Sample records for f-actin-rich cytoneme extensions

  1. Bidirectional transport model of morphogen gradient formation via cytonemes

    NASA Astrophysics Data System (ADS)

    Bressloff, Paul C.; Kim, Hyunjoong

    2018-03-01

    Morphogen protein gradients play an important role in the spatial regulation of patterning during embryonic development. The most commonly accepted mechanism for gradient formation is diffusion from a source combined with degradation. Recently, there has been growing interest in an alternative mechanism, which is based on the direct delivery of morphogens along thin, actin-rich cellular extensions known as cytonemes. In this paper, we develop a bidirectional motor transport model for the flux of morphogens along cytonemes, linking a source cell to a one-dimensional array of target cells. By solving the steady-state transport equations, we show how a morphogen gradient can be established, and explore how the mean velocity of the motors affects properties of the morphogen gradient such as accumulation time and robustness. In particular, our analysis suggests that in order to achieve robustness with respect to changes in the rate of synthesis of morphogen, the mean velocity has to be negative, that is, retrograde flow or treadmilling dominates. Thus the potential targeting precision of cytonemes comes at an energy cost. We then study the effects of non-uniformly allocating morphogens to the various cytonemes projecting from a source cell. This competition for resources provides a potential regulatory control mechanism not available in diffusion-based models.

  2. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein.

    PubMed

    Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B

    2014-02-21

    Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapses made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian, and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target, and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses.

  3. Cytoneme-mediated contact-dependent transport of the Drosophila Decapentaplegic signaling protein

    PubMed Central

    Roy, Sougata; Huang, Hai; Liu, Songmei; Kornberg, Thomas B.

    2015-01-01

    Decapentaplegic (Dpp), a Drosophila morphogen signaling protein, transfers directly at synapes made at sites of contact between cells that produce Dpp and cytonemes that extend from recipient cells. The Dpp that cytonemes receive moves together with activated receptors toward the recipient cell body in motile puncta. Genetic loss-of-function conditions for diaphanous, shibire, neuroglian and capricious perturbed cytonemes by reducing their number or only the synapses they make with cells they target; and reduced cytoneme-mediated transport of Dpp and Dpp signaling. These experiments provide direct evidence that cells use cytonemes to exchange signaling proteins, that cytoneme-based exchange is essential for signaling and normal development, and that morphogen distribution and signaling can be contact-dependent, requiring cytoneme synapses. PMID:24385607

  4. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation

    PubMed Central

    Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus

    2017-01-01

    Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.24119.001 PMID:28322189

  5. Toxoplasma gondii F-actin forms an extensive filamentous network required for material exchange and parasite maturation.

    PubMed

    Periz, Javier; Whitelaw, Jamie; Harding, Clare; Gras, Simon; Del Rosario Minina, Mario Igor; Latorre-Barragan, Fernanda; Lemgruber, Leandro; Reimer, Madita Alice; Insall, Robert; Heaslip, Aoife; Meissner, Markus

    2017-03-21

    Apicomplexan actin is important during the parasite's life cycle. Its polymerization kinetics are unusual, permitting only short, unstable F-actin filaments. It has not been possible to study actin in vivo and so its physiological roles have remained obscure, leading to models distinct from conventional actin behaviour. Here a modified version of the commercially available actin-chromobody was tested as a novel tool for visualising F-actin dynamics in Toxoplasma gondii. Cb labels filamentous actin structures within the parasite cytosol and labels an extensive F-actin network that connects parasites within the parasitophorous vacuole and allows vesicles to be exchanged between parasites. In the absence of actin, parasites lack a residual body and inter-parasite connections and grow in an asynchronous and disorganized manner. Collectively, these data identify new roles for actin in the intracellular phase of the parasites lytic cycle and provide a robust new tool for imaging parasitic F-actin dynamics.

  6. Actin-binding proteins sensitively mediate F-actin bundle stiffness

    NASA Astrophysics Data System (ADS)

    Claessens, Mireille M. A. E.; Bathe, Mark; Frey, Erwin; Bausch, Andreas R.

    2006-09-01

    Bundles of filamentous actin (F-actin) form primary structural components of a broad range of cytoskeletal processes including filopodia, sensory hair cell bristles and microvilli. Actin-binding proteins (ABPs) allow the cell to tailor the dimensions and mechanical properties of the bundles to suit specific biological functions. Therefore, it is important to obtain quantitative knowledge on the effect of ABPs on the mechanical properties of F-actin bundles. Here we measure the bending stiffness of F-actin bundles crosslinked by three ABPs that are ubiquitous in eukaryotes. We observe distinct regimes of bundle bending stiffness that differ by orders of magnitude depending on ABP type, concentration and bundle size. The behaviour observed experimentally is reproduced quantitatively by a molecular-based mechanical model in which ABP shearing competes with F-actin extension/compression. Our results shed new light on the biomechanical function of ABPs and demonstrate how single-molecule properties determine mesoscopic behaviour. The bending mechanics of F-actin fibre bundles are general and have implications for cytoskeletal mechanics and for the rational design of functional materials.

  7. A WAVE2-Abi1 complex mediates CSF-1-induced F-actin-rich membrane protrusions and migration in macrophages.

    PubMed

    Kheir, Wassim Abou; Gevrey, Jean-Claude; Yamaguchi, Hideki; Isaac, Beth; Cox, Dianne

    2005-11-15

    Colony-stimulating factor 1 (CSF-1) is an important physiological chemoattractant for macrophages. The mechanisms by which CSF-1 elicits the formation of filamentous actin (F-actin)-rich membrane protrusions and induces macrophage migration are not fully understood. In particular, very little is known regarding the contribution of the different members of the Wiskott-Aldrich Syndrome protein (WASP) family of actin regulators in response to CSF-1. Although a role for WASP itself in macrophage chemotaxis has been previously identified, no data was available regarding the function of WASP family verprolin-homologous (WAVE) proteins in this cell type. We found that WAVE2 was the predominant isoform to be expressed in primary macrophages and in cells derived from the murine monocyte/macrophage RAW264.7 cell line (RAW/LR5). CSF-1 treatment of macrophages resulted in WAVE2 accumulation in F-actin-rich protrusions induced by CSF-1. Inhibition of WAVE2 function by expressing a dominant-negative mutant or introducing anti-WAVE2 antibodies in RAW/LR5 cells, as well as reduction of endogenous WAVE2 expression by RNA-mediated interference (RNAi), resulted in a significant reduction of CSF-1-elicited F-actin protrusions. WAVE2 was found in a protein complex together with Abelson kinase interactor 1 (Abi1) in resting or stimulated cells. Both WAVE2 and Abi1 were recruited to and necessary for the formation of F-actin protrusions in response to CSF-1. Reducing the levels of WAVE2, directly or by targeting Abi1, resulted in an impaired cell migration to CSF-1. Altogether these data identify a WAVE2-Abi1 complex crucial for the normal actin cytoskeleton reorganization and migration of macrophages in response to CSF-1.

  8. Essential basal cytonemes take up Hedgehog in the Drosophila wing imaginal disc.

    PubMed

    Chen, Weitao; Huang, Hai; Hatori, Ryo; Kornberg, Thomas B

    2017-09-01

    Morphogen concentration gradients that extend across developmental fields form by dispersion from source cells. In the Drosophila wing disc, Hedgehog (Hh) produced by posterior compartment cells distributes in a concentration gradient to adjacent cells of the anterior compartment. We monitored Hh:GFP after pulsed expression, and analyzed the movement and colocalization of Hh, Patched (Ptc) and Smoothened (Smo) proteins tagged with GFP or mCherry and expressed at physiological levels from bacterial artificial chromosome transgenes. Hh:GFP moved to basal subcellular locations prior to release from posterior compartment cells that express it, and was taken up by basal cytonemes that extend to the source cells. Hh and Ptc were present in puncta that moved along the basal cytonemes and formed characteristic apical-basal distributions in the anterior compartment cells. The basal cytonemes required diaphanous , SCAR , N euroglian and S ynaptobrevin , and both the Hh gradient and Hh signaling declined under conditions in which the cytonemes were compromised. These findings show that in the wing disc, Hh distributions and signaling are dependent upon basal release and uptake, and on cytoneme-mediated movement. No evidence for apical dispersion was obtained. © 2017. Published by The Company of Biologists Ltd.

  9. Scanning electron microscopy study of neutrophil membrane tubulovesicular extensions (cytonemes) and their role in anchoring, aggregation and phagocytosis. The effect of nitric oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galkina, Svetlana I.; Molotkovsky, Julian G.; Ullrich, Volker

    2005-04-01

    We have shown that human neutrophils develop dynamic thin and very long tubulovesicular extensions (cytonemes) upon adhesion to fibronectin, if cell spreading was blocked by Na{sup +}-free medium or by 4-bromophenacyl bromide, N-ethylmaleimide, 7-chloro-4-nitrobenz-2-oxa-1,3-diazole and cytochalasin D (S. I. Galkina, G. F. Sud'ina and V. Ullrich (2001). Exp. Cell Res. 266, 222-228). In the present work we found that similar in size and behavior tubulovesicular extensions were formed on the neutrophil cell bodies upon adhesion to fibronectin-coated substrata in the presence of the nitric oxide donor diethylamine NONOate. In the presence of the nitric oxide synthase inhibitor N-{omega}-nitro-L-arginine methyl ester,more » neutrophils were well spread and had no microextensions. Using scanning electron microscopy, we demonstrated that tubulovesicular extensions of neutrophils executed long-range adhesion and binding objects for phagocytosis, such as serum-opsonized zymosan particles and erythrocytes. Tubulovesicular extensions anchored neutrophils to substrata in a {beta}1 and {beta}2 integrin-independent, but L-selectin-dependent manner. BODIPY-sphingomyelin impaired development of tubulovesicular extension, and heparitinase 1 played a role in their destruction. Membrane tubulovesicular extensions are supposed to represent protrusions of an intracellular exocytotic traffic and serve as cellular sensory and adhesive organelles. Nitric oxide seems to play a role in regulation of tubulovesicular extensions formation, thus affecting neutrophil adhesive interactions and phagocytosis.« less

  10. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium.

    PubMed

    Huang, Hai; Kornberg, Thomas B

    2015-05-07

    The flight muscles, dorsal air sacs, wing blades, and thoracic cuticle of the Drosophila adult function in concert, and their progenitor cells develop together in the wing imaginal disc. The wing disc orchestrates dorsal air sac development by producing decapentaplegic and fibroblast growth factor that travel via specific cytonemes in order to signal to the air sac primordium (ASP). Here, we report that cytonemes also link flight muscle progenitors (myoblasts) to disc cells and to the ASP, enabling myoblasts to relay signaling between the disc and the ASP. Frizzled (Fz)-containing myoblast cytonemes take up Wingless (Wg) from the disc, and Delta (Dl)-containing myoblast cytonemes contribute to Notch activation in the ASP. Wg signaling negatively regulates Dl expression in the myoblasts. These results reveal an essential role for cytonemes in Wg and Notch signaling and for a signal relay system in the myoblasts.

  11. Affimer proteins for F-actin: novel affinity reagents that label F-actin in live and fixed cells.

    PubMed

    Lopata, Anna; Hughes, Ruth; Tiede, Christian; Heissler, Sarah M; Sellers, James R; Knight, Peter J; Tomlinson, Darren; Peckham, Michelle

    2018-04-26

    Imaging the actin cytoskeleton in cells uses a wide range of approaches. Typically, a fluorescent derivative of the small cyclic peptide phalloidin is used to image F-actin in fixed cells. Lifeact and F-tractin are popular for imaging the cytoskeleton in live cells. Here we characterised novel affinity reagents called Affimers that specifically bind to F-actin in vitro to determine if they are suitable alternatives as eGFP-fusion proteins, to label actin in live cells, or for labeling F-actin in fixed cells. In vitro experiments showed that 3 out of the 4 Affimers (Affimers 6, 14 and 24) tested bind tightly to purified F-actin, and appear to have overlapping binding sites. As eGFP-fusion proteins, the same 3 Affimers label F-actin in live cells. FRAP experiments suggest that eGFP-Affimer 6 behaves most similarly to F-tractin and Lifeact. However, it does not colocalise with mCherry-actin in dynamic ruffles, and may preferentially bind stable actin filaments. All 4 Affimers label F-actin in methanol fixed cells, while only Affimer 14 labels F-actin after paraformaldehyde fixation. eGFP-Affimer 6 has potential for use in selectively imaging the stable actin cytoskeleton in live cells, while all 4 Affimers are strong alternatives to phalloidin for labelling F-actin in fixed cells.

  12. Dendrite architecture organized by transcriptional control of the F-actin nucleator Spire.

    PubMed

    Ferreira, Tiago; Ou, Yimiao; Li, Sally; Giniger, Edward; van Meyel, Donald J

    2014-02-01

    The architectures of dendritic trees are crucial for the wiring and function of neuronal circuits because they determine coverage of receptive territories, as well as the nature and strength of sensory or synaptic inputs. Here, we describe a cell-intrinsic pathway sculpting dendritic arborization (da) neurons in Drosophila that requires Longitudinals Lacking (Lola), a BTB/POZ transcription factor, and its control of the F-actin cytoskeleton through Spire (Spir), an actin nucleation protein. Loss of Lola from da neurons reduced the overall length of dendritic arbors, increased the expression of Spir, and produced inappropriate F-actin-rich dendrites at positions too near the cell soma. Selective removal of Lola from only class IV da neurons decreased the evasive responses of larvae to nociception. The increased Spir expression contributed to the abnormal F-actin-rich dendrites and the decreased nocifensive responses because both were suppressed by reduced dose of Spir. Thus, an important role of Lola is to limit expression of Spir to appropriate levels within da neurons. We found Spir to be expressed in dendritic arbors and to be important for their development. Removal of Spir from class IV da neurons reduced F-actin levels and total branch number, shifted the position of greatest branch density away from the cell soma, and compromised nocifensive behavior. We conclude that the Lola-Spir pathway is crucial for the spatial arrangement of branches within dendritic trees and for neural circuit function because it provides balanced control of the F-actin cytoskeleton.

  13. Coupled excitable Ras and F-actin activation mediates spontaneous pseudopod formation and directed cell movement

    PubMed Central

    van Haastert, Peter J. M.; Keizer-Gunnink, Ineke; Kortholt, Arjan

    2017-01-01

    Many eukaryotic cells regulate their mobility by external cues. Genetic studies have identified >100 components that participate in chemotaxis, which hinders the identification of the conceptual framework of how cells sense and respond to shallow chemical gradients. The activation of Ras occurs during basal locomotion and is an essential connector between receptor and cytoskeleton during chemotaxis. Using a sensitive assay for activated Ras, we show here that activation of Ras and F-actin forms two excitable systems that are coupled through mutual positive feedback and memory. This coupled excitable system leads to short-lived patches of activated Ras and associated F-actin that precede the extension of protrusions. In buffer, excitability starts frequently with Ras activation in the back/side of the cell or with F-actin in the front of the cell. In a shallow gradient of chemoattractant, local Ras activation triggers full excitation of Ras and subsequently F-actin at the side of the cell facing the chemoattractant, leading to directed pseudopod extension and chemotaxis. A computational model shows that the coupled excitable Ras/F-actin system forms the driving heart for the ordered-stochastic extension of pseudopods in buffer and for efficient directional extension of pseudopods in chemotactic gradients. PMID:28148648

  14. Platelet rich plasma promotes skeletal muscle cell migration in association with up-regulation of FAK, paxillin, and F-Actin formation.

    PubMed

    Tsai, Wen-Chung; Yu, Tung-Yang; Lin, Li-Ping; Lin, Mioa-Sui; Tsai, Ting-Ta; Pang, Jong-Hwei S

    2017-11-01

    Platelet rich plasma (PRP) contains various cytokines and growth factors which may be beneficial to the healing process of injured muscle. The aim of this study was to investigate the effect and molecular mechanism of PRP on migration of skeletal muscle cells. Skeletal muscle cells intrinsic to Sprague-Dawley rats were treated with PRP. The cell migration was evaluated by transwell filter migration assay and electric cell-substrate impedance sensing. The spreading of cells was evaluated microscopically. The formation of filamentous actin (F-actin) cytoskeleton was assessed by immunofluorescence staining. The protein expressions of paxillin and focal adhesion kinase (FAK) were assessed by Western blot analysis. Transfection of paxillin small-interfering RNA (siRNAs) to muscle cells was performed to validate the role of paxillin in PRP-mediated promotion of cell migration. Dose-dependently PRP promotes migration of and spreading and muscle cells. Protein expressions of paxillin and FAK were up-regulated dose-dependently. F-actin formation was also enhanced by PRP treatment. Furthermore, the knockdown of paxillin expression impaired the effect of PRP to promote cell migration. It was concluded that PRP promoting migration of muscle cells is associated with up-regulation of proteins expression of paxillin and FAK as well as increasing F-actin formation. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:2506-2512, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  15. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography

    NASA Technical Reports Server (NTRS)

    Hu, S.; Brady, S. R.; Kovar, D. R.; Staiger, C. J.; Clark, G. B.; Roux, S. J.; Muday, G. K.

    2000-01-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  16. Technical advance: identification of plant actin-binding proteins by F-actin affinity chromatography.

    PubMed

    Hu, S; Brady, S R; Kovar, D R; Staiger, C J; Clark, G B; Roux, S J; Muday, G K

    2000-10-01

    Proteins that interact with the actin cytoskeleton often modulate the dynamics or organization of the cytoskeleton or use the cytoskeleton to control their localization. In plants, very few actin-binding proteins have been identified and most are thought to modulate cytoskeleton function. To identify actin-binding proteins that are unique to plants, the development of new biochemical procedures will be critical. Affinity columns using actin monomers (globular actin, G-actin) or actin filaments (filamentous actin, F-actin) have been used to identify actin-binding proteins from a wide variety of organisms. Monomeric actin from zucchini (Cucurbita pepo L.) hypocotyl tissue was purified to electrophoretic homogeneity and shown to be native and competent for polymerization to actin filaments. G-actin, F-actin and bovine serum albumin affinity columns were prepared and used to separate samples enriched in either soluble or membrane-associated actin-binding proteins. Extracts of soluble actin-binding proteins yield distinct patterns when eluted from the G-actin and F-actin columns, respectively, leading to the identification of a putative F-actin-binding protein of approximately 40 kDa. When plasma membrane-associated proteins were applied to these columns, two abundant polypeptides eluted selectively from the F-actin column and cross-reacted with antiserum against pea annexins. Additionally, a protein that binds auxin transport inhibitors, the naphthylphthalamic acid binding protein, which has been previously suggested to associate with the actin cytoskeleton, was eluted in a single peak from the F-actin column. These experiments provide a new approach that may help to identify novel actin-binding proteins from plants.

  17. Plasma levels of F-actin and F:G-actin ratio as potential new biomarkers in patients with septic shock.

    PubMed

    Belsky, Justin B; Morris, Daniel C; Bouchebl, Ralph; Filbin, Michael R; Bobbitt, Kevin R; Jaehne, Anja K; Rivers, Emanuel P

    2016-01-01

    To compare plasma levels of F-actin, G-actin and thymosin beta 4 (TB4) in humans with septic shock, noninfectious systemic inflammatory response syndrome (SIRS) and healthy controls. F-actin was significantly elevated in septic shock as compared with noninfectious SIRS and healthy controls. G-actin levels were greatest in the noninfectious SIRS group but significantly elevated in septic shock as compared with healthy controls. TB4 was not detectable in the septic shock or noninfectious SIRS group above the assay's lowest detection range (78 ng/ml). F-actin is significantly elevated in patients with septic shock as compared with noninfectious SIRS. F-actin and the F:G-actin ratio are potential biomarkers for the diagnosis of septic shock.

  18. Actin assembly factors regulate the gelation kinetics and architecture of F-actin networks.

    PubMed

    Falzone, Tobias T; Oakes, Patrick W; Sees, Jennifer; Kovar, David R; Gardel, Margaret L

    2013-04-16

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. Copyright © 2013 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Cofilin Changes the Twist of F-Actin: Implications for Actin Filament Dynamics and Cellular Function

    PubMed Central

    McGough, Amy; Pope, Brian; Chiu, Wah; Weeds, Alan

    1997-01-01

    Cofilin is an actin depolymerizing protein found widely distributed in animals and plants. We have used electron cryomicroscopy and helical reconstruction to identify its binding site on actin filaments. Cofilin binds filamentous (F)-actin cooperatively by bridging two longitudinally associated actin subunits. The binding site is centered axially at subdomain 2 of the lower actin subunit and radially at the cleft between subdomains 1 and 3 of the upper actin subunit. Our work has revealed a totally unexpected (and unique) property of cofilin, namely, its ability to change filament twist. As a consequence of this change in twist, filaments decorated with cofilin have much shorter ‘actin crossovers' (∼75% of those normally observed in F-actin structures). Although their binding sites are distinct, cofilin and phalloidin do not bind simultaneously to F-actin. This is the first demonstration of a protein that excludes another actin-binding molecule by changing filament twist. Alteration of F-actin structure by cofilin/ADF appears to be a novel mechanism through which the actin cytoskeleton may be regulated or remodeled. PMID:9265645

  20. A new F-actin structure in fungi: actin ring formation around the cell nucleus of Cryptococcus neoformans.

    PubMed

    Kopecká, Marie; Kawamoto, Susumu; Yamaguchi, Masashi

    2013-04-01

    The F-actin cytoskeleton of Cryptococcus neoformans is known to comprise actin cables, cortical patches and cytokinetic ring. Here, we describe a new F-actin structure in fungi, a perinuclear F-actin collar ring around the cell nucleus, by fluorescent microscopic imaging of rhodamine phalloidin-stained F-actin. Perinuclear F-actin rings form in Cryptococcus neoformans treated with the microtubule inhibitor Nocodazole or with the drug solvent dimethyl sulfoxide (DMSO) or grown in yeast extract peptone dextrose (YEPD) medium, but they are absent in cells treated with Latrunculin A. Perinuclear F-actin rings may function as 'funicular cabin' for the cell nucleus, and actin cables as intracellular 'funicular' suspending nucleus in the central position in the cell and moving nucleus along the polarity axis along actin cables.

  1. Actin Assembly Factors Regulate the Gelation Kinetics and Architecture of F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Oakes, Patrick W.; Sees, Jennifer; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    Dynamic regulation of the actin cytoskeleton is required for diverse cellular processes. Proteins regulating the assembly kinetics of the cytoskeletal biopolymer F-actin are known to impact the architecture of actin cytoskeletal networks in vivo, but the underlying mechanisms are not well understood. Here, we demonstrate that changes to actin assembly kinetics with physiologically relevant proteins profilin and formin (mDia1 and Cdc12) have dramatic consequences on the architecture and gelation kinetics of otherwise biochemically identical cross-linked F-actin networks. Reduced F-actin nucleation rates promote the formation of a sparse network of thick bundles, whereas increased nucleation rates result in a denser network of thinner bundles. Changes to F-actin elongation rates also have marked consequences. At low elongation rates, gelation ceases and a solution of rigid bundles is formed. By contrast, rapid filament elongation accelerates dynamic arrest and promotes gelation with minimal F-actin density. These results are consistent with a recently developed model of how kinetic constraints regulate network architecture and underscore how molecular control of polymer assembly is exploited to modulate cytoskeletal architecture and material properties. PMID:23601318

  2. Adhesive F-actin Waves: A Novel Integrin-Mediated Adhesion Complex Coupled to Ventral Actin Polymerization

    PubMed Central

    Case, Lindsay B.; Waterman, Clare M.

    2011-01-01

    At the leading lamellipodium of migrating cells, protrusion of an Arp2/3-nucleated actin network is coupled to formation of integrin-based adhesions, suggesting that Arp2/3-mediated actin polymerization and integrin-dependent adhesion may be mechanistically linked. Arp2/3 also mediates actin polymerization in structures distinct from the lamellipodium, in “ventral F-actin waves” that propagate as spots and wavefronts along the ventral plasma membrane. Here we show that integrins engage the extracellular matrix downstream of ventral F-actin waves in several mammalian cell lines as well as in primary mouse embryonic fibroblasts. These “adhesive F-actin waves” require a cycle of integrin engagement and disengagement to the extracellular matrix for their formation and propagation, and exhibit morphometry and a hierarchical assembly and disassembly mechanism distinct from other integrin-containing structures. After Arp2/3-mediated actin polymerization, zyxin and VASP are co-recruited to adhesive F-actin waves, followed by paxillin and vinculin, and finally talin and integrin. Adhesive F-actin waves thus represent a previously uncharacterized integrin-based adhesion complex associated with Arp2/3-mediated actin polymerization. PMID:22069459

  3. F-actin and G-actin binding are uncoupled by mutation of conserved tyrosine residues in maize actin depolymerizing factor (ZmADF)

    PubMed Central

    Jiang, Chang-Jie; Weeds, Alan G.; Khan, Safina; Hussey, Patrick J.

    1997-01-01

    Actin depolymerizing factors (ADF) are stimulus responsive actin cytoskeleton modulating proteins. They bind both monomeric actin (G-actin) and filamentous actin (F-actin) and, under certain conditions, F-actin binding is followed by filament severing. In this paper, using mutant maize ADF3 proteins, we demonstrate that the maize ADF3 binding of F-actin can be spatially distinguished from that of G-actin. One mutant, zmadf3–1, in which Tyr-103 and Ala-104 (equivalent to destrin Tyr-117 and Ala-118) have been replaced by phenylalanine and glycine, respectively, binds more weakly to both G-actin and F-actin compared with maize ADF3. A second mutant, zmadf3–2, in which both Tyr-67 and Tyr-70 are replaced by phenylalanine, shows an affinity for G-actin similar to maize ADF3, but F-actin binding is abolished. The two tyrosines, Tyr-67 and Tyr-70, are in the equivalent position to Tyr-82 and Tyr-85 of destrin, respectively. Using the tertiary structure of destrin, yeast cofilin, and Acanthamoeba actophorin, we discuss the implications of removing the aromatic hydroxyls of Tyr-82 and Tyr-85 (i.e., the effect of substituting phenylalanine for tyrosine) and conclude that Tyr-82 plays a critical role in stabilizing the tertiary structure that is essential for F-actin binding. We propose that this tertiary structure is maintained as a result of a hydrogen bond between the hydroxyl of Tyr-82 and the carbonyl of Tyr-117, which is located in the long α-helix; amino acid components of this helix (Leu-111 to Phe-128) have been implicated in G-actin and F-actin binding. The structures of human destrin and yeast cofilin indicate a hydrogen distance of 2.61 and 2.77 Å, respectively, with corresponding bond angles of 99.5° and 113°, close to the optimum for a strong hydrogen bond. PMID:9275236

  4. A dynamic formin-dependent deep F-actin network in axons

    PubMed Central

    Ganguly, Archan; Tang, Yong; Wang, Lina; Ladt, Kelsey; Loi, Jonathan; Dargent, Bénédicte; Leterrier, Christophe

    2015-01-01

    Although actin at neuronal growth cones is well-studied, much less is known about actin organization and dynamics along axon shafts and presynaptic boutons. Using probes that selectively label filamentous-actin (F-actin), we found focal “actin hotspots” along axons—spaced ∼3–4 µm apart—where actin undergoes continuous assembly/disassembly. These foci are a nidus for vigorous actin polymerization, generating long filaments spurting bidirectionally along axons—a phenomenon we call “actin trails.” Super-resolution microscopy reveals intra-axonal deep actin filaments in addition to the subplasmalemmal “actin rings” described recently. F-actin hotspots colocalize with stationary axonal endosomes, and blocking vesicle transport diminishes the actin trails, suggesting mechanistic links between vesicles and F-actin kinetics. Actin trails are formin—but not Arp2/3—dependent and help enrich actin at presynaptic boutons. Finally, formin inhibition dramatically disrupts synaptic recycling. Collectively, available data suggest a two-tier F-actin organization in axons, with stable “actin rings” providing mechanical support to the plasma membrane and dynamic "actin trails" generating a flexible cytoskeletal network with putative physiological roles. PMID:26216902

  5. F-Actin Dynamics in Neurospora crassa ▿ †

    PubMed Central

    Berepiki, Adokiye; Lichius, Alexander; Shoji, Jun-Ya; Tilsner, Jens; Read, Nick D.

    2010-01-01

    This study demonstrates the utility of Lifeact for the investigation of actin dynamics in Neurospora crassa and also represents the first report of simultaneous live-cell imaging of the actin and microtubule cytoskeletons in filamentous fungi. Lifeact is a 17-amino-acid peptide derived from the nonessential Saccharomyces cerevisiae actin-binding protein Abp140p. Fused to green fluorescent protein (GFP) or red fluorescent protein (TagRFP), Lifeact allowed live-cell imaging of actin patches, cables, and rings in N. crassa without interfering with cellular functions. Actin cables and patches localized to sites of active growth during the establishment and maintenance of cell polarity in germ tubes and conidial anastomosis tubes (CATs). Recurrent phases of formation and retrograde movement of complex arrays of actin cables were observed at growing tips of germ tubes and CATs. Two populations of actin patches exhibiting slow and fast movement were distinguished, and rapid (1.2 μm/s) saltatory transport of patches along cables was observed. Actin cables accumulated and subsequently condensed into actin rings associated with septum formation. F-actin organization was markedly different in the tip regions of mature hyphae and in germ tubes. Only mature hyphae displayed a subapical collar of actin patches and a concentration of F-actin within the core of the Spitzenkörper. Coexpression of Lifeact-TagRFP and β-tubulin–GFP revealed distinct but interrelated localization patterns of F-actin and microtubules during the initiation and maintenance of tip growth. PMID:20139238

  6. Myopodin is an F-actin bundling protein with multiple independent actin-binding regions.

    PubMed

    Linnemann, Anja; Vakeel, Padmanabhan; Bezerra, Eduardo; Orfanos, Zacharias; Djinović-Carugo, Kristina; van der Ven, Peter F M; Kirfel, Gregor; Fürst, Dieter O

    2013-02-01

    The assembly of striated muscle myofibrils is a multistep process in which a variety of proteins is involved. One of the first and most important steps in myofibrillogenesis is the arrangement of thin myofilaments into ordered I-Z-I brushes, requiring the coordinated activity of numerous actin binding proteins. The early expression of myopodin prior to sarcomeric α-actinin, as well as its binding to actin, α-actinin and filamin indicate an important role for this protein in actin cytoskeleton remodelling with the precise function of myopodin in this process yet remaining to be resolved. While myopodin was previously described as a protein capable of cross-linking actin filaments into thick bundles upon transient transfections, it has remained unclear whether myopodin alone is capable of bundling actin, or if additional proteins are involved. We have therefore investigated the in vitro actin binding properties of myopodin. High speed cosedimentation assays with skeletal muscle actin confirmed direct binding of myopodin to F-actin and showed that this interaction is mediated by at least two independent actin binding sites, found in all myopodin isoforms identified to date. Furthermore, low-speed cosedimentation assays revealed that not only full length myopodin, but also the fragment containing only the second binding site, bundles microfilaments in the absence of accessory proteins. Ultrastructural analysis demonstrated that this bundling activity resembled that of α-actinin. Biochemical experiments revealed that bundling was not achieved by myopodin's ability to dimerize, indicating the presence of two individual F-actin binding sites within the second binding segment. Thus full length myopodin contains at least three F-actin binding sites. These data provide further understanding of the mechanisms by which myopodin contributes to actin reorganization during myofibril assembly.

  7. The Abl-related gene (Arg) requires its F-actin-microtubule cross-linking activity to regulate lamellipodial dynamics during fibroblast adhesion.

    PubMed

    Miller, Ann L; Wang, Yinxiang; Mooseker, Mark S; Koleske, Anthony J

    2004-05-10

    Microtubules (MTs) help establish and maintain cell polarity by promoting actin-dependent membrane protrusion at the leading edge of the cell, but the molecular mechanisms that mediate cross-talk between actin and MTs during this process are unclear. We demonstrate that the Abl-related gene (Arg) nonreceptor tyrosine kinase is required for dynamic lamellipodial protrusions after adhesion to fibronectin. arg-/- fibroblasts exhibit reduced lamellipodial dynamics as compared with wild-type fibroblasts, and this defect can be rescued by reexpression of an Arg-yellow fluorescent protein fusion. We show that Arg can bind MTs with high affinity and cross-link filamentous actin (F-actin) bundles and MTs in vitro. MTs concentrate and insert into Arg-induced F-actin-rich cell protrusions. Arg requires both its F-actin-binding domains and its MT-binding domain to rescue the defects in lamellipodial dynamics of arg-/- fibroblasts. These findings demonstrate that Arg can mediate physical contact between F-actin and MTs at the cell periphery and that this cross-linking activity is required for Arg to regulate lamellipodial dynamics in fibroblasts. Copyright the Rockefeller University Press

  8. The nuclear F-actin interactome of Xenopus oocytes reveals an actin-bundling kinesin that is essential for meiotic cytokinesis

    PubMed Central

    Samwer, Matthias; Dehne, Heinz-Jürgen; Spira, Felix; Kollmar, Martin; Gerlich, Daniel W; Urlaub, Henning; Görlich, Dirk

    2013-01-01

    Nuclei of Xenopus laevis oocytes grow 100 000-fold larger in volume than a typical somatic nucleus and require an unusual intranuclear F-actin scaffold for mechanical stability. We now developed a method for mapping F-actin interactomes and identified a comprehensive set of F-actin binders from the oocyte nuclei. Unexpectedly, the most prominent interactor was a novel kinesin termed NabKin (Nuclear and meiotic actin-bundling Kinesin). NabKin not only binds microtubules but also F-actin structures, such as the intranuclear actin bundles in prophase and the contractile actomyosin ring during cytokinesis. The interaction between NabKin and F-actin is negatively regulated by Importin-β and is responsive to spatial information provided by RanGTP. Disconnecting NabKin from F-actin during meiosis caused cytokinesis failure and egg polyploidy. We also found actin-bundling activity in Nabkin's somatic paralogue KIF14, which was previously shown to be essential for somatic cell division. Our data are consistent with the notion that NabKin/KIF14 directly link microtubules with F-actin and that such link is essential for cytokinesis. PMID:23727888

  9. RAI14 (retinoic acid induced protein 14) is an F-actin regulator

    PubMed Central

    Qian, Xiaojing; Mruk, Dolores D.; Cheng, Yan-ho; Cheng, C. Yan

    2013-01-01

    RAI14 (retinoic acid induced protein 14) is an actin-binding protein first identified in the liver. In the testis, RAI14 is expressed by both Sertoli and germ cells in the seminiferous epithelium. Besides binding to actin in the testis, RAI14 is also a binding protein for palladin, an actin cross-linking and bundling protein. A recent report has shown that RAI14 displays stage-specific and spatiotemporal expression at the ES [ectoplasmic specialization, a testis-specific filamentous (F)-actin-rich adherens junction] in the seminiferous epithelium of adult rat testes during the epithelial cycle of spermatogenesis, illustrating its likely involvement in F-actin organization at the ES. Functional studies in which RAI14 was knocked down by RNAi in Sertoli cells in vitro and also in testicular cells in vivo have illustrated its role in conferring the integrity of actin filament bundles at the ES, perturbing the Sertoli cell tight junction (TJ)-pemeability barrier function in vitro, and also spermatid polarity and adhesion in vivo, thereby regulating spermatid transport at spermiation. Herein, we critically evaluate these earlier findings and also provide a likely hypothetic model based on the functional role of RAI14 at the ES, and how RAI14 is working with palladin and other actin regulatory proteins in the testis to regulate the transport of (1) spermatids and (2) preleptotene spermatocytes across the seminiferous epithelium and the blood-testis barrier (BTB), respectively, during spermatogenesis. This model should serve as a framework upon which functional experiments can be designed to better understand the biology of RAI14 and other actin-binding and regulatory proteins in the testis. PMID:23885305

  10. A structural study of F-actin - filamin networks

    NASA Astrophysics Data System (ADS)

    Ahrens-Braunstein, Ashley; Nguyen, Lam; Hirst, Linda

    2010-03-01

    The cell's ability to move and contract is attributed to the semi-flexible filamentous protein, F -actin, one of the three filaments in the cytoskeleton. Actin bundling can be formed by a cross-linking actin binding protein (ABP) filamin. By examining filamin's cross-linking abilities at different concentrations and molar ratios, we can study the flexibility, structure and multiple network formations created when cross-linking F-actin with this protein. We have studied the phase diagram of this protein system using fluorescence microscopy, analyzing the network structures observed in the context of a coarse grained molecular dynamics simulation carried out by our group.

  11. Triggering signaling pathways using F-actin self-organization.

    PubMed

    Colin, A; Bonnemay, L; Gayrard, C; Gautier, J; Gueroui, Z

    2016-10-04

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity.

  12. Triggering signaling pathways using F-actin self-organization

    PubMed Central

    Colin, A.; Bonnemay, L.; Gayrard, C.; Gautier, J.; Gueroui, Z.

    2016-01-01

    The spatiotemporal organization of proteins within cells is essential for cell fate behavior. Although it is known that the cytoskeleton is vital for numerous cellular functions, it remains unclear how cytoskeletal activity can shape and control signaling pathways in space and time throughout the cell cytoplasm. Here we show that F-actin self-organization can trigger signaling pathways by engineering two novel properties of the microfilament self-organization: (1) the confinement of signaling proteins and (2) their scaffolding along actin polymers. Using in vitro reconstitutions of cellular functions, we found that both the confinement of nanoparticle-based signaling platforms powered by F-actin contractility and the scaffolding of engineered signaling proteins along actin microfilaments can drive a signaling switch. Using Ran-dependent microtubule nucleation, we found that F-actin dynamics promotes the robust assembly of microtubules. Our in vitro assay is a first step towards the development of novel bottom-up strategies to decipher the interplay between cytoskeleton spatial organization and signaling pathway activity. PMID:27698406

  13. Cargo crowding at actin-rich regions along axons causes local traffic jams.

    PubMed

    Sood, Parul; Murthy, Kausalya; Kumar, Vinod; Nonet, Michael L; Menon, Gautam I; Koushika, Sandhya P

    2018-03-01

    Steady axonal cargo flow is central to the functioning of healthy neurons. However, a substantial fraction of cargo in axons remains stationary up to several minutes. We examine the transport of precursors of synaptic vesicles (pre-SVs), endosomes and mitochondria in Caenorhabditis elegans touch receptor neurons, showing that stationary cargo are predominantly present at actin-rich regions along the neuronal process. Stationary vesicles at actin-rich regions increase the propensity of moving vesicles to stall at the same location, resulting in traffic jams arising from physical crowding. Such local traffic jams at actin-rich regions are likely to be a general feature of axonal transport since they also occur in Drosophila neurons. Repeated touch stimulation of C. elegans reduces the density of stationary pre-SVs, indicating that these traffic jams can act as both sources and sinks of vesicles. This suggests that vesicles trapped in actin-rich regions are functional reservoirs that may contribute to maintaining robust cargo flow in the neuron. A video abstract of this article can be found at: Video S1; Video S2. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Latrunculin B-induced plant dwarfism: Plant cell elongation is F-actin-dependent.

    PubMed

    Baluska, F; Jasik, J; Edelmann, H G; Salajová, T; Volkmann, D

    2001-03-01

    Marine macrolides latrunculins are highly specific toxins which effectively depolymerize actin filaments (generally F-actin) in all eukaryotic cells. We show that latrunculin B is effective on diverse cell types in higher plants and describe the use of this drug in probing F-actin-dependent growth and in plant development-related processes. In contrast to other eukaryotic organisms, cell divisions occurs in plant cells devoid of all actin filaments. However, the alignment of the division planes is often distorted. In addition to cell division, postembryonic development and morphogenesis also continue in the absence of F-actin. These experimental data suggest that F-actin is of little importance in the morphogenesis of higher plants, and that plants can develop more or less normally without F-actin. In contrast, F-actin turns out to be essential for cell elongation. When latrunculin B was added during germination, morphologically normal Arabidopsis and rye seedlings developed but, as a result of the absence of cell elongation, these were stunted, resembling either genetic dwarfs or environmental bonsai plants. In conclusion, F-actin is essential for the plant cell elongation, while this F-actin-dependent cell elongation is not an essential feature of plant-specific developmental programs.

  15. Structural dynamics of F-actin: I. Changes in the C terminus.

    PubMed

    Orlova, A; Egelman, E H

    1995-02-03

    The biochemical properties of G-actin, and the kinetics of polymerization of G-actin into F-actin, are dependent upon whether Mg2+ or Ca2+ is bound at the high-affinity metal-binding site in actin. Three-dimensional reconstructions from electron micrographs show that a bridge of density, that we interpret as arising from a major shift of the C terminus, exists between the two strands of the filament in Ca(2+)-actin that is absent in Mg(2+)-actin. This bridge is also absent in models of F-actin built from an atomic structure of G-Ca(2+)-actin. The cleavage of the DNase I-binding loop in actin between residues 42 and 43, with the non-covalent association of the 42 cleaved residues with the remainder of the actin, induces an even larger bridge of density between the two strands. When the bridge is absent, the two C-terminal residues in F-actin are easily cleaved by trypsin, while these residues become increasingly resistant to tryptic cleavage as the bridge becomes more prominent. Conversely, cleavage of the two C-terminal residues leads to a conformational change in the DNase I-binding loop. Since both the DNase I-binding loop and the metal-binding site are quite distant from the C terminus, large allosteric effects must exist in F-actin. The conformational change in F-actin that results from the creation of this bridge may be induced by myosin binding, since this movement generates changes in actin's diffraction that are very similar to the changes in the muscle X-ray pattern during activation that are associated with the binding of myosin to the thin filament.

  16. F-actin distribution and function during sexual development in Eimeria maxima.

    PubMed

    Frölich, Sonja; Wallach, Michael

    2015-06-01

    To determine the involvement of the actin cytoskeleton in macrogametocyte growth and oocyst wall formation, freshly purified macrogametocytes and oocysts were stained with Oregon Green 514 conjugated phalloidin to visualize F-actin microfilaments, while Evans blue staining was used to detect type 1 wall forming bodies (WFB1s) and the outer oocyst wall. The double-labelled parasites were then analysed at various stages of sexual development using three-dimensional confocal microscopy. The results showed F-actin filaments were distributed throughout the entire cytoplasm of mature Eimeria maxima macrogametocytes forming a web-like meshwork of actin filaments linking the type 1 WFBs together into structures resembling 'beads on a string'. At the early stages of oocyst wall formation, F-actin localization changed in alignment with the egg-shaped morphology of the forming oocysts with F-actin microfilaments making direct contact with the WFB1s. In tissue oocysts, the labelled actin cytoskeleton was situated underneath the forming outer layer of the oocyst wall. Treatment of macrogametocytes in vitro with the actin depolymerizing agents, Cytochalasin D and Latrunculin, led to a reduction in the numbers of mature WFB1s in the cytoplasm of the developing macrogametocytes, indicating that the actin plays an important role in WFB1 transport and oocyst wall formation in E. maxima.

  17. Nonmedially assembled F-actin cables incorporate into the actomyosin ring in fission yeast

    PubMed Central

    Huang, Junqi; Huang, Yinyi; Yu, Haochen; Subramanian, Dhivya; Padmanabhan, Anup; Thadani, Rahul; Tao, Yaqiong; Tang, Xie; Wedlich-Soldner, Roland

    2012-01-01

    In many eukaryotes, cytokinesis requires the assembly and constriction of an actomyosin-based contractile ring. Despite the central role of this ring in cytokinesis, the mechanism of F-actin assembly and accumulation in the ring is not fully understood. In this paper, we investigate the mechanism of F-actin assembly during cytokinesis in Schizosaccharomyces pombe using lifeact as a probe to monitor actin dynamics. Previous work has shown that F-actin in the actomyosin ring is assembled de novo at the division site. Surprisingly, we find that a significant fraction of F-actin in the ring was recruited from formin-Cdc12p nucleated long actin cables that were generated at multiple nonmedial locations and incorporated into the ring by a combination of myosin II and myosin V activities. Our results, together with findings in animal cells, suggest that de novo F-actin assembly at the division site and directed transport of F-actin cables assembled elsewhere can contribute to ring assembly. PMID:23185032

  18. Internal dynamics of F-actin and myosin subfragment-1 studied by quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matsuo, Tatsuhito; Arata, Toshiaki; Oda, Toshiro

    2015-04-10

    Various biological functions related to cell motility are driven by the interaction between the partner proteins, actin and myosin. To obtain insights into how this interaction occurs, the internal dynamics of F-actin and myosin subfragment-1 (S1) were characterized by the quasielastic neutron scattering measurements on the solution samples of F-actin and S1. Contributions of the internal motions of the proteins to the scattering spectra were separated from those of the global macromolecular diffusion. Analysis of the spectra arising from the internal dynamics showed that the correlation times of the atomic motions were about two times shorter for F-actin than formore » S1, suggesting that F-actin fluctuates more rapidly than S1. It was also shown that the fraction of the immobile atoms is larger for S1 than for F-actin. These results suggest that F-actin actively facilitates the binding of myosin by utilizing the more frequent conformational fluctuations than those of S1. - Highlights: • We studied the internal dynamics of F-actin and myosin S1 by neutron scattering. • The correlation times of the atomic motions were smaller for F-actin than for S1. • The fraction of the immobile atoms was also smaller for F-actin than for S1. • Our results suggest that mobility of atoms in F-actin is higher than that in S1. • We propose that high flexibility of F-actin facilitates the binding of myosin.« less

  19. Steering cell migration by alternating blebs and actin-rich protrusions.

    PubMed

    Diz-Muñoz, Alba; Romanczuk, Pawel; Yu, Weimiao; Bergert, Martin; Ivanovitch, Kenzo; Salbreux, Guillaume; Heisenberg, Carl-Philipp; Paluch, Ewa K

    2016-09-02

    High directional persistence is often assumed to enhance the efficiency of chemotactic migration. Yet, cells in vivo usually display meandering trajectories with relatively low directional persistence, and the control and function of directional persistence during cell migration in three-dimensional environments are poorly understood. Here, we use mesendoderm progenitors migrating during zebrafish gastrulation as a model system to investigate the control of directional persistence during migration in vivo. We show that progenitor cells alternate persistent run phases with tumble phases that result in cell reorientation. Runs are characterized by the formation of directed actin-rich protrusions and tumbles by enhanced blebbing. Increasing the proportion of actin-rich protrusions or blebs leads to longer or shorter run phases, respectively. Importantly, both reducing and increasing run phases result in larger spatial dispersion of the cells, indicative of reduced migration precision. A physical model quantitatively recapitulating the migratory behavior of mesendoderm progenitors indicates that the ratio of tumbling to run times, and thus the specific degree of directional persistence of migration, are critical for optimizing migration precision. Together, our experiments and model provide mechanistic insight into the control of migration directionality for cells moving in three-dimensional environments that combine different protrusion types, whereby the proportion of blebs to actin-rich protrusions determines the directional persistence and precision of movement by regulating the ratio of tumbling to run times.

  20. Brownian dynamics simulations of interactions between aldolase and G- or F-actin.

    PubMed Central

    Ouporov, I V; Knull, H R; Thomasson, K A

    1999-01-01

    Compartmentation of proteins in cells is important to proper cell function. Interactions of F-actin and glycolytic enzymes is one mechanism by which glycolytic enzymes can compartment. Brownian dynamics (BD) simulations of the binding of the muscle form of the glycolytic enzyme fructose-1,6-bisphosphate aldolase (aldolase) to F- or G-actin provide first-encounter snapshots of these interactions. Using x-ray structures of aldolase, G-actin, and three-dimensional models of F-actin, the electrostatic potential about each protein was predicted by solving the linearized Poisson-Boltzmann equation for use in BD simulations. The BD simulations provided solution complexes of aldolase with F- or G-actin. All complexes demonstrate the close contacts between oppositely charged regions of the protein surfaces. Positively charged surface regions of aldolase (residues Lys 13, 27, 288, 293, and 341 and Arg 257) are attracted to the negatively charged amino terminus (Asp 1 and Glu 2 and 4) and other patches (Asp 24, 25, and 363 and Glu 361, 364, 99, and 100) of actin subunits. According to BD results, the most important factor for aldolase binding to actin is the quaternary structure of aldolase and actin. Two pairs of adjacent aldolase subunits greatly add to the positive electrostatic potential of each other creating a region of attraction for the negatively charged subdomain 1 of the actin subunit that is exposed to solvent in the quaternary F-actin structure. PMID:9876119

  1. Bulkiness or aromatic nature of tyrosine-143 of actin is important for the weak binding between F-actin and myosin-ADP-phosphate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gomibuchi, Yuki; Uyeda, Taro Q.P.; Wakabayashi, Takeyuki, E-mail: tw007@nasu.bio.teikyo-u.ac.jp

    2013-11-29

    Highlights: •The effect of mutation of Tyr143 that becomes more exposed on assembly was examined. •Mutation of tyrosine-143 of Dictyostelium actin changed actin polymerizability. •The bulkiness or aromatic nature of Tyr143 is important for the weak binding. •The weak interaction between myosin and actin strengthened by Tyr143Trp mutation. -- Abstract: Actin filaments (F-actin) interact with myosin and activate its ATPase to support force generation. By comparing crystal structures of G-actin and the quasi-atomic model of F-actin based on high-resolution cryo-electron microscopy, the tyrosine-143 was found to be exposed more than 60 Å{sup 2} to the solvent in F-actin. Because tyrosine-143more » flanks the hydrophobic cleft near the hydrophobic helix that binds to myosin, the mutant actins, of which the tyrosine-143 was replaced with tryptophan, phenylalanine, or isoleucine, were generated using the Dictyostelium expression system. It polymerized significantly poorly when induced by NaCl, but almost normally by KCl. In the presence of phalloidin and KCl, the extents of the polymerization of all the mutant actins were comparable to that of the wild-type actin so that the actin-activated myosin ATPase activity could be reliably compared. The affinity of skeletal heavy meromyosin to F-actin and the maximum ATPase activity (V{sub max}) were estimated by a double reciprocal plot. The Tyr143Trp-actin showed the higher affinity (smaller K{sub app}) than that of the wild-type actin, with the V{sub max} being almost unchanged. The K{sub app} and V{sub max} of the Tyr143Phe-actin were similar to those of the wild-type actin. However, the activation by Tyr143Ile-actin was much smaller than the wild-type actin and the accurate determination of K{sub app} was difficult. Comparison of the myosin ATPase activated by the various mutant actins at the same concentration of F-actin showed that the extent of activation correlates well with the solvent-accessible surface areas

  2. Interactions between globular proteins and F-actin in isotonic saline solution.

    PubMed

    Lakatos, S; Minton, A P

    1991-10-05

    Solutions of each of three different globular proteins (cytochrome c, chromophorically labeled serum albumin, and chromophorically labeled aldolase), mixed with another unlabeled globular protein or with fibrous actin, were prepared in pH 8.0 Tris-HCl buffer containing 0.15 M NaCl. Each solution was centrifuged at low speed, at 5 degrees C, until unassociated globular protein in solution achieved sedimentation equilibrium. Individual absorbance gradients of both macrosolutes in the mixtures subsequent to centrifugation were obtained via optical scans of the centrifuge tubes at two wavelengths. The gradients of each macrosolute in mixtures of two globular proteins revealed no association of globular proteins under the conditions of these experiments, but perturbation of the gradients of serum albumin, aldolase, and cytochrome c in the presence of F-actin indicated association of all three globular proteins with F-actin. Perturbation of actin gradients in the presence of serum albumin and aldolase suggested partial depolymerization of the F-actin by the globular protein. Analysis of the data with a simple phenomenological model relating free globular protein, bound globular protein, and total actin concentration provided estimates of the respective equilibrium constants for association of serum albumin and aldolase with F-actin, under the conditions of these experiments, of the order of 0.1 microM-1.

  3. Aβ mediates F-actin disassembly in dendritic spines leading to cognitive deficits in Alzheimer's disease.

    PubMed

    Kommaddi, Reddy Peera; Das, Debajyoti; Karunakaran, Smitha; Nanguneri, Siddharth; Bapat, Deepti; Ray, Ajit; Shaw, Eisha; Bennett, David A; Nair, Deepak; Ravindranath, Vijayalakshmi

    2018-01-31

    Dendritic spine loss is recognized as an early feature of Alzheimer's disease (AD), but the underlying mechanisms are poorly understood. Dendritic spine structure is defined by filamentous actin (F-actin) and we observed depolymerization of synaptosomal F-actin accompanied by increased globular-actin (G-actin) at as early as 1 month of age in a mouse model of AD (APPswe/PS1ΔE9, male mice). This led to recall deficit after contextual fear conditioning (cFC) at 2 months of age in APPswe/PS1ΔE9 male mice, which could be reversed by the actin-polymerizing agent jasplakinolide. Further, the F-actin-depolymerizing agent latrunculin induced recall deficit after cFC in WT mice, indicating the importance of maintaining F-/G-actin equilibrium for optimal behavioral response. Using direct stochastic optical reconstruction microscopy (dSTORM), we show that F-actin depolymerization in spines leads to a breakdown of the nano-organization of outwardly radiating F-actin rods in cortical neurons from APPswe/PS1ΔE9 mice. Our results demonstrate that synaptic dysfunction seen as F-actin disassembly occurs very early, before onset of pathological hallmarks in AD mice, and contributes to behavioral dysfunction, indicating that depolymerization of F-actin is causal and not consequent to decreased spine density. Further, we observed decreased synaptosomal F-actin levels in postmortem brain from mild cognitive impairment and AD patients compared with subjects with normal cognition. F-actin decrease correlated inversely with increasing AD pathology (Braak score, Aβ load, and tangle density) and directly with performance in episodic and working memory tasks, suggesting its role in human disease pathogenesis and progression. SIGNIFICANCE STATEMENT Synaptic dysfunction underlies cognitive deficits in Alzheimer's disease (AD). The cytoskeletal protein actin plays a critical role in maintaining structure and function of synapses. Using cultured neurons and an AD mouse model, we show for the

  4. Actin grips: circular actin-rich cytoskeletal structures that mediate the wrapping of polymeric microfibers by endothelial cells.

    PubMed

    Jones, Desiree; Park, DoYoung; Anghelina, Mirela; Pécot, Thierry; Machiraju, Raghu; Xue, Ruipeng; Lannutti, John J; Thomas, Jessica; Cole, Sara L; Moldovan, Leni; Moldovan, Nicanor I

    2015-06-01

    Interaction of endothelial-lineage cells with three-dimensional substrates was much less studied than that with flat culture surfaces. We investigated the in vitro attachment of both mature endothelial cells (ECs) and of less differentiated EC colony-forming cells to poly-ε-capro-lactone (PCL) fibers with diameters in 5-20 μm range ('scaffold microfibers', SMFs). We found that notwithstanding the poor intrinsic adhesiveness to PCL, both cell types completely wrapped the SMFs after long-term cultivation, thus attaining a cylindrical morphology. In this system, both EC types grew vigorously for more than a week and became increasingly more differentiated, as shown by multiplexed gene expression. Three-dimensional reconstructions from multiphoton confocal microscopy images using custom software showed that the filamentous (F) actin bundles took a conspicuous ring-like organization around the SMFs. Unlike the classical F-actin-containing stress fibers, these rings were not associated with either focal adhesions or intermediate filaments. We also demonstrated that plasma membrane boundaries adjacent to these circular cytoskeletal structures were tightly yet dynamically apposed to the SMFs, for which reason we suggest to call them 'actin grips'. In conclusion, we describe a particular form of F-actin assembly with relevance for cytoskeletal organization in response to biomaterials, for endothelial-specific cell behavior in vitro and in vivo, and for tissue engineering. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. An atomic model of the tropomyosin cable on F-actin.

    PubMed

    Orzechowski, Marek; Li, Xiaochuan Edward; Fischer, Stefan; Lehman, William

    2014-08-05

    Tropomyosin regulates a wide variety of actin filament functions and is best known for the role that it plays together with troponin in controlling muscle activity. For effective performance on actin filaments, adjacent 42-nm-long tropomyosin molecules are joined together by a 9- to 10-residue head-to-tail overlapping domain to form a continuous cable that wraps around the F-actin helix. Yet, despite the apparent simplicity of tropomyosin's coiled-coil structure and its well-known periodic association with successive actin subunits along F-actin, the structure of the tropomyosin cable on actin is uncertain. This is because the conformation of the overlap region that joins neighboring molecules is poorly understood, thus leaving a significant gap in our understanding of thin-filament structure and regulation. However, recent molecular-dynamics simulations of overlap segments defined their overall shape and provided unique and sufficient cues to model the whole actin-tropomyosin filament assembly in atomic detail. In this study, we show that these MD structures merge seamlessly onto the ends of tropomyosin coiled-coils. Adjacent tropomyosin molecules can then be joined together to provide a comprehensive model of the tropomyosin cable running continuously on F-actin. The resulting complete model presented here describes for the first time (to our knowledge) an atomic-level structure of αα-striated muscle tropomyosin bound to an actin filament that includes the critical overlap domain. Thus, the model provides a structural correlate to evaluate thin-filament mechanics, self-assembly mechanisms, and the effect of disease-causing mutations. Copyright © 2014 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. F-actin distribution at nodes of Ranvier and Schmidt-Lanterman incisures in mammalian sciatic nerves.

    PubMed

    Kun, Alejandra; Canclini, Lucía; Rosso, Gonzalo; Bresque, Mariana; Romeo, Carlos; Hanusz, Alicia; Cal, Karina; Calliari, Aldo; Sotelo Silveira, José; Sotelo, José R

    2012-07-01

    Very little is known about the function of the F-actin cytoskeleton in the regeneration and pathology of peripheral nerve fibers. The actin cytoskeleton has been associated with maintenance of tissue structure, transmission of traction and contraction forces, and an involvement in cell motility. Therefore, the state of the actin cytoskeleton strongly influences the mechanical properties of cells and intracellular transport therein. In this work, we analyze the distribution of F-actin at Schmidt-Lanterman Incisures (SLI) and nodes of Ranvier (NR) domains in normal, regenerating and pathologic Trembler J (TrJ/+) sciatic nerve fibers, of rats and mice. F-actin was quantified and it was found increased in TrJ/+, both in SLI and NR. However, SLI and NR of regenerating rat sciatic nerve did not show significant differences in F-actin, as compared with normal nerves. Cytochalasin-D and Latrunculin-A were used to disrupt the F-actin network in normal and regenerating rat sciatic nerve fibers. Both drugs disrupt F-actin, but in different ways. Cytochalasin-D did not disrupt Schwann cell (SC) F-actin at the NR. Latrunculin-A did not disrupt F-actin at the boundary region between SC and axon at the NR domain. We surmise that the rearrangement of F-actin in neurological disorders, as presented here, is an important feature of TrJ/+ pathology as a Charcot-Marie-Tooth (CMT) model. Copyright © 2012 Wiley Periodicals, Inc.

  7. Cortactin binding to F-actin revealed by electron microscopy and 3D reconstruction.

    PubMed

    Pant, Kiran; Chereau, David; Hatch, Victoria; Dominguez, Roberto; Lehman, William

    2006-06-16

    Cortactin and WASP activate Arp2/3-mediated actin filament nucleation and branching. However, different mechanisms underlie activation by the two proteins, which rely on distinct actin-binding modules and modes of binding to actin filaments. It is generally thought that cortactin binds to "mother" actin filaments, while WASP donates actin monomers to Arp2/3-generated "daughter" filament branches. Interestingly, cortactin also binds WASP in addition to F-actin and the Arp2/3 complex. However, the structural basis for the role of cortactin in filament branching remains unknown, making interpretation difficult. Here, electron microscopy and 3D reconstruction were carried out on F-actin decorated with the actin-binding repeating domain of cortactin, revealing conspicuous density on F-actin attributable to cortactin that is located on a consensus-binding site on subdomain-1 of actin subunits. Strikingly, the binding of cortactin widens the gap between the two long-pitch filament strands. Although other proteins have been found to alter the structure of the filament, the cortactin-induced conformational change appears unique. The results are consistent with a mechanism whereby alterations of the F-actin structure may facilitate recruitment of the Arp2/3 complex to the "mother" filament in the cortex of cells. In addition, cortactin may act as a structural adapter protein, stabilizing nascent filament branches while mediating the simultaneous recruitment of Arp2/3 and WASP.

  8. Tropomyosin movement on F-actin during muscle activation explained by energy landscapes

    PubMed Central

    Orzechowski, Marek; Moore, Jeffrey R.; Fischer, Stefan; Lehman, William

    2014-01-01

    Muscle contraction is regulated by tropomyosin movement across the thin filament surface, which exposes or blocks myosin-binding sites on actin. Recent atomic structures of F-actin-tropomyosin have yielded the positions of tropomyosin on myosin-free and myosin-decorated actin. Here, the repositioning of α-tropomyosin between these locations on F-actin was systematically examined by optimizing the energy of the complex for a wide range of tropomyosin positions on F-actin. The resulting energy landscape provides a full-map of the F-actin surface preferred by tropomyosin, revealing a broad energy basin associated with the tropomyosin position that blocks myosin-binding. This is consistent with previously proposed low-energy oscillations of semi-rigid tropomyosin, necessary for shifting of tropomyosin following troponin-binding. In contrast, the landscape shows much less favorable energies when tropomyosin locates near its myosin-induced “open-state” position. This indicates that spontaneous movement of tropomyosin away from its energetic “ground-state” to the open-state is unlikely in absence of myosin. Instead, myosin-binding must drive tropomyosin toward the open-state to activate the thin filament. Additional energy landscapes were computed for disease-causing actin mutants that distort the topology of the actin-tropomyosin energy landscape, explaining their phenotypes. Thus, the computation of such energy landscapes offers a sensitive way to estimate the impact of mutations. PMID:24412204

  9. Tropomyosin movement on F-actin during muscle activation explained by energy landscapes.

    PubMed

    Orzechowski, Marek; Moore, Jeffrey R; Fischer, Stefan; Lehman, William

    2014-03-01

    Muscle contraction is regulated by tropomyosin movement across the thin filament surface, which exposes or blocks myosin-binding sites on actin. Recent atomic structures of F-actin-tropomyosin have yielded the positions of tropomyosin on myosin-free and myosin-decorated actin. Here, the repositioning of α-tropomyosin between these locations on F-actin was systematically examined by optimizing the energy of the complex for a wide range of tropomyosin positions on F-actin. The resulting energy landscape provides a full-map of the F-actin surface preferred by tropomyosin, revealing a broad energy basin associated with the tropomyosin position that blocks myosin-binding. This is consistent with previously proposed low-energy oscillations of semi-rigid tropomyosin, necessary for shifting of tropomyosin following troponin-binding. In contrast, the landscape shows much less favorable energies when tropomyosin locates near its myosin-induced "open-state" position. This indicates that spontaneous movement of tropomyosin away from its energetic "ground-state" to the open-state is unlikely in absence of myosin. Instead, myosin-binding must drive tropomyosin toward the open-state to activate the thin filament. Additional energy landscapes were computed for disease-causing actin mutants that distort the topology of the actin-tropomyosin energy landscape, explaining their phenotypes. Thus, the computation of such energy landscapes offers a sensitive way to estimate the impact of mutations. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The Differential Organization of F-Actin Alters the Distribution of Organelles in Cultured When Compared to Native Chromaffin Cells

    PubMed Central

    Gimenez-Molina, Yolanda; Villanueva, José; Nanclares, Carmen; Lopez-Font, Inmaculada; Viniegra, Salvador; Francés, Maria del Mar; Gandia, Luis; Gil, Amparo; Gutiérrez, Luis M.

    2017-01-01

    Cultured bovine chromaffin cells have been used extensively as a neuroendocrine model to study regulated secretion. In order to extend such experimental findings to the physiological situation, it is necessary to study mayor cellular structures affecting secretion in cultured cells with their counterparts present in the adrenomedullary tissue. F-actin concentrates in a peripheral ring in cultured cells, as witnessed by phalloidin–rodhamine labeling, while extends throughout the cytoplasm in native cells. This result is also confirmed when studying the localization of α-fodrin, a F-actin-associated protein. Furthermore, as a consequence of this redistribution of F-actin, we observed that chromaffin granules and mitochondria located into two different cortical and internal populations in cultured cells, whereas they are homogeneously distributed throughout the cytoplasm in the adrenomedullary tissue. Nevertheless, secretion from isolated cells and adrenal gland pieces is remarkably similar when measured by amperometry. Finally, we generate mathematical models to consider how the distribution of organelles affects the secretory kinetics of intact and cultured cells. Our results imply that we have to consider F-actin structural changes to interpret functional data obtained in cultured neuroendocrine cells. PMID:28522964

  11. A glycolytic metabolon in Saccharomyces cerevisiae is stabilized by F-actin.

    PubMed

    Araiza-Olivera, Daniela; Chiquete-Felix, Natalia; Rosas-Lemus, Mónica; Sampedro, José G; Peña, Antonio; Mujica, Adela; Uribe-Carvajal, Salvador

    2013-08-01

    In the Saccharomyces cerevisiae glycolytic pathway, 11 enzymes catalyze the stepwise conversion of glucose to two molecules of ethanol plus two CO₂ molecules. In the highly crowded cytoplasm, this pathway would be very inefficient if it were dependent on substrate/enzyme diffusion. Therefore, the existence of a multi-enzymatic glycolytic complex has been suggested. This complex probably uses the cytoskeleton to stabilize the interaction of the various enzymes. Here, the role of filamentous actin (F-actin) in stabilization of a putative glycolytic metabolon is reported. Experiments were performed in isolated enzyme/actin mixtures, cytoplasmic extracts and permeabilized yeast cells. Polymerization of actin was promoted using phalloidin or inhibited using cytochalasin D or latrunculin. The polymeric filamentous F-actin, but not the monomeric globular G-actin, stabilized both the interaction of isolated glycolytic pathway enzyme mixtures and the whole fermentation pathway, leading to higher fermentation activity. The associated complexes were resistant against inhibition as a result of viscosity (promoted by the disaccharide trehalose) or inactivation (using specific enzyme antibodies). In S. cerevisiae, a glycolytic metabolon appear to assemble in association with F-actin. In this complex, fermentation activity is enhanced and enzymes are partially protected against inhibition by trehalose or by antibodies. © 2013 FEBS.

  12. Kinetic analysis of F-actin depolymerization in polymorphonuclear leukocyte lysates indicates that chemoattractant stimulation increases actin filament number without altering the filament length distribution

    PubMed Central

    1991-01-01

    The rate of filamentous actin (F-actin) depolymerization is proportional to the number of filaments depolarizing and changes in the rate are proportional to changes in filament number. To determine the number and length of actin filaments in polymorphonuclear leukocytes and the change in filament number and length that occurs during the increase in F-actin upon chemoattractant stimulation, the time course of cellular F-actin depolymerization in lysates of control and peptide- stimulated cells was examined. F-actin was quantified by the TRITC- labeled phalloidin staining of pelletable actin. Lysis in 1.2 M KCl and 10 microM DNase I minimized the effects of F-actin binding proteins and G-actin, respectively, on the kinetics of depolymerization. To determine filament number and length from a depolymerization time course, depolymerization kinetics must be limited by the actin monomer dissociation rate. Comparison of time courses of depolymerization in the presence (pointed ends free) or absence (barbed and pointed ends free) of cytochalasin suggested depolymerization occurred from both ends of the filament and that monomer dissociation was rate limiting. Control cells had 1.7 +/- 0.4 x 10(5) filaments with an average length of 0.29 +/- 0.09 microns. Chemo-attractant stimulation for 90 s at room temperature with 0.02 microM N-formylnorleucylleucylphenylalanine caused a twofold increase in F-actin and about a two-fold increase in the total number of actin filaments to 4.0 +/- 0.5 x 10(5) filaments with an average length of 0.27 +/- 0.07 microns. In both cases, most (approximately 80%) of the filaments were quite short (less than or equal to 0.18 micron). The length distributions of actin filaments in stimulated and control cells were similar. PMID:1918158

  13. Oxidation of F-actin controls the terminal steps of cytokinesis

    PubMed Central

    Frémont, Stéphane; Hammich, Hussein; Bai, Jian; Wioland, Hugo; Klinkert, Kerstin; Rocancourt, Murielle; Kikuti, Carlos; Stroebel, David; Romet-Lemonne, Guillaume; Pylypenko, Olena; Houdusse, Anne; Echard, Arnaud

    2017-01-01

    Cytokinetic abscission, the terminal step of cell division, crucially depends on the local constriction of ESCRT-III helices after cytoskeleton disassembly. While the microtubules of the intercellular bridge are cut by the ESCRT-associated enzyme Spastin, the mechanism that clears F-actin at the abscission site is unknown. Here we show that oxidation-mediated depolymerization of actin by the redox enzyme MICAL1 is key for ESCRT-III recruitment and successful abscission. MICAL1 is recruited to the abscission site by the Rab35 GTPase through a direct interaction with a flat three-helix domain found in MICAL1 C terminus. Mechanistically, in vitro assays on single actin filaments demonstrate that MICAL1 is activated by Rab35. Moreover, in our experimental conditions, MICAL1 does not act as a severing enzyme, as initially thought, but instead induces F-actin depolymerization from both ends. Our work reveals an unexpected role for oxidoreduction in triggering local actin depolymerization to control a fundamental step of cell division. PMID:28230050

  14. Doublecortin associates with microtubules preferentially in regions of the axon displaying actin-rich protrusive structures

    PubMed Central

    Tint, Irina; Jean, Daphney; Baas, Peter W.; Black, Mark M.

    2009-01-01

    Here we studied doublecortin (DCX) in cultured hippocampal and sympathetic neurons during axonal development. In both types of neurons, DCX is abundant in the growth cone, where it primarily localizes with microtubules. Its abundance is lowest on microtubules in the neck region of the growth cone and highest on microtubules extending into the actin-rich lamellar regions. Interestingly, the microtubule polymer richest in DCX is also deficient in tau. In hippocampal neurons but not sympathetic neurons, discrete focal patches of microtubules rich in DCX and deficient in tau are present along the axonal shaft. Invariably, these patches have actin-rich protrusions resembling those of growth cones. Many of the DCX/actin filament patches exhibit vigorous protrusive activity and also undergo a proximal-to-distal redistribution within the axon at average rates ≈ 2 μm/min, and thus closely resemble the growth-cone-like waves described by previous authors. Depletion of DCX using siRNA had little effect on the appearance of the growth cone or on axonal growth in either type of neuron. However, DCX depletion significantly delayed collateral branching in hippocampal neurons and also significantly lowered the frequency of actin-rich patches along hippocampal axons. Branching by sympathetic neurons, which occurs by growth cone splitting, was not impaired by DCX depletion. These findings reveal a functional relationship between the DCX/actin filament patches and collateral branching. Based on the striking resemblance of these patches to growth cones, we discuss the possibility that they reflect a mechanism for locally boosting morphogenetic activity to facilitate axonal growth and collateral branching. PMID:19726658

  15. Strong Dependence of Hydration State of F-Actin on the Bound Mg(2+)/Ca(2+) Ions.

    PubMed

    Suzuki, Makoto; Imao, Asato; Mogami, George; Chishima, Ryotaro; Watanabe, Takahiro; Yamaguchi, Takaya; Morimoto, Nobuyuki; Wazawa, Tetsuichi

    2016-07-21

    Understanding of the hydration state is an important issue in the chemomechanical energetics of versatile biological functions of polymerized actin (F-actin). In this study, hydration-state differences of F-actin by the bound divalent cations are revealed through precision microwave dielectric relaxation (DR) spectroscopy. G- and F-actin in Ca- and Mg-containing buffer solutions exhibit dual hydration components comprising restrained water with DR frequency f2 (f1 (>fw). The hydration state of F-actin is strongly dependent on the ionic composition. In every buffer tested, the HMW signal Dhyme (≡ (f1 - fw)δ1/(fwδw)) of F-actin is stronger than that of G-actin, where δw is DR-amplitude of bulk solvent and δ1 is that of HMW in a fixed-volume ellipsoid containing an F-actin and surrounding water in solution. Dhyme value of F-actin in Ca2.0-buffer (containing 2 mM Ca(2+)) is markedly higher than in Mg2.0-buffer (containing 2 mM Mg(2+)). Moreover, in the presence of 2 mM Mg(2+), the hydration state of F-actin is changed by adding a small fraction of Ca(2+) (∼0.1 mM) and becomes closer to that of the Ca-bound form in Ca2.0-buffer. This is consistent with the results of the partial specific volume and the Cotton effect around 290 nm in the CD spectra, indicating a change in the tertiary structure and less apparent change in the secondary structure of actin. The number of restrained water molecules per actin (N2) is estimated to be 1600-2100 for Ca2.0- and F-buffer and ∼2500 for Mg2.0-buffer at 10-15 °C. These numbers are comparable to those estimated from the available F-actin atomic structures as in the first water layer. The number of HMW molecules is roughly explained by the volume between the equipotential surface of -kT/2e and the first water layer of the actin surface by solving the Poisson-Boltzmann equation using UCSF Chimera.

  16. Polarized Growth in the Absence of F-Actin in Saccharomyces cerevisiae Exiting Quiescence

    PubMed Central

    Sahin, Annelise; Daignan-Fornier, Bertrand; Sagot, Isabelle

    2008-01-01

    Background Polarity establishment and maintenance are crucial for morphogenesis and development. In budding yeast, these two intricate processes involve the superposition of regulatory loops between polarity landmarks, RHO GTPases, actin-mediated vesicles transport and endocytosis. Deciphering the chronology and the significance of each molecular step of polarized growth is therefore very challenging. Principal Findings We have taken advantage of the fact that yeast quiescent cells display actin bodies, a non polarized actin structure, to evaluate the role of F-actin in bud emergence. Here we show that upon exit from quiescence, actin cables are not required for the first steps of polarized growth. We further show that polarized growth can occur in the absence of actin patch-mediated endocytosis. We finally establish, using latrunculin-A, that the first steps of polarized growth do not require any F-actin containing structures. Yet, these structures are required for the formation of a bona fide daughter cell and cell cycle completion. We propose that upon exit from quiescence in the absence of F-actin, secretory vesicles randomly reach the plasma membrane but preferentially dock and fuse where polarity cues are localized, this being sufficient to trigger polarized growth. PMID:18596916

  17. Dynamic F-actin movement is essential for fertilization in Arabidopsis thaliana

    PubMed Central

    Kawashima, Tomokazu; Maruyama, Daisuke; Shagirov, Murat; Li, Jing; Hamamura, Yuki; Yelagandula, Ramesh; Toyama, Yusuke; Berger, Frédéric

    2014-01-01

    In animals, microtubules and centrosomes direct the migration of gamete pronuclei for fertilization. By contrast, flowering plants have lost essential components of the centrosome, raising the question of how flowering plants control gamete nuclei migration during fertilization. Here, we use Arabidopsis thaliana to document a novel mechanism that regulates F-actin dynamics in the female gametes and is essential for fertilization. Live imaging shows that F-actin structures assist the male nucleus during its migration towards the female nucleus. We identify a female gamete-specific Rho-GTPase that regulates F-actin dynamics and further show that actin–myosin interactions are also involved in male gamete nucleus migration. Genetic analyses and imaging indicate that microtubules are dispensable for migration and fusion of male and female gamete nuclei. The innovation of a novel actin-based mechanism of fertilization during plant evolution might account for the complete loss of the centrosome in flowering plants. DOI: http://dx.doi.org/10.7554/eLife.04501.001 PMID:25303363

  18. The Association of Myosin IB with Actin Waves in Dictyostelium Requires Both the Plasma Membrane-Binding Site and Actin-Binding Region in the Myosin Tail

    PubMed Central

    Brzeska, Hanna; Pridham, Kevin; Chery, Godefroy; Titus, Margaret A.; Korn, Edward D.

    2014-01-01

    F-actin structures and their distribution are important determinants of the dynamic shapes and functions of eukaryotic cells. Actin waves are F-actin formations that move along the ventral cell membrane driven by actin polymerization. Dictyostelium myosin IB is associated with actin waves but its role in the wave is unknown. Myosin IB is a monomeric, non-filamentous myosin with a globular head that binds to F-actin and has motor activity, and a non-helical tail comprising a basic region, a glycine-proline-glutamine-rich region and an SH3-domain. The basic region binds to acidic phospholipids in the plasma membrane through a short basic-hydrophobic site and the Gly-Pro-Gln region binds F-actin. In the current work we found that both the basic-hydrophobic site in the basic region and the Gly-Pro-Gln region of the tail are required for the association of myosin IB with actin waves. This is the first evidence that the Gly-Pro-Gln region is required for localization of myosin IB to a specific actin structure in situ. The head is not required for myosin IB association with actin waves but binding of the head to F-actin strengthens the association of myosin IB with waves and stabilizes waves. Neither the SH3-domain nor motor activity is required for association of myosin IB with actin waves. We conclude that myosin IB contributes to anchoring actin waves to the plasma membranes by binding of the basic-hydrophobic site to acidic phospholipids in the plasma membrane and binding of the Gly-Pro-Gln region to F-actin in the wave. PMID:24747353

  19. An F-actin-depleted zone is present at the hyphal tip of invasive hyphae of Neurospora crassa.

    PubMed

    Suei, S; Garrill, A

    2008-01-01

    The distribution of filamentous actin (F-actin) in invasive and noninvasive hyphae of the ascomycete Neurospora crassa was investigated. Eighty six percent of noninvasive hyphae had F-actin in the tip region compared to only 9% of invasive hyphae. The remaining 91% of the invasive hyphae had no obvious tip high concentration of F-actin staining; instead they had an F-actin-depleted zone in this region, although some F-actin, possibly associated with the Spitzenkörper, remained at the tip. The size of the F-actin-depleted zone in invasive hyphae increased with an increase in agar concentration. The membrane stain FM 4-64 reveals a slightly larger accumulation of vesicles at the tips of invasive hyphae relative to noninvasive hyphae, although this difference is unlikely to be sufficient to account for the exclusion of F-actin from the depleted zone. Antibodies raised against the actin filament-severing protein cofilin from both yeast and human cells localize to the tips of invasive hyphae. The human cofilin antibody shows a more random distribution in noninvasive hyphae locating primarily at the hyphal periphery but with some diffuse cytoplasmic staining. This antibody also identifies a single band at 21 kDa in immunoblots of whole hyphal fractions. These data suggest that a protein with epitopic similarity to cofilin may function in F-actin dynamics that underlie invasive growth. The F-actin-depleted zone may play a role in the regulation of tip yielding to turgor pressure, thus increasing the protrusive force necessary for invasive growth.

  20. Binding mode of cytochalasin B to F-actin is altered by lateral binding of regulatory proteins.

    PubMed

    Suzuki, N; Mihashi, K

    1991-01-01

    The binding of cytochalasin B (CB) to F-actin was studied using a trace amount of [3H]-cytochalasin B. F-Actin-bound CB was separated from free CB by ultracentrifugation and the amount of F-actin-bound CB was determined by comparing the radioactivity both in the supernatant and in the precipitate. A filament of pure F-actin possessed one high-affinity binding site for CB (Kd = 5.0 nM) at the B-end. When the filament was bound to native tropomyosin (complex of tropomyosin and troponin), two low-affinity binding sites for CB (Kd = 230 nM) were created, while the high-affinity binding site was reserved (Kd = 3.4 nM). It was concluded that the creation of low-affinity binding sites was primarily due to binding of tropomyosin to F-actin, as judged from the following two observations: (1) a filament of F-actin/tropomyosin complex possessed one high-affinity binding site (Kd = 3.9 nM) plus two low-affinity binding sites (Kd = 550 nM); (2) the Ca2(+)-receptive state of troponin C in F-actin/native tropomyosin complex did not affect CB binding.

  1. The interplay between viscoelastic and thermodynamic properties determines the birefringence of F-actin gels.

    PubMed

    Helfer, Emmanuèle; Panine, Pierre; Carlier, Marie-France; Davidson, Patrick

    2005-07-01

    F-actin gels of increasing concentrations (25-300 microM) display in vitro a progressive onset of birefringence due to orientational ordering of actin filaments. At F-actin concentrations <100 microM, this birefringence can be erased and restored at will by sonication and gentle flow, respectively. Hence, the orientational ordering does not result from a thermodynamic transition to a nematic phase but instead is due to mechanical stresses stored in the gels. In contrast, at F-actin concentrations > or =100 microM, gels display spontaneous birefringence recovery, at rest, which is the sign of true nematic ordering, in good agreement with statistical physics models of the isotropic/nematic transition. Well-aligned samples of F-actin gels could be produced and their small-angle x-ray scattering patterns are quite anisotropic. These patterns show no sign of filament positional short-range order and could be modeled by averaging the form factor with the Maier-Saupe nematic distribution function. The derived nematic order parameter S of the gels ranged from S = 0.7 at 300 microM to S = 0.4 at 25 microM. Both birefringence and small-angle x-ray scattering data indicate that, even in absence of cross-linking proteins, spontaneous cooperative alignment of actin filaments may arise in motile regions of living cells where F-actin concentrations can reach values of a few 100 microM.

  2. Cofilin 1-Mediated Biphasic F-Actin Dynamics of Neuronal Cells Affect Herpes Simplex Virus 1 Infection and Replication

    PubMed Central

    Xiang, Yangfei; Zheng, Kai; Ju, Huaiqiang; Wang, Shaoxiang; Pei, Ying; Ding, Weichao; Chen, Zhenping; Wang, Qiaoli; Qiu, Xianxiu; Zhong, Meigong; Zeng, Fanli; Ren, Zhe; Qian, Chuiwen; Liu, Ge

    2012-01-01

    Herpes simplex virus 1 (HSV-1) invades the nervous system and causes pathological changes. In this study, we defined the remodeling of F-actin and its possible mechanisms during HSV-1 infection of neuronal cells. HSV-1 infection enhanced the formation of F-actin-based structures in the early stage of infection, which was followed by a continuous decrease in F-actin during the later stages of infection. The disruption of F-actin dynamics by chemical inhibitors significantly reduced the efficiency of viral infection and intracellular HSV-1 replication. The active form of the actin-depolymerizing factor cofilin 1 was found to increase at an early stage of infection and then to continuously decrease in a manner that corresponded to the remodeling pattern of F-actin, suggesting that cofilin 1 may be involved in the biphasic F-actin dynamics induced by HSV-1 infection. Knockdown of cofilin 1 impaired HSV-1-induced F-actin assembly during early infection and inhibited viral entry; however, overexpression of cofilin 1 did not affect F-actin assembly or viral entry during early infection but decreased intracellular viral reproduction efficiently. Our results, for the first time, demonstrated the biphasic F-actin dynamics in HSV-1 neuronal infection and confirmed the association of F-actin with the changes in the expression and activity of cofilin 1. These results may provide insight into the mechanism by which HSV-1 productively infects neuronal cells and causes pathogenesis. PMID:22623803

  3. The F-Actin Binding Protein Cortactin Regulates the Dynamics of the Exocytotic Fusion Pore through its SH3 Domain

    PubMed Central

    González-Jamett, Arlek M.; Guerra, María J.; Olivares, María J.; Haro-Acuña, Valentina; Baéz-Matus, Ximena; Vásquez-Navarrete, Jacqueline; Momboisse, Fanny; Martinez-Quiles, Narcisa; Cárdenas, Ana M.

    2017-01-01

    Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells. PMID:28522963

  4. Stomatal Complex Development and F-Actin Organization in Maize Leaf Epidermis Depend on Cellulose Synthesis.

    PubMed

    Panteris, Emmanuel; Achlati, Theonymphi; Daras, Gerasimos; Rigas, Stamatis

    2018-06-06

    Cellulose microfibrils reinforce the cell wall for morphogenesis in plants. Herein, we provide evidence on a series of defects regarding stomatal complex development and F-actin organization in Zea mays leaf epidermis, due to inhibition of cellulose synthesis. Formative cell divisions of stomatal complex ontogenesis were delayed or inhibited, resulting in lack of subsidiary cells and frequently in unicellular stomata, with an atypical stomatal pore. Guard cells failed to acquire a dumbbell shape, becoming rounded, while subsidiary cells, whenever present, exhibited aberrant morphogenesis. F-actin organization was also affected, since the stomatal complex-specific arrays were scarcely observed. At late developmental stages, the overall F-actin network was diminished in all epidermal cells, although thick actin bundles persisted. Taken together, stomatal complex development strongly depends on cell wall mechanical properties. Moreover, F-actin organization exhibits a tight relationship with the cell wall.

  5. The carboxyl terminus of the alpha-subunit of the amiloride-sensitive epithelial sodium channel binds to F-actin.

    PubMed

    Mazzochi, Christopher; Bubien, James K; Smith, Peter R; Benos, Dale J

    2006-03-10

    The activity of the amiloride-sensitive epithelial sodium channel (ENaC) is modulated by F-actin. However, it is unknown if there is a direct interaction between alpha-ENaC and actin. We have investigated the hypothesis that the actin cytoskeleton directly binds to the carboxyl terminus of alpha-ENaC using a combination of confocal microscopy, co-immunoprecipitation, and protein binding studies. Confocal microscopy of Madin-Darby canine kidney cell monolayers stably transfected with wild type, rat isoforms of alpha-, beta-, and gamma-ENaC revealed co-localization of alpha-ENaC with the cortical F-actin cytoskeleton both at the apical membrane and within the subapical cytoplasm. F-actin was found to co-immunoprecipitate with alpha-ENaC from whole cell lysates of this cell line. Gel overlay assays demonstrated that F-actin specifically binds to the carboxyl terminus of alpha-ENaC. A direct interaction between F-actin and the COOH terminus of alpha-ENaC was further corroborated by F-actin co-sedimentation studies. This is the first study to report a direct and specific biochemical interaction between F-actin and ENaC.

  6. Total synthesis of (-)-doliculide, structure-activity relationship studies and its binding to F-actin.

    PubMed

    Matcha, Kiran; Madduri, Ashoka V R; Roy, Sayantani; Ziegler, Slava; Waldmann, Herbert; Hirsch, Anna K H; Minnaard, Adriaan J

    2012-11-26

    Actin, an abundant protein in most eukaryotic cells, is one of the targets in cancer research. Recently, a great deal of attention has been paid to the synthesis and function of actin-targeting compounds and their use as effective molecular probes in chemical biology. In this study, we have developed an efficient synthesis of (-)-doliculide, a very potent actin binder with a higher cell-membrane permeability than phalloidin. Actin polymerization assays with (-)-doliculide and two analogues on HeLa and BSC-1 cells, together with a prediction of their binding mode to F-actin by unbiased computational docking, show that doliculide stabilizes F-actin in a similar way to jasplakinolide and chondramide C. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. A QUICK Screen for Lrrk2 Interaction Partners – Leucine-rich Repeat Kinase 2 is Involved in Actin Cytoskeleton Dynamics*

    PubMed Central

    Meixner, Andrea; Boldt, Karsten; Van Troys, Marleen; Askenazi, Manor; Gloeckner, Christian J.; Bauer, Matthias; Marto, Jarrod A.; Ampe, Christophe; Kinkl, Norbert; Ueffing, Marius

    2011-01-01

    Mutations in human leucine-rich repeat kinase 2 (Lrrk2), a protein of yet unknown function, are linked to Parkinson's disease caused by degeneration of midbrain dopaminergic neurons. The protein comprises several domains including a GTPase and a kinase domain both affected by several pathogenic mutations. To elucidate the molecular interaction network of endogenous Lrrk2 under stoichiometric constraints, we applied QUICK (quantitative immunoprecipitation combined with knockdown) in NIH3T3 cells. The identified interactome reveals actin isoforms as well as actin-associated proteins involved in actin filament assembly, organization, rearrangement, and maintenance, suggesting that the biological function of Lrrk2 is linked to cytoskeletal dynamics. In fact, we demonstrate Lrrk2 de novo binding to F-actin and its ability to modulate its assembly in vitro. When tested in intact cells, knockdown of Lrrk2 causes morphological alterations in NIH3T3 cells. In developing dopaminergic midbrain primary neurons, Lrrk2 knockdown results in shortened neurite processes, indicating a physiological role of Lrrk2 in cytoskeletal organization and dynamics of dopaminergic neurons. Hence, our results demonstrate that molecular interactions as well as the physiological function of Lrrk2 are closely related to the organization of the actin-based cytoskeleton, a crucial feature of neuronal development and neuron function. PMID:20876399

  8. Actin Interacting Protein1 and Actin Depolymerizing Factor Drive Rapid Actin Dynamics in Physcomitrella patens[W

    PubMed Central

    Augustine, Robert C.; Pattavina, Kelli A.; Tüzel, Erkan; Vidali, Luis; Bezanilla, Magdalena

    2011-01-01

    The remodeling of actin networks is required for a variety of cellular processes in eukaryotes. In plants, several actin binding proteins have been implicated in remodeling cortical actin filaments (F-actin). However, the extent to which these proteins support F-actin dynamics in planta has not been tested. Using reverse genetics, complementation analyses, and cell biological approaches, we assessed the in vivo function of two actin turnover proteins: actin interacting protein1 (AIP1) and actin depolymerizing factor (ADF). We report that AIP1 is a single-copy gene in the moss Physcomitrella patens. AIP1 knockout plants are viable but have reduced expansion of tip-growing cells. AIP1 is diffusely cytosolic and functions in a common genetic pathway with ADF to promote tip growth. Specifically, ADF can partially compensate for loss of AIP1, and AIP1 requires ADF for function. Consistent with a role in actin remodeling, AIP1 knockout lines accumulate F-actin bundles, have fewer dynamic ends, and have reduced severing frequency. Importantly, we demonstrate that AIP1 promotes and ADF is essential for cortical F-actin dynamics. PMID:22003077

  9. Actin nucleator Spire 1 is a regulator of ectoplasmic specialization in the testis.

    PubMed

    Wen, Qing; Li, Nan; Xiao, Xiang; Lui, Wing-Yee; Chu, Darren S; Wong, Chris K C; Lian, Qingquan; Ge, Renshan; Lee, Will M; Silvestrini, Bruno; Cheng, C Yan

    2018-02-12

    Germ cell differentiation during the epithelial cycle of spermatogenesis is accompanied by extensive remodeling at the Sertoli cell-cell and Sertoli cell-spermatid interface to accommodate the transport of preleptotene spermatocytes and developing spermatids across the blood-testis barrier (BTB) and the adluminal compartment of the seminiferous epithelium, respectively. The unique cell junction in the testis is the actin-rich ectoplasmic specialization (ES) designated basal ES at the Sertoli cell-cell interface, and the apical ES at the Sertoli-spermatid interface. Since ES dynamics (i.e., disassembly, reassembly and stabilization) are supported by actin microfilaments, which rapidly converts between their bundled and unbundled/branched configuration to confer plasticity to the ES, it is logical to speculate that actin nucleation proteins play a crucial role to ES dynamics. Herein, we reported findings that Spire 1, an actin nucleator known to polymerize actins into long stretches of linear microfilaments in cells, is an important regulator of ES dynamics. Its knockdown by RNAi in Sertoli cells cultured in vitro was found to impede the Sertoli cell tight junction (TJ)-permeability barrier through changes in the organization of F-actin across Sertoli cell cytosol. Unexpectedly, Spire 1 knockdown also perturbed microtubule (MT) organization in Sertoli cells cultured in vitro. Biochemical studies using cultured Sertoli cells and specific F-actin vs. MT polymerization assays supported the notion that a transient loss of Spire 1 by RNAi disrupted Sertoli cell actin and MT polymerization and bundling activities. These findings in vitro were reproduced in studies in vivo by RNAi using Spire 1-specific siRNA duplexes to transfect testes with Polyplus in vivo-jetPEI as a transfection medium with high transfection efficiency. Spire 1 knockdown in the testis led to gross disruption of F-actin and MT organization across the seminiferous epithelium, thereby impeding the

  10. Ion-dependent Polymerization Differences between Mammalian β- and γ-Nonmuscle Actin Isoforms*

    PubMed Central

    Bergeron, Sarah E.; Zhu, Mei; Thiem, Suzanne M.; Friderici, Karen H.; Rubenstein, Peter A.

    2010-01-01

    β- and γ-nonmuscle actins differ by 4 amino acids at or near the N terminus and distant from polymerization interfaces. β-Actin contains an Asp1-Asp2-Asp3 and Val10 whereas γ-actin has a Glu1-Glu2-Glu3 and Ile10. Despite these small changes, conserved across mammals, fish, and birds, their differential localization in the same cell suggests they may play different roles reflecting differences in their biochemical properties. To test this hypothesis, we established a baculovirus-driven expression system for producing these actins in isoform-pure populations although contaminated with 20–25% insect actin. Surprisingly, Ca-γ-actin exhibits a slower monomeric nucleotide exchange rate, a much longer nucleation phase, and a somewhat slower elongation rate than β-actin. In the Mg-form, this difference between the two is much smaller. Ca-γ-actin depolymerizes half as fast as does β-actin. Mixing experiments with Ca-actins reveal the two will readily co-polymerize. In the Ca-form, phosphate release from polymerizing β-actin occurs much more rapidly and extensively than polymerization, whereas phosphate release lags behind polymerization with γ-actin. Phosphate release during treadmilling is twice as fast with β- as with γ-actin. With Mg-actin in the initial stages, phosphate release for both actins correlates much more closely with polymerization. Calcium bound in the high affinity binding site of γ-actin may cause a selective energy barrier relative to β-actin that retards the equilibration between G- and F-monomer conformations resulting in a slower polymerizing actin with greater filament stability. This difference may be particularly important in sites such as the γ-actin-rich cochlear hair cell stereocilium where local mm calcium concentrations may exist. PMID:20308063

  11. Geometrical Determinants of Neuronal Actin Waves.

    PubMed

    Tomba, Caterina; Braïni, Céline; Bugnicourt, Ghislain; Cohen, Floriane; Friedrich, Benjamin M; Gov, Nir S; Villard, Catherine

    2017-01-01

    Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time between the production of consecutive actin waves, or mean inter-wave interval (IWI), was identified. It scales with the neurite width, and more precisely with the width of the proximal segment close to the soma. In addition, the IWI is independent of the total number of neurites. These two results suggest a mechanistic model of actin wave production, by which the material conveyed by actin waves is assembled in the soma until it reaches the threshold leading to the initiation and propagation of a new actin wave. Based on these observations, we formulate a predictive theoretical description of actin wave-driven neuronal growth and polarization, which consistently accounts for different sets of experiments.

  12. Geometrical Determinants of Neuronal Actin Waves

    PubMed Central

    Tomba, Caterina; Braïni, Céline; Bugnicourt, Ghislain; Cohen, Floriane; Friedrich, Benjamin M.; Gov, Nir S.; Villard, Catherine

    2017-01-01

    Hippocampal neurons produce in their early stages of growth propagative, actin-rich dynamical structures called actin waves. The directional motion of actin waves from the soma to the tip of neuronal extensions has been associated with net forward growth, and ultimately with the specification of neurites into axon and dendrites. Here, geometrical cues are used to control actin wave dynamics by constraining neurons on adhesive stripes of various widths. A key observable, the average time between the production of consecutive actin waves, or mean inter-wave interval (IWI), was identified. It scales with the neurite width, and more precisely with the width of the proximal segment close to the soma. In addition, the IWI is independent of the total number of neurites. These two results suggest a mechanistic model of actin wave production, by which the material conveyed by actin waves is assembled in the soma until it reaches the threshold leading to the initiation and propagation of a new actin wave. Based on these observations, we formulate a predictive theoretical description of actin wave-driven neuronal growth and polarization, which consistently accounts for different sets of experiments. PMID:28424590

  13. Myosin Va Bound to Phagosomes Binds to F-Actin and Delays Microtubule-dependent Motility

    PubMed Central

    Al-Haddad, Ahmed; Shonn, Marion A.; Redlich, Bärbel; Blocker, Ariel; Burkhardt, Janis K.; Yu, Hanry; Hammer, John A.; Weiss, Dieter G.; Steffen, Walter; Griffiths, Gareth; Kuznetsov, Sergei A.

    2001-01-01

    We established a light microscopy-based assay that reconstitutes the binding of phagosomes purified from mouse macrophages to preassembled F-actin in vitro. Both endogenous myosin Va from mouse macrophages and exogenous myosin Va from chicken brain stimulated the phagosome–F-actin interaction. Myosin Va association with phagosomes correlated with their ability to bind F-actin in an ATP-regulated manner and antibodies to myosin Va specifically blocked the ATP-sensitive phagosome binding to F-actin. The uptake and retrograde transport of phagosomes from the periphery to the center of cells in bone marrow macrophages was observed in both normal mice and mice homozygous for the dilute-lethal spontaneous mutation (myosin Va null). However, in dilute-lethal macrophages the accumulation of phagosomes in the perinuclear region occurred twofold faster than in normal macrophages. Motion analysis revealed saltatory phagosome movement with temporarily reversed direction in normal macrophages, whereas almost no reversals in direction were observed in dilute-lethal macrophages. These observations demonstrate that myosin Va mediates phagosome binding to F-actin, resulting in a delay in microtubule-dependent retrograde phagosome movement toward the cell center. We propose an “antagonistic/cooperative mechanism” to explain the saltatory phagosome movement toward the cell center in normal macrophages. PMID:11553713

  14. The role of F-actin in the transport and secretion of chromaffin granules: an historic perspective.

    PubMed

    Gutiérrez, Luis M; Villanueva, José

    2018-01-01

    Actin is one of the most ubiquitous protein playing fundamental roles in a variety of cellular processes. Since early in the 1980s, it was evident that filamentous actin (F-actin) formed a peripheral cortical barrier that prevented vesicles to access secretory sites in chromaffin cells in culture. Later, around 2000, it was described that the F-actin structure accomplishes a dual role serving both vesicle transport and retentive purposes and undergoing dynamic transient changes during cell stimulation. The complex role of the F-actin cytoskeleton in neuroendocrine secretion was further evidenced when it has been proved to participate in the scaffold structure holding together the secretory machinery at active sites and participate in the generation of mechanical forces that drive the opening of the fusion pore, during the first decade of the present century. The complex vision of the multiple roles of F-actin in secretion we have acquired to date comes largely from studies performed on traditional 2D cultures of primary cells; however, recent evidences suggest that these may not accurately mimic the 3D in vivo environment, and thus, more work is now needed on adrenomedullary cells kept in a more "native" configuration to fully understand the role of F-actin in regulating chromaffin granule transport and secretion under physiological conditions.

  15. A disassembly-driven mechanism explains F-actin-mediated chromosome transport in starfish oocytes

    PubMed Central

    Bun, Philippe; Dmitrieff, Serge; Belmonte, Julio M

    2018-01-01

    While contraction of sarcomeric actomyosin assemblies is well understood, this is not the case for disordered networks of actin filaments (F-actin) driving diverse essential processes in animal cells. For example, at the onset of meiosis in starfish oocytes a contractile F-actin network forms in the nuclear region transporting embedded chromosomes to the assembling microtubule spindle. Here, we addressed the mechanism driving contraction of this 3D disordered F-actin network by comparing quantitative observations to computational models. We analyzed 3D chromosome trajectories and imaged filament dynamics to monitor network behavior under various physical and chemical perturbations. We found no evidence of myosin activity driving network contractility. Instead, our observations are well explained by models based on a disassembly-driven contractile mechanism. We reconstitute this disassembly-based contractile system in silico revealing a simple architecture that robustly drives chromosome transport to prevent aneuploidy in the large oocyte, a prerequisite for normal embryonic development. PMID:29350616

  16. F-actin mechanics control spindle centring in the mouse zygote

    NASA Astrophysics Data System (ADS)

    Chaigne, Agathe; Campillo, Clément; Voituriez, Raphaël; Gov, Nir S.; Sykes, Cécile; Verlhac, Marie-Hélène; Terret, Marie-Emilie

    2016-01-01

    Mitotic spindle position relies on interactions between astral microtubules nucleated by centrosomes and a rigid cortex. Some cells, such as mouse oocytes, do not possess centrosomes and astral microtubules. These cells rely only on actin and on a soft cortex to position their spindle off-centre and undergo asymmetric divisions. While the first mouse embryonic division also occurs in the absence of centrosomes, it is symmetric and not much is known on how the spindle is positioned at the exact cell centre. Using interdisciplinary approaches, we demonstrate that zygotic spindle positioning follows a three-step process: (1) coarse centring of pronuclei relying on the dynamics of an F-actin/Myosin-Vb meshwork; (2) fine centring of the metaphase plate depending on a high cortical tension; (3) passive maintenance at the cell centre. Altogether, we show that F-actin-dependent mechanics operate the switch between asymmetric to symmetric division required at the oocyte to embryo transition.

  17. The accessibility of etheno-nucleotides to collisional quenchers and the nucleotide cleft in G- and F-actin.

    PubMed Central

    Root, D. D.; Reisler, E.

    1992-01-01

    Recent publication of the atomic structure of G-actin (Kabsch, W., Mannherz, H. G., Suck, D., Pai, E. F., & Holmes, K. C., 1990, Nature 347, 37-44) raises questions about how the conformation of actin changes upon its polymerization. In this work, the effects of various quenchers of etheno-nucleotides bound to G- and F-actin were examined in order to assess polymerization-related changes in the nucleotide phosphate site. The Mg(2+)-induced polymerization of actin quenched the fluorescence of the etheno-nucleotides by approximately 20% simultaneously with the increase in light scattering by actin. A conformational change at the nucleotide binding site was also indicated by greater accessibility of F-actin than G-actin to positively, negatively, and neutrally charged collisional quenchers. The difference in accessibility between G- and F-actin was greatest for I-, indicating that the environment of the etheno group is more positively charged in the polymerized form of actin. Based on calculations of the change in electric potential of the environment of the etheno group, specific polymerization-related movements of charged residues in the atomic structure of G-actin are suggested. The binding of S-1 to epsilon-ATP-G-actin increased the accessibility of the etheno group to I- even over that in Mg(2+)-polymerized actin. The quenching of the etheno group by nitromethane was, however, unaffected by the binding of S-1 to actin. Thus, the binding of S-1 induces conformational changes in the cleft region of actin that are different from those caused by Mg2+ polymerization of actin.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1304380

  18. Investigating Molecular Level Stress-Strain Relationships in Entangled F-Actin Networks by Combined Force-Measuring Optical Tweezers and Fluorescence Microscopy

    NASA Astrophysics Data System (ADS)

    Lee, Kent; Henze, Dean; Robertson-Anderson, Rae

    2013-03-01

    Actin is an important cytoskeletal protein involved in cell structure and motility, cancer invasion and metastasis, and muscle contraction. The intricate viscoelastic properties of filamentous actin (F-actin) networks allow for the many dynamic roles of actin, thus warranting investigation. Exploration of this unique stress-strain/strain-rate relationship in complex F-actin networks can also improve biomimetic materials engineering. Here, we use optical tweezers with fluorescence microscopy to study the viscoelastic properties of F-actin networks on the microscopic level. Optically trapped microspheres embedded in various F-actin networks are moved through the network using a nanoprecision piezoelectric stage. The force exerted on the microspheres by the F-actin network and subsequent force relaxation are measured, while a fraction of the filaments in the network are fluorescent-labeled to observe filament deformation in real-time. The dependence of the viscoelastic properties of the network on strain rates and amplitudes as well as F-actin concentration is quantified. This approach provides the much-needed link between induced force and deformation over localized regimes (tens of microns) and down to the single molecule level.

  19. Electrostatic interaction map reveals a new binding position for tropomyosin on F-actin.

    PubMed

    Rynkiewicz, Michael J; Schott, Veronika; Orzechowski, Marek; Lehman, William; Fischer, Stefan

    2015-12-01

    Azimuthal movement of tropomyosin around the F-actin thin filament is responsible for muscle activation and relaxation. Recently a model of αα-tropomyosin, derived from molecular-mechanics and electron microscopy of different contractile states, showed that tropomyosin is rather stiff and pre-bent to present one specific face to F-actin during azimuthal transitions. However, a new model based on cryo-EM of troponin- and myosin-free filaments proposes that the interacting-face of tropomyosin can differ significantly from that in the original model. Because resolution was insufficient to assign tropomyosin side-chains, the interacting-face could not be unambiguously determined. Here, we use structural analysis and energy landscapes to further examine the proposed models. The observed bend in seven crystal structures of tropomyosin is much closer in direction and extent to the original model than to the new model. Additionally, we computed the interaction map for repositioning tropomyosin over the F-actin surface, but now extended over a much larger surface than previously (using the original interacting-face). This map shows two energy minima-one corresponding to the "blocked-state" as in the original model, and the other related by a simple 24 Å translation of tropomyosin parallel to the F-actin axis. The tropomyosin-actin complex defined by the second minimum fits perfectly into the recent cryo-EM density, without requiring any change in the interacting-face. Together, these data suggest that movement of tropomyosin between regulatory states does not require interacting-face rotation. Further, they imply that thin filament assembly may involve an interplay between initially seeded tropomyosin molecules growing from distinct binding-site regions on actin.

  20. Assembly kinetics determine the architecture of α-actinin crosslinked F-actin networks.

    PubMed

    Falzone, Tobias T; Lenz, Martin; Kovar, David R; Gardel, Margaret L

    2012-05-29

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and crosslinking determine the architecture of reconstituted actin networks formed with α-actinin crosslinks. Crosslink-mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semiflexible biopolymer networks.

  1. Boron nitride nanotube-mediated stimulation modulates F/G-actin ratio and mechanical properties of human dermal fibroblasts

    NASA Astrophysics Data System (ADS)

    Ricotti, Leonardo; das Neves, Ricardo Pires; Ciofani, Gianni; Canale, Claudio; Nitti, Simone; Mattoli, Virgilio; Mazzolai, Barbara; Ferreira, Lino; Menciassi, Arianna

    2014-02-01

    F/G-actin ratio modulation is known to have an important role in many cell functions and in the regulation of specific cell behaviors. Several attempts have been made in the latest decades to finely control actin production and polymerization, in order to promote certain cell responses. In this paper we demonstrate the possibility of modulating F/G-actin ratio and mechanical properties of normal human dermal fibroblasts by using boron nitride nanotubes dispersed in the culture medium and by stimulating them with ultrasound transducers. Increasing concentrations of nanotubes were tested with the cells, without any evidence of cytotoxicity up to 10 μg/ml concentration of nanoparticles. Cells treated with nanoparticles and ultrasound stimulation showed a significantly higher F/G-actin ratio in comparison with the controls, as well as a higher Young's modulus. Assessment of Cdc42 activity revealed that actin nucleation/polymerization pathways, involving Rho GTPases, are probably influenced by nanotube-mediated stimulation, but they do not play a primary role in the significant increase of F/G-actin ratio of treated cells, such effect being mainly due to actin overexpression.

  2. Assembly Kinetics Determine the Architecture of α-actinin Crosslinked F-actin Networks

    PubMed Central

    Falzone, Tobias T.; Lenz, Martin; Kovar, David R.; Gardel, Margaret L.

    2013-01-01

    The actin cytoskeleton is organized into diverse meshworks and bundles that support many aspects of cell physiology. Understanding the self-assembly of these actin-based structures is essential for developing predictive models of cytoskeletal organization. Here we show that the competing kinetics of bundle formation with the onset of dynamic arrest arising from filament entanglements and cross-linking determine the architecture of reconstituted actin networks formed with α-actinin cross-links. Cross-link mediated bundle formation only occurs in dilute solutions of highly mobile actin filaments. As actin polymerization proceeds, filament mobility and bundle formation are arrested concomitantly. By controlling the onset of dynamic arrest, perturbations to actin assembly kinetics dramatically alter the architecture of biochemically identical samples. Thus, the morphology of reconstituted F-actin networks is a kinetically determined structure similar to those formed by physical gels and glasses. These results establish mechanisms controlling the structure and mechanics in diverse semi-flexible biopolymer networks. PMID:22643888

  3. Allele-specific Effects of Human Deafness γ-Actin Mutations (DFNA20/26) on the Actin/Cofilin Interaction*

    PubMed Central

    Bryan, Keith E.; Rubenstein, Peter A.

    2009-01-01

    Auditory hair cell function requires proper assembly and regulation of the nonmuscle gamma isoactin-rich cytoskeleton, and six point mutations in this isoactin cause a type of delayed onset autosomal dominant nonsyndromic progressive hearing loss, DFNA20/26. The molecular basis underlying this actin-dependent hearing loss is unknown. To address this problem, the mutations have been introduced into yeast actin, and their effects on actin function were assessed in vivo and in vitro. Because we previously showed that polymerization was unaffected in five of the six mutants, we have focused on proteins that regulate actin, in particular cofilin, which severs F-actin and sequesters actin monomers. The mutations do not affect the interaction of cofilin with G-actin. However, T89I and V370A mutant F-actins are much more susceptible to cofilin disassembly than WT filaments in vitro. Conversely, P332A filaments demonstrate enhanced resistance. Wild type actin solutions containing T89I, K118M, or P332A mutant actins at mole fractions similar to those found in the hair cell respond in vitro toward cofilin in a manner proportional to the level of the mutant present. Finally, depression of cofilin action in vivo by elimination of the cofilin-activating protein, Aip1p, rescues the inability to grow on glycerol caused by K118M, T278I, P332A, and V370A. These results suggest that a filament instability caused by these mutations can be balanced by decreasing a system in vivo that promotes increased filament turnover. Such mutant-dependent filament destabilization could easily result in hair cell malfunction leading to the late-onset hearing loss observed in these patients. PMID:19419963

  4. Green fluorescent protein fusions to Arabidopsis fimbrin 1 for spatio-temporal imaging of F-actin dynamics in roots.

    PubMed

    Wang, Yuh-Shuh; Motes, Christy M; Mohamalawari, Deepti R; Blancaflor, Elison B

    2004-10-01

    The visualization of green fluorescent protein (GFP) fusions with microtubule or actin filament (F-actin) binding proteins has provided new insights into the function of the cytoskeleton during plant development. For studies on actin, GFP fusions to talin have been the most generally used reporters. Although GFP-Talin has allowed in vivo F-actin imaging in a variety of plant cells, its utility in monitoring F-actin in stably transformed plants is limited particularly in developing roots where interesting actin dependent cell processes are occurring. In this study, we created a variety of GFP fusions to Arabidopsis Fimbrin 1 (AtFim1) to explore their utility for in vivo F-actin imaging in root cells and to better understand the actin binding properties of AtFim1 in living plant cells. Translational fusions of GFP to full-length AtFim1 or to some truncated variants of AtFim1 showed filamentous labeling in transient expression assays. One truncated fimbrin-GFP fusion was capable of labeling distinct filaments in stably transformed Arabidopsis roots. The filaments decorated by this construct were highly dynamic in growing root hairs and elongating root cells and were sensitive to actin disrupting drugs. Therefore, the fimbrin-GFP reporters we describe in this study provide additional tools for studying the actin cytoskeleton during root cell development. Moreover, the localization of AtFim1-GFP offers insights into the regulation of actin organization in developing roots by this class of actin cross-linking proteins. Copyright 2004 Wiley-Liss, Inc.

  5. Live-cell imaging of G-actin dynamics using sequential FDAP

    PubMed Central

    Kiuchi, Tai; Nagai, Tomoaki; Ohashi, Kazumasa; Watanabe, Naoki; Mizuno, Kensaku

    2011-01-01

    Various microscopic techniques have been developed to understand the mechanisms that spatiotemporally control actin filament dynamics in live cells. Kinetic data on the processes of actin assembly and disassembly on F-actin have been accumulated. However, the kinetics of cytoplasmic G-actin, a key determinant for actin polymerization, has remained unclear because of a lack of appropriate methods to measure the G-actin concentration quantitatively. We have developed two new microscopic techniques based on the fluorescence decay after photoactivation (FDAP) time-lapse imaging of photoswitchable Dronpa-labeled actin. These techniques, sequential FDAP (s-FDAP) and multipoint FDAP, were used to measure the time-dependent changes in and spatial distribution of the G-actin concentration in live cells. Use of s-FDAP provided data on changes in the G-actin concentration with high temporal resolution; these data were useful for the model analysis of actin assembly processes in live cells. The s-FDAP analysis also provided evidence that the cytoplasmic G-actin concentration substantially decreases after cell stimulation and that the extent of stimulus-induced actin assembly and cell size extension are linearly correlated with the G-actin concentration before cell stimulation. The advantages of using s-FDAP and multipoint FDAP to measure spatiotemporal G-actin dynamics and the roles of G-actin concentration and ADF/cofilin in stimulus-induced actin assembly and lamellipodium extension in live cells are discussed. PMID:22754616

  6. Interactions of histatin-3 and histatin-5 with actin.

    PubMed

    Blotnick, Edna; Sol, Asaf; Bachrach, Gilad; Muhlrad, Andras

    2017-03-06

    Histatins are histidine rich polypeptides produced in the parotid and submandibular gland and secreted into the saliva. Histatin-3 and -5 are the most important polycationic histatins. They possess antimicrobial activity against fungi such as Candida albicans. Histatin-5 has a higher antifungal activity than histatin-3 while histatin-3 is mostly involved in wound healing in the oral cavity. We found that these histatins, like other polycationic peptides and proteins, such as LL-37, lysozyme and histones, interact with extracellular actin. Histatin-3 and -5 polymerize globular actin (G-actin) to filamentous actin (F-actin) and bundle F-actin filaments. Both actin polymerization and bundling by histatins is pH sensitive due to the high histidine content of histatins. In spite of the equal number of net positive charges and histidine residues in histatin-3 and -5, less histatin-3 is needed than histatin-5 for polymerization and bundling of actin. The efficiency of actin polymerization and bundling by histatins greatly increases with decreasing pH. Histatin-3 and -5 induced actin bundles are dissociated by 100 and 50 mM NaCl, respectively. The relatively low NaCl concentration required to dissociate histatin-induced bundles implies that the actin-histatin filaments bind to each other mainly by electrostatic forces. The binding of histatin-3 to F-actin is stronger than that of histatin-5 showing that hydrophobic forces have also some role in histatin-3- actin interaction. Histatins affect the fluorescence of probes attached to the D-loop of G-actin indicating histatin induced changes in actin structure. Transglutaminase cross-links histatins to actin. Competition and limited proteolysis experiments indicate that the main histatin cross-linking site on actin is glutamine-49 on the D-loop of actin. Both histatin-3 and -5 interacts with actin, however, histatin 3 binds stronger to actin and affects actin structure at lower concentration than histatin-5 due to the extra 8

  7. The pros and cons of common actin labeling tools for visualizing actin dynamics during Drosophila oogenesis

    PubMed Central

    Spracklen, Andrew J.; Fagan, Tiffany N.; Lovander, Kaylee E.; Tootle, Tina L.

    2015-01-01

    Dynamic remodeling of the actin cytoskeleton is required for both development and tissue homeostasis. While fixed image analysis has provided significant insight into such events, a complete understanding of cytoskeletal dynamics requires live imaging. Numerous tools for the live imaging of actin have been generated by fusing the actin-binding domain from an actin-interacting protein to a fluorescent protein. Here we comparatively assess the utility of three such tools – Utrophin, Lifeact, and F-tractin – for characterizing the actin remodeling events occurring within the germline-derived nurse cells during Drosophila mid-oogenesis or follicle development. Specifically, we used the UAS/GAL4 system to express these tools at different levels and in different cells, and analyzed these tools for effects on fertility, alterations in the actin cytoskeleton, and ability to label filamentous actin (F-actin) structures by both fixed and live imaging. While both Utrophin and Lifeact robustly label F-actin structures within the Drosophila germline, when strongly expressed they cause sterility and severe actin defects including cortical actin breakdown resulting in multi-nucleate nurse cells, early F-actin filament and aggregate formation during stage 9 (S9), and disorganized parallel actin filament bundles during stage 10B (S10B). However, by using a weaker germline GAL4 driver in combination with a higher temperature, Utrophin can label F-actin with minimal defects. Additionally, strong Utrophin expression within the germline causes F-actin formation in the nurse cell nuclei and germinal vesicle during mid-oogenesis. Similarly, Lifeact expression results in nuclear F-actin only within the germinal vesicle. F-tractin expresses at a lower level than the other two labeling tools, but labels cytoplasmic F-actin structures well without causing sterility or striking actin defects. Together these studies reveal how critical it is to evaluate the utility of each actin labeling

  8. Environmental toxicants perturb human Sertoli cell adhesive function via changes in F-actin organization mediated by actin regulatory proteins

    PubMed Central

    Xiao, Xiang; Mruk, Dolores D.; Tang, Elizabeth I.; Wong, Chris K.C.; Lee, Will M.; John, Constance M.; Turek, Paul J.; Silvestrini, Bruno; Cheng, C. Yan

    2014-01-01

    STUDY QUESTION Can human Sertoli cells cultured in vitro and that have formed an epithelium be used as a model to monitor toxicant-induced junction disruption and to better understand the mechanism(s) by which toxicants disrupt cell adhesion at the Sertoli cell blood–testis barrier (BTB)? SUMMARY ANSWER Our findings illustrate that human Sertoli cells cultured in vitro serve as a reliable system to monitor the impact of environmental toxicants on the BTB function. WHAT IS KNOWN ALREADY Suspicions of a declining trend in semen quality and a concomitant increase in exposures to environmental toxicants over the past decades reveal the need of an in vitro system that efficiently and reliably monitors the impact of toxicants on male reproductive function. Furthermore, studies in rodents have confirmed that environmental toxicants impede Sertoli cell BTB function in vitro and in vivo. STUDY DESIGN, SIZE AND DURATION We examined the effects of two environmental toxicants: cadmium chloride (0.5–20 µM) and bisphenol A (0.4–200 µM) on human Sertoli cell function. Cultured Sertoli cells from three men were used in this study, which spanned an 18-month period. PARTICIPANTS/MATERIALS, SETTING, METHODS Human Sertoli cells from three subjects were cultured in F12/DMEM containing 5% fetal bovine serum. Changes in protein expression were monitored by immunoblotting using specific antibodies. Immunofluorescence analyses were used to assess changes in the distribution of adhesion proteins, F-actin and actin regulatory proteins following exposure to two toxicants: cadmium chloride and bisphenol A (BPA). MAIN RESULTS AND THE ROLE OF CHANCE Human Sertoli cells were sensitive to cadmium and BPA toxicity. Changes in the localization of cell adhesion proteins were mediated by an alteration of the actin-based cytoskeleton. This alteration of F-actin network in Sertoli cells as manifested by truncation and depolymerization of actin microfilaments at the Sertoli cell BTB was caused by

  9. Focal adhesion kinase is a regulator of F-actin dynamics

    PubMed Central

    Li, Stephen YT; Mruk, Dolores D; Cheng, C Yan

    2013-01-01

    During spermatogenesis, spermatogonia (2n, diploid) undergo a series of mitotic divisions as well as differentiation to become spermatocytes, which enter meiosis I to be followed by meiosis II to form round spermatids (1n, haploid), and then differentiate into spermatozoa (1n, haploid) via spermiogenesis. These events take place in the epithelium of the seminiferous tubule, involving extensive junction restructuring at the Sertoli-Sertoli and Sertoli-germ cell interface to allow the transport of developing germ cells across the epithelium. Although structural aspects of these cell-cell junctions have been studied, the underlying mechanism(s) that governs these events has yet to be explored. Earlier studies have shown that a non-receptor protein tyrosine kinase known as focal adhesion kinase (FAK) is a likely regulator of these events due to the stage-specific and spatiotemporal expression of its various phosphorylated/activated forms at the testis-specific anchoring junctions in the testis, as well as its association with actin regulatory proteins. Recent studies have shown that FAK, in particular its two activated phosphorylated forms p-FAK-Tyr407 and p-FAK-Tyr397, are crucial regulators in modulating junction restructuring at the Sertoli cell-cell interface at the blood-testis barrier (BTB) known as the basal ectoplasmic specialization (basal ES), as well as at the Sertoli-spermatid interface called apical ES during spermiogenesis via its effects on the filamentous (F)-actin organization at the ES. We herein summarize and critically evaluate the current knowledge regarding the physiological significance of FAK in regulating BTB and apical ES dynamics by governing the conversion of actin filaments at the ES from a “bundled” to a “de-bundled/branched” configuration and vice versa. We also provide a molecular model on the role of FAK in regulating these events based on the latest findings in the field. PMID:24381802

  10. F-actin-based Ca signaling-a critical comparison with the current concept of Ca signaling.

    PubMed

    Lange, Klaus; Gartzke, Joachim

    2006-11-01

    A short comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect, the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating endoplasmic/sarcoplasmic reticulum-derived vesicles equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive channel-receptors for Ca-release. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of actin filaments. Cellular sites of F-actin-based Ca storage are microvilli and the submembrane cytoskeleton. Several specific features of Ca signaling such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release (CICR), which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling. Copyright 2006 Wiley-Liss, Inc.

  11. Synthetic peptides that cause F-actin bundling and block actin depolymerization

    DOEpatents

    Sederoff, Heike [Raleigh, NC; Huber, Steven C [Savoy, IL; Larabell, Carolyn A [Berkeley, CA

    2011-10-18

    Synthetic peptides derived from sucrose synthase, and having homology to actin and actin-related proteins, sharing a common motif, useful for causing acting bundling and preventing actin depolymerization. Peptides exhibiting the common motif are described, as well as specific synthetic peptides which caused bundled actin and inhibit actin depolymerization. These peptides can be useful for treating a subject suffering from a disease characterized by cells having neoplastic growth, for anti-cancer therapeutics, delivered to subjects solely, or concomitantly or sequentially with other known cancer therapeutics. These peptides can also be used for stabilizing microfilaments in living cells and inhibiting growth of cells.

  12. Effects of basic calponin on the flexural mechanics and stability of F-actin.

    PubMed

    Jensen, Mikkel Herholdt; Watt, James; Hodgkinson, Julie L; Gallant, Cynthia; Appel, Sarah; El-Mezgueldi, Mohammed; Angelini, Thomas E; Morgan, Kathleen G; Lehman, William; Moore, Jeffrey R

    2012-01-01

    The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical and structural interaction of actin with basic calponin, a differentiation marker in smooth muscle cells, on a single filament level. We imaged fluorescently labeled thermally fluctuating actin filaments and found that at moderate calponin binding densities, actin filaments were more flexible, evident as a reduction in persistence length from 8.0 to 5.8 μm. When calponin-decorated actin filaments were subjected to shear, we observed a marked reduction of filament lengths after decoration with calponin, which we argue was due to shear-induced filament rupture rather than depolymerization. This increased shear susceptibility was exacerbated with calponin concentration. Cryo-electron microscopy results confirmed previously published negative stain electron microscopy results and suggested alterations in actin involving actin subdomain 2. A weakening of F-actin intermolecular association is discussed as the underlying cause of the observed mechanical perturbations. Copyright © 2011 Wiley Periodicals, Inc.

  13. In Vivo, Villin Is Required for Ca2+-Dependent F-Actin Disruption in Intestinal Brush Borders

    PubMed Central

    Ferrary, Evelyne; Cohen-Tannoudji, Michel; Pehau-Arnaudet, Gérard; Lapillonne, Alexandre; Athman, Rafika; Ruiz, Tereza; Boulouha, Lilia; El Marjou, Fatima; Doye, Anne; Fontaine, Jean-Jacques; Antony, Claude; Babinet, Charles; Louvard, Daniel; Jaisser, Frédéric; Robine, Sylvie

    1999-01-01

    Villin is an actin-binding protein localized in intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a Ca2+-dependent manner. We generated knockout mice to study the role of villin in vivo. In villin-null mice, no noticeable changes were observed in the ultrastructure of the microvilli or in the localization and expression of the actin-binding and membrane proteins of the intestine. Interestingly, the response to elevated intracellular Ca2+ differed significantly between mutant and normal mice. In wild-type animals, isolated brush borders were disrupted by the addition of Ca2+, whereas Ca2+ had no effect in villin-null isolates. Moreover, increase in intracellular Ca2+ by serosal carbachol or mucosal Ca2+ ionophore A23187 application abolished the F-actin labeling only in the brush border of wild-type animals. This F-actin disruption was also observed in physiological fasting/refeeding experiments. Oral administration of dextran sulfate sodium, an agent that causes colonic epithelial injury, induced large mucosal lesions resulting in a higher death probability in mice lacking villin, 36 ± 9.6%, compared with wild-type mice, 70 ± 8.8%, at day 13. These results suggest that in vivo, villin is not necessary for the bundling of F-actin microfilaments, whereas it is necessary for the reorganization elicited by various signals. We postulate that this property might be involved in cellular plasticity related to cell injury. PMID:10459016

  14. F-actin clustering and cell dysmotility induced by the pathological W148R missense mutation of filamin B at the actin-binding domain.

    PubMed

    Zhao, Yongtong; Shapiro, Sandor S; Eto, Masumi

    2016-01-01

    Filamin B (FLNB) is a dimeric actin-binding protein that orchestrates the reorganization of the actin cytoskeleton. Congenital mutations of FLNB at the actin-binding domain (ABD) are known to cause abnormalities of skeletal development, such as atelosteogenesis types I and III and Larsen's syndrome, although the underlying mechanisms are poorly understood. Here, using fluorescence microscopy, we characterized the reorganization of the actin cytoskeleton in cells expressing each of six pathological FLNB mutants that have been linked to skeletal abnormalities. The subfractionation assay showed a greater accumulation of the FLNB ABD mutants W148R and E227K than the wild-type protein to the cytoskeleton. Ectopic expression of FLNB-W148R and, to a lesser extent, FLNB-E227K induced prominent F-actin accumulations and the consequent rearrangement of focal adhesions, myosin II, and septin filaments and results in a delayed directional migration of the cells. The W148R protein-induced cytoskeletal rearrangement was partially attenuated by the inhibition of myosin II, p21-activated protein kinase, or Rho-associated protein kinase. The expression of a single-head ABD fragment with the mutations partially mimicked the rearrangement induced by the dimer. The F-actin clustering through the interaction with the mutant FLNB ABD may limit the cytoskeletal reorganization, preventing normal skeletal development. Copyright © 2016 the American Physiological Society.

  15. Damage effects of protoporphyrin IX - sonodynamic therapy on the cytoskeletal F-actin of Ehrlich ascites carcinoma cells.

    PubMed

    Zhao, Xia; Liu, Quanhong; Tang, Wei; Wang, Xiaobing; Wang, Pan; Gong, Liyan; Wang, Yuan

    2009-01-01

    In this study, we report evidence of the damage effects of sonodynamic therapy (SDT) on a novel intracellular target, cytoskeletal F-actin, that has great importance for cancer treatment. Ehrlich ascites carcinoma (EAC) cells suspended in PBS were exposed to ultrasound at 1.34 MHz for up to 60s in the presence and absence of protoporphyrin IX (PPIX). To evaluate the polymeric state and distribution of actin filaments (AF) we employed FITC-Phalloidin staining. The percentage of cells with intact AF was decreased with 10-80 microM PPIX after ultrasonic exposure, while only few cells with disturbed F-actin were observed with 80 microM PPIX alone. The fluorescence intensity of FITC-Phalloidin labeled cells was detected by flow cytometry. The morphological changes of EAC cells were observed by scanning electron microscope (SEM). The nuclei were stained with Hoechst 33258 to determine apoptosis. Cytoskeletal F-actin and cell morphological changes were dependent on the time after SDT. Some cells suffered deformations of plasma membrane as blebs that reacted positively to FITC-Phalloidin at 2h after SDT treatment. Many of the cells showed the typically apoptotic chromatin fragmentation. The alterations were more significant 4h later. Our results showed that cytoskeletal F-actin might represent an important target for the SDT treatment and the observed effect on F-actin and the subsequent bleb formation mainly due to apoptosis formation due to the treatment.

  16. Actin, actin-binding proteins, and actin-related proteins in the nucleus.

    PubMed

    Kristó, Ildikó; Bajusz, Izabella; Bajusz, Csaba; Borkúti, Péter; Vilmos, Péter

    2016-04-01

    Extensive research in the past decade has significantly broadened our view about the role actin plays in the life of the cell and added novel aspects to actin research. One of these new aspects is the discovery of the existence of nuclear actin which became evident only recently. Nuclear activities including transcriptional activation in the case of all three RNA polymerases, editing and nuclear export of mRNAs, and chromatin remodeling all depend on actin. It also became clear that there is a fine-tuned equilibrium between cytoplasmic and nuclear actin pools and that this balance is ensured by an export-import system dedicated to actin. After over half a century of research on conventional actin and its organizing partners in the cytoplasm, it was also an unexpected finding that the nucleus contains more than 30 actin-binding proteins and new classes of actin-related proteins which are not able to form filaments but had evolved nuclear-specific functions. The actin-binding and actin-related proteins in the nucleus have been linked to RNA transcription and processing, nuclear transport, and chromatin remodeling. In this paper, we attempt to provide an overview of the wide range of information that is now available about actin, actin-binding, and actin-related proteins in the nucleus.

  17. Distinct structural changes detected by X-ray fiber diffraction in stabilization of F-actin by lowering pH and increasing ionic strength.

    PubMed

    Oda, T; Makino, K; Yamashita, I; Namba, K; Maéda, Y

    2001-02-01

    Lowering pH or raising salt concentration stabilizes the F-actin structure by increasing the free energy change associated with its polymerization. To understand the F-actin stabilization mechanism, we studied the effect of pH, salt concentration, and cation species on the F-actin structure. X-ray fiber diffraction patterns recorded from highly ordered F-actin sols at high density enabled us to detect minute changes of diffraction intensities and to precisely determine the helical parameters. F-actin in a solution containing 30 mM NaCl at pH 8 was taken as the control. F-actin at pH 8, 30 to 90 mM NaCl or 30 mM KCl showed a helical symmetry of 2.161 subunits per turn of the 1-start helix (12.968 subunits/6 turns). Lowering pH from 8 to 6 or replacing NaCl by LiCl altered the helical symmetry to 2.159 subunits per turn (12.952/6). The diffraction intensity associated with the 27-A meridional layer-line increased as the pH decreased but decreased as the NaCl concentration increased. None of the solvent conditions tested gave rise to significant changes in the pitch of the left-handed 1-start helix (approximately 59.8 A). The present results indicate that the two factors that stabilize F-actin, relatively low pH and high salt concentration, have distinct effects on the F-actin structure. Possible mechanisms will be discussed to understand how F-actin is stabilized under these conditions.

  18. Resemblance of actin-binding protein/actin gels to covalently crosslinked networks

    NASA Astrophysics Data System (ADS)

    Janmey, Paul A.; Hvidt, Søren; Lamb, Jennifer; Stossel, Thomas P.

    1990-05-01

    THE maintainance of the shape of cells is often due to their surface elasticity, which arises mainly from an actin-rich cytoplasmic cortex1,2. On locomotion, phagocytosis or fission, however, these cells become partially fluid-like. The finding of proteins that can bind to actin and control the assembly of, or crosslink, actin filaments, and of intracellular messages that regulate the activities of some of these actin-binding proteins, indicates that such 'gel sol' transformations result from the rearrangement of cortical actin-rich networks3. Alternatively, on the basis of a study of the mechanical properties of mixtures of actin filaments and an Acanthamoeba actin-binding protein, α-actinin, it has been proposed that these transformations can be accounted for by rapid exchange of crosslinks between actin filaments4: the cortical network would be solid when the deformation rate is greater than the rate of crosslink exchange, but would deform or 'creep' when deformation is slow enough to permit crosslinker molecules to rearrange. Here we report, however, that mixtures of actin filaments and actin-binding protein (ABP), an actin crosslinking protein of many higher eukaryotes, form gels Theologically equivalent to covalently crosslinked networks. These gels do not creep in response to applied stress on a time scale compatible with most cell-surface movements. These findings support a more complex and controlled mechanism underlying the dynamic mechanical properties of cortical cytoplasm, and can explain why cells do not collapse under the constant shear forces that often exist in tissues.

  19. Cell Protrusion and Retraction Driven by Fluctuations in Actin Polymerization: A Two-Dimensional Model

    PubMed Central

    Ryan, Gillian L.; Holz, Danielle; Yamashiro, Sawako; Taniguchi, Daisuke; Watanabe, Naoki; Vavylonis, Dimitrios

    2017-01-01

    Animal cells that spread onto a surface often rely on actin-rich lamellipodial extensions to execute protrusion. Many cell types recently adhered on a two-dimensional substrate exhibit protrusion and retraction of their lamellipodia, even though the cell is not translating. Traveling waves of protrusion have also been observed, similar to those observed in crawling cells. These regular patterns of protrusion and retraction allow quantitative analysis for comparison to mathematical models. The periodic fluctuations in leading edge position of XTC cells have been linked to excitable actin dynamics using a one-dimensional model of actin dynamics, as a function of arc-length along the cell. In this work we extend this earlier model of actin dynamics into two dimensions (along the arc-length and radial directions of the cell) and include a model membrane that protrudes and retracts in response to the changing number of free barbed ends of actin filaments near the membrane. We show that if the polymerization rate at the barbed ends changes in response to changes in their local concentration at the leading edge and/or the opposing force from the cell membrane, the model can reproduce the patterns of membrane protrusion and retraction seen in experiment. We investigate both Brownian ratchet and switch-like force-velocity relationships between the membrane load forces and actin polymerization rate. The switch-like polymerization dynamics recover the observed patterns of protrusion and retraction as well as the fluctuations in F-actin concentration profiles. The model generates predictions for the behavior of cells after local membrane tension perturbations. PMID:28752950

  20. Role of gelsolin interaction with actin in regulation and creation of actin nuclei in chemotactic peptide activated polymorphonuclear neutrophils.

    PubMed Central

    Deaton, J D; Guerrero, T; Howard, T H

    1992-01-01

    In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin

  1. Role of gelsolin interaction with actin in regulation and creation of actin nuclei in chemotactic peptide activated polymorphonuclear neutrophils.

    PubMed

    Deaton, J D; Guerrero, T; Howard, T H

    1992-12-01

    In vitro Ca++ activates gelsolin to sever F-actin and form a gelsolin-actin (GA) complex at the+end of F-actin that is not dissociated by ethylene glycol-bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) but is separated by EGTA+PIP/PIP2. The gelsolin blocks the+end on the actin filament, but the-end of the filament can still initiate actin polymerization. In thrombin activated platelets, evidence suggests that severing of F-actin by gelsolin increases GA complex, creates one-end actin nucleus and one cryptic+end actin nucleus per cut, and then dissociates to yield free+ends to nucleate rapid actin assembly. We examined the role of F-actin severing in creation and regulation of nuclei and polymerization in polymorphonuclear neutrophils (PMNs). At 2-s intervals after formyl peptide (FMLP) activation of endotoxin free (ETF) PMNs, change in GA complex was correlated with change in+end actin nuclei,-end actin nuclei, and F-actin content. GA complex was quantitated by electrophoretograms of proteins absorbed by antigelsolin from cells lysed in 10 mM EGTA,+end actin nuclei as cytochalasin (CD) sensitive and-end actin nuclei as CD insensitive increases in G-pyrenyl actin polymerization rates induced by the same PMNs, and F-actin content by NBDphallacidin binding to fixed cells. Thirty three percent of gelsolin was in GA complex in basal ETF PMNs; from 2-6 s, GA complexes dissociate (low = 15% at 10 s) and sequentially+end nuclei and F-actin content and then-end nuclei increase to a maximum at 10 s. At > s GA complex increase toward basal and + end nuclei and F-actin content returned toward basal. These kinetic data show gelsolin regulates availability of + end nuclei and actin polymerization in FMLP. However, absence of an initial increase in GA complex or - end nucleating activity shows FMLP activation does not cause gelsolin to sever F- or to bind G-actin to create cryptic + end nuclei in PMNs; the results suggest the + nucleus formation is gelsolin

  2. A nuclear F-actin scaffold stabilizes ribonucleoprotein droplets against gravity in large cells.

    PubMed

    Feric, Marina; Brangwynne, Clifford P

    2013-10-01

    The size of a typical eukaryotic cell is of the order of ∼10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog Xenopus laevis grow to a diameter ≥1 mm. They have a correspondingly large nucleus (germinal vesicle) of ∼450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that germinal vesicles contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that on actin disruption, ribonucleoprotein droplets, including nucleoli and histone locus bodies, undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ∼10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large Xenopus oocytes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control.

  3. A nuclear F-actin scaffold stabilizes RNP droplets against gravity in large cells

    PubMed Central

    Feric, Marina; Brangwynne, Clifford P.

    2013-01-01

    The size of a typical eukaryotic cell is on the order of ≈10 μm. However, some cell types grow to very large sizes, including oocytes (immature eggs) of organisms from humans to starfish. For example, oocytes of the frog X. laevis grow to a diameter ≥1 mm. They contain a correspondingly large nucleus (germinal vesicle, GV) of ≈450 μm in diameter, which is similar to smaller somatic nuclei, but contains a significantly higher concentration of actin. The form and structure of this nuclear actin remain controversial, and its potential mechanical role within these large nuclei is unknown. Here, we use a microrheology and quantitative imaging approach to show that GVs contain an elastic F-actin scaffold that mechanically stabilizes these large nuclei against gravitational forces, which are usually considered negligible within cells. We find that upon actin disruption, RNA/protein droplets, including nucleoli and histone locus bodies (HLBs), undergo gravitational sedimentation and fusion. We develop a model that reveals how gravity becomes an increasingly potent force as cells and their nuclei grow larger than ≈10 μm, explaining the requirement for a stabilizing nuclear F-actin scaffold in large X. laevis ooctyes. All life forms are subject to gravity, and our results may have broad implications for cell growth and size control. PMID:23995731

  4. Motion in partially and fully cross-linked F-actin networks

    NASA Astrophysics Data System (ADS)

    Morris, Eliza; Ehrlicher, Allen; Weitz, David

    2012-02-01

    Single molecule experiments have measured stall forces and procession rates of molecular motors on isolated cytoskeletal fibers in Newtonian fluids. But in the cell, these motors are transporting cargo through a highly complex cytoskeletal network. To compare these single molecule results to the forces exerted by motors within the cell, an evaluation of the response of the cytoskeletal network is needed. Using magnetic tweezers and fluorescence confocal microscopy we observe and quantify the relationship between bead motion and filament response in F-actin networks both partially and fully cross-linked with filamin We find that when the transition from full to partial cross-linking is brought about by a decrease in cross-linker concentration there is a simultaneous decline in the elasticity of the network, but the response of the bead remains qualitatively similar. However, when the cross-linking is reduced through a shortening of the F-actin filaments the bead response is completely altered. The characteristics of the altered bead response will be discussed here.

  5. Effects of Microtubule and Actin Inhibitors on Cryptococcus neoformans Examined by Scanning and Transmission Electron Microscopy.

    PubMed

    Kopecká, Marie

    2014-01-01

    Cryptococcus neoformans is one of the most important human fungal pathogens. Its cells contain rich microtubules required for nuclear division and rich F-actin cytoskeletons for cell division. Disruption of microtubules by a microtubule inhibitor should block nuclear division, and disruption of F-actin by an actin inhibitor should block cell division. We investigated the effects of microtubule and actin inhibitors to find out whether the cytoskeletons of C. neoformans can become a new anti-fungal target for the inhibition of cell division, when examined at the ultrastructural level. Cells treated with the microtubule inhibitors vincristine (VIN) and methyl benzimidazole-2-ylcarbamate (BCM) and the actin inhibitor latrunculin A (LA), in yeast extract peptone dextrose medium, were examined by scanning (SEM) and transmission electron microscopy (TEM), and the cell number was counted using a Bürker chamber. After 2 days of inhibition with VIN, BCM or LA, the cells did not divide, but later, resistant, proliferating cells appeared in all samples. With combined microtubule and actin inhibitors (VIN + LA or BCM + LA), cells did not divide during 6 or even 14 days, and no resistant cells originated. TEM showed that the inhibited cells were without cytoplasm and were dead; only empty cell walls persisted with reduced capsules, shown on SEM. Combined microtubule and actin inhibitors (VIN + LA or BCM + LA), have lethal effects on C. neoformans cells and no resistant cells originate. © 2015 S. Karger AG, Basel

  6. Apical and basal epitheliomuscular F-actin dynamics during Hydra bud evagination

    PubMed Central

    Aufschnaiter, Roland; Wedlich-Söldner, Roland; Zhang, Xiaoming

    2017-01-01

    ABSTRACT Bending of 2D cell sheets is a fundamental morphogenetic mechanism during animal development and reproduction. A critical player driving cell shape during tissue bending is the actin cytoskeleton. Much of our current knowledge about actin dynamics in whole organisms stems from studies of embryonic development in bilaterian model organisms. Here, we have analyzed actin-based processes during asexual bud evagination in the simple metazoan Hydra. We created transgenic Hydra strains stably expressing the actin marker Lifeact-GFP in either ectodermal or endodermal epitheliomuscular cells. We then combined live imaging with conventional phalloidin staining to directly follow actin reorganization. Bending of the Hydra epithelial double layer is initiated by a group of epitheliomuscular cells in the endodermal layer. These cells shorten their apical-basal axis and arrange their basal muscle processes in a circular configuration. We propose that this rearrangement generates the initial forces to bend the endoderm towards the ectoderm. Convergent tissue movement in both epithelial layers towards the centre of evagination then leads to elongation and extension of the bud along its new body axis. Tissue movement into the bud is associated with lateral intercalation of epithelial cells, remodelling of apical septate junctions, and rearrangement of basal muscle processes. The work presented here extends the analysis of morphogenetic mechanisms beyond embryonic tissues of model bilaterians. PMID:28630355

  7. Visualization of highly dynamic F-actin plus ends in growing phaseolus vulgaris root hair cells and their responses to Rhizobium etli nod factors.

    PubMed

    Zepeda, Isaac; Sánchez-López, Rosana; Kunkel, Joseph G; Bañuelos, Luis A; Hernández-Barrera, Alejandra; Sánchez, Federico; Quinto, Carmen; Cárdenas, Luis

    2014-03-01

    Legume plants secrete signaling molecules called flavonoids into the rhizosphere. These molecules activate the transcription of rhizobial nod genes, which encode proteins involved in the synthesis of signaling compounds named Nod factors (NFs). NFs, in turn, trigger changes in plant gene expression, cortical cell dedifferentiation and mitosis, depolarization of the root hair cell membrane potential and rearrangement of the actin cytoskeleton. Actin polymerization plays an important role in apical growth in hyphae and pollen tubes. Using sublethal concentrations of fluorescently labeled cytochalasin D (Cyt-Fl), we visualized the distribution of filamentous actin (F-actin) plus ends in living Phaseolus vulgaris and Arabidopsis root hairs during apical growth. We demonstrated that Cyt-Fl specifically labeled the newly available plus ends of actin microfilaments, which probably represent sites of polymerization. The addition of unlabeled competing cytochalasin reduced the signal, suggesting that the labeled and unlabeled forms of the drug bind to the same site on F-actin. Exposure to Rhizobium etli NFs resulted in a rapid increase in the number of F-actin plus ends in P. vulgaris root hairs and in the re-localization of F-actin plus ends to infection thread initiation sites. These data suggest that NFs promote the formation of F-actin plus ends, which results in actin cytoskeleton rearrangements that facilitate infection thread formation.

  8. Actin Age Orchestrates Myosin-5 and Myosin-6 Runlengths

    PubMed Central

    Zimmermann, Dennis; Santos, Alicja; Kovar, David R.; Rock, Ronald S.

    2015-01-01

    Summary Unlike a static and immobile skeleton, the actin cytoskeleton is a highly dynamic network of filamentous actin (F-actin) polymers that continuously turn over. In addition to generating mechanical forces and sensing mechanical deformation, dynamic F-actin networks serve as cellular tracks for myosin motor traffic. However, much of our mechanistic understanding of processive myosins comes from in vitro studies where motility was studied on pre-assembled and artificially stabilized, static F-actin tracks. In this work, we examine the role of actin dynamics in single-molecule myosin motility using assembling F-actin and the two highly processive motors, myosin-5 and myosin-6. These two myosins have distinct functions in the cell and travel in opposite directions along actin filaments [1–3]. Myosin-5 walks towards the barbed ends of F-actin, traveling to sites of actin polymerization at the cell periphery [4]. Myosin-6 walks towards the pointed end of F-actin [5], traveling towards the cell center along older segments of the actin filament. We find that myosin-5 takes 1.3 to 1.5-fold longer runs on ADP•Pi (young) F-actin, while myosin-6 takes 1.7 to 3.6-fold longer runs along ADP (old) F-actin. These results suggest that conformational differences between ADP•Pi and ADP F-actin tailor these myosins to walk farther toward their preferred actin filament end. Taken together, these experiments define a new mechanism by which myosin traffic may sort to different F-actin networks depending on filament age. PMID:26190073

  9. Cortical actin nanodynamics determines nitric oxide release in vascular endothelium.

    PubMed

    Fels, Johannes; Jeggle, Pia; Kusche-Vihrog, Kristina; Oberleithner, Hans

    2012-01-01

    The release of the main vasodilator nitric oxide (NO) by the endothelial NO synthase (eNOS) is a hallmark of endothelial function. We aim at elucidating the underlying mechanism how eNOS activity depends on cortical stiffness (К(cortex)) of living endothelial cells. It is hypothesized that cortical actin dynamics determines К(cortex) and directly influences eNOS activity. By combined atomic force microscopy and fluorescence imaging we generated mechanical and optical sections of single living cells. This approach allows the discrimination between К(cortex) and bulk cell stiffness (К(bulk)) and, additionally, the simultaneous analysis of submembranous actin web dynamics. We show that К(cortex) softens when cortical F-actin depolymerizes and that this shift from a gel-like stiff cortex to a soft G-actin rich layer, triggers the stiffness-sensitive eNOS activity. The results implicate that stiffness changes in the ∼100 nm phase of the submembranous actin web, without affecting К(bulk), regulate NO release and thus determines endothelial function.

  10. Effects of dexamethasone on angiotensin II-induced changes of monolayer permeability and F-actin distribution in glomerular endothelial cells.

    PubMed

    Fang, Junyan; Wang, Miao; Zhang, Wei; Wang, Yingdeng

    2013-11-01

    The aim of this study was to investigate the changes in monolayer permeability and F-actin distribution caused by angiotensin II (Ang II)-induced injury in glomerular endothelial cells (GENCs) and the effects of dexamethasone on these changes. GENCs isolated and cultured from Wistar rats were used to examine the changes in monolayer permeability and F-actin distribution induced by Ang II. GENC permeability was evaluated by measuring the diffusion of biotin-conjugated bovine serum albumin (biotin-BSA) across a cell monolayer. The expression levels and distribution of F-actin were assessed by flow cytometry. The biotin-BSA concentrations were measured by capture enzyme-linked immunosorbent assay. Ang II at a concentration of 10 mg/l increased the permeability of the GENC monolayer at 6 h and 12 h (P<0.05 and P<0.01, respectively) and caused F-actin depolymerisation at 6 h and 12 h (P<0.01). The two effects attributed to Ang II were significantly inhibited by dexamethasone treatment (P<0.01). The increased permeability of the GENC monolayer induced by Ang II was significantly correlated with the depolymerisation of F-actin. Dexamethasone abrogated the Ang II-mediated damage to GENCs indicating that it may play an important role in protecting GENCs from injury.

  11. MAP18 regulates the direction of pollen tube growth in Arabidopsis by modulating F-actin organization.

    PubMed

    Zhu, Lei; Zhang, Yan; Kang, Erfang; Xu, Qiangyi; Wang, Miaoying; Rui, Yue; Liu, Baoquan; Yuan, Ming; Fu, Ying

    2013-03-01

    For fertilization to occur in plants, the pollen tube must be guided to enter the ovule via the micropyle. Previous reports have implicated actin filaments, actin binding proteins, and the tip-focused calcium gradient as key contributors to polar growth of pollen tubes; however, the regulation of directional pollen tube growth is largely unknown. We reported previously that Arabidopsis thaliana MICROTUBULE-ASSOCIATED PROTEIN18 (MAP18) contributes to directional cell growth and cortical microtubule organization. The preferential expression of MAP18 in pollen and in pollen tubes suggests that MAP18 also may function in pollen tube growth. In this study, we demonstrate that MAP18 functions in pollen tubes by influencing actin organization, rather than microtubule assembly. In vitro biochemical results indicate that MAP18 exhibits Ca(2+)-dependent filamentous (F)-actin-severing activity. Abnormal expression of MAP18 in map18 and MAP18 OX plants was associated with disorganization of the actin cytoskeleton in the tube apex, resulting in aberrant pollen tube growth patterns and morphologies, inaccurate micropyle targeting, and fewer fertilization events. Experiments with MAP18 mutants created by site-directed mutagenesis suggest that F-actin-severing activity is essential to the effects of MAP18 on pollen tube growth direction. Our study demonstrates that in Arabidopsis, MAP18 guides the direction of pollen tube growth by modulating actin filaments.

  12. Flexibility of myosin attachment to surfaces influences F-actin motion.

    PubMed Central

    Winkelmann, D A; Bourdieu, L; Ott, A; Kinose, F; Libchaber, A

    1995-01-01

    We have analyzed the dependence of actin filament sliding movement on the mode of myosin attachment to surfaces. Monoclonal antibodies (mAbs) that bind to three distinct sites were used to tether myosin to nitrocellulose-coated glass. One antibody reacts with an epitope on the regulatory light chain (LC2) located at the head-rod junction. The other two react with sites in the rod domain, one in the S2 region near the S2-LMM hinge, and the other at the C terminus of the myosin rod. This method of attachment provides a means of controlling the flexibility and density of myosin on the surface. Fast skeletal muscle myosin monomers were bound to the surfaces through the specific interaction with these mAbs, and the sliding movement of fluorescently labeled actin filaments was analyzed by video microscopy. Each of these antibodies produced stable myosin-coated surfaces that supported uniform motion of actin over the course of several hours. Attachment of myosin through the anti-S2 and anti-LMM mAbs yielded significantly higher velocities (10 microns/s at 30 degrees C) than attachment through anti-LC2 (4-5 microns/s at 30 degrees C). For each antibody, we observed a characteristic value of the myosin density for the onset of F-actin motion and a second critical density for velocity saturation. The specific mode of attachment influences the velocity of actin filaments and the characteristic surface density needed to support movement. Images FIGURE 1 FIGURE 4 FIGURE 8 PMID:7544167

  13. The nature of the globular- to fibrous-actin transition.

    PubMed

    Oda, Toshiro; Iwasa, Mitsusada; Aihara, Tomoki; Maéda, Yuichiro; Narita, Akihiro

    2009-01-22

    Actin plays crucial parts in cell motility through a dynamic process driven by polymerization and depolymerization, that is, the globular (G) to fibrous (F) actin transition. Although our knowledge about the actin-based cellular functions and the molecules that regulate the G- to F-actin transition is growing, the structural aspects of the transition remain enigmatic. We created a model of F-actin using X-ray fibre diffraction intensities obtained from well oriented sols of rabbit skeletal muscle F-actin to 3.3 A in the radial direction and 5.6 A along the equator. Here we show that the G- to F-actin conformational transition is a simple relative rotation of the two major domains by about 20 degrees. As a result of the domain rotation, the actin molecule in the filament is flat. The flat form is essential for the formation of stable, helical F-actin. Our F-actin structure model provides the basis for understanding actin polymerization as well as its molecular interactions with actin-binding proteins.

  14. OPC-compounds prevent oxidant-induced carbonylation and depolymerization of the F-actin cytoskeleton and intestinal barrier hyperpermeability.

    PubMed

    Banan, A; Fitzpatrick, L; Zhang, Y; Keshavarzian, A

    2001-02-01

    Rebamipide (OPC-12759), a quinolone derivative, and OPC-6535, a thiazol-carboxylic acid derivative, are compounds with ability to protect gastrointestinal (GI) mucosal integrity against reactive oxygen metabolites (ROM). The underlying mechanism of OPC-mediated protection remains poorly understood. It is now established that ROM can injure the mucosa by disruption of the cytoskeletal network, a key component of mucosal barrier integrity. We, therefore, investigated whether OPC compounds prevent the oxidation, disassembly, and instability of the cytoskeletal protein actin and, in turn, protect intestinal barrier function against ROM. Human intestinal (Caco-2) cell monolayers were pretreated with OPC (-12759 or -6535) prior to incubation with ROM (H2O2) or HOCl). Effects on cell integrity (ethidium homodimer-1), epithelial barrier function (fluorescein sulfonic acid clearance), and actin cytoskeletal integrity (high-resolution laser confocal) were then determined. Cells were also processed for quantitative immunoblotting of G- and F-actin to measure oxidation (carbonylation) and disassembly of actin. In monolayers exposed to ROM, preincubation with OPC compounds prevented actin oxidation, decreased depolymerized G-actin, and enhanced the stable F-actin. Concomitantly, OPC agents abolished both actin cytoskeletal disruption and monolayer barrier dysfunction. Data suggest for the first time that OPC drugs prevent oxidation of actin and lead to the protection of actin cytoskeleton and intestinal barrier integrity against oxidant insult. Accordingly, these compounds may be used as novel therapeutic agents for the treatment of a variety of oxidative inflammatory intestinal disorders with an abnormal mucosal barrier such as inflammatory bowel disease.

  15. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells.

    PubMed

    Cheng, Catherine; Nowak, Roberta B; Biswas, Sondip K; Lo, Woo-Kuen; FitzGerald, Paul G; Fowler, Velia M

    2016-08-01

    To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end-capping protein. We investigated F-actin and F-actin-binding protein localization in interdigitations of Tmod1+/+ and Tmod1-/- single mature lens fibers. F-actin-rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1-/- mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1-/- mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1-/- mature fibers. These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin-actin network stabilized by Tmod1. α-Actinin-crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin-associated proteins required for the formation of paddles between lens fibers.

  16. Rotational dynamics of spin-labeled F-actin during activation of myosin S1 ATPase using caged ATP.

    PubMed Central

    Ostap, E. M.; Thomas, D. D.

    1991-01-01

    The most probable source of force generation in muscle fibers in the rotation of the myosin head when bound to actin. This laboratory has demonstrated that ATP induces microsecond rotational motions of spin-labeled myosin heads bound to actin (Berger, C. L. E. C. Svensson, and D. D. Thomas. 1989. Proc. Natl. Acad. Sci. USA. 86:8753-8757). Our goal is to determine whether the observed ATP-induced rotational motions of actin-bound heads are accompanied by changes in actin rotational motions. We have used saturation transfer electron paramagnetic resonance (ST-EPR) and laser-induced photolysis of caged ATP to monitor changes in the microsecond rotational dynamics of spin-labeled F-actin in the presence of myosin subfragment-1 (S1). A maleimide spin label was attached selectively to cys-374 on actin. In the absence of ATP (with or without caged ATP), the ST-EPR spectrum (corresponding to an effective rotational time of approximately 150 microseconds) was essentially the same as observed for the same spin label bound to cys-707 (SH1) on S1, indicating that S1 is rigidly bound to actin in rigor. At normal ionic strength (micro = 186 mM), a decrease in ST-EPR intensity (increase in microsecond F-actin mobility) was clearly indicated upon photolysis of 1 mM caged ATP with a 50-ms, 351-nm laser pulse. This increase in mobility is due to the complete dissociation of Si from the actin filament. At low ionic strength (micro, = 36 mM), when about half the Si heads remain bound during ATP hydrolysis, no change in the actin mobility was detected, despite much faster motions of labeled S1 bound to actin. Therefore, we conclude that the active interaction of Si, actin,and ATP induces rotation of myosin heads relative to actin, but does not affect the microsecond rotational motion of actin itself, as detected at cys-374 of actin. PMID:1651780

  17. Regulation of Retinoschisin Secretion in Weri-Rb1 Cells by the F-Actin and Microtubule Cytoskeleton

    PubMed Central

    Kitamura, Eiko; Gribanova, Yekaterina E.; Farber, Debora B.

    2011-01-01

    Retinoschisin is encoded by the gene responsible for X-linked retinoschisis (XLRS), an early onset macular degeneration that results in a splitting of the inner layers of the retina and severe loss in vision. Retinoschisin is predominantly expressed and secreted from photoreceptor cells as a homo-oligomer protein; it then associates with the surface of retinal cells and maintains the retina cellular architecture. Many missense mutations in the XLRS1 gene are known to cause intracellular retention of retinoschisin, indicating that the secretion process of the protein is a critical step for its normal function in the retina. However, the molecular mechanisms underlying retinoschisin's secretion remain to be fully elucidated. In this study, we investigated the role of the F-actin cytoskeleton in the secretion of retinoschisin by treating Weri-Rb1 cells, which are known to secrete retinoschisin, with cytochalasin D, jasplakinolide, Y-27632, and dibutyryl cGMP. Our results show that cytochalasin D and jasplakinolide inhibit retinoschisin secretion, whereas Y-27632 and dibutyryl cGMP enhance secretion causing F-actin alterations. We also demonstrate that high concentrations of taxol, which hyperpolymerizes microtubules, inhibit retinoschisin secretion. Our data suggest that retinoschisin secretion is regulated by the F-actin cytoskeleton, that cGMP or inhibition of ROCK alters F-actin structure enhancing the secretion, and that the microtubule cytoskeleton is also involved in this process. PMID:21738583

  18. Pure F-actin networks are distorted and branched by steps in the critical-point drying method.

    PubMed

    Resch, Guenter P; Goldie, Kenneth N; Hoenger, Andreas; Small, J Victor

    2002-03-01

    Elucidation of the ultrastructural organization of actin networks is crucial for understanding the molecular mechanisms underlying actin-based motility. Results obtained from cytoskeletons and actin comets prepared by the critical-point procedure, followed by rotary shadowing, support recent models incorporating actin filament branching as a main feature of lamellipodia and pathogen propulsion. Since actin branches were not evident in earlier images obtained by negative staining, we explored how these differences arise. Accordingly, we have followed the structural fate of dense networks of pure actin filaments subjected to steps of the critical-point drying protocol. The filament networks have been visualized in parallel by both cryo-electron microscopy and negative staining. Our results demonstrate the selective creation of branches and other artificial structures in pure F-actin networks by the critical-point procedure and challenge the reliability of this method for preserving the detailed organization of actin assemblies that drive motility. (c) 2002 Elsevier Science (USA).

  19. Role of gelsolin in the formation and organization of triton-soluble F-actin during myeloid differentiation of HL-60 cells.

    PubMed

    Watts, R G

    1995-04-15

    Structurally and functionally distinct F-actin pools coexist with globular (G)-actin in a variety of eukaryotic cells, including polymorphonuclear leukocytes (PMNs). In PMNs, a Triton-soluble F-actin pool (TSF) exists as short cytoplasmic filaments capped with gelsolin, while Triton-insoluble F-actin (TIF) is a three-dimensional meshwork of F-actin associated with actin-binding protein 280 (ABP-280), alpha-actinin, and tropomyosin. The unique association of gelsolin with the TSF suggests a role for gelsolin in creation or regulation of TSF. To evaluate gelsolin's role in TSF formation, the quantities of actin and gelsolin were determined by quantitative sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblots in uninduced HL-60 cells (U-HL-60) and in HL-60 cells induced to myeloid differentiation with 1.25% dimethyl sulfoxide for 4 to 5 days (I-HL-60). U-HL-60 cells contain 17.76 +/- 6.01 pmol actin per 10(6) cells (TIF, 5.3 +/- 1.5; TSF, 2.17 +/- 0.37; G, 10.3 +/- 5.7; n = 5) and 0.073 pmol gelsolin per 10(6) cells (TIF, 0; TSF, 0.002 +/- 0.005; G, 0.07 +/- 0.01; n = 3), representing molar actin to gelsolin (A:G) ratios of 1,085:1 for TSF and 147:1 for G. After myeloid differentiation, the actin content increases 1.80-fold (31.94 +/- 6.14 pmol/10(6) cells) equally in each actin pool (TIF, 9.36 +/- 2.35; TSF, 3.29 +/- 0.62; G, 19.29 +/- 4.83). Gelsolin increases 2.4-fold overall (0.178 +/- 0.02 pmol/10(6) cells) but 19-fold in TSF (0.038 +/- 0.009) and only 1.9-fold in G pool (0.139 +/- 0.006), resulting in A:G ratios of 87:1 in TSF and 139:1 in G. The findings of an increase in TSF gelsolin with decreased A:G ratios (1,085:1 v 87:1) with myeloid differentiation suggest shortening of TSF filaments, while the A:G ratios of unbound gelsolin are unchanged (147:1 v 139:1). Measurement of EGTA-resistant gelsolin/actin complexes in HL-60 cells shows that 95% to 100% of complexes exist in the TSF-actin pool only. These findings are consistent

  20. F5-peptide induces aspermatogenesis by disrupting organization of actin- and microtubule-based cytoskeletons in the testis

    PubMed Central

    Gao, Ying; Mruk, Dolores D.; Lui, Wing-yee; Lee, Will M.; Cheng, C. Yan

    2016-01-01

    During the release of sperm at spermiation, a biologically active F5-peptide, which can disrupt the Sertoli cell tight junction (TJ) permeability barrier, is produced at the site of the degenerating apical ES (ectoplasmic specialization). This peptide coordinates the events of spermiation and blood-testis barrier (BTB) remodeling at stage VIII of the epithelial cycle, creating a local apical ES-BTB axis to coordinate cellular events across the epithelium. The mechanism(s) by which F5-peptide perturbs BTB restructuring, and its involvement in apical ES dynamics remain unknown. F5-peptide, besides perturbing BTB integrity, was shown to induce germ cell release from the epithelium following its efficient in vivo overexpression in the testis. Overexpression of F5-peptide caused disorganization of actin- and microtubule (MT)-based cytoskeletons, mediated by altering the spatiotemporal expression of actin binding/regulatory proteins in the seminiferous epithelium. F5-peptide perturbed the ability of actin microfilaments and/or MTs from converting between their bundled and unbundled/defragmented configuration, thereby perturbing adhesion between spermatids and Sertoli cells. Since apical ES and basal ES/BTB are interconnected through the underlying cytoskeletal networks, this thus provides an efficient and novel mechanism to coordinate different cellular events across the epithelium during spermatogenesis through changes in the organization of actin microfilaments and MTs. These findings also illustrate the potential of F5-peptide being a male contraceptive peptide for men. PMID:27611949

  1. Profilin as a regulator of the membrane-actin cytoskeleton interface in plant cells

    PubMed Central

    Sun, Tiantian; Li, Shanwei; Ren, Haiyun

    2013-01-01

    Membrane structures and cytoskeleton dynamics are intimately inter-connected in the eukaryotic cell. Recently, the molecular mechanisms operating at this interface have been progressively addressed. Many experiments have revealed that the actin cytoskeleton can interact with membranes through various discrete membrane domains. The actin-binding protein, profilin has been proven to inhibit actin polymerization and to promote F-actin elongation. This is dependent on many factors, such as the profilin/G-actin ratio and the ionic environment of the cell. Additionally, profilin has specific domains that interact with phosphoinositides and poly-L-proline rich proteins; theoretically, this gives profilin the opportunity to interact with membranes, and a large number of experiments have confirmed this possibility. In this article, we summarize recent findings in plant cells, and discuss the evidence of the connections among actin cytoskeleton, profilin and biomembranes through direct or indirect relationships. PMID:24391654

  2. Actinous enigma or enigmatic actin

    PubMed Central

    Povarova, Olga I; Uversky, Vladimir N; Kuznetsova, Irina M; Turoverov, Konstantin K

    2014-01-01

    Being the most abundant protein of the eukaryotic cell, actin continues to keep its secrets for more than 60 years. Everything about this protein, its structure, functions, and folding, is mysteriously counterintuitive, and this review represents an attempt to solve some of the riddles and conundrums commonly found in the field of actin research. In fact, actin is a promiscuous binder with a wide spectrum of biological activities. It can exist in at least three structural forms, globular, fibrillar, and inactive (G-, F-, and I-actin, respectively). G-actin represents a thermodynamically instable, quasi-stationary state, which is formed in vivo as a result of the energy-intensive, complex posttranslational folding events controlled and driven by cellular folding machinery. The G-actin structure is dependent on the ATP and Mg2+ binding (which in vitro is typically substituted by Ca2+) and protein is easily converted to the I-actin by the removal of metal ions and by action of various denaturing agents (pH, temperature, and chemical denaturants). I-actin cannot be converted back to the G-form. Foldable and “natively folded” forms of actin are always involved in interactions either with the specific protein partners, such as Hsp70 chaperone, prefoldin, and the CCT chaperonin during the actin folding in vivo or with Mg2+ and ATP as it takes place in the G-form. We emphasize that the solutions for the mysteries of actin multifunctionality, multistructurality, and trapped unfolding can be found in the quasi-stationary nature of this enigmatic protein, which clearly possesses many features attributed to both globular and intrinsically disordered proteins. PMID:28232879

  3. Treatment of Ras-induced cancers by the F-actin cappers tensin and chaetoglobosin K, in combination with the caspase-1 inhibitor N1445.

    PubMed

    Tikoo, A; Cutler, H; Lo, S H; Chen, L B; Maruta, H

    1999-01-01

    For transforming normal fibroblasts to malignant cells, oncogenic Ras mutants such as v-Ha-ras require Rho family GTPases (Rho, Rac, and CDC42) that are responsible for controlling actin-cytoskeleton organization. Ras activates Rac through a PI-3 kinase-mediated pathway. Rac causes uncapping of actin filaments (F-actin) at the plus-ends, through phosphatidylinositol 4,5 bisphosphate (PIP2), and eventually induces membrane ruffling. Several distinct F-actin/PIP2-binding proteins, such as gelsolin, which severs and caps the plus-ends of actin filaments, or HS1, which cross-links actin filaments, have been shown to suppress v-Ha-Ras-induced malignant transformation when they are overexpressed. Interestingly, an F-actin cross-linking drug (photosensitizer) called MKT-077 suppresses Ras transformation. Thus, an F-actin capping/severing drug might also have an anticancer potential. This study was conducted to determine first whether Ras-induced malignant phenotype (anchorage-independent growth) is suppressed by overexpression of the gene encoding a large plus-end F-actin capping protein called tensin and second to test the anti-Ras potential of a unique fungal antibiotic (small compound) called chaetoglobosin K (CK) that also caps the plus-ends of actin filaments. DNA transfection with a retroviral vector carrying the tensin cDNA was used to overexpress tensin in v-Ha-Ras-transformed NIH 3T3 cells. All stable tensin transfectants rarely formed colonies in soft agar, indicating that tensin suppresses the anchorage-independent growth. The anti-Ras action of CK was determined by incubating the Ras-transformants in the presence of CK in soft agar. Two microM CK almost completely inhibited their colony formation, indicating that CK also suppresses the malignant phenotype. However, unlike tensin, CK causes an apoptosis of Ras-transformed NIH 3T3 cells and, less effectively, of normal NIH 3T3 cells, indicating that CK has an F-actin capping-independent side effect(s). CK

  4. The subcortical maternal complex controls symmetric division of mouse zygotes by regulating F-actin dynamics.

    PubMed

    Yu, Xing-Jiang; Yi, Zhaohong; Gao, Zheng; Qin, Dandan; Zhai, Yanhua; Chen, Xue; Ou-Yang, Yingchun; Wang, Zhen-Bo; Zheng, Ping; Zhu, Min-Sheng; Wang, Haibin; Sun, Qing-Yuan; Dean, Jurrien; Li, Lei

    2014-09-11

    Maternal effect genes play critical roles in early embryogenesis of model organisms where they have been intensively investigated. However, their molecular function in mammals remains largely unknown. Recently, we identified a subcortical maternal complex (SCMC) that contains four proteins encoded by maternal effect genes (Mater, Filia, Floped and Tle6). Here we report that TLE6, similar to FLOPED and MATER, stabilizes the SCMC and is necessary for cleavage beyond the two-cell stage of development. We document that the SCMC is required for formation of the cytoplasmic F-actin meshwork that controls the central position of the spindle and ensures symmetric division of mouse zygotes. We further demonstrate that the SCMC controls formation of the actin cytoskeleton specifically via Cofilin, a key regulator of F-actin assembly. Our results provide molecular insight into the physiological function of TLE6, its interaction with the SCMC and their roles in the symmetric division of the zygote in early mouse development.

  5. Coactosin accelerates cell dynamism by promoting actin polymerization.

    PubMed

    Hou, Xubin; Katahira, Tatsuya; Ohashi, Kazumasa; Mizuno, Kensaku; Sugiyama, Sayaka; Nakamura, Harukazu

    2013-07-01

    During development, cells dynamically move or extend their processes, which are achieved by actin dynamics. In the present study, we paid attention to Coactosin, an actin binding protein, and studied its role in actin dynamics. Coactosin was associated with actin and Capping protein in neural crest cells and N1E-115 neuroblastoma cells. Accumulation of Coactosin to cellular processes and its association with actin filaments prompted us to reveal the effect of Coactosin on cell migration. Coactosin overexpression induced cellular processes in cultured neural crest cells. In contrast, knock-down of Coactosin resulted in disruption of actin polymerization and of neural crest cell migration. Importantly, Coactosin was recruited to lamellipodia and filopodia in response to Rac signaling, and mutated Coactosin that cannot bind to F-actin did not react to Rac signaling, nor support neural crest cell migration. It was also shown that deprivation of Rac signaling from neural crest cells by dominant negative Rac1 (DN-Rac1) interfered with neural crest cell migration, and that co-transfection of DN-Rac1 and Coactosin restored neural crest cell migration. From these results we have concluded that Coactosin functions downstream of Rac signaling and that it is involved in neurite extension and neural crest cell migration by actively participating in actin polymerization. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Actin filaments as tension sensors.

    PubMed

    Galkin, Vitold E; Orlova, Albina; Egelman, Edward H

    2012-02-07

    The field of mechanobiology has witnessed an explosive growth over the past several years as interest has greatly increased in understanding how mechanical forces are transduced by cells and how cells migrate, adhere and generate traction. Actin, a highly abundant and anomalously conserved protein, plays a large role in forming the dynamic cytoskeleton that is so essential for cell form, motility and mechanosensitivity. While the actin filament (F-actin) has been viewed as dynamic in terms of polymerization and depolymerization, new results suggest that F-actin itself may function as a highly dynamic tension sensor. This property may help explain the unusual conservation of actin's sequence, as well as shed further light on actin's essential role in structures from sarcomeres to stress fibers. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Direct binding of F actin to the cytoplasmic domain of the alpha 2 integrin chain in vitro

    NASA Technical Reports Server (NTRS)

    Kieffer, J. D.; Plopper, G.; Ingber, D. E.; Hartwig, J. H.; Kupper, T. S.

    1995-01-01

    The transmembrane integrins have been shown to interact with the cytoskeleton via noncovalent binding between cytoplasmic domains (CDs) of integrin beta chains and various actin binding proteins within the focal adhesion complex. Direct or indirect integrin alpha chain CD binding to the actin cytoskeleton has not been reported. We show here that actin, as an abundant constituent of focal adhesion complex proteins isolated from fibroblasts, binds strongly and specifically to alpha 2 CD, but not to alpha 1 CD peptide. Similar specific binding to alpha 2 CD peptide was seen for highly purified F actin, free of putative actin-binding proteins. The bound complex of actin and peptide was visualized directly by coprecipitation, and actin binding was abrogated by removal of a five amino acid sequence from the alpha 2 CD peptide. Our findings may explain the earlier observation that, while integrins alpha 2 beta 1 and alpha 1 beta 1 both bind to collagen, only alpha 2 beta 1 can mediate contraction of extracellular collagen matrices.

  8. Actin dynamics in Amoeba proteus motility.

    PubMed

    Pomorski, P; Krzemiński, P; Wasik, A; Wierzbicka, K; Barańska, J; Kłopocka, W

    2007-01-01

    We studied the distribution of the endogenous Arp2/3 complex in Amoeba proteus and visualised the ratio of filamentous (F-actin) to total actin in living cells. The presented results show that in the highly motile Amoeba proteus, Arp2/3 complex-dependent actin polymerisation is involved in the formation of the branching network of the contractile layer, adhesive structures, and perinuclear cytoskeleton. The aggregation of the Arp2/3 complex in the cortical network, with the exception of the uroid and advancing fronts, and the spatial orientation of microfilaments at the leading edge suggest that actin polymerisation in this area is not sufficient to provide the driving force for membrane displacement. The examined proteins were enriched in the pinocytotic pseudopodia and the perinuclear cytoskeleton in pinocytotic amoebae. In migrating amoebae, the course of changes in F-actin concentration corresponded with the distribution of tension in the cell cortex. The maximum level of F-actin in migrating amoebae was observed in the middle-posterior region and in the front of retracting pseudopodia. Arp2/3 complex-dependent actin polymerisation did not seem to influence F-actin concentration. The strongly condensed state of the microfilament system could be attributed to strong isometric contraction of the cortical layer accompanied by its retraction from distal cell regions. Isotonic contraction was limited to the uroid.

  9. The Tyrosine Kinase Activity of c-Src Regulates Actin Dynamics and Organization of Podosomes in Osteoclasts

    PubMed Central

    Destaing, Olivier; Sanjay, Archana; Itzstein, Cecile; Horne, William C.; Toomre, Derek

    2008-01-01

    Podosomes are dynamic actin-rich structures composed of a dense F-actin core surrounded by a cloud of more diffuse F-actin. Src performs one or more unique functions in osteoclasts (OCLs), and podosome belts and bone resorption are impaired in the absence of Src. Using Src−/− OCLs, we investigated the specific functions of Src in the organization and dynamics of podosomes. We found that podosome number and the podosome-associated actin cloud were decreased in Src−/− OCLs. Videomicroscopy and fluorescence recovery after photobleaching analysis revealed that the life span of Src−/− podosomes was increased fourfold and that the rate of actin flux in the core was decreased by 40%. Thus, Src regulates the formation, structure, life span, and rate of actin polymerization in podosomes and in the actin cloud. Rescue of Src−/− OCLs with Src mutants showed that both the kinase activity and either the SH2 or the SH3 binding domain are required for Src to restore normal podosome organization and dynamics. Moreover, inhibition of Src family kinase activities in Src−/− OCLs by Src inhibitors or by expressing dominant-negative SrcK295M induced the formation of abnormal podosomes. Thus, Src is an essential regulator of podosome structure, dynamics and organization. PMID:17978100

  10. Development of a F actin-based live-cell fluorimetric microplate assay for diarrhetic shellfish toxins.

    PubMed

    Leira, F; Alvarez, C; Cabado, A G; Vieites, J M; Vieytes, M R; Botana, L M

    2003-06-15

    A new cytotoxicity assay for detection and quantitation of diarrhetic shellfish toxins (DSP) is presented. This assay is based upon fluorimetric determination of F-actin depolymerization induced by okadaic acid (OA)-class compounds in the BE(2)-M17 neuroblastoma cell line. No interferences were observed with other marine toxins such as saxitoxin, domoic acid, or yessotoxin, thus indicating a good specificity of the assay as expected by the direct relationship between protein phosphatase inhibition and cytoskeletal changes. The proposed method is rapid (<2h) and shows a linear response in the range of 50-300 nM OA. The detection limit of the assay for crude methanolic extracts of bivalves lies between 0.2 and 1.0 microg OA per gram of digestive glands, depending on the type of samples (fresh or canned), thus being similar to that of the mouse bioassay. The performance of this assay has been evaluated by comparative analysis of 32 toxic mussel samples by the F-actin assay, mouse bioassay, HPLC and PP2A inhibition assay. Results obtained by the F-actin method showed no differences with HPLC and significant correlation with PP2A inhibition assay (r(2)=0.71). No false negative results were obtained with this new cell assay, which also showed optimum reproducibility.

  11. Actin Bodies in Yeast Quiescent Cells: An Immediately Available Actin Reserve?

    PubMed Central

    Pinson, Benoît; Salin, Bénédicte; Daignan-Fornier, Bertrand

    2006-01-01

    Most eukaryotic cells spend most of their life in a quiescent state, poised to respond to specific signals to proliferate. In Saccharomyces cerevisiae, entry into and exit from quiescence are dependent only on the availability of nutrients in the environment. The transition from quiescence to proliferation requires not only drastic metabolic changes but also a complete remodeling of various cellular structures. Here, we describe an actin cytoskeleton organization specific of the yeast quiescent state. When cells cease to divide, actin is reorganized into structures that we named “actin bodies.” We show that actin bodies contain F-actin and several actin-binding proteins such as fimbrin and capping protein. Furthermore, by contrast to actin patches or cables, actin bodies are mostly immobile, and we could not detect any actin filament turnover. Finally, we show that upon cells refeeding, actin bodies rapidly disappear and actin cables and patches can be assembled in the absence of de novo protein synthesis. This led us to propose that actin bodies are a reserve of actin that can be immediately mobilized for actin cables and patches formation upon reentry into a proliferation cycle. PMID:16914523

  12. Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells

    PubMed Central

    Cheng, Catherine; Nowak, Roberta B.; Biswas, Sondip K.; Lo, Woo-Kuen; FitzGerald, Paul G.; Fowler, Velia M.

    2016-01-01

    Purpose To elucidate the proteins required for specialized small interlocking protrusions and large paddle domains at lens fiber cell tricellular junctions (vertices), we developed a novel method to immunostain single lens fibers and studied changes in cell morphology due to loss of tropomodulin 1 (Tmod1), an F-actin pointed end–capping protein. Methods We investigated F-actin and F-actin–binding protein localization in interdigitations of Tmod1+/+ and Tmod1−/− single mature lens fibers. Results F-actin–rich small protrusions and large paddles were present along cell vertices of Tmod1+/+ mature fibers. In contrast, Tmod1−/− mature fiber cells lack normal paddle domains, while small protrusions were unaffected. In Tmod1+/+ mature fibers, Tmod1, β2-spectrin, and α-actinin are localized in large puncta in valleys between paddles; but in Tmod1−/− mature fibers, β2-spectrin was dispersed while α-actinin was redistributed at the base of small protrusions and rudimentary paddles. Fimbrin and Arp3 (actin-related protein 3) were located in puncta at the base of small protrusions, while N-cadherin and ezrin outlined the cell membrane in both Tmod1+/+ and Tmod1−/− mature fibers. Conclusions These results suggest that distinct F-actin organizations are present in small protrusions versus large paddles. Formation and/or maintenance of large paddle domains depends on a β2-spectrin–actin network stabilized by Tmod1. α-Actinin–crosslinked F-actin bundles are enhanced in absence of Tmod1, indicating altered cytoskeleton organization. Formation of small protrusions is likely facilitated by Arp3-branched and fimbrin-bundled F-actin networks, which do not depend on Tmod1. This is the first work to reveal the F-actin–associated proteins required for the formation of paddles between lens fibers. PMID:27537257

  13. A critical comparison of the current view of Ca signaling with the novel concept of F-actin-based Ca signaling.

    PubMed

    Lange, Klaus; Gartzke, Joachim

    2006-01-01

    A detailed comparative survey on the current idea of Ca signaling and the alternative concept of F-actin-based Ca signaling is given. The two hypotheses differ in one central aspect - the mechanism of Ca storage. The current theory rests on the assumption of Ca-accumulating vesicles derived from the endoplasmic/ sarcoplasmic reticulum, which are equipped with an ATP-dependent Ca pump and IP3- or ryanodine-sensitive Ca-release channels/receptors. The alternative hypothesis proceeds from the idea of Ca storage at the high-affinity binding sites of F-actin subunits. Several prominent features of Ca signaling, which are not adequately described by the current concept, are inherent properties of the F-actin system and its dynamic state of treadmilling. F-actin is the only known biological Ca-binding system that has been proven by in vitro experiments to work within the physiological range of Ca concentrations and the only system that meets all necessary conditions to function as receptor-operated Ca store and as a coupling device between the Ca store and the store-operated Ca influx pathway. The most important properties of Ca signaling, such as store-channel coupling, quantal Ca release, spiking and oscillations, biphasic and "phasic" uptake kinetics, and Ca-induced Ca release, turn out to be systematic features of the new concept but remain unexplained by the classical vesicle storage hypothesis. A number of novel findings, specifically recent reports about direct effects of actin-specific toxins on Ca stores, have strengthened the new concept. The concept of F-actin-based Ca signaling combined with the notion of microvillar regulation of ion and substrate fluxes opens new aspects and far-reaching consequences, not only for cellular Ca signaling but also for various other cell functions, and represents an opportunity to connect several fields of cell physiology on the basis of a common mechanism.

  14. Drebrin-like protein DBN-1 is a sarcomere component that stabilizes actin filaments during muscle contraction.

    PubMed

    Butkevich, Eugenia; Bodensiek, Kai; Fakhri, Nikta; von Roden, Kerstin; Schaap, Iwan A T; Majoul, Irina; Schmidt, Christoph F; Klopfenstein, Dieter R

    2015-07-06

    Actin filament organization and stability in the sarcomeres of muscle cells are critical for force generation. Here we identify and functionally characterize a Caenorhabditis elegans drebrin-like protein DBN-1 as a novel constituent of the muscle contraction machinery. In vitro, DBN-1 exhibits actin filament binding and bundling activity. In vivo, DBN-1 is expressed in body wall muscles of C. elegans. During the muscle contraction cycle, DBN-1 alternates location between myosin- and actin-rich regions of the sarcomere. In contracted muscle, DBN-1 is accumulated at I-bands where it likely regulates proper spacing of α-actinin and tropomyosin and protects actin filaments from the interaction with ADF/cofilin. DBN-1 loss of function results in the partial depolymerization of F-actin during muscle contraction. Taken together, our data show that DBN-1 organizes the muscle contractile apparatus maintaining the spatial relationship between actin-binding proteins such as α-actinin, tropomyosin and ADF/cofilin and possibly strengthening actin filaments by bundling.

  15. Identification of sucrose synthase as an actin-binding protein

    NASA Technical Reports Server (NTRS)

    Winter, H.; Huber, J. L.; Huber, S. C.; Davies, E. (Principal Investigator)

    1998-01-01

    Several lines of evidence indicate that sucrose synthase (SuSy) binds both G- and F-actin: (i) presence of SuSy in the Triton X-100-insoluble fraction of microsomal membranes (i.e. crude cytoskeleton fraction); (ii) co-immunoprecipitation of actin with anti-SuSy monoclonal antibodies; (iii) association of SuSy with in situ phalloidin-stabilized F-actin filaments; and (iv) direct binding to F-actin, polymerized in vitro. Aldolase, well known to interact with F-actin, interfered with binding of SuSy, suggesting that a common or overlapping binding site may be involved. We postulate that some of the soluble SuSy in the cytosol may be associated with the actin cytoskeleton in vivo.

  16. Global architecture of the F-actin cytoskeleton regulates cell shape-dependent endothelial mechanotransduction.

    PubMed

    Shao, Yue; Mann, Jennifer M; Chen, Weiqiang; Fu, Jianping

    2014-03-01

    Uniaxial stretch is an important biophysical regulator of cell morphology (or shape) and functions of vascular endothelial cells (ECs). However, it is unclear whether and how cell shape can independently regulate EC mechanotransductive properties under uniaxial stretch. Herein, utilizing a novel uniaxial cell-stretching device integrated with micropost force sensors, we reported the first experimental evidence showing cell shape-dependent EC mechanotransduction via cytoskeleton (CSK) contractile forces in response to uniaxial stretch. Combining experiments and theoretical modeling from first principles, we showed that it was the global architecture of the F-actin CSK that instructed the cell shape-dependent EC mechanotransductive process. Furthermore, a cell shape-dependent nature was relayed in EC mechanotransduction via dynamic focal adhesion (FA) assembly. Our results suggested a novel mechanotransductive process in ECs wherein the global architecture of the F-actin CSK, governed by cell shape, controls mechanotransduction via CSK contractile forces and force-dependent FA assembly under uniaxial stretch.

  17. The minus-end actin capping protein, UNC-94/tropomodulin, regulates development of the Caenorhabditis elegans intestine

    PubMed Central

    Cox-Paulson, Elisabeth; Cannataro, Vincent; Gallagher, Thomas; Hoffman, Corey; Mantione, Gary; McIntosh, Matthew; Silva, Malan; Vissichelli, Nicole; Walker, Rachel; Simske, Jeffrey; Ono, Shoichiro; Hoops, Harold

    2014-01-01

    Background Tropomodulins are actin capping proteins that regulate the stability of the slow growing, minus-ends of actin filaments. The C. elegans tropomodulin homolog, UNC-94 has sequence and functional similarity to vertebrate tropomodulins. We investigated the role of UNC-94 in C. elegans intestinal morphogenesis. Results In the embryonic C. elegans intestine, UNC-94 localizes to the terminal web, an actin and intermediate filament rich structure that underlies the apical membrane. Loss of UNC-94 function results in areas of flattened intestinal lumen. In worms homozygous for the strong loss-of-function allele, unc-94(tm724), the terminal web is thinner and the amount of F-actin is reduced, pointing to a role for UNC-94 in regulating the structure of the terminal web. The non-muscle myosin, NMY-1, also localizes to the terminal web; and we present evidence that increasing actomyosin contractility by depleting the myosin phosphatase regulatory subunit, mel-11, can rescue the flattened lumen phenotype of unc-94 mutants. Conclusions The data support a model in which minus-end actin capping by UNC-94 promotes proper F-actin structure and contraction in the terminal web, yielding proper shape of the intestinal lumen. This establishes a new role for a tropomodulin in regulating lumen shape during tubulogenesis. PMID:24677443

  18. Real-Time Dynamics of Emerging Actin Networks in Cell-Mimicking Compartments

    PubMed Central

    Deshpande, Siddharth; Pfohl, Thomas

    2015-01-01

    Understanding the cytoskeletal functionality and its relation to other cellular components and properties is a prominent question in biophysics. The dynamics of actin cytoskeleton and its polymorphic nature are indispensable for the proper functioning of living cells. Actin bundles are involved in cell motility, environmental exploration, intracellular transport and mechanical stability. Though the viscoelastic properties of actin-based structures have been extensively probed, the underlying microstructure dynamics, especially their disassembly, is not fully understood. In this article, we explore the rich dynamics and emergent properties exhibited by actin bundles within flow-free confinements using a microfluidic set-up and epifluorescence microscopy. After forming entangled actin filaments within cell-sized quasi two-dimensional confinements, we induce their bundling using three different fundamental mechanisms: counterion condensation, depletion interactions and specific protein-protein interactions. Intriguingly, long actin filaments form emerging networks of actin bundles via percolation leading to remarkable properties such as stress generation and spindle-like intermediate structures. Simultaneous sharing of filaments in different links of the network is an important parameter, as short filaments do not form networks but segregated clusters of bundles instead. We encounter a hierarchical process of bundling and its subsequent disassembly. Additionally, our study suggests that such percolated networks are likely to exist within living cells in a dynamic fashion. These observations render a perspective about differential cytoskeletal responses towards numerous stimuli. PMID:25785606

  19. Bacterial subversion of host actin dynamics at the plasma membrane.

    PubMed

    Carabeo, Rey

    2011-10-01

    Invasion of non-phagocytic cells by a number of bacterial pathogens involves the subversion of the actin cytoskeletal remodelling machinery to produce actin-rich cell surface projections designed to engulf the bacteria. The signalling that occurs to induce these actin-rich structures has considerable overlap among a diverse group of bacteria. The molecular organization within these structures act in concert to internalize the invading pathogen. This dynamic process could be subdivided into three acts - actin recruitment, engulfment, and finally, actin disassembly/internalization. This review will present the current state of knowledge of the molecular processes involved in each stage of bacterial invasion, and provide a perspective that highlights the temporal and spatial control of actin remodelling that occurs during bacterial invasion. © 2011 Blackwell Publishing Ltd.

  20. Stability of actin-lysozyme complexes formed in cystic fibrosis disease.

    PubMed

    Mohammadinejad, Sarah; Ghamkhari, Behnoush; Abdolmaleki, Sarah

    2016-08-21

    Finding the conditions for destabilizing actin-lysozyme complexes is of biomedical importance in preventing infections in cystic fibrosis. In this manuscript, the effects of different charge-mutants of lysozyme and salt concentration on the stability of actin-lysozyme complexes are studied using Langevin dynamics simulation. A coarse-grained model of F-actin is used in which both its twist and bending rigidities are considered. We observe that the attraction between F-actins is stronger in the presence of wild-type lysozymes relative to the mutated lysozymes of lower charges. By calculating the potential of mean force between F-actins, we conclude that the stability of actin-lysozyme complexes is decreased by reducing the charge of lysozyme mutants. The distributions of different lysozyme charge-mutants show that wild-type (+9e) lysozymes are mostly accumulated in the center of triangles formed by three adjacent F-actins, while lysozyme mutants of charges +7e and +5e occupy the bridging regions between F-actins. Low-charge mutants of lysozyme (+3e) distribute uniformly around F-actins. A rough estimate of the electrostatic energy for these different distributions proves that the distribution in which lysozymes reside in the center of triangles leads to more stable complexes. Also our results in the presence of a salt suggest that at physiological salt concentration of airway, F-actin complexes are not formed by charge-reduced mutants of lysozyme. The findings are interesting because if we can design charge-reduced lysozyme mutants with considerable antibacterial activity, they are not sequestered inside F-actin aggregates and can play their role as antibacterial agents against airway infection.

  1. Regulation of the Pollen-Specific Actin-Depolymerizing Factor LlADF1

    PubMed Central

    Allwood, Ellen G.; Anthony, Richard G.; Smertenko, Andrei P.; Reichelt, Stefanie; Drobak, Bjorn K.; Doonan, John H.; Weeds, Alan G.; Hussey, Patrick J.

    2002-01-01

    Pollen tube growth is dependent on a dynamic actin cytoskeleton, suggesting that actin-regulating proteins are involved. We have examined the regulation of the lily pollen-specific actin-depolymerizing factor (ADF) LlADF1. Its actin binding and depolymerizing activity is pH sensitive, inhibited by certain phosphoinositides, but not controlled by phosphorylation. Compared with its F-actin binding properties, its low activity in depolymerization assays has been used to explain why pollen ADF decorates F-actin in pollen grains. This low activity is incompatible with a role in increasing actin dynamics necessary to promote pollen tube growth. We have identified a plant homolog of actin-interacting protein, AIP1, which enhances the depolymerization of F-actin in the presence of LlADF1 by ∼60%. Both pollen ADF and pollen AIP1 bind F-actin in pollen grains but are mainly cytoplasmic in pollen tubes. Our results suggest that together these proteins remodel actin filaments as pollen grains enter and exit dormancy. PMID:12417710

  2. Investigating the effects of tropomyosin mutations on its flexibility and interactions with filamentous actin using molecular dynamics simulation.

    PubMed

    Zheng, Wenjun; Hitchcock-DeGregori, Sarah E; Barua, Bipasha

    2016-10-01

    Tropomyosin (Tpm) is a two-chained α-helical coiled-coil protein that binds to filamentous actin (F-actin), and regulates its interactions with myosin by occupying three average positions on F-actin (blocked, closed, and open). Mutations in the Tpm are linked to heart diseases including hypertrophic cardiomyopathy (HCM) and dilated cardiomyopathy (DCM). To elucidate the molecular mechanisms of Tpm mutations (including DCM mutation E54K, HCM mutations E62Q, A63V, K70T, V95A, D175N, E180G, L185R, E192K, and a designed synthetic mutation D137L) in terms of their effects on Tpm flexibility and its interactions with F-actin, we conducted extensive molecular dynamics simulations for the wild-type and mutant Tpm in complex with F-actin (total simulation time 160 ns per mutant). The mutants exhibited distinct changes (i.e., increase or decrease) in the overall and local flexibility of the Tpm coiled-coil, with each mutation causing both local and long-range modifications of the Tpm flexibility. In addition, our binding calculations revealed weakened Tpm-F-actin interactions (except for L185R, D137L and A63V) involving five periods of Tpm, which correlate with elevated fluctuation of Tpm relative to the blocked position on F-actin that may lead to easier activation and increased Ca 2+ -sensitivity. We also simulated the αβ/βα-Tpm heterodimer in comparison with the αα-Tpm homodimer, which revealed greater flexibility and weaker actin binding in the heterodimer. Our findings are consistent with a complex mechanism underlying how different Tpm mutations perturb the Tpm function in distinct ways (e.g., by affecting specific sites of Tpm), which bear no simple links to the disease phenotypes (e.g., HCM vs. DCM).

  3. Correlative nanoscale imaging of actin filaments and their complexes

    NASA Astrophysics Data System (ADS)

    Sharma, Shivani; Zhu, Huanqi; Grintsevich, Elena E.; Reisler, Emil; Gimzewski, James K.

    2013-06-01

    Actin remodeling is an area of interest in biology in which correlative microscopy can bring a new way to analyze protein complexes at the nanoscale. Advances in EM, X-ray diffraction, fluorescence, and single molecule techniques have provided a wealth of information about the modulation of the F-actin structure and its regulation by actin binding proteins (ABPs). Yet, there are technological limitations of these approaches to achieving quantitative molecular level information on the structural and biophysical changes resulting from ABPs interaction with F-actin. Fundamental questions about the actin structure and dynamics and how these determine the function of ABPs remain unanswered. Specifically, how local and long-range structural and conformational changes result in ABPs induced remodeling of F-actin needs to be addressed at the single filament level. Advanced, sensitive and accurate experimental tools for detailed understanding of ABP-actin interactions are much needed. This article discusses the current understanding of nanoscale structural and mechanical modulation of F-actin by ABPs at the single filament level using several correlative microscopic techniques, focusing mainly on results obtained by Atomic Force Microscopy (AFM) analysis of ABP-actin complexes.

  4. A WASp–VASP complex regulates actin polymerization at the plasma membrane

    PubMed Central

    Castellano, Flavia; Le Clainche, Christophe; Patin, Delphine; Carlier, Marie-France; Chavrier, Philippe

    2001-01-01

    Proteins of the Wiskott–Aldrich syndrome and Ena/VASP families both play essential functions in the regulation of actin dynamics at the cell leading edge. However, possibilities of functional interplay between members of these two families have not been addressed. Here we show that, in hemopoietic cells, recruitment of the C-terminal VCA (Verprolin homology, Cofilin homology, Acidic) domain of WASp at the plasma membrane by a ligand technique using rapamycin as an intermediate is not sufficient to elicit efficient Arp2/3 complex-mediated actin polymerization. Other domains of WASp, in particular the proline-rich domain, are required for the formation of actin-rich structures. An in vitro analysis demonstrates that the proline-rich domain of WASp binds VASP with an affinity of ∼106 M–1. In addition, WASp and VASP both accumulate in actin-rich phagocytic cups. Finally, in a reconstituted motility medium, VASP enhances actin-based propulsion of WASp-coated beads in a fashion reminiscent of its effect on Listeria movement. We propose that VASP and WASp cooperation is essential in stimulating actin assembly and membrane protrusion at the leading edge. PMID:11598004

  5. Steady-state nuclear actin levels are determined by export competent actin pool.

    PubMed

    Skarp, Kari-Pekka; Huet, Guillaume; Vartiainen, Maria K

    2013-10-01

    A number of studies in the last decade have irrevocably promoted actin into a fully fledged member of the nuclear compartment, where it, among other crucial tasks, facilitates transcription and chromatin remodeling. Changes in nuclear actin levels have been linked to different cellular processes: decreased nuclear actin to quiescence and increased nuclear actin to differentiation. Importin 9 and exportin 6 transport factors are responsible for the continuous nucleocytoplasmic shuttling of actin, but the mechanisms, which result in modulated actin levels, have not been characterized. We find that in cells growing under normal growth conditions, the levels of nuclear actin vary considerably from cell to cell. To understand the basis for this, we have extensively quantified several cellular parameters while at the same time recording the import and export rates of green fluorescent protein (GFP)-tagged actin. Surprisingly, our dataset shows that the ratio of nuclear to cytoplasmic fluorescence intensity, but not nuclear shape, size, cytoplasm size, or their ratio, correlates negatively with both import and export rate of actin. This suggests that high-nuclear actin content is maintained by both diminished import and export. The high nuclear actin containing cells still show high mobility of actin, but it is not export competent, suggesting increased binding of actin to nuclear complexes. Creation of such export incompetent actin pool would ensure enough actin is retained in the nucleus and make it available for the various nuclear functions described for actin. Copyright © 2013 Wiley Periodicals, Inc.

  6. Capillary pericytes express α-smooth muscle actin, which requires prevention of filamentous-actin depolymerization for detection.

    PubMed

    Alarcon-Martinez, Luis; Yilmaz-Ozcan, Sinem; Yemisci, Muge; Schallek, Jesse; Kılıç, Kıvılcım; Can, Alp; Di Polo, Adriana; Dalkara, Turgay

    2018-03-21

    Recent evidence suggests that capillary pericytes are contractile and play a crucial role in the regulation of microcirculation. However, failure to detect components of the contractile apparatus in capillary pericytes, most notably α-smooth muscle actin (α-SMA), has questioned these findings. Using strategies that allow rapid filamentous-actin (F-actin) fixation (i.e. snap freeze fixation with methanol at -20°C) or prevent F-actin depolymerization (i.e. with F-actin stabilizing agents), we demonstrate that pericytes on mouse retinal capillaries, including those in intermediate and deeper plexus, express α-SMA. Junctional pericytes were more frequently α-SMA-positive relative to pericytes on linear capillary segments. Intravitreal administration of short interfering RNA (α-SMA-siRNA) suppressed α-SMA expression preferentially in high order branch capillary pericytes, confirming the existence of a smaller pool of α-SMA in distal capillary pericytes that is quickly lost by depolymerization. We conclude that capillary pericytes do express α-SMA, which rapidly depolymerizes during tissue fixation thus evading detection by immunolabeling. © 2018, Alarcon-Martinez et al.

  7. Effects of nucleotides on the denaturation of F actin: a differential scanning calorimetry and FTIR spectroscopy study.

    PubMed

    Bombardier, H; Wong, P; Gicquaud, C

    1997-07-30

    We have utilized DSC and high pressure FTIR spectroscopy to study the specificity and mechanism by which ATP protects actin against heat and pressure denaturation. Analysis of the thermograms shows that ATP raises the transition temperature Tm for actin from 69.6 to 75.8 degrees C, and the calorimetric enthalpy, deltaH, from 680 to 990 kJ/mole. Moreover, the peak becomes sharper indicating a more cooperative process. Among the other nucleotide triphosphates, only UTP increases the Tm by 2.5 degrees C, whereas GTP and CTP have negligable effects; ADP and AMP are less active, increasing the Tm by 2.1 and 1.6 degrees C, respectively. Therefore, gamma phosphate plays a key role in this protection, but its hydrolysis is not implicated since the nonhydrolysable analogue of ATP, ATP-PNP have the same activity as ATP. FTIR spectroscopy demonstrates that ATP also protects actin against high pressure denaturation. Analysis of the amide I band during the increase in pressure clearly illustrates that ATP protects particularly a region rich in beta-sheets of the actin molecule.

  8. Phosphatidylinositol-4,5-Bisphosphate-Rich Plasma Membrane Patches Organize Active Zones of Endocytosis and Ruffling in Cultured Adipocytes

    PubMed Central

    Huang, Shaohui; Lifshitz, Larry; Patki-Kamath, Varsha; Tuft, Richard; Fogarty, Kevin; Czech, Michael P.

    2004-01-01

    A major regulator of endocytosis and cortical F-actin is thought to be phosphatidylinositol-4,5-bisphosphate [PtdIns(4,5)P2] present in plasma membranes. Here we report that in 3T3-L1 adipocytes, clathrin-coated membrane retrieval and dense concentrations of polymerized actin occur in restricted zones of high endocytic activity. Ultrafast-acquisition and superresolution deconvolution microscopy of cultured adipocytes expressing an enhanced green fluorescent protein- or enhanced cyan fluorescent protein (ECFP)-tagged phospholipase Cδ1 (PLCδ1) pleckstrin homology (PH) domain reveals that these zones spatially coincide with large-scale PtdIns(4,5)P2-rich plasma membrane patches (PRMPs). PRMPs exhibit lateral dimensions exceeding several micrometers, are relatively stationary, and display extensive local membrane folding that concentrates PtdIns(4,5)P2 in three-dimensional space. In addition, a higher concentration of PtdIns(4,5)P2 in the membranes of PRMPs than in other regions of the plasma membrane can be detected by quantitative fluorescence microscopy. Vesicular structures containing both clathrin heavy chains and PtdIns(4,5)P2 are revealed immediately beneath PRMPs, as is dense F actin. Blockade of PtdIns(4,5)P2 function in PRMPs by high expression of the ECFP-tagged PLCδ1 PH domain inhibits transferrin endocytosis and reduces the abundance of cortical F-actin. Membrane ruffles induced by the expression of unconventional myosin 1c were also found to localize at PRMPs. These results are consistent with the hypothesis that PRMPs organize active PtdIns(4,5)P2 signaling zones in the adipocyte plasma membrane that in turn control regulators of endocytosis, actin dynamics, and membrane ruffling. PMID:15456883

  9. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana.

    PubMed

    Du, Juan; Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1-actin complex, we constructed a homology model of the AtADF1-actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson-Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin.

  10. Computational Study of the Binding Mechanism of Actin-Depolymerizing Factor 1 with Actin in Arabidopsis thaliana

    PubMed Central

    Wang, Xue; Dong, Chun-Hai; Yang, Jian Ming; Yao, Xiao Jun

    2016-01-01

    Actin is a highly conserved protein. It plays important roles in cellular function and exists either in the monomeric (G-actin) or polymeric form (F-actin). Members of the actin-depolymerizing factor (ADF)/cofilin protein family bind to both G-actin and F-actin and play vital roles in actin dynamics by manipulating the rates of filament polymerization and depolymerization. It has been reported that the S6D and R98A/K100A mutants of actin-depolymerizing factor 1 (ADF1) in Arabidopsis thaliana decreased the binding affinity of ADF for the actin monomer. To investigate the binding mechanism and dynamic behavior of the ADF1–actin complex, we constructed a homology model of the AtADF1–actin complex based on the crystal structure of AtADF1 and the twinfilin C-terminal ADF-H domain in a complex with a mouse actin monomer. The model was then refined for subsequent molecular dynamics simulations. Increased binding energy of the mutated system was observed using the Molecular Mechanics Generalized Born Surface Area and Poisson–Boltzmann Surface Area (MM-GB/PBSA) methods. To determine the residues that make decisive contributions to the ADF1 actin-binding affinity, per-residue decomposition and computational alanine scanning analyses were performed, which provided more detailed information on the binding mechanism. Root-mean-square fluctuation and principal component analyses confirmed that the S6D and R98A/K100A mutants induced an increased conformational flexibility. The comprehensive molecular insight gained from this study is of great importance for understanding the binding mechanism of ADF1 and G-actin. PMID:27414648

  11. Rice actin-binding protein RMD is a key link in the auxin-actin regulatory loop that controls cell growth.

    PubMed

    Li, Gang; Liang, Wanqi; Zhang, Xiaoqing; Ren, Haiyun; Hu, Jianping; Bennett, Malcolm J; Zhang, Dabing

    2014-07-15

    The plant hormone auxin plays a central role in plant growth and development. Auxin transport and signaling depend on actin organization. Despite its functional importance, the mechanistic link between actin filaments (F-actin) and auxin intracellular signaling remains unclear. Here, we report that the actin-organizing protein Rice Morphology Determinant (RMD), a type II formin from rice (Oryza sativa), provides a key link. Mutants lacking RMD display abnormal cell growth and altered configuration of F-actin array direction. The rmd mutants also exhibit an inhibition of auxin-mediated cell elongation, decreased polar auxin transport, altered auxin distribution gradients in root tips, and suppression of plasma membrane localization of auxin transporters O. sativa PIN-FORMED 1b (OsPIN1b) and OsPIN2 in root cells. We demonstrate that RMD is required for endocytosis, exocytosis, and auxin-mediated OsPIN2 recycling to the plasma membrane. Moreover, RMD expression is directly regulated by heterodimerized O. sativa auxin response factor 23 (OsARF23) and OsARF24, providing evidence that auxin modulates the orientation of F-actin arrays through RMD. In support of this regulatory loop, osarf23 and lines with reduced expression of both OsARF23 and OsARF24 display reduced RMD expression, disrupted F-actin organization and cell growth, less sensitivity to auxin response, and altered auxin distribution and OsPIN localization. Our findings establish RMD as a crucial component of the auxin-actin self-organizing regulatory loop from the nucleus to cytoplasm that controls rice cell growth and morphogenesis.

  12. Intermicrotubular actin filaments in the transalar cytoskeletal arrays of Drosophila.

    PubMed

    Mogensen, M M; Tucker, J B

    1988-11-01

    Rabbit muscle myosin subfragment S1 decorates 6 nm diameter filaments in Drosophila wing epidermal cells in the arrowhead fashion characteristic of the binding of subfragment S1 to actin filaments. The filaments in question are concentrated between microtubules that are mostly composed of 15 protofilaments and form cell surface-associated transcellular bundles. There are indications that the majority of the actin filaments have the same polarity and that, like the microtubules, they may elongate from sites at the apical surfaces of the cells. The bundles of F actin and microtubules occur in dorsal and ventral epidermal cell layers of a wing blade. They are joined in dorso-ventral pairs by attachment desmosomes. These transalar cytoskeletal arrays may provide an example of a situation where actin filaments operate as stiffeners rather than active generators of force in conjunction with myosin. The arrays probably function as noncontractile pillars to maintain basal cell extensions and keep haemocoelic spaces open in the highly folded and expanding wing blades of late pupae.

  13. High level of reactive oxygen species impaired mesenchymal stem cell migration via overpolymerization of F-actin cytoskeleton in systemic lupus erythematosus.

    PubMed

    Shi, D; Li, X; Chen, H; Che, N; Zhou, S; Lu, Z; Shi, S; Sun, L

    2014-12-01

    Some lines of evidence have demonstrated abnormalities of bone marrow mesenchymal stem cells (MSCs) in systemic lupus erythematosus (SLE) patients, characterized by defective phenotype of MSCs and slower growth with enhanced apoptosis and senescence. However, whether SLE MSCs demonstrate aberrant migration capacity or abnormalities in cytoskeleton are issues that remain poorly understood. In this study, we found that MSCs from SLE patients did show impairment in migration capacity as well as abnormalities in F-actin cytoskeleton, accompanied by a high level of intracellular reactive oxygen species (ROS). When normal MSCs were treated in vitro with H2O2, which increases intracellular ROS level as an oxidant, both reorganization of F-actin cytoskeleton and impairment of migration capability were observed. On the other hand, treatment with N-acetylcysteine (NAC), as an exogenous antioxidant, made F-actin more orderly and increased migration ratio in SLE MSCs. In addition, oral administration of NAC markedly reduced serum autoantibody levels and ameliorated lupus nephritis (LN) in MRL/lpr mice, partially reversing the abnormalities of MSCs. These results indicate that overpolymerization of F-actin cytoskeleton, which may be associated with high levels of ROS, causes impairment in the migration capacity of SLE MSCs and that oral administration of NAC may have potential therapeutic effects on MRL/lpr mice. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  14. Three-color FRET expands the ability to quantify the interactions of several proteins involved in actin filament nucleation

    NASA Astrophysics Data System (ADS)

    Wallrabe, Horst; Sun, Yuansheng; Fang, Xiaolan; Periasamy, Ammasi; Bloom, George

    2012-03-01

    With traditional 2-color Förster Resonance Energy Transfer (FRET) microscopy, valuable quantitative analyses can be conducted. Correlations of donor (D), acceptor (A) and their ratios (D:A) with energy transfer efficiency (E%) or distance (r) allows measurement of changes between control and experimental samples; also, clustered vs. random assembly of cellular components can be differentiated. Essentially, only the above three parameters D, A and D:A vs. E% are the basis for these deductions. 3-color FRET uses the same basic parameters, but exponentially expands the opportunities to quantify interrelationships among 3 cellular components. We investigated a number of questions based on the results of a triple combination (F1-F2-F3) of TFPNWASP/ Venus-IQGAP1/mCherry-Actin - all involved in the nucleation of actin - to apply the extensive analysis assay possible with 3-color FRET. How do changing N-WASP or IQGAP1 fluorescence levels affect actin fluorescence? What is the effect on E% of NWASP-actin by IQGAP1 or E% of IQGAP1-actin by N-WASP? These and other questions are explored in the context of all proteins of interest being in FRET distance vs. any two in the absence of the third. 4 cases are compared based on bleed-through corrected FRET: (1) all 3 interact, (2) only F1- F3 and F2-F3 [not F1-F2], (3) only F1-F2 and F2-F3 interact [not F1-F3], (4) only F1-F2 and F1-F3 interact [not F2-F3]. Other than describing the methodology in detail, several biologically relevant results are presented showing how E% (i.e. distance), fluorescence levels and ratios are affected in each of the cases. These correlations can only be observed in a 3-fluorophore combination. 3-color FRET will greatly expand the investigative range of quantitative analysis for the life-science researcher.

  15. Surface-induced polymerization of actin.

    PubMed Central

    Renault, A; Lenne, P F; Zakri, C; Aradian, A; Vénien-Bryan, C; Amblard, F

    1999-01-01

    Living cells contain a very large amount of membrane surface area, which potentially influences the direction, the kinetics, and the localization of biochemical reactions. This paper quantitatively evaluates the possibility that a lipid monolayer can adsorb actin from a nonpolymerizing solution, induce its polymerization, and form a 2D network of individual actin filaments, in conditions that forbid bulk polymerization. G- and F-actin solutions were studied beneath saturated Langmuir monolayers containing phosphatidylcholine (PC, neutral) and stearylamine (SA, a positively charged surfactant) at PC:SA = 3:1 molar ratio. Ellipsometry, tensiometry, shear elastic measurements, electron microscopy, and dark-field light microscopy were used to characterize the adsorption kinetics and the interfacial polymerization of actin. In all cases studied, actin follows a monoexponential reaction-limited adsorption with similar time constants (approximately 10(3) s). At a longer time scale the shear elasticity of the monomeric actin adsorbate increases only in the presence of lipids, to a 2D shear elastic modulus of mu approximately 30 mN/m, indicating the formation of a structure coupled to the monolayer. Electron microscopy shows the formation of a 2D network of actin filaments at the PC:SA surface, and several arguments strongly suggest that this network is indeed causing the observed elasticity. Adsorption of F-actin to PC:SA leads more quickly to a slightly more rigid interface with a modulus of mu approximately 50 mN/m. PMID:10049338

  16. Actin Hydrophobic Loop (262-274) and Filament Nucleation and Elongation

    PubMed Central

    Shvetsov, Alexander; Galkin, Vitold E.; Orlova, Albina; Phillips, Martin; Bergeron, Sarah E.; Rubenstein, Peter A.; Egelman, Edward H.; Reisler, Emil

    2014-01-01

    Summary The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently using a yeast actin mutant, L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked G-actin does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin - to assist with actin nucleation - and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not alone, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin the helical twist of F-actin changes by ~ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin, and a change of twist by ~ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or a competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics to both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors. PMID:18037437

  17. A p21-activated kinase (PAK1) signaling cascade coordinately regulates F-actin remodeling and insulin granule exocytosis in pancreatic β cells

    PubMed Central

    Kalwat, Michael A.; Yoder, Stephanie M.; Wang, Zhanxiang; Thurmond, Debbie C.

    2012-01-01

    Human islet studies implicate an important signaling role for the Cdc42 effector protein p21-activated kinase (PAK1) in the sustained/second-phase of insulin secretion. Because human islets from type 2 diabetic donors lack ~80% of normal PAK1 protein levels, the mechanistic requirement for PAK1 signaling in islet function was interrogated. Similar to MIN6 β cells, human islets elicited glucose-stimulated PAK1 activation that was sensitive to the PAK1 inhibitor, IPA3. Given that sustained insulin secretion has been correlated with glucose-induced filamentous actin (F-actin) remodeling, we tested the hypothesis that a Cdc42-activated PAK1 signaling cascade is required to elicit F-actin remodeling to mobilize granules to the cell surface. Live-cell imaging captured the glucose-induced cortical F-actin remodeling in MIN6 β cells; IPA3-mediated inhibition of PAK1 abolished this remodeling. IPA3 also ablated glucose-stimulated insulin granule accumulation at the plasma membrane, consistent with its role in sustained/second-phase insulin release. Both IPA3 and a selective inhibitor of the Cdc42 GTPase, ML-141, blunted the glucose-stimulated activation of Raf-1, suggesting Raf-1 to be downstream of Cdc42→PAK1. IPA3 also inhibited MEK1/2 activation, implicating the MEK1/2→ERK1/2 cascade to occur downstream of PAK1. Importantly, PD0325901, a new selective inhibitor of MEK1/2→ERK1/2 activation, impaired F-actin remodeling and the sustained/amplification pathway of insulin release. Taken together, these data suggest that glucose-mediated activation of Cdc42 leads to activation of PAK1 and prompts activation of its downstream targets Raf-1, MEK1/2 and ERK1/2 to elicit F-actin remodeling and recruitment of insulin granules to the plasma membrane to support the sustained phase of insulin release. PMID:23246867

  18. F-actin and microtubule suspensions as indeterminate fluids.

    PubMed

    Buxbaum, R E; Dennerll, T; Weiss, S; Heidemann, S R

    1987-03-20

    The viscosity of F-actin and microtubule suspensions has been measured as a function of shear rate with a Weissenberg rheogoniometer. At shear rates of less than 1.0 per second the viscosity of suspensions of these two structural proteins is inversely proportional to shear rate. These results are consistent with previous in vivo measurements of the viscosity of cytoplasm. This power law implies that shear stress is independent of shear rate; that is, shear stress is a constant at all shear rates less than 1.0 per second. Thus the flow profile of these fluids is indeterminate, or nearly so. This flow property may explain several aspects of intracellular motility in living cells. Possible explanations for this flow property are based on a recent model for semidilute suspensions of rigid rods or a classical friction model for liquid crystals.

  19. Anionic poly(amino acid)s dissolve F-actin and DNA bundles, enhance DNase activity, and reduce the viscosity of cystic fibrosis sputum.

    PubMed

    Tang, Jay X; Wen, Qi; Bennett, Andrew; Kim, Brian; Sheils, Catherine A; Bucki, Robert; Janmey, Paul A

    2005-10-01

    Bundles of F-actin and DNA present in the sputum of cystic fibrosis (CF) patients but absent from normal airway fluid contribute to the altered viscoelastic properties of sputum that inhibit clearance of infected airway fluid and exacerbate the pathology of CF. Previous strategies to remove these filamentous aggregates have focused on DNase to enzymatically depolymerize DNA to constituent monomers and gelsolin to sever F-actin to small fragments. The high densities of negative surface charge on DNA and F-actin suggest that the bundles of these filaments, which alone exhibit a strong electrostatic repulsion, may be stabilized by multivalent cations such as histones, antimicrobial peptides, and other positively charged molecules prevalent in airway fluid. This study reports that bundles of DNA or F-actin formed after addition of histone H1 or lysozyme are efficiently dissolved by soluble multivalent anions such as polymeric aspartate or glutamate. Addition of poly-aspartate or poly-glutamate also disperses DNA and actin-containing bundles in CF sputum and lowers the elastic moduli of these samples to levels comparable to those obtained after treatment with DNase I or gelsolin. Addition of poly-aspartic acid also increased DNase activity when added to samples containing DNA bundles formed with histone H1. When added to CF sputum, poly-aspartic acid significantly reduced the growth of bacteria, suggesting activation of endogenous antibacterial factors. These findings suggest that soluble multivalent anions have potential alone or in combination with other mucolytic agents to selectively dissociate the large bundles of charged biopolymers that form in CF sputum.

  20. Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells

    NASA Astrophysics Data System (ADS)

    Gardel, M. L.; Nakamura, F.; Hartwig, J. H.; Crocker, J. C.; Stossel, T. P.; Weitz, D. A.

    2006-02-01

    We show that actin filaments, shortened to physiological lengths by gelsolin and cross-linked with recombinant human filamins (FLNs), exhibit dynamic elastic properties similar to those reported for live cells. To achieve elasticity values of comparable magnitude to those of cells, the in vitro network must be subjected to external prestress, which directly controls network elasticity. A molecular requirement for the strain-related behavior at physiological conditionsis a flexible hinge found in FLNa and some FLNb molecules. Basic physical properties of the in vitro filamin-F-actin network replicate the essential mechanical properties of living cells. This physical behavior could accommodate passive deformation and internal organelle trafficking at low strains yet resist externally or internally generated high shear forces. cytoskeleton | cell mechanics | nonlinear rheology

  1. [Cytoskeletal actin and its associated proteins. Some examples in Protista].

    PubMed

    Guillén, N; Carlier, M F; Brugerolle, G; Tardieux, I; Ausseil, J

    1998-06-01

    Many processes, cell motility being an example, require cells to remodel the actin cytoskeleton in response to both intracellular and extracellular signals. Reorganization of the actin cytoskeleton involves the rapid disassembly and reassembly of actin filaments, a phenomenon regulated by the action of particular actin-binding proteins. In recent years, an interest in studying actin regulation in unicellular organisms has arisen. Parasitic protozoan are among these organisms and studies of the cytoskeleton functions of these protozoan are relevant related to either cell biology or pathogenicity. To discuss recent data in this field, a symposium concerning "Actin and actin-binding proteins in protists" was held on May 8-11 in Paris, France, during the XXXV meeting of the French Society of Protistology. As a brief summary of the symposium we report here findings concerning the in vitro actin dynamic assembly, as well as the characterization of several actin-binding proteins from the parasitic protozoan Entamoeba histolytica, Trichomonas vaginalis and Plasmodium knowlesi. In addition, localization of actin in non-pathogen protists such as Prorocentrum micans and Crypthecodinium cohnii is also presented. The data show that some actin-binding proteins facilitate organization of filaments into higher order structures as pseudopods, while others have regulatory functions, indicating very particular roles for actin-binding proteins. One of the proteins discussed during the symposium, the actin depolymerizing factor ADF, was shown to enhance the treadmilling rate of actin filaments. In vitro, ADF binds to the ADP-bound forms of G-actin and F-actin, thereby participating in and changing the rate of actin assembly. Biochemical approaches allowed the identification of a protein complex formed by HSP/C70-cap32-34 which might also be involved in depolymerization of F-actin in P. knowlesi. Molecular and cellular approaches were used to identify proteins such as ABP-120 and myosin

  2. Coordination of Actin- and Microtubule-Based Cytoskeletons Supports Transport of Spermatids and Residual Bodies/Phagosomes During Spermatogenesis in the Rat Testis

    PubMed Central

    Tang, Elizabeth I.; Lee, Will M.

    2016-01-01

    Germ cell transport across the seminiferous epithelium during spermatogenesis requires the intricate coordination of cell junctions, signaling proteins, and both actin- and microtubule (MT)-based cytoskeletons. Although the involvement of cytoskeletons in germ cell transport has been suggested, the precise mechanism(s) remains elusive. Based on growing evidence that actin and MT interactions underlie fundamental cellular processes, such as cell motility, it is unlikely that actin- and MT-based cytoskeletons work independently to regulate germ cell transport in the testis. Using rats treated with adjudin, a potential male contraceptive that disrupts spermatid adhesion and transport in the testis, as a study model, we show herein that actin- and MT-based cytoskeletons are both necessary for transport of spermatids and residual bodies/phagosomes across the seminiferous epithelium in adult rat testes. Analysis of intratubular expression of F-actin and tubulin revealed disruption of both actin and MT networks, concomitant with misdirected spermatids and phagosomes in rats treated with adjudin. Actin regulatory proteins, epidermal growth factor receptor pathway substrate 8 and actin-related protein 3, were mislocalized and down-regulated at the actin-rich anchoring junction between germ and Sertoli cells (apical ectoplasmic specialization) after adjudin treatment. Nonreceptor tyrosine kinase p-FAK-Tyr407, known to regulate F-actin nucleation via actin-related protein 3, was also mislocalized and down-regulated at the apical ectoplasmic specialization, corroborating the observation of actin cytoskeleton disruption. Additionally, spatiotemporal expression of MT regulatory protein end-binding protein 1, shown to be involved in MT-actin cross talk herein, was also disrupted after adjudin treatment. In summary, spermatid/phagosome transport across the epithelium during spermatogenesis requires the coordination between actin- and MT-based cytoskeletons. PMID:26894662

  3. Actomyosin kinetics and in vitro motility of wild-type Drosophila actin and the effects of two mutations in the Act88F gene.

    PubMed Central

    Anson, M; Drummond, D R; Geeves, M A; Hennessey, E S; Ritchie, M D; Sparrow, J C

    1995-01-01

    Two missense mutations of the flight muscle-specific actin gene of Drosophila melanogaster, Act88F, assemble into normally structured myofibrils but affect the flight ability of flies and the mechanical kinetics of isolated muscle fibers. We describe the isolation of actin from different homozygous Act88F strains, including wild-type, an Act88F null mutant (KM88), and two Act88F single point mutations (E316K and G368E), their biochemical interactions with rabbit myosin subfragment 1 (S1), and behavior with rabbit myosin and heavy meromyosin in in vitro motility assays. The rabbit and wild-type Drosophila actins have different association rate constants with S1 (2.64 and 1.77 microM-1 s-1, respectively) and in vitro motilities (2.51, 1.60 microns s-1) clearly demonstrating an isoform-specific difference. The G368E mutation shows a reduced affinity for rabbit S1 compared with the wild type (increasing from 0.11 to 0.17 microM) and a reduced velocity in vitro (reduced by 19%). The E316K mutant actin has no change in affinity for myosin S1 or in vitro motility with heavy meromyosin but does have a reduced in vitro motility (15%) with myosin. These results are discussed with respect to the recently published atomic models for the actomyosin structure and our findings that G368E fibers show a reduced rate constant for delayed tension development and increased fiber stiffness. We interpret these results as possibly caused either by effects on A1 myosin light chain binding or conformational changes within the subdomain 1 of actin, which contains the myosin binding site. E316K is discussed with respect to its likely position within the tropomyosin binding site of actin. Images FIGURE 1 FIGURE 9 PMID:7612841

  4. Kindlin-2 directly binds actin and regulates integrin outside-in signaling

    PubMed Central

    Bledzka, Kamila; Bialkowska, Katarzyna; Sossey-Alaoui, Khalid; Vaynberg, Julia; Pluskota, Elzbieta

    2016-01-01

    Reduced levels of kindlin-2 (K2) in endothelial cells derived from K2+/− mice or C2C12 myoblastoid cells treated with K2 siRNA showed disorganization of their actin cytoskeleton and decreased spreading. These marked changes led us to examine direct binding between K2 and actin. Purified K2 interacts with F-actin in cosedimentation and surface plasmon resonance analyses and induces actin aggregation. We further find that the F0 domain of K2 binds actin. A mutation, LK47/AA, within a predicted actin binding site (ABS) of F0 diminishes its interaction with actin by approximately fivefold. Wild-type K2 and K2 bearing the LK47/AA mutation were equivalent in their ability to coactivate integrin αIIbβ3 in a CHO cell system when coexpressed with talin. However, K2-LK47/AA exhibited a diminished ability to support cell spreading and actin organization compared with wild-type K2. The presence of an ABS in F0 of K2 that influences outside-in signaling across integrins establishes a new foundation for considering how kindlins might regulate cellular responses. PMID:27044892

  5. Myosin Vs organize actin cables in fission yeast

    PubMed Central

    Lo Presti, Libera; Chang, Fred; Martin, Sophie G.

    2012-01-01

    Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV∆ defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7–Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces. PMID:23051734

  6. Myosin Vs organize actin cables in fission yeast.

    PubMed

    Lo Presti, Libera; Chang, Fred; Martin, Sophie G

    2012-12-01

    Myosin V motors are believed to contribute to cell polarization by carrying cargoes along actin tracks. In Schizosaccharomyces pombe, Myosin Vs transport secretory vesicles along actin cables, which are dynamic actin bundles assembled by the formin For3 at cell poles. How these flexible structures are able to extend longitudinally in the cell through the dense cytoplasm is unknown. Here we show that in myosin V (myo52 myo51) null cells, actin cables are curled, bundled, and fail to extend into the cell interior. They also exhibit reduced retrograde flow, suggesting that formin-mediated actin assembly is impaired. Myo52 may contribute to actin cable organization by delivering actin regulators to cell poles, as myoV defects are partially suppressed by diverting cargoes toward cell tips onto microtubules with a kinesin 7-Myo52 tail chimera. In addition, Myo52 motor activity may pull on cables to provide the tension necessary for their extension and efficient assembly, as artificially tethering actin cables to the nuclear envelope via a Myo52 motor domain restores actin cable extension and retrograde flow in myoV mutants. Together these in vivo data reveal elements of a self-organizing system in which the motors shape their own tracks by transporting cargoes and exerting physical pulling forces.

  7. Dynamics of F-actin prefigure the structure of butterfly wing scales.

    PubMed

    Dinwiddie, April; Null, Ryan; Pizzano, Maria; Chuong, Lisa; Leigh Krup, Alexis; Ee Tan, Hwei; Patel, Nipam H

    2014-08-15

    The wings of butterflies and moths consist of dorsal and ventral epidermal surfaces that give rise to overlapping layers of scales and hairs (Lepidoptera, "scale wing"). Wing scales (average length ~200 µm) are homologous to insect bristles (macrochaetes), and their colors create the patterns that characterize lepidopteran wings. The topology and surface sculpture of wing scales vary widely, and this architectural complexity arises from variations in the developmental program of the individual scale cells of the wing epithelium. One of the more striking features of lepidopteran wing scales are the longitudinal ridges that run the length of the mature (dead) cell, gathering the cuticularized scale cell surface into pleats on the sides of each scale. While also present around the periphery of other insect bristles and hairs, longitudinal ridges in lepidopteran wing scales gain new significance for their creation of iridescent color through microribs and lamellae. Here we show the dynamics of the highly organized F-actin filaments during scale cell development, and present experimental manipulations of actin polymerization that reveal the essential role of this cytoskeletal component in wing scale elongation and the positioning of longitudinal ribs. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Two Functionally Distinct Sources of Actin Monomers Supply the Leading Edge of Lamellipodia

    PubMed Central

    Vitriol, Eric A.; McMillen, Laura M.; Kapustina, Maryna; Gomez, Shawn M.; Vavylonis, Dimitrios; Zheng, James Q.

    2015-01-01

    Summary Lamellipodia, the sheet-like protrusions of motile cells, consist of networks of actin filaments (F-actin) regulated by the ordered assembly from and disassembly into actin monomers (G-actin). Traditionally, G-actin is thought to exist as a homogeneous pool. Here, we show that there are two functionally and molecularly distinct sources of G-actin that supply lamellipodial actin networks. G-actin originating from the cytosolic pool requires the monomer binding protein thymosin β4 (Tβ4) for optimal leading edge localization, is targeted to formins, and is responsible for creating an elevated G/F-actin ratio that promotes membrane protrusion. The second source of G-actin comes from recycled lamellipodia F-actin. Recycling occurs independently of Tβ4 and appears to regulate lamellipodia homeostasis. Tβ4-bound G-actin specifically localizes to the leading edge because it doesn’t interact with Arp2/3-mediated polymerization sites found throughout the lamellipodia. These findings demonstrate that actin networks can be constructed from multiple sources of monomers with discrete spatiotemporal functions. PMID:25865895

  9. Synaptic Vesicle Mobility and Presynaptic F-Actin Are Disrupted in a N-ethylmaleimide–sensitive Factor Allele of Drosophila

    PubMed Central

    Nunes, Paula; Haines, Nicola; Kuppuswamy, Venkat; Fleet, David J.

    2006-01-01

    N-ethylmaleimide sensitive factor (NSF) can dissociate the soluble NSF attachment receptor (SNARE) complex, but NSF also participates in other intracellular trafficking functions by virtue of SNARE-independent activity. Drosophila that express a neural transgene encoding a dominant-negative form of NSF2 show an 80% reduction in the size of releasable synaptic vesicle pool, but no change in the number of vesicles in nerve terminal boutons. Here we tested the hypothesis that vesicles in the NSF2 mutant terminal are less mobile. Using a combination of genetics, pharmacology, and imaging we find a substantial reduction in vesicle mobility within the nerve terminal boutons of Drosophila NSF2 mutant larvae. Subsequent analysis revealed a decrease of filamentous actin in both NSF2 dominant-negative and loss-of-function mutants. Lastly, actin-filament disrupting drugs also decrease vesicle movement. We conclude that a factor contributing to the NSF mutant phenotype is a reduction in vesicle mobility, which is associated with decreased presynaptic F-actin. Our data are consistent with a model in which actin filaments promote vesicle mobility and suggest that NSF participates in establishing or maintaining this population of actin. PMID:16914524

  10. Membrane-associated actin from the microvillar membranes of ascites tumor cells

    PubMed Central

    1982-01-01

    A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin. PMID:6890066

  11. Membrane-associated actin from the microvillar membranes of ascites tumor cells.

    PubMed

    Carraway, K L; Cerra, R F; Jung, G; Carraway, C A

    1982-09-01

    A membrane fraction (MF2) has been purified from isolated microvilli of the MAT-C1 subline of the 13762 rat mammary ascites adenocarcinoma under conditions which cause F-actin depolymerization. This membrane preparation contains actin as a major component, although no filamentous structures are observed by transmission electron microscopy. Membranes were extracted with a Triton X-100-containing actin-stabilizing buffer (S buffer) or actin-destabilizing buffer (D buffer). In D buffer greater than 90% of metabolically labeled protein and glycoprotein was extracted, and 80-90% of these labeled species was extracted in S buffer. When S buffer extracts of MF2 were fractionated by either gel filtration on Sepharose 6 B or rate-zonal sucrose density gradient centrifugation, most of the actin was found to be intermediate in size between G- and F-actin. In D buffer most of the MF2 actin behaved as G-actin. Extraction and gel filtration of intact microvilli in S buffer also showed the presence of the intermediate form of actin, indicating that it did not arise during membrane preparation. When [35S]methionine-labeled G-actin from ascites cells was added to S buffer extracts of MF2 and chromatographed, all of the radioactivity chromatographed as G-actin, indicating that the intermediate form of actin did not result from an association of G-actin molecules during extraction or chromatography. The results of this study suggest that the microvillar membrane fraction is enriched in an intermediate form of actin smaller than F-actin and larger than G-actin.

  12. Nucleus-associated actin in Amoeba proteus.

    PubMed

    Berdieva, Mariia; Bogolyubov, Dmitry; Podlipaeva, Yuliya; Goodkov, Andrew

    2016-10-01

    The presence, spatial distribution and forms of intranuclear and nucleus-associated cytoplasmic actin were studied in Amoeba proteus with immunocytochemical approaches. Labeling with different anti-actin antibodies and staining with TRITC-phalloidin and fluorescent deoxyribonuclease I were used. We showed that actin is abundant within the nucleus as well as in the cytoplasm of A. proteus cells. According to DNase I experiments, the predominant form of intranuclear actin is G-actin which is associated with chromatin strands. Besides, unpolymerized actin was shown to participate in organization of a prominent actin layer adjacent to the outer surface of nuclear envelope. No significant amount of F-actin was found in the nucleus. At the same time, the amoeba nucleus is enclosed in a basket-like structure formed by circumnuclear actin filaments and bundles connected with global cytoplasmic actin cytoskeleton. A supposed architectural function of actin filaments was studied by treatment with actin-depolymerizing agent latrunculin A. It disassembled the circumnuclear actin system, but did not affect the intranuclear chromatin structure. The results obtained for amoeba cells support the modern concept that actin is involved in fundamental nuclear processes that have evolved in the cells of multicellular organisms. Copyright © 2016 Elsevier GmbH. All rights reserved.

  13. Actin Isoform-specific Conformational Differences Observed with Hydrogen/Deuterium Exchange and Mass Spectrometry*

    PubMed Central

    Stokasimov, Ema; Rubenstein, Peter A.

    2009-01-01

    Actin can exist in multiple conformations necessary for normal function. Actin isoforms, although highly conserved in sequence, exhibit different biochemical properties and cellular roles. We used amide proton hydrogen/deuterium (HD) exchange detected by mass spectrometry to analyze conformational differences between Saccharomyces cerevisiae and muscle actins in the G and F forms to gain insight into these differences. We also utilized HD exchange to study interdomain and allosteric communication in yeast-muscle hybrid actins to better understand the conformational dynamics of actin. Areas showing differences in HD exchange between G- and F-actins are areas of intermonomer contacts, consistent with the current filament models. Our results showed greater exchange for yeast G-actin compared with muscle actin in the barbed end pivot region and areas in subdomains 1 and 2 and for F-actin in monomer-monomer contact areas. These results suggest greater flexibility of the yeast actin monomer and filament compared with muscle actin. For hybrid G-actins, the muscle-like and yeastlike parts of the molecule generally showed exchange characteristics resembling their parent actins. A few exceptions were a peptide on top of subdomain 2 and the pivot region between subdomains 1 and 3 with muscle actin-like exchange characteristics although the areas were yeastlike. These results demonstrate that there is cross-talk between subdomains 1 and 2 and the large and small domains. Hybrid F-actin data showing greater exchange compared with both yeast and muscle actins are consistent with mismatched yeast-muscle interfaces resulting in decreased stability of the hybrid filament contacts. PMID:19605362

  14. Regulation of myosin IIA and filamentous actin during insulin-stimulated glucose uptake in 3T3-L1 adipocytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stall, Richard; Ramos, Joseph; Kent Fulcher, F.

    Insulin stimulated glucose uptake requires the colocalization of myosin IIA (MyoIIA) and the insulin-responsive glucose transporter 4 (GLUT4) at the plasma membrane for proper GLUT4 fusion. MyoIIA facilitates filamentous actin (F-actin) reorganization in various cell types. In adipocytes F-actin reorganization is required for insulin-stimulated glucose uptake. What is not known is whether MyoIIA interacts with F-actin to regulate insulin-induced GLUT4 fusion at the plasma membrane. To elucidate the relationship between MyoIIA and F-actin, we examined the colocalization of MyoIIA and F-actin at the plasma membrane upon insulin stimulation as well as the regulation of this interaction. Our findings demonstrated thatmore » MyoIIA and F-actin colocalized at the site of GLUT4 fusion with the plasma membrane upon insulin stimulation. Furthermore, inhibition of MyoII with blebbistatin impaired F-actin localization at the plasma membrane. Next we examined the regulatory role of calcium in MyoIIA-F-actin colocalization. Reduced calcium or calmodulin levels decreased colocalization of MyoIIA and F-actin at the plasma membrane. While calcium alone can translocate MyoIIA it did not stimulate F-actin accumulation at the plasma membrane. Taken together, we established that while MyoIIA activity is required for F-actin localization at the plasma membrane, it alone is insufficient to localize F-actin to the plasma membrane. - Highlights: • Insulin induces colocalization of MyoIIA and F-actin at the cortex in adipocytes. • MyoIIA is necessary but not sufficient to localize F-actin at the cell cortex. • MyoIIA-F-actin colocalization is regulated by calcium and calmodulin.« less

  15. Multiscale Modelling for investigating single molecule effects on the mechanics of actin filaments

    NASA Astrophysics Data System (ADS)

    A, Deriu Marco; C, Bidone Tamara; Laura, Carbone; Cristina, Bignardi; M, Montevecchi Franco; Umberto, Morbiducci

    2011-12-01

    This work presents a preliminary multiscale computational investigation of the effects of nucleotides and cations on the mechanics of actin filaments (F-actin). At the molecular level, Molecular Dynamics (MD) simulations are employed to characterize the rearrangements of the actin monomers (G-actin) in terms of secondary structures evolution in physiological conditions. At the mesoscale level, a coarse grain (CG) procedure is adopted where each monomer is represented by means of Elastic Network Modeling (ENM) technique. At the macroscale level, actin filaments up to hundreds of nanometers are assumed as isotropic and elastic beams and characterized via Rotation Translation Block (RTB) analysis. F-actin bound to adenosine triphosphate (ATP) shows a persistence length around 5 μm, while actin filaments bound to adenosine diphosphate (ADP) have a persistence length of about 3 μm. With magnesium bound to the high affinity binding site of G-actin, the persistence length of F-actin decreases to about 2 μm only in the ADP-bound form of the filament, while the same ion has no effects, in terms of stiffness variation, on the ATP-bound form of F-actin. The molecular mechanisms behind these changes in flexibility are herein elucidated. Thus, this study allows to analyze how the local binding of cations and nucleotides on G-actin induce molecular rearrangements that transmit to the overall F-actin, characterizing shifts of mechanical properties, that can be related with physiological and pathological cellular phenomena, as cell migration and spreading. Further, this study provides the basis for upcoming investigating of network and cellular remodelling at higher length scales.

  16. Investigating sub-spine actin dynamics in rat hippocampal neurons with super-resolution optical imaging.

    PubMed

    Tatavarty, Vedakumar; Kim, Eun-Ji; Rodionov, Vladimir; Yu, Ji

    2009-11-09

    Morphological changes in dendritic spines represent an important mechanism for synaptic plasticity which is postulated to underlie the vital cognitive phenomena of learning and memory. These morphological changes are driven by the dynamic actin cytoskeleton that is present in dendritic spines. The study of actin dynamics in these spines traditionally has been hindered by the small size of the spine. In this study, we utilize a photo-activation localization microscopy (PALM)-based single-molecule tracking technique to analyze F-actin movements with approximately 30-nm resolution in cultured hippocampal neurons. We were able to observe the kinematic (physical motion of actin filaments, i.e., retrograde flow) and kinetic (F-actin turn-over) dynamics of F-actin at the single-filament level in dendritic spines. We found that F-actin in dendritic spines exhibits highly heterogeneous kinematic dynamics at the individual filament level, with simultaneous actin flows in both retrograde and anterograde directions. At the ensemble level, movements of filaments integrate into a net retrograde flow of approximately 138 nm/min. These results suggest a weakly polarized F-actin network that consists of mostly short filaments in dendritic spines.

  17. Piracy of Decay-Accelerating Factor (CD55) Signal Transduction by the Diffusely Adhering Strain Escherichia coli C1845 Promotes Cytoskeletal F-Actin Rearrangements in Cultured Human Intestinal INT407 Cells

    PubMed Central

    Peiffer, Isabelle; Servin, Alain L.; Bernet-Camard, Marie-Françoise

    1998-01-01

    Diffusely adhering Escherichia coli (DAEC) C1845 (clinical isolate) harboring the fimbrial adhesin F1845 can infect cultured human differentiated intestinal epithelial cells; this process is followed by the disassembly of the actin network in the apical domain. The aim of this study was to examine the mechanism by which DAEC C1845 promotes F-actin rearrangements. For this purpose, we used a human embryonic intestinal cell line (INT407) expressing the membrane-associated glycosylphosphatidylinositol (GPI) protein-anchored decay-accelerating factor (DAF), the receptor of the F1845 adhesin. We show here that infection of INT407 cells by DAEC C1845 can provoke dramatic F-actin rearrangements without cell entry. Clustering of phosphotyrosines was observed, revealing that the DAEC C1845-DAF interaction involves the recruitment of signal transduction molecules. A pharmacological approach with a subset of inhibitors of signal transduction molecules was used to identify the cascade of signal transduction molecules that are coupled to the DAF, that are activated upon infection, and that promote the F-actin rearrangements. DAEC C1845-induced F-actin rearrangements can be blocked dose dependently by protein tyrosine kinase, phospholipase Cγ, phosphatidylinositol 3-kinase, protein kinase C, and Ca2+ inhibitors. F-actin rearrangements and blocking by inhibitors were observed after infection of the cells with two E. coli recombinants carrying the plasmids containing the fimbrial adhesin F1845 or the fimbrial hemagglutinin Dr, belonging to the same family of adhesins. These findings show that the DAEC Dr family of pathogens promotes alterations in the intestinal cell cytoskeleton by piracy of the DAF-GPI signal cascade without bacterial cell entry. PMID:9712744

  18. Coupling of the hydration water dynamics and the internal dynamics of actin detected by quasielastic neutron scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujiwara, Satoru, E-mail: fujiwara.satoru@jaea.go.jp; Plazanet, Marie; Oda, Toshiro

    2013-02-15

    Highlights: ► Quasielastic neutron scattering spectra of F-actin and G-actin were measured. ► Analysis of the samples in D{sub 2}O and H{sub 2}O provided the spectra of hydration water. ► The first layer hydration water around F-actin is less mobile than around G-actin. ► This difference in hydration water is in concert with the internal dynamics of actin. ► Water outside the first layer behaves bulk-like but influenced by the first layer. -- Abstract: In order to characterize dynamics of water molecules around F-actin and G-actin, quasielastic neutron scattering experiments were performed on powder samples of F-actin and G-actin, hydratedmore » either with D{sub 2}O or H{sub 2}O, at hydration ratios of 0.4 and 1.0. By combined analysis of the quasielastic neutron scattering spectra, the parameter values characterizing the dynamics of the water molecules in the first hydration layer and those of the water molecules outside of the first layer were obtained. The translational diffusion coefficients (D{sub T}) of the hydration water in the first layer were found to be 1.2 × 10{sup −5} cm{sup 2}/s and 1.7 × 10{sup −5} cm{sup 2}/s for F-actin and G-actin, respectively, while that for bulk water was 2.8 × 10{sup −5} cm{sup 2}/s. The residence times were 6.6 ps and 5.0 ps for F-actin and G-actin, respectively, while that for bulk water was 0.62 ps. These differences between F-actin and G-actin, indicating that the hydration water around G-actin is more mobile than that around F-actin, are in concert with the results of the internal dynamics of F-actin and G-actin, showing that G-actin fluctuates more rapidly than F-actin. This implies that the dynamics of the hydration water is coupled to the internal dynamics of the actin molecules. The D{sub T} values of the water molecules outside of the first hydration layer were found to be similar to that of bulk water though the residence times are strongly affected by the first hydration layer. This supports

  19. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion

    PubMed Central

    Chazeau, Anaël; Mehidi, Amine; Nair, Deepak; Gautier, Jérémie J; Leduc, Cécile; Chamma, Ingrid; Kage, Frieda; Kechkar, Adel; Thoumine, Olivier; Rottner, Klemens; Choquet, Daniel; Gautreau, Alexis; Sibarita, Jean-Baptiste; Giannone, Grégory

    2014-01-01

    Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity. PMID:25293574

  20. CaMKII prevents spontaneous acrosomal exocytosis in sperm through induction of actin polymerization.

    PubMed

    Shabtay, Ortal; Breitbart, Haim

    2016-07-01

    In order to interact with the egg and undergo acrosomal exocytosis or the acrosome reaction (AR), mammalian spermatozoa must undergo a series of biochemical changes in the female reproductive tract, collectively called capacitation. We showed that F-actin is formed during sperm capacitation and fast depolymerization occurs prior to the AR. We hypothesized that F-actin protects the sperm from undergoing spontaneous-AR (sAR) which decreases fertilization rate. We show that activation of the actin-severing protein gelsolin induces a significant increase in sAR. Moreover, inhibition of CaMKII or PLD during sperm capacitation, caused an increase in sAR and inhibition of F-actin formation. Spermine, which leads to PLD activation, was able to reverse the effects of CaMKII inhibition on sAR-increase and F-actin-decrease. Furthermore, the increase in sAR and the decrease in F-actin caused by the inactivation of the PLD-pathway, were reversed by activation of CaMKII using H2O2 or by inhibiting protein phosphatase 1 which enhance the phosphorylation and oxidation states of CaMKII. These results indicate that two distinct pathways lead to F-actin formation in the sperm capacitation process which prevents the occurrence of sAR. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Interaction of aldolase with actin-containing filaments. Structural studies.

    PubMed Central

    Stewart, M; Morton, D J; Clarke, F M

    1980-01-01

    Electron micrographs of the paracrystals formed when fructose bisphosphate aldolase (EC 4.1.2.13) is added to actin-containing filaments were analysed by computer methods so that ultrastructural changes could be correlated with the various stoicheiometries of binding determined in the preceding paper [Walsh, Winzor, Clarke, Masters & Morton (1980) Biochem. J. 186, 89-98]. Paracrystals formed with aldolase and either F-actin or F-actin-tropomyosin have a single light transverse band every 38 nm, which is due to aldolase molecules cross-linking the filaments. In contrast, the paracrystals formed between aldolase and F-actin-tropomyosin-troponin filaments show two transverse bands every 38 nm: a major band, interpreted as aldolase binding to troponin, and a minor band, interpreted as aldolase cross-linking the filaments. The intensity of the minor band varies with Ca2+ concentration, being greatest when the Ca2+ concentration is low. A model for the different paracrystal structures which relates the various patterns and binding stoicheiometries to structural changes in the actin-containing filaments is proposed. Images PLATE 1 PMID:6892771

  2. Synaptotagmin 1 causes phosphatidyl inositol lipid-dependent actin remodeling in cultured non-neuronal and neuronal cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnsson, Anna-Karin; Karlsson, Roger, E-mail: roger.karlsson@wgi.su.se

    2012-01-15

    Here we demonstrate that a dramatic actin polymerizing activity caused by ectopic expression of the synaptic vesicle protein synaptotagmin 1 that results in extensive filopodia formation is due to the presence of a lysine rich sequence motif immediately at the cytoplasmic side of the transmembrane domain of the protein. This polybasic sequence interacts with anionic phospholipids in vitro, and, consequently, the actin remodeling caused by this sequence is interfered with by expression of a phosphatidyl inositol (4,5)-bisphosphate (PIP2)-targeted phosphatase, suggesting that it intervenes with the function of PIP2-binding actin control proteins. The activity drastically alters the behavior of a rangemore » of cultured cells including the neuroblastoma cell line SH-SY5Y and primary cortical mouse neurons, and, since the sequence is conserved also in synaptotagmin 2, it may reflect an important fine-tuning role for these two proteins during synaptic vesicle fusion and neurotransmitter release.« less

  3. Cell migration without a lamellipodium: translation of actin dynamics into cell movement mediated by tropomyosin.

    PubMed

    Gupton, Stephanie L; Anderson, Karen L; Kole, Thomas P; Fischer, Robert S; Ponti, Aaron; Hitchcock-DeGregori, Sarah E; Danuser, Gaudenz; Fowler, Velia M; Wirtz, Denis; Hanein, Dorit; Waterman-Storer, Clare M

    2005-02-14

    The actin cytoskeleton is locally regulated for functional specializations for cell motility. Using quantitative fluorescent speckle microscopy (qFSM) of migrating epithelial cells, we previously defined two distinct F-actin networks based on their F-actin-binding proteins and distinct patterns of F-actin turnover and movement. The lamellipodium consists of a treadmilling F-actin array with rapid polymerization-dependent retrograde flow and contains high concentrations of Arp2/3 and ADF/cofilin, whereas the lamella exhibits spatially random punctae of F-actin assembly and disassembly with slow myosin-mediated retrograde flow and contains myosin II and tropomyosin (TM). In this paper, we microinjected skeletal muscle alphaTM into epithelial cells, and using qFSM, electron microscopy, and immunolocalization show that this inhibits functional lamellipodium formation. Cells with inhibited lamellipodia exhibit persistent leading edge protrusion and rapid cell migration. Inhibition of endogenous long TM isoforms alters protrusion persistence. Thus, cells can migrate with inhibited lamellipodia, and we suggest that TM is a major regulator of F-actin functional specialization in migrating cells.

  4. Interactions between G-actin and myosin subfragment 1: immunochemical probing of the NH2-terminal segment on actin.

    PubMed

    DasGupta, G; White, J; Cheung, P; Reisler, E

    1990-09-11

    The role of the N-terminal segment of actin in myosin-induced polymerization of G-actin was studied by using peptide antibodies directed against the first seven N-terminal residues of alpha-skeletal actin. Light scattering, fluorescence, and analytical ultracentrifugation experiments showed that the Fab fragments of these antibodies inhibited the polymerization of G-actin by myosin subfragment 1 (S-1) by inhibiting the binding of these proteins to each other. Fluorescence measurements using actin labeled with pyrenyliodoacetamide revealed that Fab inhibited the initial step in the binding of S-1 to G-actin. It is deduced from these results and from other literature data that the initial contact between G-actin and S-1 involves residues 1-7 on actin and residues 633-642 on the S-1 heavy chain. This interaction appears to be of major importance for the binding of S-1 and G-actin. The presence of additional myosin contact sites on G-actin was indicated by concentration-dependent recovery of S-1 binding to G-actin without displacement of Fab. The reduced Fab inhibition of S-1 binding to polymerizing and polymerized actin is consistent with the tightening of acto-S-1 binding at these sites or the creation of new sites upon formation of F-actin.

  5. Stochastic Simulation of Actin Dynamics Reveals the Role of Annealing and Fragmentation

    PubMed Central

    Fass, Joseph; Pak, Chi; Bamburg, James; Mogilner, Alex

    2008-01-01

    Recent observations of F-actin dynamics call for theoretical models to interpret and understand the quantitative data. A number of existing models rely on simplifications and do not take into account F-actin fragmentation and annealing. We use Gillespie’s algorithm for stochastic simulations of the F-actin dynamics including fragmentation and annealing. The simulations vividly illustrate that fragmentation and annealing have little influence on the shape of the polymerization curve and on nucleotide profiles within filaments but drastically affect the F-actin length distribution, making it exponential. We find that recent surprising measurements of high length diffusivity at the critical concentration cannot be explained by fragmentation and annealing events unless both fragmentation rates and frequency of undetected fragmentation and annealing events are greater than previously thought. The simulations compare well with experimentally measured actin polymerization data and lend additional support to a number of existing theoretical models. PMID:18279896

  6. Expanding Actin Rings Zipper the Mouse Embryo for Blastocyst Formation.

    PubMed

    Zenker, Jennifer; White, Melanie D; Gasnier, Maxime; Alvarez, Yanina D; Lim, Hui Yi Grace; Bissiere, Stephanie; Biro, Maté; Plachta, Nicolas

    2018-04-19

    Transformation from morula to blastocyst is a defining event of preimplantation embryo development. During this transition, the embryo must establish a paracellular permeability barrier to enable expansion of the blastocyst cavity. Here, using live imaging of mouse embryos, we reveal an actin-zippering mechanism driving this embryo sealing. Preceding blastocyst stage, a cortical F-actin ring assembles at the apical pole of the embryo's outer cells. The ring structure forms when cortical actin flows encounter a network of polar microtubules that exclude F-actin. Unlike stereotypical actin rings, the actin rings of the mouse embryo are not contractile, but instead, they expand to the cell-cell junctions. Here, they couple to the junctions by recruiting and stabilizing adherens and tight junction components. Coupling of the actin rings triggers localized myosin II accumulation, and it initiates a tension-dependent zippering mechanism along the junctions that is required to seal the embryo for blastocyst formation. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. Yap-Hippo pathway regulates cerebral hypoxia-reoxygenation injury in neuroblastoma N2a cells via inhibiting ROCK1/F-actin/mitochondrial fission pathways.

    PubMed

    Geng, Chizi; Wei, Jianchao; Wu, Chengsi

    2018-05-23

    Yes-associated protein (Yap), a regulator of cellular apoptosis, has been demonstrated to be involved in cerebral ischemia-reperfusion (IR) injury through poorly defined mechanisms. The present study aimed to explore the role of Yap in regulating cerebral IR injury in vitro, with a focus on mitochondrial fission and ROCK1/F-actin pathways. Our data demonstrated that Yap was actually downregulated in N2a cells after cerebral hypoxia-reoxygenation (HR) injury, and that lower expression of Yap was closely associated with increased cell death. However, the reintroduction of Yap was able to suppress the HR-mediated N2a cells death via blocking the mitochondria-related apoptotic signal. At the molecular levels, Yap overexpression sustained mitochondrial potential, normalized the mitochondrial respiratory function, reduced ROS overproduction, limited HtrA2/Omi release from mitochondria into the nucleus, and suppressed pro-apoptotic proteins activation. Subsequently, functional studies have further illustrated that HR-mediated mitochondrial apoptosis was highly regulated by mitochondrial fission, whereas Yap overexpression was able to attenuate HR-mediated mitochondrial fission and, thus, promote N2a cell survival in the context of HR injury. At last, we demonstrated that Yap handled mitochondrial fission via closing ROCK1/F-actin signaling pathways. Activation of ROCK1/F-actin pathways abrogated the protective role of Yap overexpression on mitochondrial homeostasis and N2a cell survival in the setting of HR injury. Altogether, our data identified Yap as the endogenous defender to relieve HR-mediated nerve damage via antagonizing ROCK1/F-actin/mitochondrial fission pathways.

  8. Differences in the motility of Amoeba proteus isolated fragments are determined by F-actin arrangement and cell nucleus presence.

    PubMed

    Grebecka, L; Pomorski, P; Lopatowska, A

    1995-10-01

    Isolated fragments produced by bisection of Amoeba proteus differ by their position in the original cell and by the presence or absence of the cell nucleus. Immediately after the operation, both types of anterior fragments preserve the former motory polarity, and do not interrupt locomotion. In the same time, all posterior fragments stop, round up and fail to react stimuli. In the second phase of experiment, these anterior fragments, which had no nucleus ceased to move, whereas the nucleated posterior ones resumed locomotion. It was demonstrated, that the behaviour of a fragment is primarily determined by the peripheral F-actin distribution, which is different depending on the origin of the fragment either from the anterior or from the posterior cell region. Later, the "inherited" F-actin distribution may be stabilized or reorganized in the presence of the nucleus, or desorganized in its absence.

  9. Concentration profiles of actin-binding molecules in lamellipodia

    NASA Astrophysics Data System (ADS)

    Falcke, Martin

    2016-04-01

    Motile cells form lamellipodia in the direction of motion, which are flat membrane protrusions containing an actin filament network. The network flows rearward relative to the leading edge of the lamellipodium due to actin polymerization at the front. Thus, actin binding molecules are subject to transport towards the rear of the cell in the bound state and diffuse freely in the unbound state. We analyze this reaction-diffusion-advection process with respect to the concentration profiles of these species and provide an analytic approximation for them. Network flow may cause a depletion zone of actin binding molecules close to the leading edge. The existence of such zone depends on the free molecule concentration in the cell body, on the ratio of the diffusion length to the distance bound molecules travel rearward with the flow before dissociating, and the ratio of the diffusion length to the width of the region with network flow and actin binding. Our calculations suggest the existence of depletion zones for the F-actin cross-linkers filamin and α-actinin in fish keratocytes (and other cell types), which is in line with the small elastic moduli of the F-actin network close to the leading edge found in measurements of the force motile cells are able to exert.

  10. Hyper-mobility of water around actin filaments revealed using pulse-field gradient spin-echo {sup 1}H NMR and fluorescence spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wazawa, Tetsuichi; CREST, JST, 4-1-8, Honcho, Kawaguchi, Saitama 332-0012; Sagawa, Takashi

    2011-01-28

    Research highlights: {yields} Translationally hyper-mobile water has been detected around actin filaments. {yields} Translationally hyper-mobile water is formed upon polymerization of actin. {yields} Low water viscosity was found around F-actin using fluorescence anisotropy. {yields} Formation of hyper-mobile water may explain endothermic actin polymerization. -- Abstract: This paper reports that water molecules around F-actin, a polymerized form of actin, are more mobile than those around G-actin or in bulk water. A measurement using pulse-field gradient spin-echo {sup 1}H NMR showed that the self-diffusion coefficient of water in aqueous F-actin solution increased with actin concentration by {approx}5%, whereas that in G-actin solutionmore » was close to that of pure water. This indicates that an F-actin/water interaction is responsible for the high self-diffusion of water. The local viscosity around actin was also investigated by fluorescence measurements of Cy3, a fluorescent dye, conjugated to Cys 374 of actin. The steady-state fluorescence anisotropy of Cy3 attached to F-actin was 0.270, which was lower than that for G-actin, 0.334. Taking into account the fluorescence lifetimes of the Cy3 bound to actin, their rotational correlation times were estimated to be 3.8 and 9.1 ns for F- and G-actin, respectively. This indicates that Cy3 bound to F-actin rotates more freely than that bound to G-actin, and therefore the local water viscosity is lower around F-actin than around G-actin.« less

  11. Side-binding proteins modulate actin filament dynamics

    PubMed Central

    Crevenna, Alvaro H; Arciniega, Marcelino; Dupont, Aurélie; Mizuno, Naoko; Kowalska, Kaja; Lange, Oliver F; Wedlich-Söldner, Roland; Lamb, Don C

    2015-01-01

    Actin filament dynamics govern many key physiological processes from cell motility to tissue morphogenesis. A central feature of actin dynamics is the capacity of filaments to polymerize and depolymerize at their ends in response to cellular conditions. It is currently thought that filament kinetics can be described by a single rate constant for each end. In this study, using direct visualization of single actin filament elongation, we show that actin polymerization kinetics at both filament ends are strongly influenced by the binding of proteins to the lateral filament surface. We also show that the pointed-end has a non-elongating state that dominates the observed filament kinetic asymmetry. Estimates of flexibility as well as effects on fragmentation and growth suggest that the observed kinetic diversity arises from structural alteration. Tuning elongation kinetics by exploiting the malleability of the filament structure may be a ubiquitous mechanism to generate a rich variety of cellular actin dynamics. DOI: http://dx.doi.org/10.7554/eLife.04599.001 PMID:25706231

  12. Feedback Interactions of Polymerized Actin with the Cell Membrane: Waves, Pulses, and Oscillations

    NASA Astrophysics Data System (ADS)

    Carlsson, Anders

    Polymerized filaments of the protein actin have crucial functions in cell migration, and in bending the cell membrane to drive endocytosis or the formation of protrusions. The nucleation and polymerization of actin filaments are controlled by upstream agents in the cell membrane, including nucleation-promoting factors (NPFs) that activate the Arp2/3 complex to form new branches on pre-existing filaments. But polymerized actin (F-actin) also feeds back on the assembly of NPFs. We explore the effects of the resulting feedback loop of F-actin and NPFs on two phenomena: actin pulses that drive endocytosis in yeast, and actin waves traveling along the membrane of several cell types. In our model of endocytosis in yeast, the actin network is grown explicitly in three dimensions, exerts a negative feedback interaction on localized patch of NPFs in the membrane, and bends the membrane by exerting a distribution of forces. This model explains observed actin and NPF pulse dynamics, and the effects of several interventions including i) NPF mutations, ii) inhibition of actin polymerization, and iii) deletion of a protein that allows F-actin to bend the cell membrane. The model predicts that mutation of the active region of an NPF will enhance the accumulation of that NPF, and we confirm this prediction by quantitative fluorescence microscopy. For actin waves, we treat a similar model, with NPFs distributed over a larger region of the cell membrane. This model naturally generates actin waves, and predicts a transition from wave behavior to spatially localized oscillations when NPFs are confined to a small region. We also predict a transition from waves to static polarization as the negative-feedback coupling between F-actin and the NPFs is reduced. Supported by NIGMS Grant R01 GM107667.

  13. The Formin Diaphanous Regulates Myoblast Fusion through Actin Polymerization and Arp2/3 Regulation

    PubMed Central

    Deng, Su; Bothe, Ingo; Baylies, Mary K.

    2015-01-01

    The formation of multinucleated muscle cells through cell-cell fusion is a conserved process from fruit flies to humans. Numerous studies have shown the importance of Arp2/3, its regulators, and branched actin for the formation of an actin structure, the F-actin focus, at the fusion site. This F-actin focus forms the core of an invasive podosome-like structure that is required for myoblast fusion. In this study, we find that the formin Diaphanous (Dia), which nucleates and facilitates the elongation of actin filaments, is essential for Drosophila myoblast fusion. Following cell recognition and adhesion, Dia is enriched at the myoblast fusion site, concomitant with, and having the same dynamics as, the F-actin focus. Through analysis of Dia loss-of-function conditions using mutant alleles but particularly a dominant negative Dia transgene, we demonstrate that reduction in Dia activity in myoblasts leads to a fusion block. Significantly, no actin focus is detected, and neither branched actin regulators, SCAR or WASp, accumulate at the fusion site when Dia levels are reduced. Expression of constitutively active Dia also causes a fusion block that is associated with an increase in highly dynamic filopodia, altered actin turnover rates and F-actin distribution, and mislocalization of SCAR and WASp at the fusion site. Together our data indicate that Dia plays two roles during invasive podosome formation at the fusion site: it dictates the level of linear F-actin polymerization, and it is required for appropriate branched actin polymerization via localization of SCAR and WASp. These studies provide new insight to the mechanisms of cell-cell fusion, the relationship between different regulators of actin polymerization, and invasive podosome formation that occurs in normal development and in disease. PMID:26295716

  14. Diverse roles of actin in C. elegans early embryogenesis

    PubMed Central

    Velarde, Nathalie; Gunsalus, Kristin C; Piano, Fabio

    2007-01-01

    Background The actin cytoskeleton plays critical roles in early development in Caenorhabditis elegans. To further understand the complex roles of actin in early embryogenesis we use RNAi and in vivo imaging of filamentous actin (F-actin) dynamics. Results Using RNAi, we found processes that are differentially sensitive to levels of actin during early embryogenesis. Mild actin depletion shows defects in cortical ruffling, pseudocleavage, and establishment of polarity, while more severe depletion shows defects in polar body extrusion, cytokinesis, chromosome segregation, and eventually, egg production. These defects indicate that actin is required for proper oocyte development, fertilization, and a wide range of important events during early embryogenesis, including proper chromosome segregation. In vivo visualization of the cortical actin cytoskeleton shows dynamics that parallel but are distinct from the previously described myosin dynamics. Two distinct types of actin organization are observed at the cortex. During asymmetric polarization to the anterior, or the establishment phase (Phase I), actin forms a meshwork of microfilaments and focal accumulations throughout the cortex, while during the anterior maintenance phase (Phase II) it undergoes a morphological transition to asymmetrically localized puncta. The proper asymmetric redistribution is dependent on the PAR proteins, while both asymmetric redistribution and morphological transitions are dependent upon PFN-1 and NMY-2. Just before cytokinesis, actin disappears from most of the cortex and is only found around the presumptive cytokinetic furrow. Finally, we describe dynamic actin-enriched comets in the early embryo. Conclusion During early C. elegans embryogenesis actin plays more roles and its organization is more dynamic than previously described. Morphological transitions of F-actin, from meshwork to puncta, as well as asymmetric redistribution, are regulated by the PAR proteins. Results from this study

  15. Role of the C-terminal Extension of Formin 2 in Its Activation by Spire Protein and Processive Assembly of Actin Filaments.

    PubMed

    Montaville, Pierre; Kühn, Sonja; Compper, Christel; Carlier, Marie-France

    2016-02-12

    Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WASP homology domain 2 (WH2) repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The kinase-like non-catalytic domain (KIND) of Spire directly interacts with the C-terminal extension of the formin homology domain 2 (FH2) domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and it subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin·actin. Here, we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as in the processivity of Fmn2. We have combined microcalorimetric, fluorescence, and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a Capping Protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. Role of the C-terminal Extension of Formin 2 in Its Activation by Spire Protein and Processive Assembly of Actin Filaments*

    PubMed Central

    Montaville, Pierre; Kühn, Sonja; Compper, Christel; Carlier, Marie-France

    2016-01-01

    Formin 2 (Fmn2), a member of the FMN family of formins, plays an important role in early development. This formin cooperates with profilin and Spire, a WASP homology domain 2 (WH2) repeat protein, to stimulate assembly of a dynamic cytoplasmic actin meshwork that facilitates translocation of the meiotic spindle in asymmetric division of mouse oocytes. The kinase-like non-catalytic domain (KIND) of Spire directly interacts with the C-terminal extension of the formin homology domain 2 (FH2) domain of Fmn2, called FSI. This direct interaction is required for the synergy between the two proteins in actin assembly. We have recently demonstrated how Spire, which caps barbed ends via its WH2 domains, activates Fmn2. Fmn2 by itself associates very poorly to filament barbed ends but is rapidly recruited to Spire-capped barbed ends via the KIND domain, and it subsequently displaces Spire from the barbed end to elicit rapid processive assembly from profilin·actin. Here, we address the mechanism by which Spire and Fmn2 compete at barbed ends and the role of FSI in orchestrating this competition as well as in the processivity of Fmn2. We have combined microcalorimetric, fluorescence, and hydrodynamic binding assays, as well as bulk solution and single filament measurements of actin assembly, to show that removal of FSI converts Fmn2 into a Capping Protein. This activity is mimicked by association of KIND to Fmn2. In addition, FSI binds actin at filament barbed ends as a weak capper and plays a role in displacing the WH2 domains of Spire from actin, thus allowing the association of actin-binding regions of FH2 to the barbed end. PMID:26668326

  17. Actin cytoskeleton rearrangements in Arabidopsis roots under stress and during gravitropic response

    NASA Astrophysics Data System (ADS)

    Pozhvanov, Gregory; Medvedev, Sergei; Suslov, Dmitry; Demidchik, Vadim

    Among environmental factors, gravity vector is the only one which is constant in direction and accompanies the whole plant ontogenesis. That said, gravity vector can be considered as an essential factor for correct development of plants. Gravitropism is a plant growth response against changing its position relative to the gravity vector. It is well estableshed that gravitropism is directed by auxin redistribution across the gravistimulated organ. In addition to auxin, actin cytoskeleton was shown to be involved in gravitropism at different stages: gravity perception, signal transduction and gravitropic bending formation. However, the relationship between IAA and actin is still under discussion. In this work we studied rearrangements of actin cytoskeleton during root gravitropic response. Actin microfilaments were visualized in vivo in GFP-fABD2 transgenic Arabidopsis plants, and their angle distribution was acquired from MicroFilament Analyzer software. The curvature of actin microfilaments in root elongation zone was shown to be increased within 30-60 min of gravistimulation, the fraction of axially oriented microfilaments decreased with a concomitant increase in the fraction of oblique and transversally oriented microfilaments. In particular, the fraction of transversally oriented microfilaments (i.e. parallel to the gravity vector) increased 3-5 times. Under 10 min of sub-lethal salt stress impact, actin microfilament orientations widened from an initial axial orientation to a set of peaks at 15(°) , 45(°) and 90(°) . We conclude that the actin cytoskeleton rearrangements observed are associated with the regulation of basic mechanisms of cell extension growth by which the gravitropic bending is formed. Having common stress-related features, gravity-induced actin cytoskeleton rearrangement is slower but results in higher number of g-vector-parallel microfilaments when compared to salt stress-induced rearrangement. Also, differences in gravistimulated root

  18. αE-catenin regulates actin dynamics independently of cadherin-mediated cell–cell adhesion

    PubMed Central

    Benjamin, Jacqueline M.; Kwiatkowski, Adam V.; Yang, Changsong; Korobova, Farida; Pokutta, Sabine; Svitkina, Tatyana

    2010-01-01

    αE-catenin binds the cell–cell adhesion complex of E-cadherin and β-catenin (β-cat) and regulates filamentous actin (F-actin) dynamics. In vitro, binding of αE-catenin to the E-cadherin–β-cat complex lowers αE-catenin affinity for F-actin, and αE-catenin alone can bind F-actin and inhibit Arp2/3 complex–mediated actin polymerization. In cells, to test whether αE-catenin regulates actin dynamics independently of the cadherin complex, the cytosolic αE-catenin pool was sequestered to mitochondria without affecting overall levels of αE-catenin or the cadherin–catenin complex. Sequestering cytosolic αE-catenin to mitochondria alters lamellipodia architecture and increases membrane dynamics and cell migration without affecting cell–cell adhesion. In contrast, sequestration of cytosolic αE-catenin to the plasma membrane reduces membrane dynamics. These results demonstrate that the cytosolic pool of αE-catenin regulates actin dynamics independently of cell–cell adhesion. PMID:20404114

  19. Septins Arrange F-Actin-Containing Fibers on the Chlamydia trachomatis Inclusion and Are Required for Normal Release of the Inclusion by Extrusion

    PubMed Central

    Volceanov, Larisa; Herbst, Katharina; Biniossek, Martin; Schilling, Oliver; Haller, Dirk; Nölke, Thilo; Subbarayal, Prema; Rudel, Thomas; Zieger, Barbara

    2014-01-01

    ABSTRACT Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. PMID:25293760

  20. Roles of type II myosin and a tropomyosin isoform in retrograde actin flow in budding yeast

    PubMed Central

    Huckaba, Thomas M.; Lipkin, Thomas; Pon, Liza A.

    2006-01-01

    Retrograde flow of cortical actin networks and bundles is essential for cell motility and retrograde intracellular movement, and for the formation and maintenance of microvilli, stereocilia, and filopodia. Actin cables, which are F-actin bundles that serve as tracks for anterograde and retrograde cargo movement in budding yeast, undergo retrograde flow that is driven, in part, by actin polymerization and assembly. We find that the actin cable retrograde flow rate is reduced by deletion or delocalization of the type II myosin Myo1p, and by deletion or conditional mutation of the Myo1p motor domain. Deletion of the tropomyosin isoform Tpm2p, but not the Tpm1p isoform, increases the rate of actin cable retrograde flow. Pretreatment of F-actin with Tpm2p, but not Tpm1p, inhibits Myo1p binding to F-actin and Myo1p-dependent F-actin gliding. These data support novel, opposing roles of Myo1p and Tpm2 in regulating retrograde actin flow in budding yeast and an isoform-specific function of Tpm1p in promoting actin cable function in myosin-driven anterograde cargo transport. PMID:17178912

  1. Maleimidobenzoyl-G-actin: Structural properties and interaction with skeletal myosin subfragment-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bettache, N.; Bertrand, R.; Kassab, R.

    1990-09-25

    The authors have investigated various structural and interaction properties of maleimidobenzoyl-G-actin (MBS-actin), a new, internally cross-linked G-actin derivative that does not exhibit, at moderate protein concentration, the salt-and myosin subfragment 1 (S-1)--induced polymerizations of G-actin and reacts reversibly and covalently in solution with S-1 at or near the F-actin binding region of the heavy chain. The far-ultraviolet CD spectrum and {alpha}-helix content of the MBS-actin were identical with those displayed by native G-actin. {sup 45}Ca{sup 2+} measurements showed the same content of tightly bound Ca{sup 2+} in MBS-actin as in G-actin and the EDTA treatment of the modified protein promotedmore » the same red shift of the intrinsic fluorescence spectrum as observed with native G-actin. Incubation of concentrated MBS-actin solutions with 100 mM KCl+5 mM MgCl{sub 2} led to the polymerization of the actin derivative when the critical monomer concentration reached 1.6mg/mL, at 25{degree}C, pH 8.0. The MBS-F-actin formed activated the Mg{sup 2+}-ATPase of S-1 to the same extent as native F-actin. The MBS-G-actin exhibited a DNase I inhibitor activity very close to that found with native G-actin and was to be at all affected by its specific covalent conjugation to S-1. This finding led them to isolate, for the first time, by gel filtration, a ternary complex comprising DNase I tightly bound to MBS-actin cross-linked to the S-1 heavy chain, demonstrating that S-1 and DNase I bind at distinct sites on G-actin. Collectively, the data illustrate further the nativeness of the MBS-G-actin and its potential use in solution studies of the actin-myosin head interactions.« less

  2. Mechanism of Cdc42-induced actin polymerization in neutrophil extracts.

    PubMed

    Zigmond, S H; Joyce, M; Yang, C; Brown, K; Huang, M; Pring, M

    1998-08-24

    Cdc42, activated with GTPgammaS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool. Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 micron in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 micron. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends.

  3. Asymmetric Mbc, active Rac1 and F-actin foci in the fusion-competent myoblasts during myoblast fusion in Drosophila

    PubMed Central

    Haralalka, Shruti; Shelton, Claude; Cartwright, Heather N.; Katzfey, Erin; Janzen, Evan; Abmayr, Susan M.

    2011-01-01

    Myoblast fusion is an intricate process that is initiated by cell recognition and adhesion, and culminates in cell membrane breakdown and formation of multinucleate syncytia. In the Drosophila embryo, this process occurs asymmetrically between founder cells that pattern the musculature and fusion-competent myoblasts (FCMs) that account for the bulk of the myoblasts. The present studies clarify and amplify current models of myoblast fusion in several important ways. We demonstrate that the non-conventional guanine nucleotide exchange factor (GEF) Mbc plays a fundamental role in the FCMs, where it functions to activate Rac1, but is not required in the founder cells for fusion. Mbc, active Rac1 and F-actin foci are highly enriched in the FCMs, where they localize to the Sns:Kirre junction. Furthermore, Mbc is crucial for the integrity of the F-actin foci and the FCM cytoskeleton, presumably via its activation of Rac1 in these cells. Finally, the local asymmetric distribution of these proteins at adhesion sites is reminiscent of invasive podosomes and, consistent with this model, they are enriched at sites of membrane deformation, where the FCM protrudes into the founder cell/myotube. These data are consistent with models promoting actin polymerization as the driving force for myoblast fusion. PMID:21389053

  4. Apple S-RNase interacts with an actin-binding protein, MdMVG, to reduce pollen tube growth by inhibiting its actin-severing activity at the early stage of self-pollination induction.

    PubMed

    Yang, Qing; Meng, Dong; Gu, Zhaoyu; Li, Wei; Chen, Qiuju; Li, Yang; Yuan, Hui; Yu, Jie; Liu, Chunsheng; Li, Tianzhong

    2018-04-18

    In S-RNase-mediated self-incompatibility, S-RNase secreted from the style destroys the actin cytoskeleton of the self-pollen tubes, eventually halting their growth, but the mechanism of this process remains unclear. In vitro biochemical assays revealed that S-RNase does not bind or sever filamentous actin (F-actin). In apple (Malus domestica), we identified an actin-binding protein containing myosin, villin and GRAM (MdMVG), that physically interacts with S-RNase and directly binds and severs F-actin. Immunofluorescence assays and total internal reflection fluorescence microscopy indicated that S-RNase inhibits the F-actin-severing activity of MdMVG in vitro. In vivo, the addition of S-RNase to self-pollen tubes increased the fluorescence intensity of actin microfilaments and reduced the severing frequency of microfilaments and the rate of pollen tube growth in self-pollination induction in the presence of MdMVG overexpression. By generating 25 single-, double- and triple-point mutations in the amino acid motif E-E-K-E-K of MdMVG via mutagenesis and testing the resulting mutants with immunofluorescence, we identified a triple-point mutant, MdMVG (E167A/E171A/K185A) , that no longer has F-actin-severing activity or interacts with any of the four S-haplotype S-RNases, indicating that all three amino acids (E167, E171 and K185) are essential for the severing activity of MdMVG and its interaction with S-RNases. We conclude that apple S-RNase interacts with MdMVG to reduce self-pollen tube growth by inhibiting its F-actin-severing activity. © 2018 The Authors The Plant Journal © 2018 John Wiley & Sons Ltd.

  5. Probing GFP-actin diffusion in living cells using fluorescence correlation spectroscopy.

    PubMed

    Engelke, Hanna; Heinrich, Doris; Rädler, Joachim O

    2010-12-22

    The cytoskeleton of eukaryotic cells is continuously remodeled by polymerization and depolymerization of actin. Consequently, the relative content of polymerized filamentous actin (F-actin) and monomeric globular actin (G-actin) is subject to temporal and spatial fluctuations. Since fluorescence correlation spectroscopy (FCS) can measure the diffusion of fluorescently labeled actin it seems likely that FCS allows us to determine the dynamics and hence indirectly the structural properties of the cytoskeleton components with high spatial resolution. To this end we investigate the FCS signal of GFP-actin in living Dictyostelium discoideum cells and explore the inherent spatial and temporal signatures of the actin cytoskeleton. Using the free green fluorescent protein (GFP) as a reference, we find that actin diffusion inside cells is dominated by G-actin and slower than diffusion in diluted cell extract. The FCS signal in the dense cortical F-actin network near the cell membrane is probed using the cytoskeleton protein LIM and is found to be slower than cytosolic G-actin diffusion. Furthermore, we show that polymerization of the cytoskeleton induced by Jasplakinolide leads to a substantial decrease of G-actin diffusion. Pronounced fluctuations in the distribution of the FCS correlation curves can be induced by latrunculin, which is known to induce actin waves. Our work suggests that the FCS signal of GFP-actin in combination with scanning or spatial correlation techniques yield valuable information about the local dynamics and concomitant cytoskeletal properties.

  6. Glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factor differently modifies actin polymerization in neutrophils.

    PubMed

    Zucca, A; Brizzi, S; Riccioni, R; Azzarà, A; Ghimenti, M; Carulli, G

    2006-01-01

    Several neutrophil functions can be modified by rhG-CSF administration. Neutrophil morphology changes in the course of treatment with Filgrastim (nonglycosylated rhG-CSF), along with impairment of chemotaxis. Both morphology and chemotaxis are not affected by treatment with Lenograstim (glycosylated rhG-CSF). Thus, we evaluated actin polymerization in neutrophils induced by treatment with the two forms of rhG-CSF. In fact, actin polymerization is crucial for neutrophil motility. We evaluated twelve healthy subjects undergoing peripheral blood stem cells (PBSC) mobilization for allogeneic transplantation to HLA-identical siblings. Neutrophils were isolated by peripheral venous blood before and after administration of either Filgrastim (six PBSC donors) or Lenograstim (six PBSC donors). Actin polymerization was investigated by a flow cytometric assay, using FITC-phalloidin as a specific probe for F-actin, and two parameters were measured: spontaneous actin polymerization in resting neutrophils; fMLP-stimulated actin polymerization. Results were expressed as relative F-actin content. Fifteen blood donors were studied as a control group. Filgrastim administration induced an increased relative F-actin content in resting neutrophils; however, no further actin polymerization was observed after fMLP stimulation. Neutrophils from subjects treated with Lenograstim showed a normal behaviour in terms of both spontaneous and stimulated actin polymerization. Glycosylated and nonglycosylated rhG-CSF differently affect actin polymerization in newly generated neutrophils. Such effects may explain some previous findings concerning both morphology and chemotactic properties and may be due to different effects of the two forms of rhG-CSF on proteins involved in neutrophil motility regulation.

  7. Actin Depolymerizing Factor (ADF/Cofilin) Enhances the Rate of Filament Turnover: Implication in Actin-based Motility

    PubMed Central

    Carlier, Marie-France; Laurent, Valérie; Santolini, Jérôme; Melki, Ronald; Didry, Dominique; Xia, Gui-Xian; Hong, Yan; Chua, Nam-Hai; Pantaloni, Dominique

    1997-01-01

    Actin-binding proteins of the actin depolymerizing factor (ADF)/cofilin family are thought to control actin-based motile processes. ADF1 from Arabidopsis thaliana appears to be a good model that is functionally similar to other members of the family. The function of ADF in actin dynamics has been examined using a combination of physical–chemical methods and actin-based motility assays, under physiological ionic conditions and at pH 7.8. ADF binds the ADPbound forms of G- or F-actin with an affinity two orders of magnitude higher than the ATP- or ADP-Pi– bound forms. A major property of ADF is its ability to enhance the in vitro turnover rate (treadmilling) of actin filaments to a value comparable to that observed in vivo in motile lamellipodia. ADF increases the rate of propulsion of Listeria monocytogenes in highly diluted, ADF-limited platelet extracts and shortens the actin tails. These effects are mediated by the participation of ADF in actin filament assembly, which results in a change in the kinetic parameters at the two ends of the actin filament. The kinetic effects of ADF are end specific and cannot be accounted for by filament severing. The main functionally relevant effect is a 25-fold increase in the rate of actin dissociation from the pointed ends, while the rate of dissociation from the barbed ends is unchanged. This large increase in the rate-limiting step of the monomer-polymer cycle at steady state is responsible for the increase in the rate of actin-based motile processes. In conclusion, the function of ADF is not to sequester G-actin. ADF uses ATP hydrolysis in actin assembly to enhance filament dynamics. PMID:9087445

  8. The amino acid motif L/IIxxFE defines a novel actin-binding sequence in PDZ-RhoGEF

    PubMed Central

    Banerjee, Jayashree; Fischer, Christopher C.; Wedegaertner, Philip B.

    2009-01-01

    PDZ-RhoGEF is a member of the regulator of G protein signaling (RGS) domain-containing RhoGEFs (RGS-RhoGEFs) that link activated heterotrimeric G protein α subunits of the G12 family to activation of the small GTPase RhoA. Unique among the RGS-RhoGEFs, PDZ-RhoGEF contains a short sequence that localizes the protein to the actin cytoskeleton. In this report, we demonstrate that the actin-binding domain, located between amino acids 561–585, directly binds to F-actin in vitro. Extensive mutagenesis identifies isoleucine 568, isoleucine 569, phenylalanine 572, and glutamic acid 573 as necessary for binding to actin and for co-localization with the actin cytoskeleton in cells. These results define a novel actin-binding sequence in PDZ-RhoGEF with a critical amino acid motif of IIxxFE. Moreover, sequence analysis identifies a similar actin-binding motif in the N-terminus of the RhoGEF frabin, and, as with PDZ-RhoGEF, mutagenesis and actin interaction experiments demonstrate a motif of LIxxFE, consisting of the key amino acids leucine 23, isoleucine 24, phenylalanine 27, and glutamic acid 28. Taken together, results with PDZ-RhoGEF and frabin identify a novel actin binding sequence. Lastly, inducible dimerization of the actin-binding region of PDZ-RhoGEF revealed a dimerization-dependent actin bundling activity in vitro. PDZ-RhoGEF exists in cells as a dimer, raising the possibility that PDZ-RhoGEF could influence actin structure independent of its ability to activate RhoA. PMID:19618964

  9. Identification of Actin-Binding Proteins from Maize Pollen

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Staiger, C.J.

    Specific Aims--The goal of this project was to gain an understanding of how actin filament organization and dynamics are controlled in flowering plants. Specifically, we proposed to identify unique proteins with novel functions by investigating biochemical strategies for the isolation and characterization of actin-binding proteins (ABPs). In particular, our hunt was designed to identify capping proteins and nucleation factors. The specific aims included: (1) to use F-actin affinity chromatography (FAAC) as a general strategy to isolate pollen ABPs (2) to produce polyclonal antisera and perform subcellular localization in pollen tubes (3) to isolate cDNA clones for the most promising ABPsmore » (4) to further purify and characterize ABP interactions with actin in vitro. Summary of Progress By employing affinity chromatography on F-actin or DNase I columns, we have identified at least two novel ABPs from pollen, PrABP80 (gelsolin-like) and ZmABP30, We have also cloned and expressed recombinant protein, as well as generated polyclonal antisera, for 6 interesting ABPs from Arabidopsis (fimbrin AtFIM1, capping protein a/b (AtCP), adenylyl cyclase-associated protein (AtCAP), AtCapG & AtVLN1). We performed quantitative analyses of the biochemical properties for two of these previously uncharacterized ABPs (fimbrin and capping protein). Our studies provide the first evidence for fimbrin activity in plants, demonstrate the existence of barbed-end capping factors and a gelsolin-like severing activity, and provide the quantitative data necessary to establish and test models of F-actin organization and dynamics in plant cells.« less

  10. Interactions Between DNA and Actin in Model Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Kyung, Hee; Sanders, Lori; Angelini, Thomas; Butler, John; Wong, Gerard

    2003-03-01

    Cystic fibrosis sputum is a complex fluid which has a high concentration of DNA and F-actin, two anionic biological polyelectrolytes. In this work, we study the interactions between DNA and actin in an aqueous environment over a wide range of polyelectrolyte lengths and salt levels, using synchrotron Small Angle X-ray Scattering(SAXS) and confocal microscopy. Perliminary results indicate the existence of a compressed phase of nematic F-actin in the presence of DNA. This work was supported by NSF DMR-0071761, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  11. CaMKIIβ Association with the Actin Cytoskeleton Is Regulated by Alternative Splicing

    PubMed Central

    O'Leary, Heather; Lasda, Erika

    2006-01-01

    The Ca2+/calmodulin (CaM)-dependent protein kinase II (CaMKII)β has morphogenic functions in neurons not shared by the α isoform. CaMKIIβ contains three exons (v1, v3, and v4) not present in the CaMKIIα gene, and two of these exons (v1 and v4) are subject to differential alternative splicing. We show here that CaMKIIβ, but not α, mediated bundling of F-actin filaments in vitro. Most importantly, inclusion of exon v1 was required for CaMKIIβ association with the F-actin cytoskeleton within cells. CaMKIIβe, which is the dominant variant around birth and lacks exon v1 sequences, failed to associate with F-actin. By contrast, CaMKIIβ′, which instead lacks exon v4, associated with F-actin as full-length CaMKIIβ. Previous studies with CaMKIIβ mutants have indicated a role of nonstimulated kinase activity in enhancing dendritic arborization. Here, we show that F-actin–targeted CaMKIIβ, but not α, was able to phosphorylate actin in vitro even by nonstimulated basal activity in absence of Ca2+/CaM. In rat pancreatic islets and in skeletal muscle, the actin-associated CaMKIIβ′ and βM were the predominant variants, respectively. Thus, cytoskeletal targeting may mediate functions of CaMKIIβ variants also outside the nervous system. PMID:16928958

  12. Eukaryotic chaperonin containing T-complex polypeptide 1 interacts with filamentous actin and reduces the initial rate of actin polymerization in vitro

    PubMed Central

    Grantham, Julie; Ruddock, Lloyd W.; Roobol, Anne; Carden, Martin J.

    2002-01-01

    We have previously observed that subunits of the chaperonin required for actin production (type-II chaperonin containing T-complex polypeptide 1 [CCT]) localize at sites of microfilament assembly. In this article we extend this observation by showing that substantially substoichiometric CCT reduces the initial rate of pyrene-labeled actin polymerization in vitro where eubacterial chaperonin GroEL had no such effect. CCT subunits bound selectively to F-actin in cosedimentation assays, and CCT reduced elongation rates from both purified actin filament “seeds” and the short and stabilized, minus-end blocked filaments in erythrocyte membrane cytoskeletons. These observations suggest CCT might remain involved in biogenesis of the actin cytoskeleton, by acting at filament (+) ends, beyond its already well-established role in producing new actin monomers. PMID:12482199

  13. Mechanism of Cdc42-induced Actin Polymerization in Neutrophil Extracts

    PubMed Central

    Zigmond, Sally H.; Joyce, Michael; Yang, Changsong; Brown, Kevin; Huang, Minzhou; Pring, Martin

    1998-01-01

    Cdc42, activated with GTPγS, induces actin polymerization in supernatants of lysed neutrophils. This polymerization, like that induced by agonists, requires elongation at filament barbed ends. To determine if creation of free barbed ends was sufficient to induce actin polymerization, free barbed ends in the form of spectrin-actin seeds or sheared F-actin filaments were added to cell supernatants. Neither induced polymerization. Furthermore, the presence of spectrin-actin seeds did not increase the rate of Cdc42-induced polymerization, suggesting that the presence of Cdc42 did not facilitate polymerization from spectrin-actin seeds such as might have been the case if Cdc42 inhibited capping or released G-actin from a sequestered pool. Electron microscopy revealed that Cdc42-induced filaments elongated rapidly, achieving a mean length greater than 1 μm in 15 s. The mean length of filaments formed from spectrin-actin seeds was <0.4 μm. Had spectrin-actin seeds elongated at comparable rates before they were capped, they would have induced longer filaments. There was little change in mean length of Cdc42-induced filaments between 15 s and 5 min, suggesting that the increase in F-actin over this time was due to an increase in filament number. These data suggest that Cdc42 induction of actin polymerization requires both creation of free barbed ends and facilitated elongation at these ends. PMID:9722612

  14. Quantitative Kinetic Study of the Actin-Bundling Protein L-Plastin and of Its Impact on Actin Turn-Over

    PubMed Central

    Al Tanoury, Ziad; Schaffner-Reckinger, Elisabeth; Halavatyi, Aliaksandr; Hoffmann, Céline; Moes, Michèle; Hadzic, Ermin; Catillon, Marie; Yatskou, Mikalai; Friederich, Evelyne

    2010-01-01

    Background Initially detected in leukocytes and cancer cells derived from solid tissues, L-plastin/fimbrin belongs to a large family of actin crosslinkers and is considered as a marker for many cancers. Phosphorylation of L-plastin on residue Ser5 increases its F-actin binding activity and is required for L-plastin-mediated cell invasion. Methodology/Principal Findings To study the kinetics of L-plastin and the impact of L-plastin Ser5 phosphorylation on L-plastin dynamics and actin turn-over in live cells, simian Vero cells were transfected with GFP-coupled WT-L-plastin, Ser5 substitution variants (S5/A, S5/E) or actin and analyzed by fluorescence recovery after photobleaching (FRAP). FRAP data were explored by mathematical modeling to estimate steady-state reaction parameters. We demonstrate that in Vero cell focal adhesions L-plastin undergoes rapid cycles of association/dissociation following a two-binding-state model. Phosphorylation of L-plastin increased its association rates by two-fold, whereas dissociation rates were unaffected. Importantly, L-plastin affected actin turn-over by decreasing the actin dissociation rate by four-fold, increasing thereby the amount of F-actin in the focal adhesions, all these effects being promoted by Ser5 phosphorylation. In MCF-7 breast carcinoma cells, phorbol 12-myristate 13-acetate (PMA) treatment induced L-plastin translocation to de novo actin polymerization sites in ruffling membranes and spike-like structures and highly increased its Ser5 phosphorylation. Both inhibition studies and siRNA knock-down of PKC isozymes pointed to the involvement of the novel PKC-δ isozyme in the PMA-elicited signaling pathway leading to L-plastin Ser5 phosphorylation. Furthermore, the L-plastin contribution to actin dynamics regulation was substantiated by its association with a protein complex comprising cortactin, which is known to be involved in this process. Conclusions/Significance Altogether these findings quantitatively

  15. Identification of interfaces involved in weak interactions with application to F-actin-aldolase rafts.

    PubMed

    Hu, Guiqing; Taylor, Dianne W; Liu, Jun; Taylor, Kenneth A

    2018-03-01

    Macromolecular interactions occur with widely varying affinities. Strong interactions form well defined interfaces but weak interactions are more dynamic and variable. Weak interactions can collectively lead to large structures such as microvilli via cooperativity and are often the precursors of much stronger interactions, e.g. the initial actin-myosin interaction during muscle contraction. Electron tomography combined with subvolume alignment and classification is an ideal method for the study of weak interactions because a 3-D image is obtained for the individual interactions, which subsequently are characterized collectively. Here we describe a method to characterize heterogeneous F-actin-aldolase interactions in 2-D rafts using electron tomography. By forming separate averages of the two constituents and fitting an atomic structure to each average, together with the alignment information which relates the raw motif to the average, an atomic model of each crosslink is determined and a frequency map of contact residues is computed. The approach should be applicable to any large structure composed of constituents that interact weakly and heterogeneously. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Lifeact-mEGFP Reveals a Dynamic Apical F-Actin Network in Tip Growing Plant Cells

    PubMed Central

    Hepler, Peter K.; Bezanilla, Magdalena

    2009-01-01

    Background Actin is essential for tip growth in plants. However, imaging actin in live plant cells has heretofore presented challenges. In previous studies, fluorescent probes derived from actin-binding proteins often alter growth, cause actin bundling and fail to resolve actin microfilaments. Methodology/Principal Findings In this report we use Lifeact-mEGFP, an actin probe that does not affect the dynamics of actin, to visualize actin in the moss Physcomitrella patens and pollen tubes from Lilium formosanum and Nicotiana tobaccum. Lifeact-mEGFP robustly labels actin microfilaments, particularly in the apex, in both moss protonemata and pollen tubes. Lifeact-mEGFP also labels filamentous actin structures in other moss cell types, including cells of the gametophore. Conclusions/Significance Lifeact-mEGFP, when expressed at optimal levels does not alter moss protonemal or pollen tube growth. We suggest that Lifeact-mEGFP represents an exciting new versatile probe for further studies of actin's role in tip growing plant cells. PMID:19478943

  17. Anti-inflammatory Mechanism of Geniposide: Inhibiting the Hyperpermeability of Fibroblast-Like Synoviocytes via the RhoA/p38MAPK/NF-κB/F-Actin Signal Pathway

    PubMed Central

    Deng, Ran; Li, Feng; Wu, Hong; Wang, Wen-yu; Dai, Li; Zhang, Zheng-rong; Fu, Jun

    2018-01-01

    Geniposide (GE) is the extraction and purification of iridoid glycosides from the Gardenia jasminoides Ellis, which is a promising anti-inflammatory drug, but its mechanism of actions on rheumatoid arthritis (RA) has not been clarified. This study investigated the molecular mechanism behind GE reduced the high permeability of fibroblast-like synoviocytes (FLSs) derived from SD rats with adjuvant arthritis (AA), with the aims of observing the action of GE in AA rats and exploring new therapeutic strategies for RA treatment. The CCK-8 method was used to detect FLSs proliferation. The pro-inflammatory cytokines levels and anti-inflammatory cytokines levels in FLSs were determined by ELISA kits. FLSs permeability assay was performed on Transwell. Immunofluorescence was used to assay the arrangement and morphology of F-actin. The expression of the key molecules related to FLSs permeability (RhoA, p-p38MAPK, NF-κB p-p65 and F-actin) was detected by western blotting. After treatment with lipopolysaccharide (LPS), the proliferation and the permeability of the cells increased significantly (all P < 0.05). The expression of RhoA, p-p38MAPK, NF-κB p-p65 and F-actin in FLSs was higher compared with the control group, and F-actin was redistributed, with the formation of additional stress fibers. But, these conditions were moderated after treatment with GE. We demonstrated that the treatment of different concentrations of GE (25, 50, and 100 μg/mL) had a significant inhibitory effect on the proliferation and permeability of FLSs in vitro. Furthermore, the levels of interleukin (IL)-1β and IL-17 secreted by FLSs were decreased in different doses of GE groups, and the levels of anti-inflammatory cytokines (IL-4, TGF-β1) were increased. Under treatment with GE, low expression of RhoA downregulated expression of p-p38MAPK, NF-κB p-p65, and F-actin while compared with control group, and restored the hyperpermeability of FLSs due to LPS treatment. Taken together, GE might play

  18. Altered Cell Mechanics from the Inside: Dispersed Single Wall Carbon Nanotubes Integrate with and Restructure Actin

    PubMed Central

    Holt, Brian D.; Shams, Hengameh; Horst, Travis A.; Basu, Saurav; Rape, Andrew D.; Wang, Yu-Li; Rohde, Gustavo K.; Mofrad, Mohammad R. K.; Islam, Mohammad F.; Dahl, Kris Noel

    2012-01-01

    With a range of desirable mechanical and optical properties, single wall carbon nanotubes (SWCNTs) are a promising material for nanobiotechnologies. SWCNTs also have potential as biomaterials for modulation of cellular structures. Previously, we showed that highly purified, dispersed SWCNTs grossly alter F-actin inside cells. F-actin plays critical roles in the maintenance of cell structure, force transduction, transport and cytokinesis. Thus, quantification of SWCNT-actin interactions ranging from molecular, sub-cellular and cellular levels with both structure and function is critical for developing SWCNT-based biotechnologies. Further, this interaction can be exploited, using SWCNTs as a unique actin-altering material. Here, we utilized molecular dynamics simulations to explore the interactions of SWCNTs with actin filaments. Fluorescence lifetime imaging microscopy confirmed that SWCNTs were located within ~5 nm of F-actin in cells but did not interact with G-actin. SWCNTs did not alter myosin II sub-cellular localization, and SWCNT treatment in cells led to significantly shorter actin filaments. Functionally, cells with internalized SWCNTs had greatly reduced cell traction force. Combined, these results demonstrate direct, specific SWCNT alteration of F-actin structures which can be exploited for SWCNT-based biotechnologies and utilized as a new method to probe fundamental actin-related cellular processes and biophysics. PMID:24955540

  19. A Missense Mutation in the Capza3 Gene and Disruption of F-actin Organization in Spermatids of repro32 Infertile Male Mice

    PubMed Central

    Geyer, Christopher B.; Inselman, Amy L.; Sunman, Jeffrey A.; Bornstein, Sheila; Handel, Mary Ann; Eddy, Edward M.

    2009-01-01

    Males homozygous for the repro32 ENU-induced mutation produced by the Reproductive Genomics program at The Jackson Laboratory are infertile, have low epididymal sperm concentrations, and produce sperm with abnormally shaped heads and poor motility. The purpose of the present study was to identify the mutated gene in repro32 mice and to define the structural and functional changes causing infertility and the aberrant sperm phenotype. In repro32/repro32 mice, we discovered a failure to shed excess cytoplasm and disorganization of the middle piece of the flagellum at spermiation, resulting in the outer dense fibers being wrapped around the sperm head within a bag of cytoplasm. Using a candidate-gene approach, a mutation was identified in the spermatid-specific “capping protein (actin filament) muscle Z-line, alpha 3” gene (Capza3). CAPZA3 protein localization was altered in spermatids concurrent with altered localization of a unique CAPZB variant isoform and disruption of the filamentous actin (F-actin) network. These observations strongly suggest the missense mutation in Capza3 is responsible for the mutant phenotype of repro32/repro32 sperm and regulation of F-actin dynamics by a spermatogenic cell-specific CAPZ heterodimer is essential for removal of the cytoplasm and maintenance of midpiece integrity during spermiation in the mouse. PMID:19341723

  20. Live-cell imaging of actin dynamics reveals mechanisms of stereocilia length regulation in the inner ear

    PubMed Central

    Drummond, Meghan C.; Barzik, Melanie; Bird, Jonathan E.; Zhang, Duan-Sun; Lechene, Claude P.; Corey, David P.; Cunningham, Lisa L.; Friedman, Thomas B.

    2015-01-01

    The maintenance of sensory hair cell stereocilia is critical for lifelong hearing; however, mechanisms of structural homeostasis remain poorly understood. Conflicting models propose that stereocilia F-actin cores are either continually renewed every 24–48 h via a treadmill or are stable, exceptionally long-lived structures. Here to distinguish between these models, we perform an unbiased survey of stereocilia actin dynamics in more than 500 utricle hair cells. Live-imaging EGFP-β-actin or dendra2-β-actin reveal stable F-actin cores with turnover and elongation restricted to stereocilia tips. Fixed-cell microscopy of wild-type and mutant β-actin demonstrates that incorporation of actin monomers into filaments is required for localization to stereocilia tips. Multi-isotope imaging mass spectrometry and live imaging of single differentiating hair cells capture stereociliogenesis and explain uniform incorporation of 15N-labelled protein and EGFP-β-actin into nascent stereocilia. Collectively, our analyses support a model in which stereocilia actin cores are stable structures that incorporate new F-actin only at the distal tips. PMID:25898120

  1. Computational spatiotemporal analysis identifies WAVE2 and Cofilin as joint regulators of costimulation-mediated T cell actin dynamics

    PubMed Central

    Roybal, Kole T.; Buck, Taráz E.; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J.; Ambler, Rachel; Tunbridge, Helen M.; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F.

    2016-01-01

    Fluorescence microscopy is one of the most important tools in cell biology research and it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells; however, given extensive cell-to-cell variation, methods do not currently exist to assemble these data into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. Here, we have developed one such method and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28 and we have determined how CD28 modulates actin dynamics. We imaged actin and eight core actin regulators under conditions where CD28 in the context of a strong TCR signal was engaged or blocked to yield over a thousand movies. Our computational analysis identified diminished recruitment of the activator of actin nucleation WAVE2 and the actin severing protein cofilin to F-actin as the dominant difference upon costimulation blockade. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics upon costimulation blockade. Thus we have developed and validated an approach to quantify protein distributions in time and space for analysis of complex regulatory systems. PMID:27095595

  2. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins

    PubMed Central

    de Menezes, Juliana Perrone Bezerra; Koushik, Amrita; Das, Satarupa; Guven, Can; Siegel, Ariel; Laranjeira-Silva, Maria Fernanda; Losert, Wolfgang; Andrews, Norma W.

    2016-01-01

    Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function is still poorly understood. In this study we show that L. amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin and phosphorylated FAK when compared to non-infected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions. PMID:27641840

  3. Actin retrograde flow actively aligns and orients ligand-engaged integrins in focal adhesions

    PubMed Central

    Swaminathan, Vinay; Kalappurakkal, Joseph Mathew; Moore, Travis I.; Koga, Nobuyasu; Baker, David A.; Oldenbourg, Rudolf; Tani, Tomomi; Springer, Timothy A.; Waterman, Clare M.

    2017-01-01

    Integrins are transmembrane receptors that, upon activation, bind extracellular ligands and link them to the actin filament (F-actin) cytoskeleton to mediate cell adhesion and migration. Cytoskeletal forces in migrating cells generated by polymerization- or contractility-driven “retrograde flow” of F-actin from the cell leading edge have been hypothesized to mediate integrin activation for ligand binding. This predicts that these forces should align and orient activated, ligand-bound integrins at the leading edge. Here, polarization-sensitive fluorescence microscopy of GFP-αVβ3 integrins in fibroblasts shows that integrins are coaligned in a specific orientation within focal adhesions (FAs) in a manner dependent on binding immobilized ligand and a talin-mediated linkage to the F-actin cytoskeleton. These findings, together with Rosetta modeling, suggest that integrins in FA are coaligned and may be highly tilted by cytoskeletal forces. Thus, the F-actin cytoskeleton sculpts an anisotropic molecular scaffold in FAs, and this feature may underlie the ability of migrating cells to sense directional extracellular cues. PMID:29073038

  4. Protein Kinases Possibly Mediate Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline D.; Bosah, Francis N.; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1998-01-01

    Basic cellular functions such as electrolyte concentration, cell growth rate, glucose utilization, bone formation, response to growth stimulation, and exocytosis are modified in microgravity. These studies indicate that microgravity affects a number of physiological systems and included in this are cell signaling mechanisms. Rijken and coworkers performed growth factor studies that showed PKC signaling and actin microfilament organization appears to be sensitive to microgravity, suggesting that the inhibition of signal transduction by microgravity may be related to alterations in actin microfilament organization. However, similar studies have not been done for vascular cells. Vascular endothelial cells play critical roles in providing nutrients to organ and tissues and in wound repair. The major deterrent to ground-based microgravity studies is that it is impossible to achieved true microgravity for longer than a few minutes on earth. Hence, it has not been possible to conduct prolonged microgravity studies except for two models that simulate certain aspects of microgravity. However, hypergravity is quite easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell lines while decreasing cell motility and slowing liver regeneration following partial hepatectomy, These studies indicate the hypergravity also alters the behavior of most cells. Several investigators have shown that hypergravity affects the activation of several protein kinases (PKs) in cells. In this study, we investigated whether hypergravity alters the expression of f-actin by bovine aortic endothelial cells (BAECs) and the role of PK's (calmodulin 11 dependent, PKA and PKC) as mediators of these effects.

  5. Organization and dynamics of the actin cytoskeleton during dendritic spine morphological remodeling.

    PubMed

    Chazeau, Anaël; Giannone, Grégory

    2016-08-01

    In the central nervous system, most excitatory post-synapses are small subcellular structures called dendritic spines. Their structure and morphological remodeling are tightly coupled to changes in synaptic transmission. The F-actin cytoskeleton is the main driving force of dendritic spine remodeling and sustains synaptic plasticity. It is therefore essential to understand how changes in synaptic transmission can regulate the organization and dynamics of actin binding proteins (ABPs). In this review, we will provide a detailed description of the organization and dynamics of F-actin and ABPs in dendritic spines and will discuss the current models explaining how the actin cytoskeleton sustains both structural and functional synaptic plasticity.

  6. Cortactin Branches Out: Roles in Regulating Protrusive Actin Dynamics

    PubMed Central

    Ammer, Amanda Gatesman; Weed, Scott A.

    2008-01-01

    Since its discovery in the early 1990’s, cortactin has emerged as a key signaling protein in many cellular processes, including cell adhesion, migration, endocytosis, and tumor invasion. While the list of cellular functions influenced by cortactin grows, the ability of cortactin to interact with and alter the cortical actin network is central to its role in regulating these processes. Recently, several advances have been made in our understanding of the interaction between actin and cortactin, providing insight into how these two proteins work together to provide a framework for normal and altered cellular function. This review examines how regulation of cortactin through post-translational modifications and interactions with multiple binding partners elicits changes in cortical actin cytoskeletal organization, impacting the regulation and formation of actin-rich motility structures. PMID:18615630

  7. Dual effect of F-actin targeted carrier combined with antimitotic drug on aggressive colorectal cancer cytoskeleton: Allying dissimilar cell cytoskeleton disrupting mechanisms.

    PubMed

    Taranejoo, Shahrouz; Janmaleki, Mohsen; Pachenari, Mohammad; Seyedpour, Seyed Morteza; Chandrasekaran, Ramya; Cheng, Wenlong; Hourigan, Kerry

    2016-11-20

    A recent approach to colon cancer therapy is to employ selective drugs with specific extra/intracellular sites of action. Alteration of cytoskeletal protein reorganization and, subsequently, to cellular biomechanical behaviour during cancer progression highly affects the cancer cell progress. Hence, cytoskeleton targeted drugs are an important class of cancer therapy agents. We have studied viscoelastic alteration of the human colon adenocarcinoma cell line, SW48, after treatment with a drug delivery system comprising chitosan as the carrier and albendazole as the microtubule-targeting agent (MTA). For the first time, we have evaluated the biomechanical characteristics of the cell line, using the micropipette aspiration (MA) method after treatment with drug delivery systems. Surprisingly, employing a chitosan-albendazole pair, in comparison with both neat materials, resulted in more significant change in the viscoelastic parameters of cells, including the elastic constants (K 1 and K 2 ) and the coefficient of viscosity (μ). This difference was more pronounced for cancer cells after 48h of the treatment. Microtubule and actin microfilament (F-actin) contents in the cell line were studied by immunofluorescent staining. Good agreement was observed between the mechanical characteristics results and microtubule/F-actin contents of the treated SW48 cell line, which declined after treatment. The results showed that chitosan affected F-actin more, while MTA was more effective for microtubules. Toxicity studies were performed against two cancer cell lines (SW48 and MCF10CA1h) and compared to normal cells, MCF10A. The results showed cancer selectiveness, safety of formulation, and enhanced anticancer efficacy of the CS/ABZ conjugate. This study suggests that employing such a suitable pair of drug-carriers with dissimilar sites of action, thus allying the different cell cytoskeleton disrupting mechanisms, may provide a more efficient cancer therapy approach. Copyright

  8. Actin polymerization drives polar growth in Arabidopsis root hair cells.

    PubMed

    Vazquez, Luis Alfredo Bañuelos; Sanchez, Rosana; Hernandez-Barrera, Alejandra; Zepeda-Jazo, Isaac; Sánchez, Federico; Quinto, Carmen; Torres, Luis Cárdenas

    2014-01-01

    In plants, the actin cytoskeleton is a prime regulator of cell polarity, growth, and cytoplasmic streaming. Tip growth, as observed in root hairs, caulonema, and pollen tubes, is governed by many factors, including calcium gradients, exocytosis and endocytosis, reactive oxygen species, and the cytoskeleton. Several studies indicate that the polymerization of G-actin into F-actin also contributes to tip growth. The structure and function of F-actin within the apical dome is variable, ranging from a dense meshwork to sparse single filaments. The presence of multiple F-actin structures in the elongating apices of tip-growing cells suggests that this cytoskeletal array is tightly regulated. We recently reported that sublethal concentrations of fluorescently labeled cytochalasin could be used to visualize the distribution of microfilament plus ends using fluorescence microscopy, and found that the tip region of the growing root hair cells of a legume plant exhibits a clear response to the nodulation factors secreted by Rhizobium. (1) In this current work, we expanded our analysis using confocal microscopy and demonstrated the existence of highly dynamic fluorescent foci along Arabidopsis root hair cells. Furthermore, we show that the strongest fluorescence signal accumulates in the tip dome of the growing root hair and seems to be in close proximity to the apical plasma membrane. Based on these findings, we propose that actin polymerization within the dome of growing root hair cells regulates polar growth.

  9. F-actin cross-linking enhances the stability of force generation in disordered actomyosin networks

    NASA Astrophysics Data System (ADS)

    Jung, Wonyeong; Murrell, Michael P.; Kim, Taeyoon

    2015-12-01

    Myosin molecular motors and actin cross-linking proteins (ACPs) are known to mediate the generation and transmission of mechanical forces within the cortical F-actin cytoskeleton that drive major cellular processes such as cell division and migration. However, how motors and ACPs interact collectively over diverse timescales to modulate the time-dependent mechanical properties of the cytoskeleton remains unclear. In this study, we present a three-dimensional agent-based computational model of the cortical actomyosin network to quantitatively determine the effects of motor activity and the density and kinetics of ACPs on the accumulation and maintenance of mechanical tension within a disordered actomyosin network. We found that motors accumulate large stress quickly by behaving as temporary cross-linkers although this stress is relaxed over time unless there are sufficient passive ACPs to stabilize the network. Stabilization by ACPs helps motors to generate forces up to their maximum potential, leading to significant enhancement of the efficiency and stability of stress generation. Thus, we demonstrated that the force-dependent kinetics of ACP dissociation plays a critical role for the accumulation and sustainment of stress and the structural remodeling of networks.

  10. Cortactin promotes exosome secretion by controlling branched actin dynamics

    PubMed Central

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Seiki, Motoharu; Tyska, Matthew J.

    2016-01-01

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. PMID:27402952

  11. Cortactin promotes exosome secretion by controlling branched actin dynamics.

    PubMed

    Sinha, Seema; Hoshino, Daisuke; Hong, Nan Hyung; Kirkbride, Kellye C; Grega-Larson, Nathan E; Seiki, Motoharu; Tyska, Matthew J; Weaver, Alissa M

    2016-07-18

    Exosomes are extracellular vesicles that influence cellular behavior and enhance cancer aggressiveness by carrying bioactive molecules. The mechanisms that regulate exosome secretion are poorly understood. Here, we show that the actin cytoskeletal regulatory protein cortactin promotes exosome secretion. Knockdown or overexpression of cortactin in cancer cells leads to a respective decrease or increase in exosome secretion, without altering exosome cargo content. Live-cell imaging revealed that cortactin controls both trafficking and plasma membrane docking of multivesicular late endosomes (MVEs). Regulation of exosome secretion by cortactin requires binding to the branched actin nucleating Arp2/3 complex and to actin filaments. Furthermore, cortactin, Rab27a, and coronin 1b coordinately control stability of cortical actin MVE docking sites and exosome secretion. Functionally, the addition of purified exosomes to cortactin-knockdown cells rescued defects of those cells in serum-independent growth and invasion. These data suggest a model in which cortactin promotes exosome secretion by stabilizing cortical actin-rich MVE docking sites. © 2016 Sinha et al.

  12. Oligomerization of coronin: Implication on actin filament length in Leishmania.

    PubMed

    Srivastava, Rashmi; Prasadareddy Kajuluri, Lova; Pathak, Neelam; Gupta, Chhitar M; Sahasrabuddhe, Amogh A

    2015-12-01

    Coronin proteins bind with actin filaments and participate in regulation of actin-dependent processes. These proteins contain a coiled-coil domain at their C-terminus, which is responsible for their dimeric or trimeric forms. However, the functional significance of these oligomeric configurations in organizing the actin cytoskeleton is obscure. Here, we report that the Leishmania coronin exists in a higher oligomeric form through its coiled-coil domain, the truncation of which ablates the ability of Leishmania coronin to assist actin-filament formation. F-actin co-sedimentation assay using purified proteins shows that the coiled-coil domain does not interact with actin-filaments and its absence does not abrogate actin-coronin interaction. Furthermore, it was shown that unlike other coronins, Leishmania coronin interacts with actin-filaments through its unique region. These results provided important insights into the role of coronin oligomerization in modulating actin-network. © 2015 Wiley Periodicals, Inc.

  13. Regulation of the actin cytoskeleton-plasma membrane interplay by phosphoinositides.

    PubMed

    Saarikangas, Juha; Zhao, Hongxia; Lappalainen, Pekka

    2010-01-01

    The plasma membrane and the underlying cortical actin cytoskeleton undergo continuous dynamic interplay that is responsible for many essential aspects of cell physiology. Polymerization of actin filaments against cellular membranes provides the force for a number of cellular processes such as migration, morphogenesis, and endocytosis. Plasma membrane phosphoinositides (especially phosphatidylinositol bis- and trisphosphates) play a central role in regulating the organization and dynamics of the actin cytoskeleton by acting as platforms for protein recruitment, by triggering signaling cascades, and by directly regulating the activities of actin-binding proteins. Furthermore, a number of actin-associated proteins, such as BAR domain proteins, are capable of directly deforming phosphoinositide-rich membranes to induce plasma membrane protrusions or invaginations. Recent studies have also provided evidence that the actin cytoskeleton-plasma membrane interactions are misregulated in a number of pathological conditions such as cancer and during pathogen invasion. Here, we summarize the wealth of knowledge on how the cortical actin cytoskeleton is regulated by phosphoinositides during various cell biological processes. We also discuss the mechanisms by which interplay between actin dynamics and certain membrane deforming proteins regulate the morphology of the plasma membrane.

  14. Myosin-induced volume increase of the hyper-mobile water surrounding actin filaments.

    PubMed

    Suzuki, Makoto; Kabir, Syed Rashel; Siddique, Md Shahjahan Parvez; Nazia, Umme Salma; Miyazaki, Takashi; Kodama, Takao

    2004-09-10

    Microwave dielectric spectroscopy can measure the rotational mobility of water molecules that hydrate proteins and the hydration-shell volume. Using this technique, we have recently shown that apart from typical hydrating water molecules with lowered mobility there are other water molecules around the actin filaments (F-actin) which have a much higher mobility than that of bulk water [Biophys. J. 85 (2003) 3154]. We report here that the volume of this water component (hyper-mobile water) markedly increases without significant change of the volume of the ordinary hydration shell when the myosin motor-domain (S1, myosin subfragment-1) binds to F-actin. No hyper-mobile component was found in the hydration shell of S1 itself. The present results strongly suggest that the solvent space around S1 bound to F-actin is diffusionally asymmetric, which supports our model of force generation by actomyosin proposed previously [op. cit.].

  15. Tropomyosin inhibits ADF/cofilin-dependent actin filament dynamics.

    PubMed

    Ono, Shoichiro; Ono, Kanako

    2002-03-18

    Tropomyosin binds to actin filaments and is implicated in stabilization of actin cytoskeleton. We examined biochemical and cell biological properties of Caenorhabditis elegans tropomyosin (CeTM) and obtained evidence that CeTM is antagonistic to ADF/cofilin-dependent actin filament dynamics. We purified CeTM, actin, and UNC-60B (a muscle-specific ADF/cofilin isoform), all of which are derived from C. elegans, and showed that CeTM and UNC-60B bound to F-actin in a mutually exclusive manner. CeTM inhibited UNC-60B-induced actin depolymerization and enhancement of actin polymerization. Within isolated native thin filaments, actin and CeTM were detected as major components, whereas UNC-60B was present at a trace amount. Purified UNC-60B was unable to interact with the native thin filaments unless CeTM and other associated proteins were removed by high-salt extraction. Purified CeTM was sufficient to restore the resistance of the salt-extracted filaments from UNC-60B. In muscle cells, CeTM and UNC-60B were localized in different patterns. Suppression of CeTM by RNA interference resulted in disorganized actin filaments and paralyzed worms in wild-type background. However, in an ADF/cofilin mutant background, suppression of CeTM did not worsen actin organization and worm motility. These results suggest that tropomyosin is a physiological inhibitor of ADF/cofilin-dependent actin dynamics.

  16. Actin-induced dimerization of palladin promotes actin-bundling

    PubMed Central

    Vattepu, Ravi; Yadav, Rahul; Beck, Moriah R

    2015-01-01

    A subset of actin binding proteins is able to form crosslinks between two or more actin filaments, thus producing structures of parallel or networked bundles. These actin crosslinking proteins interact with actin through either bivalent binding or dimerization. We recently identified two binding sites within the actin binding domain of palladin, an actin crosslinking protein that plays an important role in normal cell adhesion and motility during wound healing and embryonic development. In this study, we show that actin induces dimerization of palladin. Furthermore, the extent of dimerization reflects earlier comparisons of actin binding and bundling between different domains of palladin. On the basis of these results we hypothesized that actin binding may promote a conformational change that results in dimerization of palladin, which in turn may drive the crosslinking of actin filaments. The proximal distance between two actin binding sites on crosslinking proteins determines the ultrastructural properties of the filament network, therefore we also explored interdomain interactions using a combination of chemical crosslinking experiments and actin cosedimentation assays. Limited proteolysis data reveals that palladin is less susceptible to enzyme digestion after actin binding. Our results suggest that domain movements in palladin are necessary for interactions with actin and are induced by interactions with actin filaments. Accordingly, we put forth a model linking the structural changes to functional dynamics. PMID:25307943

  17. Leishmania infection inhibits macrophage motility by altering F-actin dynamics and the expression of adhesion complex proteins.

    PubMed

    de Menezes, Juliana Perrone Bezerra; Koushik, Amrita; Das, Satarupa; Guven, Can; Siegel, Ariel; Laranjeira-Silva, Maria Fernanda; Losert, Wolfgang; Andrews, Norma W

    2017-03-01

    Leishmania is an intracellular protozoan parasite that causes a broad spectrum of clinical manifestations, ranging from self-healing skin lesions to fatal visceralizing disease. As the host cells of choice for all species of Leishmania, macrophages are critical for the establishment of infections. How macrophages contribute to parasite homing to specific tissues and how parasites modulate macrophage function are still poorly understood. In this study, we show that Leishmania amazonensis infection inhibits macrophage roaming motility. The reduction in macrophage speed is not dependent on particle load or on factors released by infected macrophages. L. amazonensis-infected macrophages also show reduced directional migration in response to the chemokine MCP-1. We found that infected macrophages have lower levels of total paxillin, phosphorylated paxillin, and phosphorylated focal adhesion kinase when compared to noninfected macrophages, indicating abnormalities in the formation of signaling adhesion complexes that regulate motility. Analysis of the dynamics of actin polymerization at peripheral sites also revealed a markedly enhanced F-actin turnover frequency in L. amazonensis-infected macrophages. Thus, Leishmania infection inhibits macrophage motility by altering actin dynamics and impairing the expression of proteins that function in plasma membrane-extracellular matrix interactions. © 2016 John Wiley & Sons Ltd.

  18. Z-disc-associated, Alternatively Spliced, PDZ Motif-containing Protein (ZASP) Mutations in the Actin-binding Domain Cause Disruption of Skeletal Muscle Actin Filaments in Myofibrillar Myopathy*

    PubMed Central

    Lin, Xiaoyan; Ruiz, Janelle; Bajraktari, Ilda; Ohman, Rachel; Banerjee, Soojay; Gribble, Katherine; Kaufman, Joshua D.; Wingfield, Paul T.; Griggs, Robert C.; Fischbeck, Kenneth H.; Mankodi, Ami

    2014-01-01

    The core of skeletal muscle Z-discs consists of actin filaments from adjacent sarcomeres that are cross-linked by α-actinin homodimers. Z-disc-associated, alternatively spliced, PDZ motif-containing protein (ZASP)/Cypher interacts with α-actinin, myotilin, and other Z-disc proteins via the PDZ domain. However, these interactions are not sufficient to maintain the Z-disc structure. We show that ZASP directly interacts with skeletal actin filaments. The actin-binding domain is between the modular PDZ and LIM domains. This ZASP region is alternatively spliced so that each isoform has unique actin-binding domains. All ZASP isoforms contain the exon 6-encoded ZASP-like motif that is mutated in zaspopathy, a myofibrillar myopathy (MFM), whereas the exon 8–11 junction-encoded peptide is exclusive to the postnatal long ZASP isoform (ZASP-LΔex10). MFM is characterized by disruption of skeletal muscle Z-discs and accumulation of myofibrillar degradation products. Wild-type and mutant ZASP interact with α-actin, α-actinin, and myotilin. Expression of mutant, but not wild-type, ZASP leads to Z-disc disruption and F-actin accumulation in mouse skeletal muscle, as in MFM. Mutations in the actin-binding domain of ZASP-LΔex10, but not other isoforms, cause disruption of the actin cytoskeleton in muscle cells. These isoform-specific mutation effects highlight the essential role of the ZASP-LΔex10 isoform in F-actin organization. Our results show that MFM-associated ZASP mutations in the actin-binding domain have deleterious effects on the core structure of the Z-discs in skeletal muscle. PMID:24668811

  19. Modification of the kinetic parameters of aldolase on binding to the actin-containing filaments of skeletal muscle.

    PubMed Central

    Walsh, T P; Clarke, F M; Masters, C J

    1977-01-01

    The kinetic parameters of fructose bisphosphate aldolase (EC 4.1.2.13) were shown to be modified on binding of the enzyme to the actin-containing filaments of skeletal muscle. Although binding to F-actin or F-actin-tropomyosin filaments results in relative minor changes in kinetic properties, binding to F-actin-tropomyosin-troponin filaments produces major alterations in the kinetic parameters, and, in addition, renders them Ca2+-sensitive. These observations may be relevant to an understanding of the function of this enzyme within the muscle fibre. PMID:889571

  20. HopW1 from Pseudomonas syringae disrupts the actin cytoskeleton to promote virulence in Arabidopsis.

    PubMed

    Kang, Yongsung; Jelenska, Joanna; Cecchini, Nicolas M; Li, Yujie; Lee, Min Woo; Kovar, David R; Greenberg, Jean T

    2014-06-01

    A central mechanism of virulence of extracellular bacterial pathogens is the injection into host cells of effector proteins that modify host cellular functions. HopW1 is an effector injected by the type III secretion system that increases the growth of the plant pathogen Pseudomonas syringae on the Columbia accession of Arabidopsis. When delivered by P. syringae into plant cells, HopW1 causes a reduction in the filamentous actin (F-actin) network and the inhibition of endocytosis, a known actin-dependent process. When directly produced in plants, HopW1 forms complexes with actin, disrupts the actin cytoskeleton and inhibits endocytosis as well as the trafficking of certain proteins to vacuoles. The C-terminal region of HopW1 can reduce the length of actin filaments and therefore solubilize F-actin in vitro. Thus, HopW1 acts by disrupting the actin cytoskeleton and the cell biological processes that depend on actin, which in turn are needed for restricting P. syringae growth in Arabidopsis.

  1. Molecular Characterization of abLIM, a Novel Actin-binding and Double Zinc Finger Protein

    PubMed Central

    Roof, Dorothy J.; Hayes, Annmarie; Adamian, Michael; Chishti, Athar H.; Li, Tiansen

    1997-01-01

    Molecules that couple the actin-based cytoskeleton to intracellular signaling pathways are central to the processes of cellular morphogenesis and differentiation. We have characterized a novel protein, the actin-binding LIM (abLIM) protein, which could mediate such interactions between actin filaments and cytoplasmic targets. abLIM protein consists of a COOH-terminal cytoskeletal domain that is fused to an NH2-terminal domain consisting of four double zinc finger motifs. The cytoskeletal domain is ∼50% identical to erythrocyte dematin, an actin-bundling protein of the red cell membrane skeleton, while the zinc finger domains conform to the LIM motif consensus sequence. In vitro expression studies demonstrate that abLIM protein can bind to F-actin through the dematin-like domain. Transcripts corresponding to three distinct isoforms have a widespread tissue distribution. However, a polypeptide corresponding to the full-length isoform is found exclusively in the retina and is enriched in biochemical extracts of retinal rod inner segments. abLIM protein also undergoes extensive phosphorylation in light-adapted retinas in vivo, and its developmental expression in the retina coincides with the elaboration of photoreceptor inner and outer segments. Based on the composite primary structure of abLIM protein, actin-binding capacity, potential regulation via phosphorylation, and isoform expression pattern, we speculate that abLIM may play a general role in bridging the actin-based cytoskeleton with an array of potential LIM protein-binding partners. The developmental time course of abLIM expression in the retina suggests that the retina-specific isoform may have a specialized role in the development or elaboration of photoreceptor inner and outer segments. PMID:9245787

  2. Actin filament curvature biases branching direction

    NASA Astrophysics Data System (ADS)

    Wang, Evan; Risca, Viviana; Chaudhuri, Ovijit; Chia, Jia-Jun; Geissler, Phillip; Fletcher, Daniel

    2012-02-01

    Actin filaments are key components of the cellular machinery, vital for a wide range of processes ranging from cell motility to endocytosis. Actin filaments can branch, and essential in this process is a protein complex known as the Arp2/3 complex, which nucleate new ``daughter'' filaments from pre-existing ``mother'' filaments by attaching itself to the mother filament. Though much progress has been made in understanding the Arp2/3-actin junction, some very interesting questions remain. In particular, F-actin is a dynamic polymer that undergoes a wide range of fluctuations. Prior studies of the Arp2/3-actin junction provides a very static notion of Arp2/3 binding. The question we ask is how differently does the Arp2/3 complex interact with a straight filament compared to a bent filament? In this study, we used Monte Carlo simulations of a surface-tethered worm-like chain to explore possible mechanisms underlying the experimental observation that there exists preferential branch formation by the Arp2/3 complex on the convex face of a curved filament. We show that a fluctuation gating model in which Arp2/3 binding to the actin filament is dependent upon a rare high-local-curvature shape fluctuation of the filament is consistent with the experimental data.

  3. Proline-rich antimicrobial peptide, PR-39 gene transduction altered invasive activity and actin structure in human hepatocellular carcinoma cells

    PubMed Central

    Ohtake, T; Fujimoto, Y; Ikuta, K; Saito, H; Ohhira, M; Ono, M; Kohgo, Y

    1999-01-01

    PR-39 is an endogenous proline-rich antimicrobial peptide which induces the synthesis of syndecan-1, a transmembrane heparan sulphate proteoglycan involved in cell-to-matrix interactions and wound healing. Previously, we revealed that the expression of syndecan-1 was reduced in human hepatocellular carcinomas with high metastatic potential and speculated that syndecan-1 played an important role in inhibition of invasion and metastasis. It is assumed that a modification of this process with PR-39 and syndecan-1 may result in a new strategy by which it can inhibit the invasion and metastasis. Therefore, we transduced a gene of PR-39 into human hepatocellular carcinoma cell line HLF, which shows a low expression of syndecan-1 and a high in vitro invasive activity, and examined whether this procedure could reduce the invasive activity of tumour cells. In two transfectants with PR-39 gene, the syndecan-1 expression was induced and the invasive activity in type I collagen-coated chamber was inhibited. Moreover, these transfectants showed the suppression of motile activity assayed by phagokinetic tracks in addition to the disorganization of actin filaments observed by a confocal imaging system. In contrast, five transfectants with syndecan-1 gene in the HLF cells revealed suppression of invasive activity but did not alter the motile activity and actin structures of the cell. These results suggest that PR-39 has functions involved in the suppression of motile activity and alteration of actin structure on human hepatocellular carcinoma cells in addition to the suppression of invasive activity which might result from the induction of syndecan-1 expression. © 1999 Cancer Research Campaign PMID:10507762

  4. ADF Proteins Are Involved in the Control of Flowering and Regulate F-Actin Organization, Cell Expansion, and Organ Growth in Arabidopsis

    PubMed Central

    Dong, Chun-Hai; Xia, Gui-Xian; Hong, Yan; Ramachandran, Srinivasan; Kost, Benedikt; Chua, Nam-Hai

    2001-01-01

    Based mostly on the results of in vitro experiments, ADF (actin-depolymerizing factor) proteins are thought to be key modulators of the dynamic organization of the actin cytoskeleton. The few studies concerned with the in vivo function of ADF proteins that have been reported to date were performed almost exclusively using single-cell systems and have failed to produce consistent results. To investigate ADF functions in vivo and during the development of multicellular organs, we generated transgenic Arabidopsis plants that express a cDNA encoding an ADF protein (AtADF1) in the sense or the antisense orientation under the control of a strong constitutively active promoter. Selected lines with significantly altered levels of AtADF protein expression were characterized phenotypically. Overexpression of AtADF1 resulted in the disappearance of thick actin cables in different cell types, caused irregular cellular and tissue morphogenesis, and reduced the growth of cells and organs. In contrast, reduced AtADF expression promoted the formation of actin cables, resulted in a delay in flowering, and stimulated cell expansion as well as organ growth. These results are consistent with the molecular functions of ADF as predicted by in vitro studies, support the global roles of ADF proteins during the development of a multicellular organism, and demonstrate that these proteins are key regulators of F-actin organization, flowering, and cell and organ expansion in Arabidopsis. PMID:11402164

  5. Knockdown endogenous CypA with siRNA in U2OS cells results in disruption of F-actin structure and alters tumor phenotype.

    PubMed

    Calhoun, Colonya C; Lu, Ying-Chun; Song, Jun; Chiu, Robert

    2009-01-01

    Cyclophilin A (CypA) was originally identified as a cytosolic protein possessing peptidyl-prolyl isomerase activity. CypA has been shown to play a pivotal role in the immune response, but little is known about other molecular mechanisms of CypA-mediated biologic events. In our present study, we demonstrate that knockdown CypA expression using RNAi in U2OS cells resulted in disruption of the F-actin structure, as well as decreased anchorage-independent growth, proliferation, and migration. Wild-type U2OS cells treated with cyclosporine A (CsA), a peptidyl-prolyl isomerase inhibitor, displayed the same phenotype as knockdown CypA cells, suggesting that the isomerase activity of CypA is required to maintain a normal phenotype. In vitro and in vivo binding assays revealed that CypA binds to N-WASP, which functions in the nucleation of actin via the Arp2/3 complex. Pulse-chase labeling study indicated an enhanced degradation of N-WASP in cell lacking CypA, suggesting that CypA is required for stabilizing N-WASP to form a N-WASP/Arp2/3 complex for the nucleation/initiation of F-actin polymerization.

  6. Ligand-mediated Galectin-1 endocytosis prevents intraneural H2O2 production promoting F-actin dynamics reactivation and axonal re-growth.

    PubMed

    Quintá, Héctor R; Wilson, Carlos; Blidner, Ada G; González-Billault, Christian; Pasquini, Laura A; Rabinovich, Gabriel A; Pasquini, Juana M

    2016-09-01

    Axonal growth cone collapse following spinal cord injury (SCI) is promoted by semaphorin3A (Sema3A) signaling via PlexinA4 surface receptor. This interaction triggers intracellular signaling events leading to increased hydrogen peroxide levels which in turn promote filamentous actin (F-actin) destabilization and subsequent inhibition of axonal re-growth. In the current study, we demonstrated that treatment with galectin-1 (Gal-1), in its dimeric form, promotes a decrease in hydrogen peroxide (H2O2) levels and F-actin repolimerization in the growth cone and in the filopodium of neuron surfaces. This effect was dependent on the carbohydrate recognition activity of Gal-1, as it was prevented using a Gal-1 mutant lacking carbohydrate-binding activity. Furthermore, Gal-1 promoted its own active ligand-mediated endocytosis together with the PlexinA4 receptor, through mechanisms involving complex branched N-glycans. In summary, our results suggest that Gal-1, mainly in its dimeric form, promotes re-activation of actin cytoskeleton dynamics via internalization of the PlexinA4/Gal-1 complex. This mechanism could explain, at least in part, critical events in axonal regeneration including the full axonal re-growth process, de novo formation of synapse clustering, axonal re-myelination and functional recovery of coordinated locomotor activities in an in vivo acute and chronic SCI model. Axonal regeneration is a response of injured nerve cells critical for nerve repair in human spinal cord injury. Understanding the molecular mechanisms controlling nerve repair by Galectin-1, may be critical for therapeutic intervention. Our results show that Galectin-1; in its dimeric form, interferes with hydrogen peroxide production triggered by Semaphorin3A. The high levels of this reactive oxygen species (ROS) seem to be the main factor preventing axonal regeneration due to promotion of actin depolymerization at the axonal growth cone. Thus, Galectin-1 administration emerges as a novel

  7. Actin protofilament orientation in deformation of the erythrocyte membrane skeleton.

    PubMed Central

    Picart, C; Dalhaimer, P; Discher, D E

    2000-01-01

    The red cell's spectrin-actin network is known to sustain local states of shear, dilation, and condensation, and yet the short actin filaments are found to maintain membrane-tangent and near-random azimuthal orientations. When calibrated with polarization results for single actin filaments, imaging of micropipette-deformed red cell ghosts has allowed an assessment of actin orientations and possible reorientations in the network. At the hemispherical cap of the aspirated projection, where the network can be dilated severalfold, filaments have the same membrane-tangent orientation as on a relatively unstrained portion of membrane. Likewise, over the length of the network projection pulled into the micropipette, where the network is strongly sheared in axial extension and circumferential contraction, actin maintains its tangent orientation and is only very weakly aligned with network extension. Similar results are found for the integral membrane protein Band 3. Allowing for thermal fluctuations, we deduce a bound for the effective coupling constant, alpha, between network shear and azimuthal orientation of the protofilament. The finding that alpha must be about an order of magnitude or more below its tight-coupling value illustrates how nanostructural kinematics can decouple from more macroscopic responses. Monte Carlo simulations of spectrin-actin networks at approximately 10-nm resolution further support this conclusion and substantiate an image of protofilaments as elements of a high-temperature spin glass. PMID:11106606

  8. Septins arrange F-actin-containing fibers on the Chlamydia trachomatis inclusion and are required for normal release of the inclusion by extrusion.

    PubMed

    Volceanov, Larisa; Herbst, Katharina; Biniossek, Martin; Schilling, Oliver; Haller, Dirk; Nölke, Thilo; Subbarayal, Prema; Rudel, Thomas; Zieger, Barbara; Häcker, Georg

    2014-10-07

    Chlamydia trachomatis is an obligate intracellular human pathogen that grows inside a membranous, cytosolic vacuole termed an inclusion. Septins are a group of 13 GTP-binding proteins that assemble into oligomeric complexes and that can form higher-order filaments. We report here that the septins SEPT2, -9, -11, and probably -7 form fibrillar structures around the chlamydial inclusion. Colocalization studies suggest that these septins combine with F actin into fibers that encase the inclusion. Targeting the expression of individual septins by RNA interference (RNAi) prevented the formation of septin fibers as well as the recruitment of actin to the inclusion. At the end of the developmental cycle of C. trachomatis, newly formed, infectious elementary bodies are released, and this release occurs at least in part through the organized extrusion of intact inclusions. RNAi against SEPT9 or against the combination of SEPT2/7/9 substantially reduced the number of extrusions from a culture of infected HeLa cells. The data suggest that a higher-order structure of four septins is involved in the recruitment or stabilization of the actin coat around the chlamydial inclusion and that this actin recruitment by septins is instrumental for the coordinated egress of C. trachomatis from human cells. The organization of F actin around parasite-containing vacuoles may be a broader response mechanism of mammalian cells to the infection by intracellular, vacuole-dwelling pathogens. Importance: Chlamydia trachomatis is a frequent bacterial pathogen throughout the world, causing mostly eye and genital infections. C. trachomatis can develop only inside host cells; it multiplies inside a membranous vacuole in the cytosol, termed an inclusion. The inclusion is covered by cytoskeletal "coats" or "cages," whose organization and function are poorly understood. We here report that a relatively little-characterized group of proteins, septins, is required to organize actin fibers on the

  9. Perfluorooctanesulfonate (PFOS) Perturbs Male Rat Sertoli Cell Blood-Testis Barrier Function by Affecting F-Actin Organization via p-FAK-Tyr407: An in Vitro Study

    PubMed Central

    Wan, Hin-Ting; Mruk, Dolores D.; Wong, Chris K. C.

    2014-01-01

    Environmental toxicants such as perfluorooctanesulfonate (PFOS) have been implicated in male reproductive dysfunction, including reduced sperm count and semen quality, in humans. However, the underlying mechanism(s) remains unknown. Herein PFOS at 10–20 μM (∼5–10 μg/mL) was found to be more potent than bisphenol A (100 μM) in perturbing the blood-testis barrier (BTB) function by disrupting the Sertoli cell tight junction-permeability barrier without detectable cytotoxicity. We also delineated the underlying molecular mechanism by which PFOS perturbed Sertoli cell BTB function using an in vitro model that mimics the BTB in vivo. First, PFOS perturbed F-actin organization in Sertoli cells, causing truncation of actin filaments at the BTB. Thus, the actin-based cytoskeleton was no longer capable of supporting the distribution and/or localization of actin-regulatory and adhesion proteins at the cell-cell interface necessary to maintain BTB integrity. Second, PFOS was found to perturb inter-Sertoli cell gap junction (GJ) communication based on a dye-transfer assay by down-regulating the expression of connexin-43, a GJ integral membrane protein. Third, phosphorylated focal adhesion kinase (FAK)-Tyr407 was found to protect the BTB from the destructive effects of PFOS as shown in a study via an overexpression of an FAK Y407E phosphomimetic mutant. Also, transfection of Sertoli cells with an FAK-specific microRNA, miR-135b, to knock down the expression of phosphorylated FAK-Tyr407 was found to worsen PFOS-mediated Sertoli cell tight junction disruption. In summary, PFOS-induced BTB disruption is mediated by down-regulating phosphorylated FAK-Tyr407 and connexin-43, which in turn perturbed F-actin organization and GJ-based intercellular communication, leading to mislocalization of actin-regulatory and adhesion proteins at the BTB. PMID:24169556

  10. Cofilin and DNase I affect the conformation of the small domain of actin.

    PubMed Central

    Dedova, Irina V; Dedov, Vadim N; Nosworthy, Neil J; Hambly, Brett D; dos Remedios, Cris G

    2002-01-01

    Cofilin binding induces an allosteric conformational change in subdomain 2 of actin, reducing the distance between probes attached to Gln-41 (subdomain 2) and Cys-374 (subdomain 1) from 34.4 to 31.4 A (pH 6.8) as demonstrated by fluorescence energy transfer spectroscopy. This effect was slightly less pronounced at pH 8.0. In contrast, binding of DNase I increased this distance (35.5 A), a change that was not pH-sensitive. Although DNase I-induced changes in the distance along the small domain of actin were modest, a significantly larger change (38.2 A) was observed when the ternary complex of cofilin-actin-DNase I was formed. Saturation binding of cofilin prevents pyrene fluorescence enhancement normally associated with actin polymerization. Changes in the emission and excitation spectra of pyrene-F actin in the presence of cofilin indicate that subdomain 1 (near Cys-374) assumes a G-like conformation. Thus, the enhancement of pyrene fluorescence does not correspond to the extent of actin polymerization in the presence of cofilin. The structural changes in G and F actin induced by these actin-binding proteins may be important for understanding the mechanism regulating the G-actin pool in cells. PMID:12023237

  11. Actin cable dynamics in budding yeast

    PubMed Central

    Yang, Hyeong-Cheol; Pon, Liza A.

    2002-01-01

    Actin cables, bundles of actin filaments that align along the long axis of budding yeast, are crucial for establishment of cell polarity. We fused green fluorescent protein (GFP) to actin binding protein 140 (Abp140p) and visualized actin cable dynamics in living yeast. We detected two populations of actin cables: (i) bud-associated cables, which extend from the bud along the mother-bud axis, and (ii) randomly oriented cables, which are relatively short. Time-lapse imaging of Abp140p–GFP revealed an apparent increase in the length of bud-associated actin cables. Analysis of movement of Abp140p–GFP fiduciary marks on bud-associated cables and fluorescence loss in photobleaching experiments revealed that this apparent elongation occurs by assembly of new material at the end of the cable within the bud and movement of the opposite end of the cable toward the tip of the mother cell distal to the bud. The rate of extension of the tip of an elongating actin cable is 0.29 ± 0.08 μm/s. Latrunculin A (Lat-A) treatment completely blocked this process. We also observed movement of randomly oriented cables around the cortex of cells at a rate of 0.59 ± 0.14 μm/s. Mild treatment with Lat-A did not affect the velocity of movement of randomly oriented cables. However, Lat-A treatment did increase the number of randomly oriented, motile cables per cell. Our observations suggest that establishment of bud-associated actin cables during the cell cycle is accomplished not by realignment of existing cables but by assembly of new cables within the bud or bud neck, followed by elongation. PMID:11805329

  12. Relating microstructure to rheology of a bundled and cross-linked F-actin network in vitro

    NASA Astrophysics Data System (ADS)

    Shin, J. H.; Gardel, M. L.; Mahadevan, L.; Matsudaira, P.; Weitz, D. A.

    2004-06-01

    The organization of individual actin filaments into higher-order structures is controlled by actin-binding proteins (ABPs). Although the biological significance of the ABPs is well documented, little is known about how bundling and cross-linking quantitatively affect the microstructure and mechanical properties of actin networks. Here we quantify the effect of the ABP scruin on actin networks by using imaging techniques, cosedimentation assays, multiparticle tracking, and bulk rheology. We show how the structure of the actin network is modified as the scruin concentration is varied, and we correlate these structural changes to variations in the resultant network elasticity.

  13. Toward the Structure of Dynamic Membrane-Anchored Actin Networks

    PubMed Central

    Weber, Igor

    2007-01-01

    In the cortex of a motile cell, membrane-anchored actin filaments assemble into structures of varying shape and function. Filopodia are distinguished by a core of bundled actin filaments within finger-like extensions of the membrane. In a recent paper by Medalia et al1 cryo-electron tomography has been used to reconstruct, from filopodia of Dictyostelium cells, the 3-dimensional organization of actin filaments in connection with the plasma membrane. A special arrangement of short filaments converging toward the filopod's tip has been called a “terminal cone”. In this region force is applied for protrusion of the membrane. Here we discuss actin organization in the filopodia of Dictyostelium in the light of current views on forces that are generated by polymerizing actin filaments, and on the resistance of membranes against deformation that counteracts these forces. PMID:19262130

  14. Mutant Profilin Suppresses Mutant Actin-dependent Mitochondrial Phenotype in Saccharomyces cerevisiae*

    PubMed Central

    Wen, Kuo-Kuang; McKane, Melissa; Stokasimov, Ema; Rubenstein, Peter A.

    2011-01-01

    In the Saccharomyces cerevisiae actin-profilin interface, Ala167 of the actin barbed end W-loop and His372 near the C terminus form a clamp around a profilin segment containing residue Arg81 and Tyr79. Modeling suggests that altering steric packing in this interface regulates actin activity. An actin A167E mutation could increase interface crowding and alter actin regulation, and A167E does cause growth defects and mitochondrial dysfunction. We assessed whether a profilin Y79S mutation with its decreased mass could compensate for actin A167E crowding and rescue the mutant phenotype. Y79S profilin alone caused no growth defect in WT actin cells under standard conditions in rich medium and rescued the mitochondrial phenotype resulting from both the A167E and H372R actin mutations in vivo consistent with our model. Rescue did not result from effects of profilin on actin nucleotide exchange or direct effects of profilin on actin polymerization. Polymerization of A167E actin was less stimulated by formin Bni1 FH1-FH2 fragment than was WT actin. Addition of WT profilin to mixtures of A167E actin and formin fragment significantly altered polymerization kinetics from hyperbolic to a decidedly more sigmoidal behavior. Substitution of Y79S profilin in this system produced A167E behavior nearly identical to that of WT actin. A167E actin caused more dynamic actin cable behavior in vivo than observed with WT actin. Introduction of Y79S restored cable movement to a more normal phenotype. Our studies implicate the importance of the actin-profilin interface for formin-dependent actin and point to the involvement of formin and profilin in the maintenance of mitochondrial integrity and function. PMID:21956104

  15. A cardiomyocyte-specific Wdr1 knockout demonstrates essential functional roles for actin disassembly during myocardial growth and maintenance in mice.

    PubMed

    Yuan, Baiyin; Wan, Ping; Chu, Dandan; Nie, Junwei; Cao, Yunshan; Luo, Wen; Lu, Shuangshuang; Chen, Jiong; Yang, Zhongzhou

    2014-07-01

    Actin dynamics are critical for muscle development and function, and mutations leading to deregulation of actin dynamics cause various forms of heritable muscle diseases. AIP1 is a major cofactor of the actin depolymerizing factor/cofilin in eukaryotes, promoting actin depolymerizing factor/cofilin-mediated actin disassembly. Its function in vertebrate muscle has been unknown. To investigate functional roles of AIP1 in myocardium, we generated conditional knockout (cKO) mice with cardiomyocyte-specific deletion of Wdr1, the mammalian homolog of yeast AIP1. Wdr1 cKO mice began to die at postnatal day 13 (P13), and none survived past P24. At P12, cKO mice exhibited cardiac hypertrophy and impaired contraction of the left ventricle. Electrocardiography revealed reduced heart rate, abnormal P wave, and abnormal T wave at P10 and prolonged QT interval at P12. Actin filament (F-actin) accumulations began at P10 and became prominent at P12 in the myocardium of cKO mice. Within regions of F-actin accumulation in myofibrils, the sarcomeric components α-actinin and tropomodulin-1 exhibited disrupted patterns, indicating that F-actin accumulations caused by Wdr1 deletion result in disruption of sarcomeric structure. Ectopic cofilin colocalized with F-actin aggregates. In adult mice, Wdr1 deletion resulted in similar but much milder phenotypes of heart hypertrophy, F-actin accumulations within myofibrils, and lethality. Taken together, these results demonstrate that AIP1-regulated actin dynamics play essential roles in heart function in mice. Copyright © 2014 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  16. WAVE2, N-WASP, and Mena facilitate cell invasion via phosphatidylinositol 3-kinase-dependent local accumulation of actin filaments.

    PubMed

    Takahashi, Kazuhide; Suzuki, Katsuo

    2011-11-01

    Cell migration is accomplished by the formation of cellular protrusions such as lamellipodia and filopodia. These protrusions result from actin filament (F-actin) rearrangement at the cell cortex by WASP/WAVE family proteins and Drosophila enabled (Ena)/vasodilator-stimulated factor proteins. However, the role of each of these actin cytoskeletal regulatory proteins in the regulation of three-dimensional cell invasion remains to be clarified. We found that platelet-derived growth factor (PDGF) induces invasion of MDA-MB-231 human breast cancer cells through invasion chamber membrane pores. This invasion was accompanied by intensive F-actin accumulation at the sites of cell infiltration. After PDGF stimulation, WAVE2, N-WASP, and a mammalian Ena (Mena) colocalized with F-actin at the sites of cell infiltration in a phosphatidylinositol 3-kinase (PI3K)-dependent manner. Depletion of WAVE2, N-WASP, or Mena by RNA interference (RNAi) abrogated both cell invasion and intensive F-actin accumulation at the invasion site. These results indicate that by mediating intensive F-actin accumulation at the sites of cell infiltration, WAVE2, N-WASP, and Mena are crucial for PI3K-dependent cell invasion induced by PDGF. Copyright © 2011 Wiley Periodicals, Inc.

  17. Evidence Coupling Increased Hexosamine Biosynthesis Pathway Activity to Membrane Cholesterol Toxicity and Cortical Filamentous Actin Derangement Contributing to Cellular Insulin Resistance†

    PubMed Central

    Bhonagiri, Padma; Pattar, Guruprasad R.; Habegger, Kirk M.; McCarthy, Alicia M.; Tackett, Lixuan

    2011-01-01

    Hyperinsulinemia is known to promote the progression/worsening of insulin resistance. Evidence reveals a hidden cost of hyperinsulinemia on plasma membrane (PM) phosphatidylinositol 4,5-bisphosphate (PIP2)-regulated filamentous actin (F-actin) structure, components critical to the normal operation of the insulin-regulated glucose transport system. Here we delineated whether increased glucose flux through the hexosamine biosynthesis pathway (HBP) causes PIP2/F-actin dysregulation and subsequent insulin resistance. Increased glycosylation events were detected in 3T3-L1 adipocytes cultured under conditions closely resembling physiological hyperinsulinemia (5 nm insulin; 12 h) and in cells in which HBP activity was amplified by 2 mm glucosamine (GlcN). Both the physiological hyperinsulinemia and experimental GlcN challenge induced comparable losses of PIP2 and F-actin. In addition to protecting against the insulin-induced membrane/cytoskeletal abnormality and insulin-resistant state, exogenous PIP2 corrected the GlcN-induced insult on these parameters. Moreover, in accordance with HBP flux directly weakening PIP2/F-actin structure, pharmacological inhibition of the rate-limiting HBP enzyme [glutamine-fructose-6-phosphate amidotransferase (GFAT)] restored PIP2-regulated F-actin structure and insulin responsiveness. Conversely, overexpression of GFAT was associated with a loss of detectable PM PIP2 and insulin sensitivity. Even less invasive challenges with glucose, in the absence of insulin, also led to PIP2/F-actin dysregulation. Mechanistically we found that increased HBP activity increased PM cholesterol, the removal of which normalized PIP2/F-actin levels. Accordingly, these data suggest that glucose transporter-4 functionality, dependent on PIP2 and/or F-actin status, can be critically compromised by inappropriate HBP activity. Furthermore, these data are consistent with the PM cholesterol accrual/toxicity as a mechanistic basis of the HBP-induced defects in PIP2/F-actin

  18. Live-Cell Imaging of F-Actin Dynamics During Fertilization in Arabidopsis thaliana.

    PubMed

    Susaki, Daichi; Maruyama, Daisuke; Yelagandula, Ramesh; Berger, Frederic; Kawashima, Tomokazu

    2017-01-01

    Fertilization comprises a complex series of cellular processes leading to the fusion of a male and female gamete. Many studies have been carried out to investigate each step of fertilization in plants; however, our comprehensive understanding of all the sequential events during fertilization is still limited. This is largely due to difficulty in investigating events in the female gametophyte, which is deeply embedded in the maternal tissue. Recent advances in confocal microcopy assisted by fluorescent marker lines have contributed to visualizing subcellular dynamics in real time during fertilization in vivo. In this chapter, we describe a method focusing on the investigation of F-actin dynamics in the central cell during male gamete nuclear migration. This method also allows the study of a wide range of early sexual reproduction events, from pollen tube guidance to the early stage of seed development.

  19. Cu-mediated C–H 18F-fluorination of electron-rich (hetero)arenes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCammant, Matthew S.; Thompson, Stephen; Brooks, Allen F.

    This communication describes a method for the nucleophilic radiofluorination of electron-rich arenes. The reaction involves the initial C(sp 2)–H functionalization of an electron-rich arene with MesI(OH)OTs to form a (mesityl)(aryl)iodonium salt. This salt is then used in situ in a Cu-mediated radiofluorination with [ 18F]KF. This approach leverages the stability and availability of electron-rich arene starting materials to enable mild late-stage radiofluorination of toluene, anisole, aniline, pyrrole, and thiophene derivatives. Finally, the radiofluorination has been automated to access a 41 mCi dose of an 18F-labeled nimesulide derivative in high (2800 ± 700 Ci/mmol) specific activity.

  20. Cu-mediated C–H 18F-fluorination of electron-rich (hetero)arenes

    DOE PAGES

    McCammant, Matthew S.; Thompson, Stephen; Brooks, Allen F.; ...

    2017-06-30

    This communication describes a method for the nucleophilic radiofluorination of electron-rich arenes. The reaction involves the initial C(sp 2)–H functionalization of an electron-rich arene with MesI(OH)OTs to form a (mesityl)(aryl)iodonium salt. This salt is then used in situ in a Cu-mediated radiofluorination with [ 18F]KF. This approach leverages the stability and availability of electron-rich arene starting materials to enable mild late-stage radiofluorination of toluene, anisole, aniline, pyrrole, and thiophene derivatives. Finally, the radiofluorination has been automated to access a 41 mCi dose of an 18F-labeled nimesulide derivative in high (2800 ± 700 Ci/mmol) specific activity.

  1. Actin cytoskeletal rearrangement and dysfunction due to activation of the receptor for advanced glycation end products is inhibited by thymosin beta 4

    PubMed Central

    Kim, Sokho; Kwon, Jungkee

    2015-01-01

    The receptor of advanced glycation end products (RAGE) is a cell-surface receptor that is a key factor in the pathogenesis of diabetic complications, including vascular disorders. Dysfunction of the actin cytoskeleton contributes to disruption of cell membrane repair in response to various type of endothelial cell damage. However, mechanism underlying RAGE remodelling of the actin cytoskeleton, by which globular actin (G-actin) forms to filamentous actin (F-actin), remains unclear. In this study we examined the role of thymosin beta 4 (Tβ4) – which binds to actin, blocks actin polymerization, and maintains the dynamic equilibrium between G-actin and F-actin in human umbilical vein endothelial cells (HUVECs) – in the response to RAGE. Tβ4 increased cell viability and decreased levels of reactive oxygen species in HUVECs incubated with AGEs. Tβ4 reduced the expression of RAGE, consistent with a down-regulation of the F-actin to G-actin ratio. The effect of remodelling of the actin cytoskeleton on RAGE expression was clarified by adding Phalloidin, which stabilizes F-actin. Moreover, small interfering RNA was used to determine whether intrinsic Tβ4 regulates RAGE expression in the actin cytoskeleton. The absence of intrinsic Tβ4 in HUVECs evoked actin cytoskeleton disorder and increased RAGE expression. These findings suggest that regulation of the actin cytoskeleton by Tβ4 plays a pivotal role in the RAGE response to AGEs. PMID:25640761

  2. A role for γS-crystallin in the organization of actin and fiber cell maturation in the mouse lens

    PubMed Central

    Fan, Jianguo; Dong, Lijin; Mishra, Sanghamitra; Chen, Yingwei; FitzGerald, Paul; Wistow, Graeme

    2012-01-01

    γS-crystallin (γS) is a highly conserved component of the eye lens. To gain insights into the functional role(s) of this protein, the mouse gene (Crygs) was deleted. Although mutations in γS can cause severe cataracts, loss of function of γS in knockout (KO) mice produced no obvious lens opacity, but was associated with focusing defects. Electron microscopy showed no major differences in lens cell organization, suggesting that the optical defects are primarily cytoplasmic in origin. KO lenses were also grossly normal by light microscopy but showed evidence of incomplete clearance of cellular organelles in maturing fiber cells. Phalloidin labeling showed an unusual distribution of F-actin in a band of mature fiber cells in KO lenses, suggesting a defect in the organization or processing of the actin cytoskeleton. Indeed, in wild-type lenses, γS and F-actin colocalize along the fiber cell plasma membrane. Relative levels of F-actin and G-actin in wild-type and KO lenses were estimated from fluorescent staining profiles and from isolation of actin fractions from whole lenses. Both methods showed a twofold reduction in the F-actin/G-actin ratio in KO lenses, whereas no difference in tubulin organization was detected. In vitro experiments showed that recombinant mouse γS can directly stabilize F-actin. This suggests that γS may have a functional role related to actin, perhaps in ‘shepherding’ filaments to maintain the optical properties of the lens cytoplasm and normal fiber cell maturation. PMID:22715935

  3. Selective, retrieval-independent disruption of methamphetamine-associated memory by actin depolymerization.

    PubMed

    Young, Erica J; Aceti, Massimiliano; Griggs, Erica M; Fuchs, Rita A; Zigmond, Zachary; Rumbaugh, Gavin; Miller, Courtney A

    2014-01-15

    Memories associated with drugs of abuse, such as methamphetamine (METH), increase relapse vulnerability to substance use disorder. There is a growing consensus that memory is supported by structural and functional plasticity driven by F-actin polymerization in postsynaptic dendritic spines at excitatory synapses. However, the mechanisms responsible for the long-term maintenance of memories, after consolidation has occurred, are largely unknown. Conditioned place preference (n = 112) and context-induced reinstatement of self-administration (n = 19) were used to assess the role of F-actin polymerization and myosin II, a molecular motor that drives memory-promoting dendritic spine actin polymerization, in the maintenance of METH-associated memories and related structural plasticity. Memories formed through association with METH but not associations with foot shock or food reward were disrupted by a highly-specific actin cycling inhibitor when infused into the amygdala during the postconsolidation maintenance phase. This selective effect of depolymerization on METH-associated memory was immediate, persistent, and did not depend upon retrieval or strength of the association. Inhibition of non-muscle myosin II also resulted in a disruption of METH-associated memory. Thus, drug-associated memories seem to be actively maintained by a unique form of cycling F-actin driven by myosin II. This finding provides a potential therapeutic approach for the selective treatment of unwanted memories associated with psychiatric disorders that is both selective and does not rely on retrieval of the memory. The results further suggest that memory maintenance depends upon the preservation of polymerized actin. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.

  4. Actin Polymerization is Stimulated by Actin Crosslinking Protein Palladin

    PubMed Central

    Gurung, Ritu; Yadav, Rahul; Brungardt, Joseph G.; Orlova, Albina; Egelman, Edward H.; Beck, Moriah R.

    2016-01-01

    The actin scaffold protein palladin regulates both normal cell migration and invasive cell motility, processes that require the coordinated regulation of actin dynamics. However, the potential effect of palladin on actin dynamics has remained elusive. Here we show that the actin binding immunoglobulin-like domain of palladin, which is directly responsible for both actin binding and bundling, also stimulates actin polymerization in vitro. Palladin eliminated the lag phase that is characteristic of the slow nucleation step of actin polymerization. Furthermore, palladin dramatically reduced depolymerization, slightly enhanced the elongation rate, and did not alter the critical concentration. Microscopy and in vitro crosslinking assays reveal differences in actin bundle architecture when palladin is incubated with actin before or after polymerization. These results suggest a model whereby palladin stimulates a polymerization-competent form of G-actin, akin to metal ions, either through charge neutralization or conformational changes. PMID:26607837

  5. The actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    NASA Astrophysics Data System (ADS)

    Westendorf, Christian; Negrete, Jose, Jr.; Bae, Albert; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-03-01

    We report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. The averaged F-actin response of many cells to a short-time pulse of cAMP is reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. We systematically exposed a large number of cells to periodic pulse trains. The results indicate a resonance peak at periodic inputs of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the actin regulatory network. To quantitatively test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and Aip1. These served as markers of the F-actin disassembly process and thus allow us to estimate the delay time. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed experimentally. Financial support by the Max-Planck Society and the DFG (SFB 937).

  6. Molecular cloning and characterization of human trabeculin-alpha, a giant protein defining a new family of actin-binding proteins.

    PubMed

    Sun, Y; Zhang, J; Kraeft, S K; Auclair, D; Chang, M S; Liu, Y; Sutherland, R; Salgia, R; Griffin, J D; Ferland, L H; Chen, L B

    1999-11-19

    We describe the molecular cloning and characterization of a novel giant human cytoplasmic protein, trabeculin-alpha (M(r) = 614,000). Analysis of the deduced amino acid sequence reveals homologies with several putative functional domains, including a pair of alpha-actinin-like actin binding domains; regions of homology to plakins at either end of the giant polypeptide; 29 copies of a spectrin-like motif in the central region of the protein; two potential Ca(2+)-binding EF-hand motifs; and a Ser-rich region containing a repeated GSRX motif. With similarities to both plakins and spectrins, trabeculin-alpha appears to have evolved as a hybrid of these two families of proteins. The functionality of the actin binding domains located near the N terminus was confirmed with an F-actin binding assay using glutathione S-transferase fusion proteins comprising amino acids 9-486 of the deduced peptide. Northern and Western blotting and immunofluorescence studies suggest that trabeculin is ubiquitously expressed and is distributed throughout the cytoplasm, though the protein was found to be greatly up-regulated upon differentiation of myoblasts into myotubes. Finally, the presence of cDNAs similar to, yet distinct from, trabeculin-alpha in both human and mouse suggests that trabeculins may form a new subfamily of giant actin-binding/cytoskeletal cross-linking proteins.

  7. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton

    2010-08-15

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmicmore » tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger.« less

  8. The actin cytoskeleton inhibits pore expansion during PIV5 fusion protein-promoted cell-cell fusion

    PubMed Central

    Wurth, Mark A.; Schowalter, Rachel M.; Smith, Everett Clinton; Moncman, Carole L.; Dutch, Rebecca Ellis; McCann, Richard O.

    2010-01-01

    Paramyxovirus fusion (F) proteins promote both virus-cell fusion, required for viral entry, and cell-cell fusion, resulting in syncytia formation. We used the F-actin stabilizing drug, jasplakinolide, and the G-actin sequestrant, latrunculin A, to examine the role of actin dynamics in cell-cell fusion mediated by the parainfluenza virus 5 (PIV5) F protein. Jasplakinolide treatment caused a dose-dependent increase in cell-cell fusion as measured by both syncytia and reporter gene assays, and latrunculin A treatment also resulted in fusion stimulation. Treatment with jasplakinolide or latrunculin A partially rescued a fusion pore opening defect caused by deletion of the PIV5 F protein cytoplasmic tail, but these drugs had no effect on fusion inhibited at earlier stages by either temperature arrest or by a PIV5 heptad repeat peptide. These data suggest that the cortical actin cytoskeleton is an important regulator of fusion pore enlargement, an energetically costly stage of viral fusion protein-mediated membrane merger. PMID:20537366

  9. Subunits of the Drosophila Actin-Capping Protein Heterodimer Regulate Each Other at Multiple Levels

    PubMed Central

    Amândio, Ana Rita; Gaspar, Pedro; Whited, Jessica L.; Janody, Florence

    2014-01-01

    The actin-Capping Protein heterodimer, composed of the α and β subunits, is a master F-actin regulator. In addition to its role in many cellular processes, Capping Protein acts as a main tumor suppressor module in Drosophila and in humans, in part, by restricting the activity of Yorkie/YAP/TAZ oncogenes. We aimed in this report to understand how both subunits regulate each other in vivo. We show that the levels and capping activities of both subunits must be tightly regulated to control F-actin levels and consequently growth of the Drosophila wing. Overexpressing capping protein α and β decreases both F-actin levels and tissue growth, while expressing forms of Capping Protein that have dominant negative effects on F-actin promote tissue growth. Both subunits regulate each other's protein levels. In addition, overexpressing one of the subunit in tissues knocked-down for the other increases the mRNA and protein levels of the subunit knocked-down and compensates for its loss. We propose that the ability of the α and β subunits to control each other's levels assures that a pool of functional heterodimer is produced in sufficient quantities to restrict the development of tumor but not in excess to sustain normal tissue growth. PMID:24788460

  10. Cofilin promotes stimulus-induced lamellipodium formation by generating an abundant supply of actin monomers

    PubMed Central

    Kiuchi, Tai; Ohashi, Kazumasa; Kurita, Souichi; Mizuno, Kensaku

    2007-01-01

    Cofilin stimulates actin filament disassembly and accelerates actin filament turnover. Cofilin is also involved in stimulus-induced actin filament assembly during lamellipodium formation. However, it is not clear whether this occurs by replenishing the actin monomer pool, through filament disassembly, or by creating free barbed ends, through its severing activity. Using photoactivatable Dronpa-actin, we show that cofilin is involved in producing more than half of all cytoplasmic actin monomers and that the rate of actin monomer incorporation into the tip of the lamellipodium is dependent on the size of this actin monomer pool. Finally, in cofilin-depleted cells, stimulus-induced actin monomer incorporation at the cell periphery is attenuated, but the incorporation of microinjected actin monomers is not. We propose that cofilin contributes to stimulus-induced actin filament assembly and lamellipodium extension by supplying an abundant pool of cytoplasmic actin monomers. PMID:17470633

  11. Activator-inhibitor coupling between Rho signaling and actin assembly make the cell cortex an excitable medium

    PubMed Central

    Bement, William M.; Leda, Marcin; Moe, Alison M.; Kita, Angela M.; Larson, Matthew E.; Golding, Adriana E.; Pfeuti, Courtney; Su, Kuan-Chung; Miller, Ann L.; Goryachev, Andrew B.; von Dassow, George

    2016-01-01

    Animal cell cytokinesis results from patterned activation of the small GTPase Rho, which directs assembly of actomyosin in the equatorial cortex. Cytokinesis is restricted to a portion of the cell cycle following anaphase onset in which the cortex is responsive to signals from the spindle. We show that shortly after anaphase onset oocytes and embryonic cells of frogs and echinoderms exhibit cortical waves of Rho activity and F-actin polymerization. The waves are modulated by cyclin-dependent kinase 1 (Cdk1) activity and require the Rho GEF (guanine nucleotide exchange factor), Ect2. Surprisingly, during wave propagation, while Rho activity elicits F-actin assembly, F-actin subsequently inactivates Rho. Experimental and modeling results show that waves represent excitable dynamics of a reaction diffusion system with Rho as the activator and F-actin the inhibitor. We propose that cortical excitability explains fundamental features of cytokinesis including its cell cycle regulation. PMID:26479320

  12. Alteration of the Cortical Actin Cytoskeleton Deregulates Ca2+ Signaling, Monospermic Fertilization, and Sperm Entry

    PubMed Central

    Puppo, A.; Chun, Jong T.; Gragnaniello, Giovanni; Garante, Ezio; Santella, Luigia

    2008-01-01

    Background When preparing for fertilization, oocytes undergo meiotic maturation during which structural changes occur in the endoplasmic reticulum (ER) that lead to a more efficient calcium response. During meiotic maturation and subsequent fertilization, the actin cytoskeleton also undergoes dramatic restructuring. We have recently observed that rearrangements of the actin cytoskeleton induced by actin-depolymerizing agents, or by actin-binding proteins, strongly modulate intracellular calcium (Ca2+) signals during the maturation process. However, the significance of the dynamic changes in F-actin within the fertilized egg has been largely unclear. Methodology/Principal Findings We have measured changes in intracellular Ca2+ signals and F-actin structures during fertilization. We also report the unexpected observation that the conventional antagonist of the InsP3 receptor, heparin, hyperpolymerizes the cortical actin cytoskeleton in postmeiotic eggs. Using heparin and other pharmacological agents that either hypo- or hyperpolymerize the cortical actin, we demonstrate that nearly all aspects of the fertilization process are profoundly affected by the dynamic restructuring of the egg cortical actin cytoskeleton. Conclusions/Significance Our findings identify important roles for subplasmalemmal actin fibers in the process of sperm-egg interaction and in the subsequent events related to fertilization: the generation of Ca2+ signals, sperm penetration, cortical granule exocytosis, and the block to polyspermy. PMID:18974786

  13. Cell Elasticity Is Regulated by the Tropomyosin Isoform Composition of the Actin Cytoskeleton

    PubMed Central

    Jalilian, Iman; Heu, Celine; Cheng, Hong; Freittag, Hannah; Desouza, Melissa; Stehn, Justine R.; Bryce, Nicole S.; Whan, Renee M.; Hardeman, Edna C.

    2015-01-01

    The actin cytoskeleton is the primary polymer system within cells responsible for regulating cellular stiffness. While various actin binding proteins regulate the organization and dynamics of the actin cytoskeleton, the proteins responsible for regulating the mechanical properties of cells are still not fully understood. In the present study, we have addressed the significance of the actin associated protein, tropomyosin (Tpm), in influencing the mechanical properties of cells. Tpms belong to a multi-gene family that form a co-polymer with actin filaments and differentially regulate actin filament stability, function and organization. Tpm isoform expression is highly regulated and together with the ability to sort to specific intracellular sites, result in the generation of distinct Tpm isoform-containing actin filament populations. Nanomechanical measurements conducted with an Atomic Force Microscope using indentation in Peak Force Tapping in indentation/ramping mode, demonstrated that Tpm impacts on cell stiffness and the observed effect occurred in a Tpm isoform-specific manner. Quantitative analysis of the cellular filamentous actin (F-actin) pool conducted both biochemically and with the use of a linear detection algorithm to evaluate actin structures revealed that an altered F-actin pool does not absolutely predict changes in cell stiffness. Inhibition of non-muscle myosin II revealed that intracellular tension generated by myosin II is required for the observed increase in cell stiffness. Lastly, we show that the observed increase in cell stiffness is partially recapitulated in vivo as detected in epididymal fat pads isolated from a Tpm3.1 transgenic mouse line. Together these data are consistent with a role for Tpm in regulating cell stiffness via the generation of specific populations of Tpm isoform-containing actin filaments. PMID:25978408

  14. A Dictyostelium mutant deficient in severin, an F-actin fragmenting protein, shows normal motility and chemotaxis

    PubMed Central

    1989-01-01

    A severin deficient mutant of Dictyostelium discoideum has been isolated by the use of colony immunoblotting after chemical mutagenesis. In homogenates of wild-type cells, severin is easily detected as a very active F-actin fragmenting protein. Tests for severin in the mutant, HG1132, included viscometry for the assay of F- actin fragmentation in fractions from DEAE-cellulose columns, labeling of blots with monoclonal and polyclonal antibodies, and immunofluorescent-labeling of cryosections. Severin could not be detected in the mutant using these methods. The mutation in HG1132 is recessive and has been mapped to linkage group VII. The mutant failed to produce the normal severin mRNA, but small amounts of a transcript that was approximately 100 bases larger than the wild-type mRNA were detected in the mutant throughout all stages of development. On the DNA level a new Mbo II restriction site was found in the mutant within the coding region of the severin gene. The severin deficient mutant cells grew at an approximately normal rate, aggregated and formed fruiting bodies with viable spores. By the use of an image processing system, speed of cell movement, turning rates, and precision of chemotactic orientation in a stable gradient of cyclic AMP were quantitated, and no significant differences between wild-type and mutant cells were found. Thus, under the culture conditions used, severin proved to be neither essential for growth of D. discoideum nor for any cell function that is important for aggregation or later development. PMID:2537840

  15. Espins are multifunctional actin cytoskeletal regulatory proteins in the microvilli of chemosensory and mechanosensory cells

    PubMed Central

    Sekerková, Gabriella; Zheng, Lili; Loomis, Patricia A.; Changyaleket, Benjarat; Whitlon, Donna S.; Mugnaini, Enrico; Bartles, James R.

    2010-01-01

    Espins are associated with the parallel actin bundles of hair cell stereocilia and are the target of mutations that cause deafness and vestibular dysfunction in mice and humans. Here, we report that espins are also concentrated in the microvilli of a number of other sensory cells: vomeronasal organ sensory neurons, solitary chemoreceptor cells, taste cells and Merkel cells. Moreover, we show that hair cells and these other sensory cells contain novel espin isoforms that arise from a different transcriptional start site and differ significantly from other espin isoforms in their complement of ligand-binding activities and their effects on actin polymerization. The novel espin isoforms of sensory cells bundled actin filaments with high affinity in a Ca2+-resistant fashion, bound actin monomer via a WASP homology 2 domain, bound profilin via a single proline-rich peptide, and caused a dramatic elongation of microvillus-type parallel actin bundles in transfected epithelial cells. In addition, the novel espin isoforms of sensory cells differed from other espin isoforms in that they potently inhibited actin polymerization in vitro, did not bind the Src homology 3 domain of the adapter protein insulin receptor substrate p53 and did not bind the acidic, signaling phospholipid phosphatidylinositol 4,5- bisphosphate. Thus, the espins constitute a family of multifunctional actin cytoskeletal regulatory proteins with the potential to differentially influence the organization, dimensions, dynamics and signaling capabilities of the actin filament-rich, microvillus-type specializations that mediate sensory transduction in a variety of mechanosensory and chemosensory cells. PMID:15190118

  16. Microcompartmentation of cytosolic aldolase by interaction with the actin cytoskeleton in Arabidopsis.

    PubMed

    Garagounis, Constantine; Kostaki, Kalliopi-Ioanna; Hawkins, Tim J; Cummins, Ian; Fricker, Mark D; Hussey, Patrick J; Hetherington, Alistair M; Sweetlove, Lee J

    2017-02-01

    Evidence is accumulating for molecular microcompartments formed when proteins interact in localized domains with the cytoskeleton, organelle surfaces, and intracellular membranes. To understand the potential functional significance of protein microcompartmentation in plants, we studied the interaction of the glycolytic enzyme fructose bisphosphate aldolase with actin in Arabidopsis thaliana. Homology modelling of a major cytosolic isozyme of aldolase, FBA8, suggested that the tetrameric holoenzyme has two actin binding sites and could therefore act as an actin-bundling protein, as was reported for animal aldolases. This was confirmed by in vitro measurements of an increase in viscosity of F-actin polymerized in the presence of recombinant FBA8. Simultaneously, interaction with F-actin caused non-competitive inhibition of aldolase activity. We did not detect co-localization of an FBA8-RFP fusion protein, expressed in an fba8-knockout background, with the actin cytoskeleton using confocal laser-scanning microscopy. However, we did find evidence for a low level of interaction using FRET-FLIM analysis of FBA8-RFP co-expressed with the actin-binding protein GFP-Lifeact. Furthermore, knockout of FBA8 caused minor alterations of guard cell actin cytoskeleton morphology and resulted in a reduced rate of stomatal closure in response to decreased humidity. We conclude that cytosolic aldolase can be microcompartmented in vivo by interaction with the actin cytoskeleton and may subtly modulate guard cell behaviour as a result. © The Author 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  17. Control of actin-based motility through localized actin binding

    PubMed Central

    Banigan, Edward J.; Lee, Kun-Chun; Liu, Andrea J.

    2014-01-01

    A wide variety of cell biological and biomimetic systems use actin polymerization to drive motility. It has been suggested that an object such as a bacterium can propel itself by self-assembling a high concentration of actin behind it if it is repelled by actin. However, it is also known that it is essential for the moving object to bind actin. Therefore, a key question is how the actin tail can propel an object when it both binds and repels the object. We present a physically consistent Brownian dynamics model for actin-based motility that includes the minimal components of the dendritic nucleation model and allows for both attractive and repulsive interactions between actin and a moveable disk. We find that the concentration gradient of filamentous actin generated by polymerization is sufficient to propel the object, even with moderately strong binding interactions. Additionally, actin binding can act as a biophysical cap, and may directly control motility through modulation of network growth. Overall, this mechanism is robust in that it can drive motility against a load up to a stall pressure that depends on the Young’s modulus of the actin network and can explain several aspects of actin-based motility. PMID:24225232

  18. Computational spatiotemporal analysis identifies WAVE2 and cofilin as joint regulators of costimulation-mediated T cell actin dynamics.

    PubMed

    Roybal, Kole T; Buck, Taráz E; Ruan, Xiongtao; Cho, Baek Hwan; Clark, Danielle J; Ambler, Rachel; Tunbridge, Helen M; Zhang, Jianwei; Verkade, Paul; Wülfing, Christoph; Murphy, Robert F

    2016-04-19

    Fluorescence microscopy is one of the most important tools in cell biology research because it provides spatial and temporal information to investigate regulatory systems inside cells. This technique can generate data in the form of signal intensities at thousands of positions resolved inside individual live cells. However, given extensive cell-to-cell variation, these data cannot be readily assembled into three- or four-dimensional maps of protein concentration that can be compared across different cells and conditions. We have developed a method to enable comparison of imaging data from many cells and applied it to investigate actin dynamics in T cell activation. Antigen recognition in T cells by the T cell receptor (TCR) is amplified by engagement of the costimulatory receptor CD28. We imaged actin and eight core actin regulators to generate over a thousand movies of T cells under conditions in which CD28 was either engaged or blocked in the context of a strong TCR signal. Our computational analysis showed that the primary effect of costimulation blockade was to decrease recruitment of the activator of actin nucleation WAVE2 (Wiskott-Aldrich syndrome protein family verprolin-homologous protein 2) and the actin-severing protein cofilin to F-actin. Reconstitution of WAVE2 and cofilin activity restored the defect in actin signaling dynamics caused by costimulation blockade. Thus, we have developed and validated an approach to quantify protein distributions in time and space for the analysis of complex regulatory systems. Copyright © 2016, American Association for the Advancement of Science.

  19. Myosin IIA interacts with the spectrin-actin membrane skeleton to control red blood cell membrane curvature and deformability.

    PubMed

    Smith, Alyson S; Nowak, Roberta B; Zhou, Sitong; Giannetto, Michael; Gokhin, David S; Papoin, Julien; Ghiran, Ionita C; Blanc, Lionel; Wan, Jiandi; Fowler, Velia M

    2018-05-08

    The biconcave disk shape and deformability of mammalian RBCs rely on the membrane skeleton, a viscoelastic network of short, membrane-associated actin filaments (F-actin) cross-linked by long, flexible spectrin tetramers. Nonmuscle myosin II (NMII) motors exert force on diverse F-actin networks to control cell shapes, but a function for NMII contractility in the 2D spectrin-F-actin network of RBCs has not been tested. Here, we show that RBCs contain membrane skeleton-associated NMIIA puncta, identified as bipolar filaments by superresolution fluorescence microscopy. MgATP disrupts NMIIA association with the membrane skeleton, consistent with NMIIA motor domains binding to membrane skeleton F-actin and contributing to membrane mechanical properties. In addition, the phosphorylation of the RBC NMIIA heavy and light chains in vivo indicates active regulation of NMIIA motor activity and filament assembly, while reduced heavy chain phosphorylation of membrane skeleton-associated NMIIA indicates assembly of stable filaments at the membrane. Treatment of RBCs with blebbistatin, an inhibitor of NMII motor activity, decreases the number of NMIIA filaments associated with the membrane and enhances local, nanoscale membrane oscillations, suggesting decreased membrane tension. Blebbistatin-treated RBCs also exhibit elongated shapes, loss of membrane curvature, and enhanced deformability, indicating a role for NMIIA contractility in promoting membrane stiffness and maintaining RBC biconcave disk cell shape. As structures similar to the RBC membrane skeleton exist in many metazoan cell types, these data demonstrate a general function for NMII in controlling specialized membrane morphology and mechanical properties through contractile interactions with short F-actin in spectrin-F-actin networks.

  20. PHD3-mediated prolyl hydroxylation of nonmuscle actin impairs polymerization and cell motility

    PubMed Central

    Luo, Weibo; Lin, Benjamin; Wang, Yingfei; Zhong, Jun; O'Meally, Robert; Cole, Robert N.; Pandey, Akhilesh; Levchenko, Andre; Semenza, Gregg L.

    2014-01-01

    Actin filaments play an essential role in cell movement, and many posttranslational modifications regulate actin filament assembly. Here we report that prolyl hydroxylase 3 (PHD3) interacts with nonmuscle actin in human cells and catalyzes hydroxylation of actin at proline residues 307 and 322. Blocking PHD3 expression or catalytic activity by short hairpin RNA knockdown or pharmacological inhibition, respectively, decreased actin prolyl hydroxylation. PHD3 knockdown increased filamentous F-actin assembly, which was reversed by PHD3 overexpression. PHD3 knockdown increased cell velocity and migration distance. Inhibition of PHD3 prolyl hydroxylase activity by dimethyloxalylglycine also increased actin polymerization and cell migration. These data reveal a novel role for PHD3 as a negative regulator of cell motility through posttranslational modification of nonmuscle actins. PMID:25079693

  1. Organization and function of the actin cytoskeleton in developing root cells.

    PubMed

    Blancaflor, Elison B; Wang, Yuh-Shuh; Motes, Christy M

    2006-01-01

    The actin cytoskeleton is a highly dynamic structure, which mediates various cellular functions in large part through accessory proteins that tilt the balance between monomeric G-actin and filamentous actin (F-actin) or by facilitating interactions between actin and the plasma membrane, microtubules, and other organelles. Roots have become an attractive model to study actin in plant development because of their simple anatomy and accessibility of some root cell types such as root hairs for microscopic analyses. Roots also exhibit a remarkable developmental plasticity and possess a delicate sensory system that is easily manipulated, so that one can design experiments addressing a range of important biological questions. Many facets of root development can be regulated by the diverse actin network found in the various root developmental regions. Various molecules impinge on this actin scaffold to define how a particular root cell type grows or responds to a specific environmental signal. Although advances in genomics are leading the way toward elucidating actin function in roots, more significant strides will be realized when such tools are combined with improved methodologies for accurately depicting how actin is organized in plant cells.

  2. Tropomodulins: pointed-end capping proteins that regulate actin filament architecture in diverse cell types

    PubMed Central

    Yamashiro, Sawako; Gokhin, David S.; Kimura, Sumiko; Nowak, Roberta B.; Fowler, Velia M.

    2012-01-01

    Tropomodulins are a family of four proteins (Tmods 1–4) that cap the pointed ends of actin filaments in actin cytoskeletal structures in a developmentally regulated and tissue-specific manner. Unique among capping proteins, Tmods also bind tropomyosins (TMs), which greatly enhance the actin filament pointed-end capping activity of Tmods. Tmods are defined by a tropomyosin (TM)-regulated/Pointed-End Actin Capping (TM-Cap) domain in their unstructured N-terminal portion, followed by a compact, folded Leucine-Rich Repeat/Pointed-End Actin Capping (LRR-Cap) domain. By inhibiting actin monomer association and dissociation from pointed ends, Tmods regulate regulate actin dynamics and turnover, stabilizing actin filament lengths and cytoskeletal architecture. In this review, we summarize the genes, structural features, molecular and biochemical properties, actin regulatory mechanisms, expression patterns, and cell and tissue functions of Tmods. By understanding Tmods’ functions in the context of their molecular structure, actin regulation, binding partners, and related variants (leiomodins 1–3), we can draw broad conclusions that can explain the diverse morphological and functional phenotypes that arise from Tmod perturbation experiments in vitro and in vivo. Tmod-based stabilization and organization of intracellular actin filament networks provide key insights into how the emergent properties of the actin cytoskeleton drive tissue morphogenesis and physiology. PMID:22488942

  3. eNOS S-nitrosylates β-actin on Cys374 and regulates PKC-θ at the immune synapse by impairing actin binding to profilin-1

    PubMed Central

    García-Ortiz, Almudena; Martín-Cofreces, Noa B.; Ibiza, Sales; Ortega, Ángel; Izquierdo-Álvarez, Alicia; Trullo, Antonio; Victor, Víctor M.; Calvo, Enrique; Sot, Begoña; Martínez-Ruiz, Antonio; Vázquez, Jesús; Sánchez-Madrid, Francisco

    2017-01-01

    The actin cytoskeleton coordinates the organization of signaling microclusters at the immune synapse (IS); however, the mechanisms involved remain poorly understood. We show here that nitric oxide (NO) generated by endothelial nitric oxide synthase (eNOS) controls the coalescence of protein kinase C-θ (PKC-θ) at the central supramolecular activation cluster (c-SMAC) of the IS. eNOS translocated with the Golgi to the IS and partially colocalized with F-actin around the c-SMAC. This resulted in reduced actin polymerization and centripetal retrograde flow of β-actin and PKC-θ from the lamellipodium-like distal (d)-SMAC, promoting PKC-θ activation. Furthermore, eNOS-derived NO S-nitrosylated β-actin on Cys374 and impaired actin binding to profilin-1 (PFN1), as confirmed with the transnitrosylating agent S-nitroso-L-cysteine (Cys-NO). The importance of NO and the formation of PFN1-actin complexes on the regulation of PKC-θ was corroborated by overexpression of PFN1- and actin-binding defective mutants of β-actin (C374S) and PFN1 (H119E), respectively, which reduced the coalescence of PKC-θ at the c-SMAC. These findings unveil a novel NO-dependent mechanism by which the actin cytoskeleton controls the organization and activation of signaling microclusters at the IS. PMID:28394935

  4. Actin localisation and the effect of cytochalasin D on the osmotic tolerance of cauda epididymidal kangaroo spermatozoa.

    PubMed

    McClean, R; MacCallum, C; Blyde, D; Holt, W; Johnston, S

    2006-01-01

    This study examined the hypothesis that filamentous actin associated with the complex cytoskeleton of the kangaroo sperm head and tail may be contributing to lack of plasma membrane plasticity and a consequent loss of membrane integrity during cryopreservation. In the first study, the distribution of G and F actin within Eastern Grey Kangaroo (EGK, Macropus giganteus) cauda epididymidal spermatozoa was successfully detected using DNAse-FITC and a monoclonal F-actin antibody (ab205, Abcam), respectively. G-actin staining was most intense in the acrosome but was also observed with less intensity over the nucleus and mid-piece. F-actin was located in the sperm nucleus but was not discernable in the acrosome or sperm tail. To investigate whether cytochalasin D (a known F-actin depolymerising agent) was capable of improving the osmotic tolerance of EGK cauda epididymal spermatozoa, sperm were incubated in hypo-osmotic media (61 and 104 mOsm) containing a range of cytochalasin D concentrations (0-200 microM). Cytochalasin D had no beneficial effect on plasma membrane integrity of sperm incubated in hypo-osmotic media. However, when EGK cauda epididymidal sperm were incubated in isosmotic media, there was a progressive loss of sperm motility with increasing cytochalasin D concentration. The results of this study indicated that the F-actin distribution in cauda epididymidal spermatozoa of the EGK was surprisingly different from that of the Tammar Wallaby (M. eugenii) and that cytochalasin-D does not appear to improve the tolerance of EGK cauda epididymidal sperm to osmotically induced injury.

  5. Neuroprotective effects of hypothermia on synaptic actin cytoskeletal changes induced by perinatal asphyxia.

    PubMed

    Muñiz, Javier; Romero, Juan; Holubiec, Mariana; Barreto, George; González, Janneth; Saint-Martin, Madeleine; Blanco, Eduardo; Carlos Cavicchia, Juan; Castilla, Rocío; Capani, Francisco

    2014-05-14

    Cerebral hypoxia-ischemia damages synaptic proteins, resulting in cytoskeletal alterations, protein aggregation and neuronal death. In the previous works, we have shown neuronal and synaptic changes in rat neostriatum subjected to hypoxia that leads to ubi-protein accumulation. Recently, we also showed that, changes in F-actin organization could be related to early alterations induced by hypoxia in the Central Nervous System. However, little is known about effective treatment to diminish the damage. The main aim of this work is to study the effects of birth hypothermia on the actin cytoskeleton of neostriatal post-synaptic densities (PSD) in 60 days olds rats by immunohistochemistry, photooxidation and western blot. We used 2 different protocols of hypothermia: (a) intrahypoxic hypothermia at 15°C and (b) post-hypoxia hypothermia at 32°C. Consistent with previous data at 30 days, staining with phalloidin-Alexa(488) followed by confocal microscopy analysis showed an increase of F-actin fluorescent staining in the neostriatum of hypoxic animals. Correlative photooxidation electron microscopy confirmed these observations showing an increment in the number of mushroom-shaped F-actin staining spines in neostriatal excitatory synapses in rats subjected to hypoxia. In addition, western blot revealed β-actin increase in PSDs in hypoxic animals. The optic relative density measurement showed a significant difference between controls and hypoxic animals. When hypoxia was induced under hypothermic conditions, the changes observed in actin cytoskeleton were blocked. Post-hypoxic hypothermia showed similar answer but actin cytoskeleton modifications were not totally reverted as we observed at 15°C. These data suggest that the decrease of the body temperature decreases the actin modifications in dendritic spines preventing the neuronal death. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. IFT88 influences chondrocyte actin organization and biomechanics.

    PubMed

    Wang, Z; Wann, A K T; Thompson, C L; Hassen, A; Wang, W; Knight, M M

    2016-03-01

    Primary cilia are microtubule based organelles which control a variety of signalling pathways important in cartilage development, health and disease. This study examines the role of the intraflagellar transport (IFT) protein, IFT88, in regulating fundamental actin organisation and mechanics in articular chondrocytes. The study used an established chondrocyte cell line with and without hypomorphic mutation of IFT88 (IFT88(orpk)). Confocal microscopy was used to quantify F-actin and myosin IIB organisation. Viscoelastic cell and actin cortex mechanics were determined using micropipette aspiration with actin dynamics visualised in live cells transfected with LifeACT-GFP. IFT88(orpk) cells exhibited a significant increase in acto-myosin stress fibre organisation relative to wild-type (WT) cells in monolayer and an altered response to cytochalasin D. Rounded IFT88(orpk) cells cultured in suspension exhibited reduced cortical actin expression with reduced cellular equilibrium modulus. Micropipette aspiration resulted in reduced membrane bleb formation in IFT88(orpk) cells. Following membrane blebbing, IFT88(orpk) cells exhibited slower reformation of the actin cortex. IFT88(orpk) cells showed increased actin deformability and reduced cortical tension confirming that IFT regulates actin cortex mechanics. The reduced cortical tension is also consistent with the reduced bleb formation. This study demonstrates for the first time that the ciliary protein IFT88 regulates fundamental actin organisation and the stiffness of the actin cortex leading to alterations in cell deformation, mechanical properties and blebbing in an IFT88 chondrocyte cell line. This adds to the growing understanding of the role of primary cilia and IFT in regulating cartilage biology. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Cytoplasmic γ-actin and tropomodulin isoforms link to the sarcoplasmic reticulum in skeletal muscle fibers

    PubMed Central

    Gokhin, David S.

    2011-01-01

    The sarcoplasmic reticulum (SR) serves as the Ca2+ reservoir for muscle contraction. Tropomodulins (Tmods) cap filamentous actin (F-actin) pointed ends, bind tropomyosins (Tms), and regulate F-actin organization. In this paper, we use a genetic targeting approach to examine the effect of Tmod1 deletion on the organization of cytoplasmic γ-actin (γcyto-actin) in the SR of skeletal muscle. In wild-type muscle fibers, γcyto-actin and Tmod3 defined an SR microdomain that was distinct from another Z line–flanking SR microdomain containing Tmod1 and Tmod4. The γcyto-actin/Tmod3 microdomain contained an M line complex composed of small ankyrin 1.5 (sAnk1.5), γcyto-actin, Tmod3, Tm4, and Tm5NM1. Tmod1 deletion caused Tmod3 to leave its SR compartment, leading to mislocalization and destabilization of the Tmod3–γcyto-actin–sAnk1.5 complex. This was accompanied by SR morphological defects, impaired Ca2+ release, and an age-dependent increase in sarcomere misalignment. Thus, Tmod3 regulates SR-associated γcyto-actin architecture, mechanically stabilizes the SR via a novel cytoskeletal linkage to sAnk1.5, and maintains the alignment of adjacent myofibrils. PMID:21727195

  8. Hypertrophic Stimulation Increases β-actin Dynamics in Adult Feline Cardiomyocytes

    PubMed Central

    Balasubramanian, Sundaravadivel; Mani, Santhosh K.; Kasiganesan, Harinath; Baicu, Catalin C.; Kuppuswamy, Dhandapani

    2010-01-01

    The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While α-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of β-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, β-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO) model, we measured the level and distribution of β-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of β-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET) or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin) of β-actin. To determine the localization and dynamics of β-actin, we adenovirally expressed GFP-tagged β-actin in isolated adult cardiomyocytes. The ectopically expressed β-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP) measurements of β-actin dynamics revealed that β-actin at the Z-discs is constantly being exchanged with β-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while β-actin overexpression improved cardiomyocyte contractility, immunoneutralization of β-actin resulted in a reduced contractility suggesting that β-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of β-actin in the adult cardiomyocyte and reinforce its usefulness in measuring cardiac cytoskeletal rearrangement during

  9. Hypertrophic stimulation increases beta-actin dynamics in adult feline cardiomyocytes.

    PubMed

    Balasubramanian, Sundaravadivel; Mani, Santhosh K; Kasiganesan, Harinath; Baicu, Catalin C; Kuppuswamy, Dhandapani

    2010-07-12

    The myocardium responds to hemodynamic stress through cellular growth and organ hypertrophy. The impact of cytoskeletal elements on this process, however, is not fully understood. While alpha-actin in cardiomyocytes governs muscle contraction in combination with the myosin motor, the exact role of beta-actin has not been established. We hypothesized that in adult cardiomyocytes, as in non-myocytes, beta-actin can facilitate cytoskeletal rearrangement within cytoskeletal structures such as Z-discs. Using a feline right ventricular pressure overload (RVPO) model, we measured the level and distribution of beta-actin in normal and pressure overloaded myocardium. Resulting data demonstrated enriched levels of beta-actin and enhanced translocation to the Triton-insoluble cytoskeletal and membrane skeletal complexes. In addition, RVPO in vivo and in vitro hypertrophic stimulation with endothelin (ET) or insulin in isolated adult cardiomyocytes enhanced the content of polymerized fraction (F-actin) of beta-actin. To determine the localization and dynamics of beta-actin, we adenovirally expressed GFP-tagged beta-actin in isolated adult cardiomyocytes. The ectopically expressed beta-actin-GFP localized to the Z-discs, costameres, and cell termini. Fluorescence recovery after photobleaching (FRAP) measurements of beta-actin dynamics revealed that beta-actin at the Z-discs is constantly being exchanged with beta-actin from cytoplasmic pools and that this exchange is faster upon hypertrophic stimulation with ET or insulin. In addition, in electrically stimulated isolated adult cardiomyocytes, while beta-actin overexpression improved cardiomyocyte contractility, immunoneutralization of beta-actin resulted in a reduced contractility suggesting that beta-actin could be important for the contractile function of adult cardiomyocytes. These studies demonstrate the presence and dynamics of beta-actin in the adult cardiomyocyte and reinforce its usefulness in measuring cardiac

  10. A Novel Regulatory Mechanism of Smooth Muscle α-Actin Expression by NRG-1/circACTA2/miR-548f-5p Axis.

    PubMed

    Sun, Yan; Yang, Zhan; Zheng, Bin; Zhang, Xin-Hua; Zhang, Man-Li; Zhao, Xue-Shan; Zhao, Hong-Ye; Suzuki, Toru; Wen, Jin-Kun

    2017-09-01

    Neuregulin-1 (NRG-1) includes an extracellular epidermal growth factor-like domain and an intracellular domain (NRG-1-ICD). In response to transforming growth factor-β1, its cleavage by proteolytic enzymes releases a bioactive fragment, which suppresses the vascular smooth muscle cell (VSMC) proliferation by activating ErbB (erythroblastic leukemia viral oncogene homolog) receptor. However, NRG-1-ICD function in VSMCs remains unknown. Here, we characterize the function of NRG-1-ICD and underlying mechanisms in VSMCs. Immunofluorescence staining, Western blotting, and quantitative real-time polymerase chain reaction showed that NRG-1 was expressed in rat, mouse, and human VSMCs and was upregulated and cleaved in response to transforming growth factor-β1. In the cytoplasm of HASMCs (human aortic smooth muscle cells), the NRG-1-ICD participated in filamentous actin formation by interacting with α-SMA (smooth muscle α-actin). In the nucleus, the Nrg-1-ICD induced circular ACTA2 (alpha-actin-2; circACTA2) formation by recruitment of the zinc-finger transcription factor IKZF1 (IKAROS family zinc finger 1) to the first intron of α-SMA gene. We further confirmed that circACTA2, acting as a sponge binding microRNA (miR)-548f-5p, interacted with miR-548f-5p targeting 3' untranslated region of α-SMA mRNA, which in turn relieves miR-548f-5p repression of the α-SMA expression and thus upregulates α-SMA expression, thereby facilitating stress fiber formation and cell contraction in HASMCs. Accordingly, in vivo studies demonstrated that the localization of the interaction of circACTA2 with miR-548f-5p is significantly decreased in human intimal hyperplastic arteries compared with normal arteries, implicating that dysregulation of circACTA2 and miR-548f-5p expression is involved in intimal hyperplasia. These results suggest that circACTA2 mediates NRG-1-ICD regulation of α-SMA expression in HASMCs via the NRG-1-ICD/circACTA2/miR-548f-5p axis. Our data provide a molecular

  11. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes

    PubMed Central

    Hiroyasu, Sho; Colburn, Zachary T.; Jones, Jonathan C. R.

    2016-01-01

    During wound healing of the skin, keratinocytes disassemble hemidesmosomes and reorganize their actin cytoskeletons in order to exert traction forces on and move directionally over the dermis. Nonetheless, the transmembrane hemidesmosome component collagen XVII (ColXVII) is found in actin-rich lamella, situated behind the lamellipodium. A set of actin bundles, along which ColXVII colocalizes with actinin4, is present at each lamella. Knockdown of either ColXVII or actinin4 not only inhibits directed migration of keratinocytes but also relieves constraints on actin bundle retrograde movement at the site of lamella, such that actin bundle movement is enhanced more than 5-fold. Moreover, whereas control keratinocytes move in a stepwise fashion over a substrate by generating alternating traction forces, of up to 1.4 kPa, at each flank of the lamellipodium, ColXVII knockdown keratinocytes fail to do so. In summary, our data indicate that ColXVII-actinin4 complexes at the lamella of a moving keratinocyte regulate actin dynamics, thereby determining the direction of cell movement.—Hiroyasu, S., Colburn, Z. T., Jones, J. C. R. A hemidesmosomal protein regulates actin dynamics and traction forces in motile keratinocytes. PMID:26936359

  12. Actin and DNA Protect Histones from Degradation by Bacterial Proteases but Inhibit Their Antimicrobial Activity

    PubMed Central

    Sol, Asaf; Skvirsky, Yaniv; Blotnick, Edna; Bachrach, Gilad; Muhlrad, Andras

    2016-01-01

    Histones are small polycationic proteins located in the cell nucleus. Together, DNA and histones are integral constituents of the nucleosomes. Upon apoptosis, necrosis, and infection – induced cell death, histones are released from the cell. The extracellular histones have strong antimicrobial activity but are also cytotoxic and thought as mediators of cell death in sepsis. The antimicrobial activity of the cationic extracellular histones is inhibited by the polyanionic DNA and F-actin, which also become extracellular upon cell death. DNA and F-actin protect histones from degradation by the proteases of Pseudomonas aeruginosa and Porphyromonas gingivalis. However, though the integrity of the histones is protected, the activity of histones as antibacterial agents is lost. The inhibition of the histone’s antibacterial activity and their protection from proteolysis by DNA and F-actin indicate a tight electrostatic interaction between the positively charged histones and negatively charged DNA and F-actin, which may have physiological significance in maintaining the equilibrium between the beneficial antimicrobial activity of extracellular histones and their cytotoxic effects. PMID:27555840

  13. The Actin Nucleator Cobl Is Controlled by Calcium and Calmodulin

    PubMed Central

    Haag, Natja; Kessels, Michael M.; Qualmann, Britta

    2015-01-01

    Actin nucleation triggers the formation of new actin filaments and has the power to shape cells but requires tight control in order to bring about proper morphologies. The regulation of the members of the novel class of WASP Homology 2 (WH2) domain-based actin nucleators, however, thus far has largely remained elusive. Our study reveals signal cascades and mechanisms regulating Cordon-Bleu (Cobl). Cobl plays some, albeit not fully understood, role in early arborization of neurons and nucleates actin by a mechanism that requires a combination of all three of its actin monomer–binding WH2 domains. Our experiments reveal that Cobl is regulated by Ca2+ and multiple, direct associations of the Ca2+ sensor Calmodulin (CaM). Overexpression analyses and rescue experiments of Cobl loss-of-function phenotypes with Cobl mutants in primary neurons and in tissue slices demonstrated the importance of CaM binding for Cobl’s functions. Cobl-induced dendritic branch initiation was preceded by Ca2+ signals and coincided with local F-actin and CaM accumulations. CaM inhibitor studies showed that Cobl-mediated branching is strictly dependent on CaM activity. Mechanistic studies revealed that Ca2+/CaM modulates Cobl’s actin binding properties and furthermore promotes Cobl’s previously identified interactions with the membrane-shaping F-BAR protein syndapin I, which accumulated with Cobl at nascent dendritic protrusion sites. The findings of our study demonstrate a direct regulation of an actin nucleator by Ca2+/CaM and reveal that the Ca2+/CaM-controlled molecular mechanisms we discovered are crucial for Cobl’s cellular functions. By unveiling the means of Cobl regulation and the mechanisms, by which Ca2+/CaM signals directly converge on a cellular effector promoting actin filament formation, our work furthermore sheds light on how local Ca2+ signals steer and power branch initiation during early arborization of nerve cells—a key process in neuronal network formation. PMID

  14. A peek into tropomyosin binding and unfolding on the actin filament.

    PubMed

    Singh, Abhishek; Hitchcock-Degregori, Sarah E

    2009-07-24

    Tropomyosin is a prototypical coiled coil along its length with subtle variations in structure that allow interactions with actin and other proteins. Actin binding globally stabilizes tropomyosin. Tropomyosin-actin interaction occurs periodically along the length of tropomyosin. However, it is not well understood how tropomyosin binds actin. Tropomyosin's periodic binding sites make differential contributions to two components of actin binding, cooperativity and affinity, and can be classified as primary or secondary sites. We show through mutagenesis and analysis of recombinant striated muscle alpha-tropomyosins that primary actin binding sites have a destabilizing coiled-coil interface, typically alanine-rich, embedded within a non-interface recognition sequence. Introduction of an Ala cluster in place of the native, more stable interface in period 2 and/or period 3 sites (of seven) increased the affinity or cooperativity of actin binding, analysed by cosedimentation and differential scanning calorimetry. Replacement of period 3 with period 5 sequence, an unstable region of known importance for cooperative actin binding, increased the cooperativity of binding. Introduction of the fluorescent probe, pyrene, near the mutation sites in periods 2 and 3 reported local instability, stabilization by actin binding, and local unfolding before or coincident with dissociation from actin (measured using light scattering), and chain dissociation (analyzed using circular dichroism). This, and previous work, suggests that regions of tropomyosin involved in binding actin have non-interface residues specific for interaction with actin and an unstable interface that is locally stabilized upon binding. The destabilized interface allows residues on the coiled-coil surface to obtain an optimal conformation for interaction with actin by increasing the number of local substates that the side chains can sample. We suggest that local disorder is a property typical of coiled coil binding

  15. Wiskott-Aldrich syndrome protein is required for NK cell cytotoxicity and colocalizes with actin to NK cell-activating immunologic synapses

    NASA Astrophysics Data System (ADS)

    Orange, Jordan S.; Ramesh, Narayanaswamy; Remold-O'Donnell, Eileen; Sasahara, Yoji; Koopman, Louise; Byrne, Michael; Bonilla, Francisco A.; Rosen, Fred S.; Geha, Raif S.; Strominger, Jack L.

    2002-08-01

    The Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency disorder caused by a mutation in WAS protein (WASp) that results in defective actin polymerization. Although the function of many hematopoietic cells requires WASp, the specific expression and function of this molecule in natural killer (NK) cells is unknown. Here, we report that WAS patients have increased percentages of peripheral blood NK cells and that fresh enriched NK cells from two patients with a WASp mutation have defective cytolytic function. In normal NK cells, WASp was expressed and localized to the activating immunologic synapse (IS) with filamentous actin (F-actin). Perforin also localized to the NK cell-activating IS but at a lesser frequency than F-actin and WASp. The accumulation of F-actin and WASp at the activating IS was decreased significantly in NK cells that had been treated with the inhibitor of actin polymerization, cytochalasin D. NK cells from WAS patients lacked expression of WASp and accumulated F-actin at the activating IS infrequently. Thus, WASp has an important function in NK cells. In patients with WASp mutations, the resulting NK cell defects are likely to contribute to their disease.

  16. 25 Years of Tension over Actin Binding to the Cadherin Cell Adhesion Complex: The Devil is in the Details.

    PubMed

    Nelson, W James; Weis, William I

    2016-07-01

    Over the past 25 years, there has been a conceptual (re)evolution in understanding how the cadherin cell adhesion complex, which contains F-actin-binding proteins, binds to the actin cytoskeleton. There is now good synergy between structural, biochemical, and cell biological results that the cadherin-catenin complex binds to F-actin under force. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Mitochondrial Dysfunction, Disruption of F-Actin Polymerization, and Transcriptomic Alterations in Zebrafish Larvae Exposed to Trichloroethylene.

    PubMed

    Wirbisky, Sara E; Damayanti, Nur P; Mahapatra, Cecon T; Sepúlveda, Maria S; Irudayaraj, Joseph; Freeman, Jennifer L

    2016-02-15

    Trichloroethylene (TCE) is primarily used as an industrial degreasing agent and has been in use since the 1940s. TCE is released into the soil, surface, and groundwater. From an environmental and regulatory standpoint, more than half of Superfund hazardous waste sites on the National Priority List are contaminated with TCE. Occupational exposure to TCE occurs primarily via inhalation, while environmental TCE exposure also occurs through ingestion of contaminated drinking water. Current literature links TCE exposure to various adverse health effects including cardiovascular toxicity. Current studies aiming to address developmental cardiovascular toxicity utilized rodent and avian models, with the majority of studies using relatively higher parts per million (mg/L) doses. In this study, to further investigate developmental cardiotoxicity of TCE, zebrafish embryos were treated with 0, 10, 100, or 500 parts per billion (ppb; μg/L) TCE during embryogenesis and/or through early larval stages. After the appropriate exposure period, angiogenesis, F-actin, and mitochondrial function were assessed. A significant dose-response decrease in angiogenesis, F-actin, and mitochondrial function was observed. To further complement this data, a transcriptomic profile of zebrafish larvae was completed to identify gene alterations associated with the 10 ppb TCE exposure. Results from the transcriptomic data revealed that embryonic TCE exposure caused significant changes in genes associated with cardiovascular disease, cancer, and organismal injury and abnormalities with a number of targets in the FAK signaling pathway. Overall, results from our study support TCE as a developmental cardiovascular toxicant, provide molecular targets and pathways for investigation in future studies, and indicate a need for continued priority for environmental regulation.

  18. Water molecules in the nucleotide binding cleft of actin: effects on subunit conformation and implications for ATP hydrolysis.

    PubMed

    Saunders, Marissa G; Voth, Gregory A

    2011-10-14

    In the monomeric actin crystal structure, the positions of a highly organized network of waters are clearly visible within the active site. However, the recently proposed models of filamentous actin (F-actin) did not extend to including these waters. Since the water network is important for ATP hydrolysis, information about water position is critical to understanding the increased rate of catalysis upon filament formation. Here, we show that waters in the active site are essential for intersubdomain rotational flexibility and that they organize the active-site structure. Including the crystal structure waters during simulation setup allows us to observe distinct changes in the active-site structure upon the flattening of the actin subunit, as proposed in the Oda model for F-actin. We identify changes in both protein position and water position relative to the phosphate tail that suggest a mechanism for accelerating the rate of nucleotide hydrolysis in F-actin by stabilizing charge on the β-phosphate and by facilitating deprotonation of catalytic water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Strong fascin expression promotes metastasis independent of its F-actin bundling activity.

    PubMed

    Heinz, Lisa S; Muhs, Stefanie; Schiewek, Johanna; Grüb, Saskia; Nalaskowski, Marcus; Lin, Yuan-Na; Wikman, Harriet; Oliveira-Ferrer, Leticia; Lange, Tobias; Wellbrock, Jasmin; Konietzny, Anja; Mikhaylova, Marina; Windhorst, Sabine

    2017-12-15

    High expression of the actin bundling protein Fascin increases the malignancy of tumor cells. Here we show that fascin expression is up-regulated in more malignant sub-cell lines of MDA-MB-231 cells as compared to parental cells. Since also parental MDA-MB-231 cells exhibit high fascin levels, increased fascin expression was termed as "hyperexpression". To examine the effect of fascin hyperexpression, fascin was hyperexpressed in parental MDA-MB-231 cells and metastasis was analyzed in NOD scid gamma (NSG) mice. In addition, the effect of fascin mutants with inactive or constitutively active actin bundling activity was examined. Unexpectedly, we found that hyperexpression of both, wildtype (wt) and mutant fascin strongly increased metastasis in vivo , showing that the effect of fascin hyperexpression did not depend on its actin bundling activity. Cellular assays revealed that hyperexpression of wt and mutant fascin increased adhesion of MDA-MB-231 cells while transmigration and proliferation were not affected. Since it has been shown that fascin controls adhesion by directly interacting with microtubules ( MTs), we analyzed if fascin hyperexpression affects MT dynamics. We found that at high concentrations fascin significantly increased MT dynamics in cells and in cell-free approaches. In summary our data show that strong expression of fascin in breast cancer cells increases metastasis independent of its actin bundling activity. Thus, it seems that the mechanism of fascin-stimulated metastasis depends on its concentration.

  20. In vitro and in vivo evidence for actin association of the naphthylphthalamic acid-binding protein from zucchini hypocotyls

    NASA Technical Reports Server (NTRS)

    Butler, J. H.; Hu, S.; Brady, S. R.; Dixon, M. W.; Muday, G. K.

    1998-01-01

    The N-1-naphthylphthalamic acid (NPA)-binding protein is part of the auxin efflux carrier, the protein complex that controls polar auxin transport in plant tissues. This study tested the hypothesis that the NPA-binding protein (NBP) is associated with the actin cytoskeleton in vitro and that an intact actin cytoskeleton is required for polar auxin transport in vivo. Cytoskeletal polymerization was altered in extracts of zucchini hypocotyls with reagents that stabilized either the polymeric or monomeric forms of actin or tubulin. Phalloidin treatment altered actin polymerization, as demonstrated by immunoblot analyses following native and denaturing electrophoresis. Phalloidin increased both filamentous actin (F-actin) and NPA-binding activity, while cytochalasin D and Tris decreased both F-actin and NPA-binding activity in cytoskeletal pellets. The microtubule stabilizing drug taxol increased pelletable tubulin, but did not alter either the amount of pelletable actin or NPA-binding activity. Treatment of etiolated zucchini hypocotyls with cytochalasin D decreased the amount of auxin transport and its regulation by NPA. These experimental results are consistent with an in vitro actin cytoskeletal association of the NPA-binding protein and with the requirement of an intact actin cytoskeleton for maximal polar auxin transport in vivo.

  1. Changes in actin dynamics are involved in salicylic acid signaling pathway.

    PubMed

    Matoušková, Jindřiška; Janda, Martin; Fišer, Radovan; Sašek, Vladimír; Kocourková, Daniela; Burketová, Lenka; Dušková, Jiřina; Martinec, Jan; Valentová, Olga

    2014-06-01

    Changes in actin cytoskeleton dynamics are one of the crucial players in many physiological as well as non-physiological processes in plant cells. Positioning of actin filament arrays is necessary for successful establishment of primary lines of defense toward pathogen attack, depolymerization leads very often to the enhanced susceptibility to the invading pathogen. On the other hand it was also shown that the disruption of actin cytoskeleton leads to the induction of defense response leading to the expression of PATHOGENESIS RELATED proteins (PR). In this study we show that pharmacological actin depolymerization leads to the specific induction of genes in salicylic acid pathway but not that involved in jasmonic acid signaling. Life imaging of leafs of Arabidopsis thaliana with GFP-tagged fimbrin (GFP-fABD2) treated with 1 mM salicylic acid revealed rapid disruption of actin filaments resembling the pattern viewed after treatment with 200 nM latrunculin B. The effect of salicylic acid on actin filament fragmentation was prevented by exogenous addition of phosphatidic acid, which binds to the capping protein and thus promotes actin polymerization. The quantitative evaluation of actin filament dynamics is also presented. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span.

    PubMed

    Vasicova, Pavla; Lejskova, Renata; Malcova, Ivana; Hasek, Jiri

    2015-11-01

    Stationary-growth-phase Saccharomyces cerevisiae yeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. In S. cerevisiae stationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Our in vivo analyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficient cox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  3. The Stationary-Phase Cells of Saccharomyces cerevisiae Display Dynamic Actin Filaments Required for Processes Extending Chronological Life Span

    PubMed Central

    Lejskova, Renata; Malcova, Ivana

    2015-01-01

    Stationary-growth-phase Saccharomyces cerevisiae yeast cultures consist of nondividing cells that undergo chronological aging. For their successful survival, the turnover of proteins and organelles, ensured by autophagy and the activation of mitochondria, is performed. Some of these processes are engaged in by the actin cytoskeleton. In S. cerevisiae stationary-phase cells, F actin has been shown to form static aggregates named actin bodies, subsequently cited to be markers of quiescence. Our in vivo analyses revealed that stationary-phase cultures contain cells with dynamic actin filaments, besides the cells with static actin bodies. The cells with dynamic actin displayed active endocytosis and autophagy and well-developed mitochondrial networks. Even more, stationary-phase cell cultures grown under calorie restriction predominantly contained cells with actin cables, confirming that the presence of actin cables is linked to successful adaptation to stationary phase. Cells with actin bodies were inactive in endocytosis and autophagy and displayed aberrations in mitochondrial networks. Notably, cells of the respiratory activity-deficient cox4Δ strain displayed the same mitochondrial aberrations and actin bodies only. Additionally, our results indicate that mitochondrial dysfunction precedes the formation of actin bodies and the appearance of actin bodies corresponds to decreased cell fitness. We conclude that the F-actin status reflects the extent of damage that arises from exponential growth. PMID:26351139

  4. Altered Actin Dynamics and Functions of Osteoblast-Like Cells in Parabolic Flight may Involve ERK1/2

    NASA Astrophysics Data System (ADS)

    Dai, Zhongquan; Tan, Yingjun; Yang, Fen; Qu, Lina; Zhang, Hongyu; Wan, Yumin; Li, Yinghui

    2011-01-01

    Osteoblasts are sensitive to mechanical stressors such as gravity and alter their cytoskeletons and functions to adapt; however, the contribution of gravity to this phenomenon is not well understood. In this study, we investigated the effects of acute gravitational changes on the structure and function of osteoblast ROS17/2.8 as generated by parabolic flight. The changes in microfilament cytoskeleton was observed by immunofluorescence stain of Texas red conjugated Phalloidin and Alexa Fluor 488 conjugated DNase I for F-actin and G-actin, respectively. To examine osteoblast function, ALP (alkaline phosphatase) activity, osteocalcin secretions and the expression of ALP, COL1A1 (collagen type I alpha 1 chain) and osteocalcin were detected by modified Gomori methods, radioimmunity and RT-PCR, respectively. Double fluorescence staining of phosphorylated p44/42 and F-actin were performed to observe their colocalization relationship. The established semi-quantitative analysis method of fluorescence intensity of EGFP was used to detect the activity changes of COL1A1 promoter in EGFP-ROS cells with MAPK inhibitor PD98059 or F-actin inhibitor cytochalasin B. Results indicate that the altered gravity induced the reorganization of microfilament cytoskeletons of osteoblasts. After 3 h parabolic flight, F-actin of osteoblast cytoskeleton became thicker and directivity, whereas G-actin shrunk and became more concentrated at the edge of nucleus. The excretion of osteocalcin, the activity of ALP and the expression of mRNA decreased. Colocalization analysis indicated that phosphorylated p44/42 MAPK was coupled with F-actin. Inhibitor PD98059 and cytochalasin B decreased the fluorescence intensity of EGFP-ROS cells. Above results suggest that short time gravity variations induce the adjustment of osteoblast structure and functional and ERK1/2 signaling maybe involve these responses. We believe that it is an adaptive method of the osteoblasts to gravity alteration that structure

  5. Lights, camera, actin.

    PubMed

    Rubenstein, Peter A; Wen, Kuo-Kuang

    2005-10-01

    Actin participates in many important biological processes. Currently, intensive investigation is being carried out in a number of laboratories concerning the function of actin in these processes and the molecular basis of its functions. We present a glimpse into four of these areas: actin-like proteins in bacterial cells, actin in the eukaryotic nucleus, the conformational plasticity of the actin filament, and finally, Arp2/3-dependent regulation of actin filament branching and creation of new filament barbed ends. IUBMB Life, 57: 683-687, 2005.

  6. Actin Polymerization: An Event Regulated by Tyrosine Phosphorylation During Buffalo Sperm Capacitation.

    PubMed

    Naresh, S; Atreja, S K

    2015-12-01

    In the female reproductive tract, the spermatozoa undergo a series of physiological and biochemical changes, prior to gaining the ability to fertilize, that result to capacitation. However, the actin polymerization and protein tyrosine phosphorylation are the two necessary steps for capacitation. In this study, we have demonstrated the actin polymerization and established the correlation between protein tyrosine phosphorylation and actin reorganization during in vitro capacitation in buffalo (Bubalus bubalis) spermatozoa. Indirect immunofluorescence and Western blot techniques were used to detect actin polymerization and tyrosine phosphorylation. The time-dependent fluorimetric studies revealed that the actin polymerization starts from the tail region and progressed towards the head region of spermatozoa during capacitation. The lysophosphatidyl choline (LPC)-induced acrosome reaction (AR) stimulated quick actin depolymerization. The inhibitor cytochalasin D (CD) blocked the in vitro capacitation by inhibiting the actin polymerization. In addition, we also performed different inhibitor (Genistein, H-89, PD9809 and GF-109) and enhancer (dbcAMP, H(2)O(2) and vanadate) studies on actin tyrosine phosphorylation and actin polymerization. The inhibitors of tyrosine phosphorylation inhibit actin tyrosine phosphorylation and polymerization, whereas enhancers of tyrosine phosphorylation stimulate F-actin formation and tyrosine phosphorylation. These observations suggest that the tyrosine phosphorylation regulates the actin polymerization, and both are coupled processes during capacitation of buffalo spermatozoa. © 2015 Blackwell Verlag GmbH.

  7. A novel actin binding site of myosin required for effective muscle contraction.

    PubMed

    Várkuti, Boglárka H; Yang, Zhenhui; Kintses, Bálint; Erdélyi, Péter; Bárdos-Nagy, Irén; Kovács, Attila L; Hári, Péter; Kellermayer, Miklós; Vellai, Tibor; Málnási-Csizmadia, András

    2012-02-12

    F-actin serves as a track for myosin's motor functions and activates its ATPase activity by several orders of magnitude, enabling actomyosin to produce effective force against load. Although actin activation is a ubiquitous property of all myosin isoforms, the molecular mechanism and physiological role of this activation are unclear. Here we describe a conserved actin-binding region of myosin named the 'activation loop', which interacts with the N-terminal segment of actin. We demonstrate by biochemical, biophysical and in vivo approaches using transgenic Caenorhabditis elegans strains that the interaction between the activation loop and actin accelerates the movement of the relay, stimulating myosin's ATPase activity. This interaction results in efficient force generation, but it is not essential for the unloaded motility. We conclude that the binding of actin to myosin's activation loop specifically increases the ratio of mechanically productive to futile myosin heads, leading to efficient muscle contraction.

  8. Modes of caldesmon binding to actin: sites of caldesmon contact and modulation of interactions by phosphorylation.

    PubMed

    Foster, D Brian; Huang, Renjian; Hatch, Victoria; Craig, Roger; Graceffa, Philip; Lehman, William; Wang, C-L Albert

    2004-12-17

    Smooth muscle caldesmon binds actin and inhibits actomyosin ATPase activity. Phosphorylation of caldesmon by extracellular signal-regulated kinase (ERK) reverses this inhibitory effect and weakens actin binding. To better understand this function, we have examined the phosphorylation-dependent contact sites of caldesmon on actin by low dose electron microscopy and three-dimensional reconstruction of actin filaments decorated with a C-terminal fragment, hH32K, of human caldesmon containing the principal actin-binding domains. Helical reconstruction of negatively stained filaments demonstrated that hH32K is located on the inner portion of actin subdomain 1, traversing its upper surface toward the C-terminal segment of actin, and forms a bridge to the neighboring actin monomer of the adjacent long pitch helical strand by connecting to its subdomain 3. Such lateral binding was supported by cross-linking experiments using a mutant isoform, which was capable of cross-linking actin subunits. Upon ERK phosphorylation, however, the mutant no longer cross-linked actin to polymers. Three-dimensional reconstruction of ERK-phosphorylated hH32K indeed indicated loss of the interstrand connectivity. These results, together with fluorescence quenching data, are consistent with a phosphorylation-dependent conformational change that moves the C-terminal end segment of caldesmon near the phosphorylation site but not the upstream region around Cys(595), away from F-actin, thus neutralizing its inhibitory effect on actomyosin interactions. The binding pattern of hH32K suggests a mechanism by which unphosphorylated, but not ERK-phosphorylated, caldesmon could stabilize actin filaments and resist F-actin severing or depolymerization in both smooth muscle and nonmuscle cells.

  9. Thrombin Induces Inositol Trisphosphate-Mediated Spatially Extensive Responses in Lung Microvessels.

    PubMed

    Escue, Rachel; Kandasamy, Kathirvel; Parthasarathi, Kaushik

    2017-04-01

    Activation of plasma membrane receptors initiates compartmentalized second messenger signaling. Whether this compartmentalization facilitates the preferential intercellular diffusion of specific second messengers is unclear. Toward this, the receptor-mediated agonist, thrombin, was instilled into microvessels in a restricted region of isolated blood-perfused mouse lungs. Subsequently, the thrombin-induced increase in endothelial F-actin was determined using confocal fluorescence microscopy. Increased F-actin was evident in microvessels directly treated with thrombin and in those located in adjoining thrombin-free regions. This increase was abrogated by inhibiting inositol trisphosphate-mediated calcium release with Xestospongin C (XeC). XeC also inhibited the thrombin-induced increase in the amplitude of endothelial cytosolic Ca 2+ oscillations. Instillation of thrombin and XeC into adjacent restricted regions increased F-actin in microvessels in the thrombin-treated and adjacent regions but not in those in the XeC-treated region. Thus, inositol trisphosphate, and not calcium, diffused interendothelially to the spatially remote thrombin-free microvessels. Thus, activation of plasma membrane receptors increased the ambit of inflammatory responses via a second messenger different from that used by stimuli that induce cell-wide increases in second messengers. Thrombin however failed to induce the spatially extensive response in microvessels of mice lacking endothelial connexin43, suggesting a role for connexin43 gap junctions. Compartmental second messenger signaling and interendothelial communication define the specific second messenger involved in exacerbating proinflammatory responses to receptor-mediated agonists. Copyright © 2017 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  10. Force measurements by micromanipulation of a single actin filament by glass needles

    NASA Astrophysics Data System (ADS)

    Kishino, Akiyoshi; Yanagida, Toshio

    1988-07-01

    Single actin filaments (~7nm in diameter) labelled with fluorescent phalloidin can be clearly seen by video-fluorescence microscopy1. This technique has been used to observe motions of single filaments in solution and in several in vitro movement assays1-5. In a further development of the technique, we report here a method to catch and manipulate a single actin filament (F-actin) by glass microneedles under conditions in which external force on the filament can be applied and measured. Using this method, we directly measured the tensile strength of a filament (the force necessary to break the bond between two actin monomers) and the force required for a filament to be moved by myosin or its proteolytic fragment bound to a glass surface in the presence of ATP. The first result shows that the tensile strength of the F-actin-phalloidin complex is comparable with the average force exerted on a single thin filament in muscle fibres during isometric contraction. This force is increased only slightly by tropomyosin. The second measurement shows that the myosin head (subfragment-1) can produce the same ATP-dependent force as intact myosin. The magnitude of this force is comparable with that produced by each head of myosin in muscle during isometric contraction.

  11. Characterization of f-actin tryptophan phosphorescence in the presence and absence of tryptophan-free myosin motor domain.

    PubMed

    Bódis, Emöke; Strambini, Giovanni B; Gonnelli, Margherita; Málnási-Csizmadia, András; Somogyi, Béla

    2004-08-01

    The effect of binding the Trp-free motor domain mutant of Dictyostelium discoideum, rabbit skeletal muscle myosin S1, and tropomyosin on the dynamics and conformation of actin filaments was characterized by an analysis of steady-state tryptophan phosphorescence spectra and phosphorescence decay kinetics over a temperature range of 140-293 K. The binding of the Trp-free motor domain mutant of D. discoideum to actin caused red shifts in the phosphorescence spectrum of two internal Trp residues of actin and affected the intrinsic lifetime of each emitter, decreasing by roughly twofold the short phosphorescence lifetime components (tau(1) and tau(2)) and increasing by approximately 20% the longest component (tau(3)). The alteration of actin phosphorescence by the motor protein suggests that i), structural changes occur deep down in the core of actin and that ii), subtle changes in conformation appear also on the surface but in regions distant from the motor domain binding site. When actin formed complexes with skeletal S1, an extra phosphorescence lifetime component appeared (tau(4), twice as long as tau(3)) in the phosphorescence decay that is absent in the isolated proteins. The lack of this extra component in the analogous actin-Trp-free motor domain mutant of D. discoideum complex suggests that it should be assigned to Trps in S1 that in the complex attain a more compact local structure. Our data indicated that the binding of tropomyosin to actin filaments had no effect on the structure or flexibility of actin observable by this technique.

  12. Integrity of the actin cytoskeleton of host macrophages is essential for Leishmania donovani infection.

    PubMed

    Roy, Saptarshi; Kumar, G Aditya; Jafurulla, Md; Mandal, Chitra; Chattopadhyay, Amitabha

    2014-08-01

    Visceral leishmaniasis is a vector-borne disease caused by an obligate intracellular protozoan parasite Leishmania donovani. The molecular mechanism involved in internalization of Leishmania is poorly understood. The entry of Leishmania involves interaction with the plasma membrane of host cells. We have previously demonstrated the requirement of host membrane cholesterol in the binding and internalization of L. donovani into macrophages. In the present work, we explored the role of the host actin cytoskeleton in leishmanial infection. We observed a dose-dependent reduction in the attachment of Leishmania promastigotes to host macrophages upon destabilization of the actin cytoskeleton by cytochalasin D. This is accompanied by a concomitant reduction in the intracellular amastigote load. We utilized a recently developed high resolution microscopy-based method to quantitate cellular F-actin content upon treatment with cytochalasin D. A striking feature of our results is that binding of Leishmania promastigotes and intracellular amastigote load show close correlation with cellular F-actin level. Importantly, the binding of Escherichia coli remained invariant upon actin destabilization of host cells, thereby implying specific involvement of the actin cytoskeleton in Leishmania infection. To the best of our knowledge, these novel results constitute the first comprehensive demonstration on the specific role of the host actin cytoskeleton in Leishmania infection. Our results could be significant in developing future therapeutic strategies to tackle leishmaniasis. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Effect of disruption of actin filaments by Clostridium botulinum C2 toxin on insulin secretion in HIT-T15 cells and pancreatic islets.

    PubMed Central

    Li, G; Rungger-Brändle, E; Just, I; Jonas, J C; Aktories, K; Wollheim, C B

    1994-01-01

    To examine their role in insulin secretion, actin filaments (AFs) were disrupted by Clostridium botulinum C2 toxin that ADP-ribosylates G-actin. Ribosylation also prevents polymerization of G-actin to F-actin and inhibits AF assembly by capping the fast-growing end of F-actin. Pretreatment of HIT-T15 cells with the toxin inhibited stimulated insulin secretion in a time- and dose-dependent manner. The toxin did not affect cellular insulin content or nonstimulated secretion. In static incubation, toxin treatment caused 45-50% inhibition of secretion induced by nutrients alone (10 mM glucose + 5 mM glutamine + 5 mM leucine) or combined with bombesin (phospholipase C-activator) and 20% reduction of that potentiated by forskolin (stimulator of adenylyl cyclase). In perifusion, the stimulated secretion during the first phase was marginally diminished, whereas the second phase was inhibited by approximately 80%. Pretreatment of HIT cells with wartmannin, a myosin light chain kinase inhibitor, caused a similar pattern of inhibition of the biphasic insulin release as C2 toxin. Nutrient metabolism and bombesin-evoked rise in cytosolic free Ca2+ were not affected by C2 toxin, indicating that nutrient recognition and the coupling between receptor activation and second messenger generation was not changed. In the toxin-treated cells, the AF web beneath the plasma membrane and the diffuse cytoplasmic F-actin fibers disappeared, as shown both by staining with an antibody against G- and F-actin and by staining F-actin with fluorescent phallacidin. C2 toxin dose-dependently reduced cellular F-actin content. Stimulation of insulin secretion was not associated with changes in F-actin content and organization. Treatment of cells with cytochalasin E and B, which shorten AFs, inhibited the stimulated insulin release by 30-50% although differing in their effects on F-actin content. In contrast to HIT-T15 cells, insulin secretion was potentiated in isolated rat islets after disruption of

  14. Calmodulin-Dependent Protein Kinase mediates Hypergravity-Induced Changes in F-Actin Expression by Endothelial Cells

    NASA Technical Reports Server (NTRS)

    Love, Felisha D.; Melhado, Caroline; Bosah, Francis; Harris-Hooker, Sandra A.; Sanford, Gary L.

    1997-01-01

    A number of basic cellular functions, e.g., electrolyte concentration cell growth rate, glucose utilization, bone formation, response to growth stimulation and exocytosis are modified by microgravity or during spaceflight. Studies with intact animal during spaceflights have found lipid accumulations within the lumen of the vasculature and degeneration of the vascular wall. Capillary alterations with extensive endothelial invaginations were also seen. Hemodynamic studies have shown that there is a redistribution of blood from the lower extremities to the upper part of the body; this will alter vascular permeability, resulting in leakage into surrounding tissues. These studies indicate that changes in gravity will affect a number of physiological systems, including the vasculature. However, few studies have addressed the effect of microgravity on vascular cell function and metabolism. A major problem with ground based studies is that achieving a true microgravity hand, environment for prolonged period is not possible. On the other increasing gravity (i.e., hypergravity) is easily achieved. Several researchers have shown that hypergravity will increase the proliferation of several different cell limes (e.g., chick embryo fibroblasts) while decreasing cell motility and slowing liver regeneration following partial hepatectomy. These studies suggest that hypergravity will alter the behavior of most cells. Several investigators have shown that hypergravity affects the expression of the early response genes (c-fos and c-myc) and the activation of several protein kinases (PK's) in cells (10,11). In this study we investigated whether hypergravity alters the expression of f-actin by aortic endothelial cells, and the possible role of protein kinases (calmodulin(II)-dependent and PKA) as mediators of these effects.

  15. Long non-coding RNA CRYBG3 blocks cytokinesis by directly binding G-actin.

    PubMed

    Pei, Hailong; Hu, Wentao; Guo, Ziyang; Chen, Huaiyuan; Ma, Ji; Mao, Weidong; Li, Bingyan; Wang, Aiqing; Wan, Jianmei; Zhang, Jian; Nie, Jing; Zhou, Guangming; Hei, Tom K

    2018-06-22

    The dynamic interchange between monomeric globular actin (G-actin) and polymeric filamentous actin filaments (F-actin) is fundamental and essential to many cellular processes including cytokinesis and maintenance of genomic stability. Here we report that the long non-coding RNA LNC CRYBG3 directly binds G-actin to inhibit its polymerization and formation of contractile rings, resulting in M-Phase cell arrest. Knockdown of LNC CRYBG3 in tumor cells enhanced their malignant phenotypes. Nucleotide sequence 228-237 of the full-length LNC CRYBG3 and the ser14 domain of beta-actin are essential for their interaction, and mutation of either of these sites abrogated binding of LNC CRYBG3 to G-actin. Binding of LNC CRYBG3 to G-actin blocked nuclear localization of MAL, which consequently kept serum response factor (SRF) away from the promoter region of several immediate early genes, including JUNB and Arp3, which are necessary for cellular proliferation, tumor growth, adhesion, movement, and metastasis. These findings reveal a novel lncRNA-actin-MAL-SRF pathway and highlight LNC CRYBG3 as a means to block cytokinesis and treat cancer by targeting the actin cytoskeleton. Copyright ©2018, American Association for Cancer Research.

  16. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function.

    PubMed

    Orange, Jordan S; Roy-Ghanta, Sumita; Mace, Emily M; Maru, Saumya; Rak, Gregory D; Sanborn, Keri B; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P; Pandey, Rahul

    2011-04-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function.

  17. IL-2 induces a WAVE2-dependent pathway for actin reorganization that enables WASp-independent human NK cell function

    PubMed Central

    Orange, Jordan S.; Roy-Ghanta, Sumita; Mace, Emily M.; Maru, Saumya; Rak, Gregory D.; Sanborn, Keri B.; Fasth, Anders; Saltzman, Rushani; Paisley, Allison; Monaco-Shawver, Linda; Banerjee, Pinaki P.; Pandey, Rahul

    2011-01-01

    Wiskott-Aldrich syndrome (WAS) is a primary immunodeficiency associated with an increased susceptibility to herpesvirus infection and hematologic malignancy as well as a deficiency of NK cell function. It is caused by defective WAS protein (WASp). WASp facilitates filamentous actin (F-actin) branching and is required for F-actin accumulation at the NK cell immunological synapse and NK cell cytotoxicity ex vivo. Importantly, the function of WASp-deficient NK cells can be restored in vitro after exposure to IL-2, but the mechanisms underlying this remain unknown. Using a WASp inhibitor as well as cells from patients with WAS, we have defined a direct effect of IL-2 signaling upon F-actin that is independent of WASp function. We found that IL-2 treatment of a patient with WAS enhanced the cytotoxicity of their NK cells and the F-actin content at the immunological synapses formed by their NK cells. IL-2 stimulation of NK cells in vitro activated the WASp homolog WAVE2, which was required for inducing WASp-independent NK cell function, but not for baseline activity. Thus, WAVE2 and WASp define parallel pathways to F-actin reorganization and function in human NK cells; although WAVE2 was not required for NK cell innate function, it was accessible through adaptive immunity via IL-2. These results demonstrate how overlapping cytoskeletal activities can utilize immunologically distinct pathways to achieve synonymous immune function. PMID:21383498

  18. Growing Actin Networks Form Lamellipodium and Lamellum by Self-Assembly

    PubMed Central

    Huber, Florian; Käs, Josef; Stuhrmann, Björn

    2008-01-01

    Many different cell types are able to migrate by formation of a thin actin-based cytoskeletal extension. Recently, it became evident that this extension consists of two distinct substructures, designated lamellipodium and lamellum, which differ significantly in their kinetic and kinematic properties as well as their biochemical composition. We developed a stochastic two-dimensional computer simulation that includes chemical reaction kinetics, G-actin diffusion, and filament transport to investigate the formation of growing actin networks in migrating cells. Model parameters were chosen based on experimental data or theoretical considerations. In this work, we demonstrate the system's ability to form two distinct networks by self-organization. We found a characteristic transition in mean filament length as well as a distinct maximum in depolymerization flux, both within the first 1–2 μm. The separation into two distinct substructures was found to be extremely robust with respect to initial conditions and variation of model parameters. We quantitatively investigated the complex interplay between ADF/cofilin and tropomyosin and propose a plausible mechanism that leads to spatial separation of, respectively, ADF/cofilin- or tropomyosin-dominated compartments. Tropomyosin was found to play an important role in stabilizing the lamellar actin network. Furthermore, the influence of filament severing and annealing on the network properties is explored, and simulation data are compared to existing experimental data. PMID:18708450

  19. A Gly65Val substitution in an actin, GhACT_LI1, disrupts cell polarity and membrane anchoring of F-actin resulting in dwarf, lintless Li1 cotton plants

    USDA-ARS?s Scientific Manuscript database

    Actin polymerizes to form the cytoskeleton and organize polar growth in all eukaryotic cells. Species with numerous actin genes are especially useful for the dissection of actin molecular function due to redundancy and neofunctionalization. Here, we investigated the role of a cotton (Gossypium hi...

  20. Dissolution curve comparisons through the F(2) parameter, a Bayesian extension of the f(2) statistic.

    PubMed

    Novick, Steven; Shen, Yan; Yang, Harry; Peterson, John; LeBlond, Dave; Altan, Stan

    2015-01-01

    Dissolution (or in vitro release) studies constitute an important aspect of pharmaceutical drug development. One important use of such studies is for justifying a biowaiver for post-approval changes which requires establishing equivalence between the new and old product. We propose a statistically rigorous modeling approach for this purpose based on the estimation of what we refer to as the F2 parameter, an extension of the commonly used f2 statistic. A Bayesian test procedure is proposed in relation to a set of composite hypotheses that capture the similarity requirement on the absolute mean differences between test and reference dissolution profiles. Several examples are provided to illustrate the application. Results of our simulation study comparing the performance of f2 and the proposed method show that our Bayesian approach is comparable to or in many cases superior to the f2 statistic as a decision rule. Further useful extensions of the method, such as the use of continuous-time dissolution modeling, are considered.

  1. Nuclear Functions of Actin

    PubMed Central

    Visa, Neus; Percipalle, Piergiorgio

    2010-01-01

    Actin participates in several essential processes in the cell nucleus. Even though the presence of actin in the nucleus was proposed more than 30 years ago, nuclear processes that require actin have been only recently identified. Actin is part of chromatin remodeling complexes; it is associated with the transcription machineries; it becomes incorporated into newly synthesized ribonucleoproteins; and it influences long-range chromatin organization. As in the cytoplasm, nuclear actin works in conjunction with different types of actin-binding proteins that regulate actin function and bridge interactions between actin and other nuclear components. PMID:20452941

  2. Effect of phosphorylation of myelin basic protein by MAPK on its interactions with actin and actin binding to a lipid membrane in vitro.

    PubMed

    Boggs, Joan M; Rangaraj, Godha; Gao, Wen; Heng, Yew-Meng

    2006-01-17

    Myelin basic protein (MBP) binds to negatively charged lipids on the cytosolic surface of oligodendrocyte membranes and is most likely responsible for adhesion of these surfaces in the multilayered myelin sheath. It can also polymerize actin, bundle F-actin filaments, and bind actin filaments to lipid bilayers through electrostatic interactions. MBP consists of a number of posttranslationally modified isomers of varying charge, some resulting from phosphorylation at several sites by different kinases, including mitogen-activated protein kinase (MAPK). Phosphorylation of MBP in oligodendrocytes occurs in response to various extracellular stimuli. Phosphorylation/dephosphorylation of MBP also occurs in the myelin sheath in response to electrical activity in the brain. Here we investigate the effect of phosphorylation of MBP on its interaction with actin in vitro by phosphorylating the most highly charged unmodified isomer, C1, at two sites with MAPK. Phosphorylation decreased the ability of MBP to polymerize actin and to bundle actin filaments but had no effect on the dissociation constant of the MBP-actin complex or on the ability of Ca2+-calmodulin to dissociate the complex. The most significant effect of phosphorylation on the MBP-actin complex was a dramatic reduction in its ability to bind to negatively charged lipid bilayers. The effect was much greater than that reported earlier for another charge isomer of MBP, C8, in which six arginines were deiminated to citrulline, resulting in a reduction of net positive charge of 6. These results indicate that although average electrostatic forces are the primary determinant of the interaction of MBP with actin, phosphorylation may have an additional effect due to a site-specific electrostatic effect or to a conformational change. Thus, phosphorylation of MBP, which occurs in response to various extracellular signals in both myelin and oligodendrocytes, attenuates the ability of MBP to polymerize and bundle actin and to

  3. A master equation approach to actin polymerization applied to endocytosis in yeast.

    PubMed

    Wang, Xinxin; Carlsson, Anders E

    2017-12-01

    We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin "nucleation promoting factors" (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs.

  4. A master equation approach to actin polymerization applied to endocytosis in yeast

    PubMed Central

    Wang, Xinxin

    2017-01-01

    We present a Master Equation approach to calculating polymerization dynamics and force generation by branched actin networks at membranes. The method treats the time evolution of the F-actin distribution in three dimensions, with branching included as a directional spreading term. It is validated by comparison with stochastic simulations of force generation by actin polymerization at obstacles coated with actin “nucleation promoting factors” (NPFs). The method is then used to treat the dynamics of actin polymerization and force generation during endocytosis in yeast, using a model in which NPFs form a ring around the endocytic site, centered by a spot of molecules attaching the actin network strongly to the membrane. We find that a spontaneous actin filament nucleation mechanism is required for adequate forces to drive the process, that partial inhibition of branching and polymerization lead to different characteristic responses, and that a limited range of polymerization-rate values provide effective invagination and obtain correct predictions for the effects of mutations in the active regions of the NPFs. PMID:29240771

  5. Actin polymerization in neutrophils from donors of peripheral blood stem cells: divergent effects of glycosylated and nonglycosylated recombinant human granulocyte colony-stimulating factor.

    PubMed

    Carulli, Giovanni; Mattii, Letizia; Azzarà, Antonio; Brizzi, Stefania; Galimberti, Sara; Zucca, Alessandra; Benedetti, Edoardo; Petrini, Mario

    2006-05-01

    Neutrophil functions can be modified by Recombinant human G-CSF (rhG-CSF) treatment, with divergent effects on phagocytosis, motility, bactericidal activity, and surface molecule expression. Neutrophil morphology is modified by treatment with filgrastim (the nonglycosylated form of rhG-CSF), while it is not affected by lenograstim (the glycosylated type of rhG-CSF). Little information is available about actin polymerization in neutrophils from subjects treated with the two types of rhG-CSF. In the current paper we evaluated two groups of donors of peripheral blood stem cells (PBSC) for allogeneic transplantation. Ten subjects were treated with filgrastim and 10 with lenograstim to mobilize PBSC; 15 blood donors were evaluated as a control group. Actin polymerization (both spontaneous and fMLP-stimulated) was studied by a flow cytometric assay. A microscopic fluorescent assay was also carried out to evaluate F-actin distribution in neutrophils. We found that filgrastim induced an increased F-actin content in resting neutrophils, along with morphologic evidence for increased actin polymerization distributed principally at the cell membrane and frequently polarized in focal areas; in addition, fMLP was not able to induce further actin polymerization. On the contrary, treatment with lenograstim was associated with F-actin content, distribution, and polymerization kinetics indistinguishable from those displayed by control neutrophils. Such experimental results show that filgrastim and lenograstim display divergent effects also on neutrophil actin polymerization and provide further explanation for previous experimental findings. 2006 Wiley-Liss, Inc.

  6. Jmy regulates oligodendrocyte differentiation via modulation of actin cytoskeleton dynamics.

    PubMed

    Azevedo, Maria M; Domingues, Helena S; Cordelières, Fabrice P; Sampaio, Paula; Seixas, Ana I; Relvas, João B

    2018-05-06

    During central nervous system development, oligodendrocytes form structurally and functionally distinct actin-rich protrusions that contact and wrap around axons to assemble myelin sheaths. Establishment of axonal contact is a limiting step in myelination that relies on the oligodendrocyte's ability to locally coordinate cytoskeletal rearrangements with myelin production, under the control of a transcriptional differentiation program. The molecules that provide fine-tuning of actin dynamics during oligodendrocyte differentiation and axon ensheathment remain largely unidentified. We performed transcriptomics analysis of soma and protrusion fractions from rat brain oligodendrocyte progenitors and found a subcellular enrichment of mRNAs in newly-formed protrusions. Approximately 30% of protrusion-enriched transcripts encode proteins related to cytoskeleton dynamics, including the junction mediating and regulatory protein Jmy, a multifunctional regulator of actin polymerization. Here, we show that expression of Jmy is upregulated during myelination and is required for the assembly of actin filaments and protrusion formation during oligodendrocyte differentiation. Quantitative morphodynamics analysis of live oligodendrocytes showed that differentiation is driven by a stereotypical actin network-dependent "cellular shaping" program. Disruption of actin dynamics via knockdown of Jmy leads to a program fail resulting in oligodendrocytes that do not acquire an arborized morphology and are less efficient in contacting neurites and forming myelin wraps in co-cultures with neurons. Our findings provide new mechanistic insight into the relationship between cell shape dynamics and differentiation in development. © 2018 Wiley Periodicals, Inc.

  7. Barrier role of actin filaments in regulated mucin secretion from airway goblet cells.

    PubMed

    Ehre, Camille; Rossi, Andrea H; Abdullah, Lubna H; De Pestel, Kathleen; Hill, Sandra; Olsen, John C; Davis, C William

    2005-01-01

    Airway goblet cells secrete mucin onto mucosal surfaces under the regulation of an apical, phospholipase C/G(q)-coupled P2Y(2) receptor. We tested whether cortical actin filaments negatively regulate exocytosis in goblet cells by forming a barrier between secretory granules and plasma membrane docking sites as postulated for other secretory cells. Immunostaining of human lung tissues and SPOC1 cells (an epithelial, mucin-secreting cell line) revealed an apical distribution of beta- and gamma-actin in ciliated and goblet cells. In goblet cells, actin appeared as a prominent subplasmalemmal sheet lying between granules and the apical membrane, and it disappeared from SPOC1 cells activated by purinergic agonist. Disruption of actin filaments with latrunculin A stimulated SPOC1 cell mucin secretion under basal and agonist-activated conditions, whereas stabilization with jasplakinolide or overexpression of beta- or gamma-actin conjugated to yellow fluorescent protein (YFP) inhibited secretion. Myristoylated alanine-rich C kinase substrate, a PKC-activated actin-plasma membrane tethering protein, was phosphorylated after agonist stimulation, suggesting a translocation to the cytosol. Scinderin (or adseverin), a Ca(2+)-activated actin filament severing and capping protein was cloned from human airway and SPOC1 cells, and synthetic peptides corresponding to its actin-binding domains inhibited mucin secretion. We conclude that actin filaments negatively regulate mucin secretion basally in airway goblet cells and are dynamically remodeled in agonist-stimulated cells to promote exocytosis.

  8. Novel actin crosslinker superfamily member identified by a two step degenerate PCR procedure.

    PubMed

    Byers, T J; Beggs, A H; McNally, E M; Kunkel, L M

    1995-07-24

    Actin-crosslinking proteins link F-actin into the bundles and networks that constitute the cytoskeleton. Dystrophin, beta-spectrin, alpha-actinin, ABP-120, ABP-280, and fimbrin share homologous actin-binding domains and comprise an actin crosslinker superfamily. We have identified a novel member of this superfamily (ACF7) using a degenerate primer-mediated PCR strategy that was optimized to resolve less-abundant superfamily sequences. The ACF7 gene is on human chromosome 1 and hybridizes to high molecular weight bands on northern blots. Sequence comparisons argue that ACF7 does not fit into one of the existing families, but represents a new class within the superfamily.

  9. MicroFilament Analyzer identifies actin network organizations in epidermal cells of Arabidopsis thaliana roots

    PubMed Central

    Jacques, Eveline; Lewandowski, Michal; Buytaert, Jan; Fierens, Yves; Verbelen, Jean-Pierre; Vissenberg, Kris

    2013-01-01

    The plant cytoskeleton plays a crucial role in the cells’ growth and development during different developmental stages and it undergoes many rearrangements. In order to describe the arrangements of the F-actin cytoskeleton in root epidermal cells of Arabidopsis thaliana, the recently developed software MicroFilament Analyzer (MFA) was exploited. This software enables high-throughput identification and quantification of the orientation of filamentous structures on digital images in a highly standardized and fast way. Using confocal microscopy and transgenic GFP-FABD2-GFP plants the actin cytoskeleton was visualized in the root epidermis. MFA analysis revealed that during the early stages of cell development F-actin is organized in a mainly random pattern. As the cells grow, they preferentially adopt a longitudinal organization, a pattern that is also preserved in the largest cells. In the evolution from young to old cells, an approximately even distribution of transverse, oblique or combined orientations is always present besides the switch from random to a longitudinal oriented actin cytoskeleton. PMID:23656865

  10. How actin network dynamics control the onset of actin-based motility

    PubMed Central

    Kawska, Agnieszka; Carvalho, Kévin; Manzi, John; Boujemaa-Paterski, Rajaa; Blanchoin, Laurent; Martiel, Jean-Louis; Sykes, Cécile

    2012-01-01

    Cells use their dynamic actin network to control their mechanics and motility. These networks are made of branched actin filaments generated by the Arp2/3 complex. Here we study under which conditions the microscopic organization of branched actin networks builds up a sufficient stress to trigger sustained motility. In our experimental setup, dynamic actin networks or “gels” are grown on a hard bead in a controlled minimal protein system containing actin monomers, profilin, the Arp2/3 complex and capping protein. We vary protein concentrations and follow experimentally and through simulations the shape and mechanical properties of the actin gel growing around beads. Actin gel morphology is controlled by elementary steps including “primer” contact, growth of the network, entanglement, mechanical interaction and force production. We show that varying the biochemical orchestration of these steps can lead to the loss of network cohesion and the lack of effective force production. We propose a predictive phase diagram of actin gel fate as a function of protein concentrations. This work unveils how, in growing actin networks, a tight biochemical and physical coupling smoothens initial primer-caused heterogeneities and governs force buildup and cell motility. PMID:22908255

  11. Pollen specific expression of maize genes encoding actin depolymerizing factor-like proteins.

    PubMed Central

    Lopez, I; Anthony, R G; Maciver, S K; Jiang, C J; Khan, S; Weeds, A G; Hussey, P J

    1996-01-01

    In pollen development, a dramatic reorganization of the actin cytoskeleton takes place during the passage of the pollen grain into dormancy and on activation of pollen tube growth. A role for actin-binding proteins is implicated and we report here the identification of a small gene family in maize that encodes actin depolymerizing factor (ADF)-like proteins. The ADF group of proteins are believed to control actin polymerization and depolymerization in response to both intracellular and extracellular signals. Two of the maize genes ZmABP1 and ZmABP2 are expressed specifically in pollen and germinating pollen suggesting that the protein products may be involved in pollen actin reorganization. A third gene, ZmABP3, encodes a protein only 56% and 58% identical to ZmABP1 and ZmABP2, respectively, and its expression is suppressed in pollen and germinated pollen. The fundamental biochemical characteristics of the ZmABP proteins has been elucidated using bacterially expressed ZmABP3 protein. This has the ability to bind monomeric actin (G-actin) and filamentous actin (F-actin). Moreover, it decreases the viscosity of polymerized actin solutions consistent with an ability to depolymerize filaments. These biochemical characteristics, taken together with the sequence comparisons, support the inclusion of the ZmABP proteins in the ADF group. Images Fig. 2 Fig. 3 Fig. 4 Fig. 5 PMID:8693008

  12. Microheterogeneity of actin gels formed under controlled linear shear.

    PubMed

    Cortese, J D; Frieden, C

    1988-10-01

    The diffusion coefficients and fluorescence polarization properties of actin subjected to a known shear have been determined both during and after polymerization, using a modification of a cone-plate Wells-Brookfield rheometer that allows monitoring of samples with an epifluorescence microscope. Fluorescence polarization and fluorescence photobleaching recovery experiments using rhodamine-labeled actin as a tracer showed that under conditions of low shear (shear rates of 0.05 s-1), a spatial heterogeneity of polymerized actin was observed with respect to fluorescence intensity and the diffusion coefficients with actin mobility becoming quite variable in different regions of the sample. In addition, complex changes in fluorescence polarization were noted after stopping the shear. Actin filaments of controlled length were obtained using plasma gelsolin (gelsolin/actin molar ratios of 1:50 to 1:300). At ratios of 1:50, neither spatial heterogeneity nor changes in polarization were observed on subjecting the polymerized actin to shear. At ratios of approximately 1:100, a decrease on the intensity of fluorescence polarization occurs on stopping the shear. Longer filaments exhibit spatial micro-heterogeneity and complex changes in fluorescence polarization. In addition, at ratios of 1:100 or 1:300, the diffusion coefficient decreases as the total applied shear increased. This behavior is interpreted as bundling of filaments aligned under shear. We also find that the F-actin translational diffusion coefficients decrease as the total applied shear increases (shear rates between 0.05 and 12.66 s-1), as expected for a cumulative process. When chicken gizzard filamin was added to gelsolin-actin filaments (at filamin/actin molar ratios of 1:300 to 1:10), a similar decrease in the diffusion coefficients was observed for unsheared samples. Spatial microheterogeneity might be related to the effects of the shear field in the alignment of filaments, and the balance between a three

  13. A Legionella Effector Disrupts Host Cytoskeletal Structure by Cleaving Actin

    DOE PAGES

    Liu, Yao; Zhu, Wenhan; Tan, Yunhao; ...

    2017-01-27

    Legionella pneumophila, the etiological agent of Legionnaires' disease, replicates intracellularly in protozoan and human hosts. Successful colonization and replication of this pathogen in host cells requires the Dot/Icm type IVB secretion system, which translocates approximately 300 effector proteins into the host cell to modulate various cellular processes. In this study, we identified RavK as a Dot/Icm substrate that targets the host cytoskeleton and reduces actin filament abundance in mammalian cells upon ectopic expression. RavK harbors an H 95E XXH 99 motif associated with diverse metalloproteases, which is essential for the inhibition of yeast growth and for the induction of cellmore » rounding in HEK293T cells. We demonstrate that the actin protein itself is the cellular target of RavK and that this effector cleaves actin at a site between residues Thr351 and Phe352. Importantly, RavK-mediated actin cleavage also occurs during L. pneumophila infection. Cleavage by RavK abolishes the ability of actin to form polymers. Furthermore, an F352A mutation renders actin resistant to RavK-mediated cleavage; expression of the mutant in mammalian cells suppresses the cell rounding phenotype caused by RavK, further establishing that actin is the physiological substrate of RavK. Furthermore, L. pneumophila exploits components of the host cytoskeleton by multiple effectors with distinct mechanisms, highlighting the importance of modulating cellular processes governed by the actin cytoskeleton in the intracellular life cycle of this pathogen.« less

  14. Intracellular calcium rise is not a necessary step for the stimulated actin polymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yassin, R.

    1986-03-01

    Stimulation of rabbit peritoneal neutrophils by many chemotactic (formyl Methionyl-Leucyl-Phenylalanine (fMLP), Leukotriene B/sub 4/ (LTB/sub 4/)) and non-chemotactic (phorbol 12-myristate, 13-acetate (PMA), platelet activating factor (PAF), and the calcium ionophore A23187) factors produces rapid and dose dependent increases in the amount of actin associated with the cytoskeleton. The stimulated increase in cytoskeletal actin does not appear to require a rise in the intracellular concentration of free calcium. The increase in cytoskeletal actin produced by A23187 is transient and does not depend on the presence of calcium in the suspending medium. In the presence of extracellular calcium, the effect of themore » ionophore is biphasic with respect to concentration. The increases in actin association with cytoskeletal produced by fMLP, LTB/sub 4/, and A23187 but not by PMA, are inhibited by hyperosmolarity and pertussis toxin pretreatment. On the other hand, the addition of hyperosmolarity or pertussis toxin has small effect on the rise in the intracellular calcium produced by A23187. The results presented here suggest that an increase in the intracellular concentration of free calcium is not necessary for the stimulated increases in cytoskeletal actin.« less

  15. Direct Transmembrane Interaction between Actin and the Pore-Competent, Cholesterol-Dependent Cytolysin Pneumolysin

    PubMed Central

    Hupp, Sabrina; Förtsch, Christina; Wippel, Carolin; Ma, Jiangtao; Mitchell, Timothy J.; Iliev, Asparouh I.

    2013-01-01

    The eukaryotic actin cytoskeleton is an evolutionarily well-established pathogen target, as a large number of bacterial factors disturb its dynamics to alter the function of the host cells. These pathogenic factors modulate or mimic actin effector proteins or they modify actin directly, leading to an imbalance of the precisely regulated actin turnover. Here, we show that the pore-forming, cholesterol-dependent cytolysin pneumolysin (PLY), a major neurotoxin of Streptococcus pneumoniae, has the capacity to bind actin directly and to enhance actin polymerisation in vitro. In cells, the toxin co-localised with F-actin shortly after exposure, and this direct interaction was verified by Förster resonance energy transfer. PLY was capable of exerting its effect on actin through the lipid bilayer of giant unilamellar vesicles, but only when its pore competence was preserved. The dissociation constant of G-actin binding to PLY in a biochemical environment was 170–190 nM, which is indicative of a high-affinity interaction, comparable to the affinity of other intracellular actin-binding factors. Our results demonstrate the first example of a direct interaction of a pore-forming toxin with cytoskeletal components, suggesting that the cross talk between pore-forming cytolysins and cells is more complex than previously thought. PMID:23219469

  16. Srv2/CAP is required for polarized actin cable assembly and patch internalization during clathrin-mediated endocytosis.

    PubMed

    Toshima, Junko Y; Horikomi, Chika; Okada, Asuka; Hatori, Makiko N; Nagano, Makoto; Masuda, Atsushi; Yamamoto, Wataru; Siekhaus, Daria Elisabeth; Toshima, Jiro

    2016-01-15

    The dynamic assembly and disassembly of actin filaments is essential for the formation and transport of vesicles during endocytosis. In yeast, two types of actin structures, namely cortical patches and cytoplasmic cables, play a direct role in endocytosis, but how their interaction is regulated remains unclear. Here, we show that Srv2/CAP, an evolutionarily conserved actin regulator, is required for efficient endocytosis owing to its role in the formation of the actin patches that aid initial vesicle invagination and of the actin cables that these move along. Deletion of the SRV2 gene resulted in the appearance of aberrant fragmented actin cables that frequently moved past actin patches, the sites of endocytosis. We find that the C-terminal CARP domain of Srv2p is vitally important for the proper assembly of actin patches and cables; we also demonstrate that the N-terminal helical folded domain of Srv2 is required for its localization to actin patches, specifically to the ADP-actin rich region through an interaction with cofilin. These results demonstrate the in vivo roles of Srv2p in the regulation of the actin cytoskeleton during clathrin-mediated endocytosis. © 2016. Published by The Company of Biologists Ltd.

  17. The assembly of MreB, a prokaryotic homolog of actin.

    PubMed

    Esue, Osigwe; Cordero, Maria; Wirtz, Denis; Tseng, Yiider

    2005-01-28

    MreB, a major component of the bacterial cytoskeleton, exhibits high structural homology to its eukaryotic counterpart actin. Live cell microscopy studies suggest that MreB molecules organize into large filamentous spirals that support the cell membrane and play a key shape-determining function. However, the basic properties of MreB filament assembly remain unknown. Here, we studied the assembly of Thermotoga maritima MreB triggered by ATP in vitro and compared it to the well-studied assembly of actin. These studies show that MreB filament ultrastructure and polymerization depend crucially on temperature as well as the ions present on solution. At the optimal growth temperature of T. maritima, MreB assembly proceeded much faster than that of actin, without nucleation (or nucleation is highly favorable and fast) and with little or no contribution from filament end-to-end annealing. MreB exhibited rates of ATP hydrolysis and phosphate release similar to that of F-actin, however, with a critical concentration of approximately 3 nm, which is approximately 100-fold lower than that of actin. Furthermore, MreB assembled into filamentous bundles that have the ability to spontaneously form ring-like structures without auxiliary proteins. These findings suggest that despite high structural homology, MreB and actin display significantly different assembly properties.

  18. Actin turnover maintains actin filament homeostasis during cytokinetic ring contraction

    PubMed Central

    Palani, Saravanan; Sommese, Ruth; Kamnev, Anton; Hatano, Tomoyuki; Sivaramakrishnan, Sivaraj

    2017-01-01

    Cytokinesis in many eukaryotes involves a tension-generating actomyosin-based contractile ring. Many components of actomyosin rings turn over during contraction, although the significance of this turnover has remained enigmatic. Here, using Schizosaccharomyces japonicus, we investigate the role of turnover of actin and myosin II in its contraction. Actomyosin ring components self-organize into ∼1-µm-spaced clusters instead of undergoing full-ring contraction in the absence of continuous actin polymerization. This effect is reversed when actin filaments are stabilized. We tested the idea that the function of turnover is to ensure actin filament homeostasis in a synthetic system, in which we abolished turnover by fixing rings in cell ghosts with formaldehyde. We found that these rings contracted fully upon exogenous addition of a vertebrate myosin. We conclude that actin turnover is required to maintain actin filament homeostasis during ring contraction and that the requirement for turnover can be bypassed if homeostasis is achieved artificially. PMID:28655757

  19. Myrip couples the capture of secretory granules by the actin-rich cell cortex and their attachment to the plasma membrane.

    PubMed

    Huet, Sébastien; Fanget, Isabelle; Jouannot, Ouardane; Meireles, Patricia; Zeiske, Tim; Larochette, Nathanaël; Darchen, François; Desnos, Claire

    2012-02-15

    Exocytosis of secretory granules (SGs) requires their delivery to the actin-rich cell cortex followed by their attachment to the plasma membrane (PM). How these reactions are executed and coordinated is still unclear. Myrip, which is also known as Slac-2c, binds to the SG-associated GTPase Rab27 and is thought to promote the delivery of SGs to the PM by recruiting the molecular motor myosin Va. Myrip also interacts with actin and the exocyst complex, suggesting that it may exert multiple roles in the secretory process. By combining total internal reflection fluorescence microscopy, single-particle tracking, a photoconversion-based assay, and mathematical modeling, we show that, in human enterochromaffin cells, Myrip (1) inhibits a class of SG motion characterized by fast and directed movement, suggesting that it facilitates the dissociation of SGs from microtubules; (2) enhances their motion toward the PM and the probability of SG attachment to the PM; and (3) increases the characteristic time of immobilization at the PM, indicating that it is a component of the molecular machinery that tether SGs to the PM. Remarkably, while the first two effects of Myrip depend on its ability to recruit myosin Va on SGs, the third is myosin Va independent but relies on the C-terminal domain of Myrip. We conclude that Myrip couples the retention of SGs in the cell cortex, their transport to the PM, and their attachment to the PM, and thus promotes secretion. These three steps of the secretory process are thus intimately coordinated.

  20. The F-BAR protein Hof1 tunes formin activity to sculpt actin cables during polarized growth

    PubMed Central

    Graziano, Brian R.; Yu, Hoi-Ying E.; Alioto, Salvatore L.; Eskin, Julian A.; Ydenberg, Casey A.; Waterman, David P.; Garabedian, Mikael; Goode, Bruce L.

    2014-01-01

    Asymmetric cell growth and division rely on polarized actin cytoskeleton remodeling events, the regulation of which is poorly understood. In budding yeast, formins stimulate the assembly of an organized network of actin cables that direct polarized secretion. Here we show that the Fer/Cip4 homology–Bin amphiphysin Rvs protein Hof1, which has known roles in cytokinesis, also functions during polarized growth by directly controlling the activities of the formin Bnr1. A mutant lacking the C-terminal half of Hof1 displays misoriented and architecturally altered cables, along with impaired secretory vesicle traffic. In vitro, Hof1 inhibits the actin nucleation and elongation activities of Bnr1 without displacing the formin from filament ends. These effects depend on the Src homology 3 domain of Hof1, the formin homology 1 (FH1) domain of Bnr1, and Hof1 dimerization, suggesting a mechanism by which Hof1 “restrains” the otherwise flexible FH1-FH2 apparatus. In vivo, loss of inhibition does not alter actin levels in cables but, instead, cable shape and functionality. Thus Hof1 tunes formins to sculpt the actin cable network. PMID:24719456

  1. Actin Cytoskeleton-Based Plant Synapse as Gravitransducer in the Transition Zone of the Root Apex

    NASA Astrophysics Data System (ADS)

    Baluska, Frantisek; Barlow, Peter; Volkmann, Dieter; Mancuso, Stefano

    The actin cytoskeleton was originally proposed to act as the signal transducer in the plant gravity sensory-motoric circuit. Surprisingly, however, several studies have documented that roots perfom gravisensing and gravitropism more effectively if exposed to diverse anti-F-actin drugs. Our study, using decapped maize root apices, has revealed that depolymerization of F-actin stimulates gravity perception in cells of the transition zone where root gravitropism is initiated (Mancuso et al. 2006). It has been proposed (Balǔka et al. 2005, 2009a) that s the non-growing adhesive end-poles, enriched with F-actin and myosin VIII, and active in endocytic recycling of both PIN transporters and cell wall pectins cross-linked with calcium and boron, act as the gravisensing domains, and that these impinge directly upon the root motoric responses via control of polar auxin transport. This model suggests that mechanical asymmetry at these plant synapses determines vectorial gravity-controlled auxin transport. Due to the gravity-imposed mechanical load upon the protoplast, a tensional stress is also imposed upon the plasma membrane of the physically lower synaptic cell pole. This stress is then relieved by shifting the endocytosis-exocytosis balance towards exocytosis (Balǔka et al. s 2005, 2009a,b). This `Synaptic Auxin Secretion' hypothesis does not conflict with the `Starch Statolith' hypothesis, which is based on amyloplast sedimentation. In fact, the `Synaptic Auxin Secretion' hypothesis has many elements which allow its unification with the Starch-Statolith model (Balǔka et al. 2005, 2009a,b). s References Balǔka F, Volkmann D, Menzel D (2005) Plant synapses: actin-based adhesion s domains for cell-to-cell communication. Trends Plant Sci 10: 106-111 Balǔka F, Schlicht M, s Wan Y-L, Burbach C, Volkmann D (2009a) Intracellular domains and polarity in root apices: from synaptic domains to plant neurobiology. Nova Acta Leopoldina 96: 103-122 Balǔka s F, Mancuso S

  2. WAVE binds Ena/VASP for enhanced Arp2/3 complex–based actin assembly

    PubMed Central

    Havrylenko, Svitlana; Noguera, Philippe; Abou-Ghali, Majdouline; Manzi, John; Faqir, Fahima; Lamora, Audrey; Guérin, Christophe; Blanchoin, Laurent; Plastino, Julie

    2015-01-01

    The WAVE complex is the main activator of the Arp2/3 complex for actin filament nucleation and assembly in the lamellipodia of moving cells. Other important players in lamellipodial protrusion are Ena/VASP proteins, which enhance actin filament elongation. Here we examine the molecular coordination between the nucleating activity of the Arp2/3 complex and the elongating activity of Ena/VASP proteins for the formation of actin networks. Using an in vitro bead motility assay, we show that WAVE directly binds VASP, resulting in an increase in Arp2/3 complex–based actin assembly. We show that this interaction is important in vivo as well, for the formation of lamellipodia during the ventral enclosure event of Caenorhabditis elegans embryogenesis. Ena/VASP's ability to bind F-actin and profilin-complexed G-actin are important for its effect, whereas Ena/VASP tetramerization is not necessary. Our data are consistent with the idea that binding of Ena/VASP to WAVE potentiates Arp2/3 complex activity and lamellipodial actin assembly. PMID:25355952

  3. Phosphoinositide-specific phospholipase C in oat roots: association with the actin cytoskeleton.

    PubMed

    Huang, Chiung-Hua; Crain, Richard C

    2009-10-01

    Phosphoinositide-specific phospholipase C (PI-PLC) activities are involved in mediating plant cell responses to environmental stimuli. Two variants of PI-PLC have been partially purified from the roots of oat seedlings; one cytosolic and one particulate. Although the cytosolic enzyme was significantly purified, the activity still co-migrated with a number of other proteins on heparin HPLC and also on size-exclusion chromatography. The partially purified PI-PLC was tested by Western blotting, and we found that actin and actin-binding proteins, profilin and tropomyosin, co-purified with cytosolic phospholipase C. After a non-ionic detergent (Triton X-100) treatment, PI-PLC activities still remained with the actin cytoskeleton. The effects of phalloidin and F-buffer confirmed this association; these conditions, which favor actin polymerization, decreased the release of PI-PLC from the cytoskeleton. The treatments of latrunculin and G-buffer, the conditions that favor actin depolymerization, increased the release of PI-PLC from the cytoskeleton. These results suggest that oat PI-PLC associates with the actin cytoskeleton.

  4. Human metapneumovirus Induces Reorganization of the Actin Cytoskeleton for Direct Cell-to-Cell Spread

    PubMed Central

    El Najjar, Farah; Cifuentes-Muñoz, Nicolás; Zhu, Haining; Buchholz, Ursula J.; Moncman, Carole L.; Dutch, Rebecca Ellis

    2016-01-01

    Paramyxovirus spread generally involves assembly of individual viral particles which then infect target cells. We show that infection of human bronchial airway cells with human metapneumovirus (HMPV), a recently identified paramyxovirus which causes significant respiratory disease, results in formation of intercellular extensions and extensive networks of branched cell-associated filaments. Formation of these structures is dependent on actin, but not microtubule, polymerization. Interestingly, using a co-culture assay we show that conditions which block regular infection by HMPV particles, including addition of neutralizing antibodies or removal of cell surface heparan sulfate, did not prevent viral spread from infected to new target cells. In contrast, inhibition of actin polymerization or alterations to Rho GTPase signaling pathways significantly decreased cell-to-cell spread. Furthermore, viral proteins and viral RNA were detected in intercellular extensions, suggesting direct transfer of viral genetic material to new target cells. While roles for paramyxovirus matrix and fusion proteins in membrane deformation have been previously demonstrated, we show that the HMPV phosphoprotein extensively co-localized with actin and induced formation of cellular extensions when transiently expressed, supporting a new model in which a paramyxovirus phosphoprotein is a key player in assembly and spread. Our results reveal a novel mechanism for HMPV direct cell-to-cell spread and provide insights into dissemination of respiratory viruses. PMID:27683250

  5. Actin cytoskeleton of chemotactic amoebae operates close to the onset of oscillations

    PubMed Central

    Westendorf, Christian; Negrete, Jose; Bae, Albert J.; Sandmann, Rabea; Bodenschatz, Eberhard; Beta, Carsten

    2013-01-01

    The rapid reorganization of the actin cytoskeleton in response to external stimuli is an essential property of many motile eukaryotic cells. Here, we report evidence that the actin machinery of chemotactic Dictyostelium cells operates close to an oscillatory instability. When averaging the actin response of many cells to a short pulse of the chemoattractant cAMP, we observed a transient accumulation of cortical actin reminiscent of a damped oscillation. At the single-cell level, however, the response dynamics ranged from short, strongly damped responses to slowly decaying, weakly damped oscillations. Furthermore, in a small subpopulation, we observed self-sustained oscillations in the cortical F-actin concentration. To substantiate that an oscillatory mechanism governs the actin dynamics in these cells, we systematically exposed a large number of cells to periodic pulse trains of different frequencies. Our results indicate a resonance peak at a stimulation period of around 20 s. We propose a delayed feedback model that explains our experimental findings based on a time-delay in the regulatory network of the actin system. To test the model, we performed stimulation experiments with cells that express GFP-tagged fusion proteins of Coronin and actin-interacting protein 1, as well as knockout mutants that lack Coronin and actin-interacting protein 1. These actin-binding proteins enhance the disassembly of actin filaments and thus allow us to estimate the delay time in the regulatory feedback loop. Based on this independent estimate, our model predicts an intrinsic period of 20 s, which agrees with the resonance observed in our periodic stimulation experiments. PMID:23431176

  6. Triptolide disrupts the actin-based Sertoli-germ cells adherens junctions by inhibiting Rho GTPases expression

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xiang; Zhao, Fang

    Triptolide (TP), derived from the medicinal plant Triterygium wilfordii Hook. f. (TWHF), is a diterpene triepoxide with variety biological and pharmacological activities. However, TP has been restricted in clinical application due to its narrow therapeutic window especially in reproductive system. During spermatogenesis, Sertoli cell cytoskeleton plays an essential role in facilitating germ cell movement and cell-cell actin-based adherens junctions (AJ). At Sertoli cell-spermatid interface, the anchoring device is a kind of AJ, known as ectoplasmic specializations (ES). In this study, we demonstrate that β-actin, an important component of cytoskeleton, has been significantly down-regulated after TP treatment. TP can inhibit themore » expression of Rho GTPase such as, RhoA, RhoB, Cdc42 and Rac1. Downstream of Rho GTPase, Rho-associated protein kinase (ROCKs) gene expressions were also suppressed by TP. F-actin immunofluorescence proved that TP disrupts Sertoli cells cytoskeleton network. As a result of β-actin down-regulation, TP treatment increased expression of testin, which indicating ES has been disassembled. In summary, this report illustrates that TP induces cytoskeleton dysfunction and disrupts cell-cell adherens junctions via inhibition of Rho GTPases. - Highlights: • Triptolide induced the disruption of Sertoli-germ cell adherens junction. • Rho GTPases expression and actin dynamics have been suppressed by triptolide. • Actin-based adherens junction is a potential antifertility target of triptolide. • Rho-Rock is involved in the regulation of actin dynamics.« less

  7. Actin microfilaments in presumptive statocytes of root caps and coleoptiles

    NASA Technical Reports Server (NTRS)

    White, R. G.; Sack, F. D.

    1990-01-01

    Rhodamine-phalloidin was used to determine the distribution of actin microfilament bundles (mfb) in cells thought to be the site of gravity perception (statocytes) in coleoptiles and root caps of Zea mays and Hordeum vulgare. In coleoptile cells, amyloplasts were usually observed in close proximity to thick mfb, which often appeared to divide into finer mfb adjacent to individual amyloplasts. The nucleus in these cells was surrounded by an extensive network of mfb, which were connected to thicker transvacuolar mfb. Columella cells of the root cap contained an extensive reticulum of fine mfb throughout the protoplast, but lacked the much thicker mfb seen in coleoptile cells. The distribution and extent of mfb observed in fixed cells correlates with patterns of streaming and amyloplast movement seen in living cells. A possible role for actin mfb in the perception of gravity is discussed.

  8. Secretagogue stimulation of neurosecretory cells elicits filopodial extensions uncovering new functional release sites.

    PubMed

    Papadopulos, Andreas; Martin, Sally; Tomatis, Vanesa M; Gormal, Rachel S; Meunier, Frederic A

    2013-12-04

    Regulated exocytosis in neurosecretory cells relies on the timely fusion of secretory granules (SGs) with the plasma membrane. Secretagogue stimulation leads to an enlargement of the cell footprint (surface area in contact with the coverslip), an effect previously attributed to exocytic fusion of SGs with the plasma membrane. Using total internal reflection fluorescence microscopy, we reveal the formation of filopodia-like structures in bovine chromaffin and PC12 cells driving the footprint expansion, suggesting the involvement of cortical actin network remodeling in this process. Using exocytosis-incompetent PC12 cells, we demonstrate that footprint enlargement is largely independent of SG fusion, suggesting that vesicular exocytic fusion plays a relatively minor role in filopodial expansion. The footprint periphery, including filopodia, undergoes extensive F-actin remodeling, an effect abolished by the actomyosin inhibitors cytochalasin D and blebbistatin. Imaging of both Lifeact-GFP and the SG marker protein neuropeptide Y-mCherry reveals that SGs actively translocate along newly forming actin tracks before undergoing fusion. Together, these data demonstrate that neurosecretory cells regulate the number of SGs undergoing exocytosis during sustained stimulation by controlling vesicular mobilization and translocation to the plasma membrane through actin remodeling. Such remodeling facilitates the de novo formation of fusion sites.

  9. Microscopy basics and the study of actin-actin-binding protein interactions.

    PubMed

    Thomasson, Maggie S; Macnaughtan, Megan A

    2013-12-15

    Actin is a multifunctional eukaryotic protein with a globular monomer form that polymerizes into a thin, linear microfilament in cells. Through interactions with various actin-binding proteins (ABPs), actin plays an active role in many cellular processes, such as cell motility and structure. Microscopy techniques are powerful tools for determining the role and mechanism of actin-ABP interactions in these processes. In this article, we describe the basic concepts of fluorescent speckle microscopy, total internal reflection fluorescence microscopy, atomic force microscopy, and cryoelectron microscopy and review recent studies that utilize these techniques to visualize the binding of actin with ABPs. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Rapid Glucose Depletion Immobilizes Active Myosin-V on Stabilized Actin Cables

    PubMed Central

    Xu, Li; Bretscher, Anthony

    2014-01-01

    Summary Polarization of eukaryotic cells requires organelles and protein complexes to be transported to their proper destinations along the cytoskeleton [1]. When nutrients are abundant, budding yeast grows rapidly transporting secretory vesicles for localized growth and actively segregating organelles [2, 3]. This is mediated by myosin-Vs transporting cargos along F-actin bundles known as actin cables [4]. Actin cables are dynamic structures regulated by assembly, stabilization and disassembly [5]. Polarized growth and actin filament dynamics consume energy. For most organisms, glucose is the preferred energy source and generally represses alternative carbon source usage [6]. Thus upon abrupt glucose depletion, yeast shuts down pathways consuming large amounts of energy, including the vacuolar-ATPase [7, 8], translation [9] and phosphoinositide metabolism [10]. Here we show that glucose withdrawal rapidly (<1 min) depletes ATP levels and the yeast myosin V, Myo2, responds by relocalizing to actin cables, making it the fastest response documented. Myo2 immobilized on cables releases its secretory cargo, defining a new rigor-like state of a myosin-V in vivo. Only actively transporting Myo2 can be converted to the rigor-like state. Glucose depletion has differential effects on the actin cytoskeleton resulting in disassembly of actin patches with concomitant inhibition of endocytosis, and strong stabilization of actin cables, thereby revealing a selective and previously unappreciated ATP requirement for actin cable disassembly. A similar response is seen in HeLa cells to ATP depletion. These findings reveal a new fast-acting energy conservation strategy halting growth by immobilizing myosin-V in a newly described state on selectively stabilized actin cables. PMID:25308080

  11. Molecular architecture of the Spire-actin nucleus and its implication for actin filament assembly.

    PubMed

    Sitar, Tomasz; Gallinger, Julia; Ducka, Anna M; Ikonen, Teemu P; Wohlhoefler, Michael; Schmoller, Kurt M; Bausch, Andreas R; Joel, Peteranne; Trybus, Kathleen M; Noegel, Angelika A; Schleicher, Michael; Huber, Robert; Holak, Tad A

    2011-12-06

    The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire-actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire-actin complexes in solution assume a unique, longitudinal-like shape, in which Wiskott-Aldrich syndrome protein homology 2 domains (WH2), in an extended configuration, line up actins along the long axis of the core of the Spire-actin particle. In the complex, the kinase noncatalytic C-lobe domain is positioned at the side of the first N-terminal Spire-actin module. In addition, we find that preformed, isolated Spire-actin complexes are very efficient nucleators of polymerization and afterward dissociate from the growing filament. However, under certain conditions, all Spire constructs--even a single WH2 repeat--sequester actin and disrupt existing filaments. This molecular and structural mechanism of actin polymerization by Spire should apply to other actin-binding proteins that contain WH2 domains in tandem.

  12. Molecular architecture of the Spire–actin nucleus and its implication for actin filament assembly

    PubMed Central

    Sitar, Tomasz; Gallinger, Julia; Ducka, Anna M.; Ikonen, Teemu P.; Wohlhoefler, Michael; Schmoller, Kurt M.; Bausch, Andreas R.; Joel, Peteranne; Trybus, Kathleen M.; Noegel, Angelika A.; Schleicher, Michael; Huber, Robert; Holak, Tad A.

    2011-01-01

    The Spire protein is a multifunctional regulator of actin assembly. We studied the structures and properties of Spire–actin complexes by X-ray scattering, X-ray crystallography, total internal reflection fluorescence microscopy, and actin polymerization assays. We show that Spire–actin complexes in solution assume a unique, longitudinal-like shape, in which Wiskott–Aldrich syndrome protein homology 2 domains (WH2), in an extended configuration, line up actins along the long axis of the core of the Spire–actin particle. In the complex, the kinase noncatalytic C-lobe domain is positioned at the side of the first N-terminal Spire–actin module. In addition, we find that preformed, isolated Spire–actin complexes are very efficient nucleators of polymerization and afterward dissociate from the growing filament. However, under certain conditions, all Spire constructs—even a single WH2 repeat—sequester actin and disrupt existing filaments. This molecular and structural mechanism of actin polymerization by Spire should apply to other actin-binding proteins that contain WH2 domains in tandem. PMID:22106272

  13. HIP1 and HIP12 display differential binding to F-actin, AP2, and clathrin. Identification of a novel interaction with clathrin light chain.

    PubMed

    Legendre-Guillemin, Valerie; Metzler, Martina; Charbonneau, Martine; Gan, Lu; Chopra, Vikramjit; Philie, Jacynthe; Hayden, Michael R; McPherson, Peter S

    2002-05-31

    Huntingtin-interacting protein 1 (HIP1) and HIP12 are orthologues of Sla2p, a yeast protein with essential functions in endocytosis and regulation of the actin cytoskeleton. We now report that HIP1 and HIP12 are major components of the clathrin coat that interact but differ in their ability to bind clathrin and the clathrin adaptor AP2. HIP1 contains a clathrin-box and AP2 consensus-binding sites that display high affinity binding to the terminal domain of the clathrin heavy chain and the ear domain of the AP2 alpha subunit, respectively. These consensus sites are poorly conserved in HIP12 and correspondingly, HIP12 does not bind to AP2 nor does it demonstrate high affinity clathrin binding. Moreover, HIP12 co-sediments with F-actin in contrast to HIP1, which exhibits no interaction with actin in vitro. Despite these differences, both proteins efficiently stimulate clathrin assembly through their central helical domain. Interestingly, in both HIP1 and HIP12, this domain binds directly to the clathrin light chain. Our data suggest that HIP1 and HIP12 play related yet distinct functional roles in clathrin-mediated endocytosis.

  14. Actin dynamics regulate immediate PAR-2-dependent responses to acute epidermal permeability barrier abrogation.

    PubMed

    Roelandt, Truus; Heughebaert, Carol; Verween, Gunther; Giddelo, Christina; Verbeken, Gilbert; Pirnay, Jean-Paul; Devos, Daniel; Crumrine, Debra; Roseeuw, Diane; Elias, Peter M; Hachem, Jean-Pierre

    2011-02-01

    Lamellar body (LB) secretion and terminal differentiation of stratum granulosum (SG) cells are signaled by both protease activated receptor-2 (PAR-2) and caveolin-1 (cav-1). To address the early dynamics of LB secretion, we examined cytoskeletal remodeling of keratinocytes in 3 mouse models following acute barrier abrogation: hairless mice, PAR-2 knockout (-/-) and cav-1 -/-. Under basal conditions, globular (G)-actin accumulates in SG cells cytosol, while filamentous (F)-actin is restricted to peri-membrane domains. Barrier abrogation induces the apical movement of F-actin and the retreat of the SG-G-actin front, paralleled by upstream cytoskeletal kinases activation. This phenomenon was both enhanced by PAR-2 agonist, and inhibited by cytochalasin-D and in PAR-2 knockout mice. We found that plasma membrane conformational changes causing LB secretion are controlled by PAR-2-dependent cytoskeletal rearrangements. We next addressed the interaction dynamics between cytoskeleton and plasma membrane following PAR-2-induced actin stress fiber formation in both cav-1 -/- and wildtype cells. Actin stress fiber formation is increased in cav-1 -/- cells prior to and following PAR-2 agonist peptide-treatment, while absence of cav-1 inhibits E-cadherin-mediated cell-to-cell adhesion. PAR-2 drives cytoskeletal/plasma membrane dynamics that regulate early LB secretion following barrier abrogation, stress fiber formation and keratinocyte adhesion. Copyright © 2010 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  15. Hypotonic activation of short ClC3 isoform is modulated by direct interaction between its cytosolic C-terminal tail and subcortical actin filaments.

    PubMed

    McCloskey, Diana T; Doherty, Lynda; Dai, Yan-Ping; Miller, Lisa; Hume, Joseph R; Yamboliev, Ilia A

    2007-06-08

    Short ClC3 isoform (sClC3) functions as a volume-sensitive outwardly rectifying anion channel (VSOAC) in some cell types. In previous studies, we have shown that the hypotonic activation of sClC3 is linked to cell swelling-mediated remodeling of the actin cytoskeleton. In the present study, we have tested the hypothesis that the cytosolic tails of sClC3 bind to actin directly and that binding modulates the hypotonic activation of the channel. Co-sedimentation assays in vitro demonstrated a strong binding between the glutathione S-transferase-fused cytosolic C terminus of sClC3 (GST-sClC3-CT) to filamentous actin (F-actin) but not to globular monomeric actin (G-actin). The GST-fused N terminus (GST-sClC3-NT) exhibited low binding affinity to both G- and F-actin. Co-sedimentation experiments with progressively truncated GST-sClC3-CT indicated that the F-actin binding region is located between amino acids 690 and 760 of sClC3. Two synthetic peptides mapping basic clusters of the cytosolic sClC3-CT (CTP2, isoleucine 716 to leucine 734; and CTP3, proline 688 to proline 709) prevented binding of GST-sClC3-CT to F-actin in vitro. Dialysis into NIH/3T3 cells of these two peptides (but not of synthetic peptide CTP1 (isoleucine 737 to glutamine 748)) reduced the maximal current density by 60 and 38%, respectively. Based on these results, we have concluded that, by direct interaction with subcortical actin filaments, sClC3 contributes to the hypotonic stress-induced VSOACs in NIH/3T3 cells.

  16. Myosin II Motors and F-Actin Dynamics Drive the Coordinated Movement of the Centrosome and Soma during CNS Glial-Guided Neuronal Migration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solecki, Dr. David; Trivedi, Dr. Niraj; Govek, Eve-Ellen

    2009-01-01

    Lamination of cortical regions of the vertebrate brain depends on glial-guided neuronal migration. The conserved polarity protein Par6{alpha} localizes to the centrosome and coordinates forward movement of the centrosome and soma in migrating neurons. The cytoskeletal components that produce this unique form of cell polarity and their relationship to polarity signaling cascades are unknown. We show that F-actin and Myosin II motors are enriched in the neuronal leading process and that Myosin II activity is necessary for leading process actin dynamics. Inhibition of Myosin II decreased the speed of centrosome and somal movement, whereas Myosin II activation increased coordinated movement.more » Ectopic expression or silencing of Par6{alpha} inhibited Myosin II motors by decreasing Myosin light-chain phosphorylation. These findings suggest leading-process Myosin II may function to 'pull' the centrosome and soma forward during glial-guided migration by a mechanism involving the conserved polarity protein Par6{alpha}.« less

  17. Enhanced gravitropism of roots with a disrupted cap actin cytoskeleton

    NASA Technical Reports Server (NTRS)

    Hou, Guichuan; Mohamalawari, Deepti R.; Blancaflor, Elison B.

    2003-01-01

    The actin cytoskeleton has been proposed to be a major player in plant gravitropism. However, understanding the role of actin in this process is far from complete. To address this problem, we conducted an analysis of the effect of Latrunculin B (Lat B), a potent actin-disrupting drug, on root gravitropism using various parameters that included detailed curvature kinetics, estimation of gravitropic sensitivity, and monitoring of curvature development after extended clinorotation. Lat B treatment resulted in a promotion of root curvature after a 90 degrees reorientation in three plant species tested. More significantly, the sensitivity of maize (Zea mays) roots to gravity was enhanced after actin disruption, as determined from a comparison of presentation time of Lat B-treated versus untreated roots. A short 10-min gravistimulus followed by extended rotation on a 1-rpm clinostat resulted in extensive gravitropic responses, manifested as curvature that often exceeded 90 degrees. Application of Lat B to the cap or elongation zone of maize roots resulted in the disruption of the actin cytoskeleton, which was confined to the area of localized Lat B application. Only roots with Lat B applied to the cap displayed the strong curvature responses after extended clinorotation. Our study demonstrates that disrupting the actin cytoskeleton in the cap leads to the persistence of a signal established by a previous gravistimulus. Therefore, actin could function in root gravitropism by providing a mechanism to regulate the proliferation of a gravitropic signal originating from the cap to allow the root to attain its correct orientation or set point angle.

  18. Gamma Interferon-Induced Guanylate Binding Protein 1 Is a Novel Actin Cytoskeleton Remodeling Factor

    PubMed Central

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J. K.; Schubert, Dirk W.; Stockinger, Hannes; Herrmann, Christian

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies. PMID:24190970

  19. Gamma interferon-induced guanylate binding protein 1 is a novel actin cytoskeleton remodeling factor.

    PubMed

    Ostler, Nicole; Britzen-Laurent, Nathalie; Liebl, Andrea; Naschberger, Elisabeth; Lochnit, Günter; Ostler, Markus; Forster, Florian; Kunzelmann, Peter; Ince, Semra; Supper, Verena; Praefcke, Gerrit J K; Schubert, Dirk W; Stockinger, Hannes; Herrmann, Christian; Stürzl, Michael

    2014-01-01

    Gamma interferon (IFN-γ) regulates immune defenses against viruses, intracellular pathogens, and tumors by modulating cell proliferation, migration, invasion, and vesicle trafficking processes. The large GTPase guanylate binding protein 1 (GBP-1) is among the cellular proteins that is the most abundantly induced by IFN-γ and mediates its cell biologic effects. As yet, the molecular mechanisms of action of GBP-1 remain unknown. Applying an interaction proteomics approach, we identified actin as a strong and specific binding partner of GBP-1. Furthermore, GBP-1 colocalized with actin at the subcellular level and was both necessary and sufficient for the extensive remodeling of the fibrous actin structure observed in IFN-γ-exposed cells. These effects were dependent on the oligomerization and the GTPase activity of GBP-1. Purified GBP-1 and actin bound to each other, and this interaction was sufficient to impair the formation of actin filaments in vitro, as demonstrated by atomic force microscopy, dynamic light scattering, and fluorescence-monitored polymerization. Cosedimentation and band shift analyses demonstrated that GBP-1 binds robustly to globular actin and slightly to filamentous actin. This indicated that GBP-1 may induce actin remodeling via globular actin sequestering and/or filament capping. These results establish GBP-1 as a novel member within the family of actin-remodeling proteins specifically mediating IFN-γ-dependent defense strategies.

  20. The CBM RICH project

    NASA Astrophysics Data System (ADS)

    Adamczewski-Musch, J.; Akishin, P.; Becker, K.-H.; Belogurov, S.; Bendarouach, J.; Boldyreva, N.; Chernogorov, A.; Deveaux, C.; Dobyrn, V.; Dürr, M.; Eschke, J.; Förtsch, J.; Heep, J.; Höhne, C.; Kampert, K.-H.; Kochenda, L.; Kopfer, J.; Kravtsov, P.; Kres, I.; Lebedev, S.; Lebedeva, E.; Leonova, E.; Linev, S.; Mahmoud, T.; Michel, J.; Miftakhov, N.; Niebur, W.; Ovcharenko, E.; Patel, V.; Pauly, C.; Pfeifer, D.; Querchfeld, S.; Rautenberg, J.; Reinecke, S.; Riabov, Y.; Roshchin, E.; Samsonov, V.; Tarasenkova, O.; Traxler, M.; Ugur, C.; Vznuzdaev, E.; Vznuzdaev, M.

    2017-02-01

    The CBM RICH detector is an integral component of the future CBM experiment at FAIR, providing efficient electron identification and pion suppression necessary for the measurement of rare dileptonic probes in heavy ion collisions. The RICH design is based on CO2 gas as radiator, a segmented spherical glass focussing mirror with Al+MgF2 reflective coating, and Multianode Photomultipliers for efficient Cherenkov photon detection. Hamamatsu H12700 MAPMTs have recently been selected as photon sensors, following an extensive sensor evaluation, including irradiation tests to ensure sufficient radiation hardness of the MAPMTs. A brief overview of the detector design and concept is given, results on the radiation hardness of the photon sensors are shown, and the development of a FPGA-TDC based readout chain is discussed.

  1. Distribution and dynamics of the cytoskeleton in graviresponding protonemata and rhizoids of characean algae: exclusion of microtubules and a convergence of actin filaments in the apex suggest an actin-mediated gravitropism.

    PubMed

    Braun, M; Wasteneys, G O

    1998-05-01

    The organization of the microtubule (MT) and actin microfilament (MF) cytoskeleton of tip-growing rhizoids and protonemata of characean green algae was examined by confocal laser scanning microscopy. This analysis included microinjection of fluorescent tubulin and phallotoxins into living cells, as well as immunofluorescence labeling of fixed material and fluorescent phallotoxin labeling of unfixed material. Although the morphologically very similar positively gravitropic (downward growing) rhizoids and negatively gravitropic (upward growing) protonemata show opposite gravitropic responses, no differences were detected in the extensive three-dimensional distribution of actin MFs and MTs in both cell types. Tubulin microinjection revealed that in contrast to internodal cells, fluorescent tubulin incorporated very slowly into the MT arrays of rhizoids, suggesting that MT dynamics are very different in tip-growing and diffusely expanding cells. Microtubules assembled from multiple sites at the plasma membrane in the basal zone, and a dense subapical array emerged from a diffuse nucleation centre on the basal side of the nuclear envelope. Immunofluorescence confirmed these distribution patterns but revealed more extensive MT arrays. In the basal zone, short branching clusters of MTs form two cortical hemicylinders. Subapical, axially oriented MTs are distributed in equal density throughout the peripheral and inner cytoplasm and are closely associated with subapical organelles. Microtubules, however, are completely absent from the apical zones of rhizoids and protonemata. Actin MFs were found in all zones of rhizoids and protonemata including the apex. Two files of axially oriented bundles of subcortical actin MFs and ring-like actin structures in the streaming endoplasm of rhizoids were detected in the basal zones by microinjection or rhodamine-phalloidin labeling. The subapical zone contains a dense array of mainly axially oriented actin MFs that co-distribute with

  2. A possible role of actin in the mechanical control of the cell cycle.

    PubMed

    Tripathi, S C

    1989-01-01

    Sail-sheet Cultures (SSC) are those in which the cells are i) grown within the meshes of inert grids ii) exposed to nutrients from most sides iii) attached to one another only at the edges like sail of a yacht (hence, the name 'sail-sheet') and iv) have the advantage of three-dimensional structure similar to an in vivo situation. We grew fibroblasts from chicken heart explants as SSC and studied the effect of mechanical stretching on the F-actin content of these cells. This study was designed to investigate the hypothesis that the effect of tension on the cell cycle may be channeled through the microfilaments. Data from this preliminary study suggested that short-term mechanical stretching of sail-sheets, using low frequency tension (1.0 Hz), diminishes F-actin. Thus, it may be possible to relate the decrease in the F-actin content of these cells to the slowing down of their locomotory activity, possible rounding up, and division. This study might contribute to the understanding of the mechanical control of the cell cycle and be of relevance in the phenomena such as healing of wounds and control of the cell division in tumors.

  3. NHERF1 regulates actin cytoskeleton organization through modulation of α-actinin-4 stability.

    PubMed

    Sun, Licui; Zheng, Junfang; Wang, Qiqi; Song, Ran; Liu, Hua; Meng, Ran; Tao, Tao; Si, Yang; Jiang, Wenguo; He, Junqi

    2016-02-01

    The actin cytoskeleton is composed of a highly dynamic network of filamentous proteins, yet the molecular mechanism that regulates its organization and remodeling remains elusive. In this study, Na(+)/H(+) exchanger regulatory factor (NHERF)-1 loss-of-function and gain-of-function experiments reveal that polymerized actin cytoskeleton (F-actin) in HeLa cells is disorganized by NHERF1, whereas actin protein expression levels exhibit no detectable change. To elucidate the molecular mechanism underlying actin cytoskeleton disorganization by NHERF1, a combined 2-dimensional electrophoresis-matrix-assisted laser desorption/ionization-time of flight mass spectrometry approach was used to screen for proteins regulated by NHERF1 in HeLa cells. α-Actinin-4, an actin cross-linking protein, was identified. Glutathione S-transferase pull-down and coimmunoprecipitation studies showed the α-actinin-4 carboxyl-terminal region specifically interacted with the NHERF1 postsynaptic density 95/disc-large/zona occludens-1 domain. The NHERF1/α-actinin-4 interaction increased α-actinin-4 ubiquitination and decreased its expression levels, resulting in actin cytoskeleton disassembly. Our study identified α-actinin-4 as a novel NHERF1 interaction partner and provided new insights into the regulatory mechanism of the actin cytoskeleton by NHERF1. © FASEB.

  4. Branched actin networks push against each other at adherens junctions to maintain cell-cell adhesion.

    PubMed

    Efimova, Nadia; Svitkina, Tatyana M

    2018-05-07

    Adherens junctions (AJs) are mechanosensitive cadherin-based intercellular adhesions that interact with the actin cytoskeleton and carry most of the mechanical load at cell-cell junctions. Both Arp2/3 complex-dependent actin polymerization generating pushing force and nonmuscle myosin II (NMII)-dependent contraction producing pulling force are necessary for AJ morphogenesis. Which actin system directly interacts with AJs is unknown. Using platinum replica electron microscopy of endothelial cells, we show that vascular endothelial (VE)-cadherin colocalizes with Arp2/3 complex-positive actin networks at different AJ types and is positioned at the interface between two oppositely oriented branched networks from adjacent cells. In contrast, actin-NMII bundles are located more distally from the VE-cadherin-rich zone. After Arp2/3 complex inhibition, linear AJs split, leaving gaps between cells with detergent-insoluble VE-cadherin transiently associated with the gap edges. After NMII inhibition, VE-cadherin is lost from gap edges. We propose that the actin cytoskeleton at AJs acts as a dynamic push-pull system, wherein pushing forces maintain extracellular VE-cadherin transinteraction and pulling forces stabilize intracellular adhesion complexes. © 2018 Efimova and Svitkina.

  5. Zinc and Copper Effects on Stability of Tubulin and Actin Networks in Dendrites and Spines of Hippocampal Neurons.

    PubMed

    Perrin, Laura; Roudeau, Stéphane; Carmona, Asuncion; Domart, Florelle; Petersen, Jennifer D; Bohic, Sylvain; Yang, Yang; Cloetens, Peter; Ortega, Richard

    2017-07-19

    Zinc and copper ions can modulate the activity of glutamate receptors. However, labile zinc and copper ions likely represent only the tip of the iceberg and other neuronal functions are suspected for these metals in their bound state. We performed synchrotron X-ray fluorescence imaging with 30 nm resolution to image total biometals in dendrites and spines from hippocampal neurons. We found that zinc is distributed all along the dendrites while copper is mainly pinpointed within the spines. In spines, zinc content is higher within the spine head while copper is higher within the spine neck. Such specific distributions suggested metal interactions with cytoskeleton proteins. Zinc supplementation induced the increase of β-tubulin content in dendrites. Copper supplementation impaired the β-tubulin and F-actin networks. Copper chelation resulted in the decrease of F-actin content in dendrites, drastically reducing the number of F-actin protrusions. These results indicate that zinc is involved in microtubule stability whereas copper is essential for actin-dependent stability of dendritic spines, although copper excess can impair the dendritic cytoskeleton.

  6. Actin-interacting Protein 1 Promotes Disassembly of Actin-depolymerizing Factor/Cofilin-bound Actin Filaments in a pH-dependent Manner.

    PubMed

    Nomura, Kazumi; Hayakawa, Kimihide; Tatsumi, Hitoshi; Ono, Shoichiro

    2016-03-04

    Actin-interacting protein 1 (AIP1) is a conserved WD repeat protein that promotes disassembly of actin filaments when actin-depolymerizing factor (ADF)/cofilin is present. Although AIP1 is known to be essential for a number of cellular events involving dynamic rearrangement of the actin cytoskeleton, the regulatory mechanism of the function of AIP1 is unknown. In this study, we report that two AIP1 isoforms from the nematode Caenorhabditis elegans, known as UNC-78 and AIPL-1, are pH-sensitive in enhancement of actin filament disassembly. Both AIP1 isoforms only weakly enhance disassembly of ADF/cofilin-bound actin filaments at an acidic pH but show stronger disassembly activity at neutral and basic pH values. However, a severing-defective mutant of UNC-78 shows pH-insensitive binding to ADF/cofilin-decorated actin filaments, suggesting that the process of filament severing or disassembly, but not filament binding, is pH-dependent. His-60 of AIP1 is located near the predicted binding surface for the ADF/cofilin-actin complex, and an H60K mutation of AIP1 partially impairs its pH sensitivity, suggesting that His-60 is involved in the pH sensor for AIP1. These biochemical results suggest that pH-dependent changes in AIP1 activity might be a novel regulatory mechanism of actin filament dynamics. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  7. Torsional Rigidity of Single Actin Filaments and Actin-Actin Bond Breaking Force under Torsion Measured Directly by in vitro Micromanipulation

    NASA Astrophysics Data System (ADS)

    Tsuda, Yuri; Yasutake, Hironori; Ishijima, Akihiko; Yanagida, Toshio

    1996-11-01

    Knowledge of the elastic properties of actin filaments is crucial for considering its role in muscle contraction, cellular motile events, and formation of cell shape. The stiffness of actin filaments in the directions of stretching and bending has been determined. In this study, we have directly determined the torsional rigidity and breaking force of single actin filaments by measuring the rotational Brownian motion and tensile strength using optical tweezers and microneedles, respectively. Rotational angular fluctuations of filaments supplied the torsional rigidity as (8.0 ± 1.2) × 10-26 Nm2. This value is similar to that deduced from the longitudinal rigidity, assuming the actin filament to be a homogeneous rod. The breaking force of the actin-actin bond was measured while twisting a filament through various angles using microneedles. The breaking force decreased greatly under twist, e.g., from 600-320 pN when filaments were turned through 90 degrees, independent of the rotational direction. Our results indicate that an actin filament exhibits comparable flexibility in the rotational and longitudinal directions, but breaks more easily under torsional load.

  8. Organization of actin in the leading edge of cultured cells: influence of osmium tetroxide and dehydration on the ultrastructure of actin meshworks

    PubMed Central

    1981-01-01

    The ordered structure of the leading edge (lamellipodium) of cultured fibroblasts is readily revealed in cells extracted briefly in Triton X- 100-glutaraldehyde mixtures, fixed further in glutaraldehyde, and then negatively stained for electron microscopy. By this procedure, the leading edge regions show a highly organised, three-dimensional network of actin filaments together with variable numbers of radiating actin filament bundles or microspikes. The use of Phalloidin after glutaraldehyde fixation resulted in a marginal improvement in filament order. Processing of the cytoskeletons though the additional steps generally employed for conventional electron microscopy resulted in a marked deterioration or complete disruption of the order of the actin filament networks. In contrast, the actin filaments of the stress fiber bundles were essentially unaffected. Thus, postfixation in osmium tetroxide (1% for 7 min at room temperature) transformed the networks to a reticulum of kinked fibers, resembling those produced by the exposure of muscle F-actin to OsO4 in vitro (P. Maupin-Szamier and T. D. Pollard. 1978. J. Cell Biol. 77:837--852). While limited exposure to OsO4 (0.2+ for 20 min at 0 degrees C) obviated this destruction, dehydration in acetone or ethanol, with or without post-osmication, caused a further and unavoidable disordering and aggregation of the meshwork filaments. The meshwork regions of the leading edge then showed a striking resemblance to the networks hitherto described in critical point-dried preparations of cultured cells. I conclude that much of the "microtrabecular lattice" described by Wolosewick and Porter (1979. J. Cell Biol. 82:114--139) in the latter preparations constitutes actin meshworks and actin filament arrays, with their associated components, that have been distorted and aggregated by the preparative procedures employed. PMID:6799521

  9. Cellular target of weak magnetic fields: ionic conduction along actin filaments of microvilli.

    PubMed

    Gartzke, Joachim; Lange, Klaus

    2002-11-01

    The interaction of weak electromagnetic fields (EMF) with living cells is a most important but still unresolved biophysical problem. For this interaction, thermal and other types of noise appear to cause severe restrictions in the action of weak signals on relevant components of the cell. A recently presented general concept of regulation of ion and substrate pathways through microvilli provides a possible theoretical basis for the comprehension of physiological effects of even extremely low magnetic fields. The actin-based core of microfilaments in microvilli is proposed to represent a cellular interaction site for magnetic fields. Both the central role of F-actin in Ca2+ signaling and its polyelectrolyte nature eliciting specific ion conduction properties render the microvillar actin filament bundle an ideal interaction site for magnetic and electric fields. Ion channels at the tip of microvilli are connected with the cytoplasm by a bundle of microfilaments forming a diffusion barrier system. Because of its polyelectrolyte nature, the microfilament core of microvilli allows Ca2+ entry into the cytoplasm via nonlinear cable-like cation conduction through arrays of condensed ion clouds. The interaction of ion clouds with periodically applied EMFs and field-induced cation pumping through the cascade of potential barriers on the F-actin polyelectrolyte follows well-known physical principles of ion-magnetic field (MF) interaction and signal discrimination as described by the stochastic resonance and Brownian motor hypotheses. The proposed interaction mechanism is in accord with our present knowledge about Ca2+ signaling as the biological main target of MFs and the postulated extreme sensitivity for coherent excitation by very low field energies within specific amplitude and frequency windows. Microvillar F-actin bundles shielded by a lipid membrane appear to function like electronic integration devices for signal-to-noise enhancement; the influence of coherent signals

  10. PLCβ3 mediates cortactin interaction with WAVE2 in MCP1-induced actin polymerization and cell migration

    PubMed Central

    Janjanam, Jagadeesh; Chandaka, Giri Kumar; Kotla, Sivareddy; Rao, Gadiparthi N.

    2015-01-01

    Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein–coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin–WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration. PMID:26490115

  11. The effect of toxins on inorganic phosphate release during actin polymerization.

    PubMed

    Vig, Andrea; Ohmacht, Róbert; Jámbor, Eva; Bugyi, Beáta; Nyitrai, Miklós; Hild, Gábor

    2011-05-01

    During the polymerization of actin, hydrolysis of bound ATP occurs in two consecutive steps: chemical cleavage of the high-energy nucleotide and slow release of the γ-phosphate. In this study the effect of phalloidin and jasplakinolide on the kinetics of P(i) release was monitored during the formation of actin filaments. An enzyme-linked assay based spectrophotometric technique was used to follow the liberation of inorganic phosphate. It was verified that jasplakinolide reduced the P(i) release in the same way as phalloidin. It was not possible to demonstrate long-range allosteric effects of the toxins by release of P(i) from F-actin. The products of ATP hydrolysis were released by denaturation of the actin filaments. HPLC analysis of the samples revealed that the ATP in the toxin-bound region was completely hydrolysed into ADP and P(i). The effect of both toxins can be sufficiently explained by local and mechanical blockade of P(i) dissociation.

  12. Computational modeling highlights disordered Formin Homology 1 domain's role in profilin-actin transfer.

    PubMed

    Horan, Brandon G; Zerze, Gül H; Kim, Young C; Vavylonis, Dimitrios; Mittal, Jeetain

    2018-05-13

    Formins accelerate actin polymerization, assumed to occur through flexible FH1 domain mediated transfer of profilin-actin to the barbed end. To study FH1 properties and address sequence effects including varying length/distributionof profilin-binding proline-rich motifs, we performed allatom simulations of mouse mDia1, mDia2; budding yeast Bni1, Bnr1; fission yeast Cdc12, For3, and Fus1 FH1s. We find FH1 has flexible regions between high propensity polyproline helix regions. A coarse-grained model retaining sequence-specificity, assuming rigid polyproline segments,describes their size. Multiple bound profilins or profilin-actin complexes expand mDia1-FH1, which may be important in cells. Simulations of the barbed end bound to Bni1-FH1-FH2 dimer show the leading FH1 can better transfer profilin or profilin-actin, having decreasing probability with increasing distance from FH2. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  13. Encoding mechano-memories in filamentous-actin networks

    NASA Astrophysics Data System (ADS)

    Majumdar, Sayantan; Foucard, Louis; Levine, Alex; Gardel, Margaret L.

    History-dependent adaptation is a central feature of learning and memory. Incorporating such features into `adaptable materials' that can modify their mechanical properties in response to external cues, remains an outstanding challenge in materials science. Here, we study a novel mechanism of mechano-memory in cross-linked F-actin networks, the essential determinants of the mechanical behavior of eukaryotic cells. We find that the non-linear mechanical response of such networks can be reversibly programmed through induction of mechano-memories. In particular, the direction, magnitude, and duration of previously applied shear stresses can be encoded into the network architecture. The `memory' of the forcing history is long-lived, but it can be erased by force applied in the opposite direction. These results demonstrate that F-actin networks can encode analog read-write mechano-memories which can be used for adaptation to mechanical stimuli. We further show that the mechano-memory arises from changes in the nematic order of the constituent filaments. Our results suggest a new mechanism of mechanical sensing in eukaryotic cells and provide a strategy for designing a novel class of materials. S.M. acknowledges U. Chicago MRSEC for support through a Kadanoff-Rice fellowship.

  14. Gβ Regulates Coupling between Actin Oscillators for Cell Polarity and Directional Migration

    PubMed Central

    Cai, Huaqing; Sun, Yaohui; Huang, Chuan-Hsiang; Freyre, Mariel; Zhao, Min; Devreotes, Peter N.; Weiner, Orion D.

    2016-01-01

    For directional movement, eukaryotic cells depend on the proper organization of their actin cytoskeleton. This engine of motility is made up of highly dynamic nonequilibrium actin structures such as flashes, oscillations, and traveling waves. In Dictyostelium, oscillatory actin foci interact with signals such as Ras and phosphatidylinositol 3,4,5-trisphosphate (PIP3) to form protrusions. However, how signaling cues tame actin dynamics to produce a pseudopod and guide cellular motility is a critical open question in eukaryotic chemotaxis. Here, we demonstrate that the strength of coupling between individual actin oscillators controls cell polarization and directional movement. We implement an inducible sequestration system to inactivate the heterotrimeric G protein subunit Gβ and find that this acute perturbation triggers persistent, high-amplitude cortical oscillations of F-actin. Actin oscillators that are normally weakly coupled to one another in wild-type cells become strongly synchronized following acute inactivation of Gβ. This global coupling impairs sensing of internal cues during spontaneous polarization and sensing of external cues during directional motility. A simple mathematical model of coupled actin oscillators reveals the importance of appropriate coupling strength for chemotaxis: moderate coupling can increase sensitivity to noisy inputs. Taken together, our data suggest that Gβ regulates the strength of coupling between actin oscillators for efficient polarity and directional migration. As these observations are only possible following acute inhibition of Gβ and are masked by slow compensation in genetic knockouts, our work also shows that acute loss-of-function approaches can complement and extend the reach of classical genetics in Dictyostelium and likely other systems as well. PMID:26890004

  15. Live cell imaging of mitochondrial movement along actin cables in budding yeast.

    PubMed

    Fehrenbacher, Kammy L; Yang, Hyeong-Cheol; Gay, Anna Card; Huckaba, Thomas M; Pon, Liza A

    2004-11-23

    Mitochondrial inheritance is essential for cell division. In budding yeast, mitochondrial movement from mother to daughter requires (1) actin cables, F-actin bundles that undergo retrograde movement during elongation from buds into mother cells; (2) the mitochore, a mitochondrial protein complex implicated in linking mitochondria to actin cables; and (3) Arp2/3 complex-mediated force generation on mitochondria. We observed three new classes of mitochondrial motility: anterograde movement at velocities of 0.2-0.33 microm/s, retrograde movement at velocities of 0.26-0.51 microm/s, and no net anterograde or retrograde movement. In all cases, motile mitochondria were associated with actin cables undergoing retrograde flow at velocities of 0.18-0.62 microm/s. Destabilization of actin cables or mutations of the mitochore blocked all mitochondrial movements. In contrast, mutations in the Arp2/3 complex affected anterograde but not retrograde mitochondrial movements. Actin cables are required for movement of mitochondria, secretory vesicles, mRNA, and spindle alignment elements in yeast. We provide the first direct evidence that one of the proposed cargos use actin cables as tracks. In the case of mitochondrial inheritance, anterograde movement drives transfer of the organelle from mothers to buds, while retrograde movement contributes to retention of the organelle in mother cells. Interaction of mitochondria with actin cables is required for anterograde and retrograde movement. In contrast, force generation on mitochondria is required only for anterograde movement. Finally, we propose a novel mechanism in which actin cables serve as "conveyor belts" that drive retrograde organelle movement.

  16. Nucleation of actin polymerization by gelsolin.

    PubMed

    Ditsch, A; Wegner, A

    1994-08-15

    The time-course of assembly of actin with gelsolin was measured by the fluorescence increase of a fluorescent label covalently linked to actin. The actin concentrations ranged from values far below the critical concentration to values above the critical concentration of the pointed ends of actin filaments. If the concentration of actin was in the range of the critical monomer concentration (0.64 microM), the time-course of the concentration of actin assembled with gelsolin revealed a sigmoidal shape. At higher actin concentrations the time-course of association of actin with gelsolin approximated an exponential curve. The measured time-courses of assembly were quantitatively interpreted by kinetic rate equations. A poor fit was obtained if two actin molecules were assumed to bind to gelsolin to form a 1:2 gelsolin-actin complex and subsequently further actin molecules were assumed to polymerize onto the 1:2 gelsolin-actin complex toward the pointed end. A considerably better agreement between calculated and measured time-courses was achieved if additional creation of actin filaments by fast fragmentation of newly formed actin filaments by not yet consumed gelsolin was assumed to occur. This suggests that both polymerization of actin onto gelsolin and fragmentation of actin filaments contribute to formation of new actin filaments by gelsolin. Furthermore it could be demonstrated that below the critical monomer concentration appreciable amounts of actin are incorporated into gelsolin-actin oligomers.

  17. Actin cytoskeleton depolymerization with clostridium spiroforme toxin enhances the secretory activity of rat melanotrophs.

    PubMed

    Chowdhury, H H; Popoff, M R; Zorec, R

    1999-12-01

    1. We measured membrane capacitance (Cm) in cultured rat melanotrophs pretreated with Clostridium spiroforme toxin (CST), which specifically depolymerizes cortical filamentous actin (F-actin). Phalloidin staining confirmed that CST treatment depolymerised the F-actin. 2. In control cells, cytosol dialysis with 1 microM Ca2+i increased Cm by 23 +/- 4 % (n = 11) relative to the resting Cm 400 s after the start of patch rupture. In CST-treated cells the increase in Cm was 32 +/- 5 % (n = 15), not significantly different from controls. The rate of Cm increase was affected transiently by CST treatment, peaking at 1 min after patch rupture. The maximal rate of Cm increase was 4.27 +/- 0.85 fF s-1 (n = 12; measured 200 s after the start of patch rupture) in controls and 8.0 +/- 1.35 fF s-1 (n = 23; measured 75 s after the start of patch rupture) in CST-treated cells (P < 0.01). 3. In control cells cytosol dialysis with 0 microM Ca2+i decreased Cm by 9 +/- 3 % (n = 7), in CST-treated cells Cm increased by 11 +/- 3 % (n = 7) relative to resting Cm 400 s after the start of cytosol dialysis. The rate of change in Cm remained constant (controls: -1 to -2 fF s-1; CST treatment: 1-2 fF s-1). 4. Transient and sustained effects of CST treatment on changes in Cm at high or low [Ca2+]i, respectively, suggest a distinct role of cytoskeleton in Ca2+-dependent and Ca2+-independent changes in Cm. Transient enhancement of the rate of Cm by CST is consistent with a barrier role of cytoskeleton in regulated exocytosis. The sustained effect of CST on Ca2+-independent changes in Cm suggests cytoskeletal involvement in endocytosis.

  18. Actin cytoskeleton depolymerization with Clostridium spiroforme toxin enhances the secretory activity of rat melanotrophs

    PubMed Central

    Chowdhury, Helena H; Popoff, Michel R; Zorec, Robert

    1999-01-01

    We measured membrane capacitance (Cm) in cultured rat melanotrophs pretreated with Clostridium spiroforme toxin (CST), which specifically depolymerises cortical filamentous actin (F-actin). Phalloidin staining confirmed that CST treatment depolymerised the F-actin. In control cells, cytosol dialysis with 1 μm Ci2+ increased Cm by 23 ± 4% (n = 11) relative to the resting Cm 400 s after the start of patch rupture. In CST-treated cells the increase in Cm was 32 ± 5% (n = 15), not significantly different from controls. The rate of Cm increase was affected transiently by CST treatment, peaking at 1 min after patch rupture. The maximal rate of Cm increase was 4.27 ± 0.85 fF s−1 (n = 12; measured 200 s after the start of patch rupture) in controls and 8.0 ± 1.35 fF s−1 (n = 23; measured 75 s after the start of patch rupture) in CST-treated cells (P < 0.01). In control cells cytosol dialysis with 0 μm Ci2+ decreased Cm by 9 ± 3% (n = 7), in CST-treated cells Cm increased by 11 ± 3% (n = 7) relative to resting Cm 400 s after the start of cytosol dialysis. The rate of change in Cm remained constant (controls: -1 to -2 fF s−1; CST treatment: 1-2 fF s−1). Transient and sustained effects of CST treatment on changes in Cm at high or low [Ca2+]i, respectively, suggest a distinct role of cytoskeleton in Ca2+-dependent and Ca2+-independent changes in Cm. Transient enhancement of the rate of Cm by CST is consistent with a barrier role of cytoskeleton in regulated exocytosis. The sustained effect of CST on Ca2+-independent changes in Cm suggests cytoskeletal involvement in endocytosis. PMID:10581310

  19. A Temporal Model of Cofilin Regulation and the Early Peak of Actin Barbed Ends in Invasive Tumor Cells

    PubMed Central

    Tania, Nessy; Prosk, Erin; Condeelis, John; Edelstein-Keshet, Leah

    2011-01-01

    Cofilin is an important regulator of actin polymerization, cell migration, and chemotaxis. Recent experimental data on mammary carcinoma cells reveal that stimulation by epidermal growth factor (EGF) generates a pool of active cofilin that results in a peak of actin filament barbed ends on the timescale of 1 min. Here, we present results of a mathematical model for the dynamics of cofilin and its transition between several pools in response to EGF stimulation. We describe the interactions of phospholipase C, membrane lipids (PIP2), and cofilin bound to PIP2 and to F-actin, as well as diffusible cofilin in active G-actin-monomer-bound or phosphorylated states. We consider a simplified representation in which the thin cell edge (lamellipod) and the cell interior are represented by two compartments that are linked by diffusion. We demonstrate that a high basal level of active cofilin stored by binding to PIP2, as well as the highly enriched local milieu of F-actin at the cell edge, is essential to capture the EGF-induced barbed-end amplification observed experimentally. PMID:21504724

  20. [INFLUENCE OF INHIBITION OF ACTIN POLYMERIZATION ON ADIPOGENIC DIFFERENTIATION OF RAT Achilles-DERIVED TENDON STEM CELLS IN VITRO].

    PubMed

    Chen, Bo; Tang, Kanglai; Zhang, Jiqiang; Guo, Yupeng; Liu, Xiangzhou; Shi, Youxin

    2015-02-01

    To investigate the effect of cytoskeleton modification on the adipogenic differentiation of rat Achilles-derived tendon stem cells (TSCs) in vitro. TSCs were isolated from the tendon tissue of male Sprague Dawley rats (aged 3 weeks) by enzymatic digestion method and cultured for 3 passages. After the 3rd passage cells were cultured with DMEM medium containing 15% fetal bovine serum and cytochalasin D (CYD) at the concentrations of 0, 50, 100, 500, and 1 000 ng/mL, the cell survival condition and morphology changes were observed by inverted phase contrast microscope, the cytoskeleton was observed through fibrous actin (F-actin) staining, and the ratio of F-actin/ soluble globular actin (G-actin) was detected and calculated through Western blot. According to the above results, the effective concentration of CYD was selected and used for next experiments. After TSCs were cultured for 3 and 7 days respectively with adipogenic induction media (induction group), adipogenic induction media containing CYD (CYD+induction group), ordinary medium (ordinary group), and ordinary medium containing CYD (CYD+ordinary group), the real-time quantitative PCR (qRT-PCR) and Western blot were carried out to measure the mRNA and protein expressions of adipogenic differentiation-related markers, including peroxisome proliferator-activated receptor y (PPARγ), lipoprotein lipase (LPL), and fatty acid binding protein (aP2). The final CYD concentration of 100 ng/mL can inhibit effectively G-actin polymerization into F-actin, but could not affect TSCs survival, which was used for next experiments. qRT-PCR and Western blot suggested that the mRNA expressions of PPARγ, LPL, and aP2 and the protein expressions of PPARγ and aP2 were increased significantly in the CYD+induction group at 3 and 7 days when compared with the induction group (P < 0.05). In the CYD+ordinary group, there still was a significant increase in the mRNA expressions of PPARγ, LPL, and aP2 when compared with the ordinary

  1. PI(3,5)P2 controls endosomal branched actin dynamics by regulating cortactin–actin interactions

    PubMed Central

    Hong, Nan Hyung; Qi, Aidong

    2015-01-01

    Branched actin critically contributes to membrane trafficking by regulating membrane curvature, dynamics, fission, and transport. However, how actin dynamics are controlled at membranes is poorly understood. Here, we identify the branched actin regulator cortactin as a direct binding partner of phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2) and demonstrate that their interaction promotes turnover of late endosomal actin. In vitro biochemical studies indicated that cortactin binds PI(3,5)P2 via its actin filament-binding region. Furthermore, PI(3,5)P2 competed with actin filaments for binding to cortactin, thereby antagonizing cortactin activity. These findings suggest that PI(3,5)P2 formation on endosomes may remove cortactin from endosome-associated branched actin. Indeed, inhibition of PI(3,5)P2 production led to cortactin accumulation and actin stabilization on Rab7+ endosomes. Conversely, inhibition of Arp2/3 complex activity greatly reduced cortactin localization to late endosomes. Knockdown of cortactin reversed PI(3,5)P2-inhibitor–induced actin accumulation and stabilization on endosomes. These data suggest a model in which PI(3,5)P2 binding removes cortactin from late endosomal branched actin networks and thereby promotes net actin turnover. PMID:26323691

  2. Actin stress in cell reprogramming

    PubMed Central

    Guo, Jun; Wang, Yuexiu; Sachs, Frederick; Meng, Fanjie

    2014-01-01

    Cell mechanics plays a role in stem cell reprogramming and differentiation. To understand this process better, we created a genetically encoded optical probe, named actin–cpstFRET–actin (AcpA), to report forces in actin in living cells in real time. We showed that stemness was associated with increased force in actin. We reprogrammed HEK-293 cells into stem-like cells using no transcription factors but simply by softening the substrate. However, Madin-Darby canine kidney (MDCK) cell reprogramming required, in addition to a soft substrate, Harvey rat sarcoma viral oncogene homolog expression. Replating the stem-like cells on glass led to redifferentiation and reduced force in actin. The actin force probe was a FRET sensor, called cpstFRET (circularly permuted stretch sensitive FRET), flanked by g-actin subunits. The labeled actin expressed efficiently in HEK, MDCK, 3T3, and bovine aortic endothelial cells and in multiple stable cell lines created from those cells. The viability of the cell lines demonstrated that labeled actin did not significantly affect cell physiology. The labeled actin distribution was similar to that observed with GFP-tagged actin. We also examined the stress in the actin cross-linker actinin. Actinin force was not always correlated with actin force, emphasizing the need for addressing protein specificity when discussing forces. Because actin is a primary structural protein in animal cells, understanding its force distribution is central to understanding animal cell physiology and the many linked reactions such as stress-induced gene expression. This new probe permits measuring actin forces in a wide range of experiments on preparations ranging from isolated proteins to transgenic animals. PMID:25422450

  3. Treatment of Actinic Purpura

    PubMed Central

    2017-01-01

    Mature skin is prone to bruising, resulting in a condition known as actinic purpura, characterized by unsightly ecchymosis and purple patches. Similar to other skin conditions, the incidence of actinic purpura increases with advancing age and occurs with equal frequency among men and women. The unsightly appearance of actinic purpura may be a source of emotional distress among the elderly. A new product has been formulated specifically for the treatment of actinic purpura. This product contains retinol, α-hydroxy acids, arnica oil, ceramides, niacinamide, and phytonadione, which effectively treat actinic purpura by improving local circulation, thickening the skin, and repairing the skin barrier. The objective of this paper is to review the beneficial properties of these ingredients and their respective roles in the treatment of actinic purpura. PMID:28979656

  4. Anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis show distinct patterns of brain glucose metabolism in 18F-fluoro-2-deoxy-d-glucose positron emission tomography

    PubMed Central

    2014-01-01

    Background Pathogenic autoantibodies targeting the recently identified leucine rich glioma inactivated 1 protein and the subunit 1 of the N-methyl-D-aspartate receptor induce autoimmune encephalitis. A comparison of brain metabolic patterns in 18F-fluoro-2-deoxy-d-glucose positron emission tomography of anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis patients has not been performed yet and shall be helpful in differentiating these two most common forms of autoimmune encephalitis. Methods The brain 18F-fluoro-2-deoxy-d-glucose uptake from whole-body positron emission tomography of six anti-N-methyl-D-aspartate receptor encephalitis patients and four patients with anti-leucine rich glioma inactivated 1 protein encephalitis admitted to Hannover Medical School between 2008 and 2012 was retrospectively analyzed and compared to matched controls. Results Group analysis of anti-N-methyl-D-aspartate encephalitis patients demonstrated regionally limited hypermetabolism in frontotemporal areas contrasting an extensive hypometabolism in parietal lobes, whereas the anti-leucine rich glioma inactivated 1 protein syndrome was characterized by hypermetabolism in cerebellar, basal ganglia, occipital and precentral areas and minor frontomesial hypometabolism. Conclusions This retrospective 18F-fluoro-2-deoxy-d-glucose positron emission tomography study provides novel evidence for distinct brain metabolic patterns in patients with anti-leucine rich glioma inactivated 1 protein and anti-N-methyl-D-aspartate receptor encephalitis. PMID:24950993

  5. 76 FR 61763 - Extension: Form N-17f-2; Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-05

    ...: Form N-17f-2; Proposed Collection; Comment Request Upon Written Request, Copies Available From... information to the Office of Management and Budget for extension and approval. Form N-17f-2 (17 CFR 274.220... Investments in the Custody of Management Investment Companies.'' Form N-17f-2 is the cover sheet for the...

  6. Novel Regulation of Ski Protein Stability and Endosomal Sorting by Actin Cytoskeleton Dynamics in Hepatocytes*

    PubMed Central

    Vázquez-Victorio, Genaro; Caligaris, Cassandre; Del Valle-Espinosa, Eugenio; Sosa-Garrocho, Marcela; González-Arenas, Nelly R.; Reyes-Cruz, Guadalupe; Briones-Orta, Marco A.; Macías-Silva, Marina

    2015-01-01

    TGF-β-induced antimitotic signals are highly regulated during cell proliferation under normal and pathological conditions, such as liver regeneration and cancer. Up-regulation of the transcriptional cofactors Ski and SnoN during liver regeneration may favor hepatocyte proliferation by inhibiting TGF-β signals. In this study, we found a novel mechanism that regulates Ski protein stability through TGF-β and G protein-coupled receptor (GPCR) signaling. Ski protein is distributed between the nucleus and cytoplasm of normal hepatocytes, and the molecular mechanisms controlling Ski protein stability involve the participation of actin cytoskeleton dynamics. Cytoplasmic Ski is partially associated with actin and localized in cholesterol-rich vesicles. Ski protein stability is decreased by TGF-β/Smads, GPCR/Rho signals, and actin polymerization, whereas GPCR/cAMP signals and actin depolymerization promote Ski protein stability. In conclusion, TGF-β and GPCR signals differentially regulate Ski protein stability and sorting in hepatocytes, and this cross-talk may occur during liver regeneration. PMID:25561741

  7. Actin dynamics affect mitochondrial quality control and aging in budding yeast.

    PubMed

    Higuchi, Ryo; Vevea, Jason D; Swayne, Theresa C; Chojnowski, Robert; Hill, Vanessa; Boldogh, Istvan R; Pon, Liza A

    2013-12-02

    Actin cables of budding yeast are bundles of F-actin that extend from the bud tip or neck to the mother cell tip, serve as tracks for bidirectional cargo transport, and undergo continuous movement from buds toward mother cells [1]. This movement, retrograde actin cable flow (RACF), is similar to retrograde actin flow in lamellipodia, growth cones, immunological synapses, dendritic spines, and filopodia [2-5]. In all cases, actin flow is driven by the push of actin polymerization and assembly at the cell cortex, and myosin-driven pulling forces deeper within the cell [6-10]. Therefore, for movement and inheritance from mothers to buds, mitochondria must "swim upstream" against the opposing force of RACF [11]. We find that increasing RACF rates results in increased fitness of mitochondria inherited by buds and that the increase in mitochondrial fitness leads to extended replicative lifespan and increased cellular healthspan. The sirtuin SIR2 is required for normal RACF and mitochondrial fitness, and increasing RACF rates in sir2Δ cells increases mitochondrial fitness and cellular healthspan but does not affect replicative lifespan. These studies support the model that RACF serves as a filter for segregation of fit from less-fit mitochondria during inheritance, which controls cellular lifespan and healthspan. They also support a role for Sir2p in these processes. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Manual resurfacing and trichloroacetic acid for the treatment of patients with widespread actinic damage. Clinical and histologic observations.

    PubMed

    Cooley, J E; Casey, D L; Kauffman, C L

    1997-05-01

    A facial resurfacing regimen combining manual abrasion of the skin and 25% trichloroacetic acid has been reported to produce excellent results, but the histologic depth of injury produced by this technique has not been studied. To describe our experience with this technique treating patients with extensive actinic damage and to determine the histologic depth of injury produced. We treated 40 patients using manual resurfacing and trichloroacetic acid, primarily for widespread actinic keratoses. Resurfacing tools included silicone carbide sandpaper, drywall screen, electrocautery tip cleaners, abrasive pads, scalpel blades, and curettes. Four patients underwent sequential biopsies to evaluate the depth of wounding using this technique. Manual resurfacing combined with trichloroacetic acid consistently produced excellent cosmetic results and nearly complete eradication of actinic keratoses. Histologically, treated areas showed replacement of the dermal elastotic band by newly formed collagen, a significantly deeper level of wounding than the Jessner's/35% trichloroacetic acid peel. There was no evidence for foreign body granulomas clinically or histologically as a result of the abrasive materials. The deeper level of this peel explains the improved cosmetic outcome and greater eradication of actinic keratoses. This treatment is particularly well suited for patients with extensive photodamage and widespread actinic keratoses.

  9. The yeast actin cytoskeleton.

    PubMed

    Mishra, Mithilesh; Huang, Junqi; Balasubramanian, Mohan K

    2014-03-01

    The actin cytoskeleton is a complex network of dynamic polymers, which plays an important role in various fundamental cellular processes, including maintenance of cell shape, polarity, cell division, cell migration, endocytosis, vesicular trafficking, and mechanosensation. Precise spatiotemporal assembly and disassembly of actin structures is regulated by the coordinated activity of about 100 highly conserved accessory proteins, which nucleate, elongate, cross-link, and sever actin filaments. Both in vivo studies in a wide range of organisms from yeast to metazoans and in vitro studies of purified proteins have helped shape the current understanding of actin dynamics and function. Molecular genetics, genome-wide functional analysis, sophisticated real-time imaging, and ultrastructural studies in concert with biochemical analysis have made yeast an attractive model to understand the actin cytoskeleton, its molecular dynamics, and physiological function. Studies of the yeast actin cytoskeleton have contributed substantially in defining the universal mechanism regulating actin assembly and disassembly in eukaryotes. Here, we review some of the important insights generated by the study of actin cytoskeleton in two important yeast models the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Simulated Microgravity Alters Actin Cytoskeleton and Integrin-Mediated Focal Adhesions of Cultured Human Mesenchymal Stromal Cells

    NASA Astrophysics Data System (ADS)

    Gershovich, P. M.; Gershovic, J. G.; Buravkova, L. B.

    2008-06-01

    Cytoskeletal alterations occur in several cell types including lymphocytes, glial cells, and osteoblasts, during spaceflight and under simulated microgravity (SMG) (3, 4). One potential mechanism for cytoskeletal gravisensitivity is disruption of extracellular matrix (ECM) and integrin interactions. Focal adhesions are specialized sites of cell-matrix interaction composed of integrins and the diversity of focal adhesion-associated cytoplasmic proteins including vinculin, talin, α-actinin, and actin filaments (4, 5). Integrins produce signals essential for proper cellular function, survival and differentiation. Therefore, we investigated the effects of SMG on F-actin cytoskeleton structure, vinculin focal adhesions, expression of some integrin subtypes and cellular adhesion molecules (CAMs) in mesenchymal stem cells derived from human bone marrow (hMSCs). Simulated microgravity was produced by 3D-clinostat (Dutch Space, Netherlands). Staining of actin fibers with TRITC-phalloidin showed reorganization even after 30 minutes of simulated microgravity. The increasing of cells number with abnormal F-actin was observed after subsequent terms of 3D-clinorotation (6, 24, 48, 120 hours). Randomization of gravity vector altered dimensional structure of stress fibers and resulted in remodeling of actin fibers inside the cells. In addition, we observed vinculin redistribution inside the cells after 6 hours and prolonged terms of clinorotation. Tubulin fibers in a contrast with F-actin and vinculin didn't show any reorganization even after long 3Dclinorotation (120 hours). The expression of integrin α2 increased 1,5-6-fold in clinorotated hMSCs. Also we observed decrease in number of VCAM-1-positive cells and changes in expression of ICAM-1. Taken together, our findings indicate that SMG leads to microfilament and adhesion alterations of hMSCs most probably associated with involvement of some integrin subtypes.

  11. WASp-dependent actin cytoskeleton stability at the dendritic cell immunological synapse is required for extensive, functional T cell contacts.

    PubMed

    Malinova, Dessislava; Fritzsche, Marco; Nowosad, Carla R; Armer, Hannah; Munro, Peter M G; Blundell, Michael P; Charras, Guillaume; Tolar, Pavel; Bouma, Gerben; Thrasher, Adrian J

    2016-05-01

    The immunological synapse is a highly structured and molecularly dynamic interface between communicating immune cells. Although the immunological synapse promotes T cell activation by dendritic cells, the specific organization of the immunological synapse on the dendritic cell side in response to T cell engagement is largely unknown. In this study, confocal and electron microscopy techniques were used to investigate the role of dendritic cell actin regulation in immunological synapse formation, stabilization, and function. In the dendritic cell-restricted absence of the Wiskott-Aldrich syndrome protein, an important regulator of the actin cytoskeleton in hematopoietic cells, the immunological synapse contact with T cells occupied a significantly reduced surface area. At a molecular level, the actin network localized to the immunological synapse exhibited reduced stability, in particular, of the actin-related protein-2/3-dependent, short-filament network. This was associated with decreased polarization of dendritic cell-associated ICAM-1 and MHC class II, which was partially dependent on Wiskott-Aldrich syndrome protein phosphorylation. With the use of supported planar lipid bilayers incorporating anti-ICAM-1 and anti-MHC class II antibodies, the dendritic cell actin cytoskeleton organized into recognizable synaptic structures but interestingly, formed Wiskott-Aldrich syndrome protein-dependent podosomes within this area. These findings demonstrate that intrinsic dendritic cell cytoskeletal remodeling is a key regulatory component of normal immunological synapse formation, likely through consolidation of adhesive interaction and modulation of immunological synapse stability. © The Author(s).

  12. Electron Tomography of Cryofixed, Isometrically Contracting Insect Flight Muscle Reveals Novel Actin-Myosin Interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Shenping; Liu, Jun; Reedy, Mary C.

    2010-10-22

    Isometric muscle contraction, where force is generated without muscle shortening, is a molecular traffic jam in which the number of actin-attached motors is maximized and all states of motor action are trapped with consequently high heterogeneity. This heterogeneity is a major limitation to deciphering myosin conformational changes in situ. We used multivariate data analysis to group repeat segments in electron tomograms of isometrically contracting insect flight muscle, mechanically monitored, rapidly frozen, freeze substituted, and thin sectioned. Improved resolution reveals the helical arrangement of F-actin subunits in the thin filament enabling an atomic model to be built into the thin filamentmore » density independent of the myosin. Actin-myosin attachments can now be assigned as weak or strong by their motor domain orientation relative to actin. Myosin attachments were quantified everywhere along the thin filament including troponin. Strong binding myosin attachments are found on only four F-actin subunits, the 'target zone', situated exactly midway between successive troponin complexes. They show an axial lever arm range of 77{sup o}/12.9 nm. The lever arm azimuthal range of strong binding attachments has a highly skewed, 127{sup o} range compared with X-ray crystallographic structures. Two types of weak actin attachments are described. One type, found exclusively in the target zone, appears to represent pre-working-stroke intermediates. The other, which contacts tropomyosin rather than actin, is positioned M-ward of the target zone, i.e. the position toward which thin filaments slide during shortening. We present a model for the weak to strong transition in the myosin ATPase cycle that incorporates azimuthal movements of the motor domain on actin. Stress/strain in the S2 domain may explain azimuthal lever arm changes in the strong binding attachments. The results support previous conclusions that the weak attachments preceding force generation are very

  13. Co-transcriptional nuclear actin dynamics

    PubMed Central

    Percipalle, Piergiorgio

    2013-01-01

    Actin is a key player for nuclear structure and function regulating both chromosome organization and gene activity. In the cell nucleus actin interacts with many different proteins. Among these proteins several studies have identified classical nuclear factors involved in chromatin structure and function, transcription and RNA processing as well as proteins that are normally involved in controlling the actin cytoskeleton. These discoveries have raised the possibility that nuclear actin performs its multi task activities through tight interactions with different sets of proteins. This high degree of promiscuity in the spectrum of protein-to-protein interactions correlates well with the conformational plasticity of actin and the ability to undergo regulated changes in its polymerization states. Several of the factors involved in controlling head-to-tail actin polymerization have been shown to be in the nucleus where they seem to regulate gene activity. By focusing on the multiple tasks performed by actin and actin-binding proteins, possible models of how actin dynamics controls the different phases of the RNA polymerase II transcription cycle are being identified. PMID:23138849

  14. Filopodia-like Actin Cables Position Nuclei in Association with Perinuclear Actin in Drosophila Nurse Cells

    PubMed Central

    Huelsmann, Sven; Ylänne, Jari; Brown, Nicholas H.

    2013-01-01

    Summary Controlling the position of the nucleus is vital for a number of cellular processes from yeast to humans. In Drosophila nurse cells, nuclear positioning is crucial during dumping, when nurse cells contract and expel their contents into the oocyte. We provide evidence that in nurse cells, continuous filopodia-like actin cables, growing from the plasma membrane and extending to the nucleus, achieve nuclear positioning. These actin cables move nuclei away from ring canals. When nurse cells contract, actin cables associate laterally with the nuclei, in some cases inducing nuclear turning so that actin cables become partially wound around the nuclei. Our data suggest that a perinuclear actin meshwork connects actin cables to nuclei via actin-crosslinking proteins such as the filamin Cheerio. We provide a revised model for how actin structures position nuclei in nurse cells, employing evolutionary conserved machinery. PMID:24091012

  15. Application of triggered lightning numerical models to the F106B and extension to other aircraft

    NASA Technical Reports Server (NTRS)

    Ng, Poh H.; Dalke, Roger A.; Horembala, Jim; Rudolph, Terence; Perala, Rodney A.

    1988-01-01

    The goal of the F106B Thunderstorm Research Program is to characterize the lightning environment for aircraft in flight. This report describes the application of numerical electromagnetic models to this problem. Topics include: (1) Extensive application of linear triggered lightning to F106B data; (2) Electrostatic analysis of F106B field mill data; (3) Application of subgrid modeling to F106B nose region, including both static and nonlinear models; (4) Extension of F106B results to other aircraft of varying sizes and shapes; and (5) Application of nonlinear model to interaction of F106B with lightning leader-return stroke event.

  16. Biophysical model of the role of actin remodeling on dendritic spine morphology

    PubMed Central

    Miermans, C. A.; Kusters, R. P. T.; Hoogenraad, C. C.; Storm, C.

    2017-01-01

    Dendritic spines are small membranous structures that protrude from the neuronal dendrite. Each spine contains a synaptic contact site that may connect its parent dendrite to the axons of neighboring neurons. Dendritic spines are markedly distinct in shape and size, and certain types of stimulation prompt spines to evolve, in fairly predictable fashion, from thin nascent morphologies to the mushroom-like shapes associated with mature spines. It is well established that the remodeling of spines is strongly dependent upon the actin cytoskeleton inside the spine. A general framework that details the precise role of actin in directing the transitions between the various spine shapes is lacking. We address this issue, and present a quantitative, model-based scenario for spine plasticity validated using realistic and physiologically relevant parameters. Our model points to a crucial role for the actin cytoskeleton. In the early stages of spine formation, the interplay between the elastic properties of the spine membrane and the protrusive forces generated in the actin cytoskeleton propels the incipient spine. In the maturation stage, actin remodeling in the form of the combined dynamics of branched and bundled actin is required to form mature, mushroom-like spines. Importantly, our model shows that constricting the spine-neck aids in the stabilization of mature spines, thus pointing to a role in stabilization and maintenance for additional factors such as ring-like F-actin structures. Taken together, our model provides unique insights into the fundamental role of actin remodeling and polymerization forces during spine formation and maturation. PMID:28158194

  17. Myosin II Motor Activity in the Lateral Amygdala Is Required for Fear Memory Consolidation

    ERIC Educational Resources Information Center

    Gavin, Cristin F.; Rubio, Maria D.; Young, Erica; Miller, Courtney; Rumbaugh, Gavin

    2012-01-01

    Learning induces dynamic changes to the actin cytoskeleton that are required to support memory formation. However, the molecular mechanisms that mediate filamentous actin (F-actin) dynamics during learning and memory are poorly understood. Myosin II motors are highly expressed in actin-rich growth structures including dendritic spines, and we have…

  18. A temporal model of cofilin regulation and the early peak of actin barbed ends in invasive tumor cells.

    PubMed

    Tania, Nessy; Prosk, Erin; Condeelis, John; Edelstein-Keshet, Leah

    2011-04-20

    Cofilin is an important regulator of actin polymerization, cell migration, and chemotaxis. Recent experimental data on mammary carcinoma cells reveal that stimulation by epidermal growth factor (EGF) generates a pool of active cofilin that results in a peak of actin filament barbed ends on the timescale of 1 min. Here, we present results of a mathematical model for the dynamics of cofilin and its transition between several pools in response to EGF stimulation. We describe the interactions of phospholipase C, membrane lipids (PIP(2)), and cofilin bound to PIP(2) and to F-actin, as well as diffusible cofilin in active G-actin-monomer-bound or phosphorylated states. We consider a simplified representation in which the thin cell edge (lamellipod) and the cell interior are represented by two compartments that are linked by diffusion. We demonstrate that a high basal level of active cofilin stored by binding to PIP(2), as well as the highly enriched local milieu of F-actin at the cell edge, is essential to capture the EGF-induced barbed-end amplification observed experimentally. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  19. Responses to cell loss become restricted as the supporting cells in mammalian vestibular organs grow thick junctional actin bands that develop high stability.

    PubMed

    Burns, Joseph C; Corwin, Jeffrey T

    2014-01-29

    Sensory hair cell (HC) loss is a major cause of permanent hearing and balance impairments for humans and other mammals. Yet, fish, amphibians, reptiles, and birds readily replace HCs and recover from such sensory deficits. It is unknown what prevents replacement in mammals, but cell replacement capacity declines contemporaneously with massive postnatal thickening of F-actin bands at the junctions between vestibular supporting cells (SCs). In non-mammals, SCs can give rise to regenerated HCs, and the bands remain thin even in adults. Here we investigated the stability of the F-actin bands between SCs in ears from chickens and mice and Madin-Darby canine kidney cells. Pharmacological experiments and fluorescence recovery after photobleaching (FRAP) of SC junctions in utricles from mice that express a γ-actin-GFP fusion protein showed that the thickening F-actin bands develop increased resistance to depolymerization and exceptional stability that parallels a sharp decline in the cell replacement capacity of the maturing mammalian ear. The FRAP recovery rate and the mobile fraction of γ-actin-GFP both decreased as the bands thickened with age and became highly stabilized. In utricles from neonatal mice, time-lapse recordings in the vicinity of dying HCs showed that numerous SCs change shape and organize multicellular actin purse strings that reseal the epithelium. In contrast, adult SCs appeared resistant to deformation, with resealing responses limited to just a few neighboring SCs that did not form purse strings. The exceptional stability of the uniquely thick F-actin bands at the junctions of mature SCs may play an important role in restricting dynamic repair responses in mammalian vestibular epithelia.

  20. Force-velocity relationship of single actin filament interacting with immobilised myosin measured by electromagnetic technique.

    PubMed

    Holohan, S-J P; Marston, S B

    2005-06-01

    The effect of applying an external load to actin filaments moving in the in vitro motility assay is studied. Bead-tailed actin filaments were made by polymerising actin onto 2.8 microm diameter Dynabeads conjugated with gelsolin-G actin. These were introduced into a motility cell coated with 100 microg/ml rabbit fast skeletal myosin in the presence of ATP and 0.5% methylcellulose. The motility cell was inserted between the pole-pieces of an electromagnet and the fluorescent beads and filaments were observed. The force-current relationship of the electromagnet was determined from the velocity of free beads in viscous solution and Stokes' equation. The magnet produced up to 6 pN force on the Dynabeads at 1 A. Many bead-tailed actin filaments stuck to the surface, but the beads that did move moved at the same speed as unloaded f-actin in the same cell. Bead-tailed filaments slowed down under an increasing magnetic load, eventually stalled and then slid backward under increasing load before detaching from the surface. Single-filament force-velocity curves were constructed and a stalling force of about 0.6 pN/mm of actin filament estimated.

  1. Actin - Lysozyme Interactions in Model Cystic Fibrosis Sputum

    NASA Astrophysics Data System (ADS)

    Sanders, Lori; Slimmer, Scott; Angelini, Thomas; Wong, Gerard C. L.

    2003-03-01

    Cystic fibrosis sputum is a complex fluid consisting of mucin (a glycoprotein), lysozyme (a cationic polypeptide), water, salt, as well as a high concentration of a number of anionic biological polyelectrolytes such as DNA and F-actin. The interactions governing these components are poorly understood, but may have important clinical consequences. For example, the formation of these biological polyelectrolytes into ordered gel phases may contribute significantly to the observed high viscosity of CF sputum. In this work, a number of model systems containing actin, lysozyme, and KCl were created to simulate CF sputum in vitro. These model systems were studied using small angle x-ray scattering and confocal fluorescence microscopy. Preliminary results will be presented. This work was supported by NSF DMR-0071761, the Beckman Young Investigator Program, and the Cystic Fibrosis Foundation.

  2. Model for adhesion clutch explains biphasic relationship between actin flow and traction at the cell leading edge

    PubMed Central

    Craig, Erin M.; Stricker, Jonathan; Gardel, Margaret L.; Mogilner, Alex

    2015-01-01

    Cell motility relies on the continuous reorganization of a dynamic actin-myosin-adhesion network at the leading edge of the cell, in order to generate protrusion at the leading edge and traction between the cell and its external environment. We analyze experimentally measured spatial distributions of actin flow, traction force, myosin density, and adhesion density in control and pharmacologically perturbed epithelial cells in order to develop a mechanical model of the actin-adhesion-myosin self-organization at the leading edge. A model in which the F-actin network is treated as a viscous gel, and adhesion clutch engagement is strengthened by myosin but weakened by actin flow, can explain the measured molecular distributions and correctly predict the spatial distributions of the actin flow and traction stress. We test the model by comparing its predictions with measurements of the actin flow and traction stress in cells with fast and slow actin polymerization rates. The model predicts how the location of the lamellipodium-lamellum boundary depends on the actin viscosity and adhesion strength. The model further predicts that the location of the lamellipodium-lamellum boundary is not very sensitive to the level of myosin contraction. PMID:25969948

  3. PLCβ3 mediates cortactin interaction with WAVE2 in MCP1-induced actin polymerization and cell migration.

    PubMed

    Janjanam, Jagadeesh; Chandaka, Giri Kumar; Kotla, Sivareddy; Rao, Gadiparthi N

    2015-12-15

    Monocyte chemotactic protein 1 (MCP1) stimulates vascular smooth muscle cell (VSMC) migration in vascular wall remodeling. However, the mechanisms underlying MCP1-induced VSMC migration have not been understood. Here we identify the signaling pathway associated with MCP1-induced human aortic smooth muscle cell (HASMC) migration. MCP1, a G protein-coupled receptor agonist, activates phosphorylation of cortactin on S405 and S418 residues in a time-dependent manner, and inhibition of its phosphorylation attenuates MCP1-induced HASMC G-actin polymerization, F-actin stress fiber formation, and migration. Cortactin phosphorylation on S405/S418 is found to be critical for its interaction with WAVE2, a member of the WASP family of cytoskeletal regulatory proteins required for cell migration. In addition, the MCP1-induced cortactin phosphorylation is dependent on PLCβ3-mediated PKCδ activation, and siRNA-mediated down-regulation of either of these molecules prevents cortactin interaction with WAVE2, affecting G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Upstream, MCP1 activates CCR2 and Gαq/11 in a time-dependent manner, and down-regulation of their levels attenuates MCP1-induced PLCβ3 and PKCδ activation, cortactin phosphorylation, cortactin-WAVE2 interaction, G-actin polymerization, F-actin stress fiber formation, and HASMC migration. Together these findings demonstrate that phosphorylation of cortactin on S405 and S418 residues is required for its interaction with WAVE2 in MCP1-induced cytoskeleton remodeling, facilitating HASMC migration. © 2015 Janjanam et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  4. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana.

    PubMed

    Rosero, Amparo; Žársky, Viktor; Cvrčková, Fatima

    2013-01-01

    Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin-microtubule cross-talk.

  5. Calreticulin attenuated microwave radiation-induced human microvascular endothelial cell injury through promoting actin acetylation and polymerization.

    PubMed

    Xu, Feifei; Wang, You; Tao, Tianqi; Song, Dandan; Liu, Xiuhua

    2017-01-01

    Recent work reveals that actin acetylation modification has been linked to different normal and disease processes and the effects associated with metabolic and environmental stressors. Herein, we highlight the effects of calreticulin on actin acetylation and cell injury induced by microwave radiation in human microvascular endothelial cell (HMEC). HMEC injury was induced by high-power microwave of different power density (10, 30, 60, 100 mW/cm 2 , for 6 min) with or without exogenous recombinant calreticulin. The cell injury was assessed by lactate dehydrogenase (LDH) activity and Cell Counting Kit-8 in culture medium, migration ability, intercellular junction, and cytoskeleton staining in HMEC. Western blotting analysis was used to detected calreticulin expression in cytosol and nucleus and acetylation of globular actin (G-actin). We found that HMEC injury was induced by microwave radiation in a dose-dependent manner. Pretreatment HMEC with calreticulin suppressed microwave radiation-induced LDH leakage and increased cell viability and improved microwave radiation-induced decrease in migration, intercellular junction, and cytoskeleton. Meanwhile, pretreatment HMEC with exogenous calreticulin upregulated the histone acetyltransferase activity and the acetylation level of G-actin and increased the fibrous actin (F-actin)/G-actin ratio. We conclude that exogenous calreticulin protects HMEC against microwave radiation-induced injury through promoting actin acetylation and polymerization.

  6. Oscillatory Increases in Alkalinity Anticipate Growth and May Regulate Actin Dynamics in Pollen Tubes of Lily[W][OA

    PubMed Central

    Lovy-Wheeler, Alenka; Kunkel, Joseph G.; Allwood, Ellen G.; Hussey, Patrick J.; Hepler, Peter K.

    2006-01-01

    Lily (Lilium formosanum or Lilium longiflorum) pollen tubes, microinjected with a low concentration of the pH-sensitive dye bis-carboxyethyl carboxyfluorescein dextran, show oscillating pH changes in their apical domain relative to growth. An increase in pH in the apex precedes the fastest growth velocities, whereas a decline follows growth, suggesting a possible relationship between alkalinity and cell extension. A target for pH may be the actin cytoskeleton, because the apical cortical actin fringe resides in the same region as the alkaline band in lily pollen tubes and elongation requires actin polymerization. A pH-sensitive actin binding protein, actin-depolymerizing factor (ADF), together with actin-interacting protein (AIP) localize to the cortical actin fringe region. Modifying intracellular pH leads to reorganization of the actin cytoskeleton, especially in the apical domain. Acidification causes actin filament destabilization and inhibits growth by 80%. Upon complete growth inhibition, the actin fringe is the first actin cytoskeleton component to disappear. We propose that during normal growth, the pH increase in the alkaline band stimulates the fragmenting activity of ADF/AIP, which in turn generates more sites for actin polymerization. Increased actin polymerization supports faster growth rates and a proton influx, which inactivates ADF/AIP, decreases actin polymerization, and retards growth. As pH stabilizes and increases, the activity of ADF/AIP again increases, repeating the cycle of events. PMID:16920777

  7. Listeria membrane protrusion collapse: Requirement of Cyclophilin A for Listeria cell-to-cell spreading.

    PubMed

    Dhanda, Aaron S; Lulic, Katarina T; Vogl, A Wayne; Mc Gee, Margaret M; Chiu, Robert H; Guttman, Julian A

    2018-05-04

    Listeria generate actin-rich tubular protrusions at the plasma membrane that propel the bacteria into neighbouring cells. The precise molecular mechanisms governing the formation of these protrusions remain poorly defined. Here we demonstrate that the PPIase Cyclophilin A (CypA) is hijacked by Listeria at membrane protrusions used for cell-to-cell spreading. CypA localizes within the F-actin of these structures and is crucial for their proper formation, as in cells depleted of CypA, these extended actin-rich structures are mis-shaped and collapsed due to changes within the F-actin network. The lack of structural integrity within the Listeria membrane protrusions hampers the microbes from spreading from CypA null cells. Our results demonstrate a crucial role for CypA during Listeria infections.

  8. Glutathione depletion triggers actin cytoskeleton changes via actin-binding proteins.

    PubMed

    Zepeta-Flores, Nahum; Valverde, Mahara; Lopez-Saavedra, Alejandro; Rojas, Emilio

    2018-06-04

    The importance of glutathione (GSH) in alternative cellular roles to the canonically proposed, were analyzed in a model unable to synthesize GSH. Gene expression analysis shows that the regulation of the actin cytoskeleton pathway is strongly impacted by the absence of GSH. To test this hypothesis, we evaluate the effect of GSH depletion via buthionine sulfoximine (5 and 12.5 mM) in human neuroblastoma MSN cells. In the present study, 70% of GSH reduction did not induce reactive oxygen species, lipoperoxidation, or cytotoxicity, which enabled us to evaluate the effect of glutathione in the absence of oxidative stress. The cells with decreasing GSH levels acquired morphology changes that depended on the actin cytoskeleton and not on tubulin. We evaluated the expression of three actin-binding proteins: thymosin β4, profilin and gelsolin, showing a reduced expression, both at gene and protein levels at 24 hours of treatment; however, this suppression disappears after 48 hours of treatment. These changes were sufficient to trigger the co-localization of the three proteins towards cytoplasmic projections. Our data confirm that a decrease in GSH in the absence of oxidative stress can transiently inhibit the actin binding proteins and that this stimulus is sufficient to induce changes in cellular morphology via the actin cytoskeleton.

  9. Cytoskeletal actin dynamics shape a ramifying actin network underpinning immunological synapse formation

    PubMed Central

    Fritzsche, Marco; Fernandes, Ricardo A.; Chang, Veronica T.; Colin-York, Huw; Clausen, Mathias P.; Felce, James H.; Galiani, Silvia; Erlenkämper, Christoph; Santos, Ana M.; Heddleston, John M.; Pedroza-Pacheco, Isabela; Waithe, Dominic; de la Serna, Jorge Bernardino; Lagerholm, B. Christoffer; Liu, Tsung-li; Chew, Teng-Leong; Betzig, Eric; Davis, Simon J.; Eggeling, Christian

    2017-01-01

    T cell activation and especially trafficking of T cell receptor microclusters during immunological synapse formation are widely thought to rely on cytoskeletal remodeling. However, important details on the involvement of actin in the latter transport processes are missing. Using a suite of advanced optical microscopes to analyze resting and activated T cells, we show that, following contact formation with activating surfaces, these cells sequentially rearrange their cortical actin across the entire cell, creating a previously unreported ramifying actin network above the immunological synapse. This network shows all the characteristics of an inward-growing transportation network and its dynamics correlating with T cell receptor rearrangements. This actin reorganization is accompanied by an increase in the nanoscale actin meshwork size and the dynamic adjustment of the turnover times and filament lengths of two differently sized filamentous actin populations, wherein formin-mediated long actin filaments support a very flat and stiff contact at the immunological synapse interface. The initiation of immunological synapse formation, as highlighted by calcium release, requires markedly little contact with activating surfaces and no cytoskeletal rearrangements. Our work suggests that incipient signaling in T cells initiates global cytoskeletal rearrangements across the whole cell, including a stiffening process for possibly mechanically supporting contact formation at the immunological synapse interface as well as a central ramified transportation network apparently directed at the consolidation of the contact and the delivery of effector functions. PMID:28691087

  10. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells.

    PubMed

    Reifenberger, Matthew S; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Alli, Ahmed A; Eaton, Douglas C; Alli, Abdel A

    2014-07-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na(+) channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. Copyright © 2014 the American Physiological Society.

  11. Cytochalasin E alters the cytoskeleton and decreases ENaC activity in Xenopus 2F3 cells

    PubMed Central

    Reifenberger, Matthew S.; Yu, Ling; Bao, Hui-Fang; Duke, Billie Jeanne; Liu, Bing-Chen; Ma, He-Ping; Eaton, Douglas C.; Alli, Abdel A.

    2014-01-01

    Numerous reports have linked cytoskeleton-associated proteins with the regulation of epithelial Na+ channel (ENaC) activity. The purpose of the present study was to determine the effect of actin cytoskeleton disruption by cytochalasin E on ENaC activity in Xenopus 2F3 cells. Here, we show that cytochalasin E treatment for 60 min can disrupt the integrity of the actin cytoskeleton in cultured Xenopus 2F3 cells. We show using single channel patch-clamp experiments and measurements of short-circuit current that ENaC activity, but not its density, is altered by cytochalasin E-induced disruption of the cytoskeleton. In nontreated cells, 8 of 33 patches (24%) had no measurable ENaC activity, whereas in cytochalasin E-treated cells, 17 of 32 patches (53%) had no activity. Analysis of those patches that did contain ENaC activity showed channel open probability significantly decreased from 0.081 ± 0.01 in nontreated cells to 0.043 ± 0.01 in cells treated with cytochalasin E. Transepithelial current from mpkCCD cells treated with cytochalasin E, cytochalasin D, or latrunculin B for 60 min was decreased compared with vehicle-treated cells. The subcellular expression of fodrin changed significantly, and several protein elements of the cytoskeleton decreased at least twofold after 60 min of cytochalasin E treatment. Cytochalasin E treatment disrupted the association between ENaC and myristoylated alanine-rich C-kinase substrate. The results presented here suggest disruption of the actin cytoskeleton by different compounds can attenuate ENaC activity through a mechanism involving changes in the subcellular expression of fodrin, several elements of the cytoskeleton, and destabilization of the ENaC-myristoylated alanine-rich C-kinase substrate complex. PMID:24829507

  12. The Nf-actin gene is an important factor for food-cup formation and cytotoxicity of pathogenic Naegleria fowleri.

    PubMed

    Sohn, Hae-Jin; Kim, Jong-Hyun; Shin, Myeong-Heon; Song, Kyoung-Ju; Shin, Ho-Joon

    2010-03-01

    Naegleria fowleri destroys target cells by trogocytosis, a phagocytosis mechanism, and a process of piecemeal ingestion of target cells by food-cups. Phagocytosis is an actin-dependent process that involves polymerization of monomeric G-actin into filamentous F-actin. However, despite the numerous studies concerning phagocytosis, its role in the N. fowleri food-cup formation related with trogocytosis has been poorly reported. In this study, we cloned and characterized an Nf-actin gene to elucidate the role of Nf-actin gene in N. fowleri pathogenesis. The Nf-actin gene is composed of 1,128-bp and produced a 54.1-kDa recombinant protein (Nf-actin). The sequence identity was 82% with nonpathogenic Naegleria gruberi but has no sequence identity with other mammals or human actin gene. Anti-Nf-actin polyclonal antibody was produced in BALB/c mice immunized with recombinant Nf-actin. The Nf-actin was localized on the cytoplasm, pseudopodia, and especially, food-cup structure (amoebastome) in N. fowleri trophozoites using immunofluorescence assay. When N. fowleri co-cultured with Chinese hamster ovary cells, Nf-actin was observed to localize around on phagocytic food-cups. We also observed that N. fowleri treated with cytochalasin D as actin polymerization inhibitor or transfected with antisense oligomer of Nf-actin gene had shown the reduced ability of food-cup formation and in vitro cytotoxicity. Finally, it suggests that Nf-actin plays an important role in phagocytic activity of pathogenic N. fowleri.

  13. Single molecules of the bacterial actin MreB undergo directed treadmilling motion in Caulobacter crescentus.

    PubMed

    Kim, So Yeon; Gitai, Zemer; Kinkhabwala, Anika; Shapiro, Lucy; Moerner, W E

    2006-07-18

    The actin cytoskeleton represents a key regulator of multiple essential cellular functions in both eukaryotes and prokaryotes. In eukaryotes, these functions depend on the orchestrated dynamics of actin filament assembly and disassembly. However, the dynamics of the bacterial actin homolog MreB have yet to be examined in vivo. In this study, we observed the motion of single fluorescent MreB-yellow fluorescent protein fusions in living Caulobacter cells in a background of unlabeled MreB. With time-lapse imaging, polymerized MreB [filamentous MreB (fMreB)] and unpolymerized MreB [globular MreB (gMreB)] monomers could be distinguished: gMreB showed fast motion that was characteristic of Brownian diffusion, whereas the labeled molecules in fMreB displayed slow, directed motion. This directional movement of labeled MreB in the growing polymer provides an indication that, like actin, MreB monomers treadmill through MreB filaments by preferential polymerization at one filament end and depolymerization at the other filament end. From these data, we extract several characteristics of single MreB filaments, including that they are, on average, much shorter than the cell length and that the direction of their polarized assembly seems to be independent of the overall cellular polarity. Thus, MreB, like actin, exhibits treadmilling behavior in vivo, and the long MreB structures that have been visualized in multiple bacterial species seem to represent bundles of short filaments that lack a uniform global polarity.

  14. Elucidating Key Motifs Required for Arp2/3-Dependent and Independent Actin Nucleation by Las17/WASP

    PubMed Central

    Urbanek, Agnieszka N.; Smaczynska-de Rooij, Iwona I.

    2016-01-01

    Actin nucleation is the key rate limiting step in the process of actin polymerization, and tight regulation of this process is critical to ensure actin filaments form only at specific times and at defined regions of the cell. Arp2/3 is a well-characterised protein complex that can promote nucleation of new filaments, though its activity requires additional nucleation promotion factors (NPFs). The best recognized of these factors are the WASP family of proteins that contain binding motifs for both monomeric actin and for Arp2/3. Previously we demonstrated that the yeast WASP homologue, Las17, in addition to activating Arp2/3 can also nucleate actin filaments de novo, independently of Arp2/3. This activity is dependent on its polyproline rich region. Through biochemical and in vivo analysis we have now identified key motifs within the polyproline region that are required for nucleation and elongation of actin filaments, and have addressed the role of the WH2 domain in the context of actin nucleation without Arp2/3. We have also demonstrated that full length Las17 is able to bind liposomes giving rise to the possibility of direct linkage of nascent actin filaments to specific membrane sites to which Las17 has been recruited. Overall, we propose that Las17 functions as the key initiator of de novo actin filament formation at endocytic sites by nucleating, elongating and tethering nascent filaments which then serve as a platform for Arp2/3 recruitment and function. PMID:27637067

  15. Mechanism of Actin-Based Motility

    NASA Astrophysics Data System (ADS)

    Pantaloni, Dominique; Le Clainche, Christophe; Carlier, Marie-France

    2001-05-01

    Spatially controlled polymerization of actin is at the origin of cell motility and is responsible for the formation of cellular protrusions like lamellipodia. The pathogens Listeria monocytogenes and Shigella flexneri, which undergo actin-based propulsion, are acknowledged models of the leading edge of lamellipodia. Actin-based motility of the bacteria or of functionalized microspheres can be reconstituted in vitro from only five pure proteins. Movement results from the regulated site-directed treadmilling of actin filaments, consistent with observations of actin dynamics in living motile cells and with the biochemical properties of the components of the synthetic motility medium.

  16. Filament formation of the Escherichia coli actin-related protein, MreB, in fission yeast.

    PubMed

    Srinivasan, Ramanujam; Mishra, Mithilesh; Murata-Hori, Maki; Balasubramanian, Mohan K

    2007-02-06

    Proteins structurally related to eukaryotic actins have recently been identified in several prokaryotic organisms. These actin-like proteins (MreB and ParM) and the deviant Walker A ATPase (SopA) play a key role in DNA segregation and assemble into polymers in vitro and in vivo. MreB also plays a role in cellular morphogenesis. Whereas the dynamic properties of eukaryotic actins have been extensively characterized, those of bacterial actins are only beginning to emerge. We have established the fission yeast Schizosaccharomyces pombe as a cellular model for the functional analysis of the Escherichia coli actin-related protein MreB. We show that MreB organizes into linear bundles that grow in a symmetrically bidirectional manner at 0.46 +/- 0.03 microm/min, with new monomers and/or oligomers being added along the entire length of the bundle. Organization of linear arrays was dependent on the ATPase activity of MreB, and their alignment along the cellular long axis was achieved by sliding along the cortex of the cylindrical part of the cell. The cell ends appeared to provide a physical barrier for bundle elongation. These experiments provide new insights into the mechanism of assembly and organization of the bacterial actin cytoskeleton.

  17. The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin

    PubMed Central

    Dyson, Jennifer M.; O'Malley, Cindy J.; Becanovic, Jelena; Munday, Adam D.; Berndt, Michael C.; Coghill, Imogen D.; Nandurkar, Harshal H.; Ooms, Lisa M.; Mitchell, Christina A.

    2001-01-01

    SHIP-2 is a phosphoinositidylinositol 3,4,5 trisphosphate (PtdIns[3,4,5]P3) 5-phosphatase that contains an NH2-terminal SH2 domain, a central 5-phosphatase domain, and a COOH-terminal proline-rich domain. SHIP-2 negatively regulates insulin signaling. In unstimulated cells, SHIP-2 localized in a perinuclear cytosolic distribution and at the leading edge of the cell. Endogenous and recombinant SHIP-2 localized to membrane ruffles, which were mediated by the COOH-terminal proline–rich domain. To identify proteins that bind to the SHIP-2 proline–rich domain, yeast two-hybrid screening was performed, which isolated actin-binding protein filamin C. In addition, both filamin A and B specifically interacted with SHIP-2 in this assay. SHIP-2 coimmunoprecipitated with filamin from COS-7 cells, and association between these species did not change after epidermal growth factor stimulation. SHIP-2 colocalized with filamin at Z-lines and the sarcolemma in striated muscle sections and at membrane ruffles in COS-7 cells, although the membrane ruffling response was reduced in cells overexpressing SHIP-2. SHIP-2 membrane ruffle localization was dependent on filamin binding, as SHIP-2 was expressed exclusively in the cytosol of filamin-deficient cells. Recombinant SHIP-2 regulated PtdIns(3,4,5)P3 levels and submembraneous actin at membrane ruffles after growth factor stimulation, dependent on SHIP-2 catalytic activity. Collectively these studies demonstrate that filamin-dependent SHIP-2 localization critically regulates phosphatidylinositol 3 kinase signaling to the actin cytoskeleton. PMID:11739414

  18. Novel roles for actin in mitochondrial fission

    PubMed Central

    Hatch, Anna L.; Gurel, Pinar S.; Higgs, Henry N.

    2014-01-01

    ABSTRACT Mitochondrial dynamics, including fusion, fission and translocation, are crucial to cellular homeostasis, with roles in cellular polarity, stress response and apoptosis. Mitochondrial fission has received particular attention, owing to links with several neurodegenerative diseases. A central player in fission is the cytoplasmic dynamin-related GTPase Drp1, which oligomerizes at the fission site and hydrolyzes GTP to drive membrane ingression. Drp1 recruitment to the outer mitochondrial membrane (OMM) is a key regulatory event, which appears to require a pre-constriction step in which the endoplasmic reticulum (ER) and mitochondrion interact extensively, a process termed ERMD (ER-associated mitochondrial division). It is unclear how ER–mitochondrial contact generates the force required for pre-constriction or why pre-constriction leads to Drp1 recruitment. Recent results, however, show that ERMD might be an actin-based process in mammals that requires the ER-associated formin INF2 upstream of Drp1, and that myosin II and other actin-binding proteins might be involved. In this Commentary, we present a mechanistic model for mitochondrial fission in which actin and myosin contribute in two ways; firstly, by supplying the force for pre-constriction and secondly, by serving as a coincidence detector for Drp1 binding. In addition, we discuss the possibility that multiple fission mechanisms exist in mammals. PMID:25217628

  19. Nck adaptor proteins link Tks5 to invadopodia actin regulation and ECM degradation.

    PubMed

    Stylli, Stanley S; Stacey, T T I; Verhagen, Anne M; Xu, San San; Pass, Ian; Courtneidge, Sara A; Lock, Peter

    2009-08-01

    Invadopodia are actin-based projections enriched with proteases, which invasive cancer cells use to degrade the extracellular matrix (ECM). The Phox homology (PX)-Src homology (SH)3 domain adaptor protein Tks5 (also known as SH3PXD2A) cooperates with Src tyrosine kinase to promote invadopodia formation but the underlying pathway is not clear. Here we show that Src phosphorylates Tks5 at Y557, inducing it to associate directly with the SH3-SH2 domain adaptor proteins Nck1 and Nck2 in invadopodia. Tks5 mutants unable to bind Nck show reduced matrix degradation-promoting activity and recruit actin to invadopodia inefficiently. Conversely, Src- and Tks5-driven matrix proteolysis and actin assembly in invadopodia are enhanced by Nck1 or Nck2 overexpression and inhibited by Nck1 depletion. We show that clustering at the plasma membrane of the Tks5 inter-SH3 region containing Y557 triggers phosphorylation at this site, facilitating Nck recruitment and F-actin assembly. These results identify a Src-Tks5-Nck pathway in ECM-degrading invadopodia that shows parallels with pathways linking several mammalian and pathogen-derived proteins to local actin regulation.

  20. 18F-NaF PET/CT in Extensive Melorheostosis of the Axial and Appendicular Skeleton With Soft-Tissue Involvement.

    PubMed

    Papadakis, Georgios Z; Jha, Smita; Bhattacharyya, Timothy; Millo, Corina; Tu, Tsang-Wei; Bagci, Ulas; Marias, Kostas; Karantanas, Apostolos H; Patronas, Nicholas J

    2017-07-01

    Melorheostosis is a rare, nonhereditary, benign, sclerotic bone dysplasia with no sex predilection, typically occurring in late childhood or early adulthood, which can lead to substantial functional morbidity, depending on the sites of involvement. We report on a patient with extensive melorheostosis in the axial and appendicular skeleton, as well as in the soft tissues, who was evaluated with whole-body F-NaF PET/CT scan. All melorheostotic lesions of the skeleton and of the ossified soft-tissue masses demonstrated intensely increased F-NaF activity, suggesting the application of this modality in assessing and monitoring the disease activity.

  1. Computational model of polarized actin cables and cytokinetic actin ring formation in budding yeast

    PubMed Central

    Tang, Haosu; Bidone, Tamara C.

    2015-01-01

    The budding yeast actin cables and contractile ring are important for polarized growth and division, revealing basic aspects of cytoskeletal function. To study these formin-nucleated structures, we built a 3D computational model with actin filaments represented as beads connected by springs. Polymerization by formins at the bud tip and bud neck, crosslinking, severing, and myosin pulling, are included. Parameter values were estimated from prior experiments. The model generates actin cable structures and dynamics similar to those of wild type and formin deletion mutant cells. Simulations with increased polymerization rate result in long, wavy cables. Simulated pulling by type V myosin stretches actin cables. Increasing the affinity of actin filaments for the bud neck together with reduced myosin V pulling promotes the formation of a bundle of antiparallel filaments at the bud neck, which we suggest as a model for the assembly of actin filaments to the contractile ring. PMID:26538307

  2. Ac102 Participates in Nuclear Actin Polymerization by Modulating BV/ODV-C42 Ubiquitination during Autographa californica Multiple Nucleopolyhedrovirus Infection.

    PubMed

    Zhang, Yongli; Hu, Xue; Mu, Jingfang; Hu, Yangyang; Zhou, Yuan; Zhao, He; Wu, Chunchen; Pei, Rongjuan; Chen, Jizheng; Chen, Xinwen; Wang, Yun

    2018-06-15

    As a virus-encoded actin nucleation promoting factor (NPF), P78/83 induces actin polymerization to assist in Autographa californica multiple nucleopolyhedrovirus (AcMNPV) propagation. According to our previous study, although P78/83 actively undergoes ubiquitin-independent proteasomal degradation, AcMNPV encodes budded virus/occlusion derived virus (BV/ODV)-C42 (C42), which allows P78/83 to function as a stable NPF by inhibiting its degradation during viral infection. However, whether there are other viral proteins involved in regulating P78/83-induced actin polymerization has yet to be determined. In this study, we found that Ac102, an essential viral gene product previously reported to play a key role in mediating the nuclear accumulation of actin during AcMNPV infection, is a novel regulator of P78/83-induced actin polymerization. By characterizing an ac102 knockout bacmid, we demonstrated that Ac102 participates in regulating nuclear actin polymerization as well as the morphogenesis and distribution of capsid structures in the nucleus. These regulatory effects are heavily dependent on an interaction between Ac102 and C42. Further investigation revealed that Ac102 binds to C42 to suppress K48-linked ubiquitination of C42, which decreases C42 proteasomal degradation and consequently allows P78/83 to function as a stable NPF to induce actin polymerization. Thus, Ac102 and C42 form a regulatory cascade to control viral NPF activity, representing a sophisticated mechanism for AcMNPV to orchestrate actin polymerization in both a ubiquitin-dependent and ubiquitin-independent manner. IMPORTANCE Actin is one of the most functionally important proteins in eukaryotic cells. Morphologically, actin can be found in two forms: a monomeric form called globular actin (G-actin) and a polymeric form called filamentous actin (F-actin). G-actin can polymerize to form F-actin, and nucleation promoting factor (NPF) is the initiator of this process. Many viral pathogens harness the

  3. Titin Based Viscosity in Ventricular Physiology: An Integrative Investigation of PEVK-Actin Interactions

    PubMed Central

    Chung, Charles S; Methawasin, Methajit; Nelson, O Lynne; Radke, Michael H; Hidalgo, Carlos G; Gotthardt, Michael; Granzier, Henk L

    2011-01-01

    Viscosity is proposed to modulate diastolic function, but only limited understanding of the source(s) of viscosity exists. In-vitro experiments have shown that the proline-glutamic acid-valine-lysine (PEVK) rich element of titin interacts with actin, causing a viscous force in the sarcomere. It is unknown whether this mechanism contributes to viscosity in-vivo. We tested the hypothesis that PEVK-actin interaction causes cardiac viscosity and is important in-vivo via an integrative physiological study on a unique PEVK-knockout (KO) model. Both skinned cardiomyocytes and papillary muscle fibers were isolated from wildtype (WT) and PEVK KO mice and passive viscosity was examined using stretch-hold-release and sinusoidal analysis. Viscosity was reduced by ~60% in KO myocytes and ~50% in muscle fibers at room temperature. The PEVK-actin interaction was not modulated by temperature or diastolic calcium, but was increased by lattice compression. Stretch-hold and sinusoidal frequency protocols on intact isolated mouse hearts showed a smaller, 30–40% reduction in viscosity, possibly due to actomyosin interactions, and showed that microtubules did not contribute to viscosity. Transmitral Doppler echocardiography similarly revealed a 40% decrease in LV chamber viscosity in the PEVK KO in-vivo. This integrative study is the first to quantify the influence of a specific molecular (PEVK-actin) viscosity in-vivo and shows that PEVK-actin interactions are an important physiological source of viscosity. PMID:21708170

  4. Arp2/3 complex–dependent actin networks constrain myosin II function in driving retrograde actin flow

    PubMed Central

    Yang, Qing; Zhang, Xiao-Feng; Pollard, Thomas D.

    2012-01-01

    The Arp2/3 complex nucleates actin filaments to generate networks at the leading edge of motile cells. Nonmuscle myosin II produces contractile forces involved in driving actin network translocation. We inhibited the Arp2/3 complex and/or myosin II with small molecules to investigate their respective functions in neuronal growth cone actin dynamics. Inhibition of the Arp2/3 complex with CK666 reduced barbed end actin assembly site density at the leading edge, disrupted actin veils, and resulted in veil retraction. Strikingly, retrograde actin flow rates increased with Arp2/3 complex inhibition; however, when myosin II activity was blocked, Arp2/3 complex inhibition now resulted in slowing of retrograde actin flow and veils no longer retracted. Retrograde flow rate increases induced by Arp2/3 complex inhibition were independent of Rho kinase activity. These results provide evidence that, although the Arp2/3 complex and myosin II are spatially segregated, actin networks assembled by the Arp2/3 complex can restrict myosin II–dependent contractility with consequent effects on growth cone motility. PMID:22711700

  5. A Second Las17 Monomeric Actin-Binding Motif Functions in Arp2/3-Dependent Actin Polymerization During Endocytosis

    PubMed Central

    Feliciano, Daniel; Tolsma, Thomas O.; Farrell, Kristen B.; Aradi, Al; Di Pietro, Santiago M.

    2018-01-01

    During clathrin-mediated endocytosis (CME), actin assembly provides force to drive vesicle internalization. Members of the Wiskott–Aldrich syndrome protein (WASP) family play a fundamental role stimulating actin assembly. WASP family proteins contain a WH2 motif that binds globular actin (G-actin) and a central-acidic motif that binds the Arp2/3 complex, thus promoting the formation of branched actin filaments. Yeast WASP (Las17) is the strongest of five factors promoting Arp2/3-dependent actin polymerization during CME. It was suggested that this strong activity may be caused by a putative second G-actin-binding motif in Las17. Here, we describe the in vitro and in vivo characterization of such Las17 G-actin-binding motif (LGM) and its dependence on a group of conserved arginine residues. Using the yeast two-hybrid system, GST-pulldown, fluorescence polarization and pyrene-actin polymerization assays, we show that LGM binds G-actin and is necessary for normal Arp2/3-mediated actin polymerization in vitro. Live-cell fluorescence microscopy experiments demonstrate that LGM is required for normal dynamics of actin polymerization during CME. Further, LGM is necessary for normal dynamics of endocytic machinery components that are recruited at early, intermediate and late stages of endocytosis, as well as for optimal endocytosis of native CME cargo. Both in vitro and in vivo experiments show that LGM has relatively lower potency compared to the previously known Las17 G-actin-binding motif, WH2. These results establish a second G-actin-binding motif in Las17 and advance our knowledge on the mechanism of actin assembly during CME. PMID:25615019

  6. Structural and Biochemical Studies of Actin in Complex with Synthetic Macrolide Tail Analogues

    DOE PAGES

    Pereira, Jose H.; Petchprayoon, Chutima; Hoepker, Alexander C.; ...

    2014-07-22

    The actin filament-binding and filament-severing activities of the aplyronine, kabiramide, and reidispongiolide families of marine macrolides are located within the hydrophobic tail region of the molecule. Two synthetic tail analogues of aplyronine C (SF-01 and GC-04) are shown to bind to G-actin with dissociation constants of (285±33) and (132±13) nM, respectively. The crystal structures of actin complexes with GC-04, SF-01, and kabiramide C reveal a conserved mode of tail binding within the cleft that forms between subdomains (SD) 1 and 3. Our studies support the view that filament severing is brought about by specific binding of the tail region tomore » the SD1/SD3 cleft on the upper protomer, which displaces loop-D from the lower protomer on the same half-filament. With previous studies showing that the GC-04 analogue can sever actin filaments, it is argued that the shorter complex lifetime of tail analogues with F-actin would make them more effective at severing filaments compared with plasma gelsolin. In conclusion, structure-based analyses are used to suggest more reactive or targetable forms of GC-04 and SF-01, which may serve to boost the capacity of the serum actin scavenging system, to generate antibody conjugates against tumor cell antigens, and to decrease sputum viscosity in children with cystic fibrosis.« less

  7. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana

    PubMed Central

    Cvrčková, Fatima

    2013-01-01

    Plant cell growth and morphogenesis depend on remodelling of both actin and microtubule cytoskeletons. AtFH1 (At5g25500), the main housekeeping Arabidopsis formin, is targeted to membranes and known to nucleate and bundle actin. The effect of mutations in AtFH1 on root development and cytoskeletal dynamics was examined. Consistent with primarily actin-related formin function, fh1 mutants showed increased sensitivity to the actin polymerization inhibitor latrunculin B (LatB). LatB-treated mutants had thicker, shorter roots than wild-type plants. Reduced cell elongation and morphological abnormalities were observed in both trichoblasts and atrichoblasts. Fluorescently tagged cytoskeletal markers were used to follow cytoskeletal dynamics in wild-type and mutant plants using confocal microscopy and VAEM (variable-angle epifluorescence microscopy). Mutants exhibited more abundant but less dynamic F-actin bundles and more dynamic microtubules than wild-type seedlings. Treatment of wild-type seedlings with a formin inhibitor, SMIFH2, mimicked the root growth and cell expansion phenotypes and cytoskeletal structure alterations observed in fh1 mutants. The results suggest that besides direct effects on actin organization, the in vivo role of AtFH1 also includes modulation of microtubule dynamics, possibly mediated by actin–microtubule cross-talk. PMID:23202131

  8. Plasmodium falciparum coronin organizes arrays of parallel actin filaments potentially guiding directional motility in invasive malaria parasites.

    PubMed

    Olshina, Maya A; Angrisano, Fiona; Marapana, Danushka S; Riglar, David T; Bane, Kartik; Wong, Wilson; Catimel, Bruno; Yin, Meng-Xin; Holmes, Andrew B; Frischknecht, Friedrich; Kovar, David R; Baum, Jake

    2015-07-18

    Gliding motility in Plasmodium parasites, the aetiological agents of malaria disease, is mediated by an actomyosin motor anchored in the outer pellicle of the motile cell. Effective motility is dependent on a parasite myosin motor and turnover of dynamic parasite actin filaments. To date, however, the basis for directional motility is not known. Whilst myosin is very likely orientated as a result of its anchorage within the parasite, how actin filaments are orientated to facilitate directional force generation remains unexplained. In addition, recent evidence has questioned the linkage between actin filaments and secreted surface antigens leaving the way by which motor force is transmitted to the extracellular milieu unknown. Malaria parasites possess a markedly reduced repertoire of actin regulators, among which few are predicted to interact with filamentous (F)-actin directly. One of these, PF3D7_1251200, shows strong homology to the coronin family of actin-filament binding proteins, herein referred to as PfCoronin. Here the N terminal beta propeller domain of PfCoronin (PfCor-N) was expressed to assess its ability to bind and bundle pre-formed actin filaments by sedimentation assay, total internal reflection fluorescence (TIRF) microscopy and confocal imaging as well as to explore its ability to bind phospholipids. In parallel a tagged PfCoronin line in Plasmodium falciparum was generated to determine the cellular localization of the protein during asexual parasite development and blood-stage merozoite invasion. A combination of biochemical approaches demonstrated that the N-terminal beta-propeller domain of PfCoronin is capable of binding F-actin and facilitating formation of parallel filament bundles. In parasites, PfCoronin is expressed late in the asexual lifecycle and localizes to the pellicle region of invasive merozoites before and during erythrocyte entry. PfCoronin also associates strongly with membranes within the cell, likely mediated by interactions

  9. Fascin regulates nuclear actin during Drosophila oogenesis

    PubMed Central

    Kelpsch, Daniel J.; Groen, Christopher M.; Fagan, Tiffany N.; Sudhir, Sweta; Tootle, Tina L.

    2016-01-01

    Drosophila oogenesis provides a developmental system with which to study nuclear actin. During Stages 5–9, nuclear actin levels are high in the oocyte and exhibit variation within the nurse cells. Cofilin and Profilin, which regulate the nuclear import and export of actin, also localize to the nuclei. Expression of GFP-tagged Actin results in nuclear actin rod formation. These findings indicate that nuclear actin must be tightly regulated during oogenesis. One factor mediating this regulation is Fascin. Overexpression of Fascin enhances nuclear GFP-Actin rod formation, and Fascin colocalizes with the rods. Loss of Fascin reduces, whereas overexpression of Fascin increases, the frequency of nurse cells with high levels of nuclear actin, but neither alters the overall nuclear level of actin within the ovary. These data suggest that Fascin regulates the ability of specific cells to accumulate nuclear actin. Evidence indicates that Fascin positively regulates nuclear actin through Cofilin. Loss of Fascin results in decreased nuclear Cofilin. In addition, Fascin and Cofilin genetically interact, as double heterozygotes exhibit a reduction in the number of nurse cells with high nuclear actin levels. These findings are likely applicable beyond Drosophila follicle development, as the localization and functions of Fascin and the mechanisms regulating nuclear actin are widely conserved. PMID:27535426

  10. Hematopoietic Protein-1 Regulates the Actin Membrane Skeleton and Membrane Stability in Murine Erythrocytes

    PubMed Central

    Chan, Maia M.; Wooden, Jason M.; Tsang, Mark; Gilligan, Diana M.; Hirenallur-S, Dinesh K.; Finney, Greg L.; Rynes, Eric; MacCoss, Michael; Ramirez, Julita A.; Park, Heon; Iritani, Brian M.

    2013-01-01

    Hematopoietic protein-1 (Hem-1) is a hematopoietic cell specific member of the WAVE (Wiskott-Aldrich syndrome verprolin-homologous protein) complex, which regulates filamentous actin (F-actin) polymerization in many cell types including immune cells. However, the roles of Hem-1 and the WAVE complex in erythrocyte biology are not known. In this study, we utilized mice lacking Hem-1 expression due to a non-coding point mutation in the Hem1 gene to show that absence of Hem-1 results in microcytic, hypochromic anemia characterized by abnormally shaped erythrocytes with aberrant F-actin foci and decreased lifespan. We find that Hem-1 and members of the associated WAVE complex are normally expressed in wildtype erythrocyte progenitors and mature erythrocytes. Using mass spectrometry and global proteomics, Coomassie staining, and immunoblotting, we find that the absence of Hem-1 results in decreased representation of essential erythrocyte membrane skeletal proteins including α- and β- spectrin, dematin, p55, adducin, ankyrin, tropomodulin 1, band 3, and band 4.1. Hem1−/− erythrocytes exhibit increased protein kinase C-dependent phosphorylation of adducin at Ser724, which targets adducin family members for dissociation from spectrin and actin, and subsequent proteolysis. Increased adducin Ser724 phosphorylation in Hem1−/− erythrocytes correlates with decreased protein expression of the regulatory subunit of protein phosphatase 2A (PP2A), which is required for PP2A-dependent dephosphorylation of PKC targets. These results reveal a novel, critical role for Hem-1 in the homeostasis of structural proteins required for formation and stability of the actin membrane skeleton in erythrocytes. PMID:23424621

  11. Stromal cell-derived factor 1 regulates the actin organization of chondrocytes and chondrocyte hypertrophy.

    PubMed

    Murata, Koichi; Kitaori, Toshiyuki; Oishi, Shinya; Watanabe, Naoki; Yoshitomi, Hiroyuki; Tanida, Shimei; Ishikawa, Masahiro; Kasahara, Takashi; Shibuya, Hideyuki; Fujii, Nobutaka; Nagasawa, Takashi; Nakamura, Takashi; Ito, Hiromu

    2012-01-01

    Stromal cell-derived factor 1 (SDF-1/CXCL12/PBSF) plays important roles in the biological and physiological functions of haematopoietic and mesenchymal stem cells. This chemokine regulates the formation of multiple organ systems during embryogenesis. However, its roles in skeletal development remain unclear. Here we investigated the roles of SDF-1 in chondrocyte differentiation. We demonstrated that SDF-1 protein was expressed at pre-hypertrophic and hypertrophic chondrocytes in the newly formed endochondral callus of rib fracture as well as in the growth plate of normal mouse tibia by immunohistochemical analysis. Using SDF-1(-/-) mouse embryo, we histologically showed that the total length of the whole humeri of SDF-1(-/-) mice was significantly shorter than that of wild-type mice, which was contributed mainly by shorter hypertrophic and calcified zones in SDF-1(-/-) mice. Actin cytoskeleton of hypertrophic chondrocytes in SDF-1(-/-) mouse humeri showed less F-actin and rounder shape than that of wild-type mice. Primary chondrocytes from SDF-1(-/-) mice showed the enhanced formation of philopodia and loss of F-actin. The administration of SDF-1 to primary chondrocytes of wild-type mice and SDF-1(-/-) mice promoted the formation of actin stress fibers. Organ culture of embryonic metatarsals from SDF-1(-/-) mice showed the growth delay, which was recovered by an exogenous administration of SDF-1. mRNA expression of type X collagen in metatarsals and in primary chondrocytes of SDF-1(-/-) mouse embryo was down-regulated while the administration of SDF-1 to metatarsals recovered. These data suggests that SDF-1 regulates the actin organization and stimulates bone growth by mediating chondrocyte hypertrophy.

  12. Sirtuin1 Maintains Actin Cytoskeleton by Deacetylation of Cortactin in Injured Podocytes

    PubMed Central

    Motonishi, Shuta; Wada, Takehiko; Ishimoto, Yu; Ohse, Takamoto; Matsusaka, Taiji; Kubota, Naoto; Shimizu, Akira; Kadowaki, Takashi; Tobe, Kazuyuki

    2015-01-01

    Recent studies have highlighted the renoprotective effect of sirtuin1 (SIRT1), a deacetylase that contributes to cellular regulation. However, the pathophysiologic role of SIRT1 in podocytes remains unclear. Here, we investigated the function of SIRT1 in podocytes. We first established podocyte-specific Sirt1 knockout (SIRT1pod−/−) mice. We then induced glomerular disease by nephrotoxic serum injection. The increase in urinary albumin excretion and BUN and the severity of glomerular injury were all significantly greater in SIRT1pod−/− mice than in wild-type mice. Western blot analysis and immunofluorescence showed a significant decrease in podocyte-specific proteins in SIRT1pod−/− mice, and electron microscopy showed marked exacerbation of podocyte injury, including actin cytoskeleton derangement in SIRT1pod−/− mice compared with wild-type mice. Protamine sulfate-induced podocyte injury was also exacerbated by podocyte-specific SIRT1 deficiency. In vitro, actin cytoskeleton derangement in H2O2-treated podocytes became prominent when the cells were pretreated with SIRT1 inhibitors. Conversely, this H2O2-induced derangement was ameliorated by SIRT1 activation. Furthermore, SIRT1 activation deacetylated the actin-binding and -polymerizing protein cortactin in the nucleus and facilitated deacetylated cortactin localization in the cytoplasm. Cortactin knockdown or inhibition of the nuclear export of cortactin induced actin cytoskeleton derangement and dissociation of cortactin from F-actin, suggesting the necessity of cytoplasmic cortactin for maintenance of the actin cytoskeleton. Taken together, these findings indicate that SIRT1 protects podocytes and prevents glomerular injury by deacetylating cortactin and thereby, maintaining actin cytoskeleton integrity. PMID:25424328

  13. Early nucleation events in the polymerization of actin, probed by time-resolved small-angle x-ray scattering

    PubMed Central

    Oda, Toshiro; Aihara, Tomoki; Wakabayashi, Katsuzo

    2016-01-01

    Nucleators generating new F-actin filaments play important roles in cell activities. Detailed information concerning the events involved in nucleation of actin alone in vitro is fundamental to understanding these processes, but such information has been hard to come by. We addressed the early process of salt-induced polymerization of actin using the time-resolved synchrotron small-angle X-ray scattering (SAXS). Actin molecules in low salt solution maintain a monomeric state by an electrostatic repulsive force between molecules. On mixing with salts, the repulsive force was rapidly screened, causing an immediate formation of many of non-polymerizable dimers. SAXS kinetic analysis revealed that tetramerization gives the highest energetic barrier to further polymerization, and the major nucleation is the formation of helical tetramers. Filaments start to grow rapidly with the formation of pentamers. These findings suggest an acceleration mechanism of actin assembly by a variety of nucleators in cells. PMID:27775032

  14. Actinic keratosis among seafarers.

    PubMed

    Oldenburg, M; Kuechmeister, B; Ohnemus, U; Baur, X; Moll, I

    2013-11-01

    The aim of this study was to assess the prevalence of UV-induced actinic keratosis and further skin lesions. A newly developed questionnaire about lifetime UV radiation exposure was completed by 514 seafarers. An experienced dermatologist inspected the whole-body skin status of all participants. The questionnaire revealed a pre-employment UV radiation exposure in 104 seafarers, sunbed use in 26 subjects and a median work-related UV radiation exposure at sea of 20 years. The diagnosis of actinic keratoses was made in 94 seafarers and the clinical diagnosis of skin cancers in 48 seafarers (28 basal cell carcinoma, 11 squamous cell carcinoma, 9 malignant melanoma). After age standardisation according to a European reference population, the male European seafarers in this study had a 1.80-fold increased risk of actinic keratosis. Actinic keratoses [OR 1.03 (1.01-1.05)] and squamous cell carcinoma [OR 1.07 (1.01-1.13)] were related to the duration of seafaring time in years. A significant association was also found between actinic keratosis/squamous cell carcinoma and sunlight exposure during home leave [OR 1.67 (1.03-2.81) and OR 6.19 (1.18-32.40)]. Furthermore, the engine room personnel-especially the technical officers-were at higher risk of developing actinic keratosis. Due to the high prevalence of actinic keratosis especially among older seafarers with fair skin, with longer duration of seafaring employment at sea and with higher UV exposure during home leave, more intensive advice should be given on sun protection both at sea and ashore.

  15. Bacterial Actins.

    PubMed

    Izoré, Thierry; van den Ent, Fusinita

    2017-01-01

    A diverse set of protein polymers, structurally related to actin filaments contributes to the organization of bacterial cells as cytomotive or cytoskeletal filaments. This chapter describes actin homologs encoded by bacterial chromosomes. MamK filaments, unique to magnetotactic bacteria, help establishing magnetic biological compasses by interacting with magnetosomes. Magnetosomes are intracellular membrane invaginations containing biomineralized crystals of iron oxide that are positioned by MamK along the long-axis of the cell. FtsA is widespread across bacteria and it is one of the earliest components of the divisome to arrive at midcell, where it anchors the cell division machinery to the membrane. FtsA binds directly to FtsZ filaments and to the membrane through its C-terminus. FtsA shows altered domain architecture when compared to the canonical actin fold. FtsA's subdomain 1C replaces subdomain 1B of other members of the actin family and is located on the opposite side of the molecule. Nevertheless, when FtsA assembles into protofilaments, the protofilament structure is preserved, as subdomain 1C replaces subdomain IB of the following subunit in a canonical actin filament. MreB has an essential role in shape-maintenance of most rod-shaped bacteria. Unusually, MreB filaments assemble from two protofilaments in a flat and antiparallel arrangement. This non-polar architecture implies that both MreB filament ends are structurally identical. MreB filaments bind directly to membranes where they interact with both cytosolic and membrane proteins, thereby forming a key component of the elongasome. MreB filaments in cells are short and dynamic, moving around the long axis of rod-shaped cells, sensing curvature of the membrane and being implicated in peptidoglycan synthesis.

  16. Altering F-Actin Structure of C17.2 Cells using Single-Walled Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Magers, Jay; Gillette, Nathan L. D.; Rotkin, Slava V.; Jedlicka, Sabrina; Pirbhai, Massooma; Lehigh Univesity Collaboration; Susquehanna University Collaboration

    Advancements in nanotechnology have become fundamental to the delivery of drugs to treat various diseases. One such advancement is that of carbon nanotubes and their possible implications on drug delivery. Single-walled carbon nanotubes (SWCNTs) have great potential in the biomedical field as a means to deliver materials such as drugs and genes into the human body due to their size and chemistry. However, the effects of the nanotubes on cells they interact with are still unknown. Previous studies have shown that a low dosage of SWCNTs can affect differentiation of C17.2 neural stem cells. In this experiment, we investigate how the tubes affect the structure of the cells. Specifically, we determined the impact on the cell by examining the actin filament length, protrusions along the edge of the cells, and actin distribution. Presenter/Author 1.

  17. Mesoscopic model of actin-based propulsion.

    PubMed

    Zhu, Jie; Mogilner, Alex

    2012-01-01

    Two theoretical models dominate current understanding of actin-based propulsion: microscopic polymerization ratchet model predicts that growing and writhing actin filaments generate forces and movements, while macroscopic elastic propulsion model suggests that deformation and stress of growing actin gel are responsible for the propulsion. We examine both experimentally and computationally the 2D movement of ellipsoidal beads propelled by actin tails and show that neither of the two models can explain the observed bistability of the orientation of the beads. To explain the data, we develop a 2D hybrid mesoscopic model by reconciling these two models such that individual actin filaments undergoing nucleation, elongation, attachment, detachment and capping are embedded into the boundary of a node-spring viscoelastic network representing the macroscopic actin gel. Stochastic simulations of this 'in silico' actin network show that the combined effects of the macroscopic elastic deformation and microscopic ratchets can explain the observed bistable orientation of the actin-propelled ellipsoidal beads. To test the theory further, we analyze observed distribution of the curvatures of the trajectories and show that the hybrid model's predictions fit the data. Finally, we demonstrate that the model can explain both concave-up and concave-down force-velocity relations for growing actin networks depending on the characteristic time scale and network recoil. To summarize, we propose that both microscopic polymerization ratchets and macroscopic stresses of the deformable actin network are responsible for the force and movement generation.

  18. Polycation induced actin bundles.

    PubMed

    Muhlrad, Andras; Grintsevich, Elena E; Reisler, Emil

    2011-04-01

    Three polycations, polylysine, the polyamine spermine and the polycationic protein lysozyme were used to study the formation, structure, ionic strength sensitivity and dissociation of polycation-induced actin bundles. Bundles form fast, simultaneously with the polymerization of MgATP-G-actins, upon the addition of polycations to solutions of actins at low ionic strength conditions. This indicates that nuclei and/or nascent filaments bundle due to attractive, electrostatic effect of polycations and the neutralization of repulsive interactions of negative charges on actin. The attractive forces between the filaments are strong, as shown by the low (in nanomolar range) critical concentration of their bundling at low ionic strength. These bundles are sensitive to ionic strength and disassemble partially in 100 mM NaCl, but both the dissociation and ionic strength sensitivity can be countered by higher polycation concentrations. Cys374 residues of actin monomers residing on neighboring filaments in the bundles can be cross-linked by the short span (5.4Å) MTS-1 (1,1-methanedyl bismethanethiosulfonate) cross-linker, which indicates a tight packing of filaments in the bundles. The interfilament cross-links, which connect monomers located on oppositely oriented filaments, prevent disassembly of bundles at high ionic strength. Cofilin and the polysaccharide polyanion heparin disassemble lysozyme induced actin bundles more effectively than the polylysine-induced bundles. The actin-lysozyme bundles are pathologically significant as both proteins are found in the pulmonary airways of cystic fibrosis patients. Their bundles contribute to the formation of viscous mucus, which is the main cause of breathing difficulties and eventual death in this disorder. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Identification of the PAK4 interactome reveals PAK4 phosphorylation of N-WASP and promotion of Arp2/3-dependent actin polymerization.

    PubMed

    Zhao, Miao; Spiess, Matthias; Johansson, Henrik J; Olofsson, Helene; Hu, Jianjiang; Lehtiö, Janne; Strömblad, Staffan

    2017-09-29

    p21-activated kinase 4 (PAK4) regulates cell proliferation, apoptosis, cell motility and F-actin remodeling, but the PAK4 interactome has not been systematically analyzed. Here, we comprehensively characterized the human PAK4 interactome by iTRAQ quantitative mass spectrometry of PAK4-immunoprecipitations. Consistent with its multiple reported functions, the PAK4 interactome was enriched in diverse protein networks, including the 14-3-3, proteasome, replication fork, CCT and Arp2/3 complexes. Because PAK4 co-immunoprecipitated most subunits of the Arp2/3 complex, we hypothesized that PAK4 may play a role in Arp2/3 dependent actin regulation. Indeed, we found that PAK4 interacts with and phosphorylates the nucleation promoting factor N-WASP at Ser484/Ser485 and promotes Arp2/3-dependent actin polymerization in vitro. Also, PAK4 ablation in vivo reduced N-WASP Ser484/Ser485 phosphorylation and altered the cellular balance between G- and F-actin as well as the actin organization. By presenting the PAK4 interactome, we here provide a powerful resource for further investigations and as proof of principle, we also indicate a novel mechanism by which PAK4 regulates actin cytoskeleton remodeling.

  20. Yeast Rsp5 ubiquitin ligase affects the actin cytoskeleton in vivo and in vitro.

    PubMed

    Kaminska, Joanna; Spiess, Matthias; Stawiecka-Mirota, Marta; Monkaityte, Rasa; Haguenauer-Tsapis, Rosine; Urban-Grimal, Daniele; Winsor, Barbara; Zoladek, Teresa

    2011-12-01

    Yeast Rsp5 ubiquitin ligase is involved in several cellular processes, including endocytosis. Actin patches are sites of endocytosis, a process involving actin assembly and disassembly. Here we show Rsp5 localization in cortical patches and demonstrate its involvement in actin cytoskeleton organization and dynamics. We found that the Rsp5-F1-GFP2 N-terminal fragment and full length GFP-Rsp5 were recruited to peripheral patches that temporarily co-localized with Abp1-mCherry, a marker of actin patches. Actin cytoskeleton organization was defective in a strain lacking RSP5 or overexpressing RSP5, and this phenotype was accompanied by morphological abnormalities. Overexpression of RSP5 caused hypersensitivity of cells to Latrunculin A, an actin-depolymerizing drug and was toxic to cells lacking Las17, an activator of actin nucleation. Moreover, Rsp5 was required for efficient actin polymerization in a whole cell extract based in vitro system. Rsp5 interacted with Las17 and Las17-binding proteins, Lsb1 and Lsb2, in a GST-Rsp5-WW2/3 pull down assay. Rsp5 ubiquitinated Lsb1-HA and Lsb2-HA without directing them for degradation. Overexpression of RSP5 increased the cellular level of HA-Las17 in wild type and in lsb1Δ lsb2Δ strains in which the basal level of Las17 was already elevated. This increase was prevented in a strain devoid of Las17-binding protein Sla1 which is also a target of Rsp5 ubiquitination. Thus, Rsp5 together with Lsb1, Lsb2 and Sla1 regulate the level of Las17, an important activator of actin polymerization. Copyright © 2011 Elsevier GmbH. All rights reserved.

  1. Inversin modulates the cortical actin network during mitosis

    PubMed Central

    Werner, Michael E.; Ward, Heather H.; Phillips, Carrie L.; Miller, Caroline; Gattone, Vincent H.

    2013-01-01

    Mutations in inversin cause nephronophthisis type II, an autosomal recessive form of polycystic kidney disease associated with situs inversus, dilatation, and kidney cyst formation. Since cyst formation may represent a planar polarity defect, we investigated whether inversin plays a role in cell division. In developing nephrons from inv−/− mouse embryos we observed heterogeneity of nuclear size, increased cell membrane perimeters, cells with double cilia, and increased frequency of binuclear cells. Depletion of inversin by siRNA in cultured mammalian cells leads to an increase in bi- or multinucleated cells. While spindle assembly, contractile ring formation, or furrow ingression appears normal in the absence of inversin, mitotic cell rounding and the underlying rearrangement of the cortical actin cytoskeleton are perturbed. We find that inversin loss causes extensive filopodia formation in both interphase and mitotic cells. These cells also fail to round up in metaphase. The resultant spindle positioning defects lead to asymmetric division plane formation and cell division. In a cell motility assay, fibroblasts isolated from inv−/− mouse embryos migrate at half the speed of wild-type fibroblasts. Together these data suggest that inversin is a regulator of cortical actin required for cell rounding and spindle positioning during mitosis. Furthermore, cell division defects resulting from improper spindle position and perturbed actin organization contribute to altered nephron morphogenesis in the absence of inversin. PMID:23515530

  2. Intrasteric inhibition mediates the interaction of the I/LWEQ module proteins Talin1, Talin2, Hip1, and Hip12 with actin.

    PubMed

    Senetar, Melissa A; Foster, Stanley J; McCann, Richard O

    2004-12-14

    The I/LWEQ module superfamily is a class of actin-binding proteins that contains a conserved C-terminal actin-binding element known as the I/LWEQ module. I/LWEQ module proteins include the metazoan talins, the cellular slime mold talin homologues TalA and TalB, fungal Sla2p, and the metazoan Sla2 homologues Hip1 and Hip12 (Hip1R). These proteins possess a similar modular organization that includes an I/LWEQ module at their C-termini and either a FERM domain or an ENTH domain at their N-termini. As a result of this modular organization, I/LWEQ module proteins may serve as linkers between cellular compartments, such as the plasma membrane and the endocytic machinery, and the actin cytoskeleton. Previous studies have shown that I/LWEQ module proteins bind to F-actin. In this report, we have determined the affinity of the I/LWEQ module proteins Talin1, Talin2, huntingtin interacting protein-1 (Hip1), and the Hip1-related protein (Hip1R/Hip12) for F-actin and identified a conserved structural element that interferes with the actin binding capacity of these proteins. Our data support the hypothesis that the actin-binding determinants in native talin and other I/LWEQ module proteins are cryptic and indicate that the actin binding capacities of Talin1, Talin2, Hip1, and Hip12 are regulated by intrasteric occlusion of primary actin-binding determinants within the I/LWEQ module. We have also found that the I/LWEQ module contains a dimerization motif and stabilizes actin filaments against depolymerization. This activity may contribute to the function of talin in cell adhesion and the roles of Hip1, Hip12 (Hip1R), and Sla2p in endocytosis.

  3. Nuclear positioning by actin cables and perinuclear actin

    PubMed Central

    Huelsmann, Sven; Brown, Nicholas H

    2014-01-01

    Nuclear positioning is an important process during development and homeostasis. Depending on the affected tissue, mislocalized nuclei can alter cellular processes such as polarization, differentiation, or migration and lead ultimately to diseases. Many cells actively control the position of their nucleus using their cytoskeleton and motor proteins. We have recently shown that during Drosophila oogenesis, nurse cells employ cytoplasmic actin cables in association with perinuclear actin to position their nucleus. Here, we briefly summarize our work and discuss why nuclear positioning in nurse cells is specialized but the molecular mechanisms are likely to be more generally used. PMID:24905988

  4. Non-Straub type actin from molluscan catch muscle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelud'ko, Nikolay S., E-mail: sheludko@stl.ru; Girich, Ulyana V.; Lazarev, Stanislav S.

    We have developed a method of obtaining natural actin from smooth muscles of the bivalves on the example of the Crenomytilus grayanus catch muscle. The muscles were previously rigorized to prevent a loss of thin filaments during homogenization and washings. Thin filaments were isolated with a low ionic strength solution in the presence of ATP and sodium pyrophosphate. Surface proteins of thin filaments-tropomyosin, troponin, calponin and some minor actin-binding proteins-were dissociated from actin filaments by increasing the ionic strength to 0.6 M KCL. Natural fibrillar actin obtained in that way depolymerizes easily in low ionic strength solutions commonly used for themore » extraction of Straub-type actin from acetone powder. Purification of natural actin was carried out by the polymerization–depolymerization cycle. The content of inactivated actin remaining in the supernatant is much less than at a similar purification of Straub-type actin. A comparative investigation was performed between the natural mussel actin and the Straub-type rabbit skeletal actin in terms of the key properties of actin: polymerization, activation of Mg-ATPase activity of myosin, and the electron-microscopic structure of actin polymers. -- Highlights: •We developed method of repolymerizable invertebrate smooth muscle actin obtaining. •Our method does not involve use of denaturating agents, which could modify proteins. •Viscosity and polymerization rate of actin, gained that way, is similar to Straub one. •Electron microscopy showed that repolymerized mussel actin is similar to Straub one. •Repolymerized mussel actin has greater ATPase activating capacity, than Straub actin.« less

  5. Hyperosmotically induced volume change and calcium signaling in intervertebral disk cells: the role of the actin cytoskeleton.

    PubMed

    Pritchard, Scott; Erickson, Geoffrey R; Guilak, Farshid

    2002-11-01

    Loading of the spine alters the osmotic environment in the intervertebral disk (IVD) as interstitial water is expressed from the tissue. Cells from the three zones of the IVD, the anulus fibrosus (AF), transition zone (TZ), and nucleus pulposus (NP), respond to osmotic stress with altered biosynthesis through a pathway that may involve calcium (Ca(2+)) as a second messenger. We examined the hypothesis that IVD cells respond to hyperosmotic stress by increasing the concentration of intracellular calcium ([Ca(2+)](i)) through a mechanism involving F-actin. In response to hyperosmotic stress, control cells from all zones decreased in volume and cells from the AF and TZ exhibited [Ca(2+)](i) transients, while cells from the NP did not. Extracellular Ca(2+) was necessary to initiate [Ca(2+)](i) transients. Stabilization of F-actin with phalloidin prevented the Ca(2+) response in AF and TZ cells and decreased the rate of volume change in cells from all zones, coupled with an increase in the elastic moduli and apparent viscosity. Conversely, actin breakdown with cytochalasin D facilitated Ca(2+) signaling while decreasing the elastic moduli and apparent viscosity for NP cells. These results suggest that hyperosmotic stress induces volume change in IVD cells and may initiate [Ca(2+)](i) transients through an actin-dependent mechanism.

  6. Differential effects of LifeAct-GFP and actin-GFP on cell mechanics assessed using micropipette aspiration.

    PubMed

    Sliogeryte, Kristina; Thorpe, Stephen D; Wang, Zhao; Thompson, Clare L; Gavara, Nuria; Knight, Martin M

    2016-01-25

    The actin cytoskeleton forms a dynamic structure involved in many fundamental cellular processes including the control of cell morphology, migration and biomechanics. Recently LifeAct-GFP (green fluorescent protein) has been proposed for visualising actin structure and dynamics in live cells as an alternative to actin-GFP which has been shown to affect cell mechanics. Here we compare the two approaches in terms of their effect on cellular mechanical behaviour. Human mesenchymal stem cells (hMSCs) were analysed using micropipette aspiration and the effective cellular equilibrium and instantaneous moduli calculated using the standard linear solid model. We show that LifeAct-GFP provides clearer visualisation of F-actin organisation and dynamics. Furthermore, LifeAct-GFP does not alter effective cellular mechanical properties whereas actin-GFP expression causes an increase in the cell modulus. Interestingly, LifeAct-GFP expression did produce a small (~10%) increase in the percentage of cells exhibiting aspiration-induced membrane bleb formation, whilst actin-GFP expression reduced blebbing. Further studies examined the influence of LifeAct-GFP in other cell types, namely chondrogenically differentiated hMSCs and murine chondrocytes. LifeAct-GFP also had no effect on the moduli of these non-blebbing cells for which mechanical properties are largely dependent on the actin cortex. In conclusion we show that LifeAct-GFP enables clearer visualisation of actin organisation and dynamics without disruption of the biomechanical properties of either the whole cell or the actin cortex. Thus the study provides new evidence supporting the use of LifeAct-GFP rather than actin-GFP for live cell microscopy and the study of cellular mechanobiology. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  7. Dimerization and actin-bundling properties of villin and its role in the assembly of epithelial cell brush borders.

    PubMed

    George, Sudeep P; Wang, Yaohong; Mathew, Sijo; Srinivasan, Kamalakkannan; Khurana, Seema

    2007-09-07

    Villin is a major actin-bundling protein in the brush border of epithelial cells. In this study we demonstrate for the first time that villin can bundle actin filaments using a single F-actin binding site, because it has the ability to self-associate. Using fluorescence resonance energy transfer, we demonstrate villin self-association in living cells in microvilli and in growth factor-stimulated cells in membrane ruffles and lamellipodia. Using sucrose density gradient, size-exclusion chromatography, and matrix-assisted laser desorption ionization time-of-flight, the majority of villin was identified as a monomer or dimer. Villin dimers were also identified in Caco-2 cells, which endogenously express villin and Madin-Darby canine kidney cells that ectopically express villin. Using truncation mutants of villin, site-directed mutagenesis, and fluorescence resonance energy transfer, an amino-terminal dimerization site was identified that regulated villin self-association in parallel conformation as well as actin bundling by villin. This detailed analysis describes for the first time microvillus assembly by villin, redefines the actin-bundling function of villin, and provides a molecular mechanism for actin bundling by villin, which could have wider implications for other actin cross-linking proteins that share a villin-like headpiece domain. Our study also provides a molecular basis to separate the morphologically distinct actin-severing and actin-bundling properties of villin.

  8. Building bridges: formin1 of Arabidopsis forms a connection between the cell wall and the actin cytoskeleton.

    PubMed

    Martinière, Alexandre; Gayral, Philippe; Hawes, Chris; Runions, John

    2011-04-01

    Actin microfilament (MF) organization and remodelling is critical to cell function. The formin family of actin binding proteins are involved in nucleating MFs in Arabidopsis thaliana. They all contain formin homology domains in the intracellular, C-terminal half of the protein that interacts with MFs. Formins in class I are usually targeted to the plasma membrane and this is true of Formin1 (AtFH1) of A. thaliana. In this study, we have investigated the extracellular domain of AtFH1 and we demonstrate that AtFH1 forms a bridge from the actin cytoskeleton, across the plasma membrane and is anchored within the cell wall. AtFH1 has a large, extracellular domain that is maintained by purifying selection and that contains four conserved regions, one of which is responsible for immobilising the protein. Protein anchoring within the cell wall is reduced in constructs that express truncations of the extracellular domain and in experiments in protoplasts without primary cell walls. The 18 amino acid proline-rich extracellular domain that is responsible for AtFH1 anchoring has homology with cell-wall extensins. We also have shown that anchoring of AtFH1 in the cell wall promotes actin bundling within the cell and that overexpression of AtFH1 has an inhibitory effect on organelle actin-dependant dynamics. Thus, the AtFH1 bridge provides stable anchor points for the actin cytoskeleton and is probably a crucial component of the signalling response and actin-remodelling mechanisms. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  9. Modulation of Sonic hedgehog-induced mouse embryonic stem cell behaviors through E-cadherin expression and Integrin β1-dependent F-actin formation.

    PubMed

    Oh, Ji Young; Suh, Han Na; Choi, Gee Euhn; Lee, Hyun Jik; Jung, Young Hyun; Ko, So Hee; Kim, Jun Sung; Chae, Chang Woo; Lee, Chang-Kyu; Han, Ho Jae

    2018-06-22

    Sonic hedgehog pathway (Shh) plays a central role in maintaining stem cell function and behavior in various processes related to self-renewal and tissue regeneration. However, the therapeutic effect of Shh on mouse embryonic stem cells (mESCs) has not yet been clearly described. Thus, we investigated the effect of Shh on the regulation of mESC behaviors as well as the effect of Shh-pretreated mESCs in skin wound healing. The present study investigated the underlying mechanisms of Shh signaling pathway in growth and motility of mESCs using western blot analysis, cell proliferation assay, and cell migration assay. In addition, the effect of Shh-pretreated mESCs in skin wound healing was determined using mouse excisional wound splinting model. Shh induced adherens junction disruption through proteolysis by activating matrix metallopeptidases. In addition, the release of β-catenin from adherens junctions mediated by Shh led to cell cycle-dependent mESC proliferation. Shh-mediated Gli1 expression led to integrin β1 upregulation, followed by FAK and Src phosphorylation. Furthermore, among the Rho-GTPases, Rac1 and Cdc42 were activated in a Shh-dependent manner while F-actin expression was suppressed by Rac1 and Cdc42 siRNA transfection. Consistent with the in vitro results, skin wound healing assay revealed that Shh-treated mESCs induced angiogenesis and skin wound repair compared to that in Shh-treated mESCs transfected with integrin β1 siRNA in vivo. Our results imply that Shh induces adherens junction disruption and integrin β1-dependent F-actin formation involving FAK/Src and Rac1/Cdc42 signaling pathways in mESCs. This article is protected by copyright. All rights reserved.

  10. Thymosin β4 has a major role in dermal burn wound healing that involves actin cytoskeletal remodelling via heat-shock protein 70.

    PubMed

    Kim, Sokho; Kwon, Jungkee

    2017-04-01

    Rapid vascular remodelling of damaged dermal tissue is required to heal burn wounds. Thymosin β4 (Tβ4) is a growth factor that has been shown to promote angiogenesis and dermal wound repair. However, the underlying mechanisms based on Tβ4 function have not yet been fully investigated. In the present study, we investigated how Tβ4 improves dermal burn wound healing via actin cytoskeletal remodelling and the action of heat-shock proteins (HSPs), which are a vital set of chaperone proteins that respond to heat shock. Our in vitro results achieved with the use of human umbilical vein endothelial cells (HUVECs) revealed a possible signal between Tβ4 and HSP70. Moreover, we confirmed that remodelling of filamentous actin (F-actin) was regulated by Tβ4-induced HSP70 in HUVECs. Based on these in vitro results, we confirmed the healing effects of Tβ4 in an adapted dermal burn wound in vivo model. Tβ4 improved wound-healing markers, such as wound closure and vascularization. Moreover, Tβ4 maintained the long-term expression of HSP70, which is associated with F-actin regulation during the wound-healing period. These results suggest that an association between Tβ4 and HSP70 is responsible for the healing of burn wounds, and that this association may regulate F-actin remodelling. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  11. Molecular recognition of the Tes LIM2-3 domains by the actin-related protein Arp7A.

    PubMed

    Boëda, Batiste; Knowles, Phillip P; Briggs, David C; Murray-Rust, Judith; Soriano, Erika; Garvalov, Boyan K; McDonald, Neil Q; Way, Michael

    2011-04-01

    Actin-related proteins (Arps) are a highly conserved family of proteins that have extensive sequence and structural similarity to actin. All characterized Arps are components of large multimeric complexes associated with chromatin or the cytoskeleton. In addition, the human genome encodes five conserved but largely uncharacterized "orphan" Arps, which appear to be mostly testis-specific. Here we show that Arp7A, which has 43% sequence identity with β-actin, forms a complex with the cytoskeletal proteins Tes and Mena in the subacrosomal layer of round spermatids. The N-terminal 65-residue extension to the actin-like fold of Arp7A interacts directly with Tes. The crystal structure of the 1-65(Arp7A)·LIM2-3(Tes)·EVH1(Mena) complex reveals that residues 28-49 of Arp7A contact the LIM2-3 domains of Tes. Two alanine residues from Arp7A that occupy equivalent apolar pockets in both LIM domains as well as an intervening GPAK linker that binds the LIM2-3 junction are critical for the Arp7A-Tes interaction. Equivalent occupied apolar pockets are also seen in the tandem LIM domain structures of LMO4 and Lhx3 bound to unrelated ligands. Our results indicate that apolar pocket interactions are a common feature of tandem LIM domain interactions, but ligand specificity is principally determined by the linker sequence.

  12. Bacterial DNA segregation dynamics mediated by the polymerizing protein ParF.

    PubMed

    Barillà, Daniela; Rosenberg, Mark F; Nobbmann, Ulf; Hayes, Finbarr

    2005-04-06

    Prokaryotic DNA segregation most commonly involves members of the Walker-type ParA superfamily. Here we show that the ParF partition protein specified by the TP228 plasmid is a ParA ATPase that assembles into extensive filaments in vitro. Polymerization is potentiated by ATP binding and does not require nucleotide hydrolysis. Analysis of mutations in conserved residues of the Walker A motif established a functional coupling between filament dynamics and DNA partitioning. The partner partition protein ParG plays two separable roles in the ParF polymerization process. ParF is unrelated to prokaryotic polymerizing proteins of the actin or tubulin families, but is a homologue of the MinD cell division protein, which also assembles into filaments. The ultrastructures of the ParF and MinD polymers are remarkably similar. This points to an evolutionary parallel between DNA segregation and cytokinesis in prokaryotic cells, and reveals a potential molecular mechanism for plasmid and chromosome segregation mediated by the ubiquitous ParA-type proteins.

  13. Electrostatic interactions between the Bni1p formin FH2 domain and actin influence actin filament nucleation

    DOE PAGES

    Baker, Joseph L.; Courtemanche, Naomi; Parton, Daniel L.; ...

    2014-12-04

    Formins catalyze nucleation and growth of actin filaments. In this paper, we study the structure and interactions of actin with the FH2 domain of budding yeast formin Bni1p. We built an all-atom model of the formin dimer on an Oda actin filament 7-mer and studied structural relaxation and interprotein interactions by molecular dynamics simulations. These simulations produced a refined model for the FH2 dimer associated with the barbed end of the filament and showed electrostatic interactions between the formin knob and actin target-binding cleft. Mutations of two formin residues contributing to these interactions (R1423N, K1467L, or both) reduced the interactionmore » energies between the proteins, and in coarse-grained simulations, the formin lost more interprotein contacts with an actin dimer than with an actin 7-mer. Finally, biochemical experiments confirmed a strong influence of these mutations on Bni1p-mediated actin filament nucleation, but not elongation, suggesting that different interactions contribute to these two functions of formins.« less

  14. The actin-related p41ARC subunit contributes to p21-activated kinase-1 (PAK1)-mediated glucose uptake into skeletal muscle cells.

    PubMed

    Tunduguru, Ragadeepthi; Zhang, Jing; Aslamy, Arianne; Salunkhe, Vishal A; Brozinick, Joseph T; Elmendorf, Jeffrey S; Thurmond, Debbie C

    2017-11-17

    Defects in translocation of the glucose transporter GLUT4 are associated with peripheral insulin resistance, preclinical diabetes, and progression to type 2 diabetes. GLUT4 recruitment to the plasma membrane of skeletal muscle cells requires F-actin remodeling. Insulin signaling in muscle requires p21-activated kinase-1 (PAK1), whose downstream signaling triggers actin remodeling, which promotes GLUT4 vesicle translocation and glucose uptake into skeletal muscle cells. Actin remodeling is a cyclic process, and although PAK1 is known to initiate changes to the cortical actin-binding protein cofilin to stimulate the depolymerizing arm of the cycle, how PAK1 might trigger the polymerizing arm of the cycle remains unresolved. Toward this, we investigated whether PAK1 contributes to the mechanisms involving the actin-binding and -polymerizing proteins neural Wiskott-Aldrich syndrome protein (N-WASP), cortactin, and ARP2/3 subunits. We found that the actin-polymerizing ARP2/3 subunit p41ARC is a PAK1 substrate in skeletal muscle cells. Moreover, co-immunoprecipitation experiments revealed that insulin stimulates p41ARC phosphorylation and increases its association with N-WASP coordinately with the associations of N-WASP with cortactin and actin. Importantly, all of these associations were ablated by the PAK inhibitor IPA3, suggesting that PAK1 activation lies upstream of these actin-polymerizing complexes. Using the N-WASP inhibitor wiskostatin, we further demonstrated that N-WASP is required for localized F-actin polymerization, GLUT4 vesicle translocation, and glucose uptake. These results expand the model of insulin-stimulated glucose uptake in skeletal muscle cells by implicating p41ARC as a new component of the insulin-signaling cascade and connecting PAK1 signaling to N-WASP-cortactin-mediated actin polymerization and GLUT4 vesicle translocation. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. [Alterations in expression of F-actin and DNA of fluid shear stress treated-mesenchymal stem cells affected by titanium particles loading].

    PubMed

    Wu, Jiang; Chen, Huiqing; Cao, Hui; Zhou, Jiang; Zhang, Li; Sung, K L

    2004-02-01

    Particulate wear debris within the bone-prosthesis microenvironment generated by normal wear and corrosion of orthopaedic implants is considered to be one of the main factors responsible for chronic aseptic inflammation and development of osteolysis in the long-term instability and failure of total joint arthroplasty. While the decrease in bone volume caused by wear debris-induced osteolysis could have been compensated by enough new bone matrix secreted by osteoblasts. Actually, the normal osteoblastic population depend on the regular differentiation and proliferation of their progenitor cells--bone marrow mesenchymal stem cells (MSCs). This study aims to investigate the potential mechanism for the rat MSCs cytotoxicity upon exposure to Titanium (Ti) particles. Rat mesenchymal stem cells (rMSCs) isolated from 3-month-old male Sprague-Dawley rats by Percoll intensity gradient method were cultured in DMEM medium (low glucose) supplemented with 10% fetal bovine serum, 100 U/ml penicillin, and 100 micrograms/ml streptomycin in a humidified incubator with 5% CO2 at 37 degrees C. In order to gain the homogenous cell population, rMSCs were passaged to 3-4th subpassage which were used in all the experiment groups. Then rMSCs were seeded in the 6 well culture plates and exposed to three different circle diameters (mean size, TD1: 0.9 micron, TD2: 2.7 microns, TD3: 6.9 microns) with three different concentrations (0.1 wt%, 0.05 wt%, 0.01 wt%, W/V) at different durations (8 h, 16 h, 24 h,), respectively. Unexposed rMSCs were used as control. In the given periods of Ti loading, fluid shear stress (FSS) was applied to each group cells. The expression of F-actin and DNA of the rMSCs at the indicated time were determined with laser confocal scanning microscopy and image analysis software. The results showed that there was up-regulation expression of F-actin in the rMSCs without Ti particles loading but in the presence of FSS. Ti particles loading can suppress the expression of F

  16. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy.

    PubMed

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-30

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells.

  17. Modulation of actin dynamics as potential macrophage subtype-targeting anti-tumour strategy

    PubMed Central

    Pergola, Carlo; Schubert, Katrin; Pace, Simona; Ziereisen, Jana; Nikels, Felix; Scherer, Olga; Hüttel, Stephan; Zahler, Stefan; Vollmar, Angelika M.; Weinigel, Christina; Rummler, Silke; Müller, Rolf; Raasch, Martin; Mosig, Alexander; Koeberle, Andreas; Werz, Oliver

    2017-01-01

    Tumour-associated macrophages mainly comprise immunosuppressive M2 phenotypes that promote tumour progression besides anti-tumoural M1 subsets. Selective depletion or reprogramming of M2 may represent an innovative anti-cancer strategy. The actin cytoskeleton is central for cellular homeostasis and is targeted for anti-cancer chemotherapy. Here, we show that targeting G-actin nucleation using chondramide A (ChA) predominantly depletes human M2 while promoting the tumour-suppressive M1 phenotype. ChA reduced the viability of M2, with minor effects on M1, but increased tumour necrosis factor (TNF)α release from M1. Interestingly, ChA caused rapid disruption of dynamic F-actin filaments and polymerization of G-actin, followed by reduction of cell size, binucleation and cell division, without cellular collapse. In M1, but not in M2, ChA caused marked activation of SAPK/JNK and NFκB, with slight or no effects on Akt, STAT-1/-3, ERK-1/2, and p38 MAPK, seemingly accounting for the better survival of M1 and TNFα secretion. In a microfluidically-supported human tumour biochip model, circulating ChA-treated M1 markedly reduced tumour cell viability through enhanced release of TNFα. Together, ChA may cause an anti-tumoural microenvironment by depletion of M2 and activation of M1, suggesting induction of G-actin nucleation as potential strategy to target tumour-associated macrophages in addition to neoplastic cells. PMID:28134280

  18. Sumoylated α-skeletal muscle actin in the skeletal muscle of adult rats.

    PubMed

    Uda, Munehiro; Kawasaki, Hiroaki; Iizumi, Kyoichi; Shigenaga, Ayako; Baba, Takeshi; Naito, Hisashi; Yoshioka, Toshitada; Yamakura, Fumiyuki

    2015-11-01

    Skeletal muscles are composed of two major muscle fiber types: slow-twitch oxidative fibers and fast-twitch glycolytic fibers. The proteins in these muscle fibers are known to differ in their expression, relative abundance, and post-translational modifications. In this study, we report a previously unreported post-translational modification of α-skeletal muscle actin in the skeletal muscles of adult male F344 rats in vivo. Using two-dimensional electrophoresis (2D-PAGE), we first examined the differences in the protein expression profiles between the soleus and plantaris muscles. We found higher intensity protein spots at approximately 60 kDa and pH 9 on 2D-PAGE for the soleus muscle compared with the plantaris muscle. These spots were identified as α-skeletal muscle actin by liquid chromatography-nanoelectrospray ionization-tandem mass spectrometry and western blot analyses. In addition, we found that the 60 kDa α-skeletal muscle actin is modified by small ubiquitin-like modifier (SUMO) 1, using 2D-PAGE and western blot analyses. Furthermore, we found that α-skeletal muscle actin with larger molecular weight was localized in the nuclear and cytosol of the skeletal muscle, but not in the myofibrillar fraction by the combination of subcellular fractionation and western blot analyses. These results suggest that α-skeletal muscle actin is modified by SUMO-1 in the skeletal muscles, localized in nuclear and cytosolic fractions, and the extent of this modification is much higher in the slow muscles than in the fast muscles. This is the first study to show the presence of SUMOylated actin in animal tissues.

  19. Reverse actin sliding triggers strong myosin binding that moves tropomyosin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bekyarova, T.I.; Reedy, M.C.; Baumann, B.A.J.

    2008-09-03

    Actin/myosin interactions in vertebrate striated muscles are believed to be regulated by the 'steric blocking' mechanism whereby the binding of calcium to the troponin complex allows tropomyosin (TM) to change position on actin, acting as a molecular switch that blocks or allows myosin heads to interact with actin. Movement of TM during activation is initiated by interaction of Ca{sup 2+} with troponin, then completed by further displacement by strong binding cross-bridges. We report x-ray evidence that TM in insect flight muscle (IFM) moves in a manner consistent with the steric blocking mechanism. We find that both isometric contraction, at highmore » [Ca{sup 2+}], and stretch activation, at lower [Ca{sup 2+}], develop similarly high x-ray intensities on the IFM fourth actin layer line because of TM movement, coinciding with x-ray signals of strong-binding cross-bridge attachment to helically favored 'actin target zones.' Vanadate (Vi), a phosphate analog that inhibits active cross-bridge cycling, abolishes all active force in IFM, allowing high [Ca{sup 2+}] to elicit initial TM movement without cross-bridge attachment or other changes from relaxed structure. However, when stretched in high [Ca{sup 2+}], Vi-'paralyzed' fibers produce force substantially above passive response at pCa {approx} 9, concurrent with full conversion from resting to active x-ray pattern, including x-ray signals of cross-bridge strong-binding and TM movement. This argues that myosin heads can be recruited as strong-binding 'brakes' by backward-sliding, calcium-activated thin filaments, and are as effective in moving TM as actively force-producing cross-bridges. Such recruitment of myosin as brakes may be the major mechanism resisting extension during lengthening contractions.« less

  20. The Dictyostelium Carmil Protein Links Capping Protein and the Arp2/3 Complex to Type I Myosins through Their Sh3 Domains

    PubMed Central

    Jung, Goeh; Remmert, Kirsten; Wu, Xufeng; Volosky, Joanne M.; III, John A. Hammer

    2001-01-01

    Fusion proteins containing the Src homology (SH)3 domains of Dictyostelium myosin IB (myoB) and IC (myoC) bind a 116-kD protein (p116), plus nine other proteins identified as the seven member Arp2/3 complex, and the α and β subunits of capping protein. Immunoprecipitation reactions indicate that myoB and myoC form a complex with p116, Arp2/3, and capping protein in vivo, that the myosins bind to p116 through their SH3 domains, and that capping protein and the Arp2/3 complex in turn bind to p116. Cloning of p116 reveals a protein dominated by leucine-rich repeats and proline-rich sequences, and indicates that it is a homologue of Acan 125. Studies using p116 fusion proteins confirm the location of the myosin I SH3 domain binding site, implicate NH2-terminal sequences in binding capping protein, and show that a region containing a short sequence found in several G-actin binding proteins, as well as an acidic stretch, can activate Arp2/3-dependent actin nucleation. p116 localizes along with the Arp2/3 complex, myoB, and myoC in dynamic actin-rich cellular extensions, including the leading edge of cells undergoing chemotactic migration, and dorsal, cup-like, macropinocytic extensions. Cells lacking p116 exhibit a striking defect in the formation of these macropinocytic structures, a concomitant reduction in the rate of fluid phase pinocytosis, a significant decrease in the efficiency of chemotactic aggregation, and a decrease in cellular F-actin content. These results identify a complex that links key players in the nucleation and termination of actin filament assembly with a ubiquitous barbed end–directed motor, indicate that the protein responsible for the formation of this complex is physiologically important, and suggest that previously reported myosin I mutant phenotypes in Dictyostelium may be due, at least in part, to defects in the assembly state of actin. We propose that p116 and Acan 125, along with homologues identified in Caenorhabditis elegans

  1. A systems-biology approach to yeast actin cables.

    PubMed

    Drake, Tyler; Yusuf, Eddy; Vavylonis, Dimitrios

    2012-01-01

    We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin-cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin-monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions - among actin-monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins - and the emergence of cell-scale physical form as embodied by the actin cables themselves.

  2. Stochastic Severing of Actin Filaments by Actin Depolymerizing Factor/Cofilin Controls the Emergence of a Steady Dynamical Regime

    PubMed Central

    Roland, Jeremy; Berro, Julien; Michelot, Alphée; Blanchoin, Laurent; Martiel, Jean-Louis

    2008-01-01

    Actin dynamics (i.e., polymerization/depolymerization) powers a large number of cellular processes. However, a great deal remains to be learned to explain the rapid actin filament turnover observed in vivo. Here, we developed a minimal kinetic model that describes key details of actin filament dynamics in the presence of actin depolymerizing factor (ADF)/cofilin. We limited the molecular mechanism to 1), the spontaneous growth of filaments by polymerization of actin monomers, 2), the ageing of actin subunits in filaments, 3), the cooperative binding of ADF/cofilin to actin filament subunits, and 4), filament severing by ADF/cofilin. First, from numerical simulations and mathematical analysis, we found that the average filament length, 〈L〉, is controlled by the concentration of actin monomers (power law: 5/6) and ADF/cofilin (power law: −2/3). We also showed that the average subunit residence time inside the filament, 〈T〉, depends on the actin monomer (power law: −1/6) and ADF/cofilin (power law: −2/3) concentrations. In addition, filament length fluctuations are ∼20% of the average filament length. Moreover, ADF/cofilin fragmentation while modulating filament length keeps filaments in a high molar ratio of ATP- or ADP-Pi versus ADP-bound subunits. This latter property has a protective effect against a too high severing activity of ADF/cofilin. We propose that the activity of ADF/cofilin in vivo is under the control of an affinity gradient that builds up dynamically along growing actin filaments. Our analysis shows that ADF/cofilin regulation maintains actin filaments in a highly dynamical state compatible with the cytoskeleton dynamics observed in vivo. PMID:18065447

  3. Geometrical and Mechanical Properties Control Actin Filament Organization

    PubMed Central

    Ennomani, Hajer; Théry, Manuel; Nedelec, Francois; Blanchoin, Laurent

    2015-01-01

    The different actin structures governing eukaryotic cell shape and movement are not only determined by the properties of the actin filaments and associated proteins, but also by geometrical constraints. We recently demonstrated that limiting nucleation to specific regions was sufficient to obtain actin networks with different organization. To further investigate how spatially constrained actin nucleation determines the emergent actin organization, we performed detailed simulations of the actin filament system using Cytosim. We first calibrated the steric interaction between filaments, by matching, in simulations and experiments, the bundled actin organization observed with a rectangular bar of nucleating factor. We then studied the overall organization of actin filaments generated by more complex pattern geometries used experimentally. We found that the fraction of parallel versus antiparallel bundles is determined by the mechanical properties of actin filament or bundles and the efficiency of nucleation. Thus nucleation geometry, actin filaments local interactions, bundle rigidity, and nucleation efficiency are the key parameters controlling the emergent actin architecture. We finally simulated more complex nucleation patterns and performed the corresponding experiments to confirm the predictive capabilities of the model. PMID:26016478

  4. Boolean gates on actin filaments

    NASA Astrophysics Data System (ADS)

    Siccardi, Stefano; Tuszynski, Jack A.; Adamatzky, Andrew

    2016-01-01

    Actin is a globular protein which forms long polar filaments in the eukaryotic cytoskeleton. Actin networks play a key role in cell mechanics and cell motility. They have also been implicated in information transmission and processing, memory and learning in neuronal cells. The actin filaments have been shown to support propagation of voltage pulses. Here we apply a coupled nonlinear transmission line model of actin filaments to study interactions between voltage pulses. To represent digital information we assign a logical TRUTH value to the presence of a voltage pulse in a given location of the actin filament, and FALSE to the pulse's absence, so that information flows along the filament with pulse transmission. When two pulses, representing Boolean values of input variables, interact, then they can facilitate or inhibit further propagation of each other. We explore this phenomenon to construct Boolean logical gates and a one-bit half-adder with interacting voltage pulses. We discuss implications of these findings on cellular process and technological applications.

  5. Actin filaments-A target for redox regulation.

    PubMed

    Wilson, Carlos; Terman, Jonathan R; González-Billault, Christian; Ahmed, Giasuddin

    2016-10-01

    Actin and its ability to polymerize into dynamic filaments is critical for the form and function of cells throughout the body. While multiple proteins have been characterized as affecting actin dynamics through noncovalent means, actin and its protein regulators are also susceptible to covalent modifications of their amino acid residues. In this regard, oxidation-reduction (Redox) intermediates have emerged as key modulators of the actin cytoskeleton with multiple different effects on cellular form and function. Here, we review work implicating Redox intermediates in post-translationally altering actin and discuss what is known regarding how these alterations affect the properties of actin. We also focus on two of the best characterized enzymatic sources of these Redox intermediates-the NADPH oxidase NOX and the flavoprotein monooxygenase MICAL-and detail how they have both been identified as altering actin, but share little similarity and employ different means to regulate actin dynamics. Finally, we discuss the role of these enzymes and redox signaling in regulating the actin cytoskeleton in vivo and highlight their importance for neuronal form and function in health and disease. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  6. Escherichia coli cytotoxic necrotizing factor 1: evidence for induction of actin assembly by constitutive activation of the p21 Rho GTPase.

    PubMed Central

    Fiorentini, C; Donelli, G; Matarrese, P; Fabbri, A; Paradisi, S; Boquet, P

    1995-01-01

    Cytotoxic necrotizing factor type 1 (CNF1) induces in HEp-2 cells an increase in F-actin structures, which was detectable by fluorescence-activated cell sorter analysis 24 h after addition of this factor to the culture medium. Increase in F-actin was correlated with the augmentation of both the cell volume and the total cell actin content. Actin assembly-disassembly is controlled by small GTP-binding proteins of the Rho family, which have been reported recently to be modified by CNF1 treatment. Clostridium difficile toxin B and Clostridium botulinum exoenzyme C3, both known to act on the Rho GTPase, were used as biological tools to study the effect of CNF1 on this protein. CNF1 incubated before, during, or after exposure to the chimeric toxin C3B (which is the product of a genetic fusion between the DNA coding for C3 and the one coding for the B fragment of diphtheria toxin) protected HEp-2 cells from the disruption of F-actin structures caused by inactivation of the Rho GTPase through its ADP-ribosylation. On the other hand, C. difficile toxin B cytopathic effect was not observed upon preincubation of cells with CNF1. Toxins acting through a Rho-independent mechanism, such as cytochalasin D and Clostridium spiroforme iota-like toxin, could not be modified in their cellular activities by CNF1 treatment. All of our results suggest that CNF1 modifies the Rho molecule, thus probably protecting this GTPase from further bacterial toxin modification. PMID:7558302

  7. Escherichia coli cytotoxic necrotizing factor 1: evidence for induction of actin assembly by constitutive activation of the p21 Rho GTPase.

    PubMed

    Fiorentini, C; Donelli, G; Matarrese, P; Fabbri, A; Paradisi, S; Boquet, P

    1995-10-01

    Cytotoxic necrotizing factor type 1 (CNF1) induces in HEp-2 cells an increase in F-actin structures, which was detectable by fluorescence-activated cell sorter analysis 24 h after addition of this factor to the culture medium. Increase in F-actin was correlated with the augmentation of both the cell volume and the total cell actin content. Actin assembly-disassembly is controlled by small GTP-binding proteins of the Rho family, which have been reported recently to be modified by CNF1 treatment. Clostridium difficile toxin B and Clostridium botulinum exoenzyme C3, both known to act on the Rho GTPase, were used as biological tools to study the effect of CNF1 on this protein. CNF1 incubated before, during, or after exposure to the chimeric toxin C3B (which is the product of a genetic fusion between the DNA coding for C3 and the one coding for the B fragment of diphtheria toxin) protected HEp-2 cells from the disruption of F-actin structures caused by inactivation of the Rho GTPase through its ADP-ribosylation. On the other hand, C. difficile toxin B cytopathic effect was not observed upon preincubation of cells with CNF1. Toxins acting through a Rho-independent mechanism, such as cytochalasin D and Clostridium spiroforme iota-like toxin, could not be modified in their cellular activities by CNF1 treatment. All of our results suggest that CNF1 modifies the Rho molecule, thus probably protecting this GTPase from further bacterial toxin modification.

  8. A Systems-Biology Approach to Yeast Actin Cables

    PubMed Central

    Drake, Tyler; Yusuf, Eddy; Vavylonis, Dimitrios

    2011-01-01

    We focus on actin cables in yeast as a model system for understanding cytoskeletal organization and the workings of actin itself. In particular, we highlight quantitative approaches on the kinetics of actin cable assembly and methods of measuring their morphology by image analysis. Actin cables described by these studies can span greater lengths than a thousand end-to-end actin monomers. Because of this difference in length scales, control of the actin-cable system constitutes a junction between short-range interactions—among actin monomers and nucleating, polymerization-facilitating, side-binding, severing, and cross-linking proteins—and the emergence of cell-scale physical form as embodied by the actin cables themselves. PMID:22161338

  9. Bradykinin increases blood-tumor barrier permeability by down-regulating the expression levels of ZO-1, occludin, and claudin-5 and rearranging actin cytoskeleton.

    PubMed

    Liu, Li-Bo; Xue, Yi-Xue; Liu, Yun-Hui; Wang, Yi-Bao

    2008-04-01

    Bradykinin (BK) has been shown to open blood-tumor barrier (BTB) selectively and to increase permeability of the BTB transiently, but the mechanism is unclear. This study was performed to determine whether BK opens the BTB by affecting the tight junction (TJ)-associated proteins zonula occluden-1 (ZO-1), occludin, and caludin-5 and cytoskeleton protein filamentous actin (F-actin). In rat brain glioma model and BTB model in vitro, we find that the protein expression levels of ZO-1, occludin, and claudin-5 are attenuated by BK induction. Immunohistochemistry and immunofluorescence assays show that the attenuated expression of ZO-1, occludin, and claudin-5 and F-actin is most obvious in the smaller tumor capillaries (<20 microm) after BK infusion, and there is no change in the larger tumor capillaries (>20 microm). The redistribution of ZO-1, occludin, and claudin-5 and rearrangement of F-actin in brain microvascular endothelial cells are observed at the same time. Meanwhile, Evans blue assay shows that the permeability of BTB increases after BK infusion. Transmission electron microscopy indicates that TJ is opened and that pinocytotic vesicular density is increased. Transendothelial electrical resistance (TEER) and horseradish peroxidase flux assays also reveal that TJ is opened by BK induction. In addition, radioimmunity and Western blot assay reveal a significant decrease in expression levels of cAMP and catalytic subunit of protien kinase A (PKAcs) of tumor tissue. This study demonstrates that the increase of BK-mediated BTB permeability is associated with the down-regulation of ZO-1, occludin, and claudin-5 and the rearrangement of F-actin and that cAMP/PKA signal transduction system might be involved in the modulating process.

  10. Responses to Cell Loss Become Restricted as the Supporting Cells in Mammalian Vestibular Organs Grow Thick Junctional Actin Bands That Develop High Stability

    PubMed Central

    Burns, Joseph C.

    2014-01-01

    Sensory hair cell (HC) loss is a major cause of permanent hearing and balance impairments for humans and other mammals. Yet, fish, amphibians, reptiles, and birds readily replace HCs and recover from such sensory deficits. It is unknown what prevents replacement in mammals, but cell replacement capacity declines contemporaneously with massive postnatal thickening of F-actin bands at the junctions between vestibular supporting cells (SCs). In non-mammals, SCs can give rise to regenerated HCs, and the bands remain thin even in adults. Here we investigated the stability of the F-actin bands between SCs in ears from chickens and mice and Madin-Darby canine kidney cells. Pharmacological experiments and fluorescence recovery after photobleaching (FRAP) of SC junctions in utricles from mice that express a γ-actin–GFP fusion protein showed that the thickening F-actin bands develop increased resistance to depolymerization and exceptional stability that parallels a sharp decline in the cell replacement capacity of the maturing mammalian ear. The FRAP recovery rate and the mobile fraction of γ-actin–GFP both decreased as the bands thickened with age and became highly stabilized. In utricles from neonatal mice, time-lapse recordings in the vicinity of dying HCs showed that numerous SCs change shape and organize multicellular actin purse strings that reseal the epithelium. In contrast, adult SCs appeared resistant to deformation, with resealing responses limited to just a few neighboring SCs that did not form purse strings. The exceptional stability of the uniquely thick F-actin bands at the junctions of mature SCs may play an important role in restricting dynamic repair responses in mammalian vestibular epithelia. PMID:24478379

  11. Fyn Mediates High Glucose-Induced Actin Cytoskeleton Reorganization of Podocytes via Promoting ROCK Activation In Vitro

    PubMed Central

    Lv, Zhimei; Hu, Mengsi; Ren, Xiaoxu; Fan, Minghua; Zhen, Junhui; Chen, Liqun; Lin, Jiangong; Ding, Nannan; Wang, Qun; Wang, Rong

    2016-01-01

    Fyn, a member of the Src family of tyrosine kinases, is a key regulator in cytoskeletal remodeling in a variety of cell types. Recent studies have demonstrated that Fyn is responsible for nephrin tyrosine phosphorylation, which will result in polymerization of actin filaments and podocyte damage. Thus detailed involvement of Fyn in podocytes is to be elucidated. In this study, we investigated the potential role of Fyn/ROCK signaling and its interactions with paxillin. Our results presented that high glucose led to filamentous actin (F-actin) rearrangement in podocytes, accompanied by paxillin phosphorylation and increased cell motility, during which Fyn and ROCK were markedly activated. Gene knockdown of Fyn by siRNA showed a reversal effect on high glucose-induced podocyte damage and ROCK activation; however, inhibition of ROCK had no significant effects on Fyn phosphorylation. These observations demonstrate that in vitro Fyn mediates high glucose-induced actin cytoskeleton remodeling of podocytes via promoting ROCK activation and paxillin phosphorylation. PMID:26881253

  12. The CAMSAP3-ACF7 Complex Couples Noncentrosomal Microtubules with Actin Filaments to Coordinate Their Dynamics.

    PubMed

    Ning, Wenxiu; Yu, Yanan; Xu, Honglin; Liu, Xiaofei; Wang, Daiwei; Wang, Jing; Wang, Yingchun; Meng, Wenxiang

    2016-10-10

    For adaptation to complex cellular functions, dynamic cytoskeletal networks are required. There are two major components of the cytoskeleton, microtubules and actin filaments, which form an intricate network maintaining an exquisite cooperation to build the physical basis for their cellular function. However, little is known about the molecular mechanism underlying their synergism. Here, we show that in Caco2 epithelial cells, noncentrosomal microtubules crosstalk with F-actin through their minus ends and contribute to the regulation of focal adhesion size and cell migration. We demonstrate that ACF7, a member of the spectraplakin family of cytoskeletal crosslinking proteins, interacts with Nezha (also called CAMSAP3) at the minus ends of noncentrosomal microtubules and anchors them to actin filaments. Those noncentrosomal microtubules cooperate with actin filaments through retrograde flow to keep their length and orientation perpendicular to the cell edge as well as regulate focal adhesion size and cell migration. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Plasmodium falciparum aldolase and the C-terminal cytoplasmic domain of certain apical organellar proteins promote actin polymerization.

    PubMed

    Diaz, Suraya A; Martin, Stephen R; Grainger, Munira; Howell, Steven A; Green, Judith L; Holder, Anthony A

    2014-10-01

    The current model of Apicomplexan motility and host cell invasion is that both processes are driven by an actomyosin motor located beneath the plasma membrane, with the force transduced to the outside of the cell via coupling through aldolase and the cytoplasmic tail domains (CTDs) of certain type 1 membrane proteins. In Plasmodium falciparum (Pf), aldolase is thought to bind to the CTD of members of the thrombospondin-related anonymous protein (TRAP) family, which are micronemal proteins and represented by MTRAP in merozoites. Other type 1 membrane proteins including members of the erythrocyte binding antigen (EBA) and reticulocyte binding protein homologue (RH) protein families, which are also apical organellar proteins, have also been implicated in host cell binding in erythrocyte invasion. However, recent studies with Toxoplasma gondii have questioned the importance of aldolase in these processes. Using biolayer interferometry we show that Pf aldolase binds with high affinity to both rabbit and Pf actin, with a similar affinity for filamentous (F-) actin and globular (G-) actin. The interaction between Pf aldolase and merozoite actin was confirmed by co-sedimentation assays. Aldolase binding was shown to promote rabbit actin polymerization indicating that the interaction is more complicated than binding alone. The CTDs of some but not all type 1 membrane proteins also promoted actin polymerization in the absence of aldolase; MTRAP and RH1 CTDs promoted actin polymerization but EBA175 CTD did not. Direct actin polymerization mediated by membrane protein CTDs may contribute to actin recruitment, filament formation and stability during motor assembly, and actin-mediated movement, independent of aldolase. Copyright © 2014 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Greater enrichment of triacylglycerol-rich lipoproteins with apolipoproteins E and C-III after meals rich in saturated fatty acids than after meals rich in unsaturated fatty acids.

    PubMed

    Jackson, Kim G; Wolstencroft, Emma J; Bateman, Paul A; Yaqoob, Parveen; Williams, Christine M

    2005-01-01

    Although there is considerable interest in the postprandial events involved in the absorption of dietary fats and the subsequent metabolism of diet-derived triacylglycerol-rich lipoproteins, little is known about the effects of meal fatty acids on the composition of these particles. We examined the effect of meal fatty acids on the lipid and apolipoprotein contents of triacylglycerol-rich lipoproteins. Ten normolipidemic men received in random order a mixed meal containing 50 g of a mixture of palm oil and cocoa butter [rich in saturated fatty acids (SFAs)], safflower oil [n-6 polyunsaturated fatty acids (PUFAs)], or olive oil [monounsaturated fatty acids (MUFAs)] on 3 occasions. Fasting and postprandial apolipoproteins B-48, B-100, E, C-II, and C-III and lipids (triacylglycerol and cholesterol) were measured in plasma fractions with Svedberg flotation rates (S(f)) >400, S(f) 60-400, and S(f) 20-60. Calculation of the composition of the triacylglycerol-rich lipoproteins (expressed per mole of apolipoprotein B) showed notable differences in the lipid and apolipoprotein contents of the SFA-enriched particles in the S(f) > 400 and S(f) 60-400 fractions. After the SFA meal, triacylglycerol-rich lipoproteins in these fractions showed significantly greater amounts of triacylglycerol and of apolipoproteins C-II (S(f) 60-400 fraction only), C-III, and E than were found after the MUFA meal (P < 0.02) and more cholesterol, apolipoprotein C-III (S(f) > 400 fraction only), and apolipoprotein E than after the PUFA meal (P < 0.02). Differences in the composition of S(f) > 400 and S(f) 60-400 triacylglycerol-rich lipoproteins formed after saturated compared with unsaturated fatty acid-rich meals may explain differences in the metabolic handling of dietary fats.

  15. BID-F1 and BID-F2 domains of Bartonella henselae effector protein BepF trigger together with BepC the formation of invasome structures.

    PubMed

    Truttmann, Matthias C; Guye, Patrick; Dehio, Christoph

    2011-01-01

    The gram-negative, zoonotic pathogen Bartonella henselae (Bhe) translocates seven distinct Bartonella effector proteins (Beps) via the VirB/VirD4 type IV secretion system (T4SS) into human cells, thereby interfering with host cell signaling [1], [2]. In particular, the effector protein BepG alone or the combination of effector proteins BepC and BepF trigger massive F-actin rearrangements that lead to the establishment of invasome structures eventually resulting in the internalization of entire Bhe aggregates [2], [3]. In this report, we investigate the molecular function of the effector protein BepF in the eukaryotic host cell. We show that the N-terminal [E/T]PLYAT tyrosine phosphorylation motifs of BepF get phosphorylated upon translocation but do not contribute to invasome-mediated Bhe uptake. In contrast, we found that two of the three BID domains of BepF are capable to trigger invasome formation together with BepC, while a mutation of the WxxxE motif of the BID-F1 domain inhibited its ability to contribute to the formation of invasome structures. Next, we show that BepF function during invasome formation can be replaced by the over-expression of constitutive-active Rho GTPases Rac1 or Cdc42. Finally we demonstrate that BID-F1 and BID-F2 domains promote the formation of filopodia-like extensions in NIH 3T3 and HeLa cells as well as membrane protrusions in HeLa cells, suggesting a role for BepF in Rac1 and Cdc42 activation during the process of invasome formation.

  16. Actinic comedonal plaque.

    PubMed

    Eastern, J S; Martin, S

    1980-12-01

    Solitary plaques developed on the sun-exposed and damaged skin of five elderly, fair-skinned individuals. The lesions, erythematous to bluish confluent nodules and plaques with a cribriform appearance and comedone-like structures, presented a distinctive histologic picture of dilated, keratin-filled follicles within a matrix of amorphous, damaged collagen. We believe these cases demonstrate a distinct entity within the realm of actinic dermatoses, for which the name "actinic comedonal plaque" seems appropriate.

  17. Actin retrograde flow and actomyosin II arc contraction drive receptor cluster dynamics at the immunological synapse in Jurkat T cells

    PubMed Central

    Yi, Jason; Wu, Xufeng S.; Crites, Travis; Hammer, John A.

    2012-01-01

    Actin retrograde flow and actomyosin II contraction have both been implicated in the inward movement of T cell receptor (TCR) microclusters and immunological synapse formation, but no study has integrated and quantified their relative contributions. Using Jurkat T cells expressing fluorescent myosin IIA heavy chain and F-tractin—a novel reporter for F-actin—we now provide direct evidence that the distal supramolecular activation cluster (dSMAC) and peripheral supramolecular activation cluster (pSMAC) correspond to lamellipodial (LP) and lamellar (LM) actin networks, respectively, as hypothesized previously. Our images reveal concentric and contracting actomyosin II arcs/rings at the LM/pSMAC. Moreover, the speeds of centripetally moving TCR microclusters correspond very closely to the rates of actin retrograde flow in the LP/dSMAC and actomyosin II arc contraction in the LM/pSMAC. Using cytochalasin D and jasplakinolide to selectively inhibit actin retrograde flow in the LP/dSMAC and blebbistatin to selectively inhibit actomyosin II arc contraction in the LM/pSMAC, we demonstrate that both forces are required for centripetal TCR microcluster transport. Finally, we show that leukocyte function–associated antigen 1 clusters accumulate over time at the inner aspect of the LM/pSMAC and that this accumulation depends on actomyosin II contraction. Thus actin retrograde flow and actomyosin II arc contraction coordinately drive receptor cluster dynamics at the immunological synapse. PMID:22219382

  18. Control of the actin cytoskeleton in root hair development.

    PubMed

    Pei, Weike; Du, Fei; Zhang, Yi; He, Tian; Ren, Haiyun

    2012-05-01

    The development of root hair includes four stages: bulge site selection, bulge formation, tip growth, and maturation. The actin cytoskeleton is involved in all of these stages and is organized into distinct arrangements in the different stages. In addition to the actin configuration, actin isoforms also play distinct roles in the different stages. The actin cytoskeleton is regulated by actin-binding proteins, such as formin, Arp2/3 complex, profilin, actin depolymerizing factor, and villin. Some upstream signals, i.e. calcium, phospholipids, and small GTPase regulate the activity of these actin-binding proteins to produce the proper actin configuration. We constructed a working model on how the actin cytoskeleton is controlled by actin-binding proteins and upstream signaling in root hair development based on the current literature: at the tip of hairs, actin polymerization appears to be facilitated by Arp2/3 complex that is activated by small GTPase, and profilin that is regulated by phosphatidylinositol 4,5-bisphosphate. Meanwhile, actin depolymerization and turnover are likely mediated by villin and actin depolymerizing factor, which are stimulated by calcium. At the shank, actin cables are produced by formin and villin. Under the complicated interaction, the actin cytoskeleton is controlled spatially and temporally during root hair development. © 2012 Elsevier Ireland Ltd. All rights reserved.

  19. Power transduction of actin filaments ratcheting in vitro against a load.

    PubMed

    Démoulin, Damien; Carlier, Marie-France; Bibette, Jérôme; Baudry, Jean

    2014-12-16

    The actin cytoskeleton has the unique capability of producing pushing forces at the leading edge of motile cells without the implication of molecular motors. This phenomenon has been extensively studied theoretically, and molecular models, including the widely known Brownian ratchet, have been proposed. However, supporting experimental work is lacking, due in part to hardly accessible molecular length scales. We designed an experiment to directly probe the mechanism of force generation in a setup where a population of actin filaments grows against a load applied by magnetic microparticles. The filaments, arranged in stiff bundles by fascin, are constrained to point toward the applied load. In this protrusion-like geometry, we are able to directly measure the velocity of filament elongation and its dependence on force. Using numerical simulations, we provide evidence that our experimental data are consistent with a Brownian ratchet-based model. We further demonstrate the existence of a force regime far below stalling where the mechanical power transduced by the ratcheting filaments to the load is maximal. The actin machinery in migrating cells may tune the number of filaments at the leading edge to work in this force regime.

  20. Characterization, cloning and immunolocalization of a coronin homologue in Trichomonas vaginalis.

    PubMed

    Bricheux, G; Coffe, G; Bayle, D; Brugerolle, G

    2000-06-01

    On adhesion to host cells the flagellate Trichomonas vaginalis switches to an amoeboid form rich in actin microfilaments. We have undertaken the identification of actin-associated proteins that regulate actin dynamics. A monoclonal antibody 4C12 raised against a cytoskeletal fraction of T. vaginalis labeled a protein doublet at circa 50 kDa. These two bands were recognized by the antibody against Dictyostelium discoideum coronin. During cell extraction and actin polymerization, T. vaginalis coronin cosedimented with F-actin. By two-dimensional gel electrophoresis, the protein doublet was separated into two sets of isoforms covering two Ip zones around 6 and 7. By screening a T. vaginalis library with 4C12, two clones Cor 1 and Cor 2 were isolated. This gene duplicity is a particularity among unicellular organisms examined. The complete sequence of the gene Cor 1 encodes a 435-residue protein with a calculated molecular mass of 48 kDa and Ip of 5.58. The incomplete sequence Cor 2 was very similar but with a more basic calculated Ip than Cor 1 on the same region. T. vaginalis coronin had 50% similarity with the coronin family, possessing the five WD-repeats and a leucine zipper in its C-terminal part. Double immunofluorescence labeling showed that coronin mainly colocalized with actin at the periphery of the adherent amoeboid cells. However, coronin labeling displayed patches within a reticular array. Immunogold electron microscopy confirmed the coronin labeling in the actin-rich microfilamentous fringe beneath the plasma membrane, with accumulation in phagocytic zones and pseudopodial extensions. In T. vaginalis, one of the first emerging lineage of eukaryotes, coronin seems to play an important role in actin dynamics and may be a downstream target of a signaling mechanism for the cytoskeleton reorganization.

  1. Disrupting actin-myosin-actin connectivity in airway smooth muscle as a treatment for asthma?

    PubMed

    Lavoie, Tera L; Dowell, Maria L; Lakser, Oren J; Gerthoffer, William T; Fredberg, Jeffrey J; Seow, Chun Y; Mitchell, Richard W; Solway, Julian

    2009-05-01

    Breathing is known to functionally antagonize bronchoconstriction caused by airway muscle contraction. During breathing, tidal lung inflation generates force fluctuations that are transmitted to the contracted airway muscle. In vitro, experimental application of force fluctuations to contracted airway smooth muscle strips causes them to relengthen. Such force fluctuation-induced relengthening (FFIR) likely represents the mechanism by which breathing antagonizes bronchoconstriction. Thus, understanding the mechanisms that regulate FFIR of contracted airway muscle could suggest novel therapeutic interventions to increase FFIR, and so to enhance the beneficial effects of breathing in suppressing bronchoconstriction. Here we propose that the connectivity between actin filaments in contracting airway myocytes is a key determinant of FFIR, and suggest that disrupting actin-myosin-actin connectivity by interfering with actin polymerization or with myosin polymerization merits further evaluation as a potential novel approach for preventing prolonged bronchoconstriction in asthma.

  2. Symbiont-Induced Changes in Host Actin during the Onset of a Beneficial Animal-Bacterial Association

    PubMed Central

    Kimbell, Jennifer R.; McFall-Ngai, Margaret J.

    2004-01-01

    The influence of bacteria on the cytoskeleton of animal cells has been studied extensively only in pathogenic associations. We characterized changes in host cytoskeletal actin induced by the bacterial partner during the onset of a cooperative animal-bacteria association using the squid-vibrio model. Two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis revealed that Vibrio fischeri induced a dramatic increase in actin protein abundance in the bacteria-associated host tissues during the onset of the symbiosis. Immunocytochemistry revealed that this change in actin abundance correlated with a two- to threefold increase in actin in the apical cell surface of the epithelium-lined ducts, the route of entry of symbionts into host tissues. Real-time reverse transcriptase PCR and in situ hybridization did not detect corresponding changes in actin mRNA. Temporally correlated with the bacteria-induced changes in actin levels was a two- to threefold decrease in duct circumference, a 20% loss in the average number of cells interfacing with the duct lumina, and dramatic changes in duct cell shape. When considered with previous studies of the biomechanical and biochemical characteristics of the duct, these findings suggest that the bacterial symbionts, upon colonizing the host organ, induce modifications that physically and chemically limit the opportunity for subsequent colonizers to pass through the ducts. Continued study of the squid-vibrio system will allow further comparisons of the mechanisms by which pathogenic and cooperative bacteria influence cytoskeleton dynamics in host cells. PMID:15006763

  3. Structure of the Rigor Actin-Tropomyosin-Myosin Complex

    PubMed Central

    Behrmann, Elmar; Müller, Mirco; Penczek, Pawel A.; Mannherz, Hans Georg; Manstein, Dietmar J.; Raunser, Stefan

    2014-01-01

    The interaction of myosin with actin filaments is the central feature of muscle contraction and cargo movement along actin filaments of the cytoskeleton. Myosin converts the chemical energy stored in ATP into force and movement along actin filaments. Myosin binding to actin induces conformational changes that are coupled to the nucleotide-binding pocket and amplified by a specialized region of the motor domain for efficient force generation. Tropomyosin plays a key role in regulating the productive interaction between myosins and actin. Here, we report the 8 Å resolution structure of the actin-tropomyosin-myosin complex determined by cryo electron microscopy. The pseudo-atomic model of the complex obtained from fitting crystal structures into the map defines the large actin-myosin-tropomyosin interface and the molecular interactions between the proteins in detail and allows us to propose a structural model for tropomyosin dependent myosin binding to actin and actin-induced nucleotide release from myosin. PMID:22817895

  4. Actin expression in some Platyhelminthe species.

    PubMed

    Fagotti, A; Panara, F; Di Rosa, I; Simoncelli, F; Gabbiani, G; Pascolini, R

    1994-10-01

    Actin expression in some Platyhelminthe species was demonstrated by western-blotting and immunocytochemical analysis using two distinct anti-actin antibodies: the anti-total actin that reacts against all actin isoforms of higher vertebrates and the anti-alpha SM-1 that recognizes the alpha-smooth muscle (alpha SM) isotype of endothermic vertebrates (Skalli et al., 1986). Western-blotting experiments showed that all species tested, including some free-living Platyhelminthes (Tricladida and Rhabdocoela) and the parasitic Fasciola hepatica, were stained by anti-total actin antibody while only Dugesidae and Dendrocoelidae showed a positive immunoreactivity against anti-alpha SM-1. These results were confirmed by cytochemical immunolocalization using both avidin biotin conjugated peroxidase reaction on paraffin sections, and immunogold staining on Lowicryl 4KM embedded specimens. Our findings may contribute to the understanding of Platyhelminthes phylogeny.

  5. Actin dynamics at focal adhesions: a common endpoint and putative therapeutic target for proteinuric kidney diseases.

    PubMed

    Sever, Sanja; Schiffer, Mario

    2018-06-01

    Proteinuria encompasses diverse causes including both genetic diseases and acquired forms such as diabetic and hypertensive nephropathy. The basis of proteinuria is a disturbance in size selectivity of the glomerular filtration barrier, which largely depends on the podocyte: a terminally differentiated epithelial cell type covering the outer surface of the glomerulus. Compromised podocyte structure is one of the earliest signs of glomerular injury. The phenotype of diverse animal models and podocyte cell culture firmly established the essential role of the actin cytoskeleton in maintaining functional podocyte structure. Podocyte foot processes, actin-based membrane extensions, contain 2 molecularly distinct "hubs" that control actin dynamics: a slit diaphragm and focal adhesions. Although loss of foot processes encompasses disassembly of slit diaphragm multiprotein complexes, as long as cells are attached to the glomerular basement membrane, focal adhesions will be the sites in which stress due to filtration flow is counteracted by forces generated by the actin network in foot processes. Numerous studies within last 20 years have identified actin binding and regulatory proteins as well as integrins as essential components of signaling and actin dynamics at focal adhesions in podocytes, suggesting that some of them may become novel, druggable targets for proteinuric kidney diseases. Here we review evidence supporting the idea that current treatments for chronic kidney diseases beneficially and directly target the podocyte actin cytoskeleton associated with focal adhesions and suggest that therapeutic reagents that target the focal adhesion-regulated actin cytoskeleton in foot processes have potential to modernize treatments for chronic kidney diseases. Copyright © 2018 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.

  6. Actin growth profile in clathrin-mediated endocytosis

    NASA Astrophysics Data System (ADS)

    Tweten, D. J.; Bayly, P. V.; Carlsson, A. E.

    2017-05-01

    Clathrin-mediated endocytosis in yeast is driven by a protein patch containing close to 100 different types of proteins. Among the proteins are 5000 -10 000 copies of polymerized actin, and successful endocytosis requires growth of the actin network. Since it is not known exactly how actin network growth drives endocytosis, we calculate the spatial distribution of actin growth required to generate the force that drives the process. First, we establish the force distribution that must be supplied by actin growth, by combining membrane-bending profiles obtained via electron microscopy with established theories of membrane mechanics. Next, we determine the profile of actin growth, using a continuum mechanics approach and an iterative procedure starting with an actin growth profile obtained from a linear analysis. The profile has fairly constant growth outside a central hole of radius 45-50 nm, but very little growth in this hole. This growth profile can reproduce the required forces if the actin shear modulus exceeds 80 kPa, and the growing filaments can exert very large polymerization forces. The growth profile prediction could be tested via electron-microscopy or super-resolution experiments in which the turgor pressure is suddenly turned off.

  7. Three’s company: The fission yeast actin cytoskeleton

    PubMed Central

    Kovar, David R.; Sirotkin, Vladimir; Lord, Matthew

    2010-01-01

    How the actin cytoskeleton assembles into different structures to drive diverse cellular processes is a fundamental cell biological question. In addition to orchestrating the appropriate combination of regulators and actin-binding proteins, different actin-based structures must insulate themselves from one another to maintain specificity within a crowded cytoplasm. Actin specification is particularly vexing in complex eukaryotes where a multitude of protein isoforms and actin structures operate within the same cell. Fission yeast Schizosaccharomyces pombe possesses a single actin isoform that functions in three distinct structures throughout the cell cycle. In this review, we explore recent studies in fission yeast that help unravel how different actin structures operate in cells. PMID:21145239

  8. Importance of a Lys113–Glu195 Intermonomer Ionic Bond in F-actin Stabilization and Regulation by Yeast Formins Bni1p and Bnr1p*

    PubMed Central

    Wen, Kuo-Kuang; McKane, Melissa; Rubenstein, Peter A.

    2013-01-01

    Proper actin cytoskeletal function requires actin's ability to generate a stable filament and requires that this reaction be regulated by actin-binding proteins via allosteric effects on the actin. A proposed ionic interaction in the actin filament interior between Lys113 of one monomer and Glu195 of a monomer in the apposing strand potentially fosters cross-strand stabilization and allosteric communication between the filament interior and exterior. We interrupted the potential interaction by creating either K113E or E195K actin. By combining the two, we also reversed the interaction with a K113E/E195K (E/K) mutant. In all cases, we isolated viable cells expressing only the mutant actin. Either single mutant cell displays significantly decreased growth in YPD medium. This deficit is rescued in the double mutant. All three mutants display abnormal phalloidin cytoskeletal staining. K113E actin exhibits a critical concentration of polymerization 4 times higher than WT actin, nucleates more poorly, and forms shorter filaments. Restoration of the ionic bond, E/K, eliminates most of these problems. E195K actin behaves much more like WT actin, indicating accommodation of the neighboring lysines. Both Bni1 and Bnr1 formin FH1-FH2 fragment accelerate polymerization of WT, E/K, and to a lesser extent E195K actin. Bni1p FH1-FH2 dramatically inhibits K113E actin polymerization, consistent with barbed end capping. However, Bnr1p FH1-FH2 restores K113E actin polymerization, forming single filaments. In summary, the proposed ionic interaction plays an important role in filament stabilization and in the propagation of allosteric changes affecting formin regulation in an isoform-specific fashion. PMID:23653364

  9. Recruitment Kinetics of Tropomyosin Tpm3.1 to Actin Filament Bundles in the Cytoskeleton Is Independent of Actin Filament Kinetics.

    PubMed

    Appaduray, Mark A; Masedunskas, Andrius; Bryce, Nicole S; Lucas, Christine A; Warren, Sean C; Timpson, Paul; Stear, Jeffrey H; Gunning, Peter W; Hardeman, Edna C

    2016-01-01

    The actin cytoskeleton is a dynamic network of filaments that is involved in virtually every cellular process. Most actin filaments in metazoa exist as a co-polymer of actin and tropomyosin (Tpm) and the function of an actin filament is primarily defined by the specific Tpm isoform associated with it. However, there is little information on the interdependence of these co-polymers during filament assembly and disassembly. We addressed this by investigating the recovery kinetics of fluorescently tagged isoform Tpm3.1 into actin filament bundles using FRAP analysis in cell culture and in vivo in rats using intracellular intravital microscopy, in the presence or absence of the actin-targeting drug jasplakinolide. The mobile fraction of Tpm3.1 is between 50% and 70% depending on whether the tag is at the C- or N-terminus and whether the analysis is in vivo or in cultured cells. We find that the continuous dynamic exchange of Tpm3.1 is not significantly impacted by jasplakinolide, unlike tagged actin. We conclude that tagged Tpm3.1 may be able to undergo exchange in actin filament bundles largely independent of the assembly and turnover of actin.

  10. Liquid behavior of cross-linked actin bundles.

    PubMed

    Weirich, Kimberly L; Banerjee, Shiladitya; Dasbiswas, Kinjal; Witten, Thomas A; Vaikuntanathan, Suriyanarayanan; Gardel, Margaret L

    2017-02-28

    The actin cytoskeleton is a critical regulator of cytoplasmic architecture and mechanics, essential in a myriad of physiological processes. Here we demonstrate a liquid phase of actin filaments in the presence of the physiological cross-linker, filamin. Filamin condenses short actin filaments into spindle-shaped droplets, or tactoids, with shape dynamics consistent with a continuum model of anisotropic liquids. We find that cross-linker density controls the droplet shape and deformation timescales, consistent with a variable interfacial tension and viscosity. Near the liquid-solid transition, cross-linked actin bundles show behaviors reminiscent of fluid threads, including capillary instabilities and contraction. These data reveal a liquid droplet phase of actin, demixed from the surrounding solution and dominated by interfacial tension. These results suggest a mechanism to control organization, morphology, and dynamics of the actin cytoskeleton.

  11. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions

    PubMed Central

    Baranwal, Somesh

    2015-01-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. PMID:25792565

  12. Actin-interacting protein 1 controls assembly and permeability of intestinal epithelial apical junctions.

    PubMed

    Lechuga, Susana; Baranwal, Somesh; Ivanov, Andrei I

    2015-05-01

    Adherens junctions (AJs) and tight junctions (TJs) are crucial regulators of the integrity and restitution of the intestinal epithelial barrier. The structure and function of epithelial junctions depend on their association with the cortical actin cytoskeleton that, in polarized epithelial cells, is represented by a prominent perijunctional actomyosin belt. The assembly and stability of the perijunctional cytoskeleton is controlled by constant turnover (disassembly and reassembly) of actin filaments. Actin-interacting protein (Aip) 1 is an emerging regulator of the actin cytoskeleton, playing a critical role in filament disassembly. In this study, we examined the roles of Aip1 in regulating the structure and remodeling of AJs and TJs in human intestinal epithelium. Aip1 was enriched at apical junctions in polarized human intestinal epithelial cells and normal mouse colonic mucosa. Knockdown of Aip1 by RNA interference increased the paracellular permeability of epithelial cell monolayers, decreased recruitment of AJ/TJ proteins to steady-state intercellular contacts, and attenuated junctional reassembly in a calcium-switch model. The observed defects of AJ/TJ structure and functions were accompanied by abnormal organization and dynamics of the perijunctional F-actin cytoskeleton. Moreover, loss of Aip1 impaired the apico-basal polarity of intestinal epithelial cell monolayers and inhibited formation of polarized epithelial cysts in 3-D Matrigel. Our findings demonstrate a previously unanticipated role of Aip1 in regulating the structure and remodeling of intestinal epithelial junctions and early steps of epithelial morphogenesis. Copyright © 2015 the American Physiological Society.

  13. Molecular cloning of actin genes in Trichomonas vaginalis and phylogeny inferred from actin sequences.

    PubMed

    Bricheux, G; Brugerolle, G

    1997-08-01

    The parasitic protozoan Trichomonas vaginalis is known to contain the ubiquitous and highly conserved protein actin. A genomic library and a cDNA library have been screened to identify and clone the actin gene(s) of T. vaginalis. The nucleotide sequence of one gene and its flanking regions have been determined. The open reading frame encodes a protein of 376 amino acids. The sequence is not interrupted by any introns and the promoter could be represented by a 10 bp motif close to a consensus motif also found upstream of most sequenced T. vaginalis genes. The five different clones isolated from the cDNA library have similar sequences and encode three actin proteins differing only by one or two amino acids. A phylogenetic analysis of 31 actin sequences by distance matrix and parsimony methods, using centractin as outgroup, gives congruent trees with Parabasala branching above Diplomonadida.

  14. Transition from Actin-Driven to Water-Driven Cell Migration Depends on External Hydraulic Resistance.

    PubMed

    Li, Yizeng; Sun, Sean X

    2018-06-19

    Cells in vivo can reside in diverse physical and biochemical environments. For example, epithelial cells typically live in a two-dimensional (2D) environment, whereas metastatic cancer cells can move through dense three-dimensional matrices. These distinct environments impose different kinds of mechanical forces on cells and thus potentially can influence the mechanism of cell migration. For example, cell movement on 2D flat surfaces is mostly driven by forces from focal adhesion and actin polymerization, whereas in confined geometries, it can be driven by water permeation. In this work, we utilize a two-phase model of the cellular cytoplasm in which the mechanics of the cytosol and the F-actin network are treated on an equal footing. Using conservation laws and simple force balance considerations, we are able to describe the contributions of water flux, actin polymerization and flow, and focal adhesions to cell migration both on 2D surfaces and in confined spaces. The theory shows how cell migration can seamlessly transition from a focal adhesion- and actin-based mechanism on 2D surfaces to a water-based mechanism in confined geometries. Copyright © 2018 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. Managing actinic keratosis in primary care.

    PubMed

    Salmon, Nicola; Tidman, Michael J

    2016-10-01

    Actinic, or solar, keratosis is caused by chronic ultraviolet-induced damage to the epidermis. In the UK, 15-23% of individuals have actinic keratosis lesions. Risk factors include: advanced age; male gender; cumulative sun exposure or phototherapy; Fitzpatrick skin phototypes I-II; long-term immuno-suppression and genetic syndromes e.g. xeroderma pigmentosum and albinism. Actinic keratoses are regarded by some authorities as premalignant lesions that may transform into invasive squamous cell carcinoma (SCC) and by others as in situ SCC that may progress to an invasive stage. The risk of malignant change appears low; up to 0.5% per lesion per year. Up to 20-30% of lesions may spontaneously regress but in the absence of any reliable prognostic clinical indicators regarding malignant potential active treatment is considered appropriate. Actinic keratosis lesions may present as discrete hyperkeratotic papules, cutaneous horns, or more subtle flat lesions on sun-exposed areas of skin. The single most helpful diagnostic sign is an irregularly roughened surface texture: a sandpaper-like feel almost always indicates actinic damage. Dermatoscopy can be helpful in excluding signs of basal cell carcinoma when actinic keratosis is non-keratotic. It is always important to consider the possibility of SCC. The principal indication for referral to secondary care is the possibility of cutaneous malignancy. However, widespread and severe actinic damage in patients who are immunosuppressed is also a reason for referral.

  16. Flavanol-rich cocoa drink lowers plasma F(2)-isoprostane concentrations in humans.

    PubMed

    Wiswedel, Ingrid; Hirsch, Daniela; Kropf, Siegfried; Gruening, Martin; Pfister, Eberhard; Schewe, Tankred; Sies, Helmut

    2004-08-01

    Flavan-3-ols are potent antioxidants in vitro, but convincing evidence for antioxidant action in vivo is lacking. We examined whether an oxidative stress-mediated increase in plasma F(2)-isoprostanes is counteracted by a flavanol-rich cocoa beverage. Twenty volunteers were examined in a comparative randomized double-blind crossover design with respect to ingestion of high-flavanol cocoa drink (HFCD; 187 mg flavan-3-ols/100 ml) vs. low-flavanol cocoa drink (LFCD; 14 mg/100 ml). With 10 individuals, the treatment was combined with strenuous physical exercise. Total (esterified plus nonesterified) F(2)-isoprostanes were analyzed by GC/MS. LFCD caused a slight increase in the mean (+/- SEM) plasma concentrations of F(2)-isoprostanes 2 and 4 h after intake (2.16 +/- 0.19 nM at 4 h vs. 1.76 +/- 0.11 nM at 0 h, n = 10), which may be attributable to postprandial oxidative stress. This increase did not occur with HFCD (1.57 +/- 0.06 nM at 4 h vs. 1.65 +/- 0.10 nM at 0 h, n = 10). The difference in F(2)-isoprostanes 2 and 4 h after intake of HFCD vs. LFCD became statistically significant when the intake was combined with physical exercise (P < 0.01, ANOVA). We conclude that dietary flavanols, using cocoa drink as example, can lower the plasma level of F(2)-isoprostanes, indicators of in vivo lipid peroxidation.

  17. Vasodilator-stimulated Phosphoprotein (VASP) Regulates Actin Polymerization and Contraction in Airway Smooth Muscle by a Vinculin-dependent Mechanism*

    PubMed Central

    Wu, Yidi; Gunst, Susan J.

    2015-01-01

    Vasodilator-stimulated phosphoprotein (VASP) can catalyze actin polymerization by elongating actin filaments. The elongation mechanism involves VASP oligomerization and its binding to profilin, a G-actin chaperone. Actin polymerization is required for tension generation during the contraction of airway smooth muscle (ASM); however, the role of VASP in regulating actin dynamics in ASM is not known. We stimulated ASM cells and tissues with the contractile agonist acetylcholine (ACh) or the adenylyl cyclase activator, forskolin (FSK), a dilatory agent. ACh and FSK stimulated VASP Ser157 phosphorylation by different kinases. Inhibition of VASP Ser157 phosphorylation by expression of the mutant VASP S157A in ASM tissues suppressed VASP phosphorylation and membrane localization in response to ACh, and also inhibited contraction and actin polymerization. ACh but not FSK triggered the formation of VASP-VASP complexes as well as VASP-vinculin and VASP-profilin complexes at membrane sites. VASP-VASP complex formation and the interaction of VASP with vinculin and profilin were inhibited by expression of the inactive vinculin mutant, vinculin Y1065F, but VASP phosphorylation and membrane localization were unaffected. We conclude that VASP phosphorylation at Ser157 mediates its localization at the membrane, but that VASP Ser157 phosphorylation and membrane localization are not sufficient to activate its actin catalytic activity. The interaction of VASP with activated vinculin at membrane adhesion sites is a necessary prerequisite for VASP-mediated molecular processes necessary for actin polymerization. Our results show that VASP is a critical regulator of actin dynamics and tension generation during the contractile activation of ASM. PMID:25759389

  18. Analytical condition inspection and extension of time between overhaul of F3-30 engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakao, M.; Ikeyama, M.; Abe, S.

    1992-04-01

    F3-30 is the low-bypass-ratio turbofan engine developed to power the T-4 intermediate trainer for the Japan Air Self Defense Force (JASDF). The actual field service was started in Sept., 1988. This paper reports on the program to extend time between overhaul (TBO) of the F3-30 which has been running. Analytical condition inspection (ACI) and accelerated mission testing (AMT) were conducted to confirm sufficient durability to extend TBO. Most deteriorations of parts and performance due to AMT were also found by ACI after field operation with approximately the same deterioration rate. On the other hand, some deteriorations were found by ACImore » only. These results show that ACI after field operation is also necessary to confirm the TBO extension, although AMT simulates the deterioration in field operations very well. The deteriorations that would be caused by the field operation during one extended-TBO were estimated with the results of ACI and AMT, and it was concluded that the F3-30 has sufficient durability for TBO extension to the next step.« less

  19. Fine-tuning of actin dynamics by the HSPB8-BAG3 chaperone complex facilitates cytokinesis and contributes to its impact on cell division.

    PubMed

    Varlet, Alice Anaïs; Fuchs, Margit; Luthold, Carole; Lambert, Herman; Landry, Jacques; Lavoie, Josée N

    2017-07-01

    The small heat shock protein HSPB8 and its co-chaperone BAG3 are proposed to regulate cytoskeletal proteostasis in response to mechanical signaling in muscle cells. Here, we show that in dividing cells, the HSPB8-BAG3 complex is instrumental to the accurate disassembly of the actin-based contractile ring during cytokinesis, a process required to allow abscission of daughter cells. Silencing of HSPB8 markedly decreased the mitotic levels of BAG3 in HeLa cells, supporting its crucial role in BAG3 mitotic functions. Cells depleted of HSPB8 were delayed in cytokinesis, remained connected via a disorganized intercellular bridge, and exhibited increased incidence of nuclear abnormalities that result from failed cytokinesis (i.e., bi- and multi-nucleation). Such phenotypes were associated with abnormal accumulation of F-actin at the intercellular bridge of daughter cells at telophase. Remarkably, the actin sequestering drug latrunculin A, like the inhibitor of branched actin polymerization CK666, normalized F-actin during cytokinesis and restored proper cell division in HSPB8-depleted cells, implicating deregulated actin dynamics as a cause of abscission failure. Moreover, this HSPB8-dependent phenotype could be corrected by rapamycin, an autophagy-promoting drug, whereas it was mimicked by drugs impairing lysosomal function. Together, the results further support a role for the HSPB8-BAG3 chaperone complex in quality control of actin-based structure dynamics that are put under high tension, notably during cell cytokinesis. They expand a so-far under-appreciated connection between selective autophagy and cellular morphodynamics that guide cell division.

  20. Bioinformatics study of the mangrove actin genes

    NASA Astrophysics Data System (ADS)

    Basyuni, M.; Wasilah, M.; Sumardi

    2017-01-01

    This study describes the bioinformatics methods to analyze eight actin genes from mangrove plants on DDBJ/EMBL/GenBank as well as predicted the structure, composition, subcellular localization, similarity, and phylogenetic. The physical and chemical properties of eight mangroves showed variation among the genes. The percentage of the secondary structure of eight mangrove actin genes followed the order of a helix > random coil > extended chain structure for BgActl, KcActl, RsActl, and A. corniculatum Act. In contrast to this observation, the remaining actin genes were random coil > extended chain structure > a helix. This study, therefore, shown the prediction of secondary structure was performed for necessary structural information. The values of chloroplast or signal peptide or mitochondrial target were too small, indicated that no chloroplast or mitochondrial transit peptide or signal peptide of secretion pathway in mangrove actin genes. These results suggested the importance of understanding the diversity and functional of properties of the different amino acids in mangrove actin genes. To clarify the relationship among the mangrove actin gene, a phylogenetic tree was constructed. Three groups of mangrove actin genes were formed, the first group contains B. gymnorrhiza BgAct and R. stylosa RsActl. The second cluster which consists of 5 actin genes the largest group, and the last branch consist of one gene, B. sexagula Act. The present study, therefore, supported the previous results that plant actin genes form distinct clusters in the tree.