients. Mean effective doses for 18F-BPA were 25% lower than those for 18F-FDG presented in International Commission of Radiation Protection (ICRP) publication 106. Conclusion We found significant differences in organ absorbed doses for 18F-BPA against those for 18F-FDG presented in ICRP publication 106. Mean effective doses for 18F-BPA were smaller than those for 18F-FDG in the publication by 0.5-38% (mean difference, 25%).

  10. Comparison of the biological effects of {sup 18}F at different intracellular levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashino, Genro, E-mail: kashino@oita-u.ac.jp; Hayashi, Kazutaka; Douhara, Kazumasa

    Highlights: • We estimated the inductions of DNA DSB in cell treated with {sup 18}F-FDG. • We found that inductions of DNA DSB are dependent on accumulation of {sup 18}F in cell. • Accumulation of {sup 18}F in cell may be indispensable for risk estimation of PET. - Abstract: We herein examined the biological effects of cells treated with {sup 18}F labeled drugs for positron emission tomography (PET). The relationship between the intracellular distribution of {sup 18}F and levels of damaged DNA has yet to be clarified in detail. We used culture cells (Chinese Hamster Ovary cells) treated with twomore » types of {sup 18}F labeled drugs, fluorodeoxyglucose (FDG) and fluorine ion (HF). FDG efficiently accumulated in cells, whereas HF did not. To examine the induction of DNA double strand breaks (DSB), we measured the number of foci for 53BP1 that formed at the site of DNA DSB. The results revealed that although radioactivity levels were the same, the induction of 53BP1 foci was stronger in cells treated with {sup 18}F-FDG than in those treated with {sup 18}F-HF. The clonogenic survival of cells was significantly lower with {sup 18}F-FDG than with {sup 18}F-HF. We concluded that the efficient accumulation of {sup 18}F in cells led to stronger biological effects due to more severe cellular lethality via the induction of DNA DSB.« less

  11. Unsuspected Active Ulcerative Colitis in a Patient With Dermatomyositis: A Rare Association Detected on 18F-FDG PET/CT During the Search for an Occult Malignancy.

    PubMed

    Rayamajhi, Sampanna Jung; Gorla, Arun Kumar Reddy; Basher, Rajender Kumar; Sood, Ashwani; Mittal, Bhagwant Rai

    2017-01-01

    Dermatomyositis is an inflammatory myopathy with the characteristic features of skin rash and myopathy. We here present a known case of dermatomyositis evaluated with 18 F-FDG PET/CT for the presence of any occult malignancy. The scan was negative for the presence of any malignancy. However, it revealed multiple intensely FDG avid colonic strictures that were later proven on colonoscopic biopsy to be ulcerative colitis. Also, a well-known association of bilateral sacroilitis was simultaneously demonstrated on the scan. The present case demonstrates that 18 F-FDG PET/CT imaging can serve as a one-stop shop imaging modality in dermatomyositis by facilitating detection of occult primary if any and by providing insight into other rare systemic associations.

  12. Evaluation of 99mTc-3PRGD2 integrin receptor imaging in hepatocellular carcinoma tumour-bearing mice: comparison with 18F-FDG metabolic imaging.

    PubMed

    Zheng, Jieling; Miao, Weibing; Huang, Chao; Lin, Haoxue

    2017-07-01

    Our study was designed to explore the utility of 99m Tc-HYNIC-PEG 4 -E[PEG 4 -c(RGDfK)] 2 ( 99m Tc-3PRGD 2 ) for the detection of hepatocellular carcinoma (HCC) and specifically to compare the diagnostic performance of 99m Tc-3PRGD 2 integrin receptor imaging and 2-18-fluoro-2-deoxy-D-glucose ( 18 F-FDG) metabolic imaging in a nude mouse model. 99m Tc-3PRGD 2 was synthesized using a HYNIC-3PRGD 2 lyophilized kit with 99m TcO 4 labelling. The nude mouse animal model was established by subcutaneously injecting 5 × 10 7 /ml HepG2 cells into the shoulder flank of each mouse. Biodistribution studies were performed at 0.5, 1, 2 and 4 h after intravenous administration of 0.37 MBq of 99m Tc-3PRGD 2 . Immunohistochemistry was performed to evaluate the expression level of integrin αvβ3 in the HCC tissues. Dynamic imaging was performed using list-mode after the administration of 55.5 MBq of 99m Tc-3PRGD 2 , to reconstruct the multiphase images and acquire the best initial scan time. At 8, 12, 16, 20 and 24 days after inoculation with HepG2 cells, 55.5 MBq of 99m Tc-3PRGD 2 and 37 MBq of 18 F-FDG were injected successively into the nude mouse model, subsequently, simultaneous SPECT/PET imaging was performed to calculate the tumour volume and tumour uptake of 99m Tc-3PRGD 2 and 18 F-FDG. The biodistribution study first validated that the tumour uptake of 99m Tc-3PRGD 2 at the different time points was higher than that of all the other organs tested in the experiment, except for the kidney. Integrin αvβ3 expressed highly in early stage HCC and declined for further necrosis of the tumour tissue. Subcutaneous tumours were visualized clearly with excellent contrast under 99m Tc-3PRGD 2 SPECT/CT imaging, and the multiphase imaging comparison showed the tumours were prominent at 0.5 h, suggesting that the best initial scan time is 0.5 h post-injection. The comparison of the imaging results of the two methods showed that 99m Tc-3PRGD 2 integrin receptor imaging was

  13. Choroidal metastasis from carcinoma of breast detected on F18-FDG PET CT scan: A case report and review of literature.

    PubMed

    Solav, Shrikant; Bhandari, Ritu; Sowani, Anuradha; Saxena, Sameer

    2010-10-01

    Intraocular choroidal metastasis is a very rare cause of blindness. Choroidal hemangioma and melanoma are other causes that may mimic the condition. Carcinoma of breast is the most common primary malignancy that accounts for choroidal metastasis in females and carcinoma of lung is the most common cause in males. Other primary neoplasms which can uncommonly metastasize to the choroid are testis, gastrointestinal tract, kidney, thyroid, pancreas, and prostate. Metastatic neoplasm to the eye outnumbers the primary tumors such as retinoblastomas and malignant melanoma. Sonography is usually the initial investigation after fundus examination to look for the architecture of the lesion. However, it lacks in specificity. We present a case of carcinoma of breast that had visual disturbances and wholebody F18-fluorodeoxyglucose, positron emission tomography-computerized tomography (FDG PET CT) revealed a choroidal lesion in addition to cerebral, pulmonary, and skeletal metastases. Choroidal metastasis from carcinoma of lung has been reported previously on FDG PET. To the best of our knowledge, this is the first case report of carcinoma of breast demonstrating choroid metastasis on F18-FDG PET CT scan.

  14. Development of a Primary Standard for Calibration of [18F]FDG Activity Measurement Systems

    NASA Astrophysics Data System (ADS)

    Capogni, M.; DeFelice, P.; Fazio, A.; Simonelli, F.; D'Ursi, V.; Pecorale, A.; Giliberti, C.; Abbas, K.

    2006-05-01

    The 18F national primary standard was developed by the INMRI-ENEA using the 4πβ Liquid Scintillation Spectrometry Method with 3H-Standard Efficiency Tracing. Measurements were performed at JRCIspra under a scientific collaboration between the Institute for Health and Consumer Production, the Amersham Health and the National Institute for Occupational Safety and Prevention (ISPESL). The goal of the work was to calibrate, with minimum uncertainty, the INMRI-ENEA transfer standard portable well-type ionisation chamber as well as other JRC-Ispra and Amersham Health reference Ionising Chambers used for FDG activity measurement.

  15. 18F-FDG PET/CT Equivalent of the Hepatic Hot Spot Sign With CT Correlation.

    PubMed

    Jundt, Michael C; Broski, Stephen M; Binkovitz, Larry A

    2018-05-01

    A 43-year-old woman presented with an FDG-avid mediastinal Ewing sarcoma invading and nearly occluding the superior vena cava. Geographic increased FDG uptake in hepatic segment IVA was the only other site of nonphysiologic FDG activity. This focal activity was without an underlying mass, had atypical morphology for a hepatic metastasis, and correlated well with prior CT findings of abnormal segment IVA enhancement resulting from the recruitment of portocaval collaterals. In the correct setting, the F-FDG hepatic hot spot should be considered in the differential of a focal FDG-avid hepatic lesion in segment IVA.

  16. Is liver SUV stable over time in ¹⁸F-FDG PET imaging?

    PubMed

    Laffon, Eric; Adhoute, Xavier; de Clermont, Henri; Marthan, Roger

    2011-12-01

    This work investigated whether (18)F-FDG PET standardized uptake value (SUV) is stable over time in the normal human liver. The SUV-versus-time curve, SUV(t), of (18)F-FDG in the normal human liver was derived from a kinetic model analysis. This derivation involved mean values of (18)F-FDG liver metabolism that were obtained from a patient series (n = 11), and a noninvasive population-based input function was used in each individual. Mean values (±95% reliability limits) of the (18)F-FDG uptake and release rate constant and of the fraction of free tracer in blood and interstitial volume were as follows: K = 0.0119 mL·min(-1)·mL(-1) (±0.0012), k(R) = 0.0065·min(-1) (±0.0009), and F = 0.21 mL·mL(-1) (±0.11), respectively. SUV(t) (corrected for (18)F physical decay) was derived from these mean values, showing that it smoothly peaks at 75-80 min on average after injection and that it is within 5% of the peak value between 50 and 110 min after injection. In the normal human liver, decay-corrected SUV(t) remains nearly constant (with a reasonable ±2.5% relative measurement uncertainty) if the time delay between tracer injection and PET acquisition is in the range of 50-110 min. In current clinical practice, the findings suggest that SUV of the normal liver can be used for comparison with SUV of suspected malignant lesions, if comparison is made within this time range.

  17. [18F]FDG imaging of head and neck tumours: comparison of hybrid PET and morphological methods.

    PubMed

    Dresel, S; Grammerstorff, J; Schwenzer, K; Brinkbäumer, K; Schmid, R; Pfluger, T; Hahn, K

    2003-07-01

    The aim of this study was to evaluate fluorine-18 fluorodeoxyglucose ([(18)F]FDG) imaging of head and neck tumours using a second- or third-generation hybrid PET device. Results were compared with the findings of spiral computed tomography (CT) and magnetic resonance imaging (MRI), and, as regards lymph node metastasis, the ultrasound findings. A total of 116 patients with head and neck tumours (83 males and 33 females aged 27-88 years) were examined using a hybrid PET scanner after injection of 185-350 MBq of [(18)F]FDG (Picker Prism 2000 XP-PCD, Marconi Axis gamma-PET(2) AZ). Hybrid PET examinations were performed in list mode using an axial filter. Reconstruction of data was performed iteratively. Ninety-six patients underwent CT using a multislice technique (Siemens Somatom Plus 4, Marconi MX 8000), 18 patients underwent MRI and 100 patients were examined by ultrasound. All findings were verified by histology, which was considered the gold standard, or, in the event of negative histology, by follow-up. Correct diagnosis of the primary or recurrent lesion was made in 73 of 85 patients using the hybrid PET scanner, in 50 of 76 patients on CT and in 7 of 10 patients on MRI. Hybrid PET successfully visualised metastatic disease in cervical lymph nodes in 28 of 34 patients, while 23 of 31 were correctly diagnosed with CT, 3 of 4 with MRI and 30 of 33 with ultrasound. False positive results regarding lymph node metastasis were seen in three patients with hybrid PET, in 14 patients with CT and in 13 patients with ultrasound. MRI yielded no false positive results concerning lymph node metastasis. In one patient, unrecognised metastatic lesions were seen on hybrid PET elsewhere in the body (lung: n=1; bone: n=1). Additional malignant lesions at sites other than the head and neck tumour were found in three patients (one patient with lung cancer, one patient with pelvic metastasis due to a carcinoma of the prostate and one patient with pulmonary metastasis due to breast

  18. Spectral Clustering Predicts Tumor Tissue Heterogeneity Using Dynamic 18F-FDG PET: A Complement to the Standard Compartmental Modeling Approach.

    PubMed

    Katiyar, Prateek; Divine, Mathew R; Kohlhofer, Ursula; Quintanilla-Martinez, Leticia; Schölkopf, Bernhard; Pichler, Bernd J; Disselhorst, Jonathan A

    2017-04-01

    In this study, we described and validated an unsupervised segmentation algorithm for the assessment of tumor heterogeneity using dynamic 18 F-FDG PET. The aim of our study was to objectively evaluate the proposed method and make comparisons with compartmental modeling parametric maps and SUV segmentations using simulations of clinically relevant tumor tissue types. Methods: An irreversible 2-tissue-compartmental model was implemented to simulate clinical and preclinical 18 F-FDG PET time-activity curves using population-based arterial input functions (80 clinical and 12 preclinical) and the kinetic parameter values of 3 tumor tissue types. The simulated time-activity curves were corrupted with different levels of noise and used to calculate the tissue-type misclassification errors of spectral clustering (SC), parametric maps, and SUV segmentation. The utility of the inverse noise variance- and Laplacian score-derived frame weighting schemes before SC was also investigated. Finally, the SC scheme with the best results was tested on a dynamic 18 F-FDG measurement of a mouse bearing subcutaneous colon cancer and validated using histology. Results: In the preclinical setup, the inverse noise variance-weighted SC exhibited the lowest misclassification errors (8.09%-28.53%) at all noise levels in contrast to the Laplacian score-weighted SC (16.12%-31.23%), unweighted SC (25.73%-40.03%), parametric maps (28.02%-61.45%), and SUV (45.49%-45.63%) segmentation. The classification efficacy of both weighted SC schemes in the clinical case was comparable to the unweighted SC. When applied to the dynamic 18 F-FDG measurement of colon cancer, the proposed algorithm accurately identified densely vascularized regions from the rest of the tumor. In addition, the segmented regions and clusterwise average time-activity curves showed excellent correlation with the tumor histology. Conclusion: The promising results of SC mark its position as a robust tool for quantification of tumor

  19. High-resolution(18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease.

    PubMed

    Chittiboina, Prashant; Montgomery, Blake K; Millo, Corina; Herscovitch, Peter; Lonser, Russell R

    2015-04-01

    OBJECT High-resolution PET (hrPET) performed using a high-resolution research tomograph is reported as having a resolution of 2 mm and could be used to detect corticotroph adenomas through uptake of(18)F-fluorodeoxyglucose ((18)F-FDG). To determine the sensitivity of this imaging modality, the authors compared(18)F-FDG hrPET and MRI detection of pituitary adenomas in Cushing disease (CD). METHODS Consecutive patients with CD who underwent preoperative(18)F-FDG hrPET and MRI (spin echo [SE] and spoiled gradient recalled [SPGR] sequences) were prospectively analyzed. Standardized uptake values (SUVs) were calculated from hrPET and were compared with MRI findings. Imaging findings were correlated to operative and histological findings. RESULTS Ten patients (7 females and 3 males) were included (mean age 30.8 ± 19.3 years; range 11-59 years). MRI revealed a pituitary adenoma in 4 patients (40% of patients) on SE and 7 patients (70%) on SPGR sequences.(18)F-FDG hrPET demonstrated increased(18)F-FDG uptake consistent with an adenoma in 4 patients (40%; adenoma size range 3-14 mm). Maximum SUV was significantly higher for(18)F-FDG hrPET-positive tumors (difference = 5.1, 95% CI 2.1-8.1; p = 0.004) than for(18)F-FDG hrPET-negative tumors.(18)F-FDG hrPET positivity was not associated with tumor volume (p = 0.2) or dural invasion (p = 0.5). Midnight and morning ACTH levels were associated with(18)F-FDG hrPET positivity (p = 0.01 and 0.04, respectively) and correlated with the maximum SUV (R = 0.9; p = 0.001) and average SUV (R = 0.8; p = 0.01). All(18)F-FDG hrPET-positive adenomas had a less than a 180% ACTH increase and(18)F-FDG hrPET-negative adenomas had a greater than 180% ACTH increase after CRH stimulation (p = 0.03). Three adenomas were detected on SPGR MRI sequences that were not detected by(18)F-FDG hrPET imaging. Two adenomas not detected on SE (but no adenomas not detected on SPGR) were detected on(18)F-FDG hrPET. CONCLUSIONS While(18)F-FDG hrPET imaging can

  20. The effects of segmentation algorithms on the measurement of 18F-FDG PET texture parameters in non-small cell lung cancer.

    PubMed

    Bashir, Usman; Azad, Gurdip; Siddique, Muhammad Musib; Dhillon, Saana; Patel, Nikheel; Bassett, Paul; Landau, David; Goh, Vicky; Cook, Gary

    2017-12-01

    Measures of tumour heterogeneity derived from 18-fluoro-2-deoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) scans are increasingly reported as potential biomarkers of non-small cell lung cancer (NSCLC) for classification and prognostication. Several segmentation algorithms have been used to delineate tumours, but their effects on the reproducibility and predictive and prognostic capability of derived parameters have not been evaluated. The purpose of our study was to retrospectively compare various segmentation algorithms in terms of inter-observer reproducibility and prognostic capability of texture parameters derived from non-small cell lung cancer (NSCLC) 18 F-FDG PET/CT images. Fifty three NSCLC patients (mean age 65.8 years; 31 males) underwent pre-chemoradiotherapy 18 F-FDG PET/CT scans. Three readers segmented tumours using freehand (FH), 40% of maximum intensity threshold (40P), and fuzzy locally adaptive Bayesian (FLAB) algorithms. Intraclass correlation coefficient (ICC) was used to measure the inter-observer variability of the texture features derived by the three segmentation algorithms. Univariate cox regression was used on 12 commonly reported texture features to predict overall survival (OS) for each segmentation algorithm. Model quality was compared across segmentation algorithms using Akaike information criterion (AIC). 40P was the most reproducible algorithm (median ICC 0.9; interquartile range [IQR] 0.85-0.92) compared with FLAB (median ICC 0.83; IQR 0.77-0.86) and FH (median ICC 0.77; IQR 0.7-0.85). On univariate cox regression analysis, 40P found 2 out of 12 variables, i.e. first-order entropy and grey-level co-occurence matrix (GLCM) entropy, to be significantly associated with OS; FH and FLAB found 1, i.e., first-order entropy. For each tested variable, survival models for all three segmentation algorithms were of similar quality, exhibiting comparable AIC values with overlapping 95% CIs. Compared with both

  1. Unsuspected Active Ulcerative Colitis in a Patient With Dermatomyositis: A Rare Association Detected on 18F-FDG PET/CT During the Search for an Occult Malignancy

    PubMed Central

    Rayamajhi, Sampanna Jung; Gorla, Arun Kumar Reddy; Basher, Rajender Kumar; Sood, Ashwani; Mittal, Bhagwant Rai

    2017-01-01

    Dermatomyositis is an inflammatory myopathy with the characteristic features of skin rash and myopathy. We here present a known case of dermatomyositis evaluated with 18F-FDG PET/CT for the presence of any occult malignancy. The scan was negative for the presence of any malignancy. However, it revealed multiple intensely FDG avid colonic strictures that were later proven on colonoscopic biopsy to be ulcerative colitis. Also, a well-known association of bilateral sacroilitis was simultaneously demonstrated on the scan. The present case demonstrates that 18F-FDG PET/CT imaging can serve as a one-stop shop imaging modality in dermatomyositis by facilitating detection of occult primary if any and by providing insight into other rare systemic associations. PMID:28533643

  2. Comparison of prone versus supine 18F-FDG-PET of locally advanced breast cancer: Phantom and preliminary clinical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, Jason M.; Rani, Sudheer D.; Li, Xia

    2015-07-15

    Purpose: Previous studies have demonstrated how imaging of the breast with patients lying prone using a supportive positioning device markedly facilitates longitudinal and/or multimodal image registration. In this contribution, the authors’ primary objective was to determine if there are differences in the standardized uptake value (SUV) derived from [{sup 18}F]fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) in breast tumors imaged in the standard supine position and in the prone position using a specialized positioning device. Methods: A custom positioning device was constructed to allow for breast scanning in the prone position. Rigid and nonrigid phantom studies evaluated differences in prone andmore » supine PET. Clinical studies comprised 18F-FDG-PET of 34 patients with locally advanced breast cancer imaged in the prone position (with the custom support) followed by imaging in the supine position (without the support). Mean and maximum values (SUV{sub peak} and SUV{sub max}, respectively) were obtained from tumor regions-of-interest for both positions. Prone and supine SUV were linearly corrected to account for the differences in 18F-FDG uptake time. Correlation, Bland–Altman, and nonparametric analyses were performed on uptake time-corrected and uncorrected data. Results: SUV from the rigid PET breast phantom imaged in the prone position with the support device was 1.9% lower than without the support device. In the nonrigid PET breast phantom, prone SUV with the support device was 5.0% lower than supine SUV without the support device. In patients, the median (range) difference in uptake time between prone and supine scans was 16.4 min (13.4–30.9 min), which was significantly—but not completely—reduced by the linear correction method. SUV{sub peak} and SUV{sub max} from prone versus supine scans were highly correlated, with concordance correlation coefficients of 0.91 and 0.90, respectively. Prone SUV{sub peak} and SUV{sub max} were

  3. Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG

    PubMed Central

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-01-01

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683

  4. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    DOE PAGES

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; ...

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less

  5. Multi-modality PET-CT imaging of breast cancer in an animal model using nanoparticle x-ray contrast agent and 18F-FDG

    NASA Astrophysics Data System (ADS)

    Badea, C. T.; Ghaghada, K.; Espinosa, G.; Strong, L.; Annapragada, A.

    2011-03-01

    Multi-modality PET-CT imaging is playing an important role in the field of oncology. While PET imaging facilitates functional interrogation of tumor status, the use of CT imaging is primarily limited to anatomical reference. In an attempt to extract comprehensive information about tumor cells and its microenvironment, we used a nanoparticle xray contrast agent to image tumor vasculature and vessel 'leakiness' and 18F-FDG to investigate the metabolic status of tumor cells. In vivo PET/CT studies were performed in mice implanted with 4T1 mammary breast cancer cells.Early-phase micro-CT imaging enabled visualization 3D vascular architecture of the tumors whereas delayedphase micro-CT demonstrated highly permeable vessels as evident by nanoparticle accumulation within the tumor. Both imaging modalities demonstrated the presence of a necrotic core as indicated by a hypo-enhanced region in the center of the tumor. At early time-points, the CT-derived fractional blood volume did not correlate with 18F-FDG uptake. At delayed time-points, the tumor enhancement in 18F-FDG micro-PET images correlated with the delayed signal enhanced due to nanoparticle extravasation seen in CT images. The proposed hybrid imaging approach could be used to better understand tumor angiogenesis and to be the basis for monitoring and evaluating anti-angiogenic and nano-chemotherapies.

  6. Reusable electrochemical cell for rapid separation of [18F]fluoride from [18O]water for flow-through synthesis of 18F-labeled tracers

    PubMed Central

    Sadeghi, Saman; Liang, Vincent; Cheung, Shilin; Woo, Suh; Wu, Curtis; Ly, Jimmy; Deng, Yuliang; Eddings, Mark; van Dam, R. Michael

    2015-01-01

    A brass-platinum electrochemical micro flow cell was developed to extract [18F]fluoride from an aqueous solution and release it into an organic based solution, suitable for subsequent radio-synthesis, in a fast and reliable manner. This cell does not suffer electrode erosion and is thus reusable while operating faster by enabling increased voltages. By optimizing temperature, trapping and release potentials, flow rates, and electrode materials, an overall [18F]fluoride trapping and release efficiency of 84±5% (n=7) was achieved. X-ray photoelectron spectroscopy (XPS) was used to analyze electrode surfaces of various metal-metal systems and the findings were correlated with the performance of the electrochemical cell. To demonstrate the reactivity of the released [18F]fluoride, the cell was coupled to a flow-through reactor and automated synthesis of [18F]FDG with a repeatable decay-corrected yield of 56±4% (n=4) was completed in <15 min. A multi-human dose of 5.92 GBq [18F]FDG was also demonstrated. PMID:23474380

  7. A multi-run chemistry module for the production of [18F]FDG

    NASA Astrophysics Data System (ADS)

    Sipe, B.; Murphy, M.; Best, B.; Zigler, S.; Lim, J.; Dorman, E.; Mangner, T.; Weichelt, M.

    2001-07-01

    We have developed a new chemistry module for the production of up to four batches of [18F]FDG. Prior to starting a batch sequence, the module automatically performs a series of self-diagnostic tests, including a reagent detection sequence. The module then executes a user-defined production sequence followed by an automated process to rinse tubing, valves, and the reaction vessel prior to the next production sequence. Process feedback from the module is provided to a graphical user interface by mass flow controllers, radiation detectors, a pressure switch, a pressure transducer, and an IR temperature sensor. This paper will describe the module, the operating system, and the results of multi-site trials, including production data and quality control results.

  8. Does Delayed-Time-Point Imaging Improve 18F-FDG-PET in Patients With MALT Lymphoma?: Observations in a Series of 13 Patients.

    PubMed

    Mayerhoefer, Marius E; Giraudo, Chiara; Senn, Daniela; Hartenbach, Markus; Weber, Michael; Rausch, Ivo; Kiesewetter, Barbara; Herold, Christian J; Hacker, Marcus; Pones, Matthias; Simonitsch-Klupp, Ingrid; Müllauer, Leonhard; Dolak, Werner; Lukas, Julius; Raderer, Markus

    2016-02-01

    To determine whether in patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue lymphoma (MALT), delayed-time-point 2-F-fluoro-2-deoxy-d-glucose-positron emission tomography (F-FDG-PET) performs better than standard-time-point F-FDG-PET. Patients with untreated histologically verified MALT lymphoma, who were undergoing pretherapeutic F-FDG-PET/computed tomography (CT) and consecutive F-FDG-PET/magnetic resonance imaging (MRI), using a single F-FDG injection, in the course of a larger-scale prospective trial, were included. Region-based sensitivity and specificity, and patient-based sensitivity of the respective F-FDG-PET scans at time points 1 (45-60 minutes after tracer injection, TP1) and 2 (100-150 minutes after tracer injection, TP2), relative to the reference standard, were calculated. Lesion-to-liver and lesion-to-blood SUVmax (maximum standardized uptake values) ratios were also assessed. F-FDG-PET at TP1 was true positive in 15 o f 23 involved regions, and F-FDG-PET at TP2 was true-positive in 20 of 23 involved regions; no false-positive regions were noted. Accordingly, region-based sensitivities and specificities were 65.2% (confidence interval [CI], 45.73%-84.67%) and 100% (CI, 100%-100%) for F-FDG-PET at TP1; and 87.0% (CI, 73.26%-100%) and 100% (CI, 100%-100%) for F-FDG-PET at TP2, respectively. FDG-PET at TP1 detected lymphoma in at least one nodal or extranodal region in 7 of 13 patients, and F-FDG-PET at TP2 in 10 of 13 patients; accordingly, patient-based sensitivity was 53.8% (CI, 26.7%-80.9%) for F-FDG-PET at TP1, and 76.9% (CI, 54.0%-99.8%) for F-FDG-PET at TP2. Lesion-to-liver and lesion-to-blood maximum standardized uptake value ratios were significantly lower at TP1 (ratios, 1.05 ± 0.40 and 1.52 ± 0.62) than at TP2 (ratios, 1.67 ± 0.74 and 2.56 ± 1.10; P = 0.003 and P = 0.001). Delayed-time-point imaging may improve F-FDG-PET in MALT lymphoma.

  9. 18F-Fluorodeoxyglucose Positron Emission Tomography/CT Scanning in Diagnosing Vascular Prosthetic Graft Infection

    PubMed Central

    Saleem, Ben R.; Pol, Robert A.; Slart, Riemer H. J. A.; Reijnen, Michel M. P. J.; Zeebregts, Clark J.

    2014-01-01

    Vascular prosthetic graft infection (VPGI) is a severe complication after vascular surgery. CT-scan is considered the diagnostic tool of choice in advanced VPGI. The incidence of a false-negative result using CT is relatively high, especially in the presence of low-grade infections. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning has been suggested as an alternative for the diagnosis and assessment of infectious processes. Hybrid 18F-FDG PET/CT has established the role of 18F-FDG PET for the assessment of suspected VPGI, providing accurate anatomic localization of the site of infection. However, there are no clear guidelines for the interpretation of the uptake patterns of 18F-FDG as clinical tool for VPGI. Based on the available literature it is suggested that a linear, diffuse, and homogeneous uptake should not be regarded as an infection whereas focal or heterogeneous uptake with a projection over the vessel on CT is highly suggestive of infection. Nevertheless, 18F-FDG PET and 18F-FDG PET/CT can play an important role in the detection of VPGI and monitoring response to treatment. However an accurate uptake and pattern recognition is warranted and cut-off uptake values and patterns need to be standardized before considering the technique to be the new standard. PMID:25210712

  10. Complementarity between 18F-FDG PET/CT and Ultrasonography or Angiography in Carotid Plaque Characterization

    PubMed Central

    Noh, Sang-Mi; Choi, Won Jun; Kang, Byeong-Teck; Jeong, Sang-Wuk; Lee, Dong Kun; Schellingerhout, Dawid; Yeo, Jeong-Seok

    2013-01-01

    Background and Purpose To estimate clinical roles of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) versus angiography and ultrasonography in carotid plaque characterization. Methods We characterized two groups of patients with recently (<1 month) symptomatic (n=14; age=71.8±8.6 years, mean±SD) or chronic (n=13, age=68.9±9.0 years) carotid stenosis using a battery of imaging tests: diffusion magnetic resonance (MR) imaging, MR or transfemoral angiography, duplex ultrasonography (DUS), and carotid FDG-PET/computed tomography. Results The degree of angiographic stenosis was greater in patients with recently symptomatic carotid plaques (67.5±21.5%) than in patients with chronic carotid plaques (32.4±26.8%, p=0.001). Despite the significant difference in the degree of stenosis, lesional maximum standardized uptake values (maxSUVs) on the carotid FDG-PET did not differ between the recently symptomatic (1.56±0.53) and chronic (1.56±0.34, p=0.65) stenosis groups. However, lesional-to-contralesional maxSUV ratios were higher in the recently symptomatic stenosis group (113±17%) than in the chronic stenosis group (98±10%, p=0.017). The grayscale median value of the lesional DUS echodensities was lower in the recently symptomatic stenosis group (28.2±10.0, n=9) than in the chronic stenosis group (53.9±14.0, n=8; p=0.001). Overall, there were no significant correlations between angiographic stenosis, DUS echodensity, and FDG-PET maxSUV. Case/subgroup analyses suggested complementarity between imaging modalities. Conclusions There were both correspondences and discrepancies between the carotid FDG-PET images and DUS or angiography data. Further studies are required to determine whether FDG-PET could improve the clinical management of carotid stenosis. PMID:23894241

  11. F-18 FDG PET/CT findings in a patient with bilateral orbital and gastric mucosa-associated lymphoid tissue lymphomas.

    PubMed

    Suga, Kazuyoshi; Yasuhiko, Kawakami; Hiyama, Atsuto; Takeda, Koumei; Matsunaga, Naofumi

    2009-09-01

    Orbital mucosa-associated lymphoid tissue (MALT) lymphoma is an uncommon disease, while the incidence is recently increasing. We describe the F-18 fluorodeoxyglucose positron emission tomography computerized tomography (FDG PET/CT) findings in a case of bilateral orbital MALT lymphomas with a coexisting gastric lesion. Although only the lesion in the left orbit was initially identified on MR imaging, FDG PET/CT scan unexpectedly and additionally could identify the tiny lesion of the contralateral orbit and the gastric lesion. This patient received radiotherapy to all these lesions, with a combination of rituximab monoclonal antibody therapy. The follow-up PET/CT studies at 3, 6, and 9 months and 1.5 years after treatment showed regression or disappearance of all these FDG-avid lesions. Accurate localization and staging are crucial to select an adequate treatment in MALT lymphoma at any location. This case indicates the feasibility of FDG PET/CT scan for accurate localization and staging and also for monitoring treatment in patients with orbital MALT lymphoma.

  12. Value of 18F-FDG PET/CT Combined With Tumor Markers in the Evaluation of Ascites.

    PubMed

    Han, Na; Sun, Xun; Qin, Chunxia; Hassan Bakari, Khamis; Wu, Zhijian; Zhang, Yongxue; Lan, Xiaoli

    2018-05-01

    The purpose of this study is to investigate the value of 18 F-FDG PET/CT combined with assessment of tumor markers in serum or ascites for the diagnosing and determining the prognosis of benign and malignant ascites. Patients with ascites of unknown cause who underwent evaluation with FDG PET/CT were included in this retrospective study. The maximum standardized uptake value (SUV max ) and levels of the tumor markers carbohydrate antigen-125 (CA-125) and carcinoembryonic antigen (CEA) in serum and ascites were recorded. The diagnostic values of FDG PET/CT, CEA and CA-125 levels in serum or ascites, and the combination of imaging plus tumor marker assessment were evaluated. Factors that were predictive of survival were also analyzed. A total of 177 patients were included. Malignant ascites was eventually diagnosed in 104 patients, and benign ascites was diagnosed in the remaining 73 patients. With the use of FDG PET/CT, 44 patients (42.3%) were found to have primary tumors. The sensitivity, specificity, and accuracy of FDG PET/CT were 92.3%, 83.6%, and 88.7%, respectively. CA-125 levels in serum and ascites showed much better sensitivity than did CEA levels, but they showed significantly lower specificity. If the combination of tumor markers and FDG PET/CT was analyzed, the sensitivity, specificity, and accuracy of tumor markers in serum were 96.6%, 78.1%, and 88.7%, and those of tumor markers in ascites were 97.7%, 80.0%, and 90.4%, respectively. Sex may be an important factor affecting survival time (hazard ratio, 0.471; p = 0.004), but age, CEA level, and FDG PET/CT findings could not predict survival. FDG PET/CT combined with assessment of tumor markers, especially CEA, increased the efficacy of diagnosis of ascites of unknown causes. Male sex conferred a poorer prognosis, whereas age, CEA level, and FDG uptake had no predictive significance in patients with malignant ascites.

  13. [Fluorodeoxiglucose F18 positron emission tomography imaging (F18FDG) for the assessment of rising levels of serum CA 19-9 in pancreatic mucinous cystadenocarcinoma. Report of one case].

    PubMed

    Canessa, José A; Larach, Jorge A; Massardo, Teresa; Parra, Juan; Jofré, Josefina; González, Patricio; Morales, Bernardo; Humeres, Pamela; Sierralta, Paulina; Galaz, Rodrigo

    2004-03-01

    We report a 38 year old female patient with a pancreatic mucinous cystadenocarcinoma. She presented at the onset with a peritoneal rupture that required emergency surgery. Five months later, the patient was subjected to a segmental pancreatectomy and splenectomy. One year later, the patient had a serious gastric bleeding secondary to a gastric ulcer. Due to a persistent increase in her CA 19-9 levels, a Positron Emission Tomography (PET) functional imaging with fluorine 18-deoxyglucose (F18FDG) was done. It showed an intense focal hypermetabolism in the gastric wall reported as a secondary tumour location. The patient was subjected to a total gastrectomy and Roux en Y anastomosis, with a good outcome. The pathological study confirmed the presence of a metastasis of an adenocarcinoma in the gastric wall. The relative value of CA 19-9 markers and FDG PET in pancreatic and gastric carcinomas is discussed.

  14. An unusual case of diffuse large B-cell lymphoma involving the vulva evaluated by 18F-FDG PET/CT.

    PubMed

    Treglia, Giorgio; Paone, Gaetano; Perriard, Ulrike; Ceriani, Luca; Giovanella, Luca

    2014-10-01

    We describe an unusual case of diffuse large B-cell lymphoma involving the vulva detected and staged by F-FDG PET/CT. An 83-year-old female patient with history of endometrial carcinoma underwent F-FDG PET/CT for follow-up. PET/CT detected an area of increased F-FDG uptake corresponding to a vulvar nodule; moderate and diffuse F-FDG uptake in the bone marrow was also evident. Based on these PET/CT findings, the patient underwent biopsy of the vulvar nodule. Histology demonstrated the presence of a diffuse large B-cell lymphoma of the vulva. Bone marrow biopsy was positive for lymphoid infiltration.

  15. Prognostic value of SUVmax measured by pretreatment 18F-FDG PET/CT in patients with primary gastric lymphoma.

    PubMed

    Hwang, Jae Pil; Lim, Ilhan; Byun, Byung Hyun; Kim, Byung Il; Choi, Chang Woon; Lim, Sang Moo

    2016-12-01

    The aim of this retrospective study was to determine whether glucose metabolism assessed by fluorine-18 fluorodeoxyglucose (F-FDG) PET/computed tomography (CT) provides prognostic information independent of established prognostic factors in patients with gastric lymphoma. We reviewed the medical records of 86 patients retrospectively (men, 42; women, 44; mean age 58±13 years) with pathologically proven gastric lymphoma (34 mucosa-associated lymphoid tissue and 52 aggressive non-Hodgkin's lymphoma). They underwent F-FDG PET/CT as part of a pretreatment work-up from February 2004 to July 2012. For the analysis, patients were classified by age, sex, Musshoff stage, serum lactate dehydrogenase, International Prognostic Index score, extragastric spread, and visual intensity [visual assessment and maximum standardized uptake value (SUVmax), respectively]. The relationship between F-FDG uptake and survival was analyzed using the Kaplan-Meier method with a log-rank test and Cox's proportional-hazard regression method. The median survival of all 86 study participants was 1117 days and the median SUV measured by PET/CT was 6.1 (range, 1.9-32.7). Patients with an SUVmax less than or equal to 5.2 survived significantly longer than patients with an SUVmax more than 5.2 (median, 1163 vs. 1004 days; P=0.003). Survival was also found to be significantly related to age (P=0.0005), histological type (P=0.004), extragastric spread (P=0.0004), International Prognostic Index score (P<0.0001), serum lactate dehydrogenase (P=0.02), stage (P<0.0001), and visual intensity (P=0.041). A multivariate analysis showed that patients with a higher SUVmax [P=0.021; 95% confidence interval (CI), 1.52-8.14; hazard ratio (HR)=6.29], older age (P=0.001; 95% CI, 4.64-219.96; HR=18.8), more aggressive histologic type (P=0.006; 95% CI, 2.20-70.63; HR=12.76), and higher stage (P=0.0006; 95% CI, 5.81-206.43; HR=17.48) showed worse survival. A higher SUVmax on pretreatment F-FDG PET/CT can predict poorer

  16. [68Ga]Pentixafor-PET/CT for imaging of chemokine receptor CXCR4 expression in multiple myeloma - Comparison to [18F]FDG and laboratory values.

    PubMed

    Lapa, Constantin; Schreder, Martin; Schirbel, Andreas; Samnick, Samuel; Kortüm, Klaus Martin; Herrmann, Ken; Kropf, Saskia; Einsele, Herrmann; Buck, Andreas K; Wester, Hans-Jürgen; Knop, Stefan; Lückerath, Katharina

    2017-01-01

    Chemokine (C-X-C motif) receptor 4 (CXCR4) is a key factor for tumor growth and metastasis in several types of human cancer including multiple myeloma (MM). Proof-of-concept of CXCR4-directed radionuclide therapy in MM has recently been reported. This study assessed the diagnostic performance of the CXCR4-directed radiotracer [ 68 Ga]Pentixafor in MM and a potential role for stratifying patients to CXCR4-directed therapies. Thirty-five patients with MM underwent [ 68 Ga]Pentixafor-PET/CT for evaluation of eligibility for endoradiotherapy. In 19/35 cases, [ 18 F]FDG-PET/CT for correlation was available. Scans were compared on a patient and on a lesion basis. Tracer uptake was correlated with standard clinical parameters of disease activity. [ 68 Ga]Pentixafor-PET detected CXCR4-positive disease in 23/35 subjects (66%). CXCR4-positivity at PET was independent from myeloma subtypes, cytogenetics or any serological parameters and turned out as a negative prognostic factor. In the 19 patients in whom a comparison to [ 18 F]FDG was available, [ 68 Ga]Pentixafor-PET detected more lesions in 4/19 (21%) subjects, [ 18 F]FDG proved superior in 7/19 (37%). In the remaining 8/19 (42%) patients, both tracers detected an equal number of lesions. [ 18 F]FDG-PET positivity correlated with [ 68 Ga]Pentixafor-PET positivity (p=0.018). [ 68 Ga]Pentixafor-PET provides further evidence that CXCR4 expression frequently occurs in advanced multiple myeloma, representing a negative prognostic factor and a potential target for myeloma specific treatment. However, selecting patients for CXCR4 directed therapies and prognostic stratification seem to be more relevant clinical applications for this novel imaging modality, rather than diagnostic imaging of myeloma.

  17. Diagnostic accuracy of 18F-FDG-PET and PET/CT in the differential diagnosis between malignant and benign pleural lesions: a systematic review and meta-analysis.

    PubMed

    Treglia, Giorgio; Sadeghi, Ramin; Annunziata, Salvatore; Lococo, Filippo; Cafarotti, Stefano; Bertagna, Francesco; Prior, John O; Ceriani, Luca; Giovanella, Luca

    2014-01-01

    To systematically review and meta-analyze published data about the diagnostic accuracy of fluorine-18-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) and PET/computed tomography (CT) in the differential diagnosis between malignant and benign pleural lesions. A comprehensive literature search of studies published through June 2013 regarding the diagnostic performance of (18)F-FDG-PET and PET/CT in the differential diagnosis of pleural lesions was carried out. All retrieved studies were reviewed and qualitatively analyzed. Pooled sensitivity, specificity, positive and negative likelihood ratio (LR+ and LR-) and diagnostic odds ratio (DOR) of (18)F-FDG-PET or PET/CT in the differential diagnosis of pleural lesions on a per-patient-based analysis were calculated. The area under the summary receiver operating characteristic curve (AUC) was calculated to measure the accuracy of these methods. Subanalyses considering device used (PET or PET/CT) were performed. Sixteen studies including 745 patients were included in the systematic review. The meta-analysis of 11 selected studies provided the following results: sensitivity 95% (95% confidence interval [95%CI]: 92-97%), specificity 82% (95%CI: 76-88%), LR+ 5.3 (95%CI: 2.4-11.8), LR- 0.09 (95%CI: 0.05-0.14), DOR 74 (95%CI: 34-161). The AUC was 0.95. No significant improvement of the diagnostic accuracy considering PET/CT studies only was found. (18)F-FDG-PET and PET/CT demonstrated to be accurate diagnostic imaging methods in the differential diagnosis between malignant and benign pleural lesions; nevertheless, possible sources of false-negative and false-positive results should be kept in mind. Copyright © 2014 AUR. Published by Elsevier Inc. All rights reserved.

  18. Assessment of the usefulness of the standardized uptake values and the radioactivity levels for the preoperative diagnosis of thyroid cancer measured by using 18F-FDG PET/CT dual-time-point imaging

    NASA Astrophysics Data System (ADS)

    Lee, Hyeon-Guck; Hong, Seong-Jong; Cho, Jae-Hwan; Han, Man-Seok; Kim, Tae-Hyung; Lee, Ik-Han

    2013-02-01

    The purpose of this study was to assess and compare the changes in the SUV (standardized uptake value), the 18F-FDG (18F-fluorodeoxyglucose) uptake pattern, and the radioactivity level for the diagnosis of thyroid cancer via dual-time-point 18F-FDG PET/CT (positron emission tomographycomputed tomography) imaging. Moreover, the study aimed to verify the usefulness and significance of SUV values and radioactivity levels to discriminate tumor malignancy. A retrospective analysis was performed on 40 patients who received 18F-FDG PET/CT for thyroid cancer as a primary tumor. To set the background, we compared changes in values by calculating the dispersion of scattered rays in the neck area and the lung apex, and by comparing the mean and SD (standard deviation) values of the maxSUV and the radioactivity levels. According to the statistical analysis of the changes in 18F-FDG uptake for the diagnosis of thyroid cancer, a high similarity was observed with the coefficient of determination being R2 = 0.939, in the SUVs and the radioactivity levels. Moreover, similar results were observed in the assessment of tumor malignancy using dual-time-point. The quantitative analysis method for assessing tumor malignancy using radioactivity levels was neither specific nor discriminative compared to the semi-quantitative analysis method.

  19. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    PubMed

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  20. Primary central nervous system lymphoma with lymphomatosis cerebri in an immunocompetent child: MRI and 18F-FDG PET-CT findings.

    PubMed

    Jain, Tarun K; Sharma, Punit; Suman, Sudhir K C; Faizi, Nauroze A; Bal, Chandrasekhar; Kumar, Rakesh

    2013-01-01

    Primary central nervous system lymphoma (PCNSL) is extremely rare in immunocompetent children. We present the magnetic resonance imaging (MRI) and (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET-CT) findings of such a case in a 14-year old immunocompetent boy. In this patient, PCNSL was associated with lymphomatosis cerebri. Familiarity with the findings of this rare condition will improve the diagnostic confidence of the nuclear radiologist and avoid misdiagnosis. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  1. Skeletal Muscle Metrics on Clinical 18F-FDG PET/CT Predict Health Outcomes in Patients with Sarcoma

    PubMed Central

    Foster, Brent; Boutin, Robert D.; Lenchik, Leon; Gedeon, David; Liu, Yu; Nittur, Vinay; Badawi, Ramsey D.; Li, Chin-Shang; Canter, Robert J.; Chaudhari, Abhijit J.

    2018-01-01

    The aim of this study was to determine the association of measures of skeletal muscle determined from 18F-FDG PET/CT with health outcomes in patients with soft-tissue sarcoma. 14 patients (8 women and 6 men; mean age 66.5 years) with sarcoma had PET/CT examinations. On CTs of the abdomen and pelvis, skeletal muscle was segmented, and cross-sectional muscle area, muscle volume, and muscle attenuation were determined. Within the segmented muscle, intramuscular fat area, volume, and density were derived. On PET images, the standardized uptake value (SUV) of muscle was determined. Regression analyses were conducted to determine the association between the imaging measures and health outcomes including overall survival (OS), local recurrence-free survival (LRFS), distant cancer recurrence (DCR), and major surgical complications (MSC). The association between imaging metrics and pre-therapy levels of serum C-reactive protein (CRP), creatinine, hemoglobin, and albumin was determined. Decreased volumetric muscle CT attenuation was associated with increased DCR. Increased PET SUV of muscle was associated with decreased OS and LRFS. Lower muscle SUV was associated with lower serum hemoglobin and albumin. Muscle measurements obtained on routine 18F-FDG PET/CT are associated with outcomes and serum hemoglobin and albumin in patients with sarcoma. PMID:29756042

  2. Skeletal Muscle Metrics on Clinical 18F-FDG PET/CT Predict Health Outcomes in Patients with Sarcoma.

    PubMed

    Foster, Brent; Boutin, Robert D; Lenchik, Leon; Gedeon, David; Liu, Yu; Nittur, Vinay; Badawi, Ramsey D; Li, Chin-Shang; Canter, Robert J; Chaudhari, Abhijit J

    2018-01-01

    The aim of this study was to determine the association of measures of skeletal muscle determined from 18 F-FDG PET/CT with health outcomes in patients with soft-tissue sarcoma. 14 patients (8 women and 6 men; mean age 66.5 years) with sarcoma had PET/CT examinations. On CTs of the abdomen and pelvis, skeletal muscle was segmented, and cross-sectional muscle area, muscle volume, and muscle attenuation were determined. Within the segmented muscle, intramuscular fat area, volume, and density were derived. On PET images, the standardized uptake value (SUV) of muscle was determined. Regression analyses were conducted to determine the association between the imaging measures and health outcomes including overall survival (OS), local recurrence-free survival (LRFS), distant cancer recurrence (DCR), and major surgical complications (MSC). The association between imaging metrics and pre-therapy levels of serum C-reactive protein (CRP), creatinine, hemoglobin, and albumin was determined. Decreased volumetric muscle CT attenuation was associated with increased DCR. Increased PET SUV of muscle was associated with decreased OS and LRFS. Lower muscle SUV was associated with lower serum hemoglobin and albumin. Muscle measurements obtained on routine 18 F-FDG PET/CT are associated with outcomes and serum hemoglobin and albumin in patients with sarcoma.

  3. Textural features and SUV-based variables assessed by dual time point 18F-FDG PET/CT in locally advanced breast cancer.

    PubMed

    Garcia-Vicente, Ana María; Molina, David; Pérez-Beteta, Julián; Amo-Salas, Mariano; Martínez-González, Alicia; Bueno, Gloria; Tello-Galán, María Jesús; Soriano-Castrejón, Ángel

    2017-12-01

    To study the influence of dual time point 18F-FDG PET/CT in textural features and SUV-based variables and their relation among them. Fifty-six patients with locally advanced breast cancer (LABC) were prospectively included. All of them underwent a standard 18F-FDG PET/CT (PET-1) and a delayed acquisition (PET-2). After segmentation, SUV variables (SUVmax, SUVmean, and SUVpeak), metabolic tumor volume (MTV), and total lesion glycolysis (TLG) were obtained. Eighteen three-dimensional (3D) textural measures were computed including: run-length matrices (RLM) features, co-occurrence matrices (CM) features, and energies. Differences between all PET-derived variables obtained in PET-1 and PET-2 were studied. Significant differences were found between the SUV-based parameters and MTV obtained in the dual time point PET/CT, with higher values of SUV-based variables and lower MTV in the PET-2 with respect to the PET-1. In relation with the textural parameters obtained in dual time point acquisition, significant differences were found for the short run emphasis, low gray-level run emphasis, short run high gray-level emphasis, run percentage, long run emphasis, gray-level non-uniformity, homogeneity, and dissimilarity. Textural variables showed relations with MTV and TLG. Significant differences of textural features were found in dual time point 18F-FDG PET/CT. Thus, a dynamic behavior of metabolic characteristics should be expected, with higher heterogeneity in delayed PET acquisition compared with the standard PET. A greater heterogeneity was found in bigger tumors.

  4. Dual Tracer PET Imaging (68Ga-DOTATATE and 18F-FDG) Features in Pulmonary Carcinoid: Correlation with Tumor Proliferation Index.

    PubMed

    Bhatkar, Dhiraj; Utpat, Ketaki; Basu, Sandip; Joshi, Jyotsna M

    2017-01-01

    Pulmonary carcinoid tumors are rare group of lung neoplasms representing 1% of all the lung tumors. The typical bronchial carcinoids showed higher and more selective uptake of 68 Ga-DOTATATE than of 18 F-FDG on PET-CT. The Ki-67(MIB-1), a tumor proliferation index is a prognostic marker in neuroendocrine tumors for estimating tumor progression. Atypical carcinoids have higher Ki-67 index and have an increased propensity to metastasize as compared to typical ones. 68 Ga-DOTATATE PET imaging along with Ki-67 can be correlated for better management of patients with neuroendocrine tumors. We describe the dual tracer imaging features in a patient of pulmonary carcinoid with avid 68 Ga-DOTATATE and minimal 18 FDG ( 18 Flurodeoxyglucose) uptake diagnosed on the basis of imaging and bronchoscopic biopsy and its correlation with tumor proliferation index.

  5. 18F-FDG PET/CT Finding of Drop Metastases from Germ Cell Tumor of Pineal Gland.

    PubMed

    Jain, Tarun K; Basher, Rajender K; Sood, Ashwani; Mittal, Bhagwant R; Prakash, Gaurav; Bhatia, Anmol

    2017-06-01

    Tumors of the pineal region are rare, accounting for fewer than 1% of all intracranial neoplasms. Fifty percent of pineal region tumors are germ cell tumors (GCTs). However, spinal seeding and extracranial metastases from intracranial GCTs are uncommon. We present a case of pineal gland GCT in which 18 F-FDG PET/CT imaging demonstrated drop metastases to the spinal cord in addition to tracer uptake in the primary lesion. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  6. Design of CGMP Production of 18F- and 68Ga-Radiopharmaceuticals

    PubMed Central

    Chu, Pei-Chun; Chao, Hao-Yu; Shieh, Wei-Chen; Chen, Chuck C.

    2014-01-01

    Objective. Radiopharmaceutical production process must adhere to current good manufacturing process (CGMP) compliance to ensure the quality of precursor, prodrug (active pharmaceutical ingredient, API), and the final drug product that meet acceptance criteria. We aimed to develop an automated system for production of CGMP grade of PET radiopharmaceuticals. Methods. The hardware and software of the automated synthesizer that fit in the hot cell under cGMP requirement were developed. Examples of production yield and purity for 68Ga-DOTATATE and 18F-FDG at CGMP facility were optimized. Analytical assays and acceptance criteria for cGMP grade of 68Ga-DOTATATE and 18F-FDG were established. Results. CGMP facility for the production of PET radiopharmaceuticals has been established. Radio-TLC and HPLC analyses of 68Ga-DOTATATE and 18F-FDG showed that the radiochemical purity was 92% and 96%, respectively. The products were sterile and pyrogenic-free. Conclusion. CGMP compliance of radiopharmaceuticals has been reviewed. 68Ga-DOTATATE and 18F-FDG were synthesized with high radiochemical yield under CGMP process. PMID:25276810

  7. 18F-FDG PET/CT evaluation of children and young adults with suspected spinal fusion hardware infection.

    PubMed

    Bagrosky, Brian M; Hayes, Kari L; Koo, Phillip J; Fenton, Laura Z

    2013-08-01

    Evaluation of the child with spinal fusion hardware and concern for infection is challenging because of hardware artifact with standard imaging (CT and MRI) and difficult physical examination. Studies using (18)F-FDG PET/CT combine the benefit of functional imaging with anatomical localization. To discuss a case series of children and young adults with spinal fusion hardware and clinical concern for hardware infection. These people underwent FDG PET/CT imaging to determine the site of infection. We performed a retrospective review of whole-body FDG PET/CT scans at a tertiary children's hospital from December 2009 to January 2012 in children and young adults with spinal hardware and suspected hardware infection. The PET/CT scan findings were correlated with pertinent clinical information including laboratory values of inflammatory markers, postoperative notes and pathology results to evaluate the diagnostic accuracy of FDG PET/CT. An exempt status for this retrospective review was approved by the Institution Review Board. Twenty-five FDG PET/CT scans were performed in 20 patients. Spinal fusion hardware infection was confirmed surgically and pathologically in six patients. The most common FDG PET/CT finding in patients with hardware infection was increased FDG uptake in the soft tissue and bone immediately adjacent to the posterior spinal fusion rods at multiple contiguous vertebral levels. Noninfectious hardware complications were diagnosed in ten patients and proved surgically in four. Alternative sources of infection were diagnosed by FDG PET/CT in seven patients (five with pneumonia, one with pyonephrosis and one with superficial wound infections). FDG PET/CT is helpful in evaluation of children and young adults with concern for spinal hardware infection. Noninfectious hardware complications and alternative sources of infection, including pneumonia and pyonephrosis, can be diagnosed. FDG PET/CT should be the first-line cross-sectional imaging study in patients

  8. Evaluation of (18)F-FDG PET and MRI in differentiating benign and malignant peripheral nerve sheath tumors.

    PubMed

    Broski, Stephen M; Johnson, Geoffrey B; Howe, Benjamin M; Nathan, Mark A; Wenger, Doris E; Spinner, Robert J; Amrami, Kimberly K

    2016-08-01

    To compare 18F-FDG PET/CT and MRI for differentiating benign and malignant peripheral nerve sheath tumors (BPNSTs and MPNSTs) and correlate imaging characteristics with histopathology. Patients with pathologically proven PNSTs undergoing 18F-FDG PET/CT were retrospectively reviewed. PET/CTs and, if available, MRIs were analyzed, noting multiple imaging characteristics and likely pathology (benign or malignant). Thirty-eight patients with 23 BPNSTs and 20 MPNSTs were analyzed. MPNSTs had higher SUVmax (10.1 ± 1.0, 4.2 ± 0.4, p < 0.0001), metabolic tumor volume (146.5 ± 39.4, 21.7 ± 6.6 cm(3), p = 0.01), total lesion glycolysis (640.7 ± 177.5, 89.9 ± 23.2 cm(3)*g/ml, p = 0.01), and SUVmax/LiverSUVmean (5.3 ± 0.5, 2.0 ± 0.2, p < 0.0001). All lesions with SUVmax < 4.3 were benign. All lesions with SUVmax > 8.1 were malignant. SUVmax cutoff of 6.1 yielded 90.0 % sensitivity and 78.3 % specificity for MPNSTs. SUVmax/LiverSUVmean cutoff of 3.0 yielded 90.0 % sensitivity and 82.6 % specificity. MPNSTs more commonly had heterogeneous FDG activity (p < 0.0001), perilesional edema (p = 0.004), cystic degeneration/necrosis (p = 0.015), and irregular margins (p = 0.004). There was no difference in lesion size, MRI signal characteristics, or enhancement. Expertly interpreted MRI had 62.5-81.3 % sensitivity and 94.1-100.0 % specificity while PET had 90.0-100.0 % sensitivity and 52.2-82.6 % specificity for diagnosing MPNSTs. FDG PET and MRI play a complementary role in PNST evaluation. Multiple metabolic parameters and MRI imaging characteristics are useful in differentiating BPNSTs from MPNSTs. This underscores the potential critical role of PET/MRI in these patients.

  9. TU-CD-BRB-10: 18F-FDG PET Image-Derived Tumor Features Highlight Altered Pathways Identified by Trancriptomic Analysis in Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tixier, F; INSERM UMR1101 LaTIM, Brest; Cheze-Le-Rest, C

    2015-06-15

    Purpose: Several quantitative features can be extracted from 18F-FDG PET images, such as standardized uptake values (SUVs), metabolic tumor volume (MTV), shape characterization (SC) or intra-tumor radiotracer heterogeneity quantification (HQ). Some of these features calculated from baseline 18F-FDG PET images have shown a prognostic and predictive clinical value. It has been hypothesized that these features highlight underlying tumor patho-physiological processes at smaller scales. The objective of this study was to investigate the ability of recovering alterations of signaling pathways from FDG PET image-derived features. Methods: 52 patients were prospectively recruited from two medical centers (Brest and Poitiers). All patients underwentmore » an FDG PET scan for staging and biopsies of both healthy and primary tumor tissues. Biopsies went through a transcriptomic analysis performed in four spates on 4×44k chips (Agilent™). Primary tumors were delineated in the PET images using the Fuzzy Locally Adaptive Bayesian algorithm and characterized using 10 features including SUVs, SC and HQ. A module network algorithm followed by functional annotation was exploited in order to link PET features with signaling pathways alterations. Results: Several PET-derived features were found to discriminate differentially expressed genes between tumor and healthy tissue (fold-change >2, p<0.01) into 30 co-regulated groups (p<0.05). Functional annotations applied to these groups of genes highlighted associations with well-known pathways involved in cancer processes, such as cell proliferation and apoptosis, as well as with more specific ones such as unsaturated fatty acids. Conclusion: Quantitative features extracted from baseline 18F-FDG PET images usually exploited only for diagnosis and staging, were identified in this work as being related to specific altered pathways and may show promise as tools for personalizing treatment decisions.« less

  10. F-18 sodium fluoride PET/CT does not effectively image myocardial inflammation due to suspected cardiac sarcoidosis.

    PubMed

    Weinberg, Richard L; Morgenstern, Rachelle; DeLuca, Albert; Chen, Jennifer; Bokhari, Sabahat

    2017-12-01

    Sarcoidosis is an inflammatory disorder of unknown etiology that can involve the heart. While effective in imaging cardiac sarcoidosis, F-18 fluorodeoxyglucose (FDG) PET/CT often shows non-specific myocardial uptake. F-18 sodium fluoride (NaF) has been used to image inflammation in coronary artery plaques and has low background myocardial uptake. Here, we evaluated whether F-18 NaF can image myocardial inflammation due to clinically suspected cardiac sarcoidosis. We performed a single institution pilot study testing if F-18 NaF PET/CT can detect myocardial inflammation in patients with suspected cardiac sarcoidosis. Patients underwent cardiac PET/CT with F-18 FDG as part of their routine care and subsequently received an F-18 NaF PET/CT scan. Three patients underwent F-18 FDG and F-18 NaF imaging. In all patients, there was F-18 FDG uptake consistent with cardiac sarcoidosis. The F-18 NaF PET/CT scans showed no myocardial uptake. In this small preliminary study, PET/CT scan using F-18 NaF does not appear to detect myocardial inflammation caused by suspected cardiac sarcoidosis.

  11. [18F]-FDG positron emission tomography--an established clinical tool opening a new window into exercise physiology.

    PubMed

    Rudroff, Thorsten; Kindred, John H; Kalliokoski, Kari K

    2015-05-15

    Positron emission tomography (PET) with [(18)F]-fluorodeoxyglucose (FDG) is an established clinical tool primarily used to diagnose and evaluate disease status in patients with cancer. PET imaging using FDG can be a highly valuable tool to investigate normal human physiology by providing a noninvasive, quantitative measure of glucose uptake into various cell types. Over the past years it has also been increasingly used in exercise physiology studies to identify changes in glucose uptake, metabolism, and muscle activity during different exercise modalities. Metabolically active cells transport FDG, an (18)fluorine-labeled glucose analog tracer, from the blood into the cells where it is then phosphorylated but not further metabolized. This metabolic trapping process forms the basis of this method's use during exercise. The tracer is given to a participant during an exercise task, and the actual PET imaging is performed immediately after the exercise. Provided the uptake period is of sufficient duration, and the imaging is performed shortly after the exercise; the captured image strongly reflects the metabolic activity of the cells used during the task. When combined with repeated blood sampling to determine tracer blood concentration over time, also known as the input function, glucose uptake rate of the tissues can be quantitatively calculated. This synthesis provides an accounting of studies using FDG-PET to measure acute exercise-induced skeletal muscle activity, describes the advantages and limitations of this imaging technique, and discusses its applications to the field of exercise physiology. Copyright © 2015 the American Physiological Society.

  12. Patient-specific optimisation of administered activity and acquisition times for 18F-FDG PET imaging.

    PubMed

    Wickham, Fred; McMeekin, Helena; Burniston, Maria; McCool, Daniel; Pencharz, Deborah; Skillen, Annah; Wagner, Thomas

    2017-12-01

    The purpose of this study is to identify a method for optimising the administered activity and acquisition time for 18 F-FDG PET imaging, yielding images of consistent quality for patients with varying body sizes and compositions, while limiting radiation doses to patients and staff. Patients referred for FDG scans had bioimpedance measurements. They were injected with 3 MBq/kg of 18 F up to 370 MBq and scanned on a Siemens Biograph mCT at 3 or 4 min per bed position. Data were rebinned to simulate 2- and 1-min acquisitions. Subjective assessments of image quality made by an experienced physician were compared with objective measurements based on signal-to-noise ratio and noise equivalent counts (NEC). A target objective measure of image quality was identified. The activity and acquisition time required to achieve this were calculated for each subject. Multiple regression analysis was used to identify expressions for the activity and acquisition time required in terms of easily measurable patient characteristics. One hundred and eleven patients were recruited, and subjective and objective assessments of image quality were compared for 321 full and reduced time scans. NEC-per-metre was identified as the objective measure which best correlated with the subjective assessment (Spearman rank correlation coefficient 0.77) and the best discriminator for images with a subjective assessment of "definitely adequate" (area under the ROC curve 0.94). A target of 37 Mcount/m was identified. Expressions were identified in terms of patient sex, height and weight for the activity and acquisition time required to achieve this target. Including measurements of body composition in these expressions was not useful. Using these expressions would reduce the mean activity administered to this patient group by 66 MBq compared to the current protocol. Expressions have been identified for the activity and acquisition times required to achieve consistent image quality in FDG imaging

  13. Static and dynamic (18) FDG-PET in normal hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Souza, Marcy J; Wall, Jonathan S; Stuckey, Alan; Daniel, Gregory B

    2011-01-01

    Positron emission tomography (PET) is often used to stage and monitor human cancer and has recently been used in a similar fashion in veterinary medicine. The most commonly used radiopharmaceutical is 2-Deoxy-2-[(18) F]-Fluoro-d-glucose ((18) F-FDG), which is concentrated and trapped within cells that use glucose as their energy substrate. We characterized the normal distribution of (18) F-FDG in 10 healthy Hispaniolan Amazon parrots (Amazona ventralis) by performing whole body PET scans at steady state, 60min after injection. Significant variability was found in the intestinal activity. Avian species are known to reflux fluid and electrolytes from their cloaca into their colon. To evaluate reflux as the cause of variability in intestinal distribution of (18) F-FDG, dynamic PET scans were performed on the coelomic cavity of six Hispaniolan Amazon parrots from time 0 to 60min postinjection of radiotracer. Reflux of radioactive material from the cloaca into the colon occurred in all birds to varying degrees and occurred before 60min. To evaluate the intestinal tract of clinical avian patients, dynamic scans must be performed starting immediately after injection so that increased radioactivity due to metabolism or hypermetabolic lesions such as cancer can be differentiated from increased radioactivity due to reflux of fluid from the cloaca. © 2010 Veterinary Radiology & Ultrasound.

  14. Diagnostic Accuracy of F-18 FDG PET/CT for Preoperative Lymph Node Staging in Newly Diagnosed Bladder Cancer Patients: A Systematic Review and Meta-Analysis.

    PubMed

    Ha, Hong Ku; Koo, Phillip J; Kim, Seong-Jang

    2018-05-30

    We aimed to assess the diagnostic accuracy of F-18 fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) for preoperative lymph node (LN) staging in newly diagnosed bladder cancer (BC) patients through a systematic review and meta-analysis. MEDLINE, Embase, and the Cochrane Library database, from the earliest available date of indexing through June 30, 2017, were searched for studies evaluating the diagnostic performance of F-18 FDG PET/CT for preoperative LN staging in newly diagnosed BC. We determined the sensitivities and specificities across studies, calculated positive and negative likelihood ratios (LR+ and LR-), and constructed summary receiver operating characteristic curves. Across 14 studies (785 patients), the pooled sensitivity was 0.57 (95% CI: 0.49-0.64) and the pooled specificity was 0.92 (95% CI: 0.87-0.95). The LR syntheses gave an overall LR+ of 7.4 (95% CI: 4.4-12.3) and an LR- of 0.47 (95% CI: 0.39-0.56). The pooled diagnostic odds ratio was 16 (95% CI: 9-28). F-18 FDG PET/CT shows a low sensitivity and high specificity for the detection of metastatic LNs in patients with newly diagnosed BC. © 2018 S. Karger AG, Basel.

  15. Positron Emission Tomography With 18F-Fluorodeoxyglucose in Patients With Sickle Cell Acute Chest Syndrome

    PubMed Central

    de Prost, Nicolas; Sasanelli, Myriam; Deux, Jean-François; Habibi, Anoosha; Razazi, Keyvan; Galactéros, Frédéric; Meignan, Michel; Maître, Bernard; Brun-Buisson, Christian; Itti, Emmanuel; Dessap, Armand Mekontso

    2015-01-01

    Abstract The acute chest syndrome (ACS) is the main cause of mortality among adult patients with sickle cell disease (SCD). Its pathophysiology is still unclear. Using positron emission tomography (PET) with 18F-fluorodeoxyglucose [18F-fluorodeoxyglucose (18F-FDG)], we explored the relationship between regional lung density and lung metabolism, as a reflection of lung neutrophilic infiltration during ACS. Patients were prospectively enrolled in a single-center study. Dual modality chest PET/computed tomography (CT) scans were performed, with 18F-FDG emission scans for quantification of regional 18F-FDG uptake and CT scans with radiocontrast agent to check for pulmonary artery thrombosis. Regional lung 18F-FDG uptake was quantified in ACS patients and in SCD patients without ACS (SCD non-ACS controls). Maximal (SUVmax) and mean (SUVmean) standardized uptake values were computed. Seventeen patients with ACS (mean age 28.3 ± 6.4 years) were included. None died nor required invasive mechanical ventilation. The main lung opacity on CT scans was lower lobe consolidation. Lungs of patients with ACS exhibited higher SUVmax than those of SCD non-ACS controls (2.5 [2.1–2.9] vs 0.8 [0.6–1.0]; P < 0.0001). Regional SUVmax and SUVmean was higher in lower than in upper lobes of ACS patients (P < 0.001) with a significant correlation between lung density and SUVmax (R2 = 0.78). SUVmean was higher in upper lobes of ACS patients than in lungs of SCD non-ACS controls (P < 0.001). Patients with SUVmax >2.5 had longer intensive care unit (ICU) stay than others (7 [6–11] vs 4 [3–6] days; P = 0.016). Lungs of patients with ACS exhibited higher 18F-FDG uptake than SCD non-ACS controls. Lung apices had normal aeration and lower 18F-FDG uptake than lung bases, but higher 18F-FDG uptake than lungs of SCD non-ACS controls. Patients with higher lung 18F-FDG uptake had longer ICU stay than others. PMID:25950690

  16. 18F-FLT PET/CT in the Evaluation of Pheochromocytomas and Paragangliomas: A Pilot Study.

    PubMed

    Blanchet, Elise M; Taieb, David; Millo, Corina; Martucci, Victoria; Chen, Clara C; Merino, Maria; Herscovitch, Peter; Pacak, Karel

    2015-12-01

    (18)F-FDG PET/CT has been proven to be a highly sensitive method for pheochromocytomas/paragangliomas (PHEOs/PGLs) associated with succinate dehydrogenase (SDH) mutations. This finding has been attributed to altered tumor cell metabolism resulting from these mutations and does not provide additional prognostic information to genotype. Therefore, identification of new biomarkers for aggressiveness is needed. A high Ki-67 index was proposed to be an additional prognostic factor. This pilot study aimed to evaluate 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) PET/CT, a PET proliferation tracer, as a potential imaging agent in a series of 12 PHEO/PGL patients with different genetic backgrounds, to compare (18)F-FLT uptake with (18)F-FDG PET/CT, and to evaluate classic factors of aggressiveness. Twelve patients (7 metastatic and 5 nonmetastatic) were prospectively evaluated with (18)F-FDG and (18)F-FLT and followed for at least 2 y after the initial imaging work-up. Uptake was assessed at a lesion level, visually and quantitatively by maximum standardized uptake values (SUVmax) for both tracers. (18)F-FLT uptake was compared with risk factors known to be linked with a poor prognosis in PGLs (SDHB-mutated status, lesion size, dopaminergic phenotype) and with (18)F-FDG uptake. In 12 patients, 77 lesions were assessed. All lesions had low (18)F-FLT uptake (median SUVmax, 2.25; range, 0.7-4.5). There was no apparent superiority of (18)F-FLT uptake in progressive lesions, and most of the lesions showed a mismatch, with high (18)F-FDG uptake (median SUVmax, 10.8; range, 1.1-79.0) contrasting with low (18)F-FLT uptake. This study suggests that PHEOs/PGLs-even those that progress-do not exhibit intense (18)F-FLT uptake. It provides the first in vivo demonstration that proliferation may not be a major determinant of (18)F-FDG uptake in these tumors. These findings provide new insight into the biologic behavior of PGL and suggest that antiproliferative agents may be suboptimal

  17. Metabolic tumor volume assessed by 18F-FDG PET/CT for the prediction of outcome in patients with multiple myeloma.

    PubMed

    Fonti, Rosa; Larobina, Michele; Del Vecchio, Silvana; De Luca, Serena; Fabbricini, Rossella; Catalano, Lucio; Pane, Fabrizio; Salvatore, Marco; Pace, Leonardo

    2012-12-01

    (18)F-FDG PET/CT allows the direct measurement of metabolic tumor burden in a variety of different malignancies. The aim of this study was to assess whether metabolic tumor volume (MTV) determined by (18)F-FDG PET/CT could be used in the prediction of progression-free and overall survival in multiple myeloma patients. Forty-seven patients (18 women, 29 men; mean age ± SD, 63 ± 11 y) with stage IIIA disease who had undergone whole-body (18)F-FDG PET/CT were retrospectively evaluated. Images underwent a 3-dimensional region-of-interest analysis including all focal lesions with a maximum standardized uptake value > 2.5. The MTV of each lesion was calculated using an automated contouring program based on the standardized uptake value and developed with a threshold of 40% of the maximum standardized uptake value. The total MTV of each patient was defined as the sum of metabolic volume of all focal lesions. Patients were treated and then subjected to a mean follow-up period of 24 mo. In the 47 patients studied, MTV range was 1.3-316.3 mL, with a median of 23.7 mL. A direct, significant correlation was found between MTV and the percentage of diffuse infiltration of bone marrow by plasma cells (r = 0.46, P = 0.006), whereas hemoglobin levels were inversely correlated with MTV (r = -0.56, P = 0.0001). At follow-up, patients who developed progressive disease (n = 18) showed a significantly higher MTV (74.7 ± 19.3 vs. 29.8 ± 5.1 mL, P = 0.009) than patients without progressive disease (n = 29). Furthermore, patients who died of myeloma (n = 9) had a significantly higher MTV (123.2 ± 30.6 vs. 28.9 ± 4.2 mL, P = 0.0001) than survivors (n = 38). No differences in age, plasma cell infiltration, M protein, albumin, β2-microglobulin, performance status, International Staging System score, and presence or absence of a bone marrow transplant were found between groups. The MTV cutoff level was determined by receiver-operating-characteristic curve analysis, and the best

  18. F-18 FDG PET, CT, and MRI for detecting the malignant potential in patients with gastrointestinal stromal tumors: A protocol for a network meta-analysis of diagnostic test accuracy.

    PubMed

    Wei, Kongyuan; Pan, Bei; Yang, Huan; Lu, Cuncun; Ge, Long; Cao, Nong

    2018-04-01

    Gastrointestinal stromal tumor (GIST) is a rare cancer in gastrointestinal carcinomas and has been widely known as a curable disease among all the digestive tumors. However, early detection of malignant potential in patients with GIST has still been a huge challenge all around the world. CT, MRI, and F-18 FDG PET are all considered as good tests for diagnosing malignant GIST efficiently, but no recommended suggestions presents which test among the 3 is the prior one in detecting the malignant potential of GIST. We perform this study to assess the accuracy between CT, MRI, and F-18 FDG PET through network meta-analysis method, and to rank these tests. PubMed, EMBASE.com, CNKI, and CBM databases will be searched without search date and language restrictions. We will include diagnostic tests which assessed the accuracy of CT, MRI, and F-18 FDG PET in detecting the malignant potential of GIST. The risk of bias in each study will be independently assessed as low, moderate, or high using criteria adapted from Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2). Meta-analysis will be performed using STATA 12.0 and R 3.4.1 software. The competing diagnostic tests will be ranked by a superiority index. This study is ongoing, and will be submitted to a peer-reviewed journal for publication. This study will provide a comprehensive evidence summary of CT, MRI, and F-18 FDG PET in detecting the malignant potential of GIST.

  19. Basal (18)F-FDG PET/CT as a predictive biomarker of tumor response for neoadjuvant therapy in breast cancer.

    PubMed

    García Vicente, A M; Soriano Castrejón, A; Pruneda-González, R E; Fernández Calvo, G; Muñoz Sánchez, M M; Álvarez Cabellos, R; Espinosa Aunión, R; Relea Calatayud, F

    2016-01-01

    To explore the relation between tumor kinetic assessed by (18)F-FDG PET and final neoadjuvant chemotherapy (NC) response within a molecular phenotype perspective. Prospective study included 144 women with breast cancer. All patients underwent a dual-time point (18)F-FDG PET/CT previous to NC. The retention index (RI), between SUV-1 and SUV-2 was calculated. Molecular subtypes were re-grouped in low, intermediate and high-risk biological phenotypes. After NC, all residual primary tumor specimens were histopathologically classified in tumor regression grades (TRG) and response groups. The relation between SUV-1, SUV-2 and RI with the TRG and response groups was evaluated in all molecular subtypes and in accordance with the risk categories. Responder's lesions showed significant greater SUVmax compared to non-responders. The RI value did not show any significant relation with response. Attending to molecular phenotypes, statistical differences were observed with greater SUV for responders having high-risk molecular subtypes. Glycolytic tumor characteristics showed a significant correlation with NC response and dependence of risk phenotype. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  20. Regional cerebral glucose metabolic abnormality in Prader-Willi syndrome: A 18F-FDG PET study under sedation.

    PubMed

    Kim, Sang Eun; Jin, Dong-Kyu; Cho, Sang Soo; Kim, Ji-Hae; Hong, Sungdo David; Paik, Kyung Hoon; Oh, Yoo Joung; Kim, An Hee; Kwon, Eun Kyung; Choe, Yon Ho

    2006-07-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by the nonexpression of paternal genes in the PWS region of chromosome 15q11-13 and is the most common cause of human syndromic obesity. We investigated regional brain metabolic impairment in children with PWS by 18F-FDG PET. Sixteen children with PWS (9 males, 7 females; mean age +/- SD, 4.2 +/- 1.1 y) and 7 healthy children (4 males, 3 females; mean age +/- SD, 4.0 +/- 1.7 y) underwent brain 18F-FDG PET in the resting state. The images of PWS children were compared using statistical parametric mapping analysis with those of healthy children in a voxelwise manner. Group comparison showed that children with PWS had decreased glucose metabolism in the right superior temporal gyrus and left cerebellar vermis, regions that are associated with taste perception/food reward and cognitive and emotional function, respectively. Metabolism was increased in the right orbitofrontal, bilateral middle frontal, right inferior frontal, left superior frontal, and bilateral anterior cingulate gyri, right temporal pole, and left uncus, regions that are involved in cognitive functions related to eating or obsessive-compulsive behavior. Interestingly, no significant metabolic abnormality was found in the hypothalamus, the brain region believed to be most involved in energy intake and expenditure. This study describes the neural substrate underlying the abnormal eating behavior and psychobehavioral problems of PWS.

  1. 18 F-FDG PET/CT for planning external beam radiotherapy alters therapy in 11% of 581 patients.

    PubMed

    Birk Christensen, Charlotte; Loft-Jakobsen, Annika; Munck Af Rosenschöld, Per; Højgaard, Liselotte; Roed, Henrik; Berthelsen, Anne K

    2018-03-01

    18 F-FDG PET/CT (FDG PET/CT) used in radiotherapy planning for extra-cerebral malignancy may reveal metastases to distant sites that may affect the choice of therapy. To investigate the role of FDG PET/CT on treatment strategy changes induced by the use of PET/CT as part of the radiotherapy planning. 'A major change of treatment strategy' was defined as either including more lesions in the gross tumour volume (GTV) distant from the primary tumour or a change in treatment modalities. The study includes 581 consecutive patients who underwent an FDG PET/CT scan for radiotherapy planning in our institution in the year 2008. All PET/CT scans were performed with the patient in treatment position with the use of immobilization devices according to the intended radiotherapy treatment. All scans were evaluated by a nuclear medicine physician together with a radiologist to delineate PET-positive GTV (GTV-PET). For 63 of the patients (11%), the PET/CT simulation scans resulted in a major change in treatment strategy because of the additional diagnostic information. Changes were most frequently observed in patients with lung cancer (20%) or upper gastrointestinal cancer (12%). In 65% of the patients for whom the PET/CT simulation scan revealed unexpected dissemination, radiotherapy was given - changed (n = 38) or unchanged (n = 13) according to the findings on the FDG PET/CT. Unexpected dissemination on the FDG PET/CT scanning performed for radiotherapy planning caused a change in treatment strategy in 11% of 581 patients. © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  2. 18F-FDG PET/MRI fusion in characterizing pancreatic tumors: comparison to PET/CT.

    PubMed

    Tatsumi, Mitsuaki; Isohashi, Kayako; Onishi, Hiromitsu; Hori, Masatoshi; Kim, Tonsok; Higuchi, Ichiro; Inoue, Atsuo; Shimosegawa, Eku; Takeda, Yutaka; Hatazawa, Jun

    2011-08-01

    To demonstrate that positron emission tomography (PET)/magnetic resonance imaging (MRI) fusion was feasible in characterizing pancreatic tumors (PTs), comparing MRI and computed tomography (CT) as mapping images for fusion with PET as well as fused PET/MRI and PET/CT. We retrospectively reviewed 47 sets of (18)F-fluorodeoxyglucose ((18)F -FDG) PET/CT and MRI examinations to evaluate suspected or known pancreatic cancer. To assess the ability of mapping images for fusion with PET, CT (of PET/CT), T1- and T2-weighted (w) MR images (all non-contrast) were graded regarding the visibility of PT (5-point confidence scale). Fused PET/CT, PET/T1-w or T2-w MR images of the upper abdomen were evaluated to determine whether mapping images provided additional diagnostic information to PET alone (3-point scale). The overall quality of PET/CT or PET/MRI sets in diagnosis was also assessed (3-point scale). These PET/MRI-related scores were compared to PET/CT-related scores and the accuracy in characterizing PTs was compared. Forty-three PTs were visualized on CT or MRI, including 30 with abnormal FDG uptake and 13 without. The confidence score for the visibility of PT was significantly higher on T1-w MRI than CT. The scores for additional diagnostic information to PET and overall quality of each image set in diagnosis were significantly higher on the PET/T1-w MRI set than the PET/CT set. The diagnostic accuracy was higher on PET/T1-w or PET/T2-w MRI (93.0 and 90.7%, respectively) than PET/CT (88.4%), but statistical significance was not obtained. PET/MRI fusion, especially PET with T1-w MRI, was demonstrated to be superior to PET/CT in characterizing PTs, offering better mapping and fusion image quality.

  3. Diagnostic performance of 18F-FDG PET/CT and whole-body diffusion-weighted imaging with background body suppression (DWIBS) in detection of lymph node and bone metastases from pediatric neuroblastoma.

    PubMed

    Ishiguchi, Hiroaki; Ito, Shinji; Kato, Katsuhiko; Sakurai, Yusuke; Kawai, Hisashi; Fujita, Naotoshi; Abe, Shinji; Narita, Atsushi; Nishio, Nobuhiro; Muramatsu, Hideki; Takahashi, Yoshiyuki; Naganawa, Shinji

    2018-06-01

    Recent many studies have shown that whole body "diffusion-weighted imaging with background body signal suppression" (DWIBS) seems a beneficial tool having higher tumor detection sensitivity without ionizing radiation exposure for pediatric tumors. In this study, we evaluated the diagnostic performance of whole body DWIBS and 18 F-FDG PET/CT for detecting lymph node and bone metastases in pediatric patients with neuroblastoma. Subjects in this retrospective study comprised 13 consecutive pediatric patients with neuroblastoma (7 males, 6 females; mean age, 2.9 ± 2.0 years old) who underwent both 18 F-FDG PET/CT and whole-body DWIBS. All patients were diagnosed as neuroblastoma on the basis of pathological findings. Eight regions of lymph nodes and 17 segments of skeletons in all patients were evaluated. The images of 123 I-MIBG scintigraphy/SPECT-CT, bone scintigraphy/SPECT, and CT were used to confirm the presence of lymph node and bone metastases. Two radiologists trained in nuclear medicine evaluated independently the uptake of lesions in 18 F-FDG PET/CT and the signal-intensity of lesions in whole-body DWIBS visually. Interobserver difference was overcome through discussion to reach a consensus. The sensitivities, specificities, and overall accuracies of 18 F-FDG PET/CT and whole-body DWIBS were compared using McNemer's test. Positive predictive values (PPVs) and negative predictive values (NPVs) of both modalities were compared using Fisher's exact test. The total numbers of lymph node regions and bone segments which were confirmed to have metastasis in the total 13 patients were 19 and 75, respectively. The sensitivity, specificity, overall accuracy, PPV, and NPV of 18 F-FDG PET/CT for detecting lymph node metastasis from pediatric neuroblastoma were 100, 98.7, 98.9, 95.0, and 100%, respectively, and those for detecting bone metastasis were 90.7, 73.1, 80.3, 70.1, and 91.9%, respectively. In contrast, the sensitivity, specificity, overall accuracy, PPV

  4. Individualized threshold for tumor segmentation in 18F-FDG PET/CT imaging: The key for response evaluation of neoadjuvant chemoradiation therapy in patients with rectal cancer?

    PubMed

    Fagundes, Theara C; Mafra, Arnoldo; Silva, Rodrigo G; Castro, Ana C G; Silva, Luciana C; Aguiar, Priscilla T; Silva, Josiane A; P Junior, Eduardo; Machado, Alexei M; Mamede, Marcelo

    2018-02-01

    The standard treatment for locally advanced rectal cancer (RC) consists of neoadjuvant chemoradiation followed by radical surgery. Regardless the extensive use of SUVmax in 18F-FDG PET tumor uptake as representation of tumor glycolytic consumption, there is a trend to apply metabolic volume instead. Thus, the aim of the present study was to evaluate a noninvasive method for tumor segmentation using the 18F-FDG PET imaging in order to predict response to neoadjuvant chemoradiation therapy in patients with rectal cancer. The sample consisted of stage II and III rectal cancer patients undergoing 18F-FDG PET/CT examination before and eight weeks after neoadjuvant therapy. An individualized tumor segmentation methodology was applied to generate tumor volumes (SUV2SD) and compare with standard SUVmax and fixed threshold (SUV40%, SUV50% and SUV60%) pre- and post-therapy. Therapeutic response was assessed in the resected specimens using Dworak's protocol recommendations. Several variables were generated and compared with the histopathological results. Seventeen (17) patients were included and analyzed. Significant differences were observed between responders (Dworak 3 and 4) and non-responders for SUVmax-2 (p<0.01), SUV2SD-2 (p<0.05), SUV40%-2 (p<0.05), SUV50%-2 (p<0.05) and SUV60%-2 (p<0.05). ROC analyses showed significant areas under the curve (p<0.01) for the proposed methodology with sensitivity and specificity varying from 60% to 83% and 73% to 82%, respectively. The present study confirmed the predictive power of the variables using a noninvasive individualized methodology for tumor segmentation based on 18F-FDG PET/CT imaging for response evaluation in patients with rectal cancer after neoadjuvant chemoradiation therapy.

  5. Dual-Tracer PET/CT Using 18F-FDG and 11C-Acetate in Gastric Adenocarcinoma With Liver Metastasis.

    PubMed

    Vardhanabhuti, Varut; Lo, Anthony W I; Lee, Elaine Y P; Law, Simon Y K

    2016-11-01

    Dual-tracer F-FDG and C-acetate PET/CT has been shown to demonstrate good sensitivity and specificity for the diagnosis of hepatocellular carcinoma. We present a case of gastric adenocarcinoma with liver metastasis with positive uptake of F-FDG and C-acetate highlighting an unusual appearance in dual-tracer PET/CT.

  6. Tumor Metabolism and Perfusion in Head and Neck Squamous Cell Carcinoma: Pretreatment Multimodality Imaging With {sup 1}H Magnetic Resonance Spectroscopy, Dynamic Contrast-Enhanced MRI, and [{sup 18}F]FDG-PET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jansen, Jacobus F.A.; Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, New York; Department of Radiology, Maastricht University Medical Center, Maastricht

    2012-01-01

    Purpose: To correlate proton magnetic resonance spectroscopy ({sup 1}H-MRS), dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), and {sup 18}F-labeled fluorodeoxyglucose positron emission tomography ([{sup 18}F]FDG PET) of nodal metastases in patients with head and neck squamous cell carcinoma (HNSCC) for assessment of tumor biology. Additionally, pretreatment multimodality imaging was evaluated for its efficacy in predicting short-term response to treatment. Methods and Materials: Metastatic neck nodes were imaged with {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET in 16 patients with newly diagnosed HNSCC, before treatment. Short-term patient radiological response was evaluated at 3 to 4 months. Correlations among {sup 1}H-MRS (choline concentrationmore » relative to water [Cho/W]), DCE-MRI (volume transfer constant [K{sup trans}]; volume fraction of the extravascular extracellular space [v{sub e}]; and redistribution rate constant [k{sub ep}]), and [{sup 18}F]FDG PET (standard uptake value [SUV] and total lesion glycolysis [TLG]) were calculated using nonparametric Spearman rank correlation. To predict short-term responses, logistic regression analysis was performed. Results: A significant positive correlation was found between Cho/W and TLG ({rho} = 0.599; p = 0.031). Cho/W correlated negatively with heterogeneity measures of standard deviation std(v{sub e}) ({rho} = -0.691; p = 0.004) and std(k{sub ep}) ({rho} = -0.704; p = 0.003). Maximum SUV (SUVmax) values correlated strongly with MRI tumor volume ({rho} = 0.643; p = 0.007). Logistic regression indicated that std(K{sup trans}) and SUVmean were significant predictors of short-term response (p < 0.07). Conclusion: Pretreatment multimodality imaging using {sup 1}H-MRS, DCE-MRI, and [{sup 18}F]FDG PET is feasible in HNSCC patients with nodal metastases. Additionally, combined DCE-MRI and [{sup 18}F]FDG PET parameters were predictive of short-term response to treatment.« less

  7. Hepatosplenic Cat-Scratch Disease in Children and the Positive Contribution of 18F-FDG Imaging.

    PubMed

    Kraft, Karianne E; Doedens, Rienus A; Slart, Riemer H J A

    2015-09-01

    Two patients were referred to our hospital because of suspected malignancy. In patient 1, a 4-year-old boy, a F-FDG PET scan showed an enlarged liver with multiple FDG-positive nodular lesions. In patient 2, a 16-year-old boy, a FDG PET-(low-dose) CT showed an enlarged liver and spleen with multiple nodular lesions and a solitary hypodense nodule adjacent to the pancreatic head. The lesions were thought to originate from infectious disease or lymphoma. Polymeric chain reaction (PCR) on a liver biopsy was positive for Bartonella henselae. Both patients were treated with antibiotics and recovered completely.

  8. Multicenter Clinical Trials Using 18F-FDG PET to Measure Early Response to Oncologic Therapy: Effects of Injection-to-Acquisition Time Variability on Required Sample Size.

    PubMed

    Kurland, Brenda F; Muzi, Mark; Peterson, Lanell M; Doot, Robert K; Wangerin, Kristen A; Mankoff, David A; Linden, Hannah M; Kinahan, Paul E

    2016-02-01

    Uptake time (interval between tracer injection and image acquisition) affects the SUV measured for tumors in (18)F-FDG PET images. With dissimilar uptake times, changes in tumor SUVs will be under- or overestimated. This study examined the influence of uptake time on tumor response assessment using a virtual clinical trials approach. Tumor kinetic parameters were estimated from dynamic (18)F-FDG PET scans of breast cancer patients and used to simulate time-activity curves for 45-120 min after injection. Five-minute uptake time frames followed 4 scenarios: the first was a standardized static uptake time (the SUV from 60 to 65 min was selected for all scans), the second was uptake times sampled from an academic PET facility with strict adherence to standardization protocols, the third was a distribution similar to scenario 2 but with greater deviation from standards, and the fourth was a mixture of hurried scans (45- to 65-min start of image acquisition) and frequent delays (58- to 115-min uptake time). The proportion of out-of-range scans (<50 or >70 min, or >15-min difference between paired scans) was 0%, 20%, 44%, and 64% for scenarios 1, 2, 3, and 4, respectively. A published SUV correction based on local linearity of uptake-time dependence was applied in a separate analysis. Influence of uptake-time variation was assessed as sensitivity for detecting response (probability of observing a change of ≥30% decrease in (18)F-FDG PET SUV given a true decrease of 40%) and specificity (probability of observing an absolute change of <30% given no true change). Sensitivity was 96% for scenario 1, and ranged from 73% for scenario 4 (95% confidence interval, 70%-76%) to 92% (90%-93%) for scenario 2. Specificity for all scenarios was at least 91%. Single-arm phase II trials required an 8%-115% greater sample size for scenarios 2-4 than for scenario 1. If uptake time is known, SUV correction methods may raise sensitivity to 87%-95% and reduce the sample size increase to less

  9. Correlation of EGFR or KRAS mutation status with 18F-FDG uptake on PET-CT scan in lung adenocarcinoma.

    PubMed

    Takamochi, Kazuya; Mogushi, Kaoru; Kawaji, Hideya; Imashimizu, Kota; Fukui, Mariko; Oh, Shiaki; Itoh, Masayoshi; Hayashizaki, Yoshihide; Ko, Weijey; Akeboshi, Masao; Suzuki, Kenji

    2017-01-01

    18F-fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography (PET) is a functional imaging modality based on glucose metabolism. The correlation between EGFR or KRAS mutation status and the standardized uptake value (SUV) of 18F-FDG PET scanning has not been fully elucidated. Correlations between EGFR or KRAS mutation status and clinicopathological factors including SUVmax were statistically analyzed in 734 surgically resected lung adenocarcinoma patients. Molecular causal relationships between EGFR or KRAS mutation status and glucose metabolism were then elucidated in 62 lung adenocarcinomas using cap analysis of gene expression (CAGE), a method to determine and quantify the transcription initiation activities of mRNA across the genome. EGFR and KRAS mutations were detected in 334 (46%) and 83 (11%) of the 734 lung adenocarcinomas, respectively. The remaining 317 (43%) patients had wild-type tumors for both genes. EGFR mutations were more frequent in tumors with lower SUVmax. In contrast, no relationship was noted between KRAS mutation status and SUVmax. CAGE revealed that 4 genes associated with glucose metabolism (GPI, G6PD, PKM2, and GAPDH) and 5 associated with the cell cycle (ANLN, PTTG1, CIT, KPNA2, and CDC25A) were positively correlated with SUVmax, although expression levels were lower in EGFR-mutated than in wild-type tumors. No similar relationships were noted with KRAS mutations. EGFR-mutated adenocarcinomas are biologically indolent with potentially lower levels of glucose metabolism than wild-type tumors. Several genes associated with glucose metabolism and the cell cycle were specifically down-regulated in EGFR-mutated adenocarcinomas.

  10. Prognostic value of 18F-FDG-PET/CT in patients with nasopharyngeal carcinoma: a systematic review and meta-analysis.

    PubMed

    Lin, Jie; Xie, Guozhu; Liao, Guixiang; Wang, Baiyao; Yan, Miaohong; Li, Hui; Yuan, Yawei

    2017-05-16

    The prognostic role of 18F-fluorodeoxyglucose positron emission tomography CT (18F-FDG PET/CT) parameters is still controversial in nasopharyngeal carcinoma patients. We sought to perform a systematic review and meta-analysis to explore the prognostic value of maximal standardized uptake value (SUVmax), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) on event-free survival (EFS) and overall survival (OS) in nasopharyngeal carcinoma patients. Fifteen studies comprising 1,938 patients were included in this study. The combined hazard ratios (HRs) for EFS were 2.63 (95%CI 1.71-4.05) for SUVmax, 2.55 (95%CI 1.49-4.35) for MTV, and 3.32 (95%CI 1.23-8.95) for TLG. The pooled HRs for OS were 2.07 (95%CI 1.54-2.79) for SUVmax, 3.86 (95%CI 1.85-8.06) for MTV, and 2.60 (95%CI 1.55-4.34) for TLG. The prognostic role of SUVmax, MTV and TLG remained similar in the sub-group analyses. A systematic literature search was performed to identify studies which associated 18F-FDG PET/CT to clinical survival outcomes of nasopharyngeal carcinoma patients. The summarized HRs for EFS and OS were estimated by using fixed- or random-effect models according to heterogeneity between trials. The present meta-analysis confirms that high values of SUVmax, MTV and TLG predicted a higher risk of adverse events or death in patients with nasopharyngeal carcinoma, despite clinically heterogeneous nasopharyngeal carcinoma patients and the various methods adopted between these studies.

  11. Longer-Term Investigation of the Value of 18F-FDG-PET and Magnetic Resonance Imaging for Predicting the Conversion of Mild Cognitive Impairment to Alzheimer's Disease: A Multicenter Study.

    PubMed

    Inui, Yoshitaka; Ito, Kengo; Kato, Takashi

    2017-01-01

    The value of fluorine-18-fluorodeoxyglucose positron emission tomography (18F-FDG-PET) and magnetic resonance imaging (MRI) for predicting conversion of mild cognitive impairment (MCI) to Alzheimer's disease (AD) in longer-term is unclear. To evaluate longer-term prediction of MCI to AD conversion using 18F-FDG-PET and MRI in a multicenter study. One-hundred and fourteen patients with MCI were followed for 5 years. They underwent clinical and neuropsychological examinations, 18F-FDG-PET, and MRI at baseline. PET images were visually classified into predefined dementia patterns. PET scores were calculated as a semi quantitative index. For structural MRI, z-scores in medial temporal area were calculated by automated volume-based morphometry (VBM). Overall, 72% patients with amnestic MCI progressed to AD during the 5-year follow-up. The diagnostic accuracy of PET scores over 5 years was 60% with 53% sensitivity and 84% specificity. Visual interpretation of PET images predicted conversion to AD with an overall 82% diagnostic accuracy, 94% sensitivity, and 53% specificity. The accuracy of VBM analysis presented little fluctuation through 5 years and it was highest (73%) at the 5-year follow-up, with 79% sensitivity and 63% specificity. The best performance (87.9% diagnostic accuracy, 89.8% sensitivity, and 82.4% specificity) was with a combination identified using multivariate logistic regression analysis that included PET visual interpretation, educational level, and neuropsychological tests as predictors. 18F-FDG-PET visual assessment showed high performance for predicting conversion to AD from MCI, particularly in combination with neuropsychological tests. PET scores showed high diagnostic specificity. Structural MRI focused on the medial temporal area showed stable predictive value throughout the 5-year course.

  12. Direct mapping of 19F in 19FDG-6P in brain tissue at subcellular resolution using soft X-ray fluorescence

    NASA Astrophysics Data System (ADS)

    Poitry-Yamate, C.; Gianoncelli, A.; Kourousias, G.; Kaulich, B.; Lepore, M.; Gruetter, R.; Kiskinova, M.

    2013-10-01

    Low energy x-ray fluorescence (LEXRF) detection was optimized for imaging cerebral glucose metabolism by mapping the fluorine LEXRF signal of 19F in 19FDG, trapped as intracellular 19F-deoxyglucose-6-phosphate (19FDG-6P) at 1μm spatial resolution from 3μm thick brain slices. 19FDG metabolism was evaluated in brain structures closely resembling the general cerebral cytoarchitecture following formalin fixation of brain slices and their inclusion in an epon matrix. 2-dimensional distribution maps of 19FDG-6P were placed in a cytoarchitectural and morphological context by simultaneous LEXRF mapping of N and O, and scanning transmission x-ray (STXM) imaging. A disproportionately high uptake and metabolism of glucose was found in neuropil relative to intracellular domains of the cell body of hypothalamic neurons, showing directly that neurons, like glial cells, also metabolize glucose. As 19F-deoxyglucose-6P is structurally identical to 18F-deoxyglucose-6P, LEXRF of subcellular 19F provides a link to in vivo 18FDG PET, forming a novel basis for understanding the physiological mechanisms underlying the 18FDG PET image, and the contribution of neurons and glia to the PET signal.

  13. Impact of dual-time-point F-18 FDG PET/CT in the assessment of pleural effusion in patients with non-small-cell lung cancer.

    PubMed

    Alkhawaldeh, Khaled; Biersack, Hans-J; Henke, Anna; Ezziddin, Samer

    2011-06-01

    The aim of this study was to assess the utility of dual-time-point F-18 fluorodeoxyglucose positron emission tomography (F-18 FDG PET) in differentiating benign from malignant pleural disease, in patients with non-small-cell lung cancer. A total of 61 patients with non-small-cell lung cancer and pleural effusion were included in this retrospective study. All patients had whole-body FDG PET/CT imaging at 60 ± 10 minutes post-FDG injection, whereas 31 patients had second-time delayed imaging repeated at 90 ± 10 minutes for the chest. Maximum standardized uptake values (SUV(max)) and the average percent change in SUV(max) (%SUV) between time point 1 and time point 2 were calculated. Malignancy was defined using the following criteria: (1) visual assessment using 3-points grading scale; (2) SUV(max) ≥2.4; (3) %SUV ≥ +9; and (4) SUV(max) ≥2.4 and/or %SUV ≥ +9. Analysis of variance test and receiver operating characteristic analysis were used in statistical analysis. P < 0.05 was considered significant. Follow-up revealed 29 patient with malignant pleural disease and 31 patients with benign pleural effusion. The average SUV(max) in malignant effusions was 6.5 ± 4 versus 2.2 ± 0.9 in benign effusions (P < 0.0001). The average %SUV in malignant effusions was +13 ± 10 versus -8 ± 11 in benign effusions (P < 0.0004). Sensitivity, specificity, and accuracy for the 5 criteria were as follows: (1) 86%, 72%, and 79%; (2) 93%, 72%, and 82%; (3) 67%, 94%, and 81%; (4) 100%, 94%, and 97%. Dual-time-point F-18 FDG PET can improve the diagnostic accuracy in differentiating benign from malignant pleural disease, with high sensitivity and good specificity.

  14. The value of preoperative 18F-FDG PET/CT for the assessing contralateral neck in head and neck cancer patients with unilateral node metastasis (N1-3).

    PubMed

    Joo, Y-H; Yoo, I-R; Cho, K-J; Park, J-O; Nam, I-C; Kim, C-S; Kim, S-Y; Kim, M-S

    2014-12-01

    The purpose of this study was to determine whether preoperative (18) F-FDG PET/CT is useful in assessing contralateral lymph node metastasis in the neck. A retrospective review of medical records was performed. Patients treated at a single institute. One hundred and fifty-seven patients whose pathology results were positive for unilateral node metastasis (N1-3) involvement and underwent preoperative (18) F-FDG PET/CT for head and neck squamous cell carcinoma (HNSCC) were reviewed. Prognostic factors and nodal SUVmax were studied to identify the risk of contralateral disease. Thirty-six (22.9%) patients had contralateral cervical lymph node metastases. The (18) F-FDG PET/CT had a sensitivity of 80% and a specificity of 96% in identifying the contralateral cervical lymph node metastases on a level-by-level basis. The median SUVmax values of the ipsilateral and contralateral lymph nodes were 3.99 ± 3.36 (range, 0-20.4) and 2.94 ± 2.04 (range, 0-8.7), respectively (P = 0.001). There was a significant difference in the median SUVmax of contralateral nodes between the benign and malignant cervical lymph nodes (2.31 ± 0.62 versus 3.28 ± 2.43, P = 0.014). The cut-off value of contralateral median SUVmax in the context of contralateral cervical metastasis was 2.5 with the sensitivity of 75% and the specificity of 94%. A median contralateral lymph node SUVmax  ≥ 2.5 was associated with 5-year disease-specific survival (P = 0.038). (18) F-FDG PET/CT median SUVmax cut-off values of contralateral lymph nodes ≥2.5 were associated with contralateral cervical lymph node metastases and 5-year disease-specific survival in HNSCC patients with unilateral metastases. © 2014 John Wiley & Sons Ltd.

  15. 18F-FDG PET imaging for identifying the dynamics of intestinal disease caused by SFTSV infection in a mouse model.

    PubMed

    Hayasaka, Daisuke; Nishi, Kodai; Fuchigami, Takeshi; Shiogama, Kazuya; Onouchi, Takanori; Shimada, Satoshi; Tsutsumi, Yutaka; Morita, Kouichi

    2016-01-05

    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging disease that causes fever, enteritis, thrombocytopenia, and leucopenia and can be fatal in up to 30% of cases. However, the mechanism of severe disease is not fully understood. Molecular imaging approaches, such as positron-emission tomography (PET), are functional in vivo imaging techniques that provide real-time dynamics of disease progression, assessments of pharmacokinetics, and diagnoses for disease progression. Molecular imaging also potentially provides useful approaches to explore the pathogenesis of viral infections. Thus, the purpose of this study was to image the pathological features of SFTSV infection in vivo by PET imaging. In a mouse model, we showed that 18F-FDG accumulations clearly identified the intestinal tract site as a pathological site. We also demonstrated that 18F-FDG PET imaging can assess disease progression and response to antiserum therapy within the same individual. This is the first report demonstrating a molecular imaging strategy for SFTSV infection. Our results provide potentially useful information for preclinical studies such as the elucidation of the mechanism of SFTSV infection in vivo and the assessment of drugs for SFTS treatment.

  16. Application of EARL (ResEARch 4 Life®) protocols for [18F]FDG-PET/CT clinical and research studies. A roadmap towards exact recovery coefficient

    NASA Astrophysics Data System (ADS)

    Balcerzyk, Marcin; Fernández-López, Rosa; Parrado-Gallego, Ángel; Pachón-Garrudo, Víctor Manuel; Chavero-Royan, José; Hevilla, Juan; Jiménez-Ortega, Elisa; Leal, Antonio

    2017-11-01

    Tumour uptake value is a critical result in [18F]FDG-PET/CT ([18F]fluorodeoxyglucose) quantitative scans such as the dose prescription for radiotherapy and oncology. The quantification is highly dependent on the protocol of acquisition and reconstruction of the image, especially in low activity tumours. During adjusting acquisition and reconstruction protocols available in our Siemens Biograph mCT scanner for EARL (ResEARch 4 Life®) [18F]FDG-PET/CT accreditation requirements, we developed reconstruction protocols which will be used in PET based radiotherapy planning able to reduce inter-/intra-institute variability in Standard Uptake Value (SUV) results, and to bring Recovery Coefficient to 1 as close as possible for Image Quality NEMA 2007 phantom. Primary and secondary tumours from two patients were assessed by four independent evaluators. The influence of reconstruction protocols on tumour clinical assessment was presented. We proposed the improvement route for EARL accredited protocols so that they may be developed in classes to take advantage of scanner possibilities. The application of optimized reconstruction protocol eliminates the need of partial volume corrections.

  17. Brain glucose transport and phosphorylation under acute insulin-induced hypoglycemia in mice: an 18F-FDG PET study.

    PubMed

    Alf, Malte F; Duarte, João M N; Schibli, Roger; Gruetter, Rolf; Krämer, Stefanie D

    2013-12-01

    We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.

  18. 18F-fluorodeoxyglucose positron emission tomography/computed tomography findings of gastric lymphoma: Comparisons with gastric cancer.

    PubMed

    Wu, Jiang; Zhu, Hong; Li, Kai; Wang, Xin-Gang; Gui, Yi; Lu, Guang-Ming

    2014-10-01

    The role of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in numerous malignant tumors, including gastric lymphoma, is well-established. However, there have been few studies with regard to the 18 F-FDG PET/CT features of gastric lymphoma. The aim of the present study was to characterize the 18 F-FDG PET/CT features of gastric lymphoma, which were compared with those of gastric cancer. Prior to treatment, 18 F-FDG PET/CT was performed on 24 patients with gastric lymphoma and 43 patients with gastric cancer. The 18 F-FDG PET/CT pattern of gastric wall lesions was classified as one of three types: Type I, diffuse thickening of the gastric wall with increased FDG uptake infiltrating more than one-third of the total stomach; type II, segmental thickening of the gastric wall with elevated FDG uptake involving less than one-third of the total stomach; and type III, local thickening of the gastric wall with focal FDG uptake. The incidence of the involvement of more than one region of the stomach was higher in the patients with gastric lymphoma than in those with gastric cancer. Gastric FDG uptake was demonstrated in 23 of the 24 patients (95.8%) with gastric lymphoma and in 40 of the 43 patients (93.0%) with gastric cancer. Gastric lymphoma predominantly presented with type I and II lesions, whereas gastric cancer mainly presented with type II and III lesions. The maximal thickness was larger and the maximal standard uptake value (SUV max ) was higher in the patients with gastric lymphoma compared with those with gastric cancer. A positive correlation between the maximal thickness and SUV max was confirmed for the gastric cancer lesions, but not for the gastric lymphoma lesions. There was no difference in the maximal thickness and SUV max of the gastric wall lesions between the patients without and with extragastric involvement, for gastric lymphoma and gastric cancer. Overall, certain differences exist in the findings between

  19. 18F-fluorodeoxyglucose positron emission tomography/computed tomography findings of gastric lymphoma: Comparisons with gastric cancer

    PubMed Central

    WU, JIANG; ZHU, HONG; LI, KAI; WANG, XIN-GANG; GUI, YI; LU, GUANG-MING

    2014-01-01

    The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in numerous malignant tumors, including gastric lymphoma, is well-established. However, there have been few studies with regard to the 18F-FDG PET/CT features of gastric lymphoma. The aim of the present study was to characterize the 18F-FDG PET/CT features of gastric lymphoma, which were compared with those of gastric cancer. Prior to treatment, 18F-FDG PET/CT was performed on 24 patients with gastric lymphoma and 43 patients with gastric cancer. The 18F-FDG PET/CT pattern of gastric wall lesions was classified as one of three types: Type I, diffuse thickening of the gastric wall with increased FDG uptake infiltrating more than one-third of the total stomach; type II, segmental thickening of the gastric wall with elevated FDG uptake involving less than one-third of the total stomach; and type III, local thickening of the gastric wall with focal FDG uptake. The incidence of the involvement of more than one region of the stomach was higher in the patients with gastric lymphoma than in those with gastric cancer. Gastric FDG uptake was demonstrated in 23 of the 24 patients (95.8%) with gastric lymphoma and in 40 of the 43 patients (93.0%) with gastric cancer. Gastric lymphoma predominantly presented with type I and II lesions, whereas gastric cancer mainly presented with type II and III lesions. The maximal thickness was larger and the maximal standard uptake value (SUVmax) was higher in the patients with gastric lymphoma compared with those with gastric cancer. A positive correlation between the maximal thickness and SUVmax was confirmed for the gastric cancer lesions, but not for the gastric lymphoma lesions. There was no difference in the maximal thickness and SUVmax of the gastric wall lesions between the patients without and with extragastric involvement, for gastric lymphoma and gastric cancer. Overall, certain differences exist in the findings between gastric

  20. F-18 fluorodeoxyglucose: Its potential in differentiating between stress fracture and neoplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, R.; Ahonen, A.; Virtama, P.

    1989-12-01

    F-18 fluorodeoxyglucose (FDG) accumulates into regions of enhanced glucose uptake and metabolism such as the brain, heart, and malignant tumors. The clinical usefulness of this positron-emitting radiopharmaceutical is illustrated in a case where the clinical picture and CT indicated a malignant bone lesion in the clavicle. Histologically a stress fracture was found secondary to chronic strain on the clavicle. On follow-up the lesion's course was benign. Planar imaging with F-18 FDG was performed twice during follow-up, and on both occasions there was no accumulation of radioactivity over the suspicious area, indicating normal glucose consumption. This case demonstrates the differential diagnosticmore » potential of F-18 FDG and shows that clinically useful information may be obtained without a position emission tomograph.« less

  1. Low-dose radiation from 18F-FDG PET does not increase cancer frequency or shorten latency but reduces kidney disease in cancer-prone Trp53+/- mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Kristina; Lemon, Jennifer A.; Phan, Nghi

    There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modificationmore » of cancer risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy 18F-FDG, 4 Gy γ-rays, 10 mGy 18F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from 18F-FDG, with respect to malignancy, is approximately 1. Furthermore, when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.« less

  2. Low-dose radiation from 18F-FDG PET does not increase cancer frequency or shorten latency but reduces kidney disease in cancer-prone Trp53+/- mice

    DOE PAGES

    Taylor, Kristina; Lemon, Jennifer A.; Phan, Nghi; ...

    2014-05-28

    There is considerable interest in the health effects associated with low-level radiation exposure from medical imaging procedures. Concerns in the medical community that increased radiation exposure from imaging procedures may increase cancer risk among patients are confounded by research showing that low-dose radiation exposure can extend lifespan by increasing the latency period of some types of cancer. The most commonly used radiopharmaceutical for positron emission tomography (PET) scans is 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), which exposes tissue to a low-dose, mixed radiation quality: 634 keV β+ and 511 keV γ-rays. The goal of this research was to investigate how modificationmore » of cancer risk associated with exposure to low-dose ionising radiation in cancer-prone Trp53+/- mice is influenced by radiation quality from PET. At 7-8 weeks of age, Trp53+/- female mice were exposed to one of five treatments: 0 Gy, 10 mGy γ-rays, 10 mGy 18F-FDG, 4 Gy γ-rays, 10 mGy 18F-FDG + 4 Gy γ-rays (n > 185 per group). The large 4-Gy radiation dose significantly reduced the lifespan by shortening the latency period of cancer and significantly increasing the number of mice with malignancies, compared with unirradiated controls. The 10 mGy γ-rays and 10 mGy PET doses did not significantly modify the frequency or latency period of cancer relative to unirradiated mice. Similarly, the PET scan administered prior to a large 4-Gy dose did not significantly modify the latency or frequency of cancer relative to mice receiving a dose of only 4 Gy. The relative biological effectiveness of radiation quality from 18F-FDG, with respect to malignancy, is approximately 1. Furthermore, when non-cancer endpoints were studied, it was found that the 10-mGy PET group had a significant reduction in kidney lesions (P < 0.021), indicating that a higher absorbed dose (20 ± 0.13 mGy), relative to the whole-body average, which occurs in specific tissues, may not be detrimental.« less

  3. Expanding role of 18F-fluoro-d-deoxyglucose PET and PET/CT in spinal infections

    PubMed Central

    Rijk, Paul C.; Collins, James M. P.; Parlevliet, Thierry; Stumpe, Katrin D.; Palestro, Christopher J.

    2010-01-01

    18F-fluoro-d-deoxyglucose positron emission tomography ([18F]-FDG PET) is successfully employed as a molecular imaging technique in oncology, and has become a promising imaging modality in the field of infection. The non-invasive diagnosis of spinal infections (SI) has been a challenge for physicians for many years. Morphological imaging modalities such as conventional radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are techniques frequently used in patients with SI. However, these methods are sometimes non-specific, and difficulties in differentiating infectious from degenerative end-plate abnormalities or postoperative changes can occur. Moreover, in contrast to CT and MRI, FDG uptake in PET is not hampered by metallic implant-associated artifacts. Conventional radionuclide imaging tests, such as bone scintigraphy, labeled leukocyte, and gallium scanning, suffer from relatively poor spatial resolution and lack sensitivity, specificity, or both. Initial data show that [18F]-FDG PET is an emerging imaging technique for diagnosing SI. [18F]-FDG PET appears to be especially helpful in those cases in which MRI cannot be performed or is non-diagnostic, and as an adjunct in patients in whom the diagnosis is inconclusive. The article reviews the currently available literature on [18F]-FDG PET and PET/CT in the diagnosis of SI. PMID:20052505

  4. Repeatability of Quantitative Whole-Body 18F-FDG PET/CT Uptake Measures as Function of Uptake Interval and Lesion Selection in Non-Small Cell Lung Cancer Patients.

    PubMed

    Kramer, Gerbrand Maria; Frings, Virginie; Hoetjes, Nikie; Hoekstra, Otto S; Smit, Egbert F; de Langen, Adrianus Johannes; Boellaard, Ronald

    2016-09-01

    Change in (18)F-FDG uptake may predict response to anticancer treatment. The PERCIST suggest a threshold of 30% change in SUV to define partial response and progressive disease. Evidence underlying these thresholds consists of mixed stand-alone PET and PET/CT data with variable uptake intervals and no consensus on the number of lesions to be assessed. Additionally, there is increasing interest in alternative (18)F-FDG uptake measures such as metabolically active tumor volume and total lesion glycolysis (TLG). The aim of this study was to comprehensively investigate the repeatability of various quantitative whole-body (18)F-FDG metrics in non-small cell lung cancer (NSCLC) patients as a function of tracer uptake interval and lesion selection strategies. Eleven NSCLC patients, with at least 1 intrathoracic lesion 3 cm or greater, underwent double baseline whole-body (18)F-FDG PET/CT scans at 60 and 90 min after injection within 3 d. All (18)F-FDG-avid tumors were delineated with an 50% threshold of SUVpeak adapted for local background. SUVmax, SUVmean, SUVpeak, TLG, metabolically active tumor volume, and tumor-to-blood and -liver ratios were evaluated, as well as the influence of lesion selection and 2 methods for correction of uptake time differences. The best repeatability was found using the SUV metrics of the averaged PERCIST target lesions (repeatability coefficients < 10%). The correlation between test and retest scans was strong for all uptake measures at either uptake interval (intraclass correlation coefficient > 0.97 and R(2) > 0.98). There were no significant differences in repeatability between data obtained 60 and 90 min after injection. When only PERCIST-defined target lesions were included (n = 34), repeatability improved for all uptake values. Normalization to liver or blood uptake or glucose correction did not improve repeatability. However, after correction for uptake time the correlation of SUV measures and TLG between the 60- and 90-min data

  5. Rapid Multi-Tracer PET Tumor Imaging With 18F-FDG and Secondary Shorter-Lived Tracers

    PubMed Central

    Black, Noel F.; McJames, Scott; Kadrmas, Dan J.

    2009-01-01

    Rapid multi-tracer PET, where two to three PET tracers are rapidly scanned with staggered injections, can recover certain imaging measures for each tracer based on differences in tracer kinetics and decay. We previously showed that single-tracer imaging measures can be recovered to a certain extent from rapid dual-tracer 62Cu – PTSM (blood flow) + 62Cu — ATSM (hypoxia) tumor imaging. In this work, the feasibility of rapidly imaging 18F-FDG plus one or two of these shorter-lived secondary tracers was evaluated in the same tumor model. Dynamic PET imaging was performed in four dogs with pre-existing tumors, and the raw scan data was combined to emulate 60 minute long dual- and triple-tracer scans, using the single-tracer scans as gold standards. The multi-tracer data were processed for static (SUV) and kinetic (K1, Knet) endpoints for each tracer, followed by linear regression analysis of multi-tracer versus single-tracer results. Static and quantitative dynamic imaging measures of FDG were both accurately recovered from the multi-tracer scans, closely matching the single-tracer FDG standards (R > 0.99). Quantitative blood flow information, as measured by PTSM K1 and SUV, was also accurately recovered from the multi-tracer scans (R = 0.97). Recovery of ATSM kinetic parameters proved more difficult, though the ATSM SUV was reasonably well recovered (R = 0.92). We conclude that certain additional information from one to two shorter-lived PET tracers may be measured in a rapid multi-tracer scan alongside FDG without compromising the assessment of glucose metabolism. Such additional and complementary information has the potential to improve tumor characterization in vivo, warranting further investigation of rapid multi-tracer techniques. PMID:20046800

  6. SU-E-J-124: 18F-FDG PET Imaging to Improve RT Treatment Outcome for Locally Advanced Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shusharina, N; Khan, F; Sharp, G

    2015-06-15

    Purpose: To investigate spatial correlation between high uptake regions of pre- and 10-days-post therapy{sup 1} {sup 8}F-FDG PET in recurrent lung cancer and to evaluate the feasibility of dose escalation boosting only regions with high FDG uptake identified on baseline PET. Methods: Nineteen patients with stages II– IV inoperable lung cancer were selected. Volumes of interest (VOI) on pre-therapy FDG-PET were defined using an isocontour at ≥50% of SUVmax. VOI of pre- and post-therapy PET images were correlated for the extent of overlap. A highly optimized IMRT plan to 60 Gy prescribed to PTV defined on the planning CT wasmore » designed using clinical dose constraints for the organs at risk. A boost of 18 Gy was prescribed to the VOI defined on baseline PET. A composite plan of the total 78 Gy was compared with the base 60 Gy plan. Increases in dose to the lungs, spinal cord and heart were evaluated. IMRT boost plan was compared with proton RT and SBRT boost plans. Results: Overlap fraction of baseline PET VOI with the VOI on 10 days-post therapy PET was 0.8 (95% CI: 0.7 – 0.9). Using baseline VOI as a boosting volume, dose could be escalated to 78 Gy for 15 patients without compromising the dose constraints. For 4 patients, the dose limiting factors were V20Gy and Dmean for the total lung, and Dmax for the spinal cord. An increase of the dose to OARs correlated significantly with the relative size of the boost volume. Conclusion: VOI defined on baseline 18F-FDG PET by the SUVmax-≥50% isocontour may be a biological target volume for escalated radiation dose. Dose escalation to this volume may provide improved tumor control without breaching predefined dose constraints for OARs. The best treatment outcome may be achieved with proton RT for large targets and with SBRT for small targets.« less

  7. The influence of interpreters' professional background and experience on the interpretation of multimodality imaging of pulmonary lesions using 18F-3'-deoxy-fluorothymidine and 18F-fluorodeoxyglucose PET/CT.

    PubMed

    Xu, Bai-xuan; Liu, Chang-bin; Wang, Rui-min; Shao, Ming-zhe; Fu, Li-ping; Li, Yun-gang; Tian, Jia-he

    2013-01-01

    Based on the results of a recently accomplished multicenter clinical trial for the incremental value of a dual-tracer (18F-FDG and 18F-FLT), dual-modality (PET and CT) imaging in the differential diagnosis of pulmonary lesions, we investigate some issues that might affect the image interpretation and result reporting. The images were read in two separate sessions. Firstly the images were read and reported by physician(s) of the imaging center on completion of each PET/CT scanning. By the end of MCCT, all images collected during the trial were re-read by a collective of readers in an isolated, blinded, and independent way. One hundred sixty two patients successfully passed the data verification and entered into the final analysis. The primary reporting result showed adding 18F-FDG image information did not change the clinical performance much in sensitivity, specifity and accuracy, but the ratio between SUVFLT and SUVFDG did help the differentiation efficacy among the three subgroups of patients. The collective reviewing result showed the diagnostic achievement varied with reading strategies. ANOVA indicated significant differences among (18)F-FDG, (18)F-FLT in SUV (F = 14.239, p = 0.004). CT had almost the same diagnostic performance as 18F-FLT. When the 18F-FDG, 18F-FLT and CT images read in pair, both diagnostic sensitivity and specificity improved. The best diagnostic figures were obtained in full-modality strategy, when dual-tracer PET worked in combination with CT. With certain experience and training both radiologists and nuclear physicians are qualified to read and to achieve the similar diagnostic accuracy in PET/CT study. Making full use of modality combination and selecting right criteria seems more practical than professional back ground and personal experience in the new hybrid imaging technology, at least when novel tracer or application is concerned.

  8. Predicting Future Morphological Changes of Lesions from Radiotracer Uptake in 18F-FDG-PET Images

    PubMed Central

    Bagci, Ulas; Yao, Jianhua; Miller-Jaster, Kirsten; Chen, Xinjian; Mollura, Daniel J.

    2013-01-01

    We introduce a novel computational framework to enable automated identification of texture and shape features of lesions on 18F-FDG-PET images through a graph-based image segmentation method. The proposed framework predicts future morphological changes of lesions with high accuracy. The presented methodology has several benefits over conventional qualitative and semi-quantitative methods, due to its fully quantitative nature and high accuracy in each step of (i) detection, (ii) segmentation, and (iii) feature extraction. To evaluate our proposed computational framework, thirty patients received 2 18F-FDG-PET scans (60 scans total), at two different time points. Metastatic papillary renal cell carcinoma, cerebellar hemongioblastoma, non-small cell lung cancer, neurofibroma, lymphomatoid granulomatosis, lung neoplasm, neuroendocrine tumor, soft tissue thoracic mass, nonnecrotizing granulomatous inflammation, renal cell carcinoma with papillary and cystic features, diffuse large B-cell lymphoma, metastatic alveolar soft part sarcoma, and small cell lung cancer were included in this analysis. The radiotracer accumulation in patients' scans was automatically detected and segmented by the proposed segmentation algorithm. Delineated regions were used to extract shape and textural features, with the proposed adaptive feature extraction framework, as well as standardized uptake values (SUV) of uptake regions, to conduct a broad quantitative analysis. Evaluation of segmentation results indicates that our proposed segmentation algorithm has a mean dice similarity coefficient of 85.75±1.75%. We found that 28 of 68 extracted imaging features were correlated well with SUVmax (p<0.05), and some of the textural features (such as entropy and maximum probability) were superior in predicting morphological changes of radiotracer uptake regions longitudinally, compared to single intensity feature such as SUVmax. We also found that integrating textural features with SUV measurements

  9. Integrated whole-body PET/MR imaging with 18F-FDG, 18F-FDOPA, and 18F-fluorodopamine in paragangliomas, in comparison to PET/CT: NIH first clinical experience with a single-injection, dual-modality imaging protocol

    PubMed Central

    Blanchet, Elise M.; Millo, Corina; Martucci, Victoria; Maass-Moreno, Roberto; Bluemke, David A.; Pacak, Karel

    2017-01-01

    Purpose Paragangliomas (PGLs) are tumors that can metastasize and recur; therefore, lifelong imaging follow-up is required. Hybrid positron emission tomography (PET)/computed tomography (/CT) is an essential tool to image PGLs. Novel hybrid PET/magnetic resonance (/MR) scanners are currently being studied in clinical oncology. We studied the feasibility of simultaneous whole-body PET/MR imaging to evaluate patients with PGLs. Methods Fifty-three PGLs or PGL-related lesions from eight patients were evaluated. All patients underwent a single-injection, dual-modality imaging protocol consisting of a PET/CT and subsequent PET/MR scan. Four patients were evaluated with 18F-fluorodeoxyglucose (18F-FDG), two with 18F-fluorodihydroxyphenylalanine (18F-FDOPA), and two with 18F-fluorodopamine (18F-FDA). PET/MR data were acquired using a hybrid whole-body 3-Tesla integrated PET/MR scanner. PET and MR data (DIXON images for attenuation correction and T2-weighted sequences for anatomic allocation) were acquired simultaneously. Imaging workflow and imaging times were documented. PET/MR and PET/CT data were visually assessed (blindly) in regards to image quality, lesion detection, and anatomic allocation and delineation of the PET findings. Results With hybrid PET/MR, we obtained high quality images in an acceptable acquisition time (median: 31 min, range: 25–40 min) with good patient compliance. A total of 53 lesions, located in the head-and-neck area (6), mediastinum (2), abdomen and pelvis (13), lungs (2), liver (4), and bone (26) were evaluated. 51 lesions were detected with PET/MR and confirmed by PET/CT. Two bone lesions (L4 body (8 mm) and sacrum (6 mm)) were not detectable on an 18F-FDA scan PET/MR, likely due to washout of the 18F-FDA. Co-registered MR tended to be superior to co-registered CT for head-and-neck, abdomen, pelvis, and liver lesions for anatomic allocation and delineation. Conclusions Clinical PGL evaluation with hybrid PET/MR is feasible with high image

  10. Analysis of the posterior cingulate cortex with [18F]FDG-PET and Naa/mI in mild cognitive impairment and Alzheimer's disease: Correlations and differences between the two methods.

    PubMed

    Coutinho, Artur M N; Porto, Fábio H G; Zampieri, Poliana F; Otaduy, Maria C; Perroco, Tíbor R; Oliveira, Maira O; Nunes, Rafael F; Pinheiro, Toulouse Leusin; Bottino, Cassio M C; Leite, Claudia C; Buchpiguel, Carlos A

    2015-01-01

    Reduction of regional brain glucose metabolism (rBGM) measured by [18F]FDG-PET in the posterior cingulate cortex (PCC) has been associated with a higher conversion rate from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Magnetic Resonance Spectroscopy (MRS) is a potential biomarker that has disclosed Naa/mI reductions within the PCC in both MCI and AD. Studies investigating the relationships between the two modalities are scarce. To evaluate differences and possible correlations between the findings of rBGM and NAA/mI in the PCC of individuals with AD, MCI and of cognitively normal volunteers. Patients diagnosed with AD (N=32) or MCI (N=27) and cognitively normal older adults (CG, N=28), were submitted to [18F]FDG-PET and MRS to analyze the PCC. The two methods were compared and possible correlations between the modalities were investigated. The AD group exhibited rBGM reduction in the PCC when compared to the CG but not in the MCI group. MRS revealed lower NAA/mI values in the AD group compared to the CG but not in the MCI group. A positive correlation between rBGM and NAA/mI in the PCC was found. NAA/mI reduction in the PCC differentiated AD patients from control subjects with an area under the ROC curve of 0.70, while [18F]FDG-PET yielded a value of 0.93. rBGM and Naa/mI in the PCC were positively correlated in patients with MCI and AD. [18F]FDG-PET had greater accuracy than MRS for discriminating AD patients from controls.

  11. Analysis of the posterior cingulate cortex with [18F]FDG-PET and Naa/mI in mild cognitive impairment and Alzheimer's disease: Correlations and differences between the two methods

    PubMed Central

    Coutinho, Artur M.N.; Porto, Fábio H.G.; Zampieri, Poliana F.; Otaduy, Maria C.; Perroco, Tíbor R.; Oliveira, Maira O.; Nunes, Rafael F.; Pinheiro, Toulouse Leusin; Bottino, Cassio M.C.; Leite, Claudia C.; Buchpiguel, Carlos A.

    2015-01-01

    Reduction of regional brain glucose metabolism (rBGM) measured by [18F]FDG-PET in the posterior cingulate cortex (PCC) has been associated with a higher conversion rate from mild cognitive impairment (MCI) to Alzheimer's disease (AD). Magnetic Resonance Spectroscopy (MRS) is a potential biomarker that has disclosed Naa/mI reductions within the PCC in both MCI and AD. Studies investigating the relationships between the two modalities are scarce. Objective To evaluate differences and possible correlations between the findings of rBGM and NAA/mI in the PCC of individuals with AD, MCI and of cognitively normal volunteers. Methods Patients diagnosed with AD (N=32) or MCI (N=27) and cognitively normal older adults (CG, N=28), were submitted to [18F]FDG-PET and MRS to analyze the PCC. The two methods were compared and possible correlations between the modalities were investigated. Results The AD group exhibited rBGM reduction in the PCC when compared to the CG but not in the MCI group. MRS revealed lower NAA/mI values in the AD group compared to the CG but not in the MCI group. A positive correlation between rBGM and NAA/mI in the PCC was found. NAA/mI reduction in the PCC differentiated AD patients from control subjects with an area under the ROC curve of 0.70, while [18F]FDG-PET yielded a value of 0.93. Conclusion rBGM and Naa/mI in the PCC were positively correlated in patients with MCI and AD. [18F]FDG-PET had greater accuracy than MRS for discriminating AD patients from controls. PMID:29213988

  12. Staging and follow-up of lacrimal gland carcinomas by 18F-FDG PET/CT imaging.

    PubMed

    Tafti, Bashir Akhavan; Shaba, Wisam; Li, Yuxin; Yevdayev, Ella; Berenji, Gholam Reza

    2012-10-01

    A 74-year-old man with right eye proptosis, diplopia, and orbital discomfort for 3 to 4 months underwent biopsy, the specimen of which showed transitional cell carcinoma of the lacrimal gland. 18F-FDG PET/CT was also performed for staging purposes. Six months after orbital exenteration, a follow-up CT scan demonstrated soft tissue thickening along the nasal bridge but could not differentiate between postsurgical changes and cancer recurrence. A concurrent PET/CT scan did not show any evidence of abnormal metabolic activity, further emphasizing the higher accuracy of PET/CT in staging and restaging of head and neck cancers. An annual follow-up scan was still negative for active disease.

  13. Potential of (18)F-FDG-PET as a valuable adjunct to clinical and response assessment in rheumatoid arthritis and seronegative spondyloarthropathies.

    PubMed

    Vijayant, Vishu; Sarma, Manjit; Aurangabadkar, Hrushikesh; Bichile, Lata; Basu, Sandip

    2012-12-28

    To evaluate the role of fluorine-18-labeled fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) in various rheumatic diseases and its potential in the early assessment of treatment response in a limited number of patients. This study involved 28 newly diagnosed patients, of these 17 had rheumatoid arthritis (RA) and 11 had seronegative spondyloarthropathy (SSA). In the SSA group, 7 patients had ankylosing spondylitis, 3 had psoriatic arthritis, and one had non-specific SSA. Patients with RA were selected as per the American College of Rheumatology criteria. One hour after FDG injection, a whole body PET scan was performed from the skull vertex to below the knee joints using a GE Advance dedicated PET scanner. Separate scans were acquired for both upper and lower limbs. Post-treatment scans were performed in 9 patients in the RA group (at 6-9 wk from baseline) and in 1 patient with psoriatic arthropathy. The pattern of FDG uptake was analysed visually and quantified as maximum standardized uptake value (SUVmax) in a standard region of interest. Metabolic response on the scan was assessed qualitatively and quantitatively and was correlated with clinical assessment. The qualitative FDG uptake was in agreement with the clinically involved joints, erythrocyte sedimentation rate, C-reactive protein values and the clinical assessment by the rheumatologist. All 17 patients in the RA group showed the highest FDG avidity in painful/swollen/tender joints. The uptake pattern was homogeneous, intense and poly-articular in distribution. Hypermetabolism in the regional nodes (axillary nodes in the case of upper limb joint involvement and inguinal nodes in lower limb joints) was a constant feature in patients with RA. Multiple other extra-articular lesions were also observed including thyroid glands (in associated thyroiditis) and in the subcutaneous nodules. Treatment response was better appreciated using SUVmax values than visual interpretation, when compared with

  14. 18F-FDG PET and PET/CT in the Localization and Characterization of Lesions in Patients with Ovarian Cancer.

    PubMed

    Caprio, M G; Capacchione, D; Mainolfi, C; Spera, A M; Salvatore, B; Cella, L; Salvatore, M; Pace, L

    2012-01-01

    The aim was to compare the imaging findings of (18)F-fluorodeoxyglucose ((18)F-FDG) PET and integrated PET/CT in patients with primary, recurrent or metastatic ovarian cancer. 21 women with ovarian cancer were evaluated. All patients had a integrated PET/CT scan. Localization, infiltration and uptake intensity of [(18)F]FDG were evaluated on PET and PET/CT. The certainty of localisation and characterisation was scored on a 3 point scale (L1 definite localisation; L2 probable localisation; L3 uncertain localisation; C1 benign; C2 equivocal; C3 malignant). PET scored as L1 54 lesions (44%), as L2 51 (42%), and as L3 17 (14%). On the other hand, PET/CT scored as L1 120 lesions (98%), as L2 2 (2%), and none as L3. Thus PET/CT allowed a better localization in 54% of lesions. Moreover, PET scored as C1 25 lesions (20%), as C2 62 (51%), and as C3 35 (29%). On the other hand, PET/CT scored as C1 57 lesions (47%), as C2 13 (11%), and as C3 52 (42%). Thus PET/CT allowed a sensible reduction in the number of equivocal lesions (40%). Even when patients were subgrouped on the basis of clinical stage of the disease, PET/CT was capable of better definition of the lesions either for localization and for characterization. In patients with ovarian cancer, PET/CT allows better anatomical localisation of pathologic uptake providing high accuracy for staging and restaging of ovarian cancer when compared with PET alone.

  15. 18F-FDG PET brain images as features for Alzheimer classification

    NASA Astrophysics Data System (ADS)

    Azmi, M. H.; Saripan, M. I.; Nordin, A. J.; Ahmad Saad, F. F.; Abdul Aziz, S. A.; Wan Adnan, W. A.

    2017-08-01

    2-Deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG) Positron Emission Tomography (PET) imaging offers meaningful information for various types of diseases diagnosis. In Alzheimer's disease (AD), the hypometabolism of glucose which observed on the low intensity voxel in PET image may relate to the onset of the disease. The importance of early detection of AD is inevitable because the resultant brain damage is irreversible. Several statistical analysis and machine learning algorithm have been proposed to investigate the rate and the pattern of the hypometabolism. This study focus on the same aim with further investigation was performed on several hypometabolism pattern. Some pre-processing steps were implemented to standardize the data in order to minimize the effect of resolution and anatomical differences. The features used are the mean voxel intensity within the AD pattern mask, which derived from several z-score and FDR threshold values. The global mean voxel (GMV) and slice-based mean voxel (SbMV) intensity were observed and used as input to the neural network. Several neural network architectures were tested and compared to the nearest neighbour method. The highest accuracy equals to 0.9 and recorded at z-score ≤-1.3 with 1 node neural network architecture (sensitivity=0.81 and specificity=0.95) and at z-score ≤-0.7 with 10 nodes neural network (sensitivity=0.83 and specificity=0.94).

  16. Hybrid radioguided occult lesion localization (hybrid ROLL) of (18)F-FDG-avid lesions using the hybrid tracer indocyanine green-(99m)Tc-nanocolloid.

    PubMed

    KleinJan, G H; Brouwer, O R; Mathéron, H M; Rietbergen, D D D; Valdés Olmos, R A; Wouters, M W; van den Berg, N S; van Leeuwen, F W B

    2016-01-01

    To assess if combined fluorescence- and radio-guided occult lesion localization (hybrid ROLL) is feasible in patients scheduled for surgical resection of non-palpable (18)F-FDG-avid lesions on PET/CT. Four patients with (18)F-FDG-avid lesions on follow-up PET/CT that were not palpable during physical examination but were suspected to harbor metastasis were enrolled. Guided by ultrasound, the hybrid tracer indocyanine green (ICG)-(99m)Tc-nanocolloid was injected centrally in the target lesion. SPECT/CT imaging was used to confirm tracer deposition. Intraoperatively, lesions were localized using a hand-held gamma ray detection probe, a portable gamma camera, and a fluorescence camera. After excision, the gamma camera was used to check the wound bed for residual activity. A total of six (18)F-FDG-avid lymph nodes were identified and scheduled for hybrid ROLL. Comparison of the PET/CT images with the acquired SPECT/CT after hybrid tracer injection confirmed accurate tracer deposition. No side effects were observed. Combined radio- and fluorescence-guidance enabled localization and excision of the target lesion in all patients. Five of the six excised lesions proved tumor-positive at histopathology. The hybrid ROLL approach appears to be feasible and can facilitate the intraoperative localization and excision of non-palpable lesions suspected to harbor tumor metastases. In addition to the initial radioguided detection, the fluorescence component of the hybrid tracer enables high-resolution intraoperative visualization of the target lesion. The procedure needs further evaluation in a larger cohort and wider range of malignancies to substantiate these preliminary findings. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  17. Monitoring of Cardiac Remodeling in a Mouse Model of Pressure-Overload Left Ventricular Hypertrophy with [18F]FDG MicroPET.

    PubMed

    Todica, Andrei; Beetz, Nick L; Günther, Lisa; Zacherl, Mathias J; Grabmaier, Ulrich; Huber, Bruno; Bartenstein, Peter; Brunner, Stefan; Lehner, Sebastian

    2018-04-01

    This study aims to analyze the left ventricular function parameters, scar load, and hypertrophy in a mouse model of pressure-overload left ventricular (LV) hypertrophy over the course of 8 weeks using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) micro-positron emission tomography (microPET) imaging. LV hypertrophy was induced in C57BL/6 mice by transverse aortic constriction (TAC). Myocardial hypertrophy developed after 2-4 weeks. ECG-gated microPET scans with [ 18 F]FDG were performed 4 and 8 weeks after surgery. The extent of fibrosis was measured by histopathologic analysis. LV function parameters and scar load were calculated using QGS®/QPS®. LV metabolic volume (LVMV) and percentage injected dose per gram were estimated by threshold-based analysis. The fibrotic tissue volume increased significantly from 4 to 8 weeks after TAC (​1.67 vs. 3.91  mm 3 ; P = 0.044). There was a significant increase of the EDV (4 weeks: 54 ± 15 μl, 8 weeks: 79 ± 32 μl, P < 0.01) and LVMV (4 weeks: 222 ± 24 μl, 8 weeks: 276 ± 52 μl, P < 0.01) as well as a significant decrease of the LVEF (4 weeks: 56 ± 17 %, 8 weeks: 44 ± 20 %, P < 0.01). The increase of LVMV had a high predictive value regarding the amount of ex vivo measured fibrotic tissue (R = 0.905, P < 0.001). The myocardial metabolic defects increased within 4 weeks (P = 0.055) but only moderately correlated with the fibrosis volume (R = 0.502, P = 0.021). The increase in end-diastolic volume showed a positive correlation with the fibrosis at 8 weeks (R = 0.763, P = 0.017). [ 18 F]FDG-PET is applicable for serial in vivo monitoring of the TAC mouse model. Myocardial hypertrophy, the dilation of the left ventricle, and the decrease in LVEF could be reliably quantified over time, as well as the developing localized scar. The increase in volume over time is predictive of a high fibrosis load.

  18. In vivo evaluation of the effects of simultaneous inhibition of GLUT-1 and HIF-1α by antisense oligodeoxynucleotides on the radiosensitivity of laryngeal carcinoma using micro 18F-FDG PET/CT

    PubMed Central

    Shen, Li-Fang; Zhao, Xin; Zhou, Shui-Hong; Lu, Zhong-Jie; Zhao, Kui; Fan, Jun; Zhou, Min-Li

    2017-01-01

    Purpose Hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) are two important hypoxic markers associated with the radioresistance of cancers including laryngeal carcinoma. We evaluated whether the simultaneous inhibition of GLUT-1 and HIF-1α expression improved the radiosensitivity of laryngeal carcinoma. We explored whether the expression of HIF-1α and GLUT-1 was correlated with 2′-deoxy-2’-[18F]fluoro-D-glucose (18F-FDG) uptake and whether 18F-FDG positron emission tomography-computed tomography (PET/CT) was appropriate for early evaluation of the response of laryngeal carcinoma to targeted treatment in vivo. Materials and Methods To verify the above hypotheses, an in vivo model was applied by subcutaneously injecting Hep-2 (2 × 107/mL × 0.2 mL) and Tu212 cells (2 × 107/mL × 0.2 mL) into nude mice. The effects of HIF-1α antisense oligodeoxynucleotides (AS-ODNs) (100 μg) and GLUT-1 AS-ODNs (100 μg) on the radiosensitivity of laryngeal carcinoma were assessed by tumor volume and weight, microvessel density (MVD), apoptosis index (AI) and necrosis in vivo based on a full factorial (23) design. 18F-FDG-PET/CT was taken before and after the treatment of xenografts. The relationships between HIF-1α and GLUT-1 expression and 18F-FDG uptake in xenografts were estimated and the value of 18F-FDG-PET/CT was assessed after treating the xenografts. Results 10 Gy X-ray irradiation decreased the weight of Hep-2 xenografts 8 and 12 days after treatment, and the weights of Tu212 xenografts 8 days after treatment. GLUT-1 AS-ODNs decreased the weight of Tu212 xenografts 12 days after treatment. There was a synergistic interaction among the three treatments (GLUT-1 AS-ODNs, HIF-1α AS-ODNs and 10Gy X-ray irradiation) in increasing apoptosis, decreasing MVD, and increasing necrosis in Hep-2 xenografts 8 days after treatment (p < 0.05) and in Tu212 xenografts 12 days after treatment (p < 0.001). Standardized uptake value (tumor/normal tissue

  19. In vivo evaluation of the effects of simultaneous inhibition of GLUT-1 and HIF-1α by antisense oligodeoxynucleotides on the radiosensitivity of laryngeal carcinoma using micro 18F-FDG PET/CT.

    PubMed

    Shen, Li-Fang; Zhao, Xin; Zhou, Shui-Hong; Lu, Zhong-Jie; Zhao, Kui; Fan, Jun; Zhou, Min-Li

    2017-05-23

    Hypoxia-inducible factor 1α (HIF-1α) and glucose transporter-1 (GLUT-1) are two important hypoxic markers associated with the radioresistance of cancers including laryngeal carcinoma. We evaluated whether the simultaneous inhibition of GLUT-1 and HIF-1α expression improved the radiosensitivity of laryngeal carcinoma. We explored whether the expression of HIF-1α and GLUT-1 was correlated with 2'-deoxy-2'-[18F]fluoro-D-glucose (18F-FDG) uptake and whether 18F-FDG positron emission tomography-computed tomography (PET/CT) was appropriate for early evaluation of the response of laryngeal carcinoma to targeted treatment in vivo. To verify the above hypotheses, an in vivo model was applied by subcutaneously injecting Hep-2 (2 × 107/mL × 0.2 mL) and Tu212 cells (2 × 107/mL × 0.2 mL) into nude mice. The effects of HIF-1α antisense oligodeoxynucleotides (AS-ODNs) (100 μg) and GLUT-1 AS-ODNs (100 μg) on the radiosensitivity of laryngeal carcinoma were assessed by tumor volume and weight, microvessel density (MVD), apoptosis index (AI) and necrosis in vivo based on a full factorial (23) design. 18F-FDG-PET/CT was taken before and after the treatment of xenografts. The relationships between HIF-1α and GLUT-1 expression and 18F-FDG uptake in xenografts were estimated and the value of 18F-FDG-PET/CT was assessed after treating the xenografts. 10 Gy X-ray irradiation decreased the weight of Hep-2 xenografts 8 and 12 days after treatment, and the weights of Tu212 xenografts 8 days after treatment. GLUT-1 AS-ODNs decreased the weight of Tu212 xenografts 12 days after treatment. There was a synergistic interaction among the three treatments (GLUT-1 AS-ODNs, HIF-1α AS-ODNs and 10Gy X-ray irradiation) in increasing apoptosis, decreasing MVD, and increasing necrosis in Hep-2 xenografts 8 days after treatment (p < 0.05) and in Tu212 xenografts 12 days after treatment (p < 0.001). Standardized uptake value (tumor/normal tissue)( SUVmaxT/N) did not show a statistically

  20. Identification of low variability textural features for heterogeneity quantification of 18F-FDG PET/CT imaging.

    PubMed

    Cortes-Rodicio, J; Sanchez-Merino, G; Garcia-Fidalgo, M A; Tobalina-Larrea, I

    To identify those textural features that are insensitive to both technical and biological factors in order to standardise heterogeneity studies on 18 F-FDG PET imaging. Two different studies were performed. First, nineteen series from a cylindrical phantom filled with different 18 F-FDG activity concentration were acquired and reconstructed using three different protocols. Seventy-two texture features were calculated inside a circular region of interest. The variability of each feature was obtained. Second, the data for 15 patients showing non-pathological liver were acquired. Anatomical and physiological features such as patient's weight, height, body mass index, metabolic active volume, blood glucose level, SUV and SUV standard deviation were also recorded. A liver covering region of interest was delineated and low variability textural features calculated in each patient. Finally, a multivariate Spearman's correlation analysis between biological factors and texture features was performed. Only eight texture features analysed show small variability (<5%) with activity concentration and reconstruction protocol making them suitable for heterogeneity quantification. On the other hand, there is a high statistically significant correlation between MAV and entropy (P<0.05). Entropy feature is, indeed, correlated (P<0.05) with all patient parameters, except body mass index. The textural features that are correlated with neither technical nor biological factors are run percentage, short-zone emphasis and intensity, making them suitable for quantifying functional changes or classifying patients. Other textural features are correlated with technical and biological factors and are, therefore, a source of errors if used for this purpose. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  1. Cardiac metastases of Ewing sarcoma detected by 18F-FDG PET/CT.

    PubMed

    Coccia, Paola; Ruggiero, Antonio; Rufini, Vittoria; Maurizi, Palma; Attinà, Giorgio; Marano, Riccardo; Natale, Luigi; Leccisotti, Lucia; Calcagni, Maria L; Riccardi, Riccardo

    2012-04-01

    Positron emission tomography (PET) is widely used in the diagnostic evaluation and staging of different malignant tumors. The role of PET/computed tomographic scan in detecting distant metastases in the workup of Ewing sarcoma in children or young adults is less well defined. We report a case of a boy affected by a metastatic Ewing sarcoma with cardiac asymptomatic metastasis detected by F-FDG PET/computed tomography.

  2. Uterine fibroids with positive 18F-FDG PET/CT image and significantly increased CA19-9: A case report.

    PubMed

    Ma, Yan; Shao, Xiaonan

    2017-12-01

    Uterine fibroids are the most common pelvic solid tumors and common to 25% of women. F-fluorodexyglucose (F-FDG) is an energy metabolism tracer. Although FDG is generally concentrated in malignant lesions with high glucose metabolism, it can also accumulate in normal tissues, benign lesions, and inflammatory sites. The exact mechanism of FDG uptake by uterine fibroids is not clear. Here, we report a case of uterine fibroids with positive F-FDG positron emission tomography/computed tomography (PET/CT) imaging and significantly increased CA19-9. The patient was a 43-year-old woman and admitted to our hospital because of "1-year-extended menstrual periods." At admission, she had normal CA125, AFP, and CEA level and CA19-9>1000.00 U/mL. Gynecological transvaginal ultrasound found enlarged uterus with an anterior hypoechoic area of 3.9 × 4.2 cm. CT and contrast-enhanced CT showed significantly enhanced mass shadow on the left anterior wall of uterus. F-FDG PET/CT showed increased FDG metabolism of tumor in the anterior wall of the uterus. Laparoscopic hysterectomy was performed. Pathological examination demonstrated subserosal leiomyoma. Her CA19-9 level dropped to 91.50 U/mL 1 day after surgery. Significantly elevated CA19-9 was positioned in the uterus by PET/CT imaging, which not only avoided unnecessary gastrointestinal endoscopy and reduced the suffering of patients, but also strengthened the operation confidence in gynecologists. Copyright © 2017 The Authors. Published by Wolters Kluwer Health, Inc. All rights reserved.

  3. Utility of 18F-fluorodeoxy glucose and 18F-sodium fluoride positron emission tomography/computed tomography in the diagnosis of medication-related osteonecrosis of the jaw: A preclinical study in a rat model.

    PubMed

    Kim, Yemi; Lee, Ho-Young; Yoon, Hai-Jeon; Kim, Bom Sahn

    2016-04-01

    The aim of this study was to determine the clinical utility of positron emission tomography/computed tomography (PET/CT) using 18F-FDG and 18F-NaF for the diagnosis of osteonecrosis of the jaw (ONJ), by observing characteristics in rat models treated with zoledronic acid (ZA) and/or dexamethasone (DX) followed by tooth extraction. A total of 48 rats were divided randomly into four groups: Group 1, rats treated with ZA and DX; Group 2, rats treated with ZA; Group 3, rats treated with DX; and Group 4, rats treated with vehicle as normal controls. They underwent examinations with both 18F-FDG and 18F-NaF PET/CT at 4 weeks prior to tooth extraction (baseline) and 4 weeks after tooth extraction. Rats were then sacrificed to evaluate the histological incidence and characteristics of ONJ. Histological and radiological characteristics of all groups were compared to assess the effects of medication and tooth extraction. Baseline PET/CT studies using 18F-FDG and 18F-NaF showed no difference in uptake among the groups. However, 18F-FDG PET/CT performed at 4 weeks after tooth extraction showed increased glucose metabolism at the extraction site in both the ZA/DX and the ZA-only groups compared with that in the vehicle-treated group, in accordance with the higher incidence of histological ONJ (p < 0.05, respectively). 18F-NaF PET/CT performed at 4 weeks after tooth extraction showed decreased bone uptake in the extraction site in the ZA/DX, ZA, and DX groups versus the vehicle group (all p < 0.05), but this was not correlated with the incidence of histological ONJ. The incidence of ONJ was highest in the ZA/DX group (66.7%), followed by the ZA group, both of which were significantly higher than in the DX and vehicle groups (both p < 0.05). 18F-FDG PET/CT as an inflammatory marker appeared to be a more appropriate imaging modality than 18F-NaF PET/CT in diagnosing ONJ in a rat model including a ZA/DX group. However, the decreased bone remodeling tendency highlighted by 18F-NaF

  4. Radiation Dosimetry of Whole-Body Dual-Tracer 18F-FDG and 11C-Acetate PET/CT for Hepatocellular Carcinoma.

    PubMed

    Liu, Dan; Khong, Pek-Lan; Gao, Yiming; Mahmood, Usman; Quinn, Brian; St Germain, Jean; Xu, X George; Dauer, Lawrence T

    2016-06-01

    Combined whole-body dual-tracer ((18)F-FDG and (11)C-acetate) PET/CT is increasingly used for staging hepatocellular carcinoma, with only limited studies investigating the radiation dosimetry data of these scans. The aim of the study was to characterize the radiation dosimetry of combined whole-body dual-tracer PET/CT protocols. Consecutive adult patients with hepatocellular carcinoma who underwent whole-body dual-tracer PET/CT scans were retrospectively reviewed with institutional review board approval. OLINDA/EXM 1.1 was used to estimate patient-specific internal dose exposure in each organ. Biokinetic models for (18)F-FDG and (11)C-acetate as provided by ICRP (International Commission on Radiological Protection) publication 106 were used. Standard reference phantoms were modified to more closely represent patient-specific organ mass. With patient-specific parameters, organ equivalent doses from each CT series were estimated using VirtualDose. Dosimetry capabilities for tube current modulation protocols were applied by integrating with the latest anatomic realistic models. Effective dose was calculated using ICRP publication 103 tissue-weighting coefficients for adult male and female, respectively. Fourteen scans were evaluated (12 men, 2 women; mean age ± SD, 60 ± 19.48 y). The patient-specific effective dose from (18)F-FDG and (11)C-acetate was 6.08 ± 1.49 and 1.56 ± 0.47 mSv, respectively, for male patients and 6.62 ± 1.38 and 1.79 ± 0.12 mSV, respectively, for female patients. The patient-specific effective dose of the CT component, which comprised 2 noncontrast whole-body scans, to male and female patients was 21.20 ± 8.94 and 14.79 ± 3.35 mSv, respectively. Thus, the total effective doses of the combined whole-body dual-tracer PET/CT studies for male and female patients were 28.84 ± 10.18 and 23.19 ± 4.61 mSv, respectively. Patient-specific parameters allow for more accurate estimation of organ equivalent doses. Considering the substantial

  5. The value of intratumoral heterogeneity of (18)F-FDG uptake to differentiate between primary benign and malignant musculoskeletal tumours on PET/CT.

    PubMed

    Nakajo, Masatoyo; Nakajo, Masayuki; Jinguji, Megumi; Fukukura, Yoshihiko; Nakabeppu, Yoshiaki; Tani, Atsushi; Yoshiura, Takashi

    2015-01-01

    The cumulative standardized uptake value (SUV)-volume histogram (CSH) was reported to be a novel way to characterize heterogeneity in intratumoral tracer uptake. This study investigated the value of fluorine-18 fludeoxyglucose ((18)F-FDG) intratumoral heterogeneity in comparison with SUV to discriminate between primary benign and malignant musculoskeletal (MS) tumours. The subjects comprised 85 pathologically proven MS tumours. The area under the curve of CSH (AUC-CSH) was used as a heterogeneity index, with lower values corresponding with increased heterogeneity. As 22 tumours were indiscernible on (18)F-FDG positron emission tomography, maximum standardized uptake value (SUVmax), mean standardized uptake value (SUVmean) and AUC-CSH were obtained in 63 positive tumours. The Mann-Whitney U test and receiver operating characteristic (ROC) analysis were used for analyses. The difference between benign (n = 35) and malignant tumours (n = 28) was significant in AUC-CSH (p = 0.004), but not in SUVmax (p = 0.168) and SUVmean (p = 0.879). The sensitivity, specificity and accuracy for diagnosing malignancy were 61%, 66% and 64% for SUVmax (optical threshold value, >6.9), 54%, 60% and 57% for SUVmean (optical threshold value, >3) and 61%, 86% and 75% for AUC-CSH (optical threshold value, ≤0.42), respectively. The area under the ROC curve was significantly higher in AUC-CSH (0.71) than SUVmax (0.60) (p = 0.018) and SUVmean (0.51) (p = 0.005). The heterogeneity index, AUC-CSH, has a higher diagnostic accuracy than SUV analysis in differentiating between primary benign and malignant MS tumours, although it is not sufficiently high enough to obviate histological analysis. AUC-CSH can assess the heterogeneity of (18)F-FDG uptake in primary benign and malignant MS tumours, with significantly greater heterogeneity associated with malignant MS tumours. AUC-CSH is more diagnostically accurate than SUV analysis in differentiating between benign and

  6. Glycolytic activity in breast cancer using 18F-FDG PET/CT as prognostic predictor: A molecular phenotype approach.

    PubMed

    Garcia Vicente, A M; Soriano Castrejón, A; Amo-Salas, M; Lopez Fidalgo, J F; Muñoz Sanchez, M M; Alvarez Cabellos, R; Espinosa Aunion, R; Muñoz Madero, V

    2016-01-01

    To explore the relationship between basal (18)F-FDG uptake in breast tumors and survival in patients with breast cancer (BC) using a molecular phenotype approach. This prospective and multicentre study included 193 women diagnosed with BC. All patients underwent an (18)F-FDG PET/CT prior to treatment. Maximum standardized uptake value (SUVmax) in tumor (T), lymph nodes (N), and the N/T index was obtained in all the cases. Metabolic stage was established. As regards biological prognostic parameters, tumors were classified into molecular sub-types and risk categories. Overall survival (OS) and disease free survival (DFS) were obtained. An analysis was performed on the relationship between semi-quantitative metabolic parameters with molecular phenotypes and risk categories. The effect of molecular sub-type and risk categories in prognosis was analyzed using Kaplan-Meier and univariate and multivariate tests. Statistical differences were found in both SUVT and SUVN, according to the molecular sub-types and risk classifications, with higher semi-quantitative values in more biologically aggressive tumors. No statistical differences were observed with respect to the N/T index. Kaplan-Meier analysis revealed that risk categories were significantly related to DFS and OS. In the multivariate analysis, metabolic stage and risk phenotype showed a significant association with DFS. High-risk phenotype category showed a worst prognosis with respect to the other categories with higher SUVmax in primary tumor and lymph nodes. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  7. Dual tracer functional imaging of gastroenteropancreatic neuroendocrine tumors using 68Ga-DOTA-NOC PET-CT and 18F-FDG PET-CT: competitive or complimentary?

    PubMed

    Naswa, Niraj; Sharma, Punit; Gupta, Santosh Kumar; Karunanithi, Sellam; Reddy, Rama Mohan; Patnecha, Manish; Lata, Sneh; Kumar, Rakesh; Malhotra, Arun; Bal, Chandrasekhar

    2014-01-01

    This study aimed to compare the diagnostic performance of Ga-DOTANOC PET/CT with F-FDG PET/CT in the patients with gastroenteropancreatic neuroendocrine tumors (GEP-NETs). Data of 51 patients with definite histological diagnosis of GEP-NET who underwent both Ga-DOTA-NOC PET-CT and F-FDG PET-CT within a span of 15 days were selected for this retrospective analysis. Sensitivity, specificity, and predictive values were calculated for Ga-DOTA-NOC PET-CT and F-FDG PET-CT, and results were compared both on patientwise and regionwise analysis. Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT on patientwise analysis (P < 0.0001). On regionwise analysis, Ga-DOTA-NOC PET-CT is superior to F-FDG PET-CT only for lymph node metastases (P < 0.003). Although Ga-DOTA-NOC PET-CT detected more liver and skeletal lesions compared with F-FDG PET-CT, the difference was not statistically significant. In addition, the results of combined imaging helped in selecting candidates who would undergo the appropriate mode of treatment, whether octreotide therapy or conventional chemotherapy Ga-DOTA-NOC PET-CT seems to be superior to F-FDG PET-CT for imaging GEP-NETs. However, their role seems to be complementary because combination of Ga-DOTA-NOC PET-CT and F-FDG PET-CT in such patients helps demonstrate the total disease burden and segregate them to proper therapeutic groups.

  8. False-positive 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with metallic implants following chondrosarcoma resection.

    PubMed

    Zhou, P U; Tang, Jinliang; Zhang, Dong; Li, Guanghui

    2016-05-01

    Positron emission tomography (PET) with fluorine-18-labeled fluorodeoxyglucose ( 18 F-FDG) has been used for the staging and evaluation of recurrence in cancer patients. We herein report a false-positive result of 18 F-FDG PET/computed tomography (CT) scan in a patient following chondrosarcoma resection and metallic implanting. A 35-year-old male patient with chondrosarcoma of the left iliac bone underwent radical resection, metal brace implanting and radiotherapy. A high uptake of 18 F-FDG was observed in the metallic implants and adjacent tissue during PET/CT scanning in the 5th year of follow-up. Tissue biopsy and follow-up examination identified no tumor recurrence or infection at these sites, suggesting that the results of 18 F-FDG PET/CT must be interpreted with caution in cancer patients with metallic implants.

  9. Diagnostic value of [(18)F]-FDG PET/CT in children with fever of unknown origin or unexplained signs of inflammation.

    PubMed

    Jasper, Niklas; Däbritz, Jan; Frosch, Michael; Loeffler, Markus; Weckesser, Matthias; Foell, Dirk

    2010-01-01

    Fever of unknown origin (FUO) and unexplained signs of inflammation are challenging medical problems especially in children and predominantly caused by infections, malignancies or noninfectious inflammatory diseases. The aim of this study was to assess the diagnostic value of (18)F-FDG PET and PET/CT in the diagnostic work-up in paediatric patients. In this retrospective study, 47 FDG PET and 30 PET/CT scans from 69 children (median age 8.1 years, range 0.2-18.1 years, 36 male, 33 female) were analysed. The diagnostic value of PET investigations in paediatric patients presenting with FUO (44 scans) or unexplained signs of inflammation without fever (33 scans) was analysed. A diagnosis in paediatric patients with FUO or unexplained signs of inflammation could be established in 32 patients (54%). Of all scans, 63 (82%) were abnormal, and of the total number of 77 PET and PET/CT scans 35 (45%) were clinically helpful. In patients with a final diagnosis, scans were found to have contributed to the diagnosis in 73%. Laboratory, demographic or clinical parameters of the children did not predict the usefulness of FDG PET scans. This is the first larger study demonstrating that FDG PET and PET/CT may be valuable diagnostic tools for the evaluation of children with FUO and unexplained signs of inflammation. Depicting inflammation in the whole body, while not being traumatic, it is attractive for use especially in children. The combination of PET with CT seems to be superior, since the site of inflammation can be localized more accurately.

  10. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome.

    PubMed

    Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano

    2016-01-01

    The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, p<0.0001) and decreased in size from mild, moderate to severe ARDS (33±14%, 26±20% and 5±9% of the total lung volume, respectively, p=0.05). The homogeneous compartment with high [(18)F]FDG uptake was similarly distributed between the dependent and nondependent lung. The inhomogeneous compartment with normal [(18)F]FDG uptake represented 4% of the lung volume. The inhomogeneous compartment with high [(18)F]FDG uptake was preferentially located in the dependent lung (21±10% versus 12±10%, p<0.0001), mostly at the open/closed interfaces and related to recruitability (r(2)=0.53, p<0.001).The homogeneous lung compartment with normal inflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.

  11. Correlation of 18F-FDG PET and MRI Apparent Diffusion Coefficient Histogram Metrics with Survival in Diffuse Intrinsic Pontine Glioma: A Report from the Pediatric Brain Tumor Consortium.

    PubMed

    Zukotynski, Katherine A; Vajapeyam, Sridhar; Fahey, Frederic H; Kocak, Mehmet; Brown, Douglas; Ricci, Kelsey I; Onar-Thomas, Arzu; Fouladi, Maryam; Poussaint, Tina Young

    2017-08-01

    The purpose of this study was to describe baseline 18 F-FDG PET voxel characteristics in pediatric diffuse intrinsic pontine glioma (DIPG) and to correlate these metrics with baseline MRI apparent diffusion coefficient (ADC) histogram metrics, progression-free survival (PFS), and overall survival. Methods: Baseline brain 18 F-FDG PET and MRI scans were obtained in 33 children from Pediatric Brain Tumor Consortium clinical DIPG trials. 18 F-FDG PET images, postgadolinium MR images, and ADC MR images were registered to baseline fluid attenuation inversion recovery MR images. Three-dimensional regions of interest on fluid attenuation inversion recovery MR images and postgadolinium MR images and 18 F-FDG PET and MR ADC histograms were generated. Metrics evaluated included peak number, skewness, and kurtosis. Correlation between PET and MR ADC histogram metrics was evaluated. PET pixel values within the region of interest for each tumor were plotted against MR ADC values. The association of these imaging markers with survival was described. Results: PET histograms were almost always unimodal (94%, vs. 6% bimodal). None of the PET histogram parameters (skewness or kurtosis) had a significant association with PFS, although a higher PET postgadolinium skewness tended toward a less favorable PFS (hazard ratio, 3.48; 95% confidence interval [CI], 0.75-16.28 [ P = 0.11]). There was a significant association between higher MR ADC postgadolinium skewness and shorter PFS (hazard ratio, 2.56; 95% CI, 1.11-5.91 [ P = 0.028]), and there was the suggestion that this also led to shorter overall survival (hazard ratio, 2.18; 95% CI, 0.95-5.04 [ P = 0.067]). Higher MR ADC postgadolinium kurtosis tended toward shorter PFS (hazard ratio, 1.30; 95% CI, 0.98-1.74 [ P = 0.073]). PET and MR ADC pixel values were negatively correlated using the Pearson correlation coefficient. Further, the level of PET and MR ADC correlation was significantly positively associated with PFS; tumors with higher

  12. Detection of histological anaplasia in gliomas with oligodendroglial components using positron emission tomography with (18)F-FDG and (11)C-methionine: report of two cases.

    PubMed

    Yamaguchi, Shigeru; Kobayashi, Hiroyuki; Hirata, Kenji; Shiga, Tohru; Tanaka, Shinya; Murata, Junichi; Terasaka, Shunsuke

    2011-01-01

    Gliomas are regionally heterogeneous tumors. Positron emission tomography (PET) with (18)F-fluorodeoxyglucose (FDG) and (11)C-methionine (MET) evaluates the heterogeneity of histological malignancy within the tumor. We present two patients with oligodendrocytic tumors that showed discrepancies in the highest uptake areas with these two tracers. PET studies with MET and FDG were performed on the same day, 2 weeks before surgery. In both cases, biopsy specimens were separately obtained from the highest MET and FDG uptake areas guided by intraoperative neuronavigation. Histological examinations demonstrated that the specimens from the highest MET uptake area revealed low-grade oligoastrocytoma or oligodendroglioma, whereas histological anaplasias were contained in the specimens from the highest FDG uptake area. With gliomas with oligodendroglial components, the MET uptake ratio does not always correspond to histological anaplasia, which can be detected only by FDG PET. Sole application of MET PET for preoperative evaluation may lead to misunderstanding of histological heterogeneity in gliomas, especially those with oligodendroglial components. FDG and MET tracers play complementary roles in preoperative evaluation of gliomas.

  13. Comparison of NaF and FDG PET/CT for assessment of treatment response in castration-resistant prostate cancers with osseous metastases.

    PubMed

    Simoncic, Urban; Perlman, Scott; Liu, Glenn; Staab, Mary Jane; Straus, Jane Elizabeth; Jeraj, Robert

    2015-02-01

    Assessment of skeletal metastases' response to therapy is a highly relevant but unresolved clinical problem. The main goal of this work was to compare pharmacodynamic responses to therapy assessed with positron emission tomography-computed tomography (PET/CT) using fluorine-18 sodium fluoride (NaF) and fluorine-18 fluorodeoxyglucose (FDG) as the tracers. Patients with prostate cancer with known osseous metastases were treated with zibotentan (ZD4054) and imaged with combined dynamic NaF/FDG PET/CT before therapy (baseline), after 4 weeks of therapy (week 4), and after 2 weeks of treatment break (week 6). Kinetic analysis allowed comparison of the voxel-based tracer uptake rate parameter Ki, the vasculature parameters K1 (measuring perfusion/permeability) and Vb (measuring vasculature fraction in the tissue), and the standardized uptake values (SUVs). Correlations were high for the NaF and FDG peak uptake parameters (Ki and SUV correlations ranged from 0.57 to 0.88) and for vasculature parameters (K1 and Vb correlations ranged from 0.61 to 0.81). Correlation was low between the NaF and FDG week 4 Ki responses (ρ = 0.35; P = .084) but was higher for NaF and FDG week 6 Ki responses (ρ = 0.72; P < .0001). Correlations for vasculature responses were always low (ρ < 0.35). NaF and FDG uptakes in the osseous metastases were spatially dislocated, with overlap in the range from 0% to 80%. This study found that late NaF and FDG uptake responses are consistently correlated but that earlier uptake responses and all vasculature responses can be unrelated. This study also confirmed that FDG and NaF uptakes are spatially dislocated. Although treatment responses assessed with NaF and FDG may be correlated, using both tracers provides additional information. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Sequential [(18)F]FDG µPET whole-brain imaging of central vestibular compensation: a model of deafferentation-induced brain plasticity.

    PubMed

    Zwergal, Andreas; Schlichtiger, Julia; Xiong, Guoming; Beck, Roswitha; Günther, Lisa; Schniepp, Roman; Schöberl, Florian; Jahn, Klaus; Brandt, Thomas; Strupp, Michael; Bartenstein, Peter; Dieterich, Marianne; Dutia, Mayank B; la Fougère, Christian

    2016-01-01

    Unilateral inner ear damage is followed by a rapid behavioural recovery due to central vestibular compensation. In this study, we utilized serial [(18)F]Fluoro-deoxyglucose ([(18)F]FDG)-µPET imaging in the rat to visualize changes in brain glucose metabolism during behavioural recovery after surgical and chemical unilateral labyrinthectomy, to determine the extent and time-course of the involvement of different brain regions in vestibular compensation and test previously described hypotheses of underlying mechanisms. Systematic patterns of relative changes of glucose metabolism (rCGM) were observed during vestibular compensation. A significant asymmetry of rCGM appeared in the vestibular nuclei, vestibulocerebellum, thalamus, multisensory vestibular cortex, hippocampus and amygdala in the acute phase of vestibular imbalance (4 h). This was followed by early vestibular compensation over 1-2 days where rCGM re-balanced between the vestibular nuclei, thalami and temporoparietal cortices and bilateral rCGM increase appeared in the hippocampus and amygdala. Subsequently over 2-7 days, rCGM increased in the ipsilesional spinal trigeminal nucleus and later (7-9 days) rCGM increased in the vestibulocerebellum bilaterally and the hypothalamus and persisted in the hippocampus. These systematic dynamic rCGM patterns during vestibular compensation, were confirmed in a second rat model of chemical unilateral labyrinthectomy by serial [(18)F]FDG-µPET. These findings show that deafferentation-induced plasticity after unilateral labyrinthectomy involves early mechanisms of re-balancing predominantly in the brainstem vestibular nuclei but also in thalamo-cortical and limbic areas, and indicate the contribution of spinocerebellar sensory inputs and vestibulocerebellar adaptation at the later stages of behavioural recovery.

  15. Supraclavicular skin temperature as a measure of 18F-FDG uptake by BAT in human subjects.

    PubMed

    Boon, Mariëtte R; Bakker, Leontine E H; van der Linden, Rianne A D; Pereira Arias-Bouda, Lenka; Smit, Frits; Verberne, Hein J; van Marken Lichtenbelt, Wouter D; Jazet, Ingrid M; Rensen, Patrick C N

    2014-01-01

    Brown adipose tissue (BAT) has emerged as a novel player in energy homeostasis in humans and is considered a potential new target for combating obesity and related diseases. The current 'gold standard' for quantification of BAT volume and activity is cold-induced 18F-FDG uptake in BAT. However, use of this technique is limited by cost and radiation exposure. Given the fact that BAT is a thermogenic tissue, mainly located in the supraclavicular region, the aim of the current study was to investigate whether cold-induced supraclavicular skin temperature and core body temperature may be alternative markers of BAT activation in humans. BAT volume and activity were measured in 24 healthy lean adolescent males (mean age 24.1±0.8 years), using cold-induced 18F-FDG uptake with PET-CT. Core body temperature was measured continuously in the small intestine with use of an ingestible telemetric capsule and skin temperature was measured by eighteen wireless iButtons attached to the skin following ISO-defined locations. Proximal and distal (hand/feet) skin temperatures markedly decreased upon cold exposure, while supraclavicular skin temperature significantly increased (35.2±0.1 vs. 35.5±0.1°C, p = 0.001). Furthermore, cold-induced supraclavicular skin temperature positively correlated with both total (R2 = 0.28, P = 0.010) and clavicular BAT volume (R2 = 0.20, P = 0.030) and clavicular SUVmax (R2 = 0.27, P = 0.010), while core body temperature did not. Supraclavicular skin temperature as measured by iButtons may have predictive value for BAT detection in adult humans. This is highly desirable considering the increasing interest in pharmacological interventions to stimulate BAT in human subjects. NTR 2473.

  16. Supraclavicular Skin Temperature as a Measure of 18F-FDG Uptake by BAT in Human Subjects

    PubMed Central

    van der Linden, Rianne A. D.; Pereira Arias-Bouda, Lenka; Smit, Frits; Verberne, Hein J.; van Marken Lichtenbelt, Wouter D.

    2014-01-01

    Background Brown adipose tissue (BAT) has emerged as a novel player in energy homeostasis in humans and is considered a potential new target for combating obesity and related diseases. The current ‘gold standard’ for quantification of BAT volume and activity is cold-induced 18F-FDG uptake in BAT. However, use of this technique is limited by cost and radiation exposure. Given the fact that BAT is a thermogenic tissue, mainly located in the supraclavicular region, the aim of the current study was to investigate whether cold-induced supraclavicular skin temperature and core body temperature may be alternative markers of BAT activation in humans. Subjects/Methods BAT volume and activity were measured in 24 healthy lean adolescent males (mean age 24.1±0.8 years), using cold-induced 18F-FDG uptake with PET-CT. Core body temperature was measured continuously in the small intestine with use of an ingestible telemetric capsule and skin temperature was measured by eighteen wireless iButtons attached to the skin following ISO-defined locations. Results Proximal and distal (hand/feet) skin temperatures markedly decreased upon cold exposure, while supraclavicular skin temperature significantly increased (35.2±0.1 vs. 35.5±0.1°C, p = 0.001). Furthermore, cold-induced supraclavicular skin temperature positively correlated with both total (R2 = 0.28, P = 0.010) and clavicular BAT volume (R2 = 0.20, P = 0.030) and clavicular SUVmax (R2 = 0.27, P = 0.010), while core body temperature did not. Conclusions Supraclavicular skin temperature as measured by iButtons may have predictive value for BAT detection in adult humans. This is highly desirable considering the increasing interest in pharmacological interventions to stimulate BAT in human subjects. Trial Registration NTR 2473 PMID:24922545

  17. Visual Versus Fully Automated Analyses of 18F-FDG and Amyloid PET for Prediction of Dementia Due to Alzheimer Disease in Mild Cognitive Impairment.

    PubMed

    Grimmer, Timo; Wutz, Carolin; Alexopoulos, Panagiotis; Drzezga, Alexander; Förster, Stefan; Förstl, Hans; Goldhardt, Oliver; Ortner, Marion; Sorg, Christian; Kurz, Alexander

    2016-02-01

    Biomarkers of Alzheimer disease (AD) can be imaged in vivo and can be used for diagnostic and prognostic purposes in people with cognitive decline and dementia. Indicators of amyloid deposition such as (11)C-Pittsburgh compound B ((11)C-PiB) PET are primarily used to identify or rule out brain diseases that are associated with amyloid pathology but have also been deployed to forecast the clinical course. Indicators of neuronal metabolism including (18)F-FDG PET demonstrate the localization and severity of neuronal dysfunction and are valuable for differential diagnosis and for predicting the progression from mild cognitive impairment (MCI) to dementia. It is a matter of debate whether to analyze these images visually or using automated techniques. Therefore, we compared the usefulness of both imaging methods and both analyzing strategies to predict dementia due to AD. In MCI participants, a baseline examination, including clinical and imaging assessments, and a clinical follow-up examination after a planned interval of 24 mo were performed. Of 28 MCI patients, 9 developed dementia due to AD, 2 developed frontotemporal dementia, and 1 developed moderate dementia of unknown etiology. The positive and negative predictive values and the accuracy of visual and fully automated analyses of (11)C-PiB for the prediction of progression to dementia due to AD were 0.50, 1.00, and 0.68, respectively, for the visual and 0.53, 1.00, and 0.71, respectively, for the automated analyses. Positive predictive value, negative predictive value, and accuracy of fully automated analyses of (18)F-FDG PET were 0.37, 0.78, and 0.50, respectively. Results of visual analyses were highly variable between raters but were superior to automated analyses. Both (18)F-FDG and (11)C-PiB imaging appear to be of limited use for predicting the progression from MCI to dementia due to AD in short-term follow-up, irrespective of the strategy of analysis. On the other hand, amyloid PET is extremely useful to

  18. Clinical experience with (18)F-fluorodeoxyglucose positron emission tomography and (123)I-metaiodobenzylguanine scintigraphy in pediatric neuroblastoma: complementary roles in follow-up of patients.

    PubMed

    Gil, Tae Young; Lee, Do Kyung; Lee, Jung Min; Yoo, Eun Sun; Ryu, Kyung-Ha

    2014-06-01

    To evaluate the potential utility of (123)I-metaiodobenzylguanine ((123)I-MIBG) scintigraphy and (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) for the detection of primary and metastatic lesions in pediatric neuroblastoma (NBL) patients, and to determine whether (18)F-FDG PET is as beneficial as (123)I-MIBG imaging. We selected 8 NBL patients with significant residual mass after operation and who had paired (123)I-MIBG and (18)F-FDG PET images that were obtained during the follow-up. We retrospectively reviewed the clinical charts and the findings of 45 paired scans. Both scans correlated relatively well with the disease status as determined by standard imaging modalities during follow-up; the overall concordance rates were 32/45 (71.1%) for primary tumor sites and 33/45 (73.3%) for bone-bone marrow (BM) metastatic sites. In detecting primary tumor sites, (123)I-MIBG might be superior to (18)F-FDG PET. The sensitivity of (123)I-MIBG and (18)F-FDG PET were 96.7% and 70.9%, respectively, and their specificity were 85.7% and 92.8%, respectively. (18)F-FDG PET failed to detect 9 true NBL lesions in 45 follow-up scans (false negative rate, 29%) with positive (123)I-MIBG. For bone-BM metastatic sites, the sensitivity of (123)I-MIBG and (18)F-FDG PET were 72.7% and 81.8%, respectively, and the specificity were 79.1% and 100%, respectively. (123)I-MIBG scan showed higher false positivity (20.8%) than (18)F-FDG PET (0%). (123)I-MIBG is superior for delineating primary tumor sites, and (18)F-FDG PET could aid in discriminating inconclusive findings on bony metastatic NBL. Both scans can be complementarily used to clearly determine discrepancies or inconclusive findings on primary or bone-BM metastatic NBL during follow-up.

  19. False-positive 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with metallic implants following chondrosarcoma resection

    PubMed Central

    ZHOU, PU; TANG, JINLIANG; ZHANG, DONG; LI, GUANGHUI

    2016-01-01

    Positron emission tomography (PET) with fluorine-18-labeled fluorodeoxyglucose (18F-FDG) has been used for the staging and evaluation of recurrence in cancer patients. We herein report a false-positive result of 18F-FDG PET/computed tomography (CT) scan in a patient following chondrosarcoma resection and metallic implanting. A 35-year-old male patient with chondrosarcoma of the left iliac bone underwent radical resection, metal brace implanting and radiotherapy. A high uptake of 18F-FDG was observed in the metallic implants and adjacent tissue during PET/CT scanning in the 5th year of follow-up. Tissue biopsy and follow-up examination identified no tumor recurrence or infection at these sites, suggesting that the results of 18F-FDG PET/CT must be interpreted with caution in cancer patients with metallic implants. PMID:27123290

  20. Assessment of tumoricidal efficacy and response to treatment with 18F-FDG PET/CT after intraarterial infusion with the antiglycolytic agent 3-bromopyruvate in the VX2 model of liver tumor.

    PubMed

    Liapi, Eleni; Geschwind, Jean-Francois H; Vali, Mustafa; Khwaja, Afsheen A; Prieto-Ventura, Veronica; Buijs, Manon; Vossen, Josephina A; Ganapathy-Kanniappan, Shanmugasudaram; Ganapathy, Shanmugasudaram; Wahl, Richard L

    2011-02-01

    The purpose of this study was to determine the effects of 3-bromopyruvate (3-BrPA) on tumor glucose metabolism as imaged with (18)F-FDG PET/CT at multiple time points after treatment and compare them with those after intraarterial control injections of saline. Twenty-three New Zealand White rabbits implanted intrahepatically with VX2 tumors were assigned to 1 of 2 groups: 14 rabbits were assigned to the treatment group (TG) and 9 to the saline control group (SG). All animals were infused with 25 mL of either 1.75 mM 3-BrPA or saline over 1 h via a 2-French catheter, which was secured in the hepatic artery. For PET/CT, the animals were injected with 37 MBq of (18)F-FDG at 1 d before treatment and 2 h, 24 h, and 1 wk after treatment. Tumor size, tumor and liver maximal standardized uptake value (SUV(max)), and tumor-to-background ratios were calculated for all studies. Seven TG and 5 SG animals were sacrificed at 1 wk after treatment for histopathologic analysis. Intense (18)F-FDG uptake was seen in untreated tumors. A significant reduction in tumor SUV(max) was noted in TG animals, when compared with SG animals, at 1 wk after treatment (P = 0.006). The tumor-to-liver background ratio in the TG animals, compared with the SG animals, was significantly reduced as early as 24 h after treatment (P = 0.01) and remained reduced at 1 wk (P = 0.003). Tumor SUV(max) increased from the baseline levels at 7 d in controls (P = 0.05). The histopathologic analysis of explanted livers revealed increased tumor necrosis in all TG samples. There was a significant inverse correlation (r(2) = 0.538, P = 0.005) between the percentage of tumor necrosis on histopathology and tumor SUV(max) on (18)F-FDG PET at 7 d after treatment with 3-BrPA. Intraarterial injection of 3-BrPA resulted in markedly decreased (18)F-FDG uptake as imaged by PET/CT and increased tumor necrosis on histopathology at 1 wk after treatment in the VX2 rabbit liver tumor. PET/CT appears to be a useful means to follow

  1. Diagnostic utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) in asymptomatic subjects at increased risk for Alzheimer's disease.

    PubMed

    Drzezga, Alexander; Altomare, Daniele; Festari, Cristina; Arbizu, Javier; Orini, Stefania; Herholz, Karl; Nestor, Peter; Agosta, Federica; Bouwman, Femke; Nobili, Flavio; Walker, Zuzana; Frisoni, Giovanni Battista; Boccardi, Marina

    2018-05-13

    To assess the clinical utility of 18F-Fluorodeoxyglucose positron emission tomography (FDG-PET) for detection of early signs of neurodegeneration in conditions of increased risk for Alzheimer's disease (AD) as defined by: subjective cognitive decline (SCD), evidence of cerebral amyloid-pathology, apolipoprotein E (APOE) ε4-positive genotype, or autosomal dominant forms of AD (ADAD) in asymptomatic stages. A comprehensive literature search was conducted using the PICO model to extract evidence from relevant studies. An expert panel then voted using the Delphi method on three different diagnostic scenarios. The level of empirical study evidence for the use of FDG-PET to detect meaningful early signs of neurodegeneration was considered to be poor for ADAD and lacking for SCD and asymptomatic persons at risk, based on APOE ε4-positive genotype or cerebral amyloid pathology. Consequently, and consistent with current diagnostic criteria, panelists decided not to recommend routine clinical use of FDG-PET in these situations and to currently mainly reserve it for research purposes. Currently, there is limited evidence on which to base recommendations regarding the clinical routine use of FDG-PET to detect diagnostically meaningful early signs of neurodegeneration in asymptomatic subjects with ADAD, with APOE ε4-positive genotype, or with cerebral amyloid pathology, and in subjects with SCD. Future prospective studies are warranted and in part already ongoing, aiming to assess the added value of FDG-PET in this context beyond research applications.

  2. (18)F-Fluorodeoxyglucose PET/MR Imaging in Head and Neck Cancer.

    PubMed

    Platzek, Ivan

    2016-10-01

    (18)F-fluorodeoxyglucose (FDG) PET/MR imaging does not offer significant additional information in initial staging of squamous cell carcinoma of the head and neck when compared with standalone MR imaging. In patients with suspected tumor recurrence, FDG PET/MR imaging has higher sensitivity than MR imaging, although its accuracy is equivalent to the accuracy of FDG PET/CT. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. WE-E-17A-05: Complementary Prognostic Value of CT and 18F-FDG PET Non-Small Cell Lung Cancer Tumor Heterogeneity Features Quantified Through Texture Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Desseroit, M; Cheze Le Rest, C; Tixier, F

    2014-06-15

    Purpose: Previous studies have shown that CT or 18F-FDG PET intratumor heterogeneity features computed using texture analysis may have prognostic value in Non-Small Cell Lung Cancer (NSCLC), but have been mostly investigated separately. The purpose of this study was to evaluate the potential added value with respect to prognosis regarding the combination of non-enhanced CT and 18F-FDG PET heterogeneity textural features on primary NSCLC tumors. Methods: One hundred patients with non-metastatic NSCLC (stage I–III), treated with surgery and/or (chemo)radiotherapy, that underwent staging 18F-FDG PET/CT images, were retrospectively included. Morphological tumor volumes were semi-automatically delineated on non-enhanced CT using 3D SlicerTM.more » Metabolically active tumor volumes (MATV) were automatically delineated on PET using the Fuzzy Locally Adaptive Bayesian (FLAB) method. Intratumoral tissue density and FDG uptake heterogeneities were quantified using texture parameters calculated from co-occurrence, difference, and run-length matrices. In addition to these textural features, first order histogram-derived metrics were computed on the whole morphological CT tumor volume, as well as on sub-volumes corresponding to fine, medium or coarse textures determined through various levels of LoG-filtering. Association with survival regarding all extracted features was assessed using Cox regression for both univariate and multivariate analysis. Results: Several PET and CT heterogeneity features were prognostic factors of overall survival in the univariate analysis. CT histogram-derived kurtosis and uniformity, as well as Low Grey-level High Run Emphasis (LGHRE), and PET local entropy were independent prognostic factors. Combined with stage and MATV, they led to a powerful prognostic model (p<0.0001), with median survival of 49 vs. 12.6 months and a hazard ratio of 3.5. Conclusion: Intratumoral heterogeneity quantified through textural features extracted from both CT and

  4. 18-F-FDG PET/CT in Localizing Additional CNS Lesion in a Case of Langerhans Cell Histiocytosis: Determining Accurate Extent of the Disease

    PubMed Central

    Shamim, Shamim Ahmed; Tripathy, Sarthak; Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi

    2017-01-01

    Central nervous system involvement is a rare manifestation of Langerhans cell histiocytosis (LCH), with bone and skin lesions being more frequent. MR remains the investigation of choice for localizing brain lesions. However, due to poor sensitivity of MRI in detecting osseous and pulmonary lesions, it is not used routinely in staging purposes until and unless indicated. We hereby discuss a case of 6-year-old boy of LCH who was referred for 18-F-FDG PET/CT for staging and knowing the extent of the disease, but a lesion in hypothalamus was picked up incidentally on FDG PET-CT study that was confirmed by MRI. PMID:28533655

  5. 18-F-FDG PET/CT in Localizing Additional CNS Lesion in a Case of Langerhans Cell Histiocytosis: Determining Accurate Extent of the Disease.

    PubMed

    Shamim, Shamim Ahmed; Tripathy, Sarthak; Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi

    2017-01-01

    Central nervous system involvement is a rare manifestation of Langerhans cell histiocytosis (LCH), with bone and skin lesions being more frequent. MR remains the investigation of choice for localizing brain lesions. However, due to poor sensitivity of MRI in detecting osseous and pulmonary lesions, it is not used routinely in staging purposes until and unless indicated. We hereby discuss a case of 6-year-old boy of LCH who was referred for 18-F-FDG PET/CT for staging and knowing the extent of the disease, but a lesion in hypothalamus was picked up incidentally on FDG PET-CT study that was confirmed by MRI.

  6. Clinical importance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography in the management of patients with bronchoalveolar carcinoma: Role in the detection of recurrence.

    PubMed

    Skoura, Evangelia; Datseris, Ioannis E; Exarhos, Dimitrios; Chatziioannou, Sophia; Oikonomopoulos, Georgios; Samartzis, Alexandros; Giannopoulou, Chariklia; Syrigos, Konstantinos N

    2013-05-01

    [ 18 F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been reported to have a low sensitivity in the initial diagnosis of bronchoalveolar carcinoma (BAC) due to BAC's low metabolic activity. The aim of this study was to assess the value of [ 18 F]FDG-PET/CT in the detection of BAC recurrence. Between February 2007 and September 2011, the [ 18 F]FDG-PET/CT scans that were performed on patients with known, histologically proven BAC were studied. A total of 24 [ 18 F]FDG-PET/CT scans were performed in 22 patients, including 16 males and 6 females, with a mean age of 65±9 years. Among the scans, 15 were performed to assess for possible recurrence with equivocal findings in conventional imaging methods and 9 for restaging post-therapy. In all cases conventional imaging studies (CT and MRI) were performed 5-30 days prior to PET/CT. Among the 24 [ 18 F]FDG-PET/CT scans, 18 were positive and 6 negative. Among the 15 [ 18 F]FDG-PET/CT scans performed for suspected recurrence, 34 lesions were detected and the mean maximum standardized uptake value (SUVmax) was 6.8±3.26. In nine scans, upstaging was observed, while two were in agreement with the findings of the conventional modalities. A greater number of lesions were detected in two scans and fewer lesions were detected in one, with no change in staging. Only one scan was negative. By contrast, in patients examined for restaging, there were only five lesions with a mean SUVmax of 4.86±3.18. Agreement between the findings of [ 18 F]FDG-PET/CT and the conventional modalities was observed in 8 out of 9 cases. Although [ 18 F]FDG-PET/CT has been reported to have a low sensitivity in the initial diagnosis of BAC, the present results indicate that when there is recurrence, the lesions become [ 18 F]FDG avid. [ 18 F]FDG-PET/CT may provide further information in patients evaluated for recurrence and thus improve patient management.

  7. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters.

    PubMed

    Mhlanga, Joyce C; Carrino, John A; Lodge, Martin; Wang, Hao; Wahl, Richard L

    2014-12-01

    The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with (18)F-FDG. Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological (18)F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73 ± 7.7 years). Six patients served as the control group (53.7 ± 9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r = 0.86. p = 0.007; r = 0.94, p = 0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7 ± 6.6 vs. 32.2 ± 0.4, p = 0.02; 37.5 ± 5.4 vs. 32.2 ± 0.4, p = 0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8 ± 4.2 vs. 18 ± 1.8, p = 0.13; 22.8 ± 5.38 vs. 20.1 ± 1.54, p = 0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9 ± 31.3 vs. 0, p = 0.03). Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted.

  8. New Fetal Dose Estimates from 18F-FDG Administered During Pregnancy: Standardization of Dose Calculations and Estimations with Voxel-Based Anthropomorphic Phantoms.

    PubMed

    Zanotti-Fregonara, Paolo; Chastan, Mathieu; Edet-Sanson, Agathe; Ekmekcioglu, Ozgul; Erdogan, Ezgi Basak; Hapdey, Sebastien; Hindie, Elif; Stabin, Michael G

    2016-11-01

    Data from the literature show that the fetal absorbed dose from 18 F-FDG administration to the pregnant mother ranges from 0.5E-2 to 4E-2 mGy/MBq. These figures were, however, obtained using different quantification techniques and with basic geometric anthropomorphic phantoms. The aim of this study was to refine the fetal dose estimates of published as well as new cases using realistic voxel-based phantoms. The 18 F-FDG doses to the fetus (n = 19; 5-34 wk of pregnancy) were calculated with new voxel-based anthropomorphic phantoms of the pregnant woman. The image-derived fetal time-integrated activity values were combined with those of the mothers' organs from the International Commission on Radiological Protection publication 106 and the dynamic bladder model with a 1-h bladder-voiding interval. The dose to the uterus was used as a proxy for early pregnancy (up to 10 wk). The time-integrated activities were entered into OLINDA/EXM 1.1 to derive the dose with the classic anthropomorphic phantoms of pregnant women, then into OLINDA/EXM 2.0 to assess the dose using new voxel-based phantoms. The average fetal doses (mGy/MBq) with OLINDA/EXM 2.0 were 2.5E-02 in early pregnancy, 1.3E-02 in the late part of the first trimester, 8.5E-03 in the second trimester, and 5.1E-03 in the third trimester. The differences compared with the doses calculated with OLINDA/EXM 1.1 were +7%, +70%, +35%, and -8%, respectively. Except in late pregnancy, the doses estimated with realistic voxelwise anthropomorphic phantoms are higher than the doses derived from old geometric phantoms. The doses remain, however, well below the threshold for any deterministic effects. Thus, pregnancy is not an absolute contraindication of a clinically justified 18 F-FDG PET scan. © 2016 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  9. 18F-FDG PET/CT as a staging procedure in primary stage II and III breast cancer: comparison with conventional imaging techniques.

    PubMed

    Koolen, Bas B; Vrancken Peeters, Marie-Jeanne T F D; Aukema, Tjeerd S; Vogel, Wouter V; Oldenburg, Hester S A; van der Hage, Jos A; Hoefnagel, Cornelis A; Stokkel, Marcel P M; Loo, Claudette E; Rodenhuis, Sjoerd; Rutgers, Emiel J Th; Valdés Olmos, Renato A

    2012-01-01

    The aim of the present study was to investigate if 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) outperforms conventional imaging techniques for excluding distant metastases prior to neoadjuvant chemotherapy (NAC) treatment in patients with stage II and III breast cancer. Second, we assessed the clinical importance of false positive findings. One hundred and fifty four patients with stage II or III breast cancer, scheduled to receive NAC, underwent an 18F-FDG PET/CT scan and conventional imaging, consisting of bone scintigraphy, ultrasound of the liver, and chest radiography. Suspect additional lesions at staging examination were confirmed by biopsy and histopathology and/or additional imaging. Metastases that were detected within 6 months after the PET/CT scan were considered evidence of occult metastasis, missed by staging examination. Forty-two additional distant lesions were seen in 25 patients with PET/CT and could be confirmed in 20 (13%) of 154 patients. PET/CT was false positive for 8 additional lesions (19%) and misclassified the presence of metastatic disease in 5 (3%) of 154 patients. In 16 (80%) of 20 patients, additional lesions were exclusively seen with PET/CT, leading to a change in treatment in 13 (8%) of 154 patients. In 129 patients with a negative staging PET/CT, no metastases developed during the follow-up of 9.0 months. Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of PET/CT in the detection of additional distant lesions in patients with stage II or III breast cancer are 100, 96, 80, 100, and 97%, respectively. FDG PET/CT is superior to conventional imaging techniques in the detection of distant metastases in patients with untreated stage II or III breast cancer and is associated with a low false positive rate. PET/CT may be of additional value in the staging of breast cancer prior to NAC.

  10. Textural features of pretreatment 18F-FDG PET/CT images: prognostic significance in patients with advanced T-stage oropharyngeal squamous cell carcinoma.

    PubMed

    Cheng, Nai-Ming; Fang, Yu-Hua Dean; Chang, Joseph Tung-Chieh; Huang, Chung-Guei; Tsan, Din-Li; Ng, Shu-Hang; Wang, Hung-Ming; Lin, Chien-Yu; Liao, Chun-Ta; Yen, Tzu-Chen

    2013-10-01

    Previous studies have shown that total lesion glycolysis (TLG) may serve as a prognostic indicator in oropharyngeal squamous cell carcinoma (OPSCC). We sought to investigate whether the textural features of pretreatment (18)F-FDG PET/CT images can provide any additional prognostic information over TLG and clinical staging in patients with advanced T-stage OPSCC. We retrospectively analyzed the pretreatment (18)F-FDG PET/CT images of 70 patients with advanced T-stage OPSCC who had completed concurrent chemoradiotherapy, bioradiotherapy, or radiotherapy with curative intent. All of the patients had data on human papillomavirus (HPV) infection and were followed up for at least 24 mo or until death. A standardized uptake value (SUV) of 2.5 was taken as a cutoff for tumor boundary. The textural features of pretreatment (18)F-FDG PET/CT images were extracted from histogram analysis (SUV variance and SUV entropy), normalized gray-level cooccurrence matrix (uniformity, entropy, dissimilarity, contrast, homogeneity, inverse different moment, and correlation), and neighborhood gray-tone difference matrix (coarseness, contrast, busyness, complexity, and strength). Receiver-operating-characteristic curves were used to identify the optimal cutoff values for the textural features and TLG. Thirteen patients were HPV-positive. Multivariate Cox regression analysis showed that age, tumor TLG, and uniformity were independently associated with progression-free survival (PFS) and disease-specific survival (DSS). TLG, uniformity, and HPV positivity were significantly associated with overall survival (OS). A prognostic scoring system based on TLG and uniformity was derived. Patients who presented with TLG > 121.9 g and uniformity ≤ 0.138 experienced significantly worse PFS, DSS, and OS rates than those without (P < 0.001, < 0.001, and 0.002, respectively). Patients with TLG > 121.9 g or uniformity ≤ 0.138 were further divided according to age, and different PFS and DSS were observed

  11. 18F-FDG PET/CT Imaging of Hidradenocarcinoma Arising From Preexisting Hidradenoma of the Knee.

    PubMed

    Patel, Tirth V; Oldan, Jorge

    2018-01-01

    Malignant tumors of the sweat glands are exceedingly rare and aggressive tumors. We present here a case of a 60-year-old man with a malignant hidradenocarcinoma that developed in a background of preexisting benign hidradenoma on the lateral aspect of the knee that was initially resected, but rapidly recurred with associated inguinal lymphadenopathy. F-FDG PET/CT was performed as part of preoperative staging, which demonstrated abnormal inguinal lymph nodes and metastatic disease to the lungs. FDG PET/CT can play an invaluable role in the initial staging and follow-up of this rare malignancy.

  12. Incorporation and translocation of 2-deoxy-2-[(18)F]fluoro-D-glucose in Sorghum bicolor (L.) Moench monitored using a planar positron imaging system.

    PubMed

    Hattori, Etsuko; Uchida, Hiroshi; Harada, Norihiro; Ohta, Mari; Tsukada, Hideo; Hara, Yasuhiro; Suzuki, Tetsuya

    2008-04-01

    [(18)F]FDG (2-deoxy-2-[(18)F]fluoro-D-glucose) was fed to a sorghum plant [Sorghum bicolor (L.) Moench] from the tip of a leaf and its movement was monitored using a planar positron imaging system (PPIS). [(18)F]FDG was uptaken from the leaf tip and it was translocated to the basal part of the shoots from where it moved to the roots, the tillers and the sheaths. Autoradiographic analysis of the distribution of (18)F, [(18)F]FDG and/or its metabolites showed translocation to the roots, tillers, and to the leaves that were younger than the supplied leaf. Strong labelling was observed in the basal part of the shoots, in the sheaths, the youngest leaf and the root tips. Our results indicate that [(18)F]FDG and/or its metabolites were absorbed from the leaf and translocated to the sites where nutrients are required. This strongly suggests that [(18)F]FDG can be utilised as a tracer to study photoassimilate translocation in the living plant. This is the first report on the use of [(18)F]FDG, which is routinely used as a probe for clinical diagnosis, to study source to sink translocation of metabolites in whole plants in real time.

  13. Construction and evaluation of quantitative small-animal PET probabilistic atlases for [¹⁸F]FDG and [¹⁸F]FECT functional mapping of the mouse brain.

    PubMed

    Casteels, Cindy; Vunckx, Kathleen; Aelvoet, Sarah-Ann; Baekelandt, Veerle; Bormans, Guy; Van Laere, Koen; Koole, Michel

    2013-01-01

    Automated voxel-based or pre-defined volume-of-interest (VOI) analysis of small-animal PET data in mice is necessary for optimal information usage as the number of available resolution elements is limited. We have mapped metabolic ([(18)F]FDG) and dopamine transporter ([(18)F]FECT) small-animal PET data onto a 3D Magnetic Resonance Microscopy (MRM) mouse brain template and aligned them in space to the Paxinos co-ordinate system. In this way, ligand-specific templates for sensitive analysis and accurate anatomical localization were created. Next, using a pre-defined VOI approach, test-retest and intersubject variability of various quantification methods were evaluated. Also, the feasibility of mouse brain statistical parametric mapping (SPM) was explored for [(18)F]FDG and [(18)F]FECT imaging of 6-hydroxydopamine-lesioned (6-OHDA) mice. Twenty-three adult C57BL6 mice were scanned with [(18)F]FDG and [(18)F]FECT. Registrations and affine spatial normalizations were performed using SPM8. [(18)F]FDG data were quantified using (1) an image-derived-input function obtained from the liver (cMRglc), using (2) standardized uptake values (SUVglc) corrected for blood glucose levels and by (3) normalizing counts to the whole-brain uptake. Parametric [(18)F]FECT binding images were constructed by reference to the cerebellum. Registration accuracy was determined using random simulated misalignments and vectorial mismatch determination. Registration accuracy was between 0.21-1.11 mm. Regional intersubject variabilities of cMRglc ranged from 15.4% to 19.2%, while test-retest values were between 5.0% and 13.0%. For [(18)F]FECT uptake in the caudate-putamen, these values were 13.0% and 10.3%, respectively. Regional values of cMRglc positively correlated to SUVglc measured within the 45-60 min time frame (spearman r = 0.71). Next, SPM analysis of 6-OHDA-lesioned mice showed hypometabolism in the bilateral caudate-putamen and cerebellum, and an unilateral striatal decrease in DAT

  14. Evaluation of pulmonary lesions with F-18 FDG PET: Comparison of findings in patients with primary pulmonary lesions, pulmonary lesions with history of prior malignancey, and clinically or radiographically suspicious thoracic lymph nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knight, S.B.; Delbeke, D.; Campbell, M.G.

    1994-05-01

    The efficacy of Positron Emission Tomography with F-18 FDG in distinguishing benign from malignant lesions is evaluated and compared in three clinically distinct patient populations. Twenty-four patients with pulmonary lesions or thoracic lymph nodes suspicious for malignancy underwent FDG PET scanning. Pathologic proof of diagnosis was obtained for all patients by thoracotomy (n=18), endobronchial biopsy (n=3), mediastinoscopy (n=2) or sputum cytology (n=1).

  15. The role of 18F-fluorodeoxyglucose positron emission tomography in the management of patients with pancreatic adenocarcinoma.

    PubMed

    Kadhim, Lujaien A; Dholakia, Avani S; Herman, Joseph M; Wahl, Richard L; Chaudhry, Muhammad A

    2013-12-01

    Pancreatic cancer continues to have a grim prognosis with 5-year survival rates at less than 5 %. It is a particularly challenging health problem given these poor survival outcomes, aggressive tumor biology, and late onset of symptoms. Most patients present with advanced unresectable cancer however, margin-negative resection provides a rare chance for cure for patients with resectable disease. The standard imaging modality for the diagnosis and management of pancreatic cancer is contrast-enhanced multidetector computed tomography. Remarkable advances in CT technology have led to improvements in the ability to detect small tumors and intricate vasculature involvement by the tumor, yet CT is still restricted to providing a morphological portrait of the tumor. Diagnosis can be challenging due to similar appearance of certain benign and malignant disease. Distant metastatic disease can be silent on CT leading to improper staging, and thus management, of certain patients. Furthermore, radiation-induced fibrosis and necrosis complicate assessment of treatment response by CT alone. F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG-PET) is becoming a prevalent tool employed by physicians to improve accuracy in these clinical scenarios. Malignant transformation causes a high metabolic activity of cancer cells. 18 F-FDG-PET captures this functional activity of malignancies by capturing areas with high glucose utilization rates. Imaging function rather than morphological appearance, 18 F-FDG-PET has a unique role in the management of oncology patients with the ability to detect regions of tumor involvement that may be silent on conventional imaging. Literature on the sensitivity and specificity of 18 F-FDG-PET fails to reach a consensus, and improvements resulting in hybridization of 18 F-FDG-PET and CT imaging techniques are preliminary. Here we review the potential role of 18 F-FDG-PET and PET/CT in improving accuracy in the initial evaluation and subsequent

  16. Correlation between quantified breast densities from digital mammography and 18F-FDG PET uptake.

    PubMed

    Lakhani, Paras; Maidment, Andrew D A; Weinstein, Susan P; Kung, Justin W; Alavi, Abass

    2009-01-01

    To correlate breast density quantified from digital mammograms with mean and maximum standardized uptake values (SUVs) from positron emission tomography (PET). This was a prospective study that included 56 women with a history of suspicion of breast cancer (mean age 49.2 +/- 9.3 years), who underwent 18F-fluoro-2-deoxyglucose (FDG)-PET imaging of their breasts as well as digital mammography. A computer thresholding algorithm was applied to the contralateral nonmalignant breasts to quantitatively estimate the breast density on digital mammograms. The breasts were also classified into one of four Breast Imaging Reporting and Data System categories for density. Comparisons between SUV and breast density were made using linear regression and the Student's t-test. Linear regression of mean SUV versus average breast density showed a positive relationship with a Pearson's correlation coefficient of R(2) = 0.83. The quantified breast densities and mean SUVs were significantly greater for mammographically dense than nondense breasts (p < 0.0001 for both). The average quantified densities and mean SUVs of the breasts were significantly greater for premenopausal than postmenopausal patients (p < 0.05). 8/51 (16%) of the patients had maximum SUVs that equaled 1.6 or greater. There is a positive linear correlation between quantified breast density on digital mammography and FDG uptake on PET. Menopausal status affects the metabolic activity of normal breast tissue, resulting in higher SUVs in pre- versus postmenopausal patients.

  17. Textural features of 18F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection.

    PubMed

    Saleem, Ben R; Beukinga, Roelof J; Boellaard, Ronald; Glaudemans, Andor W J M; Reijnen, Michel M P J; Zeebregts, Clark J; Slart, Riemer H J A

    2017-05-01

    The clinical problem in suspected aortoiliac graft infection (AGI) is to obtain proof of infection. Although 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography scanning (PET) has been suggested to play a pivotal role, an evidence-based interpretation is lacking. The objective of this retrospective study was to examine the feasibility and utility of 18 F-FDG uptake heterogeneity characterized by textural features to diagnose AGI. Thirty patients with a history of aortic graft reconstruction who underwent 18 F-FDG PET/CT scanning were included. Sixteen patients were suspected to have an AGI (group I). AGI was considered proven only in the case of a positive bacterial culture. Positive cultures were found in 10 of the 16 patients (group Ia), and in the other six patients, cultures remained negative (group Ib). A control group was formed of 14 patients undergoing 18 F-FDG PET for other reasons (group II). PET images were assessed using conventional maximal standardized uptake value (SUVmax), tissue-to-background ratio (TBR), and visual grading scale (VGS). Additionally, 64 different 18 F-FDG PET based textural features were applied to characterize 18 F-FDG uptake heterogeneity. To select candidate predictors, univariable logistic regression analysis was performed (α = 0.16). The accuracy was satisfactory in case of an AUC > 0.8. The feature selection process yielded the textural features named variance (AUC = 0.88), high grey level zone emphasis (AUC = 0.87), small zone low grey level emphasis (AUC = 0.80), and small zone high grey level emphasis (AUC = 0.81) most optimal for distinguishing between groups I and II. SUVmax, TBR, and VGS were also able to distinguish between these groups with AUCs of 0.87, 0.78, and 0.90, respectively. The textural feature named short run high grey level emphasis was able to distinguish group Ia from Ib (AUC = 0.83), while for the same task the TBR and VGS were not found to be predictive. SUVmax

  18. Comparing 2-[18F]fluoro-2-deoxy-D-glucose and [68Ga]gallium-citrate translocation in Arabidopsis thaliana.

    PubMed

    Fatangare, Amol; Gebhardt, Peter; Saluz, Hanspeter; Svatoš, Aleš

    2014-10-01

    2-[(18)F]fluoro-2-deoxy-D-glucose ((18)FDG) is a glucose surrogate commonly used in clinical or animal imaging but rarely in plant imaging to trace glucose metabolism. Recently, (18)FDG has been employed in plant imaging for studying photoassimilate translocation and glycoside biosynthesis. There is growing evidence that (18)FDG could be used as a tracer in plant imaging studies to trace sugar dynamics. However, to confirm this hypothesis, it was necessary to show that the observed (18)FDG distribution in an intact plant is an outcome of the chemical nature of the introduced radiotracer and not of the plant vascular architecture or radiotracer introduction method. In the present work, we fed (18)FDG and [(68)Ga]gallium-citrate ((68)Ga-citrate) solution through mature Arabidopsis thaliana leaf and monitored subsequent radioactivity distribution using positron autoradiography. The possible route of radioactivity translocation was elucidated through stem-girdling experiments. We also employed a bi-functional positron emission tomography/computed tomography (PET/CT) modality to capture (18)FDG radiotracer dynamics in one of the plants in order to assess applicability of PET/CT for 4-D imaging in an intact plant. Autoradiography results showed that [(18)F] radioactivity accumulated mostly in roots and young growing parts such as the shoot apex, which are known to act as sinks for photoassimilate. [(18)F] radioactivity translocation, in this case, occurred mainly via phloem. PET/CT results corroborated with autoradiography. [(68)Ga] radioactivity, on the other hand, was mainly translocated to neighboring leaves and its translocation occurred via both xylem and phloem. The radioactivity distribution pattern and translocation route observed after (18)FDG feeding is markedly different from that of (68)Ga-citrate. [(18)F] radioactivity distribution pattern in an intact plant is found similar to the typical distribution pattern of photoassimilates. Despite its limitations in

  19. Gamma-camera 18F-FDG PET in diagnosis and staging of patients presenting with suspected lung cancer and comparison with dedicated PET.

    PubMed

    Oturai, Peter S; Mortensen, Jann; Enevoldsen, Henriette; Eigtved, Annika; Backer, Vibeke; Olesen, Knud P; Nielsen, Henrik W; Hansen, Hanne; Stentoft, Poul; Friberg, Lars

    2004-08-01

    It is not clear whether high-quality coincidence gamma-PET (gPET) cameras can provide clinical data comparable with data obtained with dedicated PET (dPET) cameras in the primary diagnostic work-up of patients with suspected lung cancer. This study focuses on 2 main issues: direct comparison between foci resolved with the 2 different PET scanners and the diagnostic accuracy compared with final diagnosis determined by the combined information from all other investigations and clinical follow-up. Eighty-six patients were recruited to this study through a routine diagnostic program. They all had changes on their chest radiographs, suggesting malignant lung tumor. In addition to the standard diagnostic program, each patient had 2 PET scans that were performed on the same day. After administration of 419 MBq (range = 305-547 MBq) (18)F-FDG, patients were scanned in a dedicated PET scanner about 1 h after FDG administration and in a dual-head coincidence gamma-camera about 3 h after tracer injection. Images from the 2 scans were evaluated in a blinded set-up and compared with the final outcome. Malignant intrathoracic disease was found in 52 patients, and 47 patients had primary lung cancers. dPET detected all patients as having malignancies (sensitivity, 100%; specificity, 50%), whereas gPET missed one patient (sensitivity, 98%; specificity, 56%). For evaluating regional lymph node involvement, sensitivity and specificity rates were 78% and 84% for dPET and 61% and 90% for gPET, respectively. When comparing the 2 PET techniques with clinical tumor stage (TNM), full agreement was obtained in 64% of the patients (Cohen's kappa = 0.56). Comparing categorization of the patients into clinical relevant stages (no malignancy/malignancy suitable for treatment with curative intent/nontreatable malignancy), resulted in full agreement in 81% (Cohen's kappa = 0.71) of patients. Comparing results from a recent generation of gPET cameras obtained about 2 h later than those of d

  20. Usefulness of CA125 and their kinetic parameters and positron emission tomography/computed tomography (PET/CT) with fluorodeoxyglucose ([18F] FDG) in the detection of recurrent ovarian cancer levels.

    PubMed

    Palomar Muñoz, Azahara; Cordero García, José Manuel; Talavera Rubio, Prado; García Vicente, Ana M; González García, Beatriz; Bellón Guardia, María Emiliana; Soriano Castrejón, Ángel; Aranda Aguilar, Enrique

    2017-12-21

    To assess the usefulness of cancer antigen 125 (CA125) serum levels and kinetic values, velocity (CA125vel) and doubling time (CA125dt), as well as fluorodeoxyglucose ([ 18 F]FDG) positron emission tomography/computed tomography (PET/CT), in the detection of ovarian cancer recurrence. To assess the optimal cut-off for CA125, CA125vel and CA125dt to detect relapse with [ 18 F]FDG-PET/CT. A retrospective analysis was performed of 59 [ 18 F]FDG-PET/CT (48 patients) for suspected recurrence of ovarian cancer. Receiver operating characteristic (ROC) curves were plotted and area-under-the curve (AUC) statistics were computed for CA125, CA125vel and CA125dt. The results obtained in the group with normal and high (>35U/ml) CA125 levels were compared. Forty-four cases of recurrence were diagnosed (7 had CA125 ≤35U/ml), whereas 15 showed no disease. All of them were correctly catalogued by PET/CT. In ROC analysis, the discriminatory power of CA125 was relatively high (AUC 0.835) and the optimal cut-off point to reflect active disease was 23.9U/ml. The ROC analyses for the CA125vel and CA125dt showed an AUC of 0.849 and 0.728, respectively, with an optimal cut-off point of 1.96U/ml/month and 0.76 months, respectively. In patients with normal CA125 and recurrence of ovarian cancer, the CA125vel was significantly higher than in patients without recurrence (p=0.029). [ 18 F]FDG-PET/CT is more accurate than CA125 parameters in the detection of ovarian cancer recurrence. CA125 serum levels are essential; nevertheless, CA125 kinetic values must be considered to detect relapse. Particularly in patients with CA125 within normal values, in which a higher CA125vel is indicative of recurrence. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  1. Comparison of three-parameter kinetic model analysis to standard Patlak's analysis in 18F-FDG PET imaging of lung cancer patients.

    PubMed

    Laffon, E; Calcagni, M L; Galli, G; Giordano, A; Capotosti, A; Marthan, R; Indovina, L

    2018-03-27

    Patlak's graphical analysis can provide tracer net influx constant (Ki) with limitation of assuming irreversible tracer trapping, that is, release rate constant (k b ) set to zero. We compared linear Patlak's analysis to non-linear three-compartment three-parameter kinetic model analysis (3P-KMA) providing Ki, k b , and fraction of free 18 F-FDG in blood and interstitial volume (V b ). Dynamic PET data of 21 lung cancer patients were retrospectively analyzed, yielding for each patient an 18 F-FDG input function (IF) and a tissue time-activity curve. The former was fitted with a three-exponentially decreasing function, and the latter was fitted with an analytical formula involving the fitted IF data (11 data points, ranging 7.5-57.5 min post-injection). Bland-Altman analysis was used for Ki comparison between Patlak's analysis and 3P-KMA. Additionally, a three-compartment five-parameter KMA (5P-KMA) was implemented for comparison with Patlak's analysis and 3P-KMA. We found that 3P-KMA Ki was significantly greater than Patlak's Ki over the whole patient series, + 6.0% on average, with limits of agreement of ± 17.1% (95% confidence). Excluding 8 out of 21 patients with k b  > 0 deleted this difference. A strong correlation was found between Ki ratio (=3P-KMA/Patlak) and k b (R = 0.801; P < 0.001). No significant difference in Ki was found between 3P-KMA versus 5P-KMA, and between 5P-KMA versus Patlak's analysis, with limits of agreement of ± 23.0 and ± 31.7% (95% confidence), respectively. Comparison between 3P-KMA and Patlak's analysis significantly showed that the latter underestimates Ki because it arbitrarily set k b to zero: the greater the k b value, the greater the Ki underestimation. This underestimation was not revealed when comparing 5P-KMA and Patlak's analysis. We suggest that further studies are warranted to investigate the 3P-KMA efficiency in various tissues showing greater 18 F-FDG trapping reversibility than lung cancer

  2. Intratumor heterogeneity characterized by textural features on baseline 18F-FDG PET images predicts response to concomitant radiochemotherapy in esophageal cancer.

    PubMed

    Tixier, Florent; Le Rest, Catherine Cheze; Hatt, Mathieu; Albarghach, Nidal; Pradier, Olivier; Metges, Jean-Philippe; Corcos, Laurent; Visvikis, Dimitris

    2011-03-01

    (18)F-FDG PET is often used in clinical routine for diagnosis, staging, and response to therapy assessment or prediction. The standardized uptake value (SUV) in the primary or regional area is the most common quantitative measurement derived from PET images used for those purposes. The aim of this study was to propose and evaluate new parameters obtained by textural analysis of baseline PET scans for the prediction of therapy response in esophageal cancer. Forty-one patients with newly diagnosed esophageal cancer treated with combined radiochemotherapy were included in this study. All patients underwent pretreatment whole-body (18)F-FDG PET. Patients were treated with radiotherapy and alkylatinlike agents (5-fluorouracil-cisplatin or 5-fluorouracil-carboplatin). Patients were classified as nonresponders (progressive or stable disease), partial responders, or complete responders according to the Response Evaluation Criteria in Solid Tumors. Different image-derived indices obtained from the pretreatment PET tumor images were considered. These included usual indices such as maximum SUV, peak SUV, and mean SUV and a total of 38 features (such as entropy, size, and magnitude of local and global heterogeneous and homogeneous tumor regions) extracted from the 5 different textures considered. The capacity of each parameter to classify patients with respect to response to therapy was assessed using the Kruskal-Wallis test (P < 0.05). Specificity and sensitivity (including 95% confidence intervals) for each of the studied parameters were derived using receiver-operating-characteristic curves. Relationships between pairs of voxels, characterizing local tumor metabolic nonuniformities, were able to significantly differentiate all 3 patient groups (P < 0.0006). Regional measures of tumor characteristics, such as size of nonuniform metabolic regions and corresponding intensity nonuniformities within these regions, were also significant factors for prediction of response to

  3. Prediction of Response to Neoadjuvant Chemotherapy and Radiation Therapy with Baseline and Restaging 18F-FDG PET Imaging Biomarkers in Patients with Esophageal Cancer.

    PubMed

    Beukinga, Roelof J; Hulshoff, Jan Binne; Mul, Véronique E M; Noordzij, Walter; Kats-Ugurlu, Gursah; Slart, Riemer H J A; Plukker, John T M

    2018-06-01

    Purpose To assess the value of baseline and restaging fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET) radiomics in predicting pathologic complete response to neoadjuvant chemotherapy and radiation therapy (NCRT) in patients with locally advanced esophageal cancer. Materials and Methods In this retrospective study, 73 patients with histologic analysis-confirmed T1/N1-3/M0 or T2-4a/N0-3/M0 esophageal cancer were treated with NCRT followed by surgery (Chemoradiotherapy for Esophageal Cancer followed by Surgery Study regimen) between October 2014 and August 2017. Clinical variables and radiomic features from baseline and restaging 18 F-FDG PET were selected by univariable logistic regression and least absolute shrinkage and selection operator. The selected variables were used to fit a multivariable logistic regression model, which was internally validated by using bootstrap resampling with 20 000 replicates. The performance of this model was compared with reference prediction models composed of maximum standardized uptake value metrics, clinical variables, and maximum standardized uptake value at baseline NCRT radiomic features. Outcome was defined as complete versus incomplete pathologic response (tumor regression grade 1 vs 2-5 according to the Mandard classification). Results Pathologic response was complete in 16 patients (21.9%) and incomplete in 57 patients (78.1%). A prediction model combining clinical T-stage and restaging NCRT (post-NCRT) joint maximum (quantifying image orderliness) yielded an optimism-corrected area under the receiver operating characteristics curve of 0.81. Post-NCRT joint maximum was replaceable with five other redundant post-NCRT radiomic features that provided equal model performance. All reference prediction models exhibited substantially lower discriminatory accuracy. Conclusion The combination of clinical T-staging and quantitative assessment of post-NCRT 18 F-FDG PET orderliness (joint maximum

  4. Prospective Evaluation of 18F-Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome.

    PubMed

    Rischpler, Christoph; Dirschinger, Ralf J; Nekolla, Stephan G; Kossmann, Hans; Nicolosi, Stefania; Hanus, Franziska; van Marwick, Sandra; Kunze, Karl P; Meinicke, Alexander; Götze, Katharina; Kastrati, Adnan; Langwieser, Nicolas; Ibrahim, Tareq; Nahrendorf, Matthias; Schwaiger, Markus; Laugwitz, Karl-Ludwig

    2016-04-01

    The immune system orchestrates the repair of infarcted myocardium. Imaging of the cellular inflammatory response by (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/magnetic resonance imaging in the heart has been demonstrated in preclinical and clinical studies. However, the clinical relevance of post-MI (18)F-FDG uptake in the heart has not been elucidated. The objective of this study was to explore the value of (18)F-FDG positron emission tomography/magnetic resonance imaging in patients after acute myocardial infarction as a biosignal for left ventricular functional outcome. We prospectively enrolled 49 patients with ST-segment-elevation myocardial infarction and performed (18)F-FDG positron emission tomography/magnetic resonance imaging 5 days after percutaneous coronary intervention and follow-up cardiac magnetic resonance imaging after 6 to 9 months. In a subset of patients, (99m)Tc-sestamibi single-photon emission computed tomography was performed with tracer injection before revascularization. Cellular innate immune response was analyzed at multiple time points. Segmental comparison of (18)F-FDG-uptake and late gadolinium enhancement showed substantial overlap (κ=0.66), whereas quantitative analysis demonstrated that (18)F-FDG extent exceeded late gadolinium enhancement extent (33.2±16.2% left ventricular myocardium versus 20.4±10.6% left ventricular myocardium, P<0.0001) and corresponded to the area at risk (r=0.87, P<0.0001). The peripheral blood count of CD14(high)/CD16(+) monocytes correlated with the infarction size and (18)F-FDG signal extent (r=0.53, P<0.002 and r=0.42, P<0.02, respectively). (18)F-FDG uptake in the infarcted myocardium was highest in areas with transmural scar, and the standardized uptake valuemean was associated with left ventricular functional outcome independent of infarct size (Δ ejection fraction: P<0.04, Δ end-diastolic volume: P<0.02, Δ end-systolic volume: P<0.005). In this study, the intensity of (18

  5. An exploratory study of volumetric analysis for assessing tumor response with (18)F-FAZA PET/CT in patients with advanced non-small-cell lung cancer (NSCLC).

    PubMed

    Kerner, Gerald S M A; Bollineni, Vikram R; Hiltermann, Thijo J N; Sijtsema, Nanna M; Fischer, Alexander; Bongaerts, Alphons H H; Pruim, Jan; Groen, Harry J M

    2016-12-01

    Hypoxia is associated with resistance to chemotherapy and radiotherapy and is randomly distributed within malignancies. Characterization of changes in intratumoral hypoxic regions is possible with specially developed PET tracers such as (18)F-fluoroazomycin arabinoside ((18)F-FAZA) while tumor metabolism can be measured with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG). The purpose of this study was to study the effects of chemotherapy on (18)F-FAZA and (18)F-FDG uptake simultaneously in non-small-cell lung cancer (NSCLC) patients At baseline and after the second chemotherapy cycle, both PET/CT with (18)F-FDG and (18)F-FAZA was performed in seven patients with metastasized NSCLC. (18)F-FAZA and (18)F-FDG scans were aligned with deformable image registration using Mirada DBx. The primary tumors were contoured, and on the (18)F-FDG scan, volumes of interest (VOI) were drawn using a 41 % adaptive threshold technique. Subsequently, the resulting VOI was transferred to the (18)F-FAZA scan. (18)F-FAZA maximum tumor-to-background (T/Bgmax) ratio and the fractional hypoxic volume (FHV) were assessed. Measurements were corrected for partial volume effects. Finally, a voxel-by-voxel analysis of the primary tumor was performed to assess regional uptake differences. In the primary tumor of all seven patients, median (18)F-FDG standard uptake value (SUVmax) decreased significantly (p = 0.03). There was no significant decrease in (18)F-FAZA uptake as measured with T/Bgmax (p = 0.24) or the FHV (p = 0.35). Additionally, volumetric voxel-by-voxel analysis showed that low hypoxic tumors did not significantly change in hypoxic status between baseline and two cycles of chemotherapy, whereas highly hypoxic tumors did. Individualized volumetric voxel-by-voxel analysis revealed that hypoxia and metabolism were not associated before and after 2 cycles of chemotherapy. Tumor hypoxia and metabolism are independent dynamic events as measured by (18)F-FAZA PET and (18)F-FDG

  6. Assessment of Tumoricidal Efficacy and Response to Treatment with 18F-FDG PET/CT After Intraarterial Infusion with the Antiglycolytic Agent 3-Bromopyruvate in the VX2 Model of Liver Tumor

    PubMed Central

    Liapi, Eleni; Geschwind, Jean-Francois H.; Vali, Mustafa; Khwaja, Afsheen A.; Prieto-Ventura, Veronica; Buijs, Manon; Vossen, Josephina A.; Ganapathy, Shanmugasudaram; Wahl, Richard L.

    2015-01-01

    The purpose of this study was to determine the effects of 3-bromopyruvate (3-BrPA) on tumor glucose metabolism as imaged with 18F-FDG PET/CT at multiple time points after treatment and compare them with those after intraarterial control injections of saline. Methods Twenty-three New Zealand White rabbits implanted intrahepatically with VX2 tumors were assigned to 1 of 2 groups: 14 rabbits were assigned to the treatment group (TG) and 9 to the saline control group (SG). All animals were infused with 25 mL of either 1.75 mM 3-BrPA or saline over 1 h via a 2-French catheter, which was secured in the hepatic artery. For PET/CT, the animals were injected with 37 MBq of 18F-FDG at 1 d before treatment and 2 h, 24 h, and 1 wk after treatment. Tumor size, tumor and liver maximal standardized uptake value (SUVmax), and tumor-to-background ratios were calculated for all studies. Seven TG and 5 SG animals were sacrificed at 1 wk after treatment for histopathologic analysis. Results Intense 18F-FDG uptake was seen in untreated tumors. A significant reduction in tumor SUVmax was noted in TG animals, when compared with SG animals, at 1 wk after treatment (P = 0.006). The tumor–to–liver background ratio in the TG animals, compared with the SG animals, was significantly reduced as early as 24 h after treatment (P = 0.01) and remained reduced at 1 wk (P = 0.003). Tumor SUVmax increased from the baseline levels at 7 d in controls (P = 0.05). The histopathologic analysis of explanted livers revealed increased tumor necrosis in all TG samples. There was a significant inverse correlation (r2 = 0.538, P = 0.005) between the percentage of tumor necrosis on histopathology and tumor SUVmax on 18F-FDG PET at 7 d after treatment with 3-BrPA. Conclusion Intraarterial injection of 3-BrPA resulted in markedly decreased 18F-FDG uptake as imaged by PET/CT and increased tumor necrosis on histopathology at 1 wk after treatment in the VX2 rabbit liver tumor. PET/CT appears to be a useful means

  7. 18F-FAC PET selectively images hepatic infiltrating CD4 and CD8 T cells in a mouse model of autoimmune hepatitis.

    PubMed

    Salas, Jessica R; Chen, Bao Ying; Wong, Alicia; Cheng, Donghui; Van Arnam, John S; Witte, Owen N; Clark, Peter M

    2018-04-26

    Immune cell-mediated attack on the liver is a defining feature of autoimmune hepatitis and hepatic allograft rejection. Despite an assortment of diagnostic tools, invasive biopsies remain the only method for identifying immune cells in the liver. We evaluated whether PET imaging with radiotracers that quantify immune activation ( 18 F-FDG and 18 F-FAC) and hepatocyte biology ( 18 F-DFA) can visualize and quantify hepatic infiltrating immune cells and hepatocyte inflammation, respectively, in a preclinical model of autoimmune hepatitis. Methods: Mice treated with Concanavalin A (ConA) to induce a model of autoimmune hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. Immunohistochemistry, digital autoradiography, and ex vivo accumulation assays were used to localize areas of altered radiotracer accumulation in the liver. For comparison, mice treated with an adenovirus to induce a viral hepatitis or vehicle were imaged with 18 F-FDG, 18 F-FAC, and 18 F-DFA PET. 18 F-FAC PET was performed on mice treated with ConA, and vehicle or dexamethasone. Biopsy samples of patients suffering from autoimmune hepatitis were immunostained for deoxycytidine kinase (dCK). Results: Hepatic accumulation of 18 F-FDG and 18 F-FAC was 173% and 61% higher, respectively, and hepatic accumulation of 18 F-DFA was 41% lower in a mouse model of autoimmune hepatitis compared to control mice. Increased hepatic 18 F-FDG accumulation was localized to infiltrating leukocytes and inflamed sinusoidal endothelial cells, increased hepatic 18 F-FAC accumulation was concentrated in infiltrating CD4 and CD8 cells, and decreased hepatic 18 F-DFA accumulation was apparent in hepatocytes throughout the liver. In contrast, viral hepatitis increased hepatic 18 F-FDG accumulation by 109% and decreased hepatic 18 F-DFA accumulation by 20% but had no effect on hepatic 18 F-FAC accumulation (non-significant 2% decrease). 18 F-FAC PET provided a non-invasive biomarker of the efficacy of

  8. Gastric cancer bone metastases together with osteopoikilosis diagnosed using bone scintigraphy and 18F-FDG PET/CT.

    PubMed

    Prado Wohlwend, S; Sánchez Vaño, R; Sopena Novales, P; Uruburu García, E; Aparisi Rodríguez, F; Martínez Carsí, C

    The coexistence of different bone diseases in the same patient involves a complex differential diagnosis. A patient is presented who was studied due to a renal mass that showed many sclerotic lesions in spine and limbs in conventional radiology and CT. These lesions were evaluated with 99m TC-HDP bone scintigraphy and 18 F-FDG PET/CT, which helped to obtain the definitive pathological diagnosis of osteopoikilosis (OP) co-existing with gastric cancer bone metastases. Of the different imaging scans performed, bone scintigraphy was particularly relevant due to its ability to discriminate between benign and metastatic bone disease. Copyright © 2016 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  9. Trails on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Leading to Diagnosis of Testicular Adrenal Rest Tumor.

    PubMed

    Kashyap, Raghava

    2018-01-01

    Testicular adrenal rest tumors (TARTs) are secondary to hypertrophy of adrenal rest cells in the rete testis in settings of hypersecretion of androgens. We present a case of congenital adrenal hyperplasia with TART with clues to the diagnosis on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). To the best of our knowledge, this is the first reported case on the role of 18 F-FDG PET/CT in TART.

  10. Is cerebral glucose metabolism related to blood-brain barrier dysfunction and intrathecal IgG synthesis in Alzheimer disease?: A 18F-FDG PET/CT study.

    PubMed

    Chiaravalloti, Agostino; Fiorentini, Alessandro; Ursini, Francesco; Martorana, Alessandro; Koch, Giacomo; Belli, Lorena; Toniolo, Sofia; Di Pietro, Barbara; Motta, Caterina; Schillaci, Orazio

    2016-09-01

    The aim of this study was to investigate the relationships between blood-brain barrier (BBB) dysfunction, intrathecal IgG synthesis, and brain glucose consumption as detectable by means of serum/cerebrospinal fluid (CSF) albumin index (Qalb) and IgG index [(CSF IgG/serum IgG) × Serum albumin/CSF albumin)] and 2-deoxy-2-(F) fluoro-D-glucose (F-FDG) positron emission tomography/computed tomography (PET/CT) in a selected population affected by Alzheimer disease (AD). The study included 134 newly diagnosed AD patients according to the NINCDS-ADRDA criteria. The mean (±SD) age of the patients was 70 (±6) years; 60 were male and 64 were female. Mini mental State Examination was equal to 18.9 (±7.2). All patients underwent a CSF assay and magnetic resonance before F-FDG PET scanning. The relationships were evaluated by means of statistical parametric mapping (SPM8). We found a significant negative correlation between the increase of Qalb and F-FDG uptake in the Brodmann Area 42 and 22 that corresponds to the left superior temporal gyrus, with higher Qalb values being related to a reduced glucose consumption in these areas. No significant relationships have been found between brain glucose consumption and IgG index. The results of our study suggest that BBB dysfunction is related to reduction of cortical activity in the left temporal cortex in AD subjects.

  11. [18F-FDG PET-CT in a case of solitary plasmacytoma of the soft palate].

    PubMed

    Fernández López, R; Borrego Dorado, I; Paz Coll, A; Vázquez Albertino, R; Gómez Camarero, P; Sanz Viedma, S

    2010-01-01

    Solitary plasmacytoma is an uncommon tumor of plasma cells that can appear in the head and neck. It must be differentiated from multiple myeloma because of its initial presentation. A case of solitary plasmacytoma on the palate is presented. Furthermore, role of ¹⁸F-fluorodeoxyglucose Positron Emission Tomography (¹⁸F-FDG-PET) in its initial staging is analyzed. Copyright © 2010 Elsevier España, S.L. y SEMNIM. All rights reserved.

  12. Correlation between 18F-FDG Positron-Emission Tomography 18F-FDG Uptake Levels at Diagnosis and Histopathologic and Immunohistochemical Factors in Patients with Breast Cancer

    PubMed Central

    Uğurluer, Gamze; Yavuz, Sinan; Çalıkuşu, Züleyha; Seyrek, Ertuğrul; Kibar, Mustafa; Serin, Meltem; Ersöz, Canan; Demircan, Orhan

    2016-01-01

    Objective In this study, we aimed to determine the correlation between pretreatment-staging 18F-FDG total body positron-emission tomography/computed tomography (PET/CT) maximum standardized uptake value (SUVmax) levels and histopathologic and immunohistochemical predictive and prognostic factors in patients with breast cancer. Materials and Methods One hundred thirty-nine women with breast cancer who were treated between 2009 and 2015 at our hospital and who had pretreatment-staging PET/CT were included in the study. SUVmax levels and histopathologic and immunohistochemical results were compared. Results The median age was 48 years (range, 29–79 years). The mean tumor diameter was 33.4 mm (range, 7–120 mm). The histology was invasive ductal carcinoma in 80.6% of the patients. In the univariate analysis, SUVmax levels were significantly higher in patients with invasive ductal carcinoma; in patients with a maximum tumor diameter more than 2 cm; patients who were estrogen, progesterone, and combined hormone receptor-negative, triple-negative patients, and in tumors with higher grades (p<0.05). In HER2-positive patients, SUVmax levels were higher even if it was not statistically significant. There was no correlation between lymph node metastases and pathologic stage. In multivariate analysis, tumor diameter was an independent factor. Conclusion SUVmax levels are correlated with known histopathologic and immunohistochemical prognostic factors. PET/CT could be useful in preoperative evaluation of patients with breast cancer to predict biologic characteristics of tumors and prognosis. PMID:28331746

  13. Data-driven identification of intensity normalization region based on longitudinal coherency of 18F-FDG metabolism in the healthy brain.

    PubMed

    Zhang, Huiwei; Wu, Ping; Ziegler, Sibylle I; Guan, Yihui; Wang, Yuetao; Ge, Jingjie; Schwaiger, Markus; Huang, Sung-Cheng; Zuo, Chuantao; Förster, Stefan; Shi, Kuangyu

    2017-02-01

    In brain 18 F-FDG PET data intensity normalization is usually applied to control for unwanted factors confounding brain metabolism. However, it can be difficult to determine a proper intensity normalization region as a reference for the identification of abnormal metabolism in diseased brains. In neurodegenerative disorders, differentiating disease-related changes in brain metabolism from age-associated natural changes remains challenging. This study proposes a new data-driven method to identify proper intensity normalization regions in order to improve separation of age-associated natural changes from disease related changes in brain metabolism. 127 female and 128 male healthy subjects (age: 20 to 79) with brain 18 F-FDG PET/CT in the course of a whole body cancer screening were included. Brain PET images were processed using SPM8 and were parcellated into 116 anatomical regions according to the AAL template. It is assumed that normal brain 18 F-FDG metabolism has longitudinal coherency and this coherency leads to better model fitting. The coefficient of determination R 2 was proposed as the coherence coefficient, and the total coherence coefficient (overall fitting quality) was employed as an index to assess proper intensity normalization strategies on single subjects and age-cohort averaged data. Age-associated longitudinal changes of normal subjects were derived using the identified intensity normalization method correspondingly. In addition, 15 subjects with clinically diagnosed Parkinson's disease were assessed to evaluate the clinical potential of the proposed new method. Intensity normalizations by paracentral lobule and cerebellar tonsil, both regions derived from the new data-driven coherency method, showed significantly better coherence coefficients than other intensity normalization regions, and especially better than the most widely used global mean normalization. Intensity normalization by paracentral lobule was the most consistent method within both

  14. Progressive Disintegration of Brain Networking from Normal Aging to Alzheimer Disease: Analysis of Independent Components of 18F-FDG PET Data.

    PubMed

    Pagani, Marco; Giuliani, Alessandro; Öberg, Johanna; De Carli, Fabrizio; Morbelli, Silvia; Girtler, Nicola; Arnaldi, Dario; Accardo, Jennifer; Bauckneht, Matteo; Bongioanni, Francesca; Chincarini, Andrea; Sambuceti, Gianmario; Jonsson, Cathrine; Nobili, Flavio

    2017-07-01

    Brain connectivity has been assessed in several neurodegenerative disorders investigating the mutual correlations between predetermined regions or nodes. Selective breakdown of brain networks during progression from normal aging to Alzheimer disease dementia (AD) has also been observed. Methods: We implemented independent-component analysis of 18 F-FDG PET data in 5 groups of subjects with cognitive states ranging from normal aging to AD-including mild cognitive impairment (MCI) not converting or converting to AD-to disclose the spatial distribution of the independent components in each cognitive state and their accuracy in discriminating the groups. Results: We could identify spatially distinct independent components in each group, with generation of local circuits increasing proportionally to the severity of the disease. AD-specific independent components first appeared in the late-MCI stage and could discriminate converting MCI and AD from nonconverting MCI with an accuracy of 83.5%. Progressive disintegration of the intrinsic networks from normal aging to MCI to AD was inversely proportional to the conversion time. Conclusion: Independent-component analysis of 18 F-FDG PET data showed a gradual disruption of functional brain connectivity with progression of cognitive decline in AD. This information might be useful as a prognostic aid for individual patients and as a surrogate biomarker in intervention trials. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  15. 68Gallium-Arginine-Glycine-Aspartic Acid and 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Chondroblastic Osteosarcoma of the Skull.

    PubMed

    Orunmuyi, Akintunde; Modiselle, Moshe; Lengana, Thabo; Ebenhan, Thomas; Vorster, Mariza; Sathekge, Mike

    2017-09-01

    We report the case of a 32 year-old male with Chondroblastic Osteosarcoma of the skull, which was imaged with both 18 [F]fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) and 68 Gallium-arginine-glycine-aspartic acid ( 68 Ga-RGD) PET/CT. The 18 F-FDG PET/CT did not demonstrate the tumour, whereas the 68 Ga-RGD PET/CT clearly depicted a left-sided frontal tumour. 68 Ga-RGD PET/CT may be a clinically useful imaging modality for early detection of recurrent osteosarcoma, considering the limitations of 18 F-FDG PET in a setting of low glycolytic activity.

  16. Unabsorbed polylactide adhesion barrier mimicking recurrence of gynecologic malignant diseases with increased ¹⁸F-FDG uptake on PET/CT.

    PubMed

    Chong, Gun Oh; Lee, Yoon Hee; Hong, Dae Gy; Cho, Young Lae; Lee, Yoon Soon

    2015-07-01

    To evaluate the incidence and characteristics of the unabsorbed polylactide adhesion barrier with increased (18)F-fluorodeoxyglucose ((18)F-FDG) uptake after surgeries for gynecologic malignancies. Between September 2006 and November 2009, we reviewed the charts of 75 patients who were provided a polylactide adhesion barrier after surgery for gynecologic malignant diseases. We surveyed the cases of increased (18)F-FDG uptake on positron emission tomography/computed tomography (PET/CT), and evaluated the effectiveness of polylactide adhesion barrier using an adhesion scoring system. Ten patients (13.3 %) had a solitary pelvic mass with increased (18)F-FDG uptake in the follow up PET/CT. The characteristics of patients and tumors are described below. The median age was 48 years (range 19-66 years). The median tumor size was 1.9 cm (range 1.0-2.3 cm), and the median SUVmax of the pelvic mass was 5.1 (range 3.7-7.9). The median time between initial operations and second operation was 13.5 months (range 8-23 months). We performed laparoscopic excision of the pelvic mass, and the biopsy revealed foreign body reactions with the exception of 1 case, which contained tumor cells under the unabsorbed polylactide adhesion barrier. The median adhesion grade was 1 (range 0-2). A solitary pelvic mass found in the PET/CT with increased (18)F-FDG uptake after usage of a polylactide adhesion barrier may be an unabsorbed remnant. The adhesion barrier should be used with caution in patients with gynecologic malignant diseases.

  17. Correlation of 18F-FDG uptake on PET/CT with Ki67 immunohistochemistry in pre-treatment epithelial ovarian cancer.

    PubMed

    Mayoral, M; Paredes, P; Saco, A; Fusté, P; Perlaza, P; Tapias, A; Fernandez-Martinez, A; Vidal, L; Ordi, J; Pavia, J; Martinez-Roman, S; Lomeña, F

    Standardised uptake value (SUV) and volumetric parameters such as metabolic tumour volume (MTV) and total lesion glycolysis (TLG) from 18 F-FDG PET/CT are useful criteria for disease prognosis in pre-operative and post-treatment epithelial ovarian cancer (EOC). Ki67 is another prognostic biomarker in EOC, associated with tumour aggressiveness. The aim of this study is to evaluate the association between 18 F-FDG PET/CT measurements and Ki67 in pre-treatment EOC to determine if PET/CT parameters could non-invasively predict tumour aggressiveness. A pre-treatment PET/CT was performed on 18 patients with suspected or newly diagnosed EOC. Maximum SUV (SUVmax), mean SUV (SUVmean), whole-body MTV (wbMTV), and whole-body TLG (wbTLG) with a threshold of 30% and 40% of the SUVmax were obtained. Furthermore, Ki67 index (mean and hotspot) was estimated in tumour tissue specimens. Immunohistochemical findings were correlated with PET parameters. The mean age was 57.0 years old (standard deviation 13.6 years). A moderate correlation was observed between mean Ki67 index and SUVmax (r=0.392), SUVmean 30% (r=0.437), and SUVmean 40% (r=0.443), and also between hotspot Ki67 index and SUVmax (r=0.360), SUVmean 30% (r=0.362) and SUVmean 40% (r=0.319). There was a weaker correlation, which was inversely negative, between mean and hotspot Ki67 and volumetric PET parameters. However, no statistical significant differences were found for any correlations. SUVmax and SUVmean were moderately correlated with Ki67 index, whereas volumetric PET parameters overall, showed a weaker correlation. Thus, SUVmax and SUVmean could be used to assess tumour aggressiveness in pre-treatment EOC. Copyright © 2017 Elsevier España, S.L.U. y SEMNIM. All rights reserved.

  18. In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer (CRET) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging

    DTIC Science & Technology

    2014-10-01

    Transfer ( CRET ) Multiplexed Optical Imaging for Human Prostate Carcinoma Detection and Staging PRINCIPAL INVESTIGATOR: Susan L. Deutscher...SUBTITLE 5a. CONTRACT NUMBER In Vivo 18-FDG/18-Choline-Mediated Cerenkov Radiation Energy Transfer ( CRET ) Multiplexed Optical Imaging for Human...internal illumination via 18F-fluorocholine Cerenkov radiation energy transfer ( CRET ) coupled with TF- and ErbB2/3- molecularly targeted near-infrared

  19. Simulation of Tracer Dose Reduction in 18F-FDG PET/MRI: Effects on Oncologic Reading, Image Quality, and Artifacts.

    PubMed

    Seith, Ferdinand; Schmidt, Holger; Kunz, Julia; Küstner, Thomas; Gatidis, Sergios; Nikolaou, Konstantin; la Fougère, Christian; Schwenzer, Nina

    2017-10-01

    The aim of our study was to evaluate the effect of stepwise-reduced doses on objective and subjective image parameters and on oncologic readings in whole-body 18 F-FDG PET/MRI. Methods: We retrospectively simulated the stepwise reduction of 18 F-FDG doses of 19 patients (mean age ± SD, 50.9 ± 11.7 y; mean body mass index ± SD, 22.8 ± 3.2 kg/m 2 ) who received a whole-body PET/MRI examination from 3 to 0.5 MBq/kg of body weight (kgBW) in intervals of 0.25. Objective imaging parameters were assessed by measuring the SUV and coefficient of variation in different regions (aorta, liver, spleen, kidney, small bowel, lumbar vertebra, psoas muscle, urinary bladder) as well as the noise-equivalent counting rates in each bed position. Subjective image quality was evaluated with a masked reading of each simulated PET compared with the dose of 2 MBq/kgBW. Oncologic reading was performed first according to PERCIST in each dose and second by defining malignant lesions in doses of 2 MBq/kgBW and the maximum dose image (gold standard). The diagnostic confidence of each lesion was measured using a Likert scale. Results: With decreasing doses, regions in the mid abdomen showed a stronger decrease of SUV mean and noise-equivalent counting rates than regions in the upper abdomen (SUV mean , -45% and -15% on average in the small bowel and the liver, respectively). The coefficient of variation showed a nonlinear increase, pronounced below 1.5 MBq/kgBW. Subjective image quality was stable over a range between 1.25 and 2.75 MBq/kgBW compared with 2 MBq/kgBW. However, large photopenic areas in the mid abdomen were observed in 2 patients. In the PERCIST reading, target lesions were above the liver threshold with a stable SUV peak in all cases down to 2 MBq/kgBW. Eighty-six of 90 lesions were identified correctly with a dose of 2 MBq/kgBW; Likert scores did not differ significantly. Conclusion: A reduction of doses in 18 F-FDG PET/MRI might be possible down to 2 MBq/kgBW in oncologic

  20. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT.

    PubMed

    Gheysens, Olivier; Postnov, Andrey; Deroose, Christophe M; Vandermeulen, Corinne; de Hoon, Jan; Declercq, Ruben; Dennie, Justin; Mixson, Lori; De Lepeleire, Inge; Van Laere, Koen; Klimas, Michael; Chakravarthy, Manu V

    2015-10-01

    The quantification and variability of skeletal muscle glucose utilization (SMGU) in healthy subjects under basal (low insulin) conditions are poorly known. This information is essential early in clinical drug development to effectively interrogate novel pharmacologic interventions that modulate glucose uptake. The aim of this study was to determine test-retest characteristics and variability of SMGU within and between healthy subjects under basal conditions. Furthermore, different kinetic modeling strategies were evaluated to find the best-fitting model to assess SMGU studied by 18F-FDG. Six healthy male volunteers underwent 2 dynamic 18F-FDG PET/CT scans with an interval of 24 h. Subjects were admitted to the clinical unit to minimize variability in daily activities and food intake and restrict physical activity. 18F-FDG PET/CT scans of gluteal and quadriceps muscle area were obtained with arterial input. Regions of interest were drawn over the muscle area to obtain time-activity curves and standardized uptake values (SUVs) between 60 and 90 min. Spectral analysis of the data and kinetic modeling was performed using 2-tissue-irreversible (2T3K), 2-tissue-reversible, and 3-tissue-sequential-irreversible (3T5KS) models. Reproducibility was assessed by intraclass correlation coefficients (ICCs) and within-subject coefficient of variation (WSCV). SUVs in gluteal and quadriceps areas were 0.56±0.09 and 0.64±0.07. ICCs (with 90% confidence intervals in parentheses) were 0.88 (0.64-0.96) and 0.96 (0.82-0.99), respectively, for gluteal and quadriceps muscles, and WSCV for gluteal and quadriceps muscles was 2.2% and 3.6%, respectively. The rate of glucose uptake into muscle was 0.0016±0.0004 mL/mL⋅min, with an ICC of 0.94 (0.93-0.95) and WSCV of 6.6% for the 3T5KS model, whereas an ICC of 0.98 (0.92-1.00) and WSCV of 2.8% was obtained for the 2T3K model. 3T5KS demonstrated the best fit to the measured experimental points. Minimal variability in skeletal muscle glucose

  1. 18F-FDG PET of the hands with a dedicated high-resolution PEM system (arthro-PET): correlation with PET/CT, radiography and clinical parameters

    PubMed Central

    Mhlanga, Joyce C.; Carrino, John A.; Lodge, Martin; Wang, Hao

    2015-01-01

    Purpose The aim of this study was to prospectively determine the feasibility and compare the novel use of a positron emission mammography (PEM) scanner with standard PET/CT for evaluating hand osteoarthritis (OA) with 18F-FDG. Methods Institutional review board approval and written informed consent were obtained for this HIPAA-compliant prospective study in which 14 adults referred for oncological 18F-FDG PET/CT underwent dedicated hand PET/CT followed by arthro-PET using the PEM device. Hand radiographs were obtained and scored for the presence and severity of OA. Summed qualitative and quantitative joint glycolytic scores for each modality were compared with the findings on plain radiography and clinical features. Results Eight patients with clinical and/or radiographic evidence of OA comprised the OA group (mean age 73±7.7 years). Six patients served as the control group (53.7±9.3 years). Arthro-PET quantitative and qualitative joint glycolytic scores were highly correlated with PET/CT findings in the OA patients (r=0.86. p =0.007; r=0.94, p=0.001). Qualitative arthro-PET and PET/CT joint scores were significantly higher in the OA patients than in controls (38.7±6.6 vs. 32.2±0.4, p=0.02; 37.5±5.4 vs. 32.2±0.4, p=0.03, respectively). Quantitative arthro-PET and PET/CT maximum SUV-lean joint scores were higher in the OA patients, although they did not reach statistical significance (20.8±4.2 vs. 18±1.8, p= 0.13; 22.8±5.38 vs. 20.1±1.54, p=0.21). By definition, OA patients had higher radiographic joint scores than controls (30.9±31.3 vs. 0, p=0.03). Conclusion Hand imaging using a small field of view PEM system (arthro-PET) with FDG is feasible, performing comparably to PET/CT in assessing metabolic joint activity. Arthro-PET and PET/CT showed higher joint FDG uptake in OA. Further exploration of arthro-PET in arthritis management is warranted. PMID:25134669

  2. [Adaptation of the (18)FDG module for the preparation of a sodium fluoride [(18)F] injection solution in agreement with the United States (USP 32) and European Pharmacopeia (PhEur 6)].

    PubMed

    Martínez, T; Cordero, B; Medín, S; Sánchez Salmón, A

    2011-01-01

    To establish an automated procedure for the preparation of sodium fluoride (18)F injection using the resources available in our laboratory for the preparation of (18)FDG and to analyze the repercussion of the conditioning column of the fluoride ion entrapment on the characteristics of the final product. The sequence of an (18)FDG synthesis module prepared so that it traps the fluoride ion from the cyclotron in ion-exchange resin diluted with 0.9% sodium chloride. The final solution was dosified and sterilized in a final vial in an automatized dispensing module. Three different column conditioning protocols within the process were tested. Quality controls were run according to USP 32 and EurPh 6, adding control of ethanol levels of residual solvent and quality controls of the solution at 8 h post-preparation. Activation of the resin cartridges with ethanol and water was the chosen procedure, with fluoride ion trapping > 95% and pH around 7. Ethanol levels were < 5.000 ppm. Quality controls at 8 h indicated that the solution was in compliance with the USP 32 and EurPh 6 specifications. This is an easy, low-cost, reliable automated method for sodium fluoride preparation in PET facilities with existing equipment for (18)FDG synthesis and quality control. Copyright © 2010 Elsevier España, S.L. y SEMNIM. All rights reserved.

  3. SU-F-I-57: Evaluate and Optimize PET Acquisition Overlap in 18F-FDG Oncology Wholebody PET/CT: Can We Scan PET Faster?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, J; Natwa, M; Hall, NC

    Purpose: The longer patient has to remain on the table during PET imaging, the higher the likelihood of motion artifacts due to patient discomfort. This study was to investigate and optimize PET acquisition overlap in 18F-FDG oncology wholebody PET/CT to speed up PET acquisition and improve patient comfort. Methods: Wholebody 18F-FDG PET/CT of phantoms, 8 pre-clinical patients (beagles) and 5 clinical oncology patients were performed in 90s/bed on a time-of-flight Gemini TF 64 system. Imaging of phantoms and beagles was acquired with reduced PET overlaps (40%, 33%, 27%, 20%, 13% and no overlap) in addition to the system default (53%).more » In human studies, 1 or 2 reduced overlaps from the listed options were used to acquire PET/CT sweeps right after the default standard of care imaging. Image quality was blindly reviewed using visual scoring criteria and quantitative SUV assessment. NEMA PET sensitivity was performed under different overlaps. Results: All PET exams demonstrated no significant impact on the visual grades for overlaps >20%. Blinded reviews assigned the best visual scores to PET using overlaps 53%–27%. Reducing overlap to 27% for oncology patients (12-bed) saved an average of ∼40% acquisition time (11min) compared to using the default overlap (18min). No significant SUV variances were found when reducing overlap to half of default for cerebellum, lung, heart, aorta, liver, fat, muscle, bone marrow, thighs and target lesions (p>0.05), except expected variability in urinary system. Conclusion: This study demonstrated by combined phantom, pre-clinical and clinical PET/CT scans that PET acquisition overlap in axial of today’s systems can be reduced and optimized. It showed that a reduction of PET acquisition overlap to 27% (half of system default) can be implemented to reduce table time by ∼40% to improve patient comfort and minimize potential motion artifacts, without prominently degrading image quality or compromising PET quantification.« less

  4. SU-E-I-85: Exploring the 18F-Fluorodeoxyglucose PET Characteristics in Staging of Esophageal Squamous Cell Carcinoma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, C; Yin, Y

    2014-06-01

    Purpose: The aim of this study was to explore the characteristics derived from 18F-fluorodeoxyglucose (18F-FDG) PET image and assess its capacity in staging of esophageal squamous cell carcinoma (ESCC). Methods: 26 patients with newly diagnosed ESCC who underwent 18F-FDG PET scan were included in this study. Different image-derived indices including the standardized uptake value (SUV), gross tumor length, texture features and shape feature were considered. Taken the histopathologic examination as the gold standard, the extracted capacities of indices in staging of ESCC were assessed by Kruskal-Wallis test and Mann-Whitney test. Specificity and sensitivity for each of the studied parameters weremore » derived using receiver-operating characteristic curves. Results: 18F-FDG SUVmax and SUVmean showed statistically significant capability in AJCC and TNM stages. Texture features such as ENT and CORR were significant factors for N stages(p=0.040, p=0.029). Both FDG PET Longitudinal length and shape feature Eccentricity (EC) (p≤0.010) provided powerful stratification in the primary ESCC AJCC and TNM stages than SUV and texture features. Receiver-operating-characteristic curve analysis showed that tumor textural analysis can capability M stages with higher sensitivity than SUV measurement but lower in T and N stages. Conclusion: The 18F-FDG image-derived characteristics of SUV, textural features and shape feature allow for good stratification AJCC and TNM stage in ESCC patients.« less

  5. Study of the Influence of Age in 18F-FDG PET Images Using a Data-Driven Approach and Its Evaluation in Alzheimer's Disease.

    PubMed

    Jiang, Jiehui; Sun, Yiwu; Zhou, Hucheng; Li, Shaoping; Huang, Zhemin; Wu, Ping; Shi, Kuangyu; Zuo, Chuantao; Neuroimaging Initiative, Alzheimer's Disease

    2018-01-01

    18 F-FDG PET scan is one of the most frequently used neural imaging scans. However, the influence of age has proven to be the greatest interfering factor for many clinical dementia diagnoses when analyzing 18 F-FDG PET images, since radiologists encounter difficulties when deciding whether the abnormalities in specific regions correlate with normal aging, disease, or both. In the present paper, the authors aimed to define specific brain regions and determine an age-correction mathematical model. A data-driven approach was used based on 255 healthy subjects. The inferior frontal gyrus, the left medial part and the left medial orbital part of superior frontal gyrus, the right insula, the left anterior cingulate, the left median cingulate, and paracingulate gyri, and bilateral superior temporal gyri were found to have a strong negative correlation with age. For evaluation, an age-correction model was applied to 262 healthy subjects and 50 AD subjects selected from the ADNI database, and partial correlations between SUVR mean and three clinical results were carried out before and after age correction. All correlation coefficients were significantly improved after the age correction. The proposed model was effective in the age correction of both healthy and AD subjects.

  6. [Features of Acquired Immunodeficiency Syndrome-related Lymphoma on (18)F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography].

    PubMed

    Niu, Na; Zhu, Zhao-hui; Ma, Yan-ru; Xing, Hai-qun; Li, Fang

    2015-10-01

    To analyze the imaging features of (18)F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography(PET)/computed tomography (CT) in acquired immune deficiency syndrome-related lymphoma (ARL) patients correlated with their clinical signs, symptoms, and treatments. Five ARL patients underwent ¹⁸F-FDG PET/CT at Peking Union Medical College Hospital from October 2008 to January 2013. Two patients received two additional follow-up studies 6 months later. Among these 5 patients, ¹⁸FDG-PET/CT helped in diagnosis of two patient and changed therapeutic strategy in other two patients. In two patients underwent ¹⁸F-FDG PET/CT brain scans, low-metabolism lesion was newly found in cerebral cortex. Of 4 patients receiving highly active antiretroviral therapy, PET/CT also demonstrated diffusely elevated ¹⁸F-FDG uptake in subcutaneous adipose tissue in two patients. ¹⁸F-FDG PET/CT is a highly useful tool in the diagnosis and treatment of ARL patients, in particular in the identification of associated encephalopathy and lipodystrophy.

  7. Impact of physiological hormonal fluctuations on 18F-fluorodeoxyglucose uptake in breast cancer.

    PubMed

    Miyake, Kanae K; Nakamoto, Yuji; Saji, Shigehira; Sugie, Tomoharu; Kurihara, Kensuke; Kanao, Shotaro; Ikeda, Debra M; Toi, Masakazu; Togashi, Kaori

    2018-06-01

    Premenopausal physiologic steroid levels change cyclically, in contrast to steady state low levels seen in postmenopausal patients. The purpose of this study was to evaluate whether 18 F-fluorodeoxyglucose ( 18 F-FDG) uptake in breast cancer is influenced by physiological hormonal fluctuations. A total of 160 primary invasive breast cancers from 155 females (54 premenopausal, 101 postmenopausal) who underwent 18 F-FDG positron emission tomography/computed tomography before therapy were retrospectively analyzed. The maximal standardized uptake values (SUVmax) of tumors were compared with menstrual phases and menopausal status according to the following subgroups: 'luminal A-like,' 'luminal B-like,' and 'non-luminal.' Additionally, the effect of estradiol (E2) on 18 F-FDG uptake in breast cancer cells was evaluated in vitro. Among premenopausal patients, SUVmax during the periovulatory-luteal phase was significantly higher than that during the follicular phase in luminal A-like tumors (n = 25, p = 0.004), while it did not differ between the follicular phase and the periovulatory-luteal phase in luminal B-like (n = 24) and non-luminal tumors (n = 7). Multiple regression analysis showed menstrual phase, tumor size, and Ki-67 index are independent predictors for SUVmax in premenopausal luminal A-like tumors. There were no significant differences in SUVmax between pre- and postmenopausal patients in any of the subgroups. In in vitro studies, uptake in estrogen receptor-positive cells was significantly augmented when E2 concentration was increased from 0.01 to ≥ 1 nM. Our data suggest that 18 F-FDG uptake may be impacted by physiological hormonal fluctuations during menstrual cycle in luminal A-like cancers, and that E2 could be partly responsible for these events.

  8. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models: evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG.

    PubMed

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke; Okai, Mika; Tsuchimori, Kazue; Watanabe, Masanori; Mori, Ikuo; Hosoya, Masaki; Horiguchi, Takashi; Kamiguchi, Hidenori

    2017-06-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316,243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin

  9. Effects of anesthetic protocol on normal canine brain uptake of 18F-FDG assessed by PET/CT.

    PubMed

    Lee, Min Su; Ko, Jeff; Lee, Ah Ra; Lee, In Hye; Jung, Mi Ae; Austin, Brenda; Chung, Hyunwoo; Nahm, Sangsoep; Eom, Kidong

    2010-01-01

    The purpose of this study was to assess the effects of four anesthetic protocols on normal canine brain uptake of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) using positron emission tomography/computed tomography (PET/CT). Five clinically normal beagle dogs were anesthetized with (1) propofol/isoflurane, (2) medetomidine/pentobarbital, (3) xylazine/ketamine, and (4) medetomidine/tiletamine-zolazepam in a randomized cross-over design. The standard uptake value (SUV) of FDG was obtained in the frontal, parietal, temporal and occipital lobes, cerebellum, brainstem and whole brain, and compared within and between anesthetic protocols using the Friedman test with significance set at P < 0.05. Significant differences in SUVs were observed in various part of the brain associated with each anesthetic protocol. The SUV for the frontal and occipital lobes was significantly higher than in the brainstem in all dogs. Dogs receiving medetomidine/tiletamine-zolazepam also had significantly higher whole brain SUVs than the propofol/isoflurane group. We concluded that each anesthetic protocol exerted a different regional brain glucose uptake pattern. As a result, when comparing brain glucose uptake using PET/CT, one should consider the effects of anesthetic protocols on different regions of the glucose uptake in the dog's brain.

  10. Development of a Body Shield for Small Animal PET System to Reduce Random and Scatter Coincidences

    NASA Astrophysics Data System (ADS)

    Wada, Yasuhiro; Yamamoto, Seiichi; Watanabe, Yasuyoshi

    2015-02-01

    For small animal positron emission tomography (PET) research using high radioactivity, such as dynamic studies, the resulting high random coincidence rate of the system degrades image quality. The random coincidence rate is increased not only by the gamma photons from inside the axial-field-of-view (axial-FOV) of the PET system but also by those from outside the axial-FOV. For brain imaging in small animal studies, significant interference is observed from gamma photons emitted from the body. Single gamma photons from the body enter the axial-FOV and increase the random and scatter coincidences. Shielding against the gamma photons from outside the axial-FOV would improve the image quality. For this purpose, we developed a body shield for a small animal PET system, the microPET Primate 4-ring system, and evaluated its performance. The body shield is made of 9-mm-thick lead and it surrounds most of a rat's body. We evaluated the effectiveness of the body shield using a head phantom and a body phantom with a radioactivity concentration ratio of 1:2 and a maximum total activity of approximately 250 MBq. The random coincidence rate was dramatically decreased to 1/10, and the noise equivalent count rate (NECR) was increased 6 times with an activity of 7 MBq in the head phantom. The true count rate was increased to 35% due to the decrease in system deadtime. The average scatter fraction was decreased to 1/2.5 with the body shield. Count rate measurements of rat were also conducted with an injection activity of approximately 25 MBq of [C-11]N,N-dimethyl-2-(2-amino-4-cyanophenylthio) benzylamine ([C-11]DASB) and approximately 70 and 310 MBq of 2-deoxy-2-(F-18)fluoro-D-glucose ([F-18]FDG). Using the body shield, [F-18]FDG images of rats were improved by increasing the amount of radioactivity injected. The body shield designed for small animal PET systems is a promising tool for improving image quality and quantitation accuracy in small animal molecular imaging research.

  11. Biodistribution of the radionuclides 18F-FDG, 11C-methionine, 11C-PK11195, and 68Ga-citrate in domestic juvenile female pigs and morphological and molecular imaging of the tracers in hematogenously disseminated Staphylococcus aureus lesions

    PubMed Central

    Afzelius, Pia; Nielsen, Ole L; Alstrup, Aage KO; Bender, Dirk; Leifsson, Páll S; Jensen, Svend B; Schønheyder, Henrik C

    2016-01-01

    Approximately 5-7% of acute-care patients suffer from bacteremia. Bacteremia may give rise to bacterial spread to different tissues. Conventional imaging procedures as X-ray, Computed Tomography (CT), Magnetic Resonance Imaging (MRI), and ultrasound are often first-line imaging methods for identification and localization of infection. These methods are, however, not always successful. Early identification and localization of infection is critical for the appropriate and timely selection of therapy. The aim of this study was thus; a head to head comparison of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) to PET with tracers that potentially could improve uncovering of infectious lesions in soft tissues. We chose 11C-methionine, 11C-PK11195, and 68Ga-citrate as tracers and besides presenting their bio-distribution we validated their diagnostic utility in pigs with experimental bacterial infection. Four juvenile 14-15 weeks old female domestic pigs were scanned seven days after intra-arterial inoculation in the right femoral artery with a porcine strain of S. aureus using a sequential scanning protocol with 18F-FDG, 11C-methionine, 11C-PK11195 and 68Ga-citrate. This was followed by necropsy of the pigs consisting of gross pathology, histopathology and microbial examination. The pigs primarily developed lesions in lungs and neck muscles. 18F-FDG had higher infection to background ratios and accumulated in most infectious foci caused by S. aureus, while 11C-methionine and particularly 11C-PK11195 and 68Ga-citrate accumulated to a lesser extent in infectious foci. 18F-FDG-uptake was seen in the areas of inflammatory cells and to a much lesser extent in reparative infiltration surrounding necrotic regions. PMID:27069765

  12. Differential Regulation of Macrophage Glucose Metabolism by Macrophage Colony-stimulating Factor and Granulocyte-Macrophage Colony-stimulating Factor: Implications for 18F FDG PET Imaging of Vessel Wall Inflammation

    PubMed Central

    Tavakoli, Sina; Short, John D.; Downs, Kevin; Nguyen, Huynh Nga; Lai, Yanlai; Zhang, Wei; Jerabek, Paul; Goins, Beth; Sadeghi, Mehran M.

    2017-01-01

    Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. 18F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of 18F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. © RSNA, 2016 Online supplemental material is available for this article. PMID:27849433

  13. Genetic Alterations in Colorectal Cancer Have Different Patterns on 18F-FDG PET/CT.

    PubMed

    Chen, Shang-Wen; Lin, Chien-Yu; Ho, Cheng-Man; Chang, Ya-Sian; Yang, Shu-Fen; Kao, Chia-Hung; Chang, Jan-Gowth

    2015-08-01

    The aim of this study was to understand the association between various genetic mutation and (18)F-FDG PET-related parameters in patients with colorectal cancer (CRC). One hundred three CRC patients who had undergone preoperative PET/CTs were included in this study. Several PET/CT-related parameters, including SUV(max), and various thresholds of metabolic tumor volume, total lesion glycolysis, and PET/CT-based tumor width (TW) were measured. Using high-resolution melting methods for genetic mutation analysis, tumor- and PET/CT-related parameters were correlated with various genetic alterations including TP53, KRAS, APC, BRAF, and PIK3CA. Mann-Whitney U test and logistic regression analysis were carried out for this analysis. Genetic alterations in TP53, KRAS, and APC were found in 41 (40%), 34 (33%), and 27 (26%) of tumors, respectively. PIK3CA and BRAF were exhibited by 5 and 4 of the patients with CRC. TP53 mutants exhibited higher SUV(max). The odds ratio was 1.28 (P = 0.04; 95% confidence interval, 1.01-1.61). Tumors with a mutated KRAS had an increased accumulation of FDG using a 40% threshold level for maximal uptake of TW (TW(40%)), whereas the odds ratio was 1.15 (P = 0.001; 95% confidence interval, 1.06-1.24). The accuracy of SUV(max) greater than 10 in predicting TP53 mutation was 60%, whereas that for TW(40%) for KRAS was 61%. Increased SUV(max) and TW(40%) were associated in CRC tumors with TP53 and KRAS mutations, respectively. Further studies are required because of the low predictive accuracy.

  14. Prognostic significance of preoperative metabolic tumour volume and total lesion glycolysis measured by (18)F-FDG PET/CT in squamous cell carcinoma of the oral cavity.

    PubMed

    Ryu, In Sun; Kim, Jae Seung; Roh, Jong-Lyel; Cho, Kyung-Ja; Choi, Seung-Ho; Nam, Soon Yuhl; Kim, Sang Yoon

    2014-03-01

    Metabolic tumour volume (MTV) and total lesion glycolysis (TLG) from (18)F-FDG PET/CT are emerging prognostic biomarkers in human solid cancers; yet few studies have investigated their clinical and prognostic significance in oral cavity squamous cell carcinoma (OSCC). The present retrospective study evaluated the utility of pretreatment MTV and TLG measured by (18)F-FDG PET/CT to predict survival and occult metastasis (OM) in OSCC. Of 162 patients with OSCC evaluated preoperatively by (18)F-FDG PET/CT, 105 who underwent definitive surgery with or without adjuvant therapy were eligible. Maximum standardized uptake value (SUVmax), MTV and TLG were measured. For calculation of MTV, 3-D regions of interest were drawn and a SUV threshold of 2.5 was used for defining regions. Univariate and multivariate analyses identified clinicopathological and imaging variables associated with OM, disease-free survival (DFS) and overall survival (OS). The median (range) SUVmax, MTV and TLG were 7.3 (0.7-41.9), 4.5 ml (0.7-115.1 ml) and 18.3 g (2.4-224.1 g), respectively. Of 53 patients with clinically negative lymph nodes, OM was detected in 19 (36%). By univariate and multivariate analyses, MTV (P = 0.018) and TLG (P = 0.011) were both independent predictive factors for OM, although they were not independent of each other. The 4-year DFS and OS rates were 53.0% and 62.0%, respectively. Univariate and multivariate analyses revealed that MTV (P = 0.001) and TLG (P = 0.006), with different cut-off levels, were both independent predictive factors for DFS, although they were not independent of each other, and MTV (P = 0.001), TLG (P = 0.002) and the involved resection margin (P = 0.007) were independent predictive factors for OS. Pretreatment MTV and TLG may be useful in stratifying the likelihood of survival and predicting OM in OSCC.

  15. CT, MRI, and 18F-FDG PET/CT findings of malignant peripheral nerve sheath tumor of the head and neck.

    PubMed

    Kim, Ha Youn; Hwang, Ji Young; Kim, Hyung-Jin; Kim, Yi Kyung; Cha, Jihoon; Park, Gyeong Min; Kim, Sung Tae

    2017-10-01

    Background Malignant peripheral nerve sheath tumor (MPNST) is a highly malignant tumor and rarely occurs in the head and neck. Purpose To describe the imaging features of MPNST of the head and neck. Material and Methods We retrospectively analyzed computed tomography (CT; n = 14), magnetic resonance imaging (MRI; n = 16), and 18 F-FDG PET/CT (n = 5) imaging features of 18 MPNSTs of the head and neck in 17 patients. Special attention was paid to determine the nerve of origin from which the tumor might have arisen. Results All lesions were well-defined (n = 3) or ill-defined (n = 15) masses (mean, 6.1 cm). Lesions were at various locations but most commonly the neck (n = 8), followed by the intracranial cavity (n = 3), paranasal sinus (n = 2), and orbit (n = 2). The nerve of origin was inferred for 11 lesions: seven in the neck, two in the orbit, one in the cerebellopontine angle, and one on the parietal scalp. Attenuation, signal intensity, and enhancement pattern of the lesions on CT and MRI were non-specific. Necrosis/hemorrhage/cystic change within the lesion was considered to be present on images in 13 and bone change in nine. On 18 F-FDG PET/CT images, all five lesions demonstrated various hypermetabolic foci with maximum standard uptake value (SUV max ) from 3.2 to 14.6 (mean, 7.16 ± 4.57). Conclusion MPNSTs can arise from various locations in the head and neck. Though non-specific, a mass with an ill-defined margin along the presumed course of the cranial nerves may aid the diagnosis of MPSNT in the head and neck.

  16. Comparative effectiveness of 18F-FDG PET-CT and contrast-enhanced CT in the diagnosis of suspected large-vessel vasculitis.

    PubMed

    Vaidyanathan, Sriram; Chattopadhyay, Arpita; Mackie, Sarah L; Scarsbrook, Andrew

    2018-06-21

    Large-vessel vasculitis (LVV) is a serious illness with potentially life-threatening consequences. 18 F-FDG PET-CT has emerged as a valuable diagnostic tool in suspected LVV, combining the strengths of functional and structural imaging. This study aimed to compare the accuracy of FDG PET-CT and contrast-enhanced CT (CECT) in the evaluation of patients with LVV. A retrospective database review for LVV patients undergoing CECT and PET-CT between 2011 to 2016 yielded demographics, scan interval and vasculitis type. Qualitative and quantitative PET-CT analyses included aorta: liver FDG uptake, bespoke FDG uptake distribution scores and vascular maximum standardized uptake values (SUVmax). Quantitative CECT data were assessed wall thickness and mural/lumen ratio. ROC curves were constructed to evaluate comparative diagnostic accuracy and a correlational analysis was conducted between SUVmax and wall-thickness. 36 adults (17 LVV, 19 controls) with a mean age (range) 63 (38-89) years, of which 17 (47%) were males were included. Time interval between CT and PET was mean (standard deviation (SD)) 1.9 (1.2) months. Both SUVmax and wall-thickness demonstrated a significant difference between LVV and controls, with a mean difference (95%confidence interval (CI)) for SUVmax 1.6 (1.1, 2.0) and wall thickness 1.25 (0.68, 1.83) mm, respectively. These two parameters were significantly correlated (p < .0001, R = 0.62). The area under the curve (AUC) (95% CI) for SUVmax was 0.95 (0.88-1.00), and for mural thickening was 0.83 (0.66-0.99). FDG PET-CT demonstrated excellent accuracy whilst CECT mural thickening showed good accuracy in the diagnosis of LVV. Both parameters showed a highly significant correlation. In hospitals without access to FDG PET-CT or in patients unsuitable for PET-CT (e.g., uncontrolled diabetes) CECT offers a viable alternative for the assessment LVV. Advances in knowledge: FDG PET-CT is a highly accurate test for the diagnosis of LVV. Aorta:liver SUVmax

  17. 18F-FDG PET/CT in Diagnostic and Prognostic Evaluation of Patients With Suspected Recurrence of Chondrosarcoma.

    PubMed

    Vadi, Shelvin Kumar; Mittal, Bhagwant Rai; Gorla, Arun Kumar Reddy; Sood, Ashwani; Basher, Rajender Kumar; Sood, Apurva; Kakkar, Nandita; Sen, Ramesh K

    2018-02-01

    The aim of the study was to analyze the diagnostic and prognostic utility of F-FDG PET/CT to predict the disease-specific survival (DSS) with FDG uptake and tumor grade in recurrent chondrosarcoma. Retrospective analysis of FDG PET/CT findings in 31 previously treated patients (46 studies) with mean follow-up period of 40.7 ± 23.9 months (range, 3-77 months) from the date of first PET/CT study was done. Kaplan-Meier DSS analysis was made with respect to tumor grade, FDG uptake at the recurrent primary sites, and a combination of grade and FDG uptake as parameters. Recurrence (local and distant) was shown in 28 (60.8%) of 46 FDG PET/CT studies with sensitivity and specificity of 88.9% and 78.9%, respectively. The median SUVmax at the recurrent primary sites differed significantly (P = 0.008) among 3 tumor grade groups, with higher median SUVmax in higher grades. There was significant difference in median SUVmax among different grade groups except between grade II and grade III. Recurrent primary site SUVmax cutoff at 6.15 derived from the receiver operating characteristic curve yielded significant difference (P < 0.001) in mean DSS time. Significant difference in survival was noted between 3 different tumor grade groups (P = 0.016). The combination of SUVmax and grade improved the survival prediction than with grade alone. In recurrent chondrosarcoma, the recurrent primary site FDG uptake and grade were found to be reliable prognostic factors with respect to DSS. PET/CT in recurrence setting has the potential to predict tumor grade and survival and may assist in clinical management.

  18. The Accuracy of Integrated [18F] Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Detection of Pelvic and Para-aortic Nodal Metastasis in Patients with High Risk Endometrial Cancer

    PubMed Central

    Gholkar, Nikhil Shirish; Saha, Subhas Chandra; Prasad, GRV; Bhattacharya, Anish; Srinivasan, Radhika; Suri, Vanita

    2014-01-01

    Lymph nodal (LN) metastasis is the most important prognostic factor in high-risk endometrial cancer. However, the benefit of routine lymphadenectomy in endometrial cancer is controversial. This study was conducted to assess the accuracy of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography ([18F] FDG-PET/CT) in detection of pelvic and para-aortic nodal metastases in high-risk endometrial cancer. 20 patients with high-risk endometrial carcinoma underwent [18F] FDG-PET/CT followed by total abdominal hysterectomy, bilateral salpingo-oophorectomy and systematic pelvic lymphadenectomy with or without para-aortic lymphadenectomy. The findings on histopathology were compared with [18F] FDG-PET/CT findings to calculate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of [18F] FDG-PET/CT. The pelvic nodal findings were analyzed on a patient and nodal chain based criteria. The para-aortic nodal findings were reported separately. Histopathology documented nodal involvement in two patients (10%). For detection of pelvic nodes, on a patient based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 61.11%, PPV of 22.22%, NPV of 100% and accuracy of 65% and on a nodal chain based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 80%, PPV of 20%, NPV of 100%, and accuracy of 80.95%. For detection of para-aortic nodes, [18F] FDG-PET/CT had sensitivity of 100%, specificity of 66.67%, PPV of 20%, NPV of 100%, and accuracy of 69.23%. Although [18F] FDG-PET/CT has high sensitivity for detection of LN metastasis in endometrial carcinoma, it had moderate accuracy and high false positivity. However, the high NPV is important in selecting patients in whom lymphadenectomy may be omitted. PMID:25538488

  19. The role of interim 18F-FDG PET/CT in prediction of response to ipilimumab treatment in metastatic melanoma.

    PubMed

    Sachpekidis, Christos; Anwar, Hoda; Winkler, Julia; Kopp-Schneider, Annette; Larribere, Lionel; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-07-01

    The aim of the present study was to assess the value of interim 18 F-FDG PET/CT performed after the first two cycles of ipilimumab treatment in the prediction of the final clinical response to this type of immunotherapy. The study group comprised 41 patients with unresectable metastatic melanoma scheduled for ipilimumab therapy. Whole-body 18 F-FDG PET/CT was performed before the start of ipilimumab treatment (baseline PET/CT) and after the initial two cycles of ipilimumab treatment (interim PET/CT). Evaluation of patient response to treatment was based on the European Organization for Research and Treatment of Cancer (EORTC) 1999 criteria for PET as well as the recently proposed PET Response Evaluation Criteria for Immunotherapy (PERCIMT). The patients' best clinical response, assessed at a median of 21.4 months (range 6.3-41.9 months) was used as reference. According to their best clinical response, the patients were divided into two groups: those showing clinical benefit (CB) including stable disease, partial response and complete response (31 patients), and those showing no clinical benefit (no-CB including progressive disease (10 patients). According to the EORTC criteria, interim PET/CT demonstrated progressive metabolic disease (PMD) in 20 patients, stable metabolic disease (SMD) in 11 patients, partial metabolic response (PMR) in 8 patients, and complete metabolic response (CMR) in 2 patients. According to the PERCIMT, interim PET/CT demonstrated PMD in 9 patients, SMD in 24 patients, PMR in 6 patients and CMR in 2 patients. On the basis of the interim PET, the patients were divided in a similar manner to the division according to clinical response into those showing metabolic benefit (MB) including SMD, PMR and CMR, and those showing no metabolic benefit (no-MB) including PMD. According to this dichotomization, the EORTC criteria showed a sensitivity (correctly predicting CB) of 64.5%, a specificity (correctly predicting no-CB) of 90.0%, a positive

  20. Role of FDG-PET scans in staging, response assessment, and follow-up care for non-small cell lung cancer

    PubMed Central

    Cuaron, John; Dunphy, Mark; Rimner, Andreas

    2013-01-01

    The integral role of positron-emission tomography (PET) using the glucose analog tracer fluorine-18 fluorodeoxyglucose (FDG) in the staging of non-small cell lung cancer (NSCLC) is well established. Evidence is emerging for the role of PET in response assessment to neoadjuvant therapy, combined-modality therapy, and early detection of recurrence. Here, we review the current literature on these aspects of PET in the management of NSCLC. FDG-PET, particularly integrated 18F-FDG-PET/CT, scans have become a standard test in the staging of local tumor extent, mediastinal lymph node involvement, and distant metastatic disease in NSCLC. 18F-FDG-PET sensitivity is generally superior to computed tomography (CT) scans alone. Local tumor extent and T stage can be more accurately determined with FDG-PET in certain cases, especially in areas of post-obstructive atelectasis or low CT density variation. FDG-PET sensitivity is decreased in tumors <1 cm, at least in part due to respiratory motion. False-negative results can occur in areas of low tumor burden, e.g., small lymph nodes or ground-glass opacities. 18F-FDG-PET-CT nodal staging is more accurate than CT alone, as hilar and mediastinal involvement is often detected first on 18F-FDG-PET scan when CT criteria for malignant involvement are not met. 18F-FDG-PET scans have widely replaced bone scintography for assessing distant metastases, except for the brain, which still warrants dedicated brain imaging. 18F-FDG uptake has also been shown to vary between histologies, with adenocarcinomas generally being less FDG avid than squamous cell carcinomas. 18F-FDG-PET scans are useful to detect recurrences, but are currently not recommended for routine follow-up. Typically, patients are followed with chest CT scans every 3–6 months, using 18F-FDG-PET to evaluate equivocal CT findings. As high 18F-FDG uptake can occur in infectious, inflammatory, and other non-neoplastic conditions, 18F-FDG-PET-positive findings require pathological