Sample records for f-18 fluorodeoxy-glucose positron

  1. 18-Fluorodeoxy-Glucose Positron Emission Tomography- Computed Tomography (18-FDG-PET/CT) for Gross Tumor Volume (GTV) Delineation in Gastric Cancer Radiotherapy

    PubMed

    Dębiec, Kinga; Wydmański, Jerzy; Gorczewska, Izabela; Leszczyńska, Paulina; Gorczewski, Kamil; Leszczyński, Wojciech; d’Amico, Andrea; Kalemba, Michał

    2017-11-26

    Purpose: Evaluation of the 18-fluorodeoxy-glucose positron emission tomography-computed tomography (18-FDGPET/ CT) for gross tumor volume (GTV) delineation in gastric cancer patients undergoing radiotherapy. Methods: In this study, 29 gastric cancer patients (17 unresectable and 7 inoperable) were initially enrolled for radical chemoradiotherapy (45Gy/25 fractions + chemotherapy based on 5 fluorouracil) or radiotherapy alone (45Gy/25 fractions) with planning based on the 18-FDG-PET/CT images. Five patients were excluded due to excess blood glucose levels (1), false-negative positron emission tomography (1) and distant metastases revealed by 18-FDG-PET/CT (3). The analysis involved measurement of metabolic tumor volumes (MTVs) performed on PET/CT workstations. Different threshold levels of the standardized uptake value (SUV) and liver uptake were set to obtain MTVs. Secondly, GTVPET values were derived manually using the positron emission tomography (PET) dataset blinded to the computed tomography (CT) data. Subsequently, GTVCT values were delineated using a radiotherapy planning system based on the CT scans blinded to the PET data. The referenced GTVCT values were correlated with the GTVPET and were compared with a conformality index (CI). Results: The mean CI was 0.52 (range, 0.12-0.85). In 13/24 patients (54%), the GTVPET was larger than GTVCT, and in the remainder, GTVPET was smaller. Moreover, the cranio-caudal diameter of GTVPET in 16 cases (64%) was larger than that of GTVCT, smaller in 7 cases (29%), and unchanged in one case. Manual PET delineation (GTVPET) achieved the best correlation with GTVCT (Pearson correlation = 0.76, p <0.0001). Among the analyzed MTVs, a statistically significant correlation with GTVCT was revealed for MTV10%SUVmax (r = 0.63; p = 0.0014), MTVliv (r = 0.60; p = 0.0021), MTVSUV2.5 (r = 0.54; p = 0.0063); MTV20%SUVmax (r = 0.44; p = 0.0344); MTV30%SUVmax (r = 0.44; p = 0.0373). Conclusion: 18-FDG-PET/CT in gastric cancer radiotherapy

  2. Monitoring Pc 4-mediated photodynamic therapy of U87 tumors with 18F- fluorodeoxy-glucose PET imaging in the Athymic Nude Rat

    NASA Astrophysics Data System (ADS)

    Varghai, Davood; Cross, Nathan; Spring-Robinson, Chandra; Sharma, Rahul; Feyes, Denise K.; Ahmad, Yusra; Oleinick, Nancy L.; Muzic, Raymond F., Jr.; Dean, David

    2007-02-01

    Introduction: We have previously demonstrated the use of phthalocyanine Pc 4 for the photodynamic therapy (PDT) of ectopic human glial tumors in the athymic nude rat brain. We wish to determine whether 18F-fluorodeoxy-glucose ( 18F-FDG) Positron Emission Tomography (PET) imaging can detect the reduction in tumor metabolism that must occur after Pc 4-PDT-induced necrosis. Methods: 2.5 x 10 5 U87 cells were injected into the brains of 12 athymic nude rats. After 7 days of tumor growth, all 12 animals were imaged functionally by 18F-FDG micro-PET (μPET) and structurally by micro-CT and/or micro-MR. These animals received 0.5 mg/kg b.w. Pc 4 via tail-vein injection. One day later the scalp was re-incised and the tumor illuminated with 30 J/cm2 of 672-nm light from a diode laser. The next day these animals were again 18F-FDG μPET imaged. Next, the animals were euthanized and their brains were explanted for H&E histology. Results: Histology showed that tumors in the 6 Pc 4-PDT-treated animals demonstrated necrosis ranging from full to frank (severe). Preliminary analysis showed that 18F-FDG μPET activity in 3 of the 6 non-PDT group (i.e., no tumor necrosis observed) animals was seen to increase 2.28 times following tumor photoirradiation, whereas 18F-FDG μPET activity in 5 of the 6 PDT group (i.e., tumor necrosis observed) animals was seen to increase 1.15 times following tumor photoirradiation. Discussion: The increased 18F-FDG μPET activity in the PDT group was unexpected. We had expected this activity to decrease and are presently investigating the cause of this observation.

  3. Stomach metastasis of breast carcinoma mimicking primary gastric neoplasm on fluorodeoxy glucose-positron emission tomography-computed tomography.

    PubMed

    Joshi, Prathamesh; Lele, Vikram; Jain, Reetu; Khubchandani, Shaila; Sinhasan, Shraddha

    2013-04-01

    We present fluorodeoxy glucose positron emission tomography-computed tomography (FDG-PET/CT) findings in a case of breast carcinoma. The PET/CT findings in this case were suspicious of second primary neoplasm in the stomach. However, on endoscopic biopsy, the lesion was found to be stomach metastasis of breast carcinoma with estrogen receptor positivity. Stomach is a rare site of breast carcinoma metastasis. Our case suggests that it is difficult to distinguish a stomach metastasis of breast cancer from a primary gastric cancer on the basis of clinical and imaging features. However, this differential diagnosis must be kept in mind and it is important to make such distinction because of its implications on patient management.

  4. Utility of 18F-fluorodeoxy glucose and 18F-sodium fluoride positron emission tomography/computed tomography in the diagnosis of medication-related osteonecrosis of the jaw: A preclinical study in a rat model.

    PubMed

    Kim, Yemi; Lee, Ho-Young; Yoon, Hai-Jeon; Kim, Bom Sahn

    2016-04-01

    The aim of this study was to determine the clinical utility of positron emission tomography/computed tomography (PET/CT) using 18F-FDG and 18F-NaF for the diagnosis of osteonecrosis of the jaw (ONJ), by observing characteristics in rat models treated with zoledronic acid (ZA) and/or dexamethasone (DX) followed by tooth extraction. A total of 48 rats were divided randomly into four groups: Group 1, rats treated with ZA and DX; Group 2, rats treated with ZA; Group 3, rats treated with DX; and Group 4, rats treated with vehicle as normal controls. They underwent examinations with both 18F-FDG and 18F-NaF PET/CT at 4 weeks prior to tooth extraction (baseline) and 4 weeks after tooth extraction. Rats were then sacrificed to evaluate the histological incidence and characteristics of ONJ. Histological and radiological characteristics of all groups were compared to assess the effects of medication and tooth extraction. Baseline PET/CT studies using 18F-FDG and 18F-NaF showed no difference in uptake among the groups. However, 18F-FDG PET/CT performed at 4 weeks after tooth extraction showed increased glucose metabolism at the extraction site in both the ZA/DX and the ZA-only groups compared with that in the vehicle-treated group, in accordance with the higher incidence of histological ONJ (p < 0.05, respectively). 18F-NaF PET/CT performed at 4 weeks after tooth extraction showed decreased bone uptake in the extraction site in the ZA/DX, ZA, and DX groups versus the vehicle group (all p < 0.05), but this was not correlated with the incidence of histological ONJ. The incidence of ONJ was highest in the ZA/DX group (66.7%), followed by the ZA group, both of which were significantly higher than in the DX and vehicle groups (both p < 0.05). 18F-FDG PET/CT as an inflammatory marker appeared to be a more appropriate imaging modality than 18F-NaF PET/CT in diagnosing ONJ in a rat model including a ZA/DX group. However, the decreased bone remodeling tendency highlighted by 18F-NaF

  5. Positron emission tomography (PET) imaging with 18F-based radiotracers

    PubMed Central

    Alauddin, Mian M

    2012-01-01

    Positron Emission Tomography (PET) is a nuclear medicine imaging technique that is widely used in early detection and treatment follow up of many diseases, including cancer. This modality requires positron-emitting isotope labeled biomolecules, which are synthesized prior to perform imaging studies. Fluorine-18 is one of the several isotopes of fluorine that is routinely used in radiolabeling of biomolecules for PET; because of its positron emitting property and favorable half-life of 109.8 min. The biologically active molecule most commonly used for PET is 2-deoxy-2-18F-fluoro-β-D-glucose (18F-FDG), an analogue of glucose, for early detection of tumors. The concentrations of tracer accumulation (PET image) demonstrate the metabolic activity of tissues in terms of regional glucose metabolism and accumulation. Other tracers are also used in PET to image the tissue concentration. In this review, information on fluorination and radiofluorination reactions, radiofluorinating agents, and radiolabeling of various compounds and their application in PET imaging is presented. PMID:23133802

  6. MRI and 18F-fluorodeoxyglucose positron emission tomography in hemimegalencephaly.

    PubMed

    Hoffmann, K T; Amthauer, H; Liebig, T; Hosten, N; Etou, A; Lehmann, T N; Farahati, J; Felix, R

    2000-10-01

    We report hemimegalencephaly in a 44-year-old woman with mental retardation, epilepsy and a mild hemiparesis. In addition to typical findings on MRI, 2-deoxy-2[18F]fluorodeoxyglucose positron-emission tomography (PET) demonstrated glucose hypometabolism of the affected hemisphere. The results of PET have been coregistered with morphological information from the MRI studies by image fusion.

  7. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  8. Comparison of Positron Emission Tomography Using 2-[18F]-fluoro-2-deoxy-D-glucose and 3-deoxy-3-[18F]-fluorothymidine in Lung Cancer Imaging

    PubMed Central

    Wang, Fu-Li; Tan, Ye-Ying; Gu, Xiang-Min; Li, Tian-Ran; Lu, Guang-Ming; Liu, Gang; Huo, Tian-Long

    2016-01-01

    Background: The detection of solitary pulmonary nodules (SPNs) that may potentially develop into a malignant lesion is essential for early clinical interventions. However, grading classification based on computed tomography (CT) imaging results remains a significant challenge. The 2-[18F]-fluoro-2-deoxy-D-glucose (18F-FDG) positron emission tomography (PET)/CT imaging produces both false-positive and false-negative findings for the diagnosis of SPNs. In this study, we compared 18F-FDG and 3-deoxy-3-[18F]-fluorothymidine (18F-FLT) in lung cancer PET/CT imaging. Methods: The binding ratios of the two tracers to A549 lung cancer cells were calculated. The mouse lung cancer model was established (n = 12), and micro-PET/CT analysis using the two tracers was performed. Images using the two tracers were collected from 55 lung cancer patients with SPNs. The correlation among the cell-tracer binding ratios, standardized uptake values (SUVs), and Ki-67 proliferation marker expression were investigated. Results: The cell-tracer binding ratio for the A549 cells using the 18F-FDG was greater than the ratio using 18F-FLT (P < 0.05). The Ki-67 expression showed a significant positive correlation with the 18F-FLT binding ratio (r = 0.824, P < 0.01). The tumor-to-nontumor uptake ratio of 18F-FDG imaging in xenografts was higher than that of 18F-FLT imaging. The diagnostic sensitivity, specificity, and the accuracy of 18F-FDG for lung cancer were 89%, 67%, and 73%, respectively. Moreover, the diagnostic sensitivity, specificity, and the accuracy of 18F-FLT for lung cancer were 71%, 79%, and 76%, respectively. There was an obvious positive correlation between the lung cancer Ki-67 expression and the mean maximum SUV of 18F-FDG and 18F-FLT (r = 0.658, P < 0.05 and r = 0.724, P < 0.01, respectively). Conclusions: The 18F-FDG uptake ratio is higher than that of 18F-FLT in A549 cells at the cellular level. 18F-FLT imaging might be superior for the quantitative diagnosis of lung tumor

  9. Analysis of 18F-fluorodeoxy-glucose PET imaging data captured before and after Pc 4-mediated photodynamic therapy of U87 tumors in the athymic nude rat

    NASA Astrophysics Data System (ADS)

    Cross, Nathan; Varghai, Davood; Spring-Robinson, Chandra; Sharma, Rahul; Muzic, Raymond F., Jr.; Oleinick, Nancy L.; Dean, D.

    2007-02-01

    Introduction: Several workers have proposed the use of PET (Positron Emission Tomography) imaging for the outcome assessment of photodynamic therapy (PDT), especially for deep-seated tumors. We report on our study of 18Ffluorodeoxy- glucose (18F-FDG) PET imaging following brain tumor Pc4-PDT. Our working hypothesis was that the tumor's metabolic activity would decline dramatically following Pc 4-PDT owing to tumor necrosis. Methods: Seven days after intraparenchymal implantation of U87 cells, the brains of 12 athymic nude rats were imaged by micro-CT and/or micro-MR. These animals were also 18F-FDG micro-PET (μPET) scanned before and after Pc 4-PDT. 18F-FDG was used to trace metabolic activity that was monitored via μPET. Occurrence of PDT was confirmed on histology. The analysis of 18F-FDG dose and animal weight normalized μPET activity was studied over the 90 minute µPET scan. Results: Currently, μPET data have been studied for: (1) three of the animals that did not indicate tumor necrosis on histology and were assigned to a "Non-PDT" group, and (2) six animals that exhibited tumor necrosis on histology and were assigned to a "PDT" group. The μPET-detected 18F-FDG uptake activity in the tumor region before and after photoirradiation increased in the Non-PDT group an average of 2.28 times, and in the PDT group it increased an average of 1.15 times. Discussion: We are investigating the cause of the increase in 18F-FDG μPET activity that we observed in the PDT group. The methodology used in this study should be useful in determining whether this or other PET, SPECT, or MR functional imaging protocols will detect both the specificity and sensitivity of brain tumor necrosis following Pc 4-PDT.

  10. 18F-FDG positron emission tomography/computed tomography in infective endocarditis.

    PubMed

    Salomäki, Soile Pauliina; Saraste, Antti; Kemppainen, Jukka; Bax, Jeroen J; Knuuti, Juhani; Nuutila, Pirjo; Seppänen, Marko; Roivainen, Anne; Airaksinen, Juhani; Pirilä, Laura; Oksi, Jarmo; Hohenthal, Ulla

    2017-02-01

    The diagnosis of infective endocarditis (IE), especially the diagnosis of prosthetic valve endocarditis (PVE) is challenging since echocardiographic findings are often scarce in the early phase of the disease. We studied the use of 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) in IE. Sixteen patients with suspected PVE and 7 patients with NVE underwent visual evaluation of 18 F-FDG-PET/CT. 18 F-FDG uptake was measured also semiquantitatively as maximum standardized uptake value (SUV max ) and target-to-background ratio (TBR). The modified Duke criteria were used as a reference. There was strong, focal 18 F-FDG uptake in the area of the affected valve in all 6 cases of definite PVE, in 3 of 5 possible PVE cases, and in 2 of 5 rejected cases. In all patients with definite PVE, SUV max of the affected valve was higher than 4 and TBR higher than 1.8. In contrast to PVE, only 1 of 7 patients with NVE had uptake of 18 F-FDG by PET/CT in the valve area. Embolic infectious foci were detected in 58% of the patients with definite IE. 18 F-FDG-PET/CT appears to be a sensitive method for the detection of paravalvular infection associated with PVE. Instead, the sensitivity of PET/CT is limited in NVE.

  11. Influence of P-Glycoprotein Inhibition or Deficiency at the Blood-Brain Barrier on (18)F-2-Fluoro-2-Deoxy-D-glucose ( (18)F-FDG) Brain Kinetics.

    PubMed

    Tournier, Nicolas; Saba, Wadad; Goutal, Sébastien; Gervais, Philippe; Valette, Héric; Scherrmann, Jean-Michel; Bottlaender, Michel; Cisternino, Salvatore

    2015-05-01

    The fluorinated D-glucose analog (18)F-2-fluoro-2-deoxy-D-glucose ((18)F-FDG) is the most prevalent radiopharmaceutical for positron emission tomography (PET) imaging. P-Glycoprotein's (P-gp, MDR1, and ABCB1) function in various cancer cell lines and tumors was shown to impact (18)F-FDG incorporation, suggesting that P-gp function at the blood-brain barrier may also modulate (18)F-FDG brain kinetics. We tested the influence of P-gp inhibition using the cyclosporine analog valspodar (PSC833; 5 μM) on the uptake of (18)F-FDG in standardized human P-gp-overexpressing cells (MDCKII-MDR1). Consequences for (18)F-FDG brain kinetics were then assessed using (i) (18)F-FDG PET imaging and suitable kinetic modelling in baboons without or with P-gp inhibition by intravenous cyclosporine infusion (15 mg kg(-1) h(-1)) and (ii) in situ brain perfusion in wild-type and P-gp/Bcrp (breast cancer resistance protein) knockout mice and controlled D-glucose exposure to the brain. In vitro, the time course of (18)F-FDG uptake in MDR1 cells was influenced by the presence of valspodar in the absence of D-glucose but not in the presence of high D-glucose concentration. PET analysis revealed that P-gp inhibition had no significant impact on estimated brain kinetics parameters K 1, k 2, k 3, V T , and CMRGlc. The lack of P-gp effect on in vivo (18)F-FDG brain distribution was confirmed in P-gp/Bcrp-deficient mice. P-gp inhibition indirectly modulates (18)F-FDG uptake into P-gp-overexpressing cells, possibly through differences in the energetic cell level state. (18)F-FDG is not a P-gp substrate at the BBB and (18)F-FDG brain kinetics as well as estimated brain glucose metabolism are influenced by neither P-gp inhibition nor P-gp/Bcrp deficiencies in baboon and mice, respectively.

  12. Incorporation and translocation of 2-deoxy-2-[(18)F]fluoro-D-glucose in Sorghum bicolor (L.) Moench monitored using a planar positron imaging system.

    PubMed

    Hattori, Etsuko; Uchida, Hiroshi; Harada, Norihiro; Ohta, Mari; Tsukada, Hideo; Hara, Yasuhiro; Suzuki, Tetsuya

    2008-04-01

    [(18)F]FDG (2-deoxy-2-[(18)F]fluoro-D-glucose) was fed to a sorghum plant [Sorghum bicolor (L.) Moench] from the tip of a leaf and its movement was monitored using a planar positron imaging system (PPIS). [(18)F]FDG was uptaken from the leaf tip and it was translocated to the basal part of the shoots from where it moved to the roots, the tillers and the sheaths. Autoradiographic analysis of the distribution of (18)F, [(18)F]FDG and/or its metabolites showed translocation to the roots, tillers, and to the leaves that were younger than the supplied leaf. Strong labelling was observed in the basal part of the shoots, in the sheaths, the youngest leaf and the root tips. Our results indicate that [(18)F]FDG and/or its metabolites were absorbed from the leaf and translocated to the sites where nutrients are required. This strongly suggests that [(18)F]FDG can be utilised as a tracer to study photoassimilate translocation in the living plant. This is the first report on the use of [(18)F]FDG, which is routinely used as a probe for clinical diagnosis, to study source to sink translocation of metabolites in whole plants in real time.

  13. 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography/computed tomography imaging in paediatric oncology

    PubMed Central

    Freebody, John; Wegner, Eva A; Rossleigh, Monica A

    2014-01-01

    Positron emission tomography (PET) is a minimally invasive technique which has been well validated for the diagnosis, staging, monitoring of response to therapy, and disease surveillance of adult oncology patients. Traditionally the value of PET and PET/computed tomography (CT) hybrid imaging has been less clearly defined for paediatric oncology. However recent evidence has emerged regarding the diagnostic utility of these modalities, and they are becoming increasingly important tools in the evaluation and monitoring of children with known or suspected malignant disease. Important indications for 2-deoxy-2-(18F)fluoro-D-glucose (FDG) PET in paediatric oncology include lymphoma, brain tumours, sarcoma, neuroblastoma, Langerhans cell histiocytosis, urogenital tumours and neurofibromatosis type I. This article aims to review current evidence for the use of FDG PET and PET/CT in these indications. Attention will also be given to technical and logistical issues, the description of common imaging pitfalls, and dosimetric concerns as they relate to paediatric oncology. PMID:25349660

  14. Effects of glucose, insulin, and insulin resistance on cerebral 18F-FDG distribution in cognitively normal older subjects

    PubMed Central

    Onishi, Airin; Fujiwara, Yoshinori; Ishiwata, Kiichi; Ishii, Kenji

    2017-01-01

    Background Increasing plasma glucose levels and insulin resistance can alter the distribution pattern of fluorine-18-labeled fluorodeoxyglucose (18F-FDG) in the brain and relatively reduce 18F-FDG uptake in Alzheimer's disease (AD)-related hypometabolic regions, leading to the appearance of an AD-like pattern. However, its relationship with plasma insulin levels is unclear. We aimed to compare the effects of plasma glucose levels, plasma insulin levels and insulin resistance on the appearance of the AD-like pattern in 18F-FDG images. Methods Fifty-nine cognitively normal older subjects (age = 75.7 ± 6.4 years) underwent 18F-FDG positron emission tomography along with measurement of plasma glucose and insulin levels. As an index of insulin resistance, the Homeostasis model assessment of Insulin Resistance (HOMA-IR) was calculated. Results Plasma glucose levels, plasma insulin levels, and HOMA-IR were 102.2 ± 8.1 mg/dL, 4.1 ± 1.9 μU/mL, and 1.0 ± 0.5, respectively. Whole-brain voxelwise analysis showed a negative correlation of 18F-FDG uptake with plasma glucose levels in the precuneus and lateral parietotemporal regions (cluster-corrected p < 0.05), and no correlation with plasma insulin levels or HOMA-IR. In the significant cluster, 18F-FDG uptake decreased by approximately 4–5% when plasma glucose levels increased by 20 mg/dL. In the precuneus region, volume-of-interest analysis confirmed a negative correlation of 18F-FDG uptake with plasma glucose levels (r = -0.376, p = 0.002), and no correlation with plasma insulin levels (r = 0.156, p = 0.12) or HOMA-IR (r = 0.096, p = 0.24). Conclusion This study suggests that, of the three parameters, plasma glucose levels have the greatest effect on the appearance of the AD-like pattern in 18F-FDG images. PMID:28715453

  15. The use of 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) as a non-invasive pharmacodynamic biomarker to determine the minimally pharmacologically active dose of AZD8835, a novel PI3Kα inhibitor

    PubMed Central

    Maynard, Juliana; Emmas, Sally-Ann; Ble, Francois-Xavier; Barjat, Herve; Lawrie, Emily; Hancox, Urs; Polanska, Urszula M.; Pritchard, Alison; Hudson, Kevin

    2017-01-01

    Background The phosphatidyl inositol 3 kinase (PI3K), AKT and mammalian target of rapamycin (mTOR) signal transduction pathway is frequently de-regulated and activated in human cancer and is an important therapeutic target. AZD8835 is a PI3K inhibitor, with selectivity against PI3K α and δ isoforms, which is currently in Phase 1 clinical trials. 18F-Fluoro-deoxy-glucose positron emission tomography (18F-FDG PET) is a non-invasive pharmacodynamic imaging biomarker that has become an integral part of drug development. It has been used widely with PI3K inhibitors both clinically and pre-clinically because of the role of the PI3K pathway in glucose metabolism. In this study we investigated the potential of 18F-FDG PET as a non-invasive pharmacodynamic biomarker for AZD8835. We sought to understand if 18F-FDG PET could determine the minimally effective dose of AZD8835 and correlate with other pharmacodynamic biomarkers for validation of its use in clinical development. 18F-FDG PET scans were performed in nude mice in the BT474C breast xenograft model. Mice were fasted prior to imaging and static 18F-FDG PET was performed. Treatment groups received AZD8835 by oral gavage at a dose volume of 10ml/kg. Treatment groups received either 3, 6, 12.5, 25 or 50mg/kg AZD8835. Tumour growth was monitored throughout the study, and at the end of the imaging procedure, tumours were taken and a full pharmacodynamic analysis was performed. Results Results showed that AZD8835 reduced 18F-FDG uptake at a dose of 12.5, 25 and 50mg/kg with no significant reduction at doses of 3 and 6mg/kg. These results were consistent with other pharmacodynamics biomarkers measured and show 18F-FDG PET as a sensitive biomarker with the ability to determine the minimal effective dose of AZD8835. Conclusions Our pre-clinical studies support the use of 18F-FDG PET imaging as a sensitive and non- invasive pharmacodynamic biomarker (understanding the role of PI3K signalling in glucose uptake) for AZD8835 with

  16. Differentiation and diagnosis of benign and malignant testicular lesions using 18F-FDG PET/CT.

    PubMed

    Shao, Dan; Gao, Qiang; Tian, Xu-Wei; Wang, Si-Yun; Liang, Chang-Hong; Wang, Shu-Xia

    2017-08-01

    The purpose of this study was to evaluate the differential diagnostic value of 18 F-fluorodeoxy glucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) for benign and malignant testicular lesions. The PET/CT scans of 53 patients with testicular lesions confirmed by biopsy or surgical pathology were retrospectively analyzed. There were 32 cases of malignant tumors and 21 cases of benign lesions. Differences in the maximum standardized uptake value (SUVmax) measurements and the SUVmax lesion/background ratios between benign and malignant lesions were analyzed. The diagnostic value of this PET/CT modality for the differential diagnosis of benign versus malignant testicular lesions was calculated. The differences in the SUVmax measurements and the SUVmax lesion/background ratios between benign and malignant lesions were statistically significant (SUVmax: Z=-4.295, p=0.000; SUVmax lesion/background ratio: Z=-5.219, p=0.000); specifically, both of these indicators were higher in malignant lesions compared to benign lesions. An SUVmax of 3.75 was the optimal cutoff value to differentiate between benign and malignant testicular lesions. The diagnostic sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of this PET/CT modality in the differential diagnosis of benign versus malignant testicular lesions were 90.6%, 80.9%, 86.8%, 87.9%, and 85.0%, respectively. 18 F-FDG PET/CT can accurately identify benign and malignant testicular lesions. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Comparing 2-[18F]fluoro-2-deoxy-D-glucose and [68Ga]gallium-citrate translocation in Arabidopsis thaliana.

    PubMed

    Fatangare, Amol; Gebhardt, Peter; Saluz, Hanspeter; Svatoš, Aleš

    2014-10-01

    2-[(18)F]fluoro-2-deoxy-D-glucose ((18)FDG) is a glucose surrogate commonly used in clinical or animal imaging but rarely in plant imaging to trace glucose metabolism. Recently, (18)FDG has been employed in plant imaging for studying photoassimilate translocation and glycoside biosynthesis. There is growing evidence that (18)FDG could be used as a tracer in plant imaging studies to trace sugar dynamics. However, to confirm this hypothesis, it was necessary to show that the observed (18)FDG distribution in an intact plant is an outcome of the chemical nature of the introduced radiotracer and not of the plant vascular architecture or radiotracer introduction method. In the present work, we fed (18)FDG and [(68)Ga]gallium-citrate ((68)Ga-citrate) solution through mature Arabidopsis thaliana leaf and monitored subsequent radioactivity distribution using positron autoradiography. The possible route of radioactivity translocation was elucidated through stem-girdling experiments. We also employed a bi-functional positron emission tomography/computed tomography (PET/CT) modality to capture (18)FDG radiotracer dynamics in one of the plants in order to assess applicability of PET/CT for 4-D imaging in an intact plant. Autoradiography results showed that [(18)F] radioactivity accumulated mostly in roots and young growing parts such as the shoot apex, which are known to act as sinks for photoassimilate. [(18)F] radioactivity translocation, in this case, occurred mainly via phloem. PET/CT results corroborated with autoradiography. [(68)Ga] radioactivity, on the other hand, was mainly translocated to neighboring leaves and its translocation occurred via both xylem and phloem. The radioactivity distribution pattern and translocation route observed after (18)FDG feeding is markedly different from that of (68)Ga-citrate. [(18)F] radioactivity distribution pattern in an intact plant is found similar to the typical distribution pattern of photoassimilates. Despite its limitations in

  18. Age- and sex-associated changes in cerebral glucose metabolism in normal healthy subjects: statistical parametric mapping analysis of F-18 fluorodeoxyglucose brain positron emission tomography.

    PubMed

    Kim, In-Ju; Kim, Seong-Jang; Kim, Yong-Ki

    2009-12-01

    The age- and sex-associated changes of brain development are unclear and controversial. Several previous studies showed conflicting results of a specific pattern of cerebral glucose metabolism or no differences of cerebral glucose metabolism in association with normal aging process and sex. To investigate the effects of age and sex on changes in cerebral glucose metabolism in healthy subjects using fluorine-18 fluorodeoxyglucose (F-18 FDG) brain positron emission tomography (PET) and statistical parametric mapping (SPM) analysis. Seventy-eight healthy subjects (32 males, mean age 46.6+/-18.2 years; 46 females, mean age 40.6+/-19.8 years) underwent F-18 FDG brain PET. Using SPM, age- and sex-associated changes in cerebral glucose metabolism were investigated. In males, a negative correlation existed in several gray matter areas, including the right temporopolar (Brodmann area [BA] 38), right orbitofrontal (BA 47), left orbitofrontal gyrus (BA 10), left dorsolateral frontal gyrus (BA 8), and left insula (BA 13) areas. A positive relationship existed in the left claustrum and left thalamus. In females, negative changes existed in the left caudate body, left temporopolar area (BA 38), right orbitofrontal gyri (BA 47 and BA 10), and right dorsolateral prefrontal cortex (BA 46). A positive association was demonstrated in the left subthalamic nucleus and the left superior frontal gyrus. In white matter, an age-associated decrease in FDG uptake in males was shown in the left insula, and increased FDG uptake was found in the left corpus callosum. The female group had an age-associated negative correlation of FDG uptake only in the right corpus callosum. Using SPM, we found not only similar areas of brain, but also sex-specific cerebral areas of age-associated changes of FDG uptake.

  19. 11C-Methionine Positron Emission Tomography/Computed Tomography Versus 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Evaluation of Residual or Recurrent World Health Organization Grades II and III Meningioma After Treatment.

    PubMed

    Tomura, Noriaki; Saginoya, Toshiyuki; Goto, Hiromi

    2018-04-02

    The aim of this study was to determine the assessment of positron emission tomography-computed tomography using C-methionine (MET PET/CT) for World Health Organization (WHO) grades II and III meningiomas; MET PET/CT was compared with PET/CT using F-fluorodeoxy glucose (FDG PET/CT). This study was performed in 17 cases with residual and/or recurrent WHO grades II and III meningiomas. Two neuroradiologists reviewed both PET/CT scans. For agreement, the κ coefficient was measured. Difference in tumor-to-normal brain uptake ratios (T/N ratios) between 2 PET/CT scans was analyzed. Correlation between the maximum tumor size and T/N ratio in PET/CT was studied. For agreement by both reviewers, the κ coefficient was 0.51 (P < 0.05). The T/N ratio was significantly higher for MET PET/CT (3.24 ± 1.36) than for FDG PET/CT (0.93 ± 0.44) (P < 0.01). C-methionine ratio significantly correlated with tumor size (y = 8.1x + 16.3, n = 22, P < 0.05), but FDG ratio did not CONCLUSIONS: C-methionine PET/CT has superior potential for imaging of WHO grades II and III meningiomas with residual or recurrent tumors compared with FDG PET/CT.

  20. Accuracy of 18F-FDOPA Positron Emission Tomography and 18F-FET Positron Emission Tomography for Differentiating Radiation Necrosis from Brain Tumor Recurrence.

    PubMed

    Yu, Jun; Zheng, Jingwei; Xu, Weilin; Weng, Jiaqi; Gao, Liansheng; Tao, Li; Liang, Feng; Zhang, Jianmin

    2018-06-01

    Distinguishing radiation necrosis from brain tumor recurrence remains challenging. We performed a meta-analysis to assess the diagnostic accuracy of 2 different amino acid tracers used in positron emission tomography/computed tomography scans: 18 F-FDOPA (6-[18F]-fluoro-L-3,4-dihydroxyphenylalanine) and 18 F-FET (O-(2-18F-fluoroethyl)-L-tyrosine). We searched for studies in 3 databases: PubMed, Embase, and Chinese Biomedical databases. The data were extracted from eligible studies and then processed with heterogeneity test, threshold effect test, and calculations of sensitivity, specificity, and area under the summary receiver operating characteristic curve. Meta-regression and subgroup analyses were performed to explore the source of heterogeneity. A total of 48 studies ( 18 F-FDOPA, n = 21; 18 F-FET, n = 27) were included. Quantitative synthesis determined pooled weight values in the 18 F-FDOPA and 18 F-FET groups: sensitivity, 0.85 versus 0.82; specificity, 0.77 versus 0.80; diagnostic odds ratio, 21.7 versus 23.03; area under the curve (AUC) values, 0.8771 versus 0.8976 (P = 0.46). Moreover, the type of tumor was identified as the possible source of the significant heterogeneity (I 2  = 52%; P = 0.003) found in the 18 F-FDOPA group. In meta-regression and subgroup analyses, 18 F-FDOPA showed better diagnostic accuracy in patients with glioma compared with patients with brain metastases (AUC values, 0.9691 vs. 0.837; P < 0.01). 18 F-FDOPA also showed a significant advantage in the diagnosis of glioma recurrence compared with 18 F-FET (AUC values, 0.9691 vs. 0.9124; P = 0.015). Both 18 F-FDOPA and 18 F-FET exhibit moderate overall accuracy in diagnosing brain tumor recurrence from radiation necrosis. However, 18 F-FDOPA is more adept at diagnosing glioma recurrence compared with brain metastases, and it is more effective than 18 F-FET in diagnosing glioma recurrence. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. 18F-Labeling of Sensitive Biomolecules for Positron Emission Tomography

    PubMed Central

    Krishnan, Hema S.; Ma, Longle; Vasdev, Neil; Liang, Steven H.

    2017-01-01

    Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via ‘direct’ or ‘indirect’ bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18F-labeling of biomolecules in PET imaging research studies are highlighted. PMID:28704575

  2. 18F-AV-1451 positron emission tomography in Alzheimer's disease and progressive supranuclear palsy.

    PubMed

    Passamonti, Luca; Vázquez Rodríguez, Patricia; Hong, Young T; Allinson, Kieren S J; Williamson, David; Borchert, Robin J; Sami, Saber; Cope, Thomas E; Bevan-Jones, W Richard; Jones, P Simon; Arnold, Robert; Surendranathan, Ajenthan; Mak, Elijah; Su, Li; Fryer, Tim D; Aigbirhio, Franklin I; O'Brien, John T; Rowe, James B

    2017-03-01

    The ability to assess the distribution and extent of tau pathology in Alzheimer's disease and progressive supranuclear palsy in vivo would help to develop biomarkers for these tauopathies and clinical trials of disease-modifying therapies. New radioligands for positron emission tomography have generated considerable interest, and controversy, in their potential as tau biomarkers. We assessed the radiotracer 18F-AV-1451 with positron emission tomography imaging to compare the distribution and intensity of tau pathology in 15 patients with Alzheimer's pathology (including amyloid-positive mild cognitive impairment), 19 patients with progressive supranuclear palsy, and 13 age- and sex-matched controls. Regional analysis of variance and a support vector machine were used to compare and discriminate the clinical groups, respectively. We also examined the 18F-AV-1451 autoradiographic binding in post-mortem tissue from patients with Alzheimer's disease, progressive supranuclear palsy, and a control case to assess the 18F-AV-1451 binding specificity to Alzheimer's and non-Alzheimer's tau pathology. There was increased 18F-AV-1451 binding in multiple regions in living patients with Alzheimer's disease and progressive supranuclear palsy relative to controls [main effect of group, F(2,41) = 17.5, P < 0.0001; region of interest × group interaction, F(2,68) = 7.5, P < 0.00001]. More specifically, 18F-AV-1451 binding was significantly increased in patients with Alzheimer's disease, relative to patients with progressive supranuclear palsy and with control subjects, in the hippocampus and in occipital, parietal, temporal, and frontal cortices (t's > 2.2, P's < 0.04). Conversely, in patients with progressive supranuclear palsy, relative to patients with Alzheimer's disease, 18F-AV-1451 binding was elevated in the midbrain (t = 2.1, P < 0.04); while patients with progressive supranuclear palsy showed, relative to controls, increased 18F-AV-1451 uptake in the putamen, pallidum

  3. [Radiotherapy volume delineation based on (18F)-fluorodeoxyglucose positron emission tomography for locally advanced or inoperable oesophageal cancer].

    PubMed

    Encaoua, J; Abgral, R; Leleu, C; El Kabbaj, O; Caradec, P; Bourhis, D; Pradier, O; Schick, U

    2017-06-01

    To study the impact on radiotherapy planning of an automatically segmented target volume delineation based on ( 18 F)-fluorodeoxy-D-glucose (FDG)-hybrid positron emission tomography-computed tomography (PET-CT) compared to a manually delineation based on computed tomography (CT) in oesophageal carcinoma patients. Fifty-eight patients diagnosed with oesophageal cancer between September 2009 and November 2014 were included. The majority had squamous cell carcinoma (84.5 %), and advanced stage (37.9 % were stade IIIA) and 44.8 % had middle oesophageal lesion. Gross tumour volumes were retrospectively defined based either manually on CT or automatically on coregistered PET/CT images using three different threshold methods: standard-uptake value (SUV) of 2.5, 40 % of maximum intensity and signal-to-background ratio. Target volumes were compared in length, volume and using the index of conformality. Radiotherapy plans to the dose of 50Gy and 66Gy using intensity-modulated radiotherapy were generated and compared for both data sets. Planification target volume coverage and doses delivered to organs at risk (heart, lung and spinal cord) were compared. The gross tumour volume based manually on CT was significantly longer than that automatically based on signal-to-background ratio (6.4cm versus 5.3cm; P<0.008). Doses to the lungs (V20, D mean ), heart (V40), and spinal cord (D max ) were significantly lower on plans using the PTV SBR . The PTV SBR coverage was statistically better than the PTV CT coverage on both plans. (50Gy: P<0.0004 and 66Gy: P<0.0006). The automatic PET segmentation algorithm based on the signal-to-background ratio method for the delineation of oesophageal tumours is interesting, and results in better target volume coverage and decreased dose to organs at risk. This may allow dose escalation up to 66Gy to the gross tumour volume. Copyright © 2017 Société française de radiothérapie oncologique (SFRO). Published by Elsevier SAS. All rights

  4. Functional imaging of SDHx-related head and neck paragangliomas: comparison of 18F-fluorodihydroxyphenylalanine, 18F-fluorodopamine, 18F-fluoro-2-deoxy-D-glucose PET, 123I-metaiodobenzylguanidine scintigraphy, and 111In-pentetreotide scintigraphy.

    PubMed

    King, Kathryn S; Chen, Clara C; Alexopoulos, Dimitrios K; Whatley, Millie A; Reynolds, James C; Patronas, Nicholas; Ling, Alexander; Adams, Karen T; Xekouki, Paraskevi; Lando, Howard; Stratakis, Constantine A; Pacak, Karel

    2011-09-01

    Accurate diagnosis of head and neck paragangliomas is often complicated by biochemical silence and lack of catecholamine-associated symptoms, making accurate anatomical and functional imaging techniques essential to the diagnostic process. Ten patients (seven SDHD, three SDHB), with a total of 26 head and neck paragangliomas, were evaluated with anatomical and functional imaging. This study compares five different functional imaging techniques [(18)F-fluorodihydroxyphenylalanine ((18)F-FDOPA) positron emission tomography (PET), (18)F-fluorodopamine ((18)F-FDA) PET/computed tomography (CT), (18)F-fluoro-2-deoxy-D-glucose ((18)F-FDG) PET/CT, (123)I-metaiodobenzylguanidine ((123)I-MIBG) scintigraphy, and (111)In-pentetreotide scintigraphy] in the localization of head and neck paragangliomas. Prospectively (18)F-FDOPA PET localized 26 of 26 lesions in the 10 patients, CT/magnetic resonance imaging localized 21 of 26 lesions, (18)F-FDG PET/CT localized 20 of 26 lesions, (111)In-pentetreotide scintigraphy localized 16 of 25 lesions, (18)F-FDA PET/CT localized 12 of 26 lesions, and (123)I-MIBG scintigraphy localized eight of 26 lesions. Differences in imaging efficacy related to genetic phenotype, even in the present small sample size, included the negativity of (18)F-FDA PET/CT and (123)I-MIBG scintigraphy in patients with SDHB mutations and the accuracy of (18)F-FDG PET/CT in all patients with SDHD mutations, as compared with the accuracy of (18)F-FDG PET/CT in only one patient with an SDHB mutation. Overall, (18)F-FDOPA PET proved to be the most efficacious functional imaging modality in the localization of SDHx-related head and neck paragangliomas and may be a potential first-line functional imaging agent for the localization of these tumors.

  5. Fluorine-18-FDG PET/CT in a patient with angiomyolipoma: Response to mammalian target of rapamycin inhibitor therapy.

    PubMed

    Anwar, Hoda; Sachpekidis, Christos; Schwarzbach, Matthias; Dimitrakopoulou-Strauss, Antonia

    2017-01-01

    We report on a 27 years old female patient who was referred to our department for whole-body as well as dynamic positron emission tomography/computed tomography (dPET/CT) scan of the upper and middle abdomen with fluorine-18-fluorodeoxy glucose ( 18 F-FDG), for further evaluation of a mass in the left adrenal gland region. Positron emission tomography showed a suspicious, enlarged, hypermetabolic mass with an average standardized uptake value (SUV) of 4.5 and a maximum SUV of 5.9. The patient was referred for biopsy, which revealed an angiomyolipoma, a perivascular epithelioid cell tumor (PEComa) of the adrenal gland. Perivascular epithelioid cell tumors are mesenchymal tumors consisting of blood vessels, smooth muscles and fat cells. The patient received anti-proliferative treatment with Afinitor, a mammalian target of rapamycin (mTOR) inhibitor, and was referred again one month after onset of therapy for early response assessment. The follow-up 18 F-FDG PET/CT scan showed a nearly complete resolution of the previously detected adrenal mass, with very low tracer uptake and a decrease in its functional volume. Fluorine- 18-FDG PET/CT can be used for treatment response evaluation of angiomyolipoma treated with mTOR-inhibitors.

  6. 18 F-Labeling of Sensitive Biomolecules for Positron Emission Tomography.

    PubMed

    Krishnan, Hema S; Ma, Longle; Vasdev, Neil; Liang, Steven H

    2017-11-07

    Positron emission tomography (PET) imaging study of fluorine-18 labeled biomolecules is an emerging and rapidly growing area for preclinical and clinical research. The present review focuses on recent advances in radiochemical methods for incorporating fluorine-18 into biomolecules via "direct" or "indirect" bioconjugation. Recently developed prosthetic groups and pre-targeting strategies, as well as representative examples in 18 F-labeling of biomolecules in PET imaging research studies are highlighted. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. [18F]-Fluoro-Deoxy-Glucose Positron Emission Tomography Scan Should Be Obtained Early in Cases of Autoimmune Encephalitis

    PubMed Central

    Sarwal, A.; Hantus, S.

    2016-01-01

    Introduction. Autoimmune encephalitis (AE) is a clinically challenging diagnosis with nonspecific neurological symptoms. Prompt diagnosis is important and often relies on neuroimaging. We present a case series of AE highlighting the importance of an early [18F]-fluoro-deoxy-glucose positron emission tomography (FDG-PET) scan. Methods. Retrospective review of seven consecutive cases of autoimmune encephalitis. Results. All patients had both magnetic resonance imaging (MRI) and FDG-PET scans. Initial clinical presentations included altered mental status and/or new onset seizures. Six cases had serum voltage-gated potassium channel (VGKC) antibody and one had serum N-methyl-D-aspartate (NMDA) antibody. MRI of brain showed mesial temporal lobe hyperintensity in five cases of VGKC. The other two patients with VGKC or NMDA AE had restiform body hyperintensity on MRI brain or a normal MRI, respectively. Mesial temporal lobe hypermetabolism was noted in three cases on FDG-PET, despite initial unremarkable MRI. Malignancy workup was negative in all patients. Conclusion. A high index of suspicion for AE should be maintained in patients presenting with cognitive symptoms, seizures, and limbic changes on neuroimaging. In cases with normal initial brain MRI, FDG-PET can be positive. Additionally, extralimbic hyperintensity on MRI may also be observed. PMID:27559482

  8. Routine 18F-2-deoxy-2-fluoro-D-glucose (18F-FDG) myocardial tomography using a normal large field of view gamma-camera.

    PubMed

    Höflin, F; Ledermann, H; Noelpp, U; Weinreich, R; Rösler, H

    1989-12-01

    There is a recent need to study glucose metabolism of the heart in ischemic, as well as in "hibernating or stunned" myocardium, and compare it with that in perfusion studies. In non-positron emission tomography centers, positron imaging is possible with a standard Anger-type camera if proper collimation and adequate shielding of the camera crystal can be achieved. For the study with fast-decaying isotopes, seven-pinhole tomography (7PHT), a limited-angle method designed for transaxial tomography of the left ventricle using a nonrotating camera, is well suited, because projections are acquired simultaneously. Individual adjustment (patient supine) of the camera's view axis (CAx) with the left ventricular axis (LVAx) gives excellent results: sensitivity for CHD 82%, specificity 72% in a prospective 201TI study (48 patients, x-ray coronarography as reference). Good alignment of CAx with LVAx is also achieved with the patient prone in LAO in a hammock above the camera surface. In this setting additional lead shielding of the camera is possible using a table reinforced with 5 cm of lead with a central hole for the 7PH-collimator, which has a special lead inlay. This allows utilization of the 511 KeV emitter 18F-FDG, which with a half-life of 109 minutes, can be transported a reasonable distance from the production site. System sensitivity and resolution for 18F was found comparable to 201Tl, 99mTc, and 123I using a phantom. First clinical examinations after 201Tl stress/redistribution studies showed increased 18F-FDG uptake in ischemic heart segments, as well as in "hibernating" nonperfused or "stunned" myocardium.

  9. 18 F-sodium fluoride positron emission tomography of the equine distal limb: Exploratory study in three horses.

    PubMed

    Spriet, M; Espinosa, P; Kyme, A Z; Phillips, K L; Katzman, S A; Galuppo, L D; Stepanov, P; Beylin, D

    2018-01-01

    Positron emission tomography (PET) is a cross-sectional, functional imaging modality that has recently become available to the horse. The use of 18 F-sodium fluoride ( 18 F-NaF), a PET bone tracer, has not previously been reported in this species. To assess the feasibility of 18 F-NaF PET in the equine distal limb and explore possible applications in the horse in comparison with other imaging modalities. Exploratory descriptive study involving three research horses. Horses were placed under general anaesthesia prior to intravenous (i.v.) administration of 1.5 MBq/kg of 18 F-NaF. Positron emission tomography imaging of both front feet and fetlocks was performed using a portable scanner. Computed tomography (CT) of the distal limb was performed under a separate anaesthetic episode. Bone scintigraphy and magnetic resonance imaging (MRI) were subsequently performed under standing sedation. Images obtained from PET and other imaging modalities were independently assessed and the results correlated. Positron emission tomography images were obtained without complication. The radiation exposure rate was similar to equine bone scintigraphy. Positron emission tomography detected focal 18 F-NaF uptake in areas where other imaging modalities did not identify any abnormalities. This included sites of ligamentous attachment, subchondral compact bone plate and the flexor cortex of the navicular bone. 18 F-NaF uptake was identified in some, but not all, osseous fragments and areas of osseous formation, suggesting a distinction between active and inactive lesions. A small number of horses were included and histopathology was not available. 18 F-NaF PET imaging of the equine distal limb provides useful additional information when compared with CT, MRI and scintigraphy and has the potential for both research and clinical applications in the horse. The Summary is available in Chinese - see Supporting information. © 2017 EVJ Ltd.

  10. Cancer Localization in the Prostate with F-18 Fluorocholine Positron Emission Tomography. Addendum

    DTIC Science & Technology

    2010-01-01

    of malignancy in anatomical sextants of the prostate gland. The rationale for evaluating fluorocholine as an oncologic tracer applicable to...interest in radiolabeled choline deriv- atives as oncologic tracers for positron emission tomogra- phy (PET) [6, 7]. This approach has shown feasibility in...prostate cancer using the tracer fluorine-18 fluor- omethylcholine (18F-choline) [8–11]. As a preliminary step in evaluating 18F-choline PET/CT as a

  11. Distribution of adoptively transferred porcine T-lymphoblasts tracked by (18)F-2-fluoro-2-deoxy-D-glucose and position emission tomography.

    PubMed

    Eriksson, Olof; Sadeghi, Arian; Carlsson, Björn; Eich, Torsten; Lundgren, Torbjörn; Nilsson, Bo; Tötterman, Thomas; Korsgren, Olle; Sundin, Anders

    2011-08-01

    Autologous or allogeneic transfer of tumor-infiltrating T-lymphocytes is a promising treatment for metastatic cancers, but a major concern is the difficulty in evaluating cell trafficking and distribution in adoptive cell therapy. This study presents a method of tracking transfusion of T-lymphoblasts in a porcine model by (18)F-2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) and positron emission tomography. T-lymphoblasts were labeled with the positron-emitting tracer [(18)F]FDG through incubation. The T-lymphoblasts were administered into the bloodstream, and the distribution was followed by positron emission tomography for 120 min. The cells were administered either intravenously into the internal jugular vein (n=5) or intraarterially into the ascending aorta (n=1). Two of the pigs given intravenous administration were pretreated with low-molecular-weight dextran sulphate. The cellular kinetics and distribution were readily quantifiable for up to 120 min. High (78.6% of the administered cells) heterogeneous pulmonary uptake was found after completed intravenous transfusion. The pulmonary uptake was decreased either by preincubating and coadministrating the T-lymphoblasts with low-molecular-weight dextran sulphate or by administrating them intraarterially. The present work shows the feasibility of quantitatively monitoring and evaluating cell trafficking and distribution following administration of [(18)F]FDG-labeled T-lymphoblasts. The protocol can potentially be transferred to the clinical setting with few modifications. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. 18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy

    PubMed Central

    Simón, Marina; Melander, Fredrik; Kristensen, Lotte K.; Bendix, Pól M.; Andresen, Thomas L.; Oddershede, Lene B.; Kjaer, Andreas

    2017-01-01

    Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by changes in tumor volume; however, this is usually a late-occurring event. This study implements 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging to perform early evaluation of the treatment outcome of photothermal therapy. Silica-gold nanoshells (NS) are administered intravenously to nude mice bearing human neuroendocrine tumor xenografts and the tumors are irradiated by a near-infrared laser. The animals are positron emission tomography scanned with 2-deoxy-2-[F-18]fluoro-D-glucose one day before and one day after treatment. Using this setup, a significant decrease in tumor uptake of 2-deoxy-2-[F-18]fluoro-D-glucose is found already one day after therapy in the group receiving NS and laser treatment compared to control animals. At this time point no change in tumor volume can be detected. Moreover, the change in tumor uptake, is used to stratify the animals into responders and non-responders, where the responding group matched improved survival. Overall, these findings support the use of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for preclinical and clinical evaluation and optimization of photothermal therapy. PMID:28542311

  13. 18F-FDG PET/CT-based early treatment response evaluation of nanoparticle-assisted photothermal cancer therapy.

    PubMed

    Norregaard, Kamilla; Jørgensen, Jesper T; Simón, Marina; Melander, Fredrik; Kristensen, Lotte K; Bendix, Pól M; Andresen, Thomas L; Oddershede, Lene B; Kjaer, Andreas

    2017-01-01

    Within the field of nanoparticle-assisted photothermal cancer therapy, focus has mostly been on developing novel heat-generating nanoparticles with the right optical and dimensional properties. Comparison and evaluation of their performance in tumor-bearing animals are commonly assessed by changes in tumor volume; however, this is usually a late-occurring event. This study implements 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging to perform early evaluation of the treatment outcome of photothermal therapy. Silica-gold nanoshells (NS) are administered intravenously to nude mice bearing human neuroendocrine tumor xenografts and the tumors are irradiated by a near-infrared laser. The animals are positron emission tomography scanned with 2-deoxy-2-[F-18]fluoro-D-glucose one day before and one day after treatment. Using this setup, a significant decrease in tumor uptake of 2-deoxy-2-[F-18]fluoro-D-glucose is found already one day after therapy in the group receiving NS and laser treatment compared to control animals. At this time point no change in tumor volume can be detected. Moreover, the change in tumor uptake, is used to stratify the animals into responders and non-responders, where the responding group matched improved survival. Overall, these findings support the use of 2-deoxy-2-[F-18]fluoro-D-glucose positron emission tomography imaging for preclinical and clinical evaluation and optimization of photothermal therapy.

  14. 18F-Fluorodeoxyglucose Positron Emission Tomography/Magnetic Resonance in Lymphoma

    PubMed Central

    Giraudo, Chiara; Raderer, Markus; Karanikas, Georgios; Weber, Michael; Kiesewetter, Barbara; Dolak, Werner; Simonitsch-Klupp, Ingrid; Mayerhoefer, Marius E.

    2016-01-01

    Objectives The aim of this study was to compare 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/magnetic resonance (MR) (with and without diffusion-weighted imaging [DWI]) to 18F-FDG PET/computed tomography (CT), with regard to the assessment of nodal and extranodal involvement, in patients with Hodgkin lymphoma and non-Hodgkin lymphoma, without restriction to FDG-avid subytpes. Materials and Methods Patients with histologically proven lymphoma were enrolled in this prospective, institutional review board–approved study. After a single 18F-FDG injection, patients consecutively underwent 18F-FDG PET⁄CT and 18F-FDG PET/MR on the same day for staging or restaging. Three sets of images were analyzed separately: 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR with DWI. Region-based agreement and examination-based sensitivity and specificity were calculated for 18F-FDG PET/CT, 18F-FDG PET/MR without DWI, and 18F-FDG PET/MR DWI. Maximum and mean standardized uptake values (SUVmax, SUVmean) on 18F-FDG PET/CT and 18F-FDG PET/MR were compared and correlated with minimum and mean apparent diffusion coefficients (ADCmin, ADCmean). Results Thirty-four patients with a total of 40 examinations were included. Examination-based sensitivities for 18F-FDG PET/CT, 18F-FDG PET/MR, and 18F-FDG PET/MR DWI were 82.1%, 85.7%, and 100%, respectively; specificities were 100% for all 3 techniques; and accuracies were 87.5%, 90%, and 100%, respectively. 18F-FDG PET/CT was false negative in 5 of 40 examinations (all with mucosa-associated lymphoid tissue lymphoma), and 18F-FDG PET/MR (without DWI) was false negative in 4 of 40 examinations. Region-based percentages of agreement were 99% (κ, 0.95) between 18F-FDG PET/MR DWI and 18F-FDG PET/CT, 99.2% (κ, 0.96) between 18F-FDG PET/MR and 18F-FDG PET/CT, and 99.4% (κ, 0.97) between 18F-FDG PET/MR DWI and 18F-FDG PET/MR. There was a strong correlation between 18F-FDG PET/CT and 18F-FDG PET/MR for SUVmax (r = 0

  15. 18F-Fluoride and 18F-Fluorodeoxyglucose Positron Emission Tomography After Transient Ischemic Attack or Minor Ischemic Stroke

    PubMed Central

    Jenkins, William S. A.; Irkle, Agnese; Moss, Alastair; Sng, Greg; Forsythe, Rachael O.; Clark, Tim; Roberts, Gemma; Fletcher, Alison; Lucatelli, Christophe; Rudd, James H. F.; Davenport, Anthony P.; Mills, Nicholas L.; Al-Shahi Salman, Rustam; Dennis, Martin; Whiteley, William N.; van Beek, Edwin J. R.; Dweck, Marc R.; Newby, David E.

    2017-01-01

    Background— Combined positron emission tomography (PET) and computed tomography (CT) can assess both anatomy and biology of carotid atherosclerosis. We sought to assess whether 18F-fluoride or 18F-fluorodeoxyglucose can identify culprit and high-risk carotid plaque. Methods and Results— We performed 18F-fluoride and 18F-fluorodeoxyglucose PET/CT in 26 patients after recent transient ischemic attack or minor ischemic stroke: 18 patients with culprit carotid stenosis awaiting carotid endarterectomy and 8 controls without culprit carotid atheroma. We compared standardized uptake values in the clinically adjudicated culprit to the contralateral asymptomatic artery, and assessed the relationship between radiotracer uptake and plaque phenotype or predicted cardiovascular risk (ASSIGN score [Assessing Cardiovascular Risk Using SIGN Guidelines to Assign Preventive Treatment]). We also performed micro PET/CT and histological analysis of excised plaque. On histological and micro PET/CT analysis, 18F-fluoride selectively highlighted microcalcification. Carotid 18F-fluoride uptake was increased in clinically adjudicated culprit plaques compared with asymptomatic contralateral plaques (log10standardized uptake valuemean 0.29±0.10 versus 0.23±0.11, P=0.001) and compared with control patients (log10standardized uptake valuemean 0.29±0.10 versus 0.12±0.11, P=0.001). 18F-Fluoride uptake correlated with high-risk plaque features (remodeling index [r=0.53, P=0.003], plaque burden [r=0.51, P=0.004]), and predicted cardiovascular risk [r=0.65, P=0.002]). Carotid 18F-fluorodeoxyglucose uptake appeared to be increased in 7 of 16 culprit plaques, but no overall differences in uptake were observed in culprit versus contralateral plaques or control patients. However, 18F-fluorodeoxyglucose did correlate with predicted cardiovascular risk (r=0.53, P=0.019), but not with plaque phenotype. Conclusions— 18F-Fluoride PET/CT highlights culprit and phenotypically high-risk carotid plaque

  16. 18F-FDG positron autoradiography with a particle counting silicon pixel detector.

    PubMed

    Russo, P; Lauria, A; Mettivier, G; Montesi, M C; Marotta, M; Aloj, L; Lastoria, S

    2008-11-07

    We report on tests of a room-temperature particle counting silicon pixel detector of the Medipix2 series as the detector unit of a positron autoradiography (AR) system, for samples labelled with (18)F-FDG radiopharmaceutical used in PET studies. The silicon detector (1.98 cm(2) sensitive area, 300 microm thick) has high intrinsic resolution (55 microm pitch) and works by counting all hits in a pixel above a certain energy threshold. The present work extends the detector characterization with (18)F-FDG of a previous paper. We analysed the system's linearity, dynamic range, sensitivity, background count rate, noise, and its imaging performance on biological samples. Tests have been performed in the laboratory with (18)F-FDG drops (37-37 000 Bq initial activity) and ex vivo in a rat injected with 88.8 MBq of (18)F-FDG. Particles interacting in the detector volume produced a hit in a cluster of pixels whose mean size was 4.3 pixels/event at 11 keV threshold and 2.2 pixels/event at 37 keV threshold. Results show a sensitivity for beta(+) of 0.377 cps Bq(-1), a dynamic range of at least five orders of magnitude and a lower detection limit of 0.0015 Bq mm(-2). Real-time (18)F-FDG positron AR images have been obtained in 500-1000 s exposure time of thin (10-20 microm) slices of a rat brain and compared with 20 h film autoradiography of adjacent slices. The analysis of the image contrast and signal-to-noise ratio in a rat brain slice indicated that Poisson noise-limited imaging can be approached in short (e.g. 100 s) exposures, with approximately 100 Bq slice activity, and that the silicon pixel detector produced a higher image quality than film-based AR.

  17. Targeting personalized medicine in a non-Hodgkin lymphoma patient with 18F-FDG and 18F-choline PET/CT.

    PubMed

    Ribeiro, Thalles H; S, Raul; Castro, Ana Carolina G; Paulino, Eduardo; Mamede, Marcelo

    2017-02-01

    Early diagnosis and staging of non-Hodgkin lymphoma (NHL) is essential for therapeutic strategy decision. Positron emission tomography/computed tomography (PET/CT) with fluordeoxyglucose (FDG), a glucose analogue, labeled with fluor-18 (18F-FDG) has been used to evaluate staging, therapy response and prognosis in NHL patients. However, in some cases, 18F-FDG has shown false-positive uptake due to inflammatory reaction after chemo and/or radiation therapy. In this case report, we present a NHL patient evaluated with 18F-FDG and 18F-choline PET/CT scan imaging pre- and post-therapy. 18F-FDG and 18F-choline PET/CT were performed for the purpose of tumor staging and have shown intense uptake in infiltrative tissue as well as in the lymph node, but with some mismatching in the tumor. Post-treatment 18F-FDG and 18F-choline PET/ CT scans revealed no signs of radiotracer uptake, suggesting complete remission of the tumor. 18F-choline may be a complimentary tool for staging and assessment of therapeutic response in non-Hodgkin lymphoma, while non-18F-FDG tracer can be used for targeted therapy and patient management.

  18. Brain metabolism in autism. Resting cerebral glucose utilization rates as measured with positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rumsey, J.M.; Duara, R.; Grady, C.

    The cerebral metabolic rate for glucose was studied in ten men (mean age = 26 years) with well-documented histories of infantile autism and in 15 age-matched normal male controls using positron emission tomography and (F-18) 2-fluoro-2-deoxy-D-glucose. Positron emission tomography was completed during rest, with reduced visual and auditory stimulation. While the autistic group as a whole showed significantly elevated glucose utilization in widespread regions of the brain, there was considerable overlap between the two groups. No brain region showed a reduced metabolic rate in the autistic group. Significantly more autistic, as compared with control, subjects showed extreme relative metabolic ratesmore » (ratios of regional metabolic rates to whole brain rates and asymmetries) in one or more brain regions.« less

  19. The role of 18F-fluorodeoxyglucose positron emission tomography in the management of patients with pancreatic adenocarcinoma.

    PubMed

    Kadhim, Lujaien A; Dholakia, Avani S; Herman, Joseph M; Wahl, Richard L; Chaudhry, Muhammad A

    2013-12-01

    Pancreatic cancer continues to have a grim prognosis with 5-year survival rates at less than 5 %. It is a particularly challenging health problem given these poor survival outcomes, aggressive tumor biology, and late onset of symptoms. Most patients present with advanced unresectable cancer however, margin-negative resection provides a rare chance for cure for patients with resectable disease. The standard imaging modality for the diagnosis and management of pancreatic cancer is contrast-enhanced multidetector computed tomography. Remarkable advances in CT technology have led to improvements in the ability to detect small tumors and intricate vasculature involvement by the tumor, yet CT is still restricted to providing a morphological portrait of the tumor. Diagnosis can be challenging due to similar appearance of certain benign and malignant disease. Distant metastatic disease can be silent on CT leading to improper staging, and thus management, of certain patients. Furthermore, radiation-induced fibrosis and necrosis complicate assessment of treatment response by CT alone. F-fluorodeoxyglucose positron emission tomography ( 18 F-FDG-PET) is becoming a prevalent tool employed by physicians to improve accuracy in these clinical scenarios. Malignant transformation causes a high metabolic activity of cancer cells. 18 F-FDG-PET captures this functional activity of malignancies by capturing areas with high glucose utilization rates. Imaging function rather than morphological appearance, 18 F-FDG-PET has a unique role in the management of oncology patients with the ability to detect regions of tumor involvement that may be silent on conventional imaging. Literature on the sensitivity and specificity of 18 F-FDG-PET fails to reach a consensus, and improvements resulting in hybridization of 18 F-FDG-PET and CT imaging techniques are preliminary. Here we review the potential role of 18 F-FDG-PET and PET/CT in improving accuracy in the initial evaluation and subsequent

  20. Clinical significance of 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography for the assessment of 131I-metaiodobenzylguanidine therapy in malignant phaeochromocytoma.

    PubMed

    Nakazawa, Azusa; Higuchi, Tetsuya; Oriuchi, Noboru; Arisaka, Yukiko; Endo, Keigo

    2011-10-01

    The aim of this study was to evaluate the significance of 2-[18F]fluoro-2-deoxy-D-glucose (FDG) positron emission tomography (PET) in the assessment of the therapeutic response to 131I-metaiodobenzylguanidine (MIBG) in malignant phaeochromocytoma. We reviewed the records of 11 patients (7 men and 4 women) with malignant phaeochromocytoma who underwent 131I-MIBG therapy (100-200 mCi). 18F-FDG PET and serum catecholamine assays were performed 3 months before and after the first dose of 131I-MIBG. FDG uptake was evaluated in the observed lesions using the maximum standardised uptake value (SUVmax). The average SUVmax of all lesions (ASUV) was calculated. If more than five lesions were identified, the average SUVmax of the five highest SUVmax (ASUV5) was calculated. The ratio of pre- and post-therapy values was calculated for the highest SUVmax (rMSUV), ASUV (rASUV), ASUV5 (rASUV5), CT diameter (rCT) and serum catecholamine (rCA). Responder (R) and non-responder (NR) groups were defined after a clinical follow-up of at least 6 months according to changes in symptoms, CT, magnetic resonance imaging (MRI) and 123I-MIBG scan. Post-therapy evaluation revealed five R and six NR patients. The size of the target lesions was not significantly different before and after therapy (p>0.05). However, ASUV and ASUV5 were significantly lower in the R group (rASUV 0.64±0.18, rASUV5 0.68±0.17) compared to the NR group (rASUV 1.40±0.54, rASUV5 1.37±0.61) (p<0.05). 18F-FDG PET can be potentially used to evaluate the response of malignant phaeochromocytoma to 131I-MIBG therapy.

  1. Prevalence, Mass, and Glucose-Uptake Activity of 18F-FDG-Detected Brown Adipose Tissue in Humans Living in a Temperate Zone of Italy

    PubMed Central

    Persichetti, Agnese; Sciuto, Rosa; Rea, Sandra; Basciani, Sabrina; Lubrano, Carla; Mariani, Stefania; Ulisse, Salvatore; Nofroni, Italo; Maini, Carlo Ludovico; Gnessi, Lucio

    2013-01-01

    Background The 18F-fluorodeoxyglucose (18F-FDG)-detected brown adipose tissue (BAT), is enhanced by cold stimulus and modulated by other factors that still have to be disentangled. We investigated the prevalence, mass, and glucose-uptake activity of 18F-FDG-detected BAT in a population of adults living in the temperate climatic zone of the Rome area. Methods and Findings We retrospectively analyzed 6454 patients who underwent 18F-FDG positron emission tomography/computed tomography (PET/CT) examinations. We found 18F-FDG BAT in 217 of the 6454 patients (3.36%). Some of them underwent more than one scan and the positive scans were 278 among 8004 (3.47%). The prevalence of patients with at least one positive scan was lower in men (1.77%; 56 of 3161) compared with women (4.88%; 161 of 3293). The BAT positive patients were most frequently younger, thinner and with lower plasma glucose levels compared with BAT negative patients. The amount of BAT in the defined region of interest, the activity of BAT and the number of positive sites of active BAT were similar in both sexes. The prevalence of patients with 18F-FDG positive PET/CT was highest in December-February, lower in March-May and September-November, and lowest in June-August and was positively correlated with night length and negatively correlated with ambient temperature. Changes in day length and variations of temperature, associated with the prevalence of positive BAT patients. Among the patients who had multiple scans, outdoor temperature was significantly lower and day length was shorter on the occasion when BAT was detected. Conclusions This study identifies day length, outdoor temperature, age, sex, BMI, and plasma glucose levels as major determinants of the prevalence, mass, and activity of 18F-FDG-detected BAT. PMID:23667608

  2. Positron emission tomography with [ 18F]-FDG in oncology

    NASA Astrophysics Data System (ADS)

    Talbot, J. N.; Petegnief, Y.; Kerrou, K.; Montravers, F.; Grahek, D.; Younsi, N.

    2003-05-01

    Positron Emission Tomography (PET) is a several decade old imaging technique that has more recently demonstrated its utility in clinical applications. The imaging agents used for PET contain a positron emmiter coupled to a molecule that drives the radionuclide to target organs or to tissues performing the targetted biological function. PET is then part of functional imaging. As compared to conventional scintigraphy that uses gamma photons, the coincidence emission of two 511 keV annihilation photons in opposite direction that finally results from by beta plus decay makes it possible for PET to get rid of the collimators that greatly contribute to the poor resolution of scintigraphy. In this article, the authors describe the basics of physics for PET imaging and report on the clinical performances of the most commonly used PET tracer: [ 18F]-fluorodeoxyglucose (FDG). A recent and promising development in this field is fusion of images coming from different imaging modalities. New PET machines now include a CT and this fusion is therefore much easier.

  3. Imaging Enterobacteriaceae infection in vivo with 18F-fluorodeoxysorbitol positron emission tomography

    PubMed Central

    Weinstein, Edward A.; Ordonez, Alvaro A.; DeMarco, Vincent P.; Murawski, Allison M.; Pokkali, Supriya; MacDonald, Elizabeth M.; Klunk, Mariah; Mease, Ronnie C.; Pomper, Martin G.; Jain, Sanjay K.

    2015-01-01

    The Enterobacteriaceae are a family of rod-shaped Gram-negative bacteria that normally inhabit the gastrointestinal tract and are the most common cause of Gram-negative bacterial infections in humans. In addition to causing serious multidrug-resistant, hospital-acquired infections, a number of Enterobacteriaceae species are also recognized as biothreat pathogens. As a consequence, new tools are urgently needed to specifically identify and localize infections due to Enterobacteriaceae and to monitor antimicrobial efficacy. In this report, we used commercially available 2-[18F]-fluorodeoxyglucose (18F-FDG) to produce 2-[18F]-fluorodeoxysorbitol (18F-FDS), a radioactive probe for Enterobacteriaceae, in 30 min. 18F-FDS selectively accumulated in Enterobacteriaceae, but not in Gram-positive bacteria or healthy mammalian or cancer cells in vitro. In a murine myositis model, 18F-FDS positron emission tomography (PET) rapidly differentiated true infection from sterile inflammation with a limit of detection of 6.2 ± 0.2 log10 colony-forming units (CFU) for Escherichia coli. Our findings were extended to models of mixed Gram-positive and Gram-negative thigh co-infections, brain infection, Klebsiella pneumonia, and mice undergoing immunosuppressive chemotherapy. This technique rapidly and specifically localized infections due to Enterobacteriaceae, providing a three-dimensional holistic view within the animal. Last, 18F-FDS PET monitored the efficacy of antimicrobial treatment, demonstrating a PET signal proportionate to the bacterial burden. Therapeutic failures associated with multidrug-resistant, extended-spectrum β-lactamase (ESBL)–producing E. coli infections were detected in real time. Together, these data show that 18F-FDS is a candidate imaging probe for translation to human clinical cases of known or suspected infections owing to Enterobacteriaceae. PMID:25338757

  4. Biodistribution, pharmacokinetics and PET imaging of [(18)F]FMISO, [(18)F]FDG and [(18)F]FAc in a sarcoma- and inflammation-bearing mouse model.

    PubMed

    Liu, Ren-Shyan; Chou, Ta-Kai; Chang, Chih-Hsien; Wu, Chun-Yi; Chang, Chi-Wei; Chang, Tsui-Jung; Wang, Shih-Jen; Lin, Wuu-Jyh; Wang, Hsin-Ell

    2009-04-01

    2-Deoxy-2-[(18)F]fluoro-d-glucose ([(18)F]FDG), [(18)F]fluoroacetate ([(18)F]FAc) and [(18)F]fluoromisonidazole ([(18)F]FMISO) were all considered to be positron emission tomography (PET) probes for tumor diagnosis, though based on different rationale of tissue uptake. This study compared the biodistribution, pharmacokinetics and imaging of these three tracers in a sarcoma- and inflammation-bearing mouse model. C3H mice were inoculated with 2x10(5) KHT sarcoma cells in the right thigh on Day 0. Turpentine oil (0.1 ml) was injected in the left thigh on Day 11 to induce inflammatory lesion. Biodistribution, pharmacokinetics and microPET imaging of [(18)F]FMISO, [(18)F]FDG and [(18)F]FAc were performed on Day 14 after tumor inoculation. The inflammatory lesions were clearly visualized by [(18)F]FDG/microPET and autoradiography at 3 days after turpentine oil injection. The tumor-to-muscle and inflammatory lesion-to-muscle ratios derived from microPET imaging were 6.79 and 1.48 for [(18)F]FMISO, 8.12 and 4.69 for [(18)F]FDG and 3.72 and 3.19 for [(18)F]FAc at 4 h post injection, respectively. Among these, the tumor-to-inflammation ratio was the highest (4.57) for [(18)F]FMISO compared with that of [(18)F]FDG (1.73) and [(18)F]FAc (1.17), whereas [(18)F]FAc has the highest bioavailability (area under concentration of radiotracer vs. time curve, 116.2 hxpercentage of injected dose per gram of tissue). MicroPET images and biodistribution studies showed that the accumulation of [(18)F]FMISO in the tumor is significantly higher than that in inflammatory lesion at 4 h post injection. [(18)F]FDG and [(18)F]FAc delineated both tumor and inflammatory lesions. Our results demonstrated the potential of [(18)F]FMISO/PET in distinguishing tumor from inflammatory lesion.

  5. F-18 fluorodeoxyglucose: Its potential in differentiating between stress fracture and neoplasia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Paul, R.; Ahonen, A.; Virtama, P.

    1989-12-01

    F-18 fluorodeoxyglucose (FDG) accumulates into regions of enhanced glucose uptake and metabolism such as the brain, heart, and malignant tumors. The clinical usefulness of this positron-emitting radiopharmaceutical is illustrated in a case where the clinical picture and CT indicated a malignant bone lesion in the clavicle. Histologically a stress fracture was found secondary to chronic strain on the clavicle. On follow-up the lesion's course was benign. Planar imaging with F-18 FDG was performed twice during follow-up, and on both occasions there was no accumulation of radioactivity over the suspicious area, indicating normal glucose consumption. This case demonstrates the differential diagnosticmore » potential of F-18 FDG and shows that clinically useful information may be obtained without a position emission tomograph.« less

  6. New Dioxaborolane Chemistry Enables [(18)F]-Positron-Emitting, Fluorescent [(18)F]-Multimodality Biomolecule Generation from the Solid Phase.

    PubMed

    Rodriguez, Erik A; Wang, Ye; Crisp, Jessica L; Vera, David R; Tsien, Roger Y; Ting, Richard

    2016-05-18

    New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [(18)F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [(18)F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases.

  7. Monitoring of anti-cancer treatment with 18F-FDG and 18F-FLT PET: a comprehensive review of pre-clinical studies

    PubMed Central

    Jensen, Mette Munk; Kjaer, Andreas

    2015-01-01

    Functional imaging of solid tumors with positron emission tomography (PET) imaging is an evolving field with continuous development of new PET tracers and discovery of new applications for already implemented PET tracers. During treatment of cancer patients, a general challenge is to measure treatment effect early in a treatment course and by that to stratify patients into responders and non-responders. With 2-deoxy-2-[18F]fluoro-D-glucose (18F-FDG) and 3’-deoxy-3’-[18F]fluorothymidine(18F-FLT) two of the cancer hallmarks, altered energy metabolism and increased cell proliferation, can be visualized and quantified non-invasively by PET. With 18F-FDG and 18F-FLT PET changes in energy metabolism and cell proliferation can thereby be determined after initiation of cancer treatment in both clinical and pre-clinical studies in order to predict, at an early time-point, treatment response. It is hypothesized that decreases in glycolysis and cell proliferation may occur in tumors that are sensitive to the applied cancer therapeutics and that tumors that are resistant to treatment will show unchanged glucose metabolism and cell proliferation. Whether 18F-FDG and/or 18F-FLT PET can be used for prediction of treatment response has been analyzed in many studies both following treatment with conventional chemotherapeutic agents but also following treatment with different targeted therapies, e.g. monoclonal antibodies and small molecules inhibitors. The results from these studies have been most variable; in some studies early changes in 18F-FDG and 18F-FLT uptake predicted later tumor regression whereas in other studies no change in tracer uptake was observed despite the treatment being effective. The present review gives an overview of pre-clinical studies that have used 18F-FDG and/or 18F-FLT PET for response monitoring of cancer therapeutics. PMID:26550536

  8. 2-[18F]-fluoro-2-desoxy-D-glucose positron emission tomography initial staging impacts on survival in Hodgkin lymphoma

    PubMed Central

    Cerci, Juliano J; Linardi, Camila C G; Pracchia, Luís F; Junior, José Soares; Trindade, Evelinda; Delbeke, Dominique; Cerci, Rodrigo J; Carr, Robert; Meneghetti, José C; Buccheri, Valeria

    2013-01-01

    AIM: To assess the prognostic value and risk classification improvement of metabolic staging (MS) with Initial 2-[18F]-fluoro-2-desoxy-D-glucose positron emission tomography (FDG-PET) in initial staging of Hodgkin’s Lymphoma (HL) patients to predict 5 years overall survival (5y-OS) and event free survival (EFS). METHODS: A total of 275 patients were included in this retrospective study, 155 patients were staged with conventional anatomical staging (AS), and 120 also submitted to MS (FDG-PET). Prognostic analysis compared 5y-OS and 5y-EFS of patients staged with AS and MS. Risk-adjusted models incorporated clinical risk factors, computed tomography and FDG-PET staging. RESULTS: During the follow up of 267 evaluated patients, 220 (122 AS and 98 MS) achieved complete remission after first-line therapy (median follow-up: 70 ± 29 mo), treatment failure occurred in 79 patients and 34 died. The 5y-EFS for early vs advanced disease in AS patients was 79.3% and 66.7%, and 85.6% and 53.6% in MS patients, respectively (P < 0.01). The 5y-OS for early and advanced disease with AS was 91.3% and 81.5%, and 97.5% and 80.7% for patients staged with MS, respectively. Cox proportional hazards analysis demonstrated that FDG-PET added significant prognostic information and improved risk prediction (P = 0.02). CONCLUSION: Initial staging FDG-PET could be used as an accurate and independent predictor of OS and EFS in HL, with impact in 5y-EFS and OS. PMID:24379935

  9. Evaluation of Timepix silicon detector for the detection of 18F positrons

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Tous, J.; Liu, Z.; Ziegler, S.; Shi, K.

    2014-05-01

    Timepix is an evolving energy and position sensitive pixel detector. It consists of a silicon detector (sensitive layer 300 μm thick) bump-bonded to the Timepix readout chip developed by the Medipix2 collaboration. This study aims to test the feasibility of using the acquired energy and position signals from Timepix for positron imaging. The signals of the commonly used fluorine-18 PET (positron emission tomography) tracer [18F]FDG were measured using Timepix operated both in single particle counting (Medipix) and in time over threshold (TOT) modes. The spatial resolution (SR) was measured using the absorber edge method (AEM) and was calculated from the over-sampled line spread function. The track of a positron in the Timepix detector was characterized as a cluster and the energy weighted centroid of each cluster was considered as readout for the position of the positron incidence. The measurement results were compared with theoretical predictions using Monte-Carlo simulations. In addition, imaging of a tissue slice of a mouse heart was analysed with reference to standard phosphor plate imaging. Our results show that the SR was improved from 177.1±4.1 μm (centroid without energy weighting) to 155.5±3.1 μm μm (centroid with energy weighting). About 12% enhancement of SR was achieved with energy information in TOT mode. The sensitivity of Timepix was 0.35 cps/Bq based on the measurements. The measuring background and the ratio between detected positrons and gamma rays were also evaluated and were found to be consistent with theoretical predictions. A small enhancement of image quality was also achieved by applying energy information to the data of the measured tissue sample. Our results show that the inclusion of energy information could slightly enhance the positron measurement compared to without energy information and the Timepix provides a high SR and sensitivity for positron detection. Thus, Timepix is a potentially effective tool for 2D positron imaging.

  10. Quantification of Dynamic [18F]FDG Pet Studies in Acute Lung Injury.

    PubMed

    Grecchi, Elisabetta; Veronese, Mattia; Moresco, Rosa Maria; Bellani, Giacomo; Pesenti, Antonio; Messa, Cristina; Bertoldo, Alessandra

    2016-02-01

    This work aims to investigate lung glucose metabolism using 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission tomography (PET) imaging in acute lung injury (ALI) patients. Eleven ALI patients and five healthy controls underwent a dynamic [(18)F]FDG PET/X-ray computed tomography (CT) scan. The standardized uptake values (SUV) and three different methods for the quantification of glucose metabolism (i.e., ratio, Patlak, and spectral analysis iterative filter, SAIF) were applied both at the region and the voxel levels. SUV reported a lower correlation than the ratio with the net tracer uptake. Patlak and SAIF analyses did not show any significant spatial or quantitative (R(2) > 0.80) difference. The additional information provided by SAIF showed that in lung inflammation, elevated tracer uptake is coupled with abnormal tracer exchanges within and between lung tissue compartments. Full kinetic modeling provides a multi-parametric description of glucose metabolism in the lungs. This allows characterizing the spatial distribution of lung inflammation as well as returning the functional state of the tissues.

  11. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging.

    PubMed

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al 18 F-labeling strategy involves chelation in aqueous medium of aluminum mono[ 18 F]fluoride ({Al 18 F} 2+ ) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al 18 F} 2+ to evaluate the generic applicability of the one-step Al 18 F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al 18 F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[ 18 F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [ 18 F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers.

  12. Al18F-Labeling Of Heat-Sensitive Biomolecules for Positron Emission Tomography Imaging

    PubMed Central

    Cleeren, Frederik; Lecina, Joan; Ahamed, Muneer; Raes, Geert; Devoogdt, Nick; Caveliers, Vicky; McQuade, Paul; Rubins, Daniel J; Li, Wenping; Verbruggen, Alfons; Xavier, Catarina; Bormans, Guy

    2017-01-01

    Positron emission tomography (PET) using radiolabeled biomolecules is a translational molecular imaging technology that is increasingly used in support of drug development. Current methods for radiolabeling biomolecules with fluorine-18 are laborious and require multistep procedures with moderate labeling yields. The Al18F-labeling strategy involves chelation in aqueous medium of aluminum mono[18F]fluoride ({Al18F}2+) by a suitable chelator conjugated to a biomolecule. However, the need for elevated temperatures (100-120 °C) required for the chelation reaction limits its widespread use. Therefore, we designed a new restrained complexing agent (RESCA) for application of the AlF strategy at room temperature. Methods. The new chelator RESCA was conjugated to three relevant biologicals and the constructs were labeled with {Al18F}2+ to evaluate the generic applicability of the one-step Al18F-RESCA-method. Results. We successfully labeled human serum albumin with excellent radiochemical yields in less than 30 minutes and confirmed in vivo stability of the Al18F-labeled protein in rats. In addition, we efficiently labeled nanobodies targeting the Kupffer cell marker CRIg, and performed µPET studies in healthy and CRIg deficient mice to demonstrate that the proposed radiolabeling method does not affect the functional integrity of the protein. Finally, an affibody targeting HER2 (PEP04314) was labeled site-specifically, and the distribution profile of (±)-[18F]AlF(RESCA)-PEP04314 in a rhesus monkey was compared with that of [18F]AlF(NOTA)-PEP04314 using whole-body PET/CT. Conclusion. This generic radiolabeling method has the potential to be a kit-based fluorine-18 labeling strategy, and could have a large impact on PET radiochemical space, potentially enabling the development of many new fluorine-18 labeled protein-based radiotracers. PMID:28824726

  13. [18F]-FDG positron emission tomography--an established clinical tool opening a new window into exercise physiology.

    PubMed

    Rudroff, Thorsten; Kindred, John H; Kalliokoski, Kari K

    2015-05-15

    Positron emission tomography (PET) with [(18)F]-fluorodeoxyglucose (FDG) is an established clinical tool primarily used to diagnose and evaluate disease status in patients with cancer. PET imaging using FDG can be a highly valuable tool to investigate normal human physiology by providing a noninvasive, quantitative measure of glucose uptake into various cell types. Over the past years it has also been increasingly used in exercise physiology studies to identify changes in glucose uptake, metabolism, and muscle activity during different exercise modalities. Metabolically active cells transport FDG, an (18)fluorine-labeled glucose analog tracer, from the blood into the cells where it is then phosphorylated but not further metabolized. This metabolic trapping process forms the basis of this method's use during exercise. The tracer is given to a participant during an exercise task, and the actual PET imaging is performed immediately after the exercise. Provided the uptake period is of sufficient duration, and the imaging is performed shortly after the exercise; the captured image strongly reflects the metabolic activity of the cells used during the task. When combined with repeated blood sampling to determine tracer blood concentration over time, also known as the input function, glucose uptake rate of the tissues can be quantitatively calculated. This synthesis provides an accounting of studies using FDG-PET to measure acute exercise-induced skeletal muscle activity, describes the advantages and limitations of this imaging technique, and discusses its applications to the field of exercise physiology. Copyright © 2015 the American Physiological Society.

  14. Trails on 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Leading to Diagnosis of Testicular Adrenal Rest Tumor.

    PubMed

    Kashyap, Raghava

    2018-01-01

    Testicular adrenal rest tumors (TARTs) are secondary to hypertrophy of adrenal rest cells in the rete testis in settings of hypersecretion of androgens. We present a case of congenital adrenal hyperplasia with TART with clues to the diagnosis on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). To the best of our knowledge, this is the first reported case on the role of 18 F-FDG PET/CT in TART.

  15. Florbetapir (18F) for brain amyloid positron emission tomography: highlights on the European marketing approval.

    PubMed

    Cortes-Blanco, Anabel; Prieto-Yerro, Concha; Martinez-Lazaro, Raul; Zamora, Javier; Jiménez-Huete, Adolfo; Haberkamp, Marion; Pohly, Johannes; Enzmann, Harald; Zinserling, Jörg; Strassmann, Valerie; Broich, Karl

    2014-10-01

    Florbetapir (18F) for brain amyloid positron emission tomography (PET) imaging has been recently approved in Europe to estimate β-amyloid neuritic plaque density in the brain when the subject is still alive. Such density is one of the key issues for the definitive diagnosis of Alzheimer's disease (AD) at autopsy. This capability of florbetapir (18F) is regarded as a significant improvement in the diagnostic procedures for adult patients with cognitive impairment who are being evaluated for AD and other causes of cognitive impairment. The current paper highlights the specific characteristics of the European marketing authorization of florbetapir (18F). Copyright © 2014 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  16. Methodologic Considerations for Quantitative 18F-FDG PET/CT Studies of Hepatic Glucose Metabolism in Healthy Subjects.

    PubMed

    Trägårdh, Malene; Møller, Niels; Sørensen, Michael

    2015-09-01

    PET with the glucose analog (18)F-FDG is used to measure regional tissue metabolism of glucose. However, (18)F-FDG may have affinities different from those of glucose for plasma membrane transporters and intracellular enzymes; the lumped constant (LC) can be used to correct these differences kinetically. The aims of this study were to investigate the feasibility of measuring human hepatic glucose metabolism with dynamic (18)F-FDG PET/CT and to determine an operational LC for (18)F-FDG by comparison with (3)H-glucose measurements. Eight healthy human subjects were included. In all studies, (18)F-FDG and (3)H-glucose were mixed in saline and coadministered. A 60-min dynamic PET recording of the liver was performed for 180 min with blood sampling from catheters in a hepatic vein and a radial artery (concentrations of (18)F-FDG and (3)H-glucose in blood). Hepatic blood flow was determined by indocyanine green infusion. First, 3 subjects underwent studies comparing bolus administration and constant-infusion administration of tracers during hyperinsulinemic-euglycemic clamping. Next, 5 subjects underwent studies comparing fasting and hyperinsulinemic-euglycemic clamping with tracer infusions. Splanchnic extraction fractions of (18)F-FDG (E*) and (3)H-glucose (E) were calculated from concentrations in blood, and the LC was calculated as ln(1 - E*)/ln(1 - E). Volumes of interest were drawn in the liver tissue, and hepatic metabolic clearance of (18)F-FDG (mL of blood/100 mL of liver tissue/min) was estimated. For bolus versus infusion, E* values were always negative when (18)F-FDG was administered as a bolus and were always positive when it was administered as an infusion. For fasting versus clamping, E* values were positive in 4 of 5 studies during fasting and were always positive during clamping. Negative extraction fractions were ascribed to the tracer distribution in the large volume of distribution in the prehepatic splanchnic bed. The LC ranged from 0.43 to 2

  17. 18F-Fluorodeoxyglucose Positron Emission Tomography/CT Scanning in Diagnosing Vascular Prosthetic Graft Infection

    PubMed Central

    Saleem, Ben R.; Pol, Robert A.; Slart, Riemer H. J. A.; Reijnen, Michel M. P. J.; Zeebregts, Clark J.

    2014-01-01

    Vascular prosthetic graft infection (VPGI) is a severe complication after vascular surgery. CT-scan is considered the diagnostic tool of choice in advanced VPGI. The incidence of a false-negative result using CT is relatively high, especially in the presence of low-grade infections. 18F-fluorodeoxyglucose positron emission tomography (18F-FDG PET) scanning has been suggested as an alternative for the diagnosis and assessment of infectious processes. Hybrid 18F-FDG PET/CT has established the role of 18F-FDG PET for the assessment of suspected VPGI, providing accurate anatomic localization of the site of infection. However, there are no clear guidelines for the interpretation of the uptake patterns of 18F-FDG as clinical tool for VPGI. Based on the available literature it is suggested that a linear, diffuse, and homogeneous uptake should not be regarded as an infection whereas focal or heterogeneous uptake with a projection over the vessel on CT is highly suggestive of infection. Nevertheless, 18F-FDG PET and 18F-FDG PET/CT can play an important role in the detection of VPGI and monitoring response to treatment. However an accurate uptake and pattern recognition is warranted and cut-off uptake values and patterns need to be standardized before considering the technique to be the new standard. PMID:25210712

  18. 18F-AV-1451 tau PET imaging correlates strongly with tau neuropathology in MAPT mutation carriers

    PubMed Central

    Puschmann, Andreas; Schöll, Michael; Ohlsson, Tomas; van Swieten, John; Honer, Michael; Englund, Elisabet

    2016-01-01

    Abstract Tau positron emission tomography ligands provide the novel possibility to image tau pathology in vivo. However, little is known about how in vivo brain uptake of tau positron emission tomography ligands relates to tau aggregates observed post-mortem. We performed tau positron emission tomography imaging with 18F-AV-1451 in three patients harbouring a p.R406W mutation in the MAPT gene, encoding tau. This mutation results in 3- and 4-repeat tau aggregates similar to those in Alzheimer’s disease, and many of the mutation carriers initially suffer from memory impairment and temporal lobe atrophy. Two patients with short disease duration and isolated memory impairment exhibited 18F-AV-1451 uptake mainly in the hippocampus and adjacent temporal lobe regions, correlating with glucose hypometabolism in corresponding regions. One patient died after 26 years of disease duration with dementia and behavioural deficits. Pre-mortem, there was 18F-AV-1451 uptake in the temporal and frontal lobes, as well as in the basal ganglia, which strongly correlated with the regional extent and amount of tau pathology in post-mortem brain sections. Amyloid-β (18F-flutemetamol) positron emission tomography scans were negative in all cases, as were stainings of brain sections for amyloid. This provides strong evidence that 18F-AV-1451 positron emission tomography can be used to accurately quantify in vivo the regional distribution of hyperphosphorylated tau protein. PMID:27357347

  19. New Dioxaborolane Chemistry Enables [18F]-Positron-Emitting, Fluorescent [18F]-Multimodality Biomolecule Generation from the Solid Phase

    PubMed Central

    Crisp, Jessica L.; Vera, David R.; Tsien, Roger Y.; Ting, Richard

    2016-01-01

    New protecting group chemistry is used to greatly simplify imaging probe production. Temperature and organic solvent-sensitive biomolecules are covalently attached to a biotin-bearing dioxaborolane, which facilitates antibody immobilization on a streptavidin-agarose solid-phase support. Treatment with aqueous fluoride triggers fluoride-labeled antibody release from the solid phase, separated from unlabeled antibody, and creates [18F]-trifluoroborate-antibody for positron emission tomography and near-infrared fluorescent (PET/NIRF) multimodality imaging. This dioxaborolane-fluoride reaction is bioorthogonal, does not inhibit antigen binding, and increases [18F]-specific activity relative to solution-based radiosyntheses. Two applications are investigated: an anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody (mAb) that labels prostate tumors and Cetuximab, an anti-epidermal growth factor receptor (EGFR) mAb (FDA approved) that labels lung adenocarcinoma tumors. Colocalized, tumor-specific NIRF and PET imaging confirm utility of the new technology. The described chemistry should allow labeling of many commercial systems, diabodies, nanoparticles, and small molecules for dual modality imaging of many diseases. PMID:27064381

  20. 2-[18F]fluoro-2-deoxy-d-glucose (FDG) positron-emission tomography (PET) findings of chronic expanding intrapericardial hematoma: a potential interpretive pitfall that mimics a malignant tumor

    PubMed Central

    2013-01-01

    A 77-year-old man who had undergone mitral valve replacement 5 years previously presented with an intrapericardial mass. Computed tomography and magnetic resonance imaging showed that the mass lesion contained hematoma components. Positron-emission tomography (PET) with 2-[18F] fluoro-2-deoxy-d-glucose (FDG) revealed uptake in the peripheral rim of the mass. These findings suggested the presence of hematoma associated with a malignant lesion. Surgical resection was performed, and the histological diagnosis was chronic expanding intrapericardial hematoma without neoplastic changes. Chronic expanding intrapericardial hematoma is a rare disease but should be considered when an expanding mass is found in a patient after cardiac surgery. The FDG-PET findings of chronic expanding hematomas, including FDG uptake in the peripheral rim of the mass as a result of inflammation, should be recognized as a potential interpretive pitfall that mimics a malignant tumor. PMID:23324446

  1. Lung inhomogeneities, inflation and [18F]2-fluoro-2-deoxy-D-glucose uptake rate in acute respiratory distress syndrome.

    PubMed

    Cressoni, Massimo; Chiumello, Davide; Chiurazzi, Chiara; Brioni, Matteo; Algieri, Ilaria; Gotti, Miriam; Nikolla, Klodiana; Massari, Dario; Cammaroto, Antonio; Colombo, Andrea; Cadringher, Paolo; Carlesso, Eleonora; Benti, Riccardo; Casati, Rosangela; Zito, Felicia; Gattinoni, Luciano

    2016-01-01

    The aim of the study was to determine the size and location of homogeneous inflamed/noninflamed and inhomogeneous inflamed/noninflamed lung compartments and their association with acute respiratory distress syndrome (ARDS) severity.In total, 20 ARDS patients underwent 5 and 45 cmH2O computed tomography (CT) scans to measure lung recruitability. [(18)F]2-fluoro-2-deoxy-d-glucose ([(18)F]FDG) uptake and lung inhomogeneities were quantified with a positron emission tomography-CT scan at 10 cmH2O. We defined four compartments with normal/abnormal [(18)F]FDG uptake and lung homogeneity.The homogeneous compartment with normal [(18)F]FDG uptake was primarily composed of well-inflated tissue (80±16%), double-sized in nondependent lung (32±27% versus 16±17%, p<0.0001) and decreased in size from mild, moderate to severe ARDS (33±14%, 26±20% and 5±9% of the total lung volume, respectively, p=0.05). The homogeneous compartment with high [(18)F]FDG uptake was similarly distributed between the dependent and nondependent lung. The inhomogeneous compartment with normal [(18)F]FDG uptake represented 4% of the lung volume. The inhomogeneous compartment with high [(18)F]FDG uptake was preferentially located in the dependent lung (21±10% versus 12±10%, p<0.0001), mostly at the open/closed interfaces and related to recruitability (r(2)=0.53, p<0.001).The homogeneous lung compartment with normal inflation and [(18)F]FDG uptake decreases with ARDS severity, while the inhomogeneous poorly/not inflated compartment increases. Most of the lung inhomogeneities are inflamed. A minor fraction of healthy tissue remains in severe ARDS. Copyright ©ERS 2016.

  2. Process for the production of 18F-2-deoxy-2-fluoro-D-glucose

    DOEpatents

    Shiue, Chyng-Yann; Salvadori, Piero A.; Wolf, Alfred P.; Fowler, Joanna S.; MacGregor, Robert R.

    1986-05-06

    Process for the production of 2-deoxy-2-fluoro-D-glucose and the corresponding .sup.18 F-compound by the reaction of acetyl hypofluorite or the corresponding .sup.18 F-compound with 3,4,6-tri-O-acetyl-D-glucal followed by hydrolysis. Process includes the production of the hypofluorite compound at ambient temperature.

  3. Process for the production of 18F-2-deoxy-2-fluoro-D-glucose

    DOEpatents

    Shiue, Chyng-Yann; Salvadori, Piero A.; Wolf, Alfred P.; Fowler, Joanna S.; MacGregor, Robert R.

    1986-01-01

    Process for the production of 2-deoxy-2-fluoro-D-glucose and the corresponding .sup.18 F-compound by the reaction of acetyl hypofluorite or the corresponding .sup.18 F-compound with 3,4,6-tri-O-acetyl-D-glucal followed by hydrolysis. Process includes the production of the hypofluorite compound at ambient temperature.

  4. [18F]FDG labeling of neural stem cells for in vivo cell tracking with positron emission tomography: inhibition of tracer release by phloretin.

    PubMed

    Stojanov, Katica; de Vries, Erik F J; Hoekstra, Dick; van Waarde, Aren; Dierckx, Rudi A J O; Zuhorn, Inge S

    2012-02-01

    The introduction of neural stem cells into the brain has promising therapeutic potential for the treatment of neurodegenerative diseases. To monitor the cellular replacement therapy, that is, to determine stem cell migration, survival, and differentiation, in vivo tracking methods are needed. Ideally, these tracking methods are noninvasive. Noninvasive tracking methods that have been successfully used for the visualization of blood-derived progenitor cells include magnetic resonance imaging and radionuclide imaging using single-photon emission computed tomography (SPECT) and positron emission tomography (PET). The SPECT tracer In-111-oxine is suitable for stem cell labeling, but for studies in small animals, the higher sensitivity and facile quantification that can be obtained with PET are preferred. Here the potential of 2'-[18F]fluoro-2'-deoxy-D-glucose ([18F]-FDG), a PET tracer, for tracking of neural stem cell (NSCs) trafficking toward an inflammation site was investigated. [18F]-FDG turns out to be a poor radiopharmaceutical to label NSCs owing to the low labeling efficiency and substantial release of radioactivity from these cells. Efflux of [18F]-FDG from NSCs can be effectively reduced by phloretin in vitro, but inhibition of tracer release is insufficient in vivo for accurate monitoring of stem cell trafficking.

  5. Tumor Delineation and Quantitative Assessment of Glucose Metabolic Rate within Histologic Subtypes of Non-Small Cell Lung Cancer by Using Dynamic 18F Fluorodeoxyglucose PET.

    PubMed

    Meijer, Tineke W H; de Geus-Oei, Lioe-Fee; Visser, Eric P; Oyen, Wim J G; Looijen-Salamon, Monika G; Visvikis, Dimitris; Verhagen, Ad F T M; Bussink, Johan; Vriens, Dennis

    2017-05-01

    Purpose To assess whether dynamic fluorine 18 ( 18 F) fluorodeoxyglucose (FDG) positron emission tomography (PET) has added value over static 18 F-FDG PET for tumor delineation in non-small cell lung cancer (NSCLC) radiation therapy planning by using pathology volumes as the reference standard and to compare pharmacokinetic rate constants of 18 F-FDG metabolism, including regional variation, between NSCLC histologic subtypes. Materials and Methods The study was approved by the institutional review board. Patients gave written informed consent. In this prospective observational study, 1-hour dynamic 18 F-FDG PET/computed tomographic examinations were performed in 35 patients (36 resectable NSCLCs) between 2009 and 2014. Static and parametric images of glucose metabolic rate were obtained to determine lesion volumes by using three delineation strategies. Pathology volume was calculated from three orthogonal dimensions (n = 32). Whole tumor and regional rate constants and blood volume fraction (V B ) were computed by using compartment modeling. Results Pathology volumes were larger than PET volumes (median difference, 8.7-25.2 cm 3 ; Wilcoxon signed rank test, P < .001). Static fuzzy locally adaptive Bayesian (FLAB) volumes corresponded best with pathology volumes (intraclass correlation coefficient, 0.72; P < .001). Bland-Altman analyses showed the highest precision and accuracy for static FLAB volumes. Glucose metabolic rate and 18 F-FDG phosphorylation rate were higher in squamous cell carcinoma (SCC) than in adenocarcinoma (AC), whereas V B was lower (Mann-Whitney U test or t test, P = .003, P = .036, and P = .019, respectively). Glucose metabolic rate, 18 F-FDG phosphorylation rate, and V B were less heterogeneous in AC than in SCC (Friedman analysis of variance). Conclusion Parametric images are not superior to static images for NSCLC delineation. FLAB-based segmentation on static 18 F-FDG PET images is in best agreement with pathology volume and could be useful

  6. Posterior Cingulate Glucose Metabolism, Hippocampal Glucose Metabolism, and Hippocampal Volume in Cognitively Normal, Late-Middle-Aged Persons at 3 Levels of Genetic Risk for Alzheimer Disease

    PubMed Central

    Protas, Hillary D.; Chen, Kewei; Langbaum, Jessica B. S.; Fleisher, Adam S.; Alexander, Gene E.; Lee, Wendy; Bandy, Daniel; de Leon, Mony J.; Mosconi, Lisa; Buckley, Shannon; Truran-Sacrey, Diana; Schuff, Norbert; Weiner, Michael W.; Caselli, Richard J.; Reiman, Eric M.

    2013-01-01

    Objective To characterize and compare measurements of the posterior cingulate glucose metabolism, the hippocampal glucose metabolism, and hippocampal volume so as to distinguish cognitively normal, late-middle-aged persons with 2, 1, or 0 copies of the apolipoprotein E (APOE) ε4 allele, reflecting 3 levels of risk for late-onset Alzheimer disease. Design Cross-sectional comparison of measurements of cerebral glucose metabolism using 18F-fluorodeoxy-glucose positron emission tomography and measurements of brain volume using magnetic resonance imaging in cognitively normal ε4 homozygotes, ε4 heterozygotes, and noncarriers. Setting Academic medical center. Participants A total of 31 ε4 homozygotes, 42 ε4 heterozygotes, and 76 noncarriers, 49 to 67 years old, matched for sex, age, and educational level. Main Outcome Measures The measurements of posterior cingulate and hippocampal glucose metabolism were characterized using automated region-of-interest algorithms and normalized for whole-brain measurements. The hippocampal volume measurements were characterized using a semiautomated algorithm and normalized for total intracranial volume. Results Although there were no significant differences among the 3 groups of participants in their clinical ratings, neuropsychological test scores, hippocampal volumes (P=.60), or hippocampal glucose metabolism measurements (P = .12), there were significant group differences in their posterior cingulate glucose metabolism measurements (P=.001). The APOE ε4 gene dose was significantly associated with posterior cingulate glucose metabolism (r=0.29, P=.0003), and this association was significantly greater than those with hippocampal volume or hippocampal glucose metabolism (P<.05, determined by use of pairwise Fisher z tests). Conclusions Although our findings may depend in part on the analysis algorithms used, they suggest that a reduction in posterior cingulate glucose metabolism precedes a reduction in hippocampal volume or

  7. 18F-Fluoride positron emission tomography/computed tomography for noninvasive in vivo quantification of pathophysiological bone metabolism in experimental murine arthritis

    PubMed Central

    2014-01-01

    Introduction Evaluation of disease severity in experimental models of rheumatoid arthritis is inevitably associated with assessment of structural bone damage. A noninvasive imaging technology allowing objective quantification of pathophysiological alterations of bone structure in rodents could substantially extend the methods used to date in preclinical arthritis research for staging of autoimmune disease severity or efficacy of therapeutical intervention. Sodium 18F-fluoride (18F-NaF) is a bone-seeking tracer well-suited for molecular imaging. Therefore, we systematically examined the use of 18F-NaF positron emission tomography/computed tomography (PET/CT) in mice with glucose-6-phosphate isomerase (G6PI)–induced arthritis for quantification of pathological bone metabolism. Methods F-fluoride was injected into mice before disease onset and at various time points of progressing experimental arthritis. Radioisotope accumulation in joints in the fore- and hindpaws was analyzed by PET measurements. For validation of bone metabolism quantified by 18F-fluoride PET, bone surface parameters of high-resolution μCT measurements were used. Results Before clinical arthritis onset, no distinct accumulation of 18F-fluoride was detectable in the fore- and hindlimbs of mice immunized with G6PI. In the course of experimental autoimmune disease, 18F-fluoride bone uptake was increased at sites of enhanced bone metabolism caused by pathophysiological processes of autoimmune disease. Moreover, 18F-fluoride signaling at different stages of G6PI-induced arthritis was significantly correlated with the degree of bone destruction. CT enabled identification of exact localization of 18F-fluoride signaling in bone and soft tissue. Conclusions The results of this study suggest that small-animal PET/CT using 18F-fluoride as a tracer is a feasible method for quantitative assessment of pathophysiological bone metabolism in experimental arthritis. Furthermore, the

  8. Clinical Relevance of 18F-Sodium Fluoride Positron-Emission Tomography in Noninvasive Identification of High-Risk Plaque in Patients With Coronary Artery Disease.

    PubMed

    Lee, Joo Myung; Bang, Ji-In; Koo, Bon-Kwon; Hwang, Doyeon; Park, Jonghanne; Zhang, Jinlong; Yaliang, Tong; Suh, Minseok; Paeng, Jin Chul; Shiono, Yasutsugu; Kubo, Takashi; Akasaka, Takashi

    2017-11-01

    18 F-sodium fluoride ( 18 F-NaF) positron-emission tomography has been introduced as a potential noninvasive imaging tool to identify plaques with high-risk characteristics in patients with coronary artery disease. We sought to evaluate the clinical relevance of 18 F-NaF uptake using optical coherence tomography (OCT), intravascular ultrasound (IVUS), and coronary computed tomography angiography in patients with coronary artery disease. The target population consisted of 51 prospectively enrolled patients (93 stenoses) who underwent 18 F-NaF positron-emission tomography before invasive coronary angiography. 18 F-NaF uptake was compared with IVUS- and OCT-derived plaque characteristics. In the coronary computed tomography angiography subgroup (46 lesions), qualitative lesion characteristics were compared between 18 F-NaF-positive and 18 F-NaF-negative plaques using adverse plaque characteristics. The plaques with 18 F-NaF uptake showed significantly higher plaque burden, more frequent posterior attenuation and positive remodeling in IVUS, and significantly higher maximum lipid arc and more frequent microvessels in OCT (all P <0.05). There were no differences in minimum lumen area and area of calcium between 18 F-NaF-positive and 18 F-NaF-negative lesions. Among 51 lesions with 18 F-NaF-positive uptake, 48 lesions (94.1%) had at least one of high-risk characteristics. The 18 F-NaF tissue-to-background ratio in plaques with high-risk characteristics was significantly higher than in those without (1.09 [95% confidence interval, 0.85-1.34] versus 0.62 [95% confidence interval, 0.42-0.82], P <0.001 for IVUS definition; 0.76 [95% confidence interval, 0.54-0.98] versus 0.42 [95% confidence interval, 0.21-0.62], P =0.014 for OCT definition). Among the 15 lesions that met both IVUS- and OCT-defined criteria for high-risk plaque, 14 (93.3%) showed 18 F-NaF-positive uptake. There was no difference in the prevalence of plaques with any adverse plaque characteristics between 18

  9. Process for the production of .sup.18 F-2-deoxy-2-fluoro-D-glucose

    DOEpatents

    Elmaleh, David R.; Levy, Shlomo; Shiue, Chyng-Yann; Wolf, Alfred P.

    1986-01-01

    Process for the production of 2-deoxy-2-fluoro-D-glucose and the corresponding .sup.18 F-compound in which methyl 4,6-O-benzylidine-3-O-methyl-2-O-trifluoromethanesulfonyl-.beta.-D-mannopy ranoside is reacted with a triflating reagent, the resulting compound reacted with CsHF.sub.2, RbF or the corresponding .sup.18 F-compounds, and thereafter the alkyl groups removed by hydrolysis.

  10. Ion beam induced 18F-radiofluorination: straightforward synthesis of gaseous radiotracers for the assessment of regional lung ventilation using positron emission tomography.

    PubMed

    Gómez-Vallejo, V; Lekuona, A; Baz, Z; Szczupak, B; Cossío, U; Llop, J

    2016-09-29

    A simple, straightforward and efficient method for the synthesis of [ 18 F]CF 4 and [ 18 F]SF 6 based on an ion beam-induced isotopic exchange reaction is presented. Positron emission tomography ventilation studies in rodents using [ 18 F]CF 4 showed a uniform distribution of the radiofluorinated gas within the lungs and rapid elimination after discontinuation of the administration.

  11. Process for the production of /sup 18/F-2-deoxy-2-fluoro-d-glucose

    DOEpatents

    Shiue, C.Y.; Salvadori, P.A.; Wolf, A.P.; Fowler, J.S.; MacGregor, R.R.

    Process is given for the production of 2-deoxy-2-fluoro-D-glucose and the corresponding /sup 18/F-compound by the reaction of acetyl hypofluorite or the corresponding /sup 18/F-compound with 3,4,6-tri-0-acetyl-D-glucal followed by hydrolysis. Process includes the production of the hypofluorite compound at ambient temperature.

  12. 18F-FDG PET/CT in detection of gynecomastia in patients with hepatocellular carcinoma.

    PubMed

    Wang, Hsin-Yi; Jeng, Long-Bin; Lin, Ming-Chia; Chao, Chih-Hao; Lin, Wan-Yu; Kao, Chia-Hung

    2013-01-01

    We retrospectively investigate the prevalence of gynecomastia as false-positive 2-[18F]fluoro-2-deoxy-d-glucose (18F-FDG) positron emission tomography (PET)/computed tomography (CT) imaging in patients with hepatocellular carcinoma (HCC). Among the 127 male HCC patients who underwent 18F-FDG PET/CT scan, the 18FDG uptakes at the bilateral breasts in 9 patients with gynecomastia were recorded as standard uptake value (SUVmax) and the visual interpretation in both early and delayed images. The mean early SUVmax was 1.58/1.57 (right/left breast) in nine gynecomastia patients. The three patients with early visual score of 3 had higher early SUVmaxs. Gynecomastia is a possible cause of false-positive uptake on 18F-FDG PET/CT images. Copyright © 2013 Elsevier Inc. All rights reserved.

  13. Pilot study utilizing Fluorine-18 fluorodeoxyglucose-positron emission tomography/computed tomography for glycolytic phenotyping of canine mast cell tumors.

    PubMed

    Griffin, Lynn R; Thamm, Doug H; Selmic, Laura E; Ehrhart, E J; Randall, Elissa

    2018-03-23

    The goal of this prospective pilot study was to use naturally occurring canine mast cell tumors of various grades and stages as a model for attempting to determine how glucose uptake and markers of biologic behavior are correlated. It was hypothesized that enhanced glucose uptake, as measured by 2-[fluorine-18]fluoro-d-glucose-positron emission tomography/computed tomography (F18 FDG PET-CT), would correlate with histologic grade. Dogs were recruited for this study from a population referred for treatment of cytologically or histologically confirmed mast cell tumors. Patients were staged utilizing standard of care methods (abdominal ultrasound and three view thoracic radiographs), followed by a whole body F18 FDG PET-CT. Results of the F18 FDG PET-CT were analyzed for possible metastasis and standard uptake value maximum (SUV max ) of identified lesions. Incisional or excisional biopsies of the accessible mast cell tumors were obtained and histology performed. Results were then analyzed to look for a possible correlation between the grade of mast cell tumors and SUV max . A total of nine animals were included in the sample. Findings indicated that there was a correlation between grade of mast cell tumors and SUV max as determined by F18 FDG PET-CT (p-value = 0.073, significance ≤ 0.1). Based on the limited power of this study, it is felt that further research to examine the relationship between glucose utilization and biologic aggressiveness in canine mast cell tumors is warranted. This study was unable to show that F18 FDG PET-CT was a better staging tool than standard of care methods. © 2018 American College of Veterinary Radiology.

  14. Is cerebral glucose metabolism related to blood-brain barrier dysfunction and intrathecal IgG synthesis in Alzheimer disease?: A 18F-FDG PET/CT study.

    PubMed

    Chiaravalloti, Agostino; Fiorentini, Alessandro; Ursini, Francesco; Martorana, Alessandro; Koch, Giacomo; Belli, Lorena; Toniolo, Sofia; Di Pietro, Barbara; Motta, Caterina; Schillaci, Orazio

    2016-09-01

    The aim of this study was to investigate the relationships between blood-brain barrier (BBB) dysfunction, intrathecal IgG synthesis, and brain glucose consumption as detectable by means of serum/cerebrospinal fluid (CSF) albumin index (Qalb) and IgG index [(CSF IgG/serum IgG) × Serum albumin/CSF albumin)] and 2-deoxy-2-(F) fluoro-D-glucose (F-FDG) positron emission tomography/computed tomography (PET/CT) in a selected population affected by Alzheimer disease (AD). The study included 134 newly diagnosed AD patients according to the NINCDS-ADRDA criteria. The mean (±SD) age of the patients was 70 (±6) years; 60 were male and 64 were female. Mini mental State Examination was equal to 18.9 (±7.2). All patients underwent a CSF assay and magnetic resonance before F-FDG PET scanning. The relationships were evaluated by means of statistical parametric mapping (SPM8). We found a significant negative correlation between the increase of Qalb and F-FDG uptake in the Brodmann Area 42 and 22 that corresponds to the left superior temporal gyrus, with higher Qalb values being related to a reduced glucose consumption in these areas. No significant relationships have been found between brain glucose consumption and IgG index. The results of our study suggest that BBB dysfunction is related to reduction of cortical activity in the left temporal cortex in AD subjects.

  15. False-positive 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with metallic implants following chondrosarcoma resection.

    PubMed

    Zhou, P U; Tang, Jinliang; Zhang, Dong; Li, Guanghui

    2016-05-01

    Positron emission tomography (PET) with fluorine-18-labeled fluorodeoxyglucose ( 18 F-FDG) has been used for the staging and evaluation of recurrence in cancer patients. We herein report a false-positive result of 18 F-FDG PET/computed tomography (CT) scan in a patient following chondrosarcoma resection and metallic implanting. A 35-year-old male patient with chondrosarcoma of the left iliac bone underwent radical resection, metal brace implanting and radiotherapy. A high uptake of 18 F-FDG was observed in the metallic implants and adjacent tissue during PET/CT scanning in the 5th year of follow-up. Tissue biopsy and follow-up examination identified no tumor recurrence or infection at these sites, suggesting that the results of 18 F-FDG PET/CT must be interpreted with caution in cancer patients with metallic implants.

  16. Schooling mediates brain reserve in Alzheimer's disease: findings of fluoro-deoxy-glucose-positron emission tomography.

    PubMed

    Perneczky, R; Drzezga, A; Diehl-Schmid, J; Schmid, G; Wohlschläger, A; Kars, S; Grimmer, T; Wagenpfeil, S; Monsch, A; Kurz, A

    2006-09-01

    Functional imaging studies report that higher education is associated with more severe pathology in patients with Alzheimer's disease, controlling for disease severity. Therefore, schooling seems to provide brain reserve against neurodegeneration. To provide further evidence for brain reserve in a large sample, using a sensitive technique for the indirect assessment of brain abnormality (18F-fluoro-deoxy-glucose-positron emission tomography (FDG-PET)), a comprehensive measure of global cognitive impairment to control for disease severity (total score of the Consortium to Establish a Registry for Alzheimer's Disease Neuropsychological Battery) and an approach unbiased by predefined regions of interest for the statistical analysis (statistical parametric mapping (SPM)). 93 patients with mild Alzheimer's disease and 16 healthy controls underwent 18F-FDG-PET imaging of the brain. A linear regression analysis with education as independent and glucose utilisation as dependent variables, adjusted for global cognitive status and demographic variables, was conducted in SPM2. The regression analysis showed a marked inverse association between years of schooling and glucose metabolism in the posterior temporo-occipital association cortex and the precuneus in the left hemisphere. In line with previous reports, the findings suggest that education is associated with brain reserve and that people with higher education can cope with brain damage for a longer time.

  17. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study

    PubMed Central

    Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H.; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H.; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    Objectives To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Materials and Methods Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. Results All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05–0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. Conclusion MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT. PMID:27167829

  18. Multiparametric [18F]Fluorodeoxyglucose/ [18F]Fluoromisonidazole Positron Emission Tomography/ Magnetic Resonance Imaging of Locally Advanced Cervical Cancer for the Non-Invasive Detection of Tumor Heterogeneity: A Pilot Study.

    PubMed

    Pinker, Katja; Andrzejewski, Piotr; Baltzer, Pascal; Polanec, Stephan H; Sturdza, Alina; Georg, Dietmar; Helbich, Thomas H; Karanikas, Georgios; Grimm, Christoph; Polterauer, Stephan; Poetter, Richard; Wadsak, Wolfgang; Mitterhauser, Markus; Georg, Petra

    2016-01-01

    To investigate fused multiparametric positron emission tomography/magnetic resonance imaging (MP PET/MRI) at 3T in patients with locally advanced cervical cancer, using high-resolution T2-weighted, contrast-enhanced MRI (CE-MRI), diffusion-weighted imaging (DWI), and the radiotracers [18F]fluorodeoxyglucose ([18F]FDG) and [18F]fluoromisonidazol ([18F]FMISO) for the non-invasive detection of tumor heterogeneity for an improved planning of chemo-radiation therapy (CRT). Sixteen patients with locally advanced cervix were enrolled in this IRB approved and were examined with fused MP [18F]FDG/ [18F]FMISO PET/MRI and in eleven patients complete data sets were acquired. MP PET/MRI was assessed for tumor volume, enhancement (EH)-kinetics, diffusivity, and [18F]FDG/ [18F]FMISO-avidity. Descriptive statistics and voxel-by-voxel analysis of MRI and PET parameters were performed. Correlations were assessed using multiple correlation analysis. All tumors displayed imaging parameters concordant with cervix cancer, i.e. type II/III EH-kinetics, restricted diffusivity (median ADC 0.80x10-3mm2/sec), [18F]FDG- (median SUVmax16.2) and [18F]FMISO-avidity (median SUVmax3.1). In all patients, [18F]FMISO PET identified the hypoxic tumor subvolume, which was independent of tumor volume. A voxel-by-voxel analysis revealed only weak correlations between the MRI and PET parameters (0.05-0.22), indicating that each individual parameter yields independent information and the presence of tumor heterogeneity. MP [18F]FDG/ [18F]FMISO PET/MRI in patients with cervical cancer facilitates the acquisition of independent predictive and prognostic imaging parameters. MP [18F]FDG/ [18F]FMISO PET/MRI enables insights into tumor biology on multiple levels and provides information on tumor heterogeneity, which has the potential to improve the planning of CRT.

  19. [The role of whole body 2-[fluorine-18]-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography in the management of unknown primary tumors].

    PubMed

    Wu, Zhi-Jian; Zhang, Yong-Xue; Wei, Hao; Jia, Qing

    2007-08-28

    To assess the role of 2-[fluorine-18]-fluoro-2-deoxy-D-glucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) in the management of unknown primary primary (CUP) with metastatic loci. Thirty-four patients of CUP with metastatic loci who had undergone unsuccessful conventional diagnostic work-up underwent (18)F-FDG PET/CT. The images thus obtained were analyzed with visual and semi-quantitative methods. Histopathology, cytology, and/or follow-up were used to evaluate the PET/CT results. In 20 of the 34 patients (18)F-FDG PET/CT showed focal tracer accumulations corresponding to potential primary tumor sites located in the lung (n = 9), colon (n = 3), rectum (n = 2), pancreas (n = 1), right aryepiglottic wall (n = 1), esophagus (n = 1), breast (n = 1), and ovary (n = 2). The detection rate of primary tumor by (18)F-FDG PET/CT was 50.0% (17/34), the primary tumors were identified in the lung (n = 8), colon (n = 2), rectum (n = 1), pancreas (n = 1), right aryepiglottic wall (n = 1), esophagus (n = 1), ovary (n = 2), and breast (n = 1). The false positive rate was 8.8% (3/34) with the diagnosis of primary tumor in the lung (n = 1), colon (n = 1), and rectum (n = 1) to be identified as false. In 14 of the 34 patients, (18)F-FDG PET/CT did not reveal lesions suspected to be the primary tumor sites in 13 patients, and it was impossible to identify one lesion as the most likely primary tumor in one patient due to the presence of multiple hot spots in several organs. The (18)F-FDG PET/CT findings affected the medical management in 17 of the 34 (50.0%) patients due to the finding of primary sites and/or additional metastases. (18)F-FDG PET/CT has relevant impact on the therapeutic management of patients with unknown primary tumor. It is recommended that (18)F-FDG PET/CT be performed in the patient with unknown primary tumor after unsuccessful conventional diagnostic workup.

  20. Dynamic Functional Imaging of Brain Glucose Utilization using fPET-FDG

    PubMed Central

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; Catana, Ciprian; Polimeni, Jonathan R.; Sander, Christin Y.; Zürcher, Nicole R.; Chonde, Daniel B.; Fowler, Joanna S.; Rosen, Bruce R.; Hooker, Jacob M.

    2014-01-01

    Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis is straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism. PMID:24936683

  1. Dynamic functional imaging of brain glucose utilization using fPET-FDG

    DOE PAGES

    Villien, Marjorie; Wey, Hsiao-Ying; Mandeville, Joseph B.; ...

    2014-06-14

    We report that glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[18F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits themore » utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. Ultimately, this new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.« less

  2. False-positive 18F-fluorodeoxyglucose positron emission tomography/computed tomography in a patient with metallic implants following chondrosarcoma resection

    PubMed Central

    ZHOU, PU; TANG, JINLIANG; ZHANG, DONG; LI, GUANGHUI

    2016-01-01

    Positron emission tomography (PET) with fluorine-18-labeled fluorodeoxyglucose (18F-FDG) has been used for the staging and evaluation of recurrence in cancer patients. We herein report a false-positive result of 18F-FDG PET/computed tomography (CT) scan in a patient following chondrosarcoma resection and metallic implanting. A 35-year-old male patient with chondrosarcoma of the left iliac bone underwent radical resection, metal brace implanting and radiotherapy. A high uptake of 18F-FDG was observed in the metallic implants and adjacent tissue during PET/CT scanning in the 5th year of follow-up. Tissue biopsy and follow-up examination identified no tumor recurrence or infection at these sites, suggesting that the results of 18F-FDG PET/CT must be interpreted with caution in cancer patients with metallic implants. PMID:27123290

  3. 68Gallium-Arginine-Glycine-Aspartic Acid and 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Chondroblastic Osteosarcoma of the Skull.

    PubMed

    Orunmuyi, Akintunde; Modiselle, Moshe; Lengana, Thabo; Ebenhan, Thomas; Vorster, Mariza; Sathekge, Mike

    2017-09-01

    We report the case of a 32 year-old male with Chondroblastic Osteosarcoma of the skull, which was imaged with both 18 [F]fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) and 68 Gallium-arginine-glycine-aspartic acid ( 68 Ga-RGD) PET/CT. The 18 F-FDG PET/CT did not demonstrate the tumour, whereas the 68 Ga-RGD PET/CT clearly depicted a left-sided frontal tumour. 68 Ga-RGD PET/CT may be a clinically useful imaging modality for early detection of recurrent osteosarcoma, considering the limitations of 18 F-FDG PET in a setting of low glycolytic activity.

  4. Synthesis, enantiomeric resolution, F-18 labeling and biodistribution of reboxetine analogs: promising radioligands for imaging the norepinephrine transporter with positron emission tomography.

    PubMed

    Lin, Kuo-Shyan; Ding, Yu-Shin; Kim, Sung-Won; Kil, Kun-Eek

    2005-05-01

    Racemic and enantiomerically pure ((S,S) and (R,R)) 2-[alpha-(2-(2-[(18)F]fluoroethoxy)phenoxy)benzyl]morpholine ([(18)F]FRB) and its tetradeuterated form [(18)F]FRB-D(4), analogs of the highly selective norepinephrine reuptake inhibitor reboxetine (2-[alpha-(2-ethoxyphenoxy)benzyl]morpholine, RB), have been synthesized for studies of norepinephrine transporter (NET) system with positron emission tomography (PET). The [(18)F]fluorinated precursor, (S,S)/(R,R)-N-tert-butyloxycarbonyl-2-[alpha-(2-hydroxyphenoxy)benzyl]morpholine ((S,S)/(R,R)-N-Boc-desethylRB), was prepared by the N-protection of (S,S)/(R,R)-2-[alpha-(2-hydroxyphenoxy)benzyl]morpholine ((S,S)/(R,R)-desethylRB) with a tert-butyloxycarbonyl (Boc) group followed by enantiomeric resolution with chiral HPLC to provide both (S,S) and (R,R) enantiomers with >99% enantiomeric purity. These compounds were then used for radiosynthesis to prepare enantiomerically pure [(18)F]FRB and [(18)F]FRB-D(4) via the following three-step procedure: (1) formation of 1-bromo-2-[(18)F]fluoroethane ([(18)F]BFE or [(18)F]BFE-D(4)) by nucleophilic displacement of 2-bromoethyl triflate (or D(4) analog) with no-carrier added [(18)F]F(-) in THF; (2) reaction of [(18)F]BFE (or [(18)F]BFE-D(4)) with N-Boc-desethylRB in DMF in the presence of excess base; and (3) deprotection with trifluoroacetic acid. The racemates, (S,S) and (R,R) enantiomers of [(18)F]FRB and [(18)F]FRB-D(4) were obtained in 11-27% (decay corrected to the end of bombardment, EOB) in 120-min synthesis time with a radiochemical purity of >98% and specific activities of 21-48 GBq/micromol (EOB). The results of the whole-body biodistribution studies with (S,S)-[(18)F]FRB-D(4) were similar to those with (S,S)-[(18)F]FRB but showed relatively faster blood clearance and no significant in vivo defluorination. Positron emission tomography studies in baboon brain also showed that (S,S)-[(18)F]FRB-D(4) may be a potentially useful ligand for imaging NET with PET.

  5. HPLC and TLC methods for analysis of [18F]FDG and its metabolites from biological samples.

    PubMed

    Rokka, Johanna; Grönroos, Tove J; Viljanen, Tapio; Solin, Olof; Haaparanta-Solin, Merja

    2017-03-24

    The most used positron emission tomography (PET) tracer, 2-[ 18 F]fluoro-2-deoxy-d-glucose ([ 18 F]FDG), is a glucose analogue that is used to measure tissue glucose consumption. Traditionally, the Sokoloff model is the basis for [ 18 F]FDG modeling. According to this model, [ 18 F]FDG is expected to be trapped in a cell in the form of [ 18 F]FDG-6-phosphate ([ 18 F]FDG-6-P). However, several studies have shown that in tissues, [ 18 F]FDG metabolism goes beyond [ 18 F]FDG-6-P. Our aim was to develop radioHPLC and radioTLC methods for analysis of [ 18 F]FDG metabolites from tissue samples. The radioHPLC method uses a sensitive on-line scintillation detector to detect radioactivity, and the radioTLC method employs digital autoradiography to detect the radioactivity distribution on a TLC plate. The HPLC and TLC methods were developed using enzymatically in vitro-produced metabolites of [ 18 F]FDG as reference standards. For this purpose, three [ 18 F]FDG metabolites were synthesized: [ 18 F]FDG-6-P, [ 18 F]FD-PGL, and [ 18 F]FDG-1,6-P2. The two methods were evaluated by analyzing the [ 18 F]FDG metabolic profile from rodent ex vivo tissue homogenates. The HPLC method with an on-line scintillation detector had a wide linearity in a range of 5Bq-5kBq (LOD 46Bq, LOQ 139Bq) and a good resolution (Rs ≥1.9), and separated [ 18 F]FDG and its metabolites clearly. The TLC method combined with digital autoradiography had a high sensitivity in a wide range of radioactivity (0.1Bq-2kBq, LOD 0.24Bq, LOQ 0.31Bq), and multiple samples could be analyzed simultaneously. As our test and the method validation with ex vivo samples showed, both methods are useful, and at best they complement each other in analysis of [ 18 F]FDG and its radioactive metabolites from biological samples. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Clinically significant association of elevated expression of nuclear factor E2-related factor 2 expression with higher glucose uptake and progression of upper urinary tract cancer.

    PubMed

    Nukui, Akinori; Narimatsu, Takahiro; Kambara, Tsunehito; Abe, Hideyuki; Sakamoto, Setsu; Yoshida, Ken-Ichiro; Kamai, Takao

    2018-05-02

    There is growing evidence that the transcription factor nuclear factor E2-related factor 2 (Nrf2) is the major participant in regulating antioxidants and pathways for detoxifying reactive oxygen species (ROS), as well as having a vital role in tumor proliferation, invasion, and chemoresistance. It was also recently reported that Nrf2 supports cell proliferation by promoting metabolic activity. Thus, Nrf2 is involved in progression of cancer. Upper urinary tract urothelial carcinoma (UTUC) is a biologically aggressive tumor with high rates of recurrence and progression, resulting in a poor prognosis. However, the role of Nrf2 in UTUC is largely unknown. In order to study the role of Nrf2 in UTUC from the metabolic perspective, we retrospectively assessed Nrf2 expression in the surgical specimen and the preoperative maximum standard glucose uptake (SUVmax) on [ 18 F]fluorodeoxy-glucose positron emission tomography ( 18 F-FDG-PET) of 107 patients with UTUC who underwent radical nephroureterectomy. Increased expression of Nrf2 in the primary lesion was correlated with less differentiated histology, local invasion, and lymph node metastasis, and was also an independent indicator of shorter overall survival according to multivariate analysis. Furthermore, increased expression of Nrf2 was associated with higher preoperative SUVmax by the primary tumor on 18 F-FDG-PET, while Nrf2 expression and SUVmax were also significantly correlated in the metastatic lymph nodes. Among the 18 patients with lymph node metastasis at nephroureterectomy who underwent retroperitoneal lymph node dissection and received adjuvant chemotherapy, the patients with higher Nrf2 expression in the primary tumor had worse recurrence-free survival. These results suggest that constitutive activation of Nrf2 might be linked with tumor aerobic glycolysis and progression of UTUC, indicating that Nrf2 signaling in the tumor microenvironment promotes progression of UTUC.

  7. Effects of administration route, dietary condition, and blood glucose level on kinetics and uptake of 18F-FDG in mice.

    PubMed

    Wong, Koon-Pong; Sha, Wei; Zhang, Xiaoli; Huang, Sung-Cheng

    2011-05-01

    The effects of dietary condition and blood glucose level on the kinetics and uptake of (18)F-FDG in mice were systematically investigated using intraperitoneal and tail-vein injection. Dynamic PET was performed for 60 min on 23 isoflurane-anesthetized male C57BL/6 mice after intravenous (n = 11) or intraperitoneal (n = 12) injection of (18)F-FDG. Five and 6 mice in the intravenous and intraperitoneal groups, respectively, were kept fasting overnight (18 ± 2 h), and the others were fed ad libitum. Serial blood samples were collected from the femoral artery to measure (18)F-FDG and glucose concentrations. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. The standardized uptake value (SUV) was estimated from the 45- to 60-min image. The metabolic rate of glucose (MRGlu) and (18)F-FDG uptake constant (K(i)) were derived by Patlak graphical analysis. In the brain, SUV and K(i) were significantly higher in fasting mice with intraperitoneal injection, but MRGlu did not differ significantly under different dietary states and administration routes. Cerebral K(i) was inversely related to elevated blood glucose levels, irrespective of administration route or dietary state. In myocardium, SUV, K(i), and MRGlu were significantly lower in fasting than in nonfasting mice for both routes of injection. Myocardial SUV and K(i) were strongly dependent on the dietary state, and K(i) did not correlate with the blood glucose level. Similar results were obtained for skeletal muscle, although the differences were not as pronounced. Intraperitoneal injection is a valid alternative route, providing pharmacokinetic data equivalent to data from tail-vein injection for small-animal (18)F-FDG PET. Cerebral K(i) varies inversely with blood glucose level, but the measured cerebral MRGlu does not correlate with blood glucose level or dietary condition. Conversely, the K(i) values of the myocardium and skeletal muscle are strongly dependent on

  8. Paraneoplastic syndromes: detection of malignant tumors using [(18)F]FDG-PET.

    PubMed

    Berner, U; Menzel, C; Rinne, D; Kriener, S; Hamscho, N; Döbert, N; Diehl, M; Kaufmann, R; Grünwald, F

    2003-06-01

    Paraneoplastic syndromes (PS) comprise a variety of clinical symptoms and diseases associated with underlying malignancy. Differentiation towards benign autoimmune diseases is necessary due to different therapeutic options. This diagnostic challenge includes cost- and time-consuming methods and is not successful in many cases. The aim of this study was the evaluation of [(18)F]fluorodeoxyglucose positron emission tomography ([(18)F]FDG-PET) for detecting or ruling out malignancy in these patients. In this retrospective work-up a total of 30 patients with suspected PS (m:f = 17:13, mean age 55, range 22-76 years) were examined with [(18)F]FDG-PET between 1996 and 2001. Diagnoses were erythrodermia, cerebellar degeneration, dermatomyositis, polyneuropathia and others. PET scans were compared to histopathological (n=14), radiological and follow up data (mean follow up 3.6 years, range 1-6 years). In 7 out of 30 patients (23%) an underlying malignancy was detected. Six out of 7 malignant neoplasms showed a distinctly increased glucose consumption. One benign neoplasm caused increased tracer uptake, another PET positive patient refused biopsy and showed no growth of a malignant tumour during clinical follow up of 28 months. The remaining 21 patients without suspicious glucose consumption did not demonstrate a malignancy in other diagnostic modalities or during subsequent clinical follow-up. [(18)F]FDG-PET seems to be a useful tool in the diagnostic work-up of patients with suspected paraneoplastic syndrome.

  9. Positron Emission Tomography With 18F-Fluorodeoxyglucose in Patients With Sickle Cell Acute Chest Syndrome

    PubMed Central

    de Prost, Nicolas; Sasanelli, Myriam; Deux, Jean-François; Habibi, Anoosha; Razazi, Keyvan; Galactéros, Frédéric; Meignan, Michel; Maître, Bernard; Brun-Buisson, Christian; Itti, Emmanuel; Dessap, Armand Mekontso

    2015-01-01

    Abstract The acute chest syndrome (ACS) is the main cause of mortality among adult patients with sickle cell disease (SCD). Its pathophysiology is still unclear. Using positron emission tomography (PET) with 18F-fluorodeoxyglucose [18F-fluorodeoxyglucose (18F-FDG)], we explored the relationship between regional lung density and lung metabolism, as a reflection of lung neutrophilic infiltration during ACS. Patients were prospectively enrolled in a single-center study. Dual modality chest PET/computed tomography (CT) scans were performed, with 18F-FDG emission scans for quantification of regional 18F-FDG uptake and CT scans with radiocontrast agent to check for pulmonary artery thrombosis. Regional lung 18F-FDG uptake was quantified in ACS patients and in SCD patients without ACS (SCD non-ACS controls). Maximal (SUVmax) and mean (SUVmean) standardized uptake values were computed. Seventeen patients with ACS (mean age 28.3 ± 6.4 years) were included. None died nor required invasive mechanical ventilation. The main lung opacity on CT scans was lower lobe consolidation. Lungs of patients with ACS exhibited higher SUVmax than those of SCD non-ACS controls (2.5 [2.1–2.9] vs 0.8 [0.6–1.0]; P < 0.0001). Regional SUVmax and SUVmean was higher in lower than in upper lobes of ACS patients (P < 0.001) with a significant correlation between lung density and SUVmax (R2 = 0.78). SUVmean was higher in upper lobes of ACS patients than in lungs of SCD non-ACS controls (P < 0.001). Patients with SUVmax >2.5 had longer intensive care unit (ICU) stay than others (7 [6–11] vs 4 [3–6] days; P = 0.016). Lungs of patients with ACS exhibited higher 18F-FDG uptake than SCD non-ACS controls. Lung apices had normal aeration and lower 18F-FDG uptake than lung bases, but higher 18F-FDG uptake than lungs of SCD non-ACS controls. Patients with higher lung 18F-FDG uptake had longer ICU stay than others. PMID:25950690

  10. [18F]-Fluorodeoxyglucose-Positron Emission Tomography in Rats with Prolonged Cocaine Self-Administration Suggests Potential Brain Biomarkers for Addictive Behavior

    PubMed Central

    Cannella, Nazzareno; Cosa-Linan, Alejandro; Roscher, Mareike; Takahashi, Tatiane T.; Vogler, Nils; Wängler, Björn; Spanagel, Rainer

    2017-01-01

    The DSM5-based dimensional diagnostic approach defines substance use disorders on a continuum from recreational drug use to habitual and ultimately addicted behavior. Biomarkers that are indicative of recreational drug use and addicted behavior are lacking. We performed a translational [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) study in the multi-dimensional 0/3crit model of cocaine addiction. Addict-like (3crit) and non-addict-like (0crit) rats, which shared identical life conditions and levels of cocaine self-administration, were acquired for FDG-PET under baseline conditions and following cocaine and yohimbine challenges. Compared to cocaine-naïve control rats, 0crit animals showed higher glucose uptake in the caudate putamen (CPu) and medial prefrontal cortex (mPFC) respect to naïve controls. 3crit animals did not show this adaptive higher glucose utilization, but had lower uptake in several cortical areas. Both cocaine and yohimbine challenges affected glucose uptake in control rats in several brain sites, but not in 0crit and 3crit rats, indicating that impaired glucose mobilization in response to these challenges is not specifically associated with addictive behavior. Compared to 0crit, 3crit rats showed higher reinstatement responses, which were negatively associated with glucose uptake in the ventral tegmental area. Data indicate that cocaine non-addict- and addict-like phenotypes are associated with several potential biomarkers. Specifically, we propose that increased glucose uptake in the CPu and mPFC is a function of controlled drug use, whereas a loss of striatal and prefrontal metabolic activity and reduced uptake in cortical areas are indicative of addictive behavior. PMID:29163237

  11. [18F]-Fluorodeoxyglucose-Positron Emission Tomography in Rats with Prolonged Cocaine Self-Administration Suggests Potential Brain Biomarkers for Addictive Behavior.

    PubMed

    Cannella, Nazzareno; Cosa-Linan, Alejandro; Roscher, Mareike; Takahashi, Tatiane T; Vogler, Nils; Wängler, Björn; Spanagel, Rainer

    2017-01-01

    The DSM5-based dimensional diagnostic approach defines substance use disorders on a continuum from recreational drug use to habitual and ultimately addicted behavior. Biomarkers that are indicative of recreational drug use and addicted behavior are lacking. We performed a translational [18F]-fluorodeoxyglucose-positron emission tomography (FDG-PET) study in the multi-dimensional 0/3crit model of cocaine addiction. Addict-like (3crit) and non-addict-like (0crit) rats, which shared identical life conditions and levels of cocaine self-administration, were acquired for FDG-PET under baseline conditions and following cocaine and yohimbine challenges. Compared to cocaine-naïve control rats, 0crit animals showed higher glucose uptake in the caudate putamen (CPu) and medial prefrontal cortex (mPFC) respect to naïve controls. 3crit animals did not show this adaptive higher glucose utilization, but had lower uptake in several cortical areas. Both cocaine and yohimbine challenges affected glucose uptake in control rats in several brain sites, but not in 0crit and 3crit rats, indicating that impaired glucose mobilization in response to these challenges is not specifically associated with addictive behavior. Compared to 0crit, 3crit rats showed higher reinstatement responses, which were negatively associated with glucose uptake in the ventral tegmental area. Data indicate that cocaine non-addict- and addict-like phenotypes are associated with several potential biomarkers. Specifically, we propose that increased glucose uptake in the CPu and mPFC is a function of controlled drug use, whereas a loss of striatal and prefrontal metabolic activity and reduced uptake in cortical areas are indicative of addictive behavior.

  12. Characterizing the normative profile of 18F-FDG PET brain imaging: sex difference, aging effect, and cognitive reserve.

    PubMed

    Yoshizawa, Hiroshi; Gazes, Yunglin; Stern, Yaakov; Miyata, Yoko; Uchiyama, Shinichiro

    2014-01-30

    The aim of this study was to investigate findings of positron emission tomography with 18F-fluorodeoxyglucose (18F-FDG PET) in normal subjects to clarify the effects of sex differences, aging, and cognitive reserve on cerebral glucose metabolism. Participants comprised 123 normal adults who underwent 18F-FDG PET and a neuropsychological battery. We used statistical parametric mapping (SPM8) to investigate sex differences, and aging effects. The effects of cognitive reserve on 18F-FDG uptake were investigated using years of education as a proxy. Finally, we studied the effect of cognitive reserve on the recruitment of glucose metabolism in a memory task by dichotomizing the data according to educational level. Our results showed that the overall cerebral glucose metabolism in females was higher than that in males, whereas male participants had higher glucose metabolism in the bilateral inferior temporal gyri and cerebellum than females. Age-related hypometabolism was found in anterior regions, including the anterior cingulate gyrus. These areas are part of the attentional system, which may decline with aging even in healthy elderly individuals. Highly educated subjects revealed focal hypermetabolism in the right hemisphere and lower recruitment of glucose metabolism in memory tasks. This phenomenon is likely a candidate for a neural substrate of cognitive reserve. © 2013 Published by Elsevier Ireland Ltd.

  13. Topography of brain glucose hypometabolism and epileptic network in glucose transporter 1 deficiency.

    PubMed

    Akman, Cigdem Inan; Provenzano, Frank; Wang, Dong; Engelstad, Kristin; Hinton, Veronica; Yu, Julia; Tikofsky, Ronald; Ichese, Masonari; De Vivo, Darryl C

    2015-02-01

    (18)F fluorodeoxyglucose positron emission tomography ((18)F FDG-PET) facilitates examination of glucose metabolism. Previously, we described regional cerebral glucose hypometabolism using (18)F FDG-PET in patients with Glucose transporter 1 Deficiency Syndrome (Glut1 DS). We now expand this observation in Glut1 DS using quantitative image analysis to identify the epileptic network based on the regional distribution of glucose hypometabolism. (18)F FDG-PET scans of 16 Glut1 DS patients and 7 healthy participants were examined using Statistical parametric Mapping (SPM). Summed images were preprocessed for statistical analysis using MATLAB 7.1 and SPM 2 software. Region of interest (ROI) analysis was performed to validate SPM results. Visual analysis of the (18)F FDG-PET images demonstrated prominent regional glucose hypometabolism in the thalamus, neocortical regions and cerebellum bilaterally. Group comparison using SPM analysis confirmed that the regional distribution of glucose hypo-metabolism was present in thalamus, cerebellum, temporal cortex and central lobule. Two mildly affected patients without epilepsy had hypometabolism in cerebellum, inferior frontal cortex, and temporal lobe, but not thalamus. Glucose hypometabolism did not correlate with age at the time of PET imaging, head circumference, CSF glucose concentration at the time of diagnosis, RBC glucose uptake, or CNS score. Quantitative analysis of (18)F FDG-PET imaging in Glut1 DS patients confirmed that hypometabolism was present symmetrically in thalamus, cerebellum, frontal and temporal cortex. The hypometabolism in thalamus correlated with the clinical history of epilepsy. Copyright © 2014. Published by Elsevier B.V.

  14. Biological characterization of F-18-labeled rhodamine B, a potential positron emission tomography perfusion tracer.

    PubMed

    Bartholomä, Mark D; He, Huamei; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; McGowan, Francis X; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2013-11-01

    Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an (18)F-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on (18)F-labeled rhodamine B. The goal of this study was to more completely define the biological properties of (18)F-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake (18)F-labeled rhodamine B by cardiomyocytes. A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100-150 μCi of (18)F-labeled rhodamine B diethylene glycol ester ([(18)F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [(18)F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Small-animal PET showed intense and uniform uptake of [(18)F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [(18)F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ~40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [(18)F]RhoBDEGF in the mitochondria of rat cardiomyocytes. Fluorine-18

  15. Biological Characterization of F-18-Labeled Rhodamine B, a Potential Positron Emission Tomography Perfusion Tracer

    PubMed Central

    Bartholomä, Mark D.; He, Huamei; Pacak, Christina; Dunning, Patricia; Fahey, Frederic H.; McGowan, Francis; Cowan, Douglas; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    Introduction Myocardial infarction is the leading cause of death in western countries, and positron emission tomography (PET) plays an increasing role in the diagnosis and treatment planning for this disease. However, the absence of an F-18-labeled PET myocardial perfusion tracer hampers the widespread use of PET in myocardial perfusion imaging (MPI). We recently reported a potential MPI agent based on F-18-labeled rhodamine B. The goal of this study was to more completely define the biological properties of F-18-labeled rhodamine B with respect to uptake and localization in an animal model of myocardial infarction and to evaluate the uptake F-18-labeled rhodamine B by cardiomyocytes. Methods A total of 12 female Sprague Dawley rats with a permanent ligation of the left anterior descending artery (LAD) were studied with small-animal PET. The animals were injected with 100–150 µCi of F-18-labeled rhodamine B diethylene glycol ester ([18F]RhoBDEGF) and imaged two days before ligation. The animals were imaged again two to ten days post-ligation. After the post-surgery scans, the animals were euthanized and the hearts were sectioned into 1 mm slices and myocardial infarct size was determined by phosphorimaging and 2,3,5-triphenyltetrazolium chloride staining (TTC). In addition, the uptake of [18F]RhoBDEGF in isolated rat neonatal cardiomyocytes was determined by fluorescence microscopy. Results Small-animal PET showed intense and uniform uptake of [18F]RhoBDEGF throughout the myocardium in healthy rats. After LAD ligation, well defined perfusion defects were observed in the PET images. The defect size was highly correlated with the infarct size as determined ex vivo by phosphorimaging and TTC staining. In vitro, [18F]RhoBDEGF was rapidly internalized into rat cardiomyocytes with ~40 % of the initial activity internalized within the 60 min incubation time. Fluorescence microscopy clearly demonstrated localization of [18F]RhoBDEGF in the mitochondria of rat

  16. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure.

    PubMed

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B; Verberne, Hein J

    2017-01-01

    Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,-transversum,-descendens and sigmoid). The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss.

  17. Fatal mechanical asphyxia induces changes in energy utilization in the rat brain: An (18)F-FDG-PET study.

    PubMed

    Ma, Suhua; You, Shengzhong; Hao, Li; Zhang, Dongchuan; Quan, Li

    2015-07-01

    This study was designed to evaluate changes in brain glucose metabolism in rats following ligature strangulation. Thirteen male Wistar rats were used in the present study, divided into control (n=7) and asphyxia groups (n=6, ligature strangulation). Positron emission tomography (PET) with 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) was used to evaluate brain glucose metabolism. Rats were scanned for PET-CT, and image data co-registered with a T2WI MRI template using SPM8 software. Image J was employed to draw regions of interest (ROIs) from the MRI template and acquire ROI activity information from the PET images. In the asphyxia group vs. controls, (18)F-FDG uptake (FU) was decreased in the substantia nigra (25.26%, p<0.001), rhombencephalon (pons/medulla oblongata, 13.92%, p<0.01), hypothalamus (22.06%, p<0.01), ventral tegmentum (10.12%, p<0.05) and amygdala (12.74%, p<0.05); however, FU was increased in motor (18.21%, p<0.05) and visual cortices (19.2%, p<0.05). The glucose metabolism distribution map in the asphyxiated rat brains were substantially changed versus controls. PET with (18)F-FDG can demonstrate excitement and inhibition of different brain areas even in cases of ligature strangulation. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  18. No-carrier-added (18F)-N-methylspiroperidol

    DOEpatents

    Shiue, Chyng-Yann; Fowler, Joanna S.; Wolf, Alfred P.

    1993-01-01

    There is disclosed a radioligand labeled with a positron emitting radionuclide suitable for dynamic study in living humans with positron emission transaxial tomography. [.sup.18 F]-N-methylspiroperidol, exhibiting extremely high affinity for the dopamine receptors, provides enhanced uptake and retention in the brain concomitant with reduced radiation burden. These characteristics all combine to provide [.sup.18 F]-N-methylspiroperidol as a radioligand superior to known radioligands for mapping dopamine receptors in normal and disease states in the living brain. Additionally, a new synthetic procedure for this material is disclosed.

  19. No-carrier-added (18F)-N-methylspiroperidol

    DOEpatents

    Shiue, Chyng-Yann; Fowler, Joanna S.; Wolf, Alfred P.

    1993-07-06

    There is disclosed a radioligand labeled with a positron emitting radionuclide suitable for dynamic study in living humans with positron emission transaxial tomography. [.sup.18 F]-N-methylspiroperidol, exhibiting extremely high affinity for the dopamine receptors, provides enhanced uptake and retention in the brain concomitant with reduced radiation burden. These characteristics all combine to provide [.sup.18 F]-N-methylspiroperidol as a radioligand superior to known radioligands for mapping dopamine receptors in normal and disease states in the living brain. Additionally, a new synthetic procedure for this material is disclosed.

  20. Enhancing spatial resolution of (18)F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine.

    PubMed

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I; Shi, Kuangyu

    2015-07-07

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by (18)F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [(18)F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  1. Enhancing spatial resolution of 18F positron imaging with the Timepix detector by classification of primary fired pixels using support vector machine

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Liu, Zhen; Ziegler, Sibylle I.; Shi, Kuangyu

    2015-07-01

    Position-sensitive positron cameras using silicon pixel detectors have been applied for some preclinical and intraoperative clinical applications. However, the spatial resolution of a positron camera is limited by positron multiple scattering in the detector. An incident positron may fire a number of successive pixels on the imaging plane. It is still impossible to capture the primary fired pixel along a particle trajectory by hardware or to perceive the pixel firing sequence by direct observation. Here, we propose a novel data-driven method to improve the spatial resolution by classifying the primary pixels within the detector using support vector machine. A classification model is constructed by learning the features of positron trajectories based on Monte-Carlo simulations using Geant4. Topological and energy features of pixels fired by 18F positrons were considered for the training and classification. After applying the classification model on measurements, the primary fired pixels of the positron tracks in the silicon detector were estimated. The method was tested and assessed for [18F]FDG imaging of an absorbing edge protocol and a leaf sample. The proposed method improved the spatial resolution from 154.6   ±   4.2 µm (energy weighted centroid approximation) to 132.3   ±   3.5 µm in the absorbing edge measurements. For the positron imaging of a leaf sample, the proposed method achieved lower root mean square error relative to phosphor plate imaging, and higher similarity with the reference optical image. The improvements of the preliminary results support further investigation of the proposed algorithm for the enhancement of positron imaging in clinical and preclinical applications.

  2. Prospective Evaluation of 18F-Fluorodeoxyglucose Uptake in Postischemic Myocardium by Simultaneous Positron Emission Tomography/Magnetic Resonance Imaging as a Prognostic Marker of Functional Outcome.

    PubMed

    Rischpler, Christoph; Dirschinger, Ralf J; Nekolla, Stephan G; Kossmann, Hans; Nicolosi, Stefania; Hanus, Franziska; van Marwick, Sandra; Kunze, Karl P; Meinicke, Alexander; Götze, Katharina; Kastrati, Adnan; Langwieser, Nicolas; Ibrahim, Tareq; Nahrendorf, Matthias; Schwaiger, Markus; Laugwitz, Karl-Ludwig

    2016-04-01

    The immune system orchestrates the repair of infarcted myocardium. Imaging of the cellular inflammatory response by (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/magnetic resonance imaging in the heart has been demonstrated in preclinical and clinical studies. However, the clinical relevance of post-MI (18)F-FDG uptake in the heart has not been elucidated. The objective of this study was to explore the value of (18)F-FDG positron emission tomography/magnetic resonance imaging in patients after acute myocardial infarction as a biosignal for left ventricular functional outcome. We prospectively enrolled 49 patients with ST-segment-elevation myocardial infarction and performed (18)F-FDG positron emission tomography/magnetic resonance imaging 5 days after percutaneous coronary intervention and follow-up cardiac magnetic resonance imaging after 6 to 9 months. In a subset of patients, (99m)Tc-sestamibi single-photon emission computed tomography was performed with tracer injection before revascularization. Cellular innate immune response was analyzed at multiple time points. Segmental comparison of (18)F-FDG-uptake and late gadolinium enhancement showed substantial overlap (κ=0.66), whereas quantitative analysis demonstrated that (18)F-FDG extent exceeded late gadolinium enhancement extent (33.2±16.2% left ventricular myocardium versus 20.4±10.6% left ventricular myocardium, P<0.0001) and corresponded to the area at risk (r=0.87, P<0.0001). The peripheral blood count of CD14(high)/CD16(+) monocytes correlated with the infarction size and (18)F-FDG signal extent (r=0.53, P<0.002 and r=0.42, P<0.02, respectively). (18)F-FDG uptake in the infarcted myocardium was highest in areas with transmural scar, and the standardized uptake valuemean was associated with left ventricular functional outcome independent of infarct size (Δ ejection fraction: P<0.04, Δ end-diastolic volume: P<0.02, Δ end-systolic volume: P<0.005). In this study, the intensity of (18

  3. Cholangiocarcinoma associated with limbic encephalitis and early cerebral abnormalities detected by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography: a case report.

    PubMed

    Schmidt, Sergio L; Schmidt, Juliana J; Tolentino, Julio C; Ferreira, Carlos G; de Almeida, Sergio A; Alvarenga, Regina P; Simoes, Eunice N; Schmidt, Guilherme J; Canedo, Nathalie H S; Chimelli, Leila

    2016-07-20

    Limbic encephalitis was originally described as a rare clinical neuropathological entity involving seizures and neuropsychological disturbances. In this report, we describe cerebral patterns visualized by positron emission tomography in a patient with limbic encephalitis and cholangiocarcinoma. To our knowledge, there is no other description in the literature of cerebral positron emission tomography findings in the setting of limbic encephalitis and subsequent diagnosis of cholangiocarcinoma. We describe a case of a 77-year-old Caucasian man who exhibited persistent cognitive changes 2 years before his death. A cerebral scan obtained at that time by 2-deoxy-2-[fluorine-18]fluoro- D -glucose integrated with computed tomography-positron emission tomography showed low radiotracer uptake in the frontal and temporal lobes. Cerebrospinal fluid analysis indicated the presence of voltage-gated potassium channel antibodies. Three months before the patient's death, a lymph node biopsy indicated a cholangiocarcinoma, and a new cerebral scan obtained by 2-deoxy-2-[fluorine-18]fluoro-D-glucose integrated with computed tomography-positron emission tomography showed an increment in the severity of metabolic deficit in the frontal and parietal lobes, as well as hypometabolism involving the temporal lobes. Two months before the patient's death, cerebral metastases were detected on a contrast-enhanced computed tomographic scan. Postmortem examination revealed a cholangiocarcinoma with multiple metastases including the lungs and lymph nodes. The patient's brain weighed 1300 g, and mild cortical atrophy, ex vacuo dilation of the ventricles, and mild focal thickening of the cerebellar leptomeninges, which were infiltrated by neoplastic epithelial cells, were observed. These findings support the need for continued vigilance in malignancy surveillance in patients with limbic encephalitis and early cerebral positron emission tomographic scan abnormalities. The difficulty in early

  4. Comparison of five segmentation tools for 18F-fluoro-deoxy-glucose-positron emission tomography-based target volume definition in head and neck cancer.

    PubMed

    Schinagl, Dominic A X; Vogel, Wouter V; Hoffmann, Aswin L; van Dalen, Jorn A; Oyen, Wim J; Kaanders, Johannes H A M

    2007-11-15

    Target-volume delineation for radiation treatment to the head and neck area traditionally is based on physical examination, computed tomography (CT), and magnetic resonance imaging. Additional molecular imaging with (18)F-fluoro-deoxy-glucose (FDG)-positron emission tomography (PET) may improve definition of the gross tumor volume (GTV). In this study, five methods for tumor delineation on FDG-PET are compared with CT-based delineation. Seventy-eight patients with Stages II-IV squamous cell carcinoma of the head and neck area underwent coregistered CT and FDG-PET. The primary tumor was delineated on CT, and five PET-based GTVs were obtained: visual interpretation, applying an isocontour of a standardized uptake value of 2.5, using a fixed threshold of 40% and 50% of the maximum signal intensity, and applying an adaptive threshold based on the signal-to-background ratio. Absolute GTV volumes were compared, and overlap analyses were performed. The GTV method of applying an isocontour of a standardized uptake value of 2.5 failed to provide successful delineation in 45% of cases. For the other PET delineation methods, volume and shape of the GTV were influenced heavily by the choice of segmentation tool. On average, all threshold-based PET-GTVs were smaller than on CT. Nevertheless, PET frequently detected significant tumor extension outside the GTV delineated on CT (15-34% of PET volume). The choice of segmentation tool for target-volume definition of head and neck cancer based on FDG-PET images is not trivial because it influences both volume and shape of the resulting GTV. With adequate delineation, PET may add significantly to CT- and physical examination-based GTV definition.

  5. [18F]-2-Fluoro-2-Deoxy-D-glucose-PET Assessment of Cervical Cancer.

    PubMed

    Viswanathan, Chitra; Faria, Silvana; Devine, Catherine; Patnana, Madhavi; Sagebiel, Tara; Iyer, Revathy B; Bhosale, Priya R

    2018-04-01

    This article provides an overview of PET in cervical cancer, primarily with regard to the use of 18 F-2-fluoro-2-deoxy-d-glucose-PET/computed tomography. A brief discussion of upcoming technologies, such as PET/MR imaging, is presented. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Dual acquisition of 18F-FMISO and 18F-FDOPA

    NASA Astrophysics Data System (ADS)

    Bell, Christopher; Rose, Stephen; Puttick, Simon; Pagnozzi, Alex; Poole, Christopher M.; Gal, Yaniv; Thomas, Paul; Fay, Michael; Jeffree, Rosalind L.; Dowson, Nicholas

    2014-07-01

    Metabolic imaging using positron emission tomography (PET) has found increasing clinical use for the management of infiltrating tumours such as glioma. However, the heterogeneous biological nature of tumours and intrinsic treatment resistance in some regions means that knowledge of multiple biological factors is needed for effective treatment planning. For example, the use of 18F-FDOPA to identify infiltrative tumour and 18F-FMISO for localizing hypoxic regions. Performing multiple PET acquisitions is impractical in many clinical settings, but previous studies suggest multiplexed PET imaging could be viable. The fidelity of the two signals is affected by the injection interval, scan timing and injected dose. The contribution of this work is to propose a framework to explicitly trade-off signal fidelity with logistical constraints when designing the imaging protocol. The particular case of estimating 18F-FMISO from a single frame prior to injection of 18F-FDOPA is considered. Theoretical experiments using simulations for typical biological scenarios in humans demonstrate that results comparable to a pair of single-tracer acquisitions can be obtained provided protocol timings are carefully selected. These results were validated using a pre-clinical data set that was synthetically multiplexed. The results indicate that the dual acquisition of 18F-FMISO and 18F-FDOPA could be feasible in the clinical setting. The proposed framework could also be used to design protocols for other tracers.

  7. Novel methodology for labelling mesoporous silica nanoparticles using the 18F isotope and their in vivo biodistribution by positron emission tomography

    NASA Astrophysics Data System (ADS)

    Rojas, Santiago; Gispert, Juan Domingo; Menchón, Cristina; Baldoví, Herme G.; Buaki-Sogo, Mireia; Rocha, Milagros; Abad, Sergio; Victor, Victor Manuel; García, Hermenegildo; Herance, José Raúl

    2015-03-01

    Nanoparticles have been proposed for several biomedical applications due to their potential as drug carriers, diagnostic and therapeutic agents. However, only a few of them have been approved for their use in humans. In order to gauge the potential applicability of a specific type of nanoparticle, in vivo biodistribution studies to characterize their pharmacokinetic properties are essential. In this regard, mesoporous silica nanoparticles (30-130 nm) have been functionalized with amino groups in order to react with N-succinimidyl 4-[18F]fluorobenzoate and thus anchor the 18F positron emission isotope by using a novel and easy labelling strategy. In vivo biodistribution was characterized in mice after intravenous administration of radiolabelled nanoparticles by positron emission tomography. Our results indicated that radiolabelled mesoporous silica nanoparticles were excreted into bile and urine and accumulated mainly in the organs of the reticuloendothelial system and lungs.

  8. 18F-FDG uptake in the colon is modulated by metformin but not associated with core body temperature and energy expenditure

    PubMed Central

    Bahler, Lonneke; Holleman, Frits; Chan, Man-Wai; Booij, Jan; Hoekstra, Joost B.; Verberne, Hein J.

    2017-01-01

    Purpose Physiological colonic 18F-fluorodeoxyglucose (18F-FDG) uptake is a frequent finding on 18F-FDG positron emission tomography computed tomography (PET-CT). Interestingly, metformin, a glucose lowering drug associated with moderate weight loss, is also associated with an increased colonic 18F-FDG uptake. Consequently, increased colonic glucose use might partly explain the weight losing effect of metformin when this results in an increased energy expenditure and/or core body temperature. Therefore, we aimed to determine whether metformin modifies the metabolic activity of the colon by increasing glucose uptake. Methods In this open label, non-randomized, prospective mechanistic study, we included eight lean and eight overweight males. We measured colonic 18F-FDG uptake on PET-CT, energy expenditure and core body temperature before and after the use of metformin. The maximal colonic 18F-FDG uptake was measured in 5 separate segments (caecum, colon ascendens,—transversum,—descendens and sigmoid). Results The maximal colonic 18F-FDG uptake increased significantly in all separate segments after the use of metformin. There was no significant difference in energy expenditure or core body temperature after the use of metformin. There was no correlation between maximal colonic 18F-FDG uptake and energy expenditure or core body temperature. Conclusion Metformin significantly increases colonic 18F-FDG uptake, but this increased uptake is not associated with an increase in energy expenditure or core body temperature. Although the colon might be an important site of the glucose plasma lowering actions of metformin, this mechanism of action does not explain directly any associated weight loss. PMID:28464031

  9. Can 3'-Deoxy-3'-((18)F) Fluorothymidine Out Perform 2-Deoxy-2-((18)F) Fluoro-D-Glucose Positron Emission Tomography/Computed Tomography in the Diagnosis of Cervical Lymphadenopathy in Patients With Oral/Head and Neck Cancer?

    PubMed

    Schaefferkoetter, Joshua D; Carlson, Eric R; Heidel, Robert E

    2015-07-01

    The present study investigated the performance of cellular metabolism imaging with 2-deoxy-2-((18)F) fluoro-D-glucose (FDG) versus cellular proliferation imaging with 3'-deoxy-3'-((18)F) fluorothymidine (FLT) in the detection of cervical lymph node metastases in oral/head and neck cancer. We conducted a prospective cohort study to assess a head-to-head performance of FLT imaging and clinical FDG imaging for characterizing cervical lymph node metastases in patients with squamous cell carcinoma (SCC) of the oral/head and neck region. The primary predictor variable of the study was the presence of FDG or FLT avidity within the cervical lymph nodes. The primary outcome variable was the histologic presence of metastatic SCC in the cervical lymph nodes. The performance was reported in terms of the sensitivity, specificity, accuracy, and positive and negative predictive values. The overall accuracy for discriminating positive from negative lymph nodes was evaluated as a function of the positron emission tomography (PET) standardized uptake value (SUV). Receiver operating characteristic (ROC) analyses were performed for both tracers. Eleven patients undergoing surgical resection of SCC of the oral/head and neck region underwent preoperative FDG and FLT PET-computed tomography (CT) scans on separate days. The interpretation of the FDG PET-CT imaging resulted in sensitivity, specificity, accuracy, positive predictive value, and negative predictive value of 43.2, 99.5, 94.4, 88.9, and 94.7%, respectively. The sensitivity, specificity, accuracy, positive predictive value, and negative predictive value for FLT PET-CT imaging was 75.7, 99.2, 97.1, 90.3, and 97.7%, respectively. The areas under the curve for the ROC curves were 0.9 and 0.84 for FDG and FLT, respectively. Poor correlation was observed between the SUV for FDG and FLT within the lymph nodes and tumors. FLT showed better overall performance for detecting lymphadenopathy on qualitative assessment within the total

  10. Radiosynthesis and validation of (±)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a PET tracer of lactate to monitor MCT1-dependent lactate uptake in tumors.

    PubMed

    Van Hée, Vincent F; Labar, Daniel; Dehon, Gwenaël; Grasso, Debora; Grégoire, Vincent; Muccioli, Giulio G; Frédérick, Raphaël; Sonveaux, Pierre

    2017-04-11

    Cancers develop metabolic strategies to cope with their microenvironment often characterized by hypoxia, limited nutrient bioavailability and exposure to anticancer treatments. Among these strategies, the metabolic symbiosis based on the exchange of lactate between hypoxic/glycolytic cancer cells that convert glucose to lactate and oxidative cancer cells that preferentially use lactate as an oxidative fuel optimizes the bioavailability of glucose to hypoxic cancer cells. This metabolic cooperation has been described in various human cancers and can provide resistance to anti-angiogenic therapies. It depends on the expression and activity of monocarboxylate transporters (MCTs) at the cell membrane. MCT4 is the main facilitator of lactate export by glycolytic cancer cells, and MCT1 is adapted for lactate uptake by oxidative cancer cells. While MCT1 inhibitor AZD3965 is currently tested in phase I clinical trials and other inhibitors of lactate metabolism have been developed for anticancer therapy, predicting and monitoring a response to the inhibition of lactate uptake is still an unmet clinical need. Here, we report the synthesis, evaluation and in vivo validation of (±)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a tracer of lactate for positron emission tomography. [18F]-FLac offers the possibility to monitor MCT1-dependent lactate uptake and inhibition in tumors in vivo.

  11. Pleuroperitoneal Mesothelioma: A Rare Entity on 18F-FDG PET/CT

    PubMed Central

    Sahoo, Manas Kumar; Mukherjee, Anirban; Girish; Parida, Kumar; Agarwal, Krishan Kant; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    Pleuroperitoneal mesothelioma is an extremely rare entity. Only few cases are reported worldwide. We hereby represent a case of pleural mesothelioma referred for F-18-Fluorodeoxyglucose positron emission tomography/computed tomography for response evaluation. Diffuse F-18-Fluorodeoxyglucose avid peritoneal and omental thickening noted which subsequently turned out to be mesothelial involvement on peritoneal biopsy. This case demonstrates the role of F-18-Fluorodeoxyglucose positron emission tomography/computed tomography in detecting other sites of involvement in case of malignant mesothelioma. PMID:28242997

  12. A prospective evaluation of the impact of 18-F-fluoro-deoxy-D-glucose positron emission tomography staging on survival for patients with locally advanced esophageal cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blackstock, A. William; Farmer, Michael R.; Lovato, James

    2006-02-01

    Purpose: To determine the impact of 18-F-fluoro-deoxy-D-glucose positron emission tomography (FDG-PET) in the staging and prognosis of patients with locally advanced esophageal cancer (LAEC). Methods and Materials: Between January 2000 and October 2004, all patients with LAEC evaluated in the Department of Radiation Oncology were considered for enrollment into a Phase II trial of preoperative chemoradiation. Entry required a staging whole-body FDG-PET scan. Results: One hundred ten consecutive patients were evaluated; 38 were ineligible for reasons including treatment elsewhere, prior malignancy, or refusal of treatment. After conventional staging (clinical examination, endoscopic ultrasound, and chest/abdominal computerized tomography), 33 patients were ineligiblemore » because of metastatic disease or poor performance status. Of the remaining 39 patients, 23 were confirmed to have LAEC after FDG-PET staging and were treated in the Phase II trial (Cohort I). Sixteen patients, however, had FDG-PET findings consistent with occult metastatic disease and were deemed ineligible for the trial but were treated with curative intent (Cohort II). The 2-year survival rate for the 23 patients in Cohort I was 64%, compared with 17% (p = 0.003) for patients in Cohort II (FDG-PET positive). Conclusions: More than one-third of patients determined to have LAEC with conventional staging were upstaged with the use of FDG-PET. Despite comparable therapy, upstaging with FDG-PET predicts poor 2-year survival.« less

  13. Occupancy of Norepinephrine Transporter by Duloxetine in Human Brains Measured by Positron Emission Tomography with (S,S)-[18F]FMeNER-D2.

    PubMed

    Moriguchi, Sho; Takano, Harumasa; Kimura, Yasuyuki; Nagashima, Tomohisa; Takahata, Keisuke; Kubota, Manabu; Kitamura, Soichiro; Ishii, Tatsuya; Ichise, Masanori; Zhang, Ming-Rong; Shimada, Hitoshi; Mimura, Masaru; Meyer, Jeffrey H; Higuchi, Makoto; Suhara, Tetsuya

    2017-12-01

    The norepinephrine transporter in the brain has been targeted in the treatment of psychiatric disorders. Duloxetine is a serotonin and norepinephrine reuptake inhibitor that has been widely used for the treatment of depression. However, the relationship between dose and plasma concentration of duloxetine and norepinephrine transporter occupancy in the human brain has not been determined. In this study, we examined norepinephrine transporter occupancy by different doses of duloxetine. We calculated norepinephrine transporter occupancies from 2 positron emission tomography scans using (S,S)-[18F]FMeNER-D2 before and after a single oral dose of duloxetine (20 mg, n = 3; 40 mg, n = 3; 60 mg, n =2). Positron emission tomography scans were performed from 120 to 180 minutes after an i.v. bolus injection of (S,S)-[18F]FMeNER-D2. Venous blood samples were taken to measure the plasma concentration of duloxetine just before and after the second positron emission tomography scan. Norepinephrine transporter occupancy by duloxetine was 29.7% at 20 mg, 30.5% at 40 mg, and 40.0% at 60 mg. The estimated dose of duloxetine inducing 50% norepinephrine transporter occupancy was 76.8 mg, and the estimated plasma drug concentration inducing 50% norepinephrine transporter occupancy was 58.0 ng/mL. Norepinephrine transporter occupancy by clinical doses of duloxetine was approximately 30% to 40% in human brain as estimated using positron emission tomography with (S,S)-[18F]FMeNER-D2. © The Author 2017. Published by Oxford University Press on behalf of CINP.

  14. Initial Assessment of β3-Adrenoceptor-Activated Brown Adipose Tissue in Streptozotocin-Induced Type 1 Diabetes Rodent Model Using [18F]Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography.

    PubMed

    Baranwal, Aparna; Mirbolooki, M Reza; Mukherjee, Jogeshwar

    2015-01-01

    Metabolic activity of brown adipose tissue (BAT) is activated by β3-adrenoceptor agonists and norepinephrine transporter (NET) blockers and is measurable using [(18)F]fluorodeoxyglucose ([(18)F]FDG) positron emission tomography/computed tomography (PET/CT) in rats. Using the streptozotocin (STZ)-treated rat model of type 1 diabetes mellitus (T1DM), we investigated BAT activity in this rat model under fasting and nonfasting conditions using [(18)F]FDG PET/CT. Drugs that enhance BAT activity may have a potential for therapeutic development in lowering blood sugar in insulin-resistant diabetes. Rats were rendered diabetic by administration of STZ and confirmed by glucose measures. [(18)F]FDG was injected in the rats (fasted or nonfasted) pretreated with either saline or β3-adrenoceptor agonist CL316,243 or the NET blocker atomoxetine for PET/CT scans. [(18)F]FDG metabolic activity was computed as standard uptake values (SUVs) in interscapular brown adipose tissue (IBAT) and compared across the different drug treatment conditions. Blood glucose levels > 500 mg/dL were established for the STZ-treated diabetic rats. Under fasting conditions, average uptake of [(18)F]FDG in the IBAT of STZ-treated diabetic rats was approximately 70% lower compared to that of normal rats. Both CL316,243 and atomoxetine activated IBAT in normal rats had an SUV > 5, whereas activation in STZ-treated rats was significantly lower. The agonist CL316,243 activated IBAT up to threefold compared to saline in the fasted STZ-treated rat. In the nonfasted rat, the IBAT activation was up by twofold by CL316243. Atomoxetine had a greater effect on lowering blood sugar levels compared to CL316,243 in the nonfasted rats. A significant reduction in metabolic activity was observed in the STZ-treated diabetic rodent model. Increased IBAT activity in the STZ-treated diabetic rat under nonfasted conditions using the β3-adrenoceptor agonist CL316,243 suggests a potential role of BAT in modulating blood

  15. Novel radiosynthesis of PET HSV-tk gene reporter probes [18F]FHPG and [18F]FHBG employing dual Sep-Pak SPE techniques.

    PubMed

    Wang, Ji-Quan; Zheng, Qi-Huang; Fei, Xiangshu; Mock, Bruce H; Hutchins, Gary D

    2003-11-17

    Positron emission tomography (PET) herpes simplex virus thymidine kinase (HSV-tk) gene reporter probes 9-[(3-[(18)F]fluoro-1-hydroxy-2-propoxy)methyl]guanine ([(18)F]FHPG) and 9-(4-[(18)F]fluoro-3-hydroxymethylbutyl)guanine ([(18)F]FHBG) were prepared by nucleophilic substitution of the appropriate tosylated precursors with [(18)F]KF/Kryptofix 2.2.2 followed by a quick deprotection reaction and purification with a simplified dual Silica Sep-Pak solid-phase extraction (SPE) method in 15-30% radiochemical yield.

  16. [Chilean experience with the use of 18F-deoxyglucose positron emission tomography].

    PubMed

    Massardo, Teresa; Jofré, M Josefina; Sierralta, Paulina; Canessa, José; González, Patricio; Humeres, Pamela; Valdebenito, Robert

    2007-03-01

    Clinical oncology is the main application of 18F-deoxyglucose (FDG) positron emission tomography (PET). To evaluate the first 1,000 patients studied with FDG PET in Chile. Retrospective analysis of 1,000 patients (aged between 1 and 94 years, 550 females) studied with FDG PET, since 2003. All studies were performed in a high resolution Siemens Ecat-Exact HR (+). All reports were based on the visual analysis of three plane and three-dimensional images. Ninety seven percent of exams were done for oncological indications, mainly lung lesions, lymphoma, colorectal and gastroesophageal, cancer and breast tumors. Only 1% of patients had brain tumors. Non tumor neurological indications corresponded to 1.7%. Cardiac studies were only 0.3% and inflammatory process corresponded to 1%. The 5.6% corresponded to pediatric population. Six percent of patients were aged less than 18 years and in 50% of them, the indication was oncological, mainly lymphomas, brain tumors, endocrine cancers and sarcomas. The remaining 50% had a neurological indications, mainly for refractory epilepsy. PET FDG imaging was effective in the management of diverse diseases of children and adults.

  17. Influence of 24-Nor-Ursodeoxycholic Acid on Hepatic Disposition of [(18)F]Ciprofloxacin, a Positron Emission Tomography Study in Mice.

    PubMed

    Wanek, Thomas; Halilbasic, Emina; Visentin, Michele; Mairinger, Severin; Römermann, Kerstin; Stieger, Bruno; Kuntner, Claudia; Müller, Markus; Langer, Oliver; Trauner, Michael

    2016-01-01

    24-nor-ursodeoxycholic acid (norUDCA) is a novel therapeutic approach to cholestatic liver diseases. In mouse models of cholestasis, norUDCA induces basolateral multidrug resistance-associated proteins 4 (Mrp4) and 3 in hepatocytes, which provide alternative escape routes for bile acids accumulating during cholestasis but could also result in altered hepatic disposition of concomitantly administered substrate drugs. We used positron emission tomography imaging to study the influence of norUDCA on hepatic disposition of the model Mrp4 substrate [(18)F]ciprofloxacin in wild-type and Mdr2((-/-)) mice, a model of cholestasis. Animals underwent [(18)F]ciprofloxacin positron emission tomography at baseline and after norUDCA treatment. After norUDCA treatment, liver-to-blood area under the curve ratio of [(18)F]ciprofloxacin was significantly decreased compared to baseline, both in wild-type (-34.0 ± 2.1%) and Mdr2((-/-)) mice (-20.5 ± 6.0%). [(18)F]Ciprofloxacin uptake clearance from blood into liver was reduced by -17.1 ± 9.0% in wild-type and by -20.1 ± 7.3% in Mdr2((-/-)) mice. Real-time PCR analysis showed significant increases in hepatic Mrp4 and multidrug resistance-associated protein 3 mRNA after norUDCA. Transport experiments in organic anion transporting polypeptide (OATP)1B1-, OATP1B3-, and OATP2B1-transfected cells revealed weak transport of [(14)C]ciprofloxacin by OATP1B3 and OATP2B1 and no inhibition by norUDCA. In conclusion, our data suggest that changes in hepatic [(18)F]ciprofloxacin disposition in mice after norUDCA treatment were caused by induction of basolateral Mrp4 in hepatocytes. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  18. Kinetic filtering of [18F]Fluorothymidine in positron emission tomography studies

    NASA Astrophysics Data System (ADS)

    Gray, Katherine R.; Contractor, Kaiyumars B.; Kenny, Laura M.; Al-Nahhas, Adil; Shousha, Sami; Stebbing, Justin; Wasan, Harpreet S.; Coombes, R. Charles; Aboagye, Eric O.; Turkheimer, Federico E.; Rosso, Lula

    2010-02-01

    [18F]Fluorothymidine (FLT) is a cell proliferation marker that undergoes predominantly hepatic metabolism and therefore shows a high level of accumulation in the liver, as well as in rapidly proliferating tumours. Furthermore, the tracer's uptake is substantial in other organs including the heart. We present a nonlinear kinetic filtering technique which enhances the visualization of tumours imaged with FLT positron emission tomography (FLT-PET). A classification algorithm to isolate cancerous tissue from healthy organs was developed and validated using 29 scan data from patients with locally advanced or metastatic breast cancer. A large reduction in signal from the liver and heart of 80% was observed following application of the kinetic filter, whilst the majority of signal from both primary tumours and metastases was retained. A scan acquisition time of 60 min has been shown to be sufficient to obtain the necessary kinetic data. The algorithm extends utility of FLT-PET imaging in oncology research.

  19. Optimizing 18F-FDG PET/CT Imaging of Vessel Wall Inflammation –The Impact of 18F-FDG Circulation Time, Injected Dose, Uptake Parameters, and Fasting Blood Glucose Levels

    PubMed Central

    Bucerius, Jan; Mani, Venkatesh; Moncrieff, Colin; Machac, Josef; Fuster, Valentin; Farkouh, Michael E.; Tawakol, Ahmed; Rudd, James H. F.; Fayad, Zahi A.

    2014-01-01

    Purpose 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) is increasingly used for imaging of vessel wall inflammation. However, limited data is available regarding the impact of methodological variables, i. e. patient’s pre-scan fasting glucose, the FDG circulation time, the injected FDG dose, and of different FDG uptake parameters, in vascular FDG-PET imaging. Methods 195 patients underwent vascular FDG-PET/CT of the aorta and the carotids. Arterial standard uptake values (meanSUVmax) as well as target-to-background-ratios (meanTBRmax) and the FDG blood pool activity in the superior vein cava (SVC) and the jugular veins (JV) were quantified. Vascular FDG uptake classified according to tertiles of patient’s pre-scan fasting glucose levels, the FDG circulation time, and the injected FDG dose was compared using ANOVA. Multivariate regression analyses were performed to identify the potential impact of all variables described on the arterial and blood pool FDG uptake. Results Tertile analyses revealed FDG circulation times of about 2.5 h and prescan glucose levels of less than 7.0 mmol/l showing favorable relations between the arterial and blood pool FDG uptake. FDG circulation times showed negative associations with the aortic meanSUVmax values as well as SVC- and JV FDG blood pool activity but a positive correlation with the aortic- and carotid meanTBRmax values. Pre-scan glucose was negatively associated with aortic- and carotid meanTBRmax and carotid meanSUVmax values, but correlated positively with the SVC blood pool uptake. Injected FDG dose failed to show any significant association with the vascular FDG uptake. Conclusion FDG circulation times and pre-scan blood glucose levels significantly impact FDG uptake within the aortic and carotid wall and may bias the results of image interpretation in patients undergoing vascular FDG-PET/CT. FDG dose injected was less critical. Therefore, circulation times of about 2.5 h and pre-scan glucose levels

  20. Synthesis and preclinical characterization of 1-(6'-deoxy-6'-[18F]fluoro-β-d-allofuranosyl)-2-nitroimidazole (β-6'-[18F]FAZAL) as a positron emission tomography radiotracer to assess tumor hypoxia.

    PubMed

    Wanek, Thomas; Kreis, Katharina; Križková, Petra; Schweifer, Anna; Denk, Christoph; Stanek, Johann; Mairinger, Severin; Filip, Thomas; Sauberer, Michael; Edelhofer, Patricia; Traxl, Alexander; Muchitsch, Viktoria E; Mereiter, Kurt; Hammerschmidt, Friedrich; Cass, Carol E; Damaraju, Vijaya L; Langer, Oliver; Kuntner, Claudia

    2016-11-01

    Positron emission tomography (PET) using fluorine-18 ( 18 F)-labeled 2-nitroimidazole radiotracers has proven useful for assessment of tumor oxygenation. However, the passive diffusion-driven cellular uptake of currently available radiotracers results in slow kinetics and low tumor-to-background ratios. With the aim to develop a compound that is actively transported into cells, 1-(6'-deoxy-6'-[ 18 F]fluoro-β-d-allofuranosyl)-2-nitroimidazole (β-[ 18 F]1), a putative nucleoside transporter substrate, was synthetized by nucleophilic [ 18 F]fluoride substitution of an acetyl protected labeling precursor with a tosylate leaving group (β-6) in a final radiochemical yield of 12±8% (n=10, based on [ 18 F]fluoride starting activity) in a total synthesis time of 60min with a specific activity at end of synthesis of 218±58GBq/μmol (n=10). Both radiolabeling precursor β-6 and unlabeled reference compound β-1 were prepared in multistep syntheses starting from 1,2:5,6-di-O-isopropylidene-α-d-allofuranose. In vitro experiments demonstrated an interaction of β-1 with SLC29A1 and SLC28A1/2/3 nucleoside transporter as well as hypoxia specific retention of β-[ 18 F]1 in tumor cell lines. In biodistribution studies in healthy mice β-[ 18 F]1 showed homogenous tissue distribution and excellent metabolic stability, which was unaffected by tissue oxygenation. PET studies in tumor bearing mice showed tumor-to-muscle ratios of 2.13±0.22 (n=4) at 2h after administration of β-[ 18 F]1. In ex vivo autoradiography experiments β-[ 18 F]1 distribution closely matched staining with the hypoxia marker pimonidazole. In conclusion, β-[ 18 F]1 shows potential as PET hypoxia radiotracer which merits further investigation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Simultaneous whole body 18F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with 18F-fluorodeoxyglucose positron emission tomography computed tomography

    PubMed Central

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-01-01

    AIM: To describe our preliminary experience with simultaneous whole body 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. METHODS: This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated 18F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. RESULTS: A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was

  2. Simultaneous whole body (18)F-fluorodeoxyglucose positron emission tomography magnetic resonance imaging for evaluation of pediatric cancer: Preliminary experience and comparison with (18)F-fluorodeoxyglucose positron emission tomography computed tomography.

    PubMed

    Pugmire, Brian S; Guimaraes, Alexander R; Lim, Ruth; Friedmann, Alison M; Huang, Mary; Ebb, David; Weinstein, Howard; Catalano, Onofrio A; Mahmood, Umar; Catana, Ciprian; Gee, Michael S

    2016-03-28

    To describe our preliminary experience with simultaneous whole body (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography and magnetic resonance imaging (PET-MRI) in the evaluation of pediatric oncology patients. This prospective, observational, single-center study was Health Insurance Portability and Accountability Act-compliant, and institutional review board approved. To be eligible, a patient was required to: (1) have a known or suspected cancer diagnosis; (2) be under the care of a pediatric hematologist/oncologist; and (3) be scheduled for clinically indicated (18)F-FDG positron emission tomography-computed tomography (PET-CT) examination at our institution. Patients underwent PET-CT followed by PET-MRI on the same day. PET-CT examinations were performed using standard department protocols. PET-MRI studies were acquired with an integrated 3 Tesla PET-MRI scanner using whole body T1 Dixon, T2 HASTE, EPI diffusion-weighted imaging (DWI) and STIR sequences. No additional radiotracer was given for the PET-MRI examination. Both PET-CT and PET-MRI examinations were reviewed by consensus by two study personnel. Test performance characteristics of PET-MRI, for the detection of malignant lesions, including FDG maximum standardized uptake value (SUVmax) and minimum apparent diffusion coefficient (ADCmin), were calculated on a per lesion basis using PET-CT as a reference standard. A total of 10 whole body PET-MRI exams were performed in 7 pediatric oncology patients. The mean patient age was 16.1 years (range 12-19 years) including 6 males and 1 female. A total of 20 malignant and 21 benign lesions were identified on PET-CT. PET-MRI SUVmax had excellent correlation with PET-CT SUVmax for both benign and malignant lesions (R = 0.93). PET-MRI SUVmax > 2.5 had 100% accuracy for discriminating benign from malignant lesions using PET-CT reference. Whole body DWI was also evaluated: the mean ADCmin of malignant lesions (780.2 + 326.6) was significantly lower than

  3. Single-Cell Imaging Using Radioluminescence Microscopy Reveals Unexpected Binding Target for [18F]HFB.

    PubMed

    Kiru, Louise; Kim, Tae Jin; Shen, Bin; Chin, Frederick T; Pratx, Guillem

    2018-06-01

    Cell-based therapies are showing great promise for a variety of diseases, but remain hindered by the limited information available regarding the biological fate, migration routes and differentiation patterns of infused cells in trials. Previous studies have demonstrated the feasibility of using positron emission tomography (PET) to track single cells utilising an approach known as positron emission particle tracking (PEPT). The radiolabel hexadecyl-4-[ 18 F]fluorobenzoate ([ 18 F]HFB) was identified as a promising candidate for PEPT, due to its efficient and long-lasting labelling capabilities. The purpose of this work was to characterise the labelling efficiency of [ 18 F]HFB in vitro at the single-cell level prior to in vivo studies. The binding efficiency of [ 18 F]HFB to MDA-MB-231 and Jurkat cells was verified in vitro using bulk gamma counting. The measurements were subsequently repeated in single cells using a new method known as radioluminescence microscopy (RLM) and binding of the radiolabel to the single cells was correlated with various fluorescent dyes. Similar to previous reports, bulk cell labelling was significantly higher with [ 18 F]HFB (18.75 ± 2.47 dpm/cell, n = 6) than 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) (7.59 ± 0.73 dpm/cell, n = 7; p ≤ 0.01). However, single-cell imaging using RLM revealed that [ 18 F]HFB accumulation in live cells (8.35 ± 1.48 cpm/cell, n = 9) was not significantly higher than background levels (4.83 ± 0.52 cpm/cell, n = 12; p > 0.05) and was 1.7-fold lower than [ 18 F]FDG uptake in the same cell line (14.09 ± 1.90 cpm/cell, n = 13; p < 0.01). Instead, [ 18 F]HFB was found to bind significantly to fragmented membranes associated with dead cell nuclei, suggesting an alternative binding target for [ 18 F]HFB. This study demonstrates that bulk analysis alone does not always accurately portray the labelling efficiency, therefore highlighting the need for more routine screening of

  4. Correlation of Glut-1 and Glut-3 expression with F-18 FDG uptake in pulmonary inflammatory lesions

    PubMed Central

    Wang, Zhen Guang; Yu, Ming Ming; Han, Yu; Wu, Feng Yu; Yang, Guang Jie; Li, Da Cheng; Liu, Si Min

    2016-01-01

    Abstract The aim of the study was to investigate the correlation of glucose transporter-1 (Glut-1) and glucose transporter-3 (Glut-3) expression with F-18 FDG uptake in pulmonary inflammatory lesions. Twenty-two patients with pulmonary inflammatory lesions underwent positron emission tomography/computed tomography (PET/CT) examination preoperatively, and Glut-1 and Glut-3 expression were detected by immunohistochemistry in these lesions. Correlations of Glut-1 and Glut-3 with 18F-FDG uptake were assessed using Spearman's rank correlation test. The maximum standardized uptake value (SUVmax) of pulmonary inflammatory lesions in 22 patients was 0.50 to 7.50, with a mean value of 3.66 ± 1.62. Immunohistochemical staining scores of Glut-1 and Glut-3 were 2.18 ± 0.96 and 2.82 ± 1.37, respectively. The expression of Glut-1 and Glut-3 was positively correlated with F-18 FDG uptake. Glut-3 expression was evidently higher than Glut-1 expression in 22 patients. Glut-1 and Glut-3 expressions are high in pulmonary inflammatory lesions, and Glut-3 plays a more important role in F-18 FDG uptake in pulmonary inflammatory lesions. PMID:27902598

  5. Imaging melphalan therapy response in preclinical extramedullary myeloma with 18F-FDOPA and 18F-FDG PET.

    PubMed

    Hathi, Deep; DeLassus, Elizabeth; Achilefu, Samuel; McConathy, Jonathan; Shokeen, Monica

    2018-04-26

    Multiple myeloma (MM) is a debilitating neoplasm of terminally differentiated plasma B-cells that has resulted in over 13,000 deaths in 2017 alone. Combination therapies involving melphalan, a small molecule DNA alkylating agent, are commonly prescribed to patients with relapsed/refractory MM, which necessitates the stratification of responding patients to minimize toxicities and improve quality of life. Here, we evaluated the use of 18 F-FDOPA, a clinically available positron emission tomography (PET) radiotracer with specificity to the L-type amino acid transporter-1 (LAT1), which also mediates melphalan uptake, for imaging melphalan therapy response in a preclinical immunocompetent model of MM. Methods: C57Bl/KaLwRij mice were implanted subcutaneously with unilateral murine 5TGM1-GFP tumors, and divided into three independent groups: untreated, treated beginning week 2, and treated beginning week 3 post tumor implantation. The untreated and week 2 therapy cohorts were imaged with preclinical magnetic resonance imaging (MRI) and dynamic 18 F-FDG and 18 F-FDOPA-PET/computed tomography (PET/CT) at week 4 on separate, contiguous days, while the week 3 therapy cohort was longitudinally imaged weekly for 2 weeks. Metabolic tumor volume, lesion avidity, maximum standard uptake value, and total uptake metrics were calculated for both tracers. Immunohistochemistry was performed on representative tissue from all groups for LAT1 and glucose transporter-1 (GLUT1) expression. Results: Melphalan therapy induced a statistically significant reduction in lesion avidity and uptake metrics for both 18 F-FDG and 18 F-FDOPA. There was no visible effect on GLUT1 expression, but LAT1 density was increased in the week 2 therapy cohort. Longitudinal imaging of the week 3 group showed variable changes in 18 F-FDG and 18 F-FDOPA uptake, with increase in 18 F-FDOPA lesion avidity in the 2nd week relative to baseline. LAT1 and GLUT1 surface density in the untreated tumor and week 3

  6. No-carrier-added (/sup 18/F)-N-methylspiroperidol

    DOEpatents

    Shiue, C.Y.; Fowler, J.S.; Wolf, A.P.

    1985-10-04

    The present invention is directed to the synthesis of a radioligand, labeled with a positron emitting radionuclide which is suitable for dynamic studies in humans using positron emission transaxial tomography. No-carrier-added (NCA) (/sup 18/F)-N-methylspiroperiodl is prepared from four different sustrates: p-nitrobenzonitrile, cyclopropyl p-nitrophenyl ketone, p-cyclopropanoyl-N,N,N-trimethylanilinium iodide and p-cyclopropanoyl-N,N,N-trimethylanilinium perchlorate. The process for the production of NCA (/sup 18/F)-N-methylspiroperidol is a nucleophilic aromatic substitution reaction. Furthermore, the compound of this invention is shown to be effective as a new drug of choice for in vivo examination of dopamine binding sites in a human brain. In particular, this drug is primarily useful in the noninvasive technique of positron emission transaxial tomography (PETT).

  7. Parapharyngeal neuroglial heterotopia appearing as high uptake on 18F-FDG PET: case report and literature review of radiographical findings.

    PubMed

    Kameyama, Masayuki; Kawaguchi, Tomohiro; Niizuma, Hidetaka; Ogawa, Takenori; Watanabe, Kenichi; Hayashi, Toshiaki; Sato, Kanako; Kanamori, Masayuki; Watanabe, Mika; Katori, Yukio; Kure, Shigeo; Tominaga, Teiji

    2018-04-01

    Parapharyngeal neuroglial heterotopia is a rare entity, and the specific radiographical findings are unclear. We present a case of parapharyngeal neuroglial heterotopia examined with proton magnetic resonance spectroscopy ( 1 H-MRS) and 18 F-fluorodesoxyglucose positron emission tomography ( 18 F-FDG PET). Our neonate patient presented with neck mass and polyhydramnios during gestation. Computed tomography and magnetic resonance imaging demonstrated the morphological characteristics, but failed to establish the diagnosis. 1 H-MRS showed a non-malignant pattern, but 18 F-FDG PET demonstrated high glucose metabolism. Complete resection was achieved and the histopathological diagnosis was neuroglial heterotopia. Assessment of biological activity may be useful for both preoperative diagnosis and postoperative evaluation of residual lesions.

  8. 18 F-flortaucipir tau positron emission tomography distinguishes established progressive supranuclear palsy from controls and Parkinson disease: A multicenter study.

    PubMed

    Schonhaut, Daniel R; McMillan, Corey T; Spina, Salvatore; Dickerson, Bradford C; Siderowf, Andrew; Devous, Michael D; Tsai, Richard; Winer, Joseph; Russell, David S; Litvan, Irene; Roberson, Erik D; Seeley, William W; Grinberg, Lea T; Kramer, Joel H; Miller, Bruce L; Pressman, Peter; Nasrallah, Ilya; Baker, Suzanne L; Gomperts, Stephen N; Johnson, Keith A; Grossman, Murray; Jagust, William J; Boxer, Adam L; Rabinovici, Gil D

    2017-10-01

    18 F-flortaucipir (formerly 18 F-AV1451 or 18 F-T807) binds to neurofibrillary tangles in Alzheimer disease, but tissue studies assessing binding to tau aggregates in progressive supranuclear palsy (PSP) have yielded mixed results. We compared in vivo 18 F-flortaucipir uptake in patients meeting clinical research criteria for PSP (n = 33) to normal controls (n = 46) and patients meeting criteria for Parkinson disease (PD; n = 26). Participants underwent magnetic resonance imaging and positron emission tomography for amyloid-β ( 11 C-PiB or 18 F-florbetapir) and tau ( 18 F-flortaucipir). 18 F-flortaucipir standardized uptake value ratios were calculated (t = 80-100 minutes, cerebellum gray matter reference). Voxelwise and region-of-interest group comparisons were performed in template space, with receiver operating characteristic curve analyses to assess single-subject discrimination. Qualitative comparisons with postmortem tau are reported in 1 patient who died 9 months after 18 F-flortaucipir. Clinical PSP patients showed bilaterally elevated 18 F-flortaucipir uptake in globus pallidus, putamen, subthalamic nucleus, midbrain, and dentate nucleus relative to controls and PD patients (voxelwise p < 0.05 family wise error corrected). Globus pallidus binding best distinguished PSP patients from controls and PD (area under the curve [AUC] = 0.872 vs controls, AUC = 0.893 vs PD). PSP clinical severity did not correlate with 18 F-flortaucipir in any region. A patient with clinical PSP and pathological diagnosis of corticobasal degeneration had severe tau pathology in PSP-related brain structures with good correspondence between in vivo 18 F-flortaucipir and postmortem tau neuropathology. 18 F-flortaucipir uptake was elevated in PSP versus controls and PD patients in a pattern consistent with the expected distribution of tau pathology. Ann Neurol 2017;82:622-634. © 2017 American Neurological Association.

  9. Radiosynthesis and validation of (±)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a PET tracer of lactate to monitor MCT1-dependent lactate uptake in tumors

    PubMed Central

    Van Hée, Vincent F.; Labar, Daniel; Dehon, Gwenaël; Grasso, Debora; Grégoire, Vincent; Muccioli, Giulio G

    2017-01-01

    Cancers develop metabolic strategies to cope with their microenvironment often characterized by hypoxia, limited nutrient bioavailability and exposure to anticancer treatments. Among these strategies, the metabolic symbiosis based on the exchange of lactate between hypoxic/glycolytic cancer cells that convert glucose to lactate and oxidative cancer cells that preferentially use lactate as an oxidative fuel optimizes the bioavailability of glucose to hypoxic cancer cells. This metabolic cooperation has been described in various human cancers and can provide resistance to anti-angiogenic therapies. It depends on the expression and activity of monocarboxylate transporters (MCTs) at the cell membrane. MCT4 is the main facilitator of lactate export by glycolytic cancer cells, and MCT1 is adapted for lactate uptake by oxidative cancer cells. While MCT1 inhibitor AZD3965 is currently tested in phase I clinical trials and other inhibitors of lactate metabolism have been developed for anticancer therapy, predicting and monitoring a response to the inhibition of lactate uptake is still an unmet clinical need. Here, we report the synthesis, evaluation and in vivo validation of (±)-[18F]-3-fluoro-2-hydroxypropionate ([18F]-FLac) as a tracer of lactate for positron emission tomography. [18F]-FLac offers the possibility to monitor MCT1-dependent lactate uptake and inhibition in tumors in vivo. PMID:28107190

  10. F18 FDG positron emission tomography revelation of primary testicular lymphoma with concurrent multiple extra nodal involvement

    PubMed Central

    Vamsy, Mohana; Dattatreya, PS; Parakh, Megha; Dayal, Monal; Rao, VVS Prabhakar

    2013-01-01

    Primary testicular lymphoma (PTL) a relatively rare disease of non-Hodgkin's lymphomas occurring with a lesser incidence of 1-2% has a propensity to occur at later ages above 50 years. PTL spreads to extra nodal sites due to deficiency of extra cellular adhesion molecules. We present detection of multiple sites of extra nodal involvement of PTL by F-18 positron emission tomography/computed tomography study aiding early detection of the dissemination thus aiding in staging and management. PMID:24019676

  11. Clinical impact of 2-deoxy-2-[18F]fluoro-D-glucose (FDG)-positron emission tomography (PET) on treatment choice in recurrent cancer of the cervix uteri.

    PubMed

    Bjurberg, Maria; Brun, Eva

    2013-11-01

    The superiority of positron emission tomography (PET) with 2-deoxy-2-[18F]fluoro-D-glucose (FDG) over computed tomography and magnetic resonance imaging in detecting recurrent cervical cancer and determining the extent of the disease has been demonstrated in several clinical trials. However, there is a lack of data concerning the clinical impact of the extra findings. We report here a prospective clinical study aimed at investigating the clinical impact of FDG-PET findings on the treatment plans in recurrent cervical cancer. Thirty-six patients with suspected recurrent cervical cancer underwent FDG-PET. Relapses were confirmed in 26 cases, and one case of primary lung cancer was found. The clinical impact of the FDG-PET results was assessed using a systematic scoring system with a 4-grade scale. Median follow-up time after FDG-PET was 33.1 months (range, 5-83 months) for all patients and 22.4 months (range, 5-83 months) for patients with positive PET results. More sites of metastases were detected with FDG-PET in 56% of the patients compared to the findings by conventional imaging. The results of FDG-PET led to a change in treatment modality for 33% of the patients; and for 22%, a change in dose or deliverance of treatment was recorded. Treatment intention was changed in 30%, in all but one patient, from curative to palliative. In 48% of the patients, the initially planned treatment was reduced regarding dose or extent, or was withheld. In recurrent cervical cancer, FDG-PET provides clinically valuable information with a high impact on treatment decisions.

  12. [Features of Acquired Immunodeficiency Syndrome-related Lymphoma on (18)F-fluorodeoxyglucose Positron Emission Tomography/Computed Tomography].

    PubMed

    Niu, Na; Zhu, Zhao-hui; Ma, Yan-ru; Xing, Hai-qun; Li, Fang

    2015-10-01

    To analyze the imaging features of (18)F-fluorodeoxyglucose (¹⁸F-FDG) positron emission tomography(PET)/computed tomography (CT) in acquired immune deficiency syndrome-related lymphoma (ARL) patients correlated with their clinical signs, symptoms, and treatments. Five ARL patients underwent ¹⁸F-FDG PET/CT at Peking Union Medical College Hospital from October 2008 to January 2013. Two patients received two additional follow-up studies 6 months later. Among these 5 patients, ¹⁸FDG-PET/CT helped in diagnosis of two patient and changed therapeutic strategy in other two patients. In two patients underwent ¹⁸F-FDG PET/CT brain scans, low-metabolism lesion was newly found in cerebral cortex. Of 4 patients receiving highly active antiretroviral therapy, PET/CT also demonstrated diffusely elevated ¹⁸F-FDG uptake in subcutaneous adipose tissue in two patients. ¹⁸F-FDG PET/CT is a highly useful tool in the diagnosis and treatment of ARL patients, in particular in the identification of associated encephalopathy and lipodystrophy.

  13. F-18-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Appearance of Extramedullary Hematopoesis in a Case of Primary Myelofibrosis

    PubMed Central

    Mukherjee, Anirban; Bal, Chandrasekhar; Tripathi, Madhavi; Das, Chandan Jyoti; Shamim, Shamim Ahmed

    2017-01-01

    A 44-year-old female with known primary myelofibrosis presented with shortness of breath. High Resolution Computed Tomography thorax revealed large heterogeneously enhancing extraparenchymal soft tissue density mass involving bilateral lung fields. F-18-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography revealed mildly FDG avid soft tissue density mass with specks of calcification involving bilateral lung fields, liver, and spleen. Subsequent histopathologic evaluation from the right lung mass was suggestive of extramedullary hematopoesis. PMID:28533647

  14. Clinical impact of 18 F-FDG positron emission tomography/CT on adenoid cystic carcinoma of the head and neck.

    PubMed

    Jung, Ji-Hoon; Lee, Sang-Woo; Son, Seung Hyun; Kim, Choon-Young; Lee, Chang-Hee; Jeong, Ju Hye; Jeong, Shin Young; Ahn, Byeong-Cheol; Lee, Jaetae

    2017-03-01

    The purpose of this retrospective study was to assess the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT and the prognostic value of metabolic PET parameters in patients with adenoid cystic carcinoma of the head and neck (ACCHN). Forty patients with newly diagnosed ACCHN were enrolled in this study. We investigated the diagnostic value of 18 F-FDG PET/CT for detecting and staging compared to conventional CT. Kaplan-Meier survival analysis for progression-free survival (PFS) was performed with clinicopathological factors and metabolic PET parameters. The 18 F-FDG PET/CT showed comparable sensitivity (92.3%) to conventional CT for lesion detection, and changed staging and management plan in 6 patients (15.0%). Lower PFS rates were associated with advanced T classification, advanced TNM classification, high maximum standardized uptake value (SUVmax; >5.1), and high total lesion glycolysis (>40.1) of the primary tumor. The 18 F-FDG PET/CT can provide additional information for initial staging, and metabolic PET parameters may serve as prognostic factors of ACCHN. © 2016 Wiley Periodicals, Inc. Head Neck 39: 447-455, 2017. © 2016 Wiley Periodicals, Inc.

  15. Comparative uptake of ¹⁸F-FEN-DPAZn2, ¹⁸F-FECH, ¹⁸F-fluoride, and ¹⁸F-FDG in fibrosarcoma and aseptic inflammation.

    PubMed

    Liang, Xiang; Tang, Ganghua; Wang, Hongliang; Hu, Kongzhen; Tang, Xiaolan; Nie, Dahong; Sun, Ting; Huang, Tingting

    2014-08-01

    The aim of this study is to evaluate uptake of 2-(18)F-fluoroethyl-bis(zinc(II)-dipicolylamine) ((18)F-FEN-DPAZn2) as a promising cell death imaging agent, a choline analog (18)F-fluoroethylcholine ((18)F-FECH), (18)F-fluoride as a bone imaging agent, and a glucose analog 2-(18)F-fluoro-2-deoxy-d-glucose ((18)F-FDG) in the combined S180 fibrosarcoma and turpentine-induced inflammation mice models. The results showed that (18)F-FDG had the highest tumor-to-blood uptake ratio and tumor-to-muscle ratio, and high inflammation-to-blood ratio and inflammation-to-muscle ratio. (18)F -FECH showed moderate tumor-to-blood ratio and tumor-to-muscle ratio, and low inflammation-to-blood ratio and inflammation-to-muscle ratio. However, accumulation of (18)F FEN-DPAZn2 in tumor was similar to that in normal muscle. Also, (18)F-FEN-DPAZn2 and (18)F-fluoride exhibited the best selectivity to inflammation. (18)F-FECH positron emission tomography (PET) imaging demonstrates some advantages over (18)F-FDG PET for the differentiation of tumor from inflammation. (18)F FEN-DPAZn2 and (18)F-fluoride can be used for PET imaging of aseptic inflammation. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Novel synthesis and initial preclinical evaluation of (18)F-[FDG] labeled rhodamine: a potential PET myocardial perfusion imaging agent.

    PubMed

    AlJammaz, Ibrahim; Al-Otaibi, Basim; AlHindas, Hussein; Okarvi, Subhani M

    2015-10-01

    Myocardial perfusion imaging is one of the most commonly performed investigations in nuclear medicine studies. Due to the clinical importance of [(18)F]-fluoro-2-deoxy-D-glucose ([(18)F]-FDG) and its availability in almost every PET center, a new radiofluorinated [(18)F]-FDG-rhodamine conjugate was synthesized using [(18)F]-FDG as a prosthetic group. In a convenient and simple one-step radiosynthesis, [(18)F]-FDG-rhodamine conjugate was prepared in quantitative radiochemical yields, with total synthesis time of nearly 20 min and radiochemical purity of greater than 98%, without the need for HPLC purification, which make these approaches amenable for automation. Biodistribution studies in normal rats at 60 min post-injection demonstrated a high uptake in the heart (>11% ID/g) and favorable pharmacokinetics. Additionally, [(18)F]-FDG-rhodamine showed an extraction value of 27.63%±5.12% in rat hearts. These results demonstrate that [(18)F]-FDG-rhodamine conjugate may be useful as an imaging agent for the positron emission tomography evaluation of myocardial perfusion. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cardiac Sarcoidosis Concomitant with Large-vessel Aortitis Detected by 18F-fluorodeoxyglucose Positron Emission Tomography.

    PubMed

    Higuchi, Yoshihiro; Kimoto, Yasutaka; Tanoue, Rika; Tokunou, Tomotake; Tomonari, Kenichiro; Maeda, Toyoki; Horiuchi, Takahiko

    2018-06-01

    We herein report a case of concurrent cardiac sarcoidosis and large-vessel aortitis detected by 18 F-fluorodeoxyglucose positron emission tomography (FDG-PET) and followed up during immunosuppressive therapy. After high-dose prednisolone administration (1 mg/kg), serial FDG-PET showed that almost all of the abnormal FDG uptake in the heart and extracardiac region, including the abdominal to bilateral iliac arteries, had been disappeared. During the tapering of prednisolone, additive methotrexate therapy was needed to treat the recurrence of cardiac sarcoidosis. FDG-PET is a useful tool for detecting cardiac sarcoidosis concomitant with large-vessel aortitis and monitoring the effectiveness of immunosuppressive therapy.

  18. Positron emission tomography/computed tomography with 18F-fluorocholine improve tumor staging and treatment allocation in patients with hepatocellular carcinoma.

    PubMed

    Chalaye, Julia; Costentin, Charlotte E; Luciani, Alain; Amaddeo, Giuliana; Ganne-Carrié, Nathalie; Baranes, Laurence; Allaire, Manon; Calderaro, Julien; Azoulay, Daniel; Nahon, Pierre; Seror, Olivier; Mallat, Ariane; Soussan, Michael; Duvoux, Christophe; Itti, Emmanuel; Nault, Jean Charles

    2018-03-06

    Hepatocellular carcinoma (HCC) staging according to the Barcelona Clinical Liver Cancer (BCLC) classification is based on conventional imaging. The aim of our study was to assess the impact of dual-tracer 18F-fluorocholine and 18F-fluorodeoxyglucose positron emission tomography/computed tomography (PET/CT) on tumor staging and treatment allocation. A total of 192 dual-tracer PET/CT scans (18F-fluorocholine and 18F-fluorodeoxyglucose PET/CT) were performed in 177 patients with HCC. BCLC staging and treatment proposal were retrospectively collected based on conventional imaging, along with any new lesions detected, and changes in BCLC classification or treatment allocation based on dual-tracer PET/CT. Patients were primarily men (87.5%) with cirrhosis (71%) due to alcohol ± non-alcoholic steatohepatitis (26%), viral infection (62%) or unknown causes (12%). Among 122 patients with PET/CT performed for staging, BCLC stage based on conventional imaging was 0/A in 61 patients (50%), B in 32 patients (26%) and C in 29 patients (24%). Dual-tracer PET/CT detected new lesions in 26 patients (21%), upgraded BCLC staging in 14 (11%) and modified treatment strategy in 17 (14%). In addition, dual-tracer PET/CT modified the final treatment in 4/9 (44%) patients with unexplained elevation of alpha-fetoprotein (AFP), 10/25 patients (40%) with doubtful lesions on conventional imaging and 3/36 patients (8%) waiting for liver transplantation without active HCC after tumor response following bridging therapy. When used for HCC staging, dual-tracer PET/CT enabled BCLC upgrading and treatment modification in 11% and 14% of patients, respectively. Dual-tracer PET/CT might also be useful in specific situations (an unexplained rise in AFP, doubtful lesions or pre-transplant evaluation of patients without active HCC). Using a combination of tracers 18F-fluorocholine and 18F-fluorodeoxyglucose when performing positron emission tomography/computed tomography (PET/CT), often called a PET

  19. Brain glucose transport and phosphorylation under acute insulin-induced hypoglycemia in mice: an 18F-FDG PET study.

    PubMed

    Alf, Malte F; Duarte, João M N; Schibli, Roger; Gruetter, Rolf; Krämer, Stefanie D

    2013-12-01

    We addressed the questions of how cerebral glucose transport and phosphorylation change under acute hypoglycemia and what the underlying mechanisms of adaptation are. Quantitative (18)F-FDG PET combined with the acquisition of real-time arterial input function was performed on mice. Hypoglycemia was induced and maintained by insulin infusion. PET data were analyzed with the 2-tissue-compartment model for (18)F-FDG, and the results were evaluated with Michaelis-Menten saturation kinetics. Glucose clearance from plasma to brain (K1,glc) and the phosphorylation rate constant increased with decreasing plasma glucose (Gp), in particular at a Gp of less than 2.5 mmol/L. Estimated cerebral glucose extraction ratios taking into account an increased cerebral blood flow (CBF) at a Gp of less than 2 mmol/L were between 0.14 and 0.79. CBF-normalized K1,glc values were in agreement with saturation kinetics. Phosphorylation rate constants indicated intracellular glucose depletion at a Gp of less than 2-3 mmol/L. When brain regions were compared, glucose transport under hypoglycemia was lowest in the hypothalamus. Alterations in glucose transport and phosphorylation, as well as intracellular glucose depletion, under acute hypoglycemia can be modeled by saturation kinetics taking into account an increase in CBF. Distinct transport kinetics in the hypothalamus may be involved in its glucose-sensing function.

  20. Preclinical evaluation of the anti-tumor effects of the natural isoflavone genistein in two xenograft mouse models monitored by [18F]FDG, [18F]FLT, and [64Cu]NODAGA-cetuximab small animal PET.

    PubMed

    Honndorf, Valerie S; Wiehr, Stefan; Rolle, Anna-Maria; Schmitt, Julia; Kreft, Luisa; Quintanilla-Martinez, Letitia; Kohlhofer, Ursula; Reischl, Gerald; Maurer, Andreas; Boldt, Karsten; Schwarz, Michael; Schmidt, Holger; Pichler, Bernd J

    2016-05-10

    The natural phytoestrogen genistein is known as protein kinase inhibitor and tumor suppressor in various types of cancers. We studied its antitumor effect in two different xenograft models using positron emission tomography (PET) in vivo combined with ex vivo histology and nuclear magnetic resonance (NMR) metabolic fingerprinting. A431 and Colo205 tumor-bearing mice were treated with vehicle or genistein (500 mg/kg/d) over a period of 12 days. Imaging was performed with 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 3'-deoxy-3'-[18F]fluorothymidine ([18F] FLT). In a second study A431 tumor-bearing mice were treated with vehicle, genistein (500 mg/kg/d), cetuximab (1 mg/3d) or a combination of the compounds and imaged using [18F]FDG, [18F]FLT and [64Cu]NODAGA-cetuximab. Data were compared to histology and principal components analysis (PCA) of NMR fingerprinting data. Genistein reduced tumor growth significantly in both xenografts. [18F] FLT uptake was consistent in both models and corresponded to histological findings and also PCA whereas [18F]FDG and [64Cu]NODAGA-cetuximab were not suitable for therapy monitoring. As mono-therapy the natural isoflavone genistein has a powerful therapeutic effect in vivo on A431 and Colo205 tumors. [18F]FLT has superior consistency compared to the other tested tracers in therapy monitoring, while the treatment effect could be shown on the molecular level by histology and metabolic fingerprinting.

  1. 18F-fluorodeoxyglucose positron emission tomography/computed tomography findings of gastric lymphoma: Comparisons with gastric cancer.

    PubMed

    Wu, Jiang; Zhu, Hong; Li, Kai; Wang, Xin-Gang; Gui, Yi; Lu, Guang-Ming

    2014-10-01

    The role of 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in numerous malignant tumors, including gastric lymphoma, is well-established. However, there have been few studies with regard to the 18 F-FDG PET/CT features of gastric lymphoma. The aim of the present study was to characterize the 18 F-FDG PET/CT features of gastric lymphoma, which were compared with those of gastric cancer. Prior to treatment, 18 F-FDG PET/CT was performed on 24 patients with gastric lymphoma and 43 patients with gastric cancer. The 18 F-FDG PET/CT pattern of gastric wall lesions was classified as one of three types: Type I, diffuse thickening of the gastric wall with increased FDG uptake infiltrating more than one-third of the total stomach; type II, segmental thickening of the gastric wall with elevated FDG uptake involving less than one-third of the total stomach; and type III, local thickening of the gastric wall with focal FDG uptake. The incidence of the involvement of more than one region of the stomach was higher in the patients with gastric lymphoma than in those with gastric cancer. Gastric FDG uptake was demonstrated in 23 of the 24 patients (95.8%) with gastric lymphoma and in 40 of the 43 patients (93.0%) with gastric cancer. Gastric lymphoma predominantly presented with type I and II lesions, whereas gastric cancer mainly presented with type II and III lesions. The maximal thickness was larger and the maximal standard uptake value (SUV max ) was higher in the patients with gastric lymphoma compared with those with gastric cancer. A positive correlation between the maximal thickness and SUV max was confirmed for the gastric cancer lesions, but not for the gastric lymphoma lesions. There was no difference in the maximal thickness and SUV max of the gastric wall lesions between the patients without and with extragastric involvement, for gastric lymphoma and gastric cancer. Overall, certain differences exist in the findings between

  2. 18F-fluorodeoxyglucose positron emission tomography/computed tomography findings of gastric lymphoma: Comparisons with gastric cancer

    PubMed Central

    WU, JIANG; ZHU, HONG; LI, KAI; WANG, XIN-GANG; GUI, YI; LU, GUANG-MING

    2014-01-01

    The role of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) in numerous malignant tumors, including gastric lymphoma, is well-established. However, there have been few studies with regard to the 18F-FDG PET/CT features of gastric lymphoma. The aim of the present study was to characterize the 18F-FDG PET/CT features of gastric lymphoma, which were compared with those of gastric cancer. Prior to treatment, 18F-FDG PET/CT was performed on 24 patients with gastric lymphoma and 43 patients with gastric cancer. The 18F-FDG PET/CT pattern of gastric wall lesions was classified as one of three types: Type I, diffuse thickening of the gastric wall with increased FDG uptake infiltrating more than one-third of the total stomach; type II, segmental thickening of the gastric wall with elevated FDG uptake involving less than one-third of the total stomach; and type III, local thickening of the gastric wall with focal FDG uptake. The incidence of the involvement of more than one region of the stomach was higher in the patients with gastric lymphoma than in those with gastric cancer. Gastric FDG uptake was demonstrated in 23 of the 24 patients (95.8%) with gastric lymphoma and in 40 of the 43 patients (93.0%) with gastric cancer. Gastric lymphoma predominantly presented with type I and II lesions, whereas gastric cancer mainly presented with type II and III lesions. The maximal thickness was larger and the maximal standard uptake value (SUVmax) was higher in the patients with gastric lymphoma compared with those with gastric cancer. A positive correlation between the maximal thickness and SUVmax was confirmed for the gastric cancer lesions, but not for the gastric lymphoma lesions. There was no difference in the maximal thickness and SUVmax of the gastric wall lesions between the patients without and with extragastric involvement, for gastric lymphoma and gastric cancer. Overall, certain differences exist in the findings between gastric

  3. The Utility of [18F]DASA-23 for Molecular Imaging of Prostate Cancer with Positron Emission Tomography.

    PubMed

    Beinat, Corinne; Haywood, Tom; Chen, Yun-Sheng; Patel, Chirag B; Alam, Israt S; Murty, Surya; Gambhir, Sanjiv Sam

    2018-05-07

    There is a strong, unmet need for superior positron emission tomography (PET) imaging agents that are able to measure biochemical processes specific to prostate cancer. Pyruvate kinase M2 (PKM2) catalyzes the concluding step in glycolysis and is a key regulator of tumor growth and metabolism. Elevation of PKM2 expression was detected in Gleason 8-10 tumors compared to Gleason 6-7 carcinomas, indicating that PKM2 may potentially be a marker of aggressive prostate cancer. We have recently reported the development of a PKM2-specific radiopharmaceutical [ 18 F]DASA-23 and herein describe its evaluation in cell culture and preclinical models of prostate cancer. The cellular uptake of [ 18 F]DASA-23 was evaluated in a panel of prostate cancer cell lines and compared to that of [ 18 F]FDG. The specificity of [ 18 F]DASA-23 to measure PKM2 levels in cell culture was additionally confirmed through the use of PKM2-specific siRNA. PET imaging studies were then completed utilizing subcutaneous prostate cancer xenografts using either PC3 or DU145 cells in mice. [ 18 F]DASA-23 uptake values over 60-min incubation period in PC3, LnCAP, and DU145 respectively were 23.4 ± 4.5, 18.0 ± 2.1, and 53.1 ± 4.6 % tracer/mg protein. Transient reduction in PKM2 protein expression with siRNA resulted in a 50.1 % reduction in radiotracer uptake in DU145 cells. Small animal PET imaging revealed 0.86 ± 0.13 and 1.6 ± 0.2 % ID/g at 30 min post injection of radioactivity in DU145 and PC3 subcutaneous tumor bearing mice respectively. Herein, we evaluated a F-18-labeled PKM2-specific radiotracer, [ 18 F]DASA-23, for the molecular imaging of prostate cancer with PET. [ 18 F]DASA-23 revealed rapid and extensive uptake levels in cellular uptake studies of prostate cancer cells; however, there was only modest tumor uptake when evaluated in mouse subcutaneous tumor models.

  4. Positron emission tomography/computerized tomography in lung cancer

    PubMed Central

    Vural, Gulin Ucmak

    2014-01-01

    Positron emission tomography (PET) using 2-(18F)-flouro-2-deoxy-D-glucose (FDG) has emerged as a useful tool in the clinical work-up of lung cancer. This review article provides an overview of applications of PET in diagnosis, staging, treatment response evaluation, radiotherapy planning, recurrence assessment and prognostication of lung cancer. PMID:24914421

  5. Changes in cerebral [18F]-FDG uptake induced by acute alcohol administration in a rat model of alcoholism.

    PubMed

    Gispert, Juan D; Figueiras, Francisca P; Vengeliene, Valentina; Herance, José R; Rojas, Santiago; Spanagel, Rainer

    2017-06-01

    Several [ 18 F]-FDG positron emission tomography (PET) studies in alcoholics have consistently reported decreases in overall brain glucose metabolism at rest and following acute alcohol administration. However, changes in cerebral glucose utilization associated with the transition to addiction are not well understood and require longitudinal translational imaging studies in animal models of alcoholism. Here, we studied brain glucose uptake in alcohol drinking rats in order to provide convergent evidence to what has previously been reported in human studies. Brain glucose metabolism was measured by [ 18 F]-FDG microPET imaging in different male Wistar rat groups: short-term drinking (three months), long-term drinking (twelve months) and alcohol-naïve. Global and regional cerebral glucose uptake was measured at rest and following acute alcohol administration. We showed that alcohol significantly reduced the whole-brain glucose metabolism. This effect was most pronounced in the parietal cortex and cerebellum. Alcohol-induced decreases in brain [ 18 F]-FDG uptake was most apparent in alcohol-naïve rats, less intense in short-term drinkers and absent in long-term drinkers. The latter finding indicates the occurrence of tolerance to the intoxicating effects of alcohol in long-term drinking individuals. In contrast, some regions, like the ventral striatum and entorhinal cortex, showed enhanced metabolic activity, an effect that did not undergo tolerance during long-term alcohol consumption. Our findings are comparable to those described in human studies using the same methodology. We conclude that [ 18 F]-FDG PET studies in rat models of alcoholism provide good translation and can be used for future longitudinal studies investigating alterations in brain function during different stages of the addiction cycle. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Incongruity of imaging using fluorescent 2-DG conjugates compared to 18F-FDG in preclinical cancer models.

    PubMed

    Tseng, Jen-Chieh; Wang, Yuchuan; Banerjee, Pallab; Kung, Andrew L

    2012-10-01

    We compared the use of near-infrared conjugates of 2-deoxyglucose (NIR 2-DG) to 2-deoxy-2-[18F]fluoro-d-glucose (18F-FDG) for the purposes of imaging tumors, as well as response to therapy. Uptake of both 18F-FDG and NIR 2-DG within gastrointestinal stromal tumor xenografts were imaged before and after nilotinib treatment. Confocal microscopy was performed to determine NIR 2-DG distribution in tumors. Treatment with nilotinib resulted in a rapid reduction in 18F-FDG uptake and reduced tumor cell viability which was predictive of long-term antitumor efficacy. In contrast, optical imaging with NIR 2-DG probes was unable to differentiate control from niltonib-treated animals, and microscopic analysis revealed no change in probe distribution as a result of treatment. These results suggest that conjugation of large bulky fluorophores to 2-DG disrupts the facilitated transport and retention of these probes in cells. Therefore, optical imaging of NIR 2-DG probes cannot substitute for 18F-FDG positron emission tomography imaging as a biomarker of tumor cell viability and metabolism.

  7. Textural features of 18F-fluorodeoxyglucose positron emission tomography scanning in diagnosing aortic prosthetic graft infection.

    PubMed

    Saleem, Ben R; Beukinga, Roelof J; Boellaard, Ronald; Glaudemans, Andor W J M; Reijnen, Michel M P J; Zeebregts, Clark J; Slart, Riemer H J A

    2017-05-01

    The clinical problem in suspected aortoiliac graft infection (AGI) is to obtain proof of infection. Although 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography scanning (PET) has been suggested to play a pivotal role, an evidence-based interpretation is lacking. The objective of this retrospective study was to examine the feasibility and utility of 18 F-FDG uptake heterogeneity characterized by textural features to diagnose AGI. Thirty patients with a history of aortic graft reconstruction who underwent 18 F-FDG PET/CT scanning were included. Sixteen patients were suspected to have an AGI (group I). AGI was considered proven only in the case of a positive bacterial culture. Positive cultures were found in 10 of the 16 patients (group Ia), and in the other six patients, cultures remained negative (group Ib). A control group was formed of 14 patients undergoing 18 F-FDG PET for other reasons (group II). PET images were assessed using conventional maximal standardized uptake value (SUVmax), tissue-to-background ratio (TBR), and visual grading scale (VGS). Additionally, 64 different 18 F-FDG PET based textural features were applied to characterize 18 F-FDG uptake heterogeneity. To select candidate predictors, univariable logistic regression analysis was performed (α = 0.16). The accuracy was satisfactory in case of an AUC > 0.8. The feature selection process yielded the textural features named variance (AUC = 0.88), high grey level zone emphasis (AUC = 0.87), small zone low grey level emphasis (AUC = 0.80), and small zone high grey level emphasis (AUC = 0.81) most optimal for distinguishing between groups I and II. SUVmax, TBR, and VGS were also able to distinguish between these groups with AUCs of 0.87, 0.78, and 0.90, respectively. The textural feature named short run high grey level emphasis was able to distinguish group Ia from Ib (AUC = 0.83), while for the same task the TBR and VGS were not found to be predictive. SUVmax

  8. A Transmetalation Reaction Enables the Synthesis of [ 18F]5-Fluorouracil from [ 18F]Fluoride for Human PET Imaging

    DOE PAGES

    Hoover, Andrew J.; Lazari, Mark; Ren, Hong; ...

    2016-02-14

    Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18F]fluoride of human doses of [ 18F]5-fluorouracil, a PET tracer for cancer imaging in humans. Here, the firstmore » preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.« less

  9. A Transmetalation Reaction Enables the Synthesis of [18F]5-Fluorouracil from [18F]Fluoride for Human PET Imaging

    PubMed Central

    2016-01-01

    Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [18F]fluoride of human doses of [18F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination. PMID:27087736

  10. A Transmetalation Reaction Enables the Synthesis of [18F]5-Fluorouracil from [18F]Fluoride for Human PET Imaging.

    PubMed

    Hoover, Andrew J; Lazari, Mark; Ren, Hong; Narayanam, Maruthi Kumar; Murphy, Jennifer M; van Dam, R Michael; Hooker, Jacob M; Ritter, Tobias

    2016-04-11

    Translation of new 18 F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18 F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18 F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18 F]fluoride of human doses of [ 18 F]5-fluorouracil, a PET tracer for cancer imaging in humans. The first preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18 F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18 F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18 F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18 F-fluorination.

  11. A Transmetalation Reaction Enables the Synthesis of [ 18F]5-Fluorouracil from [ 18F]Fluoride for Human PET Imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoover, Andrew J.; Lazari, Mark; Ren, Hong

    Translation of new 18F-fluorination reactions to produce radiotracers for human positron emission tomography (PET) imaging is rare because the chemistry must have useful scope and the process for 18F-labeled tracer production must be robust and simple to execute. The application of transition metal mediators has enabled impactful 18F-fluorination methods, but to date none of these reactions have been applied to produce a human-injectable PET tracer. In this article we present chemistry and process innovations that culminate in the first production from [ 18F]fluoride of human doses of [ 18F]5-fluorouracil, a PET tracer for cancer imaging in humans. Here, the firstmore » preparation of nickel σ-aryl complexes by transmetalation from arylboronic acids or esters was developed and enabled the synthesis of the [ 18F]5-fluorouracil precursor. Routine production of >10 mCi doses of [ 18F]5-fluorouracil was accomplished with a new instrument for azeotrope-free [ 18F]fluoride concentration in a process that leverages the tolerance of water in nickel-mediated 18F-fluorination.« less

  12. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers

    NASA Astrophysics Data System (ADS)

    Spinelli, Antonello E.; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Sbarbati, Andrea; Boschi, Federico

    2010-01-01

    In this paper, we showed that Cerenkov radiation (CR) escaping from the surface of small living animals injected with 18F-FDG can be detected with optical imaging techniques. 18F decays by emitting positrons with a maximum energy of 0.635 MeV; such positrons, when travelling into tissues faster than the speed of light in the same medium, are responsible of CR emission. A detailed model of the CR spectrum considering the positron energy spectrum was developed in order to quantify the amount of light emission. The results presented in this work were obtained using a commercial optical imager equipped with charged coupled detectors (CCD). Our data open the door to optical imaging (OI) in vivo of the glucose metabolism, at least in pre-clinical research. We found that the heart and bladder can be clearly identified in the animal body reflecting the accumulation of the 18F-FDG. Moreover, we describe two different methods based on the spectral analysis of the CR that can be used to estimate the depth of the source inside the animal. We conclude that 18F-FDG can be employed as it is as a bimodal tracer for positron emission tomography (PET) and OI techniques. Our results are encouraging, suggesting that it could be possible to apply the proposed approach not only to β+ but also to pure β- emitters.

  13. Cerenkov radiation allows in vivo optical imaging of positron emitting radiotracers.

    PubMed

    Spinelli, Antonello E; D'Ambrosio, Daniela; Calderan, Laura; Marengo, Mario; Sbarbati, Andrea; Boschi, Federico

    2010-01-21

    In this paper, we showed that Cerenkov radiation (CR) escaping from the surface of small living animals injected with (18)F-FDG can be detected with optical imaging techniques. (18)F decays by emitting positrons with a maximum energy of 0.635 MeV; such positrons, when travelling into tissues faster than the speed of light in the same medium, are responsible of CR emission. A detailed model of the CR spectrum considering the positron energy spectrum was developed in order to quantify the amount of light emission. The results presented in this work were obtained using a commercial optical imager equipped with charged coupled detectors (CCD). Our data open the door to optical imaging (OI) in vivo of the glucose metabolism, at least in pre-clinical research. We found that the heart and bladder can be clearly identified in the animal body reflecting the accumulation of the (18)F-FDG. Moreover, we describe two different methods based on the spectral analysis of the CR that can be used to estimate the depth of the source inside the animal. We conclude that (18)F-FDG can be employed as it is as a bimodal tracer for positron emission tomography (PET) and OI techniques. Our results are encouraging, suggesting that it could be possible to apply the proposed approach not only to beta(+) but also to pure beta(-) emitters.

  14. Diagnostic impact of PET with 18F-FDG, 18F-DOPA and 3-O-methyl-6-[18F]fluoro-DOPA in recurrent or metastatic medullary thyroid carcinoma.

    PubMed

    Beuthien-Baumann, B; Strumpf, A; Zessin, J; Bredow, J; Kotzerke, J

    2007-10-01

    In patients with medullary thyroid carcinoma (MTC), rising levels of the tumour markers calcitonin and CEA after primary surgery indicate tumour recurrence or metastases. The only chance of cure is the resection of localised tumour tissue. For positron emission tomography (PET) with (18)F-fluorodeoxyglucose ((18)F-FDG) and (18)F-dihydroxyphenylalanine ((18)F-DOPA), sensitivities of 78% and 63% have been reported, but in a considerable percentage of MTC patients the source of tumour marker elevation is not detected. The aim of this retrospective data evaluation was to compare the value of PET with (18)F-FDG, (18)F-DOPA and the amino acid tracer 3-O-methyl-6-[(18)F]fluoro-DOPA ((18)F-OMFD) in the detection of MTC recurrence. Fifteen patients with elevated calcitonin were investigated with PET as part of their individual clinical work-up. All patients underwent (18)F-FDG PET and (18)F-DOPA PET, and ten patients underwent (18)F-OMFD PET. With (18)F-FDG, seven patients showed foci in the neck, mediastinum, upper abdomen or bone. In seven patients, (18)F-DOPA revealed suspicious foci; five of these seven patients showed partially corresponding uptake of (18)F-FDG in the neck and mediastinum. Two of these patients underwent surgery and metastases were verified. With (18)F-OMFD, a small focus in the liver was suspected in one patient without a correlate on (18)F-FDG PET, (18)F-DOPA PET or conventional imaging. (18)F-FDG and (18)F-DOPA showed foci that were highly suspicious for local recurrence or metastasis of MTC, although histological verification in these patients with numerous previous surgical interventions was performed in only two patients. The amino acid tracer (18)F-OMFD had no diagnostic impact in these patients.

  15. Metabolic Brain Network Analysis of Hypothyroidism Symptom Based on [18F]FDG-PET of Rats.

    PubMed

    Wan, Hongkai; Tan, Ziyu; Zheng, Qiang; Yu, Jing

    2018-03-12

    Recent researches have demonstrated the value of using 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET) imaging to reveal the hypothyroidism-related damages in local brain regions. However, the influence of hypothyroidism on the entire brain network is barely studied. This study focuses on the application of graph theory on analyzing functional brain networks of the hypothyroidism symptom. For both the hypothyroidism and the control groups of Wistar rats, the functional brain networks were constructed by thresholding the glucose metabolism correlation matrices of 58 brain regions. The network topological properties (including the small-world properties and the nodal centralities) were calculated and compared between the two groups. We found that the rat brains, like human brains, have typical properties of the small-world network in both the hypothyroidism and the control groups. However, the hypothyroidism group demonstrated lower global efficiency and decreased local cliquishness of the brain network, indicating hypothyroidism-related impairment to the brain network. The hypothyroidism group also has decreased nodal centrality in the left posterior hippocampus, the right hypothalamus, pituitary, pons, and medulla. This observation accorded with the hypothyroidism-related functional disorder of hypothalamus-pituitary-thyroid (HPT) feedback regulation mechanism. Our research quantitatively confirms that hypothyroidism hampers brain cognitive function by causing impairment to the brain network of glucose metabolism. This study reveals the feasibility and validity of applying graph theory method to preclinical [ 18 F]FDG-PET images and facilitates future study on human subjects.

  16. Positron emission tomography using [18F]fluorotamoxifen to evaluate therapeutic responses in patients with breast cancer: preliminary study.

    PubMed

    Inoue, T; Kim, E E; Wallace, S; Yang, D J; Wong, F C; Bassa, P; Cherif, A; Delpassand, E; Buzdar, A; Podoloff, D A

    1996-08-01

    Positron emission tomography (PET) was used to assess the biodistribution and clinical usefulness of [18F]fluorotamoxifen (FTX) in 10 patients with estrogen-receptor(ER)-positive breast tumors. Ten patients with ER-positive breast cancer were prospectively studied, and the consecutive PET imagings (each takes 15 or 20 min) were obtained for 60 or 80 min after the injection of 88.8-392.2 MBq (2.4-10.6 mCi) of [18F]FTX. Twenty three suspected primary or metastatic lesions in 10 patients were evaluated and the tumor uptakes of [18F]FTX in nineteen tumor lesions were correlated to the response of tamoxifen therapy. Three lesions in three patients were considered to be truly negative for breast cancer on the bases of biopsy specimens and/or clinical course. Five (71.4%) of seven patients and 16 (80.0%) of 20 lesions were interpreted to be truly positive for breast cancer. The mean standardized uptake value (SUV) of the radiotracer in tumor was 3.0 on delayed images. There was no significant correlation between the standardized uptake values of [18F]FTX and the ER concentrations in primary lesions. Nineteen tumor lesions in six patients were evaluable to compare the [18F]FTX uptake with responses to tamoxifen therapy after the PET study. Three patients who had a good response to tamoxifen therapy showed positive lesions on PET images, whereas two of three patients who had a poor response showed negative lesions and one showed mixed results. There was no significant difference of [18F]FTX uptake in bone lesions between good and poor responders. However, when bone lesions were excluded, [18F]FTX uptakes in tumors with good responses were significantly higher than those with poor responses (mean and standard deviation of SUV: 2.46 +/- 0.62 vs 1.37 +/- 0.59, P < 0.05). PET imaging using [18F]FTX provides useful information in predicting the effect of tamoxifen therapy in patients with ER-positive breast cancer. Further study is warranted to confirm the clinical utility of

  17. Use of micro-positron emission tomography with (18)F-fallypride to measure the levels of dopamine receptor-D2 and (18)F-FDG as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 rats.

    PubMed

    Li, Ping; Gui, Songbai; Cao, Lei; Gao, Hua; Bai, Jiwei; Li, Chuzhong; Zhang, Yazhuo

    2016-01-01

    Dopamine receptor-D2 (DRD2) is the most important drug target in prolactinoma. The aim of this current study was to investigate the role of using micro-positron emission tomography (micro-PET) with (18)F-fallypride and (18)F-fluorodeoxyglucose ((18)F-FDG) as molecular imaging tracer in the pituitary glands and prolactinomas of Fischer-344 (F344) rats and detect the difference of the levels of DRD2 in the pituitary glands and prolactinomas of F344 rat prolactinoma models. Female F344 rat prolactinoma models were established by subcutaneous administration of 15 mg 17β-estradiol for 8 weeks. The growth of tumors was monitored by the small-animal magnetic resonance imaging and micro-PET. A series of molecular biological experiments were also performed 4 and 6 weeks after pump implantation. The micro-PET molecular imaging with (18)F-fallypride revealed a decreased expression of DRD2 in F344 rat prolactinoma models, but the micro-PET molecular imaging with (18)F-FDG presented an increased uptake in the prolactinoma compared with the pituitary gland. A decreasing trend of levels of DRD2 in F344 rat prolactinoma models was also detected by molecular biological experiments. From this, we can conclude that micro-PET with (18)F-fallypride and (18)F-FDG can be used to assess tumorigenesis of the prolactinomas in vivo and molecular imaging detection of DRD2 level in prolactinoma may be an indication of treatment effect in the animal experiment.

  18. Correlation of EGFR or KRAS mutation status with 18F-FDG uptake on PET-CT scan in lung adenocarcinoma.

    PubMed

    Takamochi, Kazuya; Mogushi, Kaoru; Kawaji, Hideya; Imashimizu, Kota; Fukui, Mariko; Oh, Shiaki; Itoh, Masayoshi; Hayashizaki, Yoshihide; Ko, Weijey; Akeboshi, Masao; Suzuki, Kenji

    2017-01-01

    18F-fluoro-2-deoxy-glucose (18F-FDG) positron emission tomography (PET) is a functional imaging modality based on glucose metabolism. The correlation between EGFR or KRAS mutation status and the standardized uptake value (SUV) of 18F-FDG PET scanning has not been fully elucidated. Correlations between EGFR or KRAS mutation status and clinicopathological factors including SUVmax were statistically analyzed in 734 surgically resected lung adenocarcinoma patients. Molecular causal relationships between EGFR or KRAS mutation status and glucose metabolism were then elucidated in 62 lung adenocarcinomas using cap analysis of gene expression (CAGE), a method to determine and quantify the transcription initiation activities of mRNA across the genome. EGFR and KRAS mutations were detected in 334 (46%) and 83 (11%) of the 734 lung adenocarcinomas, respectively. The remaining 317 (43%) patients had wild-type tumors for both genes. EGFR mutations were more frequent in tumors with lower SUVmax. In contrast, no relationship was noted between KRAS mutation status and SUVmax. CAGE revealed that 4 genes associated with glucose metabolism (GPI, G6PD, PKM2, and GAPDH) and 5 associated with the cell cycle (ANLN, PTTG1, CIT, KPNA2, and CDC25A) were positively correlated with SUVmax, although expression levels were lower in EGFR-mutated than in wild-type tumors. No similar relationships were noted with KRAS mutations. EGFR-mutated adenocarcinomas are biologically indolent with potentially lower levels of glucose metabolism than wild-type tumors. Several genes associated with glucose metabolism and the cell cycle were specifically down-regulated in EGFR-mutated adenocarcinomas.

  19. Cellular Origin of [18F]FDG-PET Imaging Signals During Ceftriaxone-Stimulated Glutamate Uptake: Astrocytes and Neurons.

    PubMed

    Dienel, Gerald A; Behar, Kevin L; Rothman, Douglas L

    2017-12-01

    Ceftriaxone stimulates astrocytic uptake of the excitatory neurotransmitter glutamate, and it is used to treat glutamatergic excitotoxicity that becomes manifest during many brain diseases. Ceftriaxone-stimulated glutamate transport was reported to drive signals underlying [ 18 F]fluorodeoxyglucose-positron emission tomographic ([ 18 F]FDG-PET) metabolic images of brain glucose utilization and interpreted as supportive of the notion of lactate shuttling from astrocytes to neurons. This study draws attention to critical roles of astrocytes in the energetics and imaging of brain activity, but the results are provocative because (1) the method does not have cellular resolution or provide information about downstream pathways of glucose metabolism, (2) neuronal and astrocytic [ 18 F]FDG uptake were not separately measured, and (3) strong evidence against lactate shuttling was not discussed. Evaluation of potential metabolic responses to ceftriaxone suggests lack of astrocytic specificity and significant contributions by pre- and postsynaptic neuronal compartments. Indeed, astrocytic glycolysis may not make a strong contribution to the [ 18 F]FDG-PET signal because partial or complete oxidation of one glutamate molecule on its uptake generates enough ATP to fuel uptake of 3 to 10 more glutamate molecules, diminishing reliance on glycolysis. The influence of ceftriaxone on energetics of glutamate-glutamine cycling must be determined in astrocytes and neurons to elucidate its roles in excitotoxicity treatment.

  20. Preclinical Multimodal Molecular Imaging Using 18F-FDG PET/CT and MRI in a Phase I Study of a Knee Osteoarthritis in In Vivo Canine Model.

    PubMed

    Menendez, Maria I; Hettlich, Bianca; Wei, Lai; Knopp, Michael V

    2017-01-01

    The aim of this study was to use a multimodal molecular imaging approach to serially assess regional metabolic changes in the knee in an in vivo anterior cruciate ligament transection (ACLT) canine model of osteoarthritis (OA). Five canine underwent ACLT in one knee and the contralateral knee served as uninjured control. Prior, 3, 6, and 12 weeks post-ACLT, the dogs underwent 18 F-fluoro-d-glucose ( 18 F-FDG) positron emission tomography (PET)/computed tomography (CT) and magnetic resonance imaging (MRI). The MRI was coregistered with the PET/CT, and 3-dimensional regions of interest (ROIs) were traced manually and maximum standardized uptake values (SUV max ) were evaluated. 18 F-fluoro-d-glucose SUV max in the ACLT knee ROIs was significantly higher compared to the uninjured contralateral knees at 3, 6, and 12 weeks. Higher 18 F-FDG uptake observed in ACLT knees compared to the uninjured knees reflects greater metabolic changes in the injured knees over time. Knee 18 F-FDG uptake in an in vivo ACLT canine model using combined PET/CT and MRI demonstrated to be highly sensitive in the detection of metabolic alterations in osseous and nonosteochondral structures comprising the knee joint. 18 F-fluoro-d-glucose appeared to be a capable potential imaging biomarker for early human knee OA diagnosis, prognosis, and management.

  1. In vivo spatial correlation between (18)F-BPA and (18)F-FDG uptakes in head and neck cancer.

    PubMed

    Kobayashi, Kazuma; Kurihara, Hiroaki; Watanabe, Yoshiaki; Murakami, Naoya; Inaba, Koji; Nakamura, Satoshi; Wakita, Akihisa; Okamoto, Hiroyuki; Umezawa, Rei; Takahashi, Kana; Igaki, Hiroshi; Ito, Yoshinori; Yoshimoto, Seiichi; Shigematsu, Naoyuki; Itami, Jun

    2016-09-01

    Borono-2-(18)F-fluoro-phenylalanine ((18)F-BPA) has been used to estimate the therapeutic effects of boron neutron capture therapy (BNCT), while (18)F-fluorodeoxyglucose ((18)F-FDG) is the most commonly used positron emission tomography (PET) radiopharmaceutical in a routine clinical use. The aim of the present study was to evaluate spatial correlation between (18)F-BPA and (18)F-FDG uptakes using a deformable image registration-based technique. Ten patients with head and neck cancer were recruited from January 2014 to December 2014. All patients underwent whole-body (18)F-BPA PET/computed tomography (CT) and (18)F-FDG PET/CT within a 2-week period. For each patient, (18)F-BPA PET/CT and (18)F-FDG PET/CT images were aligned based on a deformable image registration framework. The voxel-by-voxel spatial correlation of standardized uptake value (SUV) within the tumor was analyzed. Our image processing framework achieved accurate and validated registration results for each PET/CT image. In 9/10 patients, the spatial distribution of SUVs between (18)F-BPA and (18)F-FDG showed a significant, positive correlation in the tumor volume. Deformable image registration-based voxel-wise analysis demonstrated a spatial correlation between (18)F-BPA and (18)F-FDG uptakes in the head and neck cancer. A tumor sub-volume with a high (18)F-FDG uptake may predict high accumulation of (18)F-BPA. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  2. Mild traumatic brain injury results in depressed cerebral glucose uptake: An (18)FDG PET study.

    PubMed

    Selwyn, Reed; Hockenbury, Nicole; Jaiswal, Shalini; Mathur, Sanjeev; Armstrong, Regina C; Byrnes, Kimberly R

    2013-12-01

    Moderate to severe traumatic brain injury (TBI) in humans and rats induces measurable metabolic changes, including a sustained depression in cerebral glucose uptake. However, the effect of a mild TBI on brain glucose uptake is unclear, particularly in rodent models. This study aimed to determine the glucose uptake pattern in the brain after a mild lateral fluid percussion (LFP) TBI. Briefly, adult male rats were subjected to a mild LFP and positron emission tomography (PET) imaging with (18)F-fluorodeoxyglucose ((18)FDG), which was performed prior to injury and at 3 and 24 h and 5, 9, and 16 days post-injury. Locomotor function was assessed prior to injury and at 1, 3, 7, 14, and 21 days after injury using modified beam walk tasks to confirm injury severity. Histology was performed at either 10 or 21 days post-injury. Analysis of function revealed a transient impairment in locomotor ability, which corresponds to a mild TBI. Using reference region normalization, PET imaging revealed that mild LFP-induced TBI depresses glucose uptake in both the ipsilateral and contralateral hemispheres in comparison with sham-injured and naïve controls from 3 h to 5 days post-injury. Further, areas of depressed glucose uptake were associated with regions of glial activation and axonal damage, but no measurable change in neuronal loss or gross tissue damage was observed. In conclusion, we show that mild TBI, which is characterized by transient impairments in function, axonal damage, and glial activation, results in an observable depression in overall brain glucose uptake using (18)FDG-PET.

  3. Synthesis and evaluation of 18F-labeled CJ-042794 for imaging prostanoid EP4 receptor expression in cancer with positron emission tomography.

    PubMed

    Zhang, Zhengxing; Lau, Joseph; Kuo, Hsiou-Ting; Zhang, Chengcheng; Colpo, Nadine; Bénard, François; Lin, Kuo-Shyan

    2017-05-15

    The potent and selective prostanoid EP4 receptor antagonist CJ-042794 was radiolabeled with 18 F, and evaluated for imaging EP4 receptor expression in cancer with positron emission tomography (PET). The fluorination precursor, arylboronic acid pinacol ester 4, was prepared in 4 steps with 42% overall yield. 18 F-CJ-042794 was synthesized via a copper-mediated 18 F-fluorination reaction followed by base hydrolysis, and was obtained in 1.5±1.1% (n=2) decay-corrected radiochemical yield. PET/CT imaging and biodistribution studies in mice showed that 18 F-CJ-042794 was excreted through both renal and hepatobiliary pathways with significant retention in blood. The EP4-receptor-expressing LNCaP prostate cancer xenografts were clearly visualized in PET images with 1.12±0.08%ID/g (n=5) uptake value and moderate tumour-to-muscle contrast ratio (2.73±0.22) at 1h post-injection. However, the tumour uptake was nonspecific as it could not be blocked by co-injection of cold standard, precluding the application of 18 F-CJ-042794 for PET imaging of EP4 receptor expression in cancer. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. 18F-labeled norepinephrine transporter tracer [18F]NS12137: radiosynthesis and preclinical evaluation.

    PubMed

    Kirjavainen, Anna K; Forsback, Sarita; López-Picón, Francisco R; Marjamäki, Päivi; Takkinen, Jatta; Haaparanta-Solin, Merja; Peters, Dan; Solin, Olof

    2018-01-01

    Several psychiatric and neurodegenerative diseases are associated with malfunction of brain norepinephrine transporter (NET). However, current clinical evaluations of NET function are limited by the lack of sufficiently sensitive methods of detection. To this end, we have synthesized exo-3-[(6-[ 18 F]fluoro-2-pyridyl)oxy]-8-azabicyclo[3.2.1]-octane ([ 18 F]NS12137) as a radiotracer for positron emission tomography (PET) and have demonstrated that it is highly specific for in vivo detection of NET-rich regions of rat brain tissue. We applied two methods of electrophilic, aromatic radiofluorination of the precursor molecule, exo-3-[(6-trimethylstannyl-2-pyridyl)oxy]-8-azabicyclo-[3.2.1]octane-8-carboxylate: (1) direct labeling with [ 18 F]F 2 , and (2) labeling with [ 18 F]Selectfluor, a derivative of [ 18 F]F 2 , using post-target produced [ 18 F]F 2 . The time-dependent distribution of [ 18 F]NS12137 in brain tissue of healthy, adult Sprague-Dawley rats was determined by ex vivo autoradiography. The specificity of [ 18 F]NS12137 binding was demonstrated on the basis of competitive binding by nisoxetine, a known NET antagonist of high specificity. [ 18 F]NS12137 was successfully synthesized with radiochemical yields of 3.9% ± 0.3% when labeled with [ 18 F]F 2 and 10.2% ± 2.7% when labeled with [ 18 F]Selectfluor. The molar activity of radiotracer was 8.8 ± 0.7 GBq/μmol with [ 18 F]F 2 labeling and 6.9 ± 0.4 GBq/μmol with [ 18 F]Selectfluor labeling at the end of synthesis of [ 18 F]NS12137. Uptake of [ 18 F]NS12137 in NET-rich areas in rat brain was demonstrated with the locus coeruleus (LCoe) having the highest regional uptake. Prior treatment of rats with nisoxetine showed no detectable [ 18 F]NS12137 in the LCoe. Analyses of whole brain samples for radiometabolites showed only the parent compound [ 18 F]NS12137. Uptake of 18 F-radioactivity in bone increased with time. The two electrophilic 18 F-labeling methods proved to be suitable for synthesis of [ 18 F

  5. Fluorine-18 NaF PET imaging of child abuse.

    PubMed

    Drubach, Laura A; Sapp, Mark V; Laffin, Stephen; Kleinman, Paul K

    2008-07-01

    We describe the use of 18F-NaF positron emission tomography (PET) whole-body imaging for the evaluation of skeletal trauma in a case of suspected child abuse. To our knowledge, 18F NaF PET has not been used in the past for the evaluation of child abuse. In our patient, this technique detected all sites of trauma shown by initial and follow-up skeletal surveys, including bilateral metaphyseal fractures of the proximal humeri. Fluorine-18 NaF PET has potential advantage over Tc-99m-labeled methylene diphosphonate (MDP) based upon superior image contrast and spatial resolution.

  6. [Use of positron-emission tomography with F18-fluorodeoxyglucose for the assessment of lung lesions suspicious of malignancy].

    PubMed

    Jofré, M Josefina; Massardo, Teresa; González, Patricio; Canessa, José; Sierralta, Paulina; Humeres, Pamela; Galaz, Rodrigo; Valdebenito, Robert

    2005-05-01

    Positron-emission tomography (PET) with F18-fluorodeoxyglucose (FDG) is very helpful in the evaluation and management of lung lesions. It is specially useful for the characterization of solitary nodules, for the staging, evaluation of recurrence and therapeutic response in non-small cell lung cancer, for the evaluation of small cell lung cancer and for the assessment of pulmonary metastases. This article is a literature review on PET with FDG in lung cancer. A preliminary analysis of PET results at the Military Hospital in Santiago, Chile, is also presented.

  7. Change in hexose distribution volume and fractional utilization of ( sup 18 F)-2-deoxy-2-fluoro-D-glucose in brain during acute hypoglycemia in humans

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, E.T.; Cooper, M.; Chen, C.T.

    1990-02-01

    We used positron emission tomography (PET) to study the effects of mild hypoglycemia on cerebral glucose uptake and metabolism. Nine healthy men were studied under basal saline-infusion conditions, and during euglycemic and hypoglycemic clamp studies. Insulin was infused at the same rate (1 mU.kg-1.min-1) in both clamp studies. In euglycemic clamp studies, glucose was infused at a rate sufficient to maintain the basal plasma glucose concentration, whereas in hypoglycemic clamp studies, the glucose infusion rate was reduced to maintain the plasma glucose at 3.1 mM. Each study lasted 3 h and included a 30-min baseline period and a subsequent 150-minmore » period in which insulin or glucose was administered. Blood samples for measurement of insulin, glucose, cortisol, growth hormone, and glucagon were obtained at 20- to 30-min intervals. A bolus injection of 5-10 mCi (18F)-2-deoxy-2-fluoro-D-glucose (2-DFG) was administered 120 min after initiation of the study, and plasma radioactivity and dynamic PET scans were obtained at frequent intervals for the remaining 40-60 min of the study. Cerebral regions of interest were defined, and concentrations of radioactivity were calculated and used in the three-compartment model of 2-DFG distribution described by Sokoloff. Glucose levels were similar during saline-infusion (4.9 +/- 0.1 mM) and euglycemic clamp (4.8 +/- 0.1 mM) studies, whereas the desired degree of mild hypoglycemia was achieved during the hypoglycemic clamp study (3.1 +/- 0.1 mM, P less than 0.05). The insulin level during saline infusion was 41 +/- 7 pM.« less

  8. Noninvasive positron emission tomography imaging of cell death using a novel small-molecule probe, (18)F labeled bis(zinc(II)-dipicolylamine) complex.

    PubMed

    Wang, Hongliang; Tang, Xiaolan; Tang, Ganghua; Huang, Tingting; Liang, Xiang; Hu, Kongzhen; Deng, Huaifu; Yi, Chang; Shi, Xinchong; Wu, Kening

    2013-08-01

    The synthetic bis(zinc(II)-dipicolylamine) (DPAZn2) coordination complexes are known to have a high specific and selective affinity to target the exposed phosphatidylserine (PS) on the surface of dead and dying cells. An (18)F-labeled DPAZn2 complex (4-(18)F-Fluoro-benzoyl-bis(zinc(II)-dipicolylamine), (18)F-FB-DPAZn2) as positron emission tomography (PET) tracer was developed and evaluated for in vivo imaging of tumor treated with a chemical agent. The in vitro cell stain studies revealed that fluorescent DPAZn2 complexes (Dansyl-DPAZn2) stained the same cells (apoptotic and necrotic cells) as fluorescein isothiocyanate (FITC) labeled Annexin V (FITC-Annexin V). The radiosynthesis of (18)F-FB-DPAZn2 was achieved through the amidation the precursor bis(2,2'-dipicolylamine) derivative (DPA2) with the prosthetic group N-succinimidyl-4-[(18)F]-fluorobenzoate ((18)F-SFB) and chelation with zinc nitrate. In the biodistribution study, the fast clearance of (18)F-FB-DPAZn2 from blood and kidney was observed and high uptake in liver and intestine within 90 min postinjection was also found. For the PET imaging, significantly higher tumor uptake of (18)F-FB-DPAZn2 was observed in the adriamycin (ADM)-treated Hepa1-6 hepatocellular carcinoma-bearing mice than that in the untreated tumor-model mice, while a slightly decreased tumor uptake of (18)F-FDG was found in the ADM-treated tumor-bearing mice. The results indicate that (18)F-FB-DPAZn2 has the similar capability of apoptosis detection as FITC-Annexin V and seems to be a potential PET tracer for noninvasive evaluation and monitoring of anti-tumor chemotherapy. The high uptake of (18)F-FB-DPAZn2 in the abdomen needs to optimize the structure for improving its pharmacokinetics characteristics in the future work.

  9. Synthesis of a potent and selective (18)F-labeled delta-opioid receptor antagonist derived from the Dmt-Tic pharmacophore for positron emission tomography imaging.

    PubMed

    Ryu, Eun Kyoung; Wu, Zhanhong; Chen, Kai; Lazarus, Lawrence H; Marczak, Ewa D; Sasaki, Yusuke; Ambo, Akihiro; Salvadori, Severo; Ren, Chuancheng; Zhao, Heng; Balboni, Gianfranco; Chen, Xiaoyuan

    2008-03-27

    Identification and pharmacological characterization of two new selective delta-opioid receptor antagonists, derived from the Dmt-Tic pharmacophore, of potential utility in positron emission tomography (PET) imaging are described. On the basis of its high delta selectivity, H-Dmt-Tic--Lys(Z)-OH (reference compound 1) is a useful starting point for the synthesis of (18)F-labeled compounds prepared by the coupling of N-succinimidyl 4-[ (18)F]fluorobenzoate ([(18)F]SFB) with Boc-Dmt-Tic--Lys(Z)-OH under slightly basic conditions at 37 degrees C for 15 min, deprotection with TFA, and HPLC purification. The total synthesis time was 120 min, and the decay-corrected radiochemical yield of [(18)F]- 1 was about 25-30% ( n = 5) starting from [(18)F]SFB ( n = 5) with an effective specific activity about 46 GBq/micromol. In vitro autoradiography studies showed prominent uptake of [ (18)F]- 1 in the striatum and cortex with significant blocking by 1 and UFP-501 (selective delta-opioid receptor antagonist), suggesting high specific binding of [(18)F]- 1 to delta-opioid receptors. Noninvasive microPET imaging studies revealed the absence of [(18)F]- 1 in rat brain, since it fails to cross the blood-brain barrier. This study demonstrates the suitability of [ (18)F]- 1 for imaging peripheral delta-opioid receptors.

  10. Comparison of (68)Ga-DOTA-Tyr(3)-octreotide and (18)F-fluoro-L-dihydroxyphenylalanine positron emission tomography in neuroendocrine tumor patients.

    PubMed

    Putzer, D; Gabriel, M; Kendler, D; Henninger, B; Knoflach, M; Kroiss, A; Vonguggenberg, E; Warwitz, B; Virgolini, I J

    2010-02-01

    (68)Ga-DOTA-Tyr3-octreotide positron emission tomography ((68)Ga-DOTA-TOC PET) and (18)F-fluoro-L-dihydroxyphenylalanine PET ((18)F-DOPA PET) are emerging modalities for imaging of neuroendocrine tumors. This study reports our initial experiences with these two PET modalities on initial diagnosis, staging and restaging in NET patients. Fifteen patients with NET underwent both (68)Ga-DOTA-TOC and (18)F-DOPA PET as well as computed tomography (CT). Image findings were compared on a patient-basis (pathological uptake: yes/no) as well as on a lesion-basis. Contrast-enhanced CT and histological follow-up served as gold standard. Furthermore, imaging results were matched with tumor marker levels and quantitative tracer uptake by the tumor lesions. When comparing (68)Ga-DOTA-TOC and (18)F-DOPA PET, each modality showed a sensitivity of 64% and a specificity of 100% on a patient-based analysis. (68)Ga-DOTA-TOC PET and (18)F-DOPA PET showed equal findings in 7 out of 15 patients and disagreement in 8 patients. (68)Ga-DOTA-TOC revealed more metastases than (18)F-DOPA PET in 6 patients, while (18)F-DOPA PET detected more metastases than (68)Ga-DOTA-TOC in 4 patients. By (68)Ga-DOTA-TOC PET, 208 malignant lesions were detected, while by (18)F-DOPA only 86 lesions were found, and in CT 124, respectively. (68)Ga-DOTA-TOC and (18)F-DOPA PET are useful tools in the detection and staging of NET lesions. Our initial results allow the conclusion that (68)Ga-DOTA-TOC PET may have a stronger clinical impact in NET patients, as it does not only offer diagnostic information, but is decisive for the further treatment management, i. e. PRRT, as well.

  11. Triple primary malignancies of surface osteosarcoma of jaw, myelodysplastic syndrome and colorectal cancer as a second primary cancer detected by PET2-[18F]-fluoro-2-deoxy-D-glucose positron emission tomography: A case report.

    PubMed

    Maruyama, Nobuyuki; Nishihara, Kazuhide; Nakasone, Toshiyuki; Saio, Masanao; Maruyama, Tessho; Tedokon, Iori; Ohira, Tetsuya; Nimura, Fumikazu; Matayoshi, Akira; Karube, Ken-Nosuke; Yoshimi, Naoki; Arasaki, Akira

    2018-06-01

    Second primary malignancy (SPM) is a severe issue for cancer survivors, particularly for osteosarcoma (OS) survivors. To date, the associations between subsequent SPM and OS have been well reported. Hematogenic and solid malignancies tend to occur following OS treatment. Reportedly, 2-[ 18 F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) is mainly used in OS patients for initial cancer staging, to evaluate the response of neoadjuvant chemotherapy, and when recurrence or metastasis is clinically suspected. The present case report describes a 70-year-old man diagnosed with three primary malignancies: jaw OS, myelodysplastic syndrome and colorectal adenocarcinoma. To the best of our knowledge, this combination of malignancies has not been reported previously. Until now, there is no specific protocol of postoperative FDG-PET for OS patients. Few studies have described OS follow-up methods; therefore, there is no consensus on proper follow-up methods. In the present case report, the colorectal early-stage SPM was observed, without any symptoms, by FDG-PET/computed tomography. To avoid overlooking solid SPMs, it is suggested that FDG-PET should be performed in the long-term follow-up of OS patients.

  12. Carbon-11 and fluorine-18 chemistry devoted to molecular probes for imaging the brain with positron emission tomography.

    PubMed

    Dollé, Frédéric

    2013-01-01

    Exploration of the living human brain in real-time and in a noninvasive way was for centuries only a dream, made, however, possible today with the remarkable development during the four last decades of powerful molecular imaging techniques, and especially positron emission tomography (PET). Molecular PET imaging relies, from a chemical point of view, on the use and preparation of a positron-emitting radiolabelled probe or radiotracer, notably compounds incorporating one of two short-lived radionuclides fluorine-18 (T1/2 : 109.8 min) and carbon-11 (T1/2 : 20.38 min). The growing availability and interest for the radiohalogen fluorine-18 in radiopharmaceutical chemistry undoubtedly results from its convenient half-life and the successful use in clinical oncology of 2-[(18) F]fluoro-2-deoxy-d-glucose ([(18) F]FDG). The special interest of carbon-11 is not only that carbon is present in virtually all biomolecules and drugs allowing therefore for isotopic labelling of their chemical structures but also that a given molecule could be radiolabelled at different functions or sites, permitting to explore (or to take advantage of) in vivo metabolic pathways. PET chemistry includes production of these short-lived radioactive isotopes via nuclear transmutation reactions using a cyclotron, and is directed towards the development of rapid synthetic methods, at the trace level, for the introduction of these nuclides into a molecule, as well as the use of fast purification, analysis and formulation techniques. PET chemistry is the driving force in molecular PET imaging, and this special issue of the Journal of Labelled Compounds and Radiopharmaceuticals, which is strongly chemistry and radiochemistry-oriented, aims at illustrating, be it in part only, the state-of-the-art arsenal of reactions currently available and its potential for the research and development of specific molecular probes labelled with the positron emitters carbon-11 and fluorine-18, with optimal imaging

  13. (18)F-fluorodeoxyglucose positron emission tomography/computed tomography comparison of gastric lymphoma and gastric carcinoma.

    PubMed

    Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui

    2016-09-14

    To compare (18)F-fluorodeoxyglucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent (18)F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ(2) test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma.

  14. 18F-fluorodeoxyglucose positron emission tomography/computed tomography comparison of gastric lymphoma and gastric carcinoma

    PubMed Central

    Li, Xiao-Feng; Fu, Qiang; Dong, You-Wen; Liu, Jian-Jing; Song, Xiu-Yu; Dai, Dong; Zuo, Cong; Xu, Wen-Gui

    2016-01-01

    AIM To compare 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) features in gastric lymphoma and gastric carcinoma. METHODS Patients with newly diagnosed gastric lymphoma or gastric carcinoma who underwent 18F-FDG PET/CT prior to treatment were included in this study. We reviewed and analyzed the PET/CT features of gastric wall lesions, including FDG avidity, pattern (focal/diffuse), and intensity [maximal standard uptake value: (SUVmax)]. The correlation of SUVmax with gastric clinicopathological variables was investigated by χ2 test, and receiver-operating characteristic (ROC) curve analysis was performed to determine the differential diagnostic value of SUVmax-associated parameters in gastric lymphoma and gastric carcinoma. RESULTS Fifty-two patients with gastric lymphoma and 73 with gastric carcinoma were included in this study. Abnormal gastric FDG accumulation was found in 49 patients (94.23%) with gastric lymphoma and 65 patients (89.04%) with gastric carcinoma. Gastric lymphoma patients predominantly presented with type I and type II lesions, whereas gastric carcinoma patients mainly had type III lesions. The SUVmax (13.39 ± 9.24 vs 8.35 ± 5.80, P < 0.001) and SUVmax/THKmax (maximal thickness) (7.96 ± 4.02 vs 4.88 ± 3.32, P < 0.001) were both higher in patients with gastric lymphoma compared with gastric carcinoma. ROC curve analysis suggested a better performance of SUVmax/THKmax in the evaluation of gastric lesions between gastric lymphoma and gastric carcinoma in comparison with that of SUVmax alone. CONCLUSION PET/CT features differ between gastric lymphoma and carcinoma, which can improve PET/CT evaluation of gastric wall lesions and help differentiate gastric lymphoma from gastric carcinoma. PMID:27678362

  15. Effect of the prosthetic group on the pharmacologic properties of 18F-labeled rhodamine B, a potential myocardial perfusion agent for positron emission tomography (PET).

    PubMed

    Bartholomä, Mark D; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H; Treves, S Ted; Packard, Alan B

    2012-12-27

    We recently reported the development of the 2-[(18)F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [(18)F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared (18)F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of (18)F-labeled compounds. They also support the value of continued investigation of (18)F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging.

  16. Imaging of amyloid deposition in human brain using positron emission tomography and [18F]FACT: comparison with [11C]PIB.

    PubMed

    Ito, Hiroshi; Shinotoh, Hitoshi; Shimada, Hitoshi; Miyoshi, Michie; Yanai, Kazuhiko; Okamura, Nobuyuki; Takano, Harumasa; Takahashi, Hidehiko; Arakawa, Ryosuke; Kodaka, Fumitoshi; Ono, Maiko; Eguchi, Yoko; Higuchi, Makoto; Fukumura, Toshimitsu; Suhara, Tetsuya

    2014-04-01

    The characteristic neuropathological changes in Alzheimer's disease (AD) are deposition of amyloid senile plaques and neurofibrillary tangles. The (18)F-labeled amyloid tracer, [(18)F]2-[(2-{(E)-2-[2-(dimethylamino)-1,3-thiazol-5-yl]vinyl}-1,3-benzoxazol-6-yl)oxy]-3-fluoropropan-1-ol (FACT), one of the benzoxazole derivatives, was recently developed. In the present study, deposition of amyloid senile plaques was measured by positron emission tomography (PET) with both [(11)C]Pittsburgh compound B (PIB) and [(18)F]FACT in the same subjects, and the regional uptakes of both radiotracers were directly compared. Two PET scans, one of each with [(11)C]PIB and [(18)F]FACT, were performed sequentially on six normal control subjects, two mild cognitive impairment (MCI) patients, and six AD patients. The standardized uptake value ratio of brain regions to the cerebellum was calculated with partial volume correction using magnetic resonance (MR) images to remove the effects of white matter accumulation. No significant differences in the cerebral cortical uptake were observed between normal control subjects and AD patients in [(18)F]FACT studies without partial volume correction, while significant differences were observed in [(11)C]PIB. After partial volume correction, the cerebral cortical uptake was significantly larger in AD patients than in normal control subjects for [(18)F]FACT studies as well as [(11)C]PIB. Relatively lower uptakes of [(11)C]PIB in distribution were observed in the medial side of the temporal cortex and in the occipital cortex as compared with [(18)F]FACT. Relatively higher uptake of [(11)C]PIB in distribution was observed in the frontal and parietal cortices. Since [(18)F]FACT might bind more preferentially to dense-cored amyloid deposition, regional differences in cerebral cortical uptake between [(11)C]PIB and [(18)F]FACT might be due to differences in regional distribution between diffuse and dense-cored amyloid plaque shown in the

  17. Relationship Between Clinicopathological Characteristics and PET/CT Uptake in Esophageal Squamous Cell Carcinoma: [18F]Alfatide versus [18F]FDG.

    PubMed

    Dong, Yinjun; Wei, Yuchun; Chen, Guanxuan; Huang, Yong; Song, Pingping; Liu, Shuguang; Zheng, Jinsong; Cheng, Monica; Yuan, Shuanghu

    2018-06-04

    To assess a novel radiotracer aluminum [ 18 F]fluoride-1,4,7-triazacyclononane-triacetic acid-pegylated dimeric RGD ([ 18 F]ALF-NOTA-PRGD 2 , denoted as [ 18 F]Alfatide) for positron emission tomography (PET)/X-ray computed tomography (CT) and explore the relationships between clinicopathological characteristics and maximum standard uptake values in primary (SUV P ) and metastatic lymph nodes (SUV LN ) of patients with esophageal squamous cell carcinoma (ESCC), as verified by pathologic examination and compared with those obtained with 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]DG) PET. We prospectively enrolled patients with newly diagnosed ESCC who agreed to undergo [ 18 F]Alfatide PET/CT or [ 18 F]FDG PET/CT scans before surgery at Shandong Cancer Hospital from May 2011 to July 2017. SUVs and the pathological tumor-node-metastasis (pTNM) stages of primary tumors and metastatic lymph nodes (LNs) were measured and confirmed pathologically. Immunohistochemical (IHC) staining for integrin αvβ3 was performed on tumor samples (both primary tumors and metastatic LNs) collected from nine patients. Of 61 patients who underwent PET/CT scans, 46 then underwent curative surgery and were included in our analysis (n = 21 for [ 18 F]Alfatide PET/CT and n = 25 for [ 18 F]FDG PET/CT). No significant differences in the SUV P on [ 18 F]Alfatide PET/CT or [ 18 F]FDG PET/CT were observed among the cohorts according to gender, pathological stage, T stage, status of LNs, and differentiation (all P > 0.05). The SUV LN differed significantly between the pathological stages and status of LNs both on [ 18 F]Alfatide PET/CT (P = 0.03, 0.003) and [ 18 F]FDG PET/CT (P = 0.001. < 0.001), but not according to gender (P = 0.128, 0.129), T stage (P = 0.791, 0.727), or tumor differentiation (P = 0.049, 0.053). Significant positive correlations were observed between the SUV LN on [ 18 F]Alfatide PET/CT and [ 18 F]FDG PET/CT, and pathological stage (r = 0

  18. Feasibility of assessing [(18)F]FDG lung metabolism with late dynamic PET imaging.

    PubMed

    Laffon, Eric; de Clermont, Henri; Vernejoux, Jean-Marc; Jougon, Jacques; Marthan, Roger

    2011-04-01

    The aim of this work was to non-invasively establish the feasibility of assessing 2-deoxy-2-[(18)F]fluoro-D-glucose ((18)F-FDG) lung metabolism with the use of a late dynamic positron emission tomograpy (PET) acquisition, i.e., beyond 2 h after injection. The present method has been probed in 11 patients without any respiratory disease, under fasting conditions, by assessing mean values of (18)F-FDG lung metabolism. A kinetic model analysis has been implemented on a simple calculation sheet. An arbitrary (population based) input function has been used in each individual, which was obtained from literature data. In the healthy lung, no (18)F-FDG release was found, and the mean values (±SD) of the (18)F-FDG uptake rate constant and of the fraction of the free tracer in blood and interstitial volume were: K = 0.0016 min(-1) (±0.0005), and F = 0.18 (±0.10), respectively. These results were in very close agreement with literature data that were obtained by both three-compartment model analysis and Patlak graphical analysis (gold standards), and that used an invasive blood sampling. Furthermore, K and the standard uptake value index have been compared. We conclude that assessing lung metabolism of (18)F-FDG in humans with the use of late dynamic PET imaging is feasible. The arbitrary input function of this non-invasive feasibility study could be replaced in further experiments by an input function obtained by arterial sampling. It is suggested that this method may prove useful to quantify (18)F-FDG lung metabolism under pathological conditions.

  19. Brain and Brown Adipose Tissue Metabolism in Transgenic Tg2576 Mice Models of Alzheimer Disease Assessed Using 18F-FDG PET Imaging

    PubMed Central

    Coleman, Robert A.; Liang, Christopher; Patel, Rima; Ali, Sarah

    2017-01-01

    Objective: Imaging animal models of Alzheimer disease (AD) is useful for the development of therapeutic drugs and understanding AD. Transgenic Swedish hAPPswe Tg2576 mice are a good model of β-amyloid plaques. We report 18F-fluoro-2-deoxyglucose (18F-FDG) positron emission tomography (PET) imaging of brain and intrascapular brown adipose tissue (IBAT) in transgenic mice 2576 (Tg2576) and wild-type (WT) mice. Methods: Transgenic Tg2576 mice and WT mice, >18 months were injected intraperitonally with ≈ 25 to 30 MBq 18F-FDG while awake. After 60 minutes, they were anesthetized with isoflurane (2.5%) and imaged with Inveon MicroPET. Select mice were killed, imaged ex vivo, and 20 µm sections cut for autoradiography. 18F-FDG uptake in brain and IBAT PET and brain autoradiographs were analyzed. Results: Fasting blood glucose levels averaged 120 mg/dL for WT and 100 mg/dL for Tg2576. Compared to WT, Tg2576 mice exhibited a decrease in SUVglc in the various brain regions. Average reductions in the cerebrum regions were as high as −20%, while changes in cerebellum were −3%. Uptake of 18F-FDG in IBAT decreased by −60% in Tg2576 mice and was found to be significant. Intrascapular brown adipose tissue findings in Tg2576 mice are new and not previously reported. Use of blood glucose for PET data analysis and corpus callosum as reference region for autoradiographic analysis were important to detect change in Tg2576 mice. Conclusion: Our results suggest that 18F-FDG uptake in the Tg2576 mice brain show 18F-FDG deficits only when blood glucose is taken into consideration. PMID:28654383

  20. GMP-compliant automated synthesis of [(18)F]AV-45 (Florbetapir F 18) for imaging beta-amyloid plaques in human brain.

    PubMed

    Yao, Cheng-Hsiang; Lin, Kun-Ju; Weng, Chi-Chang; Hsiao, Ing-Tsung; Ting, Yi-Shu; Yen, Tzu-Chen; Jan, Tong-Rong; Skovronsky, Daniel; Kung, Mei-Ping; Wey, Shiaw-Pyng

    2010-12-01

    We report herein the Good Manufacturing Practice (GMP)-compliant automated synthesis of (18)F-labeled styrylpyridine, AV-45 (Florbetapir), a novel tracer for positron emission tomography (PET) imaging of beta-amyloid (Abeta) plaques in the brain of Alzheimer's disease patients. [(18)F]AV-45 was prepared in 105 min using a tosylate precursor with Sumitomo modules for radiosynthesis under GMP-compliant conditions. The overall yield was 25.4+/-7.7% with a final radiochemical purity of 95.3+/-2.2% (n=19). The specific activity of [(18)F]AV-45 reached as high as 470+/-135 TBq/mmol (n=19). The present studies show that [(18)F]AV-45 can be manufactured under GMP-compliant conditions and could be widely available for routine clinical use. Copyright 2010 Elsevier Ltd. All rights reserved.

  1. Optimization of the reference region method for dual pharmacokinetic modeling using Gd-DTPA/MRI and (18) F-FDG/PET.

    PubMed

    Poulin, Éric; Lebel, Réjean; Croteau, Étienne; Blanchette, Marie; Tremblay, Luc; Lecomte, Roger; Bentourkia, M'hamed; Lepage, Martin

    2015-02-01

    The combination of MRI and positron emission tomography (PET) offers new possibilities for the development of novel methodologies. In pharmacokinetic image analysis, the blood concentration of the imaging compound as a function of time, [i.e., the arterial input function (AIF)] is required for MRI and PET. In this study, we tested whether an AIF extracted from a reference region (RR) in MRI can be used as a surrogate for the manually sampled (18) F-FDG AIF for pharmacokinetic modeling. An MRI contrast agent, gadolinium-diethylenetriaminepentaacetic acid (Gd-DTPA) and a radiotracer, (18) F-fluorodeoxyglucose ((18) F-FDG), were simultaneously injected in a F98 glioblastoma rat model. A correction to the RR AIF for Gd-DTPA is proposed to adequately represent the manually sampled AIF. A previously published conversion method was applied to convert this AIF into a (18) F-FDG AIF. The tumor metabolic rate of glucose (TMRGlc) calculated with the manually sampled (18) F-FDG AIF, the (18) F-FDG AIF converted from the RR AIF and the (18) F-FDG AIF converted from the corrected RR AIF were found not statistically different (P>0.05). An AIF derived from an RR in MRI can be accurately converted into a (18) F-FDG AIF and used in PET pharmacokinetic modeling. © 2014 Wiley Periodicals, Inc.

  2. Computed tomography and (18)F-fluorodeoxyglucose positron emission tomography/computed tomography findings in adrenal candidiasis and histoplasmosis: two cases.

    PubMed

    Altinmakas, Emre; Guo, Ming; Kundu, Uma R; Habra, Mouhammed Amir; Ng, Chaan

    2015-01-01

    We report the contrast-enhanced computed tomography (CT) and (18)F-fluorodeoxyglucose positron emission tomography findings in adrenal histoplasmosis and candidiasis. Both demonstrated bilateral hypermetabolic heterogeneous adrenal masses with limited wash-out on delayed CT. Adrenal candidiasis has not been previously reported, nor have the CT wash-out findings in either infection. The adrenal imaging findings are indistinguishable from malignancy, which is more common; but in this setting, physicians should be alert to the differential diagnosis of fungal infections, since it can be equally deadly. Published by Elsevier Inc.

  3. Italian Multicenter Study on Accuracy of 18F-FDG PET/CT in Assessing Bone Marrow Involvement in Pediatric Hodgkin Lymphoma.

    PubMed

    Cistaro, Angelina; Cassalia, Laura; Ferrara, Cinzia; Quartuccio, Natale; Evangelista, Laura; Bianchi, Maurizio; Fagioli, Franca; Bisi, Gianni; Baldari, Sergio; Zanella, Alessandro; Pillon, Marta; Zucchetta, Pietro; Burei, Marta; Sala, Alessandra; Guerra, Luca; Guglielmo, Priscilla; Burnelli, Roberta; Panareo, Stefano; Scalorbi, Federica; Rambaldi, Ilaria; Piccardo, Arnoldo; Garaventa, Alberto; Familiari, Demetrio; Fornito, Maria Concetta; Lopci, Egesta; Mascarin, Maurizio; Altini, Corinna; Ferrari, Cristina; Perillo, Teresa; Santoro, Nicola; Borsatti, Eugenio; Rubini, Giuseppe

    2018-06-01

    The present study investigated the utility of fluorine-18 ( 18 F) fluoro-2-deoxy-d-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) in assessing bone marrow involvement (BMI) compared with bone marrow biopsy (BMB) in newly diagnosed pediatric Hodgkin lymphoma (HL). A total of 224 pediatric patients with HL underwent 18 F-FDG PET/CT at staging. BMB or follow-up imaging was used as the standard of reference for the evaluation of BMI. 18 F-FDG PET/CT was negative for BMI in 193 cases. Of the 193 patients, the findings for 16 were originally reported as doubtful and later interpreted as negative for BMI, with negative findings on follow-up imaging and BMB. At BMB, 1 of the 16 patients (6.25%) had BMI. Of the 193 patients, 192 (99.48%) had negative BMB findings. Thus, the 18 F-FDG PET/CT findings were truly negative for 192 patients and falsely negative for 1 patient for BMI. 18 F-FDG PET/CT showed high diagnostic performance in the evaluation of BMI in pediatric HL. Thus, BMB should be ideally reserved for patients presenting with doubtful 18 F-FDG PET/CT findings for BMI. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Comparison of whole body magnetic resonance imaging (WBMRI) to whole body computed tomography (WBCT) or 18F-fluorodeoxyglucose positron emission tomography/CT (18F-FDG PET/CT) in patients with myeloma: Systematic review of diagnostic performance.

    PubMed

    Gariani, Joanna; Westerland, Olwen; Natas, Sarah; Verma, Hema; Cook, Gary; Goh, Vicky

    2018-04-01

    To undertake a systematic review to determine the diagnostic performance of whole body MRI (WBMRI) including diffusion weighted sequences (DWI) compared to whole body computed tomography (WBCT) or 18 F-fluorodeoxyglucose positron emission tomography/CT ( 18 F-FDG PET/CT) in patients with myeloma. Two researchers searched the primary literature independently for WBMRI studies of myeloma. Data were extracted focusing on the diagnostic ability of WBMRI versus WBCT and 18 F-FDG PET/CT. Meta-analysis was intended. 6 of 2857 articles were eligible that included 147 patients, published from 2008 to 2016. Studies were heterogeneous including both newly diagnosed & relapsed patients. All were single centre studies. Four of the six studies (66.7%) accrued prospectively and 5/6 (83.3%, 3 prospective) included WBMRI and 18 F-FDG PET/CT. Three of seven (42.9%) included DWI. The lack of an independent reference standard for individual lesions was noted in 5/6 (83.3%) studies. Studies reported that WBMRI detected more lesions than 18 F-FDG PET/CT (sensitivity 68-100% versus 47-100%) but was less specific (specificity 37-83% versus 62-85.7%). No paper assessed impact on management. Studies were heterogeneous, the majority lacking an independent reference standard. Future prospective trials should address these limitations and assess the impact of WBMRI on management. Copyright © 2018. Published by Elsevier B.V.

  5. Influence of the baseline 18F-fluoro-2-deoxy-D-glucose positron emission tomography results on survival and pathologic response in patients with gastroesophageal cancer undergoing chemoradiation.

    PubMed

    Javeri, Heta; Xiao, Lianchun; Rohren, Eric; Komaki, Ritsuko; Hofstetter, Wayne; Lee, Jeffrey H; Maru, Dipen; Bhutani, Manoop S; Swisher, Stephen G; Wang, Xuemei; Ajani, Jaffer A

    2009-02-01

    In patients with esophageal cancer who receive chemoradiation, tools to predict/prognosticate outcome before administering therapy are lacking. The authors evaluated initial standardized unit value (iSUV) of 18F-fluoro-2-deoxy-D-glucose positron emission tomography and its association with overall survival and the degree of pathologic response after surgery. The authors analyzed 161 patients with esophageal adenocarcinoma who had chemoradiation followed by surgery. The log-rank test, univariate Cox proportional hazards model, Kaplan-Meier survival plot, and Fisher exact test were used to analyze dichotomized iSUV and its association with overall survival and pathologic response. The median age of 161 patients was 61 years (range, 26-80 years) and the majority of patients had lower esophageal or gastroesophageal junction involvement. All patients received fluoropyrimidine and, most commonly, a taxane or platinum compound with concomitant radiation. The median radiation dose was 45 grays (Gy) (range, 45 Gy-50.4 Gy). The median iSUV for all patients was 10.1 (range, 0-58). Using the Fisher exact test, iSUV was not found to be associated with the location of the primary cancer. iSUV higher than the median (10.1) was associated with a better pathologic response (P = .06). Patients with primary cancer with iSUV >10.1 had a lower risk for death (hazards ratio of 0.56) compared with those with iSUV < or = 10.1. Higher iSUV was nonsignificantly associated with improved survival (P = .07). Data from the current study suggest that lower iSUV is associated with poor survival and lower probability of response to chemoradiation. iSUV needs to be further evaluated because it may be used to complement other imaging or biomarker assessments to individualize therapy. (c) 2008 American Cancer Society.

  6. The functional neuroanatomy of verbal memory in Alzheimer's disease: [18F]-Fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET) correlates of recency and recognition memory.

    PubMed

    Staffaroni, Adam M; Melrose, Rebecca J; Leskin, Lorraine P; Riskin-Jones, Hannah; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L

    2017-09-01

    The objective of this study was to distinguish the functional neuroanatomy of verbal learning and recognition in Alzheimer's disease (AD) using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning task. In 81 Veterans diagnosed with dementia due to AD, we conducted a cluster-based correlation analysis to assess the relationships between recency and recognition memory scores from the CERAD Word Learning Task and cortical metabolic activity measured using [ 18 F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). AD patients (Mini-Mental State Examination, MMSE mean = 20.2) performed significantly better on the recall of recency items during learning trials than of primacy and middle items. Recency memory was associated with cerebral metabolism in the left middle and inferior temporal gyri and left fusiform gyrus (p < .05 at the corrected cluster level). In contrast, recognition memory was correlated with metabolic activity in two clusters: (a) a large cluster that included the left hippocampus, parahippocampal gyrus, entorhinal cortex, anterior temporal lobe, and inferior and middle temporal gyri; (b) the bilateral orbitofrontal cortices (OFC). The present study further informs our understanding of the disparate functional neuroanatomy of recency memory and recognition memory in AD. We anticipated that the recency effect would be relatively preserved and associated with temporoparietal brain regions implicated in short-term verbal memory, while recognition memory would be associated with the medial temporal lobe and possibly the OFC. Consistent with our a priori hypotheses, list learning in our AD sample was characterized by a reduced primacy effect and a relatively spared recency effect; however, recency memory was associated with cerebral metabolism in inferior and lateral temporal regions associated with the semantic memory network, rather than regions associated with short-term verbal memory. The correlates of

  7. Reference tissue normalization in longitudinal (18)F-florbetapir positron emission tomography of late mild cognitive impairment.

    PubMed

    Shokouhi, Sepideh; Mckay, John W; Baker, Suzanne L; Kang, Hakmook; Brill, Aaron B; Gwirtsman, Harry E; Riddle, William R; Claassen, Daniel O; Rogers, Baxter P

    2016-01-15

    Semiquantitative methods such as the standardized uptake value ratio (SUVR) require normalization of the radiotracer activity to a reference tissue to monitor changes in the accumulation of amyloid-β (Aβ) plaques measured with positron emission tomography (PET). The objective of this study was to evaluate the effect of reference tissue normalization in a test-retest (18)F-florbetapir SUVR study using cerebellar gray matter, white matter (two different segmentation masks), brainstem, and corpus callosum as reference regions. We calculated the correlation between (18)F-florbetapir PET and concurrent cerebrospinal fluid (CSF) Aβ1-42 levels in a late mild cognitive impairment cohort with longitudinal PET and CSF data over the course of 2 years. In addition to conventional SUVR analysis using mean and median values of normalized brain radiotracer activity, we investigated a new image analysis technique-the weighted two-point correlation function (wS2)-to capture potentially more subtle changes in Aβ-PET data. Compared with the SUVRs normalized to cerebellar gray matter, all cerebral-to-white matter normalization schemes resulted in a higher inverse correlation between PET and CSF Aβ1-42, while the brainstem normalization gave the best results (high and most stable correlation). Compared with the SUVR mean and median values, the wS2 values were associated with the lowest coefficient of variation and highest inverse correlation to CSF Aβ1-42 levels across all time points and reference regions, including the cerebellar gray matter. The selection of reference tissue for normalization and the choice of image analysis method can affect changes in cortical (18)F-florbetapir uptake in longitudinal studies.

  8. A novel radiochemical approach to 1-(2'-deoxy-2'-[(18) F]fluoro-β-d-arabinofuranosyl)cytosine ((18) F-FAC).

    PubMed

    Meyer, Jan-Philip; Probst, Katrin C; Trist, Iuni M L; McGuigan, Christopher; Westwell, Andrew D

    2014-09-01

    (18) F-FAC (1-(2'-deoxy-2'-[(18) F]fluoro-β-D-arabinofuranosyl)-cytosine) is an important 2'-fluoro-nucleoside-based positron emission tomography (PET) tracer that has been used for in vivo prediction of response to the widely used cancer chemotherapy drug gemcitabine. Previously reported synthetic routes to (18) F-FAC have relied on early introduction of the (18) F radiolabel prior to attachment to protected cytosine base. Considering the (18) F radiochemical half-life (110 min) and the technical challenges of multi-step syntheses on PET radiochemistry modular systems, late-stage radiofluorination is preferred for reproducible and reliable radiosynthesis with in vivo applications. Herein, we report the first late-stage radiosynthesis of (18) F-FAC. Cytidine derivatives with leaving groups at the 2'-position are particularly prone to undergo anhydro side-product formation upon heating because of their electron density at the 2-carbonyl pyrimidone oxygen. Our rationally developed fluorination precursor showed an improved reactivity-to-stability ratio at elevated temperatures. (18) F-FAC was obtained in radiochemical yields of 4.3-5.5% (n = 8, decay-corrected from end of bombardment), with purities ≥98% and specific activities ≥63 GBq/µmol. The synthesis time was 168 min. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Application of positron emission tomography to determine cerebral glucose utilization in conscious infant monkeys.

    PubMed

    Moore, A H; Cherry, S R; Pollack, D B; Hovda, D A; Phelps, M E

    1999-05-01

    Cerebral glucose metabolism has been used as a marker of cerebral maturation and neuroplasticity. In studies addressing these issues in young non-human primates, investigators have used positron emission tomography (PET) and [18F]2-fluoro-2-deoxy-D-glucose (FDG) to calculate local cerebral metabolic rates of glucose (1CMRG1c). Unfortunately, these values were influenced by anesthesia. In order to avoid this confounding factor, we have established a method that permits reliable measurements in young conscious vervet monkeys using FDG-PET. Immature animals remained in a conscious, resting state during the initial 42 min of FDG uptake as they were allowed to cling to their anesthetized mothers. After FDG uptake, animals were anesthetized and placed in the PET scanner with data acquisition beginning at 60 min post-FDG injection. FDG image sets consisted of 30 planes separated by 1.69 mm, parameters sufficient to image the entire monkey brain. Our method of region-of-interest (ROI) analysis was assessed within and between raters and demonstrated high reliability (P < 0.001). To illustrate that our method was sensitive to developmental changes in cerebral glucose metabolism, quantitative studies of young conscious monkeys revealed that infant monkeys 6-8 months of age exhibited significantly higher 1CMRG1c values (P < 0.05) in all regions examined, except sensorimotor cortex and thalamus, compared to monkeys younger than 4 months of age. This method provided high resolution images and 1CMRG1c values that were reliable within age group. These results support the application of FDG-PET to investigate questions related to cerebral glucose metabolism in young conscious non-human primates.

  10. A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model.

    PubMed

    Fu, Yilong; Ong, Lai-Chun; Ranganath, Sudhir H; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K H; Wang, Chi-Hwa

    2016-01-01

    Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials.

  11. A Dual Tracer 18F-FCH/18F-FDG PET Imaging of an Orthotopic Brain Tumor Xenograft Model

    PubMed Central

    Ranganath, Sudhir H.; Zheng, Lin; Kee, Irene; Zhan, Wenbo; Yu, Sidney; Chow, Pierce K. H.; Wang, Chi-Hwa

    2016-01-01

    Early diagnosis of low grade glioma has been a challenge to clinicians. Positron Emission Tomography (PET) using 18F-FDG as a radio-tracer has limited utility in this area because of the high background in normal brain tissue. Other radiotracers such as 18F-Fluorocholine (18F-FCH) could provide better contrast between tumor and normal brain tissue but with high incidence of false positives. In this study, the potential application of a dual tracer 18F-FCH/18F-FDG-PET is investigated in order to improve the sensitivity of PET imaging for low grade glioma diagnosis based on a mouse orthotopic xenograft model. BALB/c nude mice with and without orthotopic glioma xenografts from U87 MG-luc2 glioma cell line are used for the study. The animals are subjected to 18F-FCH and 18F-FDG PET imaging, and images acquired from two separate scans are superimposed for analysis. The 18F-FCH counts are subtracted from the merged images to identify the tumor. Micro-CT, bioluminescence imaging (BLI), histology and measurement of the tumor diameter are also conducted for comparison. Results show that there is a significant contrast in 18F-FCH uptake between tumor and normal brain tissue (2.65 ± 0.98), but with a high false positive rate of 28.6%. The difficulty of identifying the tumor by 18F-FDG only is also proved in this study. All the tumors can be detected based on the dual tracer technique of 18F-FCH/ 18F-FDG-PET imaging in this study, while the false-positive caused by 18F-FCH can be eliminated. Dual tracer 18F-FCH/18F-FDG PET imaging has the potential to improve the visualization of low grade glioma. 18F-FCH delineates tumor areas and the tumor can be identified by subtracting the 18F-FCH counts. The sensitivity was over 95%. Further studies are required to evaluate the possibility of applying this technique in clinical trials. PMID:26844770

  12. (18)F-FDG uptake predicts diagnostic yield of transbronchial biopsy in peripheral lung cancer.

    PubMed

    Umeda, Yukihiro; Demura, Yoshiki; Anzai, Masaki; Matsuoka, Hiroki; Araya, Tomoyuki; Nishitsuji, Masaru; Nishi, Koichi; Tsuchida, Tatsuro; Sumida, Yasuyuki; Morikawa, Miwa; Ameshima, Shingo; Ishizaki, Takeshi; Kasahara, Kazuo; Ishizuka, Tamotsu

    2014-07-01

    Recent advances in endobronchial ultrasonography with a guide sheath (EBUS-GS) have enabled better visualization of distal airways, while virtual bronchoscopic navigation (VBN) has been shown useful as a guide to navigate the bronchoscope. However, indications for utilizing VBN and EBUS-GS are not always clear. To clarify indications for a bronchoscopic examination using VBN and EBUS-GS, we evaluated factors that predict the diagnostic yield of a transbronchial biopsy (TBB) procedure for peripheral lung cancer (PLC) lesions. We retrospectively reviewed the charts of 194 patients with 201 PLC lesions (≤3cm mean diameter), and analyzed the association of diagnostic yield of TBB with [(18)F]-fluoro-2-deoxy-d-glucose ((18)F-FDG) positron emission tomography and chest computed tomography (CT) findings. The diagnostic yield of TBB using VBN and EBUS-GS was 66.7%. High maximum standardized uptake value (SUVmax), positive bronchus sign, and ground-glass opacity component shown on CT were all significant predictors of diagnostic yield, while multivariate analysis showed only high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign as significant predictors. Diagnostic yield was higher for PLC lesions with high (18)F-FDG uptake (SUVmax ≥2.8) and positive bronchus sign (84.6%) than for those with SUVmax <2.8 and negative bronchus sign (33.3%). High (18)F-FDG uptake was also correlated with tumor invasiveness. High (18)F-FDG uptake predicted the diagnostic yield of TBB using VBN and EBUS-GS for PLC lesions. (18)F-FDG uptake and bronchus sign may indicate for the accurate application of bronchoscopy with those modalities for diagnosing PLC. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  13. Contrast-Enhanced [{sup 18}F]fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography for Staging and Radiotherapy Planning in Patients With Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bannas, Peter, E-mail: p.bannas@uke.de; Weber, Christoph; Adam, Gerhard

    2011-10-01

    Purpose: The practice of surgical staging and treatment of anal cancer has been replaced by noninvasive staging and combined modality therapy. For appropriate patient management, accurate lymph node staging is crucial. The present study evaluated the feasibility and diagnostic accuracy of contrast-enhanced [{sup 18}F]fluoro-2-deoxy-D-glucose ([{sup 18}F]FDG)-positron emission tomography/computed tomography (PET/CT) for staging and radiotherapy planning of anal cancer. Methods and Materials: A total of 22 consecutive patients (median age, 61 years old) with anal cancer underwent complete staging evaluation including physical examination, biopsy of the primary tumor, and contrast-enhanced (ce)-PET/CT. Patients were positioned as they would be for their subsequentmore » radiotherapy. PET and CT images were evaluated independently for detectability and localization of the primary tumor, pelvic and inguinal lymph nodes, and distant metastasis. The stage, determined by CT or PET alone, and the proposed therapy planning were compared with the stage and management determined by ce-PET/CT. Data from ce-PET/CT were used for radiotherapy planning. Results: ce-PET/CT revealed locoregional lymph node metastasis in 11 of 22 patients (50%). After simultaneous reading of PET and CT data sets by experienced observers, 3 patients (14%) were found to have sites of disease not seen on CT that were identified on PET. Two patients had sites of disease not seen on PET that were identified on CT. In summary, 2 patients were upstaged, and 4 patients were downstaged due to ce-PET/CT. However, radiotherapy fields were changed due to the results from ce-PET/CT in 23% of cases compared to CT or PET results alone. Conclusions: ce-PET/CT is superior to PET or CT alone for staging of anal cancer, with significant impact on therapy planning.« less

  14. Estimation of baseline dopamine D2 receptor occupancy in striatum and extrastriatal regions in humans with positron emission tomography with [18F] fallypride.

    PubMed

    Riccardi, Patrizia; Baldwin, Ron; Salomon, Ronald; Anderson, Sharlet; Ansari, Mohammad S; Li, Rui; Dawant, Benoit; Bauernfeind, Amy; Schmidt, Dennis; Kessler, Robert

    2008-01-15

    This study examined whether positron emission tomography (PET) studies with [18F] fallypride performed before and after alpha-methyl-para-tyrosine (AMPT) administration can be used to estimate baseline dopamine (DA) D2 receptor occupancy in striatal and extrastriatal regions. Six normal subjects underwent PET with [18 F] fallypride before and after administration of AMPT. The DA D2 receptor binding potentials (bp) were calculated with the reference region method. Percent changes in bp in striatal and extrastriatal regions were calculated with both region-of-interest analysis and on a voxel by voxel basis with parametric images of DA D2 receptor levels. The results of the current study indicate that AMPT treatment significantly increased the bp in the caudate, putamen, ventral striatum, and substantia nigra. A trend level increase was seen in the medial thalamus. This study demonstrates that PET with [18F] fallypride can be used to estimate baseline DA D2 receptor occupancy in striatal and extrastriatal regions.

  15. [Fluorodeoxiglucose F18 positron emission tomography imaging (F18FDG) for the assessment of rising levels of serum CA 19-9 in pancreatic mucinous cystadenocarcinoma. Report of one case].

    PubMed

    Canessa, José A; Larach, Jorge A; Massardo, Teresa; Parra, Juan; Jofré, Josefina; González, Patricio; Morales, Bernardo; Humeres, Pamela; Sierralta, Paulina; Galaz, Rodrigo

    2004-03-01

    We report a 38 year old female patient with a pancreatic mucinous cystadenocarcinoma. She presented at the onset with a peritoneal rupture that required emergency surgery. Five months later, the patient was subjected to a segmental pancreatectomy and splenectomy. One year later, the patient had a serious gastric bleeding secondary to a gastric ulcer. Due to a persistent increase in her CA 19-9 levels, a Positron Emission Tomography (PET) functional imaging with fluorine 18-deoxyglucose (F18FDG) was done. It showed an intense focal hypermetabolism in the gastric wall reported as a secondary tumour location. The patient was subjected to a total gastrectomy and Roux en Y anastomosis, with a good outcome. The pathological study confirmed the presence of a metastasis of an adenocarcinoma in the gastric wall. The relative value of CA 19-9 markers and FDG PET in pancreatic and gastric carcinomas is discussed.

  16. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE PAGES

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    2014-05-28

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  17. Radiation-induced DNA damage and the relative biological effectiveness of 18F-FDG in wild-type mice

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Taylor, Kristina; Lemon, Jennifer A.; Boreham, Douglas R.

    Clinically, the most commonly used positron emission tomography (PET) radiotracer is the glucose analog 2-[ 18F] fluoro-2-deoxy-d-glucose ( 18F-FDG), however little research has been conducted on the biological effects of 18F-FDG injections. The induction and repair of DNA damage and the relative biological effectiveness (RBE) of radiation from 18F-FDG relative to 662 keV γ-rays were investigated. The study also assessed whether low-dose radiation exposure from 18F-FDG was capable of inducing an adaptive response. DNA damage to the bone marrow erythroblast population was measured using micronucleus formation and lymphocyte γH2A.X levels. To test the RBE of 18F-FDG, mice were injected withmore » a range of activities of 18F-FDG (0–14.80 MBq) or irradiated with Cs-137 γ-rays (0–100 mGy). The adaptive response was investigated 24 h after the 18F-FDG injection by 1 Gy in vivo challenge doses for micronucleated reticulocyte (MN-RET) formation or 1, 2 and 4 Gy in vitro challenges doses for γH2A.X formation. A significant increase in MN-RET formation above controls occurred following injection activities of 3.70, 7.40 or 14.80 MBq (P < 0.001) which correspond to bone marrow doses of ~35, 75 and 150 mGy, respectively. Per unit dose, the Cs-137 radiation exposure induced significantly more damage than the 18F-FDG injections (RBE = 0.79 ± 0.04). A 20% reduction in γH2A.X fluorescence was observed in mice injected with a prior adapting low dose of 14.80 MBq 18F-FDG relative to controls (P < 0.019). A 0.74 MBq 18F-FDG injection, which gives mice a dose approximately equal to a typical human PET scan, did not cause a significant increase in DNA damage nor did it generate an adaptive response. Typical 18F-FDG injection activities used in small animal imaging (14.80 MBq) resulted in a decrease in DNA damage, as measured by γH2A.X formation, below spontaneous levels observed in control mice. Lastly, the 18F-FDG RBE was <1.0, indicating that the mixed radiation quality

  18. Correlation of simultaneously acquired diffusion-weighted imaging and 2-deoxy-[18F] fluoro-2-D-glucose positron emission tomography of pulmonary lesions in a dedicated whole-body magnetic resonance/positron emission tomography system.

    PubMed

    Schmidt, Holger; Brendle, Cornelia; Schraml, Christina; Martirosian, Petros; Bezrukov, Ilja; Hetzel, Jürgen; Müller, Mark; Sauter, Alexander; Claussen, Claus D; Pfannenberg, Christina; Schwenzer, Nina F

    2013-05-01

    Hybrid whole-body magnetic resonance/positron emission tomography (MR/PET) systems are a new diagnostic tool enabling the simultaneous acquisition of morphologic and multiple functional data and thus allowing for a diversified characterization of oncological diseases.The aim of this study was to investigate the image and alignment quality of MR/PET in patients with pulmonary lesions and to compare the congruency of the 2 functional measurements of diffusion-weighted imaging (DWI) in MR imaging and 2-deoxy-[18F] fluoro-2-D-glucose (FDG) uptake in PET. A total of 15 patients were examined with a routine positron emission tomography/computer tomography (PET/CT) protocol and, subsequently, in a whole-body MR/PET scanner allowing for simultaneous PET and MR data acquisition. The PET and MR image quality was assessed visually using a 4-point score (1, insufficient; 4, excellent). The alignment quality of the rigidly registered PET/CT and MR/PET data sets was investigated on the basis of multiple anatomic landmarks of the lung using a scoring system from 1 (no alignment) to 4 (very good alignment). In addition, the alignment quality of the tumor lesions in PET/CT and MR/PET as well as for retrospective fusion of PET from PET/CT and MR images was assessed quantitatively and was compared between lesions strongly or less influenced by respiratory motion. The correlation of the simultaneously acquired DWI and FDG uptake in the pulmonary masses was analyzed using the minimum and mean apparent diffusion coefficient (ADC min and ADC mean) as well as the maximum and mean standardized uptake value (SUV max and SUV mean), respectively. In addition, the correlation of SUV max from PET/CT data was investigated as well. On lesions 3 cm or greater, a voxelwise analysis of ADC and SUV was performed. The visual evaluation revealed excellent image quality of the PET images (mean [SD] score, 3.6 [0.5]) and overall good image quality of DWI (mean [SD] score of 2.5 [0.5] for ADC maps and 2

  19. Regional cerebral metabolic alterations in dementia of the Alzheimer type: positron emission tomography with (/sup 18/F)fluorodeoxyglucose

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Friedland, R.P.; Budinger, T.F.; Ganz, E.

    1983-08-01

    Alzheimer disease is the most common cause of dementia in adults. Despite recent advances in our understanding of its anatomy and chemistry, we remain largely ignorant of its pathogenesis, physiology, diagnosis, and treatment. Dynamic positron emission tomography using (/sup 18/F)fluorodeoxyglucose (FDG) was performed on the Donner 280-crystal ring in 10 subjects with dementia of the Alzheimer type and six healthy age-matched controls. Ratios comparing mean counts per resolution element in frontal, temporoparietal, and entire cortex regions in brain sections 10 mm thick obtained 40-70 min following FDG injection showed relatively less FDG uptake in the temporoparietal cortex bilaterally in allmore » the Alzheimer subjects (p less than 0.01). Left-right alterations were less prominent than the anteroposterior changes. This diminished uptake was due to lowered rates of FDG use and suggests that the metabolic effects of Alzheimer disease are most concentrated in the temporoparietal cortex. Positron emission tomography is a most powerful tool for the noninvasive in vivo assessment of cerebral pathophysiology in dementia.« less

  20. The efficacy of preoperative positron emission tomography-computed tomography (PET-CT) for detection of lymph node metastasis in cervical and endometrial cancer: clinical and pathological factors influencing it.

    PubMed

    Nogami, Yuya; Banno, Kouji; Irie, Haruko; Iida, Miho; Kisu, Iori; Masugi, Yohei; Tanaka, Kyoko; Tominaga, Eiichiro; Okuda, Shigeo; Murakami, Koji; Aoki, Daisuke

    2015-01-01

    We studied the diagnostic performance of (18)F-fluoro-2-deoxy-d-glucose-positron emission tomography/computed tomography in cervical and endometrial cancers with particular focus on lymph node metastases. Seventy patients with cervical cancer and 53 with endometrial cancer were imaged with (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography before lymphadenectomy. We evaluated the diagnostic performance of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography using the final pathological diagnoses as the golden standard. We calculated the sensitivity, specificity, positive predictive value and negative predictive value of (18)F-fluoro-2-deoxy-D-glucose-positron emission tomography/computed tomography. In cervical cancer, the results evaluated by cases were 33.3, 92.7, 55.6 and 83.6%, respectively. When evaluated by the area of lymph nodes, the results were 30.6, 98.9, 55.0 and 97.0%, respectively. As for endometrial cancer, the results evaluated by cases were 50.0, 93.9, 40.0 and 95.8%, and by area of lymph nodes, 45.0, 99.4, 64.3 and 98.5%, respectively. The limitation of the efficacy was found out by analyzing it by the region of the lymph node, the size of metastatic node, the historical type of tumor in cervical cancer and the prevalence of lymph node metastasis. The efficacy of positron emission tomography/computed tomography regarding the detection of lymph node metastasis in cervical and endometrial cancer is not established and has limitations associated with the region of the lymph node, the size of metastasis lesion in lymph node and the pathological type of primary tumor. The indication for the imaging and the interpretation of the results requires consideration for each case by the pretest probability based on the information obtained preoperatively. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  1. Effect of gender on glucose utilization rates in healthy humans: A positron emission tomography study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Miura, S.A.; Schapiro, M.B.; Grady, C.L.

    Positron emission tomography (PET) was used with 18fluorodeoxyglucose to see if gender differences in resting cerebral glucose utilization could be detected. Thirty-two healthy subjects (15 women and 17 men; age range: 21-38 yr) were examined using a high-resolution PET scanner to determine the regional cerebral metabolic rate for glucose (CMRglc) in 65 gray matter regions of interest. Whole brain CMRglc did not differ significantly between the two genders, nor did any of the regional CMRglc values. Only 1 of 65 ratios of regional-to-whole brain CMRglc differed significantly between men and women, which is consistent with chance. These results indicate thatmore » there are no differences in resting regional cerebral glucose utilization between young men and women.« less

  2. Clinical experience with (18)F-fluorodeoxyglucose positron emission tomography and (123)I-metaiodobenzylguanine scintigraphy in pediatric neuroblastoma: complementary roles in follow-up of patients.

    PubMed

    Gil, Tae Young; Lee, Do Kyung; Lee, Jung Min; Yoo, Eun Sun; Ryu, Kyung-Ha

    2014-06-01

    To evaluate the potential utility of (123)I-metaiodobenzylguanine ((123)I-MIBG) scintigraphy and (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography (PET) for the detection of primary and metastatic lesions in pediatric neuroblastoma (NBL) patients, and to determine whether (18)F-FDG PET is as beneficial as (123)I-MIBG imaging. We selected 8 NBL patients with significant residual mass after operation and who had paired (123)I-MIBG and (18)F-FDG PET images that were obtained during the follow-up. We retrospectively reviewed the clinical charts and the findings of 45 paired scans. Both scans correlated relatively well with the disease status as determined by standard imaging modalities during follow-up; the overall concordance rates were 32/45 (71.1%) for primary tumor sites and 33/45 (73.3%) for bone-bone marrow (BM) metastatic sites. In detecting primary tumor sites, (123)I-MIBG might be superior to (18)F-FDG PET. The sensitivity of (123)I-MIBG and (18)F-FDG PET were 96.7% and 70.9%, respectively, and their specificity were 85.7% and 92.8%, respectively. (18)F-FDG PET failed to detect 9 true NBL lesions in 45 follow-up scans (false negative rate, 29%) with positive (123)I-MIBG. For bone-BM metastatic sites, the sensitivity of (123)I-MIBG and (18)F-FDG PET were 72.7% and 81.8%, respectively, and the specificity were 79.1% and 100%, respectively. (123)I-MIBG scan showed higher false positivity (20.8%) than (18)F-FDG PET (0%). (123)I-MIBG is superior for delineating primary tumor sites, and (18)F-FDG PET could aid in discriminating inconclusive findings on bony metastatic NBL. Both scans can be complementarily used to clearly determine discrepancies or inconclusive findings on primary or bone-BM metastatic NBL during follow-up.

  3. [(18)F]-fluorodeoxyglucose positron emission tomography of the cat brain: A feasibility study to investigate osteoarthritis-associated pain.

    PubMed

    Guillot, Martin; Chartrand, Gabriel; Chav, Ramnada; Rousseau, Jacques; Beaudoin, Jean-François; Martel-Pelletier, Johanne; Pelletier, Jean-Pierre; Lecomte, Roger; de Guise, Jacques A; Troncy, Eric

    2015-06-01

    The objective of this pilot study was to investigate central nervous system (CNS) changes related to osteoarthritis (OA)-associated chronic pain in cats using [(18)F]-fluorodeoxyglucose ((18)FDG) positron emission tomography (PET) imaging. The brains of five normal, healthy (non-OA) cats and seven cats with pain associated with naturally occurring OA were imaged using (18)FDG-PET during a standardized mild anesthesia protocol. The PET images were co-registered over a magnetic resonance image of a cat brain segmented into several regions of interest. Brain metabolism was assessed in these regions using standardized uptake values. The brain metabolism in the secondary somatosensory cortex, thalamus and periaqueductal gray matter was increased significantly (P ≤ 0.005) in OA cats compared with non-OA cats. This study indicates that (18)FDG-PET brain imaging in cats is feasible to investigate CNS changes related to chronic pain. The results also suggest that OA is associated with sustained nociceptive inputs and increased activity of the descending modulatory pathways. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. (18)F-labeled positron emission tomographic radiopharmaceuticals in oncology: an overview of radiochemistry and mechanisms of tumor localization.

    PubMed

    Vallabhajosula, Shankar

    2007-11-01

    Molecular imaging is the visualization, characterization, and measurement of biological processes at the molecular and cellular levels in a living system. At present, positron emission tomography/computed tomography (PET/CT) is one the most rapidly growing areas of medical imaging, with many applications in the clinical management of patients with cancer. Although [(18)F]fluorodeoxyglucose (FDG)-PET/CT imaging provides high specificity and sensitivity in several kinds of cancer and has many applications, it is important to recognize that FDG is not a "specific" radiotracer for imaging malignant disease. Highly "tumor-specific" and "tumor cell signal-specific" PET radiopharmaceuticals are essential to meet the growing demand of radioisotope-based molecular imaging technology. In the last 15 years, many alternative PET tracers have been proposed and evaluated in preclinical and clinical studies to characterize the tumor biology more appropriately. The potential clinical utility of several (18)F-labeled radiotracers (eg, fluoride, FDOPA, FLT, FMISO, FES, and FCH) is being reviewed by several investigators in this issue. An overview of design and development of (18)F-labeled PET radiopharmaceuticals, radiochemistry, and mechanism(s) of tumor cell uptake and localization of radiotracers are presented here. The approval of clinical indications for FDG-PET in the year 2000 by the Food and Drug Administration, based on a review of literature, was a major breakthrough to the rapid incorporation of PET into nuclear medicine practice, particularly in oncology. Approval of a radiopharmaceutical typically involves submission of a "New Drug Application" by a manufacturer or a company clearly documenting 2 major aspects of the drug: (1) manufacturing of PET drug using current good manufacturing practices and (2) the safety and effectiveness of a drug with specific indications. The potential routine clinical utility of (18)F-labeled PET radiopharmaceuticals depends also on

  5. Diagnostic value of 18F-FDG-PET/CT for the follow-up and restaging of soft tissue sarcomas in adults.

    PubMed

    Kassem, T W; Abdelaziz, O; Emad-Eldin, S

    2017-10-01

    The purpose of this study was to evaluate the clinical utility of 2-[ 18 F] fluoro-2-deoxy-D-glucose ( 18 FDG) positron emission tomography (PET)/computed tomography (CT) ( 18 F-FDG-PET/CT) in the follow-up of adult patients with soft tissue sarcomas. We prospectively evaluated 37 consecutive patients with known soft tissue sarcoma with 18 F-FDG-PET/CT examination for suspected recurrence of disease. They were 21 men and 16 women with a mean age of 49.6±10.6 (SD) years (range, 34-75years). The sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and accuracy of 18 F-FDG-PET/CT examination were calculated on a per patient basis. 18 F-FDG-PET/CT showed an overall diagnostic accuracy of 91.8%, sensitivity of 90% and a specificity of 100%. The positive predictive value and negative predictive value were 100 and 70%, respectively. The 18 F-FDG-PET/CT interpretations were correct in 34/37 patients (91.8%). Incorrect interpretations occurred in three patients (8.1%). Reasons for false negative findings were low 18 F-FDG uptake of local recurrence in one patient and low 18 F-FDG uptake of subcentimetric inguinal lymph node metastases. 18 F-FDG-PET/CT has a high diagnostic value in the follow-up of patients with soft tissue sarcoma. Copyright © 2017 Editions françaises de radiologie. Published by Elsevier Masson SAS. All rights reserved.

  6. [(18)F]FDG PET Neuroimaging Predicts Pentylenetetrazole (PTZ) Kindling Outcome in Rats.

    PubMed

    Bascuñana, Pablo; Javela, Julián; Delgado, Mercedes; Fernández de la Rosa, Rubén; Shiha, Ahmed Anis; García-García, Luis; Pozo, Miguel Ángel

    2016-10-01

    Epileptogenesis, i.e., development of epilepsy, involves a number of processes that alter the brain function in the way that triggers spontaneous seizures. Kindling is one of the most used animal models of temporal lobe epilepsy (TLE) and epileptogenesis, although chemical kindling suffers from high inter-assay success unpredictability. This study was aimed to analyze the eventual regional brain metabolic changes during epileptogenesis in the pentylenetetrazole (PTZ) kindling model in order to obtain a predictive kindling outcome parameter. In vivo longitudinal positron emission tomography (PET) scans with 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) along the PTZ kindling protocol (35 mg/kg intraperitoneally (i.p.), 18 sessions) in adult male rats were performed in order to evaluate the regional brain metabolism. The half of the PTZ-injected rats reached the kindled state. In addition, a significant decrease of [(18)F]FDG uptake at the end of the protocol in most of the brain structures of kindled animals was found, reflecting the characteristic epilepsy-associated hypometabolism. However, PTZ-injected animals but not reaching the kindled state did not show this widespread brain hypometabolism. Retrospective analysis of the data revealed that hippocampal [(18)F]FDG uptake normalized to pons turned out to be a predictive index of the kindling outcome. Thus, a 19.06 % reduction (p = 0.008) of the above parameter was found in positively kindled rats compared to non-kindled ones just after the fifth PTZ session. Non-invasive PET neuroimaging was a useful tool for discerning epileptogenesis progression in this animal model. Particularly, the [(18)F]FDG uptake of the hippocampus proved to be an early predictive parameter to differentiate resistant and non-resistant animals to the PTZ kindling.

  7. Striatal and extrastriatal dopamine release in the common marmoset brain measured by positron emission tomography and [(18)F]fallypride.

    PubMed

    Ota, Miho; Ogawa, Shintaro; Kato, Koichi; Masuda, Chiaki; Kunugi, Hiroshi

    2015-12-01

    Previous studies have demonstrated that patients with schizophrenia show greater sensitivity to psychostimulants than healthy subjects. Sensitization to psychostimulants and resultant alteration of dopaminergic neurotransmission in rodents has been suggested as a useful model of schizophrenia. This study sought to examine the use of methylphenidate as a psychostimulant to induce dopamine release and that of [(18)F]fallypride as a radioligand to quantify the release in a primate model of schizophrenia. Four common marmosets were scanned by positron emission tomography twice, before and after methylphenidate challenge, to evaluate dopamine release. Four other marmosets were sensitized by repeated methamphetamine (MAP) administration. Then, they were scanned twice, before and after methylphenidate challenge, to evaluate whether MAP-sensitization induced greater sensitivity to methylphenidate. We revealed a main effect of the methylphenidate challenge but not the MAP pretreatment on the striatal binding potential. These results suggest that methylphenidate-induced striatal dopamine release in the common marmoset could be evaluated by [(18)F]fallypride. Copyright © 2015 Elsevier Ireland Ltd and the Japan Neuroscience Society. All rights reserved.

  8. Diagnostic value of quantitative assessment of cardiac 18F-fluoro-2-deoxyglucose uptake in suspected cardiac sarcoidosis.

    PubMed

    Lebasnier, Adrien; Legallois, Damien; Bienvenu, Boris; Bergot, Emmanuel; Desmonts, Cédric; Zalcman, Gérard; Agostini, Denis; Manrique, Alain

    2018-06-01

    The identification of cardiac sarcoidosis is challenging as there is no gold standard consensually admitted for its diagnosis. The aim of this study was to evaluate the diagnostic value of the assessment of cardiac dynamic 18 F-fluoro-2-deoxyglucose positron emission tomography ( 18 F-FDG PET/CT) and net influx constant (Ki) in patients suspected of cardiac sarcoidosis. Data obtained from 30 biopsy-proven sarcoidosis patients suspected of cardiac sarcoidosis who underwent a 50-min list-mode cardiac dynamic 18 F-FDG PET/CT after a 24 h high-fat and low-carbohydrate diet were analyzed. A normalized coefficient of variation of quantitative glucose influx constant, calculated as the ratio: standard deviation of the segmental Ki (min -1 )/global Ki (min -1 ) was determined using a validated software (Carimas ® 2.4, Turku PET Centre). Cardiac sarcoidosis was diagnosed according to the Japanese Ministry of Health and Welfare criteria. Receiving operating curve analysis was performed to determine sensitivity and specificity of cardiac dynamic 18 F-FDG PET/CT analysis to diagnose cardiac sarcoidosis. Six out of 30 patients (20%) were diagnosed as having cardiac sarcoidosis. Myocardial glucose metabolism was significantly heterogeneous in patients with cardiac sarcoidosis who showed significantly higher normalized coefficient of variation values compared to patients without cardiac sarcoidosis (0.513 ± 0.175 vs. 0.205 ± 0.081; p = 0.0007). Using ROC curve analysis, we found a cut-off value of 0.38 for the diagnosis of cardiac sarcoidosis with a sensitivity of 100% and a specificity of 91%. Our results suggest that quantitative analysis of cardiac dynamic 18 F-FDG PET/CT could be a useful tool for the diagnosis of cardiac sarcoidosis.

  9. Verbal fluency and positron emission tomographic mapping of regional cerebral glucose metabolism.

    PubMed

    Boivin, M J; Giordani, B; Berent, S; Amato, D A; Lehtinen, S; Koeppe, R A; Buchtel, H A; Foster, N L; Kuhl, D E

    1992-06-01

    Impairment in verbal fluency (VF) has been a consistently reported clinical feature of focal cerebral deficits in frontal and temporal regions. More recent behavioral activation studies with healthy control subjects using positron emission tomography (PET), however, have noted a negative correlation between performance on verbal fluency tasks and regional cortical activity. To see if this negative relationship extends to steady-state non-activation PET measures, thirty-three healthy adults were given a VF task within a day of their 18F-2-fluoro-2-deoxy-D-glucose PET scan. VF was found to correlate positively with left temporal cortical region metabolic activity but to correlate negatively with right and left frontal activity. VF was not correlated significantly with right temporal cortical metabolic activity. Some previous studies with normals using behavioral activation paradigms and PET have reported negative correlations between metabolic activity and cognitive performance similar to that reported here. An explanation for the disparate relationships that were observed between frontal and temporal brain areas and VF might be found in the mediation of different task demands by these separate locations, i.e., task planning and/or initiation by frontal regions and verbal memory by the left temporal area.

  10. Synthesis and characterization of (18)F-labeled active site inhibited factor VII (ASIS).

    PubMed

    Erlandsson, Maria; Nielsen, Carsten H; Jeppesen, Troels E; Kristensen, Jesper B; Petersen, Lars C; Madsen, Jacob; Kjaer, Andreas

    2015-05-15

    Activated factor VII blocked in the active site with Phe-Phe-Arg-chloromethyl ketone (active site inhibited factor VII (ASIS)) is a 50-kDa protein that binds with high affinity to its receptor, tissue factor (TF). TF is a transmembrane glycoprotein that plays an important role in, for example, thrombosis, metastasis, tumor growth, and tumor angiogenesis. The aim of this study was to develop an (18)F-labeled ASIS derivative to assess TF expression in tumors. Active site inhibited factor VII was labeled using N-succinimidyl-4-[(18)F]fluorobenzoate, and the [(18)F]ASIS was purified on a PD-10 desalting column. The radiochemical yield was 25 ± 6%, the radiochemical purity was >97%, and the pseudospecific radioactivity was 35 ± 9 GBq/µmol. The binding efficacy was evaluated in pull-down experiments, which monitored the binding of unlabeled ASIS and [(18)F]ASIS to TF and to a specific anti-factor VII antibody (F1A2-mAb). No significant difference in binding efficacy between [(18)F]ASIS and ASIS could be detected. Furthermore, [(18)F]ASIS was relatively stable in vitro and in vivo in mice. In conclusion, [(18)F]ASIS has for the first time been successfully synthesized as a possible positron emission tomography tracer to image TF expression levels. In vivo positron emission tomography studies to evaluate the full potential of [(18)F]ASIS are in progress. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Bacterial infection imaging with [18F]fluoropropyl-trimethoprim

    PubMed Central

    Lee, Iljung; Hou, Catherine; Weng, Chi-Chang; Li, Shihong; Lieberman, Brian P.; Zeng, Chenbo; Mankoff, David A.; Mach, Robert H.

    2017-01-01

    There is often overlap in the diagnostic features of common pathologic processes such as infection, sterile inflammation, and cancer both clinically and using conventional imaging techniques. Here, we report the development of a positron emission tomography probe for live bacterial infection based on the small-molecule antibiotic trimethoprim (TMP). [18F]fluoropropyl-trimethoprim, or [18F]FPTMP, shows a greater than 100-fold increased uptake in vitro in live bacteria (Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa) relative to controls. In a rodent myositis model, [18F]FPTMP identified live bacterial infection without demonstrating confounding increased signal in the same animal from other etiologies including chemical inflammation (turpentine) and cancer (breast carcinoma). Additionally, the biodistribution of [18F]FPTMP in a nonhuman primate shows low background in many important tissues that may be sites of infection such as the lungs and soft tissues. These results suggest that [18F]FPTMP could be a broadly useful agent for the sensitive and specific imaging of bacterial infection with strong translational potential. PMID:28716936

  12. Human radiation dosimetry of 6-[{sup 18}F]FDG predicted from preclinical studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzic, Raymond F., E-mail: raymond.muzic@case.edu; Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106; Case Center for Imaging Research, University Hospitals Case Medical Center, Case Western Reserve University, Cleveland, Ohio 44106

    Purpose: The authors are developing 6-[{sup 18}F]fluoro-6-deoxy-D-glucose (6-[{sup 18}F]FDG) as an in vivo tracer of glucose transport. While 6-[{sup 18}F]FDG has the same radionuclide half-life as 2-[{sup 18}F]fluoro-2-deoxy-D-glucose (2-[{sup 18}F]FDG) which is ubiquitously used for PET imaging, 6-[{sup 18}F]FDG has special biologic properties and different biodistributions that make it preferable to 2-[{sup 18}F]FDG for assessing glucose transport. In preparation for 6-[{sup 18}F]FDG use in human PET scanning, the authors would like to determine the amount of 6-[{sup 18}F]FDG to inject while maintaining radiation doses in a safe range. Methods: Rats were injected with 6-[{sup 18}F]FDG, euthanized at specified times, andmore » tissues were collected and assayed for activity content. For each tissue sample, the percent of injected dose per gram was calculated and extrapolated to that for humans in order to construct predicted time-courses. Residence times were calculated as areas under the curves and were used as inputs to OLINDA/EXM in order to calculate the radiation doses. Results: Unlike with 2-[{sup 18}F]FDG for which the urinary bladder wall receives the highest absorbed dose due to urinary excretion, with 6-[{sup 18}F]FDG there is little urinary excretion and osteogenic cells and the liver are predicted to receive the highest absorbed doses: 0.027 mGy/MBq (0.100 rad/mCi) and 0.018 mGy/MBq (0.066 rad/mCi), respectively. Also, the effective dose from 6-[{sup 18}F]FDG, i.e., 0.013 mSv/MBq (0.046 rem/mCi), is predicted to be approximately 30% lower than that from 2-[{sup 18}F]FDG. Conclusions: 6-[{sup 18}F]FDG will be safe for use in the PET scanning of humans.« less

  13. Positron emission tomography (PET) imaging of nicotine-induced dopamine release in squirrel monkeys using [18F]Fallypride.

    PubMed

    Naylor, Jennifer E; Hiranita, Takato; Matazel, Katelin S; Zhang, Xuan; Paule, Merle G; Goodwin, Amy K

    2017-10-01

    Nicotine, the principal psychoactive tobacco constituent, is thought to produce its reinforcing effects via actions within the mesolimbic dopamine (DA) system. The objective of the current study was to examine the effect of nicotine on DA D 2 /D 3 receptor availability in the nonhuman primate brain with the use of the radioligand [ 18 F]fallypride and positron emission tomography (PET). Ten adult male squirrel monkeys were used in the current study. Each subject underwent two PET scans, one with an injection (IV) of saline and subsequently one with an injection of nicotine (0.032mg/kg). The DA D 2 /D 3 antagonist, [ 18 F]fallypride, was delivered IV at the beginning of each scan, and nicotine or saline was delivered at 45min into the scan. Regions of interest (ROI) were drawn on specific brain regions and these were used to quantify standard uptake values (SUVs). The SUV is defined as the average concentration of radioactivity in the ROI x body weight/injected dose. Using the cerebellum as a reference region, SUV ratios (SUV ROI /SUV cerebellum ) were calculated to compare saline and nicotine effects in each ROI. Two-way repeated ANOVA revealed a significant decrease of SUV ratios in both striatal and extrastriatal regions following an injection of nicotine during the PET scans. Like other drugs of abuse, these results indicate that nicotine administration may produce DA release, as suggested by the decrease in [ 18 F]fallypride signal in striatal regions. These findings from a nonhuman primate model provide further evidence that the mesolimbic DA system is affected by the use of products that contain nicotine. Published by Elsevier B.V.

  14. One-Proton Breakup of 18F and the 17O(p,γ)18F Reaction in Classical Novae

    NASA Astrophysics Data System (ADS)

    Isherwood, Bryan; Banu, A.; E491 Collaboration

    2013-10-01

    Classical nova studies are of considerable interest for understanding the chemical evolution of the Galaxy. They have been proposed as the most significant source for the nucleosynthesis of the isotopes 13C, 15N, and 17O in the Universe. Novae are also likely to synthesize the short-lived radioisotope 18F (T1/2 = 110 min), which is expected to be the most important contributor to the observed emission of 511 keV gamma radiation by space-based γ-ray telescopes. This emission is produced by electron-positron annihilation following the beta + decay of radioactive nuclei. A detection of these gamma rays could significantly constrain the nova simulation models. 18F nucleosynthesis in classical novae strongly depends on the thermonuclear rate of the 17O(p,γ)18F reaction, which is part of the CNO cycle. This work presents preliminary results toward determination of the 17O(p,γ)18F reaction cross section, which was measured by the indirect method of one-proton nuclear breakup at intermediate energies. The experiment was carried out at GANIL using a beam of 18F at 40 MeV/u impinging on a carbon target. Longitudinal momentum distributions of the 17O breakup fragments were measured in coincidence with γ-rays emitted by 17O residues.

  15. A Comparative Study of the Hypoxia PET Tracers [{sup 18}F]HX4, [{sup 18}F]FAZA, and [{sup 18}F]FMISO in a Preclinical Tumor Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peeters, Sarah G.J.A., E-mail: sarah.peeters@maastrichtuniversity.nl; Zegers, Catharina M.L.; Lieuwes, Natasja G.

    Purpose: Several individual clinical and preclinical studies have shown the possibility of evaluating tumor hypoxia by using noninvasive positron emission tomography (PET). The current study compared 3 hypoxia PET tracers frequently used in the clinic, [{sup 18}F]FMISO, [{sup 18}F]FAZA, and [{sup 18}F]HX4, in a preclinical tumor model. Tracer uptake was evaluated for the optimal time point for imaging, tumor-to-blood ratios (TBR), spatial reproducibility, and sensitivity to oxygen modification. Methods and Materials: PET/computed tomography (CT) images of rhabdomyosarcoma R1-bearing WAG/Rij rats were acquired at multiple time points post injection (p.i.) with one of the hypoxia tracers. TBR values were calculated, andmore » reproducibility was investigated by voxel-to-voxel analysis, represented as correlation coefficients (R) or Dice similarity coefficient of the high-uptake volume. Tumor oxygen modifications were induced by exposure to either carbogen/nicotinamide treatment or 7% oxygen breathing. Results: TBR was stabilized and maximal at 2 hours p.i. for [{sup 18}F]FAZA (4.0 ± 0.5) and at 3 hours p.i. for [{sup 18}F]HX4 (7.2 ± 0.7), whereas [{sup 18}F]FMISO showed a constant increasing TBR (9.0 ± 0.8 at 6 hours p.i.). High spatial reproducibility was observed by voxel-to-voxel comparisons and Dice similarity coefficient calculations on the 30% highest uptake volume for both [{sup 18}F]FMISO (R = 0.86; Dice coefficient = 0.76) and [{sup 18}F]HX4 (R = 0.76; Dice coefficient = 0.70), whereas [{sup 18}F]FAZA was less reproducible (R = 0.52; Dice coefficient = 0.49). Modifying the hypoxic fraction resulted in enhanced mean standardized uptake values for both [{sup 18}F]HX4 and [{sup 18}F]FAZA upon 7% oxygen breathing. Only [{sup 18}F]FMISO uptake was found to be reversible upon exposure to nicotinamide and carbogen. Conclusions: This study indicates that each tracer has its own strengths and, depending on the question to be answered, a different tracer can be

  16. Assessment of Extent and Role of Tau in Subcortical Vascular Cognitive Impairment Using 18F-AV1451 Positron Emission Tomography Imaging.

    PubMed

    Kim, Hee Jin; Park, Seongbeom; Cho, Hanna; Jang, Young Kyoung; San Lee, Jin; Jang, Hyemin; Kim, Yeshin; Kim, Ko Woon; Ryu, Young Hoon; Choi, Jae Yong; Moon, Seung Hwan; Weiner, Michael W; Jagust, William J; Rabinovici, Gil D; DeCarli, Charles; Lyoo, Chul Hyoung; Na, Duk L; Seo, Sang Won

    2018-05-14

    Amyloid-β (Aβ), tau, and cerebral small vessel disease (CSVD), which occasionally coexist, are the most common causes of cognitive impairments in older people. However, whether tau is observed in patients with subcortical vascular cognitive impairment (SVCI), as well as its associations with Aβ and CSVD, are not yet established. More importantly, the role of tau underlying cognitive impairments in SVCI is unknown. To investigate the extent and the role of tau in patients with SVCI using 18F-AV1451, which is a new ligand to detect neurofibrillary tangles in vivo. This cross-sectional study recruited 64 patients with SVCI from June 2015 to December 2016 at Samsung Medical Center, Seoul, Korea. The patients had significant ischemia on brain magnetic resonance imaging, defined as periventricular white matter hyperintensity at least 10 mm and deep white matter hyperintensity at least 25 mm. We excluded 3 patients with SVCI owing to segmentation error during AV1451 positron emission tomography analysis. We calculated CSVD scores based on the volumes of white matter hyperintensities, numbers of lacunes, and microbleeds using magnetic resonance imaging data. The presence of Aβ was assessed using fluorine 18-labeled (18F) florbetaben positron emission tomography. Tau was measured using 18F-AV1451 positron emission tomography. We determined the spreading order of tau by sorting the regional frequencies of cortical involvement. We evaluated the complex associations between Aβ, CSVD, AV1451 uptake, and cognition in patients with SVCI. Of the 61 patients with SVCI, 44 (72.1%) were women and the mean (SD) age was 78.7 (6.3) years. Patients with SVCI, especially patients with Aβ-negative SVCI, showed higher AV1451 uptake in the inferior temporal areas compared with normal control individuals. In patients with SVCI, Aβ positivity and CSVD score were each independently associated with increased AV1451 uptake in the medial temporal and inferior temporal regions, respectively

  17. Magnetic Droplet Microfluidics as a Platform for the Concentration of [18F]Fluoride and Radiosynthesis of Sulfonyl [18F]Fluoride.

    PubMed

    Fiel, Somewhere A; Yang, Hua; Schaffer, Paul; Weng, Samuel; Inkster, James A H; Wong, Michael C K; Li, Paul C H

    2015-06-17

    The radioisotope 18F is often considered the best choice for positron emission tomography (PET) owing to its desirable chemical and radiochemical properties. However, nucleophilic 18F-fluorination of large, water-soluble biomolecules, based on C-F bond formation, has traditionally been difficult. Thus, several aqueous fluorination approaches that offer significant versatility in radiopharmaceutical synthesis with sensitive targeting vectors have been developed. Furthermore, because 18F decays rapidly, production of these 18F-labeled compounds requires an automated process to reduce production time, reduce radiation exposure, and minimize losses due to the transfer of reagents during tracer synthesis. Herein, we report the use of magnetic droplet microfluidics (MDM) as a means to concentrate [18F]fluoride from the cyclotron target solution, followed by the synthesis of an 18F-labeled compound on a microfluidic platform. Using this method, we have demonstrated 18F preconcentration in a small-volume droplet through the use of anion exchanging magnetic particles. By using MDM, the preconcentration step took approximately 5 min, and the [18F]fluoride solution was preconcentrated by 15-fold. After the preconcentration step, an 18F-labeling reaction was performed on the MDM platform using the S-F bond formation in aqueous conditions to produce an arylsulfonyl [18F]fluoride compound which can be used as a prosthetic group to label PET targeting ligands. The high radiochemical purity of 95±1% was comparable to the 96% previously reported using a conventional method. In addition, when MDM was used, the total synthesis time was improved to 15 min with lower reagent volumes (50-60 μL) used.

  18. Inverse relationship between brain glucose and ketone metabolism in adults during short-term moderate dietary ketosis: A dual tracer quantitative positron emission tomography study.

    PubMed

    Courchesne-Loyer, Alexandre; Croteau, Etienne; Castellano, Christian-Alexandre; St-Pierre, Valérie; Hennebelle, Marie; Cunnane, Stephen C

    2017-07-01

    Ketones (principally β-hydroxybutyrate and acetoacetate (AcAc)) are an important alternative fuel to glucose for the human brain, but their utilisation by the brain remains poorly understood. Our objective was to use positron emission tomography (PET) to assess the impact of diet-induced moderate ketosis on cerebral metabolic rate of acetoacetate (CMRa) and glucose (CMRglc) in healthy adults. Ten participants (35 ± 15 y) received a very high fat ketogenic diet (KD) (4.5:1; lipid:protein plus carbohydrates) for four days. CMRa and CMRglc were quantified by PET before and after the KD with the tracers, 11 C-AcAc and 18 F-fluorodeoxyglucose ( 18 F-FDG), respectively. During the KD, plasma ketones increased 8-fold ( p = 0.005) while plasma glucose decreased by 24% ( p = 0.005). CMRa increased 6-fold ( p = 0.005), whereas CMRglc decreased by 20% ( p = 0.014) on the KD. Plasma ketones were positively correlated with CMRa (r = 0.93; p < 0.0001). After four days on the KD, CMRa represented 17% of whole brain energy requirements in healthy adults with a 2-fold difference across brain regions (12-24%). The CMR of ketones (AcAc and β-hydroxybutyrate combined) while on the KD was estimated to represent about 33% of brain energy requirements or approximately double the CMRa. Whether increased ketone availability raises CMR of ketones to the same extent in older people as observed here or in conditions in which chronic brain glucose hypometabolism is present remains to be determined.

  19. (18)F-Fluoroglucosylation of peptides, exemplified on cyclo(RGDfK).

    PubMed

    Hultsch, Christina; Schottelius, Margret; Auernheimer, Jörg; Alke, Andrea; Wester, Hans-Jürgen

    2009-09-01

    Oxime formation between an aminooxy-functionalized peptide and an (18)F-labelled aldehyde has recently been introduced as a powerful method for the rapid one-step chemoselective synthesis of radiofluorinated peptides. Here, the potential of using routinely produced and thus readily available [(18)F]fluorodeoxyglucose ([(18)F]FDG) as the aldehydic prosthetic group was investigated using an aminooxyacetyl-conjugated cyclic RGD peptide (cyclo(RGDfK(Aoa-(Boc)) as a model peptide. The use of [(18)F]FDG from routine production ([(18)F]FDGTUM) containing an excess of D: -glucose did not allow the radiosynthesis of [(18)F]FDG-RGD in activities >37 MBq in reasonable yield, rendering the direct use of clinical grade [(18)F]FDG for the routine clinical synthesis of (18)F-labelled peptides impossible. Using no-carrier-added (n.c.a.) [(18)F]FDG obtained via HPLC separation of [(18)F]FDGTUM from excess glucose, however, afforded [(18)F]FDG-RGD in yields of 56-93% (decay corrected) and activities up to 37 MBq. Suitable reaction conditions were 20 min at 120 degrees C and pH 2.5, and a peptide concentration of 5 mM. In a preliminary in vivo biodistribution study in M21 melanoma-bearing nude mice, [(18)F]FDG-RGD showed increased tumour accumulation compared to the "gold standard" [(18)F]galacto-RGD (2.18 vs 1.49 %iD/g, respectively, at 120 min after injection), but also slightly increased uptake in non-target organs, leading to comparable tumour/organ ratios for both compounds. These data demonstrate that chemoselective (18)F-labelling of aminooxy-functionalized peptides using n.c.a. [(18)F]FDG represents a radiofluorination/glycosylation strategy that allows preparation of (18)F-labelled peptides in high yield with suitable pharmacokinetics. As soon as the necessary n.c.a. preparation of [(18)F]FDG prior to reaction with the Aoa-peptide can be implemented in a fully automated [(18)F]FDG-synthesis, [(18)F]fluoroglucosylation of peptides may represent a promising alternative to

  20. Increased regional cerebral glucose uptake in an APP/PS1 model of Alzheimer’s disease

    PubMed Central

    Poisnel, Géraldine; Hérard, Anne-Sophie; El Tannir El Tayara, Nadine; Bourrin, Emmanuel; Volk, Andreas; Kober, Frank; Delatour, Benoit; Delzescaux, Thierry; Debeir, Thomas; Rooney, Thomas; Benavides, Jésus; Hantraye, Philippe; Dhenain, Marc

    2013-01-01

    Alzheimer’s disease (AD), the most common age-related neurodegenerative disorder, is characterized by the invariant cerebral accumulation of β-amyloid peptide. This event occurs early in the disease process. In humans, [18F]-Fluoro-2-deoxy-D-Glucose-Positron Emission Tomography ([18F]-FDG-PET) is largely used to follow-up in vivo cerebral glucose utilisation (CGU) and brain metabolism modifications associated to the AD pathology. Here, [18F]-FDG-PET was used to study age-related changes of CGU under resting conditions in 3, 6 and 12-month-old APPSweLon/PS1M146L, a mouse model of amyloidosis. We showed an age-dependent increase of glucose uptake in several brain regions of APP/PS1 mice but not in control animals and a higher [18F]-FDG uptake in the cortex and the hippocampus of 12-month-old APP/PS1 mice as compared to age-matched control mice. We then developed a method of 3D-microscopic autoradiography to evaluate glucose uptake at the level of amyloid plaques and showed an increased glucose uptake close to the plaques rather than in amyloid-free cerebral tissues. These data suggest a macroscopic and microscopic reorganisation of glucose uptake in relation to cerebral amyloidosis. PMID:22079157

  1. Greater glucose uptake heterogeneity in knee muscles of old compared to young men during isometric contractions detected by [18F]-FDG PET/CT

    PubMed Central

    Rudroff, Thorsten; Kindred, John H.; Benson, John-Michael; Tracy, Brian L.; Kalliokoski, Kari K.

    2014-01-01

    We used positron emission tomography/computed tomography (PET/CT) and [18F]-FDG to test the hypothesis that glucose uptake (GU) heterogeneity in skeletal muscles as a measure of heterogeneity in muscle activity is greater in old than young men when they perform isometric contractions. Six young (26 ± 6 years) and six old (77 ± 6 years) men performed two types of submaximal isometric contractions that required either force or position control. [18F]-FDG was injected during the task and PET/CT scans were performed immediately after the task. Within-muscle heterogeneity of knee muscles was determined by calculating the coefficient of variation (CV) of GU in PET image voxels within the muscles of interest. The average GU heterogeneity (mean ± SD) for knee extensors and flexors was greater for the old (35.3 ± 3.3%) than the young (28.6 ± 2.4%) (P = 0.006). Muscle volume of the knee extensors were greater for the young compared to the old men (1016 ± 163 vs. 598 ± 70 cm3, P = 0.004). In a multiple regression model, knee extensor muscle volume was a predictor (partial r = −0.87; P = 0.001) of GU heterogeneity for old men (R2 = 0.78; P < 0.001), and MVC force predicted GU heterogeneity for young men (partial r = −0.95, P < 0.001). The findings demonstrate that GU is more spatially variable for old than young men and especially so for old men who exhibit greater muscle atrophy. PMID:24904432

  2. Glucose uptake of the muscle and adipose tissues in diabetes and obesity disease models: evaluation of insulin and β3-adrenergic receptor agonist effects by 18F-FDG.

    PubMed

    Ishino, Seigo; Sugita, Taku; Kondo, Yusuke; Okai, Mika; Tsuchimori, Kazue; Watanabe, Masanori; Mori, Ikuo; Hosoya, Masaki; Horiguchi, Takashi; Kamiguchi, Hidenori

    2017-06-01

    One of the major causes of diabetes and obesity is abnormality in glucose metabolism and glucose uptake in the muscle and adipose tissue based on an insufficient action of insulin. Therefore, many of the drug discovery programs are based on the concept of stimulating glucose uptake in these tissues. Improvement of glucose metabolism has been assessed based on blood parameters, but these merely reflect the systemic reaction to the drug administered. We have conducted basic studies to investigate the usefulness of glucose uptake measurement in various muscle and adipose tissues in pharmacological tests using disease-model animals. A radiotracer for glucose, 18 F-2-deoxy-2-fluoro-D-glucose ( 18 F-FDG), was administered to Wistar fatty rats (type 2 diabetes model), DIO mouse (obese model), and the corresponding control animals, and the basal glucose uptake in the muscle and adipose (white and brown) tissues were compared using biodistribution method. Moreover, insulin and a β3 agonist (CL316,243), which are known to stimulate glucose uptake in the muscle and adipose tissues, were administered to assess their effect. 18 F-FDG uptake in each tissue was measured as the radioactivity and the distribution was confirmed by autoradiography. In Wistar fatty rats, all the tissues measured showed a decrease in the basal level of glucose uptake when compared to Wistar lean rats. On the other hand, the same trend was observed only in the white adipose tissue in DIO mice, while brown adipose tissue showed increments in the basal glucose uptake in this model. Insulin administration stimulated glucose uptake in both Wistar lean and fatty rats, although the responses were inhibited in Wistar fatty rats. The same tendency was shown also in control mice, but clear increments in glucose uptake were not observed in the muscle and brown adipose tissue of DIO mice after insulin administration. β3 agonist administration showed the similar trend in Wistar lean and fatty rats as insulin

  3. Positron emitting nuclides and their synthetic incorporation in radiopharmaceuticals. [Labeled with /sup 11/C, /sup 13/N, and /sup 18/F

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fowler, J.S.

    /sup 11/C, /sup 13/N, and /sup 15/O has potential applicability to the study of metabolism in humans. Problems in the synthesis of radiopharmaceuticals labeled with /sup 11/C, /sup 13/N, and /sup 18/F are described: quality control, radiation exposure, carboxylic acids, glucose, amines, amino acids, nitrosources, fluoroethanol. 54 references. (DLC)

  4. Recoverin-associated retinopathy secondary to Warthin tumor of parotid gland.

    PubMed

    Machida, Shigeki; Ohguro, Hiroshi; Ishida, Kazunori; Suzuki, Masamichi; Kawagishi, Kazuaki

    2014-10-01

    To present a case of photoreceptor degeneration associated with a benign Warthin tumor of the parotid gland. A 57-year-old man visited our clinic complaining of blurred vision in both eyes. His best-corrected visual acuity was 0.07 in the right and 0.04 in the left eyes. All components of the full-field electroretinograms (ERGs) were reduced in both eyes. The focal macular ERGs were extinguished in both eyes, which was consistent with the deterioration of the outer retina in optical coherence tomographic images. Positron emission tomography showed (18)F-fluorodeoxy glucose accumulation in the left parotid gland. Parotidectomy was performed, and the histopathology of the specimen had features compatible with a Warthin tumor without malignancy. Western blot analysis of the patient's sera detected an antibody against recoverin. In addition, the tumor tissue had an aberrant expression of recoverin. The findings in this case indicate that recoverin-associated retinopathy can develop secondary to a benign Warthin tumor.

  5. Effects of Insulin on Brain Glucose Metabolism in Impaired Glucose Tolerance

    PubMed Central

    Hirvonen, Jussi; Virtanen, Kirsi A.; Nummenmaa, Lauri; Hannukainen, Jarna C.; Honka, Miikka-Juhani; Bucci, Marco; Nesterov, Sergey V.; Parkkola, Riitta; Rinne, Juha; Iozzo, Patricia; Nuutila, Pirjo

    2011-01-01

    OBJECTIVE Insulin stimulates brain glucose metabolism, but this effect of insulin is already maximal at fasting concentrations in healthy subjects. It is not known whether insulin is able to stimulate glucose metabolism above fasting concentrations in patients with impaired glucose tolerance. RESEARCH DESIGN AND METHODS We studied the effects of insulin on brain glucose metabolism and cerebral blood flow in 13 patients with impaired glucose tolerance and nine healthy subjects using positron emission tomography (PET). All subjects underwent PET with both [18F]fluorodeoxyglucose (for brain glucose metabolism) and [15O]H2O (for cerebral blood flow) in two separate conditions (in the fasting state and during a euglycemic-hyperinsulinemic clamp). Arterial blood samples were acquired during the PET scans to allow fully quantitative modeling. RESULTS The hyperinsulinemic clamp increased brain glucose metabolism only in patients with impaired glucose tolerance (whole brain: +18%, P = 0.001) but not in healthy subjects (whole brain: +3.9%, P = 0.373). The hyperinsulinemic clamp did not alter cerebral blood flow in either group. CONCLUSIONS We found that insulin stimulates brain glucose metabolism at physiological postprandial levels in patients with impaired glucose tolerance but not in healthy subjects. These results suggest that insulin stimulation of brain glucose metabolism is maximal at fasting concentrations in healthy subjects but not in patients with impaired glucose tolerance. PMID:21270256

  6. Comparison among conventional and advanced MRI, 18F-FDG PET/CT, phenotype and genotype in glioblastoma.

    PubMed

    Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide

    2017-10-31

    Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value ( 18 F-FDG SUV max ), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18 F-FDG SUV max , Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18 F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB.

  7. Comparison among conventional and advanced MRI, 18F-FDG PET/CT, phenotype and genotype in glioblastoma

    PubMed Central

    Valentini, Maria Consuelo; Mellai, Marta; Annovazzi, Laura; Melcarne, Antonio; Denysenko, Tetyana; Cassoni, Paola; Casalone, Cristina; Maurella, Cristiana; Grifoni, Silvia; Fania, Piercarlo; Cistaro, Angelina; Schiffer, Davide

    2017-01-01

    Glioblastoma (GB) is a highly heterogeneous tumor. In order to identify in vivo the most malignant tumor areas, the extent of tumor infiltration and the sites giving origin to GB stem cells (GSCs), we combined positron emission tomography/computed tomography (PET/CT) and conventional and advanced magnetic resonance imaging (MRI) with histology, immunohistochemistry and molecular genetics. Prior to dura opening and tumor resection, forty-eight biopsy specimens [23 of contrast-enhancing (CE) and 25 of non-contrast enhancing (NE) regions] from 12 GB patients were obtained by a frameless image-guided stereotactic biopsy technique. The highest values of 2-[18F]-fluoro-2-deoxy-D-glucose maximum standardized uptake value (18F-FDG SUVmax), relative cerebral blood volume (rCBV), Choline/Creatine (Cho/Cr), Choline/N-acetylaspartate (Cho/NAA) and Lipids/Lactate (LL) ratio have been observed in the CE region. They corresponded to the most malignant tumor phenotype, to the greatest molecular spectrum and stem cell potential. On the contrary, apparent diffusion coefficient (ADC) and fractional anisotropy (FA) in the CE region were very variable. 18F-FDG SUVmax, Cho/Cr and Cho/NAA ratio resulted the most suitable parameters to detect tumor infiltration. In edematous areas, reactive astrocytes and microglia/macrophages were influencing variables. Combined MRI and 18F-FDG PET/CT allowed to recognize the specific biological significance of the different identified areas of GB. PMID:29207673

  8. Noninvasive quantification of cerebral metabolic rate for glucose in rats using 18F-FDG PET and standard input function

    PubMed Central

    Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi

    2015-01-01

    Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed 18F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIFNS) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF1S). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIFNS-, and EIF1S-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIFNS was highly correlated with those derived from AIF and EIF1S. Preliminary comparison between AIF and EIFNS in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIFNS method might serve as a noninvasive substitute for individual AIF measurement. PMID:25966947

  9. Noninvasive quantification of cerebral metabolic rate for glucose in rats using (18)F-FDG PET and standard input function.

    PubMed

    Hori, Yuki; Ihara, Naoki; Teramoto, Noboru; Kunimi, Masako; Honda, Manabu; Kato, Koichi; Hanakawa, Takashi

    2015-10-01

    Measurement of arterial input function (AIF) for quantitative positron emission tomography (PET) studies is technically challenging. The present study aimed to develop a method based on a standard arterial input function (SIF) to estimate input function without blood sampling. We performed (18)F-fluolodeoxyglucose studies accompanied by continuous blood sampling for measurement of AIF in 11 rats. Standard arterial input function was calculated by averaging AIFs from eight anesthetized rats, after normalization with body mass (BM) and injected dose (ID). Then, the individual input function was estimated using two types of SIF: (1) SIF calibrated by the individual's BM and ID (estimated individual input function, EIF(NS)) and (2) SIF calibrated by a single blood sampling as proposed previously (EIF(1S)). No significant differences in area under the curve (AUC) or cerebral metabolic rate for glucose (CMRGlc) were found across the AIF-, EIF(NS)-, and EIF(1S)-based methods using repeated measures analysis of variance. In the correlation analysis, AUC or CMRGlc derived from EIF(NS) was highly correlated with those derived from AIF and EIF(1S). Preliminary comparison between AIF and EIF(NS) in three awake rats supported an idea that the method might be applicable to behaving animals. The present study suggests that EIF(NS) method might serve as a noninvasive substitute for individual AIF measurement.

  10. 18F-fluorodeoxyglucose uptake on positron emission tomography as a prognostic predictor in locally advanced hepatocellular carcinoma.

    PubMed

    Kim, Beom Kyung; Kang, Won Jun; Kim, Ja Kyung; Seong, Jinsil; Park, Jun Yong; Kim, Do Young; Ahn, Sang Hoon; Lee, Do Youn; Lee, Kwang Hoon; Lee, Jong Doo; Han, Kwang-Hyub

    2011-10-15

    Metabolic activity assessed by (18)F-fluorodeoxyglocuse-positron emission tomography ((18)F-FDG-PET) reflects biological aggressiveness and prognoses in various tumors. The authors present a correlation between tumor metabolic activity and clinical outcomes in patients with hepatocellular carcinoma (HCC). Over a 3-year period (2005-2008), 135 locally advanced HCC patients were treated with localized concurrent chemoradiotherapy (CCRT; external beam radiotherapy at 45 grays for 5 weeks plus concurrent hepatic arterial infusion of 5-fluorouracil during the first and fifth week) followed by repetitive hepatic arterial infusional chemotherapy with 5-fluorouracil and cisplatin. Among them, the authors studied 107 who received (18)F-FDG-PET before CCRT. Maximal standardized uptake values (SUVs) of tumors were calculated. The median maximal tumor SUV was 6.1 (range, 2.4-∼19.2). Patients with low maximal tumor SUVs (<6.1) had a higher disease control rate than those with high maximal tumor SUVs (≥6.1) (86.8% vs 68.5%, respectively, P = .023). Both median progression-free survival (PFS; 8.4 vs 5.2 months; P = .003) and overall survival (OS; 17.9 vs 11.3 months; P = .013) were significantly longer in the low maximal tumor SUV group than in the high maximal tumor SUV group, respectively. In multivariate analysis, low maximal tumor SUV and objective responses to CCRT remained significant for PFS and OS. The high maximal tumor SUV group was more likely to have extrahepatic metastasis within 6 months than the low maximal tumor SUV group (58.1% vs 26.8%, respectively; P < .001). Similar results were obtained for the maximal tumor SUV/normal liver maximal SUV ratio (<2 vs ≥2) concerning progression, death, and extrahepatic metastasis. Metabolic activity may be useful not only in predicting prognosis and treatment responses, but also in establishing optimal treatment plans in locally advanced HCC. Copyright © 2011 American Cancer Society.

  11. Pharmacokinetics, metabolism, biodistribution, radiation dosimetry, and toxicology of (18)F-fluoroacetate ((18)F-FACE) in non-human primates.

    PubMed

    Nishii, Ryuichi; Tong, William; Wendt, Richard; Soghomonyan, Suren; Mukhopadhyay, Uday; Balatoni, Julius; Mawlawi, Osama; Bidaut, Luc; Tinkey, Peggy; Borne, Agatha; Alauddin, Mian; Gonzalez-Lepera, Carlos; Yang, Bijun; Gelovani, Juri G

    2012-04-01

    To facilitate the clinical translation of (18)F-fluoroacetate ((18)F-FACE), the pharmacokinetics, biodistribution, radiolabeled metabolites, radiation dosimetry, and pharmacological safety of diagnostic doses of (18)F-FACE were determined in non-human primates. (18)F-FACE was synthesized using a custom-built automated synthesis module. Six rhesus monkeys (three of each sex) were injected intravenously with (18)F-FACE (165.4 ± 28.5 MBq), followed by dynamic positron emission tomography (PET) imaging of the thoracoabdominal area during 0-30 min post-injection and static whole-body PET imaging at 40, 100, and 170 min. Serial blood samples and a urine sample were obtained from each animal to determine the time course of (18)F-FACE and its radiolabeled metabolites. Electrocardiograms and hematology analyses were obtained to evaluate the acute and delayed toxicity of diagnostic dosages of (18)F-FACE. The time-integrated activity coefficients for individual source organs and the whole body after administration of (18)F-FACE were obtained using quantitative analyses of dynamic and static PET images and were extrapolated to humans. The blood clearance of (18)F-FACE exhibited bi-exponential kinetics with half-times of 4 and 250 min for the fast and slow phases, respectively. A rapid accumulation of (18)F-FACE-derived radioactivity was observed in the liver and kidneys, followed by clearance of the radioactivity into the intestine and the urinary bladder. Radio-HPLC analyses of blood and urine samples demonstrated that (18)F-fluoride was the only detectable radiolabeled metabolite at the level of less than 9% of total radioactivity in blood at 180 min after the (18)F-FACE injection. The uptake of free (18)F-fluoride in the bones was insignificant during the course of the imaging studies. No significant changes in ECG, CBC, liver enzymes, or renal function were observed. The estimated effective dose for an adult human is 3.90-7.81 mSv from the administration of 185

  12. Emission computed tomography of /sup 18/F-fluorodeoxyglucose and /sup 13/N-ammonia in stroke and epilepsy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhl, D.E.; Phelps, M.E.; Engel, J. Jr.

    1980-01-01

    The ECAT Positron Tomograph was used to scan normal control subjects, stroke patients at various times during recovery, and patients with partial epilepsy during EEG monitoring. /sup 18/F-fluorodeoxyglucose (/sup 18/FDG) and /sup 13/N-Ammonia (/sup 13/NH/sub 3/) were used as indicators of abnormalities in local cerebral glucose utilization (LCMR/sub glc/) and relative perfusion, respectively. Hypometabolism, due to deactivation or minimal damage, was demonstrated with the /sup 18/FDG scan in deep structures and broad zones of cerebral cortex which appeared normal on x-ray CT (XCT) and /sup 99m/Tc pertechnetate scans. In patients with partial epilepsy, who had unilateral or focal electrical abnormalities,more » interictal /sup 18/FDG scan patterns clearly showed localized regions of decreased (20 to 50%) LCMR/sub glc/, which correlated anatomically with the eventual EEG localization.« less

  13. Imaging of prostate cancer with PET/CT using 18F-Fluorocholine

    PubMed Central

    Vali, Reza; Loidl, Wolfgang; Pirich, Christian; Langesteger, Werner; Beheshti, Mohsen

    2015-01-01

    While 18F-Fluorodeoxyglucose (18F-FDG) Positron-Emission Tomography (PET) has limited value in prostate cancer (PCa), it may be useful for specific subgroups of PCa patients with hormone-resistant poorly differentiated cell types. 18F-Fluorocholine (18F-FCH) PET/CT has been increasingly used in primary and recurrent PCa and has been shown to add valuable information. Although there is a correlation between the foci of activity and the areas of malignancy in the prostate gland, the clinical value of 18F-FCH is still controversial for detection of the malignant focus in the prostate. For the T-staging of PCa at diagnosis the value of 18F-FCH is limited. This is probably due to limited resolution of PET system and positive findings in benign prostate diseases. Conversely, 18F-FCH PET/CT is a promising imaging modality for the delineation of local and distant nodal recurrence and bone metastases and is poised to have an impact on therapy management. In this review, recent studies of 18F-FCH PET/CT in PCa are summarized. PMID:25973332

  14. Oncogene pathway activation in mammary tumors dictates [18F]-FDG-PET uptake

    PubMed Central

    Alvarez, James V.; Belka, George K.; Pan, Tien-chi; Chen, Chien-Chung; Blankemeyer, Eric; Alavi, Abass; Karp, Joel; Chodosh, Lewis A.

    2015-01-01

    Increased glucose utilization is a hallmark of human cancer that is used to image tumors clinically. In this widely used application, glucose uptake by tumors is monitored by positron emission tomography (PET) of the labeled glucose analog F-18-2-fluoro-2-deoxyglucose (18F-FDG). Despite its widespread clinical use, the cellular and molecular mechanisms that determine FDG uptake - a tool that can monitor tumor heterogeneity - remain poorly understood. In this study, we compared FDG uptake in mammary tumors driven by the Akt1, c-MYC, HER2/neu, Wnt1 or H-Ras oncogenes in genetically engineered mice, correlating it to tumor growth, cell proliferation and levels of gene expression involved in key steps of glycolytic metabolism. We found that FDG uptake by tumors was dictated principally by the driver oncogene and was not independently associated with tumor growth or cellular proliferation. Oncogene downregulation resulted in a rapid decrease in FDG uptake, preceding effects on tumor regression, irrespective of the baseline level of uptake. FDG uptake correlated positively with expression of hexokinase-2 (HK2) and HIF-1α and associated negatively with PFK-2b expression and p-AMPK. The correlation of HK2 and FDG uptake was independent of all variables tested, including the initiating oncogene, suggesting that HK2 is an independent predictor of FDG uptake. In contrast, expression of Glut1 was correlated with FDG uptake only in tumors driven by Akt or HER2/neu. Together, these results showed that the oncogenic pathway activated within a tumor is a primary determinant of its FDG uptake, mediated by key glycolytic enzymes that provide a framework to interpret effects on this key parameter in clinical imaging. PMID:25239452

  15. Methamphetamine-sensitized rats show augmented dopamine release to methylphenidate stimulation: a positron emission tomography using [18F]fallypride.

    PubMed

    Ota, Miho; Ogawa, Shintaro; Kato, Koichi; Wakabayashi, Chisato; Kunugi, Hiroshi

    2015-04-30

    Previous studies demonstrated that patients with schizophrenia show greater sensitivity to psychostimulants than healthy subjects. Sensitization to psychostimulants and resultant alteration of dopaminergic neurotransmission in rodents have been suggested as a useful model of schizophrenia. This study was aimed to examine the use of methylphenidate as a psychostimulant to induce dopamine release and that of [18F]fallypride as a radioligand to estimate the release in a rat model of schizophrenia. Six rats were scanned by positron emission tomography (PET) twice before and after methylphenidate challenge to evaluate dopamine release. After the scans, these rats were sensitized by using repeated methamphetamine (MAP) administration. Then, they were re-scanned twice again before and after methylphenidate challenge to evaluate whether MAP-sensitized rats show greater sensitivity to methylphenidate. We revealed a main effect of MAP-pretreatment and that of metylphenidate challenge. We found that % change of distribution volume ratio after repeated administration of MAP was greater than that before sensitization. These results suggest that methylphenidate-induced striatal dopamine release increased after sensitization to MAP. PET scan using [18F]fallypride at methylphenidate-challenge may provide a biological marker for schizophrenia and be useful to diagnose schizophrenia. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. 18F-FDG PET brain images as features for Alzheimer classification

    NASA Astrophysics Data System (ADS)

    Azmi, M. H.; Saripan, M. I.; Nordin, A. J.; Ahmad Saad, F. F.; Abdul Aziz, S. A.; Wan Adnan, W. A.

    2017-08-01

    2-Deoxy-2-[fluorine-18] fluoro-D-glucose (18F-FDG) Positron Emission Tomography (PET) imaging offers meaningful information for various types of diseases diagnosis. In Alzheimer's disease (AD), the hypometabolism of glucose which observed on the low intensity voxel in PET image may relate to the onset of the disease. The importance of early detection of AD is inevitable because the resultant brain damage is irreversible. Several statistical analysis and machine learning algorithm have been proposed to investigate the rate and the pattern of the hypometabolism. This study focus on the same aim with further investigation was performed on several hypometabolism pattern. Some pre-processing steps were implemented to standardize the data in order to minimize the effect of resolution and anatomical differences. The features used are the mean voxel intensity within the AD pattern mask, which derived from several z-score and FDR threshold values. The global mean voxel (GMV) and slice-based mean voxel (SbMV) intensity were observed and used as input to the neural network. Several neural network architectures were tested and compared to the nearest neighbour method. The highest accuracy equals to 0.9 and recorded at z-score ≤-1.3 with 1 node neural network architecture (sensitivity=0.81 and specificity=0.95) and at z-score ≤-0.7 with 10 nodes neural network (sensitivity=0.83 and specificity=0.94).

  17. Development of a novel handheld intra-operative laparoscopic Compton camera for 18F-Fluoro-2-deoxy-2-D-glucose-guided surgery

    NASA Astrophysics Data System (ADS)

    Nakamura, Y.; Shimazoe, K.; Takahashi, H.; Yoshimura, S.; Seto, Y.; Kato, S.; Takahashi, M.; Momose, T.

    2016-08-01

    As well as pre-operative roadmapping by 18F-Fluoro-2-deoxy-2-D-glucose (FDG) positron emission tomography, intra-operative localization of the tracer is important to identify local margins for less-invasive surgery, especially FDG-guided surgery. The objective of this paper is to develop a laparoscopic Compton camera and system aimed at use for intra-operative FDG imaging for accurate and less-invasive dissections. The laparoscopic Compton camera consists of four layers of a 12-pixel cross-shaped array of GFAG crystals (2× 2× 3 mm3) and through silicon via multi-pixel photon counters and dedicated individual readout electronics based on a dynamic time-over-threshold method. Experimental results yielded a spatial resolution of 4 mm (FWHM) for a 10 mm working distance and an absolute detection efficiency of 0.11 cps kBq-1, corresponding to an intrinsic detection efficiency of  ˜0.18%. In an experiment using a NEMA-like well-shaped FDG phantom, a φ 5× 10 mm cylindrical hot spot was clearly obtained even in the presence of a background distribution surrounding the Compton camera and the hot spot. We successfully obtained reconstructed images of a resected lymph node and primary tumor ex vivo after FDG administration to a patient having esophageal cancer. These performance characteristics indicate a new possibility of FDG-directed surgery by using a Compton camera intra-operatively.

  18. Alpha-fetoprotein and (18)F-FDG positron emission tomography predict tumor recurrence better than Milan criteria in living donor liver transplantation.

    PubMed

    Hong, Geun; Suh, Kyung-Suk; Suh, Suk-Won; Yoo, Tae; Kim, Hyeyoung; Park, Min-Su; Choi, YoungRok; Paeng, Jin Chul; Yi, Nam-Joon; Lee, Kwang-Woong

    2016-04-01

    Given the organ shortage for liver transplantation (LT) and the limitations of the current morphology-based selection criteria, improved criteria are needed to achieve the maximum benefit of LT for hepatocellular carcinoma (HCC). We hypothesized that a combination of biological markers may better predict the prognosis than the Milan criteria. HCC patients (n=123) with preoperative data on serum alpha-fetoprotein (AFP) levels and (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) positivity underwent live-donor LT between January 2003 and December 2009. The cut-off values for serum AFP levels (200 ng/ml) and (18)F-FDG PET positivity (1.10) for tumor recurrence were determined by c-statistics using receiver operating characteristic curves. Univariate and multivariate analyses with preoperative variables were performed to find pre-transplant prognostic factors. Disease-free survival rates and overall survival rates were analysed with regard to serum AFP levels and (18)F-FDG PET positivity. The 5-year disease-free survival rates and overall survival rates were 80.3% and 81.6% respectively. (18)F-FDG PET positivity (hazard ratio (HR) 9.766, 95% CI 3.557-26.816; p<0.001) and serum AFP level (HR 6.234, 95% CI 2.643-14.707; p<0.001) were the only significant pre-transplant prognostic factors in the multivariate analysis; tumor number and size were not significant. A combination of criteria showed that the biologically high-risk group (AFP level ⩾200 ng/ml and PET-positive) had an HR of 29.069 (95% CI 8.797-96.053; p<0.001) compared with the double-negative group. Use of the Milan criteria yielded an HR of 1.351 (95% CI 0.500-3.652; p=0.553). The combination of the serum AFP level and (18)F-FDG PET data predicted better outcomes than those using the Milan criteria, improving objectivity when adult-to-adult living donor LT is contemplated. Copyright © 2015 European Association for the Study of the Liver. Published by Elsevier B.V. All rights reserved.

  19. Effect of Donepezil on Wernicke Aphasia After Bilateral Middle Cerebral Artery Infarction: Subtraction Analysis of Brain F-18 Fluorodeoxyglucose Positron Emission Tomographic Images.

    PubMed

    Yoon, Seo Yeon; Kim, Je-Kyung; An, Young-Sil; Kim, Yong Wook

    2015-01-01

    Aphasia is one of the most common neurologic deficits occurring after stroke. Although the speech-language therapy is a mainstream option for poststroke aphasia, pharmacotherapy is recently being tried to modulate different neurotransmitter systems. However, the efficacy of those treatments is still controversial. We present a case of a 53-year-old female patient with Wernicke aphasia, after the old infarction in the territory of left middle cerebral artery for 8 years and the recent infarction in the right middle cerebral artery for 4 months. On the initial evaluation, the Aphasia Quotient in Korean version of the Western Aphasia Battery was 25.6 of 100. Baseline brain F-18 fluorodeoxyglucose positron emission tomographic images demonstrated a decreased cerebral metabolism in the left temporoparietal area and right temporal lobe. Donepezil hydrochloride, a reversible acetylcholinesterase inhibitor, was orally administered 5 mg/d for 6 weeks after the initial evaluation and was increased to 10 mg/d for the following 6 weeks. After the donepezil treatment, the patient showed improvement in language function, scoring 51.0 of 100 on Aphasia Quotient. A subtraction analysis of the brain F-18 fluorodeoxyglucose positron emission tomographic images after donepezil medication demonstrated increased uptake in both middle temporal gyri, extended to the occipital area and the left cerebellum. Thus, we suggest that donepezil can be an effective therapeutic choice for the treatment of Wernicke aphasia.

  20. Clinical importance of [18F]fluorodeoxyglucose positron emission tomography/computed tomography in the management of patients with bronchoalveolar carcinoma: Role in the detection of recurrence.

    PubMed

    Skoura, Evangelia; Datseris, Ioannis E; Exarhos, Dimitrios; Chatziioannou, Sophia; Oikonomopoulos, Georgios; Samartzis, Alexandros; Giannopoulou, Chariklia; Syrigos, Konstantinos N

    2013-05-01

    [ 18 F]fluorodeoxyglucose (FDG) positron emission tomography (PET)/computed tomography (CT) has been reported to have a low sensitivity in the initial diagnosis of bronchoalveolar carcinoma (BAC) due to BAC's low metabolic activity. The aim of this study was to assess the value of [ 18 F]FDG-PET/CT in the detection of BAC recurrence. Between February 2007 and September 2011, the [ 18 F]FDG-PET/CT scans that were performed on patients with known, histologically proven BAC were studied. A total of 24 [ 18 F]FDG-PET/CT scans were performed in 22 patients, including 16 males and 6 females, with a mean age of 65±9 years. Among the scans, 15 were performed to assess for possible recurrence with equivocal findings in conventional imaging methods and 9 for restaging post-therapy. In all cases conventional imaging studies (CT and MRI) were performed 5-30 days prior to PET/CT. Among the 24 [ 18 F]FDG-PET/CT scans, 18 were positive and 6 negative. Among the 15 [ 18 F]FDG-PET/CT scans performed for suspected recurrence, 34 lesions were detected and the mean maximum standardized uptake value (SUVmax) was 6.8±3.26. In nine scans, upstaging was observed, while two were in agreement with the findings of the conventional modalities. A greater number of lesions were detected in two scans and fewer lesions were detected in one, with no change in staging. Only one scan was negative. By contrast, in patients examined for restaging, there were only five lesions with a mean SUVmax of 4.86±3.18. Agreement between the findings of [ 18 F]FDG-PET/CT and the conventional modalities was observed in 8 out of 9 cases. Although [ 18 F]FDG-PET/CT has been reported to have a low sensitivity in the initial diagnosis of BAC, the present results indicate that when there is recurrence, the lesions become [ 18 F]FDG avid. [ 18 F]FDG-PET/CT may provide further information in patients evaluated for recurrence and thus improve patient management.

  1. Regional cerebral glucose metabolic rate in human sleep assessed by positron emission tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchsbaum, M.S.; Wu, J.; Hazlett, E.

    The cerebral metabolic rate of glucose was measured during nighttime sleep in 36 normal volunteers using positron emission tomography and fluorine-18-labeled 2-deoxyglucose (FDG). In comparison to waking controls, subjects given FDG during non-rapid eye movement (NREM) sleep showed about a 23% reduction in metabolic rate across the entire brain. This decrease was greater for the frontal than temporal or occipital lobes, and greater for basal ganglia and thalamus than cortex. Subjects in rapid eye movement (REM) sleep tended to have higher cortical metabolic rates than walking subjects. The cingulate gyrus was the only cortical structure to show a significant increasemore » in glucose metabolic rate in REM sleep in comparison to waking. The basal ganglia were relatively more active on the right in REM sleep and symmetrical in NREM sleep.« less

  2. Does Delayed-Time-Point Imaging Improve 18F-FDG-PET in Patients With MALT Lymphoma?

    PubMed Central

    Mayerhoefer, Marius E.; Giraudo, Chiara; Senn, Daniela; Hartenbach, Markus; Weber, Michael; Rausch, Ivo; Kiesewetter, Barbara; Herold, Christian J.; Hacker, Marcus; Pones, Matthias; Simonitsch-Klupp, Ingrid; Müllauer, Leonhard; Dolak, Werner; Lukas, Julius; Raderer, Markus

    2016-01-01

    Purpose To determine whether in patients with extranodal marginal zone B-cell lymphoma of the mucosa-associated lymphoid tissue lymphoma (MALT), delayed–time-point 2-18F-fluoro-2-deoxy-d-glucose-positron emission tomography (18F-FDG-PET) performs better than standard–time-point 18F-FDG-PET. Materials and Methods Patients with untreated histologically verified MALT lymphoma, who were undergoing pretherapeutic 18F-FDG-PET/computed tomography (CT) and consecutive 18F-FDG-PET/magnetic resonance imaging (MRI), using a single 18F-FDG injection, in the course of a larger-scale prospective trial, were included. Region-based sensitivity and specificity, and patient-based sensitivity of the respective 18F-FDG-PET scans at time points 1 (45–60 minutes after tracer injection, TP1) and 2 (100–150 minutes after tracer injection, TP2), relative to the reference standard, were calculated. Lesion-to-liver and lesion-to-blood SUVmax (maximum standardized uptake values) ratios were also assessed. Results 18F-FDG-PET at TP1 was true positive in 15 o f 23 involved regions, and 18F-FDG-PET at TP2 was true-positive in 20 of 23 involved regions; no false-positive regions were noted. Accordingly, region-based sensitivities and specificities were 65.2% (confidence interval [CI], 45.73%–84.67%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP1; and 87.0% (CI, 73.26%–100%) and 100% (CI, 100%-100%) for 18F-FDG-PET at TP2, respectively. FDG-PET at TP1 detected lymphoma in at least one nodal or extranodal region in 7 of 13 patients, and 18F-FDG-PET at TP2 in 10 of 13 patients; accordingly, patient-based sensitivity was 53.8% (CI, 26.7%–80.9%) for 18F-FDG-PET at TP1, and 76.9% (CI, 54.0%–99.8%) for 18F-FDG-PET at TP2. Lesion-to-liver and lesion-to-blood maximum standardized uptake value ratios were significantly lower at TP1 (ratios, 1.05 ± 0.40 and 1.52 ± 0.62) than at TP2 (ratios, 1.67 ± 0.74 and 2.56 ± 1.10; P = 0.003 and P = 0.001). Conclusions Delayed–time-point imaging

  3. Comparison of O-(2-18F-Fluoroethyl)-L-Tyrosine Positron Emission Tomography and Perfusion-Weighted Magnetic Resonance Imaging in the Diagnosis of Patients with Progressive and Recurrent Glioma: A Hybrid Positron Emission Tomography/Magnetic Resonance Study.

    PubMed

    Verger, Antoine; Filss, Christian P; Lohmann, Philipp; Stoffels, Gabriele; Sabel, Michael; Wittsack, Hans-J; Kops, Elena Rota; Galldiks, Norbert; Fink, Gereon R; Shah, Nadim J; Langen, Karl-Josef

    2018-05-01

    To compare the diagnostic performance of O-(2- 18 F-fluoroethyl)-L-tyrosine ( 18 F-FET) positron emission tomography (PET) and perfusion-weighted magnetic resonance imaging (PWI) for the diagnosis of progressive or recurrent glioma. Thirty-two pretreated gliomas (25 progressive or recurrent tumors, 7 treatment-related changes) were investigated with 18 F-FET PET and PWI via a hybrid PET/magnetic resonance scanner. Volumes of interest with a diameter of 16 mm were centered on the maximum of abnormality in the tumor area in PET and PWI maps (relative cerebral blood volume, relative cerebral blood flow, mean transit time) and the contralateral unaffected hemisphere. Mean and maximum tumor-to-brain ratios as well as dynamic data for 18 F-FET uptake were calculated. Diagnostic accuracies were evaluated by receiver operating characteristic analyses, calculating the area under the curve. 18 F-FET PET showed a significant greater sensitivity to detect abnormalities in pretreated gliomas than PWI (76% vs. 52%, P = 0.03). The maximum tumor-to-brain ratio of 18 F-FET PET was the only parameter that discriminated treatment-related changes from progressive or recurrent gliomas (area under the curve, 0.78; P = 0.03, best cut-off 2.61; sensitivity 80%, specificity 86%, accuracy 81%). Among patients with signal abnormality in both modalities, 75% revealed spatially incongruent local hot spots. This pilot study suggests that 18 F-FET PET is superior to PWI to diagnose progressive or recurrent glioma. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Pulmonary suture abscess with false-positive 18F-fluorodeoxyglucose positron emission scan mimicking lung cancer recurrence.

    PubMed

    Iwasaki, Teruo; Nakagawa, Katsuhiro; Katsura, Hiroshi; Nakane, Shigeru; Kawahara, Kunimitsu; Fukuda, Haruyuki

    2006-08-01

    We present the case of a 57-year-old woman with pulmonary suture abscess. She had undergone right S3 segmentectomy for early lung adenocarcinoma 7 years before and right breast-conserving surgery for invasive ductal carcinoma 5 months previously, followed by irradiation plus endocrine therapy. Chest radiography and computed tomography revealed an irregular mass (3.5 cm in diameter) between the residual S1 segment and the middle lobe, neighboring the staple line of the segmentectomy. 18F-fluorodeoxyglucose uptake into the mass increased, seen by positron emission scans. Therefore, we could not rule out the possibility of local recurrence of lung cancer and resected it. Pathologically and microbiologically, the mass was a suture abscess arising around the nylon suture of the previous segmentectomy. This lesion was the result of a foreign-body reaction, as confirmed by polarized microscopy. Moreover, titanium staples at the segmentectomy and breast-conserving surgery may also have contributed to this condition.

  5. Absolute quantification of regional cerebral glucose utilization in mice by 18F-FDG small animal PET scanning and 2-14C-DG autoradiography.

    PubMed

    Toyama, Hiroshi; Ichise, Masanori; Liow, Jeih-San; Modell, Kendra J; Vines, Douglass C; Esaki, Takanori; Cook, Michelle; Seidel, Jurgen; Sokoloff, Louis; Green, Michael V; Innis, Robert B

    2004-08-01

    The purpose of this study was to evaluate the feasibility of absolute quantification of regional cerebral glucose utilization (rCMR(glc)) in mice by use of (18)F-FDG and a small animal PET scanner. rCMR(glc) determined with (18)F-FDG PET was compared with values determined simultaneously by the autoradiographic 2-(14)C-DG method. In addition, we compared the rCMR(glc) values under isoflurane, ketamine and xylazine anesthesia, and awake states. Immediately after injection of (18)F-FDG and 2-(14)C-DG into mice, timed arterial samples were drawn over 45 min to determine the time courses of (18)F-FDG and 2-(14)C-DG. Animals were euthanized at 45 min and their brain was imaged with the PET scanner. The brains were then processed for 2-(14)C-DG autoradiography. Regions of interest were manually placed over cortical regions on corresponding coronal (18)F-FDG PET and 2-(14)C-DG autoradiographic images. rCMR(glc) values were calculated for both tracers by the autoradiographic 2-(14)C-DG method with modifications for the different rate and lumped constants for the 2 tracers. Average rCMR(glc) values in cerebral cortex with (18)F-FDG PET under normoglycemic conditions (isoflurane and awake) were generally lower (by 8.3%) but strongly correlated with those of 2-(14)C-DG (r(2) = 0.95). On the other hand, under hyperglycemic conditions (ketamine/xylazine) average cortical rCMR(glc) values with (18)F-FDG PET were higher (by 17.3%) than those with 2-(14)C-DG. Values for rCMR(glc) and uptake (percentage injected dose per gram [%ID/g]) with (18)F-FDG PET were significantly lower under both isoflurane and ketamine/xylazine anesthesia than in the awake mice. However, the reductions of rCMR(glc) were markedly greater under isoflurane (by 57%) than under ketamine and xylazine (by 19%), whereas more marked reductions of %ID/g were observed with ketamine/xylazine (by 54%) than with isoflurane (by 37%). These reverse differences between isoflurane and ketamine/xylazine may be due to

  6. Endoscopic ultrasound - fine needle aspiration of 2-deoxy-2-[18F] fluoro-D-glucose avid lymph nodes seen on positron emission tomography- computed tomography -what looks like cancer may not always be so.

    PubMed

    Malik, Anum Imran; Akhtar, Noreen; Loya, Asif; Yusuf, Muhammed Aasim

    2014-07-31

    Patients suffering from malignancies often undergo serial positron emission tomography - computed tomography (PET-CT) scans, using 2-deoxy-2-[18F] fluoro-D-glucose (FDG) for diagnosis and follow up. This principle may also be applied to benign conditions as inflammatory cells take up increased amounts of FDG as well. The aim of our study was to retrospectively review the cytological diagnoses made at EUS-FNA of FDG-avid PET-CT lesions in patients with a history of cancer and to determine whether the cause of FDG-avidity was neoplastic or benign. We used the endoscopy database to extract clinical information on all patients with malignancies who underwent EUS-FNA to obtain tissue from FDG-avid nodes seen on PET-CT at our institution from 2009 - 2012. All patients who were referred for EUS-FNA after their scans were included. Those who had contraindications to endoscopic procedures were excluded. The most common location of positive lymph nodes was the subcarinal region (46%). A definitive diagnosis was obtained in 87.8% cases, of which 51.2% had a diagnosis of malignancy confirmed on cytology, while 36.5% were benign. Out of these, 29% had granulomatous inflammation. In 12.2% of cases no definitive diagnosis was obtained. Our results show that great caution should be exercised when evaluating FDG-avid PET-CT nodes in patients with known malignant disease, as a significant proportion of these lesions may be benign, particularly in geographic locations with a high background prevalence of granulomatous inflammation.

  7. Evaluation of treatment response and resistance in metastatic renal cell cancer (mRCC) using integrated 18F-Fluorodeoxyglucose (18F-FDG) positron emission tomography/magnetic resonance imaging (PET/MRI); The REMAP study.

    PubMed

    Kelly-Morland, Christian; Rudman, Sarah; Nathan, Paul; Mallett, Susan; Montana, Giovanni; Cook, Gary; Goh, Vicky

    2017-06-02

    Tyrosine kinase inhibitors are the first line standard of care for treatment of metastatic renal cell carcinoma (RCC). Accurate response assessment in the setting of antiangiogenic therapies remains suboptimal as standard size-related response criteria do not necessarily accurately reflect clinical benefit, as they may be less pronounced or occur later in therapy than devascularisation. The challenge for imaging is providing timely assessment of disease status allowing therapies to be tailored to ensure ongoing clinical benefit. We propose that combined assessment of morphological, physiological and metabolic imaging parameters using 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging ( 18 F-FDG PET/MRI) will better reflect disease behaviour, improving assessment of response/non-response/relapse. The REMAP study is a single-centre prospective observational study. Eligible patients with metastatic renal cell carcinoma, planned for systemic therapy, with at least 2 lesions will undergo an integrated 18 F-FDG PET and MRI whole body imaging with diffusion weighted and contrast-enhanced multiphasic as well as standard anatomical MRI sequences at baseline, 12 weeks and 24 weeks of systemic therapy allowing 18 F-FDG standardised uptake value (SUV), apparent diffusion co-efficient (ADC) and normalised signal intensity (SI) parameters to be obtained. Standard of care contrast-enhanced computed tomography CT scans will be performed at equivalent time-points. CT response categorisation will be performed using RECIST 1.1 and alternative (modified)Choi and MASS criteria. The reference standard for disease status will be by consensus panel taking into account clinical, biochemical and conventional imaging parameters. Intra- and inter-tumoural heterogeneity in vascular, diffusion and metabolic response/non-response will be assessed by image texture analysis. Imaging will also inform the development of computational methods for automated disease status

  8. Imaging Cellular Proliferation During Chemo-Radiotherapy: A Pilot Study of Serial {sup 18}F-FLT Positron Emission Tomography/Computed Tomography Imaging for Non-Small-Cell Lung Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Everitt, Sarah, E-mail: Sarah.Everitt@petermac.or; Department of Medical Imaging and Radiation Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria; Hicks, Rodney J.

    2009-11-15

    Purpose: To establish whether {sup 18}F-3'-deoxy-3'-fluoro-L-thymidine ({sup 18}F-FLT) can monitor changes in cellular proliferation of non-small-cell lung cancer (NSCLC) during radical chemo-radiotherapy (chemo-RT). Methods and Materials: As part of a prospective pilot study, 5 patients with locally advanced NSCLC underwent serial {sup 18}F-FLT positron emission tomography (PET)/computed tomography (CT) scans during treatment. Baseline {sup 18}F-FLT PET/CT scans were compared with routine staging {sup 18}F-FDG PET/CT scans. Two on-treatment {sup 18}F-FLT scans were performed for each patient on Days 2, 8, 15 or 29, providing a range of time points for response assessment. Results: In all 5 patients, baseline lesional uptakemore » of {sup 18}F-FLT on PET/CT corresponded to staging {sup 18}F-FDG PET/CT abnormalities. {sup 18}F-FLT uptake in tumor was observed on five of nine (55%) on-treatment scans, on Days 2, 8 and 29, but not Day 15. A 'flare' of {sup 18}F-FLT uptake in the primary tumor of one case was observed after 2 Gy of radiation (1.22 x baseline). The remaining eight on-treatment scans demonstrated a mean reduction in {sup 18}F-FLT tumor uptake of 0.58 x baseline. A marked reduction of {sup 18}F-FLT uptake in irradiated bone marrow was observed for all cases. This reduction was observed even after only 2 Gy, and all patients demonstrated a complete absence of proliferating marrow after 10 Gy. Conclusions: This proof of concept study indicates that {sup 18}F-FLT uptake can monitor the distinctive biologic responses of epithelial cancers and highly radiosensitive normal tissue changes during radical chemo-RT. Further studies of {sup 18}F-FLT PET/CT imaging during therapy may suggest that this tracer is useful in developing response-adapted RT for NSCLC.« less

  9. Parametric mapping of [18F]fluoromisonidazole positron emission tomography using basis functions.

    PubMed

    Hong, Young T; Beech, John S; Smith, Rob; Baron, Jean-Claude; Fryer, Tim D

    2011-02-01

    In this study, we show a basis function method (BAFPIC) for voxelwise calculation of kinetic parameters (K(1), k(2), k(3), K(i)) and blood volume using an irreversible two-tissue compartment model. BAFPIC was applied to rat ischaemic stroke micro-positron emission tomography data acquired with the hypoxia tracer [(18)F]fluoromisonidazole because irreversible two-tissue compartmental modelling provided good fits to data from both hypoxic and normoxic tissues. Simulated data show that BAFPIC produces kinetic parameters with significantly lower variability and bias than nonlinear least squares (NLLS) modelling in hypoxic tissue. The advantage of BAFPIC over NLLS is less pronounced in normoxic tissue. K(i) determined from BAFPIC has lower variability than that from the Patlak-Gjedde graphical analysis (PGA) by up to 40% and lower bias, except for normoxic tissue at mid-high noise levels. Consistent with the simulation results, BAFPIC parametric maps of real data suffer less noise-induced variability than do NLLS and PGA. Delineation of hypoxia on BAFPIC k(3) maps is aided by low variability in normoxic tissue, which matches that in K(i) maps. BAFPIC produces K(i) values that correlate well with those from PGA (r(2)=0.93 to 0.97; slope 0.99 to 1.05, absolute intercept <0.00002 mL/g per min). BAFPIC is a computationally efficient method of determining parametric maps with low bias and variance.

  10. GSM mobile phone radiation suppresses brain glucose metabolism

    PubMed Central

    Kwon, Myoung Soo; Vorobyev, Victor; Kännälä, Sami; Laine, Matti; Rinne, Juha O; Toivonen, Tommi; Johansson, Jarkko; Teräs, Mika; Lindholm, Harri; Alanko, Tommi; Hämäläinen, Heikki

    2011-01-01

    We investigated the effects of mobile phone radiation on cerebral glucose metabolism using high-resolution positron emission tomography (PET) with the 18F-deoxyglucose (FDG) tracer. A long half-life (109 minutes) of the 18F isotope allowed a long, natural exposure condition outside the PET scanner. Thirteen young right-handed male subjects were exposed to a pulse-modulated 902.4 MHz Global System for Mobile Communications signal for 33 minutes, while performing a simple visual vigilance task. Temperature was also measured in the head region (forehead, eyes, cheeks, ear canals) during exposure. 18F-deoxyglucose PET images acquired after the exposure showed that relative cerebral metabolic rate of glucose was significantly reduced in the temporoparietal junction and anterior temporal lobe of the right hemisphere ipsilateral to the exposure. Temperature rise was also observed on the exposed side of the head, but the magnitude was very small. The exposure did not affect task performance (reaction time, error rate). Our results show that short-term mobile phone exposure can locally suppress brain energy metabolism in humans. PMID:21915135

  11. Prognostic Value of [18F]-Fluoromethylcholine Positron Emission Tomography/Computed Tomography Before Stereotactic Body Radiation Therapy for Oligometastatic Prostate Cancer.

    PubMed

    Cysouw, Matthijs; Bouman-Wammes, Esther; Hoekstra, Otto; van den Eertwegh, Alfons; Piet, Maartje; van Moorselaar, Jeroen; Boellaard, Ronald; Dahele, Max; Oprea-Lager, Daniela

    2018-06-01

    To investigate the predictive value of [ 18 F]-fluoromethylcholine positron emission tomography/computed tomography (PET/CT)-derived parameters on progression-free survival (PFS) in oligometastatic prostate cancer patients treated with stereotactic body radiation therapy (SBRT). In [ 18 F]-fluoromethylcholine PET/CT scans of 40 consecutive patients with ≤4 metachronous metastases treated with SBRT we retrospectively measured the number of metastases, standardized uptake values (SUV mean , SUV max , SUV peak ), metabolically active tumor volume (MATV), and total lesion choline uptake. Partial-volume correction was applied using the iterative deconvolution Lucy-Richardson algorithm. Thirty-seven lymph node and 13 bone metastases were treated with SBRT. Thirty-three patients (82.5%) had 1 lesion, 4 (10%) had 2 lesions, and 3 (7.5%) had 3 lesions. After a median follow-up of 32.6 months (interquartile range, 35.5 months), the median PFS was 11.5 months (95% confidence interval 8.4-14.6 months). Having more than a single metastasis was a significant prognostic factor (hazard ratio 2.74; P = .03), and there was a trend in risk of progression for large MATV (hazard ratio 1.86; P = .10). No SUV or total lesion choline uptake was significantly predictive for PFS, regardless of partial-volume correction. All PET semiquantitative parameters were significantly correlated with each other (P ≤ .013). The number of choline-avid metastases was a significant prognostic factor for progression after [ 18 F]-fluormethylcholine PET/CT-guided SBRT for recurrent oligometastatic prostate cancer, and there seemed to be a trend in risk of progression for patients with large MATVs. The lesional level of [ 18 F]-fluoromethylcholine uptake was not prognostic for progression. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Cerebral glucose metabolism and D2/D3 receptor availability in young adults with cannabis dependence measured with positron emission tomography.

    PubMed

    Sevy, Serge; Smith, Gwenn S; Ma, Yilong; Dhawan, Vijay; Chaly, Thomas; Kingsley, Peter B; Kumra, Sanjiv; Abdelmessih, Sherif; Eidelberg, David

    2008-05-01

    Cannabis users have been reported to have decreased regional cerebral glucose metabolism after short periods of abstinence. The purpose of this study was to measure striatal dopamine receptor (D2/D3) availability and cerebral glucose metabolism with positron emission tomography (PET) in young adults who had a prolonged exposure to cannabis and who had been abstinent for a period of at least 12 weeks. Six 18-21-year-old male subjects with cannabis dependence in early full remission and six age- and sex-matched healthy subjects underwent PET scans for D2/D3 receptor availability measured with [C11]-raclopride and glucose metabolism measured with [18F]-FDG. All subjects were sober for at least 12 weeks before PET scan procedures. PET data were analyzed with statistical parametric mapping software (SPM99; uncorrected p < 0.001, corrected p < 0.05 at the cluster level). Toxicology screening was performed prior to the PET scan to confirm the lack of drugs of abuse. Striatal D2/D3 receptor availability did not differ significantly between groups. Compared to controls, subjects with cannabis dependence had lower normalized glucose metabolism in the right orbitofrontal cortex, putamen bilaterally, and precuneus. There were no significant correlations between striatal D2/D3 receptor availability and normalized glucose metabolism in any region of the frontal cortex or striatum. These findings may reflect both cannabis exposure and adaptive changes that occur after a prolonged period of abstinence. Subsequent studies should address whether metabolic and dopamine receptor effects are associated with either active use or longer-term withdrawal in these relatively young subjects.

  13. 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals derived from a single-institution 18F-FDG-directed surgery experience: feasibility and quantification of 18F-FDG accumulation within 18F-FDG-avid lesions and background tissues

    PubMed Central

    2014-01-01

    Background 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) is a well-established imaging modality for a wide variety of solid malignancies. Currently, only limited data exists regarding the utility of PET/CT imaging at very extended injection-to-scan acquisition times. The current retrospective data analysis assessed the feasibility and quantification of diagnostic 18F-FDG PET/CT oncologic imaging at extended injection-to-scan acquisition time intervals. Methods 18F-FDG-avid lesions (not surgically manipulated or altered during 18F-FDG-directed surgery, and visualized both on preoperative and postoperative 18F-FDG PET/CT imaging) and corresponding background tissues were assessed for 18F-FDG accumulation on same-day preoperative and postoperative 18F-FDG PET/CT imaging. Multiple patient variables and 18F-FDG-avid lesion variables were examined. Results For the 32 18F-FDG-avid lesions making up the final 18F-FDG-avid lesion data set (from among 7 patients), the mean injection-to-scan times of the preoperative and postoperative 18F-FDG PET/CT scans were 73 (±3, 70-78) and 530 (±79, 413-739) minutes, respectively (P < 0.001). The preoperative and postoperative mean 18F-FDG-avid lesion SUVmax values were 7.7 (±4.0, 3.6-19.5) and 11.3 (±6.0, 4.1-29.2), respectively (P < 0.001). The preoperative and postoperative mean background SUVmax values were 2.3 (±0.6, 1.0-3.2) and 2.1 (±0.6, 1.0-3.3), respectively (P = 0.017). The preoperative and postoperative mean lesion-to-background SUVmax ratios were 3.7 (±2.3, 1.5-9.8) and 5.8 (±3.6, 1.6-16.2), respectively, (P < 0.001). Conclusions 18F-FDG PET/CT oncologic imaging can be successfully performed at extended injection-to-scan acquisition time intervals of up to approximately 5 half-lives for 18F-FDG while maintaining good/adequate diagnostic image quality. The resultant increase in the 18F-FDG-avid lesion SUVmax values, decreased background SUVmax values, and

  14. Posterior mediastinal ganglioneuroma with peripheral replacement by white and brown adipocytes resulting in diagnostic fallacy from a false-positive 18F-2-fluoro-2-deoxyglucose-positron emission tomography finding: a case report

    PubMed Central

    2014-01-01

    Introduction Ganglioneuroma is a rare tumor in the posterior mediastinum; fat-containing ganglioneuromas are rarely reported. The present case report documents a brown fat-containing, posterior mediastinal ganglioneuroma, which has not been reported previously. Radiological examination, in particular 18F-2-fluoro-2-deoxyglucose-positron emission tomography, suggested that the tumor had low-grade malignant potential. This led to uncertainty at preoperative diagnosis. Case presentation An asymptomatic 66-year-old Japanese woman with no significant past medical history was referred for the evaluation of a posterior mediastinal mass. Although its size had not changed in the past 5 years, a malignant lipomatous tumor could not be excluded due to the presence of intratumoral fat and increased 18F-2-fluoro-2-deoxyglucose uptake observed by positron emission tomography imaging. A computed tomography-guided core-needle biopsy revealed a mixture of mature adipocytes, spindle-shaped cells, and fibrotic stroma. Definite diagnosis was not possible, and surgical resection was performed. Three years after the surgery, she remains disease-free. Conclusions Histological diagnosis of the surgically resected mass confirmed ganglioneuroma with substantial amounts of white and brown adipose tissues in peripheral areas. The existence of both ganglion cells and brown fat tissue intensified the accumulation of 18F-2-fluoro-2-deoxyglucose, resulting in a false-positive result by positron emission tomography. Considering this, ganglioneuroma should not be excluded either clinically or pathologically in fat-containing, posterior mediastinal tumors. PMID:25319096

  15. [Positron emission tomographic evaluations on hemodynamics and glucose metabolism of brain tumors and perifocal edematous tissues].

    PubMed

    Mizukawa, N; Hino, A; Imahori, Y; Tenjin, H; Yano, I; Yoshino, E; Hirakawa, K; Yamashita, M; Oki, F; Nakahashi, H

    1989-03-01

    Blood flow and glucose metabolism of the tumors and perifocal edematous tissues were evaluated using positron emission tomography (PET). Thirty-one brain tumor cases were investigated 12 non glial tumors (9 meningiomas and 3 metastatic tumors) and 19 gliomas (these were classified in 5 astrocytomas, 7 anaplastic astrocytomas and 7 glioblastomas, according to the malignancy). The diagnosis were confirmed pathologically in 30 cases. Cerebral blood flow (CBF), cerebral metabolic rate for oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood volume (CBV) were measured by O-15 labeled gases inhalation methods. Cerebral metabolic rate for glucose (CMFglu) were measured by F-18 Deoxyglucose intravenous injection method and calculated by Hutchins's formula. The rate constant (ks) and lumped constant (LC) used in this study were the same as those published by Phelps et al. in 1979. The blood flow and glucose metabolic rates of tumors were measured by the same methods. The results were as follows: 1) Meningiomas showed very high blood flow and blood volume with a wide range. The OEF and metabolic rate for glucose (MRglu) values were very low. 2) Metastatic tumors showed the low values of blood flow, metabolic rate for oxygen (MRO2) and OEF. 3) The blood flow and MRglu values on gliomas were varied with no significant differences between the three subgroups. On the other hands, as the malignancy of the glioma increased, a statistically significant increase in blood volume and a decrease in OEF were noted. 4) The OEF values from the various types of tumors studied were significantly lower than those obtained from the normal tissue.(ABSTRACT TRUNCATED AT 250 WORDS)

  16. Single-Cell Analysis of [18F]Fluorodeoxyglucose Uptake by Droplet Radiofluidics.

    PubMed

    Türkcan, Silvan; Nguyen, Julia; Vilalta, Marta; Shen, Bin; Chin, Frederick T; Pratx, Guillem; Abbyad, Paul

    2015-07-07

    Radiolabels can be used to detect small biomolecules with high sensitivity and specificity without interfering with the biochemical activity of the labeled molecule. For instance, the radiolabeled glucose analogue, [18F]fluorodeoxyglucose (FDG), is routinely used in positron emission tomography (PET) scans for cancer diagnosis, staging, and monitoring. However, despite their widespread usage, conventional radionuclide techniques are unable to measure the variability and modulation of FDG uptake in single cells. We present here a novel microfluidic technique, dubbed droplet radiofluidics, that can measure radiotracer uptake for single cells encapsulated into an array of microdroplets. The advantages of this approach are multiple. First, droplets can be quickly and easily positioned in a predetermined pattern for optimal imaging throughput. Second, droplet encapsulation reduces cell efflux as a confounding factor, because any effluxed radionuclide is trapped in the droplet. Last, multiplexed measurements can be performed using fluorescent labels. In this new approach, intracellular radiotracers are imaged on a conventional fluorescence microscope by capturing individual flashes of visible light that are produced as individual positrons, emitted during radioactive decay, traverse a scintillator plate placed below the cells. This method is used to measure the cell-to-cell heterogeneity in the uptake of tracers such as FDG in cell lines and cultured primary cells. The capacity of the platform to perform multiplexed measurements was demonstrated by measuring differential FDG uptake in single cells subjected to different incubation conditions and expressing different types of glucose transporters. This method opens many new avenues of research in basic cell biology and human disease by capturing the full range of stochastic variations in highly heterogeneous cell populations in a repeatable and high-throughput manner.

  17. Recent Developments of 18F-FET PET in Neuro-oncology.

    PubMed

    Muoio, Barbara; Giovanella, Luca; Treglia, Giorgio

    2017-11-23

    From the past decade to date several studies about O-(2-[18F]fluoroethyl)-L-tyrosine (18F-FET) positron emission tomography (PET) in brain tumours have been published in the literature. Objective The aim of this narrative review is to summarize the recent developments and the current role of 18F-FET PET in brain tumours according to recent literature data. Methods Main findings from selected recently published and relevant articles on the role of 18F-FET PET in neuro-oncology were described. Results 18F-FET PET may be useful in the differential diagnosis between brain tumours and non-neoplastic lesions and between low-grade and high-grade gliomas. Integration of 18F-FET PET into surgical planning allows better delineation of the extent of resection beyond margins visible with standard MRI. For biopsy planning, 18F-FET PET is particularly useful in identifying malignant foci within non-contrast-enhancing gliomas. 18F-FET PET may improve the radiation therapy planning in patients with gliomas. This metabolic imaging method may be useful to evaluate treatment response in patients with gliomas and it improves the differential diagnosis between brain tumours recurrence and post-treatment changes. 18F-FET PET may provide useful prognostic information in high-grade gliomas. Conclusions Based on recent literature data 18F-FET PET may provide additional diagnostic information compared to standard MRI in neuro-oncology. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Value of 18F-FDG PET/CT in diagnosing chronic Q fever in patients with central vascular disease.

    PubMed

    Hagenaars, J C J P; Wever, P C; Vlake, A W; Renders, N H M; van Petersen, A S; Hilbink, M; de Jager-Leclercq, M G L; Moll, F L; Koning, O H J; Hoekstra, C J

    2016-08-01

    The aim of this study is to describe the value of 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT) in diagnosing chronic Q fever in patients with central vascular disease and the added value of 18F-FDG PET/CT in the diagnostic combination strategy as described in the Dutch consensus guideline for diagnosing chronic Q fever. 18F-FDG PET/CT was performed in patients with an abdominal aortic aneurysm or aorto-iliac reconstruction and chronic Q fever, diagnosed by serology and positive PCR for Coxiella burnetii DNA in blood and/or tissue (PCR-positive study group). Patients with an abdominal aortic aneurysm or aorto-iliac reconstruction without clinical and serological findings indicating Q fever infection served as a control group. Patients with a serological profile of chronic Q fever and a negative PCR in blood were included in additional analyses (PCR-negative study group). Thirteen patients were evaluated in the PCR-positive study group and 22 patients in the control group. 18F-FDG PET/CT indicated vascular infection in 6/13 patients in the PCR-positive study group and 2/22 patients in the control group. 18F-FDG PET/CT demonstrated a sensitivity of 46% (95% CI: 23-71%), specificity of 91% (95% CI: 71-99%), positive predictive value of 75% (95% CI:41-93%) and negative predictive value of 74% (95% CI: 55-87%). In the PCR-negative study group, 18F-FDG PET/CT was positive in 10/20 patients (50%). The combination of 18F-FDG PET/CT, as an imaging tool for identifying a focus of infection, and Q fever serology is a valid diagnostic strategy for diagnosing chronic Q fever in patients with central vascular disease.

  19. Disseminated Multi-system Sarcoidosis Mimicking Metastases on 18F-FDG PET/CT.

    PubMed

    Makis, William; Palayew, Mark; Rush, Christopher; Probst, Stephan

    2018-06-07

    A 60-year-old female with no significant medical history presented with hematuria. A computed tomography (CT) scan revealed extensive lymphadenopathy with hypodensities in the liver and spleen, and she was referred for an 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography/CT (PET/CT) study to assess for malignancy of unknown primary. PET/CT revealed extensive 18 F-FDG avid lymphadenopathy as well as innumerable intensely 18 F-FDG avid lung, liver and splenic nodules, highly concerning for malignancy. A PET-guided bone marrow biopsy of the posterior superior iliac spine revealed several non-necrotizing, well-formed granulomas, consistent with sarcoidosis. The patient was managed conservatively and remained clinically well over the subsequent 9 years of follow-up.

  20. A broadly applicable [18F]trifluoromethylation of aryl and heteroaryl iodides for PET imaging

    NASA Astrophysics Data System (ADS)

    Huiban, Mickael; Tredwell, Matthew; Mizuta, Satoshi; Wan, Zehong; Zhang, Xiaomin; Collier, Thomas Lee; Gouverneur, Véronique; Passchier, Jan

    2013-11-01

    Molecules labelled with the unnatural isotope fluorine-18 are used for positron emission tomography. Currently, this molecular imaging technology is not exploited at its full potential because many 18F-labelled probes are inaccessible or notoriously difficult to produce. Typical challenges associated with 18F radiochemistry are the short half-life of 18F (<2 h), the use of sub-stoichiometric amounts of 18F, relative to the precursor and other reagents, as well as the limited availability of parent 18F sources of suitable reactivity ([18F]F- and [18F]F2). There is a high-priority demand for general methods allowing access to [18F]CF3-substituted molecules for application in pharmaceutical discovery programmes. We report the development of a process for the late-stage [18F]trifluoromethylation of (hetero)arenes from [18F]fluoride using commercially available reagents and (hetero)aryl iodides. This [18F]CuCF3-based protocol benefits from a large substrate scope and is characterized by its operational simplicity.

  1. Conditioned Place Preference to Acetone Inhalation and the Effects on Locomotor Behavior and 18FDG Uptake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pai, J.C.; Dewey, S.L.; Schiffer, W.

    Acetone is a component in many inhalants that have been widely abused. While other solvents have addictive potential, such as toluene, it is unclear whether acetone alone contains addictive properties. The locomotor, relative glucose metabolism and abusive effects of acetone inhalation were studied in animals using the conditioned place preference (CPP) paradigm and [18F]2-fluorodeoxy-D-glucose (18FDG) imaging. The CPP apparatus contains two distinct conditioning chambers and a middle adaptation chamber, each lined with photocells to monitor locomotor activity. Adolescent Sprague-Dawley rats (n=16; 90-110 g) were paired with acetone in least preferred conditioning chamber, determined on the pretest day. The animals weremore » exposed to a 10,000 ppm dose for an hour, alternating days with air. A CPP test was conducted after the 3rd, 6th and 12th pairing. In these same animals, the relative glucose metabolism effects were determined using positron emission tomography (PET) imaging with 18FDG. Following the 3rd pairing, there was a significant aversion to the acetone paired chamber (190.9 ± 13.7 sec and 241.7 ± 16.9 sec, acetone and air, respectively). After the 6th pairing, there was no significant preference observed with equal time spent in each chamber (222 ± 21 sec and 207 ± 20 sec, acetone and air-paired, respectively). A similar trend was observed after the 12th pairing (213 ± 21 sec and 221 ± 22 sec, acetone and air-paired, respectively). Locomotor analysis indicated a significant decrease (p<0.05) from air pairings to acetone pairings on the first and sixth pairings. The observed locomotor activity was characteristic of central nervous system (CNS) depressants, without showing clear abusive effects in this CPP model. In these studies, acetone vapors were not as reinforcing as other solvents, shown by overall lack of preference for the acetone paired side of the chamber. PET imaging indicated a regionally specific distribution of 18FDG uptake

  2. 18F-Positron Emitting/Trimethine Cyanine-Fluorescent Contrast for Image-Guided Prostate Cancer Management.

    PubMed

    Kommidi, Harikrishna; Guo, Hua; Nurili, Fuad; Vedvyas, Yogindra; Jin, Moonsoo M; McClure, Timothy D; Ehdaie, Behfar; Sayman, Haluk B; Akin, Oguz; Aras, Omer; Ting, Richard

    2018-05-10

    [ 18/19 F]-4, an anionic GCPII/PSMA inhibitor for image-guided intervention in prostate cancer, is described. [ 19 F]-4 is radiolabeled with a radiochemical yield that is ≥27% and a molar activity of 190 ± 50 mCi/μmol in a <1 h, one-step, aqueous isotopic exchange reaction. [ 19 F]-4 allows PSMA expression to be imaged by fluorescence (FL) and [ 18 F]-PET. PC3-PIP (PSMA-positive, EC 50 = 6.74 ± 1.33 nM) cancers are specifically delineated in mice that bear 3 million (18 mg) PC3-PIP and PC3 (control, PSMA-negative) cells. Colocalization of [ 18/19 F]-4 PET, fluorescence, scintillated biodistribution, and PSMA expression are observed.

  3. Automated synthesis of N-(2-[18 F]Fluoropropionyl)-l-glutamic acid as an amino acid tracer for tumor imaging on a modified [18 F]FDG synthesis module.

    PubMed

    Liu, Shaoyu; Sun, Aixia; Zhang, Zhanwen; Tang, Xiaolan; Nie, Dahong; Ma, Hui; Jiang, Shende; Tang, Ganghua

    2017-06-15

    N-(2-[ 18 F]Fluoropropionyl)-l-glutamic acid ([ 18 F]FPGLU) is a potential amino acid tracer for tumor imaging with positron emission tomography. However, due to the complicated multistep synthesis, the routine production of [ 18 F]FPGLU presents many challenging laboratory requirements. To simplify the synthesis process of this interesting radiopharmaceutical, an efficient automated synthesis of [ 18 F]FPGLU was performed on a modified commercial fluorodeoxyglucose synthesizer via a 2-step on-column hydrolysis procedure, including 18 F-fluorination and on-column hydrolysis reaction. [ 18 F]FPGLU was synthesized in 12 ± 2% (n = 10, uncorrected) radiochemical yield based on [ 18 F]fluoride using the tosylated precursor 2. The radiochemical purity was ≥98%, and the overall synthesis time was 35 minutes. To further optimize the radiosynthesis conditions of [ 18 F]FPGLU, a brominated precursor 3 was also used for the preparation of [ 18 F]FPGLU, and the improved radiochemical yield was up to 20 ± 3% (n = 10, uncorrected) in 35 minutes. Moreover, all these results were achieved using the similar on-column hydrolysis procedure on the modified fluorodeoxyglucose synthesis module. Copyright © 2017 John Wiley & Sons, Ltd.

  4. [18F]Fludeoxyglucose-Positron Emission Tomography Evidence for Cerebral Hypermetabolism in the Awake State in Narcolepsy and Idiopathic Hypersomnia.

    PubMed

    Dauvilliers, Yves; Evangelista, Elisa; de Verbizier, Delphine; Barateau, Lucie; Peigneux, Philippe

    2017-01-01

    Changes in structural and functional central nervous system have been reported in narcolepsy, with large discrepancies between studies. No study has investigated yet spontaneous brain activity at wake in idiopathic hypersomnia (IH). We compared relative changes in regional brain metabolism in two central hypersomnia conditions with different clinical features, namely narcolepsy type 1 (NT1) and IH, and in healthy controls. Sixteen patients [12 males, median age 30 years (17-78)] with NT1, nine patients [2 males, median age 27 years (20-60)] with IH and 19 healthy controls [16 males, median age 36 years (17-78)] were included. 18 F-fludeoxyglucose positron emission tomography (PET) was performed in all drug-free subjects under similar conditions and instructions to stay in a wake resting state. We found increased metabolism in the anterior and middle cingulate and the insula in the two pathological conditions as compared to healthy controls. The reverse contrast failed to evidence hypometabolism in patients vs. controls. Comparisons between patient groups were non-significant. At sub-statistical threshold, we found higher right superior occipital gyrus glucose metabolism in narcolepsy and higher middle orbital cortex and supplementary motor area metabolism in IH, findings that require further confirmation. There is significant hypermetabolism in narcolepsy and IH in the wake resting state in a set of brain regions constitutive of the salience cortical network that may reflect a compensatory neurocircuitry activity secondary to sleepiness. Metabolic differences between the two disorders within the executive-control network may be a signature of abnormally functioning neural system leading to persistent drowsiness typical of IH.

  5. A computed tomography-based spatial normalization for the analysis of [18F] fluorodeoxyglucose positron emission tomography of the brain.

    PubMed

    Cho, Hanna; Kim, Jin Su; Choi, Jae Yong; Ryu, Young Hoon; Lyoo, Chul Hyoung

    2014-01-01

    We developed a new computed tomography (CT)-based spatial normalization method and CT template to demonstrate its usefulness in spatial normalization of positron emission tomography (PET) images with [(18)F] fluorodeoxyglucose (FDG) PET studies in healthy controls. Seventy healthy controls underwent brain CT scan (120 KeV, 180 mAs, and 3 mm of thickness) and [(18)F] FDG PET scans using a PET/CT scanner. T1-weighted magnetic resonance (MR) images were acquired for all subjects. By averaging skull-stripped and spatially-normalized MR and CT images, we created skull-stripped MR and CT templates for spatial normalization. The skull-stripped MR and CT images were spatially normalized to each structural template. PET images were spatially normalized by applying spatial transformation parameters to normalize skull-stripped MR and CT images. A conventional perfusion PET template was used for PET-based spatial normalization. Regional standardized uptake values (SUV) measured by overlaying the template volume of interest (VOI) were compared to those measured with FreeSurfer-generated VOI (FSVOI). All three spatial normalization methods underestimated regional SUV values by 0.3-20% compared to those measured with FSVOI. The CT-based method showed slightly greater underestimation bias. Regional SUV values derived from all three spatial normalization methods were correlated significantly (p < 0.0001) with those measured with FSVOI. CT-based spatial normalization may be an alternative method for structure-based spatial normalization of [(18)F] FDG PET when MR imaging is unavailable. Therefore, it is useful for PET/CT studies with various radiotracers whose uptake is expected to be limited to specific brain regions or highly variable within study population.

  6. Assessment of glucose metabolism and cellular proliferation in multiple myeloma: a first report on combined 18F-FDG and 18F-FLT PET/CT imaging.

    PubMed

    Sachpekidis, C; Goldschmidt, H; Kopka, K; Kopp-Schneider, A; Dimitrakopoulou-Strauss, A

    2018-04-10

    Despite the significant upgrading in recent years of the role of 18 F-FDG PET/CT in multiple myeloma (MM) diagnostics, there is a still unmet need for myeloma-specific radiotracers. 3'-Deoxy-3'-[ 18 F]fluorothymidine ( 18 F-FLT) is the most studied cellular proliferation PET agent, considered a potentially new myeloma functional imaging tracer. The aim of this pilot study was to evaluate 18 F-FLT PET/CT in imaging of MM patients, in the context of its combined use with 18 F-FDG PET/CT. Eight patients, four suffering from symptomatic MM and four suffering from smoldering MM (SMM), were enrolled in the study. All patients underwent 18 F-FDG PET/CT and 18 F-FLT PET/CT imaging by means of static (whole body) and dynamic PET/CT of the lower abdomen and pelvis (dPET/CT) in two consecutive days. The evaluation of PET/CT studies was based on qualitative evaluation, semi-quantitative (SUV) calculation, and quantitative analysis based on two-tissue compartment modeling. 18 F-FDG PET/CT demonstrated focal, 18 F-FDG avid, MM-indicative bone marrow lesions in five patients. In contrary, 18 F-FLT PET/CT showed focal, 18 F-FLT avid, myeloma-indicative lesions in only two patients. In total, 48 18 F-FDG avid, focal, MM-indicative lesions were detected with 18 F-FDG PET/CT, while 17 18 F-FLT avid, focal, MM-indicative lesions were detected with 18 F-FLT PET/CT. The number of myeloma-indicative lesions was significantly higher for 18 F-FDG PET/CT than for 18 F-FLT PET/CT. A common finding was a mismatch of focally increased 18 F-FDG uptake and reduced 18 F-FLT uptake (lower than the surrounding bone marrow). Moreover, 18 F-FLT PET/CT was characterized by high background activity in the bone marrow compartment, further complicating the evaluation of bone marrow lesions. Semi-quantitative evaluation revealed that both SUV mean and SUV max were significantly higher for 18 F-FLT than for 18 F-FDG in both MM lesions and reference tissue. SUV values were higher in MM lesions than in

  7. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET

    PubMed Central

    Tang, Tien T.; Rendon, David A.; Zawaski, Janice A.; Afshar, Solmaz F.; Kaffes, Caterina K.; Sabek, Omaima M.

    2017-01-01

    Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied

  8. Imaging Radiation-Induced Gastrointestinal, Bone Marrow Injury and Recovery Kinetics Using 18F-FDG PET.

    PubMed

    Tang, Tien T; Rendon, David A; Zawaski, Janice A; Afshar, Solmaz F; Kaffes, Caterina K; Sabek, Omaima M; Gaber, M Waleed

    2017-01-01

    Positron emission tomography using 18F-Fluro-deoxy-glucose (18F-FDG) is a useful tool to detect regions of inflammation in patients. We utilized this imaging technique to investigate the kinetics of gastrointestinal recovery after radiation exposure and the role of bone marrow in the recovery process. Male Sprague-Dawley rats were either sham irradiated, irradiated with their upper half body shielded (UHBS) at a dose of 7.5 Gy, or whole body irradiated (WBI) with 4 or 7.5 Gy. Animals were imaged using 18F-FDG PET/CT at 5, 10 and 35 days post-radiation exposure. The gastrointestinal tract and bone marrow were analyzed for 18F-FDG uptake. Tissue was collected at all-time points for histological analysis. Following 7.5 Gy irradiation, there was a significant increase in inflammation in the gastrointestinal tract as indicated by the significantly higher 18F-FDG uptake compared to sham. UHBS animals had a significantly higher activity compared to 7.5 Gy WBI at 5 days post-exposure. Animals that received 4 Gy WBI did not show any significant increase in uptake compared to sham. Analysis of the bone marrow showed a significant decrease of uptake in the 7.5 Gy animals 5 days post-irradiation, albeit not observed in the 4 Gy group. Interestingly, as the metabolic activity of the gastrointestinal tract returned to sham levels in UHBS animals it was accompanied by an increase in metabolic activity in the bone marrow. At 35 days post-exposure both gastrointestinal tract and bone marrow 18F-FDG uptake returned to sham levels. 18F-FDG imaging is a tool that can be used to study the inflammatory response of the gastrointestinal tract and changes in bone marrow metabolism caused by radiation exposure. The recovery of the gastrointestinal tract coincides with an increase in bone marrow metabolism in partially shielded animals. These findings further demonstrate the relationship between the gastrointestinal syndrome and bone marrow recovery, and that this interaction can be studied

  9. Radioisotope generators for short-lived positron emitters applicable to positron emission tomography

    NASA Astrophysics Data System (ADS)

    Yano, Y.

    1989-04-01

    Radioisotope generators provide short-lived positron emitters for positron emission tomography (PET) without the need for an on-site cyclotron. These generators consist of a long-lived parent radionuclide, generally produced on an accelerator, from which the short-lived daughter radionuclide is separated and used as needed. Generators developed and applied to PET studies include 288 d 68Ge for 68 min 68Ga, 25 d 82Sr for 76 s 82Rb and 20.1 h 122Xe for 3.6 min 122I. These radiotracers have been used for the assessment of myocardial and brain blood flow in patient studies. Additionally, 82Rb has been used to determine the breakdown in the blood brain barrier in brain tumor patients who have undergone radiation therapy. When used in conjunction with 18F-fluorodeoxylucose produced on a regional cyclotron for the measurement of glucose utilization in brain tumors, differential diagnosis can be made between tumor regrowth and radiation therapy necrosis. Other possible applications include the detection of vascular lesions with 68Ga labeled platelets or porphyrins.

  10. [18F]Fluoromethyl-[1,2-2H4]-choline: A novel radiotracer for imaging choline metabolism in tumors by positron emission tomography

    PubMed Central

    Leyton, Julius; Smith, Graham; Zhao, Yongjun; Perumal, Meg; Nguyen, Quang-De; Robins, Edward; Årstad, Erik; Aboagye, Eric O.

    2009-01-01

    Current radiotracers for positron emission tomography (PET) imaging of choline metabolism have poor systemic metabolic stability in vivo. We describe a novel radiotracer, [18F]fluoromethyl-[1,2-2H4]-choline (D4-FCH), that employs deuterium isotope effect to improve metabolic stability. D4-FCH proved more resistant to oxidation than its non-deuterated analog, [18F]fluoromethylcholine (FCH), in plasma, kidneys, liver and tumor, while retaining phosphorylation potential. Tumor radiotracer levels, a determinant of sensitivity in imaging studies, was improved by deuterium substitution; tumor uptake values expressed as %injected dose/voxel at 60 min were 7.43 ± 0.47 and 5.50 ± 0.49 for D4-FCH and FCH, respectively, (P = 0.04). D4-FCH was also found to be a useful response biomarker. Treatment with the mitogenic extracellular kinase inhibitor, PD0325901, resulted in a reduction in tumor radiotracer uptake that occurred in parallel with reductions in choline kinase A expression. In conclusion, D4-FCH is a very promising metabolically stable radiotracer for imaging choline metabolism in tumors. PMID:19773436

  11. [Solitary Peripheral Pulmonary Squamous Cell Papilloma;Diagnostic Significance of 18F-fluorodeoxyglucose Positron Emission Tomography Findings].

    PubMed

    Hayashi, Tetsuya; Tachibana, Syuichi; Nakao, Keiichi; Tokitsu, Kosuke; Morita, Takuya; Kishima, Genichi

    2017-04-01

    The patient was a 79-year-old woman who had received enucleation of right pulmonary papilloma 7 years earlier. She experienced bloody sputum and was therefore referred to our hospital. Chest computed tomography revealed a mass shadow(21 mm) in the right upper lobe (S2). By bronchoscopy, there was no bulging lesion in the visible range. SCC and CEA increased to 6.4 ng/ml and 6.42 ng/ml, respectively. Whole-body 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) showed increased FDG uptake in the region of the right-lung mass shadow (maximum standardized uptake value 12.95). Since malignancy could not be ruled out, a wedge resection was performed. The post-operative histopathologic diagnosis was squamous cell papilloma. Our literature review showed 12 out of 14 cases with solitary papilloma of the peripheral lung to have increased FDG uptake. Ki-67 positive cells were confirmed in the basal layers of the epithelium, and active cell proliferation of the papilloma is likely to be a cause of increased FDG uptake.

  12. Comparison of Visual and Quantitative Florbetapir F 18 Positron Emission Tomography Analysis in Predicting Mild Cognitive Impairment Outcomes.

    PubMed

    Schreiber, Stefanie; Landau, Susan M; Fero, Allison; Schreiber, Frank; Jagust, William J

    2015-10-01

    The applicability of β-amyloid peptide (Aβ) positron emission tomography (PET) as a biomarker in clinical settings to aid in selection of individuals at preclinical and prodromal Alzheimer disease (AD) will depend on the practicality of PET image analysis. In this context, visual-based Aβ PET assessment seems to be the most feasible approach. To determine the agreement between visual and quantitative Aβ PET analysis and to assess the ability of both techniques to predict conversion from mild cognitive impairment (MCI) to AD. A longitudinal study was conducted among the Alzheimer's Disease Neuroimaging Initiative (ADNI) sites in the United States and Canada during a 1.6-year mean follow-up period. The study was performed from September 21, 2010, to August 11, 2014; data analysis was conducted from September 21, 2014, to May 26, 2015. Participants included 401 individuals with MCI receiving care at a specialty clinic (219 [54.6%] men; mean [SD] age, 71.6 [7.5] years; 16.2 [2.7] years of education). All participants were studied with florbetapir F 18 [18F] PET. The standardized uptake value ratio (SUVR) positivity threshold was 1.11, and one reader rated all images, with a subset of 125 scans rated by a second reader. Sensitivity and specificity of positive and negative [18F] florbetapir PET categorization, which was estimated with cerebrospinal fluid Aβ1-42 as the reference standard. Risk for conversion to AD was assessed using Cox proportional hazards regression models. The frequency of Aβ positivity was 48.9% (196 patients; visual analysis), 55.1% (221 patients; SUVR), and 64.8% (166 patients; cerebrospinal fluid), yielding substantial agreement between visual and SUVR data (κ = 0.74) and between all methods (Fleiss κ = 0.71). For approximately 10% of the 401 participants in whom visual and SUVR data disagreed, interrater reliability was moderate (κ = 0.44), but it was very high if visual and quantitative results agreed (κ = 0.92). Visual

  13. Quantification, Variability, and Reproducibility of Basal Skeletal Muscle Glucose Uptake in Healthy Humans Using 18F-FDG PET/CT.

    PubMed

    Gheysens, Olivier; Postnov, Andrey; Deroose, Christophe M; Vandermeulen, Corinne; de Hoon, Jan; Declercq, Ruben; Dennie, Justin; Mixson, Lori; De Lepeleire, Inge; Van Laere, Koen; Klimas, Michael; Chakravarthy, Manu V

    2015-10-01

    The quantification and variability of skeletal muscle glucose utilization (SMGU) in healthy subjects under basal (low insulin) conditions are poorly known. This information is essential early in clinical drug development to effectively interrogate novel pharmacologic interventions that modulate glucose uptake. The aim of this study was to determine test-retest characteristics and variability of SMGU within and between healthy subjects under basal conditions. Furthermore, different kinetic modeling strategies were evaluated to find the best-fitting model to assess SMGU studied by 18F-FDG. Six healthy male volunteers underwent 2 dynamic 18F-FDG PET/CT scans with an interval of 24 h. Subjects were admitted to the clinical unit to minimize variability in daily activities and food intake and restrict physical activity. 18F-FDG PET/CT scans of gluteal and quadriceps muscle area were obtained with arterial input. Regions of interest were drawn over the muscle area to obtain time-activity curves and standardized uptake values (SUVs) between 60 and 90 min. Spectral analysis of the data and kinetic modeling was performed using 2-tissue-irreversible (2T3K), 2-tissue-reversible, and 3-tissue-sequential-irreversible (3T5KS) models. Reproducibility was assessed by intraclass correlation coefficients (ICCs) and within-subject coefficient of variation (WSCV). SUVs in gluteal and quadriceps areas were 0.56±0.09 and 0.64±0.07. ICCs (with 90% confidence intervals in parentheses) were 0.88 (0.64-0.96) and 0.96 (0.82-0.99), respectively, for gluteal and quadriceps muscles, and WSCV for gluteal and quadriceps muscles was 2.2% and 3.6%, respectively. The rate of glucose uptake into muscle was 0.0016±0.0004 mL/mL⋅min, with an ICC of 0.94 (0.93-0.95) and WSCV of 6.6% for the 3T5KS model, whereas an ICC of 0.98 (0.92-1.00) and WSCV of 2.8% was obtained for the 2T3K model. 3T5KS demonstrated the best fit to the measured experimental points. Minimal variability in skeletal muscle glucose

  14. Applying Amide Proton Transfer MR Imaging to Hybrid Brain PET/MR: Concordance with Gadolinium Enhancement and Added Value to [18F]FDG PET.

    PubMed

    Sun, Hongzan; Xin, Jun; Zhou, Jinyuan; Lu, Zaiming; Guo, Qiyong

    2018-06-01

    The purpose of this study is to evaluate the diagnostic concordance and metric correlations of amide proton transfer (APT) imaging with gadolinium-enhanced magnetic resonance imaging (MRI) and 2-deoxy-2-[ 18 F-]fluoro-D-glucose ([ 18 F]FDG) positron emission tomography (PET), using hybrid brain PET/MRI. Twenty-one subjects underwent brain gadolinium-enhanced [ 18 F]FDG PET/MRI prospectively. Imaging accuracy was compared between unenhanced MRI, MRI with enhancement, APT-weighted (APTW) images, and PET based on six diagnostic criteria. Among tumors, the McNemar test was further used for concordance assessment between gadolinium-enhanced imaging, APT imaging, and [ 18 F]FDG PET. As well, the relation of metrics between APT imaging and PET was analyzed by the Pearson correlation analysis. APT imaging and gadolinium-enhanced MRI showed superior and similar diagnostic accuracy. APTW signal intensity and gadolinium enhancement were concordant in 19 tumors (100 %), while high [ 18 F]FDG avidity was shown in only 12 (63.2 %). For the metrics from APT imaging and PET, there was significant correlation for 13 hypermetabolic tumors (P < 0.05) and no correlation for the remaining six [ 18 F]FDG-avid tumors. APT imaging can be used to increase diagnostic accuracy with no need to administer gadolinium chelates. APT imaging may provide an added value to [ 18 F]FDG PET in the evaluation of tumor metabolic activity during brain PET/MR studies.

  15. F18-FDG-PET for recurrent differentiated thyroid cancer: a systematic meta-analysis

    PubMed Central

    Haslerud, Torjan; Brauckhoff, Katrin; Reisæter, Lars; Küfner Lein, Regina; Heinecke, Achim; Varhaug, Jan Erik

    2015-01-01

    Background Positron emission tomography (PET) with fluor-18-deoxy-glucose (FDG) is widely used for diagnosing recurrent or metastatic disease in patients with differentiated thyroid cancer (DTC). Purpose To assess the diagnostic accuracy of FDG-PET for DTC in patients after ablative therapy. Material and Methods A systematic search was conducted in Medline/PubMed, EMBASE, Cochrane Library, Web of Science, and Open Grey looking for all English-language original articles on the performance of FDG-PET in series of at least 20 patients with DTC having undergone ablative therapy including total thyroidectomy. Diagnostic performance measures were pooled using Reitsma’s bivariate model. Results Thirty-four publications between 1996 and 2014 met the inclusion criteria. Pooled sensitivity and specificity were 79.4% (95% confidence interval [CI], 73.9–84.1) and 79.4% (95% CI, 71.2–85.4), respectively, with an area under the curve of 0.858. Conclusion F18-FDG-PET is a useful method for detecting recurrent DTC in patients having undergone ablative therapy. PMID:26163534

  16. Evaluation of positron emission tomography as a method to visualize subsurface microbial processes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinsella K.; Schlyer D.; Kinsella, K.

    2012-01-18

    Positron emission tomography (PET) provides spatiotemporal monitoring in a nondestructive manner and has higher sensitivity and resolution relative to other tomographic methods. Therefore, this technology was evaluated for its application to monitor in situ subsurface bacterial activity. To date, however, it has not been used to monitor or image soil microbial processes. In this study, PET imaging was applied as a 'proof-of-principle' method to assess the feasibility of visualizing a radiotracer labeled subsurface bacterial strain (Rahnella sp. Y9602), previously isolated from uranium contaminated soils and shown to promote uranium phosphate precipitation. Soil columns packed with acid-purified simulated mineral soils weremore » seeded with 2-deoxy-2-[{sup 18}F]fluoro-d-glucose ({sup 18}FDG) labeled Rahnella sp. Y9602. The applicability of [{sup 18}F]fluoride ion as a tracer for measuring hydraulic conductivity and {sup 18}FDG as a tracer to identify subsurface metabolically active bacteria was successful in our soil column studies. Our findings indicate that positron-emitting isotopes can be utilized for studies aimed at elucidating subsurface microbiology and geochemical processes important in contaminant remediation.« less

  17. F-18 choline PET does not detect increased metabolism in F-18 fluoroethyltyrosine-negative low-grade gliomas.

    PubMed

    Roelcke, Ulrich; Bruehlmeier, Matthias; Hefti, Martin; Hundsberger, Thomas; Nitzsche, Egbert U

    2012-01-01

    Positron emission tomography (PET) with radiolabeled amino acids provides information on biopsy target and chemotherapy response in patients with low-grade gliomas (LGG). In this article, we addressed whether PET with F-18 choline (CHO) detects increased metabolism in F-18 fluoroethyltyrosine (FET)-negative LGG patients. Six LGG patients with nongadolinium-enhancing (magnetic resonance) FET-negative LGG were imaged with CHO PET. Regions of interest were positioned over tumor and contralateral brain. Uptake of FET and CHO was quantified as count ratio of tumor to contralateral brain. The mean FET uptake ratio for FET-negative LGG was 0.95 ± 0.03 (mean ± standard deviation). Five tumors did not show increased uptake ratios for CHO (0.96 ± 0.12). Slightly increased CHO uptake was found in 1 patient (1.24), which, however, was not associated with tumor visualization. Amino acid and choline uptake appear to behave similar in nongadolinium-enhancing LGG. For clinical purposes, CHO PET is not superior to FET PET.

  18. Sodium 18F-Fluoride PET/CT of Bone, Joint and Other Disorders

    PubMed Central

    Jadvar, Hossein; Desai, Bhushan; Conti, Peter S.

    2014-01-01

    The use of 18F-sodium fluoride (18F-NaF) with positron emission tomography-computed tomography (PET/CT) is increasing. This resurgence of an old tracer has been fueled by several factors including superior diagnostic performance over standard 99mTc-based bone scintigraphy, growth in the availability of PET/CT imaging systems, increase in the number of regional commercial distribution centers for PET radiotracers, the recent concerns about potential chronic shortages with 99mTc based radiotracers, and the recent decision by the Centers for Medicare and Medicaid Services to reimburse for 18F-NaF PET/CT for evaluation of patients with known or suspected bone metastases through the National Oncologic PET Registry. The major goal of this article is to review the current evidence on the diagnostic utility of 18F-NaF in the imaging assessment of bone and joint in a variety of clinical conditions. PMID:25475379

  19. The Accuracy of Integrated [18F] Fluorodeoxyglucose-Positron Emission Tomography/Computed Tomography in Detection of Pelvic and Para-aortic Nodal Metastasis in Patients with High Risk Endometrial Cancer

    PubMed Central

    Gholkar, Nikhil Shirish; Saha, Subhas Chandra; Prasad, GRV; Bhattacharya, Anish; Srinivasan, Radhika; Suri, Vanita

    2014-01-01

    Lymph nodal (LN) metastasis is the most important prognostic factor in high-risk endometrial cancer. However, the benefit of routine lymphadenectomy in endometrial cancer is controversial. This study was conducted to assess the accuracy of [18F] fluorodeoxyglucose-positron emission tomography/computed tomography ([18F] FDG-PET/CT) in detection of pelvic and para-aortic nodal metastases in high-risk endometrial cancer. 20 patients with high-risk endometrial carcinoma underwent [18F] FDG-PET/CT followed by total abdominal hysterectomy, bilateral salpingo-oophorectomy and systematic pelvic lymphadenectomy with or without para-aortic lymphadenectomy. The findings on histopathology were compared with [18F] FDG-PET/CT findings to calculate the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and accuracy of [18F] FDG-PET/CT. The pelvic nodal findings were analyzed on a patient and nodal chain based criteria. The para-aortic nodal findings were reported separately. Histopathology documented nodal involvement in two patients (10%). For detection of pelvic nodes, on a patient based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 61.11%, PPV of 22.22%, NPV of 100% and accuracy of 65% and on a nodal chain based analysis, [18F] FDG-PET/CT had a sensitivity of 100%, specificity of 80%, PPV of 20%, NPV of 100%, and accuracy of 80.95%. For detection of para-aortic nodes, [18F] FDG-PET/CT had sensitivity of 100%, specificity of 66.67%, PPV of 20%, NPV of 100%, and accuracy of 69.23%. Although [18F] FDG-PET/CT has high sensitivity for detection of LN metastasis in endometrial carcinoma, it had moderate accuracy and high false positivity. However, the high NPV is important in selecting patients in whom lymphadenectomy may be omitted. PMID:25538488

  20. Exploratory clinical trial of (4S)-4-(3-[18F]fluoropropyl)-L-glutamate for imaging xC- transporter using positron emission tomography in patients with non-small cell lung or breast cancer.

    PubMed

    Baek, Sora; Choi, Chang-Min; Ahn, Sei Hyun; Lee, Jong Won; Gong, Gyungyub; Ryu, Jin-Sook; Oh, Seung Jun; Bacher-Stier, Claudia; Fels, Lüder; Koglin, Norman; Hultsch, Christina; Schatz, Christoph A; Dinkelborg, Ludger M; Mittra, Erik S; Gambhir, Sanjiv S; Moon, Dae Hyuk

    2012-10-01

    (4S)-4-(3-[(18)F]fluoropropyl)-l-glutamate (BAY 94-9392, alias [(18)F]FSPG) is a new tracer to image x(C)(-) transporter activity with positron emission tomography (PET). We aimed to explore the tumor detection rate of [(18)F]FSPG in patients relative to 2-[(18)F]fluoro-2-deoxyglucose ([(18)F]FDG). The correlation of [(18)F]FSPG uptake with immunohistochemical expression of x(C)(-) transporter and CD44, which stabilizes the xCT subunit of system x(C)(-), was also analyzed. Patients with non-small cell lung cancer (NSCLC, n = 10) or breast cancer (n = 5) who had a positive [(18)F]FDG uptake were included in this exploratory study. PET images were acquired following injection of approximately 300 MBq [(18)F]FSPG. Immunohistochemistry was done using xCT- and CD44-specific antibody. [(18)F]FSPG PET showed high uptake in the kidney and pancreas with rapid blood clearance. [(18)F]FSPG identified all 10 NSCLC and three of the five breast cancer lesions that were confirmed by pathology. [(18)F]FSPG detected 59 of 67 (88%) [(18)F]FDG lesions in NSCLC, and 30 of 73 (41%) in breast cancer. Seven lesions were additionally detected only on [(18)F]FSPG in NSCLC. The tumor-to-blood pool standardized uptake value (SUV) ratio was not significantly different from that of [(18)F]FDG in NSCLC; however, in breast cancer, it was significantly lower (P < 0.05). The maximum SUV of [(18)F]FSPG correlated significantly with the intensity of immunohistochemical staining of x(C)(-) transporter and CD44 (P < 0.01). [(18)F]FSPG seems to be a promising tracer with a relatively high cancer detection rate in patients with NSCLC. [(18)F]FSPG PET may assess x(C)(-) transporter activity in patients with cancer.

  1. Biodistribution and catabolism of 18F-labeled N-epsilon-fructoselysine as a model of Amadori products.

    PubMed

    Hultsch, Christina; Hellwig, Michael; Pawelke, Beate; Bergmann, Ralf; Rode, Katrin; Pietzsch, Jens; Krause, René; Henle, Thomas

    2006-10-01

    Amadori products are formed in the early stage of the so-called Maillard reaction between reducing sugars and amino acids or proteins. Such nonenzymatic glycosylation may occur during the heating or storage of foods, but also under physiological conditions. N-epsilon-fructoselysine is formed via this reaction between the epsilon-amino group of peptide-bound lysine and glucose. Despite the fact that, in certain heated foods, up to 50% of lysyl moieties may be modified to such lysine derivatives, up to now, very little is known about the metabolic fate of alimentary administered Amadori compounds. In the present study, N-succinimidyl-4-[18F]fluorobenzoate was used to modify N-epsilon-fructoselysine at the alpha-amino group of the lysyl moiety. The in vitro stability of the resulting 4-[18F]fluorobenzoylated derivative was tested in different tissue homogenates. Furthermore, the 4-[18F]fluorobenzoylated N-epsilon-fructoselysine was used in positron emission tomography studies, as well as in studies concerning biodistribution and catabolism. The results show that the 4-[18F]fluorobenzoylated N-epsilon-fructoselysine is phosphorylated in vitro, as well as in vivo. This phosphorylation is caused by fructosamine 3-kinases and occurs in vivo, particularly in the kidneys. Despite the action of these enzymes, it was shown that a large part of the intravenously applied radiolabeled N-epsilon-fructoselysine was excreted nearly unchanged in the urine. Therefore, it was concluded that the predominant part of peptide-bound lysine that was fructosylated during food processing is not available for nutrition.

  2. First experience with early dynamic (18)F-NaF-PET/CT in patients with chronic osteomyelitis.

    PubMed

    Freesmeyer, Martin; Stecker, Franz F; Schierz, Jan-Henning; Hofmann, Gunther O; Winkens, Thomas

    2014-05-01

    This study investigates whether early dynamic positron emission tomography/computed tomography (edPET/CT) using (18)F-sodium fluoride-((18)F-NaF) is feasible in depicting early phases of radiotracer distribution in patients with chronic osteomyelitis (COM). A total of 12 ed(18)F-NaF-PET/CT examinations were performed on 11 consecutive patients (2 female, 9 male; age 53 ± 12 years) in list mode over 5 min starting with radiopharmaceutical injection before standard late (18)F-NaF-PET/CT. Eight consecutive time intervals (frames) were reconstructed for each patient: four 15 s, then four 60 s. Several volumes of interest (VOI) were selected, representing the affected area as well as different reference areas within the bone and soft tissue. Maximum and mean ed standardized uptake values (edSUVmax, edSUVmean, respectively) were calculated in each VOI during each frame to measure early fluoride influx and accumulation. Results were compared between affected and non-affected (contralateral) bones. Starting in the 31-45 s frame, the affected bone area showed significantly higher edSUVmax and edSUVmean compared to the healthy contralateral region. The affected bone areas also significantly differed from non-affected contralateral regions in conventional late (18)F-NaF-PET/CT. This pilot study suggests that, in patients with COM, ed(18)F-NaF -PET offers additional information about early radiotracer distribution to standard (18)F-NaF -PET/CT, similar to a three-phase bone scan. The results should be validated in larger trials which directly compare ed(18)F-NaF-PET to a three-phase bone scan.

  3. Dual time point 2-deoxy-2-[18F]fluoro-D-glucose PET/CT: nodal staging in locally advanced breast cancer.

    PubMed

    García Vicente, A M; Soriano Castrejón, A; Cruz Mora, M Á; Ortega Ruiperez, C; Espinosa Aunión, R; León Martín, A; González Ageitos, A; Van Gómez López, O

    2014-01-01

    To assess dual time point 2-deoxy-2-[(18)F]fluoro-D-glucose (18)(F)FDG PET-CT accuracy in nodal staging and in detection of extra-axillary involvement. Dual time point [(18)F] FDG PET/CT scan was performed in 75 patients. Visual and semiquantitative assessment of lymph nodes was performed. Semiquantitative measurement of SUV and ROC-analysis were carried out to calculate SUV(max) cut-off value with the best diagnostic performance. Axillary and extra-axillary lymph node chains were evaluated. Sensitivity and specificity of visual assessment was 87.3% and 75%, respectively. SUV(max) values with the best sensitivity were 0.90 and 0.95 for early and delayed PET, respectively. SUV(max) values with the best specificity were 1.95 and 2.75, respectively. Extra-axillary lymph node involvement was detected in 26.7%. FDG PET/CT detected extra-axillary lymph node involvement in one-fourth of the patients. Semiquantitative lymph node analysis did not show any advantage over the visual evaluation. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  4. Clinical utility of (18)F-fluoride PET/CT in benign and malignant bone diseases.

    PubMed

    Li, Yuxin; Schiepers, Christiaan; Lake, Ralph; Dadparvar, Simin; Berenji, Gholam R

    2012-01-01

    (18)F labeled sodium fluoride is a positron-emitting, bone seeking agent with more favorable skeletal kinetics than conventional phosphate and diphosphonate compounds. With the expanding clinical usage of PET/CT, there is renewed interest in using (18)F-fluoride PET/CT for imaging bone diseases. Growing evidence indicates that (18)F fluoride PET/CT offers increased sensitivity, specificity, and diagnostic accuracy in evaluating metastatic bone disease compared to (99m)Tc based bone scintigraphy. National Oncologic PET Registry (NOPR) has expanded coverage for (18)F sodium fluoride PET scans since February 2011 for the evaluation of osseous metastatic disease. In this article, we reviewed the pharmacological characteristics of sodium fluoride, as well as the clinical utility of PET/CT using (18)F-fluoride in both benign and malignant bone disorders. Published by Elsevier Inc.

  5. F-18 fluoride positron emission tomography/computed tomography in the diagnosis of avascular necrosis of the femoral head: Comparison with magnetic resonance imaging

    PubMed Central

    Gayana, Shankaramurthy; Bhattacharya, Anish; Sen, Ramesh Kumar; Singh, Paramjeet; Prakash, Mahesh; Mittal, Bhagwant Rai

    2016-01-01

    Objective: Femoral head avascular necrosis (FHAVN) is one of the increasingly common causes of musculoskeletal disability and poses a major diagnostic and therapeutic challenge. Although radiography, scintigraphy, computed tomography (CT), and magnetic resonance imaging (MRI) have been widely used in the diagnosis of FHAVN, positron emission tomography (PET) has recently been evaluated to assess vascularity of the femoral head. In this study, the authors compared F-18 fluoride PET/CT with MRI in the initial diagnosis of FHAVN. Patients and Methods: We prospectively studied 51 consecutive patients with a high clinical suspicion of FHAVN. All patients underwent MRI and F-18 fluoride PET/CT, the time interval between the two scans being 4–10 (mean 8) days. Two nuclear medicine physicians blinded to the MRI report read the PET/CT scans. Clinical assessment was also done. Final diagnoses were made by surgical pathology or clinical and radiologic follow-up. Results: A final diagnosis of avascular necrosis (AVN) was made in 40 patients. MRI was 96.5% sensitive, 100% specific, and 98.03% accurate while PET/CT was 100% sensitive, specific, and accurate in diagnosing FHAVN. The agreement between the two imaging modalities for the diagnosis of AVN was 96.07%. Conclusion: F-18 fluoride PET/CT showed good agreement with MRI in the initial diagnosis of FHAVN and can be better than MRI in detecting early disease. PMID:26917886

  6. [18F]-FLT positron emission tomography can be used to image the response of sensitive tumors to PI3-kinase inhibition with the novel agent GDC-0941.

    PubMed

    Cawthorne, Christopher; Burrows, Natalie; Gieling, Roben G; Morrow, Christopher J; Forster, Duncan; Gregory, Jamil; Radigois, Marc; Smigova, Alison; Babur, Muhammad; Simpson, Kathryn; Hodgkinson, Cassandra; Brown, Gavin; McMahon, Adam; Dive, Caroline; Hiscock, Duncan; Wilson, Ian; Williams, Kaye J

    2013-05-01

    The phosphoinositide 3-kinase (PI3K) pathway is deregulated in a range of cancers, and several targeted inhibitors are entering the clinic. This study aimed to investigate whether the positron emission tomography tracer 3'-deoxy-3'-[(18)F]fluorothymidine ([(18)F]-FLT) is suitable to mark the effect of the novel PI3K inhibitor GDC-0941, which has entered phase II clinical trial. CBA nude mice bearing U87 glioma and HCT116 colorectal xenografts were imaged at baseline with [(18)F]-FLT and at acute (18 hours) and chronic (186 hours) time points after twice-daily administration of GDC-0941 (50 mg/kg) or vehicle. Tumor uptake normalized to blood pool was calculated, and tissue was analyzed at sacrifice for PI3K pathway inhibition and thymidine kinase (TK1) expression. Uptake of [(18)F]-FLT was also assessed in tumors inducibly overexpressing a dominant-negative form of the PI3K p85 subunit p85α, as well as HCT116 liver metastases after GDC-0941 therapy. GDC-0941 treatment induced tumor stasis in U87 xenografts, whereas inhibition of HCT116 tumors was more variable. Tumor uptake of [(18)F]-FLT was significantly reduced following GDC-0941 dosing in responsive tumors at the acute time point and correlated with pharmacodynamic markers of PI3K signaling inhibition and significant reduction in TK1 expression in U87, but not HCT116, tumors. Reduction of PI3K signaling via expression of Δp85α significantly reduced tumor growth and [(18)F]-FLT uptake, as did treatment of HCT116 liver metastases with GDC-0941. These results indicate that [(18)F]-FLT is a strong candidate for the noninvasive measurement of GDC-0941 action. ©2013 AACR

  7. Pretreatment maximum standardized uptake value of (18)F-fluorodeoxyglucose positron emission tomography as a predictor of distant metastasis in adenoid cystic carcinoma of the head and neck.

    PubMed

    Kim, Donghyun; Kim, Wontaek; Lee, Joohye; Ki, Yongkan; Lee, Byungjoo; Cho, Kyusup; Kim, Seongjang; Nam, Jiho; Lee, Jinchoon; Kim, Dongwon

    2016-05-01

    The purpose of this study was to determine whether the maximum standardized uptake value (SUVmax) of the primary tumor on pretreatment (18)F-fluorodeoxyglucose positron emission tomography ((18)F-FDG PET) has prognostic significance in patients with adenoid cystic carcinoma (ACC) of the head and neck. A retrospective review was carried out on 34 patients with ACC of the head and neck who underwent pretreatment (18)F-FDG PET imaging from June 2005 through July 2009. All patients underwent surgery with curative intent, and 26 of them received adjuvant radiotherapy (RT). When subjects were stratified into 2 groups according to a cutoff value for SUVmax of 4.15, the risk of distant metastasis was significantly high in patients with high SUVmax (p = .014). Multivariate analysis showed that high SUVmax and histologic grade 3 were independent poor prognostic factors for distant metastasis-free and disease-free survival. Pretreatment SUVmax of the primary tumor is an independent prognostic factor in patients with ACC of the head and neck. © 2015 Wiley Periodicals, Inc.

  8. Primary Intramedullary Malignant Lymphoma in the Cervical Cord with a Presyrinx State

    PubMed Central

    Sugawara, Atsushi; Koji, Takahiro; Beppu, Takaaki; Mue, Yoshiharu; Sugai, Tamotsu; Ogasawara, Knuaki

    2017-01-01

    A 79-year-old man presented with primary intramedullary malignant lymphoma with a presyrinx state in the cervical cord manifesting as left hemiparesis and hemidysesthesia. The magnetic resonance imaging (MRI) scan showed an intramedullary mass in the cervical spinal cord at the level of C1 and T2-weighted image prolongation from the medulla to the level of C5. According to the progression of hemiparesis, he underwent an emergency removal of the tumor under general anesthesia. The tumor was totally removed, and the peritumoral signal abnormality was not present in the postoperative MRI. Histological examination revealed diffuse large B cell lymphoma. While brain MRI, bone marrow puncture, and 18F-fluorodeoxy-glucose positron emission tomography (18FDG-PET) of the whole body were performed to find out a primary lesion, there were no abnormalities. He underwent a high-dose methotrexate-based chemotherapy and a local irradiation therapy (40Gy). He has been alive for more than two years since the symptom onset, and without any evidence of recurrence. This case suggests that malignant lymphoma, as an infiltrating and rapidly progressive tumor, may be accompanied by syrinx. PMID:29507854

  9. Radiopharmaceuticals for Assessment of Altered Metabolism and Biometal Fluxes in Brain Aging and Alzheimer's Disease with Positron Emission Tomography.

    PubMed

    Xie, Fang; Peng, Fangyu

    2017-01-01

    Aging is a risk factor for Alzheimer's disease (AD). There are changes of brain metabolism and biometal fluxes due to brain aging, which may play a role in pathogenesis of AD. Positron emission tomography (PET) is a versatile tool for tracking alteration of metabolism and biometal fluxes due to brain aging and AD. Age-dependent changes in cerebral glucose metabolism can be tracked with PET using 2-deoxy-2-[18F]-fluoro-D-glucose (18F-FDG), a radiolabeled glucose analogue, as a radiotracer. Based on different patterns of altered cerebral glucose metabolism, 18F-FDG PET was clinically used for differential diagnosis of AD and Frontotemporal dementia (FTD). There are continued efforts to develop additional radiopharmaceuticals or radiotracers for assessment of age-dependent changes of various metabolic pathways and biometal fluxes due to brain aging and AD with PET. Elucidation of age-dependent changes of brain metabolism and altered biometal fluxes is not only significant for a better mechanistic understanding of brain aging and the pathophysiology of AD, but also significant for identification of new targets for the prevention, early diagnosis, and treatment of AD.

  10. Image Guided Planning for Prostate Carcinomas With Incorporation of Anti-3-[18F]FACBC (Fluciclovine) Positron Emission Tomography: Workflow and Initial Findings From a Randomized Trial

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schreibmann, Eduard, E-mail: eschre2@emory.edu; Schuster, David M.; Rossi, Peter J.

    Purpose: {sup 18}F-Fluciclovine (anti-1-amino-3-[{sup 18}F]fluorocyclobutane-1-carboxylic acid) is a novel positron emission tomography (PET)/computed tomography (CT) radiotracer that has demonstrated utility for detection of prostate cancer. Our goal is to report the initial results from a randomized controlled trial of the integration of {sup 18}F-fluciclovine PET-CT into treatment planning for defining prostate bed and lymph node target volumes. Methods and Materials: We report our initial findings from a cohort of 41 patients, of the first enrolled on a randomized controlled trial, who were randomized to the {sup 18}F-fluciclovine arm. All patients underwent {sup 18}F-fluciclovine PET-CT for the detection of metabolic abnormalitiesmore » and high-resolution CT for treatment planning. The 2 datasets were registered first by use of a rigid registration. If soft tissue displacement was observable, the rigid registration was improved with a deformable registration. Each {sup 18}F-fluciclovine abnormality was segmented as a percentage of the maximum standard uptake value (SUV) within a small region of interest around the lesion. The percentage best describing the SUV falloff was integrated in planning by expanding standard target volumes with the PET abnormality. Results: In 21 of 55 abnormalities, a deformable registration was needed to map the {sup 18}F-fluciclovine activity into the simulation CT. The most selected percentage was 50% of maximum SUV, although values ranging from 15% to 70% were used for specific patients, illustrating the need for a per-patient selection of a threshold SUV value. The inclusion of {sup 18}F-fluciclovine changed the planning volumes for 46 abnormalities (83%) of the total 55, with 28 (51%) located in the lymph nodes, 11 (20%) in the prostate bed, 10 (18%) in the prostate, and 6 (11%) in the seminal vesicles. Only 9 PET abnormalities were fully contained in the standard target volumes based on the CT-based segmentations and did not

  11. Effects of anesthetic protocol on normal canine brain uptake of 18F-FDG assessed by PET/CT.

    PubMed

    Lee, Min Su; Ko, Jeff; Lee, Ah Ra; Lee, In Hye; Jung, Mi Ae; Austin, Brenda; Chung, Hyunwoo; Nahm, Sangsoep; Eom, Kidong

    2010-01-01

    The purpose of this study was to assess the effects of four anesthetic protocols on normal canine brain uptake of 2-deoxy-2-[18F]fluoro-D-glucose (FDG) using positron emission tomography/computed tomography (PET/CT). Five clinically normal beagle dogs were anesthetized with (1) propofol/isoflurane, (2) medetomidine/pentobarbital, (3) xylazine/ketamine, and (4) medetomidine/tiletamine-zolazepam in a randomized cross-over design. The standard uptake value (SUV) of FDG was obtained in the frontal, parietal, temporal and occipital lobes, cerebellum, brainstem and whole brain, and compared within and between anesthetic protocols using the Friedman test with significance set at P < 0.05. Significant differences in SUVs were observed in various part of the brain associated with each anesthetic protocol. The SUV for the frontal and occipital lobes was significantly higher than in the brainstem in all dogs. Dogs receiving medetomidine/tiletamine-zolazepam also had significantly higher whole brain SUVs than the propofol/isoflurane group. We concluded that each anesthetic protocol exerted a different regional brain glucose uptake pattern. As a result, when comparing brain glucose uptake using PET/CT, one should consider the effects of anesthetic protocols on different regions of the glucose uptake in the dog's brain.

  12. Longitudinal Evaluation of Myocardial Fatty Acid and Glucose Metabolism in Fasted and Nonfasted Spontaneously Hypertensive Rats Using MicroPET/CT

    DOE PAGES

    Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa; ...

    2017-09-06

    Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less

  13. Longitudinal Evaluation of Myocardial Fatty Acid and Glucose Metabolism in Fasted and Nonfasted Spontaneously Hypertensive Rats Using MicroPET/CT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huber, Jennifer S.; Hernandez, Andrew M.; Janabi, Mustafa

    Using longitudinal micro positron emission tomography (microPET)/computed tomography (CT) studies, we quantified changes in myocardial metabolism and perfusion in spontaneously hypertensive rats (SHRs), a model of left ventricular hypertrophy (LVH). Fatty acid and glucose metabolism were quantified in the hearts of SHRs and Wistar-Kyoto (WKY) normotensive rats using long-chain fatty acid analog 18F-fluoro-6-thia heptadecanoic acid ( 18F-FTHA) and glucose analog 18F-fluorodeoxyglucose ( 18F-FDG) under normal or fasting conditions. We also used 18F-fluorodihydrorotenol ( 18F-FDHROL) to investigate perfusion in their hearts without fasting. Rats were imaged at 4 or 5 times over their life cycle. Compartment modeling was used to estimatemore » the rate constants for the radiotracers. Blood samples were obtained and analyzed for glucose and free fatty acid concentrations. SHRs demonstrated no significant difference in 18F-FDHROL wash-in rate constant (P = .1) and distribution volume (P = .1), significantly higher 18F-FDG myocardial influx rate constant (P = 4×10 –8), and significantly lower 18F-FTHA myocardial influx rate constant (P = .007) than WKYs during the 2009-2010 study without fasting. SHRs demonstrated a significantly higher 18F-FDHROL wash-in rate constant (P = 5×10 –6) and distribution volume (P = 3×10 –8), significantly higher 18F-FDG myocardial influx rate constant (P = 3×10 –8), and a higher trend of 18F-FTHA myocardial influx rate constant (not significant, P = .1) than WKYs during the 2011–2012 study with fasting. Changes in glucose plasma concentrations were generally negatively correlated with corresponding radiotracer influx rate constant changes. The study indicates a switch from preferred fatty acid metabolism to increased glucose metabolism with hypertrophy. Increased perfusion during the 2011-2012 study may be indicative of increased aerobic metabolism in the SHR model of LVH.« less

  14. Heterogeneity in Intratumor Correlations of 18F-FDG, 18F-FLT, and 61Cu-ATSM PET in Canine Sinonasal Tumors

    PubMed Central

    Bradshaw, Tyler J.; Bowen, Stephen R.; Jallow, Ngoneh; Forrest, Lisa J.; Jeraj, Robert

    2014-01-01

    Intratumor heterogeneity in biologic properties and in relationships between various phenotypes may present a challenge for biologically targeted therapies. Understanding the relationships between different phenotypes in individual tumor types could help inform treatment selection. The goal of this study was to characterize spatial correlations of glucose metabolism, proliferation, and hypoxia in 2 histologic types of tumors. Methods Twenty canine veterinary patients with spontaneously occurring sinonasal tumors (13 carcinomas and 7 sarcomas) were imaged with 18F-FDG, 18F-labeled 39-deoxy-39-fluorothymidine (18F-FLT), and 61Cu-labeled diacetyl-bis(N4-methylthiosemicarbazone) (61Cu-ATSM) PET/CT on 3 consecutive days. Precise positioning and immobilization techniques coupled with anesthesia enabled motionless scans with repeatable positioning. Standardized uptake values (SUVs) of gross sarcoma and carcinoma volumes were compared by use of Mann– Whitney U tests. Patient images were rigidly registered together, and intratumor tracer uptake distributions were compared. Voxel-based Spearman correlation coefficients were used to quantify intertracer correlations, and the correlation coefficients of sarcomas and carcinomas were compared. The relative overlap of the highest uptake volumes of the 3 tracers was quantified, and the values were compared for sarcomas and carcinomas. Results Large degrees of heterogeneity in SUV measures and phenotype correlations were observed. Carcinoma and sarcoma tumors differed significantly in SUV measures, with carcinoma tumors having significantly higher 18F-FDG maximum SUVs than sarcoma tumors (11.1 vs. 5.0; P = 0.01) as well as higher 61Cu-ATSM mean SUVs (2.6 vs. 1.2; P = 0.02). Carcinomas had significantly higher population-averaged Spearman correlation coefficients than sarcomas in comparisons of 18F-FDG and 18F-FLT (0.80 vs. 0.61; P = 0.02), 18F-FLT and 61Cu-ATSM (0.83 vs. 0.38; P < 0.0001), and 18F-FDG and 61Cu-ATSM (0.82 vs. 0

  15. Pituitary adenoma with seizures: PET demonstration of reduced glucose utilization in the medial temporal lobe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bairamian, D.; Di Chiro, G.; Blume, H.

    1986-05-01

    A patient with a benign chromophobe adenoma, who had incomplete surgical removal followed by radiotherapy, continued to have epileptic seizures up to two or three times a day. She was studied with positron emission tomography using /sup 18/F-2-deoxyglucose (FDG). This technique showed a high level of glucose utilization in the area of the operated tumor but also clear reduction of glucose utilization in the left medial temporal region adjacent to the sella and the scar tissue from the neoplasm. This area of reduced glucose utilization corresponded well to the same finding observed in other patients with complex partial epilepsy. Amore » left temporal anterior lobectomy was carried out followed by improved control of the epilepsy. Positron emission tomography using FDG, together with electrophysiological examinations, may assist in the management of epilepsy related to pituitary tumors.« less

  16. The influence of tumor oxygenation on hypoxia imaging in murine squamous cell carcinoma using [64Cu]Cu-ATSM or [18F]Fluoromisonidazole positron emission tomography.

    PubMed

    Matsumoto, Ken-Ichiro; Szajek, Lawrence; Krishna, Murali C; Cook, John A; Seidel, Jurgen; Grimes, Kelly; Carson, Joann; Sowers, Anastasia L; English, Sean; Green, Michael V; Bacharach, Stephen L; Eckelman, William C; Mitchell, James B

    2007-04-01

    [64Cu]Cu(II)-ATSM (64Cu-ATSM) and [18F]-Fluoromisonidazole (18F-FMiso) tumor binding as assessed by positron emisson topography (PET) was used to determine the responsiveness of each probe to modulation in tumor oxygenation levels in the SCCVII tumor model. Animals bearing the SCCVII tumor were injected with 64Cu-ATSM or 18F-FMiso followed by dynamic small animal PET imaging. Animals were imaged with both agents using different inspired oxygen mixtures (air, 10% oxygen, carbogen) which modulated tumor hypoxia as independently assessed by the hypoxia marker pimonidazole. The extent of hypoxia in the SCCVII tumor as monitored by the pimonidazole hypoxia marker was found to be in the following order: 10% oxygen>air>carbogen. Tumor uptake of 64Cu-ATSM could not be changed if the tumor was oxygenated using carbogen inhalation 90 min post-injection suggesting irreversible cellular uptake of the 64Cu-ATSM complex. A small but significant paradoxical increase in 64Cu-ATSM tumor uptake was observed for animals breathing air or carbogen compared to 10% oxygen. There was a positive trend toward 18F-FMiso tumor uptake as a function of changing hypoxia levels in agreement with the pimonidazole data. 64Cu-ATSM tumor uptake was unable to predictably detect changes in varying amounts of hypoxia when oxygenation levels in SCCVII tumors were modulated. 18F-FMiso tumor uptake was more responsive to changing levels of hypoxia. While the mechanism of nitroimidazole binding to hypoxic cells has been extensively studied, the avid binding of Cu-ATSM to tumors may involve other mechanisms independent of hypoxia that warrant further study.

  17. (18)F-FDG and (18)F-FLT PET/CT imaging in the characterization of mediastinal lymph nodes.

    PubMed

    Rayamajhi, Sampanna Jung; Mittal, Bhagwant Rai; Maturu, Venkata Nagarjuna; Agarwal, Ritesh; Bal, Amanjit; Dey, Pranab; Shukla, Jaya; Gupta, Dheeraj

    2016-04-01

    There is currently no single modality for accurate characterization of enlarged mediastinal lymph nodes into benign or malignant. Recently (18)F-fluorothymidine (FLT) has been used as a proliferation marker. In this prospective study, we examined the role of (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography/computed tomography (PET/CT) and (18)F-FLT PET/CT in categorizing mediastinal lymph nodes as benign or malignant. A total of 70 consecutive patients with mediastinal lymphadenopathy detected on computed tomography (CT) or chest radiograph underwent whole body (18)F-FLT PET/CT and (18)F-FDG PET/CT (within 1 week of each other). Lymph nodal tracer uptake was determined by calculation of standardized uptake value (SUV) with both the tracers. Results of PET/CT were compared with histopathology of the lymph nodes. Histopathology results showed thirty-seven patients with sarcoidosis, seven patients with tuberculosis, nine patients with non-small cell lung cancer, five patients with Hodgkin's lymphoma and twelve patients with non-Hodgkin's lymphoma. The mean FDG SUVmax of sarcoidosis, tuberculosis, Hodgkin's and non-Hodgkin's lymphoma was 12.7, 13.4, 8.2, and 8.8, respectively, and the mean FLT SUVmax was 6.0, 5.4, 4.4, and 3.8, respectively. It was not possible to characterize mediastinal lymphadenopathy as benign or malignant solely based on FDG SUVmax values (p > 0.05) or FLT SUVmax values (p > 0.05). There was no significant difference in FDG uptake (p > 0.9) or FLT uptake (p > 0.9) between sarcoidosis and tuberculosis. In lung cancer patients, the FDG SUVmax and FLT SUVmax of those lymph nodes with tumor infiltration on biopsy was 6.7 and 3.9, respectively, and those without nodal infiltration was 6.4 and 3.7, respectively, and both the tracers were not able to characterize the nodal status as malignant or benign (p > 0.05). Though (18)F-FLT PET/CT and (18)F-FDG PET/CT reflect different aspects of biology, i.e., proliferation and metabolism

  18. Quantitative assessment of cerebral glucose metabolic rates after blood-brain barrier disruption induced by focused ultrasound using FDG-MicroPET.

    PubMed

    Yang, Feng-Yi; Chang, Wen-Yuan; Chen, Jyh-Cheng; Lee, Lin-Chien; Hung, Yi-Shun

    2014-04-15

    The goal of this study was to evaluate the pharmacokinetics of (18)F-2-fluoro-2-deoxy-d-glucose ((18)F-FDG) and the expression of glucose transporter 1 (GLUT1) protein after blood-brain barrier (BBB) disruption of normal rat brains by focused ultrasound (FUS). After delivery of an intravenous bolus of ~37 MBq (1 mCi) (18)F-FDG, dynamic positron emission tomography scans were performed on rats with normal brains and those whose BBBs had been disrupted by FUS. Arterial blood sampling was collected throughout the scanning procedure. A 2-tissue compartmental model was used to estimate (18)F-FDG kinetic parameters in brain tissues. The rate constants Ki, K1, and k3 were assumed to characterize the uptake, transport, and hexokinase activity, respectively, of (18)F-FDG. The uptake of (18)F-FDG in brains significantly decreased immediately after the blood-brain barrier was disrupted. At the same time, the derived values of Ki, K1, and k3 for the sonicated brains were significantly lower than those for the control brains. In agreement with the reduction in glucose, Western blot analyses confirmed that focused ultrasound exposure significantly reduced the expression of GLUT1 protein in the brains. Furthermore, the effect of focused ultrasound on glucose uptake was transient and reversible 24h after sonication. Our results indicate that focused ultrasound may inhibit GLUT1 expression to decrease the glucose uptake in brain tissue during the period of BBB disruption. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Positron Emission Tomography (PET) Experience with 2-[18F]Fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA) in the Living Human Brain of Smokers with Paranoid Schizophrenia

    PubMed Central

    BRAŠIĆ, JAMES ROBERT; CASCELLA, NICOLA; KUMAR, ANIL; ZHOU, YUN; HILTON, JOHN; RAYMONT, VANESSA; CRABB, ANDREW; GUEVARA, MARIA RITA; HORTI, ANDREW G.; WONG, DEAN FOSTER

    2012-01-01

    Utilizing postmortem data (Breese, et al., 2000), we hypothesized that the densities of high-affinity neuronal α4β2 nicotinic acetylcholine receptors (nAChRs) in the brain exist in a continuum from highest to lowest as follows: smokers without schizophrenia > smokers with schizophrenia > nonsmokers without schizophrenia > nonsmokers with schizophrenia. Application of the Kruskal-Wallis Test (Stata, 2003) to the postmortem data (Breese, et al., 2000) confirmed the hypothesized order in the cortex and the hippocampus and attained significance in the caudate and the thalamus. Positron emission tomography (PET) was performed for 60 minutes at 6 hours after the intravenous administration of 444 megabequerels [MBq] (12 mCi) 2-[18F]fluoro-3-(2(S)-azetidinylmethoxy)pyridine (2-[18F]FA), a radiotracer for high-affinity neuronal α4β2 nAChRs, as a bolus plus continuous infusion to 10 adults (7 men and 3 women) (6 smokers including 5 with paranoid schizophrenia and 4 nonsmokers) ranging in age from 22 to 56 years (mean 40.1, standard deviation 13.6). The thalamic nondisplaceable binding potential (BPND) was 1.32 ± 0.19 (mean ± standard deviation) for healthy control nonsmokers; 0.50 ± 0.19 for smokers with paranoid schizophrenia; and 0.51 for the single smoker without paranoid schizophrenia. The thalamic BPNDs of nonsmokers were significantly higher than those of smokers who smoked cigarettes a few hours before the scans (P = 0.0105) (StataCorp, 2003), which was likely due to occupancy of nAChRs by inhaled nicotine in smokers. Further research is needed to rule out the effects of confounding variables. PMID:22169936

  20. Evaluation of (/sup 18/F)-4-fluoroantipyrine as a new blood flow tracer for multiradionuclide autoradiography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sako, K.; Diksic, M.; Kato, A.

    This article reports the evaluation of (/sup 18/F)-4-fluoroantipyrine (FAP) as a quantitative blood flow tracer by comparing blood flow measured with (/sup 18/F)FAP to that determined simultaneously with (/sup 14/C)-4-iodoantipyrine (IAP), a standard blood flow tracer, by means of double-tracer autoradiography. The single-pass extraction value (m), which indicates diffusibility of a tracer, was determined according to the procedure described by Crone. The diffusibility of FAP was essentially the same as that of IAP. The brain-blood partition coefficient for FAP was found to be similar to that for IAP, 0.89 +/- 0.01. Values of local cerebral blood flow obtained with FAPmore » agree with those determined with IAP. From these results, we concluded that FAP is indeed as good a blood flow tracer as IAP. Since /sup 18/F is a positron-emitting radionuclide, it might be a useful tracer for blood flow measurement by positron emission tomography.« less

  1. Delta-9-Tetrahydrocannabinol-Induced Dopamine Release as a Function of Psychosis Risk: 18F-Fallypride Positron Emission Tomography Study

    PubMed Central

    Kuepper, Rebecca; Ceccarini, Jenny; Lataster, Johan; van Os, Jim; van Kroonenburgh, Marinus; van Gerven, Joop M. A.; Marcelis, Machteld; Van Laere, Koen; Henquet, Cécile

    2013-01-01

    Cannabis use is associated with psychosis, particularly in those with expression of, or vulnerability for, psychotic illness. The biological underpinnings of these differential associations, however, remain largely unknown. We used Positron Emission Tomography and 18F-fallypride to test the hypothesis that genetic risk for psychosis is expressed by differential induction of dopamine release by Δ9-THC (delta-9-tetrahydrocannabinol, the main psychoactive ingredient of cannabis). In a single dynamic PET scanning session, striatal dopamine release after pulmonary administration of Δ9-THC was measured in 9 healthy cannabis users (average risk psychotic disorder), 8 patients with psychotic disorder (high risk psychotic disorder) and 7 un-related first-degree relatives (intermediate risk psychotic disorder). PET data were analyzed applying the linear extension of the simplified reference region model (LSRRM), which accounts for time-dependent changes in 18F-fallypride displacement. Voxel-based statistical maps, representing specific D2/3 binding changes, were computed to localize areas with increased ligand displacement after Δ9-THC administration, reflecting dopamine release. While Δ9-THC was not associated with dopamine release in the control group, significant ligand displacement induced by Δ9-THC in striatal subregions, indicative of dopamine release, was detected in both patients and relatives. This was most pronounced in caudate nucleus. This is the first study to demonstrate differential sensitivity to Δ9-THC in terms of increased endogenous dopamine release in individuals at risk for psychosis. PMID:23936196

  2. (18)F-FDG PET/CT, cytoreductive surgery and intraperitoneal chemohyperthermia for the therapeutic management in peritoneal carcinomatosis: A pilot study.

    PubMed

    Cistaro, A; Cucinotta, M; Cassalia, L; Priola, A; Priola, S; Pappalardo, M; Coppolino, P; De Simone, M; Quartuccio, N

    2016-01-01

    Peritoneal carcinomatosis is a common evolution of neoplasms and the terminal stage of disease. A new therapeutic technique, based on the total surgical removal of peritoneal lesions (peritonectomy procedure - PP) combined with the intraperitoneal chemohyperthermia (IPCH), has been developed. Proper patient selection is mandatory for optimizing the results of treatment. The aim of this study was to investigate the role of [(18)F]fluoro-2-deoxy-d-glucose Positron Emission Tomography/Computed Tomography ((18)F-FDG PET/CT) in patients with peritoneal carcinosis selected to undergo PP and IPCH. Furthermore, we aimed to identify characteristic patterns of abdominal(18)F-FDG uptake and to correlate these patterns with available anatomic findings after surgery. Patients with either histologically confirmed peritoneal carcinosis or suspected upon clinical follow-up and/or imaging findings were prospectively submitted to pre-surgery (18)F-FDG PET/CT scan. Only those patients without evidence of extra-peritoneal metastases at PET/CT scan were treated with PP and IPCH. 11 patients with peritoneal carcinomatosis (5 colorectal, 4 ovarian, 1 pancreatic) and 1 unknown primitive cancer, were eligible for the study. In all cases PET/CT scan showed multiple peritoneal implants. In 6 out of 11 cases (54%) metastases were evidenced by (18)F-FDG PET/CT: 2 cases with liver metastases; 1 case with bone metastases; 3 patients with lymph-node lesions. Two distinct imaging patterns, with focal or diffuse increased (18)F-FDG uptake, were recognized. PP+IPCH of patients selected by (18)F-FDG PET/CT seems to be safe and feasible. PET/CT scan appears as a reliable tool for the detection, characterization of peritoneal implants with potential impact in the therapeutic management of these patients. Copyright © 2016 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  3. Impact of blood glucose, diabetes, insulin, and obesity on standardized uptake values in tumors and healthy organs on 18F-FDG PET/CT.

    PubMed

    Büsing, Karen A; Schönberg, Stefan O; Brade, Joachim; Wasser, Klaus

    2013-02-01

    Chronically altered glucose metabolism interferes with (18)F-FDG uptake in malignant tissue and healthy organs and may therefore lower tumor detection in (18)F-FDG PET/CT. The present study assesses the impact of elevated blood glucose levels (BGL), diabetes, insulin treatment, and obesity on (18)F-FDG uptake in tumors and biodistribution in normal organ tissues. (18)F-FDG PET/CT was analyzed in 90 patients with BGL ranging from 50 to 372 mg/dl. Of those, 29 patients were diabetic and 21 patients had received insulin prior to PET/CT; 28 patients were obese with a body mass index >25. The maximum standardized uptake value (SUV(max)) of normal organs and the main tumor site was measured. Differences in SUV(max) in patients with and without elevated BGLs, diabetes, insulin treatment, and obesity were compared and analyzed for statistical significance. Increased BGLs were associated with decreased cerebral FDG uptake and increased uptake in skeletal muscle. Diabetes and insulin diminished this effect, whereas obesity slightly enhanced the outcome. Diabetes and insulin also increased the average SUV(max) in muscle cells and fat, whereas the mean cerebral SUV(max) was reduced. Obesity decreased tracer uptake in several healthy organs by up to 30%. Tumoral uptake was not significantly influenced by BGL, diabetes, insulin, or obesity. Changes in BGLs, diabetes, insulin, and obesity affect the FDG biodistribution in muscular tissue and the brain. Although tumoral uptake is not significantly impaired, these findings may influence the tumor detection rate and are therefore essential for diagnosis and follow-up of malignant diseases. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Prognostic Value of SUVmax Measured by Pretreatment Fluorine-18 Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography in Patients with Ewing Sarcoma

    PubMed Central

    Hwang, Jae Pil; Lim, Ilhan; Kong, Chang-Bae; Jeon, Dae Geun; Byun, Byung Hyun; Kim, Byung Il; Choi, Chang Woon; Lim, Sang Moo

    2016-01-01

    Aim The aim of this retrospective study was to determine whether glucose metabolism assessed by using Fluorine-18 (F-18) fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) provides prognostic information independent of established prognostic factors in patients with Ewing sarcoma. Methods We retrospectively reviewed the medical records of 34 patients (men, 19; women, 15; mean age, 14.5 ± 9.7 years) with pathologically proven Ewing sarcoma. They had undergone F-18 FDG PET/CT as part of a pretreatment workup between September 2006 and April 2012. In this analysis, patients were classified by age, sex, initial location, size, and maximum standardized uptake value (SUVmax). The relationship between FDG uptake and survival was analyzed using the Kaplan-Meier method with the log-rank test and Cox’s proportional hazards regression model. Results The median survival time for all 34 subjects was 999 days and the median SUV by using PET/CT was 5.8 (range, 2–18.1). Patients with a SUVmax ≤ 5.8 survived significantly longer than those with a SUVmax > 5.8 (median survival time, 1265 vs. 656 days; p = 0.002). Survival was also found to be significantly related to age (p = 0.024), size (p = 0.03), and initial tumor location (p = 0.036). Multivariate analysis revealed that a higher SUVmax (p = 0.003; confidence interval [CI], 3.63–508.26; hazard ratio [HR], 42.98), older age (p = 0.023; CI, 1.34–54.80; HR, 8.59), and higher stage (p = 0.03; CI, 1.21–43.95; HR, 7.3) were associated with worse overall survival. Conclusions SUVmax measured by pretreatment F-18-FDG PET/CT can predict overall survival in patients with Ewing sarcoma. PMID:27100297

  5. Positron emission tomography assessment of effects of benzodiazepines on regional glucose metabolic rate in patients with anxiety disorder

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buchsbaum, M.S.; Wu, J.; Haier, R.

    1987-06-22

    Patients with generalized anxiety disorder (n = 18) entered a 21-day, double-blind, placebo-controlled random assignment trial of clorazepate. Positron emission tomography with YF-deoxyglucose was carried out before and after treatment. Decreases in glucose metabolic rate in visual cortex and relative increases in the basal ganglia and thalamus were found. A correlation between regional changes in metabolic rate and regional benzodiazepine receptor binding density from other human autopsy studies was observed; brain regions highest in receptor density showed the greatest decrease in rate.

  6. (R)-N-Methyl-3-(3′-[18F]fluoropropyl)phenoxy)-3-phenylpropanamine (18F-MFP3) as a potential PET imaging agent for norepinephrine transporter

    PubMed Central

    Nguyen, Vivien L.; Pichika, Rama; Bhakta, Paayal H.; Kant, Ritu; Mukherjee, Jogeshwar

    2010-01-01

    A decline of norepinephrine transporter (NET) level is associated with several psychiatric and neurological disorders. Therefore positron emission tomography (PET) imaging agents are greatly desired to study the NET pathway. We have developed a C-fluoropropyl analog of nisoxetine: (R)-N-methyl-3-(3′-[18F]fluoropropyl)phenoxy)-3-phenylpropanamine (18F-MFP3) as a new potential PET radiotracer for NET with the advantage of the longer half-life of fluorine-18 (110 min compared with carbon-11 (20 min). Synthesis of (R)-N-methyl-3-(3′-fluoropropyl)phenoxy)-3-phenylpropanamine (MFP3) was achieved in five steps starting from (S)-N-methyl-3-ol-3-phenylpropanamine in approx. 3–5% overall yields. In vitro binding affinity of nisoxetine and MFP3 in rat brain homogenates labeled with 3H-nisoxetine gave Ki values of 8.02 nM and 23 nM, respectively. For radiosynthesis of 18F-MFP3, fluorine-18 was incorporated into a tosylate precursor, followed by the deprotection of the N-BOC-protected amine group with a 15% decay corrected yield in 2.5 h. Reverse-phase chromatographic purification provided 18F-MFP3 in specific activities of >2000 Ci/mmol. Fluorine-18 labeled 18F-MFP3 has been produced in modest radiochemical yields and in high specific activities. Evaluation of 18F-MFP3 in animal imaging studies is in progress in order to validate this new fluorine-18 radiotracer for PET imaging of NET. PMID:20495670

  7. Evaluation of ion-implanted-silicon detectors for use in intraoperative positron-sensitive probes.

    PubMed

    Raylman, R R; Wahl, R L

    1996-11-01

    The continuing development of probes for use with beta (positron and electron) emitting radionuclides may result in more complete excision of tracer-avid tumors. Perhaps one of the most promising radiopharmaceuticals for this task is 18F-labeled-Fluoro-2-Deoxy-D-Glucose (FDG). This positron-emitting agent has been demonstrated to be avidly and rapidly absorbed by many human cancers. We have investigated the use of ion-implanted-silicon detectors in intraoperative positron-sensitive surgical probes for use with FDG. These detectors possess very high positron detection efficiency, while the efficiency for 511 keV photon detection is low. The spatial resolution, as well as positron and annihilation photon detection sensitivity, of an ion-implanted-silicon detector used with 18F was measured at several energy thresholds. In addition, the ability of the device to detect the presence of relatively small amounts of FDG during surgery was evaluated by simulating a surgical field in which some tumor was left intact following lesion excision. The performance of the ion-implanted-silicon detector was compared to the operating characteristics of a positron-sensitive surgical probe which utilizes plastic scintillator. In all areas of performance the ion-implanted-silicon detector proved superior to the plastic scintillator-based probe. At an energy threshold of 14 keV positron sensitivity measured for the ion-implanted-silicon detector was 101.3 cps/kBq, photon sensitivity was 7.4 cps/kBq. In addition, spatial resolution was found to be relatively unaffected by the presence of distant sources of annihilation photon flux. Finally, the detector was demonstrated to be able to localize small amounts of FDG in a simulated tumor bed; indicating that this device has promise as a probe to aid in FDG-guided surgery.

  8. Reproducibility of functional volume and activity concentration in 18F-FDG PET/CT of liver metastases in colorectal cancer.

    PubMed

    Heijmen, Linda; de Geus-Oei, Lioe-Fee; de Wilt, Johannes H W; Visvikis, Dimitris; Hatt, Mathieu; Visser, Eric P; Bussink, Johan; Punt, Cornelis J A; Oyen, Wim J G; van Laarhoven, Hanneke W M

    2012-12-01

    Several studies showed potential for monitoring response to systemic therapy in metastatic colorectal cancer patients with (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET). Before (18)F-FDG PET can be implemented for response evaluation the repeatability should be known. This study was performed to assess the magnitude of the changes in standardized uptake value (SUV), volume and total lesion glycolysis (TLG) in colorectal liver metastases and validate the biological basis of (18)F-FDG PET in colorectal liver metastases. Twenty patients scheduled for liver metastasectomy underwent two (18)F-FDG PET scans within 1 week. Bland-Altman analysis was performed to assess repeatability of SUV(max), SUV(mean), volume and TLG. Tumours were delineated using an adaptive threshold method (PET(SBR)) and a semiautomatic fuzzy locally adaptive Bayesian (FLAB) delineation method. Coefficient of repeatability of SUV(max) and SUV(mean) were ∼39 and ∼31 %, respectively, independent of the delineation method used and image reconstruction parameters. However, repeatability was worse in recently treated patients. The FLAB delineation method improved the repeatability of the volume and TLG measurements compared to PET(SBR), from coefficients of repeatability of over 85 % to 45 % and 57 % for volume and TLG, respectively. Glucose transporter 1 (GLUT1) expression correlated to the SUV(mean). Vascularity (CD34 expression) and tumour hypoxia (carbonic anhydrase IX expression) did not correlate with (18)F-FDG PET parameters. In conclusion, repeatability of SUV(mean) and SUV(max) was mainly affected by preceding systemic therapy. The repeatability of tumour volume and TLG could be improved using more advanced and robust delineation approaches such as FLAB, which is recommended when (18)F-FDG PET is utilized for volume or TLG measurements. Improvement of repeatability of PET measurements, for instance by dynamic PET scanning protocols, is probably necessary to effectively

  9. Application of positron emission tomography to neuroimaging in sports sciences.

    PubMed

    Tashiro, Manabu; Itoh, Masatoshi; Fujimoto, Toshihiko; Masud, Md Mehedi; Watanuki, Shoichi; Yanai, Kazuhiko

    2008-08-01

    To investigate exercise-induced regional metabolic and perfusion changes in the human brain, various methods are available, such as positron emission tomography (PET), functional magnetic resonance imaging (fMRI), near-infrared spectroscopy (NIRS) and electroencephalography (EEG). In this paper, details of methods of metabolic measurement using PET, [(18)F]fluorodeoxyglucose ([(18)F]FDG) and [(15)O]radio-labelled water ([(15)O]H(2)O) will be explained. Functional neuroimaging in the field of neuroscience was started in the 1970s using an autoradiography technique on experimental animals. The first human functional neuroimaging exercise study was conducted in 1987 using a rough measurement system known as (133)Xe inhalation. Although the data was useful, more detailed and exact functional neuroimaging, especially with respect to spatial resolution, was achieved by positron emission tomography. Early studies measured the cerebral blood flow changes during exercise. Recently, PET was made more applicable to exercise physiology and psychology by the use of the tracer [(18)F]FDG. This technique allowed subjects to be scanned after an exercise task is completed but still obtain data from the exercise itself, which is similar to autoradiography studies. In this report, methodological information is provided with respect to the recommended protocol design, the selection of the scanning mode, how to evaluate the cerebral glucose metabolism and how to interpret the regional brain activity using voxel-by-voxel analysis and regions of interest techniques (ROI). Considering the important role of exercise in health promotion, further efforts in this line of research should be encouraged in order to better understand health behavior. Although the number of research papers is still limited, recent work has indicated that the [(18)F]FDG-PET technique is a useful tool to understand brain activity during exercise.

  10. Assessment of Collagen-Induced Arthritis Using Cyanine 5.5 Conjugated with Hydrophobically Modified Glycol Chitosan Nanoparticles: Correlation with 18F-Fluorodeoxyglucose Positron Emission Tomography Data

    PubMed Central

    Cha, Ji Hyeon; Lee, Sheen-Woo; Park, Kyeongsoon; Moon, Dae Hyuk; Kim, Kwangmeyung; Biswal, Sandip

    2012-01-01

    Objective To evaluate the potential and correlation between near-infrared fluorescence (NIRF) imaging using cyanine 5.5 conjugated with hydrophobically modified glycol chitosan nanoparticles (HGC-Cy5.5) and 18F-fluorodeoxyglucose-positron emission tomography (18F-FDG-PET) imaging of collagen-induced arthritis (CIA). Materials and Methods We used 10 CIA and 3 normal mice. Nine days after the injecting collagen twice, microPET imaging was performed 40 minutes after the intravenous injection of 9.3 MBq 18F-FDG in 200 µL PBS. One day later, NIRF imaging was performed two hours after the intravenous injection of HGC-cy5.5 (5 mg/kg). We assessed the correlation between these two modalities in the knees and ankles of CIA mice. Results The mean standardized uptake values of 18F-FDG for knees and ankles were 1.68 ± 0.76 and 0.79 ± 0.71, respectively, for CIA mice; and 0.57 ± 0.17 and 0.54 ± 0.20 respectively for control mice. From the NIRF images, the total photon counts per 30 mm2 for knees and ankles were 2.32 ± 1.54 × 105 and 2.75 ± 1.51 × 105, respectively, for CIA mice, and 1.22 ± 0.27 × 105 and 0.88 ± 0.24 × 105, respectively, for control mice. These two modalities showed a moderate correlation for knees (r = 0.604, p = 0.005) and ankles (r = 0.464, p = 0.039). Moreover, both HGC-Cy5.5 (p = 0.002) and 18F-FDG-PET (p = 0.005) imaging also showed statistically significant differences between CIA and normal mice. Conclusion NIRF imaging using HGC-Cy5.5 was moderately correlated with 18F-FDG-PET imaging in the CIA model. As such, HGC-Cy5.5 imaging can be used for the early detection of rheumatoid arthritis. PMID:22778567

  11. Opiate-induced dopamine release is modulated by severity of alcohol dependence: an [(18)F]fallypride positron emission tomography study.

    PubMed

    Spreckelmeyer, Katja N; Paulzen, Michael; Raptis, Mardjan; Baltus, Thomas; Schaffrath, Sabrina; Van Waesberghe, Julia; Zalewski, Magdalena M; Rösch, Frank; Vernaleken, Ingo; Schäfer, Wolfgang M; Gründer, Gerhard

    2011-10-15

    Preclinical data implicate the reinforcing effects of alcohol to be mediated by interaction between the opioid and dopamine systems of the brain. Specifically, alcohol-induced release of β-endorphins stimulates μ-opioid receptors (MORs), which is believed to cause dopamine release in the brain reward system. Individual differences in opioid or dopamine neurotransmission have been suggested to be responsible for enhanced liability to abuse alcohol. In the present study, a single dose of the MOR agonist remifentanil was administered in detoxified alcohol-dependent patients and healthy control subjects to mimic the β-endorphin-releasing properties of ethanol and to assess the effects of direct MOR stimulation on dopamine release in the mesolimbic reward system. Availability of D(2/3) receptors was assessed before and after single-dose administration of the MOR agonist remifentanil in 11 detoxified alcohol-dependent patients and 11 healthy control subjects with positron emission tomography with the radiotracer [(18)F]fallypride. Severity of dependence as assessed with the Alcohol Use Disorders Identification Test was compared with remifentanil-induced percentage change in [(18)F]fallypride binding (Δ%BP(ND)). The [(18)F]fallypride binding potentials (BP(ND)s) were significantly reduced in the ventral striatum, dorsal putamen, and amygdala after remifentanil application in both patients and control subjects. In the patient group, ventral striatum Δ%BP(ND) was correlated with the Alcohol Use Disorders Identification Test score. The data provide evidence for a MOR-mediated interaction between the opioid and the dopamine system, supporting the assumption that one way by which alcohol unfolds its rewarding effects is via a MOR-(γ-aminobutyric acid)-dopamine pathway. No difference in dopamine release was found between patients and control subjects, but evidence for a patient-specific association between sensitivity to MOR stimulation and severity of alcohol dependence

  12. Evaluation of the novel myocardial perfusion positron-emission tomography tracer 18F-BMS-747158-02: comparison to 13N-ammonia and validation with microspheres in a pig model.

    PubMed

    Nekolla, S G; Reder, S; Saraste, A; Higuchi, T; Dzewas, G; Preissel, A; Huisman, M; Poethko, T; Schuster, T; Yu, M; Robinson, S; Casebier, D; Henke, J; Wester, H J; Schwaiger, M

    2009-05-05

    Positron-emission tomography (PET) tracers for myocardial perfusion are commonly labeled with short-lived isotopes that limit their widespread clinical use. 18F-BMS-747158-02 (18F-BMS) is a novel pyridaben derivative that was evaluated for assessment of myocardial perfusion by comparison with 13N-ammonia (13NH3) and with radioactive microspheres in a pig model. Fourteen pigs injected with 500 MBq of 13NH3 or 100 to 200 MBq of 18F-BMS underwent dynamic PET at rest and during pharmacological stress. In 8 of these pigs, 18F-BMS was injected during stress combined with transient, 2.5-minute constriction of the left anterior descending coronary artery. Radioactive microspheres were coinjected with 18F-BMS. Ratios of myocardial tracer uptake to surrounding tissues were determined, and myocardial blood flow was quantified by compartmental modeling. Both tracers showed high and homogeneous myocardial uptake. Compared with 13NH3, 18F-BMS showed higher activity ratios between myocardium and blood (rest 2.5 versus 4.1; stress 2.1 versus 5.8), liver (rest 1.2 versus 1.8; stress 0.7 versus 2.0), and lungs (rest 2.5 versus 4.2; stress 2.9 versus 6.4). Regional myocardial blood flow assessed with 18F-BMS PET showed good correlation (r=0.88, slope=0.84) and agreement (mean difference -0.10 [25th percentile -0.3, 75th percentile 0.1 mL x min(-1) x g(-1)]) with that measured with radioactive microspheres over a flow range from 0.1 to 3.0 mL x min(-1) x g(-1). The extent of defects induced by left anterior descending coronary artery constriction measured by 18F-BMS and microspheres also correlated closely (r=0.63, slope=1.1). 18F-BMS-747158-02 is a very attractive new PET perfusion tracer that allows quantitative assessment of regional myocardial perfusion over a wide flow range. The long half-life of 18F renders this tracer useful for clinical PET/CT applications in the workup of patients with suspected or proven coronary artery disease.

  13. Proton irradiation of [18O]O2: production of [18F]F2 and [18F]F2 + [18F] OF2.

    PubMed

    Bishop, A; Satyamurthy, N; Bida, G; Hendry, G; Phelps, M; Barrio, J R

    1996-04-01

    The production of 18F electrophilic reagents via the 18O(p,n)18F reaction has been investigated in small-volume target bodies made of aluminum, copper, gold-plated copper and nickel, having straight or conical bore shapes. Three irradiation protocols-single-step, two-step and modified two-step-were used for the recovery of the 18F activity. The single-step irradiation protocol was tested in all the target bodies. Based on the single-step performance, aluminum targets were utilized extensively in the investigation of the two-step and modified two-step irradiation protocols. With an 11-MeV cyclotron and using the two-step irradiation protocol, > 1Ci [18F]F2 was recovered reproducibly from an aluminum target body. Probable radical mechanisms for the formation of OF2 and FONO2 (fluorine nitrate) in the single-step and modified two-step targets are proposed based on the amount of ozone generated and the nitrogen impurity present in the target gases, respectively.

  14. Comparison of the biological effects of {sup 18}F at different intracellular levels

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashino, Genro, E-mail: kashino@oita-u.ac.jp; Hayashi, Kazutaka; Douhara, Kazumasa

    Highlights: • We estimated the inductions of DNA DSB in cell treated with {sup 18}F-FDG. • We found that inductions of DNA DSB are dependent on accumulation of {sup 18}F in cell. • Accumulation of {sup 18}F in cell may be indispensable for risk estimation of PET. - Abstract: We herein examined the biological effects of cells treated with {sup 18}F labeled drugs for positron emission tomography (PET). The relationship between the intracellular distribution of {sup 18}F and levels of damaged DNA has yet to be clarified in detail. We used culture cells (Chinese Hamster Ovary cells) treated with twomore » types of {sup 18}F labeled drugs, fluorodeoxyglucose (FDG) and fluorine ion (HF). FDG efficiently accumulated in cells, whereas HF did not. To examine the induction of DNA double strand breaks (DSB), we measured the number of foci for 53BP1 that formed at the site of DNA DSB. The results revealed that although radioactivity levels were the same, the induction of 53BP1 foci was stronger in cells treated with {sup 18}F-FDG than in those treated with {sup 18}F-HF. The clonogenic survival of cells was significantly lower with {sup 18}F-FDG than with {sup 18}F-HF. We concluded that the efficient accumulation of {sup 18}F in cells led to stronger biological effects due to more severe cellular lethality via the induction of DNA DSB.« less

  15. Long-term survival of 42 patients with resected N2 non-small-cell lung cancer: the impact of 2-(18)F-fluoro-2-deoxy-D-glucose positron emission tomogram mediastinal staging.

    PubMed

    Barnett, Stephen; Baste, Jean-Marc; Murugappan, Kowsi; Tog, Check; Berlangieri, Salvatore; Scott, Andrew; Seevanayagam, Siven; Knight, Simon

    2011-01-01

    Prognostic information known preoperatively allows stratification of patients to surgery; induction therapy and surgery; or definitive chemoradiotherapy and may prevent a futile thoracotomy. Attention has focussed on the standard uptake value (SUV) of the primary tumour but less has been described regarding the 18F-fluoro-2-deoxy-D-glucose (18F-FDG) avidity of mediastinal nodes. We aimed, in a group of surgically resected cN0-1 but pN2 tumours, to compare the survival of patients with and without 18F-FDG avid mediastinal nodes. Retrospective review of a surgical database identified cN0-1 non-small-cell lung cancer (NSCLC) patients with pN2 disease after resection. Survival of non-FDG avid N2 versus FDG avid N2 groups was compared after stratification according to variables found on univariate analysis to affect survival. From January 1993 to December 2006, 42 patients were identified; 27 (64%) had non-FDG avid N2 disease. Five-year and median survival were better in the non-FDG avid N2 disease group, 25% versus 0% and 30 (16-44) versus 13 (10-16) months, respectively (p=0.02). After 1998, the difference in survival was 41% versus 0% and 35 (14-56) versus 12 (16-18) months, respectively (p=0.02). After resection, patients with non-FDG avid N2 disease have better survival than patients with FDG avid N2 disease. Exploratory thoracotomy alone (after frozen section analysis) cannot be advocated in patients with non-FDG avid N2 disease as survival after resection appears at least equivalent to alternate therapeutic approaches in this group. This assertion may be tempered if right pneumonectomy is required or R0 resection is unachievable. Mediastinal nodal avidity may improve stratification in future studies of long-term survival in NSCLC. Crown Copyright © 2010. Published by Elsevier B.V. All rights reserved.

  16. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT

    PubMed Central

    Puri, Tanuj; Siddique, Musib; Frost, Michelle L.; Moore, Amelia E. B.; Fogelman, Ignac

    2018-01-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([18F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [18F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [18F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [18F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer. PMID:29541623

  17. Site specific measurements of bone formation using [18F] sodium fluoride PET/CT.

    PubMed

    Blake, Glen M; Puri, Tanuj; Siddique, Musib; Frost, Michelle L; Moore, Amelia E B; Fogelman, Ignac

    2018-02-01

    Dynamic positron emission tomography (PET) imaging with fluorine-18 labelled sodium fluoride ([ 18 F]NaF) allows the quantitative assessment of regional bone formation by measuring the plasma clearance of fluoride to bone at any site in the skeleton. Today, hybrid PET and computed tomography (CT) dual-modality systems (PET/CT) are widely available, and [ 18 F]NaF PET/CT offers a convenient non-invasive method of studying bone formation at the important osteoporotic fracture sites at the hip and spine, as well as sites of pure cortical or trabecular bone. The technique complements conventional measurements of bone turnover using biochemical markers or bone biopsy as a tool to investigate new therapies for osteoporosis, and has a potential role as an early biomarker of treatment efficacy in clinical trials. This article reviews methods of acquiring and analyzing dynamic [ 18 F]NaF PET/CT scan data, and outlines a simplified approach combining venous blood sampling with a series of short (3- to 5-minute) static PET/CT scans acquired at different bed positions to estimate [ 18 F]NaF plasma clearance at multiple sites in the skeleton with just a single injection of tracer.

  18. Utility of 18F-fluorodeoxyglucose-positron emission tomography in the differential diagnosis of benign and malignant gynaecological tumours.

    PubMed

    Takagi, Hiroaki; Sakamoto, Jinichi; Osaka, Yasuhiro; Shibata, Takeo; Fujita, Satoko; Sasagawa, Toshiyuki

    2018-02-05

    Positron emission tomography/computed tomography (PET/CT) involving 18F-fluorodeoxyglucose (FDG) is widely used for systemic cancer and recurrence diagnosis. However, the differential diagnosis of benign and malignant gynaecological tumours according to FDG accumulation is unclear. This study aimed to investigate the intensity of FDG uptake/metabolic activity for the differential diagnosis of benign and malignant gynaecological tumours. This study included seven patients with physiological phenomena, 34 with benign tumours, 13 with borderline malignant tumours and 119 with malignant tumours who underwent 18F-FDG PET/CT. We assessed the maximum standardized uptake value (SUVmax) and determined its utility in the diagnosis of benign and malignant tumours using a receiver operating characteristic (ROC) curve analysis. Among the 63 patients with ovarian tumours, the mean SUVmax of 22 patients with benign ovarian tumours was 2.48 and the mean SUVmax of 41 patients with malignant ovarian tumours was 10.98 (P < 0.001). In the ROC curve analysis, the area under the curve (AUC) was 0.977, with a 95% confidence interval of 0.947-1.000. With a cut-off value of 3.97 for the optimal SUVmax, the sensitivity and specificity were 95.1% and 86.4%, respectively. In addition, the AUC was 0.911 (95% CI: 0.768-1.000) for the assessment of uterine myomas and sarcomas. With a cut-off value of 10.62 for the optimal SUVmax, the sensitivity and specificity were 91.7% and 86.7% respectively. The SUVmax value helps differentiate benign and malignant ovarian tumours, as well as uterine myomas and uterine sarcomas. © 2018 The Royal Australian and New Zealand College of Radiologists.

  19. Activity-based costing evaluation of a [(18)F]-fludeoxyglucose positron emission tomography study.

    PubMed

    Krug, Bruno; Van Zanten, Annie; Pirson, Anne-Sophie; Crott, Ralph; Borght, Thierry Vander

    2009-10-01

    The aim of the study is to use the activity-based costing approach to give a better insight in the actual cost structure of a positron emission tomography procedure (FDG-PET) by defining the constituting components and by simulating the impact of possible resource or practice changes. The cost data were obtained from the hospital administration, personnel and vendor interviews as well as from structured questionnaires. A process map separates the process in 16 patient- and non-patient-related activities, to which the detailed cost data are related. One-way sensitivity analyses shows to which degree of uncertainty the different parameters affect the individual cost and evaluate the impact of possible resource or practice changes like the acquisition of a hybrid PET/CT device, the patient throughput or the sales price of a 370MBq (18)F-FDG patient dose. The PET centre spends 73% of time in clinical activities and the resting time after injection of the tracer (42%) is the single largest departmental cost element. The tracer cost and the operational time have the most influence on cost per procedure. The analysis shows a total cost per FDG-PET ranging from 859 Euro for a BGO PET camera to 1142 Euro for a 16 slices PET-CT system, with a distribution of the resource costs in decreasing order: materials (44%), equipment (24%), wage (16%), space (6%) and hospital overhead (10%). The cost of FDG-PET is mainly influenced by the cost of the radiopharmaceutical. Therefore, the latter rather than the operational time should be reduced in order to improve its cost-effectiveness.

  20. Bicuspid Aortic Valve Stenosis and the Effect of Vitamin K2 on Calcification Using 18F-Sodium Fluoride Positron Emission Tomography/Magnetic Resonance: The BASIK2 Rationale and Trial Design.

    PubMed

    Peeters, Frederique E C M; van Mourik, Manouk J W; Meex, Steven J R; Bucerius, Jan; Schalla, Simon M; Gerretsen, Suzanne C; Mihl, Casper; Dweck, Marc R; Schurgers, Leon J; Wildberger, Joachim E; Crijns, Harry J G M; Kietselaer, Bas L J H

    2018-03-21

    BASIK2 is a prospective, double-blind, randomized placebo-controlled trial investigating the effect of vitamin K2 (menaquinone-7;MK7) on imaging measurements of calcification in the bicuspid aortic valve (BAV) and calcific aortic valve stenosis (CAVS). BAV is associated with early development of CAVS. Pathophysiologic mechanisms are incompletely defined, and the only treatment available is valve replacement upon progression to severe symptomatic stenosis. Matrix Gla protein (MGP) inactivity is suggested to be involved in progression. Being a vitamin K dependent protein, supplementation with MK7 is a pharmacological option for activating MGP and intervening in the progression of CAVS. Forty-four subjects with BAV and mild-moderate CAVS will be included in the study, and baseline 18 F-sodiumfluoride ( 18 F-NaF) positron emission tomography (PET)/ magnetic resonance (MR) and computed tomography (CT) assessments will be performed. Thereafter, subjects will be randomized (1:1) to MK7 (360 mcg/day) or placebo. During an 18-month follow-up period, subjects will visit the hospital every 6 months, undergoing a second 18 F-NaF PET/MR after 6 months and CT after 6 and 18 months. The primary endpoint is the change in PET/MR 18 F-NaF uptake (6 months minus baseline) compared to this delta change in the placebo arm. The main secondary endpoints are changes in calcium score (CT), progression of the left ventricularremodeling response and CAVS severity (echocardiography). We will also examine the association between early calcification activity (PET) and later changes in calcium score (CT).

  1. 123I-MIBG scintigraphy and 18F-FDG-PET imaging for diagnosing neuroblastoma.

    PubMed

    Bleeker, Gitta; Tytgat, Godelieve A M; Adam, Judit A; Caron, Huib N; Kremer, Leontien C M; Hooft, Lotty; van Dalen, Elvira C

    2015-09-29

    Neuroblastoma is an embryonic tumour of childhood that originates in the neural crest. It is the second most common extracranial malignant solid tumour of childhood.Neuroblastoma cells have the unique capacity to accumulate Iodine-123-metaiodobenzylguanidine (¹²³I-MIBG), which can be used for imaging the tumour. Moreover, ¹²³I-MIBG scintigraphy is not only important for the diagnosis of neuroblastoma, but also for staging and localization of skeletal lesions. If these are present, MIBG follow-up scans are used to assess the patient's response to therapy. However, the sensitivity and specificity of ¹²³I-MIBG scintigraphy to detect neuroblastoma varies according to the literature.Prognosis, treatment and response to therapy of patients with neuroblastoma are currently based on extension scoring of ¹²³I-MIBG scans. Due to its clinical use and importance, it is necessary to determine the exact diagnostic accuracy of ¹²³I-MIBG scintigraphy. In case the tumour is not MIBG avid, fluorine-18-fluorodeoxy-glucose ((18)F-FDG) positron emission tomography (PET) is often used and the diagnostic accuracy of this test should also be assessed. 1.1 To determine the diagnostic accuracy of ¹²³I-MIBG (single photon emission computed tomography (SPECT), with or without computed tomography (CT)) scintigraphy for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old.1.2 To determine the diagnostic accuracy of negative ¹²³I-MIBG scintigraphy in combination with (18)F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old, i.e. an add-on test. 2.1 To determine the diagnostic accuracy of (18)F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old.2.2 To compare the diagnostic accuracy of ¹²³I-MIBG (SPECT-CT) and (18)F

  2. (18)F-Fluorodeoxyglucose Positron Emission Tomography Can Quantify and Predict Esophageal Injury During Radiation Therapy.

    PubMed

    Niedzielski, Joshua S; Yang, Jinzhong; Liao, Zhongxing; Gomez, Daniel R; Stingo, Francesco; Mohan, Radhe; Martel, Mary K; Briere, Tina M; Court, Laurence E

    2016-11-01

    We sought to investigate the ability of mid-treatment (18)F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized (18)F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We used nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion. Symptom progression was predicted with an AUC of 0

  3. Methods and applications of positron-based medical imaging

    NASA Astrophysics Data System (ADS)

    Herzog, H.

    2007-02-01

    Positron emission tomography (PET) is a diagnostic imaging method to examine metabolic functions and their disorders. Dedicated ring systems of scintillation detectors measure the 511 keV γ-radiation produced in the course of the positron emission from radiolabelled metabolically active molecules. A great number of radiopharmaceuticals labelled with 11C, 13N, 15O, or 18F positron emitters have been applied both for research and clinical purposes in neurology, cardiology and oncology. The recent success of PET with rapidly increasing installations is mainly based on the use of [ 18F]fluorodeoxyglucose (FDG) in oncology where it is most useful to localize primary tumours and their metastases.

  4. Comparison of Linear and Hyperbranched Polyether Lipids for Liposome Shielding by 18F-Radiolabeling and Positron Emission Tomography.

    PubMed

    Wagener, Karolin; Worm, Matthias; Pektor, Stefanie; Schinnerer, Meike; Thiermann, Raphael; Miederer, Matthias; Frey, Holger; Rösch, Frank

    2018-04-27

    Multifunctional and highly biocompatible polyether structures play a key role in shielding liposomes from degradation in the bloodstream, providing also multiple functional groups for further attachment of targeting moieties. In this work hyperbranched polyglycerol ( hbPG) bearing lipids with long alkyl chain anchor are evaluated with respect to steric stabilization of liposomes. The branched polyether lipids possess a hydrophobic bis(hexadecyl)glycerol membrane anchor for the liposomal membrane. hbPG was chosen as a multifunctional alternative to PEG, enabling the eventual linkage of multiple targeting vectors. Different hbPG lipids ( M n = 2900 and 5200 g mol -1 ) were examined. A linear bis(hexadecyl)glycerol-PEG lipid ( M n = 3000 g mol -1 ) was investigated as well, comparing hbPG and PEG with respect to shielding properties. Radiolabeling of the polymers was carried out using 1-azido-2-(2-(2-[ 18 F]fluoroethoxy)ethoxy)ethane ([ 18 F]F-TEG-N) 3 via copper-catalyzed alkyne-azide cycloaddition with excellent radiochemical yields exceeding 95%. Liposomes were prepared by the thin-film hydration method followed by repeated extrusion. Use of a custom automatic extrusion device gave access to reproducible sizes of the liposomes (hydrodynamic radius of 60-94 nm). The in vivo fate of the bis(hexadecyl)glycerol polyethers and their corresponding assembled liposome structures were evaluated via noninvasive small animal positron emission tomography (PET) imaging and biodistribution studies (1 h after injection and 4 h after injection) in mice. Whereas the main uptake of the nonliposomal polyether lipids was observed in the kidneys and in the bladder after 1 h due to rapid renal clearance, in contrast, the corresponding liposomes showed uptake in the blood pool as well as in organs with good blood supply, that is, heart and lung over the whole observation period of 4 h. The in vivo behavior of all three liposomal formulations was comparable, albeit with remarkable

  5. Continuous-Flow Synthesis of N-Succinimidyl 4-[18F]fluorobenzoate Using a Single Microfluidic Chip

    PubMed Central

    Kimura, Hiroyuki; Tomatsu, Kenji; Saiki, Hidekazu; Arimitsu, Kenji; Ono, Masahiro; Kawashima, Hidekazu; Iwata, Ren; Nakanishi, Hiroaki; Ozeki, Eiichi; Kuge, Yuji; Saji, Hideo

    2016-01-01

    In the field of positron emission tomography (PET) radiochemistry, compact microreactors provide reliable and reproducible synthesis methods that reduce the use of expensive precursors for radiolabeling and make effective use of the limited space in a hot cell. To develop more compact microreactors for radiosynthesis of 18F-labeled compounds required for the multistep procedure, we attempted radiosynthesis of N-succinimidyl 4-[18F]fluorobenzoate ([18F]SFB) via a three-step procedure using a microreactor. We examined individual steps for [18F]SFB using a batch reactor and microreactor and developed a new continuous-flow synthetic method with a single microfluidic chip to achieve rapid and efficient radiosynthesis of [18F]SFB. In the synthesis of [18F]SFB using this continuous-flow method, the three-step reaction was successfully completed within 6.5 min and the radiochemical yield was 64 ± 2% (n = 5). In addition, it was shown that the quality of [18F]SFB synthesized on this method was equal to that synthesized by conventional methods using a batch reactor in the radiolabeling of bovine serum albumin with [18F]SFB. PMID:27410684

  6. Comparison of analytical methods of brain [18F]FDG-PET after severe traumatic brain injury.

    PubMed

    Madsen, Karine; Hesby, Sara; Poulsen, Ingrid; Fuglsang, Stefan; Graff, Jesper; Larsen, Karen B; Kammersgaard, Lars P; Law, Ian; Siebner, Hartwig R

    2017-11-01

    Loss of consciousness has been shown to reduce cerebral metabolic rates of glucose (CMRglc) measured by brain [ 18 F]FDG-PET. Measurements of regional metabolic patterns by normalization to global cerebral metabolism or cerebellum may underestimate widespread reductions. The aim of this study was to compare quantification methods of whole brain glucose metabolism, including whole brain [18F]FDG uptake normalized to uptake in cerebellum, normalized to injected activity, normalized to plasma tracer concentration, and two methods for estimating CMRglc. Six patients suffering from severe traumatic brain injury (TBI) and ten healthy controls (HC) underwent a 10min static [ 18 F]FDG-PET scan and venous blood sampling. Except from normalizing to cerebellum, all quantification methods found significant lower level of whole brain glucose metabolism of 25-33% in TBI patients compared to HC. In accordance these measurements correlated to level of consciousness. Our study demonstrates that the analysis method of the [ 18 F]FDG PET data has a substantial impact on the estimated whole brain cerebral glucose metabolism in patients with severe TBI. Importantly, the SUVR method which is often used in a clinical setting was not able to distinguish patients with severe TBI from HC at the whole-brain level. We recommend supplementing a static [ 18 F]FDG scan with a single venous blood sample in future studies of patients with severe TBI or reduced level of consciousness. This can be used for simple semi-quantitative uptake values by normalizing brain activity uptake to plasma tracer concentration, or quantitative estimates of CMRglc. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Renal Manifestation of Birt-Hogg-Dubé Syndrome Depicted by 18F-fludeoxyglucose Positron Emission Tomography/Computed Tomography in a Patient with Hurtle Cell Thyroid Malignancy.

    PubMed

    Panagiotidis, Emmanouil; Seshadri, Nagabhushan; Vinjamuri, Sobhan

    2018-01-01

    Birt-Hogg-Dubé (BHD) syndrome is an autosomal dominant genetic disorder characterized by small papular skin lesions (fibrofolliculomas) causing susceptibility to kidney cancer, renal and pulmonary cysts, spontaneous pneumothoraces, and several noncutaneous tumors. We report a case of a 67-year-old woman, with a previous history of right hemithyroidectomy for adenomatous lesion. She presented with a swelling in the right thyroid bed that on subsequent biopsy revealed features of metastatic carcinoma. 18F-fludeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) performed for the detection of primary malignancy showed increased high-grade metabolic activity in the right supraclavicular soft tissue mass extending into the superior mediastinum. Moreover, on low-dose CT, there have been bilateral renal interpolar cortical lesions with mild metabolic activity. Given the fact that the right neck mass was highly unlikely to represent renal metastases in the absence of widespread metastatic disease, surgical excision of the right neck mass was performed. The histology of the mass was in keeping with hurtle cell thyroid carcinoma. In regard to renal lesions, bilateral partial nephrectomy was performed, which was consistent with chromophobe renal cell carcinoma, raising the suspicion of BHD that was confirmed by the subsequent genetic evaluation. It is well established that 18F-FDG PET/CT study is not an optimal modality for evaluation of renal lesions. However, careful assessment of the CT features in conjunction with the associated metabolic activity of the 18F-FDG PET component increases the diagnostic accuracy of PET/CT.

  8. Correlation between 18F-FDG Positron-Emission Tomography 18F-FDG Uptake Levels at Diagnosis and Histopathologic and Immunohistochemical Factors in Patients with Breast Cancer

    PubMed Central

    Uğurluer, Gamze; Yavuz, Sinan; Çalıkuşu, Züleyha; Seyrek, Ertuğrul; Kibar, Mustafa; Serin, Meltem; Ersöz, Canan; Demircan, Orhan

    2016-01-01

    Objective In this study, we aimed to determine the correlation between pretreatment-staging 18F-FDG total body positron-emission tomography/computed tomography (PET/CT) maximum standardized uptake value (SUVmax) levels and histopathologic and immunohistochemical predictive and prognostic factors in patients with breast cancer. Materials and Methods One hundred thirty-nine women with breast cancer who were treated between 2009 and 2015 at our hospital and who had pretreatment-staging PET/CT were included in the study. SUVmax levels and histopathologic and immunohistochemical results were compared. Results The median age was 48 years (range, 29–79 years). The mean tumor diameter was 33.4 mm (range, 7–120 mm). The histology was invasive ductal carcinoma in 80.6% of the patients. In the univariate analysis, SUVmax levels were significantly higher in patients with invasive ductal carcinoma; in patients with a maximum tumor diameter more than 2 cm; patients who were estrogen, progesterone, and combined hormone receptor-negative, triple-negative patients, and in tumors with higher grades (p<0.05). In HER2-positive patients, SUVmax levels were higher even if it was not statistically significant. There was no correlation between lymph node metastases and pathologic stage. In multivariate analysis, tumor diameter was an independent factor. Conclusion SUVmax levels are correlated with known histopathologic and immunohistochemical prognostic factors. PET/CT could be useful in preoperative evaluation of patients with breast cancer to predict biologic characteristics of tumors and prognosis. PMID:28331746

  9. Differential Regulation of Macrophage Glucose Metabolism by Macrophage Colony-stimulating Factor and Granulocyte-Macrophage Colony-stimulating Factor: Implications for 18F FDG PET Imaging of Vessel Wall Inflammation

    PubMed Central

    Tavakoli, Sina; Short, John D.; Downs, Kevin; Nguyen, Huynh Nga; Lai, Yanlai; Zhang, Wei; Jerabek, Paul; Goins, Beth; Sadeghi, Mehran M.

    2017-01-01

    Purpose To determine the divergence of immunometabolic phenotypes of macrophages stimulated with macrophage colony-stimulating factor (M-CSF) and granulocyte-M-CSF (GM-CSF) and its implications for fluorine 18 (18F) fluorodeoxyglucose (FDG) imaging of atherosclerosis. Materials and Methods This study was approved by the animal care committee. Uptake of 2-deoxyglucose and various indexes of oxidative and glycolytic metabolism were evaluated in nonactivated murine peritoneal macrophages (MΦ0) and macrophages stimulated with M-CSF (MΦM-CSF) or GM-CSF (MΦGM-CSF). Intracellular glucose flux was measured by using stable isotope tracing of glycolytic and tricyclic acid intermediary metabolites. 18F-FDG uptake was evaluated in murine atherosclerotic aortas after stimulation with M-CSF or GM-CSF by using quantitative autoradiography. Results Despite inducing distinct activation states, GM-CSF and M-CSF stimulated progressive but similar levels of increased 2-deoxyglucose uptake in macrophages that reached up to sixfold compared with MΦ0. The expression of glucose transporters, oxidative metabolism, and mitochondrial biogenesis were induced to similar levels in MΦM-CSF and MΦGM-CSF. Unexpectedly, there was a 1.7-fold increase in extracellular acidification rate, a 1.4-fold increase in lactate production, and overexpression of several critical glycolytic enzymes in MΦM-CSF compared with MΦGM-CSF with associated increased glucose flux through glycolytic pathway. Quantitative autoradiography demonstrated a 1.6-fold induction of 18F-FDG uptake in murine atherosclerotic plaques by both M-CSF and GM-CSF. Conclusion The proinflammatory and inflammation-resolving activation states of macrophages induced by GM-CSF and M-CSF in either cell culture or atherosclerotic plaques may not be distinguishable by the assessment of glucose uptake. © RSNA, 2016 Online supplemental material is available for this article. PMID:27849433

  10. Comparison Study of Two Differently Clicked 18F-Folates—Lipophilicity Plays a Key Role

    PubMed Central

    Kettenbach, Kathrin; Reffert, Laura M.; Schieferstein, Hanno; Pektor, Stefanie; Eckert, Raphael; Miederer, Matthias; Rösch, Frank

    2018-01-01

    Within the last decade, several folate-based radiopharmaceuticals for Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) have been evaluated; however, there is still a lack of suitable 18F-folates for clinical PET imaging. Herein, we report the synthesis and evaluation of two novel 18F-folates employing strain-promoted and copper-catalyzed click chemistry. Furthermore, the influence of both click-methods on lipophilicity and pharmacokinetics of the 18F-folates was investigated. 18F-Ala-folate and 18F-DBCO-folate were both stable in human serum albumin. In vitro studies proved their high affinity to the folate receptor (FR). The lipophilic character of the strain-promoted clicked 18F-DBCO-folate (logD = 0.6) contributed to a higher non-specific binding in cell internalization studies. In the following in vivo PET imaging studies, FR-positive tumors could not be visualized in a maximum intensity projection images. Compared with 18F-DBCO-folate, 18F-Ala-folate (logD = −1.4), synthesized by the copper-catalyzed click reaction, exhibited reduced lipophilicity, and as a result an improved in vivo performance and a clear-cut visualization of FR-positive tumors. In view of high radiochemical yield, radiochemical purity and favorable pharmacokinetics, 18F-Ala-folate is expected to be a promising candidate for FR-PET imaging. PMID:29562610

  11. 123I-Mibg scintigraphy and 18F-Fdg-Pet imaging for diagnosing neuroblastoma

    PubMed Central

    Bleeker, Gitta; Tytgat, Godelieve Am; Adam, Judit A; Caron, Huib N; Kremer, Leontien Cm; Hooft, Lotty; van Dalen, Elvira C

    2015-01-01

    Background Neuroblastoma is an embryonic tumour of childhood that originates in the neural crest. It is the second most common extracranial malignant solid tumour of childhood. Neuroblastoma cells have the unique capacity to accumulate Iodine-123-metaiodobenzylguanidine (123I-MIBG), which can be used for imaging the tumour. Moreover, 123I-MIBG scintigraphy is not only important for the diagnosis of neuroblastoma, but also for staging and localization of skeletal lesions. If these are present, MIBG follow-up scans are used to assess the patient's response to therapy. However, the sensitivity and specificity of 123I-MIBG scintigraphy to detect neuroblastoma varies according to the literature. Prognosis, treatment and response to therapy of patients with neuroblastoma are currently based on extension scoring of 123I-MIBG scans. Due to its clinical use and importance, it is necessary to determine the exact diagnostic accuracy of 123I-MIBG scintigraphy. In case the tumour is not MIBG avid, fluorine-18-fluorodeoxy-glucose (18F-FDG) positron emission tomography (PET) is often used and the diagnostic accuracy of this test should also be assessed. Objectives Primary objectives: 1.1 To determine the diagnostic accuracy of 123I-MIBG (single photon emission computed tomography (SPECT), with or without computed tomography (CT)) scintigraphy for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 1.2 To determine the diagnostic accuracy of negative 123I-MIBG scintigraphy in combination with 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old, i.e. an add-on test. Secondary objectives: 2.1 To determine the diagnostic accuracy of 18F-FDG-PET(-CT) imaging for detecting a neuroblastoma and its metastases at first diagnosis or at recurrence in children from 0 to 18 years old. 2.2 To compare the diagnostic accuracy of 123I

  12. Reduced binding potential of GABA-A/benzodiazepine receptors in individuals at ultra-high risk for psychosis: an [18F]-fluoroflumazenil positron emission tomography study.

    PubMed

    Kang, Jee In; Park, Hae-Jeong; Kim, Se Joo; Kim, Kyung Ran; Lee, Su Young; Lee, Eun; An, Suk Kyoon; Kwon, Jun Soo; Lee, Jong Doo

    2014-05-01

    Altered transmission of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, may contribute to the development of schizophrenia. The purpose of the present study was to investigate the presence of GABA-A/benzodiazepine (BZ) receptor binding abnormalities in individuals at ultra-high risk (UHR) for psychosis in comparison with normal controls using [(18)F]-fluoroflumazenil (FFMZ) positron emission tomography (PET). In particular, we set regions of interest in the striatum (caudate, putamen, and nucleus accumbens) and medial temporal area (hippocampus and parahippocampal gyrus). Eleven BZ-naive people at UHR and 15 normal controls underwent PET scanning using [(18)F]-FFMZ to measure GABA-A/BZ receptor binding potential. The regional group differences between UHR individuals and normal controls were analyzed using Statistical Parametric Mapping 8 software. Participants were evaluated using the structured interview for prodromal syndromes and neurocognitive function tasks. People at UHR demonstrated significantly reduced binding potential of GABA-A/BZ receptors in the right caudate. Altered GABAergic transmission and/or the imbalance of inhibitory and excitatory systems in the striatum may be present at the putative prodromal stage and play a pivotal role in the pathophysiology of psychosis.

  13. Reduced Binding Potential of GABA-A/Benzodiazepine Receptors in Individuals at Ultra-high Risk for Psychosis: An [18F]-Fluoroflumazenil Positron Emission Tomography Study

    PubMed Central

    Kang, Jee In; Park, Hae-Jeong; An, Suk Kyoon

    2014-01-01

    Background: Altered transmission of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter, may contribute to the development of schizophrenia. The purpose of the present study was to investigate the presence of GABA-A/benzodiazepine (BZ) receptor binding abnormalities in individuals at ultra-high risk (UHR) for psychosis in comparison with normal controls using [18F]-fluoroflumazenil (FFMZ) positron emission tomography (PET). In particular, we set regions of interest in the striatum (caudate, putamen, and nucleus accumbens) and medial temporal area (hippocampus and parahippocampal gyrus). Methods: Eleven BZ-naive people at UHR and 15 normal controls underwent PET scanning using [18F]-FFMZ to measure GABA-A/BZ receptor binding potential. The regional group differences between UHR individuals and normal controls were analyzed using Statistical Parametric Mapping 8 software. Participants were evaluated using the structured interview for prodromal syndromes and neurocognitive function tasks. Results: People at UHR demonstrated significantly reduced binding potential of GABA-A/BZ receptors in the right caudate. Conclusions: Altered GABAergic transmission and/or the imbalance of inhibitory and excitatory systems in the striatum may be present at the putative prodromal stage and play a pivotal role in the pathophysiology of psychosis. PMID:23588475

  14. Usefulness of 3'-[F-18]fluoro-3'-deoxythymidine with positron emission tomography in predicting breast cancer response to therapy.

    PubMed

    Pio, Betty S; Park, Cecilia K; Pietras, Richard; Hsueh, Wei-Ann; Satyamurthy, Nagichettiar; Pegram, Mark D; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S

    2006-01-01

    The usefulness of 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emission tomography (PET) in monitoring breast cancer response to chemotherapy has previously been reported. Elevated uptake of FDG by treated tumors can persist however, particularly in the early period after treatment is initiated. 3'-[F-18]Fluoro-3'-deoxythymidine (FLT) has been developed as a marker for cellular proliferation and, in principle, could be a more accurate predictor of the long-term effect of chemotherapy on tumor viability. We examined side-by-side FDG and FLT imaging for monitoring and predicting tumor response to chemotherapy. Fourteen patients with newly diagnosed primary or metastatic breast cancer, who were about to commence a new pharmacologic treatment regimen, were prospectively studied. Dynamic 3-D PET imaging of uptake into a field of view centered over tumor began immediately after administration of FDG or FLT (150 MBq). After 45 minutes of dynamic acquisition, a clinically standard whole-body PET scan was acquired. Patients were scanned with both tracers on two separate days within one week of each other (1) before beginning treatment, (2) two weeks following the end of the first cycle of the new regimen, and (3) following the final cycle of that regimen, or one year after the initial PET scans, whichever came first. (Median and mean times of early scans were 5.0 and 6.6 weeks after treatment initiation; median and mean times for late scans were 26.0 and 30.6 weeks after treatment initiation.) Scan data were analyzed on both tumor-by-tumor and patient-by-patient bases, and compared to each patient's clinical course. Mean change in FLT uptake in primary and metastatic tumors after the first course of chemotherapy showed a significant correlation with late (av. interval 5.8 months) changes in CA27.29 tumor marker levels (r = 0.79, P = 0.001). When comparing changes in tracer uptake after one chemotherapy course versus late changes in tumor size as measured by CT scans, FLT

  15. Increased (18)F-FDG uptake in the trapezius muscle in patients with spinal accessory neuropathy.

    PubMed

    Lee, Seung Hak; Seo, Han Gil; Oh, Byung-Mo; Choi, Hongyoon; Cheon, Gi Jeong; Lee, Shi-Uk

    2016-03-15

    To investigate (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) signal changes of denervated muscles in patients with electrophysiologically confirmed neuropathy. This is a case series of three cancer patients who were referred to the electromyography laboratory in 2013 due to shoulder discomfort after surgery including neck dissection. Spinal accessory neuropathy was diagnosed based on electrophysiological studies. Patients' medical history, electrophysiological data, and FDG-PET images were reviewed retrospectively. Mean standard uptake values (SUV) of trapezius muscles were measured. The patients (3 men, aged 61-78years) showed spinal accessory neuropathy with different degrees of severity. In all patients, preoperative or postoperative FDG-PET showed increased FDG uptake in the ipsilateral trapezius muscle. These results were compatible with previously reported glucose hypermetabolism in denervated skeletal muscles. This is the first clinical report of increased FDG uptake by denervated muscles in electrophysiologically confirmed neuropathy. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Postinjection L-phenylalanine increases basal ganglia contrast in PET scans of 6-18F-DOPA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Doudet, D.J.; McLellan, C.A.; Aigner, T.G.

    The sensitivity of 18F-DOPA positron emission tomography for imaging presynaptic dopamine systems is limited by the amount of specific-to-nonspecific accumulation of radioactivity in brain. In rhesus monkeys, we have been able to increase this ratio by taking advantage of the lag time between 18F-DOPA injection and the formation of its main metabolite, the amino acid 18F-fluoromethoxydopa, the entrance of which into brain is responsible for most of the brain's nonspecific radioactivity. By infusing an unlabeled amino acid, L-phenylalanine, starting 15 min after 18F-DOPA administration, we preferentially blocked the accumulation of 18F-fluoromethoxydopa by preventing its entrance into brain through competition atmore » the large neutral amino acid transport system of the blood-brain barrier. This method appears as reliable as the original and more sensitive, as demonstrated by the comparison of normal and MPTP-treated animals under both conditions.« less

  17. Pretreatment [{sup 18}F]-fluoro-2-deoxy-glucose Positron Emission Tomography Maximum Standardized Uptake Value as Predictor of Distant Metastasis in Early-Stage Non-Small Cell Lung Cancer Treated With Definitive Radiation Therapy: Rethinking the Role of Positron Emission Tomography in Personalizing Treatment Based on Risk Status

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nair, Vimoj J.; MacRae, Robert; Ottawa Hospital Research Institute, Ottawa, Ontario

    2014-02-01

    Purpose: The aim of this study was to determine whether the preradiation maximum standardized uptake value (SUV{sub max}) of the primary tumor for [{sup 18}F]-fluoro-2-deoxy-glucose positron emission tomography (FDG-PET) has a prognostic significance in patients with Stage T1 or T2N0 non-small cell lung cancer (NSCLC) treated with curative radiation therapy, whether conventional or stereotactic body radiation therapy (SBRT). Methods and Materials: Between January 2007 and December 2011, a total of 163 patients (180 tumors) with medically inoperable histologically proven Stage T1 or T2N0 NSCLC and treated with radiation therapy (both conventional and SBRT) were entered in a research ethics boardmore » approved database. All patients received pretreatment FDG-PET / computed tomography (CT) at 1 institution with consistent acquisition technique. The medical records and radiologic images of these patients were analyzed. Results: The overall survival at 2 years and 3 years for the whole group was 76% and 67%, respectively. The mean and median SUV{sub max} were 8.1 and 7, respectively. Progression-free survival at 2 years with SUV{sub max} <7 was better than that of the patients with tumor SUV{sub max} ≥7 (67% vs 51%; P=.0096). Tumors with SUV{sub max} ≥7 were associated with a worse regional recurrence-free survival and distant metastasis-free survival. In the multivariate analysis, SUV{sub max} ≥7 was an independent prognostic factor for distant metastasis-free survival. Conclusion: In early-stage NSCLC managed with radiation alone, patients with SUV{sub max} ≥7 on FDG-PET / CT scan have poorer outcomes and high risk of progression, possibly because of aggressive biology. There is a potential role for adjuvant therapies for these high-risk patients with intent to improve outcomes.« less

  18. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see.

    PubMed

    Cocker, Myra S; Mc Ardle, Brian; Spence, J David; Lum, Cheemun; Hammond, Robert R; Ongaro, Deidre C; McDonald, Matthew A; Dekemp, Robert A; Tardif, Jean-Claude; Beanlands, Rob S B

    2012-12-01

    Prodigious efforts and landmark discoveries have led toward significant advances in our understanding of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global burden of disease. It is imperative to develop strategies for the early detection of disease. Positron emission tomography (PET) imaging utilizing [(18)F]fluorodeoxyglucose (FDG) may provide a non-invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the rationale for performing FDG imaging, provide an overview into the mechanism of action, and summarize findings from the early application of FDG PET imaging in the clinical setting to evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed.

  19. Baseline [(18)F]FMISO μPET as a Predictive Biomarker for Response to HIF-1α Inhibition Combined with 5-FU Chemotherapy in a Human Colorectal Cancer Xenograft Model.

    PubMed

    De Bruycker, Sven; Vangestel, Christel; Van den Wyngaert, Tim; Wyffels, Leonie; Wouters, An; Pauwels, Patrick; Staelens, Steven; Stroobants, Sigrid

    2016-08-01

    The purpose of this study was to characterize imaging biomarkers for the potential benefit of hypoxia-inducible factor-1 (HIF-1)α inhibition (by PX-12) during 5-fluorouracil (5-FU) chemotherapy in the treatment of colorectal cancer (CRC). Therapy response to 5-FU ± PX-12 was assessed with baseline [(18)F]fluoromisonidazole ([(18)F]FMISO) and longitudinal 2-deoxy-2-[(18)F]fluoro-D-glucose ([(18)F]FDG) positron emission computed tomography (μPET/CT) in CRC xenograft model (n = 36) during breathing of a hypoxic (10 % O2) or normoxic (21 % O2) atmosphere. Ex vivo, immunohistochemistry was performed. Baseline [(18)F]FMISO uptake and relative tumor volume (RTV) 2 days after 5-FU or 5-FU + PX-12 administration correlated significantly (p ≤ 0.01). Under hypoxic breathing conditions, [(18)F]FDG uptake (-53.1 ± 8.4 %) and Ki67 expression (-16 %) decreased and RTV stagnated in the 5-FU + PX-12 treatment group, but not in 5-FU alone-treated tumors. Under normoxic breathing, [(18)F]FDG uptake (-23.5 ± 15.2 % and -72.8 ± 7.1 %) and Ki67 expression (-5 % and -19 %) decreased and RTV stagnated in both the 5-FU and the combination treatment group, respectively. Baseline [(18)F]FMISO μPET may predict the beneficial effect of HIF-1α inhibition during 5-FU chemotherapy in CRC.

  20. Comparative assessment of 6-[18 F]fluoro-L-m-tyrosine and 6-[18 F]fluoro-L-dopa to evaluate dopaminergic presynaptic integrity in a Parkinson's disease rat model.

    PubMed

    Becker, Guillaume; Bahri, Mohamed Ali; Michel, Anne; Hustadt, Fabian; Garraux, Gaëtan; Luxen, André; Lemaire, Christian; Plenevaux, Alain

    2017-05-01

    Because of the progressive loss of nigro-striatal dopaminergic terminals in Parkinson's disease (PD), in vivo quantitative imaging of dopamine (DA) containing neurons in animal models of PD is of critical importance in the preclinical evaluation of highly awaited disease-modifying therapies. Among existing methods, the high sensitivity of positron emission tomography (PET) is attractive to achieve that goal. The aim of this study was to perform a quantitative comparison of brain images obtained in 6-hydroxydopamine (6-OHDA) lesioned rats using two dopaminergic PET radiotracers, namely [ 18 F]fluoro-3,4-dihydroxyphenyl-L-alanine ([ 18 F]FDOPA) and 6-[ 18 F]fluoro-L-m-tyrosine ([ 18 F]FMT). Because the imaging signal is theoretically less contaminated by metabolites, we hypothesized that the latter would show stronger relationship with behavioural and post-mortem measures of striatal dopaminergic deficiency. We used a within-subject design to measure striatal [ 18 F]FMT and [ 18 F]FDOPA uptake in eight partially lesioned, eight fully lesioned and ten sham-treated rats. Animals were pretreated with an L-aromatic amino acid decarboxylase inhibitor. A catechol-O-methyl transferase inhibitor was also given before [ 18 F]FDOPA PET. Quantitative estimates of striatal uptake were computed using conventional graphical Patlak method. Striatal dopaminergic deficiencies were measured with apomorphine-induced rotations and post-mortem striatal DA content. We observed a strong relationship between [ 18 F]FMT and [ 18 F]FDOPA estimates of decreased uptake in the denervated striatum using the tissue-derived uptake rate constant K c . However, only [ 18 F]FMT K c succeeded to discriminate between the partial and the full 6-OHDA lesion and correlated well with the post-mortem striatal DA content. This study indicates that the [ 18 F]FMT could be more sensitive, with respect of [ 18 F]FDOPA, to investigate DA terminals loss in 6-OHDA rats, and open the way to in vivo L

  1. Comparison of Core-Needle Biopsy and Fine-Needle Aspiration for Evaluating Thyroid Incidentalomas Detected by 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography: A Propensity Score Analysis.

    PubMed

    Suh, Chong Hyun; Choi, Young Jun; Lee, Jong Jin; Shim, Woo Hyun; Baek, Jung Hwan; Chung, Han Cheol; Shong, Young Kee; Song, Dong Eun; Sung, Tae Yon; Lee, Jeong Hyun

    2017-10-01

    This study used a propensity score analysis to assess the roles of core-needle biopsy (CNB) and fine-needle aspiration (FNA) in the evaluation of thyroid incidentalomas detected on 18 F-fluorodeoxyglucose positron emission tomography/computed tomography ( 18 F-FDG PET/CT). The study population was obtained from a historical cohort who underwent 18 F-FDG PET/CT between October 2008 and September 2015. Patients were included who underwent ultrasound-guided CNB or FNA for incidental focal uptake of 18 F-FDG in the thyroid gland on PET/CT. The primary study outcomes included the inconclusive result rates in the CNB and FNA groups. The secondary outcome measures included the non-diagnostic result rate and the diagnostic performance for neoplasms. Multivariate analysis, propensity score matching, and inverse probability weighting were conducted. A total of 1360 nodules from 1338 patients were included in this study: 859 nodules from 850 patients underwent FNA, and 501 nodules from 488 patients underwent CNB. Compared to FNA, CNB demonstrated a significantly lower inconclusive result rate in the pooled cohort (23.8% vs. 35.4%; p < 0.001), propensity score-matched cohorts (22.9% vs. 36.6%; p < 0.001), and with inverse probability weighting (22.4% vs. 35.2%; p < 0.001). Non-diagnostic result rates were also significantly lower in CNB than in FNA. The diagnostic performance of the two groups in the pooled and matched cohorts was similar, with no significant differences found. The significantly lower inconclusive result rates in CNB than in FNA were consistent within the propensity score-matched cohorts. Therefore, CNB appears to be a promising diagnostic tool for patients with thyroid incidentalomas detected on 18 F-FDG PET/CT.

  2. Quantifying the activity of adenoviral E1A CR2 deletion mutants using renilla luciferase bioluminescence and 3'-deoxy-3'-[18F]fluorothymidine positron emission tomography imaging.

    PubMed

    Leyton, Julius; Lockley, Michelle; Aerts, Joeri L; Baird, Sarah K; Aboagye, Eric O; Lemoine, Nicholas R; McNeish, Iain A

    2006-09-15

    The adenoviral E1A CR2 mutant dl922-947 has potent activity in ovarian cancer. We have used Renilla luciferase bioluminescence imaging to monitor viral E1A expression and replication and [18F]fluorothymidine positron emission tomography ([18F]FLT-PET) to quantify the activity of dl922-947 in vivo. We created dlCR2 Ren, with the same E1A CR2 deletion as dl922-947 and the luciferase gene from Renilla reniformis downstream of E1. Light emitted from s.c. and i.p. IGROV1 ovarian carcinoma xenografts was measured following treatment with dlCR2 Ren. Mice bearing s.c. IGROV1 xenografts were injected with 2.96 to 3.7 MBq of [18F]FLT 48 and 168 hours following i.t. injection of dl922-947 or control virus Ad LM-X. The presence of Renilla luciferase in dlCR2 Ren did not reduce in vitro nor in vivo potency compared with dl922-947. Light emission correlated closely with E1A expression in vitro and peaked 48 hours after dlCR2 Ren injection in both s.c. and i.p. IGROV1 xenografts. It diminished by 168 hours in s.c. tumors but persisted for at least 2 weeks in i.p. models. Normalized tumor [18F]FLT uptake at 60 minutes (NUV60), fractional retention, and area under radioactivity curve all decreased marginally 48 hours after dl922-947 treatment and significantly at 168 hours compared with controls. There was a close linear correlation between NUV60 and both tumor proliferation (Ki67 labeling index) and thymidine kinase 1 expression. Renilla luciferase bioluminescence and [18F]FLT-PET imaging are capable of quantifying the activity and effectiveness of E1A CR2-deleted adenoviral mutants in ovarian cancer.

  3. [(18)F]Florbetaben: a review in β-amyloid PET imaging in cognitive impairment.

    PubMed

    Syed, Yahiya Y; Deeks, Emma

    2015-07-01

    Intravenous (18)F-labelled florbetaben ([(18)F]florbetaben) [Neuraceq™] is a polyethylene glycol stilbene derivative that is approved in the USA, EU and South Korea for positron emission tomography (PET) imaging of the brain. It is used to estimate β-amyloid neuritic plaque density in adult patients with cognitive impairment who are being evaluated for Alzheimer's disease and other causes of cognitive impairment. In vitro, [(18)F]florbetaben has high affinity and selectivity for β-amyloid. It has a short PET scan time (15-20 min). Visual assessment of regional and whole brain [(18)F]florbetaben PET images detected brain β-amyloid with high sensitivity and specificity, with good inter-reader agreement, in a phase III study in patients with various levels of cognitive function when compared with postmortem histopathological assessment. The whole brain visual assessment displayed high positive and negative predictive values, enabling amyloid pathology to be reliably detected or excluded. Quantitative PET analyses were generally consistent with the visual assessments. [(18)F]florbetaben was generally well tolerated in clinical trials. All adverse reactions in [(18)F]florbetaben recipients were mild to moderate in severity and the most common were injection-site-related (erythema, irritation and pain). There were no serious adverse reactions related to [(18)F]florbetaben. In summary, [(18)F]florbetaben is a highly accurate β-amyloid PET tracer that has the potential to support the clinical diagnosis of Alzheimer's disease and other causes of cognitive decline.

  4. 18F-Fluoromisonidazole positron emission tomography (FMISO-PET) may reflect hypoxia and cell proliferation activity in oral squamous cell carcinoma.

    PubMed

    Sato, Jun; Kitagawa, Yoshimasa; Watanabe, Shiro; Asaka, Takuya; Ohga, Noritaka; Hirata, Kenji; Okamoto, Shozo; Shiga, Tohru; Shindoh, Masanobu; Kuge, Yuji; Tamaki, Nagara

    2017-09-01

    Hypoxia is a common feature and prognostic factor in cancer. 18 F-fluoromisonidazole (FMISO) positron emission tomography (PET) can detect tumor hypoxia noninvasively. The aim of this study was to assess the correlations between FMISO-PET and 18 F-fluorodexyglucose (FDG)-PET parameters with cell proliferation and hypoxia in patients with oral squamous cell carcinoma (OSCC). Twenty-three preoperative patients with OSCC were included. The tumor/muscle ratio (TMR) of FMISO-PET, the maximum standardized uptake values (SUV max ) of FDG-PET, metabolic tumor volume, and total lesion glycolysis were measured. Ki-67 and hypoxia-inducible factor-1α (HIF-1α) expression was immunohistochemically evaluated. FMISO TMR (P = .003) and FDG SUV max (P = .04) were significantly higher in patients with high expression of Ki-67 compared with those with low expression of Ki-67. FMISO TMR (P = .006) and FDG SUV max (P = .01) were also significantly higher in patients with HIF-1α expression than in those without HIF-1α expression. Metabolic tumor volume was not significantly related to either Ki-67 or HIF-1α expression. Multivariate analysis showed that FMISO TMR was independently predictive of Ki-67 (P = .002; odds ratio 31.1) and HIF-1α (P = .049; odds ratio 10.5) expression. FMISO-PET showed significant relationships with Ki-67 and HIF-1α expression, which are key features of cell proliferation and hypoxia in OSCC. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Positron Emission Tomography-Guided, Focal-Dose Escalation Using Intensity-Modulated Radiotherapy for Head and Neck Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madani, Indira; Duthoy, Wim; Derie, Cristina R.N.

    2007-05-01

    Purpose: To assess the feasibility of intensity-modulated radiotherapy (IMRT) using positron emission tomography (PET)-guided dose escalation, and to determine the maximum tolerated dose in head and neck cancer. Methods and Materials: A Phase I clinical trial was designed to escalate the dose limited to the [{sup 18}-F]fluoro-2-deoxy-D-glucose positron emission tomography ({sup 18}F-FDG-PET)-delineated subvolume within the gross tumor volume. Positron emission tomography scanning was performed in the treatment position. Intensity-modulated radiotherapy with an upfront simultaneously integrated boost was employed. Two dose levels were planned: 25 Gy (level I) and 30 Gy (level II), delivered in 10 fractions. Standard IMRT was appliedmore » for the remaining 22 fractions of 2.16 Gy. Results: Between 2003 and 2005, 41 patients were enrolled, with 23 at dose level I, and 18 at dose level II; 39 patients completed the planned therapy. The median follow-up for surviving patients was 14 months. Two cases of dose-limiting toxicity occurred at dose level I (Grade 4 dermitis and Grade 4 dysphagia). One treatment-related death at dose level II halted the study. Complete response was observed in 18 of 21 (86%) and 13 of 16 (81%) evaluated patients at dose levels I and II (p < 0.7), respectively, with actuarial 1-year local control at 85% and 87% (p n.s.), and 1-year overall survival at 82% and 54% (p = 0.06), at dose levels I and II, respectively. In 4 of 9 patients, the site of relapse was in the boosted {sup 18}F-FDG-PET-delineated region. Conclusions: For head and neck cancer, PET-guided dose escalation appears to be well-tolerated. The maximum tolerated dose was not reached at the investigated dose levels.« less

  6. Identification of brain regions predicting epileptogenesis by serial [18F]GE-180 positron emission tomography imaging of neuroinflammation in a rat model of temporal lobe epilepsy.

    PubMed

    Russmann, Vera; Brendel, Matthias; Mille, Erik; Helm-Vicidomini, Angela; Beck, Roswitha; Günther, Lisa; Lindner, Simon; Rominger, Axel; Keck, Michael; Salvamoser, Josephine D; Albert, Nathalie L; Bartenstein, Peter; Potschka, Heidrun

    2017-01-01

    Excessive activation of inflammatory signaling pathways seems to be a hallmark of epileptogenesis. Positron emission tomography (PET) allows in vivo detection of brain inflammation with spatial information and opportunities for longitudinal follow-up scanning protocols. Here, we assessed whether molecular imaging of the 18 kDa translocator protein (TSPO) can serve as a biomarker for the development of epilepsy. Therefore, brain uptake of [ 18 F]GE-180, a highly selective radioligand of TSPO, was investigated in a longitudinal PET study in a chronic rat model of temporal lobe epilepsy. Analyses revealed that the influence of the epileptogenic insult on [ 18 F]GE-180 brain uptake was most pronounced in the earlier phase of epileptogenesis. Differences were evident in various brain regions during earlier phases of epileptogenesis with [ 18 F]GE-180 standardized uptake value enhanced by 2.1 to 2.7fold. In contrast, brain regions exhibiting differences seemed to be more restricted with less pronounced increases of tracer uptake by 1.8-2.5fold four weeks following status epilepticus and by 1.5-1.8fold in the chronic phase. Based on correlation analysis, we were able to identify regions with a predictive value showing a correlation with seizure development. These regions include the amygdala as well as a cluster of brain areas. This cluster comprises parts of different brain regions, e.g. the hippocampus, parietal cortex, thalamus, and somatosensory cortex. In conclusion, the data provide evidence that [ 18 F]GE-180 PET brain imaging can serve as a biomarker of epileptogenesis. The identification of brain regions with predictive value might facilitate the development of preventive concepts as well as the early assessment of the interventional success. Future studies are necessary to further confirm the predictivity of the approach.

  7. Integrated whole-body PET/MR imaging with 18F-FDG, 18F-FDOPA, and 18F-fluorodopamine in paragangliomas, in comparison to PET/CT: NIH first clinical experience with a single-injection, dual-modality imaging protocol

    PubMed Central

    Blanchet, Elise M.; Millo, Corina; Martucci, Victoria; Maass-Moreno, Roberto; Bluemke, David A.; Pacak, Karel

    2017-01-01

    Purpose Paragangliomas (PGLs) are tumors that can metastasize and recur; therefore, lifelong imaging follow-up is required. Hybrid positron emission tomography (PET)/computed tomography (/CT) is an essential tool to image PGLs. Novel hybrid PET/magnetic resonance (/MR) scanners are currently being studied in clinical oncology. We studied the feasibility of simultaneous whole-body PET/MR imaging to evaluate patients with PGLs. Methods Fifty-three PGLs or PGL-related lesions from eight patients were evaluated. All patients underwent a single-injection, dual-modality imaging protocol consisting of a PET/CT and subsequent PET/MR scan. Four patients were evaluated with 18F-fluorodeoxyglucose (18F-FDG), two with 18F-fluorodihydroxyphenylalanine (18F-FDOPA), and two with 18F-fluorodopamine (18F-FDA). PET/MR data were acquired using a hybrid whole-body 3-Tesla integrated PET/MR scanner. PET and MR data (DIXON images for attenuation correction and T2-weighted sequences for anatomic allocation) were acquired simultaneously. Imaging workflow and imaging times were documented. PET/MR and PET/CT data were visually assessed (blindly) in regards to image quality, lesion detection, and anatomic allocation and delineation of the PET findings. Results With hybrid PET/MR, we obtained high quality images in an acceptable acquisition time (median: 31 min, range: 25–40 min) with good patient compliance. A total of 53 lesions, located in the head-and-neck area (6), mediastinum (2), abdomen and pelvis (13), lungs (2), liver (4), and bone (26) were evaluated. 51 lesions were detected with PET/MR and confirmed by PET/CT. Two bone lesions (L4 body (8 mm) and sacrum (6 mm)) were not detectable on an 18F-FDA scan PET/MR, likely due to washout of the 18F-FDA. Co-registered MR tended to be superior to co-registered CT for head-and-neck, abdomen, pelvis, and liver lesions for anatomic allocation and delineation. Conclusions Clinical PGL evaluation with hybrid PET/MR is feasible with high image

  8. Epidural premotor cortical stimulation in primary focal dystonia: clinical and 18F-fluoro deoxyglucose positron emission tomography open study.

    PubMed

    Lalli, Stefania; Piacentini, Sylvie; Franzini, Angelo; Panzacchi, Andrea; Cerami, Chiara; Messina, Giuseppe; Ferré, Francesca; Perani, Daniela; Albanese, Alberto

    2012-04-01

    The aim of this study was to evaluate the efficacy and safety of epidural premotor stimulation in patients with primary focal dystonia. Seven patients were selected: 6 had cervical dystonia and 1 had right upper limb dystonia. In 2 patients, sustained muscle contractions led to a prevalently fixed head posture. Patients with cervical dystonia received a bilateral implant, whereas the patient with hand dystonia received a unilateral implant. Neurological and neuropsychological evaluations were performed before surgery (baseline), and 1, 3, 6, and 12 months afterward. The Burke-Fahn-Marsden scale (BFMS) and the Toronto Western spasmodic torticollis rating scale (TWSTRS) were administered at the same time points. Patients underwent resting (18)F-fluorodeoxyglucose (FDG) positron emission tomography (PET) scans, before and 12 months after surgery. No adverse events occurred. An overall improvement was observed on the BFMS and TWSTRS after surgery. Patients with prevalently fixed cervical dystonia had a reduced benefit. Presurgical neuroimaging revealed a significant bilateral metabolic increase in the sensorimotor areas, which was reduced after surgery. Copyright © 2012 Movement Disorder Society.

  9. Clinical value of whole body fluorine-18 fluorodeoxyglucose positron emission tomography/computed tomography in the detection of metastatic bladder cancer.

    PubMed

    Yang, Zhongyi; Pan, Lingling; Cheng, Jingyi; Hu, Silong; Xu, Junyan; Ye, Dingwei; Zhang, Yingjian

    2012-07-01

    To investigate the value of whole-body fluorine-18 2-fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography for the detection of metastatic bladder cancer. From December 2006 to August 2010, 60 bladder cancer patients (median age 60.5 years old, range 32-96) underwent whole body positron emission tomography/computed tomography positron emission tomography/computed tomography. The diagnostic accuracy was assessed by performing both organ-based and patient-based analyses. Identified lesions were further studied by biopsy or clinically followed for at least 6 months. One hundred and thirty-four suspicious lesions were identified. Among them, 4 primary cancers (2 pancreatic cancers, 1 colonic and 1 nasopharyngeal cancer) were incidentally detected, and the patients could be treated on time. For the remaining 130 lesions, positron emission tomography/computed tomography detected 118 true positive lesions (sensitivity = 95.9%). On the patient-based analysis, the overall sensitivity and specificity resulted to be 87.1% and 89.7%, respectively. There was no difference of sensitivity and specificity in patients with or without adjuvant treatment in terms of detection of metastatic sites by positron emission tomography/computed tomography. Compared with conventional imaging modality, positron emission tomography/computed tomography correctly changed the management in 15 patients (25.0%). Positron emission tomography/computed tomography has excellent sensitivity and specificity in the detection of metastatic bladder cancer and it provides additional diagnostic information compared to standard imaging techniques. © 2012 The Japanese Urological Association.

  10. Detection of osseous metastasis by 18F-NaF/18F-FDG PET/CT versus CT alone.

    PubMed

    Sampath, Srinath C; Sampath, Srihari C; Mosci, Camila; Lutz, Amelie M; Willmann, Juergen K; Mittra, Erik S; Gambhir, Sanjiv S; Iagaru, Andrei

    2015-03-01

    Sodium fluoride PET (18F-NaF) has recently reemerged as a valuable method for detection of osseous metastasis, with recent work highlighting the potential of coadministered 18F-NaF and 18F-FDG PET/CT in a single combined imaging examination. We further examined the potential of such combined examinations by comparing dual tracer 18F-NaF18/F-FDG PET/CT with CT alone for detection of osseous metastasis. Seventy-five participants with biopsy-proven malignancy were consecutively enrolled from a single center and underwent combined 18F-NaF/18F-FDG PET/CT and diagnostic CT scans. PET/CT as well as CT only images were reviewed in blinded fashion and compared with the results of clinical, imaging, or histological follow-up as a truth standard. Sensitivity of the combined 18F-NaF/18F-FDG PET/CT was higher than that of CT alone (97.4% vs 66.7%). CT and 18F-NaF/18F-FDG PET/CT were concordant in 73% of studies. Of 20 discordant cases, 18F-NaF/18F-FDG PET/CT was correct in 19 (95%). Three cases were interpreted concordantly but incorrectly, and all 3 were false positives. A single case of osseous metastasis was detected by CT alone, but not by 18F-NaF/18F-FDG PET/CT. Combined 18F-NaF/18F-FDG PET/CT outperforms CT alone and is highly sensitive and specific for detection of osseous metastases. The concordantly interpreted false-positive cases demonstrate the difficulty of distinguishing degenerative from malignant disease, whereas the single case of metastasis seen on CT but not PET highlights the need for careful review of CT images in multimodality studies.

  11. [18F]Fluorophenylazocarboxylates: Design and Synthesis of Potential Radioligands for Dopamine D3 and μ-Opioid Receptor

    PubMed Central

    2017-01-01

    18F-Labeled building blocks from the type of [18F]fluorophenylazocarboxylic-tert-butyl esters offer a rapid, mild, and reliable method for the 18F-fluoroarylation of biomolecules. Two series of azocarboxamides were synthesized as potential radioligands for dopamine D3 and the μ-opioid receptor, revealing compounds 3d and 3e with single-digit and sub-nanomolar affinity for the D3 receptor and compound 4c with only micromolar affinity for the μ-opioid receptor, but enhanced selectivity for the μ-subtype in comparison to the lead compound AH-7921. A “minimalist procedure” without the use of a cryptand and base for the preparation of 4-[18F]fluorophenylazocarboxylic-tert-butyl ester [18F]2a was established, together with the radiosynthesis of methyl-, methoxy-, and phenyl-substituted derivatives ([18F]2b–f). With the substituted [18F]fluorophenylazocarbylates in hand, two prototype azocarboxylates radioligands were synthesized by 18F-fluoroarylation, namely the methoxy azocarboxamide [18F]3d as the D3 receptor radioligand and [18F]4a as a prototype structure of the μ-opioid receptor radioligand. By introducing the new series of [18F]fluorophenylazocarboxylic-tert-butyl esters, the method of 18F-fluoroarylation was significantly expanded, thereby demonstrating the versatility of 18F-labeled phenylazocarboxylates for the design of potential radiotracers for positron emission tomography . PMID:29479577

  12. Imaging Bone–Cartilage Interactions in Osteoarthritis Using [18F]-NaF PET-MRI

    PubMed Central

    Pedoia, Valentina; Seo, Youngho; Yang, Jaewon; Bucknor, Matt; Franc, Benjamin L.; Majumdar, Sharmila

    2016-01-01

    Purpose: Simultaneous positron emission tomography–magnetic resonance imaging (PET-MRI) is an emerging technology providing both anatomical and functional images without increasing the scan time. Compared to the traditional PET/computed tomography imaging, it also exposes the patient to significantly less radiation and provides better anatomical images as MRI provides superior soft tissue characterization. Using PET-MRI, we aim to study interactions between cartilage composition and bone function simultaneously, in knee osteoarthritis (OA). Procedures: In this article, bone turnover and remodeling was studied using [18F]-sodium fluoride (NaF) PET data. Quantitative MR-derived T1ρ relaxation times characterized the biochemical cartilage degeneration. Sixteen participants with early signs of OA of the knee received intravenous injections of [18F]-NaF at the onset of PET-MR image acquisition. Regions of interest were identified, and kinetic analysis of dynamic PET data provided the rate of uptake (Ki) and the normalized uptake (standardized uptake value) of [18F]-NaF in the bone. Morphological MR images and quantitative voxel-based T1ρ maps of cartilage were obtained using an atlas-based registration technique to segment cartilage automatically. Voxel-by-voxel statistical parameter mapping was used to investigate the relationship between bone and cartilage. Results: Increases in cartilage T1ρ, indicating degenerative changes, were associated with increased turnover in the adjoining bone but reduced turnover in the nonadjoining compartments. Associations between pain and increased bone uptake were seen in the absence of morphological lesions in cartilage, but the relationship was reversed in the presence of incident cartilage lesions. Conclusion: This study shows significant cartilage and bone interactions in OA of the knee joint using simultaneous [18F]-NaF PET-MR, the first in human study. These observations highlight the complex biomechanical and biochemical

  13. Targeting Prostate-Specific Membrane Antigen (PSMA) with F-18-Labeled Compounds: the Influence of Prosthetic Groups on Tumor Uptake and Clearance Profile.

    PubMed

    Bouvet, Vincent; Wuest, Melinda; Bailey, Justin J; Bergman, Cody; Janzen, Nancy; Valliant, John F; Wuest, Frank

    2017-12-01

    Prostate-specific membrane antigen (PSMA) is an important biomarker expressed in the majority of prostate cancers. The favorable positron emission tomography (PET) imaging profile of the PSMA imaging agent 2-(3-(1-carboxy-5-[(6-[ 18 F]fluoro-pyridine-3-carbonyl)-amino]-pentyl)-ureido)-pentane-dioic acid [ 18 F]DCFPyL in preclinical prostate cancer models and in prostate cancer patients stimulated the development and validation of other fluorine-containing PSMA inhibitors to further enhance pharmacokinetics and simplify production methods. Here, we describe the synthesis and radiopharmacological evaluation of various F-18-labeled PSMA inhibitors which were prepared through different prosthetic group chemistry strategies. Prosthetic groups N-succinimidyl-4-[ 18 F]fluorobenzoate ([ 18 F]SFB), 4-[ 18 F]fluorobenzaldehyde, and 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) were used for bioconjugation reactions to PSMA-binding lysine-urea-glutamate scaffold via acylation and oxime formation. All fluorine-containing PSMA inhibitors were tested for their PSMA inhibitory potency in an in vitro competitive binding assay in comparison to an established reference compound [ 125 I]TAAG-PSMA. Tumor uptake and clearance profiles of three F-18-labeled PSMA inhibitors ([ 18 F]4, [ 18 F]7, and [ 18 F]8) were studied with dynamic PET imaging using LNCaP tumor-bearing mice. F-18-labeled PSMA inhibitors were synthesized in 32-69 % radiochemical yields using (1) acylation reaction at the primary amino group of the lysine residue with [ 18 F]SFB and (2) oxime formation with 4-[ 18 F]fluorobenzaldehyde and [ 18 F]FDG using the respective aminooxy-functionalized lysine residue. Compound 7 displayed an IC 50 value of 6 nM reflecting very high affinity for PSMA. Compounds 4 and 8 showed IC 50 values of 13 and 62 nM, respectively. The IC 50 value of reference compound DCFPyL was 13 nM. Dynamic PET imaging revealed the following SUV 60min for radiotracer uptake in PSMA(+) LNCaP tumors: 0

  14. Glucose Metabolism as a Pre-clinical Biomarker for the Golden Retriever Model of Duchenne Muscular Dystrophy.

    PubMed

    Schneider, Sarah Morar; Sridhar, Vidya; Bettis, Amanda K; Heath-Barnett, Heather; Balog-Alvarez, Cynthia J; Guo, Lee-Jae; Johnson, Rachel; Jaques, Scott; Vitha, Stanislav; Glowcwski, Alan C; Kornegay, Joe N; Nghiem, Peter P

    2018-03-05

    Metabolic dysfunction in Duchenne muscular dystrophy (DMD) is characterized by reduced glycolytic and oxidative enzymes, decreased and abnormal mitochondria, decreased ATP, and increased oxidative stress. We analyzed glucose metabolism as a potential disease biomarker in the genetically homologous golden retriever muscular dystrophy (GRMD) dog with molecular, biochemical, and in vivo imaging. Pelvic limb skeletal muscle and left ventricle tissue from the heart were analyzed by mRNA profiling, qPCR, western blotting, and immunofluorescence microscopy for the primary glucose transporter (GLUT4). Physiologic glucose handling was measured by fasting glucose tolerance test (GTT), insulin levels, and skeletal and cardiac positron emission tomography/X-ray computed tomography (PET/CT) using the glucose analog 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG). MRNA profiles showed decreased GLUT4 in the cranial sartorius (CS), vastus lateralis (VL), and long digital extensor (LDE) of GRMD vs. normal dogs. QPCR confirmed GLUT4 downregulation but increased hexokinase-1. GLUT4 protein levels were not different in the CS, VL, or left ventricle but increased in the LDE of GRMD vs. normal. Microscopy revealed diffuse membrane expression of GLUT4 in GRMD skeletal but not cardiac muscle. GTT showed higher basal glucose and insulin in GRMD but rapid tissue glucose uptake at 5 min post-dextrose injection in GRMD vs. normal/carrier dogs. PET/ CT with [ 18 F]FDG and simultaneous insulin stimulation showed a significant increase (p = 0.03) in mean standard uptake values (SUV) in GRMD skeletal muscle but not pelvic fat at 5 min post-[ 18 F]FDG /insulin injection. Conversely, mean cardiac SUV was lower in GRMD than carrier/normal (p < 0.01). Altered glucose metabolism in skeletal and cardiac muscle of GRMD dogs can be monitored with molecular, biochemical, and in vivo imaging studies and potentially utilized as a biomarker for disease progression and therapeutic response.

  15. High-resolution(18)F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging for pituitary adenoma detection in Cushing disease.

    PubMed

    Chittiboina, Prashant; Montgomery, Blake K; Millo, Corina; Herscovitch, Peter; Lonser, Russell R

    2015-04-01

    OBJECT High-resolution PET (hrPET) performed using a high-resolution research tomograph is reported as having a resolution of 2 mm and could be used to detect corticotroph adenomas through uptake of(18)F-fluorodeoxyglucose ((18)F-FDG). To determine the sensitivity of this imaging modality, the authors compared(18)F-FDG hrPET and MRI detection of pituitary adenomas in Cushing disease (CD). METHODS Consecutive patients with CD who underwent preoperative(18)F-FDG hrPET and MRI (spin echo [SE] and spoiled gradient recalled [SPGR] sequences) were prospectively analyzed. Standardized uptake values (SUVs) were calculated from hrPET and were compared with MRI findings. Imaging findings were correlated to operative and histological findings. RESULTS Ten patients (7 females and 3 males) were included (mean age 30.8 ± 19.3 years; range 11-59 years). MRI revealed a pituitary adenoma in 4 patients (40% of patients) on SE and 7 patients (70%) on SPGR sequences.(18)F-FDG hrPET demonstrated increased(18)F-FDG uptake consistent with an adenoma in 4 patients (40%; adenoma size range 3-14 mm). Maximum SUV was significantly higher for(18)F-FDG hrPET-positive tumors (difference = 5.1, 95% CI 2.1-8.1; p = 0.004) than for(18)F-FDG hrPET-negative tumors.(18)F-FDG hrPET positivity was not associated with tumor volume (p = 0.2) or dural invasion (p = 0.5). Midnight and morning ACTH levels were associated with(18)F-FDG hrPET positivity (p = 0.01 and 0.04, respectively) and correlated with the maximum SUV (R = 0.9; p = 0.001) and average SUV (R = 0.8; p = 0.01). All(18)F-FDG hrPET-positive adenomas had a less than a 180% ACTH increase and(18)F-FDG hrPET-negative adenomas had a greater than 180% ACTH increase after CRH stimulation (p = 0.03). Three adenomas were detected on SPGR MRI sequences that were not detected by(18)F-FDG hrPET imaging. Two adenomas not detected on SE (but no adenomas not detected on SPGR) were detected on(18)F-FDG hrPET. CONCLUSIONS While(18)F-FDG hrPET imaging can

  16. Regional cerebral glucose metabolic abnormality in Prader-Willi syndrome: A 18F-FDG PET study under sedation.

    PubMed

    Kim, Sang Eun; Jin, Dong-Kyu; Cho, Sang Soo; Kim, Ji-Hae; Hong, Sungdo David; Paik, Kyung Hoon; Oh, Yoo Joung; Kim, An Hee; Kwon, Eun Kyung; Choe, Yon Ho

    2006-07-01

    Prader-Willi syndrome (PWS) is a genetic disorder caused by the nonexpression of paternal genes in the PWS region of chromosome 15q11-13 and is the most common cause of human syndromic obesity. We investigated regional brain metabolic impairment in children with PWS by 18F-FDG PET. Sixteen children with PWS (9 males, 7 females; mean age +/- SD, 4.2 +/- 1.1 y) and 7 healthy children (4 males, 3 females; mean age +/- SD, 4.0 +/- 1.7 y) underwent brain 18F-FDG PET in the resting state. The images of PWS children were compared using statistical parametric mapping analysis with those of healthy children in a voxelwise manner. Group comparison showed that children with PWS had decreased glucose metabolism in the right superior temporal gyrus and left cerebellar vermis, regions that are associated with taste perception/food reward and cognitive and emotional function, respectively. Metabolism was increased in the right orbitofrontal, bilateral middle frontal, right inferior frontal, left superior frontal, and bilateral anterior cingulate gyri, right temporal pole, and left uncus, regions that are involved in cognitive functions related to eating or obsessive-compulsive behavior. Interestingly, no significant metabolic abnormality was found in the hypothalamus, the brain region believed to be most involved in energy intake and expenditure. This study describes the neural substrate underlying the abnormal eating behavior and psychobehavioral problems of PWS.

  17. Comparison of the pharmacokinetics between L-BPA and L-FBPA using the same administration dose and protocol: a validation study for the theranostic approach using [18F]-L-FBPA positron emission tomography in boron neutron capture therapy.

    PubMed

    Watanabe, Tsubasa; Hattori, Yoshihide; Ohta, Youichiro; Ishimura, Miki; Nakagawa, Yosuke; Sanada, Yu; Tanaka, Hiroki; Fukutani, Satoshi; Masunaga, Shin-Ichiro; Hiraoka, Masahiro; Ono, Koji; Suzuki, Minoru; Kirihata, Mitsunori

    2016-11-08

    Boron neutron capture therapy (BNCT) is a cellular-level particle radiation therapy that combines the selective delivery of boron compounds to tumour tissue with neutron irradiation. L-p-Boronophenylalanine (L-BPA) is a boron compound now widely used in clinical situations. Determination of the boron distribution is required for successful BNCT prior to neutron irradiation. Thus, positron emission tomography with [ 18 F]-L-FBPA, an 18 F-labelled radiopharmaceutical analogue of L-BPA, was developed. However, several differences between L-BPA and [ 18 F]-L-FBPA have been highlighted, including the different injection doses and administration protocols. The purpose of this study was to clarify the equivalence between L-BPA and [ 19 F]-L-FBPA as alternatives to [ 18 F]-L-FBPA. SCC-VII was subcutaneously inoculated into the legs of C3H/He mice. The same dose of L-BPA or [ 19 F]-L-FBPA was subcutaneously injected. The time courses of the boron concentrations in blood, tumour tissue, and normal tissue were compared between the groups. Next, we administered the therapeutic dose of L-BPA or the same dose of [ 19 F]-L-FBPA by continuous infusion and compared the effects of the administration protocol on boron accumulation in tissues. There were no differences between L-BPA and [ 19 F]-L-FBPA in the transition of boron concentrations in blood, tumour tissue, and normal tissue using the same administration protocol. However, the normal tissue to blood ratio of the boron concentrations in the continuous-infusion group was lower than that in the subcutaneous injection group. No difference was noted in the time course of the boron concentrations in tumour tissue and normal tissues between L-BPA and [ 19 F]-L-FBPA. However, the administration protocol had effects on the normal tissue to blood ratio of the boron concentration. In estimating the BNCT dose in normal tissue by positron emission tomography (PET), we should consider the possible overestimation of the normal tissue to

  18. Early Cardiac Involvement Affects Left Ventricular Longitudinal Function in Females Carrying α-Galactosidase A Mutation: Role of Hybrid Positron Emission Tomography and Magnetic Resonance Imaging and Speckle-Tracking Echocardiography.

    PubMed

    Spinelli, Letizia; Imbriaco, Massimo; Nappi, Carmela; Nicolai, Emanuele; Giugliano, Giuseppe; Ponsiglione, Andrea; Diomiaiuti, Tommaso Claudio; Riccio, Eleonora; Duro, Giovanni; Pisani, Antonio; Trimarco, Bruno; Cuocolo, Alberto

    2018-04-01

    Hybrid 18 F-fluorodeoxyglucose (FDG) positron emission tomography and magnetic resonance imaging may differentiate mature fibrosis or scar from fibrosis associated to active inflammation in patients with Anderson-Fabry disease, even in nonhypertrophic stage. This study was designed to compare the results of positron emission tomography and magnetic resonance cardiac imaging with those of speckle-tracking echocardiography in heterozygous Anderson-Fabry disease females. Twenty-four heterozygous females carrying α-galactosidase A mutation and without left ventricular hypertrophy underwent cardiac positron emission tomography and magnetic resonance using 18 F-FDG for glucose uptake and 2-dimensional strain echocardiography. 18 F-FDG myocardial uptake was quantified by measuring the coefficient of variation (COV) of the standardized uptake value using a 17-segment model. Focal 18 F-FDG uptake with COV >0.17 was detected in 13 patients, including 2 patients with late gadolinium enhancement at magnetic resonance. COV was 0.30±0.14 in patients with focal 18 F-FDG uptake and 0.12±0.03 in those without ( P <0.001). Strain echocardiography revealed worse global longitudinal systolic strain in patients with COV >0.17 compared with those with COV ≤0.17 (-18.5±2.7% versus -22.2±1.8%; P =0.024). For predicting COV >0.17, a global longitudinal strain >-19.8% had 77% sensitivity and 91% specificity and a value >2 dysfunctional segments 92% sensitivity and 100% specificity. In females carrying α-galactosidase A mutation, focal 18 F-FDG uptake represents an early sign of disease-related myocardial damage and is associated with impaired left ventricular longitudinal function. These findings support the hypothesis that inflammation plays an important role in glycosphingolipids storage disorders. © 2018 American Heart Association, Inc.

  19. 76 FR 6144 - Positron Emission Tomography; Notice of Public Meeting; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-03

    ... injection, and sodium fluoride F 18 injection used in positron emission tomography (PET) imaging. By... be submitted for FDG F 18 injection, ammonia N 13 injection, and sodium fluoride F 18 injection used..., ammonia N 13 injection, and sodium fluoride F 18 injection. FDA will present information designed to...

  20. The Value of 5-Aminolevulinic Acid in Low-grade Gliomas and High-grade Gliomas Lacking Glioblastoma Imaging Features: An Analysis Based on Fluorescence, Magnetic Resonance Imaging, 18F-Fluoroethyl Tyrosine Positron Emission Tomography, and Tumor Molecular Factors

    PubMed Central

    Jaber, Mohammed; Wölfer, Johannes; Ewelt, Christian; Holling, Markus; Hasselblatt, Martin; Niederstadt, Thomas; Zoubi, Tarek; Weckesser, Matthias

    2015-01-01

    BACKGROUND: Approximately 20% of grade II and most grade III gliomas fluoresce after 5-aminolevulinic acid (5-ALA) application. Conversely, approximately 30% of nonenhancing gliomas are actually high grade. OBJECTIVE: The aim of this study was to identify preoperative factors (ie, age, enhancement, 18F-fluoroethyl tyrosine positron emission tomography [18F-FET PET] uptake ratios) for predicting fluorescence in gliomas without typical glioblastomas imaging features and to determine whether fluorescence will allow prediction of tumor grade or molecular characteristics. METHODS: Patients harboring gliomas without typical glioblastoma imaging features were given 5-ALA. Fluorescence was recorded intraoperatively, and biopsy specimens collected from fluorescing tissue. World Health Organization (WHO) grade, Ki-67/MIB-1 index, IDH1 (R132H) mutation status, O6-methylguanine DNA methyltransferase (MGMT) promoter methylation status, and 1p/19q co-deletion status were assessed. Predictive factors for fluorescence were derived from preoperative magnetic resonance imaging and 18F-FET PET. Classification and regression tree analysis and receiver-operating-characteristic curves were generated for defining predictors. RESULTS: Of 166 tumors, 82 were diagnosed as WHO grade II, 76 as grade III, and 8 as glioblastomas grade IV. Contrast enhancement, tumor volume, and 18F-FET PET uptake ratio >1.85 predicted fluorescence. Fluorescence correlated with WHO grade (P < .001) and Ki-67/MIB-1 index (P < .001), but not with MGMT promoter methylation status, IDH1 mutation status, or 1p19q co-deletion status. The Ki-67/MIB-1 index in fluorescing grade III gliomas was higher than in nonfluorescing tumors, whereas in fluorescing and nonfluorescing grade II tumors, no differences were noted. CONCLUSION: Age, tumor volume, and 18F-FET PET uptake are factors predicting 5-ALA-induced fluorescence in gliomas without typical glioblastoma imaging features. Fluorescence was associated with an increased

  1. [18F]FE@SNAP—A new PET tracer for the melanin concentrating hormone receptor 1 (MCHR1): Microfluidic and vessel-based approaches

    PubMed Central

    Philippe, Cécile; Ungersboeck, Johanna; Schirmer, Eva; Zdravkovic, Milica; Nics, Lukas; Zeilinger, Markus; Shanab, Karem; Lanzenberger, Rupert; Karanikas, Georgios; Spreitzer, Helmut; Viernstein, Helmut; Mitterhauser, Markus; Wadsak, Wolfgang

    2012-01-01

    Changes in the expression of the melanin concentrating hormone receptor 1 (MCHR1) are involved in a variety of pathologies, especially obesity and anxiety disorders. To monitor these pathologies in-vivo positron emission tomography (PET) is a suitable method. After the successful radiosynthesis of [11C]SNAP-7941—the first PET-Tracer for the MCHR1, we aimed to synthesize its [18F]fluoroethylated analogue: [18F]FE@SNAP. Therefore, microfluidic and vessel-based approaches were tested. [18F]fluoroethylation was conducted via various [18F]fluoroalkylated synthons and direct [18F]fluorination. Only the direct [18F]fluorination of a tosylated precursor using a flow-through microreactor was successful, affording [18F]FE@SNAP in 44.3 ± 2.6%. PMID:22921745

  2. Utility of 18F-fluoro-deoxyglucose emission tomography/computed tomography fusion imaging (18F-FDG PET/CT) in combination with ultrasonography for axillary staging in primary breast cancer.

    PubMed

    Ueda, Shigeto; Tsuda, Hitoshi; Asakawa, Hideki; Omata, Jiro; Fukatsu, Kazuhiko; Kondo, Nobuo; Kondo, Tadaharu; Hama, Yukihiro; Tamura, Katsumi; Ishida, Jiro; Abe, Yoshiyuki; Mochizuki, Hidetaka

    2008-06-09

    Accurate evaluation of axillary lymph node (ALN) involvement is mandatory before treatment of primary breast cancer. The aim of this study is to compare preoperative diagnostic accuracy between positron emission tomography/computed tomography with 18F-fluorodeoxyglucose (18F-FDG PET/CT) and axillary ultrasonography (AUS) for detecting ALN metastasis in patients having operable breast cancer, and to assess the clinical management of axillary 18F-FDG PET/CT for therapeutic indication of sentinel node biopsy (SNB) and preoperative systemic chemotherapy (PSC). One hundred eighty-three patients with primary operable breast cancer were recruited. All patients underwent 18F-FDG PET/CT and AUS followed by SNB and/or ALN dissection (ALND). Using 18F-FDG PET/CT, we studied both a visual assessment of 18F-FDG uptake and standardized uptake value (SUV) for axillary staging. In a visual assessment of 18F-FDG PET/CT, the diagnostic accuracy of ALN metastasis was 83% with 58% in sensitivity and 95% in specificity, and when cut-off point of SUV was set at 1.8, sensitivity, specificity, and accuracy were 36, 100, and 79%, respectively. On the other hand, the diagnostic accuracy of AUS was 85% with 54% in sensitivity and 99% in specificity. By the combination of 18F-FDG PET/CT and AUS to the axilla, the sensitivity, specificity, and accuracy were 64, 94, and 85%, respectively. If either 18F-FDG PET uptake or AUS was positive in allixa, the probability of axillary metastasis was high; 50% (6 of 12) in 18F-FDG PET uptake only, 80% (4 of 5) in AUS positive only, and 100% (28 of 28) in dual positive. By the combination of AUS and 18F-FDG PET/CT, candidates of SNB were more appropriately selected. The axillary 18F-FDG uptake was correlated with the maximum size and nuclear grade of metastatic foci (p = 0.006 and p = 0.03). The diagnostic accuracy of 18F-FDG PET/CT was shown to be nearly equal to ultrasound, and considering their limited sensitivities, the high radiation exposure by 18F

  3. The Association Between Liver and Tumor [18F]FDG Uptake in Patients with Diffuse Large B Cell Lymphoma During Chemotherapy.

    PubMed

    Wu, Xingchen; Bhattarai, Abhisek; Korkola, Pasi; Pertovaara, Hannu; Eskola, Hannu; Kellokumpu-Lehtinen, Pirkko-Liisa

    2017-10-01

    The aim of this study was to explore the association between liver, mediastinum and tumor 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) uptake during chemotherapy in diffuse large B cell lymphoma (DLBCL). Nineteen patients with proven DLBCL underwent positron emission tomography (PET)/X-ray computed tomography scan at baseline, 1 week and 2 cycles after rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP) therapy, and again after chemotherapy completion. The mean and maximal standardized uptake value (SUVmean and SUVmax) of the liver and mediastinum were measured and correlated with the tumor SUVmax, SUVsum, whole-body metabolic tumor volume (MTVwb), and total lesion glycolysis (TLG). At baseline, both the liver and mediastinum SUVmean and SUVmax correlated inversely with the tumor MTVwb or TLG (p < 0.01 or 0.001). The liver SUVmean and SUVmax increased significantly after 1 week of R-CHOP therapy and remained at the high level until chemotherapy completion. The mediastinum SUVmean and SUVmax remained stable during chemotherapy. The tumor SUVmax, SUVsum, MTVwb, and TLG decreased significantly after 1 week of R-CHOP therapy. The change of the liver SUVmean correlated inversely with the change of tumor MTVwb and TLG after 1 week of chemotherapy (p < 0.05, respectively). The intersubject variability of liver and mediastinum [ 18 F]FDG uptake ranged from 11 to 26 %. The liver [ 18 F]FDG uptake increased significantly after R-CHOP therapy. One of the possible reasons is the distribution of a greater fraction of the tracer to healthy tissues rather than tumor after effective chemotherapy. The variability of the liver [ 18 F]FDG uptake during chemotherapy might affect the visual analysis of the interim PET scan and this needs to be confirmed in future studies with a large patient cohort. In addition, the intersubject variability of the liver and mediastinum [ 18 F]FDG uptake should be considered.

  4. A report of the automated radiosynthesis of the tau positron emission tomography radiopharmaceutical, [18 F]-THK-5351.

    PubMed

    Neelamegam, Ramesh; Yokell, Daniel L; Rice, Peter A; Furumoto, Shozo; Kudo, Yukitsuka; Okamura, Nobuyuki; El Fakhri, Georges

    2017-02-01

    The radiotracer, [ 18 F]-THK-5351, is a highly selective and high-binding affinity PET imaging agent for aggregates of hyper-phosphorylated tau protein. Our report is a simplified 1-pot, 2-step radiosynthesis of [ 18 F]-THK-5351. This report is broadly applicable for routine clinical production and multi-center trials on account of favorable half-life of flourine-18 and the use of a commercially available radiosynthesis module, the GE TRACERlab™ FX FN . First, the O-THP protected tosyl precursor underwent nucleophilic fluorinating reaction with potassium cryptand fluoride ([ 18 F] fluoride (K[ 18 F]/K 222 )) in Dimethyl sulfoxide at 110°C for 10 minutes followed by O-THP removal by using diluted hydrochloric acid (HCl) at same temperature. [ 18 F]-THK-5351 was purified via semi-preparative high-performance liquid chromatography and formulated by using 10% EtOH, United States Pharmacopeia (USP) in 0.9% sodium chloride for injection, USP and an uncorrected radiochemical yield of 21 ± 3.5%, with a specific activity of 153.11 ± 25.9 GBq/μmol (4138 ± 700 mCi/μmol) at the end of synthesis (63 minutes; n = 3). Copyright © 2016 John Wiley & Sons, Ltd.

  5. New Radiation Dosimetry Estimates for [18F]FLT based on Voxelized Phantoms.

    PubMed

    Mendes, B M; Ferreira, A V; Nascimento, L T C; Ferreira, S M Z M D; Silveira, M B; Silva, J B

    2018-04-25

    3'-Deoxy-3-[ 18 F]fluorothymidine, or [ 18 F]FLT, is a positron emission tomography (PET) tracer used in clinical studies for noninvasive assessment of proliferation activity in several types of cancer. Although the use of this PET tracer is expanding, to date, few studies concerning its dosimetry have been published. In this work, new [ 18 F]FLT dosimetry estimates are determined for human and mice using Monte Carlo simulations. Modern voxelized male and female phantoms and [ 18 F]FLT biokinetic data, both published by the ICRP, were used for simulations of human cases. For most human organs/tissues the absorbed doses were higher than those reported in ICRP Publication 128. An effective dose of 1.70E-02 mSv/MBq to the whole body was determined, which is 13.5% higher than the ICRP reference value. These new human dosimetry estimates obtained using more realistic human phantoms represent an advance in the knowledge of [ 18 F]FLT dosimetry. In addition, mice biokinetic data were obtained experimentally. These data and a previously developed voxelized mouse phantom were used for simulations of animal cases. Concerning animal dosimetry, absorbed doses for organs/tissues ranged from 4.47 ± 0.75 to 155.74 ± 59.36 mGy/MBq. The obtained set of organ/tissue radiation doses for healthy Swiss mice is a useful tool for application in animal experiment design.

  6. Coronary Plaque Morphology and the Anti-Inflammatory Impact of Atorvastatin: A Multicenter 18F-Fluorodeoxyglucose Positron Emission Tomographic/Computed Tomographic Study.

    PubMed

    Singh, Parmanand; Emami, Hamed; Subramanian, Sharath; Maurovich-Horvat, Pal; Marincheva-Savcheva, Gergana; Medina, Hector M; Abdelbaky, Amr; Alon, Achilles; Shankar, Sudha S; Rudd, James H F; Fayad, Zahi A; Hoffmann, Udo; Tawakol, Ahmed

    2016-12-01

    Nonobstructive coronary plaques manifesting high-risk morphology (HRM) associate with an increased risk of adverse clinical cardiovascular events. We sought to test the hypothesis that statins have a greater anti-inflammatory effect within coronary plaques containing HRM. In this prospective multicenter study, 55 subjects with or at high risk for atherosclerosis underwent 18 F-fluorodeoxyglucose positron emission tomographic/computed tomographic imaging at baseline and after 12 weeks of treatment with atorvastatin. Coronary arterial inflammation ( 18 F-fluorodeoxyglucose uptake, expressed as target-to-background ratio) was assessed in the left main coronary artery (LMCA). While blinded to the PET findings, contrast-enhanced computed tomographic angiography was performed to characterize the presence of HRM (defined as noncalcified or partially calcified plaques) in the LMCA. Arterial inflammation (target-to-background ratio) was higher in LMCA segments with HRM than those without HRM (mean±SEM: 1.95±0.43 versus 1.67±0.32 for LMCA with versus without HRM, respectively; P=0.04). Moreover, atorvastatin treatment for 12 weeks reduced target-to-background ratio more in LMCA segments with HRM than those without HRM (12 week-baseline Δtarget-to-background ratio [95% confidence interval]: -0.18 [-0.35 to -0.004] versus 0.09 [-0.06 to 0.26]; P=0.02). Furthermore, this relationship between coronary plaque morphology and change in LMCA inflammatory activity remained significant after adjusting for baseline low-density lipoprotein and statin dose (β=-0.27; P=0.038). In this first study to evaluate the impact of statins on coronary inflammation, we observed that the anti-inflammatory impact of statins is substantially greater within coronary plaques that contain HRM features. These findings suggest an additional mechanism by which statins disproportionately benefit individuals with more advanced atherosclerotic disease. URL: http://www.clinicaltrials.gov. Unique identifier

  7. Synthesis, radiolabeling, and biological evaluation of ( R)- and ( S)-2-amino-5-[ 18F]fluoro-2-methylpentanoic acid (( R)-, ( S)-[ 18F]FAMPe) as potential positron emission tomography tracers for brain tumors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bouhlel, Ahlem; Zhou, Dong; Li, Aixiao

    In this paper, a novel 18F-labeled α,α-disubstituted amino acid-based tracer, 2-amino-5-[ 18F]fluoro-2-methylpentanoic acid ([ 18F]FAMPe), has been developed for brain tumor imaging with a longer alkyl side chain than previously reported compounds to increase brain availability via system L amino acid transport. Both enantiomers of [ 18F]FAMPe were obtained in good radiochemical yield (24–52% n = 8) and high radiochemical purity (>99%). In vitro uptake assays in mouse DBT gliomas cells revealed that ( S)-[ 18F]FAMPe enters cells partly via sodium-independent system L transporters and also via other nonsystem A transport systems including transporters that recognize glutamine. Biodistribution and smallmore » animal PET/CT studies in the mouse DBT model of glioblastoma showed that both ( R)- and ( S)-[ 18F]FAMPe have good tumor imaging properties with the ( S)-enantiomer providing higher tumor uptake and tumor to brain ratios. Finally, comparison of the SUVs showed that ( S)-[ 18F]FAMPe had higher tumor to brain ratios compared to ( S)-[ 18F]FET, a well-established system L substrate.« less

  8. Synthesis, radiolabeling, and biological evaluation of ( R)- and ( S)-2-amino-5-[ 18F]fluoro-2-methylpentanoic acid (( R)-, ( S)-[ 18F]FAMPe) as potential positron emission tomography tracers for brain tumors

    DOE PAGES

    Bouhlel, Ahlem; Zhou, Dong; Li, Aixiao; ...

    2015-04-06

    In this paper, a novel 18F-labeled α,α-disubstituted amino acid-based tracer, 2-amino-5-[ 18F]fluoro-2-methylpentanoic acid ([ 18F]FAMPe), has been developed for brain tumor imaging with a longer alkyl side chain than previously reported compounds to increase brain availability via system L amino acid transport. Both enantiomers of [ 18F]FAMPe were obtained in good radiochemical yield (24–52% n = 8) and high radiochemical purity (>99%). In vitro uptake assays in mouse DBT gliomas cells revealed that ( S)-[ 18F]FAMPe enters cells partly via sodium-independent system L transporters and also via other nonsystem A transport systems including transporters that recognize glutamine. Biodistribution and smallmore » animal PET/CT studies in the mouse DBT model of glioblastoma showed that both ( R)- and ( S)-[ 18F]FAMPe have good tumor imaging properties with the ( S)-enantiomer providing higher tumor uptake and tumor to brain ratios. Finally, comparison of the SUVs showed that ( S)-[ 18F]FAMPe had higher tumor to brain ratios compared to ( S)-[ 18F]FET, a well-established system L substrate.« less

  9. Automated production of [18 F]FTHA according to GMP.

    PubMed

    Savisto, Nina; Viljanen, Tapio; Kokkomäki, Esa; Bergman, Jörgen; Solin, Olof

    2018-02-01

    14-(R,S)-[ 18 F]fluoro-6-thia-heptadecanoic acid is a tracer for fatty acid imaging by positron emission tomography. High demand for this tracer required us to replace semiautomatic synthesis with a fully automated procedure. An automated synthesis device was constructed in-house for multistep nucleophilic 18 F-fluorination and a control system was developed. The synthesis device was combined with a sterile filtration unit and both were qualified. 14-(R,S)-[ 18 F]fluoro-6-thia-heptadecanoic acid was produced according to good manufacturing practice guidelines set by the European Union. The synthesis includes an initial nucleophilic labelling reaction, deprotection, preparative HPLC separation, purification of the final product, and formulation for injection. The duration and temperature of the reaction and hydrolysis were optimized, and the radiochemical stability of the formulated product was determined. The rotary evaporator used to evaporate the solvent after HPLC purification was replaced with solid phase extraction purification. We also replaced the human serum albumin used in the earlier procedure with a phosphate buffer-ascorbic acid mixture in the final formulation solution. From 2011 to 2016, we performed 219 synthesis procedures, 94% of which were successful. The radiochemical yield of 14-(R,S)-[ 18 F]fluoro-6-thia-heptadecanoic acid, decay-corrected to the end of bombardment, was 13% ± 6.3%. The total amount of formulated end product was 1.7 ± 0.8 GBq at end of synthesis. Copyright © 2017 John Wiley & Sons, Ltd.

  10. Chronic manganism: A long-term follow-up study with a new dopamine terminal biomarker of 18F-FP-(+)-DTBZ (18F-AV-133) brain PET scan.

    PubMed

    Huang, Chu-Yun; Liu, Chi-Hung; Tsao, Eusden; Hsieh, Chia-Ju; Weng, Yi-Hsin; Hsiao, Ing-Tsung; Yen, Tzu-Chen; Lin, Kun-Ju; Huang, Chin-Chang

    2015-01-01

    Recent experimental studies revealed that dopamine neuron dysfunction in chronic manganism may be due to a reduced capacity of dopamine release in the striatum. The findings imposed further difficulty in the differential diagnosis between manganism and IPD. We conducted a long-term clinical follow-up study of 4 manganism patients, applying a new tracer (18)F-9-fluoropropyl-(+)-dihydrotetrabenazine ((18)F-AV-133) with positron emission tomography (PET). Twenty age-matched subjects including 4 manganism patients, 8 idiopathic Parkinson's disease (IPD) patients, and 8 healthy controls were enrolled for comparison. Volumes of interest of the bilateral putamen, caudate nuclei and occipital cortex as the reference region were delineated from individual magnetic resonance images. The clinical features of the manganism patients still progressed, with increased scores on the Unified Parkinson Disease Rating Scale. The (18)F-AV-133 uptake in the IPD patients decreased at the bilateral striatum, compared with the healthy controls. In the manganism patients, there was no decreased uptake of radioactivity involving the bilateral striatum, except Patient 4, who had a stroke with decreased uptake in the right posterior putamen. The (18)F-AV-133 PET finding reveals that nigrostriatum neurons are not degenerated in chronic manganism and can provide a useful neuroimage biomarker in the differential diagnosis. Copyright © 2015. Published by Elsevier B.V.

  11. Optical reaction cell and light source for ›18F! fluoride radiotracer synthesis

    DOEpatents

    Ferrieri, Richard A.; Schlyer, David; Becker, Richard J.

    1998-09-15

    Apparatus for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of ›.sup.18 F!-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-›.sup.18 F!fluoro-2-deoxy-D-glucose in higher yields than previously possible.

  12. Quantification of intra-tumour cell proliferation heterogeneity using imaging descriptors of 18F fluorothymidine-positron emission tomography

    NASA Astrophysics Data System (ADS)

    Willaime, J. M. Y.; Turkheimer, F. E.; Kenny, L. M.; Aboagye, E. O.

    2013-01-01

    Intra-tumour heterogeneity is a characteristic shared by all cancers. We explored the use of texture variables derived from images of [18F]fluorothymidine-positron emission tomography (FLT-PET), thus notionally assessing the heterogeneity of proliferation in individual tumours. Our aims were to study the range of textural feature values across tissue types, verify the repeatability of these image descriptors and further, to explore associations with clinical response to chemotherapy in breast cancer patients. The repeatability of 28 textural descriptors was assessed in patients who had two FLT-PET scans prior to therapy using relative differences and the intra-class correlation coefficient (ICC). We tested associations between features at baseline and clinical response measured in 11 patients after three cycles of chemotherapy, and explored changes in FLT-PET at one week after the start of therapy. A subset of eight features was characterized by low variations at baseline (<±30%) and high repeatability (0.7 ≤ ICC ≤ 1). The intensity distribution profile suggested fewer highly proliferating cells in lesions of non-responders compared to responders at baseline. A true increase in CV and homogeneity was measured in four out of six responders one week after the start of therapy. A number of textural features derived from FLT-PET are altered following chemotherapy in breast cancer, and should be evaluated in larger clinical trials for clinical relevance.

  13. Additional Prognostic Value of SUVmax Measured by F-18 FDG PET/CT over Biological Marker Expressions in Surgically Resected Cervical Cancer Patients.

    PubMed

    Yun, Man Soo; Kim, Seong-Jang; Pak, Kyoungjune; Lee, Chang Hun

    2015-01-01

    We compared the prognostic ability of the maximum standardized uptake value (SUVmax) and various biological marker expressions to predict recurrence in patients with surgically resected cervical cancer. A retrospective review identified 60 patients with cervical cancer who received [18F]fluorodeoxyglucose positron emission tomography/computed tomography (F-18 FDG PET/CT) at the time of the diagnosis of cancer. The SUVmax, expressions of carbonic anhydrase-IX (CA-IX), glucose transporter 1 (GLUT-1), and vascular endothelial growth factor (VEGF), and known prognostic factors were investigated. The median follow-up time was 22.2 months (range 3.4-43.1 months). Using univariate analyses, the stage (stage II, p = 0.0066), SUVmax (> 6, p = 0.027), parametrial involvement (p < 0.0001), and positivity for CA-IX (p = 0.0191) were associated with recurrences of cervical cancer. With the Cox proportional hazard regression model, the SUVmax was a potent predictor for disease-free survival (DFS). Although CA-IX expression was related to DFS in the current study, the potent predictor for DFS was SUVmax. Therefore, SUVmax is of greater prognostic value than biological marker expression in patients with surgically resected cervical cancer. © 2015 S. Karger GmbH, Freiburg.

  14. Brain metabolism of children with profound deafness: a visual language activation study by 18F-fluorodeoxyglucose positron emission tomography.

    PubMed

    Fujiwara, Keizo; Naito, Yasushi; Senda, Michio; Mori, Toshiko; Manabe, Tomoko; Shinohara, Shogo; Kikuchi, Masahiro; Hori, Shin-Ya; Tona, Yosuke; Yamazaki, Hiroshi

    2008-04-01

    The use of fluorodeoxyglucose positron emission tomography (FDG-PET) with a visual language task provided objective information on the development and plasticity of cortical language networks. This approach could help individuals involved in the habilitation and education of prelingually deafened children to decide upon the appropriate mode of communication. To investigate the cortical processing of the visual component of language and the effect of deafness upon this activity. Six prelingually deafened children participated in this study. The subjects were numbered 1-6 in the order of their spoken communication skills. In the time period between an intravenous injection of 370 MBq 18F-FDG and PET scanning of the brain, each subject was instructed to watch a video of the face of a speaking person. The cortical radioactivity of each deaf child was compared with that of a group of normal- hearing adults using a t test in a basic SPM2 model. The widest bilaterally activated cortical area was detected in subject 1, who was the worst user of spoken language. By contrast, there was no significant difference between subject 6, who was the best user of spoken language with a hearing aid, and the normal hearing group.

  15. Optimizing a 18F-NaF and 18F-FDG cocktail for PET assessment of metastatic castration-resistant prostate cancer

    PubMed Central

    Simoncic, Urban; Perlman, Scott; Liu, Glenn; Jeraj, Robert

    2015-01-01

    Background The 18F-NaF/18F-FDG cocktail PET/CT imaging has been proposed for patients with osseous metastases. This work aimed to optimize the cocktail composition for patients with metastatic castrate-resistant prostate cancer (mCRPC). Materials and methods Study was done on 6 patients with mCRPC that had analyzed a total of 26 lesions. Patients had 18F-NaF and 18F-FDG injections separated in time. Dynamic PET/CT imaging recorded uptake time course for both tracers into osseous metastases. 18F-NaF and 18F-FDG uptakes were decoupled by kinetic analysis, which enabled calculation of 18F-NaF and 18F-FDG Standardized Uptake Value (SUV) images. Peak, mean and total SUVs were evaluated for both tracers and all visible lesions. The 18F-NaF/18F-FDG cocktail was optimized under the assumption that contribution of both tracers to the image formation should be equal. SUV images for combined 18F-NaF/18F-FDG cocktail PET/CT imaging were generated for cocktail compositions with 18F-NaF:18F-FDG ratio varying from 1:8 to 1:2. Results The 18F-NaF peak and mean SUVs were on average 4-5 times higher than the 18F-FDG peak and mean SUVs, with inter-lesion coefficient-of-variations (COV) of 20%. 18F-NaF total SUV was on average 7 times higher than the 18F-FDG total SUV. When the 18F-NaF:18F-FDG ratio changed from 1:8 to 1:2, typical SUV on generated PET images increased by 50%, while change in uptake visual pattern was hardly noticeable. Conclusion The 18F-NaF/18F-FDG cocktail has equal contributions of both tracers to the image formation when the 18F-NaF:18F-FDG ratio is 1:5. Therefore we propose this ratio as the optimal cocktail composition for mCRPC patients. We also urge to strictly control the 18F-NaF/18F-FDG cocktail composition in any 18F-NaF/18F-FDG cocktail PET/CT exams. PMID:26378490

  16. Role for positron emission tomography in skeletal diseases.

    PubMed

    Duet, Michèle; Pouchot, Jacques; Lioté, Frédéric; Faraggi, Marc

    2007-01-01

    Imaging plays a prominent role in the diagnosis and management of rheumatic diseases. Conventional imaging methods provide high-resolution structural information but usually fail to distinguish between active lesions and residual changes. Positron emission tomography (PET) with the tracer 18F-fluorodeoxyglucose (18F-FDG) was recently introduced into clinical practice as a means of obtaining information on both structure and metabolic activity. 18F-FDG-PET is widely used in oncology and may be valuable in patients with infections or inflammatory diseases, most notably vasculitis. Although encouraging results have been published, the number of studies remains small, as 18F-FDG-PET is an expensive investigation that is not available everywhere. Further work is needed to determine the cost-effectiveness ratio of 18F-FDG-PET in patients with infections or inflammatory diseases. Imaging plays a prominent role in the diagnosis and management of many musculoskeletal diseases. Although considerable progress has been made recently, the structural information supplied by conventional imaging methods is inadequate in some patients. Positron emission tomography (PET) after injection of 18fluorodeoxyglucose (18F-FDG) provides information on tissue metabolism. The usefulness of 18F-FDG-PET in oncology is now widely recognized. Other uses are emerging, in part thanks to the development of new cameras that combine dedicated detectors and an X-scanner in order to ensure accurate three-dimensional localization of metabolically active lesions. However, the exact role for 18F-FDG-PET needs to be studied in larger populations of patients.

  17. IMPROVED DERIVATION OF INPUT FUNCTION IN DYNAMIC MOUSE [18F]FDG PET USING BLADDER RADIOACTIVITY KINETICS

    PubMed Central

    Wong, Koon-Pong; Zhang, Xiaoli; Huang, Sung-Cheng

    2013-01-01

    Purpose Accurate determination of the plasma input function (IF) is essential for absolute quantification of physiological parameters in positron emission tomography (PET). However, it requires an invasive and tedious procedure of arterial blood sampling that is challenging in mice because of the limited blood volume. In this study, a hybrid modeling approach is proposed to estimate the plasma IF of 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) in mice using accumulated radioactivity in urinary bladder together with a single late-time blood sample measurement. Methods Dynamic PET scans were performed on nine isoflurane-anesthetized male C57BL/6 mice after a bolus injection of [18F]FDG at the lateral caudal vein. During a 60- or 90-min scan, serial blood samples were taken from the femoral artery. Image data were reconstructed using filtered backprojection with CT-based attenuation correction. Total accumulated radioactivity in the urinary bladder was fitted to a renal compartmental model with the last blood sample and a 1-exponential function that described the [18F]FDG clearance in blood. Multiple late-time blood sample estimates were calculated by the blood [18F]FDG clearance equation. A sum of 4-exponentials was assumed for the plasma IF that served as a forcing function to all tissues. The estimated plasma IF was obtained by simultaneously fitting the [18F]FDG model to the time-activity curves (TACs) of liver and muscle and the forcing function to early (0–1 min) left-ventricle data (corrected for delay, dispersion, partial-volume effects and erythrocytes uptake) and the late-time blood estimates. Using only the blood sample acquired at the end of the study to estimate the IF and the use of liver TAC as an alternative IF were also investigated. Results The area under the plasma TACs calculated for all studies using the hybrid approach was not significantly different from that using all blood samples. [18F]FDG uptake constants in brain, myocardium, skeletal

  18. Solitary pulmonary nodule: A rare presentation of pulmonary mucormycosis in an immunocompetent adult

    PubMed Central

    Sarkar, Supriya; Jash, Debraj; Maji, Arnab; Maikap, Malay Kr

    2014-01-01

    Pulmonary mucormycosis is a rare opportunistic infection of immunocompromised individuals. Here, we report a case of 70-year-old male, smoker presenting with high-grade fever for 2 weeks and episodes of hemoptysis. Contrast-enhanced computed tomography (CT) thorax revealed a solitary pulmonary nodule measuring 2.3 × 1.6 cm in the right upper lobe. CT guided fine needle aspiration cytology and true cut biopsy showed plenty of typical fungal hyphae consistent with the diagnosis of mucormycosis. Fungal culture confirmed the organism as mucor. Positron emission tomography-CT scan showed a non- 18 fluorodeoxy glucose avid nodule ruling out possibility of malignancy. Investigation did not reveal any evidence of immunosuppression. Patient was treated with intravenous liposomal amphotericin B for 4 weeks. Follow-up chest X-ray and CT scan after 6 weeks were normal. PMID:24669089

  19. 18F-FDG micro-PET imaging for research investigations in the Octopus vulgaris: applications and future directions in invertebrate neuroscience and tissue regeneration.

    PubMed

    Zullo, Letizia; Buschiazzo, Ambra; Massollo, Michela; Riondato, Mattia; Democrito, Alessia; Marini, Cecilia; Benfenati, Fabio; Sambuceti, Gianmario

    2018-03-09

    This study aimed at developing a method for administration of 18 F-Fludeoxyglucose ( 18 F-FDG) in the common octopus and micro-positron emission tomography (micro-PET) bio-distribution assay for the characterization of glucose metabolism in body organs and regenerating tissues. Methods: Seven animals (two with one regenerating arm) were anesthetized with 3.7% MgCl 2 in artificial seawater. Each octopus was injected with 18-30 MBq of isosmotic 18 F-FDG by accessing the branchial heart or the anterior vena cava. After an uptake time of ~50 minutes, the animal was sacrificed, placed on a bed of a micro-PET scanner and submitted to 10 min static 3-4 bed acquisitions to visualize the entire body. To confirm the interpretation of images, internal organs of interest were collected. The level of radioactivity of each organ was counted with a γ-counter. Results: Micro-PET scanning documented a good 18 F-FDG full body distribution following vena cava administration. A high mantle mass radioactivity facing a relatively low tracer uptake in the arms was revealed. In particular, the following organs were clearly identified and measured for their uptake: brain (standardized uptake value, SUV max of 6.57±1.86), optic lobes (SUV max of 7.59±1.66) and arms (SUV max of 1.12±0.06). Interestingly, 18 F-FDG uptake was up to threefold higher in the regenerating arm stumps at the level of highly proliferating areas. Conclusion: This study represents a stepping-stone over the use of non-invasive functional techniques to address questions relevant to invertebrate neuroscience and regenerative medicine. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  20. The Effect of Patient Age on Standardized, Uptake Value-Hounsfield Unit Values of Male Genitourinery Structures In F-18 FDG PET/CT

    PubMed Central

    Çavuşoğlu, Berrin; Durak, Hatice

    2011-01-01

    Objective: Relation between patient age and Hounsfield Unit (HU),which is the linear attenuation coefficient, and Standardized Uptake Values (SUV) which is the amount of 18F-fluorodeoxyglucose (F-18 FDG) uptake, measured in the areas of interest drawn to prostate, seminal vesicles and testicles in F-18 FDG Positron Emission Tomography/Computed Tomography (PET/CT) images was investigated. Material and Methods: Mean and maximum SUV and HU values were recorded from the areas of interest (min 12 mm in diameter) which showed FDG uptake in prostate, seminal vesicles and testicles from F-18 FDG PET-CT images of 21 male patients under 40 years without genitourinary cancer. The effect of patient age to SUV and HU values was examined with Pearson correlation test using SPSS program. Results: There was a negative insignificant correlation between patient age and SUV and HU values for prostate. For seminal vesicles, correlation between patient age and SUV values and HUmax were positive but insignificant, while correlation with HUmean was significant (r=0.459, p=0.00). Correlation between patient age and SUVmax and SUVmean values were significant for testicles (r=0.506, p=0.002 and r=0.467, p=0.005, respectively) but the correlation between patient age and HUmax and HUmean values was not significant. Conclusion: F-18 FDG uptake in testicles in males increases with age until 40, suggesting an increase in metabolic rate. The significant correlation between age and mean HU values is probably caused by thickening of the tissue without an increase in glucose metabolism in seminal vesicles. In prostate, the effect of patient age to SUV and HU values was not observed until the age 40. Conflict of interest:None declared. PMID:23486855

  1. Selective 2-( sup 18 F)fluorodopa uptake for melanogenesis in murine metastatic melanomas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ishiwata, K.; Kubota, K.; Kubota, R.

    The relationship between 3,4-dihydroxy-2-({sup 18}F)fluoro-L-phenylalanine (2-({sup 18}F)FDOPA) uptake and melanogenesis was studied using mice bearing two B16 melanomas: B16-F1 has a higher melanin synthesis ability and a slower growing rate than the higher metastatic B16-F10. A significantly higher 2-({sup 18}F)FDOPA uptake by B16-F1 than by B16-F10 and a reverse relationship for the uptake of ({sup 14}C) 2-deoxy-2-fluoro-D-glucose and ({sup 3}H)thymidine were observed 1 hr postinjection. F1-to-F10 ratios of both the 2-({sup 18}F)FDOPA uptake and the acid-insoluble radioactivity increased to about 5 at 6 hr, which paralleled the melanin content. FM3A mammary carcinoma showed a 2-({sup 18}F)FDOPA uptake similar to themore » B16-F10 but without the acid-insoluble radioactivity. With D,L-DOPA loading, a 55% decreased uptake by FM3A 1 hr postinjection was significantly greater than the 20% reduction in both melanomas. O-Methylated 2-({sup 18}F)FDOPA was a predominant acid-soluble metabolite in all tumors. Whole-body autoradiography discriminated the two melanomas clearly. 2-({sup 18}F)FDOPA may be a promising tracer for the selective imaging of melanogenesis.« less

  2. {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Can Quantify and Predict Esophageal Injury During Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Niedzielski, Joshua S., E-mail: jsniedzielski@mdanderson.org; University of Texas Houston Graduate School of Biomedical Science, Houston, Texas; Yang, Jinzhong

    Purpose: We sought to investigate the ability of mid-treatment {sup 18}F-fluorodeoxyglucose positron emission tomography (PET) studies to objectively and spatially quantify esophageal injury in vivo from radiation therapy for non-small cell lung cancer. Methods and Materials: This retrospective study was approved by the local institutional review board, with written informed consent obtained before enrollment. We normalized {sup 18}F-fluorodeoxyglucose PET uptake to each patient's low-irradiated region (<5 Gy) of the esophagus, as a radiation response measure. Spatially localized metrics of normalized uptake (normalized standard uptake value [nSUV]) were derived for 79 patients undergoing concurrent chemoradiation therapy for non-small cell lung cancer. We usedmore » nSUV metrics to classify esophagitis grade at the time of the PET study, as well as maximum severity by treatment completion, according to National Cancer Institute Common Terminology Criteria for Adverse Events, using multivariate least absolute shrinkage and selection operator (LASSO) logistic regression and repeated 3-fold cross validation (training, validation, and test folds). This 3-fold cross-validation LASSO model procedure was used to predict toxicity progression from 43 asymptomatic patients during the PET study. Dose-volume metrics were also tested in both the multivariate classification and the symptom progression prediction analyses. Classification performance was quantified with the area under the curve (AUC) from receiver operating characteristic analysis on the test set from the 3-fold analyses. Results: Statistical analysis showed increasing nSUV is related to esophagitis severity. Axial-averaged maximum nSUV for 1 esophageal slice and esophageal length with at least 40% of axial-averaged nSUV both had AUCs of 0.85 for classifying grade 2 or higher esophagitis at the time of the PET study and AUCs of 0.91 and 0.92, respectively, for maximum grade 2 or higher by treatment completion

  3. Longitudinal studies of the 18F-FDG kinetics after ipilimumab treatment in metastatic melanoma patients based on dynamic FDG PET/CT.

    PubMed

    Sachpekidis, Christos; Anwar, Hoda; Winkler, Julia K; Kopp-Schneider, Annette; Larribere, Lionel; Haberkorn, Uwe; Hassel, Jessica C; Dimitrakopoulou-Strauss, Antonia

    2018-06-05

    Immunotherapy has raised the issue of appropriate treatment response evaluation, due to the unique mechanism of action of the immunotherapeutic agents. Aim of this analysis is to evaluate the potential role of quantitative analysis of 2-deoxy-2-( 18 F)fluoro-D-glucose ( 18 F-FDG) positron emission tomography/computed tomography (PET/CT) data in monitoring of patients with metastatic melanoma undergoing ipilimumab therapy. 25 patients with unresectable metastatic melanoma underwent dynamic PET/CT (dPET/CT) of the thorax and upper abdomen as well as static, whole body PET/CT with 18 F-FDG before the start of ipilimumab treatment (baseline PET/CT), after two cycles of treatment (interim PET/CT) and at the end of treatment after four cycles (late PET/CT). The evaluation of dPET/CT studies was based on semi-quantitative (standardized uptake value, SUV) calculation as well as quantitative analysis, based on two-tissue compartment modeling and a fractal approach. Patients' best clinical response, assessed at a mean of 59 weeks, was used as reference. According to their best clinical response, patients were dichotomized in those demonstrating clinical benefit (CB, n = 16 patients) and those demonstrating no clinical benefit (no-CB, n = 9 patients). No statistically significant differences were observed between CB and no-CB regarding either semi-quantitative or quantitative parameters in all scans. On contrary, the application of the recently introduced PET response evaluation criteria for immunotherapy (PERCIMT) led to a correct classification rate of 84% (21/25 patients). Quantitative analysis of 18 F-FDG PET data does not provide additional information in treatment response evaluation of metastatic melanoma patients receiving ipilimumab. PERCIMT criteria correlated better with clinical response.

  4. 18F-FDG-PET/CT Angiography for the Diagnosis of Infective Endocarditis.

    PubMed

    Roque, A; Pizzi, M N; Cuéllar-Calàbria, H; Aguadé-Bruix, S

    2017-02-01

    This article reviews the current imaging role of 18 F-fluordeoxyglucose positron emission computed tomography ( 18 F-FDG-PET/CT) combined with cardiac CT angiography (CTA) in infective endocarditis and discusses the strengths and limitations of this technique. The diagnosis of infective endocarditis affecting prosthetic valves and intracardiac devices is challenging because echocardiography and, therefore, the modified Duke criteria have well-recognized limitations in this clinical scenario. The high sensitivity of 18 F-FDG-PET/CT for the detection of infection associated with the accurate definition of structural damage by gated cardiac CTA in a combined technique (PET/CTA) has provided a significant increase in diagnostic sensitivity for the detection of IE. PET/CTA has proven to be a useful diagnostic tool in patients with suspected infective endocarditis. The additional information provided by this technique improves diagnostic performance in prosthetic valve endocarditis when it is used in combination with the Duke criteria. The findings obtained in PET/CTA studies have been included as a major criterion in the recently updated diagnostic algorithm in infective endocarditis guidelines.

  5. Comparison of imaging biomarkers for Alzheimer's disease: amyloid imaging with [18F]florbetapir positron emission tomography and magnetic resonance imaging voxel-based analysis for entorhinal cortex atrophy.

    PubMed

    Tateno, Amane; Sakayori, Takeshi; Kawashima, Yoshitaka; Higuchi, Makoto; Suhara, Tetsuya; Mizumura, Sunao; Mintun, Mark A; Skovronsky, Daniel M; Honjo, Kazuyoshi; Ishihara, Keiichi; Kumita, Shinichiro; Suzuki, Hidenori; Okubo, Yoshiro

    2015-05-01

    We compared amyloid positron emission tomography (PET) and magnetic resonance imaging (MRI) in subjects clinically diagnosed with Alzheimer's disease (AD), mild cognitive impairment (MCI), and older healthy controls (OHC) in order to test how these imaging biomarkers represent cognitive decline in AD. Fifteen OHC, 19 patients with MCI, and 19 patients with AD were examined by [(18)F]florbetapir PET to quantify the standard uptake value ratio (SUVR) as the degree of amyloid accumulation, by MRI and the voxel-based specific regional analysis system for AD to calculate z-score as the degree of entorhinal cortex atrophy, and by mini-mental state examination (MMSE) and Alzheimer's Disease Assessment Scale-cognitive component--Japanese version (ADAS-Jcog) for cognitive functions. Both cutoff values for measuring AD-like levels of amyloid (1.099 for SUVR) and entorhinal cortex atrophy (1.60 for z-score) were well differentially diagnosed and clinically defined AD from OHC (84.2% for SUVR and 86.7% for z-score). Subgroup analysis based on beta-amyloid positivity revealed that z-score significantly correlated with MMSE (r = -0.626, p < 0.01) and ADAS-Jcog (r = 0.691, p < 0.01) only among subjects with beta-amyloid. This is the first study to compare [(18)F]florbetapir PET and MRI voxel-based analysis of entorhinal cortex atrophy for AD. Both [(18)F]florbetapir PET and MRI detected changes in AD compared with OHC. Considering that entorhinal cortex atrophy correlated well with cognitive decline only among subjects with beta-amyloid, [18F]florbetapir PET makes it possible to detect AD pathology in the early stage, whereas MRI morphometry for subjects with beta-amyloid provides a good biomarker to assess the severity of AD in the later stage. Copyright © 2014 John Wiley & Sons, Ltd.

  6. Development of [18F]afatinib as new TKI-PET tracer for EGFR positive tumors.

    PubMed

    Slobbe, Paul; Windhorst, Albert D; Stigter-van Walsum, Marijke; Schuit, Robert C; Smit, Egbert F; Niessen, Heiko G; Solca, Flavio; Stehle, Gerd; van Dongen, Guus A M S; Poot, Alex J

    2014-10-01

    Afatinib is an irreversible ErbB family blocker that was approved for the treatment of EGFR mutated non-small cell lung cancer in 2013. Positron emission tomography (PET) with fluorine-18 labeled afatinib provides a means to obtain improved understanding of afatinib tumor disposition in vivo. PET imaging with [(18)F]afatinib may also provide a method to select treatment responsive patients. The aim of this study was to label afatinib with fluorine-18 and evaluate its potential as TKI-PET tracer in tumor bearing mice. A radiochemically novel coupling, using peptide coupling reagent BOP, was explored and optimized to synthesize [(18)F]afatinib, followed by a metabolite analysis and biodistribution studies in two clinically relevant lung cancer cell lines, xenografted in nude mice. A reliable [(18)F]afatinib radiosynthesis was developed and the tracer could be produced in yields of 17.0 ± 2.5% calculated from [(18)F]F(-) and >98% purity. The identity of the product was confirmed by co-injection on HPLC with non-labeled afatinib. Metabolite analysis revealed a moderate rate of metabolism, with >80% intact tracer in plasma at 45 min p.i. Biodistribution studies revealed rapid tumor accumulation and good retention for a period of at least 2 hours, while background tissues showed rapid clearance of the tracer. We have developed a method to synthesize [(18)F]afatinib and related fluorine-18 labeled 4-anilinoquinazolines. [(18)F]Afatinib showed good stability in vivo, justifying further evaluation as a TKI-PET tracer. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Prevalence and malignancy risk of focal colorectal incidental uptake detected by (18)F-FDG-PET or PET/CT: a meta-analysis.

    PubMed

    Treglia, Giorgio; Taralli, Silvia; Salsano, Marco; Muoio, Barbara; Sadeghi, Ramin; Giovanella, Luca

    2014-06-01

    The aim of the study was to meta-analyze published data about prevalence and malignancy risk of focal colorectal incidentalomas (FCIs) detected by Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography ((18)F-FDG-PET or PET/CT). A comprehensive computer literature search of studies published through July 31(st) 2012 regarding FCIs detected by (18)F-FDG-PET or PET/CT was performed. Pooled prevalence of patients with FCIs and risk of malignant or premalignant FCIs after colonoscopy or histopathology verification were calculated. Furthermore, separate calculations for geographic areas were performed. Finally, average standardized uptake values (SUV) in malignant, premalignant and benign FCIs were reported. Thirty-two studies comprising 89,061 patients evaluated by (18)F-FDG-PET or PET/CT were included. The pooled prevalence of FCIs detected by (18)F-FDG-PET or PET/CT was 3.6% (95% confidence interval [95% CI]: 2.6-4.7%). Overall, 1,044 FCIs detected by (18)F-FDG-PET or PET/CT underwent colonoscopy or histopathology evaluation. Pooled risk of malignant or premalignant lesions was 68% (95% CI: 60-75%). Risk of malignant and premalignant FCIs in Asia-Oceania was lower compared to that of Europe and America. A significant overlap in average SUV was found between malignant, premalignant and benign FCIs. FCIs are observed in a not negligible number of patients who undergo (18)F-FDG-PET or PET/CT studies with a high risk of malignant or premalignant lesions. SUV is not reliable as a tool to differentiate between malignant, premalignant and benign FCIs. Further investigation is warranted whenever FCIs are detected by (18)F-FDG-PET or PET/CT.

  8. Different predictive values of interim 18F-FDG PET/CT in germinal center like and non-germinal center like diffuse large B-cell lymphoma.

    PubMed

    Kim, Jihyun; Lee, Jeong-Ok; Paik, Jin Ho; Lee, Won Woo; Kim, Sang Eun; Song, Yoo Sung

    2017-01-01

    Diffuse large B-cell lymphoma (DLBCL) is a pathologically heterogeneous disease with different prognoses according to its molecular profiles. Despite the broad usage of 18 F-fluoro-2-dexoxy-D-glucose (FDG) positron emission tomography/computed tomography (PET/CT), previous studies that have investigated the value of interim 18 F-FDG PET/CT in DLBCL have given the controversial results. The purpose of this study was to evaluate the prognostic value of interim 18 F-FDG PET/CT in DLBCL according to germinal center B cell-like (GCB) and non-GCB molecular profiling. We enrolled 118 newly diagnosed DLBCL patients treated with rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone (R-CHOP). Interim 18 F-FDG PET/CT scans performed after 2 or 3 cycles of R-CHOP treatment were evaluated based on the Lugano response criteria. Patients were grouped as GCB or non-GCB molecular subtypes according to immunohistochemistry results of CD10, BCL6, and MUM1, based on Hans' algorithm. In total 118 DLBCL patients, 35 % were classified as GCB, and 65 % were classified as non-GCB. Interim PET/CT was negative in 70 %, and positive in 30 %. During the median follow-up period of 23 months, the positive interim 18 F-FDG PET/CT group showed significantly inferior progression free survival (PFS) compared to the negative interim 18 F-FDG PET/CT group (P = 0.0004) in entire patients. A subgroup analysis according to molecular profiling demonstrated significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in GCB subtype of DLBCL (P = 0.0001), but there was no significant difference of PFS between the positive and negative interim 18 F-FDG PET groups in non-GCB subtype of DLBCL. Interim 18 F-FDG PET/CT scanning had a significant predictive value for disease progression in patients with the GCB subtype of DLBCL treated with R-CHOP, but not in those with the non-GCB subtype. Therefore, molecular profiles of DLBCL should be considered for

  9. Human Radiation Dosimetry of [(18)F]AV-1451(T807) to Detect Tau Pathology.

    PubMed

    Choi, Jae Yong; Lyoo, Chul Hyoung; Lee, Jae Hoon; Cho, Hanna; Kim, Kyeong Min; Kim, Jin Su; Ryu, Young Hoon

    2016-08-01

    [(18)F]AV-1451 is a positron emission tomography (PET) radioligand for detecting paired helical filament tau. Our aim was to estimate the radiation dose of [(18)F]AV-1451 in humans. Whole-body PET scans were acquired for six healthy volunteers (three male, three female) for 128 min after injection of [(18)F]AV-1451 (268 ± 31 MBq). Radiation doses were estimated using the OLINDA/EXM software. The estimated organ doses ranged from 7.81 to 81.2 μSv/MBq. The critical organ for radiation burden was the liver. Radiation doses to the reproductive and blood-forming organs were 14.15, 8.43, and 18.35 μSv/MBq for the ovaries, testes, and red marrow, respectively. The mean effective dose was 22.47 ± 3.59 μSv/MBq. A standard single injection of 185 MBq (5 mCi) results in an effective dose of 4.7 mSv in a healthy subject. Therefore, [(18)F]AV-1451 could be used in multiple PET scans of the same subject per year.

  10. Effects of atorvastatin and diet interventions on atherosclerotic plaque inflammation and [18F]FDG uptake in Ldlr-/-Apob100/100 mice.

    PubMed

    Hellberg, Sanna; Sippola, Suvi; Liljenbäck, Heidi; Virta, Jenni; Silvola, Johanna M U; Ståhle, Mia; Savisto, Nina; Metso, Jari; Jauhiainen, Matti; Saukko, Pekka; Ylä-Herttuala, Seppo; Nuutila, Pirjo; Knuuti, Juhani; Roivainen, Anne; Saraste, Antti

    2017-08-01

    Uptake of the positron emission tomography (PET) tracer 2-deoxy-2-[ 18 F]-fluoro-d- glucose ([ 18 F]FDG) into macrophages is a sensitive marker of inflammation in atherosclerosis. To assess the anti-inflammatory effects of statins, we studied whether atorvastatin therapy reduces aortic [ 18 F]FDG uptake in hypercholesterolemic mice deficient in low-density lipoprotein receptor (Ldlr), and expressing only apolipoprotein B-100 (Ldlr -/- Apob 100/100 ). Thirty-six Ldlr -/- Apob 100/100 mice were fed a high-fat diet (HFD) for 12 weeks and then allocated to receive a HFD (n = 13), chow diet (Chow, n = 12), or HFD with added atorvastatin (HFD + A, n = 11), for another 12 weeks. In addition to aortic histopathology, [ 18 F]FDG uptake was studied in vivo using PET/computed tomography (CT), and ex vivo by gamma counting of excised aorta. Total cholesterol levels were lower in the Chow and HFD + A groups than in the HFD group (10 ± 3.2, 23 ± 4.9 and 34 ± 9.2 mmol/l, respectively), with the Chow group also showing a lower plaque burden and lower numbers of macrophages in the lesions. Compared to the HFD group, [ 18 F]FDG uptake in the aorta (normalized for blood) was lower in the Chow group in both in vivo (2.1 ± 0.21 vs. 1.7 ± 0.25, p = 0.018) and ex vivo (5.2 ± 2.3 vs. 2.8 ± 0.87, p = 0.011) analyses, whereas atorvastatin had no effect on uptake (2.1 ± 0.42 in vivo and 3.9 ± 1.8 ex vivo). [ 18 F]FDG uptake correlated with plasma total cholesterol levels. Atorvastatin therapy did not show cholesterol-independent effects on inflammation in atherosclerotic lesions in Ldlr -/- Apob 100/100 mice, as determined by histology and [ 18 F]FDG PET, whereas a cholesterol-lowering diet intervention was effective. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Synthesis of [18F]-labelled Maltose Derivatives as PET Tracers for Imaging Bacterial Infection

    PubMed Central

    Namavari, Mohammad; Gowrishankar, Gayatri; Hoehne, Aileen; Jouannot, Erwan; Gambhir, Sanjiv S

    2015-01-01

    Purpose To develop novel positron emission tomography (PET) agents for visualization and therapy monitoring of bacterial infections. Procedures It is known that maltose and maltodextrins are energy sources for bacteria. Hence, 18F-labelled maltose derivatives could be a valuable tool for imaging bacterial infections. We have developed methods to synthesize 4-O-(α-D-glucopyranosyl)-6-deoxy-6-[18F]fluoro-D-glucopyranoside (6-[18F]fluoromaltose) and 4-O-(α-D-glucopyranosyl)-1-deoxy-1-[18F]fluoro-D-glucopyranoside (1-[18F]fluoromaltose) as bacterial infection PET imaging agents. 6-[18F]fluoromaltose was prepared from precursor 1,2,3-tri-O-acetyl-4-O-(2′,3′,-di-O-acetyl-4′,6′-benzylidene-α-D-glucopyranosyl)-6-deoxy-6-nosyl-D-glucopranoside (5). The synthesis involved the radio-fluorination of 5 followed by acidic and basic hydrolysis to give 6-[18F]fluoromaltose. In an analogous procedure, 1-[18F]fluoromaltose was synthesized from 2,3, 6-tri-O-acetyl-4-O-(2′,3′,4′,6-tetra-O-acetyl-α-D-glucopyranosyl)-1-deoxy-1-O-triflyl-D-glucopranoside (9). Stability of 6-[18F]fluoromaltose in phosphate-buffered saline (PBS) and human and mouse serum at 37 °C was determined. Escherichia coli uptake of 6-[18F]fluoromaltose was examined. Results A reliable synthesis of 1- and 6-[18F]fluoromaltose has been accomplished with 4–6 and 5–8 % radiochemical yields, respectively (decay-corrected with 95 % radiochemical purity). 6-[18F]fluoromaltose was sufficiently stable over the time span needed for PET studies (~96 % intact compound after 1-h and ~65 % after 2-h incubation in serum). Bacterial uptake experiments indicated that E. coli transports 6-[18F]fluoromaltose. Competition assays showed that the uptake of 6-[18F]fluoromaltose was completely blocked by co-incubation with 1 mM of the natural substrate maltose. Conclusion We have successfully synthesized 1- and 6-[18F]fluoromaltose via direct fluorination of appropriate protected maltose precursors. Bacterial uptake

  12. Preclinical Evaluation of [(18)F]THK-5105 Enantiomers: Effects of Chirality on Its Effectiveness as a Tau Imaging Radiotracer.

    PubMed

    Tago, Tetsuro; Furumoto, Shozo; Okamura, Nobuyuki; Harada, Ryuichi; Adachi, Hajime; Ishikawa, Yoichi; Yanai, Kazuhiko; Iwata, Ren; Kudo, Yukitsuka

    2016-04-01

    Noninvasive imaging of tau and amyloid-β pathologies would facilitate diagnosis of Alzheimer's disease (AD). Recently, we have developed [(18)F]THK-5105 for selective detection of tau pathology by positron emission tomography (PET). The purpose of this study was to clarify biological properties of optically pure [(18)F]THK-5105 enantiomers. Binding for tau aggregates in AD brain section was evaluated by autoradiography (ARG). In vitro binding assays were performed to evaluate the binding properties of enantiomers for AD brain homogenates. The pharmacokinetics in the normal mouse brains was assessed by ex vivo biodistribution assay The ARG of enantiomers showed the high accumulation of radioactivity corresponding to the distribution of tau deposits. In vitro binding assays revealed that (S)-[(18)F]THK-5105 has slower dissociation from tau than (R)-[(18)F]THK-5105. Biodistribution assays indicated that (S)-[(18)F]THK-5105 eliminated faster from the mouse brains and blood compared with (R)-[(18)F]THK-5105. (S)-[(18)F]THK-5105 could be more suitable than (R)-enantiomer for a tau imaging agent.

  13. A novel fluorine-18 β-fluoroethoxy organophosphate positron emission tomography imaging tracer targeted to central nervous system acetylcholinesterase.

    PubMed

    James, Shelly L; Ahmed, S Kaleem; Murphy, Stephanie; Braden, Michael R; Belabassi, Yamina; VanBrocklin, Henry F; Thompson, Charles M; Gerdes, John M

    2014-07-16

    Radiosynthesis of a fluorine-18 labeled organophosphate (OP) inhibitor of acetylcholinesterase (AChE) and subsequent positron emission tomography (PET) imaging using the tracer in the rat central nervous system are reported. The tracer structure, which contains a novel β-fluoroethoxy phosphoester moiety, was designed as an insecticide-chemical nerve agent hybrid to optimize handling and the desired target reactivity. Radiosynthesis of the β-fluoroethoxy tracer is described that utilizes a [(18)F]prosthetic group coupling approach. The imaging utility of the [(18)F]tracer is demonstrated in vivo within rats by the evaluation of its brain penetration and cerebral distribution qualities in the absence and presence of a challenge agent. The tracer effectively penetrates brain and localizes to cerebral regions known to correlate with the expression of the AChE target. Brain pharmacokinetic properties of the tracer are consistent with the formation of an OP-adducted acetylcholinesterase containing the fluoroethoxy tracer group. Based on the initial favorable in vivo qualities found in rat, additional [(18)F]tracer studies are ongoing to exploit the technology to dynamically probe organophosphate mechanisms of action in mammalian live tissues.

  14. Static and dynamic (18) FDG-PET in normal hispaniolan Amazon parrots (Amazona ventralis).

    PubMed

    Souza, Marcy J; Wall, Jonathan S; Stuckey, Alan; Daniel, Gregory B

    2011-01-01

    Positron emission tomography (PET) is often used to stage and monitor human cancer and has recently been used in a similar fashion in veterinary medicine. The most commonly used radiopharmaceutical is 2-Deoxy-2-[(18) F]-Fluoro-d-glucose ((18) F-FDG), which is concentrated and trapped within cells that use glucose as their energy substrate. We characterized the normal distribution of (18) F-FDG in 10 healthy Hispaniolan Amazon parrots (Amazona ventralis) by performing whole body PET scans at steady state, 60min after injection. Significant variability was found in the intestinal activity. Avian species are known to reflux fluid and electrolytes from their cloaca into their colon. To evaluate reflux as the cause of variability in intestinal distribution of (18) F-FDG, dynamic PET scans were performed on the coelomic cavity of six Hispaniolan Amazon parrots from time 0 to 60min postinjection of radiotracer. Reflux of radioactive material from the cloaca into the colon occurred in all birds to varying degrees and occurred before 60min. To evaluate the intestinal tract of clinical avian patients, dynamic scans must be performed starting immediately after injection so that increased radioactivity due to metabolism or hypermetabolic lesions such as cancer can be differentiated from increased radioactivity due to reflux of fluid from the cloaca. © 2010 Veterinary Radiology & Ultrasound.

  15. Unusual Asymptomatic Fluorodeoxyglucose Avid Pheochromocytoma in a Case of Myxoid Liposarcoma of the Extremity on 18-F Fluorodeoxyglucose Positron Emission Tomography-computed Tomography.

    PubMed

    Shivdasani, Divya; Singh, Natasha; Pereira, Melvika; Zade, Anand

    2017-01-01

    Sarcomas are a heterogeneous group of rare tumors and arise either from soft tissue or from bone. Soft-tissue sarcomas (STSs) initially metastasize to the lungs. Metastases to extrapulmonary sites such as liver, brain, and soft tissue distant from primary tumor usually develop later. However, cases with isolated adrenal metastasis without disseminated disease have been reported in literature. We present a case of primary myxoid liposarcoma of the lower limb, in which staging 18 -F fluorodeoxyglucose positron emission tomography-computed tomography (FDG PET-CT) scan detected a suspicious FDG avid adrenal lesion which eventually on resection was diagnosed as asymptomatic pheochromocytoma. Pheochromocytomas have been reported to demonstrate FDG uptake mimicking metastasis. Hence, while interpreting FDG PET-CT scans in the context of STSs, both the extrapulmonary metastatic potential of aggressive histological subtypes of sarcoma and rare possibility of FDG avid coexistent benign tumor should be taken into consideration.

  16. Detection of thoracic aortic prosthetic graft infection with 18F-fluorodeoxyglucose positron emission tomography/computed tomography.

    PubMed

    Tokuda, Yoshiyuki; Oshima, Hideki; Araki, Yoshimori; Narita, Yuji; Mutsuga, Masato; Kato, Katsuhiko; Usui, Akihiko

    2013-06-01

    To investigate the diagnostic value of (18)F-fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT) in detecting thoracic aortic prosthetic graft infection. Nine patients with clinically suspected thoracic aortic graft infection underwent FDG-PET/CT scanning. In these patients, the diagnoses could not be confirmed using conventional modalities. The patients' clinical courses were retrospectively reviewed. On the basis of surgical, microbiological and clinical follow-up findings, the aortic grafts were considered infected in 4 patients and not infected in 5. All 4 patients with graft infection (root: 2 cases, arch: 1 case and descending: 1 case) eventually underwent in situ re-replacement. Two of the 4 patients also had abdominal grafts; however, only the thoracic grafts were replaced because uptake was low around the abdominal grafts. The maximal standardized uptake value (SUVmax) in the perigraft area was higher in the infected group than in the non-infected group (11.4 ± 4.5 vs 6.9 ± 6.4), although the difference was not statistically significant. According to the receiver operating characteristic analysis, SUVmax >8 appeared to be the cut-off value in distinguishing the two groups (sensitivity: 1.0 and specificity: 0.8). FDG-PET/CT is useful for confirming the presence of graft infection by detecting high uptake around grafts and excluding other causes of inflammation. An SUVmax value greater than 8 around a graft suggests the presence of graft infection. In addition, FDG-PET/CT can be used to clarify the precise extent of infection. This is especially useful if multiple separated prosthetic grafts have been implanted.

  17. Clinical Usefulness of [(18)F]Fluoro-2-Deoxy-D-Glucose Uptake in 178 Head-and-Neck Cancer Patients With Nodal Metastasis Treated With Definitive Chemoradiotherapy: Consideration of Its Prognostic Value and Ability to Provide Guidance for Optimal Selection of Patients for Planned Neck Dissection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Inokuchi, Haruo, E-mail: h.inokuchi@scchr.j; Kodaira, Takeshi; Tachibana, Hiroyuki

    2011-03-01

    Purpose: To evaluate the clinical effectiveness of pretreatment [(18)F]fluoro-2-deoxy-D-glucose-positron emission tomography for head-and-neck squamous cell carcinoma patients with nodal metastasis treated with chemoradiotherapy. Methods and Materials: Between March 2002 and December 2006, 178 patients with head-and-neck squamous cell carcinoma and nodal metastasis underwent fluoro-2-deoxy-D-glucose positron emission tomography before chemoradiotherapy. Fluoro-2-deoxy-D-glucose uptake by both the primary lesion and the neck node was measured using the standard uptake value (SUV). The overall survival, disease-free survival, local control, nodal progression-free survival, and distant metastasis-free survival rates were calculated, and several prognostic factors were evaluated. Results: The patients with a nodal SUV {>=}6.00 hadmore » a significantly lower 3-year disease-free survival rate than those with a lower SUV (44% vs. 69%, p = .004). On multivariate analysis, a high SUV of nodal disease also proved to be a significantly unfavorable factor for disease-free survival (p = .04, 95% confidence interval [CI], 1.02-3.23), nodal progression-free survival (p = .05; 95% CI, 1.00-4.15), and distant metastasis-free survival (p = .016; 95% CI, 1.25-8.92). Among the patients with a greater nodal SUV ({>=}6.00), those treated with planned neck dissection had better nodal progression-free survival than those in the observation group (p = .04, hazard ratio, 2.36; 95% CI, 1.00-5.85). Conclusion: Among head-and-neck squamous cell carcinoma patients treated with chemoradiotherapy, the pretreatment SUV of nodal disease was one of the strongest prognostic factors and also provided important information for the selection of patients suitable for planned neck dissection.« less

  18. Dissociation Between Brown Adipose Tissue 18F-FDG Uptake and Thermogenesis in Uncoupling Protein 1-Deficient Mice.

    PubMed

    Hankir, Mohammed K; Kranz, Mathias; Keipert, Susanne; Weiner, Juliane; Andreasen, Sille G; Kern, Matthias; Patt, Marianne; Klöting, Nora; Heiker, John T; Brust, Peter; Hesse, Swen; Jastroch, Martin; Fenske, Wiebke K

    2017-07-01

    18 F-FDG PET imaging is routinely used to investigate brown adipose tissue (BAT) thermogenesis, which requires mitochondrial uncoupling protein 1 (UCP1). It remains uncertain, however, whether BAT 18 F-FDG uptake is a reliable surrogate measure of UCP1-mediated heat production. Methods: UCP1 knockout (KO) and wild-type (WT) mice housed at thermoneutrality were treated with the selective β3 adrenergic receptor agonist CL 316, 243 and underwent metabolic cage, infrared thermal imaging and 18 F-FDG PET/MRI experiments. Primary brown adipocytes were additionally examined for their bioenergetics by extracellular flux analysis as well as their uptake of 2-deoxy- 3 H-glucose. Results: In response to CL 316, 243 treatments, oxygen consumption, and BAT thermogenesis were diminished in UCP1 KO mice, but BAT 18 F-FDG uptake was fully retained. Isolated UCP1 KO brown adipocytes exhibited defective induction of uncoupled respiration whereas their glycolytic flux and 2-deoxy- 3 H-glucose uptake rates were largely unaffected. Conclusion: Adrenergic stimulation can increase BAT 18 F-FDG uptake independently of UCP1 thermogenic function. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  19. 18F-FDG labeling of mesenchymal stem cells and multipotent adult progenitor cells for PET imaging: effects on ultrastructure and differentiation capacity.

    PubMed

    Wolfs, Esther; Struys, Tom; Notelaers, Tineke; Roberts, Scott J; Sohni, Abhishek; Bormans, Guy; Van Laere, Koen; Luyten, Frank P; Gheysens, Olivier; Lambrichts, Ivo; Verfaillie, Catherine M; Deroose, Christophe M

    2013-03-01

    Because of their extended differentiation capacity, stem cells have gained great interest in the field of regenerative medicine. For the development of therapeutic strategies, more knowledge on the in vivo fate of these cells has to be acquired. Therefore, stem cells can be labeled with radioactive tracer molecules such as (18)F-FDG, a positron-emitting glucose analog that is taken up and metabolically trapped by the cells. The aim of this study was to optimize the radioactive labeling of mesenchymal stem cells (MSCs) and multipotent adult progenitor cells (MAPCs) in vitro with (18)F-FDG and to investigate the potential radiotoxic effects of this labeling procedure with a range of techniques, including transmission electron microscopy (TEM). Mouse MSCs and rat MAPCs were used for (18)F-FDG uptake kinetics and tracer retention studies. Cell metabolic activity, proliferation, differentiation and ultrastructural changes after labeling were evaluated using an Alamar Blue reagent, doubling time calculations and quantitative TEM, respectively. Additionally, mice were injected with MSCs and MAPCs prelabeled with (18)F-FDG, and stem cell biodistribution was investigated using small-animal PET. The optimal incubation period for (18)F-FDG uptake was 60 min. Significant early tracer washout was observed, with approximately 30%-40% of the tracer being retained inside the cells 3 h after labeling. Cell viability, proliferation, and differentiation capacity were not severely affected by (18)F-FDG labeling. No major changes at the ultrastructural level, considering mitochondrial length, lysosome size, the number of lysosomes, the number of vacuoles, and the average rough endoplasmic reticulum width, were observed with TEM. Small-animal PET experiments with radiolabeled MAPCs and MSCs injected intravenously in mice showed a predominant accumulation in the lungs and a substantial elution of (18)F-FDG from the cells. MSCs and MAPCs can be successfully labeled with (18)F-FDG for

  20. Comparison of 4'-[methyl-(11)C]thiothymidine ((11)C-4DST) and 3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) PET/CT in human brain glioma imaging.

    PubMed

    Toyota, Yasunori; Miyake, Keisuke; Kawai, Nobuyuki; Hatakeyama, Tetsuhiro; Yamamoto, Yuka; Toyohara, Jun; Nishiyama, Yoshihiro; Tamiya, Takashi

    2015-01-01

    3'-deoxy-3'-[(18)F]fluorothymidine ((18)F-FLT) has been used to evaluate tumor malignancy and cell proliferation in human brain gliomas. However, (18)F-FLT has several limitations in clinical use. Recently, (11)C-labeled thymidine analogue, 4'-[methyl-(11)C]thiothymidine ((11)C-4DST), became available as an in vivo cell proliferation positron emission tomography (PET) tracer. The present study was conducted to evaluate the usefulness of (11)C-4DST PET in the diagnosis of human brain gliomas by comparing with the images of (18)F-FLT PET. Twenty patients with primary and recurrent brain gliomas underwent (18)F-FLT and (11)C-4DST PET scans. The uptake values in the tumors were evaluated using the maximum standardized uptake value (SUVmax), the tumor-to-normal tissue uptake (T/N) ratio, and the tumor-to-blood uptake (T/B) ratio. These values were compared among different glioma grades. Correlation between the Ki-67 labeling index and the uptake values of (11)C-4DST and (18)F-FLT in the tumor was evaluated using linear regression analysis. The relationship between the individual (18)F-FLT and (11)C-4DST uptake values in the tumors was also examined. (11)C-4DST uptake was significantly higher than that of (18)F-FLT in the normal brain. The uptake values of (11)C-4DST in the tumor were similar to those of (18)F-FLT resulting in better visualization with (18)F-FLT. No significant differences in the uptake values of (18)F-FLT and (11)C-4DST were noted among different glioma grades. Linear regression analysis showed a significant correlation between the Ki-67 labeling index and the T/N ratio of (11)C-4DST (r = 0.50, P < 0.05) and (18)F-FLT (r = 0.50, P < 0.05). Significant correlations were also found between the Ki-67 labeling index and the T/B ratio of (11)C-4DST (r = 0.52, P < 0.05) and (18)F-FLT (r = 0.55, P < 0.05). A highly significant correlation was observed between the individual T/N ratio of (11)C-4DST and (18)F-FLT in the tumor (r

  1. [Is 3'-deoxy-3'- [18F] fluorothymidine ([18F]-FLT) the next tracer for routine clinical PET after R [18F]-FDG?].

    PubMed

    Couturier, Olivier; Leost, Françoise; Campone, Mario; Carlier, Thomas; Chatal, Jean-François; Hustinx, Roland

    2005-09-01

    Positron emission tomography (PET) with [18F]-FDG is now firmly established as a clinical tool in oncology. Its applications are however limited in some indications, due to the lack of specificity of its uptake mechanism for tumors, or the low avidity of some cancer types such as prostate. Alternative tracers are thus being developed, in order to fill up this void. Proliferation as a biological target is particularly attractive in cancer imaging. From that perspective, fluorothymidine ([18F]-FLT or FLT) has generated a strong interest among the scientific community, especially since the radiosynthesis process has been improved and simplified, thus making possible to envision a routine use for the tracer. This article aims at summarizing the status of the current scientific data regarding FLT. The uptake mechanism of FLT is well known, relying on the thymidine kinase 1 (TK1) enzymatic activity, and thus on DNA synthesis. Preclinical studies have shown a clear relationship between tracer accumulation and level of tumor proliferation, even though DNA salvage pathwayss intervene in the process and may complicate the interpretation of the results. Several clinical studies suggest a good specificity for tumor, albeit with a lower sensitivity than with FDG. In all likelihood however, the future of FLT lies in the evaluation of antitumor response and possibly the pretherapeutic prognostic characterization, rather than in the diagnosis and staging of malignancies. Although the scientific data regarding this issue remain limited, initial results are encouraging. Further significant work remains to be done in order to fully assess the clinical performances of the tracer, on the one hand, and to determine its place relative to FDG and other emerging tracers, on the other hand. Until these studies are completed, FLT should be considered as a promising tracer, but remaining at an experimental stage of its development.

  2. (18)F-sodium fluoride PET/CT for the in vivo visualization of Mönckeberg's sclerosis in a diabetic patient.

    PubMed

    Quirce, R; Martínez-Rodríguez, I; Banzo, I; de Arcocha-Torres, M; Jiménez-Bonilla, J F; Martínez-Amador, N; Ibáñez-Bravo, S; Ramos, L; Amado, J A; Carril, J M

    2015-01-01

    Diabetes is a major frequent cause of atherosclerosis vascular disease. Arterial calcification in diabetic patients is responsible for peripheral vascular involvement. Molecular imaging using (18)F-sodium fluoride ((18)F-NaF) positron emission tomography (PET)/computed tomography (CT) has been recently proposed as a marker to study the in vivo mineralization process in the atheroma plaque. A 69-year-old man with a history of type 2 diabetes and no clinical evidence of peripheral arterial disease underwent an (18)F-NaF PET/CT scan. A linear, well-defined (18)F-NaF uptake was detected along the femoral arteries. In addition, the CT component of the PET/CT identified an unsuspected "tram-track" calcification in his femoral arteries, suggestive of medial calcification (Mönckeberg's sclerosis). In other vascular territories, focal (18)F-NaF uptake was also detected in carotid and aorta atheroma plaques. Molecular imaging with (18)F-NaF PET/CT might provide new functional information about the in vivo vascular calcification process in diabetic patients. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  3. Cancer Localization in the Prostate with F-18 Fluorocholine Positron Emission Tomography

    DTIC Science & Technology

    2009-01-15

    2008 Addendum to Final Report PI-Kwee, Sandi A. REFERENCES 1. Jemal A, Siegel R , Ward E, Murray T , Xu J, Thun MJ. Cancer statistics, 2007. CA...addition to those listed in the 2006 and 2007 reports: 2008 PUBLICATIONS: Kwee SA, Thibault G, Stack R , Coel M, Furusato B, Sesterhenn I. Use of...Kwee SA, Degrado T . Prostate biopsy guided by 18F-fluorocholine PET in men with persistently elevated PSA levels. Eur J Nucl Med Mol Imaging. 2008

  4. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity.

    PubMed

    Kim, Woosuk; Le, Thuc M; Wei, Liu; Poddar, Soumya; Bazzy, Jimmy; Wang, Xuemeng; Uong, Nhu T; Abt, Evan R; Capri, Joseph R; Austin, Wayne R; Van Valkenburgh, Juno S; Steele, Dalton; Gipson, Raymond M; Slavik, Roger; Cabebe, Anthony E; Taechariyakul, Thotsophon; Yaghoubi, Shahriar S; Lee, Jason T; Sadeghi, Saman; Lavie, Arnon; Faull, Kym F; Witte, Owen N; Donahue, Timothy R; Phelps, Michael E; Herschman, Harvey R; Herrmann, Ken; Czernin, Johannes; Radu, Caius G

    2016-04-12

    Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds-[(18)F]Clofarabine; 2-chloro-2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-adenine ([(18)F]CFA) and 2'-deoxy-2'-[(18)F]fluoro-9-β-d-arabinofuranosyl-guanine ([(18)F]F-AraG)-for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [(18)F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [(18)F]F-AraG is a better substrate for dGK than for dCK. [(18)F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [(18)F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [(18)F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [(18)F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [(18)F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [(18)F]CFA PET as a new cancer biomarker for treatment stratification and monitoring.

  5. [18F]CFA as a clinically translatable probe for PET imaging of deoxycytidine kinase activity

    PubMed Central

    Kim, Woosuk; Le, Thuc M.; Wei, Liu; Poddar, Soumya; Bazzy, Jimmy; Wang, Xuemeng; Uong, Nhu T.; Abt, Evan R.; Capri, Joseph R.; Austin, Wayne R.; Van Valkenburgh, Juno S.; Steele, Dalton; Gipson, Raymond M.; Slavik, Roger; Cabebe, Anthony E.; Taechariyakul, Thotsophon; Yaghoubi, Shahriar S.; Lee, Jason T.; Sadeghi, Saman; Lavie, Arnon; Faull, Kym F.; Witte, Owen N.; Donahue, Timothy R.; Phelps, Michael E.; Herschman, Harvey R.; Herrmann, Ken; Czernin, Johannes; Radu, Caius G.

    2016-01-01

    Deoxycytidine kinase (dCK), a rate-limiting enzyme in the cytosolic deoxyribonucleoside (dN) salvage pathway, is an important therapeutic and positron emission tomography (PET) imaging target in cancer. PET probes for dCK have been developed and are effective in mice but have suboptimal specificity and sensitivity in humans. To identify a more suitable probe for clinical dCK PET imaging, we compared the selectivity of two candidate compounds—[18F]Clofarabine; 2-chloro-2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosyl-adenine ([18F]CFA) and 2′-deoxy-2′-[18F]fluoro-9-β-d-arabinofuranosyl-guanine ([18F]F-AraG)—for dCK and deoxyguanosine kinase (dGK), a dCK-related mitochondrial enzyme. We demonstrate that, in the tracer concentration range used for PET imaging, [18F]CFA is primarily a substrate for dCK, with minimal cross-reactivity. In contrast, [18F]F-AraG is a better substrate for dGK than for dCK. [18F]CFA accumulation in leukemia cells correlated with dCK expression and was abrogated by treatment with a dCK inhibitor. Although [18F]CFA uptake was reduced by deoxycytidine (dC) competition, this inhibition required high dC concentrations present in murine, but not human, plasma. Expression of cytidine deaminase, a dC-catabolizing enzyme, in leukemia cells both in cell culture and in mice reduced the competition between dC and [18F]CFA, leading to increased dCK-dependent probe accumulation. First-in-human, to our knowledge, [18F]CFA PET/CT studies showed probe accumulation in tissues with high dCK expression: e.g., hematopoietic bone marrow and secondary lymphoid organs. The selectivity of [18F]CFA for dCK and its favorable biodistribution in humans justify further studies to validate [18F]CFA PET as a new cancer biomarker for treatment stratification and monitoring. PMID:27035974

  6. 18F-FDG avid Sclerosing Angiomatoid Nodular Transformation (SANT) of spleen on PET-CT - a rare mimicker of metastasis.

    PubMed

    Sharma, Punit

    2018-01-01

    Sclerosing Angiomatoid Nodular Transformation (SANT) is a rare benign vascular tumor of spleen. It consists of multiple angiomatoid nodules surrounded by dense fibrous tissue that often coalesces centrally to form a scar, which is considered to be a characteristic feature. These are usually asymptomatic and incidentally detected on imaging for other underlying pathology. SANTs can be 18F-Fluorodeoxyglucose (18F-FDG) avid on positron emission tomography-computed tomography (PET-CT) and thus can lead to false positive finding in oncological patients.

  7. Volume-Based Parameters of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Improve Disease Recurrence Prediction in Postmastectomy Breast Cancer Patients With 1 to 3 Positive Axillary Lymph Nodes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakajima, Naomi, E-mail: haruhi0321@gmail.com; Department of Radiology, Ehime University, Ehime; Kataoka, Masaaki

    Purpose: To determine whether volume-based parameters on pretreatment {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography in breast cancer patients treated with mastectomy without adjuvant radiation therapy are predictive of recurrence. Methods and Materials: We retrospectively analyzed 93 patients with 1 to 3 positive axillary nodes after surgery, who were studied with {sup 18}F-fluorodeoxyglucose positron emission tomography/computed tomography for initial staging. We evaluated the relationship between positron emission tomography parameters, including the maximum standardized uptake value, metabolic tumor volume (MTV), and total lesion glycolysis (TLG), and clinical outcomes. Results: The median follow-up duration was 45 months. Recurrence was observed in 11 patients.more » Metabolic tumor volume and TLG were significantly related to tumor size, number of involved nodes, nodal ratio, nuclear grade, estrogen receptor (ER) status, and triple negativity (TN) (all P values were <.05). In receiver operating characteristic curve analysis, MTV and TLG showed better predictive performance than tumor size, ER status, or TN (area under the curve: 0.85, 0.86, 0.79, 0.74, and 0.74, respectively). On multivariate analysis, MTV was an independent prognostic factor of locoregional recurrence-free survival (hazard ratio 34.42, 95% confidence interval 3.94-882.71, P=.0008) and disease-free survival (DFS) (hazard ratio 13.92, 95% confidence interval 2.65-103.78, P=.0018). The 3-year DFS rate was 93.8% for the lower MTV group (<53.1; n=85) and 25.0% for the higher MTV group (≥53.1; n=8; P<.0001, log–rank test). The 3-year DFS rate for patients with both ER-positive status and MTV <53.1 was 98.2%; and for those with ER-negative status and MTV ≥53.1 it was 25.0% (P<.0001). Conclusions: Volume-based parameters improve recurrence prediction in postmastectomy breast cancer patients with 1 to 3 positive nodes. The addition of MTV to ER status or TN has

  8. Preclinical evaluation of an 18F-labelled beta1-adrenoceptor selective radioligand based on ICI 89,406.

    PubMed

    Law, Marilyn P; Wagner, Stefan; Kopka, Klaus; Renner, Christiane; Pike, Victor W; Schober, Otmar; Schäfers, Michael

    2010-05-01

    Radioligand binding studies indicate a down-regulation of myocardial beta(1)-adrenoceptors (beta(1)-AR) in cardiac disease which may or may not be associated with a decrease in beta(2)-ARs. We have chosen ICI 89,406, a beta(1)-selective AR antagonist, as the lead structure to develop new beta(1)-AR radioligands for PET and have synthesised a fluoro-ethoxy derivative (F-ICI). (S)-N-[2-[3-(2-Cyano-phenoxy)-2-hydroxy-propylamino]-ethyl]-N'-[4-(2-[(18)F]fluoro-ethoxy)-phenyl]-urea ((S)-[(18)F]F-ICI) was synthesised. Myocardial uptake of radioactivity after intravenous injection of (S)-[(18)F]F-ICI into adult CD(1) mice or Wistar rats was assessed with positron emission tomography (PET) and postmortem dissection. Metabolism was assessed by high-performance liquid chromatography analysis of plasma and urine. The heart was visualised with PET after injection of (S)-[(18)F]F-ICI but neither unlabelled F-ICI nor propranolol (non-selective beta-AR antagonist) injected 15 min after (S)-[(18)F]F-ICI affected myocardial radioactivity. Ex vivo dissection demonstrated that predosing with propranolol or CGP 20712 (beta(1)-selective AR-antagonist) did not affect myocardial radioactivity. Radiometabolites rapidly appeared in plasma and both (S)-[(18)F]F-ICI and radiometabolites accumulated in urine. Myocardial uptake of (S)-[(18)F]F-ICI after intravenous injection was mainly at sites unrelated to beta(1)-ARs. (S)-[(18)F]F-ICI is not a suitable beta(1)-selective-AR radioligand for PET. (c) 2010 Elsevier Inc. All rights reserved.

  9. Preclinical evaluation of an 18F-labelled β1-adrenoceptor selective radioligand based on ICI 89,406

    PubMed Central

    Law, Marilyn P.; Wagner, Stefan; Kopka, Klaus; Renner, Christiane; Pike, Victor W.; Schober, Otmar; Schäfers, Michael

    2010-01-01

    Purpose Radioligand binding studies indicate a down-regulation of myocardial β1-adrenoceptors (β1-AR) in cardiac disease which may or may not be associated with a decrease in β2-ARs. We have chosen ICI 89,406, a β1-selective AR antagonist, as the lead structure to develop new β1-AR radioligands for PET and have synthesised a fluoro-ethoxy derivative (F-ICI). Methods (S)-N-[2-[3-(2-Cyano-phenoxy)-2-hydroxy-propylamino]-ethyl]-N′-[4-(2-[18F]fluoro-ethoxy)-phenyl]-urea ((S)-[18F]F-ICI) was synthesised. Myocardial uptake of radioactivity after intravenous injection of (S)-[18F]F-ICI into adult CD1 mice or Wistar rats was assessed with positron emission tomography (PET) and postmortem dissection. Metabolism was assessed by high-performance liquid chromatography analysis of plasma and urine. Results The heart was visualised with PET after injection of (S)-[18F]F-ICI but neither unlabelled F-ICI nor propranolol (non-selective β-AR antagonist) injected 15 min after (S)-[18F]F-ICI affected myocardial radioactivity. Ex vivo dissection demonstrated that predosing with propranolol or CGP 20712 (β1-selective AR-antagonist) did not affect myocardial radioactivity. Radiometabolites rapidly appeared in plasma and both (S)-[18F]F-ICI and radiometabolites accumulated in urine. Conclusions Myocardial uptake of (S)-[18F]F-ICI after intravenous injection was mainly at sites unrelated to β1-ARs. (S)-[18F]F-ICI is not a suitable β1-selective-AR radioligand for PET. PMID:20447564

  10. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG.

    PubMed

    Chen, Wei; Cloughesy, Timothy; Kamdar, Nirav; Satyamurthy, Nagichettiar; Bergsneider, Marvin; Liau, Linda; Mischel, Paul; Czernin, Johannes; Phelps, Michael E; Silverman, Daniel H S

    2005-06-01

    3'-Deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) is a recently developed PET tracer to image tumor cell proliferation. We characterized (18)F-FLT PET of brain gliomas and compared (18)F-FLT with (18)F-FDG PET in side-by-side studies of the same patients. Twenty-five patients with newly diagnosed or previously treated glioma underwent PET with (18)F-FLT and (18)F-FDG on consecutive days. Three stable patients in long-term remission were included as negative control subjects. Tracer kinetics in normal brain and tumor were measured. Uptake of (18)F-FLT and (18)F-FDG was quantified by the standardized uptake value (SUV) and the tumor-to-normal tissue (T/N) ratio. The accuracy of (18)F-FLT and (18)F-FDG PET in evaluating newly diagnosed and recurrent gliomas was compared. More than half of the patients underwent resection after the PET study and correlations between PET uptake and the Ki-67 proliferation index were examined. Patients were monitored for a mean of 15.4 mo (range, 12-20 mo). The predictive power of PET for tumor progression and survival was analyzed using Kaplan-Meier statistics. (18)F-FLT uptake in tumors was rapid, peaking at 5-10 min after injection and remaining stable up to 75 min. Hence, a 30-min scan beginning at 5 min after injection was sufficient for imaging. (18)F-FLT visualized all high-grade (grade III or IV) tumors. Grade II tumor did not show appreciable (18)F-FLT uptake and neither did the stable lesions. The absolute uptake of (18)F-FLT was low (maximum-pixel SUV [SUV(max)], 1.33) but image contrast was better than with (18)F-FDG (T/N ratio, 3.85 vs. 1.49). (18)F-FDG PET studies were negative in 5 patients with recurrent high-grade glioma who subsequently suffered tumor progression within 1-3 mo. (18)F-FLT SUV(max) correlated more strongly with Ki-67 index (r = 0.84; P < 0.0001) than (18)F-FDG SUV(max) (r = 0.51; P = 0.07). (18)F-FLT uptake also had more significant predictive power with respect to tumor progression and survival (P = 0

  11. Prevalence and malignancy risk of focal colorectal incidental uptake detected by 18F-FDG-PET or PET/CT: a meta-analysis

    PubMed Central

    Treglia, Giorgio; Taralli, Silvia; Salsano, Marco; Muoio, Barbara; Sadeghi, Ramin; Giovanella, Luca

    2014-01-01

    Background The aim of the study was to meta-analyze published data about prevalence and malignancy risk of focal colorectal incidentalomas (FCIs) detected by Fluorine-18-Fluorodeoxyglucose positron emission tomography or positron emission tomography/computed tomography (18F-FDG-PET or PET/CT). Methods A comprehensive computer literature search of studies published through July 31st 2012 regarding FCIs detected by 18F-FDG-PET or PET/CT was performed. Pooled prevalence of patients with FCIs and risk of malignant or premalignant FCIs after colonoscopy or histopathology verification were calculated. Furthermore, separate calculations for geographic areas were performed. Finally, average standardized uptake values (SUV) in malignant, premalignant and benign FCIs were reported. Results Thirty-two studies comprising 89,061 patients evaluated by 18F-FDG-PET or PET/CT were included. The pooled prevalence of FCIs detected by 18F-FDG-PET or PET/CT was 3.6% (95% confidence interval [95% CI]: 2.6–4.7%). Overall, 1,044 FCIs detected by 18F-FDG-PET or PET/CT underwent colonoscopy or histopathology evaluation. Pooled risk of malignant or premalignant lesions was 68% (95% CI: 60–75%). Risk of malignant and premalignant FCIs in Asia-Oceania was lower compared to that of Europe and America. A significant overlap in average SUV was found between malignant, premalignant and benign FCIs. Conclusions FCIs are observed in a not negligible number of patients who undergo 18F-FDG-PET or PET/CT studies with a high risk of malignant or premalignant lesions. SUV is not reliable as a tool to differentiate between malignant, premalignant and benign FCIs. Further investigation is warranted whenever FCIs are detected by 18F-FDG-PET or PET/CT. PMID:24991198

  12. Fluorine-18 Radiochemistry, Labeling Strategies and Synthetic Routes

    PubMed Central

    2015-01-01

    Fluorine-18 is the most frequently used radioisotope in positron emission tomography (PET) radiopharmaceuticals in both clinical and preclinical research. Its physical and nuclear characteristics (97% β+ decay, 109.7 min half-life, 635 keV positron energy), along with high specific activity and ease of large scale production, make it an attractive nuclide for radiochemical labeling and molecular imaging. Versatile chemistry including nucleophilic and electrophilic substitutions allows direct or indirect introduction of 18F into molecules of interest. The significant increase in 18F radiotracers for PET imaging accentuates the need for simple and efficient 18F-labeling procedures. In this review, we will describe the current radiosynthesis routes and strategies for 18F labeling of small molecules and biomolecules. PMID:25473848

  13. (18)F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors.

    PubMed

    Toyonaga, Takuya; Hirata, Kenji; Yamaguchi, Shigeru; Hatanaka, Kanako C; Yuzawa, Sayaka; Manabe, Osamu; Kobayashi, Kentaro; Watanabe, Shiro; Shiga, Tohru; Terasaka, Shunsuke; Kobayashi, Hiroyuki; Kuge, Yuji; Tamaki, Nagara

    2016-07-01

    Tumor necrosis is one of the indicators of tumor aggressiveness. (18)F-fluoromisonidazole (FMISO) is the most widely used positron emission tomography (PET) tracer to evaluate severe hypoxia in vivo. Because severe hypoxia causes necrosis, we hypothesized that intratumoral necrosis can be detected by FMISO PET in brain tumors regardless of their histopathology. We applied FMISO PET to various types of brain tumors before tumor resection and evaluated the correlation between histopathological necrosis and FMISO uptake. This study included 59 brain tumor patients who underwent FMISO PET/computed tomography before any treatments. According to the pathological diagnosis, the brain tumors were divided into three groups: astrocytomas (group 1), neuroepithelial tumors except for astrocytomas (group 2), and others (group 3). Two experienced neuropathologists evaluated the presence of necrosis in consensus. FMISO uptake in the tumor was evaluated visually and semi-quantitatively using the tumor-to-normal cerebellum ratio (TNR). In visual analyses, 26/27 cases in the FMISO-positive group presented with necrosis, whereas 28/32 cases in the FMISO-negative group did not show necrosis. Mean TNRs with and without necrosis were 3.49 ± 0.97 and 1.43 ± 0.42 (p < 0.00001) in group 1, 2.91 ± 0.83 and 1.44 ± 0.20 (p < 0.005) in group 2, and 2.63 ± 1.16 and 1.35 ± 0.23 (p < 0.05) in group 3, respectively. Using a cut-off value of TNR = 1.67, which was calculated by normal reference regions of interest, we could predict necrosis with sensitivity, specificity, and accuracy of 96.7, 93.1, and 94.9 %, respectively. FMISO uptake within the lesion indicated the presence of histological micro-necrosis. When we used a TNR of 1.67 as the cut-off value, intratumoral micro-necrosis was sufficiently predictable. Because the presence of necrosis implies a poor prognosis, our results suggest that FMISO PET could provide important information for

  14. 2-[18F]fluoro-2-deoxyglucose positron-emission tomography in staging, response evaluation, and treatment planning of lymphomas.

    PubMed

    Specht, Lena

    2007-07-01

    2-[18F]fluoro-2-deoxyglucose positron-emission tomography (FDG-PET) is used increasingly in the clinical management of lymphomas. With regard to staging, FDG-PET is more sensitive and specific than conventional staging methods in FDG avid lymphomas (ie, Hodgkin lymphoma and most aggressive non-Hodgkin lymphomas). Despite methodological problems, in particular the lack of a valid reference test, FDG-PET is approved and generally used for this purpose. With regard to response evaluation, FDG-PET at the end of treatment seems to aid considerably in differentiating between residual masses with or without residual lymphoma. Hence, new revised response criteria have been proposed, incorporating the result of FDG-PET at the end of treatment. An early interim FDG-PET scan after 1 to 3 cycles of chemotherapy is a very strong predictor of outcome, and trials are now in progress testing treatment modifications on this basis. With regard to treatment planning, in the context of combined-modality therapy, radiotherapy for lymphomas is moving toward more conformal techniques reducing the irradiated volume to include only the macroscopic lymphoma. In this situation, accurate imaging is essential, and FDG-PET coregistered with the planning computed tomography (CT) scan is used increasingly. The availability of PET/CT scanners suited for virtual simulation has aided this process. However, clinical data evaluating this technique are at present sparse.

  15. Association of insulin resistance with cerebral glucose uptake in late middle-aged adults at risk for Alzheimer’s disease

    PubMed Central

    Willette, Auriel A.; Bendlin, Barbara B.; Starks, Erika J.; Birdsill, Alex C.; Johnson, Sterling C.; Christian, Bradley T.; Okonkwo, Ozioma C.; La Rue, Asenath; Hermann, Bruce P.; Koscik, Rebecca L.; Jonaitis, Erin M.; Sager, Mark A.; Asthana, Sanjay

    2015-01-01

    Importance Converging evidence suggests that Alzheimer’s disease (AD) involves insulin signaling impairment. AD patients and people at risk for AD show reduced glucose metabolism, as indexed by F18-fluorodeoxyglucose positron emission tomography ([F18]FDG-PET). Objective To determine if insulin resistance (IR) predicts AD-like global and regional glucose metabolism deficits in late middle-aged participants at risk for AD. A secondary objective was to examine if IR-predicted variation in regional glucose metabolism was associated with worse cognitive performance. Setting A general community sample enriched for AD family history. Participants Population-based, cross-sectional study of 150 cognitively normal, late middle-aged (mean=60.67 years) adults from the Wisconsin Registry for Alzheimer’s Prevention. Design Participants underwent cognitive testing, fasting blood draw, and an [F18]FDG-PET scan at baseline. The Homeostatic Model Assessment of Insulin Resistance (HOMA-IR) was used to assess peripheral insulin resistance. Regression analysis tested the statistical effect of HOMA-IR on global glucose metabolism. A voxel-wise analysis was used to determine if HOMA-IR predicted regional glucose metabolism. Finally, predicted variation in regional glucose metabolism was regressed against cognitive factors. Covariates included age, sex, body mass index, Apolipoprotein E genotype, AD family history status, and a reference region used to normalize regional uptake. Main Outcome Measures Regional glucose uptake determined using [F18]FDG-PET, and neuropsychological factors. Results Higher HOMA-IR was associated with lower global glucose metabolism (β=−0.29, p<.01) and lower regional glucose metabolism across large portions of frontal, lateral parietal, lateral temporal, and medial temporal lobe (MTL; p<.05, family-wise error corrected). The association was especially robust in left MTL (R2=0.178). Lower left MTL glucose metabolism predicted by HOMA-IR was significantly

  16. Role of 18F-FDG PET/CT in diagnosing peritoneal carcinomatosis in the restaging of patient with ovarian cancer as compared to contrast enhanced CT and tumor marker Ca-125.

    PubMed

    Rubini, G; Altini, C; Notaristefano, A; Merenda, N; Rubini, D; Ianora, A A Stabile; Asabella, A Niccoli

    2014-01-01

    To investigate the role of whole-body fluorine-18-2-deoxy-2-fluoro-d-glucose positron emission tomography/computed tomography ((18)F-FDG PET/CT) in the identification of peritoneal carcinomatosis in patients with ovarian cancer (OC). Seventy-nine patients with histologically proven stages III-IV OC who underwent (18)F-FDG PET/CT were studied retrospectively. We considered group A as 51 patients who also underwent computed-tomography with contrast-enhancement (CECT), and group B as 35 patients who had also been tested for biomarker Ca-125. Sensitivity, specificity, accuracy, positive predictive values (PPV) and negative predictive values (NPV) of (18)F-FDG PET/CT as compared to CECT and to Ca-125 were evaluated. (18)F-FDG PET/CT' sensitivity, specificity, accuracy, PPV and NPV for all 79 patients were: 85%, 92.31%, 88.61%, 91.89% and 85.71%, respectively. (18)F-FDG PET/CT sensitivity in group A was 78.6%, while it was 53.6% for CECT. (18)F-FDG PET/CT specificity, calculated in the same group, was 91.3%, while that of CECT was 60.9% (statistically significant difference, McNemar 4, P=0.039). Accuracy was 84.3% and 56.9%, respectively. (18)F-FDG PET/CT' sensitivity in group B was 86.4%, while that of Ca-125 was 81.8% (no statistical difference, McNemar 0, P=1). (18)F-FDG PET/CT specificity in group B was 84.6% while that of Ca-125 was 38.5% (clear but not statistically significant difference, McNemar 3.12, P=0.070). Accuracy calculated in the same group was 85.7% for (18)F-FDG PET/CT and 65.7% for Ca-125. (18)F-FDG PET/CT is a useful diagnostic tool when peritoneal biopsy cannot be performed and it can better select those who are candidates for adjuvant chemotherapy. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  17. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma

    PubMed Central

    Kebir, Sied; Khurshid, Zain; Gaertner, Florian C.; Essler, Markus; Hattingen, Elke; Fimmers, Rolf; Scheffler, Björn; Herrlinger, Ulrich; Bundschuh, Ralph A.; Glas, Martin

    2017-01-01

    Rationale Timely detection of pseudoprogression (PSP) is crucial for the management of patients with high-grade glioma (HGG) but remains difficult. Textural features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) mirror tumor uptake heterogeneity; some of them may be associated with tumor progression. Methods Fourteen patients with HGG and suspected of PSP underwent FET-PET imaging. A set of 19 conventional and textural FET-PET features were evaluated and subjected to unsupervised consensus clustering. The final diagnosis of true progression vs. PSP was based on follow-up MRI using RANO criteria. Results Three robust clusters have been identified based on 10 predominantly textural FET-PET features. None of the patients with PSP fell into cluster 2, which was associated with high values for textural FET-PET markers of uptake heterogeneity. Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated with low values of textural FET-PET features. By comparison, tumor-to-normal brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, p=0.04). Principal Conclusions Clustering based on textural O-(2-[18F]fluoroethyl)-L-tyrosine PET features may provide valuable information in assessing the elusive phenomenon of pseudoprogression. PMID:28030820

  18. Unsupervised consensus cluster analysis of [18F]-fluoroethyl-L-tyrosine positron emission tomography identified textural features for the diagnosis of pseudoprogression in high-grade glioma.

    PubMed

    Kebir, Sied; Khurshid, Zain; Gaertner, Florian C; Essler, Markus; Hattingen, Elke; Fimmers, Rolf; Scheffler, Björn; Herrlinger, Ulrich; Bundschuh, Ralph A; Glas, Martin

    2017-01-31

    Timely detection of pseudoprogression (PSP) is crucial for the management of patients with high-grade glioma (HGG) but remains difficult. Textural features of O-(2-[18F]fluoroethyl)-L-tyrosine positron emission tomography (FET-PET) mirror tumor uptake heterogeneity; some of them may be associated with tumor progression. Fourteen patients with HGG and suspected of PSP underwent FET-PET imaging. A set of 19 conventional and textural FET-PET features were evaluated and subjected to unsupervised consensus clustering. The final diagnosis of true progression vs. PSP was based on follow-up MRI using RANO criteria. Three robust clusters have been identified based on 10 predominantly textural FET-PET features. None of the patients with PSP fell into cluster 2, which was associated with high values for textural FET-PET markers of uptake heterogeneity. Three out of 4 patients with PSP were assigned to cluster 3 that was largely associated with low values of textural FET-PET features. By comparison, tumor-to-normal brain ratio (TNRmax) at the optimal cutoff 2.1 was less predictive of PSP (negative predictive value 57% for detecting true progression, p=0.07 vs. 75% with cluster 3, p=0.04). Clustering based on textural O-(2-[18F]fluoroethyl)-L-tyrosine PET features may provide valuable information in assessing the elusive phenomenon of pseudoprogression.

  19. Is integrated 18F-FDG PET/MRI superior to 18F-FDG PET/CT in the differentiation of incidental tracer uptake in the head and neck area?

    PubMed

    Schaarschmidt, Benedikt Michael; Gomez, Benedikt; Buchbender, Christian; Grueneisen, Johannes; Nensa, Felix; Sawicki, Lino Morris; Ruhlmann, Verena; Wetter, Axel; Antoch, Gerald; Heusch, Philipp

    2017-01-01

    We aimed to investigate the accuracy of 18F-fluorodeoxyglucose positron emission tomography/magnetic resonance imaging (18F-FDG PET/MRI) compared with contrast-enhanced 18F-FDG PET/computed tomography (PET/CT) for the characterization of incidental tracer uptake in examinations of the head and neck. A retrospective analysis of 81 oncologic patients who underwent contrast-enhanced 18F-FDG PET/CT and subsequent PET/MRI was performed by two readers for incidental tracer uptake. In a consensus reading, discrepancies were resolved. Each finding was either characterized as most likely benign, most likely malignant, or indeterminate. Using all available clinical information including results from histopathologic sampling and follow-up examinations, an expert reader classified each finding as benign or malignant. McNemar's test was used to compare the performance of both imaging modalities in characterizing incidental tracer uptake. Forty-six lesions were detected by both modalities. On PET/CT, 27 lesions were classified as most likely benign, one as most likely malignant, and 18 as indeterminate; on PET/MRI, 31 lesions were classified as most likely benign, one lesion as most likely malignant, and 14 as indeterminate. Forty-three lesions were benign and one lesion was malignant according to the reference standard. In two lesions, a definite diagnosis was not possible. McNemar's test detected no differences concerning the correct classification of incidental tracer uptake between PET/CT and PET/MRI (P = 0.125). In examinations of the head and neck area, incidental tracer uptake cannot be classified more accurately by PET/MRI than by PET/CT.

  20. Positron emission tomography/computed tomography imaging and rheumatoid arthritis.

    PubMed

    Wang, Shi-Cun; Xie, Qiang; Lv, Wei-Fu

    2014-03-01

    Rheumatoid arthritis (RA) is a phenotypically heterogeneous, chronic, destructive inflammatory disease of the synovial joints. A number of imaging tools are currently available for evaluation of inflammatory conditions. By targeting the upgraded glucose uptake of infiltrating granulocytes and tissue macrophages, positron emission tomography/computed tomography with fluorine-18 fluorodeoxyglucose ((18) F-FDG PET/CT) is available to delineate inflammation with high sensitivity. Recently, several studies have indicated that FDG uptake in affected joints reflects the disease activity of RA. In addition, usage of FDG PET for the sensitive detection and monitoring of the response to treatment has been reported. Combined FDG PET/CT enables the detailed assessment of disease in large joints throughout the whole body. These unique capabilities of FDG PET/CT imaging are also able to detect RA-complicated diseases. Therefore, PET/CT has become an excellent ancillary tool to assess disease activity and prognosis in RA. © 2014 Asia Pacific League of Associations for Rheumatology and Wiley Publishing Asia Pty Ltd.

  1. [Development of analysis software package for the two kinds of Japanese fluoro-d-glucose-positron emission tomography guideline].

    PubMed

    Matsumoto, Keiichi; Endo, Keigo

    2013-06-01

    Two kinds of Japanese guidelines for the data acquisition protocol of oncology fluoro-D-glucose-positron emission tomography (FDG-PET)/computed tomography (CT) scans were created by the joint task force of the Japanese Society of Nuclear Medicine Technology (JSNMT) and the Japanese Society of Nuclear Medicine (JSNM), and published in Kakuigaku-Gijutsu 27(5): 425-456, 2007 and 29(2): 195-235, 2009. These guidelines aim to standardize PET image quality among facilities and different PET/CT scanner models. The objective of this study was to develop a personal computer-based performance measurement and image quality processor for the two kinds of Japanese guidelines for oncology (18)F-FDG PET/CT scans. We call this software package the "PET quality control tool" (PETquact). Microsoft Corporation's Windows(™) is used as the operating system for PETquact, which requires 1070×720 image resolution and includes 12 different applications. The accuracy was examined for numerous applications of PETquact. For example, in the sensitivity application, the system sensitivity measurement results were equivalent when comparing two PET sinograms obtained from the PETquact and the report. PETquact is suited for analysis of the two kinds of Japanese guideline, and it shows excellent spec to performance measurements and image quality analysis. PETquact can be used at any facility if the software package is installed on a laptop computer.

  2. Expanding role of 18F-fluoro-d-deoxyglucose PET and PET/CT in spinal infections

    PubMed Central

    Rijk, Paul C.; Collins, James M. P.; Parlevliet, Thierry; Stumpe, Katrin D.; Palestro, Christopher J.

    2010-01-01

    18F-fluoro-d-deoxyglucose positron emission tomography ([18F]-FDG PET) is successfully employed as a molecular imaging technique in oncology, and has become a promising imaging modality in the field of infection. The non-invasive diagnosis of spinal infections (SI) has been a challenge for physicians for many years. Morphological imaging modalities such as conventional radiography, computed tomography (CT), and magnetic resonance imaging (MRI) are techniques frequently used in patients with SI. However, these methods are sometimes non-specific, and difficulties in differentiating infectious from degenerative end-plate abnormalities or postoperative changes can occur. Moreover, in contrast to CT and MRI, FDG uptake in PET is not hampered by metallic implant-associated artifacts. Conventional radionuclide imaging tests, such as bone scintigraphy, labeled leukocyte, and gallium scanning, suffer from relatively poor spatial resolution and lack sensitivity, specificity, or both. Initial data show that [18F]-FDG PET is an emerging imaging technique for diagnosing SI. [18F]-FDG PET appears to be especially helpful in those cases in which MRI cannot be performed or is non-diagnostic, and as an adjunct in patients in whom the diagnosis is inconclusive. The article reviews the currently available literature on [18F]-FDG PET and PET/CT in the diagnosis of SI. PMID:20052505

  3. Preclinical Positron Emission Tomographic Imaging of Acute Hyperoxia Therapy of Chronic Hypoxia during Pregnancy.

    PubMed

    Zheleznyak, Alexander; Garbow, Joel R; Neeman, Michal; Lapi, Suzanne E

    2015-01-01

    The goal of this work was to study the efficacy of the positron emission tomography (PET) tracers 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) and 64Cu-diacetyl-bis(N4-methylthiosemicarbazone) ([64Cu]ATSM) and in monitoring placental and fetal functional response to acute hyperoxia in late-term pregnant mice subjected to experimentally induced chronic hypoxia. E15 mice were maintained at 12% inspired oxygen for 72 hours and then imaged during oxygen inhalation with either [18F]FDG to monitor nutrient transport or 64Cu-ATSM to establish the presence of hypoxia. Computed tomography (CT) with contrast allowed clear visualization of both placentas and fetuses. The average ratio of fetal to placental [18F]FDG uptake was 0.45 ± 0.1 for the hypoxic animals and 0.55 ± 0.1 for the normoxic animals, demonstrating a significant decrease (p = .0002) in placental function in dams exposed to chronic hypoxic conditions. Hypoxic placentas and fetuses retained more 64Cu-ATSM compared to normoxic placentas and fetuses. Herein we report first-in-mouse PET imaging of fetuses employing both tracers [18F]FDG (metabolism) and 64Cu-ATSM (hypoxia). [18F]FDG PET/CT imaging allowed clear visualization of placental-fetal structures and supported quantification of tracer uptake, making this a sensitive tool for monitoring placental function in preclinical rodent models. These measurements illustrate the potentially irreversible damage generated by chronic exposure to hypoxia, which cannot be corrected by acute exposure to hyperoxia.

  4. Prognostic predictive value of preoperative intratumoral 2-deoxy-2-(18F)fluoro-D-glucose uptake heterogeneity in patients with high-grade serous ovarian cancer.

    PubMed

    Liu, Shuai; Feng, Zheng; Jiang, Zhaoxia; Wen, Hao; Xu, Junyan; Pan, Herong; Deng, Yu; Zhang, Lei; Ju, Xingzhu; Chen, Xiaojun; Wu, Xiaohua

    2018-05-16

    This study aimed to explore the clinical and prognostic significance of pretreatment positron-emission tomography/computed tomography (PET/CT) parameters, especially 2-deoxy-2-(F)fluoro-D-glucose-based heterogeneity, in high-grade serous ovarian cancer (HGSC). We retrospectively investigated 56 patients with HGSC who underwent PET/CT before primary surgery at our hospital between January 2010 and June 2015. None of these patients received neoadjuvant chemotherapy. PET/CT parameters, including maximum and mean standardized uptake value (SUVmax and SUVmean), metabolic tumor volume (MTV), total lesion glycolysis (TLG), and intratumoral heterogeneity index (HI), were measured for all patients. Differences of each PET/CT parameter between primary tumors (-P) and omental metastatic lesions (-M) were compared by paired t tests. Progression-free survival (PFS) and overall survival were analyzed by the Kaplan-Meier method and log-rank tests in univariate analyses. Cox regression analyses were used for multivariate analysis. SUVmean-P was higher than SUVmean-M (P=0.001). However, there were no statistical differences of SUVmax, MTV, TLG, or HI between primary and omental lesions. Chemosensitive patients tended to have higher levels of SUVmax-P (P=0.011), MTV-P (P=0.014), TLG-P (P=0.035), and HI-P (P=0.002), respectively. In univariate analyses, higher HI-P was associated with better PFS (P=0.007). However, in multivariate analysis, HI-P was not an independent predictor of PFS (P=0.581). Neither HI-P nor HI-M was the prognostic predictor for overall survival (P=0.078 and 0.063, respectively). 2-Deoxy-2-(F)fluoro-D-glucose-based heterogeneity appears to be a predictive and prognostic factor for patients with HGSC. Parameters of primary tumors have predominant value compared with omental metastatic lesions.

  5. Intra-tumour 18F-FDG uptake heterogeneity decreases the reliability on target volume definition with positron emission tomography/computed tomography imaging.

    PubMed

    Dong, Xinzhe; Wu, Peipei; Sun, Xiaorong; Li, Wenwu; Wan, Honglin; Yu, Jinming; Xing, Ligang

    2015-06-01

    This study aims to explore whether the intra-tumour (18) F-fluorodeoxyglucose (FDG) uptake heterogeneity affects the reliability of target volume definition with FDG positron emission tomography/computed tomography (PET/CT) imaging for nonsmall cell lung cancer (NSCLC) and squamous cell oesophageal cancer (SCEC). Patients with NSCLC (n = 50) or SCEC (n = 50) who received (18)F-FDG PET/CT scanning before treatments were included in this retrospective study. Intra-tumour FDG uptake heterogeneity was assessed by visual scoring, the coefficient of variation (COV) of the standardised uptake value (SUV) and the image texture feature (entropy). Tumour volumes (gross tumour volume (GTV)) were delineated on the CT images (GTV(CT)), the fused PET/CT images (GTV(PET-CT)) and the PET images, using a threshold at 40% SUV(max) (GTV(PET40%)) or the SUV cut-off value of 2.5 (GTV(PET2.5)). The correlation between the FDG uptake heterogeneity parameters and the differences in tumour volumes among GTV(CT), GTV(PET-CT), GTV(PET40%) and GTV(PET2.5) was analysed. For both NSCLC and SCEC, obvious correlations were found between uptake heterogeneity, SUV or tumour volumes. Three types of heterogeneity parameters were consistent and closely related to each other. Substantial differences between the four methods of GTV definition were found. The differences between the GTV correlated significantly with PET heterogeneity defined with the visual score, the COV or the textural feature-entropy for NSCLC and SCEC. In tumours with a high FDG uptake heterogeneity, a larger GTV delineation difference was found. Advance image segmentation algorithms dealing with tracer uptake heterogeneity should be incorporated into the treatment planning system. © 2015 The Royal Australian and New Zealand College of Radiologists.

  6. A Phase 2 Study of 16α-[18F]-fluoro-17β-estradiol Positron Emission Tomography (FES-PET) as a Marker of Hormone Sensitivity in Metastatic Breast Cancer (MBC)

    PubMed Central

    Peterson, Lanell M.; Kurland, Brenda F.; Schubert, Erin K.; Link, Jeanne M.; Gadi, V.K.; Specht, Jennifer M.; Eary, Janet F.; Porter, Peggy; Shankar, Lalitha K.; Mankoff, David A.; Linden, Hannah M.

    2014-01-01

    Purpose 16α-[18F]-fluoro-17β-estradiol positron emission tomography (FES-PET) quantifies estrogen receptor (ER) expression in tumors and may provide diagnostic benefit. Procedures Women with newly diagnosed metastatic breast cancer (MBC) from an ER-positive primary tumor were imaged before starting endocrine therapy. FES uptake was evaluated qualitatively and quantitatively, and associated with response and with ER expression. Results Nineteen patients underwent FES imaging. Fifteen had a biopsy of a metastasis and 15 were evaluable for response. Five patients had quantitatively low FES uptake, six had at least one site of qualitatively FES-negative disease. All patients with an ER-negative biopsy had both low uptake and at least one site of FES-negative disease. Of response-evaluable patients, 2/2 with low FES standard uptake value tumors had progressive disease within 6 months, as did 2/3 with qualitatively FES-negative tumors. Conclusions Low/absent FES uptake correlates with lack of ER expression. FES-positron emission tomography can help identify patients with endocrine resistant disease and safely measures ER in MBC. PMID:24170452

  7. Positron emission tomography in neuropsychology.

    PubMed

    Heiss, W D; Herholz, K; Pawlik, G; Wagner, R; Wienhard, K

    1986-01-01

    By positron emission tomography (PET) of 18F-2-fluoro-2-deoxy-D-glucose (FDG) local cerebral metabolic rate for glucose (LCMRGl) can be measured in man. Normal values in cerebral cortex and basal ganglia range from 35 to 50 mumol/100 g/min, the values in gray matter structures of the posterior fossa were 25-30 mumol/100 g/min, the lowest LCMRGl was found in the white matter (15-20 mumol/100 g/min). During sensory stimulation by various modalities functional activation increases LCMRGl in the respective special areas, while sleep decreases metabolic rate in all cortical and basal gray matter structures. In many neurological disorders CMRGl is altered in a disease-specific pattern. In dementia of the Alzheimer type CMRGl is impaired even in early stages with accentuation in the parieto-temporal cortex, while in multi-infarct dementia glucose uptake is mainly reduced in the multifocal small infarcts. In Huntington's chorea the most conspicuous changes are found in the caudate nucleus and putamen. In cases of focal lesions (e.g. ischemic infarcts) metabolic disturbances extend far beyond the site of the primary lesion and inactivation of metabolism is found in intact brain structures far away from the anatomical lesion. Additional applications of PET include determination of the metabolism of various substrates, of protein synthesis, of function and distribution of receptors, of tumor growth and of the distribution of drugs as well as the measurement of oxygen consumption, blood flow and blood volume.

  8. Amyloid positron emission tomography with (18)F-flutemetamol and structural magnetic resonance imaging in the classification of mild cognitive impairment and Alzheimer's disease.

    PubMed

    Duara, Ranjan; Loewenstein, David A; Shen, Qian; Barker, Warren; Potter, Elizabeth; Varon, Daniel; Heurlin, Kristen; Vandenberghe, Rik; Buckley, Christopher

    2013-05-01

    To evaluate the contributions of amyloid-positive (Am+) and medial temporal atrophy-positive (MTA+) scans to the diagnostic classification of prodromal and probable Alzheimer's disease (AD). (18)F-flutemetamol-labeled amyloid positron emission tomography (PET) and magnetic resonance imaging (MRI) were used to classify 10 young normal, 15 elderly normal, 20 amnestic mild cognitive impairment (aMCI), and 27 AD subjects. MTA+ status was determined using a cut point derived from a previous study, and Am+ status was determined using a conservative and liberal cut point. The rates of MRI scans with positive results among young normal, elderly normal, aMCI, and AD subjects were 0%, 20%, 75%, and 82%, respectively. Using conservative cut points, the rates of Am+ scans for these same groups of subjects were 0%, 7%, 50%, and 93%, respectively, with the aMCI group showing the largest discrepancy between Am+ and MTA+ scans. Among aMCI cases, 80% of Am+ subjects were also MTA+, and 70% of amyloid-negative (Am-) subjects were MTA+. The combination of amyloid PET and MTA data was additive, with an overall correct classification rate for aMCI of 86%, when a liberal cut point (standard uptake value ratio = 1.4) was used for amyloid positivity. (18)F-flutemetamol PET and structural MRI provided additive information in the diagnostic classification of aMCI subjects, suggesting an amyloid-independent neurodegenerative component among aMCI subjects in this sample. Copyright © 2013 The Alzheimer's Association. Published by Elsevier Inc. All rights reserved.

  9. Utilizing 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) to define suspected nonenhancing tumor for radiation therapy planning of glioblastoma.

    PubMed

    Hayes, Aimee R; Jayamanne, Dasantha; Hsiao, Edward; Schembri, Geoffrey P; Bailey, Dale L; Roach, Paul J; Khasraw, Mustafa; Newey, Allison; Wheeler, Helen R; Back, Michael

    2018-01-31

    The authors sought to evaluate the impact of 18F-fluoroethyltyrosine (FET) positron emission tomography (PET) on radiation therapy planning for patients diagnosed with glioblastoma (GBM) and the presence of suspected nonenhancing tumors compared with standard magnetic resonance imaging (MRI). Patients with GBM and contrast-enhanced MRI scans showing regions suspicious of nonenhancing tumor underwent postoperative FET-PET before commencing radiation therapy. Two clinical target volumes (CTVs) were created using pre- and postoperative MRI: MRI fluid-attenuated inversion recovery (FLAIR) sequences (CTV FLAIR ) and MRI contrast sequences with an expansion on the surgical cavity (CTV Sx ). FET-PET was used to create biological tumor volumes (BTVs) by encompassing FET-avid regions, forming BTV FLAIR and BTV Sx . Volumetric analyses were conducted between CTVs and respective BTVs using Wilcoxon signed-rank tests. The volume increase with addition of FET was analyzed with respect to BTV FLAIR and BTV Sx . Presence of focal gadolinium contrast enhancement within previously nonenhancing tumor or within the FET-avid region was noted on MRI scans at 1 and 3 months after radiation therapy. Twenty-six patients were identified retrospectively from our database, of whom 24 had demonstrable FET uptake. The median CTV FLAIR , CTV Sx , BTV FLAIR , and BTV Sx were 57.1 mL (range, 1.1-217.4), 83.6 mL (range, 27.2-275.8), 62.8 mL (range, 1.1-307.3), and 94.7 mL (range, 27.2-285.5), respectively. When FET-PET was used, there was a mean increase in volume of 26.8% from CTV FLAIR to BTV FLAIR and 20.6% from CTV Sx to BTV Sx . A statistically significant difference was noted on Wilcoxon signed-rank test when assessing volumetric change between CTV FLAIR and BTV FLAIR (P < .0001) and CTV Sx and BTV Sx (P < .0001). Six of 24 patients (25%) with FET avidity before radiation therapy showed focal gadolinium enhancement within the radiation therapy portal. FET-PET may help improve delineation of

  10. It's a question of endurance - Patients with head and neck cancer experiences of 18F-FDG PET/CT in a fixation mask.

    PubMed

    Andersson, Camilla; Röing, Marta; Tiblom Ehrsson, Ylva; Johansson, Birgitta

    2017-08-01

    This study aimed to explore how patients with head and neck cancer experienced undergoing an 18 F-fluoro-deoxy-glucose positrons emissions tomography/computed tomography ( 18 F-FDG PET/CT) examination in a fixation mask. Interviews were conducted with nine patients with known or suspected head and neck cancer who were scheduled for the examination for the first time. The phenomenological method according to van Manen and his four lifeworld existentials; lived space, lived body, lived time, and lived relation was used to analyse the interviews. The thoughts and feelings of the patients during the PET/CT examination varied, some found it very difficult, while others did not. However, for all the patients, it was an experience that required some form of coping to maintain composure for example distraction. PET/CT examnation in a fixation mask may be strenuous for some patients. Patients need more detailed information, including suggestions for coping behaviours, prior to the examination, as well as higher level of support during and after the examination. The results of this study may be used to improve patient care and optimize the procedure of PET/CT examination in a fixation mask. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Differences in Brain Glucose Metabolism During Preparation for 131I Ablation in Thyroid Cancer Patients: Thyroid Hormone Withdrawal Versus Recombinant Human Thyrotropin.

    PubMed

    Jeong, Hyeonseok S; Choi, Eun Kyoung; Song, In-Uk; Chung, Yong-An; Park, Jong-Sik; Oh, Jin Kyoung

    2017-01-01

    In preparation for 131 I ablation, temporary withdrawal of thyroid hormone is commonly used in patients with thyroid cancer after total thyroidectomy. The current study aimed to investigate brain glucose metabolism and its relationships with mood or cognitive function in these patients using 18 F-fluoro-2-deoxyglucose positron emission tomography ( 18 F-FDG-PET). A total of 40 consecutive adult patients with thyroid carcinoma who had undergone total thyroidectomy were recruited for this cross-sectional study. At the time of assessment, 20 patients were hypothyroid after two weeks of thyroid hormone withdrawal, while 20 received thyroid hormone replacement therapy and were euthyroid. All participants underwent brain 18 F-FDG-PET scans and completed mood questionnaires and cognitive tests. Multivariate spatial covariance analysis and univariate voxel-wise analysis were applied for the image data. The hypothyroid patients were more anxious and depressed than the euthyroid participants. The multivariate covariance analysis showed increases in glucose metabolism primarily in the bilateral insula and surrounding areas and concomitant decreases in the parieto-occipital regions in the hypothyroid group. The level of thyrotropin was positively associated with the individual expression of the covariance pattern. The decreased 18 F-FDG uptake in the right cuneus cluster from the univariate analysis was correlated with the increased thyrotropin level and greater depressive symptoms in the hypothyroid group. These results suggest that temporary hypothyroidism, even for a short period, may induce impairment in glucose metabolism and related affective symptoms.

  12. The diagnostic value of 18F-FDG-PET/CT and MRI in suspected vertebral osteomyelitis - a prospective study.

    PubMed

    Kouijzer, Ilse J E; Scheper, Henk; de Rooy, Jacky W J; Bloem, Johan L; Janssen, Marcel J R; van den Hoven, Leon; Hosman, Allard J F; Visser, Leo G; Oyen, Wim J G; Bleeker-Rovers, Chantal P; de Geus-Oei, Lioe-Fee

    2018-05-01

    The aim of this study was to determine the diagnostic value of 18 F-fluorodeoxyglucose (FDG) positron emission tomography and computed tomography (PET/CT) and magnetic resonance imaging (MRI) in diagnosing vertebral osteomyelitis. From November 2015 until December 2016, 32 patients with suspected vertebral osteomyelitis were prospectively included. All patients underwent both 18 F-FDG-PET/CT and MRI within 48 h. All images were independently reevaluated by two radiologists and two nuclear medicine physicians who were blinded to each others' image interpretation. 18 F-FDG-PET/CT and MRI were compared to the clinical diagnosis according to international guidelines. For 18 F-FDG-PET/CT, sensitivity, specificity, PPV, and NPV in diagnosing vertebral osteomyelitis were 100%, 83.3%, 90.9%, and 100%, respectively. For MRI, sensitivity, specificity, PPV, and NPV were 100%, 91.7%, 95.2%, and 100%, respectively. MRI detected more epidural/spinal abscesses. An important advantage of 18 F-FDG-PET/CT is the detection of metastatic infection (16 patients, 50.0%). 18 F-FDG-PET/CT and MRI are both necessary techniques in diagnosing vertebral osteomyelitis. An important advantage of 18 F-FDG-PET/CT is the visualization of metastatic infection, especially in patients with bacteremia. MRI is more sensitive in detection of small epidural abscesses.

  13. Extramedullary Solitary Plasmacytoma: Demonstrating the Role of 18F-FDG PET Imaging.

    PubMed

    Gautam, Archana; Sahu, Kamal Kant; Alamgir, Ahsan; Siddiqi, Imran; Ailawadhi, Sikander

    2017-04-01

    An Extramedullary Plasmacytoma (EMP) is characterized by a neoplastic proliferation of clonal plasma cells outside the medullary cavity. EMPs are a rare occurrence compared to other malignant plasma cell disorders and account for approximately 3-5% of plasma-cell neoplasms. Although most cases of EMP are not immediately life threatening at diagnosis, EMPs can progress to Multiple Myeloma (MM) and thus, warrant monitoring. Currently, there are no standard guidelines for when and how to monitor patients who are diagnosed with or treated for a solitary plasmacytoma. We present a case of solitary EMP who was treated adequately and definitively but developed a distinct, non-contiguous subsequent solitary EMP and was only discovered due to surveillance 18 F-Fludeoxyglucose Positron Emission Tomography ( 18 F-FDG) (PET) scan. Uniform surveillance guidelines should be developed and the potential benefits of PET and other imaging techniques as well as their cost should be considered.

  14. Patterns of human local cerebral glucose metabolism during epileptic seizures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Engel, J. Jr.; Kuhl, D.E.; Phelps, M.E.

    1982-10-01

    Ictal patterns of local cerebral metabolic rate have been studied in epileptic patients by positron computed tomography with /sup 18/F-labeled 2-fluoro-2-deoxy-D-glucose. Partial seizures were associated with activation of anatomic structures unique to each patient studied. Ictal increases and decreases in local cerebral metabolism were observed. Scans performed during generalized convulsions induced by electroshock demonstrated a diffuse ictal increase and postictal decrease in cerebral metabolism. Petit mal absences were associated with a diffuse increase in cerebral metabolic rate. The ictal fluorodeoxyglucose patterns obtained from patients do not resemble autoradiographic patterns obtained from common experimental animal models of epilepsy.

  15. Detection of bladder metabolic artifacts in (18)F-FDG PET imaging.

    PubMed

    Roman-Jimenez, Geoffrey; Crevoisier, Renaud De; Leseur, Julie; Devillers, Anne; Ospina, Juan David; Simon, Antoine; Terve, Pierre; Acosta, Oscar

    2016-04-01

    Positron emission tomography using (18)F-fluorodeoxyglucose ((18)F-FDG-PET) is a widely used imaging modality in oncology. It enables significant functional information to be included in analyses of anatomical data provided by other image modalities. Although PET offers high sensitivity in detecting suspected malignant metabolism, (18)F-FDG uptake is not tumor-specific and can also be fixed in surrounding healthy tissue, which may consequently be mistaken as cancerous. PET analyses may be particularly hampered in pelvic-located cancers by the bladder׳s physiological uptake potentially obliterating the tumor uptake. In this paper, we propose a novel method for detecting (18)F-FDG bladder artifacts based on a multi-feature double-step classification approach. Using two manually defined seeds (tumor and bladder), the method consists of a semi-automated double-step clustering strategy that simultaneously takes into consideration standard uptake values (SUV) on PET, Hounsfield values on computed tomography (CT), and the distance to the seeds. This method was performed on 52 PET/CT images from patients treated for locally advanced cervical cancer. Manual delineations of the bladder on CT images were used in order to evaluate bladder uptake detection capability. Tumor preservation was evaluated using a manual segmentation of the tumor, with a threshold of 42% of the maximal uptake within the tumor. Robustness was assessed by randomly selecting different initial seeds. The classification averages were 0.94±0.09 for sensitivity, 0.98±0.01 specificity, and 0.98±0.01 accuracy. These results suggest that this method is able to detect most (18)F-FDG bladder metabolism artifacts while preserving tumor uptake, and could thus be used as a pre-processing step for further non-parasitized PET analyses. Copyright © 2016. Published by Elsevier Ltd.

  16. Validation of a [Al18F]PSMA-11 preparation for clinical applications.

    PubMed

    Al-Momani, Ehab; Israel, Ina; Samnick, Samuel

    2017-12-01

    Imaging prostate-specific membrane antigen (PSMA) using positron emission tomography (PET) has been presented so far as the most sensitive and specific with regard to prostate cancer detection, in particular in high-risk prostate cancer patients. Currently, it mainly features Gallium-68 ( 68 Ga) labeled PSMA ligands, notably [ 68 Ga]Glu-urea-Lys(Ahx)-HBED-CC ([ 68 Ga]-PSMA-11) and [ 68 Ga]DOTAGA-FFK (Sub-KuE termed ([ 68 Ga]PSMA-I&T). However, 68 Ga has several shortcomings as radionuclide including a short half-life and non-ideal energies. This has motivated consideration of 18 F-labeled analogues for PET imaging of prostate cancer. Here, we describe a simple synthesis and validation of a fluorine-18 labeled Glu-urea-Lys(Ahx)-HBED-CC ([Al 18 F]PSMA-11) for nuclear medicine applications. An efficient method for preparation of [Al 18 F]PSMA-11 was developed and validated (according to Pharm Eur) for routinely clinical applications. [Al 18 F]PSMA-11 was reproducibly obtained in radiochemical yields of 84 ± 6% (n = 15) and > 98% radiochemical purity using an improved one-step radiofluorination in aqueous solution. The total (production/preparation) time, including purification, pharmacological formulation of the isolated product and the quality control of the injectable solution was less than 60min. The [Al 18 F]PSMA-11 was stable over 4h in 1% EtOH/saline selected as injection solution. The solution was sterile, non-pyrogenic and ready for clinical applications after sterile filtration through a 0.22µm membrane filter under sterile conditions. In addition, [Al 18 F]PSMA-11 exhibited higher uptake and retention in PMSA-expressing LNCap prostate cells as compared to its clinically established 68 Ga-labeled analogues [ 68 Ga]PSMA-11 and [ 68 Ga]PSMA-I&T as well as to [ 68 Ga]NOTA-Bn-PSMA. The simple and fast preparation of [Al 18 F]PSMA-11 combined with its favorable pharmacological properties warrant its translation to a clinical setting. The facile and high

  17. 18F-FDG or 3'-deoxy-3'-18F-fluorothymidine to detect transformation of follicular lymphoma.

    PubMed

    Wondergem, Marielle J; Rizvi, Saiyada N F; Jauw, Yvonne; Hoekstra, Otto S; Hoetjes, Nikie; van de Ven, Peter M; Boellaard, Ronald; Chamuleau, Martine E D; Cillessen, Saskia A G M; Regelink, Josien C; Zweegman, Sonja; Zijlstra, Josée M

    2015-02-01

    Considering the different treatment strategy for transformed follicular lymphoma (TF) as opposed to follicular lymphoma (FL), diagnosing transformation early in the disease course is important. There is evidence that (18)F-FDG has utility as a biomarker of transformation. However, quantitative thresholds may require inclusion of homogeneous non-Hodgkin lymphoma subtypes to account for differences in tracer uptake per subtype. Moreover, because proliferation is a hallmark of transformation, 3'-deoxy-3'-(18)F-fluorothymidine ((18)F-FLT) might be superior to (18)F-FDG in this setting. To define the best tracer for detection of TF, we performed a prospective a head-to-head comparison of (18)F-FDG and (18)F-FLT in patients with FL and TF. (18)F-FDG and (18)F-FLT PET scans were obtained in 17 patients with FL and 9 patients with TF. We measured the highest maximum standardized uptake value (SUVmax), defined as the lymph node with the highest uptake per patient, and SUVrange, defined as the difference between the SUVmax of the lymph node with the highest and lowest uptake per patient. To reduce partial-volume effects, only lymph nodes larger than 3 cm(3) (A50 isocontour) were analyzed. Scans were acquired 1 h after injection of 185 MBq of (18)F-FDG or (18)F-FLT. To determine the discriminative ability of SUVmax and SUVrange of both tracers for TF, receiver-operating-characteristic curve analysis was performed. The highest SUVmax was significantly higher for TF than FL for both (18)F-FDG and (18)F-FLT (P < 0.001). SUVrange was significantly higher for TF than FL for (18)F-FDG (P = 0.029) but not for (18)F-FLT (P = 0.075). The ability of (18)F-FDG to discriminate between FL and TF was superior to that of (18)F-FLT for both the highest SUVmax (P = 0.039) and the SUVrange (P = 0.012). The cutoff value for the highest SUVmax of (18)F-FDG aiming at 100% sensitivity with a maximum specificity was found to be 14.5 (corresponding specificity, 82%). For (18)F-FLT, these values were

  18. Imaging of cellular proliferation in liver metastasis by [18F]fluorothymidine positron emission tomography: effect of therapy.

    PubMed

    Contractor, Kaiyumars; Challapalli, Amarnath; Tomasi, Giampaolo; Rosso, Lula; Wasan, Harpreet; Stebbing, Justin; Kenny, Laura; Mangar, Stephen; Riddle, Pippa; Palmieri, Carlo; Al-Nahhas, Adil; Sharma, Rohini; Turkheimer, Federico; Coombes, R Charles; Aboagye, Eric

    2012-06-07

    Although [(18)F]fluorothymidine positron emission tomography (FLT-PET) permits estimation of tumor thymidine kinase-1 expression, and thus, cell proliferation, high physiological uptake of tracer in liver tissue can limit its utility. We evaluated FLT-PET combined with a temporal-intensity information-based voxel-clustering approach termed kinetic spatial filtering (FLT-PET(KSF)) for detecting drug response in liver metastases. FLT-PET and computed tomography data were collected from patients with confirmed breast or colorectal liver metastases before, and two weeks after the first cycle of chemotherapy. Changes in tumor FLT-PET and FLT-PET(KSF) variables were determined. Visual distinction between tumor and normal liver was seen in FLT-PET(KSF) images. Of the 33 metastases from 20 patients studied, 26 were visible after kinetic filtering. The net irreversible retention of the tracer (Ki; from unfiltered data) in the tumor, correlated strongly with tracer uptake when the imaging variable was an unfiltered average or maximal standardized uptake value, 60 min post-injection (SUV(60,av): r = 0.9, SUV(60,max): r = 0.7; p < 0.0001 for both) and occurrence of high intensity voxels derived from FLT-PET(KSF) (r = 0.7, p < 0.0001). Overall, a significant reduction in the imaging variables was seen in responders compared to non-responders; however, the two week time point selected for imaging was too early to allow prediction of long term clinical benefit from chemotherapy. FLT-PET and FLT-PET(KSF) detected changes in proliferation in liver metastases.

  19. Tumor heterogeneity measured on F-18 fluorodeoxyglucose positron emission tomography/computed tomography combined with plasma Epstein-Barr Virus load predicts prognosis in patients with primary nasopharyngeal carcinoma.

    PubMed

    Chan, Sheng-Chieh; Chang, Kai-Ping; Fang, Yu-Hua Dean; Tsang, Ngan-Ming; Ng, Shu-Hang; Hsu, Cheng-Lung; Liao, Chun-Ta; Yen, Tzu-Chen

    2017-01-01

    Plasma Epstein-Barr virus (EBV) DNA concentrations predict prognosis in patients with nasopharyngeal carcinoma (NPC). Recent evidence also indicates that intratumor heterogeneity on F-18 fluorodeoxyglucose positron emission tomography ( 18 F-FDG PET) scans is predictive of treatment outcomes in different solid malignancies. Here, we sought to investigate the prognostic value of heterogeneity parameters in patients with primary NPC. Retrospective cohort study. We examined 101 patients with primary NPC who underwent pretreatment 18 F-FDG PET/computed tomography. Circulating levels of EBV DNA were measured in all participants. The following PET heterogeneity parameters were collected: histogram-based heterogeneity parameters, second-order texture features (uniformity, contrast, entropy, homogeneity, dissimilarity, inverse difference moment), and higher-order (coarseness, contrast, busyness, complexity, strength) texture features. The median follow-up time was 5.14 years. Total lesion glycolysis (TLG), tumor heterogeneity measured by histogram-based parameter skewness, and the majority of second-order or higher-order texture features were significantly associated with overall survival (OS) and/or recurrence-free survival (RFS). In multivariate analysis, age (P =.005), EBV DNA load (P = .0002), and uniformity (P = .001) independently predicted OS. Only skewness retained the independent prognostic significance for RFS. Tumor stage, standardized uptake value, or TLG did not show an independent association with survival endpoints. The combination of uniformity, EBV DNA load, and age resulted in a more reliable prognostic stratification (P < .001). Tumor heterogeneity is superior to traditional PET parameters for predicting outcomes in primary NPC. The combination of uniformity with EBV DNA load can improve prognostic stratification in this clinical entity. 4 Laryngoscope, 127:E22-E28, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  20. Validation and quantification of [18F]altanserin binding in the rat brain using blood input and reference tissue modeling

    PubMed Central

    Riss, Patrick J; Hong, Young T; Williamson, David; Caprioli, Daniele; Sitnikov, Sergey; Ferrari, Valentina; Sawiak, Steve J; Baron, Jean-Claude; Dalley, Jeffrey W; Fryer, Tim D; Aigbirhio, Franklin I

    2011-01-01

    The 5-hydroxytryptamine type 2a (5-HT2A) selective radiotracer [18F]altanserin has been subjected to a quantitative micro-positron emission tomography study in Lister Hooded rats. Metabolite-corrected plasma input modeling was compared with reference tissue modeling using the cerebellum as reference tissue. [18F]altanserin showed sufficient brain uptake in a distribution pattern consistent with the known distribution of 5-HT2A receptors. Full binding saturation and displacement was documented, and no significant uptake of radioactive metabolites was detected in the brain. Blood input as well as reference tissue models were equally appropriate to describe the radiotracer kinetics. [18F]altanserin is suitable for quantification of 5-HT2A receptor availability in rats. PMID:21750562

  1. Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer's disease.

    PubMed

    Schöll, Michael; Ossenkoppele, Rik; Strandberg, Olof; Palmqvist, Sebastian; Jögi, Jonas; Ohlsson, Tomas; Smith, Ruben; Hansson, Oskar

    2017-09-01

    Patients with Alzheimer's disease can present with different clinical phenotypes. Individuals with late-onset Alzheimer's disease (>65 years) typically present with medial temporal lobe neurodegeneration and predominantly amnestic symptomatology, while patients with early-onset Alzheimer's disease (<65 years) exhibit greater neocortical involvement associated with a clinical presentation including dyspraxia, executive dysfunction, or visuospatial impairment. We recruited 20 patients with early-onset Alzheimer's disease, 21 with late-onset Alzheimer's disease, three with prodromal early-onset Alzheimer's disease and 13 with prodromal late-onset Alzheimer's disease, as well as 30 cognitively healthy elderly controls, that had undergone 18F-AV-1451 tau positron emission tomography and structural magnetic resonance imaging to explore whether early- and late-onset Alzheimer's disease exhibit differential regional tau pathology and atrophy patterns. Strong associations of lower age at symptom onset with higher 18F-AV-1451 uptake were observed in several neocortical regions, while higher age did not yield positive associations in neither patient group. Comparing patients with early-onset Alzheimer's disease with controls resulted in significantly higher 18F-AV-1451 retention throughout the neocortex, while comparing healthy controls with late-onset Alzheimer's disease patients yielded a distinct pattern of higher 18F-AV-1451 retention, predominantly confined to temporal lobe regions. When compared against each other, the early-onset Alzheimer's disease group exhibited greater uptake than the late-onset group in prefrontal and premotor, as well as in inferior parietal cortex. These preliminary findings indicate that age may constitute an important contributor to Alzheimer's disease heterogeneity highlighting the potential of tau positron emission tomography to capture phenotypic variation across patients with Alzheimer's disease. © The Author (2017). Published by Oxford

  2. Variations of the liver standardized uptake value in relation to background blood metabolism: An 2-[18F]Fluoro-2-deoxy-D-glucose positron emission tomography/computed tomography study in a large population from China.

    PubMed

    Liu, Guobing; Hu, Yan; Zhao, Yanzhao; Yu, Haojun; Hu, Pengcheng; Shi, Hongcheng

    2018-05-01

    To investigate the influence of background blood metabolism on liver uptake of 2-[F]fluoro-2-deoxy-D-glucose (F-FDG) and search for an appropriate corrective method.Positron emission tomography/computed tomography (PET/CT) and common serological biochemical tests of 633 healthy people were collected retrospectively. The mean standardized uptake value (SUV) of the liver, liver artery, and portal vein (i.e., SUVL, SUVA, and SUVP) were measured. SUVL/A was calculated as SUVL/SUVA, while SUVL/P was calculated as SUVL/SUVP. SUV of liver parenchyma (SUVLP) was calculated as SUVL - .3 × (.75 × SUVP + .25 × SUVA). The coefficients of variation (CV) of SUVL, SUVL/A, SUVL/P, and SUVLP were compared to assess their interindividual variations. Univariate and multivariate analyses were performed to identify vulnerabilities of these SUV indexes to common factors assessed using serological liver functional tests.SUVLP was significantly larger than SUVL (2.19 ± .497 vs 1.88 ± .495, P < .001), while SUVL/P was significantly smaller than SUVL (1.72 ± .454 vs 1.88 ± .495, P < .001). The difference between SUVL/A and SUVL was not significant (1.83 ± .500 vs 1.88 ± .495, P = .130). The CV of SUVLP (22.7%) was significantly smaller than that of SUVL (22.7%:26.3%, P < .001), while the CVs of SUVL/A (27.2%) and SUVL/P (26.4%) were not different from that of SUVL (P = .429 and .929, respectively). Fewer variables independently influenced SUVLP than influenced SUVL, SUVL/A, and SUVL/P; Only aspartate aminotransferase, body mass index, and total cholesterol, all P-values <.05.The activity of background blood influences the variation of liver SUV. SUVLP might be an alternative corrective method to reduce this influence, as its interindividual variation and vulnerability to effects from common factors of serological liver functional tests are relatively lower than the commonly used SUVL.

  3. Role of (18)F-FDG PET-CT in Monitoring the Cyclophosphamide Induced Pulmonary Toxicity in Patients with Breast Cancer - 2 Case Reports.

    PubMed

    Taywade, Sameer Kamalakar; Kumar, Rakesh; Bhethanabhotla, Sainath; Bal, Chandrasekhar

    2016-09-01

    Drug induced pulmonary toxicity is not uncommon with the use of various chemotherapeutic agents. Cyclophosphamide is a widely used chemotherapeutic drug in the treatment of breast cancer. Although rare, lung toxicity has been reported with cyclophosphamide use. Detection of bleomycin induced pulmonary toxicity and pattern of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in lungs on fluorodeoxyglucose positron emission tomography-computed tomography ((18)F-FDG PET-CT) has been elicited in literature in relation to lymphoma. However, limited data is available regarding the role of (18)F-FDG PET-CT in monitoring drug induced pulmonary toxicity in breast cancer. We here present two cases of cyclophosphamide induced drug toxicity. Interim (18)F-FDG PET-CT demonstrated diffusely increased tracer uptake in bilateral lung fields in both these patients. Subsequently there was resolution of lung uptake on (18)F-FDG PET-CT scan post completion of chemotherapy. These patients did not develop significant respiratory symptoms during chemotherapy treatment and in follow up.

  4. Application of Palladium-Mediated 18F-Fluorination to PET Radiotracer Development: Overcoming Hurdles to Translation

    PubMed Central

    Kamlet, Adam S.; Neumann, Constanze N.; Lee, Eunsung; Carlin, Stephen M.; Moseley, Christian K.; Stephenson, Nickeisha; Hooker, Jacob M.; Ritter, Tobias

    2013-01-01

    New chemistry methods for the synthesis of radiolabeled small molecules have the potential to impact clinical positron emission tomography (PET) imaging, if they can be successfully translated. However, progression of modern reactions from the stage of synthetic chemistry development to the preparation of radiotracer doses ready for use in human PET imaging is challenging and rare. Here we describe the process of and the successful translation of a modern palladium-mediated fluorination reaction to non-human primate (NHP) baboon PET imaging–an important milestone on the path to human PET imaging. The method, which transforms [18F]fluoride into an electrophilic fluorination reagent, provides access to aryl–18F bonds that would be challenging to synthesize via conventional radiochemistry methods. PMID:23554994

  5. Age- and Brain Region-Specific Changes of Glucose Metabolic Disorder, Learning, and Memory Dysfunction in Early Alzheimer's Disease Assessed in APP/PS1 Transgenic Mice Using 18F-FDG-PET.

    PubMed

    Li, Xue-Yuan; Men, Wei-Wei; Zhu, Hua; Lei, Jian-Feng; Zuo, Fu-Xing; Wang, Zhan-Jing; Zhu, Zhao-Hui; Bao, Xin-Jie; Wang, Ren-Zhi

    2016-10-18

    Alzheimer's disease (AD) is a leading cause of dementia worldwide, associated with cognitive deficits and brain glucose metabolic alteration. However, the associations of glucose metabolic changes with cognitive dysfunction are less detailed. Here, we examined the brains of APP/presenilin 1 (PS1) transgenic (Tg) mice aged 2, 3.5, 5 and 8 months using 18 F-labed fluorodeoxyglucose ( 18 F-FDG) microPET to assess age- and brain region-specific changes of glucose metabolism. FDG uptake was calculated as a relative standardized uptake value (SUVr). Morris water maze (MWM) was used to evaluate learning and memory dysfunction. We showed a glucose utilization increase in multiple brain regions of Tg mice at 2 and 3.5 months but not at 5 and 8 months. Comparisons of SUVrs within brains showed higher glucose utilization than controls in the entorhinal cortex, hippocampus, and frontal cortex of Tg mice at 2 and 3.5 months but in the thalamus and striatum at 3.5, 5 and 8 months. By comparing SUVrs in the entorhinal cortex and hippocampus, Tg mice were distinguished from controls at 2 and 3.5 months. In MWM, Tg mice aged 2 months shared a similar performance to the controls (prodromal-AD). By contrast, Tg mice failed training tests at 3.5 months but failed all MWM tests at 5 and 8 months, suggestive of partial or complete cognitive deficits (symptomatic-AD). Correlation analyses showed that hippocampal SUVrs were significantly correlated with MWM parameters in the symptomatic-AD stage. These data suggest that glucose metabolic disorder occurs before onset of AD signs in APP/PS1 mice with the entorhinal cortex and hippocampus affected first, and that regional FDG uptake increase can be an early biomarker for AD. Furthermore, hippocampal FDG uptake is a possible indicator for progression of Alzheimer's cognition after cognitive decline, at least in animals.

  6. Monte Carlo investigation of positron annihilation in medical positron emission tomography

    NASA Astrophysics Data System (ADS)

    Chin, P. W.; Spyrou, N. M.

    2007-09-01

    A number of Monte Carlo codes are available for simulating positron emission tomography (PET), however, physics approximations differ. A number of radiation processes are deemed negligible, some without rigorous investigation. Some PET literature quantify approximations to be valid, without citing the data source. The radiation source is the first step in Monte Carlo simulations, for some codes this is 511 keV photons 180° apart, not polyenergetic positrons with radiation histories of their own. Without prior assumptions, we investigated electron-positron annihilation under clinical PET conditions. Just before annihilation, we tallied the positron energy and position. Right after annihilation, we tallied the energy and separation angle of photon pairs. When comparing PET textbooks with theory, PENELOPE and EGSnrc, only the latter three agreed. From 10 6 radiation histories, a positron source of 15O in a chest phantom annihilated at as high as 1.58 MeV, producing photons with energies 0.30-2.20 MeV, 79-180° apart. From 10 6 radiation histories, an 18F positron source in a head phantom annihilated at energies as high as 0.56 MeV, producing 0.33-1.18 MeV photons 109-180° apart. 2.5% and 0.8% annihilation events occurred inflight in the chest and the head phantoms, respectively. PET textbooks typically either do not mention any deviation from 180°, or state a deviation of 0.25° or 0.5°. Our findings are founded on the well-established Heitler cross-sections and relativistic kinematics, both adopted unanimously by PENELOPE, EGSnrc and GEANT4. Our results highlight the effects of annihilation in-flight, a process sometimes forgotten within the PET community.

  7. Quantitative Analysis of {sup 18}F-Fluorodeoxyglucose Positron Emission Tomography Identifies Novel Prognostic Imaging Biomarkers in Locally Advanced Pancreatic Cancer Patients Treated With Stereotactic Body Radiation Therapy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Yi; Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo; Song, Jie

    Purpose: To identify prognostic biomarkers in pancreatic cancer using high-throughput quantitative image analysis. Methods and Materials: In this institutional review board–approved study, we retrospectively analyzed images and outcomes for 139 locally advanced pancreatic cancer patients treated with stereotactic body radiation therapy (SBRT). The overall population was split into a training cohort (n=90) and a validation cohort (n=49) according to the time of treatment. We extracted quantitative imaging characteristics from pre-SBRT {sup 18}F-fluorodeoxyglucose positron emission tomography, including statistical, morphologic, and texture features. A Cox proportional hazard regression model was built to predict overall survival (OS) in the training cohort using 162more » robust image features. To avoid over-fitting, we applied the elastic net to obtain a sparse set of image features, whose linear combination constitutes a prognostic imaging signature. Univariate and multivariate Cox regression analyses were used to evaluate the association with OS, and concordance index (CI) was used to evaluate the survival prediction accuracy. Results: The prognostic imaging signature included 7 features characterizing different tumor phenotypes, including shape, intensity, and texture. On the validation cohort, univariate analysis showed that this prognostic signature was significantly associated with OS (P=.002, hazard ratio 2.74), which improved upon conventional imaging predictors including tumor volume, maximum standardized uptake value, and total legion glycolysis (P=.018-.028, hazard ratio 1.51-1.57). On multivariate analysis, the proposed signature was the only significant prognostic index (P=.037, hazard ratio 3.72) when adjusted for conventional imaging and clinical factors (P=.123-.870, hazard ratio 0.53-1.30). In terms of CI, the proposed signature scored 0.66 and was significantly better than competing prognostic indices (CI 0.48-0.64, Wilcoxon rank sum test P<1e

  8. Noninvasive monitoring of cancer therapy induced activated T cells using [18F]FB-IL-2 PET imaging.

    PubMed

    Hartimath, S V; Draghiciu, O; van de Wall, S; Manuelli, V; Dierckx, R A J O; Nijman, H W; Daemen, T; de Vries, E F J

    2017-01-01

    Cancer immunotherapy urgently calls for methods to monitor immune responses at the site of the cancer. Since activated T lymphocytes may serve as a hallmark for anticancer responses, we targeted these cells using the radiotracer N-(4-[ 18 F]fluorobenzoyl)-interleukin-2 ([ 18 F]FB-IL-2) for positron emission tomography (PET) imaging. Thus, we noninvasively monitored the effects of local tumor irradiation and/or immunization on tumor-infiltrating and systemic activated lymphocytes in tumor-bearing mice. A 10- and 27-fold higher [ 18 F]FB-IL-2 uptake was observed in tumors of mice receiving tumor irradiation alone or in combination with immunization, respectively. This increased uptake was extended to several non-target tissues. Administration of the CXCR4 antagonist AMD3100 reduced tracer uptake by 2.8-fold, indicating a CXCR4-dependent infiltration of activated T lymphocytes upon cancer treatment. In conclusion, [ 18 F]FB-IL-2 PET can serve as a clinical biomarker to monitor treatment-induced infiltration of activated T lymphocytes and, on that basis, may guide cancer immunotherapies.

  9. Extramedullary Solitary Plasmacytoma: Demonstrating the Role of 18F-FDG PET Imaging

    PubMed Central

    Gautam, Archana; Sahu, Kamal Kant; Alamgir, Ahsan; Siddiqi, Imran

    2017-01-01

    An Extramedullary Plasmacytoma (EMP) is characterized by a neoplastic proliferation of clonal plasma cells outside the medullary cavity. EMPs are a rare occurrence compared to other malignant plasma cell disorders and account for approximately 3-5% of plasma-cell neoplasms. Although most cases of EMP are not immediately life threatening at diagnosis, EMPs can progress to Multiple Myeloma (MM) and thus, warrant monitoring. Currently, there are no standard guidelines for when and how to monitor patients who are diagnosed with or treated for a solitary plasmacytoma. We present a case of solitary EMP who was treated adequately and definitively but developed a distinct, non-contiguous subsequent solitary EMP and was only discovered due to surveillance 18F-Fludeoxyglucose Positron Emission Tomography (18F-FDG) (PET) scan. Uniform surveillance guidelines should be developed and the potential benefits of PET and other imaging techniques as well as their cost should be considered. PMID:28571247

  10. Fasting Enhances the Contrast of Bone Metastatic Lesions in 18F-Fluciclovine-PET: Preclinical Study Using a Rat Model of Mixed Osteolytic/Osteoblastic Bone Metastases

    PubMed Central

    Oka, Shuntaro; Kanagawa, Masaru; Doi, Yoshihiro; Schuster, David M.; Goodman, Mark M.; Yoshimura, Hirokatsu

    2017-01-01

    18F-fluciclovine (trans-1-amino-3-18F-fluorocyclobutanecarboxylic acid) is an amino acid positron emission tomography (PET) tracer used for cancer staging (e.g., prostate and breast). Patients scheduled to undergo amino acid-PET are usually required to fast before PET tracer administration. However, there have been no reports addressing whether fasting improves fluciclovine-PET imaging. In this study, the authors investigated the influence of fasting on fluciclovine-PET using triple-tracer autoradiography with 14C-fluciclovine, [5,6-3H]-2-fluoro-2-deoxy-d-glucose (3H-FDG), and 99mTc-hydroxymethylene diphosphonate (99mTc-HMDP) in a rat breast cancer model of mixed osteolytic/osteoblastic bone metastases in which the animals fasted overnight. Lesion accumulation of each tracer was evaluated using the target-to-background (muscle) ratio. The mean ratios of 14C-fluciclovine in osteolytic lesions were 4.6 ± 0.8 and 2.8 ± 0.6, respectively, with and without fasting, while those for 3H-FDG were 6.9 ± 2.5 and 5.1 ± 2.0, respectively. In the peri-tumor bone formation regions (osteoblastic), where 99mTc-HMDP accumulated, the ratios of 14C-fluciclovine were 4.3 ± 1.4 and 2.4 ± 0.7, respectively, and those of 3H-FDG were 6.2 ± 3.8 and 3.3 ± 2.2, respectively, with and without fasting. These results suggest that fasting before 18F-fluciclovine-PET improves the contrast between osteolytic and osteoblastic bone metastatic lesions and background, as well as 18F-FDG-PET. PMID:28468238

  11. [18F]Fluorocholine PET/CT Imaging of Liver Cancer: Radiopathologic Correlation with Tissue Phospholipid Profiling.

    PubMed

    Kwee, Sandi A; Sato, Miles M; Kuang, Yu; Franke, Adrian; Custer, Laurie; Miyazaki, Kyle; Wong, Linda L

    2017-06-01

    [ 18 F]fluorocholine PET/CT can detect hepatocellular carcinoma (HCC) based on imaging the initial steps of phosphatidylcholine synthesis. To relate the diagnostic performance of [ 18 F]fluorocholine positron emission tomography (PET)/x-ray computed tomography (CT) to the phospholipid composition of liver tumors, radiopathologic correspondence was performed in patients with early-stage liver cancer who had undergone [ 18 F]fluorocholine PET/CT before tumor resection. Tumor and adjacent liver were profiled by liquid chromatography mass spectrometry, quantifying phosphatidylcholine species by mass-to-charge ratio. For clinical-radiopathologic correlation, HCC profiles were reduced to two orthogonal principal component factors (PCF1 and PCF2) accounting for 80 % of total profile variation. Tissues from 31 HCC patients and 4 intrahepatic cholangiocarcinoma (ICC) patients were analyzed, revealing significantly higher levels of phosphocholine, CDP-choline, and highly saturated phosphatidylcholine species in HCC tumors relative to adjacent liver and ICC tumors. Significant loading values for PCF1 corresponded to phosphatidylcholines containing poly-unsaturated fatty acids while PCF2 corresponded only to highly saturated phosphatidylcholines. Only PCF2 correlated significantly with HCC tumor-to-liver [ 18 F]fluorocholine uptake ratio (ρ = 0.59, p < 0.0005). Sensitivity for all tumors based on an abnormal [ 18 F]fluorocholine uptake ratio was 93 % while sensitivity for HCC based on increased tumor [ 18 F]fluorocholine uptake was 84 %, with lower levels of highly saturated phosphatidylcholines in tumors showing low [ 18 F]fluorocholine uptake. Most HCC tumors contain high levels of saturated phosphatidylcholines, supporting their dependence on de novo fatty acid metabolism for phospholipid membrane synthesis. While [ 18 F]fluorocholine PET/CT can serve to identify these lipogenic tumors, its imperfect diagnostic sensitivity implies metabolic heterogeneity across HCC

  12. Mu-opiate receptors measured by positron emission tomography are increased in temporal lobe epilepsy.

    PubMed

    Frost, J J; Mayberg, H S; Fisher, R S; Douglass, K H; Dannals, R F; Links, J M; Wilson, A A; Ravert, H T; Rosenbaum, A E; Snyder, S H

    1988-03-01

    Neurochemical studies in animal models of epilepsy have demonstrated the importance of multiple neurotransmitters and their receptors in mediating seizures. The role of opiate receptors and endogenous opioid peptides in seizure mechanisms is well developed and is the basis for measuring opiate receptors in patients with epilepsy. Patients with complex partial seizures due to unilateral temporal seizure foci were studied by positron emission tomography using 11C-carfentanil to measure mu-opiate receptors and 18F-fluoro-deoxy-D-glucose to measure glucose utilization. Opiate receptor binding is greater in the temporal neocortex on the side of the electrical focus than on the opposite side. Modeling studies indicate that the increase in binding is due to an increase in affinity or the number of unoccupied receptors. No significant asymmetry of 11C-carfentanil binding was detected in the amygdala or hippocampus. Glucose utilization correlated inversely with 11C-carfentanil binding in the temporal neocortex. Increased opiate receptors in the temporal neocortex may represent a tonic anticonvulsant system that limits the spread of electrical activity from other temporal lobe structures.

  13. Primary central nervous system lymphoma with lymphomatosis cerebri in an immunocompetent child: MRI and 18F-FDG PET-CT findings.

    PubMed

    Jain, Tarun K; Sharma, Punit; Suman, Sudhir K C; Faizi, Nauroze A; Bal, Chandrasekhar; Kumar, Rakesh

    2013-01-01

    Primary central nervous system lymphoma (PCNSL) is extremely rare in immunocompetent children. We present the magnetic resonance imaging (MRI) and (18)F-fluorodeoxyglucose ((18)F-FDG) positron emission tomography-computed tomography (PET-CT) findings of such a case in a 14-year old immunocompetent boy. In this patient, PCNSL was associated with lymphomatosis cerebri. Familiarity with the findings of this rare condition will improve the diagnostic confidence of the nuclear radiologist and avoid misdiagnosis. Copyright © 2013 Elsevier España, S.L. and SEMNIM. All rights reserved.

  14. High-Grade Glioma Radiation Therapy Target Volumes and Patterns of Failure Obtained From Magnetic Resonance Imaging and {sup 18}F-FDOPA Positron Emission Tomography Delineations From Multiple Observers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kosztyla, Robert, E-mail: rkosztyla@bccancer.bc.ca; Chan, Elisa K.; Hsu, Fred

    Purpose: The objective of this study was to compare recurrent tumor locations after radiation therapy with pretreatment delineations of high-grade gliomas from magnetic resonance imaging (MRI) and 3,4-dihydroxy-6-[{sup 18}F]fluoro-L-phenylalanine ({sup 18}F-FDOPA) positron emission tomography (PET) using contours delineated by multiple observers. Methods and Materials: Nineteen patients with newly diagnosed high-grade gliomas underwent computed tomography (CT), gadolinium contrast-enhanced MRI, and {sup 18}F-FDOPA PET/CT. The image sets (CT, MRI, and PET/CT) were registered, and 5 observers contoured gross tumor volumes (GTVs) using MRI and PET. Consensus contours were obtained by simultaneous truth and performance level estimation (STAPLE). Interobserver variability was quantified bymore » the percentage of volume overlap. Recurrent tumor locations after radiation therapy were contoured by each observer using CT or MRI. Consensus recurrence contours were obtained with STAPLE. Results: The mean interobserver volume overlap for PET GTVs (42% ± 22%) and MRI GTVs (41% ± 22%) was not significantly different (P=.67). The mean consensus volume was significantly larger for PET GTVs (58.6 ± 52.4 cm{sup 3}) than for MRI GTVs (30.8 ± 26.0 cm{sup 3}, P=.003). More than 95% of the consensus recurrence volume was within the 95% isodose surface for 11 of 12 (92%) cases with recurrent tumor imaging. Ten (91%) of these cases extended beyond the PET GTV, and 9 (82%) were contained within a 2-cm margin on the MRI GTV. One recurrence (8%) was located outside the 95% isodose surface. Conclusions: High-grade glioma contours obtained with {sup 18}F-FDOPA PET had similar interobserver agreement to volumes obtained with MRI. Although PET-based consensus target volumes were larger than MRI-based volumes, treatment planning using PET-based volumes may not have yielded better treatment outcomes, given that all but 1 recurrence extended beyond the PET GTV and most were contained by a 2

  15. Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography

    PubMed Central

    Bruijnen, Stefan T G; Verweij, Nicki J F; van Duivenvoorde, Leonie M; Bravenboer, Nathalie; Baeten, Dominique L P; van Denderen, Christiaan J; van der Horst-Bruinsma, Irene E; Voskuyl, Alexandre E; Custers, Martijn; van de Ven, Peter M; Bot, Joost C J; Boden, Bouke J H; Lammertsma, Adriaan A; Hoekstra, Otto S H; Raijmakers, Pieter G H M; van der Laken, Conny J

    2018-01-01

    Abstract Objectives Excessive bone formation is an important hallmark of AS. Recently it has been demonstrated that axial bony lesions in AS patients can be visualized using 18F-fluoride PET-CT. The aim of this study was to assess whether 18F-fluoride uptake in clinically active AS patients is related to focal bone formation in spine biopsies and is sensitive to change during anti-TNF treatment. Methods Twelve anti-TNF-naïve AS patients [female 7/12; age 39 years (SD 11); BASDAI 5.5 ± 1.1] were included. 18 F-fluoride PET-CT scans were performed at baseline and in two patients, biopsies were obtained from PET-positive and PET-negative spine lesions. The remaining 10 patients underwent a second 18F-fluoride PET-CT scan after 12 weeks of anti-TNF treatment. PET scans were scored visually by two blinded expert readers. In addition, 18F-fluoride uptake was quantified using the standardized uptake value corrected for individual integrated whole blood activity concentration (SUVAUC). Clinical response to anti-TNF was defined according to a ⩾ 20% improvement in Assessment of SpondyloArthritis international Society criteria at 24 weeks. Results At baseline, all patients showed at least one axial PET-positive lesion. Histological analysis of PET-positive lesions in the spine confirmed local osteoid formation. PET-positive lesions were found in the costovertebral joints (43%), facet joints (23%), bridging syndesmophytes (20%) and non-bridging vertebral lesions (14%) and in SI joints (75%). After 12 weeks of anti-TNF treatment, 18F-fluoride uptake in clinical responders decreased significantly in the costovertebral (mean SUVAUC −1.0; P < 0.001) and SI joints (mean SUVAUC −1.2; P = 0.03) in contrast to non-responders. Conclusions 18F-fluoride PET-CT identified bone formation, confirmed by histology, in the spine and SI joints of AS patients and demonstrated alterations in bone formation during anti-TNF treatment. PMID:29329443

  16. Bone formation in ankylosing spondylitis during anti-tumour necrosis factor therapy imaged by 18F-fluoride positron emission tomography.

    PubMed

    Bruijnen, Stefan T G; Verweij, Nicki J F; van Duivenvoorde, Leonie M; Bravenboer, Nathalie; Baeten, Dominique L P; van Denderen, Christiaan J; van der Horst-Bruinsma, Irene E; Voskuyl, Alexandre E; Custers, Martijn; van de Ven, Peter M; Bot, Joost C J; Boden, Bouke J H; Lammertsma, Adriaan A; Hoekstra, Otto S H; Raijmakers, Pieter G H M; van der Laken, Conny J

    2018-04-01

    Excessive bone formation is an important hallmark of AS. Recently it has been demonstrated that axial bony lesions in AS patients can be visualized using 18F-fluoride PET-CT. The aim of this study was to assess whether 18F-fluoride uptake in clinically active AS patients is related to focal bone formation in spine biopsies and is sensitive to change during anti-TNF treatment. Twelve anti-TNF-naïve AS patients [female 7/12; age 39 years (SD 11); BASDAI 5.5 ± 1.1] were included. 18 F-fluoride PET-CT scans were performed at baseline and in two patients, biopsies were obtained from PET-positive and PET-negative spine lesions. The remaining 10 patients underwent a second 18F-fluoride PET-CT scan after 12 weeks of anti-TNF treatment. PET scans were scored visually by two blinded expert readers. In addition, 18F-fluoride uptake was quantified using the standardized uptake value corrected for individual integrated whole blood activity concentration (SUVAUC). Clinical response to anti-TNF was defined according to a ⩾ 20% improvement in Assessment of SpondyloArthritis international Society criteria at 24 weeks. At baseline, all patients showed at least one axial PET-positive lesion. Histological analysis of PET-positive lesions in the spine confirmed local osteoid formation. PET-positive lesions were found in the costovertebral joints (43%), facet joints (23%), bridging syndesmophytes (20%) and non-bridging vertebral lesions (14%) and in SI joints (75%). After 12 weeks of anti-TNF treatment, 18F-fluoride uptake in clinical responders decreased significantly in the costovertebral (mean SUVAUC -1.0; P < 0.001) and SI joints (mean SUVAUC -1.2; P = 0.03) in contrast to non-responders. 18F-fluoride PET-CT identified bone formation, confirmed by histology, in the spine and SI joints of AS patients and demonstrated alterations in bone formation during anti-TNF treatment.

  17. Quantification of atherosclerotic plaque activity and vascular inflammation using [18-F] fluorodeoxyglucose positron emission tomography/computed tomography (FDG-PET/CT).

    PubMed

    Mehta, Nehal N; Torigian, Drew A; Gelfand, Joel M; Saboury, Babak; Alavi, Abass

    2012-05-02

    Conventional non-invasive imaging modalities of atherosclerosis such as coronary artery calcium (CAC) and carotid intimal medial thickness (C-IMT) provide information about the burden of disease. However, despite multiple validation studies of CAC, and C-IMT, these modalities do not accurately assess plaque characteristics, and the composition and inflammatory state of the plaque determine its stability and, therefore, the risk of clinical events. [(18)F]-2-fluoro-2-deoxy-D-glucose (FDG) imaging using positron-emission tomography (PET)/computed tomography (CT) has been extensively studied in oncologic metabolism. Studies using animal models and immunohistochemistry in humans show that FDG-PET/CT is exquisitely sensitive for detecting macrophage activity, an important source of cellular inflammation in vessel walls. More recently, we and others have shown that FDG-PET/CT enables highly precise, novel measurements of inflammatory activity of activity of atherosclerotic plaques in large and medium-sized arteries. FDG-PET/CT studies have many advantages over other imaging modalities: 1) high contrast resolution; 2) quantification of plaque volume and metabolic activity allowing for multi-modal atherosclerotic plaque quantification; 3) dynamic, real-time, in vivo imaging; 4) minimal operator dependence. Finally, vascular inflammation detected by FDG-PET/CT has been shown to predict cardiovascular (CV) events independent of traditional risk factors and is also highly associated with overall burden of atherosclerosis. Plaque activity by FDG-PET/CT is modulated by known beneficial CV interventions such as short term (12 week) statin therapy as well as longer term therapeutic lifestyle changes (16 months). The current methodology for quantification of FDG uptake in atherosclerotic plaque involves measurement of the standardized uptake value (SUV) of an artery of interest and of the venous blood pool in order to calculate a target to background ratio (TBR), which is

  18. Three-dimensional spatiotemporal tracking of fluorine-18 radiolabeled yeast cells via positron emission particle tracking

    DOE PAGES

    Langford, Seth T.; Wiggins, Cody S.; Santos, Roque; ...

    2017-07-06

    A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less

  19. Three-dimensional spatiotemporal tracking of fluorine-18 radiolabeled yeast cells via positron emission particle tracking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Langford, Seth T.; Wiggins, Cody S.; Santos, Roque

    A method for Positron Emission Particle Tracking (PEPT) based on optical feature point identification techniques is demonstrated for use in low activity tracking experiments. Furthermore, a population of yeast cells of approximately 125,000 members is activated to roughly 55 Bq/cell by 18F uptake. An in vitro particle tracking experiment is performed with nearly 20 of these cells after decay to 32 Bq/cell. These cells are successfully identified and tracked simultaneously in this experiment. Our work extends the applicability of PEPT as a cell tracking method by allowing a number of cells to be tracked together, and demonstrating tracking for verymore » low activity tracers.« less

  20. Synthesis and evaluation of an 18 F-labeled trifluoroborate derivative of 2-nitroimidazole for imaging tumor hypoxia with positron emission tomography.

    PubMed

    Nunes, Paulo Sérgio Gonçalves; Zhang, Zhengxing; Kuo, Hsiou-Ting; Zhang, Chengcheng; Rousseau, Julie; Rousseau, Etienne; Lau, Joseph; Kwon, Daniel; Carvalho, Ivone; Bénard, François; Lin, Kuo-Shyan

    2018-04-01

    2-Nitroimidazole-based hypoxia imaging tracers such as 18 F-FMISO are normally imaged at late time points (several hours post-injection) due to their slow clearance from background tissues. Here, we investigated if a hydrophilic zwitterion-based ammoniomethyl-trifluoroborate derivative of 2-nitroimidazole, 18 F-AmBF 3 -Bu-2NI, could have the potential to image tumor hypoxia at earlier time points. AmBF 3 -Bu-2NI was prepared in 4 steps. 18 F labeling was conducted via 18 F- 19 F isotope exchange reaction, and 18 F-AmBF 3 -Bu-2NI was obtained in 14.8 ± 0.4% (n = 3) decay-corrected radiochemical yield with 24.5 ± 5.2 GBq/μmol specific activity and >99% radiochemical purity. Imaging and biodistribution studies in HT-29 tumor-bearing mice showed that 18 F-AmBF 3 -Bu-2NI cleared quickly from blood and was excreted via the hepatobiliary and renal pathways. However, the tumor was not visualized in PET images until 3 hours post-injection due to low tumor uptake (0.54 ± 0.13 and 0.19 ± 0.04%ID/g at 1 and 3 hours post-injection, respectively). The low tumor uptake is likely due to the highly hydrophilic motif of ammoniomethyl-trifluoroborate that prevents free diffusion of 18 F-AmBF 3 -Bu-2NI across the cell membrane. Our results suggest that highly hydrophilic 18 F-labeled ammoniomethyl-trifluoroborate derivatives might not be suitable for imaging intracellular targets including nitroreductase, a common tumor hypoxia imaging target. Copyright © 2017 John Wiley & Sons, Ltd.

  1. Detection of Atherosclerotic Inflammation by 68Ga-DOTATATE PET Compared to [18F]FDG PET Imaging.

    PubMed

    Tarkin, Jason M; Joshi, Francis R; Evans, Nicholas R; Chowdhury, Mohammed M; Figg, Nichola L; Shah, Aarti V; Starks, Lakshi T; Martin-Garrido, Abel; Manavaki, Roido; Yu, Emma; Kuc, Rhoda E; Grassi, Luigi; Kreuzhuber, Roman; Kostadima, Myrto A; Frontini, Mattia; Kirkpatrick, Peter J; Coughlin, Patrick A; Gopalan, Deepa; Fryer, Tim D; Buscombe, John R; Groves, Ashley M; Ouwehand, Willem H; Bennett, Martin R; Warburton, Elizabeth A; Davenport, Anthony P; Rudd, James H F

    2017-04-11

    Inflammation drives atherosclerotic plaque rupture. Although inflammation can be measured using fluorine-18-labeled fluorodeoxyglucose positron emission tomography ([ 18 F]FDG PET), [ 18 F]FDG lacks cell specificity, and coronary imaging is unreliable because of myocardial spillover. This study tested the efficacy of gallium-68-labeled DOTATATE ( 68 Ga-DOTATATE), a somatostatin receptor subtype-2 (SST 2 )-binding PET tracer, for imaging atherosclerotic inflammation. We confirmed 68 Ga-DOTATATE binding in macrophages and excised carotid plaques. 68 Ga-DOTATATE PET imaging was compared to [ 18 F]FDG PET imaging in 42 patients with atherosclerosis. Target SSTR2 gene expression occurred exclusively in "proinflammatory" M1 macrophages, specific 68 Ga-DOTATATE ligand binding to SST 2 receptors occurred in CD68-positive macrophage-rich carotid plaque regions, and carotid SSTR2 mRNA was highly correlated with in vivo 68 Ga-DOTATATE PET signals (r = 0.89; 95% confidence interval [CI]: 0.28 to 0.99; p = 0.02). 68 Ga-DOTATATE mean of maximum tissue-to-blood ratios (mTBR max ) correctly identified culprit versus nonculprit arteries in patients with acute coronary syndrome (median difference: 0.69; interquartile range [IQR]: 0.22 to 1.15; p = 0.008) and transient ischemic attack/stroke (median difference: 0.13; IQR: 0.07 to 0.32; p = 0.003). 68 Ga-DOTATATE mTBR max predicted high-risk coronary computed tomography features (receiver operating characteristics area under the curve [ROC AUC]: 0.86; 95% CI: 0.80 to 0.92; p < 0.0001), and correlated with Framingham risk score (r = 0.53; 95% CI: 0.32 to 0.69; p <0.0001) and [ 18 F]FDG uptake (r = 0.73; 95% CI: 0.64 to 0.81; p < 0.0001). [ 18 F]FDG mTBR max differentiated culprit from nonculprit carotid lesions (median difference: 0.12; IQR: 0.0 to 0.23; p = 0.008) and high-risk from lower-risk coronary arteries (ROC AUC: 0.76; 95% CI: 0.62 to 0.91; p = 0.002); however, myocardial [ 18 F]FDG spillover rendered coronary

  2. {sup 18}F-Choline Positron Emission Tomography/Computed Tomography–Driven High-Dose Salvage Radiation Therapy in Patients With Biochemical Progression After Radical Prostatectomy: Feasibility Study in 60 Patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D'Angelillo, Rolando M., E-mail: r.dangelillo@unicampus.it; Sciuto, Rosa; Ramella, Sara

    Purpose: To retrospectively review data of a cohort of patients with biochemical progression after radical prostatectomy, treated according to a uniform institutional treatment policy, to evaluate toxicity and feasibility of high-dose salvage radiation therapy (80 Gy). Methods and Materials: Data on 60 patients with biochemical progression after radical prostatectomy between January 2009 and September 2011 were reviewed. The median value of prostate-specific antigen before radiation therapy was 0.9 ng/mL. All patients at time of diagnosis of biochemical recurrence underwent dynamic {sup 18}F-choline positron emission tomography/computed tomography (PET/CT), which revealed in all cases a local recurrence. High-dose salvage radiation therapy was delivered up tomore » total dose of 80 Gy to 18F-choline PET/CT-positive area. Toxicity was recorded according to the Common Terminology Criteria for Adverse Events, version 3.0, scale. Results: Treatment was generally well tolerated: 54 patients (90%) completed salvage radiation therapy without any interruption. Gastrointestinal grade ≥2 acute toxicity was recorded in 6 patients (10%), whereas no patient experienced a grade ≥2 genitourinary toxicity. No grade 4 acute toxicity events were recorded. Only 1 patient (1.7%) experienced a grade 2 gastrointestinal late toxicity. With a mean follow-up of 31.2 months, 46 of 60 patients (76.6%) were free of recurrence. The 3-year biochemical progression-free survival rate was 72.5%. Conclusions: At early follow-up, {sup 18}F-choline PET/CT-driven high-dose salvage radiation therapy seems to be feasible and well tolerated, with a low rate of toxicity.« less

  3. Optical reaction cell and light source for [18F] fluoride radiotracer synthesis

    DOEpatents

    Ferrieri, R.A.; Schlyer, D.; Becker, R.J.

    1998-09-15

    An apparatus is disclosed for performing organic synthetic reactions, particularly no-carrier-added nucleophilic radiofluorination reactions for PET radiotracer production. The apparatus includes an optical reaction cell and a source of broadband infrared radiant energy, which permits direct coupling of the emitted radiant energy with the reaction medium to heat the reaction medium. Preferably, the apparatus includes means for focusing the emitted radiant energy into the reaction cell, and the reaction cell itself is preferably configured to reflect transmitted radiant energy back into the reaction medium to further improve the efficiency of the apparatus. The apparatus is well suited to the production of high-yield syntheses of 2-[{sup 18}F]fluoro-2-deoxy-Dglucose. Also provided is a method for performing organic synthetic reactions, including the manufacture of [{sup 18}F]-labeled compounds useful as PET radiotracers, and particularly for the preparation of 2-[{sup 18}F]fluoro-2-deoxy-D-glucose in higher yields than previously possible. 4 figs.

  4. [18F]F15599, a novel 5-HT1A receptor agonist, as a radioligand for PET neuroimaging.

    PubMed

    Lemoine, Laëtitia; Verdurand, Mathieu; Vacher, Bernard; Blanc, Elodie; Le Bars, Didier; Newman-Tancredi, Adrian; Zimmer, Luc

    2010-03-01

    The serotonin-1A (5-HT(1A)) receptor is implicated in the pathophysiology of major neuropsychiatric disorders. Thus, the functional imaging of 5-HT(1A) receptors by positron emission tomography (PET) may contribute to the understanding of its role in those pathologies and their therapeutics. These receptors exist in high- and low-affinity states and it is proposed that agonists bind preferentially to the high-affinity state of the receptor and therefore could provide a measure of the functional 5-HT(1A) receptors. Since all clinical PET 5-HT(1A) radiopharmaceuticals are antagonists, it is of great interest to develop a( 18)F labelled agonist. F15599 (3-chloro-4-fluorophenyl-(4-fluoro-4{[(5-methyl-pyrimidin-2-ylmethyl)-amino]-methyl}-piperidin-1-yl)-methanone) is a novel ligand with high affinity and selectivity for 5-HT(1A) receptors and is currently tested as an antidepressant. In pharmacological tests in rat, it exhibits preferential agonist activity at post-synaptic 5-HT(1A) receptors in cortical brain regions. Here, its nitro-precursor was synthesised and radiolabelled via a fluoronucleophilic substitution. Radiopharmacological evaluations included in vitro and ex vivo autoradiography in rat brain and PET scans on rats and cats. Results were compared with simultaneous studies using [(18)F]MPPF, a validated 5-HT(1A) antagonist radiopharmaceutical. The chemical and radiochemical purities of [(18)F]F15599 were >98%. In vitro [(18)F]F15599 binding was consistent with the known 5-HT(1A) receptors distribution (hippocampus, dorsal raphe nucleus, and notably cortical areas) and addition of Gpp(NH)p inhibited [(18)F]F15599 binding, consistent with a specific binding to G protein-coupled receptors. In vitro binding of [(18)F]F15599 was blocked by WAY100635 and 8-OH-DPAT, respectively, prototypical 5-HT(1A) antagonist and agonist. The ex vivo and in vivo studies demonstrated that the radiotracer readily entered the rat and the cat brain and generated few brain

  5. Monoamine oxidase B inhibitor, selegiline, reduces 18F-THK5351 uptake in the human brain.

    PubMed

    Ng, Kok Pin; Pascoal, Tharick A; Mathotaarachchi, Sulantha; Therriault, Joseph; Kang, Min Su; Shin, Monica; Guiot, Marie-Christine; Guo, Qi; Harada, Ryuichi; Comley, Robert A; Massarweh, Gassan; Soucy, Jean-Paul; Okamura, Nobuyuki; Gauthier, Serge; Rosa-Neto, Pedro

    2017-03-31

    18 F-THK5351 is a quinoline-derived tau imaging agent with high affinity to paired helical filaments (PHF). However, high levels of 18 F-THK5351 retention in brain regions thought to contain negligible concentrations of PHF raise questions about the interpretation of the positron emission tomography (PET) signals, particularly given previously described interactions between quinolone derivatives and monoamine oxidase B (MAO-B). Here, we tested the effects of MAO-B inhibition on 18 F-THK5351 brain uptake using PET and autoradiography. Eight participants (five mild cognitive impairment, two Alzheimer's disease, and one progressive supranuclear palsy) had baseline 18 F-AZD4694 and 18 F-THK5351 scans in order to quantify brain amyloid and PHF load, respectively. A second 18 F-THK5351 scan was conducted 1 week later, 1 h after a 10-mg oral dose of selegiline. Three out of eight patients also had a third 18 F-THK5351 scan 9-28 days after the selegiline administration. The primary outcome measure was standardized uptake value (SUV), calculated using tissue radioactivity concentration from 50 to 70 min after 18 F-THK5351 injection, normalizing for body weight and injected radioactivity. The SUV ratio (SUVR) was determined using the cerebellar cortex as the reference region. 18 F-THK5351 competition autoradiography studies in postmortem tissue were conducted using 150 and 500 nM selegiline. At baseline, 18 F-THK5351 SUVs were highest in the basal ganglia (0.64 ± 0.11) and thalamus (0.62 ± 0.14). In the post-selegiline scans, the regional SUVs were reduced on average by 36.7% to 51.8%, with the greatest reduction noted in the thalamus (51.8%) and basal ganglia (51.4%). MAO-B inhibition also reduced 18 F-THK5351 SUVs in the cerebellar cortex (41.6%). The SUVs remained reduced in the three patients imaged at 9-28 days. Tissue autoradiography confirmed the effects of MAO-B inhibition on 18 F-THK5351 uptake. These results indicate that the interpretation of 18 F

  6. Preclinical characterization of 18F-MAA, a novel PET surrogate of 99mTc-MAA.

    PubMed

    Wu, Shih-Yen; Kuo, Jia-Wei; Chang, Tien-Kuei; Liu, Ren-Shen; Lee, Rheun-Chuan; Wang, Shyh-Jen; Lin, Wuu-Jyh; Wang, Hsin-Ell

    2012-10-01

    (99m)Tc-labeled macroaggregated albumin ((99m)Tc-MAA) scintigraphy scan is routinely performed for lung perfusion imaging and for the assessment of in vivo distribution of (90)Y-labeled SIR-Spheres prior to selective internal radiation treatment for hepatocellular carcinoma. Positron emission tomography (PET) imaging is superior to gamma scintigraphy in terms of sensitivity, spatial resolution and accuracy of quantification. This study reported that (18)F-labeled macroaggregated albumin ((18)F-MAA) is an ideal PET imaging surrogate for (99m)Tc-MAA. (18)F-MAA was prepared from the commercial MAA kit via a one-step conjugation with N-succinimidyl 4-(18)F-fluorobenzoate ((18)F-SFB). The biodistribution study and microPET/microSPECT imaging were conducted in normal SD rats after intravenous injection of (18)F-MAA/(99m)Tc-MAA. A comparison study of these two radiotracers was performed after co-injection via the intrahepatic arterial in a N1S1 hepatoma-bearing SD rat model. The optimal condition for (18)F-MAA preparation is coupling MAA (0.5mg) with (18)F-SFB at 45°C for 5 min in a phosphate buffer of pH 8.5. (18)F-MAA was prepared in 60 min with high radiochemical yield (30%-35%) and high radiochemical purity (>95%). The in vivo distribution of (18)F-MAA after intravenous injection meets the specifications of MAA depicted in European Pharmacopeia. Our study demonstrated excellent correlation between (18)F-MAA and (99m)Tc-MAA in the regional distribution of tumor, liver and lungs (R(2)=0.965, 0.886 and 0.991, respectively), and also in the tumor-to-liver and tumor-to-lungs ratio (R(2)=0.965 and 0.987, respectively) in a N1S1 hepatoma-bearing SD rat model. The organ uptakes derived from animal PET/CT and SPECT/CT imaging after administration of these two tracers were in accordance with those obtained in the distribution studies. Starting from commercial MAA kit, an efficient preparation of (18)F-MAA was successfully established. Highly correlated, almost parallel

  7. Double match of 18F-fluorodeoxyglucose-PET and iomazenil-SPECT improves outcomes of focus resection surgery.

    PubMed

    Fujimoto, Ayataka; Okanishi, Tohru; Kanai, Sotaro; Sato, Keishiro; Itamura, Shinji; Baba, Shimpei; Nishimura, Mitsuyo; Masui, Takayuki; Enoki, Hideo

    2018-06-01

    When the results of electroencephalography (EEG), magnetic resonance imaging (MRI), and seizure semiology are discordant or no structural lesion is evident on MRI, single-photon emission computed tomography (SPECT) and positron emission tomography (PET) are important examinations for lateralization or localization of epileptic regions. We hypothesized that the concordance between interictal 2-[ 18 F]fluoro-2-deoxy-D-glucose ( 18 FDG)-PET and iomazenil (IMZ)-SPECT could suggest the epileptogenic lobe in patients with non-lesional findings on MRI. Fifty-nine patients (31 females, 28 males; mean age, 29 years; median age, 27 years; range, 7-56 years) underwent subdural electrode implantation followed by focus resection. All patients underwent 18 FDG-PET, IMZ-SPECT, and focus resection surgery. Follow-up was continued for ≥ 2 years. We evaluated surgical outcomes as seizure-free or not and analyzed correlations between outcomes and concordances of low-uptake lobes on PET, SPECT, or both PET and SPECT to the resection lobes. We used uni- and multivariate logistic regression analyses. In univariate analyses, all three concordances correlated significantly with seizure-free outcomes (PET, p = 0.017; SPECT, p = 0.030; both PET and SPECT, p = 0.006). In multivariate analysis, concordance between resection and low-uptake lobes in both PET and SPECT correlated significantly with seizure-free outcomes (p = 0.004). The odds ratio was 6.0. Concordance between interictal 18 FDG-PET and IMZ-SPECT suggested that the epileptogenic lobe is six times better than each examination alone among patients with non-lesional findings on MRI. IMZ-SPECT and 18 FDG-PET are complementary examinations in the assessment of localization-related epilepsy.

  8. The value of (18) F-fluorodeoxyglucose positron emission tomography for prediction of treatment response in gastrointestinal stromal tumors: a systematic review and meta-analysis.

    PubMed

    Hassanzadeh-Rad, Arman; Yousefifard, Mahmoud; Katal, Sanaz; Asady, Hadi; Fard-Esfahani, Armaghan; Moghadas Jafari, Ali; Hosseini, Mostafa

    2016-05-01

    Early detection of response to treatment is critically important in gastrointestinal stromal tumors (GIST). Therefore, the present systematic review and meta-analysis assessed the value of (18) f-fluorodeoxyglucose positron emission tomography ((18) FDG-PET) on prediction of therapeutic response of GIST patients to systemic treatments. The literature search was conducted using PubMed, SCOPUS, Cochrane, and Google Scholar databases, and review article references. Eligible articles were defined as studies included confirmed GIST patients who underwent (18) FDG-PET as well as assessing the screening role of it. Finally, 21 relevant articles were included. The analysis showed the pooled sensitivity and specificity of 18FDG-PET in evaluation of response to treatment of GIST patient were 0.90 (95% CI: 0.85-0.94; I(2)  = 52.59, P = 0.001) and 0.62 (95% CI: 0.49-0.75; I(2)  = 69.7, P = 0.001), respectively. In addition, the pooled prognostic odds ratio of (18) FDG-PET for was 14.99 (95% CI, 6.42-34.99; I(2)  = 100.0, P < 0.001). The Meta regression showed that sensitivity of (18) FDG-PET was higher if the sample size of study was equal or more than 30 cases (sensitivity = 0.93; 95% CI: 0.89-0.97), when using PET/CT (sensitivity = 0.92; 95% CI: 0.89-0.97), and self-design criteria (sensitivity = 0.93; 95% CI: 0.87-1.0). The present meta-analysis showed (18) FDG-PET has a significant value in predicting treatment response in GIST patients. © 2015 Journal of Gastroenterology and Hepatology Foundation and John Wiley & Sons Australia, Ltd.

  9. Quantitative Receptor-Based Imaging of Tumor Proliferation with the Sigma-2 Ligand [18F]ISO-1

    PubMed Central

    Shoghi, Kooresh I.; Xu, Jinbin; Su, Yi; He, June; Rowland, Douglas; Yan, Ying; Garbow, Joel R.; Tu, Zhude; Jones, Lynne A.; Higashikubo, Ryuji; Wheeler, Kenneth T.; Lubet, Ronald A.; Mach, Robert H.; You, Ming

    2013-01-01

    The sigma-2 receptor is expressed in higher density in proliferating (P) tumor cells versus quiescent (Q) tumor cells, thus providing an attractive target for imaging the proliferative status (i.e., P:Q ratio) of solid tumors. Here we evaluate the utility of the sigma-2 receptor ligand 2-(2-[18F]fluoroethoxy)-N-(4-(3,4-dihydro-6,7-dimethoxyisoquinolin-2(1H)-yl)butyl)-5-methyl-benzamide, [18F]ISO-1, in two different rodent models of breast cancer. In the first study, small animal Positron Emission Tomography (PET) imaging studies were conducted with [18F]ISO-1 and 18FDG in xenografts of mouse mammary tumor 66 and tracer uptake was correlated with the in vivo P:Q ratio determined by flow cytometric measures of BrdU-labeled tumor cells. The second model utilized a chemically-induced (N-methyl-N-nitrosourea [MNU]) model of rat mammary carcinoma to correlate measures of [18F]ISO-1 and FDG uptake with MR-based volumetric measures of tumor growth. In addition, [18F]ISO-1 and FDG were used to assess the response of MNU-induced tumors to bexarotene and Vorozole therapy. In the mouse mammary 66 tumors, a strong linear correlation was observed between the [18F]ISO-1 tumor: background ratio and the proliferative status (P:Q ratio) of the tumor (R = 0.87). Similarly, measures of [18F]ISO-1 uptake in MNU-induced tumors significantly correlated (R = 0.68, P<0.003) with changes in tumor volume between consecutive MR imaging sessions. Our data suggest that PET studies of [18F]ISO-1 provide a measure of both the proliferative status and tumor growth rate, which would be valuable in designing an appropriate treatment strategy. PMID:24073202

  10. Initial investigation of glucose metabolism in mouse brain using enriched 17 O-glucose and dynamic 17 O-MRS.

    PubMed

    Borowiak, Robert; Reichardt, Wilfried; Kurzhunov, Dmitry; Schuch, Christian; Leupold, Jochen; Krafft, Axel Joachim; Reisert, Marco; Lange, Thomas; Fischer, Elmar; Bock, Michael

    2017-08-01

    In this initial work, the in vivo degradation of 17 O-labeled glucose was studied during cellular glycolysis. To monitor cellular glucose metabolism, direct 17 O-magnetic resonance spectroscopy (MRS) was used in the mouse brain at 9.4 T. Non-localized spectra were acquired with a custom-built transmit/receive (Tx/Rx) two-turn surface coil and a free induction decay (FID) sequence with a short TR of 5.4 ms. The dynamics of labeled oxygen in the anomeric 1-OH and 6-CH 2 OH groups was detected using a Hankel-Lanczos singular value decomposition (HLSVD) algorithm for water suppression. Time-resolved 17 O-MRS (temporal resolution, 42/10.5 s) was performed in 10 anesthetized (1.25% isoflurane) mice after injection of a 2.2 M solution containing 2.5 mg/g body weight of differently labeled 17 O-glucose dissolved in 0.9% physiological saline. From a pharmacokinetic model fit of the H 2 17 O concentration-time course, a mean apparent cerebral metabolic rate of 17 O-labeled glucose in mouse brain of CMR Glc  = 0.07 ± 0.02 μmol/g/min was extracted, which is of the same order of magnitude as a literature value of 0.26 ± 0.06 μmol/g/min reported by 18 F-fluorodeoxyglucose ( 18 F-FDG) positron emission tomography (PET). In addition, we studied the chemical exchange kinetics of aqueous solutions of 17 O-labeled glucose at the C1 and C6 positions with dynamic 17 O-MRS. In conclusion, the results of the exchange and in vivo experiments demonstrate that the C6- 17 OH label in the 6-CH 2 OH group is transformed only glycolytically by the enzyme enolase into the metabolic end-product H 2 17 O, whereas C1- 17 OH ends up in water via direct hydrolysis as well as glycolysis. Therefore, dynamic 17 O-MRS of highly labeled 17 O-glucose could provide a valuable non-radioactive alternative to FDG PET in order to investigate glucose metabolism. Copyright © 2017 John Wiley & Sons, Ltd.

  11. The Pattern of Brain Amyloid Load in Posterior Cortical Atrophy Using 18F-AV45: Is Amyloid the Principal Actor in the Disease?

    PubMed Central

    Beaufils, Emilie; Ribeiro, Maria Joao; Vierron, Emilie; Vercouillie, Johnny; Dufour-Rainfray, Diane; Cottier, Jean-Philippe; Camus, Vincent; Mondon, Karl; Guilloteau, Denis; Hommet, Caroline

    2014-01-01

    Background Posterior cortical atrophy (PCA) is characterized by progressive higher-order visuoperceptual dysfunction and praxis declines. This syndrome is related to a number of underlying diseases, including, in most cases, Alzheimer's disease (AD). The aim of this study was to compare the amyloid load with 18F-AV45 positron emission tomography (PET) between PCA and AD subjects. Methods We performed 18F-AV45 PET, cerebrospinal fluid (CSF) biomarker analysis and a neuropsychological assessment in 11 PCA patients and 12 AD patients. Results The global and regional 18F-AV45 uptake was similar in the PCA and AD groups. No significant correlation was observed between global 18F-AV45 uptake and CSF biomarkers or between regional 18F-AV45 uptake and cognitive and affective symptoms. Conclusion This 18F-AV45 PET amyloid imaging study showed no specific regional pattern of cortical 18F-AV45 binding in PCA patients. These results confirm that a distinct clinical phenotype in amnestic AD and PCA is not related to amyloid distribution. PMID:25538727

  12. 18F-FDG uptake and its clinical relevance in primary gastric lymphoma.

    PubMed

    Yi, Jun Ho; Kim, Seok Jin; Choi, Joon Young; Ko, Young Hyeh; Kim, Byung-Tae; Kim, Won Seog

    2010-06-01

    We studied the clinical relevance of (18)F-fluorodeoxyglucose ((18)F-FDG) uptake in patients with primary gastric lymphoma underwent positron emission tomography (PET)/ computed tomography (CT) scan. Forty-two patients with primary gastric lymphoma were analysed: 32 diffuse large B-cell lymphomas (DLBCL) and 10 extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue (MALT lymphomas). The PET/CT scans were compared with clinical and pathologic features, and the results of CT and endoscopy. Nine patients were up-staged based on the results of their PET/CT scan compared to CT (seven DLBCLs, two MALT lymphomas) while six patients were down-staged by the PET/CT scan. The standard uptake value (SUV) was used as an indicator of a lesion with a high metabolic rate. The high SUVmax group, defined as an SUVmax >or= median value, was significantly associated with an advanced Lugano stage (p < 0.001). Three patients with DLBCL, who showed an initially high SUVmax, died of disease progression. Among 24 patients for whom follow-up PET/CT scan with endoscopy was performed, 11 patients with ulcerative or mucosal lesions showed residual (18)F-FDG uptake. All of these gastric lesions were grossly and pathologically benign lesions without evidence of lymphoma cells. In conclusion, PET/CT scan can be used in staging patients with primary gastric lymphoma; however, the residual (18)F-FDG uptake observed during follow-up should be interpreted cautiously and should be combined with endoscopy and multiple biopsies of the stomach. (c) 2009 John Wiley & Sons, Ltd.

  13. Development and Operation of a High Resolution Positron Emission Tomography System to Perform Metabolic Studies on Small Animals.

    NASA Astrophysics Data System (ADS)

    Hogan, Matthew John

    A positron emission tomography system designed to perform high resolution imaging of small volumes has been characterized. Two large area planar detectors, used to detect the annihilation gamma rays, formed a large aperture stationary positron camera. The detectors were multiwire proportional chambers coupled to high density lead stack converters. Detector efficiency was 8%. The coincidence resolving time was 500 nsec. The maximum system sensitivity was 60 cps/(mu)Ci for a solid angle of acceptance of 0.74(pi) St. The maximum useful coincidence count rate was 1500 cps and was limited by electronic dead time. Image reconstruction was done by performing a 3-dimensional deconvolution using Fourier transform methods. Noise propagation during reconstruction was minimized by choosing a 'minimum norm' reconstructed image. In the stationary detector system (with a limited angle of acceptance for coincident events) statistical uncertainty in the data limited reconstruction in the direction normal to the detector surfaces. Data from a rotated phantom showed that detector rotation will correct this problem. Resolution was 4 mm in planes parallel to the detectors and (TURN)15 mm in the normal direction. Compton scattering of gamma rays within a source distribution was investigated using both simulated and measured data. Attenuation due to scatter was as high as 60%. For small volume imaging the Compton background was identified and an approximate correction was performed. A semiquantitative blood flow measurement to bone in the leg of a cat using the ('18)F('-) ion was performed. The results were comparable to investigations using more conventional techniques. Qualitative scans using ('18)F labelled deoxy -D-glucose to assess brain glucose metabolism in a rhesus monkey were also performed.

  14. [18F]FDOPA PET as an Endophenotype for Parkinson’s Disease Linkage Studies

    PubMed Central

    Racette, Brad A.; Good, Laura; Antenor, Jo Ann; McGee-Minnich, Lori; Moerlein, Stephen M.; Videen, Tom O.; Perlmutter, Joel S.

    2008-01-01

    Parkinson Disease (PD) is a late onset disorder with age-dependent penetrance that may confound genetic studies since affected individuals may not demonstrate clinical manifestations at the time of evaluation. The use of endophenotypes, biologic surrogates for clinical disease diagnoses, may permit more accurate classification of at-risk subjects. Positron emission tomography (PET) measurements of 6-[18F]fluorodopa ([18F]FDOPA) uptake indicate nigrostriatal neuronal integrity and may provide a useful endophenotype for PD linkage studies. We performed [18F]FDOPA PET in 11 members of a large, multi-incident Amish family with PD, 24 normals and 48 people with clinically definite idiopathic PD (PD controls). Clinical diagnoses in the Amish were clinically definite PD in four, clinically probable in one, clinically possible in five, and normal in one. Abnormal [18F]FDOPA posterior putamen uptake was defined as less than three standard deviations below the normal mean. The criteria were applied to the Amish sample to determine a PET endophenotype for each. We performed genetic simulations using SLINK to model the effect phenoconversion with the PET endophenotype had on logarithm of odds (LOD) scores. PET endophenotype confirmed the status of two clinically definite subjects. Two clinically definite Amish PD subjects had normal PETs. Two possible PD were converted to “PET definite PD”. The remainder had normal PETs. The average maximum LOD score with the pre-PET was 6.14±0.84. Simulating phenoconversion of subjects with unknown phenotypes increased the LOD score to 7.36±1.23. The [18F]FDOPA PET endophenotype permits phenoconversion in multi-incident PD families and may increase LOD score accuracy and power of an informative pedigree. PMID:16528749

  15. Hypoxic volume evaluated by 18F-fluoromisonidazole positron emission tomography (FMISO-PET) may be a prognostic factor in patients with oral squamous cell carcinoma: preliminary analyses.

    PubMed

    Sato, J; Kitagawa, Y; Watanabe, S; Asaka, T; Ohga, N; Hirata, K; Shiga, T; Satoh, A; Tamaki, N

    2018-05-01

    Tumour hypoxia can be detected by 18 F-fluoromisonidazole positron emission tomography (FMISO-PET). Few studies have assessed the relationships of new PET parameters, including hypoxic volume (HV), metabolic tumour volume (MTV), and total lesion glycolysis (TLG), with 5-year survival of patients treated surgically for oral squamous cell carcinoma (OSCC). This study evaluated the relationships between these PET parameters and 5-year survival in OSCC patients. Twenty-three patients (age 42-84 years; 15 male, eight female) with OSCC underwent FMISO- and 18 F-fluoro-2-deoxyglucose (FDG)-PET computed tomography before surgery. All of them underwent radical surgery and were followed up for more than 5 years. The FDG-PET maximum standardized uptake value (SUV max ), HV, MTV, and TLG were measured. The ability of PET parameters to predict disease-free survival (DFS) and loco-regional recurrence (LR) was evaluated using receiver operating characteristic curve analysis. During the follow-up period, five of the 23 patients (22%) died and six (26%) experienced LR. Although FDG-PET SUV max was not significantly associated with DFS or LR, HV correlated significantly with both DFS and LR. TLG, but not MTV, was significantly associated with DFS; however neither MTV nor TLG was related significantly to LR. In conclusion, tumour HV may predict outcomes in patients with OSCC. Copyright © 2017 International Association of Oral and Maxillofacial Surgeons. Published by Elsevier Ltd. All rights reserved.

  16. Quantitative Functional Imaging Using Dynamic Positron Computed Tomography and Rapid Parameter Estimation Techniques

    NASA Astrophysics Data System (ADS)

    Koeppe, Robert Allen

    Positron computed tomography (PCT) is a diagnostic imaging technique that provides both three dimensional imaging capability and quantitative measurements of local tissue radioactivity concentrations in vivo. This allows the development of non-invasive methods that employ the principles of tracer kinetics for determining physiological properties such as mass specific blood flow, tissue pH, and rates of substrate transport or utilization. A physiologically based, two-compartment tracer kinetic model was derived to mathematically describe the exchange of a radioindicator between blood and tissue. The model was adapted for use with dynamic sequences of data acquired with a positron tomograph. Rapid estimation techniques were implemented to produce functional images of the model parameters by analyzing each individual pixel sequence of the image data. A detailed analysis of the performance characteristics of three different parameter estimation schemes was performed. The analysis included examination of errors caused by statistical uncertainties in the measured data, errors in the timing of the data, and errors caused by violation of various assumptions of the tracer kinetic model. Two specific radioindicators were investigated. ('18)F -fluoromethane, an inert freely diffusible gas, was used for local quantitative determinations of both cerebral blood flow and tissue:blood partition coefficient. A method was developed that did not require direct sampling of arterial blood for the absolute scaling of flow values. The arterial input concentration time course was obtained by assuming that the alveolar or end-tidal expired breath radioactivity concentration is proportional to the arterial blood concentration. The scale of the input function was obtained from a series of venous blood concentration measurements. The method of absolute scaling using venous samples was validated in four studies, performed on normal volunteers, in which directly measured arterial concentrations

  17. 18F-labeled Rhodamines as Potential Myocardial Perfusion Agents: Comparison of Pharmacokinetic Properties of Several Rhodamines

    PubMed Central

    Bartholoma, Mark D.; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A.; Dunning, Patricia; Fahey, Frederic H.; Cowan, Douglas B.; Treves, S. Ted; Packard, Alan B.

    2015-01-01

    Introduction We recently reported the development of the [18F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. Methods A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with 18F using the corresponding rhodamine lactones as the precursors and [18F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. Results As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the 18F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the 18F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with 18F-labeled rhodamine B, [18F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Conclusions Based on these results, the 18F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have been evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. PMID:26205075

  18. (18)F-labeled rhodamines as potential myocardial perfusion agents: comparison of pharmacokinetic properties of several rhodamines.

    PubMed

    Bartholomä, Mark D; Zhang, Shaohui; Akurathi, Vamsidhar; Pacak, Christina A; Dunning, Patricia; Fahey, Frederic H; Cowan, Douglas B; Treves, S Ted; Packard, Alan B

    2015-10-01

    We recently reported the development of the [(18)F]fluorodiethylene glycol ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging (MPI). This compound was developed by optimizing the ester moiety on the rhodamine B core, and its pharmacokinetic properties were found to be superior to those of the prototype ethyl ester. The goal of the present study was to optimize the rhodamine core while retaining the fluorodiethyleneglycol ester prosthetic group. A series of different rhodamine cores (rhodamine 6G, rhodamine 101, and tetramethylrhodamine) were labeled with (18)F using the corresponding rhodamine lactones as the precursors and [(18)F]fluorodiethylene glycol ester as the prosthetic group. The compounds were purified by semipreparative HPLC, and their biodistribution was measured in rats. Additionally, the uptake of the compounds was evaluated in isolated rat cardiomyocytes. As was the case with the different prosthetic groups, we found that the rhodamine core has a significant effect on the in vitro and in vivo properties of this series of compounds. Of the rhodamines evaluated to date, the pharmacologic properties of the (18)F-labeled diethylene glycol ester of rhodamine 6G are superior to those of the (18)F-labeled diethylene glycol esters of rhodamine B, rhodamine 101, and tetramethylrhodamine. As with (18)F-labeled rhodamine B, [(18)F]rhodamine 6G was observed to localize in the mitochondria of isolated rat cardiomyocytes. Based on these results, the (18)F-labeled diethylene glycol ester of rhodamine 6G is the most promising potential PET MPI radiopharmaceutical of those that have evaluated to date, and we are now preparing to carry out first-in-human clinical studies with this compound. Copyright © 2015 Elsevier Inc. All rights reserved.

  19. Incongruent Reduction of Serotonin Transporter Associated with Suicide Attempts in Patients with Major Depressive Disorder: A Positron Emission Tomography Study with 4-[18F]-ADAM

    PubMed Central

    Yeh, Yi-Wei; Ho, Pei-Shen; Chen, Chun-Yen; Kuo, Shin-Chang; Liang, Chih-Sung; Ma, Kuo-Hsing; Shiue, Chyng-Yann; Huang, Wen-Sheng; Cheng, Cheng-Yi; Wang, Tzu-Yun; Lu, Ru-Band

    2015-01-01

    Background: Much evidence supports the role of the serotonin transporter (SERT) in the pathophysiology and pharmacotherapy of major depressive disorder (MDD) and suicidal behaviors. Methods: In this study, we recruited 17 antidepressant-naïve patients with MDD and 17 age- and gender-matched healthy controls. SERT availability was measured in vivo with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM) positron emission tomography (PET) imaging. The 21-item Hamilton Depression Rating Scale (HDRS) and Beck Scale for Suicide Ideation were used to assess the severity of depression and the intent of suicide ideation prior to PET imaging. All subjects with MDD were in a current state of depression with HDRS scores ≧18. Subjects who attempted suicide within two weeks of the study onset were recruited in the depressed suicidal group (n = 8). Subjects with MDD who denied any prior suicide attempt were recruited into the depressed non-suicidal group (n = 9). Results: A significant reduction of SERT availability in the midbrain, thalamus, and striatum was noted in the MDD group relative to the control group (Bonferroni-adjusted p-value < 0.05). Moreover, this effect was more pronounced in the depressed suicidal group compared to the control group (Bonferroni-adjusted p-value < 0.01). Relative to both the depressed non-suicidal and control groups, the depressed suicidal group showed an increased prefrontal cortex (PFC)/midbrain SERT binding ratio (Bonferroni-adjusted p-value < 0.01). Conclusions: This study suggests an incongruent reduction of PFC SERT binding relative to the midbrain might discriminate between depressed suicide attempters and non-attempters in patients with MDD and may be involved in the pathophysiology of suicide behaviors. PMID:25522405

  20. Incongruent reduction of serotonin transporter associated with suicide attempts in patients with major depressive disorder: a positron emission tomography study with 4-[18F]-ADAM.

    PubMed

    Yeh, Yi-Wei; Ho, Pei-Shen; Chen, Chun-Yen; Kuo, Shin-Chang; Liang, Chih-Sung; Ma, Kuo-Hsing; Shiue, Chyng-Yann; Huang, Wen-Sheng; Cheng, Cheng-Yi; Wang, Tzu-Yun; Lu, Ru-Band; Huang, San-Yuan

    2014-10-31

    Much evidence supports the role of the serotonin transporter (SERT) in the pathophysiology and pharmacotherapy of major depressive disorder (MDD) and suicidal behaviors. In this study, we recruited 17 antidepressant-naïve patients with MDD and 17 age- and gender-matched healthy controls. SERT availability was measured in vivo with N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) positron emission tomography (PET) imaging. The 21-item Hamilton Depression Rating Scale (HDRS) and Beck Scale for Suicide Ideation were used to assess the severity of depression and the intent of suicide ideation prior to PET imaging. All subjects with MDD were in a current state of depression with HDRS scores ≧18. Subjects who attempted suicide within two weeks of the study onset were recruited in the depressed suicidal group (n = 8). Subjects with MDD who denied any prior suicide attempt were recruited into the depressed non-suicidal group (n = 9). A significant reduction of SERT availability in the midbrain, thalamus, and striatum was noted in the MDD group relative to the control group (Bonferroni-adjusted p-value < 0.05). Moreover, this effect was more pronounced in the depressed suicidal group compared to the control group (Bonferroni-adjusted p-value < 0.01). Relative to both the depressed non-suicidal and control groups, the depressed suicidal group showed an increased prefrontal cortex (PFC)/midbrain SERT binding ratio (Bonferroni-adjusted p-value < 0.01). This study suggests an incongruent reduction of PFC SERT binding relative to the midbrain might discriminate between depressed suicide attempters and non-attempters in patients with MDD and may be involved in the pathophysiology of suicide behaviors. © The Author 2015. Published by Oxford University Press on behalf of CINP.

  1. Usefulness of CA125 and their kinetic parameters and positron emission tomography/computed tomography (PET/CT) with fluorodeoxyglucose ([18F] FDG) in the detection of recurrent ovarian cancer levels.

    PubMed

    Palomar Muñoz, Azahara; Cordero García, José Manuel; Talavera Rubio, Prado; García Vicente, Ana M; González García, Beatriz; Bellón Guardia, María Emiliana; Soriano Castrejón, Ángel; Aranda Aguilar, Enrique

    2017-12-21

    To assess the usefulness of cancer antigen 125 (CA125) serum levels and kinetic values, velocity (CA125vel) and doubling time (CA125dt), as well as fluorodeoxyglucose ([ 18 F]FDG) positron emission tomography/computed tomography (PET/CT), in the detection of ovarian cancer recurrence. To assess the optimal cut-off for CA125, CA125vel and CA125dt to detect relapse with [ 18 F]FDG-PET/CT. A retrospective analysis was performed of 59 [ 18 F]FDG-PET/CT (48 patients) for suspected recurrence of ovarian cancer. Receiver operating characteristic (ROC) curves were plotted and area-under-the curve (AUC) statistics were computed for CA125, CA125vel and CA125dt. The results obtained in the group with normal and high (>35U/ml) CA125 levels were compared. Forty-four cases of recurrence were diagnosed (7 had CA125 ≤35U/ml), whereas 15 showed no disease. All of them were correctly catalogued by PET/CT. In ROC analysis, the discriminatory power of CA125 was relatively high (AUC 0.835) and the optimal cut-off point to reflect active disease was 23.9U/ml. The ROC analyses for the CA125vel and CA125dt showed an AUC of 0.849 and 0.728, respectively, with an optimal cut-off point of 1.96U/ml/month and 0.76 months, respectively. In patients with normal CA125 and recurrence of ovarian cancer, the CA125vel was significantly higher than in patients without recurrence (p=0.029). [ 18 F]FDG-PET/CT is more accurate than CA125 parameters in the detection of ovarian cancer recurrence. CA125 serum levels are essential; nevertheless, CA125 kinetic values must be considered to detect relapse. Particularly in patients with CA125 within normal values, in which a higher CA125vel is indicative of recurrence. Copyright © 2017 Elsevier España, S.L.U. All rights reserved.

  2. Automated radiosynthesis of no-carrier-added 4-[18F]fluoroiodobenzene: a versatile building block in 18F radiochemistry.

    PubMed

    Way, Jenilee Dawn; Wuest, Frank

    2014-02-01

    4-[18F]Fluoroiodobenzene ([18F]FIB) is a versatile building block in 18F radiochemistry used in various transition metal-mediated C-C and C-N cross-coupling reactions and [18F]fluoroarylation reactions. Various synthesis routes have been described for the preparation of [18F]FIB. However, to date, no automated synthesis of [18F]FIB has been reported to allow access to larger amounts of [18F]FIB in high radiochemical and chemical purity. Herein, we describe an automated synthesis of no-carrier-added [18F]FIB on a GE TRACERlab™ FX automated synthesis unit starting from commercially available(4-iodophenyl)diphenylsulfonium triflate as the labelling precursor. [18F]FIB was prepared in high radiochemical yields of 89 ± 10% (decay-corrected, n = 7) within 60 min, including HPLC purification. The radiochemical purity exceeded 95%, and specific activity was greater than 40 GBq/μmol. Typically, from an experiment, 6.4 GBq of [18F]FIB could be obtained starting from 10.4 GBq of [18F]fluoride.

  3. Synthesis of a Potent Aminopyridine-Based nNOS-Inhibitor by Two Recent No-Carrier-Added (18)F-Labelling Methods.

    PubMed

    Drerup, Christian; Ermert, Johannes; Coenen, Heinz H

    2016-09-01

    Nitric oxide (NO), an important multifunctional signaling molecule, is produced by three isoforms of NO-synthase (NOS) and has been associated with neurodegenerative disorders. Selective inhibitors of the subtypes iNOS (inducible) or nNOS (neuronal) are of great interest for decoding neurodestructive key factors, and (18)F-labelled analogues would allow investigating the NOS-function by molecular imaging with positron emission tomography. Especially, the highly selective nNOS inhibitor 6-((3-((3-fluorophenethylamino)methyl)phenoxy)methyl)-4-methylpyridin-2-amine (10) lends itself as suitable compound to be (18)F-labelled in no-carrier-added (n.c.a.) form. For preparation of the (18)F-labelled nNOS-Inhibitor [(18)F]10 a "build-up" radiosynthesis was developed based on a corresponding iodonium ylide as labelling precursor. The such activated phenethyl group of the compound was efficiently and regioselectively labelled with n.c.a. [(18)F]fluoride in 79% radiochemical yield (RCY). After conversion by reductive amination and microwave assisted displacement of the protecting groups, the desired nNOS-inhibitor was obtained in about 15% total RCY. Alternatively, for a simplified "late-stage" (18)F-labelling procedure a corresponding boronic ester precursor was synthesized and successfully used in a newer, copper(II) mediated n.c.a. (18)F-fluoro-deboroniation reaction, achieving the same total RCY. Thus, both methods proved comparatively suited to provide the highly selective NOS-inhibitor [(18)F]10 as probe for preclinical in vivo studies.

  4. Comparison of SPET brain perfusion and 18F-FDG brain metabolism in patients with chronic fatigue syndrome.

    PubMed

    Abu-Judeh, H H; Levine, S; Kumar, M; el-Zeftawy, H; Naddaf, S; Lou, J Q; Abdel-Dayem, H M

    1998-11-01

    Chronic fatigue syndrome is a clinically defined condition of uncertain aetiology. We compared 99Tcm-HMPAO single photon emission tomography (SPET) brain perfusion with dual-head 18F-FDG brain metabolism in patients with chronic fatigue syndrome. Eighteen patients (14 females, 4 males), who fulfilled the diagnostic criteria of the Centers for Disease Control for chronic fatigue syndrome, were investigated. Thirteen patients had abnormal SPET brain perfusion scans and five had normal scans. Fifteen patients had normal glucose brain metabolism scans and three had abnormal scans. We conclude that, in chronic fatigue syndrome patients, there is discordance between SPET brain perfusion and 18F-FDG brain uptake. It is possible to have brain perfusion abnormalities without corresponding changes in glucose uptake.

  5. Automated synthesis of 4-[(18)F]fluoroanisole, [(18)F]DAA1106 and 4-[(18)F]FPhe using Cu-mediated radiofluorination under "minimalist" conditions.

    PubMed

    Zischler, Johannes; Krapf, Philipp; Richarz, Raphael; Zlatopolskiy, Boris D; Neumaier, Bernd

    2016-09-01

    The application of the "minimalist" approach to Cu-mediated radiofluorination allows the efficient preparation of (18)F-labeled arenes regardless of their electronic properties. The implementation of this methodology on a commercially available synthesis module (hotbox(three), Scintomics, Germany) enabled the automated production of 4-[(18)F]fluoroanisole as well as the clinically relevant PET-tracers, 4-[(18)F]FPhe and [(18)F]DAA1106, in radiochemical yields of 41-61% and radiochemical purities of >95% within 30-60min. These results demonstrated the high efficacy and versatility of the developed method that will open up opportunities for a broad application of Cu-mediated radiofluorination in PET-chemistry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Hemothorax with a high carbohydrate antigen 19-9 level caused by a bronchogenic cyst.

    PubMed

    Tsuzuku, Akifumi; Asano, Fumihiro; Murakami, Anri; Masuda, Atsunori; Sobajima, Takuya; Matsuno, Yoshihiko; Matsumoto, Shinsuke; Mori, Yoshio; Takiya, Hiroshi; Iwata, Hitoshi

    2014-01-01

    A 58-year-old man presented with right-sided chest pain. Radiography and computed tomography showed a pleural effusion in the right chest and a mass in the right hilum. Thoracentesis showed a hemothorax. The carbohydrate antigen (CA) 19-9 level in the pleural effusion was very high, requiring differentiation from malignancy. Positron emission tomography showed no significant fluorodeoxy glucose (FDG) accumulation. Magnetic resonance imaging revealed a cystic lesion. The tumor was resected for both a diagnosis and treatment. A pathological examination demonstrated a bronchogenic cyst. An immunohistochemical study suggested that the cyst was the source of the hemothorax and the high CA19-9 level.

  7. Applications of 2-deoxy-2-fluoro-D-glucose (FDG) in Plant Imaging: Past, Present, and Future

    PubMed Central

    Fatangare, Amol; Svatoš, Aleš

    2016-01-01

    The aim of this review article is to explore and establish the current status of 2-deoxy-2-fluoro-D-glucose (FDG) applications in plant imaging. In the present article, we review the previous literature on its experimental merits to formulate a consistent and inclusive picture of FDG applications in plant-imaging research. 2-deoxy-2-fluoro-D-glucose is a [18F]fluorine-labeled glucose analog in which C-2 hydroxyl group has been replaced by a positron-emitting [18F] radioisotope. As FDG is a positron-emitting radiotracer, it could be used in in vivo imaging studies. FDG mimics glucose chemically and structurally. Its uptake and distribution are found to be similar to those of glucose in animal models. FDG is commonly used as a radiotracer for glucose in medical diagnostics and in vivo animal imaging studies but rarely in plant imaging. Tsuji et al. (2002) first reported FDG uptake and distribution in tomato plants. Later, Hattori et al. (2008) described FDG translocation in intact sorghum plants and suggested that it could be used as a tracer for photoassimilate translocation in plants. These findings raised interest among other plant scientists, which has resulted in a recent surge of articles involving the use of FDG as a tracer in plants. There have been seven studies describing FDG-imaging applications in plants. These studies describe FDG applications ranging from monitoring radiotracer translocation to analyzing solute transport, root uptake, photoassimilate tracing, carbon allocation, and glycoside biosynthesis. Fatangare et al. (2015) recently characterized FDG metabolism in plants; such knowledge is crucial to understanding and validating the application of FDG in plant imaging research. Recent FDG studies significantly advance our understanding of FDG translocation and metabolism in plants but also raise new questions. Here, we take a look at all the previous results to form a comprehensive picture of FDG translocation, metabolism, and applications in

  8. Applications of 2-deoxy-2-fluoro-D-glucose (FDG) in Plant Imaging: Past, Present, and Future.

    PubMed

    Fatangare, Amol; Svatoš, Aleš

    2016-01-01

    The aim of this review article is to explore and establish the current status of 2-deoxy-2-fluoro-D-glucose (FDG) applications in plant imaging. In the present article, we review the previous literature on its experimental merits to formulate a consistent and inclusive picture of FDG applications in plant-imaging research. 2-deoxy-2-fluoro-D-glucose is a [(18)F]fluorine-labeled glucose analog in which C-2 hydroxyl group has been replaced by a positron-emitting [(18)F] radioisotope. As FDG is a positron-emitting radiotracer, it could be used in in vivo imaging studies. FDG mimics glucose chemically and structurally. Its uptake and distribution are found to be similar to those of glucose in animal models. FDG is commonly used as a radiotracer for glucose in medical diagnostics and in vivo animal imaging studies but rarely in plant imaging. Tsuji et al. (2002) first reported FDG uptake and distribution in tomato plants. Later, Hattori et al. (2008) described FDG translocation in intact sorghum plants and suggested that it could be used as a tracer for photoassimilate translocation in plants. These findings raised interest among other plant scientists, which has resulted in a recent surge of articles involving the use of FDG as a tracer in plants. There have been seven studies describing FDG-imaging applications in plants. These studies describe FDG applications ranging from monitoring radiotracer translocation to analyzing solute transport, root uptake, photoassimilate tracing, carbon allocation, and glycoside biosynthesis. Fatangare et al. (2015) recently characterized FDG metabolism in plants; such knowledge is crucial to understanding and validating the application of FDG in plant imaging research. Recent FDG studies significantly advance our understanding of FDG translocation and metabolism in plants but also raise new questions. Here, we take a look at all the previous results to form a comprehensive picture of FDG translocation, metabolism, and applications in

  9. Asymptomatic Emphysematous Pyelonephritis - Positron Emission Tomography Computerized Tomography Aided Diagnostic and Therapeutic Elucidation

    PubMed Central

    Pathapati, Deepti; Shinkar, Pawan Gulabrao; kumar, Satya Awadhesh; Jha; Dattatreya, Palanki Satya; Chigurupati, Namrata; Chigurupati, Mohana Vamsy; Rao, Vatturi Venkata Satya Prabhakar

    2017-01-01

    The authors report an interesting coincidental unearthing by 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) of a potentially serious medical condition of emphysematous pyelonephritis in a case of nasopharyngeal carcinoma. The management by conservative ureteric stenting and antibiotics was done with gratifying clinical outcome. PMID:28242985

  10. Fully automated SPE-based synthesis and purification of 2-[18F]fluoroethyl-choline for human use.

    PubMed

    Schmaljohann, Jörn; Schirrmacher, Esther; Wängler, Björn; Wängler, Carmen; Schirrmacher, Ralf; Guhlke, Stefan

    2011-02-01

    2-[(18)F]Fluoroethyl-choline ([(18)F]FECH) is a promising tracer for the detection of prostate cancer as well as brain tumors with positron emission tomography (PET). [(18)F]FECH is actively transported into mammalian cells, becomes phosphorylated by choline kinase and gets incorporated into the cell membrane after being metabolized to phosphatidylcholine. So far, its synthesis is a two-step procedure involving at least one HPLC purification step. To allow a wider dissemination of this tracer, finding a purification method avoiding HPLC is highly desirable and would result in easier accessibility and more reliable production of [(18)F]FECH. [(18)F]FECH was synthesized by reaction of 2-bromo-1-[(18)F]fluoroethane ([(18)F]BFE) with dimethylaminoethanol (DMAE) in DMSO. We applied a novel and very reliable work-up procedure for the synthesis of [(18)F]BFE. Based on a combination of three different solid-phase cartridges, the purification of [(18)F]BFE from its precursor 2-bromoethyl-4-nitrobenzenesulfonate (BENos) could be achieved without using HPLC. Following the subsequent reaction of the purified [(18)F]BFE with DMAE, the final product [(18)F]FECH was obtained as a sterile solution by passing the crude reaction mixture through a combination of two CM plus cartridges and a sterile filter. The fully automated synthesis was performed using as well a Raytest SynChrom module (Raytest, Germany) or a Scintomics HotboxIII module (Scintomics, Germany). The radiotracer [(18)F]FECH can be synthesized in reliable radiochemical yields (RCY) of 37±5% (Synchrom module) and 33±5% (Hotbox III unit) in less than 1 h using these two fully automated commercially available synthesis units without HPLC involvement for purification. Detailed quality control of the final injectable [(18)F]FECH solution proved the high radiochemical purity and the absence of Kryptofix2.2.2, DMAE and DMSO used in the course of synthesis. Sterility and bacterial endotoxin testing following standard

  11. Acute impairment of regional myocardial glucose uptake in the apical ballooning (takotsubo) syndrome.

    PubMed

    Bybee, Kevin A; Murphy, Joseph; Prasad, Abhiram; Wright, R Scott; Lerman, Amir; Rihal, Charanjit S; Chareonthaitawee, Panithaya

    2006-01-01

    Apical ballooning syndrome (ABS) is a poorly understood clinical entity characterized by acute, transient systolic dysfunction of the left ventricular (LV) apex in the absence of epicardial coronary artery disease and commonly associated with acute emotional stress. We report abnormal regional myocardial perfusion and glucose uptake in 4 consecutive ABS patients studied using positron emission tomography with 13N-ammonia and 18F-fluorodeoxyglucose within 72 hours of presentation with ABS. All patients were postmenopausal females, 3 of whom had a major recent life stress event. Coronary angiography revealed no or minimal obstructive epicardial coronary artery disease. All patients exhibited reduced glucose uptake in the mid-LV and apical myocardial segments, which was out of proportion to perfusion abnormalities in half of the cases. In all 4 patients, affected regions subsequently recovered regional LV systolic function within 6 weeks.

  12. 18F-FDG positron emission tomography in oncology: main indications.

    PubMed

    Vercher-Conejero, J L; Gámez Cenzano, C

    2016-01-01

    The development of molecular and functional imaging with new imaging techniques such as computed tomography, magnetic resonance imaging, and positron emission tomography (PET) among others, has greatly improved the detection of tumors, tumor staging, and the detection of possible recurrences. Furthermore, the combination of these different imaging modalities and the continual development of radiotracers for PET have advanced our understanding and knowledge of the different pathophysiological processes in cancer, thereby helping to make treatment more efficacious, improving patients' quality of life, and increasing survival. PET is one of the imaging techniques that has attracted the most interest in recent years for its diagnostic capabilities. Its ability to anatomically locate pathologic foci of metabolic activity has revolutionized the detection and staging of many tumors, exponentially broadening its potential indications not only in oncology but also in other fields such as cardiology, neurology, and inflammatory and infectious diseases. Copyright © 2016 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  13. F-18 FDG PET/CT in 26 patients with SAPHO syndrome: a new vision of clinical and bone scintigraphy correlation.

    PubMed

    Sun, Xiaochuan; Li, Chen; Cao, Yihan; Shi, Ximin; Li, Li; Zhang, Weihong; Wu, Xia; Wu, Nan; Jing, Hongli; Zhang, Wen

    2018-05-22

    Whole-body bone scintigraphy (WBBS) and MRI are widely used in assessment of patients with synovitis, acne, pustulosis, hyperostosis, and osteitis (SAPHO) syndrome. However, the value of F-18 fluorodeoxyglucose-positron emission tomography/computed tomography ( 18 F-FDG PET/CT) in SAPHO syndrome was unclear. The aim of this study was to characterize the manifestation of SAPHO syndrome on 18 F-FDG PET/CT and explore its relationship with clinical symptoms and WBBS. Twenty-six patients who suffered from SAPHO syndrome and had undergone whole-body 18 F-FDG PET/CT were recruited in Peking Union Medical College Hospital from 2004 to 2016. Clinical manifestations and laboratory findings were recorded for all patients. Imaging data on 18F-FDG PET/CT and WBBS were collected and analyzed retrospectively. All the 26 patients (20 females and 6 males) exhibited skeletal abnormalities on 18 F-FDG PET/CT. Multiple skeletal lesions affecting the anterior chest wall or spine with low to moderate 18 F-FDG uptake and coexistence of osteolysis and osteosclerosis presented as the typical features of SAPHO syndrome. Sixteen (61.5%) patients had abnormal 18 F-FDG uptake outside the osteoarticular system. PET scan had moderate to substantial agreement with CT and WBBS in revealing lesions in the anterior chest wall and axial skeleton. Nonetheless, the correlation between increased 18 F-FDG uptake and clinical symptoms was weak. SAPHO syndrome exhibits characteristic features on 18 F-FDG PET/CT. It showed comparable capacity in revealing skeletal lesions with bone scintigraphy.

  14. Robustness of Radiomic Features in [11C]Choline and [18F]FDG PET/CT Imaging of Nasopharyngeal Carcinoma: Impact of Segmentation and Discretization.

    PubMed

    Lu, Lijun; Lv, Wenbing; Jiang, Jun; Ma, Jianhua; Feng, Qianjin; Rahmim, Arman; Chen, Wufan

    2016-12-01

    Radiomic features are increasingly utilized to evaluate tumor heterogeneity in PET imaging and to enable enhanced prediction of therapy response and outcome. An important ingredient to success in translation of radiomic features to clinical reality is to quantify and ascertain their robustness. In the present work, we studied the impact of segmentation and discretization on 88 radiomic features in 2-deoxy-2-[ 18 F]fluoro-D-glucose ([ 18 F]FDG) and [ 11 C]methyl-choline ([ 11 C]choline) positron emission tomography/X-ray computed tomography (PET/CT) imaging of nasopharyngeal carcinoma. Forty patients underwent [ 18 F]FDG PET/CT scans. Of these, nine patients were imaged on a different day utilizing [ 11 C]choline PET/CT. Tumors were delineated using reference manual segmentation by the consensus of three expert physicians, using 41, 50, and 70 % maximum standardized uptake value (SUV max ) threshold with background correction, Nestle's method, and watershed and region growing methods, and then discretized with fixed bin size (0.05, 0.1, 0.2, 0.5, and 1) in units of SUV. A total of 88 features, including 21 first-order intensity features, 10 shape features, and 57 second- and higher-order textural features, were extracted from the tumors. The robustness of the features was evaluated via the intraclass correlation coefficient (ICC) for seven kinds of segmentation methods (involving all 88 features) and five kinds of discretization bin size (involving the 57 second- and higher-order features). Forty-four (50 %) and 55 (63 %) features depicted ICC ≥0.8 with respect to segmentation as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Thirteen (23 %) and 12 (21 %) features showed ICC ≥0.8 with respect to discretization as obtained from [ 18 F]FDG and [ 11 C]choline, respectively. Six features were obtained from both [ 18 F]FDG and [ 11 C]choline having ICC ≥0.8 for both segmentation and discretization, five of which were gray-level co-occurrence matrix

  15. Cerebral interregional correlations of associative language processing: a positron emission tomography activation study using fluorine-18 fluorodeoxyglucose.

    PubMed

    Schreckenberger, M; Gouzoulis-Mayfrank, E; Sabri, O; Arning, C; Schulz, G; Tuttass, T; Wagenknecht, G; Kaiser, H J; Sass, H; Buell, U

    1998-11-01

    Even though there have been numerous positron emission tomography (PET) activation studies on the perfusional and metabolic bases of language processing, little is known about the intracerebral functional network of language and cognitive processes. It was the aim of this study to investigate the cerebral interregional correlations during voluntary word association versus word repetition in healthy subjects to gain insight into the functional connectivity of associative speech processing. Due to individual variability in functional anatomy, the study protocol was designed as an averaged single-subject study. Eight healthy volunteers performed a verbal association task during fluorine-18 fluorodeoxyglucose (18F-FDG) PET scanning. Two different tasks were performed in randomized order: (a) word repetition (after auditory presentation of nouns) as a control condition, and (b) word association (after auditory presentation of nouns) as a specific semantic activation. The regional metabolic rate of glucose (rMRGlu) was calculated after brain regionalization [112 regions of interest on individual 3D flash magnetic resonance imaging (MRI)] and PET/MRI realignment. Statistical analysis was performed for comparison of association and repetition and for calculation of interregional correlation coefficients during both tasks. Compared with word repetition, word association was associated with significant increases in rMRGlu in the left prefrontal cortex, the left frontal operculum (Broca's area) and the left insula, indicating involvement of these areas in associative language processing. Decreased rMRGlu was found in the left posterior cingulum during word association. During word repetition, highly significant negative correlations were found between the left prefrontal cortex, the contralateral cortex areas and the ipsilateral posterior cingulum. These negative correlations were almost completely eliminated during the association task, suggesting a functional decoupling of

  16. 76 FR 37129 - Determination That SODIUM FLUORIDE F 18 (Sodium Fluoride F-18) Injection, 10 to 200 Millicuries...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ...] Determination That SODIUM FLUORIDE F 18 (Sodium Fluoride F-18) Injection, 10 to 200 Millicuries per Milliliter... FLUORIDE F 18 (sodium fluoride F-18) injection, 10 to 200 millicuries per milliliter (mCi/mL), was not... abbreviated new drug applications (ANDAs) for SODIUM FLUORIDE F 18 injection, 10 to 200 mCi/mL, if all other...

  17. Human biodistribution and dosimetry of [18F]nifene, an α4β2* nicotinic acetylcholine receptor PET tracer.

    PubMed

    Betthauser, Tobey J; Hillmer, Ansel T; Lao, Patrick J; Ehlerding, Emily; Mukherjee, Jogeshwar; Stone, Charles K; Christian, Bradley T

    2017-12-01

    The α4β2* nicotinic acetylcholine receptor (nAChR) system is implicated in many neuropsychiatric pathologies. [ 18 F]Nifene is a positron emission tomography (PET) ligand that has shown promise for in vivo imaging of the α4β2* nAChR system in preclinical models and humans. This work establishes the radiation burden associated with [ 18 F]nifene PET scans in humans. Four human subjects (2M, 2F) underwent whole-body PET/CT scans to determine the human biodistribution of [ 18 F]nifene. Source organs were identified and time-activity-curves (TACs) were extracted from the PET time-series. Dose estimates were calculated for each subject using OLINDA/EXM v1.1. [ 18 F]Nifene was well tolerated by all subjects with no adverse events reported. The mean whole-body effective dose was 28.4±3.8 mSv/MBq without bladder voiding, and 22.6±1.9 mSv/MBq with hourly micturition. The urinary bladder radiation dose limited the maximum injected dose for a single scan to 278 MBq without urinary bladder voiding, and 519 MBq with hourly voiding. [ 18 F]Nifene is a safe PET radioligand for imaging the α4β2* nAChR system in humans. This works presents human internal dosimetry for [ 18 F]nifene in humans for the first time. These results facilitate safe development of future [ 18 F]nifene studies to image the α4β2* nAChR system in humans. Copyright © 2017 Elsevier Inc. All rights reserved.

  18. The Effect of the Prosthetic Group on the Pharmacologic Properties of 18F-labeled Rhodamine B, a Potential Myocardial Perfusion Agent for PET

    PubMed Central

    Bartholomä, Mark D.; Gottumukkala, Vijay; Zhang, Shaohui; Baker, Amanda; Dunning, Patricia; Fahey, Frederic H.; Treves, S. Ted; Packard, Alan B.

    2013-01-01

    We recently reported the development of the 2-[18F]fluoroethyl ester of rhodamine B as a potential positron emission tomography (PET) tracer for myocardial perfusion imaging. This compound, which was prepared using a [18F]fluoroethyl prosthetic group, has significant uptake in the myocardium in rats, but also demonstrates relatively high liver uptake and is rapidly hydrolyzed in vivo in mice. We have now prepared 18F-labeled rhodamine B using three additional prosthetic groups (propyl, diethylene glycol, and triethylene glycol) and found that the prosthetic group has a significant effect on the in vitro and in vivo properties of these compounds. Of the esters prepared to date, the diethylene glycol ester is superior in terms of in vitro stability and pharmacokinetics. These observations suggest that the prosthetic group plays a significant role in determining the pharmacological properties of 18F-labeled compounds. They also support the value of continued investigation of 18F-labeled rhodamines as PET radiopharmaceuticals for myocardial perfusion imaging. PMID:23210516

  19. Use of [18F]FDG PET to Monitor The Development of Cardiac Allograft Rejection

    PubMed Central

    Daly, Kevin P.; Dearling, Jason L. J.; Seto, Tatsuichiro; Dunning, Patricia; Fahey, Frederic; Packard, Alan B.; Briscoe, David M.

    2014-01-01

    Background Positron Emission Tomography (PET) has the potential to be a specific, sensitive and quantitative diagnostic test for transplant rejection. To test this hypothesis, we evaluated 18F-labeled fluorodeoxyglucose ([18F]FDG) and 13N-labeled ammonia ([13N]NH3) small animal PET imaging in a well-established murine cardiac rejection model. Methods Heterotopic transplants were performed using minor MHC mismatched B6.C-H2bm12 donor hearts in C57BL/6(H-2b) recipients. C57BL/6 donor hearts into C57BL/6 recipients served as isograft controls. [18F]FDG PET imaging was performed weekly between post-transplant days 7 and 42 and the percent injected dose was computed for each graft. [13N]NH3 imaging was performed to evaluate myocardial perfusion. Results There was a significant increase in [18F]FDG uptake in allografts from day 14 to day 21 (1.6% to 5.2%; P<0.001) and uptake in allografts was significantly increased on post-transplant days 21 (5.2% vs. 0.9%; P=0.005) and 28 (4.8% vs. 0.9%; P=0.006) compared to isograft controls. Furthermore, [18F]FDG uptake correlated with an increase in rejection within allografts between days 14 and 28 post-transplant. Finally, the uptake of [13N]NH3 was significantly lower relative to the native heart in allografts with chronic vasculopathy compared to isograft controls on day 28 (P=0.01). Conclusions PET imaging with [18F]FDG can be used following transplantation to monitor the evolution of rejection. In addition, decreased uptake of [13N]NH3 in rejecting allografts may be reflective of decreased myocardial blood flow. These data suggest that combined [18F]FDG and [13N]NH3 PET imaging could be used as a non-invasive, quantitative technique for serial monitoring of allograft rejection and has potential application in human transplant recipients. PMID:25675207

  20. Fronto-limbic dysfunction in borderline personality disorder: a 18F-FDG positron emission tomography study.

    PubMed

    Salavert, José; Gasol, Miquel; Vieta, Eduard; Cervantes, Ana; Trampal, Carlos; Gispert, Juan Domingo

    2011-06-01

    Several functional neuroimaging studies have demonstrated abnormalities in fronto-limbic pathways when comparing borderline personality disorder (BPD) patients with controls. The present study aimed to evaluate regional cerebral metabolism in euthymic BPD patients with similar measured impulsivity levels by means of 18F-FDG PET during resting state and to compare them against a control group. The present study evaluates regional cerebral metabolism in 8 euthymic BPD patients with 18F-FDG PET during resting state as compared to 8 controls with similar socio-geographic characteristics. BPD patients presented a marked hypo-metabolism in frontal lobe and showed hyper-metabolism in motor cortex (paracentral lobules and post-central cortex), medial and anterior cingulus, occipital lobe, temporal pole, left superior parietal gyrus and right superior frontal gyrus. No significant differences appeared in basal ganglia or thalamus. Results reveal a dysfunction in patients' frontolimbic network during rest and provide further evidence for the importance of these regions in relation to BPD symptomatology. Copyright © 2011 Elsevier B.V. All rights reserved.